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Abstract 

Electrogenerated chemiluminescence or electrochemiluminescence (ECL), produces 

light in the vicinity of a working electrode by the excited species of a luminophore formed 

via electron transfer between radical cations and anions, which are electrogenerated. In order 

for the ECL system to be efficient, the radicals must be stable in solution. This can be 

enhanced by adding co-reactants such as benzoyl peroxide (BPO) and tri-n-propylamine 

(TPrA) that produce strong oxidizing or reducing radicals upon redox reactions. ECL pairs 

electrochemical and spectroscopic methods and is a powerful analytical technique that is 

highly sensitive and selective. 

A comprehensive, mechanistic study of ECL generation via annihilation and co-

reactant paths has been completed for modified deoxycytidine (dC) nucleosides, 

thienyltriazole ligands, metal complexes containing iridium(III) and ruthenium(II), Au25 

clusters, and boron-dipyrromethene (BDY) capped PbS nanoparticles (NPs). Spooling ECL 

spectroscopy was developed during this thesis work, and was used to future understand 

sophisticated mechanisms for ECL generation, tuning and controlling.  

Specifically, the electrochemistry and spectroscopy of four modified dC nucleosides 

were studied to correlate their electronic structures with blue ECL. Four thienyltriazole 

ligands were synthesized and their electrochemical properties were analyzed and relative 

efficiencies determined. Eight iridium(III) complexes, four containing aryltriazole 

cyclometalled ligands, were found to show bright ECL while three iridium(III) complexes 

containing two dimethylamino substituents on the 2,2'-bipyridine ligand displayed self-

enhancing ECL intensity up to 16 times with multiple excited states for light emission. A soft 

salt containing Ir(III) Ru(II) Ir(III) complexes demonstrated electronic communication 

between the [Ru]2+ and [Ir]− moieties thus reducing the energy required to produce ECL. 

Au25 clusters were discovered to emit in the near-infrared (NIR) region in both annihilation 

and co-reactant paths. Co-reactant BPO resulted in multiple strong excited states and the 

ECL mechanisms were elucidated using our newly developed spooling ECL spectroscopy. 

And lastly, BDY-capped PbS NPs were investigated in the generation of both visible and 

NIR ECL via annihilation and co-reactant routes.  
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Chapter 1  

1 Fundamentals of Electrogenerated Chemiluminescence 
(ECL) 

1.1 Introduction 

Electrogenerated chemiluminescence or electrochemiluminescence, ECL, is a 

process where a species is electrochemically oxidized and reduced to generate radical 

cations and anions in solution.1-5 Through electron transfer, the radicals will generate 

excited state species and ground state species. The excited species will relax back to its 

ground state, emitting light. As stated by Bard, the basic requirements for efficient 

annihilation ECL to occur are: 1) stable radical ions of the precursor molecules in the 

electrolyte of interest; 2) good photoluminescence efficiency of a product of the electron 

transfer reaction; and 3) sufficient energy in the electron transfer reaction to produce the 

excited state.1 Usually when this criteria is met, ECL will be observed, however the 

efficiency often depends upon details of reaction kinetics. There are two main pathways 

to generate ECL, ion annihilation or co-reactant reactions. Hercules, Bard et al., and 

Visco et al. reported on the first ECL studies in the 1960s.6-8 ECL is now a powerful 

analytical technique that produces light in the vicinity of the electrode, pairing 

electrochemical and spectroscopic methods. All of these are used in a wide variety of 

applications including biomolecular labeling, immunoassays, DNA analyses, detecting 

analytes, and organic light-emitting diodes.2,4,5,9-14 

1.2 Ion Annihilation Pathway 

ECL can be generated by ion annihilation, shown in Eqs. 1.1 through 1.4.1 Here, 

an ECL luminophore, R, can be electrochemically oxidized and reduced at the surface of 

an electrode to generate stable radical cations and anions. Potential scan directions are 

alternatively changed. For instance, if the applied potential is scanned to negative 

potential first, the radical anion, R−•, of a luminophore, Eq. 1.1, can be generated by 

scanning the applied potential negative. Upon the potential scanned in the reverse 
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direction, to positive potential, the luminophore is oxidized, generating its radical cation, 

R+•, Eq. 1.2. The radicals will generate an excited state species via electron transfer, Eq. 

1.3, and emit light, Eq. 1.4. 

R + e → R−•          (1.1) 

R − e → R+•           (1.2) 

R−• + R+• → R* + R         (1.3) 

R* → R + hv           (1.4) 

In order to have direct population of the singlet excited state, the energy, −∆H°ann, 

must be larger than the energy, Es, required to produce the lowest excited singlet state, 
1R*, from the ground state of R. The total free energy of annihilation can be calculated as 

defined in Eq. 1.5 to 1.7.1,15 The energy, −∆H°ann, can be calculated, Eq. 1.6, using the 

electrode potentials from Eqs. 1.1 and 1.2, with correction for entropy effects, T∆S°, 

~0.16 eV. 

−∆H°ann = −∆G°ann − T∆S° ≈ ∆E°' − 0.16 eV      (1.5) 

−∆H°ann = Ep (R/R+•) − Ep (R/R−•) − 0.16 eV      (1.6) 

−∆H°ann ≥ Es           (1.7) 

If it is possible to directly generate the excited singlet state, 1R*, the system is 

referred to as an energy-sufficient system, S-route, Eq. 1.3a. However, if the energy, 

−∆H°ann, is smaller than Es, singlet state energy, but larger than the triplet state energy, 

Et, the triplet state, 3R*, can be formed via the T-route, Eq. 1.3b. Then the excited singlet 

state, 1R*, by triplet-triplet annihilation (TTA), Eq. 1.8, can be generated. 

S-route 

R−• + R+• → 1R* + R         (1.3a) 
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T-route 

R−• + R+• → 3R* + R         (1.3b) 

3R* + 3R* → 1R* + R         (1.8) 

 Two common compounds used in calculating relative ECL efficiencies are 9,10-

diphenylanthracene, DPA, Figure 1.1, and tris(2,2'-bipyridine)ruthenium(II), 

[Ru(bpy)3]2+, Figure 1.2. DPA is a good example of an energy-sufficient system, S-route, 

Scheme 1.12.7 Whereas,  [Ru(bpy)3]2+ is sufficient to populate the emitting triplet state, 

Scheme 1.2, however it does not follow the T-route.16 

 

Figure 1.1. Structure of 9,10-diphenylanthracene, DPA. 

 

Scheme 1.1. Schematic diagram showing the general principles of ECL with singlet 

excited state emission, 1R*, where R = DPA 
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Scheme 1.2. Schematic diagram showing the general principles of ECL with triplet 

excited state emission, 3R*, where R = [Ru(bpy)3]2+ 

 

Figure 1.2. Structure of tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)3]2+. 

[Ru(bpy)3]2+ + e → [Ru(bpy)3]+•       (1.9) 

[Ru(bpy)3]2+ − e → [Ru(bpy)3]3+•        (1.10) 

[Ru(bpy)3]+• + [Ru(bpy)3]3+• → 3[Ru(bpy)3]2+* + [Ru(bpy)3]2+   (1.11) 

3[Ru(bpy)3]2+* → [Ru(bpy)3]2+ + hv        (1.12) 
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In addition to generating singlet and triplet excited states, ion annihilation can 

also lead to the direct formation of excimers, an electronically excited dimeric species. 

Eqs. 1.13 and 1.14. 

R−• + R+• → (RR)*          (1.13) 

(RR)* → 2R + hv          (1.14) 

 Excimer formation is likely in ECL because of the close proximity of the radical 

ions in the contact radical ion pair.1 Excimer ECL emission, (RR)*, is usually 

characterized by a broad featureless emission red-shifted from the singlet emission of the 

molecule, R*.1 In addition, the molecules should be aligned so that there is significant  π-

orbital overlap.1 

1.3 Co-reactant Pathway 

The addition of a co-reactant to generate ECL is beneficial when the radicals 

generated in solution are not stable or when the solvent has a narrow potential window in 

which the radicals cannot be generated. A co-reactant can produce a reactive 

intermediate, either a strong reducing or strong oxidizing agent, upon electrochemical 

oxidation or reduction, that reacts with the reduced or oxidized ECL luminophore to 

generate the excited species.2 If annihilation only produces weak ECL, the addition of a 

co-reactant may enhance the ECL intensity of the compound of interest.  

 

Figure 1.3. Structure of benzoyl peroxide, BPO. 

Benzoyl peroxide, BPO, Figure 1.3, is a good co-reactant for reductive-oxidation 

ECL, where BPO is easily reduced, BPO−•, Eq. 1.15, then rapidly decomposes, 

generating a strong oxidizing species, benzoate radical, C6H5CO2
•, Eq. 1.16, that can 
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react with the ECL luminophore, R, to generate the radical cation of the ECL 

luminophore species, Eq. 1.17. 

BPO + e− → BPO−•         (1.15) 

BPO−• → C6H5CO2
− + C6H5CO2

•       (1.16) 

C6H5CO2
• + R → R+• + C6H5CO2

−       (1.17) 

 Then the ECL luminophore will be reduced to produce its radical anion, R−•, Eq. 

1.1, and can react with the radical cation, R+•, formed in Eq. 1.17 to generate the excited 

species, R*, Eq. 1.3. 

 

Figure 1.4. Structure of tri-n-propyl amine, TPrA. 

 Another common co-reactant is tri-n-propyl amine, TPrA, Figure 1.4, an excellent 

co-reactant for oxidative-reduction ECL. Using TPrA, the excited state species can be 

produced by three main routes.17,18 First, TPrA is oxidized to its radical cation, TPrA+•, 

Eq. 1.18, then deprotonates to generate the radical, a strong reducing species, TPrA•, Eq. 

1.19. For the first mechanism, the radical, TPrA•, donates an electron to the ECL 

luminophore, R, generating the radical anion, R−•, Eq. 1.20. The radical cation of TPrA, 

TPrA+•, a sufficiently stable intermediate, can then remove an electron from the 

luminophore’s radical anion species, R−•, generating the excited state species, R*, Eq. 

1.21, that will emit light, Eq. 1.4.  

TPrA → TPrA+• + e−         (1.18) 

TPrA+• → TPrA• + H+         (1.19) 

R + TPrA• → R−• + Pr2N+C=HCH2CH3      (1.20) 
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R−• + TPrA+• → R* + TPrA        (1.21) 

 The second mechanism involves the oxidation of TPrA to TPrA•, Eq. 1.19, 

reacting with the oxidized luminophore, R+•, Eq. 1.2, to generate the excited state species, 

R*, Eq. 1.22, that will emit light, Eq. 1.4. The third mechanism follows Eq. 1.20 from the 

first proposed mechanism that generates the radical anion of the luminophore, R−•, that 

reacts with its radical cation, R+•, Eq. 1.2, to generate the excited state species similar to 

ion annihilation route, Eq. 1.3, and emit light, Eq. 1.4. 

R+• + TPrA• → R* + Pr2N+C=HCH2CH3      (1.22) 

 The third mechanism involves the TPrA• radical, Eq. 1.19, and the bulk species, 

R, to generate the radical anion, R−•, Eq. 1.23. The radical anion will transfer an electron 

to the radical cation and generate the excited state species, Eq. 1.3, which will emit light, 

Eq. 1.4. 

R + TPrA• → R−• + Pr2N+C=HCH2CH3      (1.23) 

1.4 ECL Instrumentation 

The electrochemical cell consists of a 2 mm Pt disc inlaid in a glass tube working 

electrode (WE), a coiled Pt wire counter electrode (CE), and either a coiled Ag wire or 

coiled Pt wire quasi reference electrode (RE). The supporting electrolyte contained 0.1 M 

TBAP, tetrabutylammonium perchlorate, or 0.1 M TBAPF6, tetrabutylammonium 

hexafluorophosphate. The anhydrous solvents used were either DMF, N,N-

dimethylformamide, or ACN, acetonitrile, or 1:1 ratio of benzene:acetonitrile, or DCM, 

dichloromethane, with a volume of 3 mL. The electrochemical cell was assembled in a 

glove box to minimize oxygen and water content. For co-reactant studies, benzoyl 

peroxide (BPO) or tri-n-propylamine (TPrA) were used. 

For all experiments, the electrochemical workstation was used.19 Two setups were 

used: the first for voltammetry and ECL-voltage experiments, Figure 1.5, and the second, 

for accumulated ECL spectra and for spooling ECL spectra, Figure 1.6. 
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Figure 1.5. CV or ECL setup for experiment with the electrochemical cell placed in the 

PMT detector, a sample CV (in red) with ECL-voltage curve (in green) is shown on the 

computer screen. 

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) experiments 

were conducted on a CHI 610A electrochemical analyzer (CH Instruments, Austin, TX). 

Potentials (V) were calibrated using an internal standard Fc/Fc+ redox couple after each 

experiment, and are reported vs. a standard electrode. 

The ECL was collected by the photomultiplier tube (PMT) under the flat Pyrex 

window at the bottom of the cell which was measured as a photocurrent, and transformed 

to a voltage signal using a picoammeter/voltage source (Keithley 6487, Cleveland, OH).19 

The potential, current signals from the electrochemical workstation, and the photocurrent 

signal from the picoammeter were sent simultaneously through a DAQ board (DAQ 

6052E, National Instruments, Austin, TX) to a computer. The data acquisition system 
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was controlled from a custom-made LabVIEW program (ECL_PMT610a.vi, National 

Instruments, Austin, TX). The photosensitivity on the picoammeter was set manually in 

order to avoid the saturation. 

ECL pulsing experiments were conducted by using a potentiostat (Model 

AFCBPI, Pine Instrument Co., Grove City and PA), an EG&G PAR 175 Universal 

Programmer (Princeton Applied Research, Trenton, NJ), and the PMT with the 

picoammeter in the similar manner.19 The assembly was able to perform the pulsing 

experiments without a delay in a relative fast time pace. The data acquisition for the 

current, potential and ECL signals was carried out using another homemade LabVIEW 

program (ECL_PAR610a.vi). 

The visible region ECL spectra were obtained by replacing the PMT with a 

spectrometer (Cornerstone 260, Newport, Canada) attached to a CCD camera (Model 

DV420-BV, Andor Technology, Belfast, UK).19,20 The camera was cooled to -55 °C prior 

to use, and controlled by a computer for operation and data acquisition. The intensities 

versus wavelengths (spectra) were recorded by Andor Technology program. The NIR 

region ECL spectra were recorded by Andor Technology program.21 Similar to the CV 

experiments, the samples were scanned between their redox potentials. When the ECL is 

in the NIR region, ECL spectroscopy was conducted on an Acton 2300i spectrograph 

with a grating of 50 l/mm blazed at 600 nm, and an Andor iDUS CCD camera, Model 

DU401-BR-DD-352. The camera was cooled to -75 °C prior to use. 

Spooling ECL spectroscopy was developed during this thesis work. Spooling 

ECL experiments were conducted using the same setup described above along with the 

spooling function in the Andor software, Figure 1.6. Basically, one ECL spectrum was 

taken in a time interval of 1 s during the potential scanning. The following parameters 

were employed in the Andor Technology program under the kinetic parameters option 

tab: exposure time = 1 s, number of accumulations = 1, kinetic series length = T (where T 

= time that matches with the potential scan time for two complete cycles), kinetic cycle 

time = 1, and the spectrometer was centered at 850 nm, with the camera cooled to -55 °C 

(for visible CCD camera) and -75 °C (for NIR CCD camera). Simultaneously, the CHI 
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610A electrochemical analyzer and the Andor Technology program were run and the CV 

and spooling spectra were collected. 

 

Figure 1.6. ECL spectrum or spooling setup, with the electrochemical cell in the 

spectrometer with the visible or NIR CCD camera, a sample ECL spooling spectra is 

shown on the computer screen. 

1.5 Scope of Thesis 

The use of ECL in biological, medicinal, and electrical applications is continuing 

to rise, however, there is a need to continue to study and learn the fundamental processes 

and the complex mechanisms of ECL generation for new metal complexes, clusters, 

nanoparticles or quantum dots, polymers, modified nucleosides or DNA, and other ECL 

active molecules. The work presented in this thesis aims at addressing the complex 

mechanism that generates ECL in the visible and NIR spectral regions. This will be 

accomplished by studying the electrochemistry and ECL of modified deoxycytidine 
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nucleosides in Chapter 2, synthesizing and analyzing thienyltriazoles in Chapter 3, 

correlating electronic structures to ECL, evaluating their ECL properties, determining a 

self-enhanced co-reactant mechanism, and electronic communication between soft salts 

of iridium(III) metal complexes in Chapters 4 and 5, studying the NIR ECL emission of 

Au25 clusters in Chapter 6 and dual ECL emissions of BDY-PbS nanoparticles in Chapter 

7. These chapters will include a comprehensive study on the redox chemistry, ECL 

generation via annihilation and co-reactant paths, ECL spectroscopy and a newly 

developed spooling ECL spectroscopy to further understand ECL generation 

mechanisms. A collective summary of the projects will be given in Chapter 8. 
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Chapter 2  

2 Electrogenerated Chemluminescence of Triazole-
Modified Deoxycytidine Analogues in N,N-
Dimethylformamide† 

2.1 Introduction 

Electrogenerated chemiluminescence or electrochemiluminescence (ECL) is the 

process in which radicals are electrochemically generated in solution and react through 

electron transfer to form excited states that emit light.1 In the 1960s, Hercules, Bard et al., 

and Visco et al. reported on the first ECL studies.2-4 Since then, ECL has become a 

powerful analytical technique5-14 in immunoassay, food and water testing, trace metal 

determination, and biomolecule detection. Two main ECL systems are used: annihilation 

and co-reactant ECL.1 Annihilation ECL is observed when a luminophore species in 

solution is scanned to its first oxidation and reduction potentials at an electrode. The 

excited species are formed from the generation of a radical cation and radical anion of the 

species in the vicinity of the electrode. The emission of light results from the excited state 

species. An alternative to annihilation ECL is a co-reactant system, which is performed 

with one directional potential scanning at an electrode in a solution containing the 

luminophore species and an added co-reactant reagent such as benzoyl peroxide, 

BPO.15,16 Radicals are generated from the luminophore, and intermediates from BPO that 

will decompose to produce powerful oxidizing species and react with the reduced 

luminophore. This generates an excited species, which upon decay emits light. 

ECL applications in the detection and diagnostics of deoxyribonucleic acid 

(DNA) involve electrochemistry and spectroscopy, and have many distinct advantages 

over other spectroscopy-based detection systems11 such as a lack of scattered light 

interference and the use of electrochemistry-based sensors17 which offer high sensitivity. 

                                                 
† This work is published in Kalen N. Swanick, David W. Dodd, Jacquelyn T. Price, Allison L. Brazeau, 
Nathan D. Jones, Robert H.E. Hudson, and Zhifeng Ding, Phys. Chem. Chem. Phys., 2011, 13, 17405-
17412. Reproduced by permission of The Royal Society of Chemistry (RSC). See Appendix I. 
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In fact, a common practice to detect DNA via ECL is to immobilize luminophore-labelled 

DNA double or single strands at an electrode,18,19 which can be measured with the 

emitted light upon redox reactions of the luminophore along with a co-reactant in the 

solution. The immobilized single strands can be employed to recognize complementary 

strands followed by ECL detection.19,20 Modified nucleosides could find potential 

applications as luminescent probes incorporated into single-stranded deoxyribonucleic 

acid (ssDNA) for sequence interrogation using ECL methods.20,21 Single nucleotide 

polymorphisms (SNPs) are single-base variations in the genetic code that occur about 

once every 1000 bases along the 3-billion base pair human genome.22 The ability to 

detect SNPs is of prime importance as mutations can be directly responsible for, or make 

one more susceptible to diseases such as asthma, diabetes, atherosclerosis, schizophrenia, 

and various cancers.22 Fluorescent modified nucleosides, when in the context of an 

oligomer, are potential candidates for the detection of nucleic acids with single 

nucleobase variations.23-28 

Modifications of nucleosides in nucleic acid chemistry are well established.29-31 

However, there have been a few reports on modified deoxycytidine (dC) nucleosides,32-35 

although the ECL behaviour of tris(2,2′-bipyridine)ruthenium (II) [Ru(bpy)3]2+ has been 

widely studied since the 1970s.36 In the above context, [Ru(bpy)3]2+ can be attached to a 

target ssDNA as an ECL label then hybridize with its complementary strand of ssDNA 

immobilized on the surface of an electrode to measure the ECL response of the double-

stranded DNA (dsDNA). Our objective was to create a metal-free DNA sensor based on 

dC in combination with ECL for the detection of SNPs. 
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Scheme 2.1. Molecular structures of compounds 2.1-2.4  

Our group previously synthesized triazole-modified deoxycytidine nucleosides, 

2.1-2.4 (Scheme 2.1)37,38 These compounds are easy to prepare, and are potential 

candidates for use as metal-free ECL labels that can be incorporated into ssDNA for the 

detection of SNPs. The modified nucleosides contain four different aromatic groups, 2.1-

2.4, which have been appended to dC as desirable targets for potential uses in nucleic 

acid chemistry. Compound 2.2 has been reported previously although characterization 

data were lacking.32 

Here we report the electrochemical behaviour of these triazole-containing dC 

nucleosides, 2.1-2.4, employing cyclic voltammetry (CV) and differential pulse 

voltammetry (DPV). ECL of these four compounds were also investigated via 

annihilation by scanning between the first oxidation and reduction potentials, and co-

reactant mechanisms by adding BPO and scanning the potential in the cathodic region. 

The majority of DNA-based biosensors have used uracil for studies.39,40 At the time of 

writing, there have been no reports of ECL of any modified dC nucleosides in literature. 
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2.2 Experimental Section 

Chemicals. Commercial products and chemical reagents were used as received. 

9,10-Diphenylanthracene (DPA, 97%), benzoyl peroxide (BPO, reagent grade, ≥ 98%) 

and ferrocene (Fc, 98%) were purchased from Aldrich (Mississauga, ON). The 

supporting electrolyte, tetra-n-butylammonium perchlorate (TBAP, electrochemical 

grade) was purchased from Fluka. All solutions were prepared using anhydrous N,N-

dimethylformamide (DMF, 99.8%) in a Sure/SealTM bottle, bought from Aldrich, that 

was immediately transferred into an N2-filled drybox prior to use. 

Synthesis. The synthesis of compounds 2.1-2.4 Scheme 2.1 was published 

elsewhere.38 In brief, these compounds were obtained by performing a click reaction, 

using the Huisgen 1,3-dipolar cycloaddition reaction which is the premier example of a 

click reaction between alkynes and azides.41,42 The selective 1,4-disubstituted products of 

the click reaction were obtained by using a copper (I) catalysts.43,44 Compounds 2.1-2.4 

were synthesized by reacting 5-ethynyldeoxycytidine with one of the four corresponding 

aryl azides in the presence of a Cu(I) catalyst, generated from CuSO4 and sodium 

ascorbate, in a 1:1 THF-H2O solution. The crude products of 2.1-2.4 were purified using 

column chromatography and characterized by 1H and 13C{1H} NMR spectroscopies and 

HRMS.38 The purified triazole-containing compounds were then used for CV, DPV and 

ECL analysis. 

Electrochemical Preparation. CV, DPV, and ECL experiments were conducted 

using a 2 mm diameter Pt disc inlaid in a glass sheath as the working electrode (WE), a 

coiled Pt wire as the counter electrode (CE), and a coiled Ag wire as the quasi reference 

electrode (RE). Prior to an experiment, the electrochemical cell was rinsed with acetone 

and deionized water, then immersed in 5 % KOH in isopropanol for 4 h. The cell was 

rinsed with copious amounts of deionized water, immersed in 1 % HCl for 4 h, and 

finally thoroughly rinsed with ultrapure water. The cell was dried at 120 °C for 12 h, and 

then cooled to room temperature. 
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The CE and RE were rinsed with acetone and ultrapure water then sonicated in 

DMF for 15 min, in ethanol for 5 min, and finally in ultrapure water for 5 min before 

being thoroughly rinsed again with ultrapure water. The electrodes were then dried at 120 

°C for 5 min then left to cool to room temperature. 

The WE was polished with a felt polishing pad using a 1.0 µm alumina 

suspension in ultrapure water (Milli-Q, Millipore) for 5 min followed by a 0.05 µm 

alumina suspension in ultrapure water to obtain a mirror surface and finally washed with 

copious amounts of ultrapure water (Buehler Ltd., Lake Bluff, IL). Then the WE 

electrode was electrochemically polished by cycling in 0.1 M aqueous H2SO4 solution 

for 400 segments between the potentials of 1.400 and -0.600 V at 0.5 V/s to obtain a 

clean and more reproducible Pt surface.45 The oxidation and reduction of H2SO4 

produces an ordered structure of polycrystalline Pt surfaces.46 The electrodes were then 

washed repeatedly with ultrapure water, then dried with a stream of Ar gas over the Pt 

disc area and left to dry for 12 h at room temperature. 

All solutions for electrochemical and ECL experiments were prepared in the 

electrochemical cell placed inside an N2-filled drybox that possessed little oxygen and 

moisture. The solutions of 2.1-2.4 in concentration range between 2.0 × 10−3 and 2.7 × 

10−3 M in anhydrous DMF (Sure/SealTM bottle from Aldrich) containing 0.1 M TBAP as 

supporting electrolyte. For co-reactant systems, 5.0 × 10−3 M BPO was added to each 

solution of 2.1-2.4. The electrodes were immersed in the solution and connected by 

copper wire inserted through the air-tight Teflon cap. The assembly was moved out of the 

drybox to perform electrochemistry and ECL experiments. After completion of each 

experiment, the electrochemical potential window was calibrated using Fc as the internal 

standard. The redox potential of Fc/Fc+ was taken as 0.470 V vs. NHE.47 

Electrochemical Instrumentation. The CV was conducted on a CHI 610A 

electrochemical analyzer (CH Instruments, Austin, TX). The experimental parameters for 

CVs are listed here: 0.000 V initial potential in experimental scale, positive or negative 

initial scan polarity, 0.1 V/s scan rate, 4 sweep segments, 0.001 V sample interval, 2 s 
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quiet time, 1-5 × 10−5 AV−1 sensitivity. The potential range depended on the particular 

compound. 

Four DPVs were taken for each compound on the CHI 610A, two for anodic 

scans (forward and reverse scans in the experimental potential scale between 0.000 V and 

upper limit potential value of the compound obtained from CV experiments) and two for 

cathodic scans (forward and reverse scans in the experimental potential scale between 

0.000 V and low limit potential value of the compound obtained from CV experiments). 

The experimental parameters for DPVs are as following: 0.004 V increments, 0.05 V 

amplitude, 0.5 s pulse width, 0.0167 s sampling width, 0.2 s pulse period, 2 s quiet time, 

1-5 × 10−5 AV−1 sensitivity.45 

ECL Instrumentation. The ECL cell was specifically designed to have a flat 

Pyrex window at the bottom for detection generated light from the WE and was sealed 

with a Teflon cap with a rubber O-ring for CV, DPV, and ECL measurements. The ECL 

data along with CV data were obtained using the CHI 610A coupled with a 

photomultiplier tube (PMT, R928, Hamamatsu, Japan) held at -750 V with a high voltage 

power supply. The ECL collected by the PMT under the flat Pyrex window at the bottom 

of the cell was measured as a photocurrent, and transformed to a voltage signal, using a 

picoammeter/voltage source (Keithley 6487, Cleveland, OH). The potential, current 

signals from the electrochemical workstation, and the photocurrent signal from the 

picoammeter were sent simultaneously through a DAQ board (DAQ 6052E, National 

Instruments, Austin, TX) in a computer. The data acquisition system was controlled from 

a custom-made LabVIEW program (ECL_PMT610a.vi, National Instruments, Austin, 

TX). The photosensitivity on the picoammeter was set manually in order to avoid the 

saturation. 

ECL pulsing experiments were conducted by using a potentiostat (Model 

AFCBPI, Pine Instrument Co., Grove City and PA), an EG&G PAR 175 Universal 

Programmer (Princeton Applied Research, Trenton, NJ), and the PMT with the 

picoammeter in the similar manner. The assembly was able to perform the pulsing 

experiments without a delay in a relative fast time pace. The data acquisition for the 



 

 

19 

current, potential and ECL signals was carried out using another homemade LabVIEW 

program (ECL_PAR610a.vi). For co-reactant systems, the applied potential was pulsed at 

the WE in the cathodic region (in the experimental potential scale between 0 and low 

limit potential value for the compound reduction as obtained from CV experiments) with 

a pulse width of 0.1 s or 10 Hz. 

The ECL spectra were obtained by replacing the PMT with a spectrometer 

(Cornerstone 260, Newport, Canada) attached to a CCD camera (Model DV420-BV, 

Andor Technology, Belfast, UK). The camera was cooled to -55 °C prior to use, and 

controlled by a computer for operation and data acquisition. The intensities versus 

wavelengths (spectra) were recorded by Andor Technology program. Similar to the 

pulsing experiments, the samples were pulsed at 10 Hz within each compound’s potential 

window. The exposure time of the spectra was set to 60 s for both the annihilation and 

co-reactant systems. Vertical lines/spikes observed in the spectra were from cosmic rays 

from the CCD camera. 

ECL Efficiency Calculations. ECL quantum efficiencies (QE) were calculated 

relative to DPA (the reported relative ECL efficiency, ΦECL, of DPA was taken 100 % or 

1.0 in DMF)48,49 by integrating both the ECL intensity and current value versus time for 

each compound, as described in Eq. 2.110,50,51,  

Φx = 100 ×      (2.1)  

where x stands for the compound (2.1-2.4), a and b represents the integral time range, and 

st  represents DPA. 
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2.3 Results and Discussion 

2.3.1 Electrochemistry and its Correlation to Electronic Structures 

The electrochemical behaviours of compounds 2.1-2.4 were studied in order to 

determine the oxidation and reduction potentials. Figure 2.1 shows the CVs of 2.1 in 

DMF solution containing 0.1 M TBAP as supporting electrolyte and the blank DMF 

solution containing 0.1 M TBAP at a scan rate of 0.1 V/s within potential ranges between 

0.000 and 2.169, and between 0.000 and -1.889 V, respectively. When the potential was 

scanned initially from 0.000 to 2.169 V, compound 2.1 underwent the first oxidation at a 

peak potential of 1.858 V followed by a continuous rise in current in the potential scan 

until 2.169 V. There was no cathodic peak when the applied potential was scanned back, 

indicating the irreversibility of the electrochemical oxidation reaction. The radical cations 

might undergo further chemical reactions (EC mechanism). 

 

Figure 2.1. Cyclic voltammograms of 2.1 (solid lines) in DMF containing 0.1 M TBAP 

as supporting electrolyte, and blank solution (dotted lines), with the initial scan from 

0.000 to 2.169 V (anodic scan), and initial scan from 0.000 to -1.889 V (cathodic scan), 

with a scan rate of 0.1 V/s. 
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The HOMO orbital revealed by the density function theory calculation is a linear 

combination of pz atomic orbitals of S, C, N and O atoms in the thiophene, triazole and 

deoxycytidine rings38. The electron withdrawn from compound 2.1 upon oxidation was 

delocalized in the molecule because of the co-planer structure determined by X-ray 

crystallography, Figure 2.2.  

 

Figure 2.2. Ball-and-stick representation of 2.1. Except for OH and NH2 protons, H-

atoms are omitted for clarity. Carbon atoms are in grey, sulfur in yellow, nitrogen in blue, 

and oxygen in red. The final solution was submitted to the IUCR CIF checking program 

and had some Alert level A’s or B’s associated with the lack of complete data, however 

the general structure can be observed for 2.1. 

Note that the crystal structure is our best estimation since it did not pass cif file 

checking (see details in Appendix I). Similarly, compound 2.1 demonstrated an 

irreversible reduction peak at -1.835 V when the applied potential was scanned from 

0.000 V to cathodic region. Based on the DFT calculation, the LUMO orbital was mostly 
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contributed from pz atomic orbitals of S, C and N atoms in the thiophene and triazole. 

Especially, dimerization would probably happen on the thiophene ring. It should be noted 

that some small multiple oxidation and reduction peaks were observed in consecutive 

cycling of the applied potential, due to the electrochemical reactivity of the intermediates 

from the EC reaction mechanisms (see more detail in the ECL section). 

 

Figure 2.3. Differential pulse voltammograms of 2.1 (solid lines) in DMF containing 0.1 

M TBAP as supporting electrolyte, and blank solution (dotted lines), with the initial scan 

from 0.000 to 2.118 V (top, anodic scan), and initial scan from 0.000 to -1.929 V 

(bottom, cathodic scan) and their reverse scans. 

Typical DPVs of compound 2.1 conducted in the similar manner as in CVs in 

Figure 2.1, are illustrated in Figure 2.3, where the first irreversible oxidation and 

reduction peaks of 2.1 are well displayed. Again, isolating the anodic and cathodic DPVs 

avoids any additional redox peaks as seen in Figure 2.4. This agrees well with the 

observation from CVs because of the electrochemical reactivity of the intermediates. The 

formal potentials (E0′ ) of 2.1 can be determined from DPVs by Eq. 2.252,53: 

E0′ = Emax + ∆E/2         (2.2) 

where Emax represents the peak potential in the DPV and ∆E represents the pulse height, 

50 mV. 
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Figure 2.4. Cyclic voltammogram (red) and ECL-voltage curve (green) of 2.1 scanned at 

0.1 V/s with the initial potential at 0.000 to 2.069 V then scanned to -1.889 V and back to 

0.000 V. 

The oxidation peak at 1.826 V in the anodic scan and reduction peak at -1.785 V 

in the cathodic scan were more visible, Figure 2.3, than in CV, Figure 2.1, since DPV 

suppresses the background signal and enhances sensitivity.45 

The electrochemical behaviours of compounds 2.2-2.4 were also characterized 

using CV and DPV, from which it can be concluded that compounds 2.2-2.4 undergo 

irreversible oxidation and reduction reactions, and their radical cations and anions are not 

stable. 

All the electrochemical data have been summarized in Table 2.1. The 

electrochemical gaps, which are the potential difference between the formal potentials of 

the first reduction and oxidation, match well with their corresponding HOMO-LUMO 

energy gaps. The excited state gap taken from the PL emission wavelength from Table 

2.2 shows similar energy values as the experimental energy values in Table 2.1. 

From Table 2.1, there was a general trend of decreasing oxidation potential with 

increasing conjugation. The addition of a second thiophene ring in 2.3 decreases the 

oxidation potential from 1.851 V, in 2.1, to 1.488 V in 2.3. This trend, however, was not 
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apparent in the reduction potentials of 2.1-2.4. Noticeably, Compound 2.4 underwent up 

to 4 reduction reactions as summarized in Table 2.1. Nevertheless, the trend of smaller 

electrochemical gaps, as seen in CV and DPV, with increasing conjugation was observed 

from our experimental data and from previous DFT quantum chemistry calculations our 

group has reported.38 Here, the HOMO-LUMO gap decreases in 2.3, 3.94 eV, relative to 

2.1, 4.15 eV, having greater delocalization of the π electrons due to increased conjugation 

in the aromatic system, Table 2.1. 
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Table 2.1. Electrochemical (from DPV) and quantum chemistry calculation data of compounds 2.1-1.4. 

 Ep,a 

oxidation/Va 

Ep,c 

reduction/Va 

E0′ 

oxidation/Va  

E0′ 

reduction/Va 

Electrochemical 

gap/eV 

Theoretical 

HOMO/eVc 

Theoretical 

LUMO/eVc 

Theoretical 

HOMO-LUMO 

gap/eV  

2.1 1.826 -1.785 1.851 -1.810 3.66 -5.90 -1.74 4.15b 

2.2 1.268 -2.081/ 

-2.449 

1.293 -2.106/ 

-2.474 

3.40 -5.88 -1.70 4.18c 

2.3 1.463 -1.948 1.488 -1.973 3.46 -5.90 -1.96 3.94c 

2.4 0.765/1.365 -1.310/ 

-1.550/ 

-1.806/ 

-2.480 

0.790/1.390 -1.335/ 

-1.575/ 

-1.831/ 

-2.505 

2.13 -5.93 -3.02 2.92c 

aIn V vs. NHE at 0.1 V/s scan rate. 

bEnergy value obtained from previously reported data, DFT/B3LYP/6-31G* calculations.38 

cEnergies obtained from DFT/B3LYP/6-31G* calculations. 
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For compounds 2.1 and 2.2, the gaps, of 4.15 eV and 4.18 eV, were larger due to 

smaller conjugated systems. Synthesizing compounds with an additional thiophene ring, 

2.3, and extended aromatic system, 2.4, the HOMO-LUMO gaps for these conjugated 

systems decreased to 3.94 eV for 2.3 and 2.92 eV for 2.4. These values followed a similar 

trend as the experimental HOMO-LUMO gaps from the oxidation and reduction 

potentials of 2.1-2.4 as seen in Table 2.1. The gap observed in 2.2 from experimental data 

was smaller, 3.40 eV, than 2.1, 3.66 eV, this may be due the slightly out-of-plane 

aromatic system of 2.1 compared to in-plane system of 2.2. However, the HOMO-LUMO 

gap calculations were calculated from a solid-state representation of each compound, 

whereas, the redox, ECL and spectral data were obtained from solutions of these 

compounds. We must take into consideration the free rotation of the compounds in 

solution. Here, we would expect variations in the data as seen in the differences between 

the theoretical and experimental data. 

2.3.2 ECL via Annihilation Mechanisms 

Figure 2.4 shows the CV overlaid with the ECL-voltage curve of 2.1 that were run 

simultaneously in the potential range between its first oxidation and reduction peaks. 

During these continuous scans, we observed additional bumps/peaks in the middle of the 

potential window. These peaks were not from the neutral compound as demonstrated in 

Figure 2.1: when the applied potential was scanned separately for oxidation and reduction 

peaks, these additional peaks were not present. In addition, there were neither cathodic 

peak for oxidation and nor anodic peak for reduction in CVs, Figure 2.1. This is evidence 

that both radicals were not stable. Cations underwent chemical reactions to generate 

reduction-active species while radical anion generated redox-active species. However, we 

cannot determine which are the species. 

At both positive and negative potential limits, weak ECL was observed. A slightly 

stronger emission of light was observed in the positive potential region. The radical 

cations appear to be more stable than the radical anions for 2.1, as stronger ECL was 

detected in the region of positive potential, Figure 2.4. The week ECL was expected since 

both radical cations and anions were not stable as observed from the irreversibility of its 
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electrochemical behaviours. The ECL given off from 2.1, written as ThdC, was proposed 

via annihilation of radical cations, ThdC•+, with radical anions, ThdC•-, generated 

electrochemically, Eqs. 2.3 and 2.4. 

ThdC → ThdC•+ + e−         (2.3) 

ThdC + e− → ThdC•−         (2.4) 

An excited species, ThdC*, and a ground-state species, ThdC, of 2.1, are the 

products of the annihilation as seen in Eq. 2.5. The excited species then relaxes to its 

ground state, ThdC, as seen in Eq. 2.6 and emits light. 

ThdC•+ + ThdC•− → ThdC* + ThdC       (2.5) 

ThdC∗ → ThdC + hv1         (2.6) 

Figure 2.4 also shows that ECL can only be detected after one complete cycle of 

the potential sweep. In practice, two cycles or four segments of the potential sweep were 

conducted for each compound. 

Compound 2.2 displayed similar ECL emission to that from compound 2.1, and 

demonstrated stronger ECL intensity in the anodic region than in the cathodic region. For 

2.3, ECL emission was observed in the region of negative potential and 2.4 did not show 

a significant increase in positive or negative potential regions. Nevertheless, weak ECL 

was generated through annihilation mechanisms from compounds 2.3-2.4, because of the 

irreversible redox reactions, resulting in unstable radical ions. The ECL efficiencies were 

determined as the photons emitted per redox event relative to the standard, DPA, as 

expressed in Eq. 2.1.50 These ECL efficiencies, Table 2.2, were low relative to the 

standard, which were in a range between 0.40 to 0.52 % for 2.1, 0.39 to 0.41 % for 2.2, 

and 0.71 to 1.08 % for 2.3. Compound 2.4 had the smallest ECL efficiency, ranging 

between 0.10 to 0.24 %. 
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Table 2.2. ECL data of compounds 2.1-2.4 in annihilation and co-reactant systems. 

 Annihilation Co-reactant PL  Shiftsb 

 Scanning 

QEa/% 

Scanning 

QEa/% 

Pulsing 

QEa/% 

λmax/nm λmax/nm λmax(ECL)-

λmax(PL)/nm 

2.1 0.40-0.52 0.33-1.48 0.71 515 375 140 

2.2 0.39-0.41 0.73-0.86 0.20 395/577 380 15/197 

2.3 0.71-1.08 0.24-0.39 0.25 588 380 208 

2.4 0.10-0.24 0.54-2.33 1.87 556 385 171 

aECL quantum efficiencies (QE) measured in DMF relative to DPA (ΦECL = 100 % or 1.0 

in DMF)48,49. 

bThe shifts represent the difference between the ECL (in DMF) and PL (in EtOH)38 

emission wavelengths. Only small shifts (<5 nm) in PL emission maxima were observed 

when varying the solvent composition from EtOH to DMF. 

 

2.3.3 ECL via Co-reactant Mechanisms 

Figure 2.5 shows the CV overlaid with the simultaneous ECL-voltage curve of 2.1 

containing BPO. The applied potential was only needed to scan in the cathodic region. In 

this way the short-life radical anions, ThdC•−, generated can immediately react with their 

counterparts.54,1 Sometimes the radical cations can be generated directly from the co-

reactant. 
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Figure 2.5. Cyclic voltammogram (red) and ECL-voltage curve (green) of 2.1 with 5.0 × 

10−3 M BPO scanned at 0.1 V/s, with the initial scan from 0.000 to -2.278 V and back to 

0.000 V. 

It was discovered that ECL was enhanced when 5.0 × 10−3 M BPO was added to 

the solutions of 2.1-2.4. The proposed ECL co-reactant mechanism for 2.1 begins when a 

negative potential is applied to the system, initially at 0.000 V, as seen in Figure 2.5 for 

compound 2.1. Upon scanning to more negative potential, BPO is first reduced to its 

radical anion, BPO•−, at -0.780 V, Eq. 2.7. The radical anion, BPO•−, immediately 

decomposes to form a strong oxidizing intermediate radical, C6H5CO2
•, and C6H5CO2

−, 

Eq. 2.8. This intermediate radical, C6H5CO2
•, reacts with 2.1 and generates the radical 

cation of 2.1, ThdC•+, Eq. 2.9. 

BPO + e− → BPO•−         (2.7) 

BPO•− → C6H5CO2
− + C6H5CO2

•       (2.8) 

C6H5CO2
• + ThdC → ThdC•+ + C6H5CO2

−      (2.9) 

With the applied potential scanned to more negative potential, the radical anion of 

2.1, ThdC•−, was generated at -1.835 V, Eq. 2.4. The radical cation, ThdC•+, combines 

with the radical anion, ThdC•−, and generates an excited species, ThdC*, of 2.1, as stated 
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previously with the annihilation mechanism Eqs. 2.5 and 2.6, which relaxes down to its 

ground state, ThdC, and light is emitted. 

An increase in photocurrent as shown in Figure 2.5 was observed when scanning 

to negative potential. The use of BPO contributes to the enhanced ECL intensities of 2.1-

2.4 relative to the intensities observed in annihilation studies. 

It is important to note that there was a relatively weak ECL peak in Figure 2.5 that 

was observed right after the BPO reduction potential, -0.780 V, but even before the 

reduction of compound 2.1. In fact, the ThdC•+ generated through Eqs. 2.7 to 2.9 can 

react with BPO•−, Eq. 2.10 to produce the excited species, ThdC*: 

ThdC•+ + BPO•− → ThdC* + BPO       (2.10) 

Compounds 2.2-2.4, in the same co-reactant system, displayed higher intensities 

of ECL than in annihilation systems relative to DPA as seen in Table 2.2. ECL was 

observed in all compounds after the reduction of BPO, following the same mechanism, 

Eq. 2.10. 

The intensity of ECL varied from 2.1-2.4. Compounds 2.1 and 2.4 displayed the 

highest ECL intensities with photocurrents around 100 nA for 2.1 and 180 nA for 2.4. 

The efficiencies for these compounds were in a range between 0.33 to 1.48 % for 2.1 and 

0.54 to 2.33 % for 2.4. Compounds 2.2 and 2.3 had lower ECL intensities, relative to 2.1 

and 2.4, with photocurrents around 85 nA for 2.2 and 30 nA for 2.3. The efficiencies 

were in a range between 0.73 to 0.86 % for 2.2 and 0.24 to 0.39 % for 2.3. 

ECL was enhanced when the applied potential was pulsed in the cathodic region 

between 0.000 V and low limit potential value for the compound reduction as obtained 

from CV experiments with a pulse width of 0.1 s. Instead of slowly scanning the potential 

from 0.000 V to -2.278 V in Figure 2.5, the working electrode was pulsed quickly 

between these potential values and an increase in intensity of ECL was observed. The 

efficiencies for these compounds were 0.71 % for 2.1, 0.20 % for 2.2, 0.25 % for 2.3, and 

1.87 % for 2.4. Pulsing generates radical cations and anions in a faster alternative pace 
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and reduces the decay of the unstable radicals, leading to greater occasions for the cations 

and anions to meet, react, and emit light. 

2.3.4 ECL Spectroscopy 

Figure 2.6 shows the co-reactant ECL spectra of 2.1-2.4 with BPO during the 

pulsing of the applied potential in the cathodic regions (till the reduction of the 

compounds). The spectrum for 2.1 in the co-reactant system was fitted to one peak 

centered at 515 nm, Figure 2.6a (see spectra with curve-fitting, Figure S2.1, in Appendix 

I). The peak at 515 nm was red-shifted relative to that in PL by 140 nm. The long 

wavelength ECL can be assigned to emission from excimers.38  

 

Figure 2.6. ECL spectra of 2.1-2.4 in DMF containing 5.0 × 10−3 M BPO and 0.1 M 

TBAP as supporting electrolyte and pulsing between potential ranges from (a) 0.000 to -

2.278 V, t = 60 s for 2.1, (b) 0.000 to -2.452 V, t = 60 s for 2.2, (c) 0.000 to -2.517 V, t = 

60 s for 2.3, and (d) 0.000 to -2.126 V, t = 60 s for 2.4. ECL intensities were normalized 

by their respective peak heights. 
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Excimers are excited states of dimers that can be observed in ECL of organic 

compounds.15,16 The formation of excimers might result from dimerization of the radical 

anion and cation or stacking of the monomer in the excited state with a monomer in the 

ground state due to the π conjugation of the modified nucleobase.50 A possible 

mechanism for excimer growth in ECL for 2.1 is shown in Eqs. 2.11 to 2.13.55 ThdC* can 

react with the ground state species ThdC to form an excimer as seen in Eq. 2.11. Another 

possible route for excimer formation involves the radical cation and anion species to form 

the excimer, (ThdC)2
*, Eq. 2.12. The excimer can then relax down to its ground state and 

emit light, Eq. 2.13. For compound 2.1, both the two routes are possible: 

ThdC + ThdC* → (ThdC)2
*         (2.11) 

ThdC•+ + ThdC•− → (ThdC)2
*       (2.12) 

(ThdC)2
* → (ThdC)2 + hv2        (2.13) 

The energy of the resulting excited species, (ThdC)2
*, was lower than that of the 

reactants and relaxes down to the ground state, ThdC, and a longer wavelength than the 

monomer will be observed, similar to the spectrum of 2.2, Figure 2.6b. For 2.2, the 

spectrum showed two peaks, one at 395 nm and the second broad band at 577 nm. The 

peaks were red-shifted by 15 and 197 nm with respect to the PL peak seen at 380 nm. 

From Eqs. 2.5 and 2.6, and Eqs. 2.9 to 2.13, we observed excited monomer and excimer 

formation from the two given pathways. It appears that as conjugation increases in the 

modified nucleosides, ECL emission becomes more red-shifted. Compound 2.3, Figure 

2.6c, showed one maximum at 588 nm and displayed the most significant red-shift of 208 

nm relative to the PL peak at 380 nm. Furthermore, the maximum wavelength of 

compound 2.4, Figure 2.6d, was at 556 nm, red-shifted to PL by 171 nm respectively. 

The growth in excimer formation was more easily observed with 2.2, Figure 2.6b, and the 

most red-shifted compounds were 2.2, 2.3 and 2.4. We can conclude that compounds 2.1-

2.4 can easily form excimers, however there was a combination of monomer and excimer 

present in ECL system 2.2 by pulsing the electrode potential. 
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The crystal structures of 2.1, Figure 2.2, and 2.238 illustrate the coplanar shape of 

the conjugated aromatic ring systems for these four compounds, allowing the π electrons 

to delocalize over the aromatic ring systems and therefore lowering the band gap between 

the HOMO and LUMO.  This enhances the effective conjugation length and 

consequently causes emission peak to red-shift relative to the photoluminescence (PL) 

peaks as previously reported.38 

2.4 Conclusions 

We have determined the redox potentials and calculated the ECL efficiencies of a 

series of modified triazolyldeoxycytidine nucleosides, 2.1-2.4. With increasing 

conjugation in the luminophore, we observed a decrease in the separation between first 

oxidation and reduction peaks of the compounds. The annihilation ECL efficiencies were 

weak relative to DPA, ranging from 0.40 to 0.52 % for 2.1, 0.39 to 0.41 % for 2.2, 0.71 to 

1.08 % for 2.3, and 0.10 to 0.24 % for 2.4. The efficiencies increased in the co-reactant 

systems with ECL efficiencies ranging from 0.33 to 1.48 % for 2.1, 0.73 to 0.86 % for 

2.2, 0.24 to 0.39 % for 2.3, and 0.54 to 2.33 % for 2.4. The ECL spectra were red-shifted 

relative to the corresponding PL spectra previously reported with wavelengths ranging 

from 515 nm for 2.1, 395 and 577 nm for 2.2, 588 nm for 2.3, and 556 nm for 2.4. The 

generation of excimers in 2.1-2.4, with the monomer still present in 2.2, was observed in 

the ECL systems studied. The radical anions and cations generated in solution follow two 

pathways, via electron transfer, and combination of electron transfer and dimerization, 

forming excited species and excimers. Incorporating these modified nucleosides into 

ssDNA, and hybridizing the modified ssDNA with a complimentary ssDNA or a single-

base mis-matched ssDNA may allow for an ECL readout which could give information 

on the nature of the mismatch, thereby leading to an effective means of SNP typing. ECL 

is a fast, cost effective technique that requires low quantity and is highly selective, 

sensitive, and tunable with our electrochemical instrumentation and detection systems. 

Using ECL detection with these modified nucleosides is in progress towards SNP typing 

of genes pertinent to various human genetic disorders. 
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Chapter 3  

3 Synthesis, Structure, Electrochemistry, and 
Electrochemiluminescence of Thienyltriazoles† 

3.1 Introduction 

Currently there has been increasing interest in materials for 

electrochemiluminescent sensors and organic light-emitting diodes, OLEDs, for 

applications in television and lighting technology.1 Organic luminescence is also a 

promising technology for the fabrication of flat panel displays.2 The design of new 

luminophores has been driven by the requirement for RGB full colour displays and white 

light illumination applications.3-7 The emission colour tuning in Alq3, tris(8-

hydroxyquinolinato)aluminum, analogues has been investigated with extended 

conjugated chromophores,8  and by modifying the N-O containing compounds by the 

addition of electron-withdrawing, EWG, or electron-donating groups, EDG.3,8-10 Our 

group has studied the behaviour of some triazole-modified deoxycytidine analogues in 

previous work.11 

In this report we synthesized and studied the spectroscopic properties and 

electrochemistry of four potential blue-emitting thienyltriazoles with N in the 

thienyltriazole ring and O in a methoxy or phenol group attached to the triazole acting as 

possible coordination atoms to form metal complexes. Our attention has been focused on 

designing modified thienyltriazoles to tune deep-blue fluorescence using “click 

chemistry”.12-15 The modulation of our thienyltriazoles is based on the reaction of 

azidothiophenes with terminal alkynes with a hydroxyl group to form a triazole ring, thus 

creating a fluorescent multi-conjugated ring system with a hydroxyl group. Varying the 

conjugation in the thiophene ring system or adding a phenyl substituent between the 

                                                 
† This work is reprinted with permission from Kalen N. Swanick, Jacquelyn T. Price, Nathan D. Jones, and 
Zhifeng Ding, J. Org. Chem., 2012, 77, 5646-5655. Copyright 2012 American Chemical Society (ACS). 
See Appendix II. 
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thiophene-triazole backbone and the hydroxyl group might potentially modulate the ECL 

efficiencies before complexation with metals. Click chemistry with simple small 

molecules, allows us to achieve the desired blue emission from the thiophene-triazoles 

(our first stage) while the hydroxyl group along with the triazole afford us potential N-O 

containing metal complex emitters (our second stage). In this context, four 

thienyltriazoles, 3.1-3.4, have been synthesized in this study as seen in Scheme 3.1 and 

Scheme 3.2. Note that our thienyltriazoles are blue luminescent.  

Electrochemiluminescence or electrogenerated chemiluminescence, ECL, 

generates luminescence in solution16, while electroluminescent devices, generate 

luminescence in the solid state. ECL involves light emission that is produced by an 

energetic electron transfer reaction between electrochemically generated radicals in the 

vicinity of an electrode.17 Two general methods for producing ECL are “annihilation” 

and “co-reactant” reactions.17 In annihilation systems, radical cations and anions are 

generated in solution and light emission results when they combine. Co-reactant studies 

are useful when a system does not give stable radical cations or anions. Co-reactant 

intermediates are either strong reducing agents in oxidative-reduction ECL or strong 

oxidizing agents in reductive-oxidation ECL.17 Benzoyl peroxide (BPO) is a common co-

reactant and produces a strong oxidizing agent when reduced; this has been selected for 

the purpose of our studies.17 Previously, we have studied the ECL of iridium(III) 

complexes containing aryltriazoles that emitted blue light.18 We wanted to investigate if 

the prepared thienyltriazole ligands were electrochemiluminescent. Here, we report the 

electrochemical properties of 3.1-3.4 in Table 3.1, and the ECL spectra and 

corresponding ECL efficiencies, from annihilation and co-reactant pathways, in Table 

3.3. Furthermore, using ECL to detect light is of importance for possible applications in 

biosensors, OLED displays, optoelectronics, microelectronics and bioanalytical 

chemistry.1,3,19-26 

3.2 Experimental Section 

General Methods. For synthesis and characterization, all reagents were 

purchased from commercial sources and used as supplied unless otherwise indicated. All 
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experiments were conducted in air unless otherwise noted. Reactions that were carried 

out under an atmosphere of Ar were conducted using standard Schlenk techniques. Thin-

layer chromatography was performed using 250 µm silica gel glass-backed plates and 

visualized by UV light. Flash column chromatography was performed using SiliaFlash 

P60, 40-63 µm (D50) 60 Å, silica gel. All solvent mixtures were reported as volume 

ratios. Melting points were obtained using a Fisher-John melting point apparatus and 

reported uncorrected. The 1H and 13C{1H} NMR data were recorded on a 400 MHz 

spectrometer at room temperature. The δ values, reported in ppm, were referenced as 

follows for 1H (400.085 MHz) CDCl3 (7.26 ppm); DMSO-d6 (2.49 ppm); CD3OD (3.31 

ppm), and for 13C{1H} (100.602 MHz) CDCl3 (77.16 ppm) and DMSO-d6 (39.52 ppm). 

Data for the 1H NMR spectra were reported as follows: chemical shift (δ), multiplicity, 

integration, assignment, and coupling constant(s). All coupling constants were reported in 

Hertz (Hz) and the spin multiplicities were indicated as follows: singlet (s), doublet (d), 

doublet of doublets (dd), triplet (t), and multiplet (m). High resolution mass spectrometry 

(HRMS) data were collected using electron spray (ESI) time-of-flight technique. 

General Procedure for the Synthesis of Thienyltriazoles, 3.1-3.4, via Cu(I) 

Catalyzed Huisgen 1,3-Dipolar Cycloaddition. The following compounds were 

synthesized based on previous literature: 3-azidothiophene26, 4-azido-2,2′-bithiophene26, 

and 2-ethynylphenol27. Compounds 3.1-3.4 were made by reacting either 2-propargyl 

alcohol, Scheme 3.1, or 2-ethynylphenol, Scheme 3.2, with one of the two corresponding 

thienylazides in the presence of a Cu(I) catalyst, from CuSO4 and sodium ascorbate, in a 

1:1 t-butanol:H2O solution. The isolated products, 3.1-3.4, were isolated then purified for 

electrochemical and spectroscopic analyses and for X-ray crystallography, 3.1, 3.2, and 

3.4, see Appendix II for NMR peak assignments. 

Synthesis of [1-(2,2'-bithien-4-yl)-1H-1,2,3-triazol-4-yl]methanol (3.1, 

BiTTM). To a solution of 4-azido-2,2′-bithiophene (0.80 g, 3.8 mmol), 2-propargyl 

alcohol (0.22 g, 3.8 mmol) and t-butanol-H2O (1:1, 6 mL), CuSO4 (0.098 g, 0.62 mmol) 

was added at room temperature and stirred for 5 min. Sodium ascorbate (0.038 g, 0.19 

mmol) was then added. The solution was initially yellow and the reaction mixture was 

stirred overnight at 35 °C. After 16 h, the solution was yellow-brown. The product was 
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extracted with ethylacetate (3 × 10 mL) and washed with H2O (3 × 10 mL). The 

combined organic phase, brown, was washed with ethylacetate (10 mL) and Brine (10 

mL), dried (MgSO4) and concentrated under vacuum to afford 0.82 g (81% yield) of 3.1, 

light brown powder, mp 140-143 °C. HRMS: calcd for C11H9N3OS2 ([M]) 263.0187, 

found 263.0186. 

Synthesis of [1-(3-thienyl)-1H-1,2,3-triazol-4-yl]methanol (3.2, TTM). To a 

solution of 3-azidothiophene (0.064 g, 0.51 mmol), 2-propargyl alcohol (0.037 g, 0.66 

mmol) and t-butanol-H2O (1:1, 2mL), CuSO4 (0.017 g, 0.11 mmol) was added at room 

temperature and stirred for 5 min. Sodium ascorbate (0.007 g, 0.03 mmol) was then 

added. The solution was initially yellow and the reaction mixture was stirred overnight at 

35 °C. After 16 h, the solution was yellow-brown. The product was extracted with 

ethylacetate (3 × 10 mL) and washed with H2O (3 × 10 mL). The combined organic 

phase, yellow, was washed with ethylacetate (10 mL) and Brine (10 mL), dried (MgSO4) 

and concentrated under vacuum. The product was dissolved in ethyl acetate and 

methanol. Hexanes was added to the solution then left for recrystallization over a period 

of 5 days. This afforded 0.089 g (96% yield) of 3.2, golden crystals, mp 127-130 °C. 

HRMS: calcd for C7H7N3OS ([M]) 181.0310, found 181.0308. 

Synthesis of 2-[1-(2,2'-bithien-4-yl)-1H-1,2,3-triazol-4-yl]phenol (3.3, BiTTP). 

To a solution of 4-azido-2,2′-bithiophene (0.33 g, 1.6 mmol), 2-ethynylphenol (0.19 g, 

1.6 mmol) and t-butanol-H2O (1:1, 12 mL), CuSO4 (0.041 g, 0.25 mmol) was added at 

room temperature and stirred for 5 min.  Sodium ascorbate (0.016 g, 0.079 mmol) was 

then added. The solution was initially yellow and the reaction mixture was stirred 

overnight at 35 °C. After 72 h, the solution was yellow-brown. The product was extracted 

with ethylacetate (3 × 10 mL) and washed with H2O (3 × 10 mL). The combined organic 

phase, brown, was washed with ethylacetate (10 mL) and Brine (10 mL), dried (MgSO4) 

and concentrated under vacuum. The product was dissolved in MeOH (10 mL) then 

concentrated under vacuum to afford 0.42 g (81% yield) of 3.3, light brown powder, mp 

180-184 °C. HRMS: calcd for C16H11N3OS2 ([M]) 325.0344, found 325.0336. 
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Synthesis of 2-[1-(3-thienyl)-1H-1,2,3-triazol-4-yl]phenol (3.4, TTP). To a 

solution of 3-azidothiophene (0.28 g, 2.28 mmol), 2-ethynylphenol (0.27 g, 2.28 mmol) 

and t-butanol-H2O (1:1, 10mL), CuSO4 (0.058 g, 0.36 mmol) was added at room 

temperature and stirred for 5 min. Sodium ascorbate (0.023 g, 0.11 mmol) was then 

added. The solution was initially yellow. After stirring at 35 °C for 18 h, the solution 

turned brown-green with a precipitate. The product was extracted with ethylacetate (3 × 

10 mL) and washed with H2O (3 × 10 mL). The combined organic phase, brown solution, 

was washed with ethylacetate (10 mL) and Brine (10 mL), dried (MgSO4) and 

concentrated under vacuum to afford 0.46 g (84% yield) of 3.4, light brown powder, mp 

170-176 °C. HRMS: calcd for C12H9N3OS ([M]) 243.0466, found 243.0462. 

Infrared Measurements. Infrared spectroscopy measurements were recorded 

using a Fourier transform infrared spectrometer; samples were run between KBr plates. 

The wavenumbers,  values, were reported in cm-1; peak intensities were given as 

follows: strong (s), medium (m) and weak (w).  

UV-Visible and Photoluminescence Measurements. UV-visible absorption 

(Abs) and photoluminescence (PL) spectra were recorded over the range of 200-800 nm 

using a fluorimeter with a xenon flash lamp and PMT detector (190-680 nm) interfaced to 

a computer workstation. Quartz cuvettes were used using a 1 cm path length cell at 25 

°C. Spectroscopic grade methanol (MeOH) was used as received.  

CV and ECL Measurements. For electrochemical studies, 9,10-

diphenylanthracene (DPA, 97%), benzoyl peroxide (BPO, reagent grade, ≥ 98%), 

ferrocene (Fc, 98%), and supporting electrolyte, tetra-n-butylammonium perchlorate 

(TBAP, electrochemical grade) were used as received. All solutions were prepared using 

anhydrous acetonitrile (ACN, 99.8%) in a Sure Seal bottle, that was immediately 

transferred into an N2-filled drybox prior to use. 

Electrochemical Preparation. Cyclic voltammetry (CV), differential pulse 

voltammetry (DPV), and electrogenerated chemiluminescence (ECL) experiments were 

conducted using a 2 mm diameter Pt disc inlaid in a glass sheath as the working electrode 
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(WE), a coiled Pt wire as the counter electrode (CE), and a coiled Ag wire as the quasi 

reference electrode (RE), respectively. Prior to each experiment, the WE was polished 

with a felt polishing pad using 1.0 µm, 0.3 µm and 0.05 µm alumina suspension for 5 min 

each to obtain a mirror surface then washed with copious amounts of deionized water. 

The WE was then electrochemically polished using a 0.1 M aqueous solution of H2SO4 

by scanning 400 times between the potentials of 1.400 and -0.600 V at a scan rate of 0.5 

V/s for a cleaner, more reproducible Pt surface.22 Finally, the WE was rinsed with 

deionized water then dried under a stream of Ar gas at room temperature. The CE and RE 

were rinsed with acetone, sonicated in acetone for 15 min, and then thoroughly rinsed 

with deionized water. The electrodes were dried at 100 °C for 5 min then left to cool to 

room temperature. The electrochemical cell was rinsed with acetone and deionized water, 

then immersed in a base bath of 5% KOH in isopropanol for 4 h, rinsed with deionized 

water, immersed in an acid bath of 1% HCl for 4 h, then thoroughly rinsed with deionized 

water. The cell was dried at 100 °C overnight then cooled to room temperature. All 

solutions for electrochemical experiments were prepared in a glass electrochemical cell 

inside an N2-filled drybox. The solutions of 3.1-3.4 ranged in concentration from 2.0-2.7 

× 10−3 M in ACN containing 0.1 M TBAP, the supporting electrolyte. For co-reactant 

systems, 5.0 × 10−3 M BPO was added to each solution of 3.1-3.4. These experiments 

were performed outside of the drybox. The electrodes were immersed in solution and 

connected by copper wire inserted through the cap. After completion of each experiment, 

the cell potential obtained was calibrated using Fc as the internal standard. The potentials 

were normalized to NHE using Fc/Fc+. The redox potential of Fc/Fc+ in ACN was taken 

as 0.400 V vs. NHE.28,29  

Electrochemical Instrumentation. CV is a technique that is used to measure the 

current during the process of linearly changing the potential between two limits on the 

working electrode at a given scan rate.22 For all CV experiments, the potential windows 

range from 2.810 to -2.290 V for annihilation systems and from 0.000 and -2.150 V for 

co-reactant systems. The experimental parameters for CVs were as followed: 0.000 V 

initial potential, positive or negative initial scan polarity, 0.1 V/s scan rate, 4 sweep 

segments, 0.001 V sample interval, 2 s quiet time, 1-5 × 10−5 AV−1 sensitivity. In DPV 
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experiments, the differential current is taken as the current at the end of the pulse minus 

the current seen just prior to the pulse as the applied potential advances from one pulse to 

the next pulse.30 For the purposes of our experiments, four DPVs were taken for each 

compound, two for anodic scans (0.000 to 2.810 V and 2.810 to 0.000 V) and two for 

cathodic scans (-2.290 to 0.000 V and 0.000 to -2.290 V) respectively. The experimental 

parameters for DPVs were as followed: 0.004 V increments, 0.05 V amplitude, 0.5 s 

pulse width, 0.0167 s sampling width, 0.2 s pulse period, 2 s quiet time, 1-5 × 10−5 AV−1 

sensitivity. 

ECL instrumentation. The electrochemical cell had a flat Pyrex window at the 

bottom for detection generated from the WE and was sealed with a Teflon cap with a 

rubber O-ring for CV, DPV, and ECL measurements. The CV and ECL data were 

obtained using a electrochemical analyzer  coupled with a photomultiplier tube (PMT) 

held at -750 V with a high voltage power supply. In the vicinity of the WE, ECL was 

generated and collected by the PMT under the flat Pyrex window at the bottom of the 

cell. The photocurrent from the PMT, which represents the ECL intensity, transformed 

this signal using a picoammeter/voltage source. The potential and current signals from 

the electrochemical workstation were sent through a data acquisition system (DAQ 

board) to the computer. The data acquisition system was controlled from a homemade 

LabVIEW program. The electrochemical cell was positioned inside the PMT to detect 

light emission for ECL pulsing experiments. The PMT was connected to the 

picoammeter/voltage source for signal conversion. A potentiostat was connected to an 

Universal Programmer. The data acquisition system was controlled from another 

homemade LabVIEW program. Current, potential and ECL signals were recorded 

simultaneously with the computer acquisition system. Pulsing the WE between the first 

oxidation and reduction peak potentials improved the ECL signals with a pulse width of 

0.1 s or 10 Hz. The photosensitivity was set between 2 and 20 nA for annihilation 

systems and 200 nA for co-reactant systems. The ECL spectra were obtained using a 

spectrometer containing a charge-coupled device (CCD) camera that was cooled to -55 

°C prior to use and connected to the computer. Similar to the pulsing experiments, the 

samples were pulsed between the first oxidation and reduction peak potentials, between 
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0.000 and -2.150 V, at 10 Hz. The exposure time of the spectra was set to 60 s for co-

reactant systems. A program recorded the intensities. Vertical lines/spikes seen in the 

spectra were cosmic rays from the CCD spectrometer.  

ECL calculations. ECL quantum efficiencies (QE) were calculated relative to 

DPA (reported absolute ECL efficiencies of DPA = 6.1 % in ACN)31 by integrating both 

the ECL intensity and current value for each compound relative to the DPA standard, see 

Eq. 2.1 in Chapter 2. 

Theoretical Calculations. The ground state structures of 3.1-3.4 were optimized 

from the crystal structures, 3.1, 3.2, and 3.4, by using density functional theory32 (DFT) 

with B3LYP/6-31+G* in Hartree/Particle at T=289.15 K, P=1 Atm. Frequency 

calculations were also executed at the same level of theory as the optimizations and the 

vibrational data confirmed that the structures were indeed true minima on the potential 

energy surface because there were no imaginary frequencies listed in the vibrational 

analysis. The crystal structure and optimized Cartesian coordinates of 3.1-3.4 have been 

given in Appendix II, S3.7 to S3.17. 

3.3 Results and Discussion 

Synthesis of Thienyltriazoles. Our focus has been on synthesis of thiophene-

based, luminescent molecules, using the copper alkyne-azide cycloaddition, CuAAC, 

approach (click chemistry),12-15 which chelate to Al and Zn for possible subsequent 

enhancement in fluorescence. The basic synthetic approach to our thienyltriazoles, 3.1-

3.4, has been outlined in Scheme 3.1 and Scheme 3.2. The triazole moiety links electron 

donor and acceptor units, leading to an inclusion of a luminescent emission via charge 

transfer processes. The precursors were readily available and were easily converted to 

3.1-3.4 using published procedures. In fact, compounds 3.1-3.4 were prepared using the 

“click” reaction between 3-azidothiophene, or 4-azido-2,2′-bithiophene, with 2-progargyl 

alcohol or 2-ethynylphenol. The “click” reactions had mild reaction conditions, and 

required little product isolation and no chromatography. Stirring “click” reactions 

overnight at 35 °C resulted in high yields of 3.1-3.4 (81-96 %). Recrystallization 
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provided single crystals for 3.1, 3.2, and 3.4, suitable for x-ray diffraction. The identity of 

3.1-3.4 were confirmed by 1H and 13C{1H} NMR spectra, LRMS, and HRMS.  

 

Scheme 3.1. General procedure for the synthesis of thienyltriazoles, 3.1 and 3.2, via 

Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition 

 

Scheme 3.2. General procedure for the synthesis of thienyltriazoles, 3.3 and 3.4, via 

Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition 

Crystal structures. An ORTEP representation of 3.1 has been shown in Figure 

3.1a. The solid state structure of 3.1 displays a high degree of planarity in the bithiophene 

ring system, with a torsion angle between the bithiophene rings, S(1)-C(1)-C(5)-C(6), of 

only 0.80°. There was twisting of the triazole ring system relative to the bithiophene ring 

system. A torsion angle of 41.42° around the ring junctions of C(8)-C(7)-N(1)-C(10) was 

observed between the triazole ring and its adjacent thiophene ring. In the solid state, 

molecules of 3.1 pack in a head-to-tail arrangement with their bithiophene ring systems 

approximately parallel and separated by a distance of 3.60 Å, between C(3) and C(6), 

Figure S3.1 in Appendix II. When looking at three crystallographically adjacent 
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molecules, there may be an H-bonding interaction between N(3) and the H-atom 

associated with O(1) a distance of 2.78 Å between the heavy atoms. 

 

Figure 3.1. ORTEP representations of (a) 3.1, (b) 3.2, (c) 3.4 (30% probability ellipsoids, 

H-atoms removed for clarity, expect -OH protons) with rings approximately parallel to 

the page. 

An ORTEP representation of 3.2 has been shown in Figure 3.1b. There was a high 

degree of planarity in the thiophene-triazole ring system of 3.2 with a small torsion angle 

of 4.10° between the two ring systems, C(3)-C(2)-N(1)-N(2). In the solid state, molecules 

of 3.2 pack in a head-to-tail arrangement with their ring systems approximately parallel 

and separated by a distance of 3.40 Å, between N(3) and C(15), Figure S3.2 in Appendix 

II. There may be an H-bonding interaction between N(3) and the H-atom associated with 

O(1) from adjacent molecules with a distance of 2.81 Å between the heavy atoms.  

An ORTEP representation of 3.4 has been depicted in Figure 3.1c. The molecules 

of 3.4 display a high degree of planarity throughout the three ring systems. There was 

probably an intramolecular hydrogen bond between one of the triazole N-atoms and the 

phenol OH group: the N(2)-O(1) distance was 2.63 Å which was significantly less than 

the sum of the van der Waals radii of N and O (2.74 Å). The torsion angle between the 

thiophene and triazole rings C(1)-C(2)-N(1)-C(3) was 7.34° and the triazole and phenol 
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rings N(2)-C(4)-C(5)-C(11) was 1.80°. In the solid state, molecules of 4 π-stack with all 

three ring systems approximately parallel and separated by a distance of 3.31 Å, between 

N(2) and C(10), Figure S3.3 in Appendix II. 

Electrochemistry and its correlation to crystal and electronic structures. The 

cyclic voltammogram (CV) of 3.1 is shown in Figure 3.2 in acetonitrile solution 

containing 0.1 M tetra-n-butylammonium perchlorate as supporting electrolyte. When the 

potential was scanned from 0.000 to 2.740 V, 3.1 underwent oxidation at a peak potential 

of 1.828 V, becoming a radical cation. The oxidation process was irreversible in the CV 

since there was no return peak in the reverse potential scan from 2.740 to 0.000 V. Upon 

scanning in negative potential range, 3.1 was reduced to a radical anion showing a 

cathodic peak at  -2.092 V. The radical anions were not stable as well since there was no 

anodic wave in the reverse potential scan. It should be noted that new peaks appeared in 

the middle of the potential window after one cycle of the potential scan. This indicated 

that some chemical reactions from the generated radicals occurred after the 

electrochemical reactions, which agreed well with their stabilities illustrated by the CV in 

Figure 3.2.  

 

 

Figure 3.2. Cyclic voltammogram (red) and electrochemiluminescence-voltage curve 

(green) of 3.1 with a scan rate of 0.1 V/s and a potential range between 2.740 and -2.358 

V. 
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In order to assess the redox property with less noise, differential pulse 

voltammetry (DPV) was used in the potential range of 2.810 and -2.289 V in the same 

supporting electrolyte, Figure 3.3. The formal potentials of 3.1 can be determined from 

Eq. 3.130,33, where Emax is the peak potential in the DPV and ∆E is the pulse height (50 

mV), we have approximated the potentials using the equation for a reversible system. 

=          (3.1) 

Upon scanning the potential from -2.289 to 2.810 V, a peak potential was 

observed at 1.894 V for the oxidation reaction, top solid wave in Figure 3.3a, which was 

close to the peak potential obtained by CV. The formal potential for the oxidation was 

calculated as 1.919 V, Table 3.1, from Eq. 3.1. DPV provides better visibility than the 

CV in Figure 3.2 and could easily access the formal oxidation potential. As demonstrated 

from the crystal structure, Figure 3.1a, the bithiophene ring plane has a torsion angle as 

large as 41.42° relative the triazole ring. This led to a decrease in the conjugation length, 

a low delocalization of the charge upon losing an electron and therefore a low stability of 

the generated radical cation. Furthermore, we observed that the HOMO electron density 

of 3.1, inset in Figure 3.3a, was distributed mostly on the bithiophene chromophore and 

minor on the triazole ring using density functional theory (DFT). The electron density 

extended less as expected from our molecule design on this conjugated ring system. 
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Table 3.1. Redox Peak Potentials and Energy Levels of HOMOs and LUMOs. 

 Ep,a 

oxidation/Va 

Ep,c 

reduction/Va 

Eox°'/Va Ered°' 

/Va 
∆E°'/eVb Theoretical 

Energy 

Gap/eVc 

3.1 1.894 -1.905 1.919 -1.930 3.85 4.22 

3.2 2.271 -1.524 2.296 -1.549 3.84 5.27 

3.3 2.126 -1.906 2.151 -1.931 4.08 3.92 

3.4 1.687 -1.460 1.712 -1.485 3.19 4.22 

aIn V vs. Ag/Ag+ at 0.1 V/s scan rate. 

bEnergies determined from DPV 1st oxidation and reduction peak potentials data (∆E°' = 

Eox°' − Ered°' ).  

cEnergy gap values obtained from the DFT/B3LYP/6-31+G* calculations. 

When the potential scanning direction was reversed, bottom solid wave in Figure 

3.3a, a peak potential was observed at -1.905 V in the cathodic region, indicating the 

injection of an electron to the LUMO, reduction reaction with a calculated formal 

reduction potential of -1.930 V, Table 3.1. The LUMO electron density again was 

delocalized on the bithiophene ring, inset in Figure 3.3a. 

A small cathodic peak was observed in the cathodic DPV scan, top curve in 

Figure 3.3a, representing the instability of the radical cation. At the beginning of the DPV 

scan, radical cations were generated in the vicinity of the electrode. Upon scanning more 

negative, these anions, if they were still there, were re-reduced to the neutral form. The 

lower peak current than that of the corresponding anodic peak in the anodic scan 

described well the irreversibility of the oxidation or the low stability of the radical 

cations. Similarly, a smaller anodic peak in the anodic DPV, top wave in Figure 3.3a, 
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than that of the corresponding cathodic peak, bottom curve in Figure 3.3a, illustrated the 

irreversibility of the reduction or the low stability of the radical anions.  

 

Figure 3.3. Differential pulse voltammogram and representations of the calculated 

HOMO and LUMO of (a) BiTTM (3.1) from 2.810 to -2.289 V, (b) TTM (3.2) from 

2.683 to -1.976 V, (c) BiTTP (3.3) from 2.626 to -2.174 V, and (d) TTP (3.4) from 1.975 

to -1.772 V, in ACN containing 0.1 M TBAP as supporting electrolyte with a scan rate of 

0.1 V/s. Gaussian-09 (B3LYP/6-31+G*) was used for calculations of 3.1-3.4 in 

Hartree/Particle at T=289.15 K, P = 1 Atm. 

The electron promotion from HOMO to LUMO was delocalized mainly on the 

bithiophene, which might cause an inefficient luminescent emission. The electrochemical 

gap determined from the first oxidation and reduction potentials (∆E = Eox
0′ − Ered

0′) read 

3.85 eV in Table 3.1, which agrees very well with electronic energy gap values of 4.03 

eV in MeOH and 3.91 eV in DMF determined from UV-visible spectra, Table 3.2, and 

Figures S3.4 to S3.5 in Appendix II. The energy gap between the excited state and the 
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ground state evaluated from the photoluminescence spectrum, Figure S3.6 in Appendix 

II, was 3.37 eV, Table 3.2, a value that was smaller than the electrochemical gap of 3.85 

eV, Table 3.1. This implied a nonemissive relaxation from the electron promotion to the 

excited state. 

 

Table 3.2. Absorption and Photoluminescence Spectroscopic Data of 3.1-3.4. 

 Absorption Photoluminescencea Stokes shift 

 Abs 

λmax/nm 

Abs/eV Ex 

λmax/nm 

Em 

λmax/nm 

Em/eVd λmax(PL)-

λmax(Abs)/nm 

3.1 307b /313c 4.03/3.91 344 367 3.37 54 

3.2 252b 4.92 366 453 2.73 201 

3.3 302c 4.10 337 357 3.47 55 

3.4 291b 4.26 337 358 3.46 67 

aPL in MeOH. 

bAbs in MeOH. 

cAbs in DMF. 

dEnergies determined from PL data. 

Table 3.1 summarizes the electrochemical data of the other three thienyltriazoles, 

where their formal oxidation and reduction potentials are listed. The DPV of 3.2-3.4, 

Figure 3.3b to Figure 3.3d, shows irreversible oxidation and reduction processes in all 

cases, however, even though the processes were irreversible, the radical cations and 

anions were still generated in solution as seen in the increase in photocurrent in Figure 

3.2. The irreversible processes lead to greater instability of the radical cations and anions, 
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meaning fewer radical combine in solution to generate the excited species and ultimately 

leading to weak ECL as a result. When the potential was scanned from -1.976 to 2.683 V 

in the electrolyte solution containing 3.2, the radical cation was generated at a potential 

more positive than its formal potential for the oxidation reaction, 2.296 V, top solid wave 

in Figure 3.3b. The crystal structure showed a very good planarity and the HOMO 

electron density of 3.2 was delocalized on the thienyltriazole according to the DFT 

calculation, Figure 3.3b. However, 3.2 still showed a higher oxidation potential than 3.1. 

This is because 3.1 might have a planar structure in solution and therefore a high degree 

of conjugation. Scanning from 2.683 to -1.976 V, 3.2 underwent reduction with a formal 

reduction potential of -1.549 V, generating a radical anion of 3.2, bottom solid wave in 

Figure 3.3b. The electron density for the LUMO of 3.2 was well delocalized on the 

thiophene and triazole rings and partially on the hydroxyl group, Figure 3.3b, leading a 

facile electron injection and therefore a less negative formal potential, -1.549 V, than that 

of 3.1, -1.930. The HOMO-LUMO gap of 3.2 from the DFT calculation read 5.27 eV, 

Table 3.1, and is much higher than the electrochemical gap, 3.84 eV, but is compatible 

with the electronic gap from the absorption spectrum, Table 3.2 and Figure S3.4 in 

Appendix II. The installation of the second thiophene ring in 3.1, relative to 3.2, shows a 

trend of increasing conjugation resulting in a decrease in energy between the HOMO and 

LUMO, from 5.27 eV in 3.2 to 4.22 eV in 3.1 from Table 3.1. When looking at the 

electrochemical behaviour of 3.2, the electrochemical gap of 3.84 eV varied from its PL 

emission of 2.73 eV. This may be due to fast rotation between the thiophene and triazole 

rings, as seen in the disorder of the thiophene ring, in the crystal of 3.2.  

For compound 3.3, the radical cation formed when the potential was scanned from 

-2.174 to 2.626 V with its formal oxidation potential of 2.151 V, top solid wave, Figure 

3.3c. When the potential was scanned from 2.626 to -2.174 V, the radical anion was 

generated with its formal potential of -1.931 V, bottom solid wave in Figure 3.3c. From 

the HOMO in Figure 3.3c, the electron density of 3.3 resided mostly on the 

bithienyltriazole ring system. In the LUMO, the electron density was delocalized on the 

phenol and triazole rings, with very little contribution from the bithiophene chromophore. 

From Table 3.1, we observed a decrease in the theoretical energy gap with the installation 

of the phenol ring to the bithienyltriazole compound. The increase in conjugation in 3.3 



 

 

53 

decreased the energy gap from 4.22 eV in 3.1 to 3.92 eV in 3.3. For absorption, the 

energy was 4.10 eV, similar to the DFT energy of 3.3, however there was no noticeable 

difference in energy between 3.1 and 3.3 for absorption. Compound 3.3 did not readily 

dissolve in MeOH, and was analyzed instead in DMF, Figure S3.5 in Appendix II. Only 

one band was observed for both 3.1 and 3.3 due to the solvent cutoff of DMF at 

approximately 270 nm. The addition of the bithiophene and phenol aromatic systems to 

compound 3.3 increases the absorption intensities and selectively tunes the wavelengths 

relative to 3.1 and 3.2. The electrochemical gap of 3.3, 4.08 eV, was compatible with the 

electronic gap but larger than its PL emission energy of 3.47 eV. This again implies that 

nonemissive relaxation from the electron promotion to excited stated has occurred.  

Lastly, compound 3.4 was scanned from -1.772 to 1.975 V, which generated the 

radical cation with its formal potential of 1.712 V, top solid wave in Figure 3.3d. From 

DFT, the HOMO electron density of 3.4 was delocalized on the entire compound, with 

the major contribution from the chromophore, very similar to that of 3.2. The radical 

anion was formed when the potential was scanned from 1.975 to -1.772 V with its formal 

potential of -1.485 V, bottom solid wave, Figure 3.3d. The LUMO of 3.4 showed the 

electron density on the triazole and phenol rings. Comparing 3.2 with 3.4, the theoretical 

energy gap of 3.4 was 4.22 eV, which was in good agreement with the absorption energy 

4.26 eV, of 3.2. From PL, the energy for 3.4 was 3.46 eV while the energy was 3.19 eV 

from the electrochemical gap of 3.4. The decrease in energy between 3.2 and 3.4 was 

expected as we extended the conjugation in the compound. From DPV, we observed a 

decrease in the electrochemical gap of compound 3.2 of 3.84 eV to compound 3.4 of 3.19 

eV. A decrease in energy was not observed between 3.1 and 3.3, however this trend of 

decreasing energy with increased conjugation was seen between 3.1 and 3.2. 

ECL via annihilation. In Figure 3.2, the CV of 3.1 is overlaid with the ECL 

photocurrent-voltage curve recorded simultaneously. Weak light emission from the 

thienyltriazoles during potential scanning was observed.  The proposed mechanism for 

the observed ECL in 3.1 can be seen in Eqs. 3.2 to 3.5 and follows the annihilation 

pathway. When scanning from zero to positive potential, the radical cation of 3.1 was 

generated. 
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BiTTM → BiTTM•+ + e−        (3.2) 

The potential was then scanned from positive to negative region. This generated 

the radical anion of 3.1 as seen in Eq. 3.3.  

BiTTM + e− → BiTTM•−        (3.3) 

Through this annihilation pathway, the radical cation and anion generates an 

excited species of 3.1 and a ground-state species of 3.1, Eq. 3.4. The excited 

thienyltriazole species will return to its ground-state and emit light, Eq. 3.5, as observed 

in the ECL photocurrent in Figure 3.2. 

BiTTM•+ + BiTTM•− → BiTTM∗ + BiTTM      (3.4) 

BiTTM∗ → BiTTM + hv1        (3.5) 

The ECL light was detected in the negative potential region. The stability of the 

radicals can be determined due to where we observed light emission. The radical cations 

were more stable than the radical anions of this thienyltriazole compound because we 

only see ECL light after scanning from positive to negative potential. Compounds 3.2-3.4 

demonstrated similar weak ECL emission. 

Quantitatively, ECL efficiency can be calculated as the number of photons 

emitted per redox event relative to DPA.34-36 The ECL efficiencies were low, as seen in 

Table 3.1, however, the thienyltriazoles 3.1 and 3.3 displayed higher ECL efficiencies 

than 3.2 and 3.4 due to their extended π conjugation. The ECL efficiencies for 

compounds 3.1-3.4 were 0.11 % for 3.1, 0.17 % for 3.2, 0.50 % for 3.3, and 1.11 % for 

3.4. CV of 3.1-3.4 shows irreversible processes indicating the poor radical stability.  

Annihilation pulsing efficiencies were essentially zero, not efficient, because the 

radicals were not stable in solution as seen in the irreversible redox reactions, see Table 

3.3. Since the compounds were not efficient through annihilation pulsing, the ECL 

spectrum for each compound was not obtained.  
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Table 3.3. ECL Spectroscopic Data of 3.1-3.4. 

 Annihilation Co-reactant Shiftb 

 Scanning 

QEa/% 

Pulsing 

QEa/% 

Scanning 

QEa/% 

Pulsing 

QEa/% 

λmax/nm λmax(ECL)− 

λmax(Em)/nm 

3.1 0.11 0.00 0.50 0.40 544 185 

3.2 0.17 0.00 0.16 0.01 554 91 

3.3 0.50 0.00 0.35 0.08 546 189 

3.4 1.11 0.01 0.40 0.02 422/576 84 

aECL quantum efficiencies (QE) measured in ACN relative to 9,10-diphenylanthracene, 

DPA, (Φ = 6.1 % in ACN)31. 

bThe shift represents the difference between the ECL and PL emission wavelengths in 

nm. 

ECL via co-reactant. ECL was enhanced when BPO was added to the solutions 

of compounds 3.1-3.4 as observed in Figure 3.4. Adding a co-reactant to the solution was 

useful by generating ECL using a single potential step, one directional potential scanning 

at an electrode thus overcoming the limited potential window of the solvent, reducing the 

time delay for the meeting of radical anions and cations,  and therefore enhancing the 

ECL light emission by generating radicals in solution.17,37 

The proposed mechanism for the observed ECL in 3.1, Figure 3.4a, with BPO is 

stated in Eqs. 3.6 to 3.9 and follows the co-reactant pathway. When scanning from 0.000 

V to more negative potential, BPO was first reduced to its radical anion, BPO•−, at -0.760 

V, as see in Eq. 3.6. 

BPO + e− → BPO•−         (3.6) 
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This radical rapidly decomposes to generate a strong oxidizing radical, 

C6H5CO2
•, Eq. 3.7. 

BPO•− → C6H5CO2
− + C6H5CO2

•       (3.7) 

In Eq. 3.8, the C6H5CO2
• radical reacts with 3.1 and generate the radical cation of 

3.1, BiTTM•+. 

C6H5CO2
• + BiTTM → BiTTM•+ + C6H5CO2

−     (3.8) 

Upon further reduction, the radical anion of 3.1 was observed at -1.883 V, Eq. 

3.9. 

BiTTM + e− → BiTTM•−        (3.9) 

The radical cation and anion of 3.1 combine and form the excited species of 3.1, 

BiTTM*, similar to Eq. 3.4 with the annihilation mechanism, and would eventually relax 

back down to its ground state and light would be emitted, Eq. 3.5. 
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Figure 3.4. Cyclic voltammogram (red) and ECL-voltage curve (green) of (a) BiTTM 

(3.1) from 0.000 to -1.989 V, (b) TTM (3.2) from 0.000 to -2.145 V, (c) BiTTP (3.3) 

from and 0.000 to -2.074 V, and (d) TTP (3.4) from 0.000 to -2.021 V, in ACN 

containing 5.0 × 10−3 M BPO and 0.1 M TBAP as supporting electrolyte with a scan rate 

of 0.1 V/s. 

A large increase in photocurrent in Figure 3.4a for 3.1, approximately 90 nA, was 

observed using BPO. Comparing it to the photocurrent seen in annihilation, Figure 3.2, 

with approximately 3.1 nA, BPO significantly increased the amount of light detected. 

Compounds 3.2, 3.3, and 3.4 in the same co-reactant system showed increased intensities 

of photocurrent relative to that in the annihilation systems when extending the 

conjugation in the thienyltriazole ring system. ECL intensity generally increased with the 

addition of BPO to each system as seen in Table 3.3. Relative to the standard, DPA, a 

slight decrease in the efficiency appears. This was due to the fact that the efficiency of 

DPA was significantly higher with BPO relative to its efficiency without the co-reactant. 
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ECL was enhanced when using BPO and the efficiencies for compounds 3.1-3.4 were 

0.50 % for 3.1, 0.16 % for 3.2, 0.35 % for 3.3, and 0.40 % for 3.4. 

Pulsing experiments with co-reactant resulted in slightly higher efficiencies than 

in the annihilation mechanism as seen in Table 3.3. When BPO was added to the 

solutions, there was a small increase in efficiencies for 3.1 at 0.40 %, 3.2 at 0.01 %, 3.3 at 

0.08 %, and 3.4 at 0.02 % because pulsing generates the radicals faster therefore reducing 

the decay of the unstable radicals.  

Being able to detect photocurrent even with these very low efficiencies allowed 

our group to acquire the ECL spectra for compounds 3.1-3.4 as seen in Figure 3.5. 

 

Figure 3.5. ECL spectra of 3.1-3.4 in ACN containing 5.0 × 10−3 M BPO and 0.1 M 

TBAP as supporting electrolyte, pulsing for t = 60 s between potential ranges from (a) 

0.000 to -1.989 V for 3.1, (b) 0.000 to -2.145 V for 3.2, (c) 0.000 to -2.074V for 3.3, and 

(d) 0.000 to -2.021 V for 3.4. ECL intensities were normalized by their respective peak 

heights.  
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ECL spectra and their correlation to PL spectra. The ECL spectra of 

compounds 3.1-3.4 containing BPO were obtained, Figure 3.5, and their peak 

wavelengths are listed in Table 3.3. Pulsing between the potential ranges for each 

compound in the cathodic regions, thus reducing each compound, generated the excited 

species and the emission was acquired and recorded. The ECL spectra were red-shifted 

relative to the PL spectra as seen in Table 3.2. The ECL spectrum of 3.1 showed a 

maximum wavelength at 554 nm in ACN whereas its PL maximum was at 367 nm in 

MeOH. The difference of 185 nm could be due to the formation of excimers in solution 

during annihilation and co-reactant studies.       

It was possible that excimers form in solution because they were excited states of 

dimers that can be observed in ECL of organic compounds.38,39 Excimers can form from 

dimerization of radical cations and anions or from stacking of the monomer in the ground 

state with one in the excited state due to the π conjugation of the compound.34 When 

compound 3.1 was in solution with the excited species of 3.1, BiTTM*, an excimer of 

3.1, (BiTTM)2
*, Eq. 3.10, could be generated. 

BiTTM + BiTTM* → (BiTTM)2
*        (3.10) 

Another route would be the generation of the excimer of 3.1, (BiTTM)2
*, when 

the radical cation and anion of 3.1 were in solution. Instead of generating an excited 

species of 3.1 and a ground state species of 3.1, as seen in Eq. 3.4, it could form the 

excimer of 3.1, (BiTTM)2
*, Eq. 3.11. 

BiTTM•+ + BiTTM•− → (BiTTM)2
*       (3.11) 

The excimer of 3.1, (BiTTM)2
*, would relax down to its ground state and emit 

light as seen in Eq. 3.12. 

(BiTTM)2
* → 2 BiTTM + hv2       (3. 12) 
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Excimer formation would be an alternate route the results in light emission. By 

changing the substituents on the compounds, adding an additional thiophene ring or by 

adding a phenol ring, the PL and ECL co-reactant emissions were tuned based on the 

conjugated system. ECL peak wavelengths of 3.1 and 3.3 were the furthest red-shifted 

from their PL spectra. The ECL peak wavelength of 3.3 was observed at 546 nm with a 

red-shift of 189 nm relative to its PL peak wavelength. Compound 3.2 shows a red-shift 

of 91 nm and compound 3.4 demonstrates a red-shift of 84 nm. From Table 3.3, we can 

conclude that excimer formation was observed in each ECL system with BPO for all 

compounds studied when pulsing the electrode potential. The largest red-shift in 

wavelength was observed in 3.1 and 3.3, the two compounds that had the bithiophene 

ring system. The addition of the phenol ring system to 3.4 changed the ECL excimer 

emission from 554 nm in 3.2 to 576 nm in 3.4, thus, the extended conjugation in 3.4 

increased the formation of excimers in solution for ECL measurements. 

3.4 Conclusions 

We synthesized four blue-emitting thienyltriazoles, 3.1-3.4, that were 

characterized using 1H and 13C{1H} NMR spectroscopy, high resolution mass 

spectrometry. Crystal structures of 3.1, 3.2, and 3.4 were determined by x-ray diffraction. 

While 3.1 showed a torsion angle of 41.42° between the bithiophene and triazole rings, 

3.2 and 3.4 possessed greater planarity. All of the four compounds underwent irreversible 

redox reactions to generate electrochemically unstable radical anions and cations. Based 

on DFT calculations, the majority of electron density resided on the chromophore for the 

LUMOs of 3.1-3.4, and mostly in the triazole hydroxyl/phenol ring systems for the 

HOMOs, with the exception of the HOMO of 3.1, where the electron density was 

delocalized on the bithienyltriazole ring system. Electrochemical gaps determined from 

the differences between first formal reduction and oxidation reactions correlated well to 

HOMO-LUMO energy gaps obtained from UV-visible spectroscopy and the DFT 

calculations as well as energies of excited states measured from photoluminescence 

spectroscopy. They demonstrated a trend dependent on the conjugation length and 

planarity. ECL efficiencies for annihilation of electrogenerated radicals were determined 

to be 0.11 % for 3.1, 0.17 % for 3.2, 0.50 % for 3.3, and 1.11 % for 3.4, relative to that of 
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DPA. Upon addition of BPO as the co-reactant, ECL intensities were enhanced 

approximately 90 times for 3.1, 20 times for 3.2, 100 times for 3.3, and 10 times for 3.4, 

bearing efficiencies of 0.50 % for 3.1, 0.16 % for 3.2, 0.35 % for 3.3, and 0.40 % for 3.4, 

relative to DPA in the co-reactant system. The ECL spectra of 3.1-3.4 were acquired 

ranging from 544 nm for 3.1, 554 nm for 3.2, 546 nm for 3.3, and 576 nm for 3.4. The 

radicals electrogenerated in solution followed the dimerization and electron transfer 

pathways, leading to excimers. A red-shift was observed for all four compounds in the 

ECL spectra relative to the corresponding PL spectra. Monomer ECL emission was only 

observed for 3.4. ECL is a valuable, quick, and cost-effective technique that requires little 

quantity of compound while being highly sensitive and selective. 
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Chapter 4  

4 Electrochemiluminescence of Iridium(III) Complexes 

4.1 Bright Electrochemiluminescence of Iridium(III) 

Complexes† 

4.1.1 Introduction 

An emissive excited molecule in electrochemiluminescence (ECL) is produced 

via electron transfer reactions between radical cations and anions electrogenerated in 

solution. ECL is therefore a powerful light-emitting technique, with wide potential 

applications in biology, medicine, organic light emission diodes, and other technologies.1-

6 One of the most widely investigated metal complexes, as luminophores, is [Ru(bpy)3]2+, 

first reported by Tokel and Bard in 1972,7 which has good electrochemical reversibility, 

stability, and high ECL efficiency. Since then, many derivatives of [Ru(bpy)3]2+ have 

been studied for ECL in biological applications.8,9 While neutral iridium(III) complexes 

have been shown to be ECL active in aqueous and organic media,10-16 and incorporated 

into electronic devices,17-19 ECL of charged iridium(III) complexes16,20,21 have recently 

shown promise in a myriad of applications.22-26 Only a few iridium(III) complexes have 

been reported as relatively efficient compounds, in reference  to [Ru(bpy)3]2+ and its 

analogs.10,11 Our research group has recently reported the synthesis and complete 

photophysical characterization of a series of highly luminescent iridium(III) complexes 

containing aryltriazole cyclometallating ligands.27 In this communication we report the 

ECL mechanisms, ECL spectra, and high ECL efficiencies for four selected iridium(III) 

complexes, 4.1-4.4, in acetonitrile that are promising ECL luminophores, Scheme 4.1. 

Please refer to Appendix III for general ECL procedures. For electrochemical workstation 

                                                 
† This work is published in Kalen N. Swanick, Sébastien Ladouceur, Eli Zysman-Colman, and Zhifeng 
Ding, Chem. Commun., 2012, 48, 3179-3181. Reproduced by permission of The Royal Society of 
Chemistry (RSC). See Appendix III. 
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and ECL setup information, please refer to our publications elsewhere.28,29 Figure 4.1 

shows cyclic voltammograms (CVs) overlaid with the ECL-voltage curves of compounds 

4.1-4.4, in acetonitrile with 0.1 M TBAPF6 as supporting electrolyte, in the potential 

range between their first oxidation and reduction, see Table S4.1 in Appendix III.27 

 

Scheme 4.1. Ir complexes 4.1-4.4 in study 

4.1.2 Experimental Section 

CV and ECL Measurements. For annihilation ECL studies, approximately 2 mg 

of compound, 4.1-4.4, was added to a pyrex electrochemical cell with a flat Pyrex 

window at the bottom for detection of generated ECL, containing 0.1 M TBAPF6 

(tetrabutylammonium hexafluorophosphate) supporting electrolyte in anhydrous 

acetonitrile (3 mL) that was assembled in a dry box. For co-reactant studies, 5.0 × 10−3 M 

BPO was added to the annihilation solution and assembled in a dry box. A 2 mm 

diameter Pt disc inlaid in a glass sheath were used as the working electrode (WE), a 

coiled Pt wire as the counter electrode (CE), and a coiled Ag wire as the quasi reference 

electrode (RE), respectively. Routine cleaning procedures for the electrodes and cell were 

reported elsewhere. 28,29 For detailed electrochemical workstation and ECL setup 

information, please refer to our previous publications.28,29  

Electrochemical Instrumentation. In brief, the cyclic voltammetry was 

conducted on a CHI 610A electrochemical analyzer (CH Instruments, Austin, TX). The 
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experimental parameters for cyclic voltammograms (CVs) are listed here: 0.00 V initial 

potential in experimental scale, positive or negative initial scan polarity, 0.1 V/s scan 

rate, 4 sweep segments, 0.001 V sample interval, 2 s quiet time, 1-5 × 10−5 AV−1 

sensitivity. Potentials (V) were calibrated using an internal standard Fc/Fc+ redox couple 

(0.40 V in ACN)30 after each experiment, and are reported vs. SCE standard electrode. 

The ECL data along with CV data were obtained using the CHI 610A coupled 

with a photomultiplier tube (PMT, R928, Hamamatsu, Japan) held at -750 V with a high 

voltage power supply. The ECL collected by the PMT under the flat Pyrex window at the 

bottom of the cell was measured as a photocurrent, and transformed to a voltage signal, 

using a picoammeter/voltage source (Keithley 6487, Cleveland, OH). The potential, 

current signals from the electrochemical workstation, and the photocurrent signal from 

the picoammeter were sent simultaneously through a DAQ board (DAQ 6052E, National 

Instruments, Austin, TX) in a computer. The data acquisition system was controlled from 

a custom-made LabVIEW program (ECL_PMT610a.vi, National Instruments, Austin, 

TX). The photosensitivity on the picoammeter was set manually in order to avoid the 

saturation. 

ECL pulsing experiments were conducted by using a potentiostat (Model 

AFCBPI, Pine Instrument Co., Grove City, PA), an EG&G PAR 175 Universal 

Programmer (Princeton Applied Research, Trenton, NJ), and the PMT with the 

picoammeter in the similar manner. The assembly was able to perform the pulsing 

experiments without a delay in a relative fast time pace. The data acquisition for the 

current, potential and ECL signals was carried out using another homemade LabVIEW 

program (ECL_PAR610a.vi). For co-reactant systems, the applied potential was pulsed at 

the WE in the cathodic region (in the experimental potential scale between 0 and low 

limit potential value for the compound reduction as obtained from CV experiments) with 

a pulse width of 0.1 s or 10 Hz. 

The ECL spectra were obtained by replacing the PMT with a spectrometer 

(Cornerstone 260, Newport, Canada) attached to a CCD camera (Model DV420-BV, 

Andor Technology, Belfast, UK). The camera was cooled to -55 °C prior to use, and 
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controlled by a computer for operation and data acquisition. The intensities versus 

wavelengths (spectra) were recorded by Andor Technology program. Similar to the 

pulsing experiments, the samples were pulsed at 10 Hz within each compound’s potential 

window.  

ECL calculations. ECL quantum efficiencies (QE) were calculated relative to 

[Ru(bpy)3](PF6)2 taken as 100% in acetonitrile solution (absolute quantum ECL 

efficiency of [Ru(bpy)3]2+ is 5.0 %31,32) by integrating both the ECL intensity and current 

value versus time for each compound,  see Eq. 2.1 in Chapter 2. 

4.1.3 Results and Discussion 

The four iridium(III) complexes studied were harder to oxidize and reduce than 

[Ru(bpy)3](PF6)2. The iridium(III) compounds underwent reversible reduction and quasi-

reversible oxidation reactions leading to a strong light emission in the positive potential 

region, Figure 4.1. As a typical example of the four compounds, 4.1, iridium(III)bis[1'-

phenyl-1,2,3-triazolato-N,C2']-2,2'-bipyridine-hexafluorophosphate, [(phtl)2Ir(bpy)]+, was 

reduced to a radical anion, (phtl)2Ir(bpy)•, and oxidized to a radical dication, 

(phtl)2Ir(bpy)2+•, Eqs 4.1 to 4.2. 
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Figure 4.1. Cyclic voltammograms (dotted lines) overlaid with the ECL-voltage curves 

(solid lines) of compounds a) 4.1, b) 4.2, c) 4.3, and d) 4.4, in the annihilation path. 

 Since the former radical is more stable than the latter one, light was mostly 

detected in the anodic region where the two radicals met and reacted to give off light, 

Eqs. 4.3 to 4.4. 

(phtl)2Ir(bpy)+ → (phtl)2Ir(bpy)2+• + e−        (4.1) 

(phtl)2Ir(bpy)+ + e− → (phtl)2Ir(bpy)•          (4.2) 

(phtl)2Ir(bpy)2+• + (phtl)2Ir(bpy)• → (phtl)2Ir(bpy)+∗ + (phtl)2Ir(bpy)+    (4.3) 

(phtl)2Ir(bpy)+∗ → (phtl)2Ir(bpy)+ + hv        (4.4) 

The ECL onset potentials in these annihilation systems were 1.11 V for 4.1, 1.07 

V for 4.2, 1.15 V for 4.3, and 1.47 V for 4.4. Table 4.1 demonstrates the ECL efficiencies 
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determined as the photons emitted per redox event relative to the standard7,31,32, 

[Ru(bpy)3]2+. While 4.1 showed an ECL efficiency of 50 %, 4.2 demonstrated 32 %. This 

difference in ECL can be attributed to the tert-butyl (t-Bu) substituents on the bipyridine 

ligand to sterically inhibit the interactions between radicals. The addition of the fluorine 

substituents on the phenyltriazole ligands greatly enhanced the ECL efficiency to 85 %. 

However, the combination of the t-Bu substituents and the fluorine-substituted 

phenyltriazole in Ir complex 4.4, greatly decreased the ECL efficiency to 17 %. ECL 

decreased when the applied potential was pulsed at 10 Hz between oxidation and 

reduction potentials for each compound. The faster pace pulsing led to ECL efficiency of 

31 % for 4.1, 14 % for 4.2, 1 % for 4.3, and 1 % for 4.4. This indicates that time is 

necessary for the radicals to be generated in solution in order to form the excited species 

that emit light. 

 

Table 4.1. ECL efficiencies from annihilation and co-reactant studies and their 

corresponding ECL spectra. 

 Annihilation Co-reactant ECL 

 Scanning/% Pulsing/% Scanning/% Pulsing/%  λ/nm 

4.1 50 (0.025) 31 (0.015) 5 (0.002) 53 (0.026) 606/587 

4.2 32 (0.016) 14 (0.007) 17 (0.008) 177 (0.088) 576/579 

4.3 85 (0.042) 1 103 (0.051) 499 (0.224) 522/504 

4.4 17 (0.008) 1 70 (0.035) 350 (0.175) 510/503 

aEfficiencies are relative to [Ru(bpy)3](PF6)2 taken as 100 % in acetonitrile solution 

(absolute quantum ECL efficiency of  [Ru(bpy)3]2+ is 5.0 %31,32). 

bWavelength values acquired from annihilation/co-reactant ECL pulsing (for PL values 

please refer to our previous paper27). 
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The diffusion coefficient values for 4.4 and [Ru(bpy)3](PF6)2 were determined33 

as 1.4 × 10−5 cm2/s and 1.2 × 10−5 cm2/s, respectively (Figures S4.1 to S4.6 in Appendix 

III). While 4.1-4.4 are bright in ECL, the efficiencies are scan rate dependent. These 

compounds have similar diffusion coefficients but the scan rate dependence is very 

different from the standard. When comparing the efficiencies of 4.1-4.4 with the standard 

in pulsing and scanning modes, pulsing at 10 Hz is not favourable for 4.1-4.4 as seen in 

Table 4.1. 

 The ECL spectra of 4.1-4.4 are shown in Figure 4.2. When the applied potential is 

pulsed between the oxidation and reduction potentials of the compounds, the spectrum of 

each compound is collected using a CCD camera attached to a spectrograph. For 4.1, the 

ECL spectrum showed one peak centered at 606 nm, Table 4.1, which corresponds well 

to the PL peak at 580 nm as stated in our previous report (Table S4.2 in Appendix III for 

PL data).27 For 4.2, one peak was observed, centered at 576 nm. Again, this matches well 

with the PL peak at 575 nm. The ECL spectra displayed one peak centered at 522 nm for 

4.3 and 510 nm for 4.4, which are consistent with the PL peaks of 514 nm for 4.3 and 498 

nm for 4.4. The addition of the fluorine and t-Bu substituents on the ligands decreased the 

emission wavelength by increasing the energy gap27 between first oxidation and first 

reduction. ECL emission was strong enough for the naked eye to observe the light 

emission at the working electrode when pulsing between oxidation and reduction 

potentials for 4.3. Please see paper for video of 4.3 being pulsed between 1.80 to -1.80 

V.34 In the darkroom, at the working electrode, we observed a bright yellow emission for 

4.1 and 4.2, and an intense green emission for 4.3 and 4.4. We can confirm that the light 

observed electrochemically via ECL is the same light detected through PL using an 

external light source. 
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Figure 4.2. Normalized ECL spectra of a) 4.1, b) 4.2, c) 4.3, and d) 4.4, via annihilation 

(solid line) and co-reactant (dotted line) paths. 

 Using a co-reactant, a compound that can produce a strong oxidizing or reducing 

agent1,35 for ECL studies with a limiting cathodic or anodic potential window, ECL can 

be produced from the excited species generated by means of applied potentials in a single 

cathodic or anodic region. Common co-reactants for cathodic ECL include persulfate36,37, 

oxygen38, and benzoyl peroxide35  (BPO, (C6H5CO)2O2).  ECL-voltage curves of 4.1-4.4 

via the co-reactant path with BPO are illustrated in Figure S4.7, in Appendix III, along 

with the simultaneously recorded CVs. 

 Limiting the potential to the cathodic region allows the short-lived BPO oxidized 

species to immediately react with the reduced species in solution to generate the excited 

molecules. ECL was found to be greatly enhanced when 5.0 × 10−3 M BPO was added to 
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the solutions of 4.1-4.4. The ECL co-reactant mechanism follows the standard proposed 

mechanism as seen in Eqs. 4.5 to 4.7. Initially at 0.00 V, a negative potential is applied to 

the system. At -0.78 V, BPO is reduced to its radical anion, BPO•−, Eq. 4.5. The radical 

anion rapidly decomposes into a strong oxidizing intermediate radical, C6H5CO2
•, and 

C6H5CO2
−, Eq. 4.6. The intermediate C6H5CO2

• reacts with 4.1, (phtl)2Ir(bpy)+, and 

generates the oxidized species, (phtl)2Ir(bpy)2+•, Eq. 4.7. 

BPO + e− → BPO •−           (4.5) 

BPO •− → C6H5CO2
• + C6H5CO2

−         (4.6) 

C6H5CO2
• + (phtl)2Ir(bpy)+ → (phtl)2Ir(bpy)2+• + C6H5CO2

−     (4.7) 

 Upon scanning to more negative potential, 4.1 is reduced to (phtl)2Ir(bpy)•, Eq. 

4.2. Similar to the annihilation mechanism, the oxidized species of 4.1, (phtl)2Ir(bpy)2+•, 

and the reduced species of 4.1, (phtl)2Ir(bpy)•, generate the excited species of 4.1, 

(phtl)2Ir(bpy)+∗, Eq. 4.3. The excited species of 4.1, (phtl)2Ir(bpy)+∗, will relax back 

down to its ground-state, (phtl)2Ir(bpy)+, and light is emitted, Eq. 4.4. Furthermore, a 

relatively weak increase in ECL photocurrent, Figure S4.7 in Appendix III, was observed 

right after the BPO reduction potential, -0.78 V, but before the reduction of compounds 

4.1-4.4. The oxidized species of 4.1, (phtl)2Ir(bpy)2+•,  generated through Eqs. 4.5 to 4.7, 

can react with BPO•−, Eq. 4.8, to produce the excited species of 4.1, (phtl)2Ir(bpy)+∗, that 

eventually emits light, Eq. 4.4. This ECL pathway, Eq. 4.8, was observed in 4.2-4.4 as 

well. 

(phtl)2Ir(bpy)2+• + BPO •− → (phtl)2Ir(bpy)+∗ + BPO      (4.8) 

 However, 4.1 displayed a large increase in photocurrent, 12 µA, Fig. S4.7 in 

Appendix III, following the typical route with BPO, Eqs. 4.5 to 4.7, compared to 500 nA 

from annihilation, Eqs. 4.1 to 4.4. For 4.2, Figure S4.7 in Appendix III, an increase from 

380 nA in annihilation to 40 µA of photocurrent with BPO was observed. The highest 

ECL intensity was observed from 4.3, around 200 µA, and 4.4 had fairly strong ECL 

photocurrent of 140 µA. The ECL onset potentials with co-reactant were -1.36 V for 4.1, 
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-1.01 V for 4.2, -1.17 V for 4.3, and -1.17 V for 4.4. The ECL onset potential of each 

compound indicated that the compound initially used the pathway as seen in Eq. 4.8 

because the initial photocurrent was detected before the reduction of the complex. 

However, upon reduction of the compound, the maximum amount of photocurrent was 

observed in Figure S4.7. As stated recently by Rosenthal et al., the complete mechanism 

with BPO is complicated.39 Another possible mechanism with BPO may involve the 

reduced species of 4.1, reacting with the strong oxidizing intermediate radical, thus 

generating the excited species, Eq. 4.9, and emitting light. 

C6H5CO2
• + (phtl)2Ir(bpy)• → (phtl)2Ir(bpy)+∗ + C6H5CO2

−     (4.9) 

 Relative to [Ru(bpy)3](PF6)2, as seen in Table 4.1, compound 4.3 displayed high 

ECL efficiency around 103 %, and efficiencies of 5 % for 4.1, 17 % for 4.2, and 70 % for 

4.4 were determined. Upon addition of BPO to 4.1-4.4, the pulsing efficiencies were 

enhanced to 53 % for 4.1, 177 % for 4.2, 449 % for 4.3, and 350 % for 4.4. 

 The ECL spectra of 4.1-4.4 with BPO, Figure 4.2, were in agreement with the 

spectra from annihilation and PL, Table 4.1. Yellow emission was observed for 4.1 at 587 

nm and 4.2 at 579 nm. Blue-green emission was detected for 4.3 at 504 nm and for 4.4 at 

503 nm. We can conclude that monomer emission was observed based on agreement of 

PL and ECL spectra for 4.1-4.4. 

4.1.4 Conclusions 

In summary, this ECL study determined that these iridium(III) complexes are 

bright ECL luminophores. ECL efficiency is enhanced, compared to [Ru(bpy)3](PF6)2, 

when BPO is used as a co-reactant. Complex 4.3 is an excellent candidate with an ECL 

efficiency more than 4 times higher than that of [Ru(bpy)3]2+. The iridium(III) complexes 

containing aryltriazole cyclometallated ligands illustrate great promise in device 

applications due to their extremely bright ECL. 
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4.2 Correlating Electronic Structures to 
Electrochemiluminescence of Cationic Ir Complexes† 

4.2.1 Introduction 

While electroluminescence of fac-Ir(ppy)3 (ppyH= 2-phenylpyridine) is up to 

7%1, electrochemiluminescence (ECL)2 of this neutral species3 was reported as weak as 

0.44%, even with tri-n-propylamine as a co-reactant4.  Ionic liquids5 and polymers6-8 

were added as electrode absorbates to enhance the light emission of fac-Ir(ppy)3
9 and its 

analogues. ECL of charged iridium(III) complexes has recently been explored by a few 

research groups including us10-13, showing great promise as bright ECL emitters. 

Understanding the structure-emission correlation should be a good strategy to design and 

prepare even brighter charged iridium(III) complexes. 

Herein, we report our discovery on the structure-ECL relationship along with the 

structure-photoluminescence (PL) correlation of the following [(C^N)2Ir(N^N)](PF6) 

complexes containing two C^N ligands, either a 2-phenylpyridinato (ppy), 4.5-4.6, or a 2-

(2,4-difluorophenyl)-5-methyl-pyridinato (dFMeppy), 4.7-4.8, and one N^N ligand, 

either 2,2'-bipyridine (bpy), 4.5 or 4.7, or 4,4'-di-tert-butyl-2,2'-bipyridine (dtBubpy), 4.6 

or 4.8, Scheme 4.2.  

 

                                                 
† This work by Kalen N. Swanick, Sébastien Ladouceur, Eli Zysman-Colman, and Zhifeng Ding, 2013, has 
been submitted. 
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Scheme 4.2. Structures of Ir complexes 4.1-4.8 

The correlations are extended to four other related heteroleptic cationic Ir 

complexes with phenyltriazole (phtl) or 2,4-difluorophenyltriazole (dFphtl) C^N ligands 

in combination with either bpy and dtBubpy, 4.1-4.4,10 in Chapter 4.1. Spooling ECL 

spectroscopy was carried out to visualize the ECL evolution and devolution during the 

scanning of the applied potential. 

4.2.2 Experimental Section 

All chemicals were used as received. The syntheses of complexes 4.5-4.8 have 

been reported previously14. For ECL studies, ~2 mg of 4.5-4.8 were added to an 

electrochemical cell with a flat Pyrex window at the bottom for ECL detection, 

containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) supporting 

electrolyte in 3 mL anhydrous acetonitrile (ACN) that was assembled in a dry box. A 2 

mm diameter Pt disc inlaid in a glass sheath was used as the working electrode (WE), a 
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coiled Pt wire as the counter electrode (CE), and a coiled Pt wire as the quasi reference 

electrode (RE), respectively. Ferrocene was used as the internal standard.10 Electrode and 

cell cleaning procedures15, details on CV and ECL experiments10,15,16, and spooling ECL 

spectroscopy17 have been published elsewhere. [Ru(bpy)3](PF6)2
 was used as an external 

standard for ECL efficiency with its absolute efficiency of 5.0 %18. 

4.2.3 Results and Discussion 

The ECL-voltage curves and cyclic voltammograms (CVs) for 4.5-4.8 are shown 

in Figure 4.3a-d, respectively. The accumulated ECL spectra, seen in Figure 4.4a-d, were 

collected during two full cycles of the potential scanning. Complex 4.5 underwent a 

quasi-reversible reduction reaction at a formal potential of -1.38 V vs. SCE, Eq. 4.10, and 

a quasi-reversible oxidation at 1.27 V, Eq. 4.11, with peak-to-peak separations of ~60 

mV.  

 

Figure 4.3. Cyclic voltammograms obtained in ACN with overlaid ECL-voltage curves 

for a) 4.5, b) 4.6, c) 4.7, and d) 4.8. The scan rate was at 0.1 V/s. 
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In the scanning process, the alternatively generated radicals [(C^N)2Ir(N^N)]• 

through the reduction, Eq. 4.10, and [(C^N)2Ir(N^N)]2+• via the oxidation, Eq. 4.11, met 

in the vicinity of the electrode to generate a triplet excited species, Eq. 4.12, which 

eventually emits light, Eq. 4.13, returning to its ground singlet state. For the metal 

chelates such as our Ir complexes, triplet-triplet annihilation19 mechanism to a singlet 

excited state for ECL of organic molecules might be absent since the observed ECL peak 

wavelengths in Figure 4.4 correlate to those of PL. 

[(C^N)2Ir(N^N)]+ + e− → [(C^N)2Ir(N^N)]•         (4.10) 

[(C^N)2Ir(N^N)]+ → [(C^N)2Ir(N^N)]2+• + e−       (4.11) 

[(C^N)2Ir(N^N)]• + [(C^N)2Ir(N^N)]2+• →  

3[(C^N)2Ir(N^N)]+∗ + 1[(C^N)2Ir(N^N)]+       (4.12) 

3[(C^N)2Ir(N^N)]+∗ → 1[(C^N)2Ir(N^N)] + + hv       (4.13) 

From Eq. 4.14 20-22, the enthalpy, ∆H°ann, of the annihilation ECL process for 4.5 

is 2.49 eV. Since the −∆H°ann value is smaller than the optical HOMO-LUMO gap or 

singlet energy, Es, 2.67 eV (464 nm)23, Eq. 4.15, it is impossible for the electrogenerated 

excited state to be a singlet24. 

−∆H°ann = −∆G°ann − T∆S° ≈ ∆E°' - 0.16 eV      (4.14) 

−∆H°ann ≥ Es           (4.15) 
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Figure 4.4. Accumulated ECL spectra of a) 4.5, b) 4.6, c) 4.7, and d) 4.8, during two full 

cycles of the potential scanning, respectively. The scan rate was at 0.1 V/s. 

Instead, a triplet excited state, 3[(C^N)2Ir(N^N)]+∗, must be produced directly, Eq. 

12. This triplet state relaxes back to the singlet ground state, phosphorescing (see the 

ECL-voltage curve in Figure 4.3a similarly to the photoinduced phosphorescence14. The 

triplet was confirmed by the peak wavelength at 613 nm, 2.02 eV, in the ECL spectrum 

in the above annihilation path, Figure 4.4a, which matches very well with the PL peak 

wavelength at 602 nm, 2.06 eV. The ECL mechanism should be very similar to that of its 

counterpart, [Ru(bpy)3]2+.25 

For 4.6, the reversibility of electrochemical behavior is very similar to that of 4.5. 

ECL emission was also observed at the positive potential side, Figure 4.3b. The ECL 

peak wavelength, 576 nm/2.15 eV, Figure 4.4b, is very close to the PL emission, 591 

nm/2.10 eV14. The ∆H°ann is 2.55 eV, less than its Es of 2.67 eV. This implies that the 

singlet excited state is not accessible for 4.6, thus following the triplet route. The addition 

of the tert-butyl (t-Bu) substituents on the bpy ligand causes the increased separation 

between the oxidation and reduction potentials and thus a larger HOMO-LUMO gap14. 
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The addition of the two fluorine atoms and one methyl group on the C^N ligands 

in 4.7 contributes to further increasing the electrochemical gap to 2.89 eV14. The fluorine 

atoms on the structure of 4.7 have a significant impact on the wavelength emitted via 

ECL, 536 nm/2.31 eV, resulting in a 0.29 eV blue-shift from 4.5 to 4.7. A similar trend 

was seen in the PL data 14. Complex 4.7 has a ∆H°ann of 2.73 eV, which is smaller than 

the Es of 2.82 eV, however, the difference is only 0.09 eV, so it is conceivable that direct 

population of the singlet excited state could be permitted, however it is sufficient to 

directly populate the emitting triplet excited state, as previous mentioned by Bard and 

Tokel25. 

Finally in 4.8, the addition of the t-Bu substituents on the bpy ligand caused a 

slight blue-shift in ECL emission to 533 nm relative to 4.5-4.7, and a larger 

electrochemical gap of 2.94 eV. The ∆H°ann of 4.8, 2.78 eV, is smaller than the Es, 2.82 

eV with only a minute 0.04 eV difference. Similar to 4.7, electrogenerating the singlet 

state in 4.8 may occur but the triplet state is nonetheless probably generated directly, 

following a similar mechanistic pathway to 4.5-4.7. 

The PL and ECL observation on 4.1-4.4 was reported by us10, see Chapter 4.1. 

The triplet excited species of 4.1 and 4.2 were probably generated directly in the ECL, 

based on Eqs. 4.14 and 4.15. However, in 4.3 and 4.4 the combination of the triazole 

moiety with the two fluorine atoms on the aryl group of the C^N ligands is responsible 

for a sufficiently large blue-shift in emission, thereby increasing the energy of the triplet 

state surface in these complexes, thus making it possible to reach directly the singlet 

excited state. 

Complex 4.5 displayed the strongest ECL efficiency of the four complexes 

studied in this report. Here, a relative ECL efficiency of 90 % was obtained. Installing 

two t-Bu substituents on the bpy ligand in 4.6 resulted in a large decrease in efficiency to 

16 %, despite an increase in PLQY14. With the two fluorine atoms installed on the ppy 

ligands, 4.7 showed a decrease in ECL efficiency, 41 %, relative to 4.5, but higher than 

4.6. Furthermore, combining t-Bu substitution of the bpy with dFMeppy ligands, 4.8, 

decreased the efficiency of the complex to 21 %. It can be seen that the role of the 
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substituents in both the triazole- and ppy-containing ligands studied are very important 

factors in tuning ECL emission.  While trends in ECL emission energies mirror those 

observed in our previous photoluminescent studies, the only clear tendency with ECL 

efficiency is its marked decreases when t-Bu substituents are present on the complexes, 

opposite to their photoluminescence quantum yield. Compounds 4.1-4.4 showed similar 

substituent effect on the ECL efficiency, see Chapter 4.1. 

 

Figure 4.5. a) Voltage pulsing between -1.92 V and 1.56 V (blue) applied to the working 

electrode immersed in a solution of 4.5, corresponding current (red) and photocurrent 

(green), b) ECL spectrum after the pulsing process as in a), for 30 s (purple), curve-fit 

wave (black), and the average fitted spectrum (blue). 

When a voltage pulsing profile between -1.92 V and 1.56 V, first reduction and 

oxidation potentials, at 10 Hz was applied to the working electrode immersed in a 

solution of 4.5, Figure 4.5a, a lower ECL intensity, 300-600 nA, was observed than that 

during scanning, 1400 nA, Figure 4.3a. This decrease in ECL can be attributed to the 

concentrations at which the radicals were generated in solution. Scanning at a rate of 0.1 
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V/s generated higher radical concentrations than pulsing at a frequency of 10 Hz, leading 

to higher ECL intensity. Other factors contributing to the decrease in photocurrent 

include the kinetics; the apparent slow reaction rate of the recombination of the two bulky 

radicals cannot match the faster pace of the reduction and oxidation processes of 4.5, 

leading to a lower ECL efficiency. In order to reach the triplet state, more time may be 

necessary. The relative efficiencies from pulsing for all the four compounds are less than 

0.028 %. 

The ECL peak wavelength, 614 nm, in the above pulsing experiments, Figure 

4.5b, reproduces that from scanning, 613 nm, Figure 4.4a. This shows how both methods 

result in the production of the same excited species in solution at the working electrode. 

Other compounds are similar in this aspect. 

 

 

Figure 4.6. Spooling spectra of 4.8, acquired during a voltage scan between -1.73 V and 

1.84 V at scan rate of 0.1 V/s for 130 s. Insets illustrate ECL evolution (blue) and 

devolution (black). 
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We were able to record ECL spectra of 4.8 by our newly developed spooling ECL 

spectroscopy, Figure 4.6. This method tracks the development of the ECL signal with the 

applied potential. As the radicals of 4.8 were generated in solution, the radical 

annihilation yielded the triplet excited species of 4.8 that radioactively decayed through 

light emission, as shown in Figure 4.6. The inset spectra in blue in Figure 4.3 show the 

evolution of the peak at 533 nm, maximized at 1.50 V, and the inset spectra in black 

demonstrate the devolution of the peak when the potential scans back to 0.00 V. Only one 

excited species was generated in solution, with a λem at 533 nm. From Figure 4.6, the 

onset of ECL was observed at 1.30 V followed by a sharp increase in ECL (in blue) at 

1.40 V. The devolution of this emission peak (at 533 nm in black) occurs from 1.60 V to 

1.80 V and emission persists when scanning back to 1.00 V. At 0.90 V, ECL returned to 

the baseline (in grey). The spooling ECL spectra well reproduced the observations in the 

ECL-voltage curves as in Figure 4.3a to Figure 4.3d. 

4.2.4 Conclusions 

Complexes 4.5-4.8 are efficient in ECL emission. Generation of the excited triplet 

states appears to be advantageous, requiring less energy to produce higher ECL 

efficiencies. For all of the eight complexes, the installation of the fluorine and t-Bu 

substituents on the ligands increases the electrochemical gap thus promoting blue shifts in 

the ECL emission. However, the fluorine and t-Bu substituents on the ligands decrease 

the ECL intensity. Comparing complexes with the ppy and phtl C^N ligands, the ppy-

containing complexes, 4.5-4.8, show higher efficiencies than the phtl complexes, 4.1-4.4, 

with the exception of 4.3. This might be due to the generation of both triplet state and 

singlet state resulting in higher ECL efficiency. Highly ECL-efficient iridium complexes 

will find wide applications2,26. 
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Chapter 5  

5 Mechanistic Insight into Electrochemiluminescence of 
Iridium(III) Complexes via Spooling Spectroscopy 

5.1 Strongly Blue Luminescent Cationic Iridium(III) 
Complexes with an Electron-Rich Ancillary Ligand: 
Evaluation of Their Optoelectronic and 
Electrochemiluminescence Properties† 

5.1.1 Introduction 

Cationic iridium(III) complexes have come to the fore as the emissive molecules 

of first choice in diverse solid and solution state applications such as light-emitting 

electrochemical cells (LEECs)1-3 and biological and environmental probes4,5 owing to 

their attractive photophysical and physicochemical profile: high quantum efficiencies, 

large window of accessible excited state lifetimes, a HOMO-LUMO gap that is easily 

modulated and great thermal and chemical stabilities. In particular, the integration of 

readily soluble Ir complexes with electrogenerated chemiluminescence (ECL) techniques 

will produce increased sensitivity ECL-based assays compared to benchmark 

[Ru(bpy)3]2+ derivatives with important implications for diverse biological and materials 

applications.6,7 Of late, there has been increased number of reports on ECL behavior in 

both aqueous and non-aqueous media using both neutral,8-21 charged12,21-29 mononuclear, 

oligonuclear30,31 and polymer-bound32 iridium(III) complexes. LEECs and ECL share a 

common mechanistic lineage in that the generation of light in both applications results 

from the recombination of holes (radical cations) and electrons (radical anions), which 

have been electrochemically generated, to form excitons radiatively relaxing back to the 

ground state. 

                                                 
† This work is published in Sébastien Ladouceur, Kalen N. Swanick, Shawn Gallagher-Duval, Zhifeng 
Ding and Eli Zysman-Colman, Eur. J. Inorg. Chem., 2013, accepted, DOI: 10.1002/ejic.201300849. See 
Appendix IV. 
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For most applications, including full-color lighting and visual displays, access to a 

blue emitter is a prerequisite and one that is phosphorescent is potentially advantageous.  

For instance, power consumption in organic light-emitting diodes (OLEDs) can be 

measurably improved with integrated phosphors compared to blue fluorophores.33 

Through judicious modification of the ligand sphere, iridium complexes phosphorescing 

from the red to sky-blue have been reported. However, still missing is a highly 

luminescent blue luminophore.  To our knowledge, the “bluest” cationic iridium 

luminophores generally show structured ligand-centered (3LC) emission bands between 

451-490 nm in either DCM or ACN solution, with photoluminescent quantum yields 

(ΦPL) ranging from 3 to 54 %;34-44 cationic iridium complexes incorporating σ-donating 

phosphine ancillary ligands demonstrate ΦPL as high has 80 %.42,45 

We,46 and others,47-50 have recently reported the use of aryltriazoles (atl) as 

cyclometallating ligands (C^N) for cationic iridium complexes of the form 

[(C^N)2Ir(L^L)]+, where L^L is a datively coordinating ligand such as 2,2′-bipyridine.  

We demonstrated that the replacement of a 2-phenylpyridine (ppy) C^N ligand by an atl 

resulted in a net blue shift (ca. 533 cm-1) in the emission spectrum with an increase in 

quantum efficiency due in part to the presence of N-benzyl groups on the triazoles.46 The 

bluest of the emitters reported in our initial study, 5.1, Scheme 5.1, exhibited an emission 

λmax of 499 nm in ACN solution at 298 K with ΦPL = 80 %, similar to a structurally 

related complex observed by De Cola and co-workers.47 In addition, De Angelis and co-

workers51,52 reported that the combined effects of electron-releasing substituents on the 

bipyridine ligand and of electron-withdrawing substituents on the phenylpyridine ligands 

can tune the emission to higher energy. Based on all above, we hypothesized that the 

substitution of the dtBubpy L^L ligand (dtBubpy: 4,4'-di-t-butyl-2,2'-bipyridine) of 5.1 

with a more electron-donating dmabpy (dmabpy: 4,4'-bis(N,N-dimethylamino)-2,2'-

bipyridine), as in 5.2, would produce a desired further blue-shift.  In order to assess the 

impact of the proposed structural modification on the photophysical behavior, we contrast 

5.2 with benchmark complex 5.4, a methylated analog to that reported in the literature, 

5.6, also known as N969.52 We further explore the impact of methylation at the 5-position 

on the pyridine ring of the C^N ligand through a comparison with between 5.3 and 5.5 
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along with 5.4 and 5.6, 5.3 being a green-blue emitter previously reported by Bolink and 

co-workers.53 Herein, we report the solution state photophysical, electrochemical 

behavior at ambient temperature along with 77 K photophysical data for 5.2 and 5.4 and 

compare with benchmark complexes 5.1, 5.3, 5.5 and 5.6, Scheme 5.1. We further 

evaluate in a rational manner the ECL properties for 5.2, 5.4 and 5.6 in order to discern 

structure property relationships relevant to the development of ECL luminophores. DFT 

calculations were also used to rationalize the structure-property relationships observed 

experimentally in our optoelectronic studies. 

 

Scheme 5.1. Ir complexes in study, 5.1-5.6 

5.1.2 Experimental Section 

Electrochemistry and Electrogenerated Chemiluminescence 

Characterization. For annihilation ECL studies, approximately 2 mg of compound, 5.1-

5.6, was added to a pyrex electrochemical cell with a flat Pyrex window at the bottom for 

detection of generated ECL. A 2 mm diameter Pt disc inlaid in a glass sheath were used 
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as the working electrode (WE), a coiled Pt wire as the counter electrode (CE), and a 

coiled Ag wire as the quasi reference electrode (RE), respectively. Routine cleaning 

procedures for the electrodes and cell were reported elsewhere.25,54,55 For detailed 

electrochemical workstation and ECL setup information, please refer to our previous 

publications.25,54,55 The cell contained 0.1 M tetrabutylammonium hexafluorophosphate 

(TBAPF6) supporting electrolyte in anhydrous acetonitrile (3 mL) that was assembled in 

a dry box. 

The cyclic voltammetry (CV) was conducted on a CHI 610A electrochemical 

analyzer (CH Instruments, Austin, TX). The experimental parameters for the cyclic 

voltammograms (CVs) are listed here: 0.00 V initial potential in experimental scale, 

positive or negative initial scan polarity, 0.1 V/s scan rate, 4 sweep segments, 0.001 V 

sample interval, 2 s quiet time, 1-5 × 10-5 AV-1 sensitivity. Potentials (V) were calibrated 

using an internal standard Fc/Fc+ redox couple after each experiment, and are reported vs. 

a SCE standard electrode (0.40 V in ACN).56 

The ECL data along with CV data were obtained using the CHI 610A coupled 

with a photomultiplier tube (PMT, R928, Hamamatsu, Japan) held at -750 V with a high 

voltage power supply. The ECL collected by the PMT under the flat Pyrex window at the 

bottom of the cell was measured as a photocurrent, and transformed to a voltage signal, 

using a picoammeter/voltage source (Keithley 6487, Cleveland, OH). The potential, 

current signals from the electrochemical workstation, and the photocurrent signal from 

the picoammeter were sent simultaneously through a DAQ board (DAQ 6052E, National 

Instruments, Austin, TX) in a computer. The data acquisition system was controlled from 

a custom-made LabVIEW program (ECL_PMT610a.vi, National Instruments, Austin, 

TX). The photosensitivity on the picoammeter was set manually in order to avoid the 

saturation. 

The ECL spectra were obtained by replacing the PMT with a spectrometer 

(Cornerstone 260, Newport, Canada) attached to a CCD camera (Model DV420-BV, 

Andor Technology, Belfast, UK). The camera was cooled to -55 °C prior to use and 
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controlled by a computer for operation and data acquisition. The intensities versus 

wavelengths (spectra) were recorded by Andor Technology program. 

For the spooling experiments, the same spectrometer and CCD camera were used 

and the following parameters were employed in the Andor Technology program under 

the kinetic parameters option tab: for 5.4: exposure time = 1 s, number of accumulations 

= 1, kinetic series length = 175 s (matching with the potential scan time for two complete 

cycles), kinetic cycle time = 1, and the spectrometer was centered at 500 nm using the 

121.6 l/mm grating, with the camera cooled to -55 °C. On the CHI 610A electrochemical 

analyzer, the initial potential was set to 0.00 V, high potential = 2.44 V, low potential = - 

2.34 V, sensitivity = 1 × 10−5 AV−1, initial scan polarity = negative, scan rate = 0.1 V/s 
 

sweep segments = 4, sample interval = 0.001 V, quiet time 2 s. Simultaneously, the CHI 

610A electrochemical analyzer and the Andor Technology program were run and the CV 

and spooling spectra were collected; for 5.6: exposure time = 1 s, number of 

accumulations = 1, kinetic series length = 155 s (matching with the potential scan time 

for two complete cycles), kinetic cycle time = 1, and the spectrometer was centered at 

600 nm using the 121.6 l/mm grating, with the camera cooled to -55 °C. On the CHI 

610A electrochemical analyzer, the initial potential was set to 0.00 V, high potential = 

2.20 V, low potential = - 2.00 V, sensitivity = 1 × 10−5 AV−1, initial scan polarity = 

negative, scan rate = 0.1 V/s 
 
sweep segments = 4, sample interval = 0.001 V, quiet time 

2 s. Simultaneously, the CHI 610A electrochemical analyzer and the Andor Technology 

program were run and the CV and spooling spectra were collected. 

ECL quantum efficiencies (QE) were calculated relative to [Ru(bpy)3](PF6)2 

taken as 100 % in acetonitrile solution (absolute quantum ECL efficiency of [Ru(bpy)3]2+ 

is 5.0 %57,58) by integrating both the ECL intensity and current value versus time for each 

compound,  see Eq. 2.1 in Chapter 2. 
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5.1.3 Results and Discussion 

 

Figure 5.1. CVs (red) with ECL-voltage curves (green) overlaid of a) 5.1, b) 5.2, c) 5.3, 

d) 5.4, e) 5.5, and f) 5.6, first oxidation and reduction potential profile with a scan rate of 

0.1 V/s. 

The electrochemical properties were investigated by cyclic voltammetry in ACN 

and results are summarized in Table 5.1.  All electrochemical processes are either quasi-

reversible or reversible at a 0.1 V/s scan rate. The oxidation is assigned to a largely 

iridium-centered event wherein the potential is modulated by the nature of the C^N 

ligands while the reduction is localized on the N^N ancillary ligand (dtBubpy and 

dmabpy at ca. -1.46 and -1.78 V, respectively). For instance, 5.2 underwent a quasi-

reversible oxidation at 1.42 V and a reversible reduction at -1.82 V, Figure 5.1. Both of 

these potentials are significantly cathodically shifted compared to those of 5.1 due to the 

presence of the strongly electron-donating dmabpy ligand. 
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Table 5.1. Electrochemical and ECL data for 5.1-5.6. 

 E½,ox (V)a  

[∆Ep (mV)] 

∆Eredox 

(V) 

E½,red (V)  

[∆Ep (mV)] 

ΦECL
b

 

(%) 

ECL λmax 

(nm) 

5.1c 1.61 (100) 3.10 -1.49 (67) 17 510 

5.2d 1.42 (72) 3.24 -1.82 (67) 32 536 

5.3e 1.51 (98) 2.94 -1.42 (74) 21 533 

5.4 1.35 (70) 3.12 -1.77 (63) 32 510 

5.5 1.50 (70) 2.97 -1.47 (62) 17 519 

5.6 1.36 (62) 3.14 -1.78 (63) 38 527 

aMeasured in ACN (ca. 1.5 mM) with NBu4PF6 (ca. 0.1 M) as the supporting electrolyte 

at a scan rate of 0.1 V/s.  Potentials (V) are calibrated using Fc/Fc+ and are reported vs. 

SCE.  

bAnnihilation ECL efficiencies are relative to [Ru(bpy)3](PF6)2 taken as 100 % in ACN 

(ΦECL of [Ru(bpy)3]2+ is 5.0 %)59,60.  

cECL data taken from ref 25.  

dCV data taken from ref 61. 

eCV data taken from ref 46. 

The CV profiles for 5.4 and 5.6 are similar to that for 5.2 but shows reduced 

destabilization of both the oxidation and reduction reactions.  We had previously shown 

that triazoles destabilize HOMO/LUMO orbitals compared to ppy-type analogs.46 The 

combined effect of atl and dmabpy is a further 300 mV increase in the HOMO-LUMO 

gap for 5.2 compared to 5.3. The electrochemical gap of 3.24 V for 5.2 is larger than that 

recently reported for [(dFppz)2Ir(dmabpy)]PF6 at 3.19 V.62 For further comparison, the 

first oxidation and reduction waves for previously reported 5.6 occur at 1.36 and -1.78 V, 
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respectively, correlating well with those measured for 5.4. Thus, the inclusion of the 

methyl group does not appreciably affect the electrochemical gap. 

ECL is light emission from excited states produced by electron transfer between 

radical anions and cations generated electrochemically in the vicinity of the working 

electrode during potential scanning/cycling along electrochemical measurements. 

Moderately strong ECL emissions from all the six complexes were observed during 

dynamic potential scanning, green curves in Figure 5.1, in the regions of first oxidation 

and reduction reactions. All the ECL-voltage curves show light emissions in the anodic 

regions, illustrating higher stability of radical anions than that of radical cations. 

ECL annihilation efficiencies were evaluated when the applied potential was 

scanned between the first reduction and oxidation peak potentials, Table 5.1. Complexes 

5.2 and 5.4 and 5.6 generated modestly high ECL signals compared to 5.125 once the 

radical anions and radical cations combined to generate the excited species, Figure 5.1. In 

fact, each of 5.1, 5.3 and 5.5 exhibited reduced ECL efficiencies, due to the presence of 

the two t-butyl groups on the bipyridine. The ΦECL, based on two cycles, for 5.4, 32 % is 

identical to that of 5.2, 32 %, while that of 5.6 shows higher ECL efficiency of 38 %. The 

electron-donating property does play an important role in ECL characteristics. Each of 

the complexes follows the same annihilation ECL mechanism as we previously 

determined for 5.1,25 where triplet excited species can be generated directly from the 

radicals without passing by the singlet excitons. 

The ECL spectra are generally red-shifted with respect to the photoluminescent 

spectrum due to the higher concentrations required during ECL acquisition and are broad 

and unstructured, Table 5.1.63 While a slight 337 cm-1 red-shift in the unstructured ECL 

spectrum for 5.2 compared to 5.1 was observed, 5.4 gives a maximum λECL = 510 nm, 

making it, to the best of our knowledge, amongst the bluest ECL-active phosphors 

known, Figure S5.1 in Appendix IV.24 
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Figure 5.2. a) CV of 5.4 with ECL-voltage curve overlaid with a potential profile ranging 

between -2.34 to 2.44 V, b) ECL spooling spectra of 5.4 during first potential scanning 

cycle in the range of -2.34 to 2.44 V and at a scan rate of 0.1 V/s (each spectrum was 

acquired with a time interval of 1 s), showing evolution of three wavelengths: i) initial 

ECL onset, 535 nm at 1.24 V (pink), ii) 582 nm at 1.94 V (purple), iii) 610 nm at 2.44 V 

(green), and showing devolution of one wavelength: iv) 610 nm at 2.34 V. The inset 

displays ECL onset with a peak wavelength of 574 nm at -2.14 V (orange) in the second 

potential scanning cycle. 

When the potential window was extended to include the second and third 

oxidations of 5.4, Figure 5.2, and 5.6, Figure 5.3, a large enhancement in ECL was 

observed. A similar trend was previously reported for 5.2.61 Initially for 5.4, the Ir center 

is oxidized and onset of ECL is observed at 1.24 V, reaching a maximum of 

approximately 110 nA of ECL at 1.44 V. Upon scanning to more positive potentials, the 
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two N,N-dimethylamino (dma) groups on the dmabpy ligand, were each oxidized over a 

range from 1.94 to 2.44 V. The oxidation of the dma substituents is similar to the tri-n-

propylamine (TPrA) mechanism, however, this route is a self-coreactant pathway because 

the dma groups are part of the complex’s design and not added to the solution as a typical 

co-reactant. When scanning to 1.94 V, ECL was increased to 580 nA because of the 

oxidation of the first dma group and ECL enhancement occurs through recruitment of the 

generated radicals via the self-coreactant pathway. Increasing the potential to 2.44 V 

results in the oxidation of the second dma substituent and results in a significant 

enhancement in ECL, 7880 nA. The ECL relative self-coreactant efficiencies, ΦECL, 

(based on one cycle), were higher when the potential window was extended and the dma 

substituents on the dmabpy ligand were both oxidized. There was increase in efficiency 

for 5.4, 129 %, and an even more dramatic enhancement for 5.6, 538 %. Notably, subtle 

changes in the structure of the complex, in this case the absence of the methyl group on 

the C^N ligands in 5.6, confers a large increase in ECL efficiency. 5.6 has a similar 

relative efficiency to 5.2, 550 %, however, the structure of the coordinating moiety of the 

C^N ligands differs between the pyridine in 5.6 and the N-benzyl triazole in 5.2, thus 

making 5.2 more efficient. 

In order to track the emission mechanisms with the extended potential window, 

ECL spooling spectra were collected at a time interval of 1 s with an applied potential 

scanning rate of 0.1 V/s for two complete cycles as in Figure 5.3a (the potential was 

scanned from 0.00 V to -2.34 V then to positive potential until 2.44 V, then back to 0.00 

V). Figure 5.2b shows the ECL spectra for 5.4 collected for one complete potential 

scanning cycle. A weak emission at 535 nm was observed at 1.24 V. The emission was 

red-shifted to 582 nm at 1.94 V, which is caused by the change from an electron-donating 

dma group to an electron-withdrawing dma+• radical on the dmabpy ligand as we had 

previously concluded.61 The intensity of the emission continued to increase in intensity 

while simultaneously red-shifting to 610 nm during the course of potential scanning to 

2.44 V. The emission intensity began to decrease as the potential moved from 2.44 V 

back towards 0.00 V until it returned to its baseline; however, the emission remained at 

610 nm. 
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The above observations of the self-coreactant ECL routes can be summarized by 

the following four mechanisms involving the generation of an excited species with and 

without the dma groups acting like a TPrA-like self-coreactant. The C^N ligand is 

dFMeppy for 5.4, and dFppy for 5.6, and L1 represents the bpy core of the ancillary 

ligand possessing two dma groups, dma1 and dma2, which together constitute the 

dmabpy ligand, Eqs. 5.1-5.14. 

[(C^N)2Ir(dma1L1dma2)]+ + e– → [(C^N)2Ir(dma1L1dma2)]•    (5.1) 

[(C^N)2Ir(dma1L1dma2)]+ → [(C^N)2Ir(dma1L1dma2)]2+•  + e–   (5.2) 

[(C^N)2Ir(dma1L1dma2)]• + [(C^N)2Ir(dma1L1dma2)]2+• → 

[(C^N)2Ir(dma1L1dma2)]+* + [(C^N)2Ir(dma1L1dma2)]+   (5.3) 

[(C^N)2Ir(dma1L1dma2)]+* → [(C^N)2Ir(dma1L1dma2)]+ + hv1   (5.4) 

[(C^N)2Ir(dma1L1dma2)] 2+• → [(C^N)2Ir(dma1
+•L1dma2)]2+•  + e–   (5.5) 

[(C^N)2Ir(dma1
+•L1dma2)]2+• → [(C^N)2Ir(dma1

•L1dma2)]2+•  + H+  (5.6) 

[(C^N)2Ir(dma1
+•L1dma2)]2+• + [(C^N)2Ir(dma1

•L1dma2)]2+• → 

[(C^N)2Ir(dma1
+•L1dma2)]+* + [(C^N)2Ir(P1L1dma2)]2+•     

where P1 =-(CH3)N+=CH2       (5.7) 

[(C^N)2Ir(dma1
+•L1dma2)]+* → [(C^N)2Ir(dma1

+•L1dma2)]+ + hv2   (5.8) 

[(C^N)2Ir(dma1
+•L1dma2)]2+• + [(C^N)2Ir(dma1L1dma2)]• → 

[(C^N)2Ir(dma1L1dma2)]+* + [(C^N)2Ir(dma1
+•L1dma2)]+   (5.9) 

[(C^N)2Ir(dma1
+•L1dma2)]2+• → [(C^N)2Ir(dma1

+•L1dma2
+•)]2+• + e–  (5.10) 

[(C^N)2Ir(dma1
+•L1dma2

+•)]2+• → [(C^N)2Ir(dma1
•L1dma2

+•)]2+• + H+  (5.11) 
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[(C^N)2Ir(dma1
+•L1dma2

+•)]2+• + [(C^N)2Ir(dma1
•L1dma2

+•)]2+• → 

[(C^N)2Ir(dma1
+•L1dma2

+•)]+* + [(C^N)2Ir(P1L1dma2
+•)]2+•   (5.12) 

[(C^N)2Ir(dma1
+•L1dma2

+•)]+* → [(C^N)2Ir(dma1
+•L1dma2

+•)]+ + hv3   (5.13) 

[(C^N)2Ir(dma1
+•L1dma2

+•)]2+• + [(C^N)2Ir(dma1L1dma2)]• → 

[(C^N)2Ir(dma1
+•L1dma2

+•)]+ + [(C^N)2Ir(dma1L1dma2)]+*   (5.14) 

The structure of 5.4, containing the methylated pyridine fragment within its C^N 

ligand, differs from 5.2, itself containing the triazole within its C^N ligand; however, 

three emissions were observed in both cases when scanning the potential to their 

respective third oxidations, and ECL thus proceeds through similar mechanisms as 

previously reported. Here, for 5.4, the three emissions were observed at 535 nm, Eq. 5.4, 

582 nm, Eq. 5.8, and 610 nm, Eq. 5.13. Interestingly, when the potential was scanned 

towards negative potential in the second cycle, weak ECL emission was seen at -2.14 V, 

after the first reduction of 5.4, which corresponds to a wavelength of 574 nm. This onset 

was due to the presence of small amount of radical cations generated in the first cycle. 

These radicals could react with the radical anion generated at -2.14 V, producing ECL at 

574 nm. 
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Figure 5.3. a) CV of 5.6 with ECL-voltage curve overlaid with a potential profile ranging 

between -2.00 to 2.30 V, b) ECL spooling spectra of 5.6 during first potential scanning 

cycle in the range of -2.00 to 2.30 V and at a scan rate of 0.1 V/s (each spectrum was 

acquired with a time interval of 1 s), showing evolution of four wavelengths: i) initial 

ECL onset, 528 nm at 1.20 V (orange), ii) 559 nm at 1.80 V (green), iii) 576 nm at 1.90 V 

(pink), iv) 605 nm at 2.20 V (dark blue), and showing devolution of three wavelength: iv) 

605 nm at 2.30 V (light blue), v) 581 nm at 1.90 V (red), and vi) 550 nm at 1.70 V (dark 

grey). The inset displays ECL onset with a peak wavelength of 505 nm at -1.70 V 

(purple) in the second potential scanning cycle. 

Structurally, 5.6 differs from 5.4 due to the removal of the methyl substituent on 

the pyridine unit of the C^N ligand. For 5.6, an additional emission was observed 

compared to 5.4 when scanning to its third oxidation, Figure 5.3.  The four emissions 

were seen at 528 nm, Eq. 5.4 via Eq. 5.3 or Eq. 5.9 or Eq. 5.14, 559 nm, 576 nm, Eq. 5.8, 
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and 605 nm, Eq. 5.13, via the spooled spectra, with a similar onset, as described with 5.4. 

Likewise, when the potential was scanned from 0.00 V towards negative potential in the 

second cycle, at -1.70 V an additional ECL emission was observed at 505 nm. The 

emission at 576 nm, 1.90 V, may have been the result of simultaneous detection of the 

emission resulting from generation of excited species following the second oxidation of 

5.6 at 1.80 V, 559 nm, and the third oxidation of 5.6 at 2.00 V, 605 nm. The intensity of 

the emission moving from 1.20 V to 2.20 V continued to increase along with concomitant 

red-shifting of the emission. When the ECL intensity began to decrease, the emission 

started to blue-shift back to 581 nm at 1.90 V and finally to 550 nm at 1.70 V. This shift 

in emission on the devolution, return scan, may be due to the dynamics in the vicinity of 

the electrode. It is important to note that scanning to the complexes first or second 

reductions did not change the peak wavelengths for the ECL emissions. Complexes 5.2, 

5.4, and 5.6, all show similar ECL emissions, even with different C^N ligands, however 

the ECL intensity differs dramatically between 5.4, 8.0 × 103 nA, and 5.6, 2.5 × 104 nA. 

5.1.4 Conclusions 

In summary, two new highly luminescent cationic blue-emitting iridium 

complexes, 5.2 and 5.4, are reported and fully characterized. The redox behavior for the 

six complexes is similar in that each has a quasi-reversible oxidation and reversible 

reduction wave. The presence/absence of the methyl group does not alter the nature of the 

emission. Introduction of the dFphtl shifts the oxidation anodically but the reduction 

cathodically while the incorporation of the electron-donating NMe2 group shifts both the 

oxidation and reduction cathodically, resulting in a large electrochemical gap of 3.24 V 

for 5.2 compared to 3.12 V for 5.4. These complexes are ECL active under annihilation 

conditions, emitting sky-blue to blue-green light.  Complexes bearing dtBubpy N^N 

ligands were less bright than their dmabpy congeners in the ECL spectra.  Upon scanning 

out to 2.50 V, dramatic enhancement in the ECL emission was observed.  The absence of 

the methyl group in 5.6 lead to an enhancement in the ECL signal of 538 % while for 5.4, 

the ECL signal was only enhanced by 129 %. This study illustrates the inherent 

difficulties and challenges in designing i) highly efficient cationic blue emitters and the 

limitations in pushing the emission further to the blue using π-acceptor ancillary ligands; 
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ii) developing highly efficient ECL luminophores. We are nevertheless currently 

evaluating these luminophores both in the solid state for LEEC devices and in solution as 

ECL-based biological probes. 
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5.2 Self-Enhanced Electrochemiluminescence of an 
Iridium(III) Complex: Mechanistic Insight† 

5.2.1 Introduction 

Heteroleptic cationic iridium complexes have been used as alternative 

luminophores to neutral ortho-metallated iridium complexes (e.g., fac-Ir(ppy)3, where 

ppyH is 2-phenylpyridine) for  visual display applications.1,2 Single-layer devices known 

as light-emitting electrochemical cells (LEECs) can now be fabricated, which operate 

through ion diffusion to opposite electrodes thereby enhancing electronic charge injection 

at low operating voltages (the so-called electrodynamic model).3-8 We have synthesized 

several cationic iridium complexes of the form [(C^N)2Ir(N^N)], where C^N is a 

cyclometallating ligand and N^N is a neutral diimine ancillary ligand,9,10 and explored 

their optoelectronic properties. We recently have discovered that iridium(III) complexes 

bearing aryltriazole C^N ligands exhibit bright electrochemiluminescence (or 

electrogenerated chemiluminescence, ECL), with which ECL efficiency is up to four 

times greater than that of [Ru(bpy)3]2+ upon addition of benzoyl peroxide (BPO) as a co-

reactant.11 Development of such highly efficient and stable ECL emitters over a broad 

spectrum of wavelengths, as illustrated by the Bard group for other luminophores,12-15 has 

been anticipated for many years, and might find wide applications such as for DNA 

determination, immunoassay development.16-19 

With the goal of obtaining bright true blue-light emitters, we recently investigated 

the photophysical and ECL properties of ([(dFphtl)2Ir(dmabpy)]+, 5.2, [dFphtl = 1-

benzyl-4-(2,4-difluorophenyl)-1H-1,2,3-triazole; dmabpy =  4,4′-(dimethylamino-2,2′-

bipyridine); Scheme 5.2].
20

 Though not apparent initially, during subsequent 

investigation of the ECL behavior of 5.2, we realized that we could exploit the redox 

chemistry of the two dimethylamino (dma) groups on the bpy ligand of 5.2 and thus 

                                                 
† This work is published in Kalen N. Swanick, Sébastien Ladouceur, Eli Zysman-Colman, and Zhifeng 
Ding, Angew. Chem. Int. Ed., 2012, 51, 11079-11082. Reproduced by permission of John Wiley and Sons. 
See Appendix IV. 



 

 

106 

enhance its ECL efficiency. This prediction was based on ECL studies using tri-n-

propylamine (TPrA) as a co-reactant to enhance the ECL and efficiently generate light in 

organic solvents21-26 though TPrA is the most efficient in generating light with 

luminophores in aqueous media.16,27-30 

The classic form of ECL involves electron transfer between electrochemically 

generated radical ions in solution to produce excited species that emit light.16,17 In recent 

years, the use of TPrA as a co-reactant has been found to be a sensitive technique for 

biological determinations.17 Herein, we report the electrochemistry and ECL of 5.2 in 

comparison with a structurally similar cationic Ir(III) complex, [(dFphtl)2Ir(bpy)]+, 5.7, 

(bpy = 2,2′-bipyridine). For the first time, ECL auto-enhancement was observed, with 

three excited states in the ECL emission of 5.2 deconvoluted by means of our recently 

developed ECL spooling technique. By contrast, 5.7 emitted ECL only at one peak 

wavelength with no enhancement in photocurrent. The ECL of 5.2 was discovered to be 

self-enhanced with the two dma groups acting as co-reactants. It is conceivable that 5.2 

can be modified with anchoring groups that form bonds with lipid, nucleic acids and 

proteins for simplified and enhanced ECL detection in biological applications. 

5.2.2 Experimental Section 

CV and ECL Measurements. A 2 mm diameter Pt disc inlaid in a glass sheath 

was used as the working electrode (WE), a coiled Pt wire as the counter electrode (CE), 

and a coiled Ag wire as the quasi reference electrode (QRE). After each experiment, the 

electrochemical potential window was calibrated using ferrocence (FC) as the internal 

standard. The redox potential of the ferrocene/ferrocenium (Fc/Fc+) couple was taken as 

0.424 V vs. SCE.31 Approximately 2 mg of an Ir complex was added to the 

electrochemical cell with a flat Pyrex window at the bottom for detection of generated 

ECL, containing 0.1 M TBAP (tetrabutylammonium perchlorate) supporting electrolyte 

in anhydrous acetonitrile (3.0 mL) that was assembled in a dry box. 

CV Instrumentation. For detailed electrochemical workstation and ECL setup 

information, please refer to our previous publications.11,18,32 In brief, the cyclic 

voltammetry was conducted on a CHI 610A electrochemical analyzer (CH Instruments, 
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Austin, TX). The experimental parameters for cyclic voltammograms (CVs) are listed 

here: 0.00 V initial potential in experimental scale, positive or negative initial scan 

polarity, 0.1 V/s scan rate, 4 sweep segments, 0.001 V sample interval, 2 s quiet time, 1-5 

× 10−5 AV−1 sensitivity. 

ECL Instrumentation. The ECL-voltage curves were obtained using the CHI 

610A coupled with a photomultiplier tube (PMT, R928, Hamamatsu, Japan) held at -750 

V with a high voltage power supply. The ECL collected by the PMT under the flat Pyrex 

window at the bottom of the cell was measured as a photocurrent, and transformed to a 

voltage signal, using a picoammeter/voltage source (Keithley 6487, Cleveland, OH). The 

potential, current signals from the electrochemical workstation, and the photocurrent 

signal from the picoammeter were sent simultaneously through a DAQ board (DAQ 

6052E, National Instruments, Austin, TX) in a computer. The data acquisition system 

was controlled from a custom-made LabVIEW program (ECL_PMT610a.vi, National 

Instruments, Austin, TX). The photosensitivity on the picoammeter was set manually in 

order to avoid the saturation. 

ECL Accumulated Spectra. The ECL spectra were obtained by replacing the 

PMT with a spectrometer (Cornerstone 260, Newport, Canada) attached to a CCD camera 

(Model DV420-BV, Andor Technology, Belfast, UK). The camera was cooled to -55 °C 

prior to use, and controlled by a computer for operation and data acquisition. The 

intensities versus wavelengths (ECL spectra) were recorded by Andor Technology 

program. Similar to the CV experiments, the samples were scanned between their redox 

potentials. 

ECL Spooling Spectroscopy. For the spooling experiments, the spectrometer and 

camera set was used and the following parameters were used for the Andor Technology 

program under the kinetic parameters option tab: exposure time = 1 s, number of 

accumulations = 1, kinetic series length = 80 s (matching with the potential scan time), 

kinetic cycle time = 1, and the spectrometer was centered at 600 nm using a 150 l/mm 

grating. On the CHI 610A electrochemical analyzer, the initial potential was set to 0.00 

V, appropriate high and low potentials, sensitivity = 1-5 × 10−5 AV−1, initial scan polarity 
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= negative, scan rate = 0.1 V/s, sweep segments = 4, sample interval = 0.001 V, quiet 

time 2 s. Simultaneously, the CHI 610A electrochemical analyzer and the Andor 

Technology program was run and collected the CV and spectra as seen in Figure S5.3, 

Appendix IV. 

5.2.3 Results and Discussion 

 

Scheme 5.2. Iridium(III) complexes [(dFphtl)2Ir(dmabpy)]PF6, 5.2, and  

[(dFphtl)2Ir(bpy)]PF6, 5.7 

Complexes 5.2 and 5.7, Scheme 5.2, similar in structure to other cationic iridium 

complexes that we have investigated,11 show a very good ECL efficiency in acetonitrile 

(ACN) in the annihilation path when the applied potential was scanned in the range 

between their first oxidation and first reduction. The pair of cyclic voltammogram (CV) 

and ECL-voltage curves (in red) of 5.2 in Figure 5.4a demonstrated quasi-reversible 

reduction at -1.82 V, Eq. 5.15, and oxidation at 1.42 V, Eq. 5.16, versus a saturated 

calomel electrode (SCE): 

[(dFphtl)2Ir(dma1bpydma2)]+ + e- → [(dFphtl)2Ir(dma1bpydma2)]•   (5.15) 

[(dFphtl)2Ir(dma1bpydma2)]+ → [(dFphtl)2Ir(dma1bpydma2)]2+• + e-  (5.16) 

where [(dFphtl)2Ir(dma1bpydma2)]+ represents 5.2, with the dmabpy ligand now shown 

as two dma groups attached to bpy. 
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 Complex 5.2 was found to have an ECL efficiency of 34 %, ECL-voltage in red, 

Figure 5.4a, relative to [Ru(bpy)3]2+.11,18,32,33 Importantly, note that ECL was only 

detected after the oxidation reaction, illustrating a higher stability of 

[(dFphtl)2Ir(dma1bpydma2)]•
 than that of [(dFphtl)2Ir(dma1bpydma2)]2+•. While the first 

reduction reaction was localized on the ancillary ligand,20 the oxidation originated mainly 

from Ir as shown by the DFT calculations34. 

 Upon scanning to higher positive voltages, we found that 5.2 underwent three 

further oxidation reactions with peak potentials at 1.75, 1.94 and 2.18 V, respectively, 

CV in green, Figure 5.4a. This can be clearly seen from differential pulsed 

voltammograms (DPVs) of 5.2, Figure S5.2 in Appendix IV. Incredibly, the ECL 

efficiency in the apparent annihilation process was increased to 550 % of that of 

[Ru(bpy)3]2+ when the positive potential was extended to 2.43 V. Light emission was 

enhanced 16 times. The ECL efficiency was estimated to be 200 % and 400 %, 

respectively, if the applied potential stopped right after the second oxidation (voltage at 

vertical purple dashed line, CV curve in green in Figure 5.4a or right after the third 

oxidation reaction (voltage at vertical black dashed line, CV curve in green in Figure 

5.4a. The fourth oxidation reaction appeared not to enhance the ECL efficiency any 

further though the whole green ECL-voltage curve does give a higher ECL efficiency 

because of the annihilation reaction continuing in the diffusion layer. 
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Figure 5.4. Cyclic voltammograms (dotted) overlaid with corresponding ECL-voltage 

curves (solid) in acetonitrile of a) 0.6 mM 5.2 with the applied potential ranges between -

2.10 and 1.60 V (red) and between -2.10 to 2.43 V (green) vs. a saturated calomel 

electrode (SCE), and b), of 0.6 mM 5.7 with the applied potential ranges between -1.80 

and 2.60 V (blue) vs. SCE. The scan rate was at 0.1 V/s. The vertical dashed lines show 

the potentials used for estimation of the ECL efficiencies of 5.2. 

In contrast, 5.7 did not show the second and third extra oxidation peaks after the 

similar increases in scan potentials beyond the first oxidation peak, Figure 5.4b; however, 

5.7 underwent a second oxidation event at a potential shifted 800 mV anodically relative 

to the first oxidation event, a value similar to the potential difference between the first 

and fourth oxidation peaks of 5.2. Through a comparison of the structures of the two 

complexes, it is plausible to assign the second and third oxidation waves to iterative 

oxidation events of the two dma substituents.  The fourth oxidation wave probably 

originated from the oxidation of either the bpy moiety or the C^N ligand. Based on the 

DFT calculations, it is very likely that this oxidation is localized on the triazole ligand. 
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The observed ECL enhancement is then due to the presence of the dma 

substituents on the bpy ligand in 5.2, each acting as a self-co-reactant. The mechanisms 

should be similar to the addition of TPrA to Ru complexes and other luminophores in 

ECL studies.16,21 Without any self-co-reactant present, the ECL for 5.7 decayed after the 

first oxidation, Figure 5.4b. 

 

Figure 5.5. Selected ECL spooling spectra of 0.6 mM 5.2 in acetonitrile when the applied 

potential was scanned between -2.10 and 2.42 V for two cycles at a scan rate of 0.1 V/s, 

see Figure S5.3 in Appendix IV for the two complete cycles.  Each ECL spectrum was 

acquired for 1 s and two scanning cycles took 145 s. a) Perspective view from zoomed-in 

ECL spooling spectra of the 1st cycle of potential scanning. Three emissions from 

different excited specials are color-coded, with apparent peak positions centered at b) 543 

nm (pink), c) 566 nm (purple), and d) 588 nm (green). e) ECL devolution is illustrated by 

the spectra in (deep blue). Three excited states were deconvoluted to peak wavelengths at 

543, 608, and 651 nm, respectively, which were generated in annihilation and co-reactant 

(the two dma groups on the bpy ligand) paths. 

 Figure 5.5a shows a magnified section of ECL spooling spectra of 5.2 acquired in 

the first cycle of the potential scanning between -2.10 and 2.42 V. Two cycle scans over 

145 s at a scan rate of 0.1 V/s were conducted. Each ECL spectrum was acquired for 1 s. 

Please see Figure S5.3 in Appendix IV for the complete spooling spectra for two cycles. 
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 For the first cycle, the scan started at 0.00 V and went to -2.10 V before the scan 

direction was switched towards positive potential. The ECL spectrum at 1.20 V began to 

display a weak wave centered at 543 nm, which is close to the photoluminescence (PL) 

peak wavelength, 495 nm in ACN. The small discrepancy of the ECL and PL 

wavelengths is probably due to self-absorption given the higher concentrations used in 

ECL.35 When the applied potential continued more positive, the ECL wave grew, Figure 

5.5b, and reached a maximum at 1.40 V that is the same as the first maximum potential in 

the ECL-voltage curve, Figure 5.4a. ECL evolution, ECL spectra in pink, Figure 5.5b, in 

this potential range follows the annihilation mechanism shown in Eqs. 5.17 and 5.18: 

[(dFphtl)2Ir(dma1bpydma2)]• + [(dFphtl)2Ir(dma1bpydma2)]2+• → 

[(dFphtl)2Ir(dma1bpydma2)]+* + [(dFphtl)2Ir(dma1bpydma2)]+  (5.17) 

[(dFphtl)2Ir(dma1bpydma2)]+* → [(dFphtl)2Ir(dma1bpydma2)]+ + hν1   (5.18) 

 In the initial scanning from 0.00 to -2.10 V, [(dFphtl)2Ir(dma1bpydma2)]• radicals 

were formed upon reduction right after -1.82 V, Eq. 5.15. The applied potential was 

swept towards positive potentials and [(dFphtl)2Ir(dma1bpydma2)]2+• radical cations were 

generated with an onset potential of 1.20 V, Eq. 5.16. The two radicals combined in the 

vicinity of the electrode to yield the excited state species that is responsible for light 

emission upon relaxation to the ground state, Eqs. 5.17 and 5.18. 

Upon further scanning to more positive potentials, the ECL spectrum showed an 

increase in intensity as depicted in the ECL-voltage curve, green curve in Figure 5.4a. 

More importantly, the apparent ECL peak wavelength was red-shifted as illustrated by 

the purple spectra in Figure 5.5a and Figure 5.5c. As described above for the cyclic 

voltammetry, the two dma groups on the bpy ligand can be oxidized consecutively. 

Immediately after the first oxidation localized on the Ir center, the first dma substituent 

began to lose one electron to generate [(dFphtl)2Ir(dma1
+•bpydma2)]2+•, Eq. 5.19.  The 

[(dFphtl)2Ir(dma1
+•bpydma2)]2+• species could react with the radical generated in the 

cathodic region, Eq. 5.15, to generate the same excited species as in the annihilation path, 
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[(dFphtl)2Ir(dma1bpydma2)]+*, Eq. 5.20. The light emission would follow the same 

process as described by Eq. 5.18. 

[(dFphtl)2Ir(dma1bpydma2)]2+• → [(dFphtl)2Ir(dma1
+•bpydma2)]2+• + e-     (5.19) 

[(dFphtl)2Ir(dma1
+•bpydma2)]2+• + [(dFphtl)2Ir(dma1bpydma2)]• → 

[(dFphtl)2Ir(dma1bpydma2)]+* + [(dFphtl)2Ir(dma1
+•bpydma2)]+  (5.20) 

There is another pathway where the oxidized species generated in Eq. 5.19 might 

deprotonate once to produce [(dFphtl)2Ir(dma1
•bpydma2)]2+•, a strong reducing agent, 

Eq. 5.21. The radical would react with the oxidized complex already present in solution, 

to generate the second excited species [(dFphtl)2Ir(dma1
+•bpydma2)]+*, Eq. 5.22, where 

P1 = -(CH3)N+=CH2. This excited state could emit light at a different wavelength, hv2, 

Eq. 5.23. 

[(dFphtl)2Ir(dma1
+•bpydma2)]2+• → [(dFphtl)2Ir(dma1

•bpydma2)]2+• + H+  (5.21) 

[(dFphtl)2Ir(dma1
+•bpydma2)]2+• + [(dFphtl)2Ir(dma1

•bpydma2)]2+• → 

[(dFphtl)2Ir(dma1
+•bpydma2)]+* + [(dFphtl)2Ir(P1bpydma2)]2+•    (5.22) 

 [(dFphtl)2Ir(dma1
+•bpydma2)]+* → [(dFphtl)2Ir(dma1

+•bpydma2)]+ + hν2   (5.23) 

  Based on this mechanistic proposal, the purple ECL spectra were deconvoluted 

and fitted to two peaks, fixed at 543 nm and the second being fitted to 608 nm, Figures 

S5.4a and S5.4b in Appendix IV. The red-shift of the second peak is due to the switch 

from electron-donating dma group to electron-withdrawing dma+• radical on the bpy. As 

described initially by Nazeeruddin, De Angelis and Grätzel et al.,4,36 the presence of the 

dma-substituents on the bipyridine ligand act to significantly destabilize the lowest 

unoccupied molecular orbitals (LUMO), resulting in a large increase in the HOMO-

LUMO gap (HOMO = highest occupied molecular orbital).  It is conceivable that 

electron-withdrawing dma+• would shrink the gap and produce a red-shifted ECL 

spectrum.  Note that dma+• radical is stabilized by delocalization of the charge throughout 

the entire bpy ligand. 
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 The ECL peak intensity was further enhanced when the scan moved to more 

positive potential, green ECL spectra in Figure 5.5a and Figure 5.5d. This trend 

continued until 2.20 V. In this potential region, the second dma group on the dmabpy 

ligand can be oxidized, becoming a self-co-reactant like the first dma substituent and 

generating one additional excited species. The ECL process follows a similar co-reactant 

mechanism as with dma1, Eq. 5.22, involvement described above. However, now there is 

the generation of the third excited species, [(dFphtl)2Ir(dma1
+•bpydma2

+•)]+*, emitting at 

651 nm, hν3 given in Eq. 5.24: 

[(dFphtl)2Ir(dma1
+•bpydma2

+•)]+* → [(dFphtl)2Ir(dma1
+•bpydma2

+•)]+ + hv3  (5.24) 

 The third ECL peak position was obtained in the same manner through a three-

component deconvolution of the ECL spectra, green in Figure 5.5a and Figure 5.5d, with 

the first two curves now fixed at 543 and 608 nm, respectively, Figure S5.4c in Appendix 

IV. 

 Finally, as the potential continued to increase from 2.21 to 2.42 V then swept 

back to 0.00 V, a decrease in ECL intensity was observed with the apparent ECL 

maximum centered at 568 nm until no emission was observed in the ECL, Figure 5.5e. 

The flat spectra continued until the ECL progression of the second cycle reached around 

1.20 V. The ECL spectra, black in Figure 5.5a and Figure 5.5e, were fitted by curves, 

Figure S5.5a-e in Appendix IV, showing that the three peaks all decreased in intensity as 

the potential moved first from 2.20 V to 2.42 V and then towards negative potentials. 

 Over the second cycle, we observed the evolution of the same three ECL peaks as 

those observed in the first cycle, 543, 608 and 651 nm, indicating a reproducible ECL 

behavior over subsequent potential scan cycles. 

5.2.4 Conclusions 

In summary, for the first time three different emissions were observed during an 

ECL process.  By means of fitting curves, these three emissions in 5.2 were deconvoluted 

from the spooling ECL spectra to be 543, 608, and 651 nm, correlating to three ECL 
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mechanisms: the first being the typical annihilation route17 while the second and third 

involved a self-co-reactant route implicating the oxidation of dmabpy, similar to the 

TPrA co-reactant mechanism.17,21  By contrast, 5.7 only follows the annihilation route 

because of the absence of dma substituents on the bpy. The ECL efficiency for 5.2 

increased from approximately 35 % (annihilation) to 200 % (after the second oxidation) 

to 400 % (after the third oxidation) and finally to 550 % (after the fourth oxidation). 

These ECL efficiencies are the highest reported for iridium complexes. Moreover, this 

dramatic increase in ECL is attributed to the unique architecture of the dmabpy ligand 

acting as a self-co-reactant in 5.2. This may lead to an avenue for greatly simplifying 

ECL detection protocols with integrated co-reactant and luminophore in a single 

molecule, and drastically enhancing detection sensitivity up to 16 times. 
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5.3 Electrochemiluminescence of Heterometallic 
Ruthenium(II)-Iridium(III) Soft Salts† 

5.3.1 Introduction 

Electrochemiluminescence (ECL) is an emerging sensitive tool for analyte 

detection and biological probes.1-6 ECL is emitted through bimolecular recombination of 

radical cations and anions electrochemically generated in solution. Radical species can be 

generated from a single molecular emitter (annihilation mechanism) or through a 

bimolecular set of electrochemical and chemical reactions between the emitter and a 

suitable co-reactant (co-reactant mechanism). The seminal ECL system in fact is based 

on [Ru(bpy)3]2+/tri-n-propylamine (TPrA) co-reactant scheme (bpy = 2,2'-bipyridine).7-10 

Most ECL studies involve single luminophores and thus a unique emission process. The 

search for high-efficiency ECL reagents that can emit over the entire visible spectrum is 

intense and much recent interest has focussed on neutral11-15 and charged16-20 iridium(III) 

mononuclear complexes to address these design challenges. 

Based on the pioneering work by Richter and co-workers,21,22 Hogan et al. 

showed how mixtures of luminophores in the presence of TPrA could be addressed at 

different potentials and thus produce ECL systems with multiple emissive readouts.23,24 

Independently, pursuing “lab-on-a-molecule”25,26 design, Schmittel et al. have 

investigated the ECL behavior of oligonuclear Ir(III)-Ru(II) and Ir(III)-Ru(II)-Ir(III) 

systems with TPrA wherein the metals are electronically isolated but covalently 

attached.27 They demonstrated that in these systems different ECL and photoluminescent 

(PL) behavior exists and that multiple ECL emissions are possible through recombination 

of different radical cationic species with the co-reactant. We illustrated that multiple ECL 

signals could be obtained under self-co-reactant conditions from the same luminophore 

by generating species at different oxidation states.20 Recently, Hogan et al. elegantly 

demonstrated electrochemically-controlled reversible switching between emission from 

                                                 
† This work by Kalen N. Swanick, Martina Sandroni, Zhifeng Ding and Eli Zysman-Colman, 2013, has 
been submitted. 
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two separate luminophores within the same solution for independent emission 

detection.24 

Herein we report for the first time the electrochemistry and ECL of the 

heterometallic soft salt [Ru(dtbubpy)3][Ir(ppy)2(CN)2]2, [Ir][Ru][Ir] that is a 2:1 

stoichiometric mixture of complexes containing a cationic [Ru(dtbubpy)3] and an anionic 

[Ir(ppy)2(CN)2] with strong ion-pairing interaction,28 under both annihilation and co-

reactant conditions. The soft salt is composed of a red-emitting ruthenium(II) cation and a 

blue-emitting iridium(III) anion (dtbubpy = 4,4'-di-t-butyl-2,2'-bipyridine; ppyH = 2-

phenylpyridine). We compare [Ir][Ru][Ir] with reference complexes [Ru(dtbubpy)3]Cl2, 

[Ru]Cl2, and TBA[Ir(ppy)2(CN)2], TBA[Ir], as well as their 1:2 mixture in solution 

(TBA = tetra-n-butylammonium).  Surprisingly, the ECL signal of [Ir][Ru][Ir] reflects 

emission solely from the [Ru] moiety. ECL is probably generated from [Ir]• and [Ru]+• 

annihilation, which therefore reduce the energy required to emit light. A significant 

enhancement in ECL intensity was observed from the soft salt solution, which is further 

enhanced by adding TPrA as a co-reactant. 

5.3.2 Experimental Section 

Synthesis.  TBA[Ir(ppy)2(CN)2], TBA[Ir],29 and [Ru(dtbubpy)3]Cl2, [Ru]Cl2,30 were 

synthesized according to previously reported procedures, and the spectroscopic and MS 

data matched those found in the literature. The synthesis of [Ir][Ru][Ir] was previously 

reported by us.31 X-ray quality crystals were obtained by vapour diffusion of tert-

butylmethyl ether (TBME) in an acetonitrile solution of the salt. These were collected 

and used in the electrochemistry and ECL studies. 

[Ir][Ru][Ir]:  1H NMR (400 MHz, CD3CN, 25 ºC): 9.64 (dm, 4H, J = 5.9 Hz), 8.48 (d, 

6H, J = 1.7 Hz), 7.95 (d, 4H, 8.0 Hz), 7.83 (m, 4H), 7.62 (dd, 4H, J = 8.0 Hz, J = 0.8 Hz), 

7.55 (d, 6H, J = 6.0 Hz), 7.38 (dd, 6H, J = 6.0 Hz, J = 2.0 Hz), 7.21 (m, 4H), 7.78 (m, 

4H), 6.68 (td, 4H, J = 7.4 Hz, J = 1.2 Hz), 6.19 (dm, 4H, J = 7.4 Hz), 1.38 (s, 54H) ppm. 

HR-MS (ESI+): Found m/z = 453.2447; calculated for (C54H72N6Ru), [2]2+ m/z = 

453.2433. HR-MS (ESI-): Found m/z = 553.0972; calculated for (C24H16IrN4), [1]– m/z = 

553.0999. 
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Electrochemical preparation. Cyclic voltammetry (CV), and ECL experiments were 

conducted using a 2 mm diameter Pt disc inlaid in a glass sheath as the working electrode 

(WE), a coiled Pt wire as the counter electrode (CE), and a coiled Pt wire as the quasi 

reference electrode (RE). Electrode cleaning procedures have been previously reported 

else where.32 All solutions for electrochemical and ECL experiments were prepared in the 

electrochemical cell placed inside an N2-filled drybox that possessed little oxygen and 

moisture. The solutions of complexes studied had concentrations of approximately 5.0 × 

10−4 M in anhydrous acetonitrile (Sure/SealTM bottle from Aldrich, Mississauga, ON) 

containing 0.1 M TBAPF6 as supporting electrolyte. The electrodes were immersed in the 

solution and connected by copper wire inserted through the air-tight Teflon cap. The 

assembly was moved out of the drybox to perform electrochemistry and ECL 

experiments. After completion of each experiment, the electrochemical potential window 

was calibrated using ferrocence (Fc) as the internal standard. The redox potential of 

Fc/Fc+ was taken as 0.40 V vs. SCE.33 

Electrochemical instrumentation. The CV was conducted on a CHI 610A 

electrochemical analyzer (CH Instruments, Austin, TX). The experimental parameters for 

CV are listed here: 0.000 V initial potential in experimental scale, positive or negative 

initial scan polarity, 0.1 V/s scan rate, 4 sweep segments, 0.001 V sample interval, 2 s 

quiet time, 1 × 10−5 AV−1 sensitivity. The potential range was adjusted depending on the 

particular complex. 

ECL instrumentation. The ECL cell was specifically designed to have a flat Pyrex 

window at the bottom for detection generated light from the WE and was sealed with an 

air-tight Teflon cap with a rubber O-ring for CV and ECL measurements. The ECL data 

along with CV data were obtained using the CHI 610A coupled with a photomultiplier 

tube (PMT, R928, Hamamatsu, Japan) held at -750 V with a high voltage power supply. 

The ECL collected by the PMT under the flat Pyrex window at the bottom of the cell was 

measured as a photocurrent, and transformed to a voltage signal, using a 

picoammeter/voltage source (Keithley 6487, Cleveland, OH). The potential, current 

signals from the electrochemical workstation, and the photocurrent signal from the 

picoammeter were sent simultaneously through a DAQ board (DAQ 6052E, National 
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Instruments, Austin, TX) in a computer. The data acquisition system was controlled from 

a custom-made LabVIEW program (ECL_PMT610a.vi, National Instruments, Austin, 

TX). The photosensitivity on the picoammeter was set manually in order to avoid the 

saturation.32  

The ECL spectra were obtained by replacing the PMT with a spectrometer 

(Cornerstone 260, Newport, Canada) attached to a CCD camera (Model DV420-BV, 

Andor Technology, Belfast, UK). The camera was cooled to -55 °C prior to use, and 

controlled by a computer for operation and data acquisition. The intensities versus 

wavelengths (spectra) were recorded by Andor Technology program. Similar to the CV 

experiments, the samples were scanned at 0.1 V/s, within each complex’s potential 

window. The exposure time of the spectra was set to the amount of time for two complete 

scans. Vertical lines/spikes observed in the spectra were due to cosmic rays from the 

CCD camera. 

For the spooling ECL spectroscopy, the same spectrometer and CCD camera were 

used and the following parameters were employed in the Andor Technology program 

under the kinetic parameters option tab: for [Ir][Ru][Ir]: exposure time = 1 s, number of 

accumulations = 1, kinetic series length = 165 s (matching with the potential scan time 

for two complete cycles), kinetic cycle time = 1, and the spectrometer was centered at 

600 nm using the 121.6 l/mm grating, with the camera cooled to -55 °C. On the CHI 

610A electrochemical analyzer, the initial potential was set to 0.00 V, high potential = 

1.43 V, low potential = -2.83 V, sensitivity = 1 × 10−5 AV−1, initial scan polarity = 

negative, scan rate = 0.1 V/s 
 
sweep segments = 4, sample interval = 0.001 V, quiet time 

2 s. Simultaneously, the CHI 610A electrochemical analyzer and the Andor Technology 

program were run and the CV and spooling ECL spectra were collected. 

ECL efficiency calculations. ECL quantum efficiencies (QE) were calculated relative to 

[Ru(bpy)3](PF6)2 (the reported absolute ECL efficiency, ΦECL, of [Ru(bpy)3]2+ is 0.05) 

by integrating both the ECL intensity and current value versus time for each compound, 

see Eq. 2.1 in Chapter 2. 
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5.3.3 Results and Discussion 

The electrochemical properties of [Ru]Cl2, TBA[Ir] and the soft salt [Ir][Ru][Ir] 

were assessed in acetonitrile, using TBAPF6 as the supporting electrolyte. The data are 

gathered in Table S5.1 in Appendix IV, and the cyclic voltammograms (CVs) are shown 

in Figure 5.6, together with the corresponding ECL-voltage curves. Similar to 

[Ru(bpy)2]3+,9 red-emitting [Ru]Cl2 exhibits a reversible oxidation at 1.11 V vs. SCE, 

corresponding to the RuII/III couple, and a reversible reduction at -1.45 V, attributed to 

electron injection into the LUMO mostly contributed from the dtbubpy ligands, Figure 

5.6a. The chloride oxidation as that in the case of [Ru(bpy)3]Cl2 
9 was not observed in the 

potential window, indicating that [Ru]Cl2 is easier to be oxidized than Cl-. Green-

emitting TBA[Ir] is characterized by an irreversible oxidation at 0.98 V and a reversible 

reduction at -2.32 V, displaying a much larger electrochemical gap (∆Eredox) than 

[Ru]Cl2, Figure 5.6b. The oxidation process is centered on iridium (t2g) with significant 

contributions from the phenyl rings of the ppy ligands, while the reduction is mainly 

localized on the pyridyl rings. The electrochemical data for these reference compounds 

match those reported the literature.34,35 

The first reduction and oxidation of [Ir][Ru][Ir] show a superposition of partial 

features of the two reference complexes, Figure 5.6c.  The reduction wave corresponds to 

that of [Ru]2+, Figure 5.6a. The oxidation centered on Ir is the first oxidation wave for the 

soft salt, an irreversible process identical to that of TBA[Ir], Figure 5.6b. The ratio of the 

reduction current peak to the oxidation one is 1:2 corresponding to the stoichiometry of 

the salt. 
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Figure 5.6. CVs of a) [Ru]Cl2 (in black), b) TBA[Ir] (in pink), c) [Ir][Ru][Ir] (in 

purple), and d) 1:2 [Ru]Cl2:TBA[Ir] mixture (in blue) in potential ranges between their 

1st reduction and 1st oxidation, along with the corresponding ECL-voltage curves in red 

(a), blue (b), green (c), and orange (d), respectively. Scan rate was at 0.1 V/s. First cycle 

is shown, and arrows indicate the scan direction. ECL spectra are displayed for e) 

[Ru]Cl2, f) TBA[Ir], g) [Ir][Ru][Ir], and h) 1:2 [Ru]Cl2:TBA[Ir] mixture. 

For ECL, typically the [Ru]2+ and [Ir]− complexes produce ECL from their 

electrogenerated radicals [Ru]+• and [Ru]3+•, Figure 5.6a, [Ir]2−• and [Ir]•, Figure 5.6b, 

respectively. The stronger ECL signals in the cathodic region in Figure 5.6a and b for the 

reference complexes point to a greater stability for the [Ir]• species of TBA[Ir] and 

[Ru]3+• species of [Ru]Cl2, despite the greater reversibility observed for the [Ir]2-• species 

of TBA[Ir] and the [Ru]+• species of [Ru]Cl2. Very interestingly, due to communication 

between the [Ru]2+ and [Ir]− ions in the soft salt, ECL was generated via the annihilation 

mechanism involving radicals from both complexes instead of from one species alone, 

Figure 5.6c, in a potential window from 1.16 to –1.48 V. Initially, [Ru]2+ is reduced to its 

radical anion, [Ru]+•, at -1.36 V, Eq. 5.25, and [Ir]− is oxidized to its radical cation, [Ir]•, 

at 1.07 V, Eq. 5.26. The excited species [Ru]2+* is generated, Eq. 5.27, via electron 

transfer from the HOMO of [Ru]+• to the HOMO of [Ir]•, Scheme S5.1, Appendix IV. 

The [Ru]2+* then emits light via relaxation to the ground state, Eq. 5.28. The [Ru]+• was 
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stabilized while the [Ir]• was destabilized in the soft salt, the radical cations appear to be 

less stable than the radical anions: ECL was generated mostly in the anodic region in 

contrast to that from the reference mononuclear complexes. The ECL intensity, 

corresponding to the photons generated, of the [Ir][Ru][Ir] complex is 62 nA compared 

to 45 nA for [Ru]Cl2, an increase of approximately 1.4 times. 

[Ir]−[Ru]2+[Ir]− + e− → [Ir]−[Ru]+•[Ir]−      (5.25) 

[Ir]−[Ru]2+[Ir]− → [Ir]•[Ru]2+[Ir]• + 2e−       (5.26) 

[Ir]−[Ru]+•[Ir]− + [Ir]•[Ru]2+[Ir]• → [Ir]−[Ru]2+*[Ir]− + [Ir]−[Ru]2+[Ir]−   (5.27) 

[Ir]−[Ru]2+*[Ir]− → [Ir]−[Ru]2+[Ir]− + hv1       (5.28) 

The ECL efficiencies of [Ru]Cl2 and TBA[Ir] were 2.14 %, and 2.83 %, while 

the [Ir][Ru][Ir] soft salt was determined to be 2.51 %. Thus, there was no significant 

ECL efficiency enhancement for the soft salt relative to the reference complexes in this 

potential region. 

The ECL emission spectra were acquired during potential scanning for the three 

complexes, Figure 5.6e to Figure 5.6h. The heterometallic soft salt shows an ECL peak 

wavelength at 634 nm, Figure 5.6g, while mononuclear parent complexes display ECL 

peak wavelengths at 638 nm for [Ru]Cl2, Figure 5.6e, and 517 nm for TBA[Ir], Figure 

5.6f. The ECL spectrum of [Ru]Cl2 correlates well with the 298 K photoluminescence 

(PL) spectrum in acetonitrile solution, λem = 630 nm. By contrast, the ECL emission of 

TBA[Ir] is red shifted with respect to the PL spectrum in acetonitrile, structured, with 

main λem peaks at 477 and 506 nm, which is due to the higher concentration required 

during the ECL experiments, internal filter effect (self-absorption) and instrument 

effects.36 Finally, the ECL of [Ir][Ru][Ir] is characterized by pure [Ru]2+ emission, 

indicating that [Ru]2+* is the only excited species formed during the electrochemical 

process. These observations corroborate our proposed ECL mechanisms for the soft salt. 

Electrochemistry and ECL of a solution containing 1:2 [Ru]Cl2:TBA[Ir] mixture 

of the reference complexes were also carried out in the same potential range as the soft 
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salt, Figure 5.6d. While the CVs of the soft salt and the mixture are similar, there is a 

large discrepancy in the ECL-voltage curves: the light emission of the mixture follows 

the same cathodic emission pattern as their reference complexes instead of anodic ECL 

found in the soft salt. As well, the maximum ECL intensity reached only 56 nA, Figure 

5.6d, with a relative efficiency of 4.37 % compared to 62 nA for [Ir][Ru][Ir], Figure 

5.6c. The ECL peak wavelength of 635 nm for the mixture, Figure 5.6h, matches that of 

[Ir][Ru][Ir], Figure 5.6g. 

 

Figure 5.7. a) CV (in purple) with ECL-voltage curve overlaid (in green) of [Ir][Ru][Ir]; 

b) CV (in pink) with ECL-voltage curve overlaid (in orange) of 1:2 [Ru]Cl2:TBA[Ir] 

mixture solution. Both are shown with an extended potential window. The scan rate was 

0.1 V/s. 

Extending the potential more positive, Figure 5.7a, the soft salt undergoes a 

second irreversible oxidation, to generate [Ru]3+•, Eq. 5.29, centred on Ru at 1.48 V, 

which is very similar to that for the oxidation of [Ru]2+ in [Ru]Cl2, Figure 5.6a. The 

oxidation wave of the Ir moiety was not well resolved due to simultaneous oxidation of 

the two Ir moieties. However, the two consecutive oxidation current peak heights of the 

two Ir anions and the Ru cation demonstrate the 2:1 ratio corresponding to the 

stoichiometry of [Ir][Ru][Ir]. More interestingly, upon scanning to further negative 
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potentials, Figure 5.7a, additional reduction waves were observed. The second and third 

reduction peaks, Eqs. 5.30 and 5.31, possess similar current heights as the first, Eq. 5.25, 

which are attributed to further reduction reactions centered on the dtbubpy ligands on 

[Ru]2+ by comparison with the literature data.30 

Scanning to further cathodic potentials reveals two successive reduction reactions 

of the ppy ligands on both [Ir]-
 anions.  When [Ir]− was reduced to [Ir]2−•, Eq. 5.32, the 

electrochemical current was more than 4 times higher than that for the first reduction of 

the [Ru]2+ moiety. The generated [Ir]2−• moiety can reduce [Ru]2+ in the bulk, to 

regenerate the [Ir]− species, Eq. 5.33, a catalytic effect. Furthermore, there is almost no 

such catalytic enhancement on the second reduction of the [Ir]− anions, Eq. 5.34. 

[Ir]•[Ru]2+[Ir•] → [Ir]•[Ru]3+•[Ir]• + e−       (5.29) 

[Ir]−[Ru]+•[Ir]− + e− → [Ir]−[Ru]•[Ir]−       (5.30) 

[Ir]−[Ru]•[Ir]− + e− → [Ir]−[Ru]−•[Ir]−       (5.31) 

[Ir]−[Ru]−•[Ir]− + 2e− → [Ir]2−•[Ru]−•[Ir]2−•      (5.32) 

[Ir]2−•[Ru]−•[Ir]2−•
 + 2[Ir]−[Ru]2+[Ir]−

 → [Ir]−[Ru]−•[Ir]−
 + 2[Ir]−[Ru]+•[Ir]−  (5.33) 

[Ir]2−•[Ru]−•[Ir]2−• + 2e− → [Ir]3−•[Ru]−•[Ir]3−•      (5.34) 

The ECL-voltage curve in a potential window between 1.48 and –2.79 V in 

Figure 5.7a demonstrates a dramatic enhancement in ECL intensity in the annihilation 

path upon generation of [Ru]2+*. The strong ECL peak reached a maximum intensity of 

1118 nA. The enhancement in ECL intensity increased approximately 18x in Figure 5.7a 

compared to Figure 5.6c. Here, the efficiency increased from 2.51 % to 7.21 %, an 

increase in efficiency of about 3x. It appears that only the [Ru]2+* excited species in this 

situation can be generated, emitting light via pathways similar to that expressed by Eqs. 

5.27 and 5.28. 
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In comparison, the CV of the 1:2 [Ru]Cl2:TBA[Ir] mixture solution, Figure 5.7b, 

in this potential range displays the sum of those for the two individual complexes, 

[Ru]Cl2, Figure 5.6a, and TBA[Ir], Figure 5.6b. There is no catalytic current 

enhancement in the CV, however ECL was now mostly generated in the anodic potential 

region compared to Figure 5.6d, where ECL was only generated in the cathodic region. 

The potential window must be extended to greater positive potential in order to 

observe any enhancement with the mixed solution. The maximum ECL, upon oxidation 

of [Ir]−, was enhanced much less than the soft salt, with an ECL intensity of 414 nA. The 

second ECL peak, as observed in the soft salt, around 1.28 V, Figure 5.7a, does not 

appear in the 1:2 [Ru]Cl2:TBA[Ir] mixed solution at the same potential. The relative 

efficiency of the mixed solution was 3.96 %, lower than the soft salt. 

 

Figure 5.8. Spooling ECL spectra of [Ir][Ru][Ir] soft salt, first cycle shown, with an 

extended potential window between 1.43 V and -2.83 V, t = 165 s for two cycles. Left 

inset shows the onset ECL spectra while the right inset illustrates the fitting of ECL 

spectra to one peak at 634 nm when the potential was 0.95 V. The applied voltage 

interval for the ECL spectra is 100 mV. 
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Spooling ECL spectra20,33 in the extended potential window were recorded for 

165 s at an interval of 1 s, Figure 5.8, for one complete cycle, see Figure S5.7 in 

Appendix IV, for two complete cycles. Only one peak wavelength at 634 nm was 

observed during the ECL evolution and devolution. These spectra clearly exclude the 

possibility that [Ir]−* excited species was generated, and the second ECL peak in Figure 

5.7a was also due to the generation of [Ru]2+*. Furthermore, the ECL enhancement might 

be due to the increase concentration of [Ru]+• moiety caused by the catalytic 

electrochemical reaction observed in the CV in Figure 5.7, Eq. 5.33. Finally, spooling 

ECL spectra of the 1:2 [Ru]Cl2:TBA[Ir] mixture also shows the consistent ECL peak 

wavelength at 634 nm from [Ru]2+*, Figure S5.8, Appendix IV.  Again, the ECL intensity 

was weaker than that from the soft salt. 

 

Figure 5.9. CV (in purple) overlaid with ECL-voltage curve (in green) of [Ir][Ru][Ir] 

soft salt with 0.02 M TPrA co-reactant, between 0.00 V to 1.52 V, scan rate was 0.1 V/s, 

first cycle shown. 

The soft salt solution containing 20 mM TPrA co-reactant was scanned anodically 

with a potential window between 0.00 V and 1.52 V, Figure 5.9. TPrA underwent 

oxidation reaction beginning at 0.48 V, at which the ECL onset was observed. ECL 
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showed a maximum of 140 nA at this potential. In this potential region, neither complex 

moiety is yet oxidized. 

The ECL generation followed the mechanism proposed for [Ru(bpy)3]2+/TPrA co-

reactant system in the same situation reported by Miao et al.,8 involving the TPrA• cation 

radicals as the main driving force, Eqs. 5.35 and 5.36; i.e. TPrA was oxidized to TPrA+•, 

Eq. 5.35, then rapidly deprotonated to generate the TPrA• radical, Eq. 5.36. The TPrA• 

radical donated an electron to the LUMO of the [Ru]2+ moiety, generating the [Ru]+• 

species, Eq. 5.37. At this time, the TPrA+• radical then removed an electron from the 

HOMO of [Ru]+• moiety, Eq. 5.38. Thus, [Ru]2+* is generated that will emit light when 

radiatively relaxing to the ground state, Eq.  5.28. 

As the potential was scanned more positive, TPrA continued to oxidize and 

reached a peak at 0.90 V,37 at which ECL intensity rose to a maximum of 1430 nA. ECL 

continued to increase from that point while the rising slope decreased. Here, TPrA in the 

vicinity of the electrode was depleted and therefore the TPrA• concentration decreased. 

While [Ir]- oxidation to [Ir]• in the soft salt was initiated and reached a peak at 1.04 V, 

TPrA•, with a reduction potential of -1.70 V vs. SCE,37 does not have a sufficiently 

negative potential to reduce [Ir]− to [Ir]2−• with its reduction potential of -2.33 V, Figure 

5.7a. Again, no [Ir]−• excited state should be generated. 

Finally, once the [Ru]2+ moiety was oxidized around 1.49 V, an enhancement of 

ECL intensity up to 4800 nA was observed. No reverse oxidation wave was observed, 

demonstrated by the instability of TPrA+• due to a fast deprotonation process, as 

described by Lai and Bard.37 The addition of TPrA as co-reactant to the [Ir][Ru][Ir] soft 

salt enhanced the amount of ECL intensity ca. 4x compared to that in annihilation of the 

soft salt, from 1118 nA, Figure 5.7a, to 4800 nA, Figure 5.9. 

TPrA → TPrA+• + e−         (5.35) 

TPrA+• → TPrA• + H+         (5.36) 

[Ir]−[Ru]2+[Ir]− + TPrA• → [Ir] −[Ru]+•[Ir]− + Pr2N+C=HCH2CH3   (5.37) 
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[Ir] −[Ru]+•[Ir]− + TPrA+• → [Ir]−[Ru]2+*[Ir]− + TPrA     (5.38) 

[Ir]•[Ru]3+•[Ir]• + TPrA• → [Ir]•[Ru]2+*[Ir]• + Pr2N+C=HCH2CH3   (5.39) 

Here, the [Ru]2+ species is oxidized to generate [Ru]3+•, Eq. 5.27. The strong 

reducing agent, TPrA•, Eq. 5.34, donates an electron to the LUMO of the [Ru]3+• species, 

Eq. 5.39. This generates the [Ru]2+* excited species that emits light. Although the 

intensity of ECL was 4x higher using TPrA as co-reactant compared to the intensity via 

annihilation. However, the relative ECL efficiency was determined to be 2.67 % 

compared to 7.21 % from annihilation scanning since the consumption of the electrons 

went even higher. 

 

Figure 5.10. ECL spooling spectra of [Ir][Ru][Ir] soft salt with 0.02 M TPrA coreactant 

between 0.00 V to 1.52 V, applied voltage interval for the ECL spectra is 100 mV. Insets 

show ECL evolution (in pink) and devolution (in purple). 
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Consistent with the above ECL experiments, no [Ir]-* was observed from spooling 

ECL spectra, Figure 5.10, one complete cycle, see Figure S5.9 in Appendix IV for two 

complete cycles. The spooling spectra showed constant evolution and devolution of peak 

at 634 nm. This confirms that the [Ru]2+* excited species is the only species that emits 

light via annihilation or co-reactant studies. 

5.3.4 Conclusions 

We have shown the contributions from the [Ru]2+ and [Ir]− moieties in the 

[Ir][Ru][Ir] soft salt to the ECL generation during electrochemical reactions. It is 

plausible that the two moieties in the soft salt can reduce the energy required to produce 

ECL in the annihilation path, from 2.56 and 3.30 eV for [Ru]2+ and [Ir]-, respectively, to 

2.42 eV for the soft salt (Table S5.1 in Appendix IV). Spooling ECL spectroscopy has 

proven the light emission mechanisms. While the ECL peak wavelength in the 

annihilation path is consistent at 634 nm due to the [Ru]2+* excited species, ECL intensity 

is enhanced 18 times in an extended potential window. In the co-reactant route with 

TPrA, the ECL intensity was 4x larger than that in the annihilation path. Nevertheless, in 

both routes, no ECL signal was generated from [Ir]-* moieties due to the electrocatalytic 

reduction of [Ru]2+ by [Ir]2-•, and insufficient reduction power of TPrA• to generate [Ir]2-•. 
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Chapter 6  

6 Sensitive Detection of Au25 Clusters by 
Electrochemiluminescence 

6.1 Interrogating Near-Infrared Electrogenerated 
Chemiluminescence of Au25(SC2H4Ph)18

+ Clusters† 

6.1.1 Introduction 

The optical properties of nanostructures such as silicon nanocrystals (NCs),1 

carbon quantum dots,2-4 and gold nanoparticles (NPs),5 are attractive to many researchers 

because of their potential applications.6-9 Among a variety of gold NPs, Au25L18 clusters 

have been the focus of recent investigations due to their molecule-like, 1.1 nm in 

diameter, behavior, monodispersed synthesis protocols,10,11 and unique optical,12-18 

electrochemical,19,20 and structural portfolio.21-23 A Au25 cluster consists of an icosahedral 

Au13 core and six semi-rings containing -Au-S-Au-S-.18,24,25 Murray et al.5 and Jin et 

al.26,27 have pioneered studies exploring the various properties of Au25, for instance, 

observing the difference in photoluminescence (PL) by changing the combination of 

protecting ligands and electropositivity.28 These studies show that the origins of the 

clusters’ optical properties are dependent on the charge and protecting ligand’s 

functionalities.26 Zhu et al. and Chen et al. demonstrated that Au clusters protected by 

bovine serum albumin (BSA) can also be utilized in analytical detection methods based 

on spectroscopic properties of the Au-BSA cluster.29,30 Of the stable charged states of 

Au25L18
z (z = -1, 0 and +1), the -1 form is the most studied, although recent synthetic 

protocols have allowed the isolation and investigation of the 0 and +1 states. The 

different charged states induce various properties on the gold clusters that have been 

probed by 1H NMR,31,32 PL,26 and electron paramagnetic resonance spectroscopy.33 

                                                 
† This work is reprinted with permission from Kalen N. Swanick, Mahdi Hesari, Mark S. Workentin and 
Zhifeng Ding, J. Am. Chem. Soc., 2012, 134, 15205-15208. Copyright 2012 American Chemical Society 
(ACS). See Appendix V. 
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Electrogenerated chemiluminescence (ECL) is the process in which 

electrogenerated radicals form excited species emitting light without the need for an 

external light source.34-36 Advantages of ECL include simultaneous generation of radical 

cations and anions and the control of electrode potentials that drive light emission 

processes. ECL has great potential in biological applications such as detection in 

immunoassays, food and water testing, trace metal determination, sensors, and 

biomolecules.34-36 Our motivation is to explore ECL of various compounds3,4,37-39 towards 

applications in biosensors and bioanalytical chemistry. 

Herein, we report the ECL of Au25 in the near-infrared (NIR) region by means of 

spooling spectroscopy to gain insight into ECL mechanisms during potentiodynamic 

processes. Previously, ECL studies of Au25 clusters have been conducted in aqueous 

solution and resulted in very weak ECL only in the visible region.29,30 Generating NIR-

ECL light is especially important for bioimaging applications, but there are few reports 

on NIR-ECL40,41 and no reports on NIR-ECL of Au clusters. Furthermore, the fact that 

Au25 clusters have at least three excited states corresponding to their oxidation states 

gives an unique opportunity to interrogate spectroelectrochemical properties correlating 

to their structures.31-33,42,43 For the first time, NIR-ECL of the Au25 has been observed, 

and mechanisms for the NIR emission have been explored. The correlation of the Au25
+ 

structure, revealed by DFT calculation in literature, the electrochemistry, UV-visible and 

PL spectroscopy to the ECL emission processes is presented. 

6.1.2 Experimental Section 

A 2 mm diameter Pt disc inlaid in a glass sheath was used as the working 

electrode (WE), a coiled Pt wire as the counter electrode (CE), and a coiled Pt wire as the 

quasi reference electrode (QRE). Ag wire as the QRE was found to react with the Au 

clusters during electrochemistry processes. After each experiment, the electrochemical 

potential window was calibrated using ferrocene (Fc) as the internal standard. The redox 

potential of the ferrocene/ferrocenium (Fc/Fc+) couple was taken as 0.424 V vs. SCE.44 

For annihilation ECL studies, approximately 2 mg of Au25(SC2H4Ph)18
+ clusters 

was added to the electrochemical cell with a flat Pyrex window at the bottom for 
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detection of generated ECL, containing 0.1 M TBAP, tetrabutylammonium perchlorate, 

Fluka, 99 %, supporting electrolyte in anhydrous acetonitrile, 1.5 mL, Sigma-Aldrich, 

99.8 %, and anhydrous benzene, 1.5 mL, Sigma-Aldrich, 99.8 %, that was assembled in a 

glove box. For co-reactant studies, 5.0 × 10-3 M BPO, benzoyl peroxide, Sigma-Aldrich, 

Luperox® A98, 98 %, was added to the annihilation solution and assembled in a dry box. 

For detailed electrochemical workstation and ECL setup information, please refer 

to our previous publications.37-39 In brief, the cyclic voltammetry was conducted on a 

CHI 610A electrochemical analyzer (CH Instruments, Austin, TX). The experimental 

parameters for cyclic voltammograms (CVs) are listed here: 0.00 V initial potential in 

experimental scale, positive or negative initial scan polarity, 0.1 V/s scan rate, 4 sweep 

segments, 0.001 V sample interval, 2 s quiet time, 1-5 × 10-5 A/V sensitivity. 

The ECL-voltage curves were obtained using the CHI 610A coupled with a 

photomultiplier tube, PMT, R928, Hamamatsu, Japan, held at -750 V with a high voltage 

power supply. The ECL collected by the PMT under the flat Pyrex window at the bottom 

of the cell was measured as a photocurrent, and transformed to a voltage signal, using a 

picoammeter/voltage source, Keithley 6487, Cleveland, OH. The potential, current 

signals from the electrochemical workstation, and the photocurrent signal from the 

picoammeter were sent simultaneously through a DAQ board, DAQ 6052E, National 

Instruments, Austin, TX, in a computer. The data acquisition system was controlled from 

a custom-made LabVIEW program, ECL_PMT610a.vi, National Instruments, Austin, 

TX. The photosensitivity on the picoammeter was set manually in order to avoid the 

saturation. 

The intensities versus wavelengths, ECL spectra, were recorded by Andor 

Technology program. Similar to the CV experiments, the samples were scanned between 

their redox potentials. Since the ECL is in NIR region, ECL spectroscopy was conducted 

on an Acton 2300i spectrograph with two gratings, 50 l/mm blazed at 600 nm and 300 

l/mm blazed at 700 nm, and an Andor iDUS CCD camera, Model DU401-BR-DD-352. 

Response curves of the two CCD cameras, red for BR-DD and green for BV, are shown 

in Figure S6.7 in Appendix V. 
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For the spooling experiments, the NIR set was used and the following parameters 

were employed for the Andor Technology program under the kinetic parameters option 

tab: exposure time = 1 s, number of accumulations = 1, kinetic series length = 80 s, 

matching with the potential scan time, kinetic cycle time = 1, and the spectrometer was 

centered at 700 nm using the 50 l/mm grating. On the CHI 610A electrochemical 

analyzer, the initial potential was set to 0.30 V, high potential = 0.30 V, low potential = -

2.20 V, sensitivity = 1-5 × 10−5 A/V, initial scan polarity = negative, scan rate = 0.1 V/s, 

sweep segments = 4, sample interval = 0.001 V, quiet time 2 s. Simultaneously, the CHI 

610A electrochemical analyzer and the Andor Technology program was run and the CVs 

and spectra were collected as seen in Figure S6.8 in Appendix V. 

6.1.3 Results and Discussion 

Au25(SC2H4Ph)18
+C6F5CO2

− clusters, referred to as Au25
+, were synthesized and 

purified utilizing established procedures reported by Maran et al., see Appendix V.31,45 

The electrochemistry of dilute 0.67 mg/mL Au25
+ cluster electrolyte solutions was 

investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and 

representative traces are shown in Figure S6.12a,37,38 in Appendix V, and Figure 6.1a, 

respectively. DPV better displays the redox behavior at this low concentration of Au25
+, 

required for the ECL study, due to the suppression of the background current. 

 

Figure 6.1. a) Differential pulse voltammograms of 0.67 mg/mL Au25
+ clusters in 1:1 

benzene:acetonitrile solution, with 0.1 M tetra-n-butylammonium perchlorate as 
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supporting electrolyte. b) cyclic voltammogram and ECL-voltage curve for a Au25
1+ 

cluster solution containing with 5 mM benzoyl peroxide. 

During cathodic scanning, red curve, Figure 6.1a, of the applied potential, two 

quasi-reversible reduction waves are observed with half-wave potentials35 of 0.24 and -

0.008 V. These correspond to the Au25
+ clusters being reduced consecutively to Au25

0 

and then Au25
−, Eqs. 6.1 and 6.2.  The energy difference to convert Au25

+ to Au25
− via the 

two successive electrons is 0.25 eV. Au25
− displays similar CV and DPV with a similar 

energy value to remove two successive electrons.26,42 At more negative potentials there is 

a broad, irreversible reduction wave with an estimated half-wave potential of -0.99 V 

corresponding to the further reduction of  Au25
− to Au25

2−, Eq. 6.3. This reduction injects 

an electron into the LUMO, making Au25
2− less stable. The anodic scan, blue curve, 

Figure 6.1a, shows the two well-defined waves corresponding to the reverse of Eqs. 6.1 

and 6.2 and, at potentials more positive than 0.51 V, two more irreversible reactions 

corresponding to the oxidation of Au25
+ to Au25

2+ and Au25
3+, Eqs. 6.4 and 6.5. These 

half-wave potentials were roughly estimated to be 0.82 and 0.90 V, respectively. Note 

that the Au25
2+ is known to be unstable,46 leading to a smaller current for the following 

oxidation. 

Au25
+ + e− → Au25

0           (6.1) 

Au25
0 + e− → Au25

−           (6.2) 

Au25
− + e− → Au25

2−           (6.3) 

Au25
+ → Au25

2+ + e−           (6.4) 

Au25
2+ → Au25

3+ + e−          (6.5) 

For Au25
+ the potential difference between the first oxidation, Eq. 6.4, and third 

reduction, Eq. 6.3, peaks gives an estimation on the HOMO-LUMO energy gap of 1.55 

eV after charging correction.42 This is a very rough estimation because of the 

irreversibility of the reduction of Au25
− to Au25

2−,Eq. 6.3, and possible complexity of 
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side reactions like its analogues, Au38 and Au147 clusters, that shifts the peak potential of 

the third reduction from the true standard potential.47,48  This electrochemical energy gap 

corresponds well to the observed 1.53 eV optical absorption onset of Au25
+ in CH2Cl2, 

Figure S6.4 in Appendix V, and is close to that, 1.48 eV, calculated by DFT for Au25
−, 

which has paired electrons in all of the three HOMOs.49 

The ECL of the solution above was measured upon continuous alternative 

electrochemical oxidation and reduction between the potentials defined by Eqs. 6.3 and 

6.4. The Au25
+ solution exhibited very weak ECL via this annihilation path, 35-38,50 Figure 

S6.12b, where electrogenerated Au25
2+ and Au25

2− react, and Au25
−* excited state is 

produced, emitting light upon relaxation to the ground state, Eqs. 6.6 and 6.7. It is found 

that Au25
2− is more stable than Au25

2+ since ECL can only be observed in the anodic 

potential region. No ECL spectrum was obtained due to low intensity caused by the 

instability of the dication and dianion.46 

Au25
2− + Au25

2+ → Au25
−* + Au25

+        (6.6) 

Au25
−*  → Au25

− + hv        (6.7) 

Figure 6.1b presents a CV trace along with the corresponding ECL-voltage curve 

of a Au25
+ solution with 5 mM benzoyl peroxide (BPO, (C6H5CO)2O2), a common 

cathodic ECL co-reactant.36,51-53 ECL has an onset potential of -0.56 V, at which BPO 

was reduced to BPO−, Eq. 6.8,37,38,51,52 and the Au25
+ underwent a two-step reduction 

reaction to Au25
− as in Eqs. 6.1 and 6.2. In the diffusion layer containing the above two 

species, a strong oxidizing intermediate radical C6H5CO2
 was generated via 

decomposition of BPO−, Eq. 6.9, which accepts one electron from Au25
− and transformed 

it to Au25
0, Eq. 6.10.  The Au25

−* excited state was generated by transferring one electron 

from BPO− to the LUMO of Au25
0, Eq. 6.11,38 which emitted light upon relaxation to the 

ground state, Eq. 6.7.  The ECL-voltage curve shows a slight maximum at -0.79 V. This 

ECL mechanism is very similar to that of a molecular luminophore with BPO as a co-

reactant prior to reducing the luminophore.38 
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BPO + e− → BPO−         (6.8) 

BPO− → C6H5CO2
 + C6H5CO2

−         (6.9) 

C6H5CO2
 + Au25

− → Au25
0 + C6H5CO2

−        (6.10) 

Au25
0 + BPO− → Au25

−* + BPO       (6.11) 

The ECL intensity in the BPO co-reactant system increased dramatically when the 

applied potential was scanned to more negative potentials. As described above, Au25
2− is 

the dominant species in the vicinity of the electrode biased more negative than -0.98 V. 

Au25
−* was generated in this potential region by the reaction of Au25

2− either with Au25
0, 

Eq. 6.12, or C6H5CO2
 in the diffusion layer, Eq. 6.13, or with Au25

+ in the bulk solution, 

Eq. 6.14. ECL intensity reached the highest at -1.45 V. 

Au25
0 + Au25

2−→ Au25
−*+Au25

−       (6.12) 

C6H5CO2
 + Au25

2−→ Au25
−* + C6H5CO2

−       (6.13) 

Au25
+ + Au25

2− → Au25
−*+ Au25

0         (6.14) 

The strong oxidizing intermediate radical, C6H5CO2
•, may persist in solution 

long enough to combine with the reduced forms of the clusters, also generating the 

excited species in solution. While the BPO co-reactant systems is complicated,53 the 

presence of the multiple oxidation states of the cluster adds even more complexity and 

additional ECL mechanisms can be proposed based on the possible combinations. It is 

noteworthy that no ECL was observed in a BPO solution containing no Au25
0, Figure 

S6.13 in Appendix V, in the same potential window. 

The increased ECL intensity using a co-reactant allowed the acquisition of ECL 

spectra. Figure 6.2a presents ECL spectra acquired on solutions containing Au25
+ clusters 

with BPO with a time interval of 1 s during potentiodynamic scanning from 0.04 to -1.86 

V and back to 0.04 V. Figure S6.8a shows the voltammogram at a scan rate of 0.1 V/s 

during this spectroelectrochemical measurement, which is very similar to that in Figure 
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6.1b. The spectroelectrochemistry was carried out by means of our newly developed 

spooling spectroscopy for ECL. Briefly, the ECL cell was placed into a holder attached to 

an Acton spectrograph with an Andor NIR CCD camera cooled to -75 °C, and ECL 

processes were driven by the potential scanning at 0.1 V/s in the range between 0.04 and 

-1.86 V, with a spectrum recorded every 100 mV, which is equivalent to 1 s. 

 

Figure 6.2. a) Spooled ECL spectra of Au25
+ clusters with BPO during one cycle of the 

applied potential from 0.04 to -1.86 V then back to 0.04 V. Each spectrum was acquired 

for 1 s using an iDUS NIR CCD camera cooled to -75 °C. b) A typical accumulated ECL 

spectrum of the same co-reactant solution collected over 80 s, two cycles of potential 

scanning between 0.04 to -1.86 V at a scan rate of 0.1 V/s. 

 

 The spectra in Figure 6.2a track the evolution and devolution of the ECL 

emission and gives insight into the ECL mechanisms. As was observed in the ECL-

voltage curve shown in Figure 6.1b, a pronounced ECL spectrum, Figure 6.2a, red 

spectrum, was obtained at -0.76 V on the forward scan. The peak wavelength was 

determined to be 893 nm, 1.39 eV, very close to the HOMO-LUMO energy gap of Au25
+ 

estimated above by electrochemistry and UV-visible spectroscopy and calculated for 

Au25
− by DFT.49 The ECL intensity increased as the potential was made more negative up 

to -1.46 V, while the ECL peak wavelength remained constant at 893 nm, purple in 

Figure 6.2a. As the applied potential becomes even more negative, the ECL peak 
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intensity decreased due to the concentration depletion of the clusters as well as BPO. This 

is illustrated in Figure 6.2a between the -1.46 V, purple spectrum, and -1.86 V, green 

spectrum. On the reverse potential scan from -1.86 to 0.04 V, the ECL spectra devolve. 

Because the ECL peak wavelength remains constant at 893 nm throughout the potential 

window, this is indicative of only one excited state being involved. This is further 

exemplified in Figure S9 where the spectra over two potential cycles are shown and the 

ECL peak wavelength remains the same. The above observations support very well the 

proposed ECL mechanisms as expressed by Eqs. 6.6 to 6.12 and agree with the ECL-

voltage curve in Figure 6.1b. Furthermore, an ECL spectrum accumulated for 80 s was 

also collected by scanning the potential between 0.04 to -1.86 V at a scan rate of 0.1 V/s. 

The acquired spectrum displays a maximum wavelength of 893 nm as well, Figure 6.2b, 

which confirms that only one excited state is involved in the ECL process. 

It is informative to compare the ECL spectra, Figure 6.2, with PL spectra 

measured on a solution of Au25
−, Figure 6.3, in order to confirm the identity of the 

excited state involved in the ECL processes. The PL spectra were measured on the same 

spectrograph and CCD camera set used for the ECL measurements to exclude any 

ambiguities about the PL spectrum of the clusters measured previously on different 

instruments/detectors.26,27,28 Our confocal setup covers the entire spectral range, 630-

1180 nm, of interest and a peak response quantum efficiency of 95 % at 800 nm, see 

Appendix V for the instrument specification. 

 

Figure 6.3. Photoluminescence of a Au25
− 1:1 benzene/acetonitrile solution using an iDus 

401 CCD camera between 633 and 1200 nm upon excitation at 633 nm. 
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Figure 6.3 depicts a typical PL spectrum of the Au25
− cluster solution, showing 

two luminescence shoulders at 719, 1.72 eV, and 820 nm, 1.51 eV, as reported by the Jin 

group26,27 and similar to the Au cluster investigated by El-Sayed and Whetten.54 Also 

observed was a strong peak at 857 nm, 1.45 eV, as well as a weak one at 1080 nm, 1.15 

eV, inset in Figure 6.3, as described by the Murray group.28 The only difference between 

our results and those reported earlier is in the intensity pattern due to differences in the 

detector response efficiencies in the different setups being compared, Figure S6.9 to 

S6.11 in Appendix V. The most interesting luminescence peak is the strongest one at 857 

nm, which can be assigned to the excited-state luminescence emission with energy higher 

than that from a relaxed excited state across the HOMO-LUMO gap at 1.34 eV.54 The 

other two shoulders may be the excited states populated from the electron promotion 

from HOMO-1 to LUMO or HOMO to LUMO+1. The weak luminescence peak can be 

assigned to semi-ring states, namely phosphorescence emission due to the transition from 

a triplet excited state to the ground state, as in the case of Au clusters, reported by Morran 

and Murray with femtosecond spectroscopy15 and by the Murray group NIR PL 

spectroscopy,42,54  

Our spooling Au25
+ ECL spectra clearly identify the excited state in the whole 

ECL process to be Au25
−* across the HOMO-LUMO gap, giving an emission peaked at 

893 nm, 1.39 eV. This agrees very well with our elucidated ECL mechanisms above. 

From a thermodynamics point of view, the excited state in ECL was generated directly 

from radical reactions without the nonradioactive relaxation of excited states in PL 

processes. Our ECL and PL emission are in agreement with the observations from PL 

spectra of Au25
− solution. Based on the atomic contributions to the HOMOs that are 

essentially superatom p orbitals and LUMOs that comprise mainly d orbitals from the 

DFT calculation49 and magnetic circular dichroism spectroscopy,43 the ECL emission 

observed is likely due to the radioactive electronic relaxation from the LUMOs to 

HOMOs. 

     The above observation on ECL of Au25 clusters is very different from that on 

ECL of silicon NCs, which depended more sensitively on surface chemistry and the 

presence of rich surface states,1 as previously reported by Ding et al. While thiophenolate 
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ligands having more electron-withdrawing substituents enhance the PL of semi-ring 

states in Au25
− clusters,28 ECL is favored in the electronic relaxation across the HOMO-

LUMO gap. This is probably due to the activity of the cluster icosahedral Au13 core 

incompletely covered by protecting ligand complexes or six staple-shaped motifs (-S-Au-

S-Au-S-).33,55 It is plausible that semi-ring state emission observed in PL plays a minor 

role in ECL, possibly because its intensity is not as high as that of surface states in larger 

NCs. 

6.1.4 Conclusions 

In summary, this work unambiguously demonstrates that NIR-ECL of Au25 can 

be observed in annihilation of electrogenerated Au25
2+ and Au25

2– species and enhanced 

in the path of co-reactant system with BPO. The light emission was explicitly elucidated 

as being due to the electronic relaxation of the Au25
−* excited state to the ground state 

across HOMO-LUMO gap by means of electrochemistry, PL spectroscopy, and our 

newly developed spooling spectroscopy during the ECL evolution and devolution. 
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6.2 Spooling ECL Spectroscopy of Au25L18
0 in the presence 

of BPO  

6.2.1 Introduction 

The Au25
0, has one singly-occupied electron in one of the three semi-degenerated 

HOMO orbitals.3 While we have reported that Au25(SC2H4Ph)18
+ cluster is a strong NIR-

ECL emitter1, see Chapter 6.1, its counterpart, Au25(SC2H4Ph)18
0, Au25

0 is anticipated to 

form several excited states based on its electronic configuration. Benzoyl peroxide (BPO) 

is a popular co-reactant in organic solvents. We employed benzoyl peroxide (BPO)1 as a 

co-reactant which is suitable to react with electrogenerated precursors of Au clusters, 

even in a small potential window, in the course of electrochemical oxidative and 

reductive processes2. Au25
0 then eventually gains or losses electron(s) at the HOMO or 

LUMO orbitals4,5. Thus, in the course of the ECL process it would be interesting to 

elucidate and control light generation of the Au25
0 clusters in the presence of BPO, as a 

strong oxidizing agent. The HOMO-LUMO energy gap in Au25 can be correlated to the 

energy difference between the excited and ground states tend to near-IR emission. In this 

section, the focus will be on the Au25
0 clusters containing two concentrations of BPO as 

the co-reactant.  

6.2.2 Experimental Section 

All experiments were conducted using a 2 mm diameter Pt disc inlaid in a glass 

tube as the working electrode (WE). The counter electrode (CE) consisted of a coiled Pt 

wire and the quasi reference electrode (RE) was another coiled Pt wire. After every 

experiment, the electrochemical potential window was calibrated using ferrocene (Fc) as 

the internal standard, having a redox potential of the ferrocene/ferrocenium (Fc/Fc+) 

couple taken as 0.424 V vs. SCE.6 

Annihilation ECL studies contained approximately 2 mg of Au25
0 clusters and 0.1 

M TBAP, tetrabutylammonium perchlorate, supporting electrolyte to the electrochemical 

cell with 1.5 mL anhydrous acetonitrile, and anhydrous 1.5 mL benzene, that was 
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assembled in a glove box. 5.0 × 10-3 M BPO, benzoyl peroxide, was added to the 

electrochemical cell for co-reactant ECL studies and assembled in a glove box. 

Please refer to our previous publications for detailed electrochemical workstation 

and ECL setup information.1,7,8 In brief, the cyclic voltammetry was conducted on a CHI 

610A electrochemical analyzer (CH Instruments, Austin, TX). The experimental 

parameters for cyclic voltammograms (CVs) are listed here: 0.00 V initial potential in 

experimental scale, positive or negative initial scan polarity, 0.1 V/s scan rate, 4 sweep 

segments, 0.001 V sample interval, 2 s quiet time, 1-5 × 10-5 A/V sensitivity (for 

annihilation studies) and 1 × 10-5 to 1 × 10-4 A/V sensitivity (for co-reactant studies).  

The ECL spectra, intensities versus wavelengths, were recorded by the Andor 

Technology program. The samples were scanned between their redox potentials, similar 

to the CV experiments. ECL spectroscopy was conducted on an Acton 2300i 

spectrograph with two gratings, 50 l/mm blazed at 600 nm and 300 l/mm blazed at 700 

nm, and an Andor iDUS CCD camera, Model DU401-BR-DD-352 because the ECL is in 

NIR region. 

For the spooling experiments, the NIR set was used and the following parameters 

were employed for the Andor Technology program under the kinetic parameters option 

tab: a) for 0.005 M BPO concentration of Au250: exposure time = 1 s, number of 

accumulations = 1, kinetic series length = 80 s, matching with the potential scan time, 

kinetic cycle time = 1, and the spectrometer was centered at 700 nm using the 50 l/mm 

grating. On the CHI 610A electrochemical analyzer, the initial potential was set to -0.22 

V, high potential = 0.15 V, low potential = -2.10 V, sensitivity = 1 × 10−5 A/V, initial 

scan polarity = negative, scan rate = 0.1 V/s, sweep segments = 4, sample interval = 

0.001 V, quiet time 2 s. Simultaneously, the CHI 610A electrochemical analyzer and the 

Andor Technology program was run and the CVs and spectra were collected. b) for 0.05 

M BPO concentration of Au250: exposure time = 1 s, number of accumulations = 1, 

kinetic series length = 80 s, matching with the potential scan time, kinetic cycle time = 1, 

and the spectrometer was centered at 700 nm using the 50 l/mm grating. On the CHI 

610A electrochemical analyzer, the initial potential was set to -0.22 V, high potential = 
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0.15 V, low potential = -2.50 V, sensitivity = 1 × 10−4 A/V, initial scan polarity = 

negative, scan rate = 0.1 V/s, sweep segments = 4, sample interval = 0.001 V, quiet time 

2 s. Simultaneously, the CHI 610A electrochemical analyzer and the Andor Technology 

program was run and the CVs and spectra were collected. 

6.2.3 Results and Discussion 

ECL via Annihilation. Au25
0 clusters were synthesized, purified and 

characterized following room temperature monodispersed synthesis procedure4,9. The 

electrochemistry of 0.1 mM Au25
0 in benzene:acetonitrile (1:1), containing 0.1 M TBAP 

reveals four distinct peaks, Figure 6.4.  

 

Figure 6.4. Typical annihilation ECL-voltage curve of 0.1mM Au25
0 in 

benzene:acetonitrile mixture containing 0.1 M TBAP, scan rate: 0.1 V/s. Inset: 

accumulated spectrum, T = 300 s,  in the course of ECL experiment recorded with a NIR 

CCD camera. 

In a typical cyclic voltammogram (CV), the applied potential was initiated from 

0.05 V at which a zero current was obtained indicating no oxidation or reduction process 

occurred4,10. On scanning the potential to the negative, Au25
0 gains one electron and 

forms Au25
- at -0.04 V, Eq. 6.18, which is further reduced at -1.15 V to form Au25

2-, Eq. 

6.19. When scanning the potential to positive, Au25
0 losses one electron and forms Au25

+ 
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at 0.18 V, Eq. 6.15, which is further oxidized at 0.89 V to form Au25
2+, Eq. 6.16. The 

peak current height is suggested that at close potential further oxidation can happen to 

form Au25
3+, Eq. 6.17.  

Au25
0 → Au25

+ + e−               (6.15) 

Au25
+ → Au25

2+ + e−              (6.16) 

Au25
2+ → Au25

3+ + e−             (6.17) 

Au25
0 + e− → Au25

−              (6.18) 

Au25
− + e− → Au25

2−              (6.19) 

ECL of Au25
+ in the annihilation path, scanning potential between highest, 

Au25
2+, and lowest, Au25

2-, charge states, was observed during the potential scanning 

between Au25
2-/Au25

2+ redox peaks, Eqs. 6.16 and 6.18. The above electrochemistry 

agrees well with that by Maran et al.4 

Figure 6.4 displays an ECL-voltage curve of Au25
0 and its corresponding ECL 

spectra in the course of annihilation. The onset of the ECL-voltage curve reveals light 

emission at 0.57 V at which the Au25
+ starts to oxidize to Au25

2+, Eq. 6.16. The 

electrogenerated Au25
2+ reacts with Au25

2-, which presents in the double layer in the 

course of scanning, acting as a reducing agent in the vicinity of the working electrode. An 

electron transfer happens from a HUMO orbital of Au25
2- to one of the HUMO orbitals of 

Au25
2+ resulting in the formation of the excited state, Au25

-*, Eq. 6.20. The excited will 

relax back to its ground state and emit light, hv1, at 940 nm, Eq. 6.21. 

Au25
2− + Au25

2+ → Au25
-* + Au25

+       (6.20) 

Au25
-* → Au25

- + hv1         (6.21) 

 ECL via Co-reactant Route. Generation of ECL Au25
0 clusters using BPO as the 

co-reactant4 was also performed., Figure 6.5. The concentration of BPO was varied, 5 

mM and 50 mM, to study radical concentration effect on the Au25
0 ECL. First 5 mM 
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BPO was used, Figure 6.5. Initially, the potential was scanned towards negative potential, 

reducing Au25
0 to Au25

−, Eq. 6.18, and BPO was reduced at -1.12 V vs. SCE to its radical 

anion, BPO•−, Eq. 6.22. The BPO•− radical then rapidly decomposed and generated the 

benzoate radical, C6H5CO2
•, Eq. 6.23, a strong oxidizing species, and benzoate anion, 

C6H5CO2
−.  

BPO + e− → BPO•−           (6.22) 

BPO•− → C6H5CO2
• + C6H5CO2

−         (6.23) 

 

Figure 6.5. CV (in red) with ECL voltage-curve (in green) between 0.50 and –1.75 V of 

Au25
0 with 0.005 M BPO in ACN:Bz (1:1) with 0.1 M TBAP supporting electrolyte, scan 

rate of 0.1 V/s. 

The initial onset of ECL occurred at -0.80 V, Figure 6.6. Here, Au25
0 was reduced 

to Au25
-. From the bulk solution, the benzoate radical can oxidize Au25

0 to Au25
+, Eq. 

6.24, and once more to Au25
2+, Eq. 6.25. Then the BPO•− radical can donate an electron 

to Au25
2+ and generate the Au25

+∗ excited state species, Eq. 6.26. The Au25
+∗ will relax 

back to its ground state and emit at 880 nm, hv2, Figure 6.6b, Eq. 6.27, a different 

wavelength and mechanism than in annihilation, Eq. 6.21. 

Au25
0 + C6H5CO2

• → Au25
+ + C6H5CO2

−      (6.24) 

Au25
+ + C6H5CO2

• → Au25
2+ + C6H5CO2

−       (6.25) 
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Au25
2+ + BPO•− → Au25

+∗ + BPO       (6.26) 

Au25
+∗ → Au25

+ + hv2         (6.27) 

 

Figure 6.6. a) ECL spooling of Au25
0 with 0.005 M BPO in ACN:Bz (1:1) with 0.1 M 

TBAP supporting electrolyte, scan rate of 0.1 V/s, between 0.50 and –1.75 V for 90 s, 

spectra at b) -0.80 V, c) -1.10 V, d) -1.30 V, e) -1.50 V, these spectra were curve-fitted to 

871 nm (black) and 960 nm (pink), the average fit is shown in purple. 
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 Scanning more negative to -1.75 V, increased the amount of ECL observed, as seen 

in the accumulated spectrum when the potential was cycled between 0.50 V and –1.75 V 

for 90 s, Figure 6.7. When the potential reached -1.50 V, it generated the greatest ECL 

intensity. Initially it appears that one excited species was generated at 920 nm, Figure 6.7, 

however from our new spooling technique, Figure 6.6, we were able to curve-fit each 

spectra recorded to observe the evolution of two different excited species, fixed at 871 

nm and 960 nm.  

 

Figure 6.7. Accumulated spectrum between 0.50 and –1.75 V for 90 s of Au25
0 with 

0.005 M BPO in ACN:Bz (1:1) with 0.1 M TBAP supporting electrolyte, scan rate of 0.1 

V/s. Curve-fitted to one peak at 920 nm. 

 At -1.50 V Au25
− begins to reduce to Au25

2−, Eq. 6.19. The Au25
2− will react with 

C6H5CO2
• to generate Au25

−∗ excited species, Eq. 6.28, with an emission, hv1, Eq. 6.21, 

at 960 nm, Figure 6.6e.  

Au25
2− + C6H5CO2

• → Au25
−* + C6H5CO2

−       (6.28) 

 By curve-fitting the ECL peaks, it was discovered that the two ECL mechanisms 

were competing with each other, depending on the applied potential. Light emission at 

880 nm follows Eq. 6.26 at less negative potential with low C6H5CO2
, while ECL at 960 

nm dominates at highly negative potential at which Au25
2- generates the Au25

−* excited 

species, Eq. 6.28. 
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 When increasing the concentration of BPO to 50 mM, Figure 6.8, the potential, was 

initially at 0.20 V then scanned negative, with the initial onset of ECL observed at -0.90 

V, Figure 6.9b. Here, the Au25
0 species from the bulk reacts with much higher C6H5CO2

• 

to generate the oxidized species Au25
+, Eq. 6.24, and C6H5CO2

• can generate the Au25
2+ 

species, Eq. 6.25 as previously mentioned. An electron transfer between the BPO•− 

radical and Au25
2+ species generates the Au25

+∗ excited species, Eq. 6.26. The Au25
+∗ 

excited species emits light at approximately 880 nm, Eq. 6.27, Figure 6.9b. 

 

 

Figure 6.8. CV (in red) with ECL voltage-curve (in green) between 0.57 and –2.08 V of 

Au25
0 with 0.050 M BPO in ACN:Bz (1:1) with 0.1 M TBAP supporting electrolyte, scan 

rate of 0.1 V/s. 
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Figure 6.9. ECL spooling of Au25
0 with 0.050 M BPO in ACN:Bz (1:1) with 0.1 M 

TBAP supporting electrolyte, scan rate of 0.1 V/s, between 0.57 and –2.08 V for 106 s, 

spectra at b) -0.90 V, c) -1.50 V, d) -1.80 V, e) -2.00 V, these spectra were curve-fitted to 

871 nm (black) and 960 nm (pink), the average fit is shown in red. 
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Accumulating the spectrum between 0.57 and –2.08 V for 106 s, resulted in an 

ECL maximum at 859 nm, Figure 6.10. From the spooling data, Figure 6.9, we curve-fit 

these spectra to two peaks and saw the growth of the 871 nm peak when the 

concentration of BPO increased to 50 mM while the peak at 960 nm changes in intensity. 

The mechanism for ECL generation follows the same co-reactant pathways as the 

5 mM case, Eqs. 6.26 and 6.28. With a higher concentration of BPO in solution, a greater 

amount of C6H5CO2
• was generated, Eq. 6.23, the Au25

+* generation dominates even at 

the working electrode biased at a very negative potential, Eq. 6.26. This lead to the 

increase in its ECL intensity in the fitted spectra, Figure 6.9c-e. 

 

Figure 6.10. Accumulated spectrum between 0.57 and –2.08 V for 106 s of Au25
0 with 

0.050 M BPO in ACN:Bz (1:1) with 0.1 M TBAP supporting electrolyte, scan rate of 0.1 

V/s. Curve-fitted to one peak at 859 nm. 

6.2.4 Conclusions 

The increase in BPO concentration caused a growth in the strongly oxidizing 

C6H5CO2
• radicals leading to the generation of the majority of ECL through Au25

+∗, Eq. 

6.26, while at low BPO concentration, both excited state generation reactions expressed 

by Eq. 6.28, for Au25
−∗, and Eq. 6.26, for Au25

+∗, contributed to ECL emission. It is 

important to highlight that multiple pathways are possible to obtain the ECL emissions at 

960 nm from the Au25
−∗ and 871 nm from the Au25

+∗, in low or high BPO concentrations. 
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It is plausible to switch ECL generation routes, Au25
+∗ excited species and Au25

−∗ excited 

species, and therefore ECL wavelengths by controlling the BPO concentration. 
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Chapter 7  

7 Dual Electrochemiluminescence of BDY-PbS 
Nanoparticles 

7.1 Introduction 

PbS nanoparticles (NPs) are infrared (IR) emitting materials that can be used in 

optical fibre communications and for in vivo bio-imaging and can be tuned by varying 

their shape, size and surface ligand.1,2 Their common capping ligands include oleic acid 

(OA) however the electrochemiluminescence (ECL) of PbS NPs in this format is weak. 

This is because OA ligands do not have any electronic communication with the PbS 

NPs.1,2 Trioctylphosphine (TOP) has been employed by Sun et al. which displayed an 

increase in the ECL signal dramatically. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene 

(BODIPY) dyes have a sharp fluorescence peak and high quantum yields. BODIPY dyes 

were discovered in 1968 by Treibs and Kreuzer3 and show emission in the visible region 

and have been frequently used as dye sensitizers, probes and labels for biomolecules.4-7 

 

Scheme 7.1. BODIPY dye core structure 

The ECL of boron-dipyrromethene (BDY) dyes have been studied extensively by 

Bard et al.,8-14 and also by Forster et al.15 These dyes show good redox stability, and are 

efficient, tunable ECL emitters.9 Lu et al. have reported the synthesis and photophysical 

properties of new BDY-capped PbS NPs that display dual photoluminescence (PL) 

emission, in the visible and near-infrared (NIR) regions.2 The BDY surface ligand is 

expected to communicate electronically with the PbS NPs and potentially enhance their 
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performance in optoelectronic devices.2 In this study, we investigated the ECL emission 

of these BDY-PbS NPs, to see if the two moieties would emit in the visible and NIR 

region. Our new spooling ECL spectroscopy can determine the mechanism for ECL 

emission. Also, we were interested in observing any electronic communication between 

this new BDY ligand and the PbS NPs. To the best of our knowledge, this is the first ECL 

report of BDY-PbS NPs. 

7.2 Experimental Section 

For annihilation ECL studies, approximately 1 mg of compound was added to a 

pyrex electrochemical cell with a flat Pyrex window at the bottom for detection of 

generated ECL, which contained 0.1 M tetrabutylammonium hexafluorophosphate 

(TBAPF6) supporting electrolyte in anhydrous dichloromethane (DCM, 3 mL). A 2 mm 

diameter Pt disc inlaid in a glass sheath were used as the working electrode (WE), a 

coiled Pt wire as the counter electrode (CE), and a coiled Ag wire as the quasi reference 

electrode (RE), respectively. Routine cleaning procedures for the electrodes and cell were 

reported elsewhere.16 For detailed electrochemical workstation and ECL setup 

information, please refer to our previous publications.16,17 The cell was assembled in a 

dry box. 

The cyclic voltammetry (CV) was conducted on a CHI 610A electrochemical 

analyzer (CH Instruments, Austin, TX). The experimental parameters for the cyclic 

voltammograms (CVs) are listed here: 0.00 V initial potential in experimental scale, 

positive or negative initial scan polarity, 0.1 V/s scan rate, 4 sweep segments, 0.001 V 

sample interval, 2 s quiet time, 1 × 10-6 AV-1 sensitivity (for annihilation studies) and 1 × 

10-4 AV-1 sensitivity (for co-reactant studies). Potentials (V) were calibrated using an 

internal standard Fc/Fc+ redox couple after each experiment, and are reported vs. a SCE 

standard electrode (0.342 V in ACN).18,19  

ECL and CV data were obtained using the CHI 610A coupled with a 

photomultiplier tube (PMT, R928, Hamamatsu, Japan) held at -750 V with a high voltage 

power supply. The ECL collected by the PMT under the flat Pyrex window at the bottom 
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of the cell was measured as a photocurrent, and transformed to a voltage signal, using a 

picoammeter/voltage source (Keithley 6487, Cleveland, OH). The potential, current 

signals from the electrochemical workstation, and the photocurrent signal from the 

picoammeter were sent simultaneously through a DAQ board (DAQ 6052E, National 

Instruments, Austin, TX) in a computer. The data acquisition system was controlled from 

a custom-made LabVIEW program (ECL_PMT610a.vi, National Instruments, Austin, 

TX). The photosensitivity on the picoammeter was set manually in order to avoid the 

saturation. 

The ECL spectra were obtained by replacing the PMT with a spectrometer 

(Cornerstone 260, Newport, Canada) attached to a visible region CCD camera (Model 

DV420-BV, Andor Technology, Belfast, UK). The camera was cooled to -55 °C prior to 

use and controlled by a computer for operation and data acquisition. The intensities 

versus wavelengths (spectra) were recorded by Andor Technology program. 

Since the ECL is in NIR region, ECL spectroscopy was conducted on an Acton 

2300i spectrograph with a grating of 50 l/mm blazed at 600 nm, attached with an Andor 

iDUS CCD camera, Model DU401-BR-DD-352 and accumulated over the time that 

matches with the potential scan time for two complete cycles. 

Spooling ECL experiments were conducted using the same setup along with the 

spooling function in the Andor software. Basically, one ECL spectrum was taken in a 

time interval of 1 s during the potential scanning. The following parameters were 

employed in the Andor Technology program under the kinetic parameters option tab: 

exposure time = 1 s, number of accumulations = 1, kinetic series length = T (where T = 

time that matches with the potential scan time for two complete cycles), kinetic cycle 

time = 1, and the spectrometer was centered at 800 nm, with the camera cooled to -75 °C. 

On the CHI 610A electrochemical analyzer, the initial potential was set to 0.00 V, high 

potential = 1.90 V, low potential = 0.00 V, sensitivity = 1 × 10−4 AV−1, initial scan 

polarity = positive, scan rate = 0.1 V/s, 
 
sweep segments = 4, sample interval = 0.001 V, 

and quiet time 2 s. Simultaneously, the CHI 610A electrochemical analyzer and the 

Andor Technology program were run, and the CV and spooling spectra were collected. 
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7.3 Results and Discussion 

Electrochemistry. Figure 7.1 shows a cyclic voltammogram (CV) of a dark blue 

BDY-PbS NP solution (red curve). Initially the potential was scanned from 0.00 V 

towards -1.60 V. A cathodic wave was observed with a peak potential of -1.41 V, which 

represents the reduction of the BDY portion of the NPs to BDY−•, Eq. 7.1. When 

reversing the scan from -1.60 V towards positive potential, a return wave was seen at -

1.28 V. Upon scanning more positive, an anodic wave showed a peak potential of 0.55 V, 

displaying the oxidation of BDY to BDY+•, Eq. 7.2. Once the applied potential reached 

0.74 V, the potential was scanned towards 0.00 V and a return wave peaked at 0.46 V 

was seen. According to the literature13, the HOMO and LUMO were contributed by the 

atoms on the conjugated system of the BDY ligand, which undergo redox reactions.  

BDY-PbS + e− → BDY−•-PbS       (7.1) 

BDY-PbS → BDY+•-PbS + e−       (7.2) 

 

Figure 7.1.  CV (in red) with ECL-voltage curve (in green) of BDY-PbS NPs in DCM 

with TPABF6 as supporting electrolyte with a potential range of -1.60 V to 0.74 V, for 

one complete cycle, at a scan rate of 0.1 V/s. 
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Figure 7.2 demonstrates DPVs. When scanning from -1.60 V to 0.74 V, in blue, 

two peaks were observed at -1.37 V and at 0.49 V. Upon scanning the reverse direction 

from 0.74 V to -1.60 V (in green), the DPV showed two peaks at 0.54 V and -1.32 V. 

These peaks correspond to the BDY+• and BDY−• radicals, Eqs. 1 and 2. The peaks are 

consistent with the peaks observed in the CV. Bard et al. have reported redox potentials 

of BODIPY dyes having a small separation between first oxidation and first reduction, 

ranging from 2.0 to 2.4 V.13 The BDY-PbS NPs’ first oxidation and first reduction have a 

separation of 1.96 V, Figure 7.1, close to the reported values for these BODIPY dyes. 

According to Bard et al. the second oxidation and reduction peaks are much further away, 

since we wanted a limited potential window for light emission, the potential window only 

included the first oxidation and reduction of the BDY-PbS NPs. The redox chemistry for 

the PbS portion of the NPs proved to be difficult to observe during CV experiments. The 

redox chemistry of the PbS might be outside of the potential window. There is also a 

possibility that due to the 10:1 ratio2 of BDY:PbS in the NPs, the electrochemical current 

maybe be so small for the PbS, it could not be observed during the CV experiments. 

Another possibility is that the BDY may have capped the PbS very well at the surface 

therefore the electrochemistry of the PbS was not seen.   

 

Figure 7.2.  DPV of BDY-PbS NPs in DCM with TPABF6 as supporting electrolyte with 

a potential range of -1.60 V to 0.74 V, forward direction (in blue) and reverse direction 

(in green). 
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ECL via Annihilation. When scanning between the NPs’ first oxidation and first 

reduction no photocurrent (ECL) was observed, Figure 7.1. The solution was pulsed 

between its first oxidation and first reduction potentials, medium ECL emission was 

observed, Figure 7.3. The photocurrent produced was between 114 nA and 188 nA for 

several pulse cycles. During pulsing experiments, a change in solution colour was 

observed. Initially, the solution was dark blue. Then after pulsing it changed to a 

burgundy colour with some precipitate. Formation of a precipitate would cause a 

decrease in the amount of ECL produced, in addition to blocking the light from entering 

the photomultiplier tube (PMT). 

 

Figure 7.3. Pulsing of BDY-PbS NPs in DCM with TPABF6 as supporting electrolyte, 

current show in red, applied potential shown in blue, and photocurrent shown in green. 

When pulsing the solution between -1.60 V to 0.74 V, ECL was generated as seen 

in the green photocurrent in Figure 7.3. Here, the radical cation appears to be more stable 

than the radical anion of the BDY-PbS NPs because ECL was observed in the cathodic 

region, from Figure 7.3 when the potential reached -1.60 V, in blue. The amount of ECL 

produced via pulsing was around 150 nA. 

The spectrum of the BDY-PbS NPs was accumulated over 15 s during pulsing 

experiments using the visible spectrometer set, centered at 850 nm, Figure 7.4. Two 

peaks were observed, the first at 700 nm and the second at 975 nm. By functionalizing 

the PbS NPs with BDY, dual ECL emissions were observed. Two mechanisms for 
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generating ECL in this annihilation pathway are proposed. When alternating the potential 

between -1.60 V to 0.74 V, a BDY radical cation, BDY+•-PbS, Eq. 7.2, and a BDY 

radical anion, BDY−•-PbS, Eq. 7.1, were generated from the BDY-PbS NPs. Through 

electron transfer between the radical cation and anion, the excited species, BDY*-PbS, 

Eq. 7.3, was generated and emit light at 700 nm, hv1, Eq. 7.4. This is close to the reported 

PL emission at 645 nm.2 The red shifted ECL spectrum to lower energy may be due to an 

inner filter effect (self-absorption) and high concentrations of the NPs for ECL compared 

to PL, in addition to the difference in resolution between the instruments used for the PL 

and ECL studies.9 

BDY+•-PbS + BDY−•-PbS → BDY*-PbS      (7.3) 

BDY*-PbS → BDY-PbS + hv1       (7.4) 

 

Figure 7.4. ECL visible spectrum of BDY-PbS NPs from pulsing between -1.60 V to 

0.74 V for 15 s, visible CCD camera cooled to -55 °C, centered at 850 nm, T = 15 s. 

The ECL emission at 975 nm, might be generated via energy transfer from the 

excited species, BDY* to the PbS moiety, forming the BDY-PbS* excited species, Eq. 

7.5. The emission was then observed at 975 nm, hv2, Eq. 7.6, when the BDY-PbS* 

excited species relaxed to the ground state. There appears to be electronic 

communication/interaction between the PbS NPs with the surface ligand BDY when ECL 

is generated at 975 nm, Eq. 7.6. The PL emission of the PbS at 1100 nm,2 is in close 
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agreement to the ECL emission at 975 nm, which is similar to the PL emission at 912 

nm1 for PbS QDs capped with oleic acid (see latter).  

BDY*-PbS → BDY-PbS*        (7.5) 

BDY-PbS* → BDY-PbS + hv2       (7.6) 

 Since there is a possibility that the PbS moiety is also oxidized and reduced, even 

though the CV does not show the peaks, due to overlap, another route to generate the 

light, hv2, could be through Eqs. 7.7 to 7.9. 

BDY-PbS + e− → BDY-PbS−•       (7.7) 

BDY-PbS → BDY-PbS+• + e−       (7.8) 

BDY-PbS+• + BDY-PbS−• → BDY*-PbS      (7.9) 

ECL via TPrA Co-reactant. Tri-n-propylamine, TPrA, a common co-reactant, 

was added to enhance ECL of the BDY-PbS NPs while reducing the potential window 

and the duration of scanning time, Figure 7.5. The potential was scanned from 0.00 V to 

1.58 V. The photocurrent started to gradually increase around 1.00 V. The ECL onset was 

around 0.50 V. Since the concentration of TPrA was much larger than the BDY-PbS NPs 

concentration, the first oxidation peaks of the BDY-PbS NPs were not observed. The 

oxidation of TPrA reached its maximum at 1.25 V, and an increase in photocurrent was 

observed until 1.38 V, where the photocurrent reached a maximum of 154 nA, Figure 7.5. 

Afterwards, the photocurrent started to decrease after 1.38 V until it reached 1.58 V. On 

the reverse scan, the photocurrent continued to decrease until it was close to the baseline 

prior to 0.00 V. 
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Figure 7.5. CV (in red) with ECL-voltage curve (in green) of BDY-PbS NPs in DCM 

with TPABF6 as supporting electrolyte with 0.02 M TPrA, in a potential range of 0.00 V 

to 1.58 V, for one complete cycle, at a scan rate of 0.1 V/s. 

 When scanning the solution with TPrA between 0.00 V to 1.58 V, at a scan rate of 

0.1 V/s, the spectrum of the BDY-PbS NPs with 0.02 M TPrA was accumulated over 82 

s, using the NIR CCD camera cooled to -75 °C, centered at 800 nm, Figure 7.6. Two 

peaks were observed similar to the annihilation pathway, the first at 733 nm and the 

second at 1028 nm. 

 

Figure 7.6. ECL NIR spectrum of BDY-PbS NPs with 0.02 M TPrA from scanning 

between 0.00 V to 1.58 V, at a scan rate of 0.1 V/s, NIR CCD camera cooled to -75 °C, 

centered at 800 nm, T = 82 s. 
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From the accumulated spectrum, Figure 7.6, the mechanism of ECL emission was 

determined using our NIR spooling technique. Here each spectrum was recorded every 1 

s, at a scan rate of 0.1 V/s between 0.00 V to 1.58 V, Figure 7.7. Two emissions were 

identified at 733 nm and 1028 nm, consistent with the accumulated spectrum, Figure 7.6. 

The spooling technique helps to identity which emission occurs first with less potential 

compared to the second emission that happens with greater positive applied potential.  

 

Figure 7.7. ECL NIR spooling of BDY-PbS NPs with 0.02 M TPrA, a) two cycles 

shown, between 0.00 V to 1.58 V, T = 82 s, at a scan rate of 0.1 V/s, b) evolution of 733 

nm and 1028 nm from ECL onset at 0.38 V, first cycle shown, c) increase in 733 nm peak 

and decrease in 1028 nm peak (the point at which the 1028 nm started to decrease shown 

in green), first cycle shown. 

ECL onset was observed at 0.38 V with an emission at 1028 nm. At 0.58 V, the 

second emission started to appear at 733 nm. The peak at 1028 nm continued to increase 

until 1.08 V, then the 733 nm peak started to increase until it reached maximum ECL 

intensity at 1.38 V. The intensity of the 733 nm peak started to decrease until 1.58 V and 

continued on the reverse scan until 1.38 V. At this potential, the 1028 nm appeared and 

continued to decrease until 0.68 V, then reached its baseline. 
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The ECL onset mechanisms are shown in Eqs. 7.10 to 7.13. Initially, TPrA is 

oxidized to TPrA+•, Eq. 7.10, then leads to the formation of the reducing radical, TPrA•, 

Eq. 7.11. From Figure 7.7, the onset of ECL, at 0.38 V, appears to be in the NIR at 1028 

nm, most likely from the BDY-PbS* excited species. The TPrA• radical will react with 

the BDY-PbS NPs and form BDY-PbS−•, Eq. 7.12. Then the radical anion, BDY-PbS−•, 

would react with TPrA+• forming the BDY-PbS*, Eq. 7.13. 

TPrA → TPrA+• + e−         (7.10) 

TPrA+• → TPrA• + H+        (7.11) 

BDY-PbS + TPrA• → BDY-PbS−• + Pr2N+C=HCH2CH3    (7.12) 

BDY-PbS−• + TPrA+• → BDY-PbS* + TPrA      (7.13) 

Another route to generate the BDY-PbS* excited species, starts with the BDY-PbS 

NPs being oxidized to BDY-PbS+•, Eq. 7.8. Once the TPrA has generated its strong 

reducing agent, TPrA•, Eq. 7.11, the two radicals will generate the BDY-PbS* excited 

species, Eq. 7.14, that emits at 1028 nm, hv2, Eq. 7.6. 

BDY-PbS+• + TPrA• → BDY-PbS* + Pr2N+C=HCH2CH3    (7.14) 

When taking a closer look at the onset of ECL in Figure 7.7, a peak at 733 nm 

starts to form close to ECL onset at 0.58 V. This peak is consistent with the evolution of 

the BDY*-PbS excited species. Here, the TPrA• radical could generate the BDY−•-PbS 

radical anion, Eq. 7.15, which would react with the TPrA+• radical cation, Eq. 7.16, and 

create the BDY*-PbS excited species, emitting at 733 nm, hv1, Eq. 7.4. 

BDY-PbS + TPrA• → BDY−•-PbS + Pr2N+C=HCH2CH3    (7.15) 

BDY−•-PbS + TPrA+• → BDY*-PbS + TPrA      (7.16) 

A similar mechanism with TPrA as in Eq. 7.14, involves the oxidized BDY+•-

PbS, Eq. 7.2, reacting with the TPrA• radical to generate the BDY excited species, BDY*-
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PbS, Eq. 7.17. Once the BDY*-PbS species relaxes to its ground state, an emission at 733 

nm, hv1, Eq. 7.4, was observed. 

BDY+•-PbS + TPrA• → BDY*-PbS + Pr2N+C=HCH2CH3    (7.17) 

When the 733 nm peak started to increase until it reached maximum ECL 

intensity at 1.38 V, the BDY*-PbS excited species was dominate. By this potential, the 

TPrA has completely oxidized thus the large increase in ECL was observed. During this 

time however, the BDY-PbS* excited species started to decrease until 1.38 V on the 

reverse scan. There is no reason why the BDY-PbS* excited species should decrease with 

maximum amount of TPrA oxidized. This leads us to the conclusion that in fact there is 

no intramolecular energy transfer between the BDY* and PbS moieties to generate the 

BDY-PbS* excited species, as originally hypothesized in Eq. 7.5. The BDY-PbS* excited 

species emission at 1028 nm should not disappear if there is energy transfer, thus 

confirming that the PbS itself emits light at the same time as the BDY moiety, Eq. 7.6. 

A comparison with BDY capped PbS NPs is with a commonly used surface 

ligand, oleic acid, OA, for OA-capped PbS NPs. Here, similar CV conditions were used 

with 0.02 M TPrA as co-reactant, Figure 7.8, as with the BDY-PbS NPs in Figure 7.5. 

Onset ECL occurred at 0.48 V, with 2 nA of ECL. Scanning more positive until 1.58 V 

increased the amount of ECL to 16 nA. The intensity of ECL was significantly less than 

the BDY-PbS NPs with the OA capped NPs, however, we were able to collect the 

spectrum, even with weak ECL. 
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Figure 7.8. CV (in red) with ECL-voltage curve (in green) of OA-PbS NPs in DCM with 

TPABF6 as supporting electrolyte with 0.02 M TPrA, in a potential range of 0.00 V to 

1.58 V, for one complete cycle, with a scan rate of 0.1 V/s. 

From the accumulated spectrum using the NIR CCD camera, only one peak after 

curve-fitting was observed at 1028 nm for the OA-PbS NPs, Figure 7.9a. This matches 

the peak observed in the BDY-PbS NPs accumulated spectrum. The spooling spectra, 

Figure 7.9b, showed slight shifts in the peak wavelength when the potential was scanned 

from 0.00 V to 1.58 V. At maximum intensity, 1.28 V, the peak was centered at 1015 nm, 

Figure 7.9b, close to the accumulated spectrum’s wavelength of 1028 nm, Figure 7.9a, 

matching the NIR PL emission of 1100 nm2. These experiments proved that OA capped 

PbS NPs can also produce ECL in the presence of TPrA. This further confirms the above 

ECL mechanism assessed by the spooling spectroscopy. 
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Figure 7.9. ECL spectra of OA-PbS NPs with 0.02 M TPrA from scanning between 0.00 

V to 1.58 V, at a scan rate of 0.1 V/s, a) accumulated spectrum, b) spooling spectrum side 

profile, one cycle shown, NIR CCD camera cooled to -75 °C, centered at 800 nm, T = 80 

s. 

7.4 Conclusions 

We have demonstrated that BDY-PbS NPs generate ECL weakly through the 

annihilation pathway by pulsing the potential and stronger by using TPrA as a co-reactant 

and scanning the potential. Both pathways generated two excited species from the BDY-

PbS NPs that emit in the visible, BDY excited species, BDY*-PbS, at 733 nm, and NIR, 

PbS excited species, BDY-PbS*, at 1028 nm using the NIR CCD camera. By comparison 

of the OA-PbS NPs, where there was only one excited species from PbS, with the BDY-

PbS NPs, it is plausible that the two emissions originating from the BDY excited species 

and the PbS excited species were generated independently. 
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Chapter 8  

8 Concluding Remarks and Future Work 

As highlighted in this thesis, ECL is a powerful analytical technique that has high 

sensitivity and selectivity and has gained interests in a variety of applications. Using DPA 

and [Ru(bpy)3]2+ as bench marks in ECL efficiency, the quest to find compounds that 

were stable in solution and could achieve high efficiencies while covering the visible and 

NIR spectra were desirable. The research presented in this thesis has demonstrated the 

possibilities of a wide range of ECL emitters, from modified nucleosides, to metal 

complexes, and nanoparticles.  

The electrochemical behavior and ECL of four triazole-containing deoxycytidine 

nucleosides were studied that generated blue-green ECL emission, red-shifted compared 

to its PL spectra, due to excimer formation, with low relative ECL efficiencies. Another 

series of thienyltriazoles were synthesized and their redox chemistry and ECL 

mechanisms were analyzed. Again, blue-green ECL emission was observed, red-shifted 

compared to their PL spectra, possibly due to excimers, with relatively low ECL 

efficiencies. Overall, these studies provided information on how thienyltriazole 

containing complexes can be tuned to blue-green ECL emission and for understanding of 

their electronic and redox properties. 

A large study was undertaken correlating electronic structure to ECL using 

iridium(III)-containing metal complexes. For some of the iridium(III) metal complexes, 

the generation of the excited triplet state appeared to be advantageous. It required less 

energy to yield higher ECL relative efficiencies. The installation of different substituents 

on the ligands increased or decreased the electrochemical gap, thus tuning the ECL 

emission. Complexes containing ppy ligands showed higher relative efficiencies than the 

phtl ligand containing iridium(III) complexes. With the use of the co-reactant BPO, we 

were able to achieve some relative efficiencies higher than that of [Ru(bpy)3]2+ , and have 

discovered that iridium(III) complexes containing the dma substituents on the bpy ligand 
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show self-enhancement and dramatically high relative ECL efficiencies, well surpassing 

the absolute efficiency of [Ru(bpy)3]2+ with blue-green ECL emission. We used a newly 

developed ECL spooling spectroscopic technique to determine the mechanism for the 

self-enhancement due to multiple ECL emissions. Lastly for this iridium(III) complex 

study, we saw communication between the [Ru]2+ and [Ir]− moieties in the [Ir][Ru][Ir] 

soft salt during electrochemical reactions, reducing the energy required to produce ECL, 

with enhancement when using TPrA as the co-reactant. 

In the study involving the Au25 clusters, we observed NIR ECL emission that was 

enhanced when using BPO as the co-reactant. Using the ECL spooling technique, we 

discovered there were different mechanisms, even for the same ECL emission, depending 

on the potential at which light was emitted. The ECL of Au25
0 clusters in quite complex, 

with multiple pathways for ECL emission. It was discovered that the Au25
0 clusters 

generated two excited species, Au25
−∗ and Au25

0∗ when using BPO as the co-reactant. 

For the final study in this thesis, we demonstrated that BDY-PbS NPs generate 

ECL weakly via annihilation and stronger using the co-reactant TPrA. Prior to this study, 

only the ECL of PbS NPs and ECL of BDY type dyes have been studied separately. 

Combining the two into the BDY-PbS NPs produces ECL in the visible and NIR regions. 

Electronic communication between the BDY-capped ligand and the PbS core was 

observed. Dual emissions and electronic communication could be potentially useful in 

electronic or medical applications. 

The field of ECL has been rapidly developing, thus proving to be a useful and 

powerful analytical technique. Future work may include additional electrochemical and 

ECL studies on iridium(III) metal complexes, progress towards light-emitting 

electrochemical cells (LEECs) as potential light sources and displays, and NIR NPs for 

bioanalytical applications. NIR ECL emission will not be absorbed by tissues, something 

important and may brightly lead the pathway into future ECL studies. New techniques are 

being designed to help understand the mechanisms of ECL generation that could lead to 

further insight into this complex analytical field. 
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Appendices 

Appendix I. Chapter 2: Electrogenerated Chemluminescence of 
Triazole-Modified Deoxycytidine Analogues in N,N-Dimethylformamide 

 

CV and ECL Experimental Parameters 

In annihilation systems, the CV potential window was 2.069 to -1.889 V for 2.1, 
1.861 to -2.435 V for 2.2, 1.787 to -2.231 V for 2.3, and 1.828 to -2.940 V for 2.4. In co-
reactant systems, the CV potential window was 0.000 to -2.278 V for 2.1, 0.000 to -2.452 
V for 2.2, 0.000 to -2.517 V for 2.3, and 0.000 to -2.126 V for 2.4. 

 

Curve-Fitting for ECL Spectra 

 

Figure S2.1. ECL spectra and their curve-fitting for 2.1-2.4 in DMF containing 5.0 × 
10−3 M BPO and 0.1 M TBAP as supporting electrolyte and pulsing between potential 
ranges from (a) 0.000 to -2.278 V, t = 60 s for 2.1, (b) 0.000 to -2.452 V, t = 60 s for 2.2, 
(c) 0.000 to -2.517 V, t = 60 s for 2.3, and (d) 0.000 to -2.126 V, t = 60 s for 2.4. 
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Crystallographic Details for 2.1 • 2 H2O 

Crystals of [C15H16N6O4S] • 2 H2O were grown from a concentrated aqueous 
solution (refer to Figure S2.2. for crystal structure of 2.1). A colourless needle was 
mounted on a glass fibre.  Data were collected at low temperature (-123°C) on a Nonius 
Kappa-CCD area detector diffractometer with COLLECT (Nonius B.V., 1997-2002).  
The unit cell parameters were calculated and refined from the full data set.  Crystal cell 
refinement and data reduction were carried out using HKL2000 DENZO-SMN 
(Otwinowski & Minor, 1997).  The absorption correction was applied using HKL2000 
DENZO-SMN (SCALEPACK).  The crystal data and refinement parameters for 
[C15H16N6O4S] • 2 H2O are listed in Table S2.1. The reflection data and systematic 
absences were consistent with an orthorhombic space group: P2(1)2(1)2(1). Bond lengths 
and angles are listed in Table S2.2. 

The SHELXTL/PC V6.14 for Windows NT (Sheldrick, G.M., 2001) suite of 
programs was used to solve the structure by direct methods.  Subsequent difference 
Fourier syntheses allowed the remaining atoms to be located.  Independent molecules 
were formed and are interconnected via H-bonding interactions involving the molecule 
itself and the two water molecules of solvation.  All of the non-hydrogen atoms were 
refined with anisotropic thermal parameters.  Some soft restraints were used for the 
thermal parameters and the disordered thiophene rings.  The hydrogen atom positions 
were calculated geometrically and were included as riding on their respective carbon 
atoms. 

The largest residue electron density peak (0.244 e/Å3) was associated with the 
disordered thiophene ring (Table S2.1).  Full-matrix least squares refinement on F2 gave 
R1 = 5.26 for 2σ data and wR2 = 11.96 for all data as seen in Table S2.1 (GOOF = 
1.086).  The final solution was submitted to the IUCR checkCIF program and had some 
Alert level A’s or B’s associated with the lack of complete data. 
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Figure S2.2.  Ball-and-stick representation of 2.1. Carbon atoms are in grey, sulfur in 
yellow, nitrogen in blue, oxygen in red, and hydrogen in white. The final solution was 
submitted to the IUCR CIF checking program and had some Alert level A’s or B’s 
associated with the lack of complete data, however the general structure can be observed 
for 2.1, similar to our previously reported solid state structure of 2.2. 

 

Table S2.1. Crystal data and structure refinement for 2.1 • 2 H2O 

  

C15H20N6O6S Empirical formula  

Formula weight  412.43  

Temperature  150(2) K  

Wavelength  0.71073 Å  

Crystal system  Orthorhombic  

Space group  P 21 21 21  
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Unit cell dimensions a = 4.8367(6) Å  

 b = 12.1128(18) Å α= 90°. 

 c = 30.967(5) Å β= 90°. 

Volume 1814.2(5) Å3 ɣ= 90°. 

Z 4  

Density (calculated) 1.510 Mg/m3  

Absorption coefficient 0.227 mm-1  

F(000) 864  

Crystal size 0.75 x 0.13 x 0.03 mm3  

Theta range for data collection 2.59 to 18.84°.  

Index ranges 
-4<=h<=4, -11<=k<=10, -
27<=l<=27  

Reflections collected 6165 

Independent reflections 1347 [R(int) = 0.0910]  

Completeness to θ = 18.84° 97.80%  

Absorption correction Semi-empirical from equivalents  

Max. and min. transmission 0.9943 and 0.8482 

Refinement method Full-matrix least-squares on F2  

Data / restraints / parameters 1347 / 366 / 279 

Goodness-of-fit (GOOF) on F2 1.086  

Final R indices [I>2σ(I)] R1 = 0.0526, wR2 = 0.1052  

R indices (all data) R1 = 0.0752, wR2 = 0.1196 

Absolute structure parameter 0.0(3) 

Largest diff. peak and hole 0.244 and -0.211 eÅ-3  
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Table S2.2. Hydrogen bonds for 2.1• 2 H2O [Å and °] 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

     

 N(17)-H(17A)...O(41)#1 0.88 2.54 3.261(8) 139.5 

 N(17)-H(17B)...N(8) 0.88 2.08 2.764(10) 134.4 

 O(25)-H(25A)...O(31)#2 0.84 1.98 2.813(8) 171.4 

 O(26)-H(26A)...O(18)#3 0.84 1.82 2.625(7) 160.8 

 O(31)-H(31A)...O(26) 0.87(4) 1.90(5) 2.724(8) 157(9) 

 O(31)-H(31B)...O(41) 0.87(4) 2.59(9) 2.778(10) 93(6) 

 O(41)-H(41A)...N(13)#2 0.88(4) 2.05(6) 2.833(8) 147(8) 

 O(41)-H(41B)...O(31)#4 0.87(4) 2.12(5) 2.968(9) 162(9) 

          

     

Symmetry transformations used to generate equivalent atoms:   

#1 -x+1,y-1/2,-z+3/2    #2 -x+1,y+1/2,-z+3/2    #3 -x+2,y+1/2,-z+3/2        

#4 x-1,y,z           
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Appendix II. Chapter 3: Synthesis, Structure, Electrochemistry, and 
Electrochemiluminescence of Thienyltriazoles 

 

NMR peak assignments of 3.1-3.4. 

 
[1-(2,2'-bithien-4-yl)-1H-1,2,3-triazol-4-yl]methanol (3.1, BiTTM). 
1H NMR ((CD3)2CO) δ: 8.43 (s, 1H, CH), 7.82 (d, 1H, CH, J = 1.2 Hz), 7.80 (d, 1H, CH, 
J = 1.6 Hz), 7.53 (dd, 1H, CH, J = 1.2 Hz, J = 5.2 Hz), 7.44 (dd, 1H, CH, J = 0.8 Hz, J = 
3.6 Hz), 7.14 (dd, 1H, CH, J = 3.6 Hz, J = 5.2 Hz), 4.76 (dd, 2H, CH, J = 0.4 Hz, J = 6.0 
Hz), 4.34 (t, 1H, OH, J = 6.0 Hz). 13C NMR ((CD3)2CO) δ: 148.8, 137.9, 135.6, 135.4, 
128.5, 126.6, 125.1, 121.3, 116.8, 112.7, 54.9. 
 
 
 
[1-(3-thienyl)-1H-1,2,3-triazol-4-yl]methanol (3.2, TTM). 
1H NMR ((CD3)2SO) δ: 8.59 (s, 1H, CH), 8.02 (dd, 1H, CH, J = 1.2 Hz, J = 2.8 Hz), 
7.78 (dd, 1H, CH, J = 3.2 Hz, J = 5.2 Hz), 7.64 (dd, 1H, CH, J = 1.6 Hz, J = 5.2 Hz), 5.33 
(t, 1H, OH, J = 5.6 Hz), 4.69 (dd, 2H, CH, J = 0.4 Hz, J = 5.2 Hz). 13C NMR ((CD3)2SO) 
δ: 148.7, 138.5, 128.3, 121.3, 120.6, 114.2, 54.9. 
 
 
 
2-[1-(2,2'-bithien-4-yl)-1H-1,2,3-triazol-4-yl]phenol (3.3, BiTTP). 
1H NMR ((CD3)2SO) δ: 10.26 (s, 1H, OH), 8.07 (m, 2H, CH), 8.93 (s, 1H, CH), 7.95 (d, 
1H, CH, J = 1.6 Hz), 7.61 (dd, 1H, CH, J = 1.2 Hz, J = 5.2 Hz), 7.49 (dd, 1H, CH, J = 1.2 
Hz, J = 3.6 Hz), 7.21 (t, 1H, CH, J = 8.4 Hz), 7.14 (dd, 1H, CH, J = 4.0 Hz, J = 5.2 Hz), 
7.01 (dd, 1H, CH, J = 0.8 Hz, J = 8.4 Hz), 6.93 (t, 1H, CH, J = 7.2 Hz). 13C NMR 
((CD3)2SO) δ: 154.1, 143.4, 137.9, 135.5, 135.4, 129.2, 138.6, 126.9, 126.6, 125.2, 
121.4, 119.4, 117.0, 116.6, 116.1, 113.2. 
 
 
 
2-[1-(3-thienyl)-1H-1,2,3-triazol-4-yl]phenol (3.4, TTP). 
1H NMR (CDCl3) δ: 10.71 (s, 1H, OH), 8.19 (s, 1H, CH), 7.67 (t, 1H, CH, J = 2.0 Hz), 
7.51 (m, 3H, CH), 7.28 (t, 1H, CH, J = 7.6 Hz), 7.08 (d, 1H, CH, J = 8.0 Hz), 6.94 (t, 1H, 
CH, J = 7.6 Hz). 13C NMR (CDCl3) δ: 156.1, 148.0, 135.5, 130.2, 127.8, 126.0, 120.9, 
119.8, 117.9, 117.4, 115.2, 113.6. 
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ORTEP Figures 

 
Figure S3.1. An ORTEP representation of 3.1 with three crystallographically adjacent 
molecules of 3.1. 
 
 
 

 
Figure S3.2. An ORTEP representation of 3.2 with four crystallographically adjacent 
molecules of 3.2. 
 
 
 



 

 

185 

 
Figure S3.3. An ORTEP representation of 3.4 with two crystallographically adjacent 
molecules of 3.4. 
 
 

UV-Visible Absorption and Photoluminescence Spectra 

 
Figure S3.4. UV-visible absorption spectra of 3.1 in red, 3.2 in blue, and 3.4 in green, in 
MeOH. 
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Figure S3.5. UV-visible absorption spectra of 3.1 in purple, and 3.3 in orange in DMF. 
 
 
 

 

Figure S3.6. Normalized photoluminescence spectra, excitation in purple and emission in 
blue, of 3.1-3.4 in MeOH. 
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DFT Data 

S3.7. Crystal structure Cartesian coordinates for the B3LYP/6-31+G* calculation of 
neutral compound 3.1. 

 

%mem=512MB 

%chk=A6P3bithiopheneA.chk 

# B3LYP/6-31+G* SCF=Tight Opt Freq 

 

bithioN3OH ligand 

 

0 1 

 O                 -2.19394486    2.93048333    0.00000000 

 H                 -2.88333259    2.95967707   -0.44324099 

 C                 -2.50944512    3.10170067    1.37584703 

 H                 -3.12276629    2.40341797    1.65259140 

 H                 -2.95271950    3.95542031    1.49959451 

 S                  6.00727710    2.08915130    4.21157688 

 C                  4.92005849    1.21199777    5.18051968 

 C                  5.61179976    0.39772913    6.09175115 

 H                  5.21035093   -0.14906173    6.72848821 

 C                  7.00213093    0.52949547    5.90387997 

 H                  7.62667669    0.05371641    6.40224484 

 C                  7.34147028    1.38716021    4.95889918 
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 H                  8.22187025    1.58283717    4.73165380 

 S                  2.41912211    0.39196928    6.00051551 

 C                  3.47458702    1.33824097    5.01964795 

 C                  2.76829417    2.09570017    4.13879086 

 H                  3.15679698    2.67799693    3.52567832 

 C                  1.37514134    1.89528909    4.26478829 

 C                  1.03553889    0.98712707    5.24914328 

 H                  0.16491939    0.74016381    5.46513889 

 N                  0.41586137    2.53439529    3.44692992 

 N                  0.51196312    3.85915987    3.17918537 

 N                 -0.53112726    4.16293257    2.42432571 

 C                 -0.69290585    2.00969699    2.86644172 

 H                 -0.98191561    1.12599459    2.89794108 

 C                 -1.29181855    3.05199241    2.22857969 

 

S3.8. Crystal structure Cartesian coordinates for the B3LYP/6-31+G* calculation of 
neutral compound 3.2. 

%mem=512MB 

%nproc=8 

%chk=thioN3OH1.chk 

# B3LYP/6-31+g(d) SCF=Tight Opt=Tight Freq 

 

thiopheneN3OH ligand 

 

 0 1 

 S                 -4.39882335   -1.13355514   -2.18686459 
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 C                 -2.71170465   -1.42235914   -2.04090748 

 H                 -2.33172874   -2.16823114   -1.63621500 

 C                 -2.79851963    0.55154486   -3.26614372 

 H                 -2.46216504    1.26002486   -3.76457012 

 C                 -4.11549860    0.30357686   -3.08537116 

 H                 -4.79291204    0.84969686   -3.41195204 

 C                 -2.00884544   -0.39624394   -2.60554276 

 C                  0.28041854   -1.09714714   -1.86608628 

 H                  0.08027366   -1.81792714   -1.31260980 

 C                  2.86070515   -0.95692714   -1.63100756 

 H                  2.82371256   -1.86122314   -1.28136516 

 N                 -0.58986956   -0.33375994   -2.56671014 

 N                  1.34037385    0.47085686   -2.99833252 

 N                  0.06060130    0.62426246   -3.25275316 

 C                  1.51229317   -0.58320394   -2.14580020 

 O                  3.32642689   -0.10281514   -0.62894732 

 H                  4.06820316   -0.34979914   -0.38122196 

 H                  2.99251970   -0.06355494   -1.98579861 

 

S3.9. Crystal structure Cartesian coordinates for the B3LYP/6-31+G* calculation of 
neutral compound 3.3. 

%mem=512MB 

%chk=bithioN3PhOHb.chk 

# opt freq b3lyp/6-31+g* geom=connectivity 

 

bithioN3PhOH ligand 
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 0 1 

 S                 -2.60330584   -0.28925619    0.00000000 

 O                 -6.93884041   -5.88429051    4.86634115 

 H                 -6.39649034   -5.24598427    4.80243537 

 N                 -4.63372484   -2.83032531    2.16173367 

 N                 -5.42543915   -4.07742363    3.69586304 

 N                 -4.56977001   -3.10795851    3.48384160 

 C                 -3.67941574   -1.58922987    0.28477773 

 H                 -4.13007336   -2.07746411   -0.39462800 

 C                 -3.80077423   -1.82534315    1.61833924 

 C                 -5.53159803   -3.62320571    1.54297987 

 H                 -5.75958476   -3.62320571    0.62057596 

 C                 -6.04806741   -4.42959259    2.52421355 

 C                 -7.05207788   -5.48259779    2.47423428 

 C                 -7.63788661   -5.85027419    1.25963384 

 H                 -7.37340987   -5.40706155    0.46308919 

 C                 -8.59055101   -6.84024915    1.19455666 

 H                 -8.97701262   -7.07436147    0.35896571 

 C                 -8.98336449   -7.49306235    2.34642270 

 H                 -9.64501095   -8.17288851    2.30477331 

 C                 -2.29459248   -0.07650411    1.66571543 

 C                 -3.01644096   -0.96493035    2.42581686 

 H                 -2.99209128   -0.99844643    3.37464210 

 C                 -7.45842508   -6.16442491    3.63625235 
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 C                 -8.41243283   -7.15740131    3.55815974 

 H                 -8.67956774   -7.61512091    4.34689513 

 C                 -1.32940614    0.97637716    2.24143789 

 C                 -0.59343876    1.87881332    1.50616717 

 S                 -1.05467969    1.15101146    3.88167066 

 C                  0.20350307    2.71803231    2.34970582 

 H                 -0.60079549    1.96200031    0.41787452 

 C                  0.03046093    2.40720506    3.68019230 

 H                  0.85963058    3.50036097    1.96396870 

 H                  0.52366481    2.89911746    4.51622917 

 

S3.10. Crystal structure Cartesian coordinates for the B3LYP/6-31+G* calculation of 
neutral compound 3.4. 

%mem=512MB 

%chk=thioN3PhOHb.chk 

# opt freq b3lyp/6-31+g* geom=connectivity 

 

thioN3PhOH ligand 

 

 0 1 

 S                  4.21487612    0.28925619    0.00000000 

 O                 -0.12065845   -5.30577813    4.86634115 

 H                  0.42169162   -4.66747189    4.80243537 

 N                  2.18445712   -2.25181293    2.16173367 

 N                  1.39274281   -3.49891125    3.69586304 

 N                  2.24841195   -2.52944613    3.48384160 



 

 

192 

 C                  3.13876622   -1.01071749    0.28477773 

 H                  2.68810860   -1.49895173   -0.39462800 

 C                  3.01740773   -1.24683077    1.61833924 

 C                  1.28658393   -3.04469333    1.54297987 

 H                  1.05859720   -3.04469333    0.62057596 

 C                  0.77011455   -3.85108021    2.52421355 

 C                 -0.23389592   -4.90408541    2.47423428 

 C                 -0.81970465   -5.27176181    1.25963384 

 H                 -0.55522791   -4.82854917    0.46308919 

 C                 -1.77236905   -6.26173677    1.19455666 

 H                 -2.15883066   -6.49584909    0.35896571 

 C                 -2.16518253   -6.91454997    2.34642270 

 H                 -2.82682899   -7.59437613    2.30477331 

 C                  4.52358948    0.50200827    1.66571543 

 H                  5.11927814    1.15182003    2.02103681 

 C                  3.80174100   -0.38641797    2.42581686 

 H                  3.82609068   -0.41993405    3.37464210 

 C                 -0.64024312   -5.58591253    3.63625235 

 C                 -1.59425087   -6.57888893    3.55815974 

 H                 -1.86138578   -7.03660853    4.34689513 

 

S3.11. Calculated Cartesian coordinates optimized using the B3LYP/6-31+G* geometry 
of neutral compound 3.1. 

 

%mem=512MB 

%chk=A6P3bithiopheneA.chk 
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# B3LYP/6-31+G* SCF=Tight Opt Freq 

 

bithioN3OH ligand 

 

 0 1 

 O, 0, -3.306020774,  2.3623103952, 1.632513016 

 H, 0, -4.154901743,  2.5081036687, 1.1897171138 

 C, 0, -2.407334797,  3.4096409433, 1.264491129 

 H, 0, -2.8023821273, 4.3921034169, 1.5621409417 

 H, 0, -2.2478196312, 3.4285805418, 0.176305234 

 S, 0, 5.8523724158, 2.6906923297, 5.1481502128 

 C, 0, 4.905537081,  1.2227419356, 5.2967106843 

 C, 0, 5.6901429306, 0.1917821443, 5.7723921719 

 H, 0, 5.3130503503, -0.8143792518, 5.9253116734 

 C, 0, 7.0427737862, 0.5722457241, 6.0079316231 

 H, 0, 7.8055102168, -0.1065851829, 6.3743509522 

 C, 0, 7.2828108401, 1.8882028871, 5.708883398 

 H, 0, 8.2135192199, 2.4352606263, 5.7855252303 

 S, 0, 2.4104381819, 0.0266153205, 5.6574807167 

 C, 0, 3.4963690664, 1.2057565904, 4.9426960766 

 C, 0, 2.8180611575, 2.0271263499, 4.0715305362 

 H, 0, 3.2765906644, 2.8221752496, 3.497507234 

 C, 0, 1.432527295,  1.6992239759, 3.9747179682 

 C, 0, 1.0606085639, 0.6394645618, 4.7623115388 

 H, 0, 0.0831036137, 0.1934226465, 4.8801083778 
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 N, 0, 0.5508342625, 2.4095242874, 3.1288727488 

 N, 0, 0.9624774406, 3.5507428561, 2.5147695405 

 N, 0, -0.0379237272, 3.9985917648, 1.8109989728 

 C, 0, -0.7445469498, 2.135471152,  2.7999471957 

 H, 0, -1.2855027471, 1.2748325009, 3.1571932812 

 C, 0, -1.1064113999, 3.1607366858, 1.9583546822 

 

S3.12. Calculated Cartesian coordinates optimized using the B3LYP/6-31+G* geometry 
of neutral compound 3.2. 

 

%mem=512MB 

%nproc=8 

%chk=thioN3OH1.chk 

# B3LYP/6-31+g(d) SCF=Tight Opt=Tight Freq 

 

thiopheneN3OH ligand 

 

0 1 

 S, 0,-4.4057347009, -1.0457562197, -1.9659870226 

 C, 0,-2.6995276645, -1.2070290657, -1.7193971217 

 H, 0,-2.3154783043, -1.9144980784, -0.9978444294 

 C, 0,-2.8396538978, 0.4196119609, -3.403289793 

 H, 0,-2.455254263, 1.1320660913, -4.1215720573 

 C, 0,-4.163826958, 0.1529269887, -3.1967011546 

 H, 0,-5.0150088904, 0.5978195858, -3.6949755679 

 C, 0,-2.0012965025, -0.3652827988, -2.5484173101 
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 C, 0,0.326602905, -0.7270623896, -1.6785013896 

 H, 0,0.0680336313, -1.2426739818, -0.7683342073 

 C, 0,2.9198248421, -0.5780864918, -1.6820689188 

 H, 0,3.5129494445, -1.138827019,  -2.4194180076 

 N, 0,-0.5918722432, -0.2623117173, -2.573531391 

 N, 0,1.312800527, 0.3063768078, -3.3837248373 

 N, 0,0.0304485753, 0.365061873,  -3.606751742 

 C, 0,1.5390007894, -0.357060655,  -2.2117499293 

 O, 0,2.8062596553, -1.3030343973, -0.4566651067 

 H, 0,3.6931681443, -1.450611899,  -0.0967386812 

 H, 0,3.4140258405, 0.3915871459, -1.5225309127 

 

S3.13. Calculated Cartesian coordinates optimized using the B3LYP/6-31+G* geometry 
of neutral compound 3.3. 

 

%mem=512MB 

%chk=bithioN3PhOHb.chk 

# opt freq b3lyp/6-31+g* geom=connectivity 

 

bithioN3PhOH ligand 

 

 0 1 

 S, 0, -2.5177855294, -0.2859048517, 0.0080418403 

 O, 0, -6.666804206,  -6.2029759435, 4.7943500589 

 H, 0, -5.9730040049, -5.5047175566, 4.7312528728 

 N, 0, -4.543073904,  -2.8921497796, 2.1559353436 
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 N, 0, -5.2199641033, -4.2660385526, 3.6390727924 

 N, 0, -4.3535001203, -3.3176904929, 3.4250991388 

 C, 0, -3.5609302938, -1.6391669256, 0.2809332202 

 H, 0, -3.9617132021, -2.1976846577, -0.5534038375 

 C, 0, -3.7314244031, -1.8619818877, 1.6235726082 

 C, 0, -5.5504557289, -3.5868856497, 1.5580322033 

 H, 0, -5.8763474665, -3.3765559067, 0.5523645428 

 C, 0, -5.9884969311, -4.4817395896, 2.5207419084 

 C, 0, -7.0481913246, -5.4925159587, 2.4872272462 

 C, 0, -7.811883059,  -5.6873461729, 1.3200239163 

 H, 0, -7.6017773652, -5.0774023556, 0.4445429211 

 C, 0, -8.8247705031, -6.636916497,  1.2564229902 

 H, 0, -9.3967536799, -6.7640401713, 0.3418944651 

 C, 0, -9.0956328773, -7.4249499226, 2.3841507837 

 H, 0, -9.8840545112, -8.1725476333, 2.3514705158 

 C, 0, -2.2798205925, -0.0426898118, 1.7305705789 

 C, 0, -3.0047030476, -0.9607077426, 2.4560669872 

 H, 0, -3.0078446681, -1.0213624779, 3.537127403 

 C, 0, -7.3338444276, -6.2981548287, 3.6189096132 

 C, 0, -8.3580860453, -7.2559833058, 3.5499569665 

 H, 0, -8.5511463383, -7.8558689143, 4.4343412798 

 C, 0, -1.4216376976, 1.0256142047, 2.2132020393 

 C, 0, -0.3617721391, 1.6362116196, 1.5739802038 

 S, 0, -1.6563755763, 1.7205504404, 3.8052924224 

 C, 0, 0.2640001616, 2.6480210109, 2.3573060003 
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 H, 0, -0.02616977,  1.3499752112, 0.5823302305 

 C, 0, -0.319462501,  2.8016290192, 3.5881734046 

 H, 0, 1.1173189512, 3.228511288,  2.0233227581 

 H, 0, -0.0449017059, 3.4857802524, 4.3805712917 

 

 

S3.14. Calculated Cartesian coordinates optimized using the B3LYP/6-31+G* geometry 
of neutral compound 3.4. 

 

%mem=512MB 

%chk=thioN3PhOHb.chk 

# opt freq b3lyp/6-31+g* geom=connectivity 

 

thioN3PhOH ligand 

 

 0 1 

 S, 0, 4.3616891718, 0.2254541074, -0.0079531351 

 O, 0, -0.0527305823, -5.4168955446, 4.8741393885 

 H, 0, 0.6309761575, -4.7085452154, 4.8115428184 

 N, 0, 2.2258552066, -2.2758622608, 2.1591882289 

 N, 0, 1.4536463036, -3.5462344158, 3.687462591 

 N, 0, 2.3140531387, -2.5930002956, 3.4704619065 

 C, 0, 3.320992405,  -1.1266299758, 0.2774537177 

 H, 0, 2.9868798369, -1.7446487783, -0.5443009734 

 C, 0, 3.0566612869, -1.2664634587, 1.6168319105 

 C, 0, 1.2900272583, -3.0454355558, 1.5373155658 
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 H, 0, 1.0490135011, -2.9267725136, 0.4934999682 

 C, 0, 0.7901000586, -3.8730859181, 2.5296537238 

 C, 0, -0.2395538868, -4.9142331146, 2.4897148946 

 C, 0, -0.8893579512, -5.2296730607, 1.2806204173 

 H, 0, -0.6142255135, -4.6898757832, 0.3775284057 

 C, 0, -1.8706670063, -6.211344441,  1.210166998 

 H, 0, -2.3541744041, -6.4324784585, 0.2630568117 

 C, 0, -2.2251083453, -6.9093652801, 2.3734697391 

 H, 0, -2.9902128964, -7.6805941244, 2.3357295735 

 C, 0, 4.44075709,  0.5864413392, 1.6869843858 

 H, 0, 5.0258145812, 1.4273920428, 2.0350586068 

 C, 0, 3.6995229318, -0.2843974162, 2.435024762 

 H, 0, 3.6026233954, -0.2491460336, 3.512492891 

 C, 0, -0.6086242218, -5.6300901721, 3.6570727191 

 C, 0, -1.6006202149, -6.6207357315, 3.5810536966 

 H, 0, -1.8594580809, -7.149753001,  4.4933976781 
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Table S3.1. Summary of Calculated Thermochemistry Values from Gaussian (B3LYP/6-
31+G*) for 3.1-3.4 in Hartree/Particle at T=289.15 K, P=1 Atm. 

 

 3.1 3.2 3.3 3.4 

εe -1460.39603295 -908.576926167 -1652.16397298 -1100.34493788 

εZPE 0.185492 0.138428 0.238733 0.191679 

Etot 0.200679 0.149062 0.256513 0.204885 

Hcorr 0.201623 0.150006 0.257457 0.205830 

Gcorr 0.138864 0.099539 0.189275 0.149604 

E0=εe+εZPE -1460.210541 -908.438498 -1651.925240 -1100.153259 

ET=εe+Etot -1460.195354 -908.427864 -1651.907460 -1100.140052 

HT=εe+Hcorr -1460.194410 -908.426920 -1651.906516 -1100.139108 

GT=εe+Gcorr -1460.257169 -908.477387 -1651.974698 -1100.195334 
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S3.15. Crystal data tables for compound 3.1, N09013b 

 

Table S3.2.  Crystal data and structure refinement for N09013b.   

      Identification code                n09013b  

      Empirical formula                  C11 H9 N3 O S2  

      Formula weight                     263.33  

      Temperature                        293(2) K  

      Wavelength                         0.71073 A  

      Crystal system, space group        Monoclinic,  P2(1)/c  

      Unit cell dimensions               a = 13.321(3) A   alpha = 90 deg.  

                                         b = 7.8902(16) A    beta = 92.32(3) deg.  

                                          c = 11.259(2) A   gamma = 90 deg.  

      Volume                              1182.4(4) A^3  

      Z, Calculated density             4,  1.479 Mg/m^3  

      Absorption coefficient            0.436 mm^-1  

      F(000)                              544  

      Crystal size                        0.25 x 0.15 x 0.10 mm  
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      Theta range for data collection    3.00 to 27.45 deg.  

      Limiting indices                   -17<=h<=17, -10<=k<=10, -14<=l<=14  

      Reflections collected / unique     4654 / 2679 [R(int) = 0.0355]  

      Completeness to theta = 27.45     99.4 %  

      Absorption correction              Semi-empirical from equivalents  

      Max. and min. transmission         0.9577 and 0.8989  

      Refinement method                 Full-matrix least-squares on F^2  

      Data / restraints / parameters    2679 / 0 / 155  

      Goodness-of-fit on F^2             1.033  

      Final R indices [I>2sigma(I)]      R1 = 0.0607, wR2 = 0.1546  

      R indices (all data)              R1 = 0.1086, wR2 = 0.1836  

      Largest diff. peak and hole        .423 and -.435 e.A^-3 

 

Table S3.3.  Atomic coordinates (x 10^4) and equivalent isotropic displacement 
parameters (A^2 x 10^3) for N09013b. U(eq) is defined as one third of the trace of the 
orthogonalized Uij tensor.  

         ________________________________________________________________  

                             x                  y                       z                U(eq)  

         ________________________________________________________________  

          S(1)     4211(1)        2631(2)        9614(1)        70(1)  

          C(1)       4998(3)        1519(4)        8753(3)       49(1)  

          C(2)       4451(3)         487(5)        7943(4)        60(1)  

          C(3)       3413(4)         654(6)        8110(5)        78(1)  

          C(4)       3187(3)        1741(6)        8950(4)        69(1)  

          S(2)      6850(1)         480(2)        8024(1)        64(1)  

          C(5)      6088(3)        1679(4)        8896(3)        46(1)  
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          C(6)     6645(3)        2639(4)        9679(3)        47(1)  

          C(7)     7687(3)        2385(4)        9567(3)        42(1)  

          C(8)      7912(3)        1234(5)        8692(3)        52(1)  

          O(1)      10496(2)        3697(3)       13358(2)        54(1)  

          N(1)      8432(2)        3195(3)       10294(2)        43(1)  

          N(2)      8368(2)        4874(4)       10532(3)        49(1)  

          N(3)       9174(2)        5259(4)       11203(3)        48(1)  

          C(10)    9282(3)        2530(4)       10810(3)        46(1)  

          C(11)   10691(3)        3914(5)       12135(3)        55(1)  

          C(9)     9751(3)        3851(4)       11377(3)        45(1)  

         ________________________________________________________________ 

 

Table S3.4.  Bond lengths [A] and angles [deg] for N09013b.  

           _____________________________________________________________  

            S(1)-C(4)                      1.683(5)  

            S(1)-C(1)                      1.701(4)  

            C(1)-C(2)                      1.404(5)  

            C(1)-C(5)                      1.460(5)  

            C(2)-C(3)                      1.409(6)  

            C(2)-H(2)                      0.9300  

            C(3)-C(4)                      1.321(6)  

            C(3)-H(3A)                     0.9300  

            C(4)-H(4)                      0.9300  

            S(2)-C(8)                      1.684(4)  

            S(2)-C(5)                      1.724(4)  
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            C(5)-C(6)                      1.360(5)  

            C(6)-C(7)                      1.413(5)  

            C(6)-H(6A)                     0.9300  

            C(7)-C(8)                      1.381(5)  

            C(7)-N(1)                      1.413(4)  

            C(8)-H(8)                      0.9300  

            O(1)-C(11)                     1.422(4)  

            O(1)-H(1A)                     0.8200  

            N(1)-N(2)                      1.355(4)  

            N(1)-C(10)                     1.356(4)  

            N(2)-N(3)                      1.323(4)  

            N(3)-C(9)                      1.361(4)  

            C(10)-C(9)                     1.361(5)  

            C(10)-H(10A)                   0.9300  

            C(11)-C(9)                     1.487(5)  

            C(11)-H(11A)                   0.9700  

            C(11)-H(11B)                  0.9700    

            C(4)-S(1)-C(1)                92.2(2)  

            C(2)-C(1)-C(5)               127.6(3)  

            C(2)-C(1)-S(1)               110.7(3)  

            C(5)-C(1)-S(1)               121.7(3)  

            C(1)-C(2)-C(3)               110.2(4)  

            C(1)-C(2)-H(2)               124.9  

            C(3)-C(2)-H(2)               124.9  

            C(4)-C(3)-C(2)               114.2(4)  
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            C(4)-C(3)-H(3A)              122.9  

            C(2)-C(3)-H(3A)              122.9  

            C(3)-C(4)-S(1)               112.7(3)  

            C(3)-C(4)-H(4)               123.7  

            S(1)-C(4)-H(4)               123.7  

            C(8)-S(2)-C(5)                93.14(18)  

            C(6)-C(5)-C(1)               129.4(3)  

            C(6)-C(5)-S(2)               110.9(3)  

            C(1)-C(5)-S(2)               119.7(3)  

            C(5)-C(6)-C(7)               112.0(3)  

            C(5)-C(6)-H(6A)              124.0  

            C(7)-C(6)-H(6A)              124.0  

            C(8)-C(7)-C(6)               113.6(3)  

            C(8)-C(7)-N(1)               122.8(3)  

            C(6)-C(7)-N(1)               123.6(3)  

            C(7)-C(8)-S(2)               110.4(3)  

            C(7)-C(8)-H(8)               124.8  

            S(2)-C(8)-H(8)               124.8  

            C(11)-O(1)-H(1A)             109.5  

            N(2)-N(1)-C(10)              110.6(3)  

            N(2)-N(1)-C(7)               120.5(3)  

            C(10)-N(1)-C(7)             128.9(3)  

            N(3)-N(2)-N(1)               106.3(3)  

            N(2)-N(3)-C(9)               109.6(3)  

            N(1)-C(10)-C(9)              105.3(3)  
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            N(1)-C(10)-H(10A)            127.3  

            C(9)-C(10)-H(10A)           127.3  

            O(1)-C(11)-C(9)              111.7(3)  

            O(1)-C(11)-H(11A)            109.3  

            C(9)-C(11)-H(11A)            109.3  

            O(1)-C(11)-H(11B)           109.3  

            C(9)-C(11)-H(11B)            109.3  

            H(11A)-C(11)-H(11B)          107.9  

            C(10)-C(9)-N(3)              108.1(3)  

            C(10)-C(9)-C(11)             130.9(3)  

            N(3)-C(9)-C(11)              120.9(3)  

           _____________________________________________________________  

           Symmetry transformations used to generate equivalent atoms: 

 

Table S3.5.  Anisotropic displacement parameters (A^2 x 10^3) for N09013b. The 
anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 U11 + ... + 2 
h k a* b* U12 ]  

   ________________________________________________________ 

               U11        U22        U33        U23        U13        U12 

    ________________________________________________________ 

    S(1)       62(1)      73(1)      77(1)      -6(1)      10(1)        9(1)  

    C(1)      50(2)      43(2)      53(2)       6(2)       3(2)         3(2)  

    C(2)      46(2)      61(2)      72(3)       -16(2)    -5(2)        2(2)  

    C(3)      60(3)      71(3)      102(4)     -4(3)      -14(3)     -2(2)  

    C(4)      45(2)      67(3)      96(3)       22(3)     5(2)         10(2)  

    S(2)       60(1)      72(1)      60(1)      -22(1)     9(1)         -3(1)  
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    C(5)      50(2)      43(2)      46(2)       4(2)      4(2)          2(2)  

    C(6)      54(2)      42(2)      44(2)       -4(2)     6(2)          3(2)  

    C(7)      44(2)      42(2)      41(2)       -1(2)     4(1)         -2(2)  

    C(8)      43(2)      63(2)      53(2)       -7(2)     14(2)        2(2)  

    O(1)      62(2)      52(2)      49(1)       0(1)      -5(1)         0(1)  

    N(1)      47(2)      38(2)      44(2)       -1(1)      5(1)         1(1)  

    N(2)      52(2)      39(2)      57(2)       -1(1)      3(2)         5(1)  

    N(3)      53(2)      39(2)      53(2)       0(1)       5(1)         0(1)  

    C(10)     48(2)     40(2)       50(2)       1(2)       5(2)         4(2)  

    C(11)     49(2)     58(2)       60(2)       2(2)       3(2)         -2(2)  

    C(9)      45(2)     47(2)       44(2)       5(2)       10(2)       -2(2)  

    ________________________________________________________ 

 

Table S3.6.  Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 
x 10^3) for N09013b.  

         ________________________________________________________________  

                          x              y              z            U(eq)  

         ________________________________________________________________  

          H(2)          4733           -206           7377           72  

          H(3A)         2929             51           7667           94  

          H(4)          2533           1989           9152           83  

          H(6A)         6372           3377          10224           56  

          H(8)          8559            921           8500           63  

          H(1A)        11027           3734          13752           82  

          H(10A)        9498           1410          10782           55  

          H(11A)       11143           3029          11889           66  
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          H(11B)       11020           4996          12025           66  

         ________________________________________________________________ 

 

Table S3.7.  Torsion angles [deg] for N09013b.  

         ________________________________________________________________  

          C(4)-S(1)-C(1)-C(2)                                  1.0(3)  

          C(4)-S(1)-C(1)-C(5)                                 -178.7(3)  

          C(5)-C(1)-C(2)-C(3)                                  178.2(4)  

          S(1)-C(1)-C(2)-C(3)                                   -1.5(5)  

          C(1)-C(2)-C(3)-C(4)                                    1.4(6)  

          C(2)-C(3)-C(4)-S(1)                                   -0.7(6)  

          C(1)-S(1)-C(4)-C(3)                                   -0.2(4)  

          C(2)-C(1)-C(5)-C(6)                                 -178.8(4)  

          S(1)-C(1)-C(5)-C(6)                                    0.8(5)  

          C(2)-C(1)-C(5)-S(2)                                   -1.3(5)  

          S(1)-C(1)-C(5)-S(2)                                  178.3(2)  

          C(8)-S(2)-C(5)-C(6)                                    0.2(3)  

          C(8)-S(2)-C(5)-C(1)                                 -177.8(3)  

          C(1)-C(5)-C(6)-C(7)                                  177.4(3)  

          S(2)-C(5)-C(6)-C(7)                                   -0.3(4)  

          C(5)-C(6)-C(7)-C(8)                                    0.3(4)  

          C(5)-C(6)-C(7)-N(1)                                 -178.4(3)  

          C(6)-C(7)-C(8)-S(2)                                   -0.2(4)  

          N(1)-C(7)-C(8)-S(2)                                  178.5(3)  

          C(5)-S(2)-C(8)-C(7)                                    0.0(3)  
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          C(8)-C(7)-N(1)-N(2)                                  136.5(4)  

          C(6)-C(7)-N(1)-N(2)                                  -45.0(5)  

          C(8)-C(7)-N(1)-C(10)                                 -41.4(5)  

          C(6)-C(7)-N(1)-C(10)                                 137.1(4)  

          C(10)-N(1)-N(2)-N(3)                                  -0.5(4)  

          C(7)-N(1)-N(2)-N(3)                                 -178.7(3)  

          N(1)-N(2)-N(3)-C(9)                                    0.9(4)  

          N(2)-N(1)-C(10)-C(9)                                  -0.2(4)  

          C(7)-N(1)-C(10)-C(9)                                 177.9(3)  

          N(1)-C(10)-C(9)-N(3)                                   0.7(4)  

          N(1)-C(10)-C(9)-C(11)                                177.3(3)  

          N(2)-N(3)-C(9)-C(10)                                  -1.1(4)  

          N(2)-N(3)-C(9)-C(11)                                -178.1(3)  

          O(1)-C(11)-C(9)-C(10)                                -91.8(4)  

          O(1)-C(11)-C(9)-N(3)                                  84.5(4)  

         ________________________________________________________________  

        Symmetry transformations used to generate equivalent atoms:   
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S3.16. Crystal data tables for compound 3.2, N09024b. 

 

Table S3.8.  Crystal data and structure refinement for N09024b.   

      Identification code                n09024b  

      Empirical formula                  C7 H7 N3 O S  

      Formula weight                    181.22  

      Temperature                       150(2) K  

      Wavelength                        0.71073 A  

      Crystal system, space group    Orthorhombic,  Pbca  

      Unit cell dimensions              a = 21.383(4) A   alpha = 90 deg.  

                                        b = 9.840(2) A    beta = 90 deg.  

                                          c = 7.4392(15) A   gamma = 90 deg.  

      Volume                              1565.3(5) A^3  

      Z, Calculated density              8,  1.538 Mg/m^3  

      Absorption coefficient             0.362 mm^-1  

      F(000)                              752  
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      Crystal size                        0.25 x 0.10 x 0.10 mm  

      Theta range for data collection    2.81 to 30.07 deg.  

      Limiting indices                   -30<=h<=30, -13<=k<=13, -10<=l<=10  

      Reflections collected / unique     8274 / 2296 [R(int) = 0.0365]  

      Completeness to theta = 30.07     99.6 %  

      Absorption correction              Semi-empirical from equivalents  

      Max. and min. transmission         0.9647 and 0.9150  

      Refinement method                  Full-matrix least-squares on F^2  

      Data / restraints / parameters     2296 / 0 / 123  

      Goodness-of-fit on F^2             1.078  

      Final R indices [I>2sigma(I)]      R1 = 0.0541, wR2 = 0.1567  

      R indices (all data)               R1 = 0.0716, wR2 = 0.1709  

      Extinction coefficient             0.022(6)    

      Largest diff. peak and hole        .608 and -.451 e.A^-3 

 

Table S3.9.  Atomic coordinates (x 10^4) and equivalent isotropic displacement 
parameters (A^2 x 10^3) for N09024b. U(eq) is defined as one third of the trace of the 
orthogonalized Uij tensor.  

         ________________________________________________________________  

                               x                  y                   z            U(eq)  

         ________________________________________________________________  

          S(1)          2486(1)        4584(1)        1903(2)        36(1)  

          C(2)          1697(1)        4878(5)        2098(8)        34(2)  

          C(4)          1737(2)        2873(6)         451(9)        30(2)  

          C(5)          2353(1)        3124(3)         694(5)        36(1)  

          S(1B)         2498(1)        3106(2)         664(3)        34(1)  
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          C(2B)         1714(2)        2726(14)        660(20)       25(3)  

          C(4B)         1748(4)        4813(14)       2120(20)       43(4)  

          C(5B)         2362(4)        4610(6)        1771(14)       34(1)  

          C(3)          1368(1)        3834(2)        1339(2)        29(1)  

          C(15)          297(1)        4547(2)        2334(2)        32(1)  

          C(7)          -909(1)        4404(2)        2650(3)        40(1)  

          N(1)           704(1)        3771(2)        1392(2)        29(1)  

          N(3)          -198(1)        2953(2)         813(2)        36(1)  

          N(2)           400(1)        2797(2)         470(2)        36(1)  

          C(6)          -279(1)        4024(2)        1958(2)        32(1)  

          O(1)         -1127(1)        3536(2)        3997(3)        74(1)  

         ________________________________________________________________ 

 

Table S3.10.  Bond lengths [A] and angles [deg] for N09024b.  

           _____________________________________________________________  

            S(1)-C(2)                      1.7178  

            S(1)-C(5)                      1.7182  

            C(2)-C(3)                      1.367(4)  

            C(2)-H(2)                      0.9500  

            C(4)-C(5)                      1.3522  

            C(4)-C(3)                      1.398(4)  

            C(4)-H(4)                      0.9500  

            C(5)-H(5)                     0.9500  

            S(1B)-C(5B)                    1.7182  

            S(1B)-C(2B)                    1.7186  
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            C(2B)-C(3)                     1.411(9)  

            C(2B)-H(2B)                    0.9500  

            C(4B)-C(5B)                    1.3524  

            C(4B)-C(3)                     1.388(11)  

            C(4B)-H(4B)                    0.9500  

            C(5B)-H(5B)                    0.9500  

            C(3)-N(1)                      1.421(2)  

            C(15)-N(1)                     1.353(2)  

            C(15)-C(6)                     1.364(3)  

            C(15)-H(15A)                   0.9500  

            C(7)-O(1)                      1.397(2)  

            C(7)-C(6)                      1.491(2)  

            C(7)-H(7A)                     0.9900  

            C(7)-H(7B)                     0.9900  

            N(1)-N(2)                      1.346(2)  

            N(3)-N(2)                      1.314(2)  

            N(3)-C(6)                      1.366(2)  

            O(1)-H(1A)                     0.8400  

            C(2)-S(1)-C(5)                91.3  

            C(3)-C(2)-S(1)               110.09(16)  

            C(3)-C(2)-H(2)               125.0  

            S(1)-C(2)-H(2)               125.0  

            C(5)-C(4)-C(3)               111.27(9)  

            C(5)-C(4)-H(4)               124.4  

            C(3)-C(4)-H(4)               124.4  
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            C(4)-C(5)-S(1)               112.6  

            C(4)-C(5)-H(5)               123.7  

            S(1)-C(5)-H(5)               123.7  

            C(5B)-S(1B)-C(2B)             91.3  

            C(3)-C(2B)-S(1B)             110.0(4)  

            C(3)-C(2B)-H(2B)             125.0  

            S(1B)-C(2B)-H(2B)            125.0  

            C(5B)-C(4B)-C(3)             112.62(18)  

            C(5B)-C(4B)-H(4B)            123.7  

            C(3)-C(4B)-H(4B)             123.7  

            C(4B)-C(5B)-S(1B)            112.6  

            C(4B)-C(5B)-H(5B)            123.7  

            S(1B)-C(5B)-H(5B)            123.7  

            C(2)-C(3)-C(4B)                5.3(5)  

            C(2)-C(3)-C(4)               114.41(14)  

            C(4B)-C(3)-C(4)              109.7(2)  

            C(2)-C(3)-C(2B)              117.33(18)  

            C(4B)-C(3)-C(2B)             112.3(3)  

            C(4)-C(3)-C(2B)                8.9(11)  

            C(2)-C(3)-N(1)               122.37(14)  

            C(4B)-C(3)-N(1)              127.1(2)  

            C(4)-C(3)-N(1)               123.17(14)  

            C(2B)-C(3)-N(1)              119.93(17)  

            N(1)-C(15)-C(6)              105.18(15)  

            N(1)-C(15)-H(15A)            127.4  
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            C(6)-C(15)-H(15A)            127.4  

            O(1)-C(7)-C(6)               113.30(16)  

            O(1)-C(7)-H(7A)              108.9  

            C(6)-C(7)-H(7A)              108.9  

            O(1)-C(7)-H(7B)              108.9  

            C(6)-C(7)-H(7B)              108.9  

            H(7A)-C(7)-H(7B)             107.7  

            N(2)-N(1)-C(15)              110.78(14)  

            N(2)-N(1)-C(3)               119.99(14)  

            C(15)-N(1)-C(3)              129.17(15)  

            N(2)-N(3)-C(6)               109.49(15)  

            N(3)-N(2)-N(1)               106.78(14)  

            C(15)-C(6)-N(3)              107.77(15)  

            C(15)-C(6)-C(7)              130.66(18)  

            N(3)-C(6)-C(7)               121.51(17)  

            C(7)-O(1)-H(1A)              109.5  

           _____________________________________________________________  

           Symmetry transformations used to generate equivalent atoms: 

 

Table S3.11.  Anisotropic displacement parameters (A^2 x 10^3) for N09024b. The 
anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 U11 + ... + 2 
h k a* b* U12 ]  

_______________________________________________________________________  

               U11        U22        U33        U23        U13        U12  

    
_______________________________________________________________________  
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    S(1)      27(1)      35(1)      47(1)      -2(1)       1(1)       -4(1)  

    C(2)      25(2)      31(3)      46(4)      -1(3)       5(2)       -3(2)  

    C(4)      34(2)      29(2)      27(2)      1(2)        3(1)      1(2)  

    C(5)      27(1)      35(1)      47(1)      -2(1)       1(1)       -4(1)  

    S(1B)     28(1)      37(1)      37(1)      4(1)        -1(1)    -1(1)  

    C(2B)     22(4)      28(5)      26(4)      11(4)      1(3)       -3(3)  

    C(4B)     46(6)      28(7)      55(10)    -6(6)      -22(6)    3(5)  

    C(5B)     28(1)      37(1)      37(1)      4(1)       -1(1)      -1(1)  

    C(3)      27(1)      30(1)      30(1)      3(1)       -1(1)       -1(1)  

    C(15)     32(1)      30(1)      32(1)      -3(1)       3(1)      1(1)  

    C(7)      33(1)      39(1)      46(1)      4(1)        5(1)     6(1)  

    N(1)      28(1)      28(1)      31(1)      -1(1)       -1(1)    0(1)  

    N(3)      28(1)      35(1)      46(1)      -6(1)       0(1)      0(1)  

    N(2)      28(1)      34(1)      48(1)      -10(1)     0(1)       -1(1)  

    C(6)      31(1)      29(1)      35(1)      2(1)        1(1)      2(1)  

    O(1)      32(1)      120(2)    70(1)      51(1)      18(1)    23(1)  

    
_______________________________________________________________________ 

 

Table S3.12.  Hydrogen coordinates (x 10^4) and isotropic displacement parameters 
(A^2 x 10^3) for N09024b.  

         ________________________________________________________________  

                             x                y               z            U(eq)  

         ________________________________________________________________  

          H(2)          1516          5653          2653          41  

          H(4)          1576          2138          -235           36  
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          H(5)          2677          2556          246            44  

          H(2B)         1538          1891          262            31  

          H(4B)         1594          5546          2826          52  

          H(5B)         2682          5230          2101          41  

          H(15A)         393            5295          3094          38  

          H(7A)         -892           5342          3130          47  

          H(7B)        -1210         4398          1639          47  

          H(1A)        -1482         3793          4338          111  

         ________________________________________________________________ 

 

Table S3.13.  Torsion angles [deg] for N09024b.  

         ________________________________________________________________  

          C(5)-S(1)-C(2)-C(3)                                    3.4(4)  

          C(3)-C(4)-C(5)-S(1)                                   -3.3(4)  

          C(2)-S(1)-C(5)-C(4)                                    0.0  

          C(5B)-S(1B)-C(2B)-C(3)                                 6.2(11)  

          C(3)-C(4B)-C(5B)-S(1B)                                -6.4(12)  

          C(2B)-S(1B)-C(5B)-C(4B)                             0.0  

          S(1)-C(2)-C(3)-C(4B)                                  21(11)  

          S(1)-C(2)-C(3)-C(4)                                   -6.0(8)  

          S(1)-C(2)-C(3)-C(2B)                                   3.4(8)  

          S(1)-C(2)-C(3)-N(1)                                  176.5(2)  

          C(5B)-C(4B)-C(3)-C(2)                               -152(13)  

          C(5B)-C(4B)-C(3)-C(4)                                  2.2(11)  

          C(5B)-C(4B)-C(3)-C(2B)                                11(2)  
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          C(5B)-C(4B)-C(3)-N(1)                               -177.8(5)  

          C(5)-C(4)-C(3)-C(2)                                    6.1(8)  

          C(5)-C(4)-C(3)-C(4B)                                   3.6(7)  

          C(5)-C(4)-C(3)-C(2B)                                -105(3)  

          C(5)-C(4)-C(3)-N(1)                                 -176.4(2)  

          S(1B)-C(2B)-C(3)-C(2)                                 -9.3(13)  

          S(1B)-C(2B)-C(3)-C(4B)                               -11(2)  

          S(1B)-C(2B)-C(3)-C(4)                                 63.7(17)  

          S(1B)-C(2B)-C(3)-N(1)                                177.4(5)  

          C(6)-C(15)-N(1)-N(2)                                  -0.3(2)  

          C(6)-C(15)-N(1)-C(3)                                -177.53(16)  

          C(2)-C(3)-N(1)-N(2)                                  173.2(4)  

          C(4B)-C(3)-N(1)-N(2)                                 175.9(11)  

          C(4)-C(3)-N(1)-N(2)                                   -4.0(5)  

          C(2B)-C(3)-N(1)-N(2)                                 -13.8(10)  

          C(2)-C(3)-N(1)-C(15)                                  -9.8(4)  

          C(4B)-C(3)-N(1)-C(15)                                 -7.1(11)  

          C(4)-C(3)-N(1)-C(15)                                 173.0(4)  

          C(2B)-C(3)-N(1)-C(15)                                163.2(10)  

          C(6)-N(3)-N(2)-N(1)                                   -0.2(2)  

          C(15)-N(1)-N(2)-N(3)                                   0.3(2)  

          C(3)-N(1)-N(2)-N(3)                                  177.80(14)  

          N(1)-C(15)-C(6)-N(3)                                   0.2(2)  

          N(1)-C(15)-C(6)-C(7)                                 177.08(18)  

          N(2)-N(3)-C(6)-C(15)                                   0.0(2)  
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          N(2)-N(3)-C(6)-C(7)                                 -177.25(17)  

          O(1)-C(7)-C(6)-C(15)                                -100.5(3)  

          O(1)-C(7)-C(6)-N(3)                                   76.0(2)  

         ________________________________________________________________  

         Symmetry transformations used to generate equivalent atoms: 

 

S3.17. Crystal data tables for compound 3.4, B09049a. 

 

Table S3.14.  Crystal data and structure refinement for B09049a.   

      Identification code                b09049a  

      Empirical formula                  C12 H9 N3 O S  

      Formula weight                     243.29  

      Temperature                        150(2) K  

      Wavelength                         0.71073 A  

      Crystal system, space group        Monoclinic,  P2(1)/c  
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      Unit cell dimensions               a = 16.8378(18) A   alpha = 90 deg.  

                                          b = 5.0024(5) A    beta = 98.840(3) deg.  

                                          c = 13.1719(13) A   gamma = 90 deg.  

      Volume                              1096.28(19) A^3  

      Z, Calculated density              4,  1.486 Mg/m^3  

      Absorption coefficient             0.280 mm^-1  

      F(000)                              512  

      Crystal size                        0.20 x 0.08 x 0.05 mm  

      Theta range for data collection    2.45 to 25.00 deg.  

      Limiting indices                   -19<=h<=19, -5<=k<=5, -8<=l<=15  

      Reflections collected / unique     6400 / 1898 [R(int) = 0.0348]  

      Completeness to theta = 25.00     98.5 %  

      Absorption correction              Semi-empirical from equivalents  

      Max. and min. transmission         0.9861 and 0.9461  

      Refinement method                  Full-matrix least-squares on F^2  

      Data / restraints / parameters     1898 / 0 / 155  

      Goodness-of-fit on F^2             1.040  

      Final R indices [I>2sigma(I)]      R1 = 0.0432, wR2 = 0.1021  

      R indices (all data)               R1 = 0.0659, wR2 = 0.1111  

      Largest diff. peak and hole        0.257 and -0.258 e.A^-3 

 

Table S3.15.  Atomic coordinates (x 10^4) and equivalent isotropic displacement 
parameters (A^2 x 10^3) for B09049a. U(eq) is defined as one third of the trace of the 
orthogonalized Uij tensor.  

         ________________________________________________________________  

                              x                   y                  z              U(eq)  
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         ________________________________________________________________  

          S(1)          4127(1)       11901(2)        2358(1)       37(1)  

          O(1)         2002(1)         716(4)        6097(1)       43(1)  

          N(1)         3121(1)        6821(4)        4019(1)       23(1)  

          N(2)         2792(1)        4329(5)        5198(2)       30(1)  

          N(3)         3281(1)        6266(5)        5035(2)       30(1)  

          C(1)         3514(2)        9303(5)        2578(2)       29(1)  

          C(2)         3566(2)        8829(5)        3602(2)       25(1)  

          C(3)         2531(2)        5236(5)        3544(2)       24(1)  

          C(4)         2314(2)        3624(5)        4298(2)       25(1)  

          C(5)         1714(2)        1519(5)        4259(2)       25(1)  

          C(6)         1253(2)         784(6)        3326(2)       29(1)  

          C(7)         682(2)       -1195(6)        3276(2)       35(1)  

          C(8)         555(2)       -2499(6)        4161(2)       37(1)  

          C(9)         4464(2)       12326(6)        3638(2)       28(1)  

          C(10)       4106(2)       10549(5)        4222(2)       29(1)  

          C(11)       1579(2)         156(6)        5152(2)       30(1)  

          C(12)       1006(2)       -1829(6)        5092(2)       38(1)  

         ________________________________________________________________ 

 

Table S3.16.  Bond lengths [A] and angles [deg] for B09049a.  

           _____________________________________________________________  

            S(1)-C(9)                      1.707(3)  

            S(1)-C(1)                      1.711(3)  

            O(1)-C(11)                     1.365(3)  
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            O(1)-H(1)                      0.8400  

            N(1)-C(3)                      1.348(3)  

            N(1)-N(3)                      1.353(3)  

            N(1)-C(2)                      1.414(3)  

            N(2)-N(3)                      1.310(3)  

            N(2)-C(4)                      1.373(3)  

            C(1)-C(2)                      1.359(3)  

            C(1)-H(1A)                     0.9500  

            C(2)-C(10)                     1.416(4)  

            C(3)-C(4)                      1.371(3)  

            C(3)-H(3)                      0.9500  

            C(4)-C(5)                      1.455(4)  

            C(5)-C(6)                      1.398(4)  

            C(5)-C(11)                     1.408(4)  

            C(6)-C(7)                      1.375(4)  

            C(6)-H(6)                      0.9500  

            C(7)-C(8)                      1.381(4)  

            C(7)-H(7)                      0.9500  

            C(8)-C(12)                     1.380(4)  

            C(8)-H(8)                      0.9500  

            C(9)-C(10)                     1.374(4)  

            C(9)-H(9)                      0.9500  

            C(10)-H(10)                    0.9500  

            C(11)-C(12)                    1.379(4)  

            C(12)-H(12)                    0.9500  
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   C(9)-S(1)-C(1)                92.61(13)  

            C(11)-O(1)-H(1)              109.5  

            C(3)-N(1)-N(3)               111.1(2)  

            C(3)-N(1)-C(2)               129.3(2)  

            N(3)-N(1)-C(2)               119.6(2)  

            N(3)-N(2)-C(4)               110.4(2)  

            N(2)-N(3)-N(1)               106.17(19)  

            C(2)-C(1)-S(1)               110.6(2)  

            C(2)-C(1)-H(1A)              124.7  

            S(1)-C(1)-H(1A)              124.7  

            C(1)-C(2)-N(1)               123.6(2)  

            C(1)-C(2)-C(10)              113.8(2)  

            N(1)-C(2)-C(10)              122.6(2)  

            N(1)-C(3)-C(4)               105.6(2)  

            N(1)-C(3)-H(3)               127.2  

            C(4)-C(3)-H(3)               127.2  

            C(3)-C(4)-N(2)               106.8(2)  

            C(3)-C(4)-C(5)               131.4(2)  

            N(2)-C(4)-C(5)               121.9(2)  

            C(6)-C(5)-C(11)              117.9(2)  

            C(6)-C(5)-C(4)               120.7(2)  

            C(11)-C(5)-C(4)              121.4(2)  

            C(7)-C(6)-C(5)               121.4(3)  

            C(7)-C(6)-H(6)               119.3  

            C(5)-C(6)-H(6)               119.3  
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            C(6)-C(7)-C(8)               119.8(3)  

            C(6)-C(7)-H(7)               120.1  

            C(8)-C(7)-H(7)               120.1  

            C(12)-C(8)-C(7)              120.0(3)  

            C(12)-C(8)-H(8)              120.0  

            C(7)-C(8)-H(8)               120.0  

            C(10)-C(9)-S(1)              111.3(2)  

            C(10)-C(9)-H(9)              124.3  

            S(1)-C(9)-H(9)               124.3  

            C(9)-C(10)-C(2)              111.6(2)  

            C(9)-C(10)-H(10)             124.2  

            C(2)-C(10)-H(10)             124.2  

            O(1)-C(11)-C(12)             117.6(2)  

            O(1)-C(11)-C(5)              122.3(2)  

            C(12)-C(11)-C(5)             120.1(2)  

            C(11)-C(12)-C(8)             120.7(3)  

            C(11)-C(12)-H(12)            119.6  

            C(8)-C(12)-H(12)             119.6  

           _____________________________________________________________  

           Symmetry transformations used to generate equivalent atoms:             

 

Table S3.17.  Anisotropic displacement parameters (A^2 x 10^3) for B09049a. The 
anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 U11 + ... + 2 
h k a* b* U12 ]  

_______________________________________________________________________  

                U11        U22        U33        U23        U13        U12  
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_______________________________________________________________________  

    S(1)     48(1)      34(1)      29(1)       4(1)      10(1)       0(1)  

    O(1)     59(2)      53(1)      17(1)       2(1)       1(1)     -21(1)  

    N(1)     28(1)      27(1)      13(1)       0(1)       0(1)       2(1)  

    N(2)     38(1)      34(1)      18(1)      -1(1)       0(1)      -7(1)  

    N(3)     39(1)      34(1)      15(1)       0(1)      -2(1)      -3(1)  

    C(1)     38(2)      26(2)      23(1)       0(1)       2(1)       1(1)  

    C(2)     30(2)      24(1)      22(1)       0(1)       4(1)       6(1)  

    C(3)     29(2)      27(2)      14(1)      -2(1)       0(1)       5(1)  

    C(4)     29(2)      29(2)      14(1)      -2(1)      -1(1)       6(1)  

    C(5)     30(2)      26(2)      21(1)      -2(1)       4(1)       2(1)  

    C(6)     32(2)      33(2)      21(1)       2(1)      -2(1)       4(1)  

    C(7)     33(2)      36(2)      31(2)      -3(1)      -7(1)       0(1)  

    C(8)     31(2)      37(2)      42(2)      -2(1)       5(1)      -8(1)  

    C(9)     24(2)      30(2)      28(1)      -1(1)      -1(1)      -1(1)  

    C(10)   29(2)      33(2)      23(1)      -1(1)       0(1)       3(1)  

    C(11)   37(2)      33(2)      20(1)      -3(1)       3(1)       0(1)  

    C(12)   44(2)      42(2)      28(2)       2(1)      10(1)     -6(2)  

    
_______________________________________________________________________  

 

Table S3.18.  Hydrogen coordinates (x 10^4) and isotropic displacement parameters 
(A^2 x 10^3) for B09049a.  

         ________________________________________________________________  

                            x                 y              z              U(eq)  
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         ________________________________________________________________  

          H(1)          2317           1994           6048          65  

          H(1A)         3184           8328           2056          35  

          H(3)          2311           5236           2835          28  

          H(6)          1337           1671           2714          35  

          H(7)           376          -1665           2634          42  

          H(8)           157          -3856           4130          44  

          H(9)          4851          13624           3911          33  

          H(10)         4208          10483           4951          35  

          H(12)          920          -2746           5697          45  

         ________________________________________________________________ 
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Appendix III. Chapter 4: Electrochemiluminescence of Iridium(III) 

Complexes 

 

Chapter 4.1: Bright Electrochemiluminescence of Iridium(III) Complexes 

Synthesis of [(C^N)2Ir(N^N)]+PF6
⁻ Complexes 4.1-4.4 

 

The synthesis and characterization have been published in a previous report.1 

 

Electrochemical and Photophysical Data Summary 

A brief summary of the electrochemical and photophysical data is given below. 

Table S4.1. Electrochemical Properties of 4.1-4.4a1. 

Compound E1/2, ox ∆Ep ∆E E1/2, red ∆Ep 

4.1 1.28 V 69 mV 2.75 V -1.47 V 78 mV 

4.2 1.26 V 84 mV 2.82 V -1.56 V 84 mV 

4.3 1.61 V 105 mV 3.01 V -1.40 V 69 mV 

4.4 1.60 V 96 mV 3.09 V -1.49 V 75 mV 

a Measured in acetonitrile (ca. 1.5 mM) with NBu4PF6 (ca. 0.1 M) as supporting 
electrolyte. Potentials (V) are reported vs. SCE standard electrode and were calibrated 
using an internal standard Fc/Fc+ redox couple (0.40 V in ACN).2 
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Table S4.2. Photophysical Properties of 4.1-4.41. 

Compound Photoluminescence (PL, λmax)a PL Quantum yield (φ)b 

4.1 580 nm 25.1 

4.2 575 nm 34.6 

4.3 514 nm 73.1 

4.4 498 nm 79.7 

a Measured in acetonitrile at 298 K. b Measured at 298 K using Ru(bpy)3(PF6)2 φ = 9.5 
%3 in ACN. 

 

Supplementary Cyclic Voltammetry Data 

 

Figure S4.1. CV of 4.4 with varying scan rate from 0.06 V/s to 0.18 V/s. 
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Figure S4.2. CV of [Ru(bpy)3](PF6)2 with varying scan rate from 0.04 V/s to 0.20 V/s. 

 

Figure S4.3. Plot of anodic peak current, ipa, of 4.4 against ν1/2 (ν = scan rate). 

 



 

 

230 

 

Figure S4.4. Plot of cathodic peak current, ipc, of 4.4 against ν1/2 (ν = scan rate). 

 

 

Figure S4.5. Plot of anodic peak current, ipa, of [Ru(bpy)3](PF6)2 against ν1/2 (ν = scan 
rate). 
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Figure S4.6. Plot of cathodic peak current, ipc, of [Ru(bpy)3](PF6)2 against ν1/2 (ν = scan 
rate). 

 

Cyclic Voltammograms and ECL-Voltage Curves in the Co-reactant Path 

 

Figure S4.7. Cyclic voltammograms (dotted lines) overlaid with the ECL-voltage curves 
(solid lines) of compounds a) 4.1, b) 4.2, c) 4.3, and d) 4.4, in the co-reactant path. 
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Supplementary Video and Photograph 

Please see the video in the ESI of complex 4.3 emitting green light 

electrochemically when pulsing between its oxidation and reduction potentials at the 

working electrode.4 In addition, please refer to the photograph of the electrochemical cell 

with complex 4.3 in solution illuminated by UV light, Figure S4.8. 

 

Figure S4.8. Electrochemical cell with complex 4.3 in solution illuminated by UV light. 
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Appendix IV. Chapter 5: Mechanistic Insight into Electrochemiluminescence of 

Iridium(III) Complexes via Spooling Spectroscopy 

 

Chapter 5.1: Blue Strongly Luminescent Cationic Iridium(III) Complexes with an 

Electron-Rich Ancillary Ligand: Evaluation of Their Optoelectronic and 

Electrochemiluminescence Properties 

 

ECL Spectra 

 

Figure S5.1. ECL spectra of complexes a) 5.1, b) 5.2, c) 5.3, d) 5.4, e) 5.5, and f) 5.6, in 

ACN. 
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Chapter 5.2: Self-Enhanced Electrochemiluminescence of an Iridium(III) Complex: 

Mechanistic Insight 

 

Electrochemical and Spectroscopic Data 

 

Figure S5.2. DPV of 5.2 from -2.10 V to 2.42 V and from 2.42 V to -2.10 V. 
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Figure S5.3. a) 2 cycles of ECL spooling spectra of 5.2, one complete cycle started from 
0.00 V to -2.10 V to 2.42 V and back to 0.00 V, scan rate of 0.1 V/s, time = 145 s for 2 
cycles; Colors are coded in the same way as in Figure 1. b) Zoomed-in ECL spooling 
spectra in the first cycle in (a). c) Zoomed–in ECL spooling spectra in the second cycle in 
(a) showing the same pattern of evolution and devolution of ECL as in the first cycle in 
(b). 
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Figure S5.4. Curve-fitting of ECL spooling spectra of 5.2 in the first cycle of potential 
scanning; a) ECL onset curve fit at 1.20 V, 543 nm in black; b) first excited species curve 
fit at 1.40 V, 543 nm in black; c) second excited species curve fit to two peaks at 1.70 V, 
543 nm and 608 nm in black; d) third excited species curve fit to three peaks at 1.90 V to 
2.20 V, 543 nm, 608 nm and 651 nm in black. The actual spectra are shown in pink and 
the average of the curve fitted peaks are shown in blue. 
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Figure S5.5. Curve-fitting of ECL spooling spectra decay of 5.2 (in black in Figure 2a); 
a) at 2.30 V; b) at 2.40 V; c) at 2.30 V, scan direction has changed to that moving 
towards negative potential now; d) at 2.20 V; e) at 2.10 V. The ECL intensity of curves 
fitted to 543 nm, 608 nm, and 651 nm decrease in all cases once past the point at which 
the radical cations are generated. The actual spectra are shown in pink and the average of 
the curve fitted peaks are shown in blue. 
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Figure S5.6. Extra CVs with ECL-voltage curves overlaid of complex 5.2 (dotted line in 
pink from 0.00 V to -2.10 V to 1.60 V and back to 0.00 V, dashed line in purple up to 
2.00 V, and solid line in green until 2.42 V, scan rate of 0.1 V/s). 
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Chapter 5.3: Electrochemiluminescence of Heterometallic Ruthenium(II)-

Iridium(III) Soft Salts 

 

Electrochemical and ECL Data 

Table S5.1. Electrochemical and ECL dataa 

Complex E1/2/V ∆Eredox/eV λmax(ECL)/nm 

[Ru]Cl2 -1.45; 1.11 2.56 638 

TBA[Ir] -2.32; 0.98b 3.30 517 

[Ir][Ru][Ir] -2.60; -2.33; -1.86;  
-1.61; -1.45; 0.97b; 

1.14b 

2.42 634 

a CVs were recorded in dry, nitrogen purged ACN using 0.1 M TBAPF6 as the 
supporting electrolyte. Potentials are reported in V vs. SCE and were calibrated using an 
Fc+/Fc internal standard (0.38 V in ACN).1 b Irreversible, Ea is reported; c Partially 
reversible. d Annihilation ECL spectral data. 
 

ECL Mechanism 

 

 

Scheme S5.1. ECL mechanism for generation of [Ru]2+* excited species 
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ECL Spooling Spectroscopy 

 

Figure S5.7. ECL spooling spectra of [Ir][Ru][Ir] soft salt with an extended potential 
window showing the first oxidation of Ru moiety until the second reduction of Ir moiety 
(evolution of ECL in pink and devolution of ECL in purple) for two complete cycles with 
a scan rate of 0.1 V/s, inset: evolution of ECL in pink and devolution of ECL in purple. 
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Figure S5.8. ECL spooling spectra of 1:2 [Ru]Cl2:TBA[Ir] mixture solution with an 
extended potential window showing the first oxidation of Ru moiety until the second 
reduction of Ir moiety (evolution of ECL in pink and devolution of ECL in purple) for a) 
one complete cycle, inset: evolution of ECL in pink and devolution of ECL in purple, and 
b) two complete cycles, with a scan rate of 0.1 V/s. 
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Figure S5.9. ECL spooling spectra of [Ir][Ru][Ir] soft salt with 0.02 M TPrA co-
reactant between 0.00 V to 1.52 V with a scan rate of 0.1 V/s for two complete cycles 
(evolution of ECL in pink and devolution of ECL in purple). 
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Appendix V. Chapter 6: Sensitive Detection of Au25 Clusters by 

Electrochemiluminescence 

 

Chapter 6.1: Interrogating Near-Infrared Electrogenerated Chemiluminescence of 

Au25(SC2H4Ph)18
+ Clusters 

 

Synthesis and Characterization of Au25(SC2H4Ph)18
+ (z = -1 and +1) Clusters 

Chemicals. Hydrogen tetrachloroaurate trihydrate (Aldrich, 99.9%), 
phenylethanethiol (Aldrich, 98%), tetra-n-octylammonium bromide (Aldrich, 98%), 
sodium borohydride (Aldrich, 99%), hydrogen peroxide (Caledon, 30%), sodium 
hydroxide (Caledon, 99%), tetrahydrofuran (THF) (Caledon, 99.9%), pentafluorobenzoyl 
chloride (Alfa Aesar, 99%), methanol (Caledon, 99.8%), dichloromethane (Caledon), 
chloroform (Caledon, 99.8%), ethanol (Caledon, 99.8%), and acetonitrile (Caledon) were 
used as received. Deuterated chloroform and dichloromethane was furnished by 
Cambridge Isotope Laboratories. 

Instrumentation for Synthesis Characterization. UV-visible spectra were 
recorded using a Varian Cary 5000 spectrophotometer. 1H and 19F NMR spectra were 
recorded on a Mercury and Inova 400 spectrometers (1H: 400 MHz and 19F: 376 MHz) in 
CD2Cl2 or CDCl3 to follow the completion of Au25

- to Au25
+ reaction and in d-

chloroform to characterize the final product of bis(pentafluorobenzyl) peroxide. 

An AB Applied Biosystem mass spectrometer (4700 Proteomics Analyzer) was 
employed to obtain the MALDI-TOF spectra. The sample was prepared by mixing 
0.2:1000 analyte:matrix ratio. Then, 7 μL of the mixture was casted on the target plate 
and air dried.1 ESI mass spectra were recorded on MicrOTOF (Bruker) in CH2Cl2/ 
MeOH solvent mixture in the presence of cesium iodide electrolyte. 

Synthesis of TOA·Au25(SC2H4Ph)18. TOA·Au25(SC2H4Ph)18 (Au25
-) has been 

synthesized with some modification on the methods introduced by Murray2 and Maran.3,4 
Briefly, 1.02 g (2.54 mmol) HAuCl4.3H2O and 1.66 g (3.04 mmol) tetraoctylammonium 
bromide (TOABr) were dissolved in 100 mL THF. The dark red solution was put in the 
ice-bath for 30 min and then 2.1 mL (15.67 mmol) of phenylethane thiol was added one 
drop at a time over 10 minutes. Meanwhile, the color of mixture turned yellowish while 
the ice bath was kept for 2 hours. The solution was heated up to room temperature and 
led to a colorless solution after 3 hours. At this point, the ice bath was put back and 0.998 
g (26.69 mmol) NaBH4, dissolved in 20 mL of ice cold distilled water was added to the 
mixture quickly under vigorous stirring. A dark solution formed with the addition of the 
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reducing agent. The solution was gravity filtered and the solvent volume was vacuum 
evaporated. The residual was settled down overnight. The excess of NaBH4 and 
phenylethane thiol was removed by washing the crude sample with Water/EtOH mixture. 
The final product was extracted from -(Au-S-Au-S)-oligomer using acetonitrile to get an 
oily product which then recrystallized to obtained a dark-brown needle crystals. The 
purity and crystal structure were checked by different spectroscopic techniques, such as 
UV-vis,2,3 1HNMR,3 X-ray crystallography5,6 and ESI-Mass. 

Synthesis of Bis(pentafluorobenzoyl) Peroxide. To convert Au25
- to its 

corresponding oxidized form, Au25
+, bis(pentafluorobenzoyl) peroxide was used as 

oxidizing agent. Recently, Maran’s group showed that this compound is able to react with 
Au25

- and Au25
0 and produce the same mono-dispersed nanocluster.3 Synthesis of 

bis(pentafluorobenzoyl) peroxide (1) was performed by following Barson’s7 procedure 
with some modification. Then, the purity of the sample was checked by TLC (15:1 
petroleum ether/ ethyl acetate) and 19FNMR (-133.74, -143.30, -158.15 ppm in CDCl3).3 
No explosion was observed during the peroxide preparation and the sample was kept in 
the freezer to prevent decomposition. 

Conversion of Au25
- to Au25

+. Maran and co-workers3 have discussed that upon 
addition of the peroxide (1) to the Au25(SC2H4Ph)18

- an oxidation reaction can happen 
via electron transfer between the nanocluster and the peroxide (1) which leads to 
formation Au25(SC2H4Ph)18

– C6F5CO2
+ cluster. In our work, the same methodology has 

been applied to get “1+” monodispersed cluster. Briefly, 1 mmol of crystallized Au25
- 

was prepared in d2-dichloromathane in an NMR tube and 1HNMR spectrum was 
recorded. Then 2 mmol of (1) (d2-dichloromathane) was added 1HNMR and UV-vis 
spectra have been taken to monitor the reaction completion and purity of the final 
product. MALDI-TOF mass spectrum also proved that the original nanocluster exist over 
the course of reaction. To run the MALDI experiment, the sample was mixed with trans-
2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]-malononitrile (DCTB), applying 
1000/0.2 ratio of matrix/analyte and 7 mL of the prepared sample was placed on the 
target plate, dried at room temperature. The laser intensity was kept as low as possible to 
have a good signal to noise ratio, although some fragmentation observed among the 
sample analysis. 
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Figure S6.1. 1H NMR spectrum of recrystallized TOA·Au25(SC2H4Ph)18 in CD2Cl2. 

 

 

Figure S6.2. ESI mass spectrum of TOA·Au25(SC2H4Ph)18, taken in CH2Cl2/MeOH 
mixture. 

 

 

 



 

 

254 

 

Table S6.1. X-ray crystallography data of TOA·Au25(SC2H4Ph)18. 

 

 A b C Α β γ V(A0)3 T 
(K) 

This 
work 

16.16 17.43 18.70 

 

106.39 105.47 90.99 4845 

 

 150 

Murray 
et al. 

2008 

16.1114 17.3313 18.5810 106.269 105.494 90.959 4776.1 99 

Jin et al. 
2009 

16.234 17.395 18.697 106.349 105.659 90.859 4855 123 

 

 

Figure S6.3. UV-vis spectrum of recrystallized Au25(SC2H4Ph)18
+ C6F5CO2

- in CH2Cl2. 

 



 

 

255 

 

Figure S6.4. UV-vis spectrum using energy (eV) as x axis for recrystallized 
Au25(SC2H4Ph)18

+ C6F5CO2
- in CH2Cl2. 

 

 

 

Figure S6.5. 1H NMR spectrum of Au25(SC2H4Ph)18
+ C6F5CO2

-, CD2Cl2, after in situ 
addition of bis(pentafluorobenzoyl) peroxide. 
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Figure S6.6. MALDI spectrum of Au25(SC2H4Ph)18
+ C6F5CO2

-, 1000:0.2 
matrix/analyte, negative reflector mode. 

 

ECL Data 

 

Figure S6.7. The iDus CCD camera response curve (BR-DD, red).  

 



 

 

257 

 
Figure S6.8. a) CV with BPO during two cycles of applied potential sweeping from 0.04 
to -1.86 V then back to 0.04 V. b) A typical accumulated ECL spectrum of the same 
coreactant solution and CV collected over 80 s, two cycles, when scanning the potential 
between 0.04 to -1.86 V at a scan rate of 0.1 V/s. c) Spooled ECL spectra of Au25

+ 
clusters with BPO during a sweep of the applied potential from 0.04 to -1.86 V then back 
to 0.04 V, for two cycles. Each spectrum was acquired for 1 s using an i-DUS NIR CCD 
camera cooled to -75 °C. 

 

PL Spectroscopy 

 

Figure S6.9. Photoluminescence of a Au25
− 1:1 benzene/acetonitrile solution using a 

R928 PMT detector in wavelength range between 600 and 900 nm (red), and an InGaAs 
detector between 700 and 1600 nm (blue). The sample was excited at 480 nm. 
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Figure S6.10. The spectral response curve, 562U for Hamamatsu R928 PMT used in our 
PL spectrometer. 

 

Figure S6.11. Hamamatsu InGaAs PIN photodiode spectral response curve. 
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Photoluminescence spectroscopy, Figure S6.9 was carried out on a PTI 
spectrometer equipped with both visible PMT and NIR InGaAs detectors. The PMT and 
InGaAs spectral response curves are illustrated in Figure S6.10 (curve 562U) and S6.11. 
Sine in the PL spectrometer utilized, the PMT detector does not response well after 830 
nm (less than 1% in QE, Figure S6.10) and neither does the InGaAs detector before 850 
nm (Figure S6.11), there is some misgiven PL intensity pattern in the PL spectra obtained 
in Figure S6.9. That is probably the case in the literature. 

 

NIR PL Spectroscopy 

NIR photoluminescence spectroscopy was conducted on a confocal microscope 
(Alpha SNOM, WITec, Germany) under ambient conditions. A He-Neon polarized laser 
with a 633 nm wavelength was used for excitation. A 50X objective with 10 mm focus 
length (Nikon Canada, Mississauga) was used to focus the laser beam onto the Au cluster 
solution and collect PL signals. An edge filter (RazorEdge filters from Semrock, NY) 
with band pass > 160 cm-1 was used to block the 633 nm excitation laser. A complete PL 
spectrum was recorded the iDUS CCD camera air-cooled at -75 °C, behind the grating of 
300 l mm-1 spectrograph (Acton 2300i). 

The CCD camera response QE is higher than 90% to the wavelength between 600 
and 900 nm, while the PL peak intensity at 1080 nm is a couple of orders lower in 
addition to the detect response QE being less than 10%, Figure S6.7. 
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CVs and ECL-Voltage Curves in the Annihilation Path 

 

Figure S6.12. Cyclic voltammogram (A) and ECL-voltage curve (B) of Au25
+ clusters in 

1:1 benzene/acetonitrile solution at a scan rate of 0.1 V/s in the potential range of 1.16 
and -1.38 V.  

 

CVs and ECL-Voltage Curves of a Blank Solution with 5 mM BPO Solution 

No ECL was observed in the absence of Au25
+ clusters with the BPO electrolyte 

solution in the same potential range. 

 

Figure S6.13. Cyclic voltammograms and ECL-voltage curves of a blank solution with 5 
mM BPO solution containing 0.1 M TBAP. Other experimental conditions are the same 
as in Figure 6.1b. 
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Calculations of PL Quantum Yield for Au25
– 

Relative PL quantum efficiency of the Au25
– was estimated by comparing the 

integrated PL intensities and the absorbance value of the Au25
– sample with the reference 

of relative to [Ru(bpy)2]2+.8 The calculation was done according the following equation:9 

 

 

where Φ is the quantum yield (%) relative to references, PL is the PL intensity, Ab is the 
absorbance value, St represents the standard and x stands for the sample,  is diffractive 
index of sample and  is diffractive index of standard solvent. Here both are the same. 
The relative PL efficiency value for Au25

– is 2.6%, equivalent to an absolute efficiency 
value of 0.20%, given that the [Ru(bpy)2]2+ PL efficiency is 7.5%.8 
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Chapter 6.2: Spooling ECL Spectroscopy of Au25L18
0 in the presence of BPO 

 

Materials and Methods for Synthesis and Characterization of Au25(SCH2CH2Ph)18
0 

Chemicals. Tetrachloroaurate (III) trihydrate, sodium borohydrate, ethanol, 
dichloromethane, tri-propylamine, benzoyl peroxide, dry acetonitrile and dry benzene 
purchased from Aldrich. Tetrahydrofurane was provided from Caledon. Ethanol was 
provided by Commercial alcohol. Tetra-n-butylammonium perchlorate (TBAP) 
electrolyte purchased from Fluka. 

Synthesis. HAuCl4.3H2O, 1.02 g dissolved in 100 mL tetrahydrofurane in a tri-
neck rounded flask. The solution was cooled using ice-bath and 2.1 mL phenylethane 
thiol was added to the solution under slow stirring. The yellowish solution color was 
turned to colorless within next 45 minutes. At this point, 998 mg NaBH4 was dissolved to 
20 mL ice-cold water and added to the mixture all at once under vigorous stirring. The 
dark solution was formed upon reducing agent addition, indication of large nanoparticle 
formation. The mixture stirred for 4-5 days to complete aging step. Then, the sample was 
gravity filtered and solvent volume reduced yields an oily product. The excess of sodium 
borohydride and capping thiol was removed by washing with water/ethanol mixture. 
Purity of sample was examined via UV-vis spectroscopy, 1HNMR spectroscopy and mass 
spectrometry. 

 Electrochemistry of Au25
0 during annihilation process. Figure S6.14 shows 

cyclic voltammogram (CV) and differential pulse voltammograms of 0.1mM Au25
0 at a 

Pt disk working electrode in 1:1 benzene:acetonitrile mixture containing 0.1 M tetra-n-
butylammonium perchlorate (TBAP) as supporting electrolyte. Coiled platinum wires 
served as counter and reference electrodes. The electrochemistry of Au25L18

z (where L= 
HSC2H4Ph, HSC6H13, z =1-, 0 and 1+) clusters have been well investigated and 
documented.1-3 
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Figure S6.14. Cyclic voltammograms (the black and red lines are indication of 1st and 2nd 
scans) and differential pulse voltammograms (the yellow and purple curves are indication 
as oxidation and reduction scans) of Au25

0 in 1:1 benzene:acetonitrile, 0.1 M TBAP as 
supporting electrolyte, scan rate: 0.1 V/s. 

 

Spectroscopy and photoelectrochemistry 

UV-vis-NIR spectrum of 0.016 mM of Au25(SC2H4Ph)18
0 was recorded using a 

Varian Cary 5G absorption spectrometer in the wavelength range of 300-1300 nm (4.13- 
0.95 eV). 

The electrochemistry and ECL experiments carried out in a 25 cm glass cylinder 
equipped with a quartz window at the bottom. The conventional three-electrode system 
has been employed, a 2 mm home-made platinum disk and Pt coils served as working, 
reference and counter electrodes, respectively. The ECL set-up and instrumentation 
details have been published elsewhere.3 

In a typical ECL cell set-up 0.1 mM Au25
 (SC2H4Ph)18

0 dissolved in 1:1 
benzene:acetonitrile mixture. A CHI610a electrochemical workstation coupled with a 
photomultiplier tube (PMT) has been used to record the ECL-voltage. The recorded 
photocurrent transformed to a voltage signal, using a picoammeter/voltage source 
(Keithley 6487, Cleveland, OH). The potential, current signals from the electrochemical 
workstation, and the photocurrent signal from the picoammeter were sent simultaneously 
through a DAQ board (DAQ 6052E, National Instruments, Austin, TX) in a computer. 
The data acquisition system was controlled from a custom-made LabVIEW program 
(ECL_PMT610a.vi, National Instruments, Austin, TX). The photosensitivity on the 
picoammeter was set manually in order to avoid the saturation. 
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The intensities versus wavelengths (ECL spectra) were recorded by Andor 
Technology program. Similar to the CV experiments, the samples were scanned between 
their redox potentials. Since the ECL is in NIR region, ECL spectroscopy was conducted 
on an Acton 2300i spectrograph with two gratings (50 l/mm blazed at 600 nm and 300 
l/mm blazed at 700 nm) and an Andor iDUS CCD camera (Model DU401-BR-DD-352), 
see Figure S6.7. 

 To calibrate the cyclic voltammograms, before running the experiment at each BPO 
concentration, the two quasi-reversible redox waves of the Au25 in the middle of potential 
window (Epa

0= 0.185 and Epc
0= -0.065 V vs. SCE) were recorded as an internal standard.  

Then, ferrocene was added to the solution to calibrate peak potentials vs. SCE (E0 (Fc/Fc+) 
= 0.424 V vs. SCE in acetonitrile: benzene 1:1) after each ECL experiment.4 

ECL Data 

 

Figure S6.15. ECL-voltage curve of 0.005 M BPO blank solution in ACN:Bz (1:1), with 
0.1 M TBAP supporting electrolyte, scan rate of 0.1 V/s, T = 25°C. 
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