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Summary 
 A dimer of 156-residue b subunits forms the peripheral stator stalk of eubacterial ATP 
synthase.  Dimerization is mediated by a sequence with an unusual 11-residue (hendecad) repeat 
pattern, implying a right-handed coiled coil structure.  We investigated the potential for 
producing functional chimeras in the b subunit of Escherichia coli ATP synthase by replacing 
parts of its sequence with corresponding regions of the b subunits from other eubacteria, 
sequences from other polypeptides having similar hendecad patterns, and sequences forming left-
handed coiled coils.  Replacement of positions 55-110 with corresponding sequences from 
Bacillus subtilis and Thermotoga maritima b subunits resulted in fully functional chimeras, 
judged by support of growth on nonfermentable carbon sources.  Extension of the T. maritima 
sequence N-terminally to position 37 or C-terminally to position 124 resulted in slower but 
significant growth, indicating retention of some capacity for oxidative phosphorylation.  Portions 
of the dimerization domain between 55 and 95 could be functionally replaced by segments from 
two other proteins having a hendecad pattern, the distantly related E subunit of the Chlamydia 
pneumoniae V-type ATPase and the unrelated Ag84 protein of Mycobacterium tuberculosis.  
Extension of such sequences to position 110 resulted in loss of function.  None of the chimeras 
that incorporated the leucine zipper of yeast GCN4, or other left-handed coiled coils, supported 
oxidative phosphorylation, but substantial ATP-dependent proton pumping was observed in 
membrane vesicles prepared from cells expressing such chimeras.  Characterization of chimeric 
soluble b polypeptides in vitro showed their retention of a predominantly helical structure.  The 
T. maritima b subunit chimera melted cooperatively with a midpoint more than 20 °C higher 
than the normal E. coli sequence.  The GCN4 construct melted at a similarly high temperature, 
but with much reduced cooperativity, suggesting a degree of structural disruption.   These studies 
provide insight into the structural and sequential requirements for stator stalk function.
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1.  Introduction 
 Ion-translating ATP synthase/ATPases of the F-, A-, or V-ATPase types utilize a 
rotational mechanism for coupling ion movement through the membrane-bound sector, F0, A0, or 
V0, to the synthesis or hydrolysis of ATP by the peripheral catalytic sector, F1, A1, or V1.   In the 
prototypical F-ATP synthase of Escherichia coli, the central rotor subcomplex is composed the 

c10 while the stator is composed of 33ab2.  The b subunit dimer forms the peripheral stator 

stalk, linking the a subunit of F0 with 33 of F1.  The stator stalk must resist the torque 

imposed by the rotor so that the  subunit turns inside 33, generating conformational changes 
associated with ATP synthesis.  The ATP synthases of most eubacteria have homodimeric stator 
stalks, but photosynthetic species, amongst others, contain heterodimers of two b-type subunits, 
b and b'.  The stator stalks of chloroplast ATP synthase are also heterodimeric, with subunits 
denoted I and II.  The stator stalk of mitochondrial ATP synthase has a different architecture; one 
of its subunits is called b but bears little sequence similarity to the eubacterial and chloroplast b 
family.  See recent reviews of ATP synthase [1-4]. 
 The soluble domain of E. coli b, expressed without the N-terminal transmembrane 
domain, has been characterized as a highly extended, helical dimer with substantial coiled coil 
character [5-8].  Deletion analysis identified a central dimerization domain bounded 

approximately by positions 53 and 122[8].  The C-terminal region is essential for binding 33 

[9, 10], and may be called the -binding or F1-binding domain, while the region between the 
membrane and the dimerization domains has been termed the tether domain [11].   
 The sequence of eubacterial b is not well conserved, but multiple sequence alignments 
reveal an unusual 11-residue (hendecad) pattern in the dimerization domain [11-13].  Hendecad 
patterns are thought to be typical of right-handed coiled coils  [14, 15].  Hendecad positions are 
denoted a through k; the a and h positions in the b family are most often occupied by small 
residues, usually alanine, while the d and e positions are often occupied by larger nonpolar 
residues.  These positions form a hydrophobic, right-handed strip on the helix b61-122 crystal 
structure [12].  Protein chemical evidence has shown this strip to be the dimerization interface, 
so it seems likely that  dimerization will form a novel two-stranded, right-handed coiled coil 
[13].   However, modeling studies and analysis of inter-residue distances by ESR have led to the 
proposal that a left-handed coiled coil is also possible [16, 17], so the nature of the structure 
remains controversial. 
 In the current work, we sought to ask what modifications to the sequence of b will 
support its function as the stator stalk.  Since few point mutations of b affect function [18, 19], 
we adopted the approach of constructing chimeras in which substantial sections of the E. coli b 
polypeptide are replaced by exogenous sequences.  We began by substituting corresponding 
regions from other eubacterial b subunits, then extended the approach to sequences from other 
proteins with hendecad repeats that should be compatible with RHCC, and finally to left-handed 
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coiled coils.    The effects of these substitutions provide insight into the parts of b that tolerate 
changes, and the types of change they tolerate without loss of function.   
2. Materials and methods 
2.1 Materials 
Genomic DNA from Thermotoga maritima was purchased from the American Type Culture 
Collection.  Genomic DNA from Chlamydia pneumoniae AR3 was a kind gift from Dr. Robert 
Brunham of the University of British Columbia Centre for Disease Control, Vancouver British 
Columbia, Canada.  Plasmid pPH5253 [20] carrying the gene encoding Ag84 from 
Mycobacterium tuberculosis was kindly provided by Dr. Peter W. Hermans, Laboratory of 
Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The 
Netherlands.  Saccharomyces cereviseae DNA was kindly provided by Dr. Chris Brandl, 
Department of Biochemistry, University of Western Ontario.  Bacillus subtilis DNA was 
prepared from bacterial cells.  E. coli strain KM2  [21], carrying a chromosomal deletion of 
uncF, pDM8 [6], carrying a synthetic uncF gene, and pBAD24 [22], an expression vector 
utilizing the arabinose control system, have been described. 

 Synthetic oligonucleotides were obtained from Sigma.  Monoclonal antibody -II was 
the generous gift of Drs. Rod Capaldi and Robert Aggeler of the University of Oregon, Eugene, 
Oregon.  Polyclonal antibodies to the soluble domain of E. coli b subunit were raised in a rabbit 
and purified by affinity chromatography on a column of bMERC coupled to Sulfo-link resin 
(Pierce), prepared as described [9]. 
2.2 Plasmid construction 
 Recombinant DNA procedures were carried out by standard methods.  To construct 
pJW3, the entire uncF gene (encoding b) of T. maritima was amplified by PCR using 
5'-CGGCGGTACCATAGAGGCATTGTGCTGTGGGCTTTCTGGAG-3' as forward primer 
and 
5'-GACGGCAGCTTGAGACCTTATGACTTTTCTATCTCCT-3' as reverse primer.  The 
forward primer contains a synthetic KpnI site, a Shine-Dalgarno sequence, and changes the start 
codon from TTG to GTG, in order to match E. coli b.  The reverse primer contains a BsaI site 
that leaves a 5' overhang compatible with HindIII; this strategy was used since T. maritima uncF 
contains an internal HindIII site.  The PCR product was cut with KpnI and BsaI and then ligated 
into the corresponding KpnI and HindIII sites in pDM8 in order to make pJW3.  Sequences 
encoding natural or chimeric b subunits were transferred from pDM8-type plasmids, with the lac 
gene expression control system into pBAD24 [22] with the arabinose gene expression control 
system using the EcoRI and HindIII sites.  The plasmid carrying the synthetic b sequence in 
pBAD24 was called pSD205. 

For chimera construction, primers included restriction enzyme sites suitable for cloning 
products in-frame into the synthetic uncF sequence in pDM8 or pSD205.  DNA for preparing 
chimeras incorporating sequences from b subunits of T. maritima or B. subtilis, the E subunit of 
the V-ATPase of C. pneumoniae, the Ag84 protein of M. tuberculosis Ag84, or yeast GCN4, 
were obtained by PCR amplification from either genomic DNA or plasmids containing the 
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appropriate cloned gene.   DNA for preparing chimeras incorporating sequences from rabbit 
tropomyosin or human Eea1 was prepared synthetically by primed synthesis from the 
overlapping 3' ends.  Specific information regarding the regions of exogenous amino acid 
residues incorporated into b and the regions of the E. coli b sequence that were replaced may be 
found in Tables 1 and 2.  For chimeric fusions beginning at particular residues of the E. coli b 
sequence, the following restriction sites in pDM8 or pSD205 were used: Gln-37, MfeI; Asp-55, 
Lys-58, Ala-61, or Thr-62, BglII; Lys-67 or Ala-68, AflII; Glu-71, Ala 72, Gln-73, or Arg-83, 
StyI.    For chimeric fusions ending at particular residues of the E. coli b sequence, the following 
restriction sites in pDM8 or pSD205 were used:  Asn-80, AlwNI; Lys-91, Glu-95, or Val-102, 
BsiWI; Glu-108, Glu-110, BlpI; Val-124, SfiI.  All sequences derived by PCR were confirmed 
by DNA sequencing. 

Plasmids encoding soluble forms of the Tm-1, GCN4-1, and Ag84-1 chimeras in the 
context of b34-156 [6] were constructed by transferring the 176-bp BglII-BlpI fragments from 
pSD200, pSD203 and pSD204 respectively, into pSD114, replacing the synthetic sequence 
encoding those portions of E. coli b, to produce plasmids pSD207, pSD208, and pSD209. 

2.3  Minimal media growth tests and characterization of membrane activities 

 M9 minimal media plates were prepared as previously described [23] containing either 
glucose, succinate, or acetate as the sole carbon source.  Either IPTG or arabinose was added to 
final concentrations of 0, 1, 3, 10, and 30 µM.  The appropriate plasmids were transformed into 

E. coli strain KM2 (uncF) and were grown to an A600 of approximately 0.1 in L broth.  Cells 
were spun down and the cell pellets were washed with 0.9% NaCl.  Following resuspension in 
fresh 0.9% NaCl, cells were streaked out.  Plates were incubated at 37 °C and growth was 
evaluated using a dissecting microscope and a grid for measuring colony size. 
 Membrane vesicles for assessment of ATPase and ATP-dependent proton pumping were 
prepared from cells of strain KM2, carrying the appropriate plasmids, grown on rich media in the 
presence of levels of inducers that had been shown to lead to synthesis of normal levels of b 
subunit from the control E. coli gene, pDM8 for the lac system or pSD205 for the arabinose 
system.   In particular, cells carrying pDM8 and derivatives were grown with vigorous shaking at 

37 °C in L broth containing 10 mM sodium phosphate, pH 7.0, 15 M IPTG, and ampicillen at 

40 g/ml and harvested when A600 reached 0.8.  Cells carrying pSD205 and derivatives were 

grown similarly but in L broth containing 10 mM sodium phosphate, pH 7.0, 100 M arabinose, 

0.4% glycerol, and ampicillen at 40 g/ml and harvested when A600 reached 1.0.  For 
preparation of membranes, cells were resuspended in 50 mM sodium phosphate, pH7.5, 5 mM 
MgCl2, containing 10% glycerol and broken by passage through a French pressure cell at 20,000 
psi.  Following sedimentation of large debris by centrifugation in a JA-20 rotor at 10,000 rpm for 
10 min, the membrane fraction was collected by sedimentation in a Ti-50 rotor at 38,000 rpm for 
90 min.  The pellet was washed by suspension in 10 mM Mops-NaOH, pH 7.5, containing 250 
mM sucrose, 5 mM MgCl2, 10% methanol, and sedimented as before.  The final pellet was 
resuspended in a small volume of the same buffer and stored at –80 °C.    
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 Membrane ATPase content was determined as described previously [24], using the 
"released ATPase" assay conditions.  ATP-dependent proton pumping was measured by the 
quenching of 9-amino-6-chloro-2-methoxyacridine (ACMA) as described [24]. 
2.4  Purification of proteins.  

E. coli b34-156 was expressed from plasmid pSD114 and purified as described [6].  
Purification was followed by SDS-PAGE.  Chimeric forms of b34-156 carrying the Tm-1, GCN4-
1, and Ag84-1 sequences were expressed from plasmids pSD207, pSD208 and pSD209, 
respectively.  Expression, extraction, and precipitation with 45% saturated ammonium sulfate 
followed the protocol for b34-156. 

For purification of b34-156Tm-1, the redissolved and dialyzed pellet was applied to a 
column of DEAE-Sepharose in 50 mM Tris-HCl, pH 8.0, 1 mM EDTA, and eluted with a linear 
gradient of NaCl in the same buffer.  Peak fractions were subjected to a second step of ion 
exchange chromatography at pH 8 on a High Performance Q-Sepharose column.  Peak fractions 
were precipitated with ammonium sulfate, redissolved in buffer and given a final step of size-
exclusion chromatography on a column of Sephacryl S-200. 

For purification of both b34-156GCN4-1 and b34-156Ag84-1, the redissolved and dialyzed 
pellets was applied to a column of Fast-Flow Q-Sepharose at pH 8.0 and eluted with a gradient 
of NaCl.  Following dialysis, the peak fractions were applied to a High Performance Q-
Sepharose column in 25 mM imidazole-HCl buffer at pH 6.4 and eluted with a salt gradient.  
This step was then repeated at pH 8.0 in Tris-HCl buffer to obtain pure proteins.  In all cases, 
preparations with a high state of purity appropriate for biophysical analyses were obtained. 
Protein concentrations were measured by the Coomassie blue binding assay [25] and corrected 
by a factor of 0.6, based on quantitative amino acid analyses of a number of expressed forms of 
the b subunit. 
2.5  Circular dichroism and differential scanning calorimetry. 
 Samples of b34-156, or related chimeras purified as described above, were dialyzed into 20 
mM sodium phosphate, pH 7.0, containing 100 mM NaCl.  The same samples, but at different 
concentrations, were used for CD and DSC analyses.  CD studies were carried out using a Jasco 
J-810 spectropolarimeter equipped with water-jacketed cells and a circulating bath.  Spectra were 
recorded from 195-250 nm in 1-nm steps.  Spectra were normalized to that of b34-156 using the 
isodichroic point of 203 nm for the helix-coil transition [26].  Temperature scans were collected 
at 222 nm for the range of 10 °C to 85 °C with 1 min equilibration times.  Data were converted 
to mean residue ellipticity by standard methods.  Thermal denaturation data were fitted to a two-
state model  [27, 28] as described [29].  Differential scanning calorimetry was carried out using a 
VP-DSC (MicroCal) differential scanning calorimeter, at rate of 1°C/min.  Data were collected, 
and buffer-buffer reference scans subtracted, using Microcal software and the major transition 
fitted using Origin 5. 
3.  Results 
3.1 Initial dimerization domain chimeras 
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The b subunit dimer of E. coli ATP synthase has been characterized as a highly helical 
four-domain protein (Fig. 1A), and the region responsible for dimerization, residues 53-122, as a 
novel, two-stranded right-handed coiled coil [13].  Before replacing parts of the coiled coil 
region with sequences that adopt different structures, we determined its tolerance for 
homologous sections of b subunits from two other organisms with homodimeric stator stalks.  
These initial chimeras were constructed in pDM8, which carries a synthetic sequence encoding 
the entire b subunit under control of tac promoter; the plasmid also carries the lac repressor.   
This plasmid can be used in conjunction with strain KM2 [21], which has a chromosomal 
deletion of uncF, encoding the b subunit, to test b subunit function.   

Genomic DNA from B. subtilis and T. maritima was obtained and relevant sections of the 
uncF gene were amplified by PCR. Primers incorporated restriction sites to allow cloning of the 
PCR product into pDM8 [6] utilizing the BglII and BlpI sites, located in portions of the sequence 
encoding residues Lys-52—Leu54 and Ala-111—Arg-113, respectively.  The relevant sections 
of the dimerization domains of parental E. coli b and the resulting chimeras, called Bs-1 and Tm-
1, are shown in Fig. 1, with the foreign residues in color.  Comparison of these three sequences 
reveals the conserved sequence characteristics of the 11-residue hendecad pattern, where the a 
and h positions are most often occupied by small residues, while the d and e positions are often 
occupied by larger nonpolar residues.  These a, d, e and h positions define a hydrophobic strip 
with a right-handed slant, highlighted with pale green in the helical net diagrams shown for E. 
coli and Tm-1 in Fig. 2.  Even though substantial differences can be seen between the sequences 
at most positions, the right-slanted hydrophobic strip is maintained in the Bs-1 and Tm-1 
chimeras.  Both of these chimeras supported normal growth of KM2 on the nonfermentable 
carbon sources acetate and succinate, indicating their capacity to function in ATP synthase in the 
process of oxidative phosphorylation.  No IPTG was used in these tests, as previous studies have 
shown expression of b from pDM8 to be sufficiently leaky that induction is not necessary [23]. 

To evaluate the importance of the right-handed nature of the coiled coil, we also 
incorporated the well-characterized leucine zipper of yeast GCN4, a left-handed coiled coil of 
approximately 28 residues.  Since the hydrophobic strip of a left-handed coiled-coil will have a 
left handed slant on the helical surface, replacement of a given number of residues of a RHCC 
with the same number of residues from a LHCC results in a discontinuity in the hydrophobic 
surface at one end of the foreign sequence, as seen in the diagram labeled "GCN4-1C" in Fig. 2.  
This discontinuity in the hydrophobic face would be expected to disrupt the helix-helix 
interaction.   A continuous hydrophobic face can be maintained, however, by replacing 26 
residues of the right-handed sequence with just 25 residues from a left-handed sequence, as seen 
for the GCN4-1 chimera sequence (see Figs. 1 and 2).  Since it has been established that the b 
subunit tolerates lengthening or shortening by a number of residues [30-32], we viewed this one-
residue reduction in length as unlikely to disrupt structure or function.  The GCN4-1 chimera 
was constructed utilizing the AflII and BsiWI sites, encoding residues Leu-65—Lys-66 and Arg-
98—Thr-99, respectively, but it failed to support more than a slight trace of growth on 
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nonfermentable carbon sources under any conditions of induction that were tested, even after 
three days incubation at 37 °C.   
3.2  Characterization of membranes containing the Tm-1 and GCN4-1 chimeric b subunits.   

Cells of strain KM2 carrying pDM8, or derivatives encoding the Tm-1 and GCN4-1 
chimeras, were grown in LB media containing IPTG at a level that was previously shown to 
result in expression of b from pDM8 at level similar to that expressed from the normal 
chromosomal unc operon [6].   The ATP synthase content of membranes prepared from these 

cells was determined by western blotting using anti- and anti-b antibodies, and by ATPase 
assays conducted under conditions where the F1-ATPase dissociates from the membrane and 

expresses its full activity.  As seen by the blot probed with the anti- antibody (Fig. 3A), both 
the Tm-1 and GCN4-1 chimeras supported assembly of levels of ATP synthase similar to that 

observed with pDM8 (uncF+ plasmid), while no more than a trace of  was bound to the 
membranes when no form of b was provided (uncF plasmid).  ATPase activity assays showed 
the membranes from strain 1100, the parent of KM2, to contain the highest levels of ATPase 
(0.46 U/mg), followed by those with pDM8 (0.33 U/mg) and the Tm-1 chimera (0.34 U/mg), 
while those with the GCN4-1 chimera were again somewhat lower (0.27 U/mg).   Cells lacking 
any form of b had just 0.03 U/mg of ATPase activity.  A polyclonal antibody raised to E. coli b 
subunit recognized all of the chimeric b subunits (Fig. 3A).  These results show that assembly of 
ATP synthase was not significantly affected by the Tm-1 chimera, but was modestly reduced by 
the GCN4-1 chimera. 
 ATP-dependent proton pumping by the membrane vesicles was determined using the 
ACMA fluorescence quenching assay (Fig. 3B).   In general, levels of quenching were consistent 
with the measured ATPase content.  Membranes with the Tm-1 chimera repeatedly showed 
higher levels of quenching in comparison to those with pDM8, suggesting a tighter coupling.  
Membranes carrying enzyme with the GCN4-1 chimera showed somewhat lower proton 
pumping.  While this may reflect in part the lowered assembly, the magnitude of the decline 
suggests that the enzyme was partially uncoupled.  Overall, however, given the failure of the 
GCN4-1 chimera to support significant growth on nonfermentable carbon sources, the levels of 
ATP synthase assembly and ATP-dependent proton pumping were surprising. 
3.3 Chimeras containing larger segments of T. maritima sequence and the effect of induction 
levels on complementation using different expression plasmids 

Given the complementation by the initial dimerization domain chimeras incorporating 
other eubacterial b sequences, we explored the possibility that E. coli ATP synthase might 
accommodate larger segments of T. maritima b sequence.   Among the forms prepared were 
chimeras in which the foreign sequence extended part or all of the way to the termini of the 
polypeptide.  The chimeras were tested for support of growth on acetate media at several IPTG 
concentrations in case higher-level expression was necessary  (Table 1).  In the absence of IPTG, 
growth was also supported by chimera Tm-2, in which the foreign sequence was extended to 
residue 124 of E. coli, and traces of growth were seen with chimeras in which the Thermotoga 
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sequence began at position 37.  Surprisingly, induction of the chimeras by as little as 3 M IPTG 

resulted in poorer growth; even with pDM8, growth was severely inhibited at 10 M IPTG.   
While the mechanism of growth inhibition by higher levels of expression of b or b 

chimeras has yet to be established, this finding raised concerns that the pDM8 system, which 
uses the inherently leaky tac promoter from pKK223-3 [33], might give false negative results 
due to excessive expression.  Leakiness would be amplified by growth on acetate since it is not a 
preferred carbon source.  We therefore transferred the E. coli uncF sequence from pDM8 into 
pBAD24 [22], which provides more stringent repression in the absence of the inducer arabinose, 

producing plasmid pSD205.   Concentrations of 0, 3, 10, and 30 M arabinose were then used to 
induce expression.  pSD205 supported only a trace of growth by KM2 on acetate with no inducer 

present, modest colonies (+) at 3 M arabinose, moderate colonies (++/+++) at 10 M, and full 

growth, equivalent to that of the positive control strain 1100/pSD80, (+++) at 30 M arabinose.   
Similar results were observed with pSD248, which contains the Tm-1 chimera in pBAD24, 

although growth was slightly less than for pSD205 except at 30 M arabinose, where it was 

equivalent.  No growth was seen, even at 30 M arabinose, for KM2/pSD80, the uncF control, 
indicating that the inducer did not serve as a significant carbon source, at least up to this 
concentration.  These results implied that reliable determinations of complementation could be 
made using this system.  Subsequent complementation studies employed the pBAD24 system, 

using 0, 10 and 30 M arabinose as inducer. 
3.4  Complementation of KM2 by additional chimeric b subunits expressed from pBAD 
constructs 

Most of the previously described chimeras were transferred to pBAD24, and additional 
ones from a number of exogenous sources were constructed for testing complementation in strain 
KM2.  We began with a re-examination of the extent of T. maritima b sequence that could be 
incorporated with retention of function, then extended the analysis to chimeras that incorporated 
sequences from less closely related proteins having the hendecad repeat pattern of b, and finally 
to a number of chimeras that incorporated either the GCN4 leucine zipper, or else other left 
handed coiled coils.  Chimeras were designed to conserve the hendecad reading frame when 
possible, or to maintain a continuous hydrophobic surface on the helix, except for some of those 
incorporating left-handed coiled coils.  Here, in addition to those chimeras designed as outlined 
in Fig. 2, we also constructed several control chimeras, given designations terminating with "C", 
in which equal numbers of residues were removed and inserted.  In no case did stronger 
induction of a chimera result in poorer growth.  Similar relative rates of growth were obtained on 
succinate as on acetate, although growth on succinate was faster.   The various plasmids 

expressing chimeric forms of b and the strength of growth they supported at 30 M arabinose are 
summarized in Table 2.  Membranes were also prepared from cells expressing a number of these 
chimeras for determination of their ATP synthase content and ATP-dependent proton-pumping 
activities (Fig. 4).   

Results presented in Table 2 confirmed the abilities of chimeras with T. maritima 
sequence extending from positions 37-124  to support oxidative phosphorylation, although 
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growth was not so rapid as with Tm-1.  Extension of the exogenous sequence C-terminally to 
position 124 was more detrimental than extension N-terminally to position 37.  Analysis of 
membranes for ATPase activity (see legend for Fig. 4)) showed that these additional exogenous 
residues, particularly in positions 109-124, significantly reduced assembly, and the lower levels 
were reflected in decreased proton pumping (Fig. 4 upper set).  It is notable, however, that even 
though membranes with chimeras Tm-1 and Tm-7 contained somewhat lower levels of ATPase 
activity than those from the normal E. coli sequence, their proton pumping was at least as strong.  
Thus these enzymes are fully coupled. 

The E subunit from the bacterial V-type ATPase of Chlamydia pneumoniae contains a 
section near the N terminus bearing a strong hendecad repeat pattern with position occupancy 
similar to that seen in bacterial b subunits, but also with some interesting differences, including a 
proline at position 24, near the beginning of the hendecad pattern.  Chimera VATE-8, in which 
38 residues (Glu-26—His-63) from the E subunit were inserted in place of the normal residues 
Lys-58—Glu-95, showed full growth.   Extending the foreign sequence just three residues 
toward the N-terminus, which included Pro-24, however, strongly reduced growth (see VATE-
2).  In addition, when sequences from the E subunit were inserted into E. coli positions 96-110 
(VATE-4, -5, or –6) only faint growth was observed.  Analysis of membranes showed VATE-2 
to support assembly of ATP synthase well (see legend to Fig. 4), but a lower level of assembly 
seen for VATE-7 in this set was accompanied by a higher level of proton pumping (Fig. 4 middle 
set), suggesting a partial uncoupling produced by the proline residue in VATE-2.  All of the 
chimeras that were analyzed in which the VATE sequence extended to position 110 showed 
substantially reduced assembly and modest ATP-dependent proton pumping, as seen here for 
VATE-5. 

Ag84 is a minor antigen produced by M. tuberculosis [20].  The sequence of the protein 
indicates it to be a member of the DivIVA family believed to function as a marker for the cell 
poles during cell division in gram positive bacteria [34].  Our examination of the sequence of this 
class of protein showed it to have an extended region of hendecad repeat similar to the pattern in 
the dimerization domain of b.  Ag84 was therefore a source of foreign sequence, unrelated to 
either F-ATP synthase or V-ATPases, that might provide for functional b chimeras.  In the 
Ag84-1 chimera, residues Asp-55 to Glu-110 of E. coli b, the same residues that had been 
replaced successfully by the corresponding sequences from B. subtilis and T. maritima, were 
substituted by a segment of the Ag84 hendecad sequence, to produce the Ag84-1 chimera, which 
failed to complement KM2 (Table 2).  Restoring the E. coli b residues to positions 96-110 in 
chimera Ag84-2 restored normal growth on acetate, while restoration of the normal residues to 
positions Asp-55—Glu-71 in Ag84-3 had no effect.  Analysis of membrane vesicles prepared 
from these strains showed moderately reduced assembly and proton pumping (Fig. 4 legend, and 
lower set) for chimeras VATE-1 and VATE-3, again implying the importance of positions in the 
96-110 region.  

The GCN4-1 chimera was transferred into the pBAD vector, and a number of additional 
chimeras were constructed.  These incorporated the left-handed coiled coil in a number of 
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different frames and positions (Table 2), either with or without the one-residue deletion 
necessary for maintaining the hydrophobic face.  In addition, left-handed coiled coils from rabbit 
tropomyosin and human Eea1, an endosome associated protein, were used to ensure that the 
failure to obtain complementing chimeras was a general property of left-handed coiled coils, 
rather than specific to GCN4.  Under no circumstances was more than a faint trace of growth 
evident.  Levels of ATPase activity in membranes prepared from KM2 containing these chimeras 
were variable but usually low.  In cases where significant ATPase was found in the membranes, 
significant proton pumping was observed (data not shown), in agreement with the results shown 
for GCN4-1 in Fig. 3. 
3.5  Denaturation analysis of soluble forms of chimeric b subunits 

To study the effects of the exogenous sequences on the conformation and stability of b, 
chimeras Tm-1, Ag84-1, and GCN4-1 were expressed in the soluble form, b34-156.  The proteins 
were purified and their CD spectra were collected at 10 °C for comparison to that of normal b34-

156 (Fig. 5a).  All of the spectra indicated predominantly helical structure. Tm-1 gave the 

strongest signal at 222 nm, with 222=-40,000, indicative of essentially 100% helical structure.  
The spectrum of the GCN4-1 chimera was virtually identical to that of b34-156, while the spectrum 
of Ag84-1 indicated the lowest helicity. 

Thermal denaturation in the CD revealed very significant differences between the 
constructs, however (Fig. 5b).  The normal E. coli b34-156 exhibited a cooperative transition with 
melting midpoint of 37 °C, consistent with earlier determinations [7].  For the Tm-1 chimera, the 
major transition occurred in a highly cooperative manner with a midpoint of 61 °C.  In contrast, 
the Ag84-1 chimera melted with a cooperativity similar to that of the wild-type sequence, but at 
a substantially lower temperature.  Since the protein was partially unfolded at 10 °C, the 
midpoint was not well-defined but would appear to be in the range of 25 °C.   The melting 
transition of the GCN4-1was much broader, indicating a lowered cooperativity.  Despite this, the 
midpoint of 62 °C was similar to that of Tm-1.   

Denaturation of these constructs was also followed by differential scanning calorimetry, 
using protein concentrations 2- to 3-fold higher than those used in the CD analysis to obtain 
better-defined signals (Fig. 6).   Again, the similarity of the transitions of b34-156 and the Tm-1 
and Ag84-1 chimeras was notable, aside from the major differences in the midpoint values of the 
transitions, 40 °C, 67 °C, and 29 °C, respectively.    Differences in these values from those of the 
CD analyses are expected due to the monomer-dimer nature of the system and the different 
concentrations used.  The GCN4-1 chimera melted over a broad temperature range and was not 
modeled well as a single transition; the peak of heat absorption was at 69 °C.    
4.  Discussion 
4.1  Tolerance of the coiled coil domain for substitution by different sequences 
 Not surprisingly, we found that E. coli b tolerated the largest exogenous sequences from 
orthologous b subunits, with most of the dimerization domain being substituted without 
deleterious effects despite the substantial sequence differences.  Based on mapping of the b2-F1 
interaction by cross-linking/mass spectometry [35], much of the dimerization domain region is 
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located between F0 and the lower surface of F1, where no contact is made with other subunits.  It 
is likely that the impaired growth seen when more N- or C-terminal regions were included 

resulted from impaired interactions with the a subunit and with 33, respectively.  Generally 
similar results were recently reported using the b and b' subunits from Thermosynechococcus 
elongatus [36].  Other sequences with the characteristic hendecad pattern, even the unrelated 
DivIVA protein Ag84, substituted functionally into the region between positions 55-95, but 
could not be extended toward the C terminus.  The region containing positions 55-95 is 
essentially the section in which a close relationship of neighboring a and h positions between the 
two subunits has been established [13].  Changes in the pattern of position occupancy C-terminal 
to this region suggest an altered relationship between the helices [11]. 

 In contrast we found no in vivo oxidative phosphorylation by any of the left-
handed coiled coil chimeras, despite the different sequences used, the different insertion sites, 
and maintenance of the hydrophobic surface that we expected to favor accommodation of foreign 
sequence.  These results strongly suggest that the stator stalk does not adopt a classical left-
handed coiled coil structure, which would accommodate such a substitution.  In light of the 
assembly of ATP synthase containing the GCN4-1 chimera, the present results also suggest that 
a left-handed coiled coil structure may be inconsistent with stator stalk function.  Overall, the 
properties of the GCN4-1 chimera are similar to those of uncoupled, single-residue deletion 
mutants in the 100-105 region [23]. 

The different effects of chimeras on the two functional assays we used, growth on 
nonfermentable carbon sources and ATP-dependent proton pumping in membrane vesicles, is 
notable.  While these two activities require the enzyme to function in opposite directions, the 
difference could also result from the required strength of protonmotive force.  In the proton 
pumping assay, generation of a modest protonmotive force is readily detectable, whereas growth 
on nonfermentable carbon sources is likely to require a very substantial protonmotive force, and 

a b2 structure that can resist a strong torque imparted by proton-driven rotation of c10 [13, 37].   
4.2  Relationship of functionality to structure and stability of soluble forms of the chimeras. 
 The similarities of the CD spectra of the Tm-1, GCN4-1, and Ag84-1 chimeras imply that 
the exogenous sequences did not cause gross structural differences compared to the parental b34-

156, i.e. all retained their overall helical, coiled coil nature.  T. maritima is a hyperthermophile 
[38], so thermostability of Tm-1 was not unexpected.  The isolated GCN4 leucine zipper is also 
relatively thermostable with a Tm of 64 °C [39].  Since both chimeric constructs showed elevated 
thermal stability, and Tm-1 supported oxidative phosphorylation, the nonfunctionality of the 
GCN4-1 construct cannot be attributed to this feature.  The T. maritima b sequence was expected 
to fit well into the E. coli subunit, and the high cooperativity of unfolding of the Tm-1 chimera 
confirms this to be the case.  In contrast, the low cooperativity of melting of the GCN4-1 
chimera implies that the exogenous sequence did not stabilize the structure of the residual b 
residues.  This effect can be explained by a discontinuity between the in-register nature of the 
helices in the two stranded left-handed coiled coil of GCN4, with knobs-into-holes packing of 
side chains at the interface [40], and the offset helices we proposed for the right-handed coiled 
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coil of b2 [10, 13].  We expect the greater stability of the left-handed coiled coil to dominate the 
chimera, requiring that the residual b sequence also adopt an in-register alignment.  This 
conformation would be stabilized relative to the unfolded state to some degree by the 
hydrophobic nature of the surfaces, but any particular favorable interactions characteristic of the 
offset orientation would be lost, resulting in the non-cooperative melting seen in Figs. 5B and 
6D.   

Nevertheless, given the higher overall stability of the GCN4-1 chimera, why did it fail to 
support oxidative phosphorylation?  If b function requires significant movement of the b helices 
relative to one another, the knobs-into-holes packing should restrict that, but substantial ATP 
dependent proton pumping was still observed.  The offset alignment provides stronger 
interactions with F1 [10], and this could be a factor.  Alternatively, the particular favorable 
interactions characteristic of the right-handed, offset orientation may be essential to resisting the 
torque at high protonmotive forces. 
 We were surprised by the low stability, but cooperative unfolding, of the Ag84-1 
chimera.  While little is known about the nature of the coiled coil region of this protein [34], the 
hendecad pattern is clear from the sequence.  Since this protein is evolutionarily unrelated to the 
b subunit, its function may not require stabilizing interactions present in b.  Additional studies 
with functional chimeras would be required to determine the relationship between lowered 
thermodynamic stability and b functionality.  It remains notable, however, that at least 37 
residues of b could be replaced by a sequence from Ag84, with no evident loss of functionality. 
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Table 1.   

Complementation of uncF strain KM2 by chimeric b subunits 

Strain/plasmid/b type Exogenous 
residues 
inserteda 

E. coli 
residues 
replaced 

Growth on acetateb  

[IPTG] (M) 
0 1 3 10 30 

1100/pSD80/WT nac na +++ +++ +++ +++ +++
KM2/pSD80/noned na na - - - - - 
KM2/pDM8/WTd none none +++ +++ ++ + tre 
KM2/pSD200/Tm-1 E58-Q111 D55-E108 +++ ++ + - - 
KM2/pSD246/Tm-2 E58-A127 D55-V124 ++ ++ tr - - 
KM2/pJW3/Tm-3 M1-Ser164 M1-L156 - - - - - 
KM2/pJW4/Tm-4 R40-Ser164 Q37-L156 - - - - - 
KM2/pJW5/Tm-5 M1-Ala127 M1-V124 - - - - - 
KM2/pJW6/Tm-6 R40-Ala127 Q37-V124 tr - - - - 
KM2/pSD245/Tm-7 R40-Q111 Q37-E108 tr tr - - - 
KM2/pPK2/Bs-1 Q65-V120 D55-E110 +++ +++ + - - 
KM2/pSD203/GCN4-1 Q252-V278 K67-A94 tr tr - - - 
aInserted sequences are from T. maritima except for pPK2 which was from B. subtilis.  bGrowth 
was tested on minimal medium with 0.2 % sodium acetate as described under Experimental 
Procedures.  Growth was scored based on colony diameter after incubation at 37 C for 2 days as 
follows: +++, >0.4 mm; ++, 0.25-0.4 mm; +, 0.1-0.25 mm; tr, <0.1 mm.  All strains grew well on 
glucose. 
cna, not applicable.   
dpSD80 is the negative control plasmid while pDM8 is the positive control with E. coli b 
sequence.  
etr, trace.  
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Table 2 
Growth on acetate medium of KM2 with b subunit chimeras in pBAD24 
Sequence 
source 

Designation Exogenous 
residues 
inserted 

E. coli  
residues 
replaced 

Plasmid Growtha 

E. coli b subunit 
 WT none none pSD205 +++ 
 null nab nab pBAD24 - 
T. maritima b subunit 
 Tm-1 E58-Q111 D55-E108 pSD248 +++ 
 Tm-2 E58-A127 D55-V124 pSD252 + 
 Tm-6 R40-A127 Q37-V124 pSD247 + 
 Tm-7 R40-Q111 Q37-E108 pSD251 ++ 
C. pneumoniae V-ATPase E subunit 
 VATE-1 K23-K78 D55-E110 pSD250 - 
 VATE-2 K23-H63 D55-E95 pSD255 + 
 VATE-3 E26-K78 K58-E110 pSD256 + 
 VATE-4 N35-K78 K67-E110 pSD257 + 
 VATE-5 E26-K67 K69-E110 pSD258 - 
 VATE-6 E26-K78 K58-E110 pSD259 - 
 VATE-7 N35-H63 K67-E95 pSD260 +++ 
 VATE-8 E26-H63 K58-E95 pSD264 +++ 
M. tuberculosis Ag84 
 Ag84-1 S108-A163 D55-E110 pSD204 - 
 Ag84-2 S108-D148 D55-E95 pSD277 +++ 
 Ag84-3 S125-A163 A72-E110 pSD278 - 
 Ag84-4 S125-D148 A72-E95 pSD279 +++ 
Left-handed coiled coils 
 GCN4-1 Q252-V278 K67-A94 pSD249 trc 
 GCN4-1Cd Q252-V278 A68-A94 pSD280 - 
 GCN4-2 Q252-V278 E71-R98 pSD253 - 
 GCN4-2C Q252-V278 A72-R98 pSD254 - 
 GCN4-4 V257-K275 A61-N80 pSD261 tr 
 GCN4-5 V257-K275 A72-K91 pSD262 tr 
 GCN4-5C V257-K275 Q73-K91 pSD275 tr 
 GCN4-7 V257-K275 R83-V102 pSD270 - 
 GCN4-8 V257-K275 A61-N80, R83Ae pSD271 tr 
 GCN4-8C V257-K275 T62-N80, R83A pSD276 tr 
 
 Eea1-1f L1320-Q1338 A72-K91 pSD272 - 
 Tropo-1g V246-K264 A72-K91 pSD273 - 
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  Tropo-2 L50-Q68 A72-K91 pSD274 - 
aGrowth was scored as described in Table 1after two days incubation on acetate plates containing 
30 M arabinose at 37 °C. 
bna, not applicable. 
ctr, trace. 
dDesignations ending in “C” indicate replacement of the removed b segment with an equal 
number of leucine zipper residues, resulting in a discontinuity in the hydrophobic surface. 
eThese chimeras also contained the R83A point mutation that stabilizes the coiled coil structure 
of b2. 
fEea1, human Eea1 (early endosome antigen 1).  
gtropo, rabbit tropomyosin A. 
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Fig. 1.  The b subunit of E. coli ATP synthase and a sampler of dimerization domain chimeras.  
(A) The domain structure of the 156-residue b subunit is shown.  Most chimeras were prepared 
by replacement of residues within the dimerization domain with sequences from exogenous 
sources.  (B) The sequences of a number of the dimerization domain chimeras that were 
produced and studied is presented.  Numbering is according to the E. coli sequence; core 
hendecad positions are indicated.  For each chimera shown, the exogenous sequence is in color.  
Exogenous sequences shown were derived from the B. subtilis (Bs-1) or T. maritima (Tm-1) b 
subunit, the E subunit of the V-type enzyme encoded by C. pneumoniae (VATE series), antigen-
84 of M. tuberculosis (Ag84 series), or left-handed coiled coils of yeast transcription factor 
GCN4 or rabbit tropomyosin (Tropo-2). 
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Fig. 2.  Helical net diagrams of the E. coli b dimerization domain and selected chimeras.  For 
each position, the residue and hendecad or heptad position are indicated.  Normal E. coli residues 
are in white circles; exogenous residues are in gray circles.  The broad green strips highlight the 
helical interfaces containing the a, d, e and h positions of hendecad patterns or the a and d 
positions of heptad patterns.  Nonpolar residues in these strips are emphasized by bold circles. 
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Fig. 3.  Characterization of membrane vesicles carrying Tm-1 and GCN4-1 chimeras.   
Membranes were prepared from strains carrying plasmids as indicated:  1100, 1100 (wild-
type)/pSD80(empty expression vector); uncF, KM2/pSD80; uncF+, KM2/pDM8 (synthetic gene 
encoding b); Tm-1, KM2/pSD200; GCN4-1, KM2/pSD203.   (A)  The ATP synthase content of 
membrane preparations was compared by western blotting using 125I-labelled antibodies to either 

the  subunit of F1 (monoclonal antibody II) or to the b subunit of F0 (polyclonal rabbit anti-b).  
(B)  ATP-Dependent proton pumping was measured by quenching of fluorescence of ACMA.  

At the indicated times ATP and FCCP were added to concentrations of 2 mM and 2 M, 
respectfully. 
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Fig. 4.  ATP-Dependent proton pumping by 
membrane vesicles prepared from transformants of 
KM2 carrying chimeric b subunits.   Membrane 
vesicles were prepared from cells of strain KM2 
carrying plasmids based on pBAD24 that expressed 
the indicated b subunit chimeras as described in 
section 2.3.  Details of the chimeras are provided in 
Table 2 and the sequences of the chimeras are 
shown in Fig. 1 (B).  Membranes were analyzed for 
ATPase content and for ATP-dependent proton 
pumping.  Upper set, membrane vesicles from cells 
carrying plasmids encoding T. maritima b subunit 
chimeras (chimera, plasmid, ATPase activity): 
uncF+, pSD205, 0.46 U/mg; uncF, pBAD24, 0.06 
U/mg; Tm-1, pSD248, 0.33 U/mg; Tm-2, pSD252, 
0.19 U/mg; Tm-6, pSD247, 0.12 U/mg; Tm-7, 
pSD251, 0.29 U/mg.  Middle set, membrane 
vesicles from cells carrying plasmids encoding C. 
pneumoniae E subunit chimeras:  uncF+, pSD205, 
0.46 U/mg; uncF, pBAD24, 0.06 U/mg; VATE-2, 
pSD255, 0.33 U/mg; VATE-5, pSD258, 0.18 
U/mg; VATE-7, pSD260, 0.25 U/mg; VATE-8, 
pSD264, 0.14 U/mg.  Lower set, membrane 
vesicles from cells carrying plasmids encoding M. 
tuberculosis Ag84 chimeras: uncF+, pSD205, 0.72 
U/mg; uncF, pBAD24, 0.06 U/mg; Ag84-1, 
pSD204, 0.33 U/mg; Ag84-2, pSD277, 0.48 U/mg; 

Ag84-3, pSD278, 0.46 U/mg; Ag84-4, pSD279, 0.61 U/mg. 
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Fig. 5.  Circular dichroism analysis of soluble forms of b chimeras.  CD spectra (A) and thermal 
denaturation curves (B) of b34-156 and chimeric versions were collected and analyzed as described 
in section 2.5, using a buffer containing 20 mM sodium phosphate, pH, 7.0 and 100 mM NaCl.  
Samples were studied at a corrected concentration of 0.3 mg/ml, using a cell with a light path of 
1 mm.  The lines in (B) represent the best fit to a two-state denaturation model. 
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Fig. 6.  Denaturation of soluble forms of b chimeras by differential scanning calorimetry.  
Samples were analyzed in 20 mM sodium phosphate buffer, pH, 7.0, containing 100 mM NaCl 
using a Microcal VP-DSC as described in section 2.5.  Buffer-corrected thermograms are shown.  
Corrected concentrations, in mg/mL, for data presented were: (A) b34-156, 0.80; (B) Tm-1, 0.60; 
(C) Ag84-1, 0.60; (D) GCN4-1, 0.66.   
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