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Abstract

Hypercholesterolemia is a classical risk factor for cardiovascular disease
development. The genetic etiology of hypercholesterolemia in familial combined
hyperlipidemia (FCH), one of the most common genetic dyslipidemias, is poorly
understood. We aimed at understanding the genetic etiology of hypercholesterolemia
in FCH.

Sequencing, genotyping and computational analyses were performed in a case-
control setting to better understand the ‘nature’ aspect of hypercholesterolemia in
FCH. My findings suggest that FCH more likely has a polygenic basis.

All my findings have shown that the genetic definition of a disease, especially
relatively common diseases like FCH that have been previously considered to be
monogenic, may need to be reconsidered. Thus findings from my studies of FCH
support a new direction in thinking about the genetic etiology of this common human

hyperlipidemia.

Key Words: Hypercholesterolemia, Familial Combined Hyperlipidemia, Rare

Variants, Genetic risk scores, Population Genetics, Genomics, Cardiovascular disease
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Chapter 1: Introduction

1.1 Cardiovascular Disease

1.1.1 Definition of cardiovascular disease (CVD) and current statistics on

Cardiovascular Disease

Cardiovascular disease (CVD) is the generic term that describes any disease
that affects the cardiovascular system, including the heart and blood vessels. Many
diseases fall under the classification of CVD. Ischemic heart disease and stroke are
common examples of CVD. In ischemic heart disease, there is reduced supply of
blood to the heart muscle; in stroke there is reduced blood flow to the brain. Some of
the various types of CVD are shown in Table 1.1.

CVD is the leading cause of mortality in North America. Even though the
relative rates of mortality due to CVD have declined due to improvements in disease
management and prevention, the absolute numbers of patients are rising due to the
aging of the “baby boomer” generation and CVD in absolute terms still remains the
leading cause of death and disability (1, 2). Figure 1.1 summarizes the statistics of
mortality rates of CVD in North America over time.

CVD is also becoming the leading cause of death worldwide because of the
changes in diet and lifestyle of individuals in developing countries. Individuals from
developing countries are adopting the stereotypical Western lifestyle of low physical
activity and unhealthy diet, causing CVD to become the leading cause of death

globally. Table 1.2 summarizes global CVD statistics.
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1.1.2 Risk Factors for CVD according to the Framingham Heart Study
Epidemiological studies, such as the Framingham Heart Study and its derived
risk score, have shown that there are certain common factors that put an individual at
risk for developing CVD (3). These Framingham risk factors are diabetes,
hypertension, age, sex, obesity, cigarette smoking, elevated plasma low density
lipoprotein cholesterol (LDL-C) levels and depressed high density lipoprotein
cholesterol (HDL-C) levels (3, 4). Table 1.3 briefly describes how each risk factor

contributes to increased CVD



Table 1.1 Brief description of the some of the different types of cardiovascular
diseases. Information in this table was taken from (5), (6)

Type of CVD

Brief Description

Coronary Heart
Disease

Stroke

Hypertensive heart
disease

Rheumatic heart
disease

Congenital heart
disease

Coronary Heart Disease (CHD) is also known as coronary artery
disease (CAD) and Ischemic Heart Disease (IHD). In CHD
there is blockage in the coronary artery of the heart. This
blockage deprives the heart muscle of oxygen and vital
nutrients, which could result in myocardial infarction (7)

Impairment of brain functions due to reduced blood flow to the
brain. Lack of blood flow may be due to rupture of vessel wall
(hemorrhagic) or due to block (ischemic) (5)

The abnormal regulation of systemic blood pressure due to
higher than normal arterial blood pressure (6)

Heart disease where there is inflammation of the heart muscle
due to rheumatic fever. Rheumatic fever is brought about by
infection with the streptococcus bacteria (6)

Heart disease in which there is malformation in the heart organ
from birth. These malformation may be due to genetic defects or
may be due to environmental exposure to teratogens during
gestation (6)
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Figure 1.1 North American Mortality rates of cardiovascular disease from
1970 to 2002. Information from this table was taken from (2, 8, 9)



Table 1.2 Number of global deaths, in 2002, due to various types of cardiovascular

diseases.
Global deaths due to type of
Type of CVD CVD Proportion of deaths
Coronary Heart Disease 7.2 million 43%
Stroke 5.5 million 33%
Other forms of Heart Disease 2.4 million 14%
Hypertensive Heart Disease 0.9 million 5%
Inflammatory Heart Disease 0.4 million 3%
Rheumatic Heart Disease 0.3 million 2%
Total number of deaths 16.7 million 100%

Note: Proportion of death refers to proportion of global deaths due to CVD that result from a
particular type of CVD. Information in this table was taken from World Health Organization
(WHO) (http://www.who.int/cardiovascular_diseases/en/cvd_atlas 01 types.pdf Accessed July

1st 2013).


http://www.who.int/cardiovascular_diseases/en/cvd_atlas_01_types.pdf

Table 1.3. Cardiovascular Disease risk factors according to the Framingham
Heart Study with brief explanation of each risk factor(3).

Risk Factor

Brief Description of association

Age

Sex

BMI

Diabetes
Smoking

Hypertension

Total
Cholesterol

High Density
Lipoprotein
Cholesterol

(HDL-C)

CVD risk increases with age (3)

Males and postmenopausal women are at greater risk than
premenopausal women(3)

Overweight individuals are at a greater risk of CVD development(3)

Diabetes increases risk(3)
Smoking increases risk of CVD(3)

High systolic blood pressure increases CVD risk(3)

High cholesterol due to elevated LDL-C increases risk(3)

HDL-C is a negative risk factor — high levels of HDL-C reduce the
risk of CHD(3)




1.2 Hypercholesterolemia

Cholesterol belongs to the family of organic compounds called steroids (10). A
steroid can be defined as a compound that has 17 carbon atoms arranged in 4 rings
(11). Steroids fall under a large group of macromolecules called lipids; so cholesterol
is a lipid. A lipid can be defined as an organic molecule that does not chemically
interact with water (12). However this definition of a lipid is contextual as many
lipids are amphipathic and the majority of the structure of amphipathic lipids is still
hydrophobic. Cholesterol is a good example of an amphipathic lipid, in which a
majority of its structure is hydrophobic, while a minority of its structure is hydrophilic

(i.e. the hydroxyl group). The structure of cholesterol is shown in Figure 1.2

Cholesterol is essential to life. Cholesterol is required for the formation of cell
membrane, bile acids, steroid hormones and formation of vitamin D. Humans have
endogenous and exogenous sources of cholesterol. Cholesterol is synthesized by the
liver in humans (endogenous source). Cholesterol is also obtained from the diet

(exogenous source) (10).

Hypercholesterolemia is a condition where there is an aberrantly elevated
concentration of cholesterol in the blood. As alluded to in Section 1.1.2,
hypercholesterolemia increases an individual’s risk for CVD. Section 1.2.4 will
discuss how hypercholesterolemia increases CVD risk. An individual’s cholesterol
levels can be somewhat influenced by environmental factors such as dietary intake of
cholesterol. However, genetic factors account for over 50%, and perhaps up to 80% of

inter-individual variation in cholesterol levels in the human population (13).



H

Figure 1.2 Chemical Structure of Cholesterol. It is a general steroid with some
odd hydrocarbon side chain. Cholesterol is an organic molecule that is a steroid.
Cholesterol has 17 carbon atoms arranged in 4 ring structures. Even though the
definition of a lipid is a molecule that is hydrophobic, there are many lipids, like
cholesterol, that are amphipathic with a majority of its structure being
hydrophobic. The hydroxyl (OH) group of cholesterol is the only hydrophilic
portion of the molecule and that hydrophilic portion of the molecule is still not
enough to make it soluble in the aqueous blood. This figure shows the entire
molecule soluble in aqueous blood. This is why cholesterol must be transported in
the form of a lipoprotein. This figure is taken and modified from Food and Health
Communications, Inc.

(http://dev.foodandhealth.com/clipart.php?cat=9&img=Cholesterol_Structure.jpg )



http://dev.foodandhealth.com/clipart.php?cat=9&img=Cholesterol_Structure.jpg

1.2.1 Lipoprotein metabolism in general

Lipids such as cholesterol are insoluble in the aqueous blood. So, cholesterol
needs to be transported within macromolecular complexes called lipoproteins that
contain specific biological transporter proteins called apolipoproteins (or
apoproteins). A lipoprotein can be defined as the assembly of a lipid and a protein (i.e.
apolipoprotein) as a single unit. An apo-protein also refers to a protein in the state
where it is unbound to its ligand (14). Within a lipoprotein, lipids such as cholesterol
are bound to and held within the surface apolipoproteins and thus can be transported
through the bloodstream (14). Cholesterol is transported as two main types of
lipoproteins; the cholesterol within these particles is identical, but it is the
biochemical behaviour of the particle which determines whether the cholesterol is
“good” or “bad” in popular parlance. Cholesterol is transported from its site of
synthesis (i.e. the liver) to other parts of the body within low density lipoprotein
(LDL) particles. Excess or unused cholesterol is transported from body tissues back to
the liver with high density lipoprotein (HDL) particles (14). There are various types of
lipoproteins in human blood and they all have one main function, which is the
transportation of lipids in the blood. Other types of lipids such as triglycerides are
transported in the blood as very low density lipoprotein (VLDL) or chylomicrons.

Cholesterol carried within LDL particles can become embedded within the
interior wall of the arteries, which with repeated deposition over time leads to
atherosclerosis (which shall be explained in section 1.2.4). That is why LDL-C is
colloquially referred to as ‘bad cholesterol’; as mentioned, the cholesterol is identical
to the substance found inside HDL particles, but by virtue of the fact that LDL
particles (but not HDL particles) can become deposited within the arterial wall, the

cholesterol within them gets its “bad” reputation. Hypercholesterolemia is usually the
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result of abnormally elevated plasma LDL particles and excess LDL-C. In other
words, aberrantly elevated LDL corresponds to excess cholesterol because cholesterol
in the blood is mainly carried within LDL particles (10)

A minor proportion of cholesterol in the blood is carried within HDL particles:
the cholesterol within HDL particles has been extracted from peripheral tissues, is
transported back into the liver and metabolized for bile acid synthesis. Because
cholesterol inside the HDL particle has been removed from peripheral cells and the
arterial wall, and is ultimately cleared from the blood, the identical cholesterol inside
the HDL particle is referred to by lay people as “good cholesterol” based not on the
properties of the cholesterol molecules, but rather based on the biochemical behaviour
of the HDL particles (10). The Framingham study showed that high levels of HDL-C
are associated with reduced CVD risk in patients, which is consistent with what is

understood about the action of HDL particles biochemically and physiologically.

1.2.2 Low Density Lipoprotein Cholesterol (LDL-C) metabolism

Two thirds of the body’s cholesterol is contained within LDL (15) and this is
mainly endogenous cholesterol made in the liver (16). Cholesterol is synthesized in a
multi-step biochemical process from acetyl-CoA and hydroxymethylglutaryl-CoA
(HMG-CoA) reductase, which is the enzyme that catalyzes the rate determining step
in the process (16). LDL particle formation can be either the result of direct release
into circulation from the liver, or through conversion of circulating VLDL to LDL in
bloodstream. The proportion of LDL produced via VLDL varies from individual to
individual. On average about two-thirds of circulating LDL is derived from
conversion from VLDL and about one-third is derived from direct synthesis by the

liver (17).
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Catabolism of LDL is brought about by the LDL receptor pathway, whereby
LDL is internalized in the cell through receptor mediated endocytosis (15). After
receptor-mediated endocytosis, LDL is degraded within the lysosomes, and the
cholesterol released suppresses HMG-CoA reductase; thus cholesterol regulates its
own synthesis through negative feedback (18). Cholesterol within the cell is
esterified and can be used for a variety of important functions depending on the cell
type. The LDL receptor is then recycled back to the cell surface, and the process of
receptor mediated endocytosis can resume. It is very important to appreciate that the
LDL receptor is the main regulator of LDL-C levels in the blood. Exogenous
cholesterol is absorbed into the blood and transported in chylomicrons, and through
breakdown, this cholesterol finally reaches the liver and is repackaged within VLDL

and LDL particles (16). Figure 1.3 summarizes LDL-C metabolism.
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Figure 1.3 LDL metabolism. Most of the LDL in blood is derived from VLDL catabolism.
When the triglycerides in VLDL are hydrolyzed, the remnants are referred to as IDL. Some
IDL gets cleared from plasma by the liver. The remaining IDL that does not get cleared
undergoes further triglyceride hydrolysis and becomes LDL. Some LDL found in plasma is
also produced directly from the liver. LDL gets cleared from the blood through the LDL
receptor pathway. In the LDL receptor pathway, LDL binds to its receptor, LDLR, which is
expressed on the cell surface of most cells especially the liver. The complex of LDL-and
LDLR enters the coated pit and is internalized. The coated vesicle loses its clathrin coat and
becomes an endosome, which is the site of lipoprotein and receptor dissociation. The LDL
receptor recycles to the cell surface, and the lipoproteins are degraded in the lysosomes.
HDL transports cholesterol from peripheral tissues back into the liver. This figures was

taken and modified from http://health-7.com/imgs/15/947.jpg



http://health-7.com/imgs/15/947.jpg
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1.2.3 High Density Lipoprotein Cholesterol (HDL-C) metabolism

HDL transports cholesterol from peripheral tissues, including the arterial wall,
back into liver (19), which is a process referred to as “reverse cholesterol transport”.
HDL-cholesterol is known as the ‘good cholesterol’ because it has been removed
from potentially dangerous sites by the process of reverse cholesterol transport. HDL
also has beneficial properties: for instance it blocks the proatherogenic oxidation of
LDL in the vessel wall (19). HDL has been seen as cardio-protective. HDL-C levels
had consistently shown an inverse relationship with CVD risk (19). Researchers have
questioned whether or not there is direct causality between HDL and CVD risk;
specifically, is HDL directly protective or is it merely a marker of some other entity or
process that is directly protecting the heart and arteries (19)? Thus the precise role and

mechanism of action of HDL are currently controversial in the field (20).

1.2.4 Mechanism of atherosclerotic plaque formation due to elevated plasma
LDL-C levels

The arterial wall is made up of three layers, namely, (i) tunica intima, (ii)
tunica media and (iii) tunica adventitia (21). A schematic figure of an artery is shown
in Figure 1.4. Atherosclerosis can be said to start with a lesion that occurs in the
endothelium of the arterial wall; this can be due to a toxin from cigarette smoke, or
chemical or physical stress, such as high blood pressure. This initial injury or lesion
then causes LDL to enter the arterial wall and accumulate in between the endothelium
and tunica intima. When the LDL-C level is high in the plasma and remains in plasma
for long,, it is more likely to become oxidized.

The properties of oxidized LDL are different from that of regular (i.e. native)

LDL (22). Oxidized LDL is an immunogen, i.e. it triggers an immune response. As a
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result of the immune response (23), monocytes from the bloodstream come to the site
of oxidized LDL as the monocytes recognize oxidized LDL as a foreign substance. As
the monocytes enter and take up residence within the arterial wall, they ingest the
oxidized LDL and become macrophages. When the macrophages become filled up
with oxidized lipids, they enlarge and take on a “foamy” appearance, which is why
they are referred to as “foam cells”. These foam cells eventually die, leaving the
cholesterol permanently embedded within the arterial wall. As the process repeats
over time, the cholesterol within the wall builds up into structures called “plaques”
which can begin to cause narrowing and eventually occlusions of the artery. Larger
and more mature plaques narrow the lumen of the artery; they are also prone to
bursting or rupture and these unpredictable and dramatic events can suddenly
completely block the artery, leading to a heart attack (myocardial infarction) or a
stroke, depending on the anatomical location of the artery (23, 24). Figure 1.5

visually summarizes the process of atherosclerosis.
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Figure 1.4 Structure of the artery. The artery is made up of a three layers and an
innermost endothelium. From the endothelium, the three layers are: tunica intima,
tunica media and tunica adventitia, respectively. Atherosclerosis occurs between
the endothelium and tunica intima (or essentially the tunica intima). This figure

was taken from Encyclopedia Britannica (21).
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Figure 1.5 Atherosclerotic plaque formation. Native LDL becomes trapped
between endothelium and tunica intima and undergoes oxidation. Then the
resident monocytes transform into macrophages that take up oxidized LDL. After
the macrophages consume oxidized LDL, they becoming foam cells. The foam
cells enlarge and die, which leads to cholesterol being permanently embedded in
these foam cells. This buildup of cholesterol leads to formation of structures
called plaque. Plaque formation leads to narrowing of the lumen and thus reduces
blood flow in the artery. This figure was taken and modified from Rochester

Institute of Technology ( http://cias.rit.edu/faculty-staff/101/student/287 )



http://cias.rit.edu/faculty-staff/101/student/287

17

1.2.5 Low Density Lipoprotein (LDL): Structure and Function

LDL is the lipoprotein through which cholesterol and esters of cholesterol are
transported in blood (25). LDL is a spherical amphipathic assembly, where the
hydrophilic portion is outwards facing and interacting with aqueous blood and the
hydrophobic portion is inwards. Figure 1.6 shows the structure of LDL (25). The
hydrophobic core of LDL consists of esterified cholesterol (or cholesteryl ester) and
some triglyceride. The phospholipid and apolipoprotein are found on the particle

surface. The main apolipoprotein in LDL is apolipoprotein (apo) B-100 (25).



Figure 1.6 (a) Structure of LDL (25) Low Density Lipoprotein (LDL) is an
assembly of proteins and lipids. LDL is the most abundant cholesterol carrying
lipoprotein. The unesterified cholesterol and phospholipid faces outward that is
surrounded by aqueous blood. The hydrophilic portion of the phospholipids faces
the aqueous blood and thus makes up the polar surface of LDL. The esterified
cholesterol (or cholesteryl ester) is the inner portion and makes up the
hydrophobic (non-polar core). Esterified cholesterol is cholesterol with its
hydroxyl group esterified. Esterification of cholesterol ensures efficient
transportation of cholesterol because more cholesterol can be packed into the non-
polar core when it is esterified (b) (Top) Representation of ApoB-100 of LDL(26)
The large circle represents the lipids portion of LDL (i.e. the lipid core), 70% of which is
cholesterol. ApoB is believed to wrap around the lipid core as shown. The dark circles
represents the cysteine residues and the unshaded circles on ApoB represent the N-
glycosylated carbohydrates. Part of ApoB is exposed to the surface and part of ApoB is

buried in the lipid core. (Below) (27) Another representation of ApoB. The LDLR

binding region is believed to be included in residues 3000 to 4000.

18



19

Phospho-
lipid

Unesterfied
cholesterol

i Cholesteryl
ester

N terminus
e

C terminus ___ /"
b

1 3000 4000 4536
COOH

LDLR-binding region



20

1.2.6 Proteins that normally control LDL-C levels: HMG CoA reductase,
LDLR, ApoB, PSCKY9, ARH, and IDOL

Cholesterol is a highly regulated molecule, especially within cells. Proteins
that normally control plasma LDL Cholesterol (LDL-C) levels are: HMG CoA
reductase, Low Density Lipoprotein Receptor (LDLR) (18), Apolipoprotein B-100
(ApoB) (28), PCSK9 proprotein convertase subtilisin/kexin type 9 (PSCK?9) (29),
LDLR adaptor protein (LDLRAP1) also called the Autosomal Recessive
Hypercholesterolemia gene (ARH), and Inducible Degrader of LDLR (IDOL) (30).
All of these proteins, except for HMG CoA reductase and ARH will be focused on in
this thesis. The downstream effect of defective LDLR and ApoB is increased plasma
LDL-C and total cholesterol levels (18, 31), while the downstream effect of defective
PCSKO function is decreased plasma LDL-C and total cholesterol levels (29, 30).
Section 1.2.2 discussed HMG-CoA reductase, while section 1.4 will discuss the other
proteins. Figure 1.7 is a visual representation of how all six proteins interact to affect

LDL metabolism.



Figure 1.7 Schematic of how LDLR, ApoB, PCSK9, ARH, HMG CoA and

IDOL affect cholesterol levels. Normal functioning of HMG-CoA reductase
(written as HMG-CoA in the diagram), IDOL and PCSK9 increase LDL-
cholesterol levels. Normal functioning of LDLR, ApoB and ARH decrease

LDL-cholesterol levels.
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1.3 Dyslipidemias

Dyslipidemia is the term used to describe abnormal levels of lipids in the blood.
As alluded to in Section 1.2, lipids are macromolecules that are vital to many
functions within the human body, and show a range of normal levels in the blood. So,
just like water, too much or too little cholesterol can be pathogenic. Most pathogenic
human dyslipidemias are hyperlipidemias, so literature focuses on hyperlipidemia

(32).

1.3.1 Fredrickson’s classification of hyperlipidemia

Lipids and lipoproteins have been described in detail in section 1.2. The
Fredrickson classification system describes the various hyperlipidemias that can affect
patients based on the lipoprotein that is increased in the plasma. The Fredrickson
classification says nothing about the etiology of the phenotype; it simply describes the
phenotype based on the pattern of lipoprotein elevation. So, a particular Fredrickson
phenotype may result from multiple genetic defects. The Fredrickson scheme does not
include a description of any human hypolipidemia. Table 1.4 summarizes the
Fredrickson classification (33). Because an individual’s plasma lipid levels normally
rise after a meal, hyperlipidemia is defined after a 12-16 hour fast (33) (34). The
World Health Organization (WHO) uses the Fredrickson classification to describe
hyperlipidemia (34). Most, but not all human hyperlipidemias are described using the
Fredrickson system (34).

In Table 1.4, the word “Familial Hyperlipidemia” is used. However, usage of
the word ‘Familial’ needs to be clarified here. In the field and colloquially, ‘Familial’
often implies a monogenic etiology (35). However, familial does not necessarily need

to be monogenic because the familial hyperlipidemias in Table 1.4 are primary
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hyperlipidemias in that they cluster in families but do not necessarily follow a specific
Mendelian pattern of inheritance (35).

Another way of classifying hyperlipidemia is using "primary" or "secondary"
nomenclature. Primary hyperlipidemias usually result from a genetic defect of some
sort, while secondary hyperlipidemias result from other existing diseases in an
individual. For instance, a poor diet, excessive alcohol intake, obesity, diabetes,
thyroid disease, liver disease, kidney disease, autoimmune disease and certain
medications such as corticosteroids or drugs that target the human immunodeficiency

virus, can each cause secondary hyperlipidemia (34).



Table 1.4 Fredrickson classification of hyperlipidemia.

24

Fredrickson Familial Elevated Elevated
classification o ) Lipoproteins o
Hyperlipidemia Lipids
Type 1 Chylomicronemia CM TG
Type 2A Hypercholesterolemia LDL TC
Type 2B Combined hyperlipidemia VLDL, LDL TC, TG
Type 3 Dysbetalipoproteinemia IDL TC, TG
Type 4 Hypertriglyceridemia VLDL TC
Type 5 Mixed Hyperlipidemia VLDL, CM TC, TG

Note: Abbreviations: CM, Chylomicron; LDL, Low Density Lipoprotein; VLDL,
Very Low Density Lipoprotein; IDL, Intermediate Density Lipoprotein; TC, Total

Cholesterol, TG, Triglyceride. Information in this table was taken from Fredrickson et

al (33)
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1.3.1.1 Focus on Fredrickson types 2A and 2B (FH and FCH)

Fredrickson Type 2A and Type 2B are the only phenotypes that include
hypercholesterolemia in its phenotypic description. The diseases Familial
Hypercholesterolemia (FH) and Familial Combined Hyperlipidemia (FCH) are
designated as Type 2A (elevated LDL only) and Type 2B (elevated LDL and VLDL
both) Fredrickson phenotype classes, respectively. The disease Familial
Hypertriglyceridemia (FHTG) is identical with the Fredrickson Type 4 (elevated
VLDL) phenotype. Previous work from our lab has shown that the FCH and FHTG
have a common genetic etiology for elevated triglyceride (TG), which is a
combination of many single nucleotide polymorphisms (or SNPs) that each contribute
a small amount to raise levels of, but which cumulatively act to raise TG to a
clinically relevant level. My hypothesis was that FCH may be a condition that is due
to the co-existence of FH (a disease that is due to rare mutations in the LDLR that
raise LDL-C levels) and FHTG (a disease that is due to common polymorphisms that

raise TG levels) (Figure 1.8).
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Figure 1.8 Venn diagram suggesting a genetic model for Familial Combined
Hyperlipidemia (FCH). Elevated LDL occurs in FH and elevated VLDL occurs
in FHTG. Elevated LDL and elevated VLDL occurs in FCH. Previous work from
Hegele lab has shown that the TG (essentially VLDL) elevation in FCH and
FHTG is due to similar genetic etiology, namely the accumulation of many
common SNPs, each with a small effect on risk. So I hypothesized that FCH
could reflect the coexistence of FH (rare variants that raise LDL-C) and FHTG

(common variants that raise VLDL).
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1.3.2 Role of genetics in dyslipidemia

1.3.2.1 Genetic Variation and Disease

Most complex diseases have both an environmental etiology and genetic
etiology. The ratio of environmental factors to genetic factors in the causation of a
disease varies from disease to disease and from individual to individual. There are
various types of genetic variation. | define genetic variation can be defined as any
change in the DNA sequence in an individual’s DNA. This change in sequence can be
brought about, for instance, either by small substitutions of nucleotide or by larger
gains or loss of DNA, such as insertions and deletions. Sometimes the word ‘genetic
variation’ is considered to be synonymous with ‘mutation’. The meaning of the word
mutation depends on the context in which it is used. In a clinical setting, mutation
usually refers to a rare genetic variation that leads to a dysfunctional gene product,
which consequently leads to lack of wellbeing. So, in clinical terms, every mutation is
a genetic variation but not every genetic variation is a mutation. The definition of
mutation in this thesis is that of the clinical setting, in which it refers to a rare
molecular event that likely affects the normal function of the gene product and could
lead to an abnormal phenotype or disease.

Cystic Fibrosis (CF) and phenylketonuria (PKU) are examples of diseases that
result mainly from genetic variation in a single gene that is sufficient to cause the
disease. These are referred to as “monogenic diseases” and are individually rare in
the population. For instance, the prevalence of CF in North America is about 1 out of
2500 live births, which makes CF the most common recessive disorder in individuals
of European descent (36). Phenylketonuria is also another monogenic disorder (37)

Cystic fibrosis (CF) is an autosomal recessive disease where individuals have a
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homozygous (or compound heterozygous) mutation in the cystic fibrosis
transmembrane conductance regulator gene (CFTR). In CF, individuals have
pathological changes in tissues that express CFTR including secretory cells, sinuses,
lungs, pancreas and reproductive tracts. CF is most pronounced in the airways. The
deletion of the amino acid phenylalanine at amino acid position 508 occurs in more
than half of Caucasian CF cases (38) (36).

Similarly, PKU is a rare disorder whose prevalence varies from population to
population but generally affects ~1 in 10000 live births. Even so, PKU is the most
common inborn error of amino acid metabolism (37). PKU is an autosomal recessive
disease where individuals do not metabolize the amino acid phenylalanine, which
leads to elevated levels in the blood and toxic levels in the brain (37). The genetic
defect is in the phenylalanine hydroxylase gene (PAH) and missense mutations occur
in majority of cases in PKU.

Identifying causal mutations in a monogenic disease helps unraveling
pathways in various biochemical processes. For instance, identifying the casual LDL
receptor gene (LDLR) mutation in FH (39) increased the understanding of the
biochemistry of cholesterol metabolism through LDLR and knowledge of receptor
mediated endocytosis, which is a mechanism used by many proteins and not just
LDLR.

Diseases can be categorized, based on their prevalence in the population, as
common diseases or rare diseases. According to the World Health Organization
(WHO) a rare disease, also known as an orphan disease, is a disease defined as
affecting individuals at a frequency of 65 to 100 in 100,000 (40). In contrast, a

common disease can be defined as a disease that is found much more frequently in the
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population, like cancer and CVD, which together affect one-third to one-half of all
people.

There have been various models for explaining genetic etiology of common
diseases. The Common Disease-Common Variant (CDCV) Hypothesis is a model
whereby common diseases are said to result from accumulation of a moderate
number of common variants, each of which contributes to a certain small percent of
the disease risk (41). However, common variants identified by GWAS so far explain
only a small portion of the genetic component of most common diseases, which has
given rise to the ‘missing heritability’ problem.

In the field of genomics/genetics, the missing heritability problem essentially
refers to the proportion of genetic susceptibility that is not explained by GWAS
identified loci such as common variants (41). To solve the missing heritability
problem, the missing genetic component has been attributed to either of three models,
namely, (i) the infinitesimal model, (ii) the rare allele model and (iii) the broad sense
heritability model.

In the infinitesimal model, the genetic component is explained by numerous
amounts of common variants (each of small effect size) each contributing a small
percent to disease risk. In the rare allele model, the genetic component is explained
by many rare variants (each of large effect size) each contributing to disease risk. In
the broad sense heritability model, the genetic component is explained by a
combination of environmental, genotypic and epigenetic interactions. Also, some
propose that other mechanism, such as gene X gene interactions, gene X environment
interactions or epigenetic factors can help explain the “missing heritability” for many

common diseases.
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GWAS are not sufficiently powered to detect variants under any of these three
models. (41). So, researchers have a choice of which model best fits their hypothesis/
experiments as none of the models has been shown to be better over the other (41).
1.3.2.1.1 Common Variants

Common variants are defined as variants with a minor allele frequency (MAF)
of greater than 5% in the general population (42). There are various types of common
variants including SNPs. SNPs have been used for studying complex diseases/traits
such as dyslipidemia (43), but also many other traits. SNPs have been used to identify
loci that were later discovered to be involved in lipid metabolism (44). Common
variants that predispose individuals to disease are normally non-disease causing in

and of themselves.

The effect size is the statistic that refers to the magnitude of an effect such as
magnitude of regression coefficient and mean difference (45). Effect size can be
represented as an Odds Ratio. The Odds Ratio is the ratio the odds of an event
occurring case cohort to odds of an event occurring in the control cohort (45). The
effect size of a variant essentially refers to the increase in risk that is conferred by the
variant. Common variants usually have small effect sizes. Common variants do not
cause disease; they increase susceptibility to disease. However, there are exceptions;
for instance, a common SNP is associated with a huge risk (odds ratio of almost 7-
fold) for developing the eye disease macular degeneration (46). However, the effect
sizes for most SNPs so far discovered in GWAS of common diseases and phenotypes

ranges from 1.2- to 2-fold.
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1.2.3.1.2 Rare Variants

A rare variant is defined as a variant with a minor allele frequency (MAF) of
less than 1% in the population; variants with a MAF of 1%-5% are called uncommon
variants (42). Mutations (defined in section 1.3.2.1) are usually rare variants.
Mutations can often have large effect sizes. However, there are exceptions, because
next generation sequencing of the genomes of completely healthy people has now
revealed hundreds of thousands of new rare variants, but because most of these people
were essentially healthy, all these mutations cannot be assumed to have large effects
on disease risk. Nevertheless, the general notion is that mutations are rare variants that
can have large effects on disease risk.

Under the rare variant model (which was briefly described in Section 1.3.2.1),
mutations are likely to be rare variants because of evolutionary theory. In
evolutionary theory, variants that are deleterious to fitness such as disease causing
variants (i.e. mutations) are selected against and therefore cannot be common in the
population. This phenomenon is called purifying selection and it refers to selection
against fitness-reducing variants (such as disease causing variants) such that their
frequency is kept low in the population or even eliminated in the population. So,
existence of rare variants in the population is a balance between purifying selection
and high mutation rates that give rise to susceptibility variants, such that the balance
leads to the frequency of such variants being 1% or slightly more if it has a moderate
effect on fitness. Evolutionary theory is one of the strongest supports for the rare
allele model (41). The hypothesis of our resequencing study, which was our first
study, (explained in Section 1.8.1 of the thesis) was made in light of the rare allele

model.
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1.3.2.2 Monogenic dyslipidemias

Monogenic dyslipidemias refer to dyslipidemias in which the genetic etiology
can be narrowed down to one gene. Thus monogenic dyslipidemias typically follow a
Mendelian pattern of inheritance. Table 1.5 gives a list of dyslipidemias that are
considered to follow a Mendelian pattern of inheritance(47) their OMIM numbers (i.e.
Online Mendelian Inheritance in Man in The NCBI database) have also be given for
reference. FH is a classic example of a monogenic dyslipidemia. However, recent
research in the field has shown that an alternate etiology for a proportion of cases of

FH — perhaps 20%, can actually be polygenic (48).

1.3.2.3 Polygenic dyslipidemias

Polygenic dyslipidemia refers to dyslipidemia where multiple genes contribute
to the disease phenotype. Polygenic dyslipidemia would fit the infinitesimal model
(which was briefly described in Section 1.3.2.1 of the thesis). Diseases where etiology
cannot be narrowed down to a single or few genes are by default categorized as
polygenic. However, not finding a single particular gene (or few genes) involved in
disease etiology may sometimes reflect the science or technology involved in

unraveling disease etiology.



Table 1.5 Brief descriptions of monogenic dyslipidemias and their OMIM

number for reference
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OMIM
Monogenic Dyslipidemia Gene number
1-Autosomal dominant Familial Hypercholesterolemia due to defective LDLR 606945
2-Autosomal dominant Familial Hypercholesterolemia due to defective APOB 107730
3-Autosomal dominant Familial Hypercholesterolemia due to defective PCSK9 607786
4-Autosomal Recessive Familial Hypercholesterolemia due defective ARH 605747
5- Cholesteryl ester storage disease due to defective LIPA 613497
6-Hypobetalipoproteinemia due to defective APOB 107730
7-Primary Bile Acid malabsorption due to defective SLC10A2 601295
8-Analphalipoproteinemia due to defective APOA1 107680
9-Familial LCAT deficiency due to defective LCAT 606967
10-FamilialHypoalphalipoproteinemia due to defective ABCA1 600046
11-Hepatic Lipase deficiency due to defective LIPC 151670
12-Hyperchylomicronemia due to defective APOC2 608083
13-Hyperchylomicronemia due to defective LPL 609708
14-Dysbetalipoproteinemia due to defective APOE 107741
15- Hypobetalipoproteinemia due to defective PCSK9 607786
16-Sitosterolemia due defective ABCG5 605459
17-Sitosterolemia due to defective ABCGS8 605460
18-CETP deficiency due to defective CETP 118470
19-Abetalipoproteinemia (ABL) due to defective MTP 157147
20-Familial Combined Hypolipidemia due to defective ANGPTL3 604774
21-Fredrickson’s Type V Hypertriglyceridemia due to defective APOA5 606368
22- Cholesterol 7a-hydroxylase deficiency due to defective CYP7A1 118455
23- Chylomicron retention disease due to defective SAR1B 607690

OMIM, Online Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/omim/)
Abbreviations:

LDLR, low density lipoprotein receptor

APOB, Apolipoprotein B

PCSK9, proprotein convertase subtilisin/kexin type 9

ARH, low density lipoprotein receptor adaptor protein 1

LIPA, lipase A

SLC10A2, solute carrier family 10 (sodium/bile acid cotransporter family), member 2
APOAL1, apolipoprotein A-1

LCAT, lecithin-cholesterol acyltransferase

ABCAL, ATP-binding cassette, sub-family A (ABC1), member 1
LIPC, lipase

APOC2, apolipoprotein C-11

LPL, lipoprotein lipase

APOE, apolipoprotein E

ABCGS5, ATP-binding cassette, sub-family G (WHITE), member 5
ABCG8, ATP-binding cassette, sub-family G (WHITE), member 8
CETP, cholesteryl ester transfer protein, plasma

MTP, microsomal triglyceride transfer protein

ANGPTL3, angiopoietin-like 3

APOAD5, apolipoprotein A-V

CYP7AL, cholesterol 7-alpha-hydroxylase

SAR1B, SAR1 homolog B
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1.4 Familial Hypercholesterolemia
1.4.1 Characterization, clinical features, diagnosis and clinical genetics of

Familial Hypercholesterolemia

In the disease Familial Hypercholesterolemia (FH), individuals have
abnormally elevated LDL-C levels. FH typically shows a Mendelian pattern of
inheritance, as it is usually a single gene disorder. FH can be inherited in an
autosomal dominant manner (in which case is referred to as Autosomal Dominant
Hypercholesterolemia) and an autosomal recessive manner (in which case it can be
referred to as Autosomal Recessive Hypercholesterolemia). The prevalence of the
heterozygous form of FH is 1in 500 and the prevalence of the homozygous form of
FH is 1 in 1,000,000 (49).

In FH, there is reduced clearance of LDL-C from plasma because of defective
activity of LDLR. FH heterozygotes have a 2- to 3-fold increase in LDL cholesterol
levels. Approximately half of FH heterozygotes develop tendon xanthomas,
xanthelasmas, premature corneal arcus and CHD by the 4™ or 5™ decade of life. FH
homozygotes have a 5- to 8-fold increase in LDL-C levels and develop CHD in the
2" decade of life.

The way FH is diagnosed can vary from clinician to clinician, but there are
standard clinical methods for diagnosis mainly that involve observation of elevated
plasma LDL-C levels (that is unexplained by secondary causes), a personal history or
family history of CHD or myocardial infarction, and the presence of xanthomas on

physical examination (50).
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1.4.2 Genetic Etiology of Familial Hypercholesterolemia

Autosomal Dominant Hypercholesterolemia (ADH) can be caused by a
mutation in any one of three genes, namely LDLR (Low Density Lipoprotein Receptor
gene), APOB (Apolipoprotein B-100 gene) and PCSK9 (Proprotein Convertase
Subtilisin/kexin Type 9 gene). Autosomal Recessive Hypercholesterolemia (ARH) is
caused by a mutation in the two copies of the LDLR gene, or the Autosomal
Recessive Hypercholesterolemia gene (ARH). The autosomal dominant form of FH is
much more common than the autosomal recessive form of FH. The frequency of FH
due to LDLR, APOB, PCSK9 and ARH is 52%-76%, 2-10%, 2% and 2%, respectively.

Thus, mutation in LDLR is the most common cause of heterozygous FH (49).

1.4.2.1 Low Density Lipoprotein Receptor gene LDLR: Structure and function

LDLR codes for the Low Density Lipoprotein Receptor (LDLR) and this gene
is mainly expressed in the in liver. LDLR is an ~860-amino acid cell surface
glycoprotein (51). The most important physiological ligand for the LDLR is LDL,
which carries ~70% of cholesterol in humans (51) (LDL has been described in Section
1.2.5). LDLR plays an important role in cholesterol homeostasis because its main
function is to clear LDL from plasma.

LDLR has five domains, namely: (i) Ligand Binding Domain, (ii) EGF
Precursor Homology, (iii) O-linked Sugar Domain, (iv) Membrane Spanning Domain
and (v) Cytoplasmic Domain. The schematic figure of mature LDLR (i.e. LDLR with
the 21 amino acid signal peptide sequence removed) is shown in Figure 1.9 (39)
shows the structure of cholesterol. Figure 1.3 shows how LDLR is involved in

clearance of LDL from blood.
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The first 21 amino acids of LDLR is the signal peptide sequence which gets
cleaved soon after the protein is translated. The 21 amino acid signal directs location
of translation on the membrane of the Endoplasmic Reticulum (ER) as the protein is
getting translated (39).

The ligand binding domain as its name implies, is the domain that binds LDL.
It is a cysteine rich domain and many disulphide bonds are present in this domain.
This extensive disulphide structure gives this domain stability. This domain is
negatively charged and this negative charge is complementary to the charge of regions
of apo E (39). The second domain is the Epidermal Growth Factor (EGF) precursor
homology domain and the name was given because this domain of LDLR resembles
the part of the extracellular domain of EGF (39). The third domain is called O-linked
sugar domain because of the clustering of O-linked sugar chains (39). The fourth
domain, which is the membrane spanning domain, is rich in hydrophobic amino acid
residues so that it can interact with the hydrophobic cell membrane (39). The fifth
domain is the cytoplasmic domain and this domain is important for the clustering of
LDLR in clathrin-coated pits that occurs in LDL clearance by LDLR. LDLR clusters
and then internalizes LDL. This clathrin is important for this clustering of LDLR (39).

In clearance of LDL from blood (Figure 1.3), receptor-ligand complexes
occurs in clathrin coated pits. LDLR clusters in clathrin coated pits. The receptor-
ligand complex is internalized into the cell within the clathrin coated pits. This
complex is delivered to the endosomes where the pH is low (i.e. acidic). At this low
pH, the receptor dissociates from the ligand; the receptor gets recycled back to the cell
surface and the ligand moves from the endosome to the lysosome. In the lysosome,
LDL is hydrolysed and cholesterol is released into the cell (51). This entire process is

referred to as receptor-mediated endocytosis.
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A loss-of-function mutation in the LDLR gene leads to less or no clearance of
LDL, thus resulting in hypercholesterolemia. For the LDLR, mutations have been
classified into 4 classes (39). In Class | mutations, no receptor is synthesized due to a
major deletion mutation that results in no protein product expressed. In Class Il
mutations, LDLR is synthesized but does not undergo its normal post translational
modification, which occurs in the ER. So, LDLR does not get to the cell surface;
LDLR remains in ER until it is degraded. In Class 111 mutations, LDLR is synthesized
and reaches the cell surface but fails to bind its ligand. In Class IV mutations, LDLR
is synthesized, reaches cell surface, binds to LDL but fails to cluster and clustering of
LDLR (which occurs in clathrin coated pits), is vital for receptor mediated
endocytosis. So, for LDLR, the mutations are classified based on the aspect of
receptor mediated endocytosis it is affecting and not the type of mutation. The
downstream effect of all the classes is reduced clearance of LDL. LDLR mutations are

the most common cause of FH as alluded to earlier.
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Figure 1.9 Structure of LDLR (a) The multidomain LDLR. LDLR has five domains. The
Ligand binding domain is for binding of LDL and the cytoplasmic domain is important for
internalization of LDLR —LDL complex into the cell. The membrane spanning domain is
rich is hydrophobic residues so that it can interact with the hydrophobic layer of the cell
membrane. The EGF (Epidermal Growth Factor) precursor homology domain is
homologous to part of EGF. Figure 1.9 was modified from (39). Figure 1.3 shows the
mechanism of LDLR action. The main function of LDLR is to clear LDL from the blood.
LDLR clears LDL from the blood through receptor mediated endocytosis. In receptor
mediated endocytosis, LDLR binds LDL. The LDLR-LDL complex gets internalized into
the cell. The LDLR-LDL complex enters the endosome. In the endosome the pH drops
which dissociates the LDLR-LDL complex. LDLR gets recycles back to the cell surface,
while LDL is transported to the lysosome and gets metabolized in the lysosome. In the

lysosome, cholesterol is released from LDL.
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1.4.2.2 Apolipoprotein B-100 gene APOB: Structure and function

APOB codes for both Apolipoprotein B-48 (ApoB-48) and Apolipoprotein B-
100 (ApoB-100). The difference between the two isoforms of the protein is that the
ApoB-48 isoform, which is 48% of the length of the full-length ApoB-100 isoform, is
expressed in the small intestine. In contrast, the ApoB-100 isoform is expressed in
the liver. ApoB is the ligand that LDLR recognizes in LDL (52) (Apolipoproteins
and LDL were discussed in Section 1.2). ApoB, which is one of the largest
monomeric proteins known (53) is the apolipoprotein of LDL (52). Because of the
insoluble nature of ApoB, it has been difficult to completely study its tertiary structure
(26) (53). So researchers have used experimental and in silico data to predict the three
dimensional structure of ApoB. Figure 1.6b is also a diagram for ApoB structure.
Some cases of FH result from a perfectly normal LDLR but a mutation in APOB;
these mutations disrupt the ApoB structure such that it cannot bind with LDLR and
thus clearance of LDL from plasma gets disrupted (27). APOB mutation is the second
most common cause of FH as alluded to earlier.

Figure 1.6b (Top) was modified from (26) and Figure 1.6 b (Bottom) was
modified from (27.) ApoB, which is made up of 4536 amino acids, is believed to
wrap around the spherical lipid core The Receptor binding region of the ApoB protein

is believed to span amino acid residues 3000 to 4000 (27) .

1.4.2.3 Proprotein Convertase Subtilisin/kexin Type 9 gene PCSK9: Structure

and function

PCSKO codes for Proprotein Convertase Subtilisin/kexin Type 9 protein

(PCSK9). PCSK9, which is a 692 amino acid protein that normally degrades LDLR.
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A loss of function mutation in PCSK9 leads to less degradation of LDLR and thus
increases clearance of LDL by LDLR. A gain of function mutation in PCSK9 leads to
less clearance of LDL by LDLR. Thus, gain of function mutations are causative of
Familial Hypercholesterolemia (54, 55).

The mature PCSKO is shown is Figure 1.11a PCSKO9 has three domains,
namely the prodomain, the catalytic domain and lastly the C-terminal domain. PCSK9
binds the cell surface LDLR by directly interacting with the EGF Precursor
Homology Domain of LDLR and PCSK9 binds LDLR with its catalytic domain (56).

This interaction of PCSK9 with LDLR targets LDLR for lysosomal degradation (57).

1.4.2.4 Autosomal Recessive Hypercholesterolemia gene ARH: Structure and
function

ARH (Autosomal Recessive Hypercholesterolemia protein), also called LDLR
associated protein (LDLRAP1) interacts with the cytoplasmic tail of LDLR. The
Phosphotyrosine binding (PTB) domain of ARH interacts with the NPXY consensus
in LDLR cytoplasmic tail domain and the consensus of NPXY is required for
internalization of LDLR-ligand complex (58). ARH, which is a 308 amino acid
protein, is required for the internalization of LDL-LDLR complex and ARH is
haploinsufficient; mutation in both copies of ARH causes FH (59). Figure 1.11bisa
simple diagram of ARH and was modified from (58). As mentioned earlier,

autosomal recessive mutation in ARH is fourth most common cause of FH.
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(a) PCSK9

Prodomain | Catalytic domain | C-terminal domain
(b) ARH
N-terminus PTB Domain C-terminus

Figure 1.10 Structure of PCSK9 and ARH (a) Simple diagram of PCSK9. From N-

terminus to C-terminus, PCSK9 has the prodomain, the catalytic domain and the C-

terminal domain. PCSK9 degrades LDLR through its interaction with its catalytic

domain. The catalytic domain of PCSK?9 interacts with EGF Precursor homology of

LDLR Figure 1.11a was taken and modified from Abifadel et al (55) (b) Simple

Diagram of ARH. ARH has a PTB (phosphotyrosine binding) domain. This PTB

domain interacts with the NPXY consensus sequence of the cytoplasmic tail

domain if LDLR and this interaction is necessary for the internalization of

LDLR-LDL complex into the cell. Figure 1.11b was modified from (58)
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1.4.2.5 Role of polygenic susceptibility in FH - Humphries 2013 Lancet paper (48)

A minority of FH patients — perhaps 10 to 20% depending on the population -
do not have mutations in any of the four known FH—causing genes (i.e. LDLR, APOB,
PCSK9 and ARH). These patients are known as Mutation Negative Familial
Hypercholesterolemia (FH/M-ve) patients (48).

According to the Global Lipid Genetics Consortium (GLGC), there are 37
SNPs that have been shown to be associated with LDL-C levels (43). Researchers
(48) used 12 of the 37 SNPs to test for accumulation of risk alleles in FH/M-ve
patients to see if FH/M-ve could have an alternate polygenic etiology (48).
Researchers tested this hypothesis in the British population and found that FH/M-ve
patients have a greater accumulation of the 12 GLGC-identified risk alleles than in
FH patient with mutation in any of the four known FH-causing genes. Thus FH can
also be a polygenic disease, particularly when mutations in the genes that cause the

monogenic form are absent (48).

1.4.2.6 Role of APOE in FH

Recent studies have shown that a mutation in the apo E gene (APOE)
segregates with Familial Hypercholesterolemia (60). Marduel et al (60) was the first
to report segregation of an APOE deletion mutation, the APOE Leu 167 del mutation.
The APOE Leu 167 del mutation was also found in another family where the mutation
segregated with FH (data yet to be published). In both cases, the APOE mutation

segregated with Autosomal dominant form of FH.



44

1.4.3 Treatment of Familial Hypercholesterolemia

1.4.3.1 Statin treatment: Brief explanation of cholesterol lowering by diet, statins

and other drugs - ezetimibe, bile acid sequestrants

Hypercholesterolemia can be reduced by lowering the amount of cholesterol in
the diet. Hypercholesterolemia can also be reduced by exercise (61). This change in
lifestyle is often the first step in lipid lowering. As a result of knowledge of
cholesterol metabolism, certain drugs have been developed to lower cholesterol.
Acetyl CoA is a precursor in cholesterol biosynthesis and statins are structural
analogues of acetyl CoA. So, statins lower cholesterol by preventing HMG CoA
reductase from metabolizing its natural substrate (61). Statins also lower cholesterol
because the effect of reduced cholesterol biosynthesis is upregulation of LDLR such

that more LDLR are expressed on the cell surface (61).

There are other drugs that lower cholesterol by targeting various aspects of
cholesterol biochemistry. For instance, ezetimibe blocks the absorption of cholesterol
from the small intestine (61) and bile acid sequestrants increase the conversion of
cholesterol to bile acids thus depleting liver cholesterol levels leading to upregulation

of the LDLR (62).

1.4.3.2 Kaplan-Meier survival curve for Familial Hypercholesterolemia
Kaplan-Meier curves are survival curves that can display differences due to

various interventions carried out in the population. Survival curves show rates of
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survival (i.e. percent of patients that are living) of individuals as a function of time.
Figure 1.12 shows a Kaplan-Meier survival curve for FH patients on statin and those
not on statin treatment. The FH patients on statin treatment had much greater survival
rates than FH patients who were not on statin treatment (63). Thus Kaplan-Meier
survival curves emphasize the importance of early treatment with statins leading to

better prognosis.

1.4.4 1DOL, PSMD?9 and cholesterol metabolism

Expression of LDLR is highly regulated. Myosin regulatory light chain
interacting protein (IDOL) has been identified as an Inducible Degrader of LDR
(IDOL) protein; thus IDOL is sometimes referred to as IDOL. IDOL degrades LDLR
through a pathway independent of PCSK9. IDOL mediates ubiquitination and
degradation of LDLR (30, 64). Thus a gain of function mutation in IDOL will lead to
less LDL clearance and loss of function mutation will lead to more LDL clearance.
This function makes IDOL a suitable gene to study in diseases where
hypercholesterolemia occurs such as FH and FCH.

The gene for Proteasome Modulator 9 (PSMD?9) is localized 12g24 (65).
Linkage of PSMD9 locus to primary hypercholesterolemia while studying a rare
family and suggested that this locus be tested in disease where primary
hypercholesterolemia occurs. Thus PSMD9 is also a candidate gene for

hypercholesterolemia based on chromosomal localization.
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Figure 1.11 Kaplan-Meier Survival Curve for FH patients on statin treatment
and not on statin treatment (63). The survival rate is represented on the vertical
axis. The survival rate essentially shows the percentage of FH patients that are still
living over the course of time (which is represented on the horizontal axis). FH
patients on statin treatment have much better survival rates over time compared to FH

patients who are not statin treatment. (63).
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1.5 Familial Combined Hyperlipidemia

FCH has a prevalence of 1% in the Western population, making it the most
common genetic dyslipidemia. Because of the hypercholesterolemia that is
characteristic of FCH, having FCH puts an individual at risk for CVD; FCH has been
estimated to occur in 20% of individuals with Coronary Heart Disease (CHD), which
is a form of CVD (66, 67).

Familial Combined Hyperlipidemia (FCH) disease was characterized by an
affected proband having both elevated plasma cholesterol and triglyceride levels due
to elevated LDL and VLDL, respectively (68). Other affected family members can
either have elevated cholesterol, or elevated TG or both, thus making FCH distinct
from FH and Familial Hypertriglyceridemia (FHTG). FCH is distinct from FH and
FHTG because (i) in FH, a clear vertical pattern of inheritance is observed and
triglyceride levels are normal in affect family members and (ii) in FHTG, cholesterol
levels are always normal in affected family members (68). Interestingly, it was
suggested that the primary metabolic defect in FCH is in TG metabolism with
secondary effects on cholesterol metabolism and that FCH could be a monogenic
disorder.

The genetic etiology of FCH is currently considered to be polygenic (69).
Previous work from our the Hegele lab has explained genetic basis for primary
hypertriglyceridemia, including FCH and FHTG, with a combination of both common
variants and rare variants (70, 71) explaining 42% of variation in HTG.

The genetic etiology of hypercholesterolemia in FCH is poorly understood.
Many genes have been implicated through large linkage association studies (66), yet

the genetic basis for hypercholesterolemia is still unknown. Part of this thesis focused
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on unraveling the genetic etiology of hypercholesterolemia in FCH, more so

hypercholesterolemia is a classical risk factor for CVD development.

1.6 DIET1 and dyslipidemia

DIET1 was first discovered in mice over a decade ago. The gene is located on
chromosome 2 in the mouse genome (72). DIET1 has not been fully annotated in the
human genome. Recently, DIET1 has been shown to affect lipid metabolism in mice
and cultured human cells (73). Thus the gene is now becoming a subject of interest in
the field (74).

DIET1 was somewhat serendipitously discovered. A particular strain of mice
was used as a model to study genes involved in lipid metabolism. DIET1 was
discovered when a de novo (i.e. spontaneous) mutation occurred in this particular
strain of mice and gave rise to a new strain of mice (72). So, there was now the old
strain (i.e. the original strain) and a new strain that was phenotypically different.
When both the old strain and new strain were given an atherogenic diet (i.e. a diet
high in cholesterol), the old strain of mice showed increased cholesterol levels and
formation of atherosclerosis but the new strain did not. The new strain did not show
any increased cholesterol levels and did not develop atherosclerosis. So the phenotype
of this new strain was described as ‘resistant to diet-induced hypercholesterolemia
and atherosclerosis’ (72).

Because both the old and new strains of mice had extensive genetic identity,
the new phenotype had to be a result of a gene or a few genes. Using various genetic
approaches, such as genetic crosses and linkage analyses, a mutation in DIET1 in

mice was associated with the phenotype (72)
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Further studies were aimed at understanding the metabolic role and gene
expression of DIET1 (13). Phan et al used the genetic approach of gene expression
profiling to unravel the metabolism of DIET1. DIET1 is involved with increased bile
acid synthesis and excretion. Thus the mutation at the DIET1 locus caused the new
strain of mice to be resistant to diet-induced hypercholesterolemia and atherosclerosis
because plasma cholesterol concentration decreases when there is increased bile acid
synthesis and bile acid excretion (13)

There have been some human studies on DIET1. The chromosomal location of
DIET1 in humans is 10p12 and DIET1 encodes a predicted protein of 2156 amino
acids (73). Human and mice DIET1 share 70% similarity (73). DIET1 is expressed in
the small intestine in humans and mice (73). The role of DIET1 at the metabolic level
in both human and mice has been reported (73).

Cultured human and mouse intestinal cells were examined to further explain
DIET1 metabolism (73). Bile acid synthesis is controlled by negative feedback
regulation. Bile acid synthesis upregulates a protein called fibroblast growth factor
(FGF) 15 in mice (or FGF-19 in humans). The downstream effect of FGF-15/19 is
inhibited bile acid synthesis (73). DIET1 upregulates FGF-15/19. So mice and
cultured human intestinal cells deficient in DIET1 do not express FGF-15/19 do not
have repression of bile acid synthesis. Increased bile acid synthesis and increased bile
acid excretion are ways of lowering cholesterol in body. Thus, DIET1 deficiency
leads to hypocholesterolemia (73, 74).

DIET1 was shown to recently be associated with TG levels in mice (data yet to
be published, communicated from Professor Karen Reue, Department of Genetics,
University of California, Los Angeles). Since the Hegele lab has examined genetic

factors accounting for variation hypertriglyceridemia more than any other group (70,
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71, 75) | wanted to test for associations between common variants in DIET1 region

and hypertriglyceridemia.

1.7 Genetic approaches to identifying disease etiology

There are various approaches —in the terms of study design and techniques —
to identifying disease etiology in the field of genetics/genomics and the repertoire of
approaches increases with advancing technologies. Various designs employed in
identifying disease etiology include family studies, case-control studies and
population studies. Various techniques used in identifying disease etiology include
resequencing and genotyping.

In a family study design, genetic variation is evaluated in family members
affected with a particular disease. Various analyses, essentially referred to as pedigree
analyses, are performed to identify whether the genetic variation segregates with the
disease in the disease affected family. Linkage analyses and autozygosity mapping are
ways of analyzing pedigree information. In linkage analyses the LOD Score is
essentially measure of likelihood of linkage divided b likelihood of no linkage; LOD
score is calculated from pedigree information (76). Autozygosity mapping, which is
another form of linkage analyses, can be used in identifying genes involved in
autosomal recessive disorders (77) . These approaches are also used for better
understanding genetic etiology of traits that are non-disease related (78) such as
height and hair colour.

The advent of advanced technologies, such as next generation sequencing, has
birthed various genetic/genomic approaches including Genome Wide Association
Studies (GWAS) in large epidemiological settings, and resequencing of candidate

(suspect) genes in smaller well —defined phenotypic extremes or case-control settings.
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So, researchers in the field have a variety of approaches, in terms of study design and
technique, to choose from to understand genetic etiologies of diseases. For GWASs,
chip-based microarray technology is used for assaying millions of SNPs. Illumina and
Affymetrix are two common platforms used for most GWASs (79).

Genotyping can be defined as any technique that enables identification of
genetic variation in an individual. The difference between genotyping and sequencing
is that genotyping requires prior knowledge of the genetic variation so novel genetic
variations cannot be discovered. However sequencing does not require any knowledge
of prior genetic variation, so novel genetic variation can be discovered. Genotyping
can be accomplished by various techniques such as restriction enzyme length
polymorphism and TagMan assays. Sanger sequencing can also be employed for
genotyping. When using the resequencing technique, the DNA sequence of the gene is
sequenced.

In Genome Wide Association Studies (GWASSs), common genetic variants,
such as SNPs, are genotyped all across the genome to see if there is an association
between genetic variation and a trait (including disease) (80). GWASs are employed
for identifying susceptibility loci for complex traits (80). In GWASs, the difference in
frequency of genetic variation between cases and controls is tested to see if the gene

variation is associated with susceptibility to the complex disease.

1.7.1 Resequencing candidate genes to test for accumulation of rare variants in
case-control cohorts

Our context of a mutation is a genetic variation that leads to protein
dysfunction which eventually leads to lack of individuals’ well-being. So, missense

rare variants are likely to be mutations. If rare missense variants occur significantly
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more frequently in a gene of a diseased individual relative to the non-disease
individual, it indicates that the gene is associated with disease etiology directly or
indirectly. Given that functional verification of a genetic variant consumes a lot of
time and resources, it is reasonable to verify rare missense variants that significantly
accumulate in disease individuals.

Previous work from the Hegele lab has used the approach of resequencing
candidate genes in better understanding disease etiology. The Hegele lab used the
resequencing approach to test for significant accumulation of rare missense variants in

candidate genes for hypertriglyceridemia (71, 75).

1.7.2 Using genotyping to compare Genetic risk score in case-control cohorts
Sometimes selected common variants such as SNPs are genotyped in cases
and controls to create a genetic risk score. An individual’s genetic risk score is a
measure of the sum of risk alleles present in an individual. The SNPs are genotyped to
see if cases have more of the risk allele relative to controls. If the mean genetic risk
score is higher in cases relative to controls, it shows that those sets of SNPs genotyped

or the set of risk alleles increase disease susceptibility

1.8 Insilico analyses

The effect of all rare missense variants on function of gene products of the
four candidate gene were predicted using the in silico tools Polymorphism
Phenotyping version 2 (PolyPhen-2) and Sorting Intolerant from Tolerant (SIFT).
SIFT bases its prediction on multiple sequence alignments and amino acid

conservation to determine whether a missense mutation is deleterious or not (81, 82).
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PolyPhen-2 bases its prediction on amino acid sequence alignment and structural
alignment of the protein (83).

PolyPhen-2 is a free online computational tool that is very commonly used to
predict the effect(s) of missense variants on protein function. PolyPhen-2 uses 8
sequence-based predictive features and 3-structure based predictive features in its
prediction model, where these predictive features essentially compare the wild type
protein with the mutant protein (i.e. protein with the missense rare variant). PolyPhen-
2 also reports estimates of false positive rate and true positive rate (84) . PolyPhen-2
qualitatively appraises a mutation to be either ‘benign’, ‘probably damaging’ or
‘possibly damaging’ depending on the false positive rate of the prediction model. The
‘Possibly damaging’ appraisal is a less confident prediction than ‘probably damaging’
because the false positive rate is higher in ‘possibly damaging’(84).

SIFT is another free online computational tool that is commonly used for
predicting the effect of missense variants. Using query sequences, SIFT compiles
sequences of functionally related protein and calculates the probability of finding all
20 amino acid at each amino acid position, where the probabilities are recorded in a
scaled probability matrix. A mutation is said to affect the protein if the scaled
probability, or ‘SIFT score’, is below a certain threshold. An amino acid that is
conserved throughout evolution is more likely to be intolerant to substitution than an
amino acid that is not conserved. SIFT also gives a conservation value for each
position, where 0 is the conservation value if all amino acids are seen and 4.25 is the
conservation value if only one amino acid is seen throughout the homologous family
of proteins at that position. SIFT ensures that the final set of aligned sequences has a
median conservation value of approximately 3.00, because a median conservation

value of 3.25 produces predictions with low confidence (85). The only limitation of
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SIFT is that it does not use structural predictions — although structural predictions
are said to marginally improve predictions (85).

Multiple sequence alignment was also performed for each of the 4 candidate
genes to visually observe conservation of amino acid position of the detected
missense rare variants. In a multiple sequence alignment, amino acid sequences of a
particular protein from different species are aligned to derive potential evolutionary or
functional significance of each amino acid residue (86). So in a multiple sequence
alignment, each single row represents the amino acid sequence of a protein from one
species, with gaps inserted so that homologous residues appear in the same positions
across the species used for the alignment, Here, homologous is context dependent
(86). In the evolutionary context, homology refers to the amino acid residues having
common evolutionary ancestry. In the context of structural biology, equivalence
refers to the analogous amino acid residues belonging to the homologous fold in the
set of proteins. In the context of molecular biology, equivalence refers to the amino
acid residues having similar functional roles in the set of proteins (86). Clustal Omega
was the multiple sequence alignment tool used for multiple sequence alignments for
the 4 candidate genes of the first project (87). Jalview 2.8 was used to analyze the

multiple sequence alignments (88).

1.9 General Thesis Project Aims

The overall theme of this thesis was to better understand the genetic etiology
of hypercholesterolemia in Familial Combined Hyperlipidemia (FCH). There were
three main studies in this thesis. Each study was composed of various projects. Even

though the second study and part of the last study focused on Familial
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Hypercholesterolemia and hypertriglyceridemia, respectively, the studies still
converge towards understanding the two phenotypes characteristic of FCH, namely
hypercholesterolemia and hypertriglyceridemia.

In all the thesis projects, whenever FCH patients were used as cases, their
controls were individuals with FHTG. This is because previous work from the Hegele
lab has shown that individuals with FCH and FHTG share a common genetic
architecture for hypertriglyceridemia. To understand hypercholesterolemia in FCH,
we needed to control for the hypertriglyceridemia phenotype of FCH, by using

individuals with FHTG as controls.

1.9.1 Study I- Resequencing candidate genes in FCH

| hypothesized that there is an accumulation of rare missense variants in the
LDLR, APOB, PCSK9 and IDOL in FCH cases relative to controls. | tested this
hypothesis using Sanger Sequencing to see if hypercholesterolemia in FCH is a result
of FH-causing mutations. The gene responsible for the autosomal recessive form of
Familial Hypercholesterolemia, ARH, was not sequenced because FCH does not show
an autosomal recessive pattern and the frequency of FH dues to ARH mutations is

extremely low, meaning that | was less likely to detect any ARH mutation.

1.9.2 Study I1- Understanding hypercholesterolemia in Mutation Negative
Familial Hypercholesterolemia

There were two projects for this study and both studies were collaborations.
Project |

In the first collaboration project, | tested the hypothesis that Mutation

Negative Familial Hypercholesterolemia patients (FH/M-ve) have a higher mean
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LDL-C genetic risk score than Mutation Positive Familial Hypercholesterolemia
(FH/M+ve) controls. The genetic risk score was determined by calculating how many
risk alleles of 12 SNPs were present in FH/M-ve patients. These 12 SNPs (See
Section 1.4.2.5) were identified in Global Lipids Genetics Consortium (GLGC)(43).
This has already been studied in the British population (48). So my project was a

replication study in the Canadian Population.

Project 11

In the second collaboration project, APOE was sequenced in all our FH/M-ve
patients because our collaborators found an APOE FH-causing mutation, namely the
APOE Leu 167 del (data yet to be published). Thus, all the FH/M-ve patients were

sequenced for the APOE Leu 167 del, as well as any novel mutations.

1.9.3. Study 111 — Use of laboratory GWAS data for further understanding
hypercholesterolemia and hypertriglyceridemia

Three projects composed the third study. In all three projects the same GWAS
data from the Hegele lab (70) were used. The GWAS data were analyzed using a
Unix-based program called PLINK (89). PLINK can be defined as a program that
allows analyses of various types of genomic and genetic data. The GWAS data was
genotyped SNPs across the entire human genome; more information on the GWAS
data can be found in Johansen et al (70).In general, GWAS data are a wealth of
genetic information and thus makes GWAS data a useful resource for testing new

hypotheses, performing new analyses and consequently generating new findings.
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Project |

The Hegele lab identified many, but not all, of the genetic variation in HTG.
In the first project of my third study, | tested the hypothesis that DIET1 is associated
with hypertriglyceridemia. As mentioned in Section 1.6 of this thesis, DIET1 has
shown association with HTG in mice. So, | questioned whether genetic variation in
DIET1 could further explain genetic variation in HTG, which is a component
phenotype characteristic of FCH. The key experiment was logistic regression to see if

there was an accumulation of risk alleles in DIET1 region in HTG patients.

Project 11

In the second study of my third project, | wanted to see if there is an
accumulation of SNPs in the PSMD9 region in FCH cases relative to controls since
because PSMD9 locus has been associated with hypercholesterolemia. The key
experiment was performing logistic regression for the PSMD?9 region in FCH cases

and FHTG controls.

Project 111

The Global Lipids Genetic Consortium (GLGC) identified 37 SNPs to affect
LDL cholesterol level in the general population (43). In the third project of my third
study, I studied the 37 GLGC identified LDL-C SNPs for association with
hypercholesterolemia in FCH. Then | tested whether FCH cases have a greater LDL-
genetic risk score, where the genetic risk score was a measure of risk alleles of the 37

SNPs.
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Chapter 2: Materials and Methods

2.1 Study subjects

All study subjects provided informed consent for use of their DNA for
research purposes, including DNA extraction, sequencing and analyses. This study
was approved by the University of Western Ontario Institutional Review Board
(protocol number 07920E) (Ethics Approval notice attached in the Appendix). The
study subjects involved in all the three projects were of self-declared European

ancestry.

2.1.1 Familial Combined Hyperlipidemia patients (Fredrickson Type 2B
Phenotype)

For the first project, a total of 138 cases were Familial Combined
Hyperlipidemia (FCH) patients (MIM 144250). FCH patients were unrelated and of
self-declared European ethnicity. FCH patients were diagnosed as the affected
individual having plasma total cholesterol concentration above the 90th percentile
(>7.7 mmol/L) in addition to having plasma triglyceride concentration above the 90th
percentile (>3.4 mmol/L), controlled for age and sex, according to reference levels for
the North American population. All the FCH cases were patients from the Lipid

Genetics Clinic in London, Ontario.

2.1.2 Familial Hypercholesterolemia patients (Fredrickson Type 2A Phenotype)
For the second project, a total of 44 cases were Mutation Negative Familial

Hypercholesterolemia (FH/M-ve). 44 controls were Mutation Positive Familial
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Hypercholesterolemia (FH/M+ve) patients. All of these 88 Familial
Hypercholesterolemia patients (MIM 143890) were from the Lipid Genetics Clinic in
London, Ontario. Familial Hypercholesterolemia was diagnosed as having Low
Density Lipoprotein cholesterol (LDL-C) above the 95™ percentile (>5.2 mmol/L),
controlled for age and sex, according to reference levels for the North American

population. Cases and control were matched for age and sex.

2.1.3 Hypertriglyceridemia patients

2.1.3.1 Familial Hypertriglyceridemia patients (Fredrickson Type 4 phenotype)

For the first project, there were 94 Hypertriglyceridemia patients of the
Fredrickson Type 4 phenotype classification (Familial Hypertriglyceridemia) used as
controls. Familial Hypertriglyceridemia (FHTG) was diagnosed as having
triglycerides above the 90" percentile (>3.7 mmol/L), controlled for age and sex, in
the North American population. All the Type 4 controls were patients from the Lipid
Genetics Clinic in London, Ontario. FHTG patients were used as for the

hypertriglyceridemia component of FCH.

2.1.3.2 Polygenic Hypertriglyceridemia patients (Fredrickson Types 2B, 3, 4 and
5)

For the third project, hypertriglyceridemia (HTG) patients were cases who
constituted individuals clinically diagnosed with of all the 4 Fredrickson polygenic
hypertriglyceridemia phenotypic classification, namely: Type 2B (MIM 144250),
Type 3 (MIM 107741), Type 4 (MIM 144600) and Type 5 (MIM 144650). HTG was

diagnosed as having an untreated 12 hour fasting plasma triglyceride concentration
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above the 90" percentile (>3.4 mmol/L) on at least two occasions. These polygenic
HTG cases were patients from the Lipid Genetics Clinic in London, Ontario. In total
there were 504 HTG patients (cases) and 1254 mostly normolipidemic controls.
Familial Hypercholesterolemia (Fredrickson Type 2A phenotype) patients
constituted 4% of controls; healthy Canadian individuals of European descent
ascertained through the Study of Health Assessment and Risk in Ethnic Groups (90)
constituted 18% of controls; healthy individuals from the Myocardial Infarction
Genetics Consortium (91) constituted 78% of controls. Familial Hypercholesterolemia
patients were used as controls to counterbalance the increased cholesterol phenotype

that is seen in HTG patients.

2.2 DNA samples of study subjects
2.2.1 DNA extraction

Genomic DNA (gDNA) samples were collected from whole blood that was
drawn from study subjects. gDNA was isolated from whole blood of study subjects
using the Puregene DNA isolation kit (Gentra Systems, QIAGEN Inc, Mississauga,

ON, Canada) according to manufacturer’s instructions.

2.2.2 Whole genome amplification

Whole genome amplification was performed, according to manufacturer’s
instructions, on extracted gDNA using the Illustra GenomiPhi HY DNA
Amplification Kit (GE Healthcare Life Sciences, Mississauga, ON, Canada). WGA
was performed for FCH and FHTG gDNA samples because gDNA samples were

limited. The number of gDNA samples was limited as those samples that had been
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collected over the course of 15 years and had been used to varying degrees in earlier

studies.

2.2.3 DNA quantification

For the second project, gDNA was quantified to a final concentration of
approximately 50ng/uL for genotyping. DNA quantification was performed by
measuring the concentration of 1uL gDNA on the ND-1000 Spectrophotometer
(Nanodrop, Thermo Scientific, Mississauga, ON, Canada) for each gDNA FH sample.
88 FH gDNA samples were diluted to a concentration of y 50ng/pL, which is

considered optimal for subsequent procedures, including genotyping.

2.3 DNA amplification by Polymerase Chain Reaction

The polymerase chain reaction (PCR) was performed to amplify target regions
of WGA DNA of the 4 candidate genes in cases and controls of the first project.
Target regions in LDLR were the 18 coding regions, 100bp outside each exon and the
promoter. Target regions in APOB were exons 26 and 29 since 90% of reported
hyperlipidemia-associated mutations reside within these regions. The target region in
PCSKO9 for sequencing was exon 7, since more than 60% of disease-associated
variants have been shown to reside in this exon (92). The target regions in IDOL were

7 exons, since no disease-causing mutations have yet been reported in this gene.

2.3.1 Primer list for candidate genes
Tables 2.1 to 2. 4 represent the forward (F) and reverse (R) primers of the target

regions for the first project and annealing temperature for each target region. Primers



63

were designed using the free online software, Primer3 The length of both forward and
reverse primers had to be between 18 to 22 bp; the difference in length of the primers
was not more than 1 nucleotide; the GC content of each primer must be between
40%-60%; the forward and reverse primer must have similar melting temperatures
(Tm) (i.e. not more than 1°C difference )and repeat sequences in primers were avoided
(93). Factors that affect the melting temperature include GC content, concentration of

ions and DNA length (http://www.entelechon.com/2008/08/dna-melting-temperature/

).

Figures 2.1 to 2.4 represents the gene structure of each candidate gene and the
regions of the genes that were sequenced. Figures were generated by mainly using
GenomeGraphs software package (94) in R statistical programming environment (95).
Ensemble ID (ENSG ID) of all genes were required for generation of figures:

LDLR: ENSG00000130164,
APOB: ENSG00000084674,
PCSK9: ENSG00000169174

IDOL: ENSG00000007944


http://www.entelechon.com/2008/08/dna-melting-temperature/
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Table 2.1. Primer sequence and annealing temperature of the 18 exons and
promoter of LDLR

Exon

Annealing

temperatur
e (CO)

Amplico
n size
(bp)

Primer sequence (5'to 3")

Promote
r

1

2

10

11

12

13

14

15

16

17

18

58

58

58

58

58

58

58

60

58

58

58

58

58

61

58

61

58

58

58

410

438

486

501

609

520

357

470

362

400

498

467

467

526

502

500

508

440

574

F: CAGGAGGATCTTTCAGAAGATGCG
R: AGGAGCAAGGCGACGGTCCAG

F: GGACTGGAGTGGGAATCAGA

R: TTACCCCACAAGTCTCCCAG

F: GTGCTTGCTTAATTCCCTGG

R: TCAAAATCCACTGGCCAC

F: GAGACAGGGTTTCACTATATTGGC
R: ACAAACCCGAAGAGGTAGCA

F: GCAGTGGTTCAGAGTCCATGG

R: TCCCAATAAGCTAACAGCAACCATCGG
F: CTCAAGCAGTTGGAACCACA

R: GCGAGACTCCGTCTCAAAAC

F: GTGCTGGGATTACAGGCACAAAC
R: CCTACAGCACTCATGTCTCAGTC

F: ACATGCCTGTAGTCCCAGCTACTT
R: CAAGAAACTCTGGCCAGCCAATGA
F: TTACATCTCCCGAGAGGCTGG

R: GGTCAGGGGATATGAGTCTGTG

F: GGAGGTCTTTTCCACCCTCT

R: CTGAGGCAGGAGGAGAGAAG

F: AGCGAGTACACCAGCCTCATC

R: GCCCACTAACCAGTTCCTGA

F

CCCAAACAAGCCACATTTGGAGTTTGGGGTTC
R: AAAGAGGGAAACCTTCAGGGAGCAGCTTGG
F: TGTGACCTGCAACTCCCCTAC

R: CTCAGGTCTAAGACCTCCTCC

F: AGGCTGAAGCAAGAGAATCG

R: GGTGGTCCTCTCACACCAG

F: TCTCTTCCACAACCTCACCC

R: CATCAAAGGGGAACTGGGTA

F: AGAGATGGTATTTTGCCATGTTG

R: GATAGGGAAACTGAGGGCCCAGAG

F: CCGGAATTGAGTCCTACAACC

R: TCTCGGTGAGGCTATTCCAC

F: GTCAAGGTTATGGTACGATGC

R: TTCCTCTACACCACCAAGGC

F: ACTGAATCCGGTACTCACCG

R: GTGCCATCTGCTGTTGTGTG
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Table 2.2 Primer sequence and annealing temperature of the 19 amplicons of
exon 26 and 3 amplicons of exon 29 of APOB

Annealing

temperature Amplicon

Exon °O) size (bp) Primer Sequence (5’ to 3°)

26-1 60 580 F:TGCATTACAGATGGAGGAGTC
R:TTTGCAGATCAGAGGTGGAGG

26-2 60 590 F:TTCGTTCTATGCTAAAGGCACA
R:AGCGGCCATTTGTTGTTAAT

26-3 60 581 F:AAAATTAATAGTGGTGCTCACAAGG
R:TTTAGGTTACCAGCCACATGC

26-4 60 590 F:CAGCTCTGACAAGTTTTATAAGCAA
R:GGGCACTGACTTTGTGTTCA

26-5 60 557 F:CGCTCTCTGGGGAGAACATA
R:TGATGTGCTTCAGGTTTCTCTG

26-6 60 556 F:ACCAAGATGTTCACTCCATTAACC
R:CAGGATGCAGTACTACTTCCAC

26-7 60 512 F: TTGATGAGCACTATCATATCCGTG
R:TTGTAGGACATTGCTTAGCTTCTG

26-8 60 589 F:ATCCTTCAGAGCCAAAGTC
R:TCCTGCTGAATGTCCATTTG

26-9 60 580 F:AAGGCCACAGTTGCAGTGTA
R:CTACAAAGTCAATTGTAAAGGAAGGA

26-10 60 510 F:CAGATTTGAGGATTCCATCAGTTCAG
R:AAGCTGCGATACCTGCTTCGTTTG

26-11 60 580 F:TACCTACTTTTGGCAAGCTATACA
R:TGTGATTCATGTGTTCCCTCA

26-12 60 593 F:ATTGAACATCCCCAAACTGG
R:TTACTTGCCAACTTGCTTGC

26-13 60 487 F: TTTGAGATCACGGCATCCACAAAC
R:TGTCAAAGGATTTGATGCTCTGAC

26-14 60 580 F:AAGAAAAACAAACACAGGCATTC
R:AAGATGAAGAAAGGAGATGAGCA

26-15 60 557 F:CTCTTCCAGATTTCAAGGAATTGTG
R:CTTGACATCTCCTTTGGTAGATG

26-16 60 544 F:CAATTCTTCAATGCTGTACTCTACC
R:GACCTGGCTCTGGAAAGACC

26-17 60 582 F: TCAGCTCTTGTTCAGGTCCA
R:TTTTACCTCGGGGAGTGTTG

26-18 60 549 F:TCAGTTCTTGTCATGCCTACG
R:TAGGAACTGTACGGTTGAGCTG

26-19 60 580 F:TCCTTCCTTTCAAGCACTGAC
R:TTTTGTGTGTTCCCAAAACTG

29-1A 60 580 F: TTGTGTAATTGGAGTAATTGAAAACA
R:GAAACTGGAATCTGGGGAAG

29-2 60 613 F:CCATATGAAAGTCAAGCATCTGA



29-3A

60

657

R:TTCACGAAGGGCCATAATGT
F:ATTCAAAACGAGCTTCAGGA
R:TGTGAAAGTTCAATTGGAAAAGA

67
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Table 2.3. Primer sequence and annealing temperature of exon 7 of PCSK9

Annealing Amplicon
temperature size (bp) Primer Sequence
Exon (0
451 F:
7 59 CAGAGTTCTGCCTGGGCAGTC

R:
GAGTGTCCTTGAAGGCACCATC
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Table 2.4 . Primer sequence and annealing temperature of the 7 exons of IDOL

Exon Annealing  Amplicon Primer Sequence (5’ to 3°)
temperature Size (bp)
O

1 62 286 F:GAGGGCCAGCCCTCTCCGAGTCCG
R:-TAGTAGGGGGCGCGCCAGAGTGCC
2 60 413 F-TGGTATCATTGGAGCCGTGGAACT
R:CACTCAGACCAAGTAGGTAGCTCC
3 60 346 F:GCTGAGATTGATGTCAGGTTATCC
R:TGCCTCGAACATCAGAGAGCTCAA
4 58 324 F:-TGAGATCCCAGTGTCTTAGACGTT
R:GAGCTGACTGTCGAGTAAATCCCT
5 60 311 F.:CCACAAAGGCACACACATGGTGAA
R:ACCGTAGAAACCTGGTTGTCACCT
6 60 602 F.:GGAGATGTTAGAGAAACAGAGGTG
R:ACAAAGACCCTTTCCGGGTGAAGA
7 60 340 F:-TGTGAGACGGCAAAGATCTCTACC

R:.TGGTCCCATGACTGGAGTTGTTGA
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2.3.2 Polymerase Chain Reaction

WGA DNA samples of FCH and FHTG patients were used for Polymerase
Chain Reaction (PCR). The PCR kit used was Life Technologies Platinum® Taq (Life
Technologies Inc., Burlington, ON, Canada). WGA DNA Samples and PCR reaction
mixtures were placed in 96-well plates in a DNA Thermocycler (Life Technologies
Inc. Burlington, ON, Canada). Every reaction well contained 1uL of WGA DNA, 2uL
10x MgCl, PCR buffer, 3.2uL of 10mM of each of the 4 dNTPs , 0.33pL of
0.6pmol/uL of the forward primer, 0.33uL of 0.6pmol/uL of the reverse primer,
0.6pL of 50mM MgCI; and 0.1uL of 5U/uL Taq Polymerase, yielding a final volume
of 20pL PCR reaction mixture. The thermocycler conditions were comprised of 3
stages. The first stage was the initial denaturing stage for 5 minutes at 95 C to
separate DNA strands, followed by second stage that was composed of 30 cycles of 3
steps. The first step was denaturation for 30 seconds at 95 C, the second step was
annealing for 30 seconds at 60 C and the third step was elongation for 30 seconds at
72 C. The final stage was the final elongation stage, carried out at 72 ‘C for 10 minutes
to ensure that every amplified DNA strand was fully extended.

For some target regions, the PCR reaction mixture and Thermocycler
conditions were slightly different as those target regions required addition of 99.9%
dimethyl sulfoxide (DMSO) (Sigma-Aldrich®, Oakville, ON, Canada) to ease double
strand separation. Table 2.5 contains details of those PCR reaction conditions. Only
differences in PCR conditions are displayed in the table — otherwise PCR reaction

conditions are as stated in this section.
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Table 2.5. PCR reaction mixture for target regions that required DMSO

Gene Exon Reaction Mixture

LDLR 4 1.5uL DMSO, 10.8uL distilled water, extension time 45 seconds
7,13,15  1.5uL DMSO, 10.8uL distilled water, 0.2uL Taq Polymerase, 2.0uL WGA DNA
IDOL 1 1.5uL DMSO, 10.8uL distilled water, 0.2uL Taq Polymerase
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2.3.3 Gel electrophoresis

A 1% agarose gel was used to visualize PCR products under UV light to
confirm satisfactory amplification of PCR products before sending samples to
sequencing. The agarose gel was made by dissolving 1g of agarose powder
(Bioshop® Canada Inc., Burlington, ON, Canada) in 100mL of distilled water and
boiling for 5 minutes. PCR products containing loading dye were loaded on to the
agarose gel and Loading dye contained glycerol. In all cases, negative control
reactions showed no bands which confirmed no contamination; if negative controls
had been positive for a PCR product (i.e. showed band on agarose gel), it would have
meant that our experimental WGA DNA samples had been contaminated with other
DNA samples from other sources, such as bacteria and PCR for contaminated samples

was repeated.

2.3.4 Calf intestinal phosphatase (CIP)- Exonuclease (Exo) | treatment and
preparation of sample for Sanger sequencing

Contaminants such as single strands, primers and free dNTPs were removed
from PCR product using calf intestinal phosphatase — exonuclease | (CIP-Exol)
treatment on PCR product in a thermocycler. CIP-Exol treatment was performed to
ensure that only PCR products, and no contaminants, had been sequenced. In each
case, 6L of CIP-Exol treatment was added to 6pL of PCR product in a reaction well.
CIP-Exol treatment was made up of 5.7uL of distilled water, 2 Units of Exonuclease |
(New England BioLabs ® Inc., Ipswich, Massachusetts, United States ) and 2 Units

Calf Intestinal Phosphatase (New England BioLabs ® Inc., Ipswich, Massachusetts,
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United States ). The thermocycler conditions for CIP-Exol treatment were 37°C for 1
hour, to activate the CIP-Exol enzyme, followed by 72°C for 15 minutes to stop all
enzyme activity.

Reactions containing 2.5uL of CIP- Exol treated PCR product, 2.5uL of
distilled water and 2.5 uL of the sequencing primer, yielding a total of 7.5uL, were
sent to the London Regional Genomic Centre (LRGC) (London, Ontario, Canada) for
sequencing. The sequencing primer was a ¥ dilution of either of the forward or
reverse PCR primer from stock solution, so that two 7.5uL PCR products were sent to
sequencing for each DNA sample, where one 7.5uL PCR product contained the
forward primer and the second 7.5uL PCR product contained the reverse primer.
Automated chain termination Sanger sequencing was performed on PCR products at
LRGC using the ABI 3730 (Life Technologies, Burlington, Ontario, Canada). For
each PCR product sent to sequencing, electropherograms, which were the hard copies

of the DNA sequence of target region of each sample, were produced.

2.3.5 Sanger Sequencing

In the London Regional Genomic Centre (LRGC), the 7.5uL CIP-Exol treated
PCR products of all target regions were Sanger Sequenced by the involvement of four
steps, namely, denaturation, chain termination of PCR amplification, purification and
sequencing, respectively. In total, there were 11,368 target regions that were
sequenced for the first project.

The samples of PCR amplicons were centrifuged at 1000g for one minute on
the Beckman Coulter TJ-25 Centrifuge (Biotech Equipment Sales Inc., San Francisco,
California, United States). After centrifugation, the samples are placed on an Applied

Biosystems GeneAMP 9700 Thermocycler (Life Technologies Inc., Burlington,
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Ontario, Canada) at 98 C for 5 minutes for denaturing of samples. The samples were
held at 4° C in the thermocycler to keep the double stranded PCR product unwound.
After the denaturing, the samples were again centrifuged at 1000g for one minute.
After centrifugation, the samples were placed on an ice pack to maintain the unwound
structure.

4uL of Applied Biosystems BigDye® Terminator Master Mix (Life
Technologies Inc., Burlington, Ontario, Canada) was added to 7.5uL denatured PCR
product. The Master Mix was made up of 12.5% BigDye Terminator, 25% 5 x Buffer
AB and 62.5% distilled water. The positive control had the 4uL BDT Master Mix,
2uL pGEM (Promega Corporation, Madison, Wisconsin, United States), 2uL Applied
Biosystems® Control Primer (M13F) (Life Technologies, Burlington, Ontario,
Canada), and 2pL distilled water. The PCR product and positive control containing
Master Mix, making a total volume of 11.5uL in each well, were each centrifuged at
1000g for one minute. After centrifugation, the samples were placed on the Applied
Biosystems GeneAMP 9700 Thermocycler for chain termination PCR. A hot start
PCR was performed at 80 C. The thermocycler conditions comprised 2 stages. The
first stage was an initial denaturing stage for 5 minutes at 96 C to separate DNA
strands, followed by the second stage that was composed of 30 cycles of 3 steps. The
first step of these was denaturation for 20 seconds at 96 ‘C, the second step was
annealing for 15 seconds at 50 C and third step was elongation for 4 minutes at 60 C.
After the second stage, the samples were stored at 4 °C in the thermocycler.

The samples were then purified to remove contaminants such as free dNTPs,
proteins, salts and unincorporated dye. Purification was carried out using an Edge

Plate (Edge BioSystems, Gaithersburg, Maryland, United States).
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The purified samples were then placed on Applied Biosystems 3730 Analyzer
(Life technologies Inc., Burlington, Ontario, Canada) for sequencing.

The raw data from the Applied Biosystems 3730 Analyzer was processed
using the Applied Biosystems DNA Sequencing Analysis Software version 5.3.1 (Life
Technologies Inc., Burlington, Ontario, Canada). After processing of raw data,
electropherograms, which were the hard copies of the DNA sequence of target region,
were generated. Electronic versions of the electropherograms were also available.

The samples were denatured to unwind the double-stranded PCR products so
that there would be ease of access of sequencing reagents.

Hot Start PCR minimizes amplification of non-specific sequences because it
prevents non-specific primer annealing, which typically occurs at lower temperatures
(i.e. below 65 C) (96).

In chain termination PCR, fluorescently labeled dideoxy nucleotides are used.
Each of the 4 dideoxy nucleotides fluoresces at a different colour. The rationale for
using dideoxy nucleotide was to generate PCR products that end with the
fluorescently labeled dideoxy nucleotide and generate chain terminated PCR products
that differ from each other by one nucleotide. The fluorescently labeled dideoxy
nucleotides is able to terminate PCR reaction because the Dideoxy NTPs lack the 3’
hydroxyl group, which prevents incorporation of another nucleotide as no
phosphodiester bond can be created (97, 98). Figure 2.5 is a simplified visual
representation of the reactions that occur in Sanger Sequencing.

Within the 3730 sequencer, the fluorescently labeled PCR products pass
through a capillary tube that separates chain terminated PCR products on the basis of
size. The smallest PCR product is read first, the next PCR product that is 1bp longer is

read next and so on. The colour of each fluorescent dye corresponds to a particular



nucleotide, which essentially leads to each nucleotide position of the PCR product

being read as a sequence.
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2.3.6 DNA sequence analyses

Electropherograms of all target regions were analyzed using SeqScape®
software version 2.6 (Applied Biosystems), which is a standard software for mutation
detection and analysis. Reference genomes (hg19) were obtained from the National
Center for Biotechnology Information (NCBI) database

(http://www.ncbi.nlm.nih.gov/ ) and target regions were compared with reference

genomes. All genotype information was entered into the lab database and genotype
information was used for statistical analyses. The NCBI reference genomic DNA (the
NC number) and cDNA (the NM number) for the candidate genes were as follows:
LDLR: NC_000019.9 and NM_000527.4;

APOB: NC_000002.11 and NM_000384.2;

PCSK9: NC_000001.10 and NM_174936.3

IDOL NC_000006.11 and NM_013262.3

2.3.7 Power Calculations

Power calculations were performed using the free software PS-Power and
Sample Size Calculation (99). Power was determined after calculating rare variant
accumulation and obtaining Odds Ratios for the risk alleles of all the candidate genes.

Significance level used was 5% in power calculation for all candidate genes.


http://www.ncbi.nlm.nih.gov/
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2.4 SNP genotyping for Mutation Negative Familial Hypercholesterolemia
patients and Mutation Positive Familial Hypercholesterolemia patients
(Fredrickson Type 2A phenotype)

As part of a collaboration to study patients with clinical FH who were negative
for mutations in known genes, 44 Mutation Negative Familial Hypercholesterolemia
(FH/M-) patients (cases) and 44 Mutation Positive Familial Hypercholesterolemia
(FH/M+) patients (age- and sex-matched controls) were selected. Samples were sent
to the British Heart Foundation (BHF) Laboratories, Institute Cardiovascular Science,
University College London, England United Kingdom to obtain an LDL-C genetic
risk score using the top 12 Global Lipids Genetic Consortium (GLGC) identified
SNPs (reference). We hypothesized that FH/M-ve patients would have a significantly
greater accumulation of LDL-C raising SNPs than FH/M+ve patients. This hypothesis
was first evaluated and proven in a British study of patients predominantly resident in
the United Kingdom (48). This study was the first study to test this hypothesis in a
Canadian population; our study also served as an independent replication study for the
work spear-headed by our collaborators.

The GLGC was an international project that identified 95 loci associated with
lipid traits at the genome wide level (43). 37 loci were associated with LDL-C and 12
of those 37 were selected for SNP genotyping on the 88 Canadian FH/M+ve and
FH/M-ve samples. These 12 SNPs were chosen for genotyping because a previous
study, preformed in a British population, showed that that FH/M- patients have a
significantly higher LDL-C genetic risk score, where those 12 SNPs were used for
constructing LDL-C genetic risk score (48).

SNP genotyping was the key experiment of the second project of the thesis.
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Genotyping was performed on gDNA samples that were diluted to 50ng/uL as

this was the optimal concentration for subsequent procedures for genotyping.

2.4.1 List of GLGC identified SNPs
Table 2.6 shows the 12 GLGC identified SNPs that were genotyped to
calculate the LDL-C genetic risk score for all 88 FH patients. The risk alleles (bolded)

are the LDL-C raising alleles.

2.4.2 Calculation of LDL-C genetic risk score

12 common LDL-C raising alleles identified by GLGC were used to construct
a weighted LDL-C-raising genetic risk score. For each individual, LDL-C genetic risk
score was calculated by calculating the weighted sum of the risk alleles. The weights

used corresponded to the weight of the allele effect size as determined in GLGC (43).

2.4.3 APOE gene resequencing in Mutation Negative Familial
Hypercholesterolemia patients

All 3 coding regions of APOE were sequenced in 95 FH/M-ve patients. APOE
was sequenced to identify any potential FH-causing mutations as a recent
collaborative study has showed an APOE amino acid deletion variant namely, APOE
Leu 167 del to be FH-causing.

APOQOE was sequenced to screen for this particular amino acid deletion variant
and for possible novel FH-causing or FH-associated variants. APOE was sequenced
by following identical procedures of sections 2.3.2 to 2.3.5 of the Materials and

Methods section. For the 3 coding regions of APOE, the PCR reaction mixture and
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thermocyler conditions were slightly different, as the 3 coding regions required
addition of 99.9% dimethyl sulfoxide (DMSO) (Sigma-Aldrich®, Oakville, ON,
Canada) to ease double strand separation. PCR reaction conditions for all three
coding regions of APOE were identical to those for the first exon of IDOL, shown in
Table 2.5. Only differences in PCR conditions for the three coding regions are
displayed in Table 2.7— otherwise PCR reaction conditions for all three coding

regions are as stated in section 2.3.2.
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Table 2.6. List of GLGC identified SNPs that were genotypes in the 88 Familial

Hypercholesterolemia cohort and their effect sizes

CHR SNP Gene Minor* Common* GLGC Weight for Score
Calculation
1 rs2479409 PCSK9 G A 0.052
1 rs629301 CELSR2 G T 0.15
2 rs1367117 APOB A G 0.1
2 rs4299376 ABCGS8 G T 0.071
6 rs1564348 SLC22A1 C T 0.014
6 rs1800562 HFE A G 0.057
6 rs3757354 IDOL T C 0.037
11 rs11220462 ST3GAL4 A G 0.05
14 rs8017377 KIAAL305 A G 0.029
19 rs6511720 LDL-R T G 0.18
19 rs429358 APOEy C T
19 rs7412 APOEy T C
19 €2¢2 APOE -0.9
19 £2¢3 APOE -0.4
19 €2¢4 APOE 0.2
19 £3€3 APOE 0
19 €3¢e4 APOE 0.1
19 eded APOE 0.2

*LDL-C raising alleles are indicated in bold. Effect sizes taken from (48)
Note: Abbreviations: CHR: Chromosome, SNP: single nucleotide polymorphism
¥ APOE weights were based on haplotypic effects taken from (100) as described in

Methods.

For calculating the effect size of APOE, the APOE genotype was first determined and
then given an APOE risk score calculation.
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2.5 SNP genotyping for patients with hypertriglyceridemia

Genome wide association study (GWAS) data were obtained for the third
project (70) and were used in genomic regions that were significantly associated with
plasma triglyceride levels. To accomplish this, 463 HTG patients and 1197 healthy
controls were genotyped for SNPs across the entire genome using the Affymetrix
Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA)(70). HTG
patients studied had Fredrickson types 2B, 3, 4 and 5. Controls were healthy
normolipidemic individuals, as discussed in Section 2.1.3.2 of the Materials and
Methods section. This data were used to evaluate the association between the DIET1

region and hypertriglyceridemia in humans.
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Table 2.7. Primer sequence and annealing temperature of the 3 coding
regions of APOE

Exon Annealing Amplicon Primer Sequence (5’ to 3°)
temperature Size (bp)
O
2 60 237 F: GGGAGGAGTCCTCACTGGCGGTTG
R: GCCAGGAGCAGCACAGAAGCCTC
3 60 303 F: TGCCTGGACGGGGTCAGAAGGAC
R: CTGGGGAGGTATAGCCGCCCACCAG
4 62 830 F: ATCAAGCTTTCGCCCGCCCCATCCCAGCCCTTC

R: CGTGAATTCGCATGGCTGCAGGCTTCGGCGTTC
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2.6 DIET1 association analyses tested with PLINK

Single nucleotide polymorphisms (SNPs) in the DIET 1 region, which spans
chromosome region 19 10:19,377,700-20,063,500 in the hg19 genome build, were
compared in cases and controls to test for association between the DIET1 region and
hypertriglyceridemia. The DIET1 region maps to the 10p12.31 chromosomal region. All
analyses was done using the free whole genome association analysis toolset, PLINK (89).
PLINK can perform large-scale analysis of phenotype/genotype data in a computationally
efficient manner. The logistic regression command was used in all analyses; SNP
association was performed using logistic regression adjusted for covariates such as sex
and Body Mass Index (BMI). In logistic regression, a correlation between a dependent
categorical variable and a continuous or categorical independent variable is tested for
(101). In logistic regression, no assumption is made about the distribution of the

independent variable (101).

2.7 Statistical analyses

For all three projects, statistical analyses were performed using various tools on
data obtained. For the first project, analyses were performed on genotype data of cases
and controls using subroutines within SAS version 9.3 (SAS Institute, Cary NC). For the
second project, analyses were done on the LDL-C genetic risk scores of all 88 FH
patients using subroutines within SAS version 9.3 (SAS Institute, Cary NC). For the third
project, analyses were done on the GWAS genotype data from HTG patients and healthy
controls subroutines within PLINK. Significance in each case was set at a nominal P-

value < 0.05, with adjustment for multiple comparisons where appropriate.
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2.7.1 Testing for rare variant accumulation using the chi-square test

The general strategy for testing the first hypothesis was as follows: (i) record
genotypes of all 138 cases and 94 controls, from Sanger sequencing into a database; and
(i) rare variants were defined as variants with a minor allele frequency of <1% in the
combined cohort of FCH cases and FHTG controls. Then we tested for accumulation of
only missense rare variants. Chi- square analysis was used to test for accumulation
across each gene and across the four candidate genes together. Chi square tests were

performed using SAS 9.3 statistical software.

2.7.2 Comparing mean LDL-C genetic risk score using Wilcoxon’s signed rank test
Normality tests showed that the LDL-C genetic risk scores of cases and controls
were not normally distributed. So, non-parametric statistical analyses were performed.
Since the samples were matched, Wilcoxon’s signed rank test was performed to see if
there is any difference in the between means of LDL-C genetic risk scores in cases and

controls. SAS Enterprise Guide 4.3 was used for Wilcoxon’s signed rank tests.

2.7.3 Testing for SNP association between DIET1 locus and hypertriglyceridemia
using logistic regression

Logistic regression was performed to observe if there was any association
between DIET 1 region and the dichotomous trait of disease status. All analyses were

done with PLINK. First, SNPs in the region of interested were selected from the GWAS
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data. There were a total of 4,808 SNPs were genotyped in the 10p12.31 region. Logistic
regression was adjusted for covariates such as sex, diabetes status, population

substructure and body mass index (BMI). (101)
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Chapter 3: Results I— Resequencing candidate genes in Familial Combined

Hyperlipidemia cases and Familial Hypertriglyceridemia controls

3.1 Study subjects

Cases were FCH patients whose biochemical phenotype
3.1.1 Demographics of patients with Familial Combined Hyperlipidemia and
Familial Hypertriglyceridemia

Table 3.1 shows all the baseline clinical characteristics of 138 Familial Combined
Hyperlipidemia (FCH) cases and 94 Familial Hypertriglyceridemia (FHTG) controls. The
mean and standard error of body mass index (BMI), total cholesterol (TC), triglyceride
(TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol
(HDL-C) are given in Table 3.1. Where possible, cases and controls were matched for

age, sex and BMI.

3.2 Low Density Lipoprotein Receptor gene LDLR

The DNA sequence of the 18 exons, 100 bp regions flanking each exon and about
1000 bp of the promoter region of LDLR were sequenced and all detected variants were
entered into the laboratory database. Silent variants, missense variants, intronic variants
and splice site variants were found. Only rare missense variants were included for
statistical analyses because of all types of variants, these are most likely to be disease
causing. A list of all variants found in the LDLR gene in the case-control cohort is listed

in the Appendix.
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3.2.1 List of all LDLR missense rare variants found

| hypothesized that there is an accumulation of rare missense variants in the LDLR
gene in cases relative to controls. Table 3.2 shows the list of missense rare variants that
were found in the LDLR. In total there were 7 rare missense variants in cases and 4 rare
missense variants in controls. All the rare missense variants in LDLR, except for one

,were exclusive to either cases or controls (Table 3.2).

3.2.2 In silico analyses

The effect of the amino acid substitutions on LDLR function was predicted using
the in silico tools PolyPhen-2 and SIFT. Table 3.2 shows the in silico predicted effect of
amino acid change on LDLR function. Rare missense variants that were predicted to be

deleterious by both PolyPhen-2 and SIFT were found only in FCH cases for LDLR.

3.2.3 Test for rare missense variant accumulation

Chi squared analysis was performed to test for differences in the frequency of
missense rare variants in LDLR in FCH cases compared to FHTG controls. Table 3.3
shows results of the Chi squared test. There was a greater accumulation of missense rare
variants in cases, as shown by an odds ratio (OR) of 1.2 (Table 3.3). However, this
greater accumulation of missense rare variants was not significant because the confidence
interval of the extended odds ratio included 1.0. In retrospect, the absence of statistical
significance is not surprising given the sample size and statistical power. The power to
detect a difference of this magnitude, given the sample size of the LDLR resequencing

project was 6%.
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3.3 Apolipoprotein B-100 gene APOB

The DNA sequence of the 19 amplicons of APOB exon 26, all 3 amplicons of
APOB exon 29 and the 100 bp intronic regions flanking exons 26 and 29 were analyzed
and variants were entered into the laboratory database. APOB exons 26 and 29 were
chosen as target regions because these exons have each been shown to be a hotspot for
FH-causing mutations. Silent variants, missense variants, deletion variants, intronic
variants and splice site variants were found. As with the LDLR gene, only missense rare
variants were included for statistical analyses. Only missense rare variants were included
for statistical analyses because these variants, of all types of variants are most likely to be
disease causing. All the variants found in exons 26 and 29 of APOB in the case-control

cohort are listed in the Appendix.

3.3.1 List of all APOB gene rare missense variants

| hypothesized that there is an accumulation of rare missense variants in APOB
exons 26 and 29 in cases relative to controls. APOB exons 26 and 29 were sequenced in
138 cases and 94 controls. Table 3.4 shows the list of rare missense variants that were
found in APOB. In total there were 10 rare missense variants in cases and 9 rare missense
variants in controls. All rare missense variants in APOB were exclusive to either cases or

controls (Table 3.4).
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3.3.2 Insilico analyses

Effect of amino acid substitution on ApoB function was predicted using the in
silico tools PolyPhen-2 and SIFT. Table 3.4 shows the in silico predicted effect of amino
acid change on ApoB function. More missense rare variants were predicted to be

deleterious by both PolyPhen-2 and SIFT in cases (Table 3.4).

3.3.3 Test for rare missense variant accumulation

Chi square analysis was performed to determine whether the frequency of rare
missense variants in APOB differed between FCH cases and FHTG controls. The
accumulation of rare variants in cases was not greater as shown by an OR of 0.74 and by
an extended confidence interval that included 1.00 (P=0.63) (Table 3.5). . In retrospect,
the absence of statistical significance is not surprising given the sample size and
statistical power. The power to detect a difference of this magnitude in APOB rare

missense variants, given the sample size was 10%

3.4 Proprotein Convertase Subtilisin/kexin Type 9 gene (PCSK9)

The DNA sequence of exon 7 of PCSK9 was analyzed in 138 FCH cases and 94
FHTG controls. Exon 7 of PCSK9 was chosen as target region as this exon has recently
been considered a hotspot for FH-causing mutations. No variants were found in PCSK9
in 138 FCH cases and 94 FHTG controls, so no further confidence or statistical analyses

were performed.
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3.5 Inducible degrader of Low Density Lipoprotein receptor gene (IDOL)

The DNA sequence of all coding regions of IDOL was analyzed and patients’
genotypes were entered into the laboratory database. IDOL has recently been implicated
in cholesterol metabolism as it is a degrader of LDLR. Only missense rare variants were
included for statistical analyses. List of all variants found in the 7 exons of IDOL are

found in the Appendix.

3.5.1 List of all missense rare variants found

We hypothesized that there is a greater accumulation of rare missense variants in
coding regions of IDOL in FCH cases relative to FHTG controls. The 7 exons of IDOL
were sequenced in 138 cases and 94 controls. Table 3.6 shows the list of rare missense
variants that were found in IDOL. In total there were 2 rare missense variants in cases
and 2 rare missense variants in controls. All the rare missense variants except one were

exclusive to either cases or controls in IDOL (Table 3.6).

3.5.2 In silico analyses

The effect of amino acid substitution on IDOL function was predicted using the in
silico tools PolyPhen-2 and SIFT. Table 3.6 shows the in silico predicted effect of amino
acid change on IDOL function. The rare missense variants that were exclusive to cases

and controls were predicted to be deleterious by both PolyPhen-2 and SIFT (Table 3.6).
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3.5.3 Test for rare missense variant accumulation

Chi square analysis was performed to determine whether the frequency of
missense rare variants in IDOL was different in FCH cases compared to FHTG controls.
Table 3.7 shows results of the chi square analysis. There was no greater accumulation of
rare missense variants in cases as shown by an OR of 0.69 and by a confidence interval
that included 1.00 (P=1.00) (Table 3.7). . In retrospect, the absence of statistical
significance is not surprising given the sample size and statistical power. The power to

detect a difference of this magnitude, given the sample size was 7.3%.

3.6 Evaluating accumulation of functionally verified variants

3.6.1 Test for rare missense variant accumulation across candidate genes (grand
total)

There was no statistically significant accumulation of rare missense variants in the
individual candidate genes. Therefore, statistical accumulation of missense rare variants
across all 3 main candidate genes as a grand total was determined.

Chi squared analysis was performed to determine whether the frequency of
missense rare variants across LDLR, APOB and IDOL genes was different in FCH cases
compared to FHTG controls. Table 3.8 shows results of the chi square analysis. There
was no greater accumulation of rare missense variants in cases as shown by an OR of
0.85 (Table 3.8). This indicates no enrichment of rare missense variants in FCH cases vs
FHTG controls and that if anything, there is a non-significant trend that the frequency

being higher in HTG patients.
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3.6.2 Test for accumulation of functionally verified missense rare variants across
candidate genes (grand total)

The literature was searched to date (June 1st, 2013) to determine whether any of
the rare missense rare variants found in cases and controls have been functionally
verified. Interestingly, 4 functionally verified rare missense variants were found only in
cases, namely: LDLR: p.G314S, p.D333V, p.V8061 and APOB: p.R3500W variants, at a
nominal level approaching statistical significance (P=0.09) (Table 3.9). Rare missense
variants that were functionally verified in literature and/or predicted deleterious by both
PolyPhen-2 and SIFT were also tested for significant accumulation using Fisher’s Exact
test. There was a significant accumulation of rare variants as shown by an OR of 2.4, but

the accumulation was non-significant (P=0.25) and included an OR of 1.00 (Table 3.10).

3.7 Multiple sequence alignment analyses
Multiple sequence alignment was done using Clustal Omega (87) and Jalview 2.8

(88) was used to analyze multiple sequence alignments.

3.7.1 Multiple Sequence Alignments for LDLR

According to NCBI, LDLR is conserved in Humans (Homo Sapiens), Rhesus
Monkey (Macca Mulata), House Mouse (Mus Musculus), Cattle (Bos Tarus),
Chimpanzee (Pan troglodytes), Dog (Canis lupus familiaris), Rat (Rattus norvegicus) and
Zebrafish (Danio rerio). Multiple sequence alignments (MSA) LDLR amino acid
sequence was performed to observe whether the rare missense variants found in LDLR

were conserved (Figure 3.1).
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The rare missense variants found in LDLR are marked by the red rectangles with
the variant name on top. For the p.G-2R variant, the residues marked by green rectangles
represent electrostatic/ionic bonds that could be formed by the p.G-2R mutation. For the
p.D333V variant, the residues marked by blue rectangles represent possible
electrostatic/ionic bond that may have been disrupted by the p.D333V mutation. For the
p.C677G mutation, the residues marked by blue represent possible di-sulphide bonds that

may be disrupted with p.C677G (Figure 3.1).

3.7.2 Multiple Sequence Alignments for APOB

According to NCBI, APOB is conserved in Humans (Homo Sapiens), Rhesus
Monkey (Macca Mulata), House Mouse (Mus Musculus), Cattle (Bos Tarus),
Chimpanzee (Pan troglodytes), Dog (Canis lupus familiaris), Rat (Rattus norvegicus )
and Zebrafish (Danio rerio) and Chicken (Gallus gallus) . Multiple sequence alignment
of the amino acid sequence of APOB was performed to observe whether or not the rare
missense variants found in APOB were in conserved regions of the protein (Figure 3.2).

The rare missense variants found in APOB are marked by the red rectangles with
the variant name on top. For the p.K1615R mutation, the residues marked by blue
rectangles represent the electrostatic bonds may be strengthened and/ or weakened by the
p.K1615R mutation. For the p.E2539K, p.R1662H, p.R2192C and p.R3500W, the
residues marked by the blue rectangles represent electrostatic bonds that may be
disrupted with the respective mutations. For the p.E2539K and p.T3020R mutations, the
residues marked by green rectangles represent electrostatic bonds that may have formed

with respective residues (Figure 3.2).
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3.7.3 Multiple sequence alignments for IDOL

According to NCBI, IDOL is conserved in Humans (Homo Sapiens), Rhesus
Monkey (Macca Mulata), House Mouse (Mus Musculus), Cattle (Bos Tarus),
Chimpanzee (Pan troglodytes), Dog (Canis lupus familiaris), Fruit fly (Drosophila
melanogaster), Mosquito (Culicidae) and Zebrafish (Danio rerio) and Chicken (Gallus
gallus) . Multiple sequence alignment of the amino acid sequence of IDOL was
performed to observe whether the missense rare variants found in IDOL were in
conserved regions of the protein. High conservation was an indication of importance of
the residue (Figure 3.3).

The rare missense variants found in IDOL are marked by the red rectangles with
the variant name on top. For the p.C31Y, the residues marked by blue rectangles
represent residues that may disrupt disulphide bonds with the p.C31Y mutation. For the
p.R372W mutation, the residues marked by blue rectangles represent electrostatic bonds

that may be disrupted with an p.R372W mutation (Figure 3.3).
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Table 3.3 Rare missense Variant accumulation of non-
synonymous rare variants, in LDLR, in Cases and Controls

Variant Selection FCH Controls OR(95% CI) P Value

Missense <1% 7 4 1.20 (0.34-4.23) 1.00
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Table 3.4 Missense rare variants found in the exons 26 and 29 of APOB in 138
FCH cases and 94 FHTG controls and the predicted effect on protein function
using in silico predictive tools PolyPhen-2 and SIFT.
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Table 3.5 Rare Missense Variant accumulation in exons26 and 29 of
APOB, in Cases and Controls

P-
Variant Selection FCH Controls OR(95% CI) Value

Missense <1% 10 9 0.74(0.29-1.90) 0.63
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Table 3.7. Rare missense variant accumulation of 7 exons of IDOL, in Cases and
Controls

Control OR
Variant Selection FCH s (95% CI) P -Value
0.69

Missense<1% 2 2 (0.095-4.96) 1.00




109

Table 3.8 Rare missense variant accumulation in LDLR, APOB and IDOL
in Cases and Controls

Variant Selection FCH Controls OR(95% CI) Value

Missense <1% 19 15 0.85 (0.39-1.90) 0.68
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Table 3.9 Rare missense variant accumulation functionally verified and/or

predicted to be deleterious by both PolyPhen-2 and SIFT, in LDLR, APOB and
IDOL, in cases and controls

OR
Variant Selection FCH Controls (95% CI) P Value

2.4
Missense <1% 10 3 (0.59-11.4) 0.25
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Figure 3.1 Multiple Sequence Alignment of LDLR . Multiple Sequence

Alignment of LDLR amino acid sequence from 6 species, namely: Human,

Rhesus Monkey, House Mouse, Cattle, Chicken and Chinese Hamster.

Human

Rhesus Monkey
House Mouse
Cattle

Chicken

Chinese Hamster

Human

Rhesus Monkey
House Mouse
Cattle

Chicken

Chinese Hamster

Human
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House Mouse
Cattle

Chicken

Chinese Hamster

Human

Rhesus Monkey
House Mouse
Cattle

Chicken

Chinese Hamster

Human
Rhesus Monkey
House Mouse
Cattle
Chicken

Chinese Hamster

G-2R (Cases)
MGPWGWKLRWIVALLLAARGAVAD
MGPWGWKLRWIVAFLLARRFAN
MSTADLMRRWVIALLLARRGVAAH
MRLAGWGLRWAIALLIAVGEAAVE
------ MAAWALLLGVLLSRAT
MS‘IADLRLRWAIM.LLA.AAE
T41M (Controls)
FLSVTCKSGDFSCGGRV--NRCI POFWRCDGQOVDCDNGSDEQGCPPKTCSQDEFRCHD
CLSVICKSGDFSCGGRV--NRCI POFWRCDGEVDCENGSDEQDCPPKTCSODEFRCHD
CMSVTCQSNQF SCGGRV--SRCI PDSWRCDGQVDCENDSDEQGCPPKTCSQDDFRCQOD
CKSVTCKMGDF SCGGRV--NRCISGSWRCDGOVDCENGSDEEGCSPKTCSODEFRCND
CRSLOCPAQHFDCGDAVGRERCVPLSWRCDGHRDCRHGADEWGCE PPPCASDOQRCSD
CMSVTCQSKEFSCGGRV--SRCIPNSWRCDGQT DCENGSDEQGCAPKTCSQDEFRCOD

DEKCISYKWVCDGS
KCISYKWVCDGT
GKCIASKWVCDGS
GKCISYKWVCDGTAECQDGSDESQ
5GCISATWVCDGGTECRDGSDEER
GKCIASKWVCDGSPECPDGSDESS

CODGSPESQ
CODGSPESQ
CPDGSPESP

GKCISRQFVCDSDRDCLDGSDEASCPV-LTCGPASFOCNSSTCIPOLWACDNDPDCEDGS
GKCIYRQFVCDSDRDCLDGSDEASCPV-LICGPASFOCNSSTCIPOLWACDNDPDCEDGS
GKCISPQFVCDGDRDCLDGSDEAHCQA-TTCGPAHFRCNSSICIPSLWACDGDVDCVDGS
GKCIAPKFVCDLDLDCLDGSDEASCPM-PTCGPANFQCNSSMCIPOQLWACDGDPDCDDGS
GSCVSRAFLCDGDRDCPDGGDERDCPPPPPCPPASFRCPDGVCVDPAWLCDGDADCADGA
GKCISQKFVCDODODCVDGSDEAHCQA-ATCGPAHFRCNSWPCIPSLWACDGDDDCEDGS

DEWPQRCRGLYV--F-————————————— QGDSSPCSAFEFHCLSGECIHSSWRCDGGPD
DEWPQHCOGLEV--P-------——————- KRDSSPCSAFEFHCRSGECIHSGWRCDGGPD
DEWPONCOGRDTA-5-----—————--—- KGVSSPCSSLEFHCGSSECIHRSWVCDGERD
DEWPKHCGTPHPSGP-------——————- LODNNPCSALEFHCGSGECIHSSWHCDHDPD
DERSPTCAEATAAEAFARFAFAFEGEGVVPRPAQRCPPLRVPCRSGGCVPRGWRCDGSED
DEWPONCGGRDTA-A--—-—-—————————— AWSSSPCSSLEFHCGSSECIHRSWVCDGSAD

CKDKSDEENCAVATCRPDEFQCS-DGNCIHGSRQCDREYDCKDMSDEVGCVNVILCEGEN
CKDKSDEENCP------- EFQCS-DGTCIHGSRQCDREYDCKDMSDEVGCINVILCEGEN
CKDKSDEEHCAVATCRPDEFQCA-DGSCIHGSROCDREHDCKDMSDELGCVNVIQCDGEN
CKDKSDEENCAVATCRPDEFQCS-DGTCIHGSROCDREPDCKDLSDELGCVNVILCEGEN
CSDGSDEDGCDPPLCPPEEFRCADDGRCVIWGGRRCDGHRDCADGSDEDGCDNAPSCVGED
CKDKSDEEHCVIATCRPDEFQCA-DGTCIHGSRQCDREYDCKDMSDELGCINVIQCDGEN
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3145 (Cases)

KFKCHSGECITLDKVCNMARDCRDWSDE PTKECGTNECLDNNGGCSHVCNDLKIGYECLC
KFKCHSGECISLDKVCNMARDCRDWSDEPTKECGTNECLDNNGGCSHICNDLKIGYECLC
KFKCHSGECISLDKVCDSARDCODWSDEPIKECKINECLDNNGGCSHICKDLKIGSECLC
KFKCQSGECISLDKVCNSVRDCRDWSDE PLKDCGTNECLDNKGGCSHICNDLKIGYECLC
VFQCRSGECIPTERLCDGRRECRDWSDE PLOHCDVDECSQGTSGCSHGCODRPIGFRCLC
KFKCHSGECTALDKVCDSMRDCRDWSDEPTKDCRTNECLDNNGGCSHVCKDLKIGYECLC

_D333v(Cases) .
CEDI DECODPDTCSQLCVNLEGGYKCOCEEGFOLDPHTKACKAVGSIA
CEPI DECODPDTCSQLCVNLEGSYKCOCEEGFOLDPHTKACKAVGSIA
PSGFRLVD-LHRLCEDI DECQEPDTCSQLCVNLEGSYKCECOAGFHMDPHTRVCKAVGSIG
PEGFQLVG-KHRCEDI DECONPDTCSOLCVNLEGSYKCECEEGFRLEPLTKACKAVGTIA
PDGFRLGADGK[TE ‘F'DECAEAERCAQLCINLQGAFKCACAEGYAAEPGGRSCRALAPVS

D

PDGFOLVA-QR
PDGFQLVA-QOR

PNGFOLVD-OHRCED[I DECCEPDTCDOLCVNLEGSYKCECRAGFHMDPHTRVCKAVGSVA

YLFFTNRHEVRKMTILDRSEYT-—---- SLIPNLRNVVALDTEVASNRIYWSDLSQRMICS
YLIFTNRHEVRKMTILDRSEYT-——--- SLIENLRNVVALDTEVASNRIYWSDLSQRMIYS
YLLFTNRHEVRKMTLDRSEYT------ SLLPNLKNVVALDTEVINNRIYWSDLSQKKIYS
YLFFTNRHEVRKMILDRSEYT-—---- SLIPNLKNVVALDTEVASNRIYWSDLSQRKIYS
ELLLWSRRTLRRVAGSAVGRAGLRSTOWLRGDFPHGAVADVDVAEGNLYWADPTQRRLFR
YLLFTNRHEVRKMILDRSEYT-—---- SLIPNLENVVALDTEVANNRIYWSDLSQGKIYS

TQLDRAHGVSSYDIVISRDIQAPDGLAVDWIHSNIYWIDSVLGIVS---VADTKGVKRKT
TOLDRAHSVSSYDTVISRDLOAPDGLAVDWIHSNIYWIDSVLGIVS---VADTKGVKRKT
ALMDOAPNL-SYDTIISEDLHAPDGLAVDWIHRNIYWIDSVPGSVS---VADTKGVKRRT
AQIDGAPGFSSYDIVIGEDLOAPDGLAVDWIHSNIYWIDSILGTVS---VADTKGVKRKT
APLSPPGAPP---TPLOLLEGVPTALALDWVHHVLYWGDSTGGALRALFVGGSGGALSAT
ALMDOAPTL-SYDTIISGDLOAPDGLAVDWIHGNIYWIDSVPGSVS---VADTKGIRRRT

LFRENGSKPRAIVVDPVHGFMYWIDWGT PAKIKKGGLNGVDIYSLVIENIOWENGITLDL
LFRENGSKPRAIVVDPVHGFMYWI DWGT PAKIKKGGLNGVDIYSLVIENIEWPNGITLDF
LFOEAGSRPRATVVDPVHGFMYWIDWGT PAKIKKGGLNGVDIHSLVIENIQWENGITLDL
LFQEEGSKPRAIVVDPVHGFMYWIDWGAPAETIKKGGLNGVDVYSLVIEDIOWPNGITLDL
IWQRNGSEPRGIALDPMLGLLFWSDCGSVPLLGRVGLNGAE PKVLLERGLRCPCGLALDV
LFQEKGSRPRDIVVDPVHGFMYWIDWGT PAKIKKGGLNGVDIYSLVIEDIQWPNGITLDI
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L361P(Cases) A5855(Controls)
Human 15GRLYWVDSKEHSISSIDVNGGNRKTILEDEKRIEEPFSLAVFEDKVFWIDI INEATFS
Rhesus Monkey psgrLywvDSKLESISSIDVNGGNRKT ILEDKERIAHPFSLATFEDKVEWIDI INEATFS
House Mouse ssGRLYWVDSKLHSISSIDVNGGNRKTILEDENRLAHPFSLAIYEDKVYWIDVINEAIFS
Cattle SGGRLYWVDSKLHSISSIDVNGGNRKTVLED PFSLATFEDKVEWIDVINEAIFS
Chicken psoRLYWADROLHSLSSVSVWGGORRT LLADPQLIPHPMAVIVFEDSVFRTDAORGAVLS
Chinese Hamster psGRLYWVDSKLHSISSIDVNGGNRKTILEDEKQUAHPFSLATYEDKVEWIDVINEAIFS

-

Human ANRLTGSDVNLLAENLLSPEDMVLFHNLTQPRGVNWCERTT-LSNGGCOYLCLPAPQINP

Rhesus Monkey ANRLIGSDINLLAENLLSPEDMVLFHNLIQPRGVNWCERTT-LSNGGCQYLCLPAPQINE

House Mouse ANRLTGSDVNLVAENLLSPEDIVLFHKVIQPRGVNWCETTALLENGGCQYLCLPAPQIGP

Cattle ANRLTGSDISLMAENLLSPEDIVLFENLTQPRGVNWCERTA-LRNGGCQOYLCLPAPQINP

Chicken APRRSEGEVRVVAESLPGVGGVLVVHPLROPRGVNVCA----PSNGGCEGLCLPAPHTEP

Chinese Hamster ANRLTGSDVNLVAENLLSPEDIVLFHNITQPRGVNWCERTA-LENGGCQYLCLPAPQINP
it’»_??G(CaseS) o 17051 (Both)

Human HSPKFTCRCPDGMLLARDMRSCLTEAEARVATOETSTV---RLKVSSTAVRT-QHTTTRP

Rhesus Monkey (spxrT DGMLLAKDMRSICLTEAEAAVATQET S[TV---RLMVSSKAVAT-QHTTTRE

House Mouse HSPKFTLCRCPDGMLLAKDMRSCLTEVDTVLITOGT SRV ---REVVTASATREPKHSEDLS

Cattle RSPKFICRICPDGMLLAKDMRSCLTESESAVITRGESIV---S5T-——-AV-—————————

Chicken HsaPYSIWCEDGLRLEADGRRCDPDPTAPT PMGENS[ITAAPQPHSTNGAHSTETHSNGAH

Chinese Hamster HSPXFTLRCPDGMLLAKDMRT TEVAPVLTTQGTS[I[L-~-RPEITAGAEGCPKHKEDOS

(]

(%)

Human VPDTSRLPGATPGLTTVEIVI-MSHOALGDVAGRG-———-——=—====m=m= o EK

Rhesus Monkey vPNTSOLPGATPGLTTAETVI-MSHOALGDVAGRG-——-———————————— N-———— EK

House Mouse APSTPRQPVDTPGLSTVASVT-VSHOVOGDMAGRG--—————-———————- Rl EE

Caftle ----GPKRTASPELTTAESVT-MSQQGOGDIASQA-——-———=======—= D-————- TE

Chicken s§--GTHSTETHSTNGAHSANGTHSNGTGSTALRSDAVGEPSVGEPSVGEESVGERSSVE

Chinese Hamster ASSTSRQO----PALSTVESVT-MSHQVOGD---RR-——-———————————— L EE
V8061 (Cases)

Human KPSSVRALSIVLPIVLLVFLCLGVFLLWKNWRLKNINSINFDNEVFOKTTEDEVHICHNQ
Rhesus Monkey KpKSVGALSIVLETVLLVFLCLGAFLLWKNWRLKSINSINFDNEWFOKTTEDEVHICRNQ
House Mouse (QPHGMRFLSIFFPIALVALLVLGAVLLWRNWRLKNINSINFDNEVFOKTTEDELHICRSQ
Cattle RPGSVGALYIVLPIALLILLAFGTFLLWKNWRLKSINSINFDNEWEOKTTEDEVHICRSQ
Chicken PQSGLVALAVILPLALLGAL—WALRALRRWWRRRSSHSISFGN%E‘LKEHGGHQWQSLS—

Chinese Hamster RPOGVGVLSITLPIALVILLVFGAILLWRNWRLRNINSINFDNEWVEQKTTEDELHICRSQ

Human DGYSYPSROMVSLEDDVA
Rhesus Monkey pzysyPSROMVSLEDDVA
House Mouse DGYTYPSROMVSLEDDVA
Cattle DGYTYPSROMVSLEDDVA
Chicken _gpsGDSG-------- V-

Chinese Hamster DGYSYPSROMVSLEDDVA
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Figure 3.2 Multiple Sequence Alignment of APOB. Multiple Sequence Alignment of
APOB amino acid sequence from 6 species, namely: Human, House Mouse, Chicken
Rat, Cat and White-tufted-ear marmoset. APOB sequence is from amino acid 1231 to

4563.

Human IVEMSSWLOKASGSLPYTQTLQDHLNSLKEFNLQNMGLPDFHIFENLFLKSDGRVKYTLN
House Mouse IVRINTWLOMATRGLEYEQTLODHLNSLSELNLLEMGLSDFHI PONLFLET DGRVEY MY

Chicken IvATHNIWLOKASKDVEYAQTLOAKLSGLOELNIOKIKLEVITIFEELFLESEGRIKYSEN

Rat I"vATNTWLOMATRGLEYPOSLODHLNGLSELNLEKVGLEDFHI PDNLFLETDGEVEYTLN

Cat IVATNTWLOKRSGSLPYACNLODHLSGLEELYLOEMGLENFHI PENLFLESDERVEYTLH

White-tufted-ear marmoset VWITHSWLOQASESLEYLTLODHLSGL-ELNLGNMEWEDFDI FENLFLESDERVEYTLH

Human FNSLEIEIPLPFGGKSSEDLEMLETVRTPALHFKSVGFHLESREFGVETFT IPKLYOLOV
House Mouse BNKINIDIPLELGGKSSKDLEMPESVRTPALNFKSVGFHLPSREVOVETFTIPKTHOLOV

Chicken xysFLINIPLEFGGRSSHDIRVEQTVETEFRLVIESMGINIESQEYRMETFTVEESYELLY

Rat yNRIEIDIPLPLGGESSKDLEVEESVRTPALNFESVGFHLESQEVQIFTFTIPKTHQLOV

Cat xNSVKIEIPLPFGGKSSEDLEMLEAIRTFAINFESVEFYLESQEFQVETFIIFKSYQLEV

White-tufted-ear marmoset KNSLKIEIFLPFGGKSSRDLEMLETIRTPALOFKSVGFHLESOEFOVETFTIPELYQLOV

Human PLLGVLDLSTNVYSNLYNWSASYSGGENTSTDH-FSLRARYHMKADSVVDLLSYNVOGSGE

House Mouse pLIGVLDLSTNVYSNLYNWSASYTGENT SRDH-FSLORQYRMETDSVVDLESY SVOGSGE

Chicken prrearFasASVESNYYNWTARYTLINSSTEKTARIGTTYAVNADSVFELLSYNMEGSGE

Rat pr1cILDLSTHVYSNLYNWSVSYTGGNT SRDH-FSLOAQYRMKADSVVDLFSYSVOGSGE

Cat pLLGVLDLSTSIYSNLYNWSASYTGGNTSTNH-LRLOT (Y YMKADSVVDLLSYSVOGSGE

White-tufted-ear marmoset pLLcvLDLSTHVY SHVYNWSASYTGENT STDH-FSLRASYEMERDSVVDLLS YNVOGSGE

C1305Y(Cases)

Human ITYDHENTFTLSHDGSLREKFLDSNIKFSHVEKLGNNEVSKGLLIFDASSSWEECMSASY
House Mouse TTYDSENTFILSODGSLHAKFLDSKFEVSHVEKFGNSEVSKGLLIFETSSALGPQMIATV

Chicken 235-33RNGFTCAMENHLKERLLTSDFKMSRTKSYEETSVSNCT IFIMASSALGEOLSFSS

Rat TTYDsKSTFTLSODGSLHHKFLDSKFEVSHVEKFGNNEVSKELLTFETSSALGEQMSATY

Cat TTYDHENTFTLSYDGSLHEKFLDSEMVESHTEKIRNNEVSKSLLTFYASSANGEQMSAST

White-tufted-ear marmoset TTYDHKNTLTLS{ODGSLRHKFLNSNIKFSHVEKVGNNEVSKELLTFOASSARGEOMSASY

Human HLDSEEEOHLFVEEVEIDGOFRVSSFYAKGTYGLSCORDENTGRLNGESNLRFNSSYLOG
House Mouse HLDSKKEOHLYVEDIKVDGOFRASSFYLOGKYGLICERDVITGOLSGESNMEFNSTYFQS

Chicken rvsERTHMNINNVRIEGOLEVASVFARSVYTMS SSYNERRRVLEGKSNLRLDSSYLOR

Rat LsEKKOHLYVKDIKVDEOFEVESLYAQGEYGLSYERDSMIGOMSGESHMEFNSTYFQG

Cat BVDSKREKHELYVKEVEIDGOLRVSSFHARGTYDLSYORDSTTS0LSGESNLRFNSSYLOR

White-tufted-ear marmoset HLDSEEEQHLFVEEVEIDGOFEVSSFYAEGTYELSCORDPHTGRLNGESNLEFNSTYLOS
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INQITGRYEDGTLSLISTSDLOSGI IENTASLEYENYELT LESDTNGKYENFAT SHEMDM
INQIVEMYQDGALSITSTSDLODGI FENT ASLEYENYELTLESDSSGOYENFARSNELDV
INHLSGRYTDGVFSITSASOVONGLLENT ASLEYENSOLEIT SETHGRY LHLARVNKLEF
ITHQIVGMYQDGMLSVT STSDLODGI FENTASLEYENYELTLKSDSSGOYENFARSNELDM
INQITGRYEDGIVSLISTSNLOGGI IENTASLEYENYELTMKSDT DGKYEDFAT SNKIDL
INQITGRYEDGTILSLISTSDLOSGI IKNTASLEYENYELT LESOTHGEYENFAT SHEMDM

$1586T (Controls) _ KI1615R(Controls
TFSECHNALLRESENFORDYESLRFESLLSGSLNSHELELN. LGTDKINSG. TLEIGD
TFSTOSALLESEAQANYKSLELWILLSGS LT SOGVELL. LGIDKINTG. TLEILR
LLSEEMARTESEY oA TYKOT OO AL FAGS LN SODIVENTDE SLIDE! SLEVNQ
TFSEQSALLESEHOANYKSLELWILLSGSLT SOGVELN LETDKINT TLEIRD
TFSEQHNALLRSENORDYKSLEFEILLSGT LNSHELELN. LETDKESHS TLEITE
TFSECHNALLRIEFQANYESLRFESLLIGS LN SHELELN. LGIDKINSG. TLEIAD
o - “R1662H (Cases
ISTSATTNLECSLLVLE AELGLSGASMELTTNG FHNAKF S KAAT.TELS
L3TSATTNLEYSPLLI LELELIGASMELSTNGRFEEHHLEFS RALLTENS
LASSATTHNVOQESELTMOS BHLDT3EESVSLS S SR GHMNAKFIVIHEEVSLTELT
VSTSATTHNLEYSELLI AELGLSGASMELST SGRFEEHHREFS RARTL.TENS
MSTSATSNLEYSELVLE AATGPSGASVELITNG FHNAKF S KARATL.TENS
JSISEHISLHYSPL?LE LELELIGLSVELTANG HHLKFS ERLLTELS

LESAYOAMILGVDSEN I FNFEVSQEGLELSNOMMGS Y AEMKFDHTH S LN T AGLSLDFS5K
LESIYOAMILGADSEN I FNFELSREGLRLSNDIMGSYAEMKL.OHTHSLNTAGLSLDFFSK
LGSEYQSTILGMDNKHVLNFRINKEGLEF SNNLOGSLEEIKLEYTHNDLNI PGLSLTFVSE
LESIYOAMILGADSENVENFELSREGLELSNOMMGS TAEMKL.OHTHS LRI SGLSLDFFSK
LESVYORMILGLDSENI FNFET SQEGLELSNOMMGS Y AEMKLEHTHNLN TAGLSLDFS5K
LESAYORMILGVDSENLENFET SOEGLELSNOMMGS YNEMKL.OHTH S LN T AGLSLODFS5K

LONIYSSDEFYEQTVNLOLOFYSLVITLNSDLEYNALDLTNNGELRLEFLELAVAGNLEG
MONTYSGLEFYKONFNLOLOPYSFITTLSNDLRYGALDLTHNGRFRLE FLELNVGGNEFEG
LONSFSFDEFHEHVELLOLOPRS LT AKLNNN IKY TKTEVSNERELLLEFLELNLGEHVRA
MONIYSGDEFYKONFNLOLOPYSFGITLSNDLEY DALVLTNNGRLRLEFLEKLNVGGNFEG
LOHIYSSDEFYEONFNLOLOFYSLVITLNNDLEF SALDLTNSGELRLEFLELNVGGNIE:
LONTYGSDEFYKQT FNLOLOPY SLVITINNDLEYNALDVTNNGELRLEFLELNVAGNLEG

AYONNEIEHIYATSSAAL-SASYRADTVAKVOGVEFSHRLNTDIAGLASATOMSTHYNSD
TYONNELEHIYTISYTDLVVASYRADTVAKVOGVEFSHRINADIEGLTSSVIVITSYNSD
AYGTDEVEHTYAITYADL-TANFET DIVANVOGARVSHREVNLNVAGLASSTTMNTNCDSK
TYONNELEHIYTISYIDLVVASYRADTVATVOGVEF SHRINADIEGLASSVIVITSYS5D
WONNEIEHI¥TLSYADL-SASYKT DTVAKVOGTEFSHRLNTNIAGLASSTDISTHYNSD
AYGNNEIKHIYTIAYRAL-SASYKRDTVAKVOGVEFSHRLNTDIAGLASAVDISTNYNSD

SLHFSHVFRSVMAPFIMI IDAHTHGNGKLATRGERT GOLY SKFLLEREFL.AFTFSHDYE:
FLHFNNVFHFSLAPFILGIDTHT SGDEKLSFRGERT GOLY SKFLLEKREPLALIVSHDYE:
SLRFSNALRSTMAPFI ITADVHINGNGKLIALGERTGDLYSKILFEAEFLAFTFSHDYRG
FLHFNNVFREVLAPFILGVDTHT SGDGEMSLRGERT GOMY SKFLLEREFL.ALTFSHDYE:
SLHFSHVFHSAMAPFIMI IDAHTHGNGKLSFRGERT G0LY SKFLLEREFLALTVSHDYE:
SLHFSNVFHSVMAPFTVI IDAHTNGNGKLALRGERTGOLYSKFLLKREFLAFTFSHDYE:
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Human 5TSHHLVSRKSISAALEHKVSALLT BAEQTGTWKLET QFNNNEY SQDLDLYNTKDEIGVE
House Mouse STSHSLPYESSISTALEHTVSALLT EAEQT STREFETKLNDEVY SODFEAYNTEDEIGVE

Chicken sT5HSFESMERYSTOLDNEFHMLET ESEQSSANKLESOLNNN I Y SODINAYNDAEKTGVE

Rat sTSHNLLYKNSVSTALEHTLSALLTEREQTSSWEFKI SLNDKVY SOEFELYNTKDKIGIE

Cat STNHALELKSSISASLDHKVSALLT PAEQTATWKLKT OLNENEY SODFDAYNTKDEVGVE

White-tufted-ear marmoset STSHHLMSRKSISTTLERKRSLLLT PAEQMGTWKLKT QFNNNE Y SODLEAYNTKDKIGVE

Human LTGRTLADLTLLDSEIKVELLLSEEINIIDALEMROAVEKEQEFT IVAFVKY DKNQDVHS

House Mouse 135RA--DLSELYSEIKLEFFYSEFVHVINGLEVNOAVDKEQEFT I IAVVEY DENGOVET

Chicken 15cRALADLSVVDTAIRLPFM-SEEVNVIDVLGLRDSVSEPQEFSISGSVHY DENKDMEYV

Rat 15cRA--DLSGLYSPIKVEFFYSEEVNVLNSLEINDAFDEFREFTIDAVVEY DENQDVET

Cat LRGQLLADFNMLDFSIQVEFFLSEETNIIDALGMROLIDOEOEFTVVAFVEYDKNOOVET

White-tufted-ear marmoset 135RATANT TLLDSPIKVEFLLSEEVHVI DALEMEDE TETEOEFT IV FVEY DENEDVEL

Human IVLEFFETLOEYFERNROTIIVVLENVORNLEHINIDFVRKYRALLGKLEQORNDYLNS
House Mouse INLEFFESLEDYLERNRRGMISLLEAMRGELORLSVDOFVRKYRALLSELEQOIHHYLNL

Chicken TNLPFLEHFPVYFEQTRGATLSTLOAVONYLENT DVDOYMEHYKAT LOE FEQHLNDYMOK

Rat ISLEFFOSLPDYLERNERGIISLLEAMEGELORLSVDOFVREYRVALSRLEQOIHDYLNA

Cat INLEFFEILPEYFEKERMVIIMALETIQRELEVINIDQFMIKYREALDKLEQOVIHDYLHA

White-tufted-ear marmoset ISLEFLETLQEYFERNQQTVI I ILEHMORDLEHININQFVRKYRARLGKLEQUVINYLHS

Human FNWERCGVSHAKEKLTALTEKYRITENDIQIALDDAKINFNEKLSOLOTYMIQFDOYIKDS
House Mouse SDWERCVAGAKEKITSFMENYRITDNDVLIAIDSAKINFNEKLSCOLETYAIQFDOYIKDN

Chicken 10I¥ERASTIKINLIAFTEDYRITSODLEI ILEKRLDNLOE ILLOLOVYLVOIEQY IKEN

Rat soWERCGVAGAKEKLTSFMENYRITDNDVLIALDSAEININEKLSOLET YATQFDOYIRDN

Cat FNWESCOVVSAKEKLSAFTKHYRMTENDLOIALNNTKINLNEKLSQLOT Y VIOFDOY IKDH

White-tufted-ear marmoset FUWERLVSHAKEKLTALTNKYRITENDIQIALDDAKINFNEKLIQLOTYVIQFDOY IKDN

_ (R2192C) (Controls
Human YDLEDLET A 12N T TPE T IR LESTDAEYE TRVNLVET THDLELF IENI DFNKSGSSTLASH
House Mouse YDOFHDLERTIZEIIDRI IEKLEILDEQYHIRVNLAKS IHNLY LFVENVDLECVSSSHTSW
Chicken ypFDINALIAOLLDKTVEEMI AT DEKYKIRVITVVDT IQKLOFFLNDY Y ESNIGSHIMIW
Rat YpRODLERTIAQI IDRI IEKLEMIDEYH IRV LAKS THNLY LFVENVDLNQI SSSGASW
Cat YDLUDFETAIAEI IO JEKLETLDEEYHIHENLVET IHDVY LFIEKI DFNRIGSSEASH
White-tufted-ear marmoset YDLHDLEIAIANIT KLRSLDEDFHIFVNLVET IHDLHLFIENI DFNETGSSARSH

Human IONVDTEYQIRIQIQEKLOQLERHIQNIDIQHLAGKLKQHIERIDVEVLLDOLGITISFE
House Mouse ICNVDSNYOVRIOIOEKLOOLRTOIONIDIQOLAREVEROMDATDVIMHLDOLRTAILFD

Chicken IENIDDEYRITGRIKENLEQLEIQIONIDIRSFAENLERKIKT IDVEQLLEKLERSLETE

Rat 1oMvDTEYOIRIQIQEKLOHLRTQIENIDIQOLARFLEQOIEALDVEMHLDOLRTATLF]

Cat IQNADTRYQIRIQMOEKLOQLETQIONVDMRHLAEQLEQGVEAMOVRVLLANLRTTIPFQ

White-tufted-ear marmoset IQNVDTEYQIRIQIQEKLOOVERHIONTDMOHLAGKLEQYVELTDVEVLLDQLGTTISFE

V22861(Cases)

M2331I(Cases)

Human RINCLEHVEHFVINLIGDFEVAEKINAFRAKVHELIERYEVDOQIQVIMDELVELAHGY

House Mouse rIs00I0RVEYFVMILIEDFEVIEKINTFRVIVEELIEEYEVDOHIGVIMPESVELLHRY

Chicken yyeFif1FQIKDFILSWMEEYEVSEKT SAFRGHMHKLIVEYE I DKHVY FLLDRMIELLNQY

Rat p1syIIERVKYFVMNLIEDFEVTEKINT FRVIVRELIEKYEVDROIQVIMDHSIELAHRY

Cat RyKEIFHIKYYVIHLME DEVVVDKINAFGAKVEKLIKI YRI DOHIQVIMDT SVOLARKY

White-tufted-ear marmoset g INOLEYVEYFVINLI GDFEVAEKINAFRTEVHELIERYE I DO TOVIMDESVELLHOF




Human

House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human
House Mouse

KLEET IQKLSNVLOOVEI KDY FEEKLVGF I DDAVEKLNELSFKT FIEDVNEF LDMLIEELE
SLIEFLOKLSNVLORIEIKDY YEKLVGFIDDTVEWLER LS FENT IEELNRLT DMLVEELE
RIRETVREMITYLRKIDVETCFDEIVSLIDDAVEEVOTFDYEMMIEELNEFLOMI TEELE
SLEEPLOKLSNVLOOIE IKDY YDELVGF IDDTVERIKAVSFENT IEELNRT.T DMSVERLE
QLEETVEKLSNVLOOVN IKDHFEKLVRLIDDA TKOLEALSFEKI IEEVNRFLOMLIKELR
KLKETTQKLSNVLOOVEI KDY FEEKLIGLI DDAVEQLDELSFKT FIEDVNEF LDMLIEELE

SFDYHQFVDETHDEIREVT ORLNGETQALELPOKRAEATKL.FLEETEATVAVY LESL.ODTE
AFDYHOFVDETNSKIREMTCRINAEIOALKLPOEMEALKLLVEDFET TVSNSLERLEDTE

Chicken sFOYNQFVDDTNNKIQEI IQKINEELRNLELPORAELLKQYMRDFNAVVSKYVEQLROTK

Rat
Cat

AFDYHQFVDKINSKIREMTQRINAETQRLELPOKTEATLKLWVEDFET TVSNSLEKLEDTE
SEDYHQFVDETHNKIREVIQRINGEIQALALSERRTATTLFVEDIKRAMVSVHLENTEDIQ

White-tufted-ear marmoset SFOYHOFVNETHNEIHEVT QRINGEI QALELPORLRALKLFLEDTHATVAVYLESLODTE

Human
House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human
House Mouse
Chicken

Rat

Cat

White-tufted-ear marmoset v15

Human

House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human
House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human

House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

ITLIINWLOEALSSASTAAMEAKFRETLE DCTRDEM YOMDIQUELORY LILWVEIWYSTLVI

VIVVIDWLODIL-—--— TOMKDHFODTLEDVRDRI YOMDIQRELEHFLSLVHIWYSTLVT
LVAITHWLKELIDSTTF THLERKVNEHLEGLEERT SIMDIAKEFEWY LOKT SOFYNSVVI
VIVVWDWLODGL-——-— AOTERQFODALEDVRDR I YOMDIOGELERCLSLVSIWYSTVVI

ITLFFDWLOEALSAVE LT SMERKFQETLEDTRDEVYQMDI QOEVORY LSLVEIVYSTLVI
ITLIIDWLODELSSASFAHMRAKFRETLE DCTEDEM YOMDIQOELORY LILWVEIWYSTLVI

E2530K (Controls)
TISDWWRT LTDFEF0Y STODWAKRMKR LVEOGFTVHETKT ILGTMPARERN SLOATO
TMSDWWILT ITDFEERYSIONWAEST KV LVEQGF IVEEMOT FLWIMPAFEVSLEALD
YISEQWHIA VI Y DLENWAENLNDFIETGFEVEEIRTVIVIIEA SLRSLR
TISDWWILT ITDFEERY STORWAESVERLVEQGF IVEE QT FLGTHMEAFEVSLARLD
TISWIWS LIDFEEY SLONWAGH LERLVERGFTIFETCTIFGT IFAFEWSLEALD
WWT LIDFEFNYSIODWAERVERLVERGFTVEETKT ILGTVEAFEWVSLORALD

KaTFOTPDFIVWELIDLRIPSVOINFKDLENIKIPSRFSTPEFTILNT FHIESFTIDFVEM
EGNFOTEVFIWELIDLRIPSIRINFEMLENIKIFLRFSTPEFTLLNT FHVHSFTIDLLEL
EATFRIFDFIWEFLIDLEIPSYEINIRRLKDMETIFAKFITPEFTVLNSFEVESYTIDLNET
EANFOTPFDFIWEFLIDLRIPSIWI NFEMLENVEIFLRFSTPFEFTLLNT FEVRSFTIDLLET
EATYOTPDIIWELIDLEIPSVOINFESLEDIKIFSRETTFEFTVINT FHVESFIIDLVEL
KRTFOTPDFIVELIDLRIPSVOINFKELKDIKIPSRESTPEFTLFNTFHIPSFIIDEVEL

EVEIIRTIDOMLNSELOWEVEDI YLRDLKVEDIFLARITLFDFRLFETATFEFIIFTLNL
KRKIIRTIDOILSSELOWELFEMY LRDLOWVNIFLARLTLFDFHVFEITIEEFTIFNVNL
KFQIVEMIDOLISGEFQLPAIDLYFEDLEMRDMEF SEISFPELOMPOLETPFELLIFELNL
KRKITRTIDOMLSSELCWELPEVY LRDLEMVNI SL.ARTL.SL.FDFHVEEITIFEFTIFNVHL
EVEIIRTIDOMLSSELOWFVEFEL YLRDLKGLDT ILAGITVFDFYFFETATPEFITFNLDL
EVEILRTIDOMLNSDLOWEFVEFESYLRDLEKVEDTFLARTITLFDFFLFETATPEFVIFNLNL

NDFOWPDLHI PEFQLPHISHT IEWPTFGKLYSILETQSPLFTLDANADTIGNGT TSANERS
KDLHVEFLLHIFEFQLPHLSHT IEIPAFGKLASILETOSFLETL.DANANTONVI T SGNERE
NEFQILPDLEIFEFQLEFRIFHTVI AFTFGHLSGAFRVASFFFTLSTOAEVHNTTASANSEE
KLDLOWEDLHI PEFQLPHLSCTTE I PAFGKLASVLEIQSFLEFILDASANTONITTSENKRE
ENYQIFDLHI PEFQLEFHLSHTVEVESFGELAGI LKIQSFLEILDANANTONAT T SGNERE
SDECWELLHIPEFQLPHISHTIEVETFGELYGILETQSFLETLDANADIONETT SVNERE
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Human I2ASTTAEGESKLEVLNFDFQANAQLSNERINFLATKESVEFSSEYLRTEHGSEMLEFGN

House Mouse 1vasvTLKGESOFEALNFDFOAOLOFLELNEHEEVLKE SMNFSSKHVEMEHEGE TVFDGK

Chicken pyTs1.5RQATSKLDFLVFSVIADSHILAFEMEGLELENSMEVSHEFLEI DHTNEVVELGT

Rat 1vns5wTARGESKFEALNFOFQAQLQFLE LNANFLVLKE SVNFSSKHVEMEREGK I LVSGK

Cat IAASTTAKGE SKLEVLNFD QAN GOLS DS N IN PLVMEDSMEFSSEY IKTERESEVLEFGE

White-tufted-ear marmoset 13357 TAKEFSRIEVLSFOFOAKROLST FEINPLALKE SVEFSSKYLRTEADSEMLEFEH

Human AIEGKSNTVASLHTEENTLELSNGVIVEINNQLTLDSNTKYFHKLNI PKLDFSSQADLRN

House Mouse AIEGKSDTVASLHTEKNEVE FNNGMTVEVNNQLTL DSHTKY FEKLSVERLDFSSKASLIN

Chicken gysgEAFTRAKFSATHNSIELONNIMVNLORKIOMOSGTAYSHRLNI PEADFSSOADLVN

Rat 31FcusDTVARLATERNTVE FNTGIVVEL NNQFTLDSQTKY FEELSVFRLDFSSERSLNN

Cat AvEGKSNTVESLHTEKNMLEFSNGVEVRI NNQLTLDSNTEY FHELNT FELDFSSOAELRN

White-tufted-ear marmoset ATFeHSNTVASLHTERNTLELSWEAIVEI NNGLTLDSHTKY FENLNI FKLDFSSCOADLRN

Human EIKTLLERGHIAWTSSGKGSWEWACERFSDEGTHESQISFTIEGPLT SFGLSNEINSEHL
House Mouse EIKTLLEAGHVALTSSGTGIWNWACPNFSDEGTIHSSQISFIVDGPIAFVGLSNNINGKHL

Chicken NMITEVEAGRISFISNGHENWEWISPNFSDEGTHNSHATFEVDGPILI FFADYRINDRYL

Rat EIKTLLEAGHMAWTSSGIGSWNWACENFSDEGIHSSKISFIVDGPIASFGLSNNINGEHL

Cat EIKTLLELGHVAWTS55IGSWERARCT FSDEGLHESOVSFTVEGRITSFGLSNKI SSEHL

White-tufted-ear marmoset EVETLLELGHVART SSGKGSWERACEHFSDEGTHESQISFIMEGELT SFELSNEINSEHL

Human
House Mouse
Chicken

BEVNONLVYESGSLNFSKLEIQSOVDIQHVGHSVLT AKGMALFGEGKAE FTGRADAHLNGE
EVICKLIYESGFLNY SKFEVESKVESQHVGSSILTANGRALLKDAKREMT GEANANLNGE
KVS0SMRYECGFLSYATLOVOSE IESQRVGRS ILNVEGT GOLGGMEVE LT GSHNARLNGE

Rat mQKLTSESEFLNYSRFEVE SKVE SOHVGESSILTAEGRALLGDAKAENT GEENANLNGK
Cat RLSONLVYESGFLDFSKFEIQSOVESQYVGRSVLARKGTALLGERKAEITGNHDAHLNGE
White-tufted-ear marmoset TVNQNLVYESGFLNFSKLEIQSRAESQHVERSVLTAKGTALFGEGKAELTGRADAHLNGE

T3020R (Cases)

Human VISTLENSLEFSRQE STHNHGNLEVRFPLRLIGKIDFLNNYALFLS PSAQORSHG

House Mouse vIsTLKISLFFSLOE STHNEGNLEVEFELELTGEIDFLNNYALFLS FREQOASWO

Chicken rreTnmnrrrLvoE LTMOGHVET SFEMEL TG IDFLINYGLSLSSSVOOVSRG

Rat veTiMsLEFSRQR STHNEGNLEVSFPLKLIGKIDFLNNYALFLS PHAQORSWG

Cat vIGTLENSLFFTAQP STHNEGNLEVSFELELIGEVDFLNNYALFLSESAQORSHO

White-tufted-ear marmoset vIGTLENSLFFSRQE VS THNEGHLEYS FEIRVIGEI DFLNNYALFLSESAQORGHG

Human VSARFNQYHYNONFSAGHNENIMEAHVGINGEANLDFLNIPLTIPEMRLEYTIITTEELE
House Mouse L5TRENQYKYNONESAINNEHNIELSIGMNGDANLDFLNI PFLTIPEINLEYTEFKTELLE

Chicken ATsRFNOYRYSHNMSAGHNDDRIEAHVEMSGDANLDFLNIPLTIPOLHIPYTGIOTEOLE

Rat LsTRFNOYEYNONESAINNEHNMERSTVMNGDANLDFLNI FLTIPEINLEYTRETTELLE

Cat LSARFNQYHYHONFSLGNNENSIEAHVGINGEANLOFLNI LTI FEMTLEYTGLT TEOVE

White-tufted-ear marmoset VSrRFNQYKYSQNESAENNENNMEAHVE INGEANLDFLNFELT IFEMLLEYTAITTSEQE

Humap CFSLWEKTGLKEFLET THOSFDLIVEROYKENKHRESITNPLAVLCEF I SQSTHSFDRHE
House Mouse DFSIREETGLEEFLET TEQSFDLSVEROYEEN SDEKHS IVVELGMFYEF I LNNVN SWDEEF
Chicken DY SLRECAGLENLLETTROSFOLNLNAOYEKNKDMEVI FLELATVHEALNKY I IFFNEYF

Rat DFSINEETGLKEFLETTKQSFDLS IKROYKENRDKHSVVI PLEMFYEFMLNNVNSWORKE

White-tufted-ear marmoset NESLWEKTGLEELLET TEQSFDLS IKROYEENERKHS IANPLAVL.CEFISQNIKSFDRHEL
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Human

EFMENNALDFVIKSYNETKIKF DEYKREKSHDELPRTFOQI PGYTVEVVNVEVSEFI TEMS

House Mouse EKVENNALHFLTTSYNERKIKVDKYKTENSLNQPSGTIFONHGYTIFVVNIEVSPFAVETL
Chicken ERGRNTALDFLTESYNEAKTKFDKYKIQTSLNKLERTFRIPGYTIPIVNIEVSEFTAEME

Rat

EXKVEDNALHFLTASYNETKIKF DEYKTENSLNQPSRTI FONEGHT IFVINIEVSEPFAVETL

White-tufted-ear marmoset EXRRNNALDFVIESYKERKINFDEYKRENSH-ELPRTFQIPGY IVEVVITVEVSPFIVEMS

White-tufted-ear marmoset LFGYVIEERT

Human

53252G(Cases) $3267P (Controls)
TLILESLELPVLHVERNL-KLSLEDFKELCTIS
KLVLEFLELFVFHGEGNLFKFFLEDFHGENTID
TLVLESLELEVLHVEQDLRTLKLERFRINSESH
VLESLOLPVFHIPRILFEFSLEDFEELSTID
——————————————————————— KDFQRVSTEN
TLTLEFLELPVLHVERHL-KLSLEDFKELCTIS

{ESFTISGSDIEV

HIFIPAMGNITYDFSFESSVITLNTNAELFNOSDIVAHLLSS555VIDALOYKLEGTTEL

House Mouse y1vIeaMeNFTYDFSFESSVITININAGLYNOSDIVAHFLSSSSFVTDALOYKLEGTSEL
Chicken QILIPAMGNITYDFSFESSVITLTANAGLFNOSDIAGHLSIS555VIDALOFKLDGSTSL

Rat

HIYIPAMGHNFIYDFSFESSVITININAGLYNOSDLVARFLSSS5FVIDALOYELEGTSEL

Cat NILIPAMENITYDESFESSVITLNANAGLYNQSDIVARFVTSSSSVIDTLEYELEGTSSL
White-tufted-ear marmoset HTFIPAMENITYDFSFESSVITINTNVELFNGSDIVARLLSS555VFDALQYKLESTTRL

Human

House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human

House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human
House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human

House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Q3405E(Controls)
TEKRGLELATRALSLS-NEFVEGSHNSTVSLTTENMEVSVATTT FILEMNFEQELNG
MEFRGLELATAVSLT-NEFVEGSHDSTI SLTEENMEASVRTTAN PIFSMNFEQELNG
TRERGLELATALSLNNNKFLGESHONS I SLTEENLEASMI THAKINT FVFEMNESQELSG
MEEEVLELATAVSLT-NEFLEGSHDSTI SLTEENMEASVETTAN PFIFTMNFEQELNG
TEKRGLELATALSL5-NEKFMEGNHDST I SLTKESMEASVT TSAEVIOL FILEMNFEQELNG
TEKRGLELATALSLS-NRFVEGSHNSTVILTEENMEASVVT TAKVIOT PILEMNFEQELNG

NIKSKPIVSSSMEFKYDFNSSMLY STAKGAVDHELSLESLTSYFSTESSTHGIVEGSVLS
NIKSKFTWVSSSIELNYDFNSSKLHSTATGGIDHKFSLESLTSYFSTIESFTEGNIKSSFLS
NIKSKFTIISSGLEVIYDFITPEHGI SAKGEVANKLALETLTSYLSVETSTHGHNIDGAIYT
NIKSKPTVSS55IELNYDFNSSKLHSARKGGVDHKFSLESLTSYLSTESFTKGNIKGSFLS
HIKSKFTIISSSIELTYDFNSPELYSTATGAVDHELILESLISYFSVESSTHEGDIKGSVLS
NIKSKPIVSSSMEFKYDFNSPMLY STAKGAVDHELSLESHISYFSIESSTHGOIVEGSVETL

R3500W (Cases

- SGTIAJERNTYINSEST SVELOGISK IWHLIE FAGERTLORIYSLW
~OEF S G SVANERNVY LN SKGTRS SVELOGAS KD IWNVEVGENFAGERTLORITTTW
Gl SGALDHERNT Y LHANGVRS SLELEANSER DLW, ILAVERSTSEVYAVIN
-DEF SESVANERNVY LNSKGTRSSVRLOGASN IWNEEVGENFAGERTLRRITGIW
- SETIASERSTYLNSESTRELVELOGASEMDIG T WHLEN FAGERTIRRIYAIW
- SETIASERSTYILNSESTRSSVELOGT SK IWHLIE FAGERTLORIYSLW

STENHLQLEGLFFINGEHT SERTLELSPWOMSATVOVHRSQPSSFHDFPDLGOEVLA LAY
NMENHLOVY SYFFTRGEOTCRATLELSEFWIMSTLLOVHVSQLSSLLDLHHFDOEVILERN
HGENFARYTPLETTTGSQKCKAT FELAPWTVSADLOI GV T QPN SFLDTASVHOVVLMEYVS
HMINHLOWVESYFDTHGHQICRATLELSEFWIMSTLLOVHVSQFSFLEDLHHFDOEVILERS
NIENHLOLEGFFLT SGEHT SKATLELS PWEMSALVOVEASQFNSLLDI SYFEOOVSLNAN

STENHLOLEGLFFINGOHI SEATLOLSEPWEMSALVOVOASQFNSFLDI FYLGOEVALNAN
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Human
House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human

House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human
House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human

House Mouse

Chicken

Rat

Cat

White-tufted-ear marmoset

Human
House Mouse

Chicken
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TENOKIRWENEVEIHSGSFOSOVELSNDOERAHLDIAGSLEGHLRFLENI ILFVYDKSLW
TENQKI SWEGEVOVE SEVLOENAQF SNDOEEIRLDLAGSLDGOLNDLEAI FLEVEGKSLO
FIDOKVGEWEGEGQIQSLSLRHIMULSNEKSNAKFDI SGILEGYMDFLKRINCAI SKKSLW
TENOKVSWESEVOVE SOVLOENAHF SNDOEEVRLDIAGSLEGOLWDLENFFLFAFGKSLR
SEHQKVIWKSEVCVESGFFONNVHLSNDOEEARLDIASTLEVSLNFLKDIALFVYDKSLW
TENOKIRWKSEARVESGSLESHVELSNDOEKAHLDIAGSLEGHLRFLENI ILFVYDKSLW

DELKLDVITSIGRROHLEVSTAFVYTENENGY SESIFVEVLADKF -- I IFGLELNDLNSV
ELLOMD-———- GEROYLOAST SLLYTENFNGYLLSLFVJELADRF--IIFGIKLND----
DILKLDVITVADRKHYLNASASFIYRKSDDGYFFFMFVIRLSDGFTFSIFELHLERAESEY
ELLQID--—--- GEROYLOAST SLHYTKNFNGYLLSLFVOELIDRF--IIFGLKLND----
DLLELDVITSIDRKQYLHAST SLVY TENENGYHFSVEVQELADKF -- IVFRLKLNGLS 3G
DFLELDVITSMGRROHLRLSTALVY TENENGY SESIFVEVLADEF-- I I FGLELNDLNLY

LVMPTFHVEFTDLOVESCKLDFREIQIYEKLRT S FALNLETLPEVEFPEVIVLIKYSOR
————————————————————— FSEVHIYEKLSTSPFALNLTMLEKVEFPGIDLLTQYSTE
L3TPEFRVEFSTLOVERYTIDLRNIKI QT LNIMEFDVNLET LEKLRFERVIVGENYITL
————————————————————— FSEIKIYEKLSTSPFALNLTMLEKVEFPGVDLLIQYSKP
LVIEAFQVEFTDLOVESYTFDFSEIKI YRKLSSLEFALS I FTLEKVEFEKVIVLIKYSER
LVMPAFYVEFTDLOVESYKLDFRETKMYRKLRT SSFALSLPTLEKVKFPEVIVLIKYS0R
T3799)M (Cases)
EDSLIPFFEITVEESQLTVSOHTLPKSVSDEIAALDLNAVANKI ADFELETI IVEEQTIE
EGSSVEIFEATI FEIHLTVSOHTLEKSLEVENTVEDLNELANMI ADVDLESVILEEQT IV
EEYKI PYFEVIVEEYQITVSOHTLEKS ISLESFHVDLDEVANKI ADFDLETITIPEQKIE
EGSSVETFEITIPEIQLTVSOHTLEKS FEVENTVEDLNELTNLIADVDLESITLEEQT IE
EDASVEFFEITIPASQLTVSONTLEKS ISVESAVEYLNEVASKIADFELEATTMEEQT IE
EDSLVEFFEITVPESQLTVSQHILPKSVSVEEAVLOLNKVAKKI ADFELETITHPEQT IE

IPSIKFSVEAGIVIESFOALTARFEVDSFVYNATWSASLEKNKADYVETVLDSTCSSTVOF
IFPLEFSVEAGIFIFFFGELTARAGMASFLYNVIWSAGWKTKADHVET FLDSMCTSTLOF
IPPFLEVSLEAGIYIFSFGALTGSLEVASFLYNVIWRTDL.TNKKESFEVSIDSTCSSTLOF
IPSLEFSVEAGIFIFFFGELTAHVGMASFLYNVIWSTGWENKADHVET FLDSTCSSTLOF
IPSIKFSVERGIFIESEGALTAHFGVASFLYNATWSTIGLENKVEYVETFLNSTCSSTIQF
IPSVKFSVERGVE IFSFGALTARFGVASPLYNATWSASLENKADHLETALDSTCSSTIQF

LEYELNVLGTHKIEDGTLASKTKGT FAHRDFSAEYEEDGKYEGLOEREGKAHLNIKSFAF
LEYALKVVETHKIEEDLLTYNIKGI LOHCDFNVEYNEDGLFKGLWDWOGEANLDITSFAL
LEY DLV SHYKYEEGKFVEK T VG SFAHRDLSANY TEDTAT.OGFGTVENTASL.OVISETE
LEYALEVVGTHRIENDEF IYKIKGI LOHCDFNVEYNEDGI FEGLWDLEGERHLDITSFAL
LEYDLNVVGTHEKIEDGVLFYRTKGT FAHHDI SAEYKE DNEYRGLWDWKEDIRLDITSFIF
LEYDLNVVETLEIKNGSLICKTKGI FAHRDFSAEYEEDGKYEGLEDWEGKARLDIKSFAF

TDLHLRYOKDEKGIST SAASPAVETVEGMOMDEDDDF SKWNFY Y SFOSSPOKKLT IFKTEL
IDFHLYYKEDKI SLSASAASSTIGIVGELDSSTDDOSVELNVY FHFOSFPEKKLSIFKTEW
ADVHVRYOMTDNMISSTVSSPSAGILGFLVOIETDT LKEKFYYRTLSAFQKDIDILESET
IDFHLHYKEDKI SVSASARSPAIGIVSLDASTDDOSVRLNVYFREOSFEFINKLSIFEMEW
TDVHLHYQLNENSL355VS5FAIGTVALDLEGHNNT LKWNLY YRFOSSLOKKILNI FKTEW
IDLHLHYOEDEKGLSISAASPAIGIMGMDIDEDDDFFEKWNEFY Y SPOSSPDEKLT IFKTEL
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EVEESDEETQIKVNWEEEARSGLLT SLEDNVEEATGVLYDYVNEYHWEHTGLTLEEVS 5K

RYKESDGERYIKINWEEEARSRLLGSLESHVEKASKAIYDYANKYHLEYVS——————- SE
SFRNSD-IIQIKLNWHE DARKDLLLGLEEEVEEMI SAVYKCVNRYYKEHMGLDISDATVI
RIKESDGETY IKINWEEEARFRLLDSLESHVEKRSEAVY DY VEKYHLGHAS ——————- SE

RYQESDDKSOIKVSWEEEAVSELLSSLKDNVEPEATGVLYDYANKYHOEYTGLNLEDASLE
RYQESDEELOIKVNWEEEAASCLLT SLEDNVEPERTOALYDYVNEYHWEHTGLTLRGASSK
(V4101 ) (Controls)
LEENLONNAEWVYOGAIRQIDDI FORAASGTITGTYQEWKDERAONLYQELLTQEGDAS
LEESLOVINAE----HARRMVL SFORVARD-————————- TYONLYEEMLAQKSLSI
MENILONNADKAYMFARRCOVDOMDAMOLETAANEASEKY OEMEVERROLYKRAREQREQOTD
LEKSLONDAE ————HATRMVL) AORVTED—————————— TYOQSLYKEMLAQESQST
LRRSLONSAEWAYE STMROQTDEVDMGLOEVARATTRT YOOUWKDERODLYHELTL.AQEGOAD
MEENLENERAEWVYQGATROTIDDMOMWFORRATGT TGN Y ORWMDERAON LYOELLTPERORAS

FOGLEDNVEDGLVEVIQEFHMEVEHLIDSLIDFLNFFRFQFFGKPGIYTREELCTMEIRE
FENLEKEVLDS IVHVI QR Y HMAVMWILMDSFIHF LEFNEVQFPGYAGTYTVDELYTIVMEE
YORIKARLLDATVDIMEEYHSKIRHLIDSVIEFLKITKFQI FGLSEKYTGEELYIMITEK
PEKLEEMVLGSLVEI TORYHMAVIWLMDSVIHF LKFNEVOFFGRNAGTYTVDELYTIAMRE
FOGLONEVEDRLMGVI OE Y KDEVSHOVASLIDFLOFTRFOLEFGEKAGTYSRDELFTMVMEE
LOGFEDEVFDSLIEVIQEFRMEIKHLIDSLIDF LT FERFOFFGKPEI YTRDELCTMVIRE

VETVLIOVY SEVHNGSEILFSYFODLV-—-——————— ITLPFELRKHEKLIDVISHYRELL
TEKSLS0LF--—-NGLGNLLSYVONVEKSRLINDI TFECFFFSKFCKLEDLILIFREEL
RRKTADICLSKLO-—-——-- EYFDALI---RAISELEVEVFASETILRGENVLDOIKEML

TEKLLS0LF--—--NGLGHLF SYVDOVEKSEVINDI TFECFFSFT FCELEDVLLIFREDL
VEOVLSOWY SKIHSGLEILFSYFODIMEKSELIKDVEIKF FFNSESYKLROVVLEFGNLL
VEMVLSOVYREVHNGSEILESYFODLV-——-——————- IKLPFELRSQKLIDIILRCRELL

M4203V(Cases)
KDL SKERQEVFEAIOSLETTEVLRNLODLLOFIFOLIEDN IKQLEEMKFTYLINYIQDEL

NILSNIGQ-————- QDIKFITILSSLOGFLERVLDI IEEQIECLEDNESTC—-—-VADHT
KHLOEKTROT FVI LOEADFAGKLNOLECOVVORT FOKAGHNMVRSLOSENFEDITEKVOMOOLY
HILSNLGQ---——- QDINFITILSDFOSFLERLLDIIEEKIECL ESTC----VEDHI

KSL30NIODALNNLOSIKTI TEMLSHLORY LERAFOEIEEEIORLEGEKFTYLINDIQHVI
NDLSEEAQTVFENMOSLETTEVLHDLOQLLOFIFOI-EEDIKRLEET KL.TOLTNHIRDDT

NIIFSDYIFYVFELLEENLCLNLHKFNEFIQNELOQEASOELOOIHOY IMATREEYFDEST
HNMVFKIQVEYAFKSLREDIYFVLGEFNDFLOSILOEGS YR LOOVHOYMERLREEYFDESM
KDAMASDYRAHKL.RSTLAENVEEKY I SOMENF QKT LOKVSENLOOLVLY IKRLREEYFDETT
NMFFETHIPFAFKSLRENIYSVFSEFNDFVQSILOEGSYELOOVHOYMERFREEYFDESV
NRIFEEYIFTAFIFLE-—--INFDEFNELVONQLOEASOOTL.OOTL.HOLIKDLHEEYVDETV
NIIFNDYIPFFFKILKEILCHNLHTFNEFIQNNLOQEASQELOOIHOY IMRLREEYFDESV
(54403T) (Controls)
VEWIVEYYELEEKIVSLIKNLLVALEDFHSEYTVS FTSQLSSQVEQFLHRNIQEYLS
VEWIVEYYEIEENMVELIKTLLVSFROVYSEYSVT FASEMSTOVEQEVSRDIREYLS
LGWSVEY YEVEDEVLGLLENIMDTLVIWYNE YAK LVIRLTDOVRELVENYROEYYD
VEWIVEYYEIEEEMVDLIKTLLAFLEDFYSEYSVT FASEMSTOVEQEFVSRDIREYLS
VIWISEYYELEEKI I SLIKNLVDVIMDFHSEYT ISTRGLI SOLSNOVEQEVOKDIQEYLS
FASOLSTOVEQFLHGNIOQEYLS

VEWIVKYYELEEKIVSLIKNLLVALKDFHSEYTAS
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T4457)\1 (Cases)
ILTDPDGKGKERTAEL S ATACET TKSOATATKKT I SDYHOOFRYKLODF SDOLSDY YEET

MLTDINGEWMEKTAFLS IVAKE TMKSWVI AVAKIMS DY POOFHSNLODFSDOLSSYYEKF
LITOVEGEGROKVMELS SARQEKTRYWSAY] (INEHNRCVERKLOEIYGOLIDSOEEL
MLADTHGKGREKVAELS IVVEERIKSWSTAVRETTSDYLRQLHSKLODFSDOLSGYYEKF
ILTDADGKGKEKTAELST SAQET IKSQATAMKE T T SDYHOOFRYELODFSDOLSDYYERF
ILTDAEGKGKEKIEELSTTAQKT IKSWATAMKR T TSDYHOOFRYKLODFSDOLSDY SEKF

TAESKRLIDLSIONYHTFLI¥ITELLKKLOSTTV--MNPYMELAPGELT I TL-———-——~
VGESTRLIDLSIONYHVELRY ITELLRKLOVAT ANNVSFY IKLAQGEIMITF - ———-——-
INVEKMLIDLTVERY STFMEY TFELLEWFEQATADS IKFYIAVREGELRIDVEFLWEYIN
VRESTRLIDLSIONYHMFLRY TAELLEKLOVATANNVSPYLRFRQGELIITF ———-———-
ITESKRLIDLSTOTYHMFLRY ITELLKELOSATVNNMIPSIKVSPGEFTITF - ————-
IRESKRWIDLSIENYHTFLRY ITELLERLOSTTV--MNPFMEFAPGELTI T L-———-——-

OMPOKSEEALRNEVELTRALIQOGVEQETREREEMOAFIDEQTATEQLSFQOIVENIQKR
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Figure 3.3. Multiple Sequence Alignment of the IDOL protein. Multiple
Sequence Alignment of IDOL amino acid sequence from 6 species, namely:

Human, House Mouse, Chicken, Rat, Cattle, Rat and Pacific Walrus.
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C31Y(Controls)
oV GIIEVDYFGLOFTGSHGESLWLNLEN

GITEVDYFGLOFTESEGESLWLNLEN
GIIEVDYFGLOFTIGSKGENLWLNLEN
GIIEVDYFGLOFTGSKGESLWLNLEN
GITEVDYFGLOFTIGSEGESLWLNLEN

CVIRFDAVILMEVEVERKRANGE
VIRFDAVIMEVEVERAERNGE
CVIRFDAVVMEVEVERKRNGE

b

B SR
5

v

=
3

VIRFDAVIMEVEVELERNGE
MO VIRPDAVIMEVEVERKRANGE
RISOOMDGLAPYRLKLEVEF FVEPHLILOEQTRHIFFLHTKELALLAGHLL.CSPEQRVELS
BRISOOMDGLAFYRLELEVEFFVEPFHLILOEQTRHIFFLATKESLLAGHLOCSFEQRVELS
RISOOMDGLAFYRFKLEVEFEFVEPHLILOEQTRHMFFLETKEDLLAGNLOCSSEARTETS
————— MDGLAPYRLELEVEFFVEPFHLILOEOTEAIFFLATKEALLAGHL.RCSFEQAVELS
RISOOMDGELAPYRLKLEVEFFVEPHLILOEQTRHIFFLETKE SLLAGHLOCSPEQRVELS

RISOOMDGLAPYRLKLEVEF FVEPHLILOEQTRHIFFLHTKETLLAGHL.OCSPEQRVELS

AL LA TKFGD YO T AKYNYEELCAKE LS SATLNS IVAKHEELEGT SORSAEYOWVLOIVS
ALLAOTKFGDY NN T AQY SYEDLCEKELSSSTLNS IVAKHKELEGISOASAEYOWLOIVS
AL AOMKF DY O T AKYNYEELCAKELTTTILESTTAKHEELEGLSQRSAEYOILOIVT
AL LA TKFGD YO T AKY SYEELCAKELSSATLNS IVAKHKELEGT SORASAEYOVLOIVS
ALLAOTKFGDYNON T ALY SYEDLCERELSSSTLNS TVEEKHEELEGI SORASAEYOWLOTIVS
AL LA TKFGD YO T AKYNYEELCAKE LS SATLNS IVAKHEELEGT SORSSEYOWVLOIVS

AMENYGIEWHSVEDSEGOKLLIGVGFEGISICEKDDFSEFINEIAY FVVOMATOSGENVY LT
AMENYGIEWHAVEDSEGOKLLIGVGFEGISICKEDFSPINEIAY FVVOMATOSGENVY LT
TLENYGVEWHSVEDSEGOKLLIGVGFEGISICKDDFSPINEIAY PVVOMATOSGENVY LT
AMENYGIEWHSVEDSEGOKLLIGVGFEGISICEKDDFSEFINEIAY FVVOMATOSGEITVY LT
AMENYGIEWHAVEDSEGOKLLIGVGPFEGISICEKEDFSPINEIAY FVVOMATOSGENVY LT
AMENYGIEWHSVEDSEGOKLLIGVGFEGISICEKDDFCEFINEIAY FVVOMATOSGEITVY LT

VIKESGNSIVLLFEMISTRAASGLYRATTETHAFYRCDTVT SAVHMMOY SEDLEGHLAST.F
VIKESGHNSIVLLFEMISTEAASGLYRATTETHAFYRCDTVI SAVMMOY SEDLKGHLASTE
VIKESGHNSVVLLFEMISTRAASGLYRATTETHAFYRCDT VI SAVMMOY SROLEGHLAST.F
VIKESGHNSIVLLFEMISTEAASGLYRATITETHAFYRCDTVI SAVHMMOY SEDLKGHLASLE
VIKESGHNSIVLLFEMISTEAASGLYRATTETHAFYRCDTVI SAVMMOY SEDLKGHLASTE
VIKESGNSVVLLFEMISTRAARSGLYRATTETHAFYRCDTVT SAVMMOY SEDLEGHLAST.F
V339I(Both)
LNENINLGEEYWVFDIKRT SKEVYDHARRALYNAGYVVDUVERNNOSPSHSPLESSESSMNC
LNENINLGEKEYVFDIKRET SKEVYDHRARRALYNAGVVDIVERSDOSPESSPLESSDSSMSC
LNENIHNLGEEYVFDIKRET SKEEVYDHARRATLYNAGTVDIVERSDOTFESSPLESSESSMNC
INENTHNLGKEYWVFDIKRT SKEAYDHARRAT.YNAGVVDYLIPRSDESPEFNSPLESSESSTSC
LNENINLGEEYWVFDIKET SKEVYDHARRALYNAGYVVDLVEENDOSPESSPLESSDSSMSC
LNENINLGKEYVFDIKRT SKEVYDHARRALYNAGVVDIVIRSEHS PPNS PLESSES SMNC
Ra72W(Cases

S5OEGLSCOOTRVLO {LCMVCOEEEINSTFCPCGHIVCCESCAROLOSCEV
S50RGLECOOTRNLO LCMACOEEEINSTFCPCGHTVCCESCAROT.OSCEV
DHOERGLISCO " MLCMVCOQEEEINST FCPCGHT VO CERCARDT.OSCEV
SSORGLECOY 2 LCVLCOQEGEINSAFCPCGHTVCCEGCAROTLOSCEV
S50RGLECOOTRVLO {LCMVCOEEEITNSTFRCPCGHTVCCESCAROTLOSCEV
TSORGLICO 2 {LCMVCOEEEINSAFCPCGHTVCCERCATOLOSCEV

CERSEVEHVOHVYLEFTHISLLNLITVI
CERSEVEHVOHVYLEFTHTSLLNLITVI
CRSEVEHVOHVYLEFTHTSLLNLTVI
CESEVDHICQHVYLEFTHISLLNLITVI
CRSEVEHVOHVYLETHT SLLNLTVI
CERSEVEHVOHVYLEFTHISLLNLITVI
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Chapter 4: Results Il — Resolving genetic etiology of hypercholesterolemia in

Mutation Negative Familial Hypercholesterolemia patients

4.1 Study subjects

Individuals with Familial Hypercholesterolemia have abnormally elevated
cholesterol levels. | performed a case control study in which 44 Familial
Hypercholesterolemia Mutation Negative (FH/M-ve) patients were cases and 44 Familial
Hypercholesterolemia Mutation Positive (FH/M+ve) patients were controls. The cases
and controls were matched for age and sex. | hypothesized that FH/M-ve patients have a
significantly greater accumulation of LDL-C raising SNPs, as assessed by the genetic risk
score, than FH/M+ve patients. This hypothesis was first tested in a British study (48).
However, my study was the first to test this hypothesis in a Canadian population and also
served as an independent replication study.

| also performed an independent study where all the coding regions of APOE
were in 95 APOE FH/M-ve patients. For the FH/M-ve resequencing study, all 44 of the
FH/M-ve patients from the FH case control study were included in the FH/M-ve APOE
resequencing study. APOE was sequenced to identify any potential FH-causing mutations
as a recent collaborative study has showed an APOE variant to FH-causing (data not yet

published).
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4.1.1 Patient demographics of Mutation negative Familial Hypercholesterolemia
patients and Mutation positive Familial Hypercholesterolemia patients

In Tables 4.1 and 4.2, the clinical attributes of patients from the FH case-control
study and APOE re-sequencing study are given, respectively. Paired t-tests were
performed to compare clinical characteristics between cases and controls; paired t-test
was used because the cases and controls were matched. Paired t-tests were conducted
using SAS Enterprise guide version 4.3 software, with a nominal level of significance of
P <0.05.
4.2 LDL-C genetic risk score

12 of the 37 LDL-C raising SNPs identified by GLGC were genotyped in 44
FH/M-ve cases and 44 FH/M+ve controls. For each FH patient, the LDL-C genetic risk
score was calculated as follows: The LDL score was the sum of the product of the risk
allele and beta coefficient (or standardized regression coefficient). The beta coefficient
essentially represents the standardized regression coefficient for the risk allele. The beta
coefficient is representative of the effect size (i.e. estimate of how much the risk allele is
raising LDL-C). Table 4.3 shows the beta coefficients from GLGC (43) recalculated to
mmol/L and the beta coefficients for APOE (100). Table 4.3 shows the standardized
regression coefficient for all the risk alleles used to calculate the LDL-C genetic risk
score (48).

For example if an FH patient had two copies of the rs2479409 risk allele
(PCSK?9), one copy of the rs629301 risk allele (CELSR2) and g4¢4, the LDL-C genetic

risk score would be calculated as follows:

(0.052*2)+(0.15*1)+ 0.2= 0.45
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4.2.1 List of LDL-C genetic risk score in Mutation Negative Familial
Hypercholesterolemia patients and Mutation Positive Familial

Hypercholesterolemia patients

The GLGC weighted LDL-C genetic risk scores for the 44 FH cases and their
matched controls are all given in Table 4.4. The information in Table 4.4 was obtained
from our UK collaborators. All the 88 FH patients were genotyped for the 12 SNPs and
the LDL-C genetic risk score was calculated for each patient by our UK collaborators
(Professor Steve Humphries, British Heart Foundation Laboratories, Institute for
Cardiovascular Science, University College London, United Kingdom).

Table 4.2 gives partial information on patient demographics for APOE
resequencing. All the FH/M-ve patients were collected over the years in the Hegele lab;
some of the patients were from other sources. So, information clinical information on all
95 patients could not be obtained, however, | found clinical information on 59 of the 95

patients (62% of patients) (Table 4.2)

4.3 Test for accumulation of LDL-C SNPs

Normality tests showed that the LDL-C genetic risk scores for FH/M-ve cases and
FH/M+ve controls were not normally distributed; they were skewed (normality test
results are shown in Table 5 in the Appendix). Because cases and controls were paired,
the LDL-C genetic risk scores were also paired. Therefore, the Wilcoxon Signed-Rank
test was used to statistically determine whether the mean LDL- C genetic risk score was

higher in FH/M-ve cases than in FH/M+ve controls, because it is the most appropriate
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test to use to compare the mean of paired data that are not normally distributed. Table
4.5 shows results from Wilcoxon's signed rank test. Even though the mean LDL-C
genetic risk score was higher in FH/M-ve cases than in FH/M+ve controls, this
difference in mean LDL-C genetic risk score was not statistically significant (P=0.43)
(Table 4.5). Table 4.6 shows all the descriptive statistics for the mean LDL-C genetic

risk scores in FH/M-ve cases and FH/M+ve controls

4.4 Comparison of LDL-C genetic risk scores to other ethnically different cohorts

The LDL-C genetic risk scores from my Canadian case control cohort was then
compared with two other different populations, namely, British and Belgian
subpopulations (48). Information on the British and Belgium cohort is from Talmud et al
(48). Table 4.7 shows the mean LDL-C genetic risk scores, along with the p-values for
the mean differences between cases and controls in the three different populations.
Table 4.7 also shows the sample size of the case-control cohort in the three populations.
In all three cohorts, the mean LDL-C genetic risk score was greater in FH/M-ve cases
than in FH/M+ve controls.

The mean LDL-C genetic risk scores of the cases and controls of the Canadian
cohort are unequivocally comparable to the mean LDL-C genetic risk scores of cases
and controls of the UK and Belgium cohort. Unlike the Canadian cohort, the sample size
of the UK and Belgian cohorts is considerably larger (Table 4.7) and the differences in
mean LDL-C genetic risk scores between FH/M-ve cases and FH/M+ve controls were
significant in both the UK and Belgian cohort (Table 4.7). Post-hoc power calculations

showed that the British and Belgium cohorts were sufficiently powered and the Canadian
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cohort was underpowered. Figure 4.1 shows how statistical power is a function of

sample size.

4.5 APOE resequencing in FH/M-ve patients

Another recent collaborative study involving the Hegele lab and the Genest lab at
McGill University identified an amino acid deletion mutation in APOE that segregated
with the hypercholesterolemia phenotype in a family with Familial Hypercholesterolemia
(FH). This mutation was designated as APOE Leul67del and was considered to be FH
causing as it co-segregated with the FH phenotype in LDLR mutation negative
individuals across multiple generations in the affected family. Because this example
showed that mutations in APOE could cause an FH-like phenotype, the three coding
regions of APOE were sequenced in 95 Canadian FH/M-ve patients to identify any
possible FH-causing mutations. The APOE Leu 167 del was not found in this Canadian
FH/M-ve cohort. Table 4.8 shows all the variants that were found by Sanger sequencing.
Intronic, silent and missense variants were found. | performed in silico prediction
analysis of the rare missense variants found in the Canadian FH/M-ve cohort: these
were the APOE : p.L46P and p.A91 T variants. These were absent from other databases.
Only the p.L46P variant was predicted to be deleterious by PolyPhen-2 (Table 4.9).

Therefore, in Canadian FH patients who are negative for mutations in genes such
as LDLR, APOB and PCSKO9, there appears to be other genetic factors involved,
including: 1) a trend towards a higher polygenic LDL-C genetic risk score; and 2)

evidence for rare variants in APOE. The relatively small sample size here was consistent
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with a pilot project to test these hypotheses; larger sample sizes will be needed to

determine whether these findings can attain statistical significance.
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Table 4.1 Baseline characteristics (mean+SEM or percentage) of FH patients with and
without a mutation in the FH case-control project

Population FH M+ FH M- p-value
n 44 44 N/A
Female,% 56.8 56.8 N/A
Age, years 47.5+1.8 48.3+1.8 0.03
BMI, kg/m? 29.1+1.0 28.8+1.0 0.67
TC, mmol/L 9.35+0.37 7.40+0.32 <0.0001
LDL-C, mmol/L 7.36%0.3 5.24+0.3 <0.0001
HDL-C, mmol/L 1.25+0.05 1.24+0.05 0.93
TG, mmol/L 1.73+0.15 2.05+0.14 0.1
Tendon xanthoma present, % 20.5 2.27 0.0097

Note: BMI, Body Mass Index; TC, Total Cholesterol; LDL-C, Low Density
Lipoprotein Cholesterol; HDL-C; High Density Lipoprotein Cholesterol; TG,
Triglyceride. Mean values of clinical attributes are represented as mean + standard
deviation. LDL-C level is not accurately calculated using the Friedewald equation for
HTG patients when plasma TG concentration exceeds 4.5 mmol/L
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Table 4.2 Baseline characteristics (mean+SEM and percentages) of 59 of the 95 FH
patients without a mutation for APOE resequencing project.

Characteristic value
n 59

Female,% 50.8
Age, years 44.2 +2.01
BMI, kg/m? 27.3+0.96
TC, mmol/L 7.70+£0.52
LDL-C, mmol/L 5.04+0.3
HDL-C, mmol/L 1.27+0.26
TG, mmol/L 1.93+0.12

Note: BMI, Body Mass Index; TC, Total Cholesterol; LDL-C, Low Density
Lipoprotein Cholesterol; HDL-C; High Density Lipoprotein Cholesterol; TG,
Triglyceride. Mean values of clinical attributes are represented as mean * standard
deviation. LDL-C level is not accurately calculated using the Friedewald equation for
HTG patients when plasma TG concentration exceeds 4.5 mmol/L
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Table 4.3. The standardized regression coefficient of the risk alleles for various SNPs (43).

CHR SNP Gene Risk allele Standardized regression
coefficient
1 rs2479409 PCSK9 G 0.052
1 rs629301 CELSR?2 T 0.15
2 rs1367117 APOB A 0.1
2 rs4299376 ABCGS G 0.071
6 rs1564348 SLC22A1 T 0.014
6 rs1800562 HFE G 0.057
6 rs3757354 IDOL C 0.037
11 rs11220462 ST3GAL4 A 0.05
14 rs8017377 KIAA1305 A 0.029
19 rs6511720 LDL-R G 0.18
19 rs429358 APOEy
19 rs7412 APOEy
19 APOE €22 0.9
19 APOE €263 0.4
19 APOE €24 0.2
19 APOE €3¢€3 0
19 APOE €3e4 0.1
19 APOE gded 0.2

¥ APOE weights (100)

The standardized regression coefficients were representative of effect size of risk alleles.
The LDL-C genetic risk score was calculated for each FH patient by calculating the sum
of the products of standardized regression coefficients and the count of risk alleles.



Table 4.4 GLGC Weighted LDL-C genetic risk scores for all the FH patients in

the FH case-control study

134

Sample.ID of
Sample.ID of 44 GLGC Weighted 44 FH/IM+ GLGC Weighted
FH/M- patients ~ LDL-C genetic risk patients LDL-C genetic risk
score score

726 -0.045590899 90 -0.00188777
9035 0.307008016 573 0.420015515
4242 0.385621928 1123 0.5805534

366 0.640031031 2457 0.603568657
9075 0.72723041 4177 0.648461339
250 0.773467804 796 0.655340056
8784 0.783811739 2062 0.674993534
1746 0.814067752 9979 0.730799069
367 0.871476596 1999 0.747349366
3895 0.885880527 3420 0.840186191
8555 0.892086888 3606 0.846909748
8836 0.892940263 1905 0.865451254
9884 0.923454874 175 0.873028187
8983 0.926299456 787 0.873648823
3477 0.928032066 8832 0.877424358
6455 0.972071372 55 0.877941556
5965 0.972329971 846 0.907680372
683 1.006206361 8783 0.910886992
8728 1.021903283 877 0.9256271

8831 1.02560124 8712 0.929919834
8534 1.039824152 2453 0.933540212
3939 1.046547711 363 0.952935091
4789 1.057667442 393 0.966382207
1095 1.076027928 5614 0.971476596
1339 1.093612619 1844 0.976208947
169 1.098448409 3635 0.979570725
3646 1.107240755 5791 0.980087923
9885 1.124644426 11 0.987070079
8797 1.127747607 6310 1.024566847
1460 1.133436772 124 1.034134988
8954 1.134652185 825 1.038712179
1813 1.137574346 8557 1.065606413



8704
3457
1805
8625
8852

5732
521
6302
8691
8982
1761
628

1.138091543
1.147323506
1.150426687
1.166976983
1.228782001

1.231186966
1.235505559
1.242229117
1.292655804

NA

NA

NA

8967
140
154

5665
592

8504
554
495

4625
810
650
560

1.072071372
1.08215671
1.089475044
1.105766744
1.127928626

1.179131108
1.210343935
1.226014998
1.227825187
1.28541505
NA
NA
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Table 4.5. Mean (xSD) for LDL-C genetic risk score for Canadian case-control
cohort

Statistic FH/M-ve FH/M+ve P-value
Mean 0.96+0.27 0.92+0.24 0.43




Table 4.6. Descriptive statistics for LDL-C genetic risk score for the
Canadian case-control cohort

Statistic FH/M-ve FH/M+ve
Mean 0.96 0.92
Standard Deviation 0.3 0.2
Median 1.03 0.95

Standard Error 0.044 0.038
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Table 4.7. Mean weighted LDL-C genetic risk score (xSD) for UK, Belgium and
Canadian Case-Control Cohort
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Cohort FH/M- FH/M+ n P-value
UK 1.0+0.2 0.95+0.2 640 0.0014
Belgium 0.99+0.19 0.92+0.2 736 4.0x10-6

Canada 0.96+0.27 0.92+0.23 88 0.45
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Figure 4.1 Representation of level power as a function of sample size. As
sample size increases, the power to detect statistical significance increases.
Post hoc power calculations showed that British cohort sufficiently powered,
while Canadian cohort was underpowered.



140

Table 4.8. List of all variants found in 95 Mutation Negative Familial
Hypercholesterolemia patients that were sequenced for APOE

Variant SNP identifier MAF(%) Minor allele carriers
.43 +64C>T rs.143063029 0.53 1
p.S40S - 0.53 1
p.L46P rs769452 0.53 1
p.A91T - 0.53 1
p.A217A rs. 72654468 0.53 1
c.43+78G>A rs.769449 13.7 25
p.C130R rs.429358 16.8 32

p.R176C rs.7412 3.16 5
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Table 4.9 Rare missense variants found in APOE in 95 FH/M-ve patients
that were resequenced

Variant SIFT score Polyphen-2 score
SIFT prediction PolyPhen-2 prediction

p.L46P Tolerated 0.11 Possibly damaging 0.949
p.A91T Tolerated 0.36 Benign 0.092
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Chapter 5: Results I11—Association of DIET1 SNPs with Hypertriglyceridemia

5.1 Study subjects

Study subjects were individuals clinically diagnosed with one of the 4
Fredrickson polygenic hypertriglyceridemia (HTG) phenotypes, namely, Type 2B (MIM
144250), Type 3 (107741), Type 4 (144600) or Type 5 (144650). The majority of control
subjects were healthy normolipidemic individuals (96%) and the remaining controls were
FH patients without HTG (4%). FH patients were included as controls to partially correct
for the increased total cholesterol phenotype that is seen in some HTG patients. Table
5.1 shows the clinical attributes of the case-control cohort for the DIET1 analyses. There
was a total of 463 HTG cases.

Out of all these 463 hypertriglyceridemia patients, all Familial Combined
Hyperlipidemia (FCH) (Frederickson Type 2B) patients (n=159) and all Familial
Hypertriglyceridemia (FHTG) (Fredrickson Type 4) patients (n=128) were used for the
independent case-control study that tested for association of the PSMD9 gene region with
hypercholesterolemia. Testing this association aimed at identifying any common variants
associated with the cholesterol component of FCH because of a recent publication in

which the PSMD?9 locus had been associated with hypercholesterolemia (65)

5.2 Genotyping Results
HTG cases and controls had been genotyped for SNPs across the genome using

Affymetrix version 6.0 microarrays, as stated in section 2.5 of the Materials and Methods
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section. The specific subset of these genotypes within the DIET1 region was used for the
association analysis with HTG. The DIET1 region in mice corresponds to the genomic
coordinates chr 10:19,377,700 to 20,063,500 in the hg19 human genome build. This
corresponds to chr 10: 19,417,706 to 20,103,506 genomic coordinates in the hgl8 human
genome build. The hgl8 version of genome build in the human genome was used
throughout D/ET] analyses because the GWAS data (70) were based on hgl8. 1
hypothesized that the DIETI region is associated with triglyceride levels in humans,
because the mouse DIET gene was associated with triglyceride levels in mice. If
correct, the frequency of SNPs in DIET] region should differ between HTG cases and
normotriglyceridemic controls.

The DIETI region corresponds to the 19,417,706 to 20,103,506 hgl18 human
genome coordinates. Since [ was only interested in the DIET region, statistical analyses
was only performed on SNPs in the DIET region from the GWAS data. Logistic
regression was performed to test for association of SNPS in DIET] region and
triglyceride (TG) level; logistic regression essentially tests whether any SNP allele or
genotype has a different frequency in cases relative to controls.

Because of linkage disequilibrium, SNPs outside the 19,417,706 to 20,103,506
DIET]I regions were selected; SNPs from hgl18 19,317,706 to 24,003,506 human genomic
coordinates on chromosome 10 were selected for logistic regression. In total, 4,808 SNPs
were present within this expanded range. Logistic regression was adjusted for the
following covariates: sex, body mass index (BMI), diabetes status and population

substructure.
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5.3 List of most highly associated SNPs in DIET1 locus with HTG

Since there were 4,808 SNPs genotyped in the 19,317,706 to 24,003,506 hg18
DIETI region, the Bonferroni corrected p-value, below which an association is
considered statistically significant, is (0.05/4,808) 0.00001. Bonferroni correction is an
over-conservative form of adjusting p-values for multiple testing, where each association
analysis of each SNP is essentially a ‘test’. Table 5.2 shows the top 5 five SNPs most
highly associated with TG levels, in the DIET] region.

The most highly associated SNP with TG (i.e. smallest p-value) was rs2499065
(P=0.0008). Since the DIETI region in mice has currently not been annotated in the
human genome, not much information on the rs2499065 variant presently exists; so it is
not known whether the variant is intronic, silent, nonsense or amino acid changing.

Even though the p-value of the rs2499065 variant does not reach the overly-
conservative p-value of 0.00001, it is still worth reporting the variant (as well the
remaining top 4) because a substantial proportion of the 4,808 SNPs are in Linkage
Disequilibrium (LD). So, in reality the SNPs that are actually associated due to some
biological relationship with TG (and not due to LD) are likely much fewer than 4,808,
although the precise number cannot be estimated. So this only makes the Bonferroni
corrected p-value over-conservative as there are in actuality fewer ‘tests’.

For the adjusted logistic regression, the rs2499065 variant had an OR of 1.4 with
a 95% confidence interval that did not include 1.0 (1.1-1.6) (Table 5.2). The remaining
SNPs, from the adjusted logistic regression, also had ORs above 1.0 with 95%

Confidence Interval (CI) that did not include 1.0 (Table 5.2). Figure 5.1 summarizes the
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findings from the DIET] analyses. The data suggest that there might indeed be an
association between SNPs in the DIET! region and TG; follow up experiments would be

very reasonable for a future graduate student project.

5.4 PSMD9 and cholesterol

Testing whether PSMD9 is associated with hypercholesterolemia in FCH was
conducted in an identical manner for D/IET] analyses. The cases were FCH patients and
controls were FHTG patients; so the same data from Johansen et al (70) were used. The
hg19 human genomic coordinates for PSMD9 is on chromosome 12: 122,326,646~
122,355,771, the hgl8 human genomic coordinates of PSMD?9 is chromosome 12:
120,811,029 -120,840,154 and the hgl8 human genomic coordinates of PSMD9 were
used because the GWAS data from Johansen ef al (70) were obtained when hgl18 had
been the current version of the human genome build.

Since we were only interested in the PSMD?9 region, statistical analyses were
only performed on SNPs in the PSMD?9 region from the GWAS data. Logistic regression
was performed to test for association of SNPS in PSMD9 region and
hypercholesterolemia; logistic regression essentially tests whether any SNP allele or
genotype has a different frequency in cases relative to controls.

Because of LD, SNPs outside the 120,811,029 -120,840,154 region were selected;
SNPs from the hg18 chr 12: 120,711,029 -120,940,154 human genomic coordinates were
selected for logistic regression. In total, 134 SNPs were present within the chromosome

12 120,711,029 -120,940,154 region in hgl8. Logistic regression was adjusted for the
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following covariates: sex, body mass index (BMI), diabetes status and population
substructure.

The most highly associated SNP from this region with FCH was rs1795964
(P=0.08). The Bonferroni-corrected p-value is (0.05/134) 0.0004. However, it is still
worth reporting the variant as a good proportion of the SNPs are in Linkage
Disequilibrium. So the SNPs that are actually associated due to some relationship with
hypercholesterolemia (and not due to LD) are fewer than 134. So this only makes the
Bonferroni corrected p-value over-conservative as there are in actuality fewer ‘tests’.
Nevertheless, it is unlikely that rs1795964 is playing a role in dyslipidemia susceptibility
because the 95% Confidence interval of its OR includes 1.0 (Table 5.3)

According to NCBI, the rs1795964 SNP is a SNP that is found in the intronic
region of a gene named SET domain containing 1B (SETD1B); SETD1B gene product is
a component of a histone methyltransferase complex (102), so an obvious mechanistic

connection to dyslipidemia is unclear. Figure 5.2 summaries the PSMD9 findings.

5.5 GLGC-identified LDL-C raising SNPs

The Global Lipids Genetic Consortium (GLGC) identified 37 SNPs that affects
LDL-C levels (43). The list of these 37 SNPs is shown in Table 5.4; (43). The SNPs
listed in the table are the SNPs most highly associated with LDL-C. For instance
rs2131925, which is in the ANGPTL3 gene, is a SNP primarily associated with TG levels
but is also associated with other lipid variables. So, the "best SNP" is taken to be the SNP
most strongly associated with a particular lipid, in cases where there are multiple

associations. For instance, the "best SNP" in the ANGPTL3 example is rs3850634
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because it is most strongly associated with LDL-C. Because Table 5.4 mainly shows

SNPs that affect specifically LDL-C levels, it is slightly modified from Table 1 in (43).

The same GWAS data for FCH cases and HTG controls from (70) was used for
two analyses: (i) to test for association between each of the 37 LDL-C SNPs and LDL-C
levels in FCH cases and FHTG controls; and (ii) to determine whether more of risk
alleles of the 37 SNPs accumulate in cases relative to controls. | tested for association of
each of the 37 SNPs to see if any of these SNPs that affect LDL-C levels in the
population also affects LDL-C levels in FCH cases. | performed the risk score analyses to
see if a larger number of risk alleles from the 37 LDL-C associated SNPs accumulate in

cases relative to controls.

5.5.1 Test for association of the 37 SNPs

Logistic regression was performed as in Section 5.4. The 37 SNPs shown in Table
5.4 were tested in 159 FCH cases and 128 HTG controls. The Bonferroni corrected p-
value was (0.05/37) 0.001. Table 5.5 shows the results from logistic regression. The two
SNPs with the smallest (i.e. most significant) p-values were rs629301 (P=0.04) and
rs3757354 (P=0.05). The SNP with the smallest p-value but highest OR was rs1367117

(OR=1.34) (P=0.12).

5.5.2 Test for accumulation of all SNPs for LDL-C genetic risk score
I hypothesized that FCH cases would have a greater accumulation of LDL-C
raising alleles relative to the HTG controls. Therefore, all 37 LDL-C raising SNPs were

tested to see if FCH patients have a more accumulation of LDL-C associated risk alleles
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and thus a higher genetic risk score. The unweighted LDL-C genetic risk score was used
for comparison. Since the unweighted LDL-C genetic risk score was not normally
distributed, the Wilcoxon Rank Sum test was used. The mean LDL-C genetic risk score
was greater in FCH cases than in HTG controls at a rate almost approaching statistical

significance (P=0.054).

Summary
The results of the association analysis of DIET with TG, PSMD9 and cholesterol

and LDL-C genetic risk score (GRS) and hypercholesterolemia show suggestive positive
trends that are close to, or of borderline statistical significance. The relatively small
sample size here was consistent with a pilot project to test these hypotheses; larger
sample sizes will be needed to determine whether these trends can attain statistical

significance.
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Table 5.1. Baseline characteristics (mean+SEM) of 463 HTG cases and 1197controls.

Clinical attribute HTG cases Controls
n 463 1197
Female,% 30.7 40.4
Age, years 50.9+13.0 47.8+11.1
BMI, kg/m? 29.9+4.9 26.4+4.6
TC, mmol/L 8.2+3.9 5.3+1.3
LDL-C, mmol/L - 3.4+1.2
HDL-C, mmol/L 0.9+0.3 1.4+0.4
TG, mmol/L 14.3+1.8 1.1+£0.7

Note: BMI, Body Mass Index; TC, Total Cholesterol; LDL-C, Low Density
Lipoprotein Cholesterol; HDL-C; High Density Lipoprotein Cholesterol; TG,
Triglyceride. Mean values of clinical attributes are represented as mean + standard
deviation. LDL-C level is not accurately calculated using the Friedewald equation
for HTG patients when plasma TG concentration exceeds 4.5 mmol/L
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Figure 5.1. Representation of the top 5 SNPs in the 10p12.31
chromosome region using the UCSC genome browser template. (a)
Because UCSC has not released its Linkage disequilibrium (LD) map
for the hgl9 genome build, the hgl8 genome build was used to show
the LD pattern of SNPs in the region corresponding to the DIETI gene
in humans in the European population. LD map is a representation of
SNPs that are in LD with each other across the genome. Since SNPs are
in LD with SPNs physically close, LD occurs in LD ‘blocks’. The
“CEPH (CEU) from phased genotypes” refers to the LD pattern for the
European population. The 19,417,706-20,103,506 hgl8 coordinates
correspond to the hgl9 19,377,700-20,063,500 coordinates. P-values
from logistic regression adjusted for sex, BMI, diabetes status and
population substructure are in the parentheses next to SNP ID. For the
LD blocks in the European population, the intensity of the colour is
proportional to the LD measure; the red colour represents a stronger LD
measure than the less intense lavender purple colour. (b) is a zoomed in
image of (a) that better shows which LD block the top SNPs are in. The

green dotted lines show which LD block the top SNPs belong to.
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Figure 5.2. Representation of the rs1795964 variant in the
12q24 chromosomal region using the UCSC genome browser
template. Because UCSC has not yet released its linkage
disequilibrium (LD) map for the hgl9 genome build, the hgl8
genome build was used to show the LD pattern of rs1795964 non-
coding SNP in the European population. The “CEPH (CEU) from
phased genotypes” refers to the LD pattern for the European
population. For the LD blocks in the European population, the
intensity of the colour is proportional to the LD measure; the red
colour represents stronger LD measure than the less intense
lavender purple colour. The blue dotted line shows which LD

block the rs1795964 belongs to.
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Table 5.4 List of 37 GLGC identified SNPs that affect LDL-C levels in the general
population

SNP Effect Size  Risk allele Nearby genes Chromosome

rs12027135 -1.1 T LDLRAP1 1
rs2479409 2.01 G PCSK9 1
rs3850634 -1.59 T ANGPTL3 1

rs629301 -5.65 T SORT1 1
rs2807834 -1.09 G MOSC1 1

rs514230 -1.13 T IRF2BP2 1
rs1367117 4.05 A APOB 2
rs4299376 2.75 G ABCG5/8 2

rs12916 2.45 C HMGCR 5
rs6882076 -1.67 C TIMD4 5
rs3757354 -1.43 C IDOL 6
rs1800562 -2.22 G HFE 6
rs3177928 1.83 A HLA 6
rs11153594 -0.89 C FRK 6
rs1564348 1.95 C LPA 6
rs12670798 1.26 C DNAH11 7

rs217386 -1.17 G NPC1L1 7
rs2126259 -2.22 C PPP1R3B 8
rs1030431 0.95 A CYP7A1 8
rs2954022 -1.84 C TRIB1 8
rs11136341 14 G PLEC1 8

rs649129 2.05 T ABO 9
rs1129555 1.08 A GPAM 10

rs174583 -1.71 C FADS1-2-3 11

rs964184 2.85 G APOA1-C3-A4-A5 11
rs11220462 1.95 A ST3GAL4 11
rs11065987 -0.97 A BRAP 12
rs1169288 1.42 C HNF1 12
rs2332328 1.17 T NYNRIN 14

rs247616 -1.45 C CETP 16
rs2000999 2 A HPR 16
rs7225700 -0.87 C OSBPL7 17
rs6511720 -6.99 G LDLR 19
rs10401969 -3.11 T CILP2 19
rs4420638 7.14 G APOE-C1-C2 20
rs2902941 -0.98 A MAFB 20



158

rs909802 141 T TOP1 20
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Table 5.5 Results from testing for association, using logistic regression, of the 37
GLGC-identified LDL-C SNPS

SNP Gene OR(95% CI) p-value
rs629301 SORT1 0.63 (0.41-0.98) 0.04
rs3757354 IDOL 0.65 (0.42-0.99) 0.05

rs1367117 APOB 1.34 (0.90-1.90) 0.12
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Chapter 6: Discussion

Hypercholesterolemia is a classical major risk factor for cardiovascular disease
(CVD), the most common cause of mortality in North America. Therefore, having
Familial Hypercholesterolemia (FH) (Fredrickson Type 2A) or Familial Combined
Hyperlipidemia (FCH) (Fredrickson Type 2B) puts an individual at risk for CVD
development because of the hypercholesterolemia that is characteristic to both
dyslipidemias. The etiology of hypercholesterolemia can be either environmental and/ or
genetic. The underlying theme of all three projects comprising my thesis was to better
understand the genetic etiology of hypercholesterolemia, with the heaviest focus on better
understanding the genetic basis of hypercholesterolemia in FCH. In the course of this
work, | therefore investigated patients with FCH, but also those with FH and with
Familial Hypertriglyceridemia (HTG) (Fredrickson Type 4).

The overall hypothesis of my first study was that FCH could actually represent
the simultaneous co-existence of FH and FHTG. My second study focused on FH and in
particular non-classical genes that could be linked in some cases, such as APOE and also
the polygenic LDL-C genetic risk score (comprised of SNPs). My third study focused on
non-classical genetic determinants of HTG and hypercholesterolemia using GWAS data.
So, the work done independently on FH and HTG, in essence converge towards further
understanding the two phenotypes that are characteristic of FCH, namely
hypercholesterolemia and hypertriglyceridemia.

Knowing the genetic basis of diseases is a major upstream step in understanding

the biochemistry underlying the disease, which can consequently lead to implementation
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of better diagnoses and better treatment. For instance, the Nobel-Prize winning discovery
of the genetic basis of FH has led to the understanding of the disease at the biochemical
level (39) and has also led to the development and implementation of LDL-C lowering
drugs(18). Better diagnosis leads to better prognosis, as shown by Kaplan-Meier survival
curves that showed better survival rate for FH patients on statin treatment (63).

The main goal of my first study was to better understand the genetic basis of
hypercholesterolemia in FCH, which is the most common genetic dyslipidemia in the
North American population. FCH is also the principal dyslipidemia in 20% of
individuals with coronary heart disease (CHD) (103). The genetic etiology of HTG is
better understood than the hypercholesterolemia component in FCH, due in large part of
previous work from the Hegele lab. Previous work has explained 42% of genetic
variation of HTG for the four Fredrickson polygenic HTG-associated phenotypes
(Fredrickson Type 2B, Type Ill, Type 4 and Type V) (71). Low plasma levels of high
density lipoprotein cholesterol (HDL-C), which are strongly associated with CVD risk, is
also often characteristic of FCH (104). None of my projects focused on low HDL-C,
perhaps fortunately since the direct role of HDL-C in causing CVD and CHD is recently
facing questions (20).

My second study, which was composed of two sub-projects, was aimed at
resolving the genetic etiology of hypercholesterolemia in FH patients, in whom the
hyperlipidemia was not due to the any of the four known FH causing genes. The first
sub-project of my second study tested whether the LDL-C genetic risk score was higher
in Mutation Negative Familial Hypercholesterolemia (FH/M-ve) patients relative to

Mutation Positive Familial Hypercholesterolemia (FH/M+ve) patients; in other words,
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the first sub-project tested whether the genetic etiology of FH could be polygenic. The
second sub-project of the second study aimed at looking for other rare monogenic causes
of FH among patients in whom FH was not due to the any of the four known FH causing
genes. Towards this goal, APOE was sequenced in the second sub-project.

For the first sub-project of the second study, | hypothesized an alternate genetic
etiology for FH could be the accumulation of LDL-C raising SNPs. In the British study
from our collaborators at University College, London (48), they were the first to test this
hypothesis in a UK and Belgian cohort. So, my study was both the first to test this
hypothesis in the Canadian population and also served as a replication study of theirs. |
was also interested in the results of the second sub-project, because | reasoned that
whatever caused hypercholesterolemia in FH/M-ve patients could also be cause
hypercholesterolemia in FCH. So, my FH findings could converge to specify future
directions on further studies on FCH.

For the third study of my thesis, a Genome Wide Association Study (GWAS) in
hyperlipidemia patients and healthy controls was performed using data previously
obtained (70). This data represents a wealth of data for various follow-up genetic
analyses to test new hypotheses regarding hyperlipidemia. In particular I used this data
for all three sub-projects of my third study. Note, this data studied 1197 healthy controls
and 463 HTG cases (70). These HTG cases were patients with polygenic HTG, namely,
FCH (Fredrickson Type 2B), Familial HTG (Fredrickson Type 4), Familial
dysbetalipoproteinemia (Fredrickson Type I11) and Mixed Dyslipidemia (Fredrickson

Type V).
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The DIETL1 gene in mice (also called Dietl) has been associated with HTG. .
Synteny refers to similar genes present in similar chromosomal locations between species
and the syntenic DIET1 region has not been well-annotated in humans. Association of
the syntenic DIET1 region with HTG has not previously been evaluated. So, for the first
sub-project of the third study, | was interested in finding whether or not DIET1 plays a
significant role in HTG in humans, by searching for any highly associated SNPs in the
DIET1 region. All the polygenic HTG patients from (70) were studied as my cases and all
the healthy normolipidemic patients from (70) were my controls. As mentioned earlier,
the Hegele lab has identified a large proportion of the genetic basis of HTG; 42% of
susceptibility to HTG, encompassing Type 2B, Type I11, Type 4 and Type V Fredrickson
dyslipidemias is due to a combination of common SNPs and heterozygous rare variants.
So, I was also interested in the first sub-project of the third study to see if I could further
add to the explained proportion of the genetic basis of HTG (which is also the other
characteristic biochemical phenotype of FCH).

The second sub-project of the second study aimed at identifying whether the
genomic region harboring the PSMD?9 gene is associated with hypercholesterolemia in
FCH, given that this region has recently been associated with hypercholesterolemia (65).

For the third sub-project of the third study, the same GWAS data from FCH
patients and HTG patients was used in a case-control study, where FCH patients were
defined as cases and HTG patients were defined as controls. | hypothesized that the 37
SNPs that affect LDL-C levels in the general population would also affect LDL-C levels
in FCH, especially since the genetic architecture of FCH is increasingly appreciated as

being polygenic. Out of the total of 463 HTG cases, FCH patients (n=159) were our cases
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and HTG patients (n=128) were our controls. So, | tested for association of the 37 SNPs
with LDL-C levels in FCH. Then we tested for whether FCH patients have a higher
genetic LDL-C genetic risk score, where the LDL-C genetic risk score was calculated
using the effect sizes of the 37 GLGC identified SNPs (43).

Even though my second and third studies focused on FH and HTG, respectively,
findings from the latter two projects can lead to future directions for studying the two
phenotypes (i.e. hypercholesterolemia and hypertriglyceridemia) that are the defining

biochemical phenotypes in FCH.

6.1 Findings from resequencing of candidate genes in FCH

Before | undertook my first project, the genetic basis of hypercholesterolemia in
FCH was poorly understood in the field. The first researchers to describe and characterize
Familial Combined Hyperlipidemia (FCH) (103) described the disorder to be an
autosomal dominant disorder that was the most common dyslipidemia in humans (68).
Since FCH was proposed in the 1970's by Goldstein to be an autosomal dominant
disease, researchers in the field have believed FCH was due to a single gene. Despite
decades of heroic efforts, a single gene could not be found for most cases of FCH. Thus,
by default, FCH was then considered to be polygenic, although there was no direct
evidence for this idea until recently (69).

The hypothesis of my first project was that individuals with FCH have a greater
accumulation of heterozygous rare and potentially deleterious mutations in the three
Autosomal Dominant Hypercholesterolemia (ADH) causing genes, namely LDLR, APOB
and PCSK9. We did not focus on ARH because (i) FCH does not show an autosomal

recessive pattern and (ii) only a minute percent of the total population of FH is caused by
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recessive mutations in ARH. Since work from the Hegele lab has previously explained the
genetic etiology of hypertriglyceridemia (HTG) in FCH, | hypothesized that FCH could
be a condition where individuals have polygenic susceptibility to HTG in combination
with FH-causing mutations. My study was the first to sequence the three known ADH
causing genes in a case-control setting. My study was also the first to utilize individuals
with HTG as controls for studying genetic basis of hypercholesterolemia in FCH. Sanger
sequencing, which is a Nobel Prize winning method (105), is still the gold standard for
identifying novel and known mutations. Our study was the first to Sanger sequence
LDLR, APOB and PCSK9 genes in both FCH cases and age- and sex-matched HTG
controls.

The ratio of rare missense variants for LDLR was 7 to 4, giving rise to an OR of
1.2 with a confidence interval that included 1.0. The comparable ORs were 0.74 and 0.69
for APOB and IDOL, respectively and the 95% confidence interval included 1.0 for both
genes. No analyses could be done for PCSK9 as no variants were found. Post hoc power
calculations showed that the studies had a statistical power to detect small effects that
was well below 80%. Therefore lack of significant results in my study can be explained
by low power. Not having a definite idea of the power of my type of study is a limitation
as effect sizes (as represented through ORs) of rare variants accumulating in candidate
genes cannot be determined a priori, especially since my study was the first to perform
this type of analysis. Realistically, finding appropriate sized samples from a single centre
that would provide satisfactory statistical power is impractical, as samples of such

patients are not easy to assemble. Nevertheless it is still worthwhile attempting such
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studies, on the chance that there is a large biological effect that might be detectable with a
relatively small sample. Again, the effect size was unknown a priori in my study.

Since | did not perform any functional work on any of the variants found, a
literature search was performed on all 31 rare missense variants that were observed in the
case-control studies to determine if any of the variants had already been functionally
evaluated. | performed a literature search to date (June 1, 2013) by searching the National

Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/)

and Human Gene Mutation Database (HGMD) (http://www.hgmd.cf.ac.uk/ac/index.php).

6.1.1 Findings from literature search of all 31 missense variants found in my study
LDLR: p. T705I

Loux et al, were the first to report this variant in a French family: a proband, and
father and sister had the LDLR: p.T705I variants and were all FH patients (106). LDLR:
p.T705I is a mutation occurring in the O-linked sugar domain of LDLR (106). Despite the
fact that the LDLR: p.T705I variant tends to segregate in families(107) (106), Brussgaard
et al mentioned that the role of LDLR: p.T705I in FH has been controversial (107). So
Graham et al investigated the LDLR: p.T705I variant by screening the LDLR: p.T7051 in
207 normolipidemic controls (108). Throughout the literature, the LDLR: p.T705I variant
has been said to be in linkage disequilibrium (LD) with an intronic variant in of exon 7
(rs72658861) (109) (108). The rs72658861 variant and the LDLR: p.T705I variant were
also in LD in our FCH cases. Likewise, the LDLR: p.T705I variant could also be in LD
with an actual causative FH-causing mutation, which could explain why the p.T705I

variant has been shown to segregate in FH families (106). Graham et al concluded that


http://www.ncbi.nlm.nih.gov/
http://www.hgmd.cf.ac.uk/ac/index.php

167

the LDLR: p.T7051 does not cause FH because it was found in normolipidemic controls
at a population frequency of greater than 1% , which is above the cut-off frequency for
defining a variant to be a mutation. In 2008, Leigh et al updated the University College
London, UK database for Low Density Lipoprotein Receptor Familial
Hypercholesterolemia database and agreed that the LDLR: p.T7051 variant was
considered a non-FH causing (110). LDLR: p.T7051 was found in 2 of our
normocholesterolemic HTG controls. So, with our data and literature search on the
LDLR: p.T705I variant, the bulk of the data favour LDLR: p.T7051 being non-causative

of FH.

LDLR: p.G-2R

Amsellems et al (111) were the first to discover the LDLR G-2R variant in a male
FH patient. This patient inherited the LDLR:p.G-2R variant from his father, who did not
have FH and also inherited an LDLR: p.V502M variant (rs28942080) from his mother,
who had FH. LDLR: p.V502M was not seen in my study. The LDLR: p.VV502M was first
reported in Hobbs et al in an FH patient, but with no other information (112). Romano et
al (113) showed that the LDLR: p.V502M variant lowers LDLR activity through
functional studies. So, it is very likely that the FH male patient with the LDLR: p.G-2R,
in Amsellems et al, had FH because of the LDLR: p.VV502M variant he inherited from his
FH mother and not the LDLR: p.G-2R variant he inherited from his non-FH father.

Amsellems et al did not report any functional work for the LDLR: p.G-2R variant,
but they suggested that based on the structural and functional knowledge of LDLR gene,

it is very likely the LDLR: p.G-2R variant is disease causing (111). For instance , the -2
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position is conserved in mammals and is found in the signal peptide domain of LDLR
(111) thus making it likely to be a disease causing variant. Fouchier et al (114) were the
first to report the LDLR: p.G-2R variant in a Dutch Population. Fouchier et al simply
reported the occurrence of the variant and did not provide any information on whether the
variant segregated with FH phenotype (114). Amsellems et al reported that all the novel
mutations they found segregated with the FH phenotype and were not found in 150
chromosomes of normolipidemic individuals (i.e. 75 normolipidemic individuals) (111). |
also did not find the LDLR: p.G-2R in our normocholesterolemic controls. Nevertheless,
functional work for LDLR: p.G-2R, which is currently non-existent in the literature,
would be needed in order to confidently characterize it as an FH-causing variant. So | do

not consider LDLR: p.G-2R to be an FH-causing mutation.

LDLR: p.G314S

Hobbs et al were the first and so far only to report the LDLR: p.G314S variant in
literature (115). Their functional studies showed that the LDLR: p.G314S variant lowers
LDLR activity. Since, | found only one FCH patient with the LDLR: p.G314S variant
with no occurrences in the FHTG controls, | consider the LDLR: p.G314S variant to be

probably causative of the hypercholesterolemia seen in this single FCH patient.

LDLR: p.D333V
Hobbs et al were the first to report the LDLR: p.D333V variant (115) and showed
that the variant lowers LDLR activity through their functional studies. The LDLR:

p.D333V variant was initially found in an FH individual. The LDLR: p.D333V variant
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has also been mentioned in non-hyperlipidemia studies. In Liljedahl et al (116), the
LDLR: p.D333V variant, along with other variants, was used in evaluation and
comparison of microarray technologies. In Andreotti et al (117) the LDLR: p.D333V
variant, along with other known LDL-C raising variants was shown to be associated with
biliary tract cancers (117). So The LDLR: p.D333V variant was used because it was
considered to be pathogenic, although not necessarily for hypercholesterolemia. Based on
literature findings and because | found the LDLR: p.D333V variant in only FCH cases, |
consider this variant to be possibly causative of the hypercholesterolemia seen in the

FCH patients.

LDLR: p.L561P

The Hegele lab was the first to report the LDLR: p.L561P variant and this variant
was found in an FH individual (118). Wang et al did not perform any functional work on
the LDLR: p.L561P variant (118). So | cannot definitively conclude that this variant is

causative of hypercholesterolemia, even though I found this variant only in FCH cases.

LDLR: p.C677G
This variant to date (June 2013) could not be found in the HGMD

(http://www.hgmd.cf.ac.uk/ac/index.php ), NCBI(http://www-ncbi-nlm-nih-

gov.proxy?2.lib.uwo.ca/snp/?term=%28%28IdIr[Gene+Name]%29+AND+11231152[Base

+Position]%29+AND+19[Chromosome] ), Ensembl

(http://uswest.ensembl.org/Homo sapiens/Gene/Variation Gene/Table?db=core;qg=ENS

G00000130164;r=19:11200038-
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11244492;v=rs147509697;vdb=variation;vf=38263839#missense_variant_tablePanel )

and 1000 Genomes

(http://browser.1000genomes.org/Homo sapiens/Gene/Variation Gene/Table?db=core:;q

=ENSG00000130164;r=19:11200038-

11244492:t=ENST00000558518:v=rs5931:vdb=variation;vf=1894#missense variant tab

lePanel) databases. So, while this variant is novel, no functional work has been performed

and thus I cannot conclude that it is causative of hypercholesterolemia in our FCH cases.

LDLR: p.V806l

Hobbs et al (115) found the LDLR: p.V806I variant in an FH individual; this
variant showed lowered LDLR activity through their functional work. Lombardi et al
(119) were the first to report the LDLR: p.V806I variant in an FH patients from the Dutch
population. Zakharova et al (120) was the first to report the LDLR: p.VV806I variant in a
Russian population. Zakharova et al mentioned that the LDLR: p.\VV806I position is found
in the internalization signal whose sequence is NPVY, where V is not conserved. So
Zakharova et al mentioned that the substitution of Valine for Isoleucine may not affect
LDLR function as the V in the NPVY internalization signal is not conserved (120).
However, Zakharova et al did not perform any functional work to disfavour the LDLR:
p.V8061 variant being causative of FH. Also, the range of species used for their multiple
sequence alignment may differ from the species | used for multiple sequence alignments.
My multiple sequence alignment showed that the LDLR: p.V8061 position was conserved

across species in which LDLR is said to be conserved according to NCBI (Figure 3.1).
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Laurie et al reported the pathogenicity of the variant to be uncertain (121). In
2010, Huijgen et al (122) classified the LDLR: p.\VV806I variant as non-pathogenic
because they cited Huijgen et al cited Defesche et al (123), Fouchier et al (114, 124) and
Lombardi et al (125).

Interestingly, Defesche et al (123) reported the LDLR: p.VV806I variant in an FH
patient but did not perform any functional work that would disfavour the variant being
causative of FH and cited sources that did not even report the LDLR: p.VV8061 variant.
These sources were Lombardi et al (125), Graham et al(108), Jensen et al (126) and
Weiss et al (127). Fouchier et al (114, 124) reported the LDLR: p.\VV806I variant in FH
patients but did not perform any functional work to disfavor the LDLR: p.VV806I variant
being causative of FH. Lomabrdi et al did not even mention the LDLR: p.VV8061 variant
(125). In 2012, Huijgen et al (128) reported the LDLR: p.VV8061 variant to be non-
pathogenic based on a criteria that was non-functional based.

Interestingly, from my literature search, the LDLR: p.\VV8061 variant was
essentially considered being non-causative of hypercholesterolemia, although most
authors did not perform any functional work to support this. The only source that
supported the LDLR: p.V8061 variant being causative of FH performed functional work
where the variant lowered LDLR activity (115). I also found the LDLR: p.VV8061 variant
only in cases. Since the weight of evidence favours the LDLR: p.V8061 variant as being
causative of hypercholesterolemia, | consider the LDLR: p.\VV806I variant to be likely

causative of hypercholesterolemia in the FCH cases.
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LDLR: p.T41M

Fouchier et al (114) were the first to report the LDLR: p.T41M mutation in a
Dutch FH patient. However, | found this variant in only one HTG control subject. No
functional work has been reported on this variant. So | cannot conclude that this variant is
causative of FH more, especially since it was found only in normocholesterolemic HTG

controls.

LDLR: p.A585S

Sun et al (129) were the first to report the LDLR: p.A585S in an FH patient.
Through some functional work, Sun et al predicted the effect of various variants they
found in FH patients to be either mild or severe. However, Sun et al did not classify the
functional effect of LDLR: p.A585S variant (130) (129). Since the LDLR: p. A585S
variant only occurred in our normocholesterolemic controls, | consider it to not be
causative of hypercholesterolemia in FCH.

The APOB gene product is the apolipoprotein that carries the hydrophobic lipid
(cholesterol) contents of the LDL particle through the bloodstream. The interaction of
ApoB with LDLR is vital for the internalization of LDL-C into the cells. Therefore,
mutations in APOB that disrupt APOB-LDLR binding will prevent LDL-C from being
internalized, which results in hypercholesterolemia. In my first project, | wanted to see if

there was an accumulation of FH-causing variants in APOB in the FCH cases.
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APOB: p.C1395Y, p.T3799M, p.12286V, p.S1586T, p.V4101M
These variants have each been reported in the dobSNP database, which is part of

the NCBI database (http://www.ncbi.nlm.nih.gov/snp/ ). To date (June 2013), no papers

could be found citing these variants in the dbSNP database.

APOB: p.E2539K, p.M2331l, p.M4293V, p.R1662W, p.53252G, p.T3020R,
p.T4457M, p.E2539D, p.R2192C, p.S3267P and p.S4403T

Our lab was the first to report these variants, that were discovered by Johansen et
al (71) in patients with polygenic Fredrickson HTG phenotypes (i.e. Fredrickson Type
2B, Type Il1, Type 4 and Type V). Sequencing of the target regions of APOB in all of the
FCH patients and most HTG controls was already performed in Johansen et al (71).
Sequencing of the target regions of APOB in the remaining of the 94 FHTG patients was
performed in my first study. So the patients’ sequence data from Johansen et al (71) and
my first study were combined for subsequent analyses. No papers cited these variants in

the dbSNP database (http://www.ncbi.nlm.nih.gov/snp/) and so no functional work was

reported in literature.

APOB: p.R3500W

Gaffney et al (31) were the first to report the APOB: p.R3500W variant. Gaffney
et al screened hypercholesterolemic patients for mutations at position 3500 in APOB.
APOB: p.R3500Q was the first APOB mutation established to cause FH (31). Gaffney et

al compared the effect of APOB: p.R3500Q variants and the APOB: p.R3500W on the


http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/

174

APOB-LDLR interaction. Gaffney et al showed both variants bound defectively, found
no difference in effect of the two mutations and concluded the APOB: p.R3500W variant
is causative of hypercholesterolemia. Since | only found the APOB: p.R3500W variant in
FCH cases, the APOB: p.R3500W variant very likely explained hypercholesterolemia in

our FCH cases.

APOB: p.K1615R

This variant to date (June 2013) could not be found in the HGMD

(http://www.hgmd.cf.ac.uk/ac/index.php ), NCBI (http://www.ncbi.nlm.nih.gov/snp/),
Ensemble

(http://www.ensembl.org/Homo sapiens/Gene/Variation Gene/Table?db=core;:qg=ENSG

00000084674;r=2:21224301-21266945#missense_variant_tablePanel ) and 1000

genomes

(http://browser.1000genomes.org/Homo sapiens/Gene/Variation Gene/Table?db=core;q

=ENSG00000084674;r=2:21224301-21266945#missense_variant_tablePanel ) databases.

So, this variant is novel and since no functional work was done on this variant, | cannot

definitively conclude that it is causative of hypercholesterolemia.

APOB: p.Q3404E

The functional effect of the APOB : p.Q3405E variant has been contradictory
throughout literature. Findings from Pullinger et al support that APOB: p.Q3405E does
not cause hypercholesterolemia (131). In contrast, findings from Gaffney et al (132)

support the idea that the APOB: p.Q3405E variant causes hypercholesterolemia.
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Pullinger et al used fibroblast binding assays from 11 normolipidemic controls, 7
heterozygous APOB: p.Q3405E individuals and 1 homozygous APOB: p.Q3405E
individual. There was no statistical difference in binding affinity in the 3 groups (131)

Gaffney et al studied growth of U937 cells from 23 normolipidemic individuals
and 13 APOB: p.Q3405E individuals as a measure of LDL binding affinity. Gaffney et al
found 13 heterozygous APOB: p.Q3405E individuals at a frequency of 1.4% and 1
homozygous APOB: p.Q3405E variant at a frequency of 0.1%. They compared APOB:
p.Q3405E mutant cells with cells cultured from normolipidemic individuals. They
showed that the mean (= SD) cell growth from normolipidemic individuals was 1.1 £
0.32 units. The mean (£ SD) cell growth from APOB: p.Q3405E individuals was 0.77+
0.24 units and they reported the difference in mean growth rates to be statistically
significant (P=0.004).

High triglyceride levels lower the affinity of LDL for its receptor (132) and in
Gaffney et al, a triglyceride level of 2.3mmol/L was defined as the upper limit of the
normal range (132). After controlling for HTG, by removing HTG individuals, Gaffney
et al still reported significantly lower LDL binding affinity (P=0.009) attributable to the
APOB: p.Q3405E variant(132). However, Figure 5 from Gaffney et al showed a
considerable discrepancy in cell growth for two separate assays done for the same
severely HTG individual, who was removed to control for HTG. This huge variability
from the same patient may lead to questioning of the reliability of cell growth values,
even when controlled for HTG, for APOB: p.Q3405E individuals who had only a single
assay performed. Table 1 in Gaffney et al reports the mean triglyceride level for the 13

APOB: p.Q3405E individuals to be 2.5 mmol/L, which is 0.2 mmol/L above their upper
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limit for normal TG level range. So, it can be argued that this mean TG level could bias
the significantly lower cell growth in cells derived from APOB: p.Q3405E individuals.
Also, in the selection of study subjects, Gaffney et al stated that patients were referred to
them and were not pre-screened. So, it is possible that some of these 13 APOB:
p.Q3405E individuals actually had FCH, in which HTG is part of the definition.

Gaffney et al could not rule out the possibility of other (now) known FH causing
mutations that were not detected. For instance, association of gain of function mutations
in PCSK9 with clinical FH was discovered in 2003 (133), which was well after Gaffney
et al, who published their data in 1998. So, Gaffney et al could not have screened for FH
causing gain-of-function mutations in PCSKO9. So, it remains possible that the
significantly lower cell growth found in APOB: p.Q3405E individuals was actually due
to other unmeasured or undetected variants and not to APOB: p.Q3405E.

Pullinger et al proposed that the APOB: p.Q3405E variant does not cause
hypercholesterolemia because the APOB: p.Q3405E variant segregated independently of
hypercholesterolemia in a family diagnosed with FH (131). Gaffney et al also reported
no statistical difference in U937 cell growth from three family members, in which the
proband and proband’s mother had the APOB: p.Q3405E genotype but the proband’s
brother did not have the APOB: p.Q3405E genotype. The U937 cell growth of all three
family members was all comparable to U937 cell growth from healthy individuals (132).
Gaffney et al screened 200 normolipidemic individuals for the APOB: p.Q3405E variant
and found it in 4 of the 200 normolipidemic individuals. Despite reporting information
that disfavours APOB: p.Q3405E being causative of hypercholesterolemia, Gaffney et al

stated that the extra negative charge brought about the APOB: p.Q3405E variant may
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alter the structural biology of APOB in such a way that hypercholesterolemia may result
downstream (132). However, that statement was merely a suggestion or speculation. The
balance of all the experimental findings do not support the idea that APOB: p.Q3405E is
FH-causing,.

Gaffney et al and Pullinger et al are two papers in literature that discuss the
APOB: p.Q3405E variant in detail. In my study, the APOB: p.Q3405E variant was only
found in one normocholesterolemic HTG control and was not found at all in FCH cases.
After evaluating all the findings from Gaffney et al and Pullinger et al along with only
finding the APOB: p.Q3405E variant in HTG controls, | would argue that the balance of

evidences favours the idea that APOB: p.Q3405E does not raise LDL-C levels.

IDOL: p.R372W and p.V339I
These variants were not reported in HGMD

(http://www.hgmd.cf.ac.uk/ac/index.php). These variants were reported in the dboSNP

database (http://www.ncbi.nlm.nih.gov/snp/). No papers cited these variants in the dbSNP

database and so no functional work was reported in literature. | cannot definitively

conclude whether either one is associated with hypercholesterolemia.

IDOL: p.C31Y

This variant to date (June 2013) could not be found in the HGMD

(http://www.hgmd.cf.ac.uk/ac/index.php ), NCBI (http://www.ncbi.nlm.nih.gov/snp/),
1000 Genomes

(http://browser.1000genomes.org/Homo sapiens/Gene/Variation Gene/Table?db=core;q
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=ENSG00000007944:r=6:16129356-16148479#missense_variant_tablePanel ) and

Ensembl

(http://www.ensembl.org/Homo sapiens/Gene/Variation Gene/Table?db=core;:qg=ENSG

00000007944:r=6:16129356-16148479#missense_variant_tablePanel ) databases. So,

because this variant is novel and since no functional work was done on this variant, |

cannot definitively conclude that it is causative of hypercholesterolemia.

PCSK9
Finally, with respect to PCSK9, given the rarity of mutations in this gene across
the entire population of FH patients, it is perhaps not surprising that I did not find any

variant in PCSK9 in my study.

All rare variants in FCH considered cumulatively

My literature search of the variants that | found suggests that there was an
accumulation of known functionally verified variants in FCH cases at a p-value almost
approaching statistical significance (P=0.09). No known functionally verified variant was
found in controls and 4 known functionally verified variants was found in cases namely
LDLR: p.G314S, p.D333V,p.V8061 and APOB: p.R3500W variants. These variants likely
explain hypercholesterolemia in those particular FCH patients, which make up about 3%

The results of the re-sequencing of FH candidate genes in FCH cases and FHTG
controls indicates non-significant trends that suggest that dysfunctional rare variants

accumulate in cases relative to controls. The relatively small sample size here was
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consistent with a pilot project to test these hypotheses; larger sample sizes will be needed

to determine whether these trends attain statistical significance.

Limitations of sequencing strategy to identify rare variants

I only looked at the coding regions of LDLR, coding regions of IDOL, only exons
26 to 29 in APOB and only exon 7 in PCSK9. So | cannot rule out potential disease-
causing variants outside these regions. Previous studies have shown that disease causing
variants can be non-exonic (134) and SNPs from GWAS studies have shown that it is
SNPs in non-coding regions that are associated with disease traits (43) — all of which are
in line with findings from the ENCODE project that showed that most variants that
control protein biochemistry are non-coding (135) .

However, | am still confident in the approach taken to test my hypothesis because
it has been long established that non-synonymous rare variants are most likely to be
disease causing (136). There have been ‘success stories’, where the discovery of missense
rare variants being causative of a disease resulted from the approach where only coding
regions were analysed (137) (138). One such success story that involved analyzing
exonic regions is the discovery the ANGPTL3 gene being causative of Familial Combined
Hypolipidemia (137).

Most of the missense rare variants | found were either exclusive in FCH cases or
FHTG controls; only the LDLR: p.T705I and IDOL: p.V339I were found in both FCH
cases and controls. So, it is possible that the effect sizes of the other 29 missense rare
variants vary, and the standard chi Square test is insensitive, since it assumes all missense

rare variants to have an equal effect size.
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Table 6.1 Complete list of 31 missense rare variants observed in FCH-FHTG

cohort and information from published research on these variants

Functionally verified

in literature as
causative of

Variant Variant MAF  hypercholesterolemia References Population
identifier

LDLR: p.T7051  rs45508991  0.0065 No Loux et al (106), 1992  Cases: 1

Brussgaard et al(107), Controls: 2

2006

Graham et al (108),

2006

Leigh et al (110), 2008
LDLR: p.G-2R  rs147509697 0.0022 No Amsellems et al (111), Cases:1

2002 Controls:0

Fouchier et al (114),

2005
LDLR: CM920439  0.0022 Yes Hobbs et al (115), 1992  Cases:1
p.G314S Controls:0
LDLR: rs5930 0.0022 Yes Hobbs et al (115), 1992  Cases:1
p.D333V Controls:0
LDLR: p.L561P CMO014578  0.0022 No Wang et al (118), 2001  Cases:1

Controls:0

LDLR: N/A 0.0022 No NOVEL Cases:1
p.C677G Controls:0
LDLR: p.vV8061 rs137853964 0.0022 Yes Hobbs et al (115), 1992  Cases:1

Lombardi et al (119), Controls:0

2000

Zakharova et al (120),

2005

Huijgen et al (122),

2010

Huijgen et al (128),

2012
LDLR: p.T41M CMO055350 0.0022 No Fouchier et al (114), Cases:0

2005 Controls:1
LDLR: rs72658868 0.0022 No Sun et al (129) Cases:0
p.A585S Controls:1
APOB: rs568413 0.0022 No NOVEL Cases:1
p.C1395Y Controls:0
APOB: rs1801696 0.0022 No Johansen et al (71), Cases:1
p.E2539K 2010 Controls:0
APOB: CM105023  0.0022 No Johansen et al (71), Cases:1
p.M23311 2010 Controls:0
APOB: CM104782  0.0022 No Johansen et al (71), Cases:1
p.M4293V 2010 Controls:0
APOB: rs151009667 0.0022 Johansen et al (71), Cases:1
p.R1662H 2010 Controls:0
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APOB:
p.R3500W

APOB:
p.S3252G
APOB:
p.T3020R
APOB:
p.T3799M
APOB:
p.T4457M
APOB:
p.12286V
APOB:
p.E2539D
APOB:
p.K1615R
APOB:
p.Q3405E

APOB:
p.R2192C
APOB:
p.S1586T
APOB:
p.S3267P
APOB:
p.S4403T
APOB:
p.V4101M
IDOL:
p.R372W
IDOL: p.V339I

IDOL: p.C31Y

rs144467873

rs12720854

rs61742323

rs61744153

rs12713450

rs584542

rs149306841

N/A

rs1042023

rs141641980

rs61742247

rs12720855

rs72654426

rs1801703

rs141183183

rs142124143

N/A

0.0022

0.0043

0.0022

0.0022

0.0065

0.0022

0.0022

0.0022

0.0043

0.0022

0.0022

0.0022

0.0022

0.0022

0.0022

0.0043

0.0022

Yes

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Gaffney et al (31),
1995

Johansen et al (71),
2010

Johansen et al (71),
2010

NOVEL

Johansen et al (71),
2010
NOVEL

Johansen et al (71),
2010
NOVEL

Pullinger et al (131),
1996

Gaffney et al (132),
1998

Johansen et al (71),
2010

NOVEL

Johansen et al (71),
2010

Johansen et al (71),
2010

NOVEL

NOVEL

NOVEL

NOVEL

Cases:1
Controls:0

Cases:2
Controls:0
Cases:1
Controls:0
Cases:1
Controls:0
Cases:3
Controls:0
Cases:1
Controls:0
Cases:0
Controls:1
Cases:0
Controls:1
Cases:0
Controls:2

Cases:0
Controls:1
Cases:0
Controls:1
Cases:0
Controls:1
Cases:0
Controls:1
Cases:0
Controls:1
Cases:1
Controls:0
Cases:1
Controls:1
Cases:0
Controls:1

Note: MAF, Minor allele frequency (defined as the frequency of the minor allele > 0.01 in our combined
FCH-FHTG cohort.
LDLR, Low Density Lipoprotein Receptor (gene);APOB, ApolipoproteinB-100 (gene); MYLIP, Myosin

Regulatory Light Chain Interacting Protein (gene).

References refer to papers that cite the variants.
Population refers to how many of our cases and controls the variant was found in.
N/A, Not Applicable; N/A was reported under variant identifier when variant was novel. N/A was
reported under References when there was no research article citing the variant.
Where variants did not have a dbSNP ID (i.e. rs ID), the HGMD accession ID was given as a variant

identifier (which are the numbers prefixed with the letters CM)



182

6.1.2 In silico analyses of missense variants

The effects of all 31 missense rare variants from the candidate genes studied were
predicted in silico using PolyPhen-2 and SIFT; results are shown in Chapter 3. Missense
rare variants predicted to be deleterious both PolyPhen-2 and SIFT were only found in
cases for LDLR, namely LDLR: p.G314S, p.D333V, p.L561P and p.C677G variants, of
which the LDLR: p.G314S and LDLR: p.D333V variants were accurately predicted as
being likely dysfunctional (Table 3.8). This is because these two variants were predicted
to be deleterious when functional work showed reduced LDLR activity. In contrast, the
LDLR: p.V806I has been shown to reduce LDLR activity but was predicted to be
tolerated by SIFT (Table 3.8) thus indicating an inaccurate in silico prediction. However,
only PolyPhen-2 predicted the LDLR: p.\VV806I variant to be deleterious— even though
p.vV8061 (SIFT score 0.06) marginally escaped being predicted as deleterious, since a
SIFT score of 0.05 or lower is predicted as being deleterious (Table 3.8).

For APOB, 4 missense rare variants were predicted to deleterious by both
PolyPhen-2 and SIFT in FCH cases. These variants were the APOB: p.R1662H,
p.R3500W, p.S3252G and p.T3799M variants of which the APOB: p.R3500W variant
was predicted accurately. In HTG controls, 2 missense rare variants were predicted to
deleterious by both PolyPhen-2 and SIFT, which namely were the APOB: p.K1615R and
p.S3267P variants. With respect to being causative of hypercholesterolemia, these
predictions are very likely to be inaccurate since the variants were found in only
normocholesterolemic controls.

For IDOL, the p.R373W and p.C31Y variants were predicted to be deleterious by

both PolyPhen-2 and SIFT, and were found in cases and controls, respectively. Since the
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literature did not report any functional work on these variants, | cannot comment on the
accuracy of in silico predictions. With respect to being causative of
hypercholesterolemia, the in silico prediction for the IDOL p.C31Y variant is likely to be
inaccurate because controls are normocholesterolemic.

The discrepancies in predictions of PolyPhen-2 and SIFT, in variants across
candidate genes, could result from differences in algorithms and weighting priorities
given to certain features by the two softwares.

For each of the candidate genes, Multiple sequence alignment (MSA) was done in
order to visually analyze amino acid conservation in the region of each rare missense
variant (Figures 3.1-3.3). For MSA of each candidate gene, 6 species were used for MSA.
In the first 4 species, the gene, according to NCBI, was conserved; in the last two species,
the candidate gene was not considered to be conserved. In general, some of the amino
acid positions of the rare missense variants that | studied were completely conserved and
others were not conserved.

After looking at MSAs of LDLR, the change of amino acid to the basic arginine at
position -2 can create electrostatic bonds with nearby acidic amino acids (shown in green
squares) that may negatively affect protein activity (Figure 3.1). These electrostatic bonds
may be unfavourable in the sense that it could negatively affect protein activity. Protein
activity could also be negatively affected due to the absence of Glycine and not
necessarily the presence of Arginine, especially since Glycine is the amino acid that
allows most three dimensional freedom.

The LDLR: p.T41 position is conserved in the 4 species that show the strongest

LDLR conservation. The conservative mutation to a Methionine may not affect LDLR
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activity and thus may explain why the LDLR T41M variant was found in a
normocholesterolemic control (Figure 3.1).

The LDLR: p.G314 position is fully conserved across species. This mutation was
shown to lower LDLR activity. This could be due to the lack of a Glycine at the LDLR
G314 position, especially since Glycine is the amino acid that allows three dimensional
freedom the most. This lowered activity could also be due to a non-hydrophobic amino
acid such as Serine at the (Figure 3.1).

The LDLR: p.D333 position is also fully conserved across species and mutation to
the hydrophobic Valine has been shown to lower LDLR activity functionally. This
lowered activity may be due to disruption of electrostatic bonds with nearby basic amino
acids (shown in blue squares) (Figure 3.1).

The LDLR: p.C677 position is fully conserved and mutation to a Glycine may
disrupt disulphide bonds with nearby Cysteines (shown in blue squares) (Figure 3.1).

For all the missense rare variants in LDLR, APOB and IDOL the amino acids in
blue squares represent amino acids that could have disrupted electrostatic interactions
with amino acids at mutant positions. Amino acids at mutant positions are in red squares.
Amino acids in green squares represent amino acids that could have formed electrostatic
interactions with amino acids at mutant positions. The possible formation and/or
disruption of electrostatic bonds could be unfavourable in that it may lower protein
activity. Amino acids in blue squares also represent amino acids that could have

disulphide bonds formed or broken—which could negatively affect protein activity.
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Limitations of bioinformatic analyses

In silico predictions in and of themselves are not enough to determine whether an
amino acid changing variant is causative of a disease. Literature has shown that
predictions by PolyPhen-2 and SIFT are inaccurate; the concordance with functional
studies, when performed, is only 50-60% (139). This is because variants that have been
shown to be deleterious functionally were predicted to be non-deleterious and conversely,
variants that have been shown to be non-deleterious functionally were predicted as
deleterious (139). This discrepancies could be because the in silico programs do not take
into consideration other aspects of protein biochemistry such as post-translational
modification, protein-protein interactions, etc (139). Therefore, in silico predictions can
be considered ‘just slightly better than chance’ and cannot not be used in clinical
decisions such as diagnosis, therapeutics and prognosis. Nevertheless, in silico analyses
of missense variants are a useful tool in the investigation of variants along with other
information such as structural information, biological information, etc. In silico analyses,
along with other information, can also be useful in the prioritizing of those variants to test
functionally. So the information from in silico predictions of the 31 missense rare
variants, as well as the MSA of the 3 candidate genes, would be useful for any future

projects involving functional validation of the variants.

6.2 Findings from Familial Hypercholesterolemia Mutation Negative (FH/M-ve)
subjects and Familial Hypercholesterolemia Mutation Positive (FH/M+ve)
My second study was composed of two collaborative projects, namely (i) the

resequencing of APOE in FH/M-ve patients to look for possible undetected deleterious
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mutations and (ii) testing whether FH/M-ve patients (cases) have a higher LDL-C genetic
risk score than FH/M+ve subjects (controls). In the second collaborative study, the
hypothesis had been first tested by our collaborators in the UK. So, my second
collaborative study not only served as a replication study, but was the first study to test
the hypothesis in the Canadian population.

In the first collaborative project of my second study, not a single potentially
deleterious APOE mutation was found in the 95 FH/M-ve patients. However, our
collaborators for this first study found APOE c¢.L167 del variant that segregated in an FH
family and this APOE Leu 167 del variant was found to be causative of FH (data yet to be
published). Their finding has now made APOE the fifth FH-causing gene. Our
collaborator’s findings is an example of a serendipitous discovery of another FH—causing
gene as it is very likely that our collaborator’s FH family is one of only few families in
the world to have FH due to the APOE Leu 167 del mutation. To date (June 2013) an
APOE Leu 167 del mutation has only been reported in one other large family as being
causative of FH (60). Therefore, it is not surprising that our 95 FH/M-ve patients did not
show any deleterious mutation. The second collaborative project of my second study
showed that FH/M-ve patients had a higher mean LDL-C genetic risk score than
FH/M+ve controls, meaning that the FH/M-ve patients have a greater accumulation of
risk alleles. However, in my sample this greater accumulation was not statistically
significant. The effect sizes and absolute values of the mean LDL-C genetic risk scores
that | observed for FH/M-ve cases and FH/M+ve controls were comparable to those
reported in our collaborators' FH/-ve cases and FH/M+ve controls, respectively (Table

4.7). However, post hoc power calculations showed that our UK collaborators had
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sufficient statistical power, while the sample size in my study did not afford sufficient
statistical power to detect a difference of this magnitude in the mean values (Table 4.7).
So, our lack of statistical significance is likely due to restricted sample size and not due to
lack of biological effect. In essence, my studies in the Canadian FH population replicated
our UK collaborators' finding that an alternate polygenic etiology (as in the accumulation

of risk alleles) can cause FH, thus making it both a polygenic and a monogenic disease.

6.3 Findings from analyses of GWAS data

Finally, I applied some of the GWAS data from (70) for all 3 projects that made
up my third study. The aim of the first project of my third study was to identify if the
DIET1 locus is associated with polygenic HTG in humans, because DIET1 is associated
with HTG in mice. The second and third projects of my third study used only the FCH
patients and HTG patients in (70) as cases and controls, respectively. The aim of my
second project was to test whether the PSMD?9 locus, which was recently reported to be
associated with hypercholesterolemia, is associated with hypercholesterolemia in FCH.
The third project had two aims: (i) to test for association of the 37 GLGC-identified SNPs
with hypercholesterolemia in FCH; and (ii) to test for accumulation of the 37 GLGC-
identified LDL-C risk alleles in FCH cases relative to controls.

Association analysis of all the SNPs in the DIET1 region with HTG did not reach
the overly conservative Bonferroni-corrected p-value, thus | could not say that the DIET1
region was associated with HTG in humans. The true p-value would likely be much less
strict than the Bonferroni corrected p-value, since many SNPs at this locus were in

linkage disequilibrium; however the LD was largely uncharacterized in this region, I
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could not estimate what the appropriate correction should be, and so used the Bonferroni
correction as my default approach. Limitations of the first project was sample size, as
typical GWAS studies have very large sample sizes (79) (70). Nevertheless, | am still
confident in testing whether the DIET1 locus is associated with HTG in humans, since
nothing was known about this unannotated region in humans previously, and also
because my findings will be a useful starting point in future analysis of this region. If and
when more is learned about the DIET1 region in humans, it is likely that fewer SNPs
would be tested for association, which would increase the statistical power since the
adjustment of the nominal p-value would be less strict. Because my results might be
useful for future analyses, I still reported 5 SNPs with the strongest associations — albeit
all non-statistically significant (Table 5.2).

In my second project, | found that the most highly associated SNP —albeit not
statistically significant— in the PSMD9 region with FCH was the rs1795964 SNP
(P=0.08). So it is possible that this region plays a role in hypercholesterolemia in FCH.
However, the second project was similarly limited with respect to statistical power,
because only subset of subjects from the database in (70) was used. However, as with the
first project, the information could be useful for future studies.

Finally, I tested for association of each of the 37 GLGC-identified SNPs in the
first part of my third project. The top three SNPs with strongest associations were all well
below the Bonferroni the corrected p-value (Table 5.6). Since these 37 SNPs were not in
LD, the Bonferroni corrected p-value is not overly conservative. Here 1 may not have

detected any significance because of limited statistical power due to sample size.
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Nevertheless, my findings would be valuable for future larger-sized meta-analyses
studies that could include our samples.

My findings for the second part of the third project showed that there is a greater
accumulation of risk alleles in FCH cases relative to controls at a rate borderline of
statistical significance (P=0.054). Given the sample size, the inclusion of the 37 SNPs
increased statistical power compared to testing each of the 37 SNPs individually. So, if |
had the opportunity to study a few more patients, the p-value could have been well below
0.05. In essence, the 37 SNPs that affect LDL-C levels in the general population also
appear to affect LDL-C levels in FCH. This is in line with the concept that the genetic

etiology of FCH is polygenic (66).

6.4 Conclusions

Findings from my first study have shown that the presence of HTG and FH-
causing mutations can interact to produce an FCH phenotype. In other words, my
findings suggest that FCH can sometimes indeed result from the co-existence of FH and
HTG genetic susceptibility. My finding of the LDLR: p.G314S, p.D333V, p.V806I and
APOB: p.R3500W variants in the FCH cases supports the idea that rare FH-causing
mutations are over-represented in FCH. My first study was the first of its kind. However,
a similar—yet far from identical— study was performed by Civeira et al (140), where
LDLR and APOB variants (203 LDLR variants and 4 APOB variants) were genotyped in
only 143 unrelated FCH patients (140). Civeira et al found LDLR mutations in his FCH
population. However, their study, unlike mine, was uncontrolled and so variants they

found could also have been present in normocholesterolemic controls, including healthy



190

individuals and individuals with HTG. For instance, Civeira et al stated that none of the
mutations they found were reported in normolipidemic individuals and one of the LDLR
variants the genotyped was LDLR: p.T7051 (140). Civeira et al also stated that the variant
they genotyped were reported to be causative of FH (140). From our extensive literature
search on each of our 31 LDLR missense rare variants, we discovered that there were
variants reported to cause hypercholesterolemia in the HGMD database, when extensive
literature search did not confirm those variants being causative of hypercholesterolemia
such as the APOB: p.Q3405E, LDLR: p.T705I and LDLR: p.G-2R variants. Thus having
sequence information from controls, which Civeira et al did not have, helped in our
assessment of whether a variant was possibly causative of hypercholesterolemia. For
instance, | found the same LDLR: p.T705I that Civeria et al found and interpreted as
being FH causing, in our normocholesterolemic HTG controls, which helped me discard
LDLR: p.T705I as being causative of hypercholesterolemia in FCH.

Even though the understanding of the genetic etiology of FCH in the field shifted
from being autosomal dominant to polygenic, no one had confidently disprove that FCH
is caused by FH causing mutations because no one ever sequenced the three well known
FH causing genes. ‘Absence of evidence (not knowing for sure that
hypercholesterolemia in FCH is due to FH-causing mutations) is not evidence of absence
(FCH is not due to FH-causing mutations)’. But the findings from my first study indicate
that FCH is for the most part not due to FH causing mutations. Despite the fact that post
hoc power calculations showed low statistical power for my first study, if the
hypercholesterolemia in FCH had indeed been due to FH-causing mutations, my sample

size would have been sufficiently powered. This is because, hypothetically speaking, had
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| tested the same hypothesis in 138 FH cases and 94 controls, | would have had a greater
accumulation of missense rare variants in our cases.

Findings from my second study support the idea that while FH is mainly
monogenic, there are some cases in which there is a polygenic cause. For instance,
findings from my study suggest that it might be warranted to test for greater accumulation
of the 37 GLGC- identified LDL-C risk alleles in FH cases relative to healthy controls,
especially when a mutation in any of the known genes is absent, since the genetic
etiology of FH can sometimes be polygenic.

The biological macromolecules such as carbohydrates, proteins, lipids and nucleic
acids are vital to human existence. So, it is not unreasonable that many genes are
involved in the metabolism of these macromolecules, including lipids. Many genes are
involved in cholesterol metabolism, thus mutation in such genes can lead to a clinical
presentation of hypercholesterolemia. Therefore, findings from the APOE collaborative
project would support searching for other possible monogenic causes of FH using next
generation sequencing technologies, such as whole exome sequencing, in FH/M-ve
cohorts.

Findings from testing for accumulation of the 37 LDL-C risk SNPs in FCH cases
as well as findings from my first study show that genetic etiology of
hypercholesterolemia in FCH, like in FH, can be monogenic and polygenic. Findings
from testing for accumulation of the 37 LDL-C risk SNPs in FCH cases and findings
from testing for accumulation of 12 of the 37 LDL-C SNPs in FH/M-ve cases show that
the polygenic etiology of hypercholesterolemia in FCH and FH are similar in some

patients.
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All of these findings have shown that genetic definition of a disease, including
monogenic diseases, cannot be too rigid, which might help clinicians make a better
diagnosis, especially if it can be shown that these different etiologies predict a different
prognosis or different response to treatment. My findings also support the idea that
personalized medicine might one day be the standard of care for patients with
hyperlipidemia, especially since the genetic etiology of a these diseases cannot be
‘generalized’ into a single cause. From an economic aspect, this would also encourage
researching ways of making personalized medicine cost-effective.

All of my findings strongly support extending such investigative approaches to
other monogenic diseases, where the causative gene does not explain the disease in some
minority of cases. Finally, the findings from my studies support a new way of thinking
and a different approach in unraveling the genetic etiology of monogenic and polygenic

lipid disorder and perhaps other related diseases in the field.
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Table 1. List and description of all variants identified in all 18 exons and promoter
of LDLR and the minor allele counts in cases and controls

Variant SNP MAF Cases (n=138) | Controls (n=94)
p.G-2R rs147509697 0.002165 1 0
p.C6C rs2228671 0.09307 29 14
p.T41M NR 0.002155 0 1
€.190,+56G/A rs3745677 0.07576 22 13
€.313,+69C/T rs56084625 0.01082 2 3
c.314,-50T/C rs10423288 0.002155 0 1
.940,+16G/A rs72658859 0.002155 0 1
€.940,+36G/A rs13306513 0.02851 8 5
€.941,-39C/T rs55792959 0.01078 2 3
p.G314S NR 0.002165 1 0
¢.1060,+7T/C rs2738442 0.002155 0 1
¢.1060,+10G/C rs12710260 0.4286 113 85
¢.1060,+49C/T NR 0.002155 0 1
¢.1060,+59A/C rs55642005 0.002155 0 1
.1061,-82G/C rs41301947 0.002155 0 1
€.1061-8T/C rs72658861 0.002174 1 0
p.D333V NR 0.002174 1 0
p.C347C rs113669610 0.002174 1 0
p.A370T rs11669576 0.05 12 11
€.1373,+29C/A NR 0.002174 1 0
p.N407N NR 0.00431 0 2
¢.1359,-54C/T rs6413505 0.00431 1 1
¢.1359,-30C/T rs1003723 0.4353 117 85
p.R450R rs5930 0.4095 165 109
c.1774,-87G/A NR 0.002155 0 1
p.P518P rs5929 0.05435 20 5
.1705,+56C/T rs4508523 0.1354 40 22
c.1706,-81C/T rs41307025 0.006466 1 2
€.1706,-69G/T rs7259278 0.1358 41 22
¢.1706,-55A/C rs2738447 0.4203 162 107
€.1706,-10G/A rs17248882 0.006466 2 1
p.L554L rs1799898 0.1293 35 25
p.L561P NR 0.002155 1 0
p.N570N rs688 0.4353 118 84
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p.T576T NR 0.002155 1 0
p.A585S 1s72658865 | 0.002155 0 1
c.1846,-78C/G | rs116959285 |  0.04762 13 9
p.N619N 1s5926 0.00431 0 2
p.V632V 1s5925 0.4351 118 83
p.C677G NR 0.002183 1 0
C.2140,+5G/A | rs72658867 0.00655 1 2
p.T705 rs45508991 | 0.006466 1 2
p.R723R 1s5927 0.263 203 136
c.2312,-71G/A | rs17249358 | 0.006466 1 2
c.2312,-47G/A | rs41306974 |  0.03097 6 8
c.2312,-28G/A NR 0.002155 0 1
C.2389+41C/A | rs72658868 | 0.006637 1 2
C.2389+46C/T 1s2738460 0.2633 76 43
C.2389+47G/A | rs13306501 0.03319 8 7
€.2389,4+51C/T | rs145293532 | 0.002165 1 0
p.V806I rs137853964 | 0.002165 1 0
C.2548,-53G/A | rs6413503 0.006466 1 2
C.2548,-42A/G | rs6413504 0.4697 130 87
3'UT+19G/A 1s56270417 | 0.004329 2 0
3UT+52G/A rs14158 0.2294 62 44
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Table 2. List and description of all variants identified in exons 26 and 29 APOB
in and minor allele count in cases and controls

Variant SNP identifier MAF Cases (n=138) Controls (n=94)
p.T4533 rs72654427 0.002155 1 0
p.T4457M rs12713450 0.006466 3 0
p.A4454T NR 0.04095 8 11
p.S4403T rs72654426 0.002155 0 1
p.S4311IN rs1042034 0.194 44 46
p.M4293V NR 0.002155 0
p.14287V rs72654423 0.01293 1
p.R4243T rs1801702 0.0194 2
p.V4238A NR 0.01078 3
p.E4154K rs1042031 0.1724 46 34
p.V4101M rs1801703 0.002155 0 1
p.Y4089 NR 0.002155 1 0
¢.11788+150C>T rs12713523 0.002155 0 1
p.T3799M NR 0.002155 1 0
p.R3611Q rs1801701 0.06034 15 13
p.T3540 rs12713558 0.002155 1 0
p.R3500W Reported 0.002155 1 0
p.Q3405E rs1042023 0.00431 0 2
p.L3350 rs1799812 0.002155 0 1
p. S3267P rs12720855 0.002155 0 1
p.S53252G rs12720854 0.00431 2 0
p.Y3071 NR 0.002155 0 1
p.T3020R rs61742323 0.002155 1 0
p.N3008 NR 0.002155 0 1
p.P2794L rs72653095 0.01078 4 1
p.P2712L rs676210 0.1897 43 45
p.12689 rs6413458 0.01724 5 3
p.L2594 NR 0.002155 1 0
p.E2539D NR 0.002155 0 1
p.E2539K rs1801696 0.002155 1 0
p.L2511 rs72653093 0.00431 1 1
p.T2488 rs693 0.4871 124 102
p.M2331I NR 0.002155 1 0
p.V2286I rs584542 0.002155 1 0
p.D2285 NR 0.4935 127 102
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p.R2192C NR 0.002155 0 1
p.H2040 rs143222685 0.002155 0 1
p.H1896R rs533617 0.02586 5 7
p.N1887S rs1801699 0.01293 3 3

p.P1875 NR 0.002155 1 0
p.R1662H NR 0.002155 1 0
p.K1615R 0.002165 0 1
p.S1586T rs61742247 0.002165 0 1
p. F1428 rs12720847 0.002155 1 0
p.C1395Y rs568413 0.002155 1 0
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Table 3. List and description of all variants identified in the 7 exons of IDOL

in and minor allele count in cases and controls

Variant SNP identifier MAF Cases (n=138) | Controls (n=94)
5'UTR,-56G/T rs3765234 0.04565 17 4
.87+60G/A rs1076632 0.004348 1 1
p.C31Y New 0.002174 0 1
€.279,-31A/G rs34444721 0.002174 1 0
c.464,+80T/C rs143656216 0.01957 1 8
p.1202L rs79992066 0.3978 92 185
€.663,-33A/G rs2072783 0.1413 38 27
p.V339I rs142124143 | 0.004348 1 1
p.N342S rs9370867 0.4696 121 95
p.R372W rs141183183 | 0.002174 1 0
p.C391 rs1060901 0.09565 19 25



http://browser.1000genomes.org/Homo_sapiens/Variation/Mappings?db=core;g=ENSG00000007944;r=6:16129356-16148479;v=rs3765234;vf=2836370;source=dbSNP
http://browser.1000genomes.org/Homo_sapiens/Variation/Mappings?db=core;g=ENSG00000007944;r=6:16129356-16148479;v=rs34444721;vf=10900416;source=dbSNP
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=143656216
http://browser.1000genomes.org/Homo_sapiens/Variation/Mappings?db=core;g=ENSG00000007944;r=6:16129356-16148479;v=rs79992066;vf=23789647;source=dbSNP
http://browser.1000genomes.org/Homo_sapiens/Variation/Mappings?db=core;g=ENSG00000007944;r=6:16129356-16148479;v=rs2072783;vf=1645413;source=dbSNP
http://browser.1000genomes.org/Homo_sapiens/Variation/Mappings?db=core;g=ENSG00000007944;r=6:16129356-16148479;v=rs142124143;vf=33670575;source=dbSNP
http://browser.1000genomes.org/Homo_sapiens/Variation/Mappings?db=core;g=ENSG00000007944;r=6:16129356-16148479;v=rs9370867;vf=5975527;source=dbSNP
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=141183183
http://browser.1000genomes.org/Homo_sapiens/Variation/Mappings?db=core;g=ENSG00000007944;r=6:16129356-16148479;v=rs1060901;vf=849486;source=dbSNP

Table 4. Normality tests for LDL-C genetic risk score for (a) FH Mutation
negative patients and (b) FH Mutation positive patients

a

Normality tests was done on the LDL-C genetic risk score for Familial
Hypercholesterolemia (FH) mutation negative patients (a) and FH mutation positive
patients (b). In Normality tests, p-value less than 0.05 means that the null hypothesis

Normality Test p-value
Shapiro-Wilk <0.0001
Kolmogorov-Smirnov 0.0112
Cramer-von Mises <0.0050
Anderson-Darling <0.0050
Normality Test p-value
Shapiro-Wilk 0.0004
Kolmogorov-Smirnov <0.0100
Cramer-von Mises <0.0050
Anderson-Darling <0.0050
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(which states that the data are normally distributed) means that the data are not normally

distributed). So, Normality tests showed that the LDL-C genetic risk scores were not

normally distributed.
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