
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-22-2013 12:00 AM 

Investigating the pathological response to beta amyloid toxicity in Investigating the pathological response to beta amyloid toxicity in 

rats: the role of age and the antioxidant catalase-SKL rats: the role of age and the antioxidant catalase-SKL 

Hayley J. Nell 
The University of Western Ontario 

Supervisor 

Dr.David Cechetto 

The University of Western Ontario Joint Supervisor 

Dr. Shawn Whitehead 

The University of Western Ontario 

Graduate Program in Anatomy and Cell Biology 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science 

© Hayley J. Nell 2013 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Other Neuroscience and Neurobiology Commons 

Recommended Citation Recommended Citation 
Nell, Hayley J., "Investigating the pathological response to beta amyloid toxicity in rats: the role of age and 
the antioxidant catalase-SKL" (2013). Electronic Thesis and Dissertation Repository. 1497. 
https://ir.lib.uwo.ca/etd/1497 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/62?utm_source=ir.lib.uwo.ca%2Fetd%2F1497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1497?utm_source=ir.lib.uwo.ca%2Fetd%2F1497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

 

INVESTIGATING THE PATHOLOGICAL RESPONSE TO BETA AMYLOID 
TOXICITY IN RATS: THE ROLE OF AGE AND THE 

 ANTIOXIDANT CATALASE-SKL 
 

(Thesis format: Monograph) 

 

by 

 

 

Hayley J. Nell 

 

 

Graduate Program in Anatomy & Cell Biology 

 

 
A thesis submitted in partial fulfillment  
of the requirements for the degree of 

Master of Science 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 

 

© Hayley J. Nell 2013 

 

 

 



	
   	
   	
   	
   	
  

	
   ii	
  

Abstract 

Accumulation of beta-amyloid (Aβ) in the brain is a major contributor to the 

cellular pathology and cognitive impairment observed in Alzheimer’s disease 

(AD). In part, Aβ exerts its toxic effects by increasing reactive oxygen species 

(ROS) and neuroinflammation in the brain. Aging, a major risk factor for AD is 

also associated with increased production of ROS. This study investigated the 

age-related pathological response to Aβ toxicity and examined whether catalase-

SKL (CAT-SKL), a genetically engineered derivative of the peroxisomal 

antioxidant enzyme catalase, is able to reduce Aβ toxicity. Bilateral 

intracerebroventricular (icv) injections of the Aβ25-35 peptide was used to model 

Aβ toxicity in 3, 6 and 9 months old male Wistar rats. A subset of 6 months old 

rats undergoing CAT-SKL treatment received CAT-SKL injections 

intraperitoneally (ip) once a week for four consecutive weeks. Control animals 

received bilateral icv injections of the reverse physiologically inactive Aβ35-25 

peptide. Spatial learning and reference memory were assessed using the Morris 

Water Maze (MWM); histopathological and immunohistochemical analyses were 

used to evaluate neuroinflammation, and neuronal degeneration. Aβ25-35 icv 

administration in animals 6 and 9 months of age resulted in increased microglia 

activation and decreased number of cholinergic neurons in the basal forebrain 

and loss of neuronal integrity in the hippocampus in comparison to Aβ25-35 

induced pathology in 3 months old animals. CAT-SKL treatment significantly 

decreased microglia activation and reduced cholinergic neuronal loss in the basal 

forebrain. Aβ25-35 animals showed deficits in long-term reference memory in the 

MWM, which was effectively ameliorated in Aβ25-35 animals treated with CAT-

SKL. These findings demonstrate the importance of taking into consideration 

animal age when modeling Aβ toxicity, and provides support for the use of CAT-

SKL in reducing neuroinflammation and long-term reference memory deficits 

induced by Aβ25-35 in the rat.    

Key Words: Alzheimer’s disease, Aβ, Neuroinflammation, Oxidative Stress, 

H2O2, Catalase 
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1.1 Alzheimer’s Disease 

Alzheimer’s disease (AD) is a neurodegenerative disorder and is the most 

common cause of dementia in the elderly. Clinically, AD manifests itself in the 

early stages as impairments in learning and memory. As the disease progresses 

language, judgment, visuo-spatial skills and complex cognition are impaired, 

compromising the ability of the affected individual to carry out the activities of 

their day-to-day lives (Forstl and Kurz, 1999; Marcello 2008). AD is an age-

related disease with the prevalence rising with increasing age. At present, 5-8% 

of Canadians over the age of 65 have AD, rising to approximately 30-50% of 

Canadians over the age of 85 (Smetanin et al., 2009). In 2006, there were 26.6 

million cases of AD worldwide, a number predicted to increase to 106.8 million by 

2050, due to the aging world population (Brookmeyer, 2007). The number of 

Canadians impacted by AD will continue to grow each year as the proportion of 

the population over 65 increases. Therefore, the need to better understand the 

pathophysiology of this age-related disease, and to find ways to delay the onset 

and slow the progression of this disease is of utmost importance. 

Alzheimer’s disease was first described by Alois Alzheimer in 1907 when 

he presented the progressive symptoms and mental deterioration of his patient 

Auguste D that left her delusional, aggressive and unable to remember recent 

events. Following her demise, he noted overt neurofibrillary tangles and neuritic 

plaques in her brain (Stelzmann et al., 1995). It wasn’t until 1984 however, that it 

was discovered that beta-amyloid peptide (Aβ) was the primary protein 

component of plaques (Glenner and Wong, 1984). Today, the histopathological 

hallmarks of AD include the presence of extracellular amyloid plaques, 

intracellular neurofibrillary tangles, inflammation, neuronal degeneration and loss, 

and synaptic dysfunction and failure (Selkoe, 2001; Querfurth and LaFerla, 

2010). Plaques are composed of insoluble extracellular aggregates of Aβ, a 

sticky peptide generated from the proteolytic cleavage of amyloid precursor 

protein (APP). Neurofibrillary tangles are the result of hyper-phosphorylation of 

the microtubule stabilizing protein tau (Hardy and Selkoe, 2002).  
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1.2 Genetics and Risk Factors  

The cause of AD is thought to be due to complex interactions between 

multiple genetic, and environmental factors. Autosomal dominant mutations in 

the amyloid precursor protein (APP), presenilin-1 and presenilin-2 (PS1, PS2) 

encoding genes have been identified and are known to cause early-onset (<60 

years) familial AD. However, the majority of AD cases are classified as sporadic 

and late-onset (>60 years) with the familial forms only accounting for 1-10% of 

AD cases (Campion et al., 1999; Selkoe, 2001). Apart from the earlier age-of 

onset for autosomal dominant forms of familial AD, both familial and sporadic AD 

progress in highly similar manners, with the clinical manifestations and 

pathophysiology of the disease processes usually being indistinguishable 

between the two types (Selkoe, 2001).  Aside from the mutated genes 

implicated in familial AD, the most important genetic risk factor for AD is 

inheritance of the E4 allele of apolipoprotein E (apoE), the primary cholesterol 

transporter in the brain. Inheritance of two apoE4 alleles significantly increases 

the lifetime risk and lowers the age of onset of AD (Corder et al., 1993; 

Morishima-Kawashima et al., 2000). The lifetime risk estimate of developing AD 

for individuals with 2 copies of the apoE4 allele is around 60% by the age of 85, 

in comparison to those individuals with 2 copies of the apoE3 allele whose risk of 

developing AD by the age of 85 is around 10% (Genin et al., 2011).  

Aging is the most important nongenetic risk factor for late-onset AD. Aging 

is associated with oxidative stress, glial activation, increased production of 

inflammatory mediators, decreased antioxidant functioning and accumulation of 

modified proteins and lipids, all of which take a toll on the brain (Wyss-Coray and 

Musck, 2002). However, despite all the changes that accompany the aging 

process, aging alone is not sufficient to initiate the disease process, some 

precipitating event is required. Risk factors that could be potential triggers for 

late-onset AD include but are not limited to; traumatic brain injury, diabetes 

mellitus, obesity, hyperlipidemia, hypertension, transient ischemic attacks, stroke 

and atherosclerosis (Grammas, 2011; Herrup 2010). Of these many are vascular 
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risk factors, suggesting that neurovascular dysfunction may contribute to the 

onset and/or progression of neurodegenerative events in AD (Grammas, 2002; 

2011).  

1.3 Vulnerable brain regions in Alzheimer’s disease  

AD causes a large loss in brain weight and volume, with vulnerable 

neuronal populations and brain areas being affected more than others (Huang 

and Mucke, 2012). Specifically, AD causes neuronal degeneration and loss in 

regions of the brain important for memory and learning with areas including the 

hippocampus, frontal cortex and limbic areas being particularly vulnerable 

(Marcello et al., 2008; Venkateshappa et al., 2012). Neuronal loss in these 

regions leads to significant impairments in intellectual abilities that are severe 

enough to disrupt social and occupational functioning (Gotz et al., 2011). One of 

the first neuronal populations identified as being vulnerable in AD was neurons 

synthesizing and releasing acetylcholine. Changes in activity of synthetic choline 

acetyltransferase and degradative acetylcholinesterase in the limbic and cerebral 

cortices along with loss of cholinergic cell bodies in the subcortical nuclei that 

project to these regions has been demonstrated in both human AD brains and in 

animal models of the disease (Selkoe, 2001). Specifically, degeneration of 

cholinergic neurons in the basal forebrain, which provides major cholinergic 

inputs to the hippocampus and neocortex, is thought to be one of the first 

neuronal populations affected in the disease process (Whitehouse et al., 1982; 

Coyle et al., 1983; Pearson et al., 1983; Schliebs, 2005). The basal forebrain 

cholinergic system is comprised of cell bodies in the medial septal nucleus 

(MSN), the vertical and horizontal bands of Broca (VDB, HDB) and the nucleus 

basalis of Meynert (NM) (Reviewed by Collerton, 1986; D’Hooge and De Deyn, 

2001; Auld et al., 2002). Clinically, basal forebrain cholinergic deficits positively 

correlate with cognitive impairments and behavioral disturbances in human 

patients with dementia (Perry et al., 1978; Collerton, 1986; Minger et al., 2000).  

Cholinergic deficit has been reported as a result of Aβ administration, 

suggesting Aβ may contribute to cholinergic dysfunction. Both single injections 
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and chronic intracerebroventricular infusion of Aβ have been shown to induce 

degeneration of cholinergic neurons in the basal forebrain and cause memory 

impairment in rats (Vaucher et al., 2001; Stepanichev et al., 2004). In addition to 

significant neuronal loss, studies have demonstrated decreases in choline 

acetyltransferase activity and acetylcholine release in the basal forebrain in 

response to Aβ administration; implicating Aβ as a contributor to basal forebrain 

cholinergic system neuropathology (Auld et al., 2002).  The severe cholinergic 

degeneration observed in AD patients lead to the development of drugs focusing 

on enhancing acetylcholine levels. Currently, the only drugs approved to date for 

treatment of AD in the United States target this neuronal population (Selkoe, 

2001; Auld et al., 2002; Donev et al., 2009).  

The hippocampus, a region of the brain that plays a key role in cognitive 

functioning, is one of the brain regions most vulnerable to the aging process, and 

demonstrates substantial AD pathology. Both in humans and in animal models of 

AD, the severity of cognitive decline is positively correlated with the extent of 

structural and functional modifications occurring in the hippocampus (Gallagher 

and Nicolle, 1993; Landfield, 1988; Hayakawa et al., 2007).  In the human AD 

brain, substantial neuronal loss occurs in the hippocampus, particularly in the 

CA1 region (West et al., 1993; 2004). However, preclinical AD brains are not 

associated with significant neuronal loss in the CA1 or any other subdivisions of 

the hippocampus.  Thus, while the hippocampus is one of the first regions of the 

brain to demonstrate AD pathology, including Aβ deposition and tau pathology, 

neuronal loss in the hippocampus only occurs later in the disease process. Mice 

genetically altered to express the genes associated with familial AD (APP, PS1, 

PS2), show inflammation and substantial amyloid deposition in the hippocampus, 

most notably in the CA1, and CA3 hippocampal regions. However, despite the 

pathology and cognitive decline shown in transgenic mouse models of AD they 

demonstrate correspondingly little neurodegeneration (Abramowski et al., 2012), 

suggesting they are models of the earlier, preclinical stages of AD.  
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1.4 Beta amyloid  

Aβ is a peptide of 37-43 amino acids that is generated by proteolytic cleavage 

of the amyloid precursor protein (APP) by the action of β-and γ-secretases (Shoji 

et al., 1992; Haass and Selkoe, 1993). The physiological role of APP, a 

transmembrane protein, remains poorly understood, however it is thought to be 

involved in cell-cell interactions and cell-substrate adhesions (Reviewed by 

Nalivaeva and Turner, 2013). APP is highly conserved in evolution and 

expressed in all mammals in which it has been sought (Selkoe 2001; Jacobsen 

et al., 2009). Production of Aβ is a normal cellular event, and can be detected in 

both the cerebrospinal fluid and plasma of healthy humans throughout life 

(Seubert et al., 1992; Shoji et al., 1992). Recent studies have demonstrated that 

at normal physiological concentrations Aβ oligomers can positively regulate 

learning and memory (Lublin and Gandy, 2010).  However, altered protein-

processing resulting in abnormal Aβ accumulation has inextricably been tied to 

the neuropathology of AD. This accumulation can be caused by overproduction 

of Aβ as seen in the familial forms of the disease (Citron et al., 1992; Cai et al., 

1993; Bentahir et al., 2006), or due to the inability to properly clear Aβ (Hardy 

and Selkoe, 2002; Mawuenyega et al., 2010). Aβ is produced when β-secretase 

cleaves APP to generate a soluble version of APP (sAPPβ) and a 99-amino acid 

carboxy-terminal fragment that remains membrane bound (Seubert et al., 1993). 

The carboxy-terminal fragment can then be subsequently cleaved in the middle 

of the transmembrane domain by γ-secretase to produce Aβ (Haass et al., 1992; 

Haass and Selkoe 1993). The cleavage by γ-secretase at the carboxy-terminus is 

heterogeneous and dictates the length of the Aβ peptide produced. Following the 

non-amyloidogenic pathway APP is cleaved within the Aβ domain by α-

secretase, which precludes Aβ generation (Esch et al., 1990; Sisodia 1992; 

Eckman and Eckman, 2007). β-Secretase activity has been attributed to one 

protease, namely beta-site APP-cleaving enzyme 1 (BACE1) (Cai et al., 2001) 

whereas a set of four proteins is required to form the γ-secretase complex.  

Presenilin along with the additional cofactors nicastrin, anterior-pharynx-defective 
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phenotype (APH-1) and PS-enhancer (PEN-2) together form the proteolytic γ-

secretase complex (De Strooper, 2003). 

 Aβ has the ability to spontaneously aggregate into multiple coexisting 

physical forms. Among these are Aβ oligomers (2-6 peptides) which can fuse to 

form intermediate amyloid assemblies. Aβ can also form fibrils, which make up 

the β-pleated sheets that go on to become insoluble fibers of advanced amyloid 

plaques (Querfurth and LaFerla, 2010). Soluble Aβ oligomers identified in the 

brains of AD patients include Aβ1-40 and Aβ1-42. Of the Aβ species, Aβ1-40 is more 

abundantly produced, however Aβ1-42 is considered the more toxic species as it 

is particularly prone to aggregation, and thus much more likely to form oligomers 

(Selkoe 2001; Walsh and Selkoe 2007; Querfurth and Laferla, 2010). Enzymatic 

cleavage of Aβ1-40 by brain proteases can also produce the truncated Aβ 

fragments Aβ25-35 and Aβ25-40 (Kaneko et al., 2001). Aβ25-35 is the shortest Aβ 

peptide sequence that can form β-sheet aggregated structures and retains 

biological activity comparable to full length Aβ (Yankner et al., 1989; Pike et al., 

1995; Millucci et al., 2009).  These truncated Aβ25-35 fragments are present in 

the brains of AD patients, but not in age-matched controls (Kubo et al., 2002). 

The Aβ25-35 fragment is a useful tool for studying Aβ toxicity as it induces similar 

toxicity to that of the full length Aβ fragments, while its shorter length allows for 

better solubility and rapid aggregation into soluble oligomers (Kowall et al., 1992; 

Millucci et al., 2009).  

1.5 The Amyloid Cascade hypothesis 

According to the amyloid cascade hypothesis the progressive 

accumulation and deposition of neurotoxic Aβ in amyloid plaques in the brain is 

thought to be an initiating factor in the pathogenesis of AD  (Hardy and Allsop, 

1991; Hardy and Higging, 1992; Hardy and Selkoe 2002). There are several 

major pieces of evidence implicating Aβ as playing a causative role in AD. One of 

the first was localization of the APP gene to chromosome 21.  Those individuals 

with Down syndrome (trisomy of chromosome 21) demonstrate a neuropathology 

essentially identical to that seen in AD as a result of increased APP expression 
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and consequently higher Aβ levels (Eckman and Eckman, 2007, Walsh and 

Selkoe, 2007).  In the brains of Down syndrome patients the accumulation of Aβ 

precedes tau pathology and neuronal loss. The brains of AD patients also 

consistently show higher levels of both soluble and insoluble Aβ1-40 and Aβ1-42 in 

comparison to the normally aged brain, with Aβ deposition preceding tau 

pathology and neurodegenerative changes (Morishima-Kawashima et al., 2000; 

Eckman and Eckman, 2010). This provides convincing evidence in support of the 

involvement of Aβ in AD, and further suggests that Aβ is one of the initiating 

factors in the pathogenesis of AD.  

Additionally, the genes identified as playing a role in familial forms of AD, 

including the APP and presenilin genes, all increase the production and 

accumulation of Aβ. Numerous studies have since demonstrated that mice 

genetically engineered to overexpress human APP show a time-dependent 

increase in extracellular Aβ and demonstrate cognitive decline and 

neuropathological changes that mimic what is seen in human AD patients 

(Yamada and Nabeshima, 2000; Gotz et al., 2004). Aβ peptides have also been 

shown to be toxic to hippocampal and cortical neurons both in culture and in vivo 

(Pike et al. 1991; Lambert et al. 1998; Hoshi et al., 2003; Deshpande et al. 2006). 

The precise molecular mechanisms by which Aβ exerts its toxicity is still unclear 

however, the addition of toxic forms of Aβ in neuronal culture results in 

membrane damage, calcium ion influx, oxidative free radical production and 

damage, inflammation and apoptosis (Tabner et al., 2005; Deshpande et al. 

2006).   

Despite the evidence for the contribution of Aβ to AD pathology, accumulation 

of Aβ has also been reported in the brains of the elderly whose cognitive 

functioning is still intact (Dickson et al., 1992; Aizenstein et al., 2008). Moreover, 

amyloid plaque load determined histopathologically and radiologically, does not 

correlate well with severity of dementia (Walsh and Selkoe, 2007; Huang and 

Mucke 2012). This lack of correlation between plaque load and cognitive 

impairment was further substantiated by studies in APP transgenic mice where 
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memory impairment and changes in neuron function are observed well before the 

first signs of amyloid plaque deposition (Walsh and Selkoe, 2007).  This lead to 

a conundrum regarding the exact role of Aβ in the disease process, as Aβ plaque 

burden was not coinciding with cognitive deficits yet Aβ was inextricably tied to 

the disease process. In 1995, a study by Oda et al., suggested that soluble 

complexes of Aβ, rather than Aβ fibrils were the toxic Aβ species. Further support 

for the idea that soluble Aβ oligomers had neurotoxic properties came in 1998, 

when a group demonstrated that Aβ oligomers rapidly inhibit long-term 

potentiation, an experimental paradigm representative of memory and synaptic 

plasticity (Oda et al., 1995; Lambert et al., 1998; Marcello et al., 2008). Their 

work and the subsequent studies of others lead to an update on the amyloid 

cascade hypothesis that suggested early Aβ protein assemblies of various types, 

including protofibrils, soluble oligomers and Aβ derived diffusible ligands may be 

the true neurotoxic forms of Aβ (Tabner et al., 2005; Krafft and Klein, 2010).  

This has since been supported by the finding that compared to the normally aged 

brain, the AD brain has higher levels of soluble Aβ and moreover, the extent of 

synaptic loss and severity of cognitive decline correlates with the amount of 

soluble Aβ in the brain (Eckman and Eckman, 2007; Zussy et al., 2013).  

1.6 Cerebral amyloid angiopathy and vascular dysfunction in AD 

Epidemiological, clinical, pathological and neuroimaging studies have 

implicated neurovascular dysfunction as playing a role in the pathogenesis of AD 

(Dickstein et al., 2010). Studies in humans and animal models of AD suggest that 

cerebrovascular dysfunction may precede cognitive decline and the onset of 

neurodegenerative changes and exacerbate underlying AD pathology (Bell and 

Zlokovic, 2009; Merlini et al., 2011; Murray et al., 2011). In particular, elevated 

levels of Aβ have been closely linked to vascular changes, and implicated in the 

vascular pathology of AD. Aβ plaques accumulate on and around cerebral 

capillaries (Bell and Zlokovik, 2010) and 70-90% of AD patients show amyloid 

deposition in the small arterioles, venules and capillaries within the cerebral 

cortex (Selkoe, 2001; Humpel, 2011).  
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Amyloid deposition in and along the walls of the cerebral blood vessels 

leads to a condition called cerebral amyloid angiopathy (CAA). CAA has been 

linked to cognitive impairment, and the incidence of CAA increases with age, with 

10-40% of the elderly population without AD showing amyloid deposition in the 

microvessels of the brain (Bell and Zlokovic, 2009).  CAA can lead to narrowing 

of the blood vessels resulting in hypoperfusion, capillary abnormalities, disruption 

and breakdown of the blood-brain barrier and micro-aneursyms (Dickstein et al., 

2010; Querfurth and LaFerla, 2010; Humpel, 2011). CAA has also been shown to 

be a significant cause of cerebral hemorrhage in the elderly population (Bell and 

Zlokovic, 2009). Mouse models of AD harboring APP mutations also demonstrate 

CAA, with Aβ deposits in the neocortical, hippocampal and thalamic vessel walls 

(Calhoun et al., 1999; Miao et al., 2005).    

1.7 Neuroinflammation 

Aβ deposition and intracellular tau accumulation are capable of triggering 

pathological cascades in the brain that set it down a destructive path to cell death 

and a diseased state. Such is the case with the brain’s dysregulated 

inflammatory and oxidative response to Aβ toxicity. It has been well established 

that neuroinflammation is involved in the pathogenesis of AD (Akiyama et al., 

2000; Wyss-Coray and Mucke, 2002; Tuppo and Arias, 2005). In the AD brain, 

up-regulated inflammatory mechanisms are co-localized with those regions of the 

brain exhibiting high levels of AD pathology. Moreover, in regions of the brain 

showing low levels of AD pathology, inflammatory mediators are absent or 

minimal (Lue et al., 1996). Common neuroinflammatory events include; up-

regulation of inflammatory cytokines and chemokines, activation of the 

complement system, release of reactive oxygen species (ROS) and activation 

and proliferation of microglia and astrocytes (Akiyama et al., 2000). Aβ is thought 

to be one of the key contributors to the chronic inflammatory response in the AD 

brain. Evidence for this comes from analysis of human AD brains where 

inflammatory mediators are most highly expressed in the vicinity of Aβ deposits 

and from studies that have demonstrated Aβ aggregates activate a variety of 
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inflammatory pathways, including Aβ-mediated activation of microglia and 

astrocytes as well as the complement pathway (Akiyama et al., 2000; Bamberger 

and Landreth, 2002; Wyss-Coray and Mucke, 2002). At what point inflammation 

arises in the course of AD had not yet been fully resolved.  However, Aβ and 

inflammation appear to work in a self-propagating cycle, with inflammation 

stimulating the production of Aβ, and Aβ activating and promoting the release of 

inflammatory mediators (Grammas, 2011).  

Microglia and astrocytes are the cell mediators of inflammation in the brain. 

Changes in microglia morphology from a ramified (resting) state to that of the 

amoeboid (active) state, along with astrocytosis, involving increases in number 

and size of astrocytes have been demonstrated in AD (Glass et al., 2010). 

Astrocytes are the most common cells in the brain and perform many essential 

functions under normal physiological conditions including maintaining the 

functional connectivity of neuronal synapses, regulating the activity of neurons 

and providing nutrients to the nervous tissue.  The precise role of astrocytes in 

the inflammatory process is not fully understood, however, they have been 

shown to secrete pro-inflammatory products in response to Aβ toxicity, and 

accumulate around Aβ deposits in the brain. Microglia are the ‘macrophages’ of 

the brain, serving as the immunocompetent defense cells orchestrating the 

central nervous system (CNS) immune response. Activated microglia surround 

and invade Aβ plaques in both the human AD brain and in APP transgenic mice 

that develop Aβ plaques (Reviewed by Akiyama et al, 2000; Herrup, 2010). 

Initially, this neuroinflammatory response is involved in the clearance of Aβ from 

the brain, with the phagocytic microglia actively engulfing and degrading Aβ.  

However, after prolonged activation microglia have been shown to release a 

variety of pro-inflammatory mediators, and potentially neurotoxic substances.  

These include secretion of the cytokines interleukin-1, interleukin-6 and tumor 

necrosis factor α, secretion of the chemokines interleukin-8, and macrophage 

inflammatory protein-1 α along with cell surface expression of MHC class II, and 

activation of the complement pathway (Akiyama et al, 2000; Tuppo and Arias, 

2005; Dumont and Beal 2010; Querfurth and LaFerla, 2010). Inflammatory cells 
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also have the potential to produce large amounts of ROS, including superoxide 

radicals and hydrogen peroxide (H2O2). An increased level of ROS leads to 

oxidative stress, further exacerbating the neuroinflammatory process (Akiyama et 

al., 2000; Massaad 2011).  

The substantial evidence implicating inflammation in the pathogenesis of 

AD lead to the idea that therapeutic strategies targeting inflammation would be 

beneficial in slowing the onset and progression of AD. In support of this, 

retrospective studies demonstrated that nonsteroidal anti-inflammatory drugs 

(NSAIDs) lower the lifetime risk of AD by 30-60% and further slow the 

progression of the disease (Herrup, 2010; Querfurth and Laferla, 2010). While 

these results were initially encouraging, numerous randomized clinical trials of 

NSAIDs have failed to show any evidence for the reduction of AD pathology or 

the slowing of cognitive decline (Herrup, 2010; Querfurth and LaFerla, 2010). In 

part, this failure of prospective human trials of NSAIDs could be attributed to the 

fact that these trials were only begun after the disease had already progressed 

and AD symptoms were already manifest (Herrup, 2010). Instead targeting 

inflammatory pathways at the initial or preclinical stages of the disease might be 

more effective, as this would aid in preventing or slowing the progression of the 

disease, rather than attempting to reverse existing pathology.      

1.8 A role for peroxisomes and mitochondrial dysfunction in Alzheimer’s 
disease 

Closely related to inflammation in the brain, is the role of ROS. There is 

mounting evidence that oxidative stress resulting from free radical damage plays 

a role in the pathology of AD and other neurodegenerative diseases. When 

considering the role of oxidative stress in AD, one has to examine the organelles 

primarily responsible for the production and elimination of ROS—the 

mitochondria and peroxisomes. Mitochondria are considered the powerhouses of 

the cell due to their role in adenosine triphosphate (ATP) production however 

they are also involved in many other cellular functions including calcium 

regulation, alteration of reduction-oxidation potential of cells, free radical 
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scavenging, and apoptosis. During the process of ATP production, a subset of 

electrons transferred through the respiratory chain form ROS. Under normal 

physiological conditions these ROS are kept in check by the endogenous 

antioxidant enzymes including superoxide dismutase, catalase, glutathione 

reductase, and glutathione peroxidase. However, with aging mitochondrial 

changes occur, resulting in a decline in electron transport chain function and an 

increase in free radical production. Aβ has also been shown to interact with 

mitochondria, inhibiting key mitochondrial enzymes, having detrimental effects on 

mitochondrial functioning. Aβ associated mitochondrial dysfunction has been 

reported in AD postmortem brains, in transgenic mouse models of AD and in 

cellular Aβ toxicity work. Consequently, dysfunctional mitochondria release free 

radicals, which in both the aging and AD brain cause substantial oxidative stress 

(Pagani and Eckert, 2010; Swerdlow, 2011; Leuner et al., 2012; Mao et al., 

2012).  

Peroxisomes are subcellular organelles present in almost all eukaryotic 

cells, including neurons and glial cells in the brain. They perform a variety of 

anabolic and catabolic functions including the β-oxidation of very long chain fatty 

acids, biosynthesis of plasmalogens, and the metabolism of saturated and 

polyunsaturated fatty acids. Additionally, they play a role in both the production 

and removal of ROS in the cell under both physiological and pathological 

conditions. A decline in peroxisomal function has been associated with cellular 

aging and in age related neurodegenerative diseases, with a resultant increase in 

oxidative stress and neuroinflammation as a consequence (Lizard et al., 2011; 

Titorenko and Terlecky, 2011). Evidence for peroxisomal dysfunction in AD 

comes from in vitro and in vivo work. In vitro, Aβ toxicity was shown to result in a 

loss of peroxisomes in primary rat hippocampal neurons.  Moreover, treatment 

of Aβ challenged hippocampal neurons with a peroxisomal proliferator was 

shown to protect them from Aβ toxicity by reducing neuronal death, indicating 

that proper peroxisomal functioning may be neuroprotective (Santos et al., 2005).  

In a transgenic mouse model of AD significant peroxisomal alterations were 

observed in rats 3 months of age, when no apparent neuroanatomical or 
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cytological signs of the disease were present, suggesting peroxisomal 

dysfunction may be one of the earlier contributors to the disease process (Cimini 

et al., 2009). Peroxisome-related dysfunction has also been reported in the 

postmortem brain tissue of patients with AD (Kou et al., 2011). The exact 

contribution that mitochondrial and peroxisomal dysfunction plays in aging and 

AD is yet to be elucidated, however it is clear that impairment in these organelles 

leads to increased levels of free radicals and resultant oxidative stress.  

1.9 Reactive Oxygen Species and Oxidative Stress 

Oxidative stress occurs when free radical production exceeds antioxidant 

defense mechanisms leading to oxidative damage of various cellular components 

including oxidation of lipids, proteins, and nucleic acids. The brain consumes 

approximately 20% of the body’s total oxygen due to its high metabolic demand 

and need for ATP. This disproportionately high level of oxygen consumption 

combined with the brains abundant lipid content and relative scarcity of 

antioxidant enzymes compared with other organs leaves the brain particularly 

susceptible to increased production of ROS and oxidative stress (Markesbery 

and Carney 1999, Su et al., 2008; Massaad 2011).  The aging process is also 

associated with high levels of ROS, along with a reduction in the ability to defend 

against oxidative stress (Su et al., 2008; Massaad, 2011).  

Regions of the aging brain that have been shown to be particularly 

susceptible to neurodegeneration demonstrate increased oxidative damage and 

lowered antioxidant functioning. A study by Venkateshappa et al., showed 

increased levels of protein oxidation and protein nitration in the hippocampus and 

frontal cortex compared to the cerebellum with increasing age in the human 

brain. Moreover, these changes were associated with a decrease in activity of 

the antioxidant enzymes superoxide dismutase and catalase (Venkateshappa et 

al., 2012). Age-related alterations in antioxidant enzyme activities have also been 

demonstrated in rats; with decreases in superoxide dismutase and catalase 

activities being noted in the cerebral cortex of aging animals (Alper et al., 1998).  
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Reactive oxygen species are generated in a number of cellular locations, 

including the aforementioned organelles—peroxisomes and mitochondria. They 

are produced as a normal consequence of cellular activity, as is the case during 

aerobic metabolism where ROS are produced in the reduction of molecular 

oxygen to water and in peroxisomes during β-oxidations of fatty acids 

(Markesbury & Carney, 1999; Mohsenzadegan & Mirshafiey, 2011; Terlecky et 

al., 2012). A number of ROS exist including the superoxide anion (O�
2), hydrogen 

peroxide (H2O2), singlet oxygen and the hydroxyl radical (�OH) (Markesbury & 

Carney, 1999; Schrader and Fahimi, 2006). Typically ROS are categorized as 

neurotoxic molecules, exerting their detrimental effects via oxidation of essential 

molecules. However, ROS are also necessary for normal cellular functioning and 

have been shown to play important roles in signaling, synaptic plasticity, and in 

the immune system where they contribute to an organism’s defense against 

microbial agents (Massaad 2011; Mohsenzadegan & Mirshafiey, 2011).  

ROS are usually maintained at low physiological levels by antioxidants 

and antioxidant enzymes. Some of the enzymatic antioxidants synthesized by 

cells include superoxide dismutase, glutathione peroxidase, glutathione 

reductase and catalase (Markesbury and Carney, 1999; Su et al., 2008). 

Reduction of molecular oxygen yields the superoxide anion, which is converted 

to H2O2 by superoxide dismutase. Hydrogen peroxide can then either be reduced 

to form the highly reactive hydroxyl radical, or can be broken down by catalase or 

glutathione peroxidase (Markesbery and Carney, 1999).  In addition a number of 

nonenzymatic antioxidants exist including α-tocopherol (vitamin E), ascorbic acid 

(vitamin C), glutathione, and carotenoids, all of which assist in maintaining ROS 

levels. These antioxidants are able to remove and or repair molecules that are 

oxidized, defending cells against free radical damage.  However, when ROS 

levels exceed the antioxidant capabilities of the cell, oxidative damage results.  

The brains high demand for oxygen, coupled with increased levels of ROS 

accompanying the aging process, set the aging brain up to be particularly 

vulnerable to oxidative stress. Thus, it comes as no surprise that oxidative stress 
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contributes to the pathophysiology of AD, an age-related neurodegenerative 

disease. In fact, evidence indicates that one of the earliest pathological events in 

AD is oxidative damage to the brain (Tabner et al., 2005). In transgenic mouse 

models of AD, markers of lipid and protein oxidation are increased prior to 

amyloid deposition (Resende et al., 2008). The early involvement of oxidative 

stress in AD is further supported by evidence in Down’s syndrome patients where 

oxidative damage has been shown to precede Aβ build up (Nunomura et al., 

2000; Milton 2001).  

Numerous studies have demonstrated oxidative damage in the brains of 

AD patients, including increased products of lipid peroxidation, protein oxidation 

and oxidative damage to nucleic acids (Markesbury and Carney, 1999). Two of 

the major products of lipid peroxidation in the AD brain are 4-hydroxy-2-

transnonenal (HNE) and acrolein, both of which are α, β-unsaturated aldehydes, 

capable of binding to brain proteins and significantly altering their structure and 

function (Butterfield et al., 2001). HNE has been shown to be elevated in multiple 

brain regions and in ventricular cerebrospinal fluid in AD patients compared to 

age matched controls (Sayre et al., 1997; Markesbery and Lovell 1998).  

Additionally, HNE levels are increased in rat hippocampal neurons in response to 

Aβ toxicity (Mark et al., 1997), and HNE has been shown to damage cholinergic 

neurons and inhibit choline acetyltransferase activity in the basal forebrain 

(Bruce-Keller et al., 1998). Acrolein is also reported to be increased in the brain 

in AD compared to age matched controls, and has been shown to be toxic to 

primary hippocampal cultures (Lovell and Markesbery, 2001). The most 

commonly oxidized DNA base product as a result of ROS attack is 8-hydroxy-2’-

deoxyguanosine (8-OHdG). 8-OHdG levels are elevated in the AD brain and in 

the cerebral spinal fluid of AD subjects (Lovell and Markesbery, 2001). Moreover, 

immunohistochemical detection has revealed that 8-OHdG and 8-

hydroxyguanosine (8-OHG) markers of oxidatively damage DNA and RNA 

respectively, are restricted to hippocampal and neocortical neurons in the AD 

brain, the same neurons known to be vulnerable and to degenerate in AD 

(Nunomura et al., 1999; Markesbery and Carney, 1999).  
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1.10 Beta-amyloid and H2O2  

Of particular relevance to oxidative stress and AD is the contribution of the Aβ 

peptide to the generation of ROS (Figure 1). Numerous studies have 

demonstrated the ability of Aβ to generate hydrogen peroxide (H2O2) in neuronal 

cell cultures (Behl et al., 1994; Goodman et al., 1994; Manelli and Puttfarcken, 

1995). The production of H2O2 has been shown to occur early in the Aβ 

aggregation process, when oligomers and protofibrils are formed, while mature 

Aβ fibrils lack the ability to generate H2O2 (Tabner et al., 2005).  Included among 

the amyloidogenic proteins and peptides shown to have the ability to generate 

H2O2 are Aβ1-40, Aβ1-42 and Aβ25-35 while controls, including scrambled and 

reverse peptides were shown to lack any significant H2O2 producing ability when 

tested under the same experimental conditions (Tabner et al., 2005).  Hydrogen 

peroxide is a stable, uncharged and freely diffusible ROS that is an effective 

oxidant for many biological molecules. Its stability and diffusion properties allow 

H2O2 to move within and between cells with relative ease, enhancing its toxicity 

(Milton, 2004). Hydrogen peroxide is readily converted into the highly reactive 

hydroxyl radical in the presence of iron (Fe2+) or copper (Cu+) (Milton, 2004; 

Tabner et al., 2005). The reaction of iron with H2O2 to produce the hydroxyl 

radical is termed the Fenton reaction (Markesbury and Carney, 1999).  The 

hydroxyl radical in turn is then capable of damaging carbohydrates, DNA, protein 

and lipids (Milton, 2004).  

The mechanism for the generation or rise in H2O2 levels associated with Aβ 

toxicity remains unclear. However, it may involve direct formation of ROS by Aβ 

with the involvement of metal complexes, via activation of the enzymes that can 

directly or indirectly generate ROS, or as a result of reduced degradation of H202 

in Aβ challenged cells (Milton, 2001; 2004; Habib 2010). Nonetheless, the ability 

of Aβ to increase H2O2 accumulation in cells suggests that H2O2 or one of its 

metabolites plays a role in the cytotoxicity of Aβ (Behl et al., 1994; Milton, 2004; 

Varadarajan et al., 2000). 
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Figure 1. Role of Aβ in the production of reactive oxygen species (ROS) 
and the resultant oxidative stress in Alzheimer’s disease. Genetic factors 

including amyloid precursor protein (APP) or presenilin mutations and presence 

of apolipoprotein E4 (apoE4) allele or other stressors including vascular risk 

factors (hypertension, transient ischemic attacks, stroke, atherosclerosis) 

contribute to Aβ accumulation in the brain. Aβ toxicity results in increased free 

radical production (particularly H2O2), is associated with mitochondrial and 

peroxisomal dysfunction and activates inflammatory cells, which in turn release 

ROS. An increased level of ROS leads to oxidative damage of lipids, proteins 

and DNA/RNA. Aging also contributes to oxidative stress and has been shown to 

result in mitochondrial and peroxisomal dysfunction along with increased 

production of inflammatory mediators and ROS.   
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The peroxidase enzymes, which remove H2O2, include glutathione peroxidase, 

thioredoxin dependent peroxidases and catalase, all of which are present in the 

brain (Milton, 2004). Of these enzymes degradation of H2O2 is primarily achieved 

by catalase in the peroxisomes and glutathione peroxidase, a cytosolic enzyme 

(Schrader and Fahimi, 2006). In considering the role of oxidative stress in the 

pathophysiology of AD, the balance between the generation and removal of ROS 

by antioxidant enzymes is of utmost importance. Modification of the activities of 

these antioxidant enzymes could be potential pharmacological targets for future 

AD therapy (modified Milton, 2004). 

1.11 Catalase-SKL: a targeted antioxidant approach  

Catalase is heme containing tetrameric enzyme, predominantly found in 

peroxisomes, that catalyzes the conversion of H2O2 to water and oxygen. 

Deficiencies in catalase activity, expression and peroxisomal localization are 

associated with oxidative stress, aging and human disease (Sheikh et al., 1998; 

Wood et al., 2006; Terlecky et al., 2006; Koepke et al., 2007). Catalase is 

targeted to peroxisomes by a type 1 peroxisomal targeting signal (PTS1), with 

the carboxy-terminus residues, lysine-alanine-asparagine-leucine (KANL). This 

targeting sequence is different from the classical PTS1 of other peroxisomal 

enzymes, which have a serine-lysine-leucine (SKL) consensus sequence (Sheikh 

et al., 1998; Koepke et al., 2007). The PTS1 KANL only poorly targets catalase to 

peroxisomes, and as cells age it has been shown that catalase is increasingly 

mislocalized to the cytosol (Koepke et al., 2007). The poor targeting efficiency of 

the KANL sequence coupled with the mislocalization of catalase to peroxisomes 

as cells age is associated with accumulation of H2O2 in cells and resultant 

oxidative injury. In order to better target catalase to peroxisomes, a genetically 

engineered variant of the enzyme, catalase-SKL (CAT-SKL), has been 

developed (United States patent 7601366). This recombinant enzyme is able to 

enter cells and traffic to organelles (mostly peroxisomes) where it is able to 

efficiently metabolize H2O2 (Koepke et al., 2007; Young et al., 2007; Price et al., 

2009; Undyala et al., 2011). Use of CAT-SKL has been shown to restore 
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catalase levels and oxidative equilibrium in hypocatalesemic fibroblasts (Wood et 

al., 2006), delay the appearance of aging markers in human fibroblasts (Koepke 

et al., 2007), reduce tumor necrosis factor α (TNF-α) induced production of 

inflammatory cytokines in primary human keratinocytes (model of inflammatory 

skin disease) (Young et al., 2008) and protect cardiac myocytes from hypoxia-

reoxygenation and ischemia reperfusion injury (Undyala et al., 2011). 

The anti-inflammatory and anti-oxidant properties of CAT-SKL demonstrated 

in vitro, make it a viable candidate for targeting oxidative stress and inflammation 

in vivo. The use of CAT-SKL may therefore be beneficial in reducing Aβ toxicity 

since Aβ mediates its toxicity in part by increasing H2O2 levels and triggering 

neuroinflammatory cascades. The use of catalase to protect cells from Aβ toxicity 

has already been demonstrated in cell cultures, with the addition of catalase to 

the extracellular environment or transfection of cells with catalase decreasing the 

toxicity induced by Aβ (Behl et al., 1994; Goodman et al., 1994; Manelli and 

Puttfracken, 1995; Zhang et al., 1996). This protection was attributed to 

decreases in H2O2 levels both inside and outside the cell (Habib et al., 2010). 

Furthermore, inhibition of cellular catalase enhances Aβ1-42 and Aβ25-35 toxicity in 

both neuronal and non-neuronal cell lines (Milton, 2001).  

In cell cultures, Aβ1-42 and Aβ25-35 have been shown to bind with high affinity to 

catalase both in peroxisomes and in the cytosol. Specifically, catalase is able to 

directly bind the cytotoxic region of Aβ. This Aβ-catalase binding results in 

significant inhibition of H2O2 breakdown by catalase, leading to ROS 

accumulation and toxicity in cells (Milton, 1999; Milton, 2001; Habib et al., 2010). 

Catalase-amyloid interaction also appears to occur in the brains of AD patients, 

where catalase is associated with senile plaques (Pappolla et al., 1992; Lovell et 

al., 1995). Thus, increasing catalase levels in the brain may aide in reducing the 

toxicity induced by the Aβ peptide, with lowered ROS production, decreased 

neuroinflammation and reduced neuronal dysfunction as a result.  
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1.12 Modeling AD in animals  

The complex pathophysiology of AD makes modeling the disease in 

animals a challenge. Nonetheless, a number of transgenic and non-transgenic 

animal models of AD exist, each with their own strengths and limitations. While 

these animal models are incapable of simulating all aspects of the disease 

process, they are of value in aiding our understanding of aspects of the disease. 

Rodents genetically engineered to overexpress genes associated with AD 

including APP, PS1/PS2, tau, and apoE isoforms, either individually or in 

combination, have been particularly informative. These transgenic animals have 

been shown to develop early AD-like pathology including Aβ deposits, tau 

immunoreactivitity along with progressive impairments in memory and learning 

(Reviewed by Yamada and Nabeshima, 2000; Ashe and Zahs, 2010; Jucker, 

2010). Non-transgenic animal models involving acute injection or continuous 

infusion of Aβ into the rodent brain also exist and have been shown to cause 

brain dysfunction and learning and memory deficits (Reviewed by Yamada and 

Nabeshima, 2000).  

In our lab a non-transgenic rat model of acute icv administration of Aβ25-35 

has been developed and used as a model of AD. Aβ25-35 is the core neurotoxic 

fragment of Aβ, retaining many of the same biological and physical properties of 

the full-length peptide (Yankner et al., 1989; Pike et al., 1995; Millucci et al., 

2009). Use of this truncated peptide has been shown to induce 

neuroinflammation, neuronal cell death, and synaptic loss similar to that seen 

with Aβ1-40 and Aβ1-42 however, its smaller length allows for better solubility and 

rapid aggregation into soluble oligomers (Kowall et al., 1992; Milluci et al., 2009). 

Previous studies in our lab have demonstrated the initial effectiveness of this 

non-transgenic rat model, with enhanced inflammatory responses, and Aβ 

neurotoxicity being observed in the brains of 3 month old rats (Whitehead et al., 

2005a,b; Cheng et al., 2006; Whitehead et al., 2007). Other groups have also 

demonstrated AD-like pathological changes in response to icv Aβ25-35 

administration including glial activation, oxidative stress, hippocampal alterations 
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and memory impairments (Ruan et al., 2010; Zussy et al., 2011; Guo et al., 

2012). Zussy et al assessed the time-course and regional effects of single icv 

injection of Aβ25-35 demonstrating the ability of Aβ25-35 to penetrate through the 

ependymal cells lining the ventricles and reach the brain vasculature. The 

injected peptide was found to locate in the septum, hypothalamus, hippocampus, 

amygdala and various cortical regions and moreover was still present in the brain 

3 weeks after injection (Zussy et al., 2011; Zussy et al., 2012).  

1.13 Rationale: 

Most studies examining the effect of icv injection of Aβ25-35 have done so 

in 3 months old rats. However, AD is a disease of the elderly and apart from 

genetic predisposition, aging is the most important risk factor for AD. With age 

comes increased levels of ROS and decreased antioxidant functioning, amyloid 

accumulation, glial activation, increased peroxisomal and mitochondrial 

dysfunction and alterations in lipid and protein activity in the human brain. Each 

of these age-related changes on their own are not sufficient to cause AD, but 

together they render the brain vulnerable to further insult. Aβ toxicity is one such 

insult thought to drastically alter many of the brain functions already affected by 

the aging process. Therefore, this study investigated the age-related (3, 6 and 9 

month) pathological response to icv administration of Aβ25-35. While the ages of 6 

and 9 months are not considered particularly old for a rodent, they are more 

physiologically relevant ages in terms of animal sexual, skeletal and social 

maturity than are 3 months old animals (Quinn, 2005; Sengupta, 2011).  Thus, 

the first aim of this study was to determine whether the rodent brain is more 

vulnerable to Aβ toxicity at 6 and 9 months than it was at 3 months, with 

particular focus on neuroinflammatory and neurodegenerative changes.  

A number of studies have shown that Aβ exerts its toxicity in part by 

facilitating the formation of ROS, in particular H2O2, with a resultant increase in 

oxidative damage. The aging process itself is also associated with an increase in 

production of free radicals, along with a concurrent decrease in the ability to 

defend against oxidative stress. One of the key enzymes responsible for 
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maintaining oxidative balance in cells is catalase. Catalase is an antioxidant 

enzyme, targeted to peroxisomes, that catalyzes the conversion of H2O2 to water 

and oxygen. Aβ has been shown to inhibit catalase activity in cells, resulting in 

increased H2O2 levels (Milton, 1999; Milton 2001; Habib et al., 2010). Moreover, 

addition of catalase to Aβ challenged cells has been shown to protect cells from 

Aβ toxicity by decreasing levels of H2O2 and reducing protein and lipid oxidation 

(Behl et al., 1994; Manelli and Puttfarcken 1995; Sagara et al., 1996). A 

genetically engineered variant of the enzyme, Catalase-SKL (CAT-SKL), with an 

enhanced peroxisomal targeting signal that is able to enter tissues and cells and 

traffic to peroxisomes has been developed. Use of CAT-SKL in vitro settings has 

demonstrated the antioxidant, anti-inflammatory and anti-aging properties of this 

recombinant enzyme (Koepke et al., 2007; Young et al., 2007; Price et al., 2009; 

Undyala et al., 2011). Since Aβ and catalase-amyloid interactions result in 

increased H2O2 levels, and addition of catalase to cell culture alleviates this 

increase in H2O2, the use of catalase in vivo could be a targeted approach to 

reducing the toxicity induced by Aβ. The second aim of this study was to treat 

rats with CAT-SKL in an attempt to reduce the oxidative stress and 

neuroinflammation induced by Aβ toxicity.  

1.14 Hypothesis and Aims: 

Aim 1: To investigate the age-related pathological response to Aβ25-35 toxicity 

Hypothesis: Rats 6 and 9 months of age will demonstrate a greater pathological 

response to Aβ25-35 toxicity than 3 months old rats, as evidenced by increased 

neuroinflammation, cholinergic deficits, neuronal loss, and vascular impairment. 

Aim 2: To evaluate whether the targeted antioxidant CAT-SKL is able to reduce 

Aβ25-35 toxicity 

Hypothesis: Catalase-SKL treatment will reduce the toxicity induced by Aβ25-35 

administration in the mature rat brain by reducing oxidative stress and 

inflammation, improving neuronal survival, and attenuating cognitive deficits. 
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2.1 Animals 

All experimental procedures were carried out in accordance with the 

guidelines of the Canadian Council on Animal Care and were approved by 

Western University Animal Use Subcommittee. Male Wistar rats (Charles River, 

Montreal Quebec) 3, 6 or 9 months of age were housed at a temperature of 22-

24°C under a 12h:12h light:dark cycle. Rats were provided food and water ad 

libitum. Animals were randomly assigned to treatment groups and were housed 

individually following surgery.  

2.2 Aβ preparation  

Aβ25-35 or the reverse peptide Aβ35-25 was purchased from Bachem and 

dissolved in sterile saline at a concentration of either 4.24µg/µl or 21.2µg/µl and 

then stored at -80°C in 30µl aliquots. Rats received bilateral 

intracerebroventricular (icv) injections of either 100nmol or 500nmol of the toxic 

Aβ25-35 (Bachem, Torrance California) or 100nmol or 500nmol of the reverse 

peptide Aβ35-25. Acute administration of Aβ was as it has been shown by our lab 

and others to induce progressive pathology in the rodent brain (Whitehead et al., 

2005ab; Cheng et al., 2006; Zussy et al., 2011; 2013). Aβ25-35 is the core 

neurotoxic fragment of the full length Aβ1-42 peptide, retaining many of the same 

physical and biological properties (Yankner et al., 1989). Aβ25-35 has been shown 

to induce neurotoxic effects similar to that of the full-length peptide, while its short 

length allows for better diffusion (Kaminsky and Kosenko, 2008). The reverse, 

physiologically inactive, Aβ35-25 peptide was used as the control.  

2.3 Surgery 

Rats were weighed and then anesthetized in a Harvard anesthesia box 

with 3% Isoflurane (Baxter Corporation, Mississauga Ontario) and oxygen. Once 

anaethetized, rats were placed in a David Kopf stereotaxic apparatus, and were 

maintained under gas anesthesia for the duration of the surgical procedure. The 

hair on the surface of the rat’s head was shaved, and soap, ethanol and iodine 

were used to clean and sterilize the surgery site. The skull was exposed and the 
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ear and incisor bars were adjusted so that lambda and bregma were at the same 

height, orienting the head in a flat-skull position.  Bregma was then marked in 

order to map out the injection sites. Injections sites were identified based on the 

following coordinates with respect to bregma (Paxinos & Watson, 1986); -0.8mm 

anterior/posterior, ±1.4mm medial/lateral, and -4mm dorsal/ventral (below dura). 

Once located, small burr holes were made in the parietal bone to allow for 

insertion of the injection cannula. Aβ25-35 or Aβ35-25 (details above) was injected 

bilaterally into the lateral ventricles through a stainless steel cannula attached to 

a glass Hamilton syringe at a rate of 1µl/30 seconds. The injection cannula was 

left in situ for 5 minutes following each injection, and then removed slowly. The 

surgery site was then sutured closed and rats were administered 0.3ml of the 

analgesic Temgesic Buprenorphine hydrochloride subcutaneously and 0.03ml of 

the antibiotic Baytril (Bayer) intramuscularly. Rats body temperature was 

maintained at 37°C on a heating pad for the duration of the surgical procedure. 

Following surgery rats were placed under a heat lamp until they could attain and 

maintain sternal recumbency.  

2.4 Treatment Groups 

For the age-based part of the study animals 3, 6 and 9 months of age 

were assigned randomly to the following treatment groups: low dose Aβ25-35 

(100nmol in 25µl), high dose Aβ25-35 (500nmol in 25µl), or reverse peptide Aβ35-25 

(RP) (100nmol in 25µl). Table 1 lists the number of animals in each of the 

treatment groups that underwent successful surgeries and were used for further 

analysis in the aged study. For the CAT-SKL study, six-month old rats received 

bilateral intracerebroventricular injections of either Aβ25-35 (500nmol in 25ul) or 

the reverse physiologically inactive Aβ35-25 peptide (500nmol in 25µl). Animals 

were randomly assigned to one of four treatment groups: Aβ25-35 +CAT-SKL 

(Aβ+CATSKL), reverse peptide Aβ35-25+ CAT-SKL (RP+CATSKL), Aβ25-35+saline 

(Aβ) and reverse peptide Aβ35-25+saline (RP). The number of animals in each of 

the treatment groups is outlined in Table 2.   
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Table 1. Treatment groups and corresponding n values. Listed are the animals 

that underwent successful surgeries and were included in the aged component of 

the study. 

 3 Months 6 Months 9 Months 
Reverse Peptide n=6 n=6 n=6 

Aβ 100nmol n=6 n=7 n=6 

Aβ 500nmol n=6 n=6 n=6 
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Table 2. Treatment Groups and Corresponding n values for behavior, and 

immunohistochemical analysis for animals included in the CAT-SKL study.  

 Behavior Immunohistochemistry 

RP+ Saline n=8 n=6 

Aβ+ Saline n=9 n=6 

RP + CAT-SKL n=9 n=7 

Aβ + CAT-SKL n=9 n=7 
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2.5 Catalase Administration  

Rats undergoing Catalase-SKL (CAT-SKL) treatment received a total of 4 

catalase injections, once per week for 4 sequential weeks (Figure 2A). Animals 

were weighed immediately prior to injection and were administered 1mg/kg of 

CAT-SKL by intraperitoneal (ip) injection. Those animals not receiving CAT-SKL 

injections received ip injections of an equivalent volume of saline. The dose and 

route of CAT-SKL administration was based on unpublished work from 

Dr.Terlecky’s lab. The recombinant enzyme CAT-SKL was acquired from Dr. 

Paul Walton and Dr. Stanley Terlecky (United States patent 7601366 and related 

patents pending). The molecule consists of a reengineered catalase enzyme, 

with a SKL targeting sequence, along with a cellular delivery molecule (cell 

penetrating peptide).  

2.6 Behavior: Morris Water Maze   

The Morris water maze (MWM) consisted of a circular pool (146cm in 

diameter, 58cm high) in which rats were trained to escape from the water by 

swimming to a hidden platform. The pool was filled (36cm high) with water and 

was virtually divided into four equivalent quadrants: north-east (NE), north-west 

(NW), south-east (SE) and south-west (SW). The water was made opaque using 

non-toxic blue paint, and was maintained at a temperature of 21±1°C. A webcam 

was placed above the pool to monitor the location and swimming activity of the 

rats. The webcam was connected to a laptop for video recording and behavioral 

parameters were measured using video-tracking software (ANY-maze®, Stoelting 

CO, USA). Animals underwent four days of spatial learning, two probe trials (D12 

and D19) and two days of cued learning (D20-D21) (Figure 2B).  

Spatial Learning: Spatial learning took place from 8 to 11 (D8-D11) days after icv 

injections of Aβ25-35 or Aβ35-25. The platform remained in the middle of the 

southwest quadrant for the duration of the spatial acquisition trials. Distal extra-

maze cues were located around the room, with which rats could learn the 

location of the hidden platform. The spatial acquisition phase consisted of 16  
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Figure 2. Treatment paradigm and time course for CAT-SKL injections, Aβ 
administration and behavior testing. (A) CAT-SKL or saline injections were 

administered intraperitoneal once a week for four consecutive weeks. Aβ25-35 or 

the reverse peptide Aβ35-25 was injected intracerebroventricularly (icv) on Day 0 

and animals were sacrificed on Day 21. (B) Timeline for behavior testing in the 

Morris Water Maze (MWM). Spatial learning took place from Day 8 to Day 11. 

Rats underwent two probe trials, one on Day 12 and the second probe trial on 

Day 19. Cued learning took place on Day 20 and Day 21.  
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training trials, with 4 trials per day for 4 days with an inter-trial interval of 20 

minutes. Rats were released from one of four start locations (N, SE, NW, E) in 

randomized order and were allowed to swim in search of the platform for 90s. If 

the rat was unable to locate the platform in that time, they were guided to the 

platform and allowed to remain on it for 15s before being removed from the pool. 

Animal behavior, including swimming speed, distance travelled and latency to 

escape from the pool were monitored using video-tracking software (ANY-maze®, 

Stoelting CO, USA).   

Probe Trials: Twenty-four hours following the last spatial acquisition trial (D12), 

rats were subjected to a probe trial where the platform was removed from the 

pool. Rats were released from a NE start position and were allowed to swim 

freely in the water for 30s. On the 19th day (D19) rats received an additional 

probe trial for 30s to determine long-term memory retention. Rats were once 

again released from the NE start position and were allowed to swim freely for 

30s. For both the first (D12) and second (D19) probe trials the amount of time 

and distance the rat travelled in the quadrant where the platform was previously 

located was tracked and analyzed. Swimming speed, total path length and path 

efficiency were also recorded. Time spent and/or distance travelled in the target 

quadrant was taken as an index of rats’ memory capacity. Rats were not trained 

during the time period between D12 and D19.  

Cued Learning: On days 20-21 rats were trained in a non-spatial cued version of 

the water maze.  For cued training rats received 4 trails per day for 2 days, with 

the location of the hidden platform and the rats start position varying with each 

trial. The platform location was not predictable based on extra-maze cues, but 

instead based on the presence of a cue attached to the platform. Swimming 

speed, distance travelled and the latency to find the platform were recorded. 

Cued platform learning was used as a control procedure in order to determine if 

any differences in the MWM could be attributed to either a difference in 

motivation to escape the water, or an inability to use cues to locate the hidden 

platform. 
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2.7 Sacrifice  

Twenty-one days following surgery rats were weighed and then 

euthanized with an overdose of Euthanyl (Pentobarbital Sodium, 240mg/mL) 

(0.5mL-0.8mL, ip). Animals were perfused transaortically with 0.01M phosphate- 

buffer saline (PBS) (pH 7.35) for 2 minutes followed by 4% paraformaldehyde 

(PFA) (pH 7.35) for 7 minutes. Brains were then removed and further fixed for 24 

hours in PFA at 4°C after which they were transferred to a 30% sucrose solution 

until they were ready for slicing. Brains were sliced into 35µm coronal sections 

using a Leica CM1850 Cryostat (Leica Biosystems) and divided into 6 free-

floating series. Series were stored in cryoprotectant (sucrose, ethylene glycol, 

polyvinylpyrrolidone) at -20°C until they were needed for immunohistochemistry.  

2.8 Immunohistochemistry 

Day 1: Series representative of each treatment group were processed together to 

reduce variability between groups. Free-floating coronal sections were washed in 

0.1M PBS (6 X 10 minutes), and then incubated with 3% hydrogen peroxide for 

10 minutes to block endogenous peroxidase activity. Sections were then washed 

in 0.1M PBS (3 x 5 minutes), then blocked in 2% horse serum solution (1:200, 

Vector Laboratories, Burlington, Canada) diluted in PBS with Triton-X (PBST) for 

1 hour at room temperature. Sections were then incubated with primary 

antibodies (Table 3) diluted in 2% horse serum (PBST) for 48 hours at 4°C on a 

shaker. A mouse monoclonal antibody against Glial fibrillary acidic protein 

(GFAP; 1:1000; Sigma-aldrich) was used to assess astrocyte activation. Ramified 

microglia were detected using a mouse monoclonal antibody OX-6 directed 

against the MHC II receptor (OX-6; 1:1000; Pharmingen). Monoclonal mouse 

anti-choline acetyltransferase (ChAT; 1: 500; Abcam) was used to detect 

cholinergic neurons (Table 3).  

Day 2: Following incubation with the primary antibody, sections were briefly 

washed in 0.1M PBS (3 x 5 minutes) and then incubated with biotinylated anti-

mouse secondary antibody (1:2000, Vector Laboratories, Burlington, Canada) in 
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2% horse serum solution for 1 hour at room temperature. Subsequently, sections 

were washed in PBS (3 x 5 minutes) and incubated for 1 hour at room 

temperature with Avidin-Biotinylated Complex (ABC) Reagent (Vector 

Laboratories, Burlington, Canada) for 1 hour. Sections were washed once again 

in PBS (3 x 5 minutes) and then visualized using 0.05% 3, 3’ diaminobenzidine 

tetrahydrochloride (DAB) (Sigma-aldrich). Sections were incubated with DAB for 

1-5min and then washed (0.1M PBS; 3x 5minutes) and mounted onto VWR 

microscope slides in 0.3% gelatin. Slides were left to air dry, and were then 

dehydrated in a graded series of ethanol (50%, 70%, 95%, 100%; 5 minutes 

each) followed by Xylene for 10minutes, after which they were coversliped using 

Depex Mounting medium.  

2.9 Dual label immunohistochemistry 

The same immunohistochemical procedure as described above was used for 

dual label SMI71&Dysferlin staining with the following amendments: 

Day 1: Following incubation with hydrogen peroxide, sections were incubated in 

proteinase-K working solution for 10 minutes at 37°C.  Sections were incubated 

with primary antibody mouse monoclonal anti-dysferlin (1:200, Abcam) for 24 

hours.  

Day 2: Sections were washed in 0.175M sodium acetate (3x 5minutes) after 

incubation with avidin-biotin peroxidase complex, and were then incubated with 

Nickel-enhanced DAB, followed by washes in 0.175M sodium acetate (3 

x5minutes). Sections then underwent a repeat of Day 1 staining as outlined 

above followed by incubation with anti-SMI71 (1:2000, Covance) primary 

antibody.  

Day 3: Same as Day 2 staining outlined above for immunohistochemistry.  

Immunohistochemical controls: As negative controls sections were incubated in 

parallel but without the primary antibodies. A typical section showed no non-

specific binding (Figure 3).  
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Table 3. Overview of the primary antibodies used for immunohistochemistry.   

Antibody Host Species Dilution Target Supplier 

ChAT Mouse 
monoclonal 1:500 Cholinergic neurons Abcam 

Dysferlin Mouse 
monoclonal 1:200 Expressed by leaky 

endothelial cells Abcam 

GFAP Mouse 
monoclonal 1:2000 Astrocytes Sigma-

Aldrich 

OX-6 Mouse 
monoclonal 1:1000 Microglia Pharmingen 

SMI71 Mouse 
monoclonal 1:2000 

Endothelial proteins 
at Blood Brain 

Barrier 
Covance 
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Figure 3. Immunohistochemical controls. (A-D) Representative 

photomicrographs of the hippocampal CA1 and CA3 subfield, medial septal 

nucleus/vertical diagonal band (MSN/VDB) and thalamus respectively in a 6 

months old Aβ25-35 500nmol administered rat. Sections underwent the same 

immunohistochemical staining protocol as described but without the primary 

antibody. Scale bar 100µm.  
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2.10 Histological Examination 

Hematoxylin and Eosin (H&E) Staining: Free-floating sections were removed 

from cryoprotection and washed in 0.1M PBS (6 x 10 minutes). Sections were 

then mounted onto Superfrost microscope slides using 0.3% gelatin and air-dried 

in preparation for staining. Sections were placed in Mayer’s Hematoxylin solution 

for 4 minutes, rinsed under tap water for 5 minutes and then dipped in 0.05% 

Eosin Y solution 9 times and rinsed in deionized water (ddH20).  Sections were 

then dehydrated in a graded series of ethanol (50%, 70%, 95%, 100%) followed 

by 10 minutes in Xylene after which they were coverslipped using Depex 

mounting medium. Representative sections from each treatment group were 

processed simultaneously to reduce variability between groups.  

Thionin Staining: Free-floating sections were removed from cryoprotection and 

washed in 0.1M PBS (6 x 10 minutes). Sections were then mounted on 

Superfrost micro slides using 0.3% gelatin and left to air dry. Sections were then 

rehydrated in 100% ethanol (4min), 95% ethanol (4min), 70% ethanol (2min), 

50% ethanol (2min) and ddH2O (1min) and then stained in 0.5% thionin for 20-25 

seconds. Stained sections were then rinsed in ddH2O (2x10s) and dehydrated in 

50% ethanol (2min), 70% ethanol (2min), 95% ethanol with 6 drops of acetic acid 

(2.5min), 95% ethanol (5min) and 100% ethanol (5min). Finally, sections were 

immersed in Xylene for 10 minutes and coverslipped using Depex mounting 

medium.    

2.11 Imaging & Quantification 

Stained brain sections were photographed with a Leica DFC295 camera 

coupled to a Leica DM IRE2 microscope (Leica Microsystems Inc., Concord, 

Ontario, Canada) with Leica Application Suite Version 4.1.0 image analysis 

software (Leica Microsystems). Analysis and quantification was carried out using 

ImageJ 1.45s software (Wayne Rasband, National Institute of Health, Bethesda, 

Maryland, USA).  
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Regions of interest: Areas of the brain examined included the anterior cortex, 

hippocampus, basal forebrain, thalamus, internal capsule, corpus callosum, and 

the cerebral cortex. Further analysis and quantification was carried out 

specifically in the medial septal nucleus (MSN) and vertical diagonal band (VDB) 

of the basal forebrain (Bregma level 0.7mm to 0.2mm), the CA1 and CA3 regions 

of the hippocampus (Bregma level -3.14mm to -3.8mm), and the posterior 

thalamic, ventral posteromedial and ventral posterolateral thalamic nuclei 

(Bregma level -3.14mm to -3.8mm) (Figure 4).  

Microglia Cell counts: Images of OX-6 immunoreactive microglia in the 

MSN/VDB, thalamus, and internal capsule were acquired at 10x magnification. 

Images were taken from both the left and right side of the brain for the thalamus 

and internal capsule. Two observers blinded to the treatment groups completed 

cell counts from images by manually selecting positively stained microglia cells in 

the predefined region of interest using ImageJ software. Four tissue sections per 

rat corresponding to the brain region of interest were used for analysis.  

Cholinergic neuronal counts: Images of ChAT positive neurons in the MSN/VDB 

were acquired. Cholinergic neurons were counted by two observers blinded to 

the treatment groups in five representative brain sections per rat within the same 

5000µm2 area. Observers manually selected ChAT positive stained cells using 

ImageJ software in the pre-identified MSN/VDB region of the basal forebrain. 

Counts were then normalized to that of the control (Reverse Peptide) group 

within an age group. Cholinergic neuronal numbers were then represented as the 

% of cholinergic neurons in the MSN/VDB region relative to the control.   
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Figure 4. Atlas representations of the rat brain. (A) The basal forebrain medial 

septal nucleus (MSN) and vertical diagonal band (VDB). (B) The internal capsule 

(IC), the posterior (Po), ventral posterolateral (VPL) and ventral posteromedial 

(VPM) thalamic nuclei and the hippocampus (HC). Subregions of the 

hippocampus including the CA1, CA2, CA3 and dentate gyrus (DG) are 

represented in the bottom right part of the image.  
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H&E cell counts: Photomicrographs of the left and right CA1 and CA3 region of 

the hippocampus were taken at 20x magnification in H&E stained sections. The 

total number of undamaged neurons within the same area were counted using 

ImageJ software. Two different observers counted the number of undamaged 

neurons in the CA1 and CA3 region of the hippocampus; the observers 

completed the counts independently from one another and were blinded to the 

experimental conditions. Only cells with a neuronal morphology were counted. 

The number of undamaged neurons per optical field (neuronal density) was 

determined in four tissue sections per rat.  

Thionin cell counts: Images of the left and right CA1 and CA3 regions of the 

hippocampus of thionin stained sections were acquired. Thionin staining was 

completed to further evaluate neuronal integrity in the hippocampus. This method 

gives the opportunity to assess cytoarchitecture as well as degenerative changes 

in neurons in the regions of interest. The quantification measure, termed % 

irregular neurons, was defined as the number of irregular neurons over the total 

number of neurons counted in the region of interest. Damaged neurons were 

recognized as cells that were severely misshapen and/or with changed nuclei 

(pyknosis, karyorrhexis and karyolysis). Two different observers, independently 

from each other and blinded to the experimental groups, completed cell counts of 

both damaged and undamaged neurons in the CA1 and CA3 regions of the 

hippocampus for all treatment groups.  

Astrocyte Optical Density Measurements: Images of GFAP positive astrocytes 

from both the left and right side of the CA1 and CA3 regions of the hippocampus 

and in the thalamus were acquired at 20x magnification. Densitometric analysis 

of GFAP immunohistochemistry staining was measured in 8-bit converted images 

using ImageJ software in 4 tissue sections per rat. Optical density measurements 

of GFAP staining were taken as correlates of astocytosis.  
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2.12 Statistical Analysis 

Statistical analysis was performed using GraphPad Prisim 4.0 for 

Windows. Data was analyzed by performing a one-way or two-way analysis of 

variance (ANOVA) followed by a Tukey’s or Bonferroni posttest respectively. 

Data is expressed as mean ± S.E.M, and a p<0.05 was considered statistically 

significant. In some cases statistical significance between treatment groups was 

indicated using a lettering system on graphs. Letters shared in common between 

or among groups indicated no significant differences.  
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3.1 Effects of Age and Aβ25-35 toxicity  

3.1.1 Body Weight Changes  

Rats were weighed on the day of Aβ25-35 or RP icv administration and once 

weekly for the following 3 weeks. Changes in weight were calculated as weight 

on day of sacrifice minus weight on day of surgery. No notable body weight 

changes were identified between treatment groups for 3 month or 6 month rats. 

Nine months old rats treated with 500nmol Aβ25-35 showed a significant loss in 

body weight pre to post treatment in comparison to RP treated animals (p<0.05) 

(Figure 5).  

3.1.2 Neuroinflammation: Microglia Expression in the Medial Septal 
Nucleus/Vertical Diagonal Band  

Microglia are one of the key cellular mediators of inflammation in the brain, 

and their activation and proliferation play critical roles in both acute and chronic 

neuroinflammatory responses. In response to Aβ toxicity, microglia are activated 

and have been shown to secrete a number of pro-inflammatory molecules. They 

are also known to cluster around sites of Aβ deposition in the AD brain (Akiyama 

et al., 2000). The basal forebrain cholinergic system appears particularly 

susceptible to Aβ toxicity, and cholinergic neurons are one of the first neuronal 

populations affected in the AD brain (Auld et al., 2002). Neuroinflammation, and 

thus microglia recruitment and activation, has been shown to occur in vulnerable 

regions of the AD brain. Thus, the basal forebrain, specifically the subdivision 

that innervates the hippocampus, namely the medial septal nucleus (MSN) and 

vertical diagonal bands (VDB), was examined in order to determine if this area 

was susceptible to neuroinflammation in response to Aβ25-35 toxicity. Sections 

were stained with the microglia marker OX-6 in order to examine microglia 

reactivity, taken as a correlate of neuroinflammation.  

Three months old Aβ25-35 500nmol rats had an increased number of 

reactive microglia in the MSN/VDB compared to 3 months old RP animals 

(p<0.05; Figure 6). There was a significant increase in microglia in the MSN/VDB 
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Figure 5. Weight loss in 9 month Aβ25-35 treated rats. Changes in body weight 

for 3, 6, and 9 month RP, Aβ25-35 100nmol and Aβ25-35 500nmol administered rats. 

Change in weight was calculated as weight on day of perfusion minus weight on 

day of reverse peptide Aβ35-25 or Aβ25-35 administration. Data is presented as 

mean± SEM, *p<0.05 vs. the control RP (One-way ANOVA, Tukey’s post hoc).  
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of 6 months Aβ25-35 500nmol treated rats in comparison to 6 month RP (p<0.001) 

and Aβ25-35 100nmol (p<0.001) groups. Activated microglia were also significantly 

higher in 9 month Aβ25-35 500nmol animals in comparison to 9 month RP (p<0.01) 

and Aβ25-35 100nmol (p<0.001) animals. There was also an age-dependent 

increase in activated microglia, with 6 month Aβ25-35 500nmol animals showing 

significantly higher numbers of microglia in the MSN/VDB in comparison to 3 

months Aβ25-35 500nmol animals (p<0.01; Figure 6). Therefore, higher doses of 

Aβ25-35 toxicity resulted in increased activation of microglia in the MSN/VDB in 3, 

6 and 9 month animals, and 6 and 9 month animals showed greater microglia 

activation in the MSN/VDB in response to Aβ25-35 toxicity than 3 month animals.  

3.1.3 Cholinergic neurons in the MSN/VDB 

Degeneration of cholinergic neurons in the basal forebrain is a well-

established hallmark of AD. The known vulnerability of this region to Aβ toxicity 

combined with the increased microglia activation observed in the MSN/VDB of 

the basal forebrain with age and Aβ25-35 toxicity, led to the evaluation of whether 

cholinergic neuronal loss occurred in this region. Tissue sections containing the 

MSN/VDB were stained using anti-choline acetyltransferase antibody (ChAT). 

Choline acetyltransferase is the enzyme responsible for synthesizing 

acetylcholine and loss of ChAT staining indicates a loss of cholinergic neurons. 

There were no significant differences in cholinergic neuronal number, shown as a 

percentage of the control, between treatment groups in 3 months old rats (Figure 

7G). At 6 months, the 500nmol Aβ25-35 group showed a significant decrease in 

cholinergic neurons compared to both the 100nmol Aβ25-35 treated group (p<0.05) 

and the RP group (p<0.05; Figure 7H). There was also a significant decrease in 

number of cholinergic neurons in the MSN/VDB of 9 month 500nmol Aβ25-35 

administered rats compared to the 9 month RP group (p<0.05; Figure 7I). 

Therefore, it appears that high doses of Aβ25-35 in 6 and 9 months old rats 

contribute to cholinergic neuronal loss. No differences in cholinergic neuronal 

numbers in the MSN/VDB were seen within treatment groups between age 

groups.  
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Figure 6. Increase in activated microglia in the Medial Septal 
Nucleus/Vertical Diagonal Band (MSN/VDB) in response to Aβ25-35. (A-F) 
Representative photomicrographs of OX-6 immunopositive microglia in the 

MSN/VDB of 3, 6 and 9 months old Aβ25-35 500nmol administered rats.  Areas 

boxed in lower power photomicrographs (20x) (A-C) are shown at higher power 

(40x) in panels (D-F). Scale bar 100µm. (G) The number of OX-6-

immunoreactive microglia in the MSN/VDB of rats 3, 6 or 9 months of age 

administered the control RP, Aβ25-35 100nmol or Aβ25-35 500nmol. Data are 

presented as mean± SEM, means with different letters are significantly different 

(Two-way ANOVA, Bonferroni posttest, p<0.05). 
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Figure 7. Age-dependent cholinergic neuronal loss in the basal forebrain. 

(A-F) Representative images of ChAT immunolabeled cholinergic neurons in the 

medial septal nucleus/vertical diagonal band (MSN/VDB) of the basal forebrain in 

RP and Aβ25-35 500nmol administered animals 3, 6 and 9 months of age. Scale 

bar 100µm (G-I) The percent change (relative to RP rats within an age group) of 

ChAT positive neurons in MSN/VDB in RP, Aβ25-35 100nmol and Aβ25-35 500nmol 

administered rats, 3, 6 or 9 months of age. Data presented as mean ±SEM, 

*p<0.05 vs. RP group within an age-group (One-way ANOVA, Tukey’s posthoc). 
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3.1.4 Neuroinflammation: Microglia and astroglial ractivity in the thalamus 

Aβ deposition and neuroinflammation have been shown to occur in almost 

all thalamic nuclei in both the human AD brain and in animal models of the 

disease (Braak and Braak, 1990; Miao et al., 2005; Fan et al., 2007). Microglia 

and astrocyte reactivity was examined in the thalamus in response to Aβ25-35 

toxicity. Three months old rats showed little to no microglia activation in the 

thalamus regardless of treatment. Microglia activation in the thalamus of 6 

months old, 500nmol Aβ25-35 animals was significantly greater than 100nmol Aβ25-

35 (p<0.001) and RP (p<0.001) treated rats (Figure 8D). There were no significant 

differences in microglia activation between treatment groups in the thalamus of 9-

month old rats. However, baseline levels of microglia in the thalamus of 9 months 

old animals were elevated compared to that seen in 3 and 6 months old animals. 

Both 6 and 9 months old rats exposed to 500nmol Aβ25-35 showed significantly 

greater numbers of activated microglia in the thalamus compared to 3 month 

Aβ25-35 500nmol animals (p<0.01 and p<0.05 respectively, Figure 8).   

  Glial activation in response to Aβ toxicity has been repeatedly reported 

in cell culture and in animal models of AD (Akiyama et al., 2000). To determine if 

there was an increase in activation or proliferation of astrocytes in response to 

Aβ toxicity, GFAP immunohistochemistry was performed. GFAP is a marker of 

astroglial reactivity. Optical density measurements of GFAP immunopositive 

astrocytes revealed no statistically significant differences in astrocyte density in 

the thalamus between ages or treatment groups (Figure 9).  

3.1.5 Neuroinflammation: Astrocyte activation in the hippocampus 

Qualitative analysis and quantitative optical density measurements of 

GFAP immunolabeled astrocytes in the CA1 and CA3 regions of the 

hippocampus were completed in order to examine whether Aβ25-35 toxicity 

resulted in astrogliosis in these hippocampal regions. Qualtitative analysis 

involved blinded assessements of the relative number of astrocytes in the 

defined hippocampal subregions. Qualtitative assessments revealed an increase  
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Figure 8. Age-related increase in thalamic microglia activation in response 
to Aβ25-35. (A-C) Representative photomicrographs of OX-6 immunopositive 

microglia in the thalamus of 3, 6 and 9 months old Aβ25-35 500nmol rats 

respectively. Scale bar, 100µm. (D) The number of OX-6 immunoreactive 

microglia cells in the thalamus (posterior thalamic, ventral posterolateral and 

ventral posteromedial thalamic nuclei) of RP, Aβ25-35 100nmol and Aβ25-35 

500nmol administered rats 3, 6 or 9 months of age. Data are presented as 

mean± SEM, means with different letters are statistically different (Two-way 

ANOVA, Bonferroni posttest, p<0.05).  
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Figure 9. No changes in GFAP immunopositive astrocytes in the thalamus. 
(A) Optical density measurements of GFAP immunoreactive astrocytes in the 

thalamus of RP, Aβ25-35 100nmol and Aβ25-35 500nmol administered animals 3, 6 

or 9 months of age. Optical density measurements are shown as a percentage of 

the control RP group within an age group. Data are presented as mean ± SEM. 

No statistically significant differences were seen between treatment groups within 

an age group (Two-way ANOVA, Bonferroni posstest, p<0.05).  
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in astrocyte density in the CA3 region of the hippocampus in 6 and 9 month 

500nmol Aβ25-35 administered animals compared to RP administered animals 

within an age group (Figure 10D,E, F). However, optical density measurements 

of GFAP positive astrocytes in the CA3 region of the hippocampus only revealed 

increased astrocyte density in 6 month Aβ25-35 500nmol animals compared to 6 

month RP animals (p<0.05; Figure 10H). Three-month and 9-month old rats 

showed no differences in astrocyte density in the CA3 region of the hippocampus 

between treatment groups (Figure 10G,I). No differences in astrocyte density 

were detected in the CA1 region of the hippocampus between age groups or 

treatment groups (Data not shown).  

3.1.6 Hippocampus integrity: H&E and thionin staining 

Loss of hippocampal neurons occurs in normal aging and in AD, with the 

CA1 and CA3 regions of the hippocampus being particularly susceptible to Aβ 

toxicity (Gallagher and Nicolle, 1993; Landfield, 1988; Hayakawa et al., 2007). 

Pyramidal neuronal numbers in the CA1 and CA3 region of the hippocampus 

were measured from sections stained with H&E in rats 3 weeks after icv 

injections of Aβ25-35 or the reverse Aβ35-25 peptide. Six months old animals 

receiving 500nmol Aβ25-35 icv injections had a decrease in pyramidal cell counts 

in the CA3 subfield of the hippocampus compared to 6 months old RP injected 

rats (p<0.05; Figure 10E). In 9-month animals both 100nmol Aβ25-35 and 500nmol 

Aβ25-35 icv injections resulted in a decrease in pyramidal cells in the CA3 region 

compared to 9 month RP injected animals (p<0.01, p<0.001 respectively; Figure 

11F). No differences in neuronal counts in the CA3 subfield between treatment 

groups were identified in 3 months old rats (Figure 11D). Age and treatment had 

no effect on number of pyramidal neurons in the CA1 hippocampal subfield 

(Figure 11A-C).   

To further evaluate neuronal integrity in the hippocampus and to 

complement the H&E data, thionin staining was completed. This additional 

histological stain was completed in order to assess neuronal morphology and 

changes in neuronal numbers in response to Aβ25-35 toxicity. Total number of  
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Figure 10. Astrocyte activation in the CA3 region of the hippocampus. (A-F) 
Representative photomicrographs of GFAP immunolabeled astrocytes in the CA3 

subfield of the hippocampus in RP and Aβ25-35 500nmol administered rats 3, 6 or 

9 months of age. Scale bar 100µm (G-I) Optical density measurements of GFAP 

immunopositive astrocytes in the CA3 region of the hippocampus in 3, 6 or 9 

month-old rats 21 days following icv administration of RP, Aβ25-35 100nmol or 

Aβ25-35 500nmol. Optical density measurements are shown as a percentage of 

the control, RP group within an age group. Data are presented as mean ± SEM, 

*p<0.05 vs. RP group within an age-group (One-way ANOVA, Tukey’s post-hoc).  
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Figure 11. Neuronal numbers in the CA1 and CA3 subfields of the 
hippocampus. Variations in neuronal cell counts from Hematoxylin and Eosin 

stained sections in the (A-C) CA1 and (D-F) CA3 hippocampal regions 

determined 3 weeks after icv injection of RP, Aβ25-35 100nmol or Aβ25-35 500nmol 

in 3, 6 or 9 month old rats. Pyramidal cell counts are shown as a percentage of 

the control RP group within an age group. Data presented as mean ± SEM, 

*p<0.05 vs. RP group within an age group (One-way ANOVA, Tukey’s post-hoc).   
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neurons in the CA3 region of the hippocampus were determined, along with 

number of neurons identified as being irregular, giving the reported measure of 

percentage of irregular neurons. Irregular neurons were those identified as being 

severely misshapen and/or with changed nuclei (pyknosis, karyorrhexis and 

karyolysis). No differences in percentage of irregular neurons were identified 

between treatment groups for 3 months old animals (Figure 12G).  Six-month 

Aβ25-35 500nmol administered animals had an increased number of irregular 

neurons in the CA3 region of the hippocampus compared to 6 month RP animal 

(p<0.01; Figure 12N). Animals 9 month of age receiving icv injections of Aβ25-35 

500nmol also showed an increase in irregular neurons compared to 9 month RP 

animals (p<0.05; Figure 12U).  

3.1.7 Leakiness of cerebromicrovessels 

Amyloid depositions in the vasculature, and disruption of the blood brain 

barrier (BBB) have been implicated as playing a role in AD. To determine 

whether age and Aβ25-35 toxicity play a role in the susceptibility of the brain to 

vascular dysfunction dual-labeling for SMI71& Dysferlin was used to assess 

leakiness of cerebromicrovessels. SMI71 staining is a marker for endothelial 

proteins at the BBB and is localized to mature endothelial cells when the BBB is 

intact (Sternberger and Sternberger, 1987). Staining for SMI71 is lost when there 

is disruption of the BBB (Sternberger et al., 1989; Kim et al., 2012). Dysferlin 

expression is associated with vascular leakage of serum proteins, indicative of 

leaky blood vessels (Hochmeister et al., 2006). Qualtitative analysis involving 

blinded assessment and ratings of extent of dysferlin staining and loss of SMI71 

staining in defined regions was conducted.  

Qualitative analysis of SMI71&Dysferlin staining showed an age-

dependent increase in BBB leakage in the thalamus, and hippocampus in 

response to Aβ25-35 administration. Examination of cerebromicrovessels was 

completed in the hippocampus of 3, 6 and 9 month RP, 100nmol Aβ25-35 and 

500nmol Aβ25-35 icv injected animals. Three-month animals irregardless of  
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Figure 12. Thionin staining to evaluate neuronal integrity in the CA3 region 
of the hippocampus. Representative photomicrographs of thionin stained cells 

in the CA3 subfield of the hippocampus in RP, Aβ25-35 100nmol, and Aβ25-35 

500nmol administered rats 3, 6 or 9 months of age. Areas boxed at lower power 

(20x) are shown at higher power (40x) in the corresponding panel below. 

Representative irregular neurons are indicated by arrows, scale bar 100µm. 

(G,N,U) The number of irregular neurons shown as a percentage of total 

neuronal counts in the hippocampal CA3 region for RP, Aβ25-35 100nmol and 

Aβ25-35 500nmol administered rats 3, 6 and 9 months of age. Data are presented 

as mean ± SEM, *p<0.05 vs. RP group within an age group (One-way ANOVA, 

Tukey’s post hoc). 
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treatment showed little to no dysferlin staining in the CA1 or CA3 subfields of the 

hippocampus (Figure 13A,B,E,F). Animals 9 months of age showed minimal 

dysferlin staining in the CA1 region of the hippocampus (Figure 13C,D). In the 

CA3 hippocampal region 500nmol Aβ25-35 animals showed more dysferlin 

staining than RP animals, with all 9 month treatment groups showing more 

dysferlin staining than seen in the same regions in 3 months animals (Figure 

13G-H). 

The same thalamic nuclei imaged and analyzed for neuroinflammation 

was evaluated for vascular integrity, namely the posterior thalamic, ventral 

posteromedial and ventral posterolateral thalamic nuclei. At 3 months SMI71 

staining was present throughout the thalamic region, and minimal dysferlin 

staining was observed regardless of treatment (Figure 14A-B). Nine-month 

animals showed dysferlin staining in the thalamic region in both RP and Aβ25-35 

administered animals (Figure 14C-D). However, Aβ25-35 treated animals showed 

greater amounts of dysferlin staining, with longer lengths of vessels being stained 

for dysferlin. Animals six months of age showed an intermediate pathology 

between that seen in 3 and 9-month old animals (Images not shown).   

3.2 CAT-SKL and Aβ25-35 toxicity 

In order to evaluate the potential of CAT-SKL treatment to reduce Aβ25-35 toxicity 

similar analysis and quantification of the pathology as performed for the age and 

Aβ25-35 toxicity study (Aim 1) was completed. All of these experiments were done 

with 6 months old rats.  

3.2.1 Body Weight Changes 

Rats were weighed on the day of Aβ25-35 or RP Aβ35-25 icv administration 

and once weekly for the following 3 weeks. Change in body weight was 

determined based on weight on day 21 minus weight on day of icv Aβ25-35 or RP 

administration. No significant changes in body weights were seen between 

treatment groups. However, those animals in both Aβ and Aβ+CAT-SKL groups 

lost more weight than those in the RP and RP+CAT-SKL groups (Figure 15). 
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Figure 13. Cerebromicrovessels in the CA1 and CA3 subfields of the 
hippocampus. Photomicrographs of SMI71& Dysferlin staining in (A-D) the CA1 

and (E-H) CA3 regions of the hippocampus in 3 and 9 month old rats 3 weeks 

after icv administration of RP, or Aβ25-35 500nmol. SMI71 (brown staining) is a 

marker for endothelial proteins at the blood brain barrier and dysferlin (black/dark 

brown staining), is a maker associated with vascular leakage of serum proteins. 

Scale bar 100µm.  
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Figure 14. Age-dependent leakiness of cerebromicrovessels in the 
thalamus. Representative photomicrographs of SMI71 & Dysferlin staining in the 

thalamus (posterior thalamic, ventral posteromedial and ventral posterolateral 

thalamic nuclei) of 3 and 9 months old RP and Aβ25-35 500nmol administered 

rats. Areas shown in lower power (10x) photomicrographs (A-D) are shown at 

higher power (20x) in corresponding panels (E-H). SMI71 (brown staining) is a 

marker for endothelial proteins at the blood brain barrier co-labeled with dysferlin 

(black/dark brown staining), a maker associated with vascular leakage of serum 

proteins. Scale bar 100µm. 
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Figure 15. Body weight changes. Change in body weight in RP, RP+CAT-SKL, 

Aβ and Aβ+CAT-SKL rats was calculated as weight on day of perfusion minus 

weight on day of reverse peptide Aβ35-25 or Aβ25-35 icv administration.  
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3.2.2 Neuroinflammation: Microglia expression in CAT-SKL treated animals 

The significant activation of microglia in the MSN/VDB (Figure 6) and 

thalamus (Figure 8) identified in 6 month Aβ25-35 injected rats lead to the 

investigation of whether CAT-SKL treatment could diminish this microglia 

response. The microglia marker OX-6 was used to evaluate microglia reactivity. 

There was a significant increase in activated microglia in the MSN/VDB of Aβ25-35 

icv injected rats when compared to the control RP (p<0.001), and RP+CAT-SKL 

animals (p<0.001). Microglia activation in Aβ25-35 treated rats was effectively 

reduced by treatment with CAT-SKL, with Aβ+CAT-SKL animals showing a 

significant decrease in microglia in the MSN/VDB when compared to Aβ25-35 

animals (p<0.05; Figure 16I).  

Microglia activation in the thalamus was significantly greater in Aβ25-35 

administered animals compared to the control RP group (p<0.05). CAT-SKL 

treatment combined with Aβ25-35 administration reduced microglia activation in 

the thalamus such that the microglia in the thalamus of Aβ+CAT-SKL animals 

was not significantly different from both control groups (RP or RP+CAT-SKL) 

(p>0.05; Figure 16J). However, this reduction in microglia was not significantly 

lower than the Aβ25-35 treated animals.  

3.2.3 Cholinergic neurons in the MSN/VDB in CAT-SKL treated animals  

In accordance with the finding, described above, of decreased cholinergic 

neuronal numbers in the MSN/VDB in older Aβ25-35 administered animals, the 

number of ChAT positive neurons in the MSN/VDB was evaluated. Anti-choline 

acetyltransferase antibody (ChAT) was used to stain cholinergic neurons in the 

MSN/VDB. The number of ChAT positive cholinergic neurons in the MSN/VDB 

was significantly reduced in Aβ25-35 administered animals compared to RP and 

RP+CAT-SKL treated rats (p<0.05). With CAT-SKL treatment this significant 

reduction induced by Aβ25-35 administration was lost and there were no significant 

differences in cholinergic neuronal counts between Aβ+CAT-SKL treated rats vs. 

RP and RP+CAT-SKL treated animals (p>0.05; Figure 17).  
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Figure 16. CAT-SKL reduces microglia activation in the MSN/VDB and 
thalamus. (A-D) Representative photomicrographs of microglia immunolabeled 

with OX-6 in the medial septal nucleus/vertical diagonal band (MSN/VDB) and 

(E-H) activated microglia in the thalamus of RP, RP+CATSKL, Aβ and 

Aβ+CATSKL treated rats respectively. Scale bar 100µm. (I) The number of OX-6 

immunopositive microglia in the MSN/VDB and (J) the number of OX-6 

immunolabeled in the thalamus of RP, RP+CATSKL, Aβ and Aβ+CATSKL 

treated rats. Data are presented as mean ±SEM, means with different letters are 

significantly different (One-way ANOVA, Tukey’s post-hoc, p<0.05). 



	
   	
   	
   	
   	
  

	
  61	
  

 

Figure 17.  CAT-SKL prevents cholinergic loss in the MSN/VDB. The 

number of ChAT positive cholinergic neurons shown as a percentage of the RP 

group in the MSN/VDB of the basal forebrain in RP, RP+CAT-SKL, Aβ and 

Aβ+CAT-SKL treated rats. Data are presented as mean ±S.E.M. Means with 

different letters signify significance (One-way ANOVA, Tukey’s post-hoc, p<0.05). 
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3.2.4 Astrocyte activation in the hippocampus of CAT-SKL treated animals  

Optical density measurements of GFAP immunopositive astrocytes was 

taken as a measurement of astroglial reactivity. Aβ25-35 administered animals 

showed a significant increase in astrocyte density in the CA3 region of the 

hippocampus compared to RP and RP+CAT-SKL treated animals (p<0.05 vs. 

RP, p<0.01 vs. RP+CAT-SKL). CAT-SKL treatment reversed this increase in 

astrocyte density induced by Aβ25-35 in the CA3 (p<0.05 Aβ vs. Aβ+CAT-SKL; 

(Figure 18). No differences in astrocyte density were detected in the CA1 region 

of the hippocampus between treatment groups (Data not shown).  

3.2.5 Neuronal integrity in the hippocampus following Aβ25-35 administration 
and CAT-SKL treatment  

The known vulnerability of hippocampal neurons to Aβ25-35 toxicity lead to 

the examination of neuronal integrity in the CA1 and CA3 subfields of the 

hippocampus. The number of pyramidal neurons in the CA1 and CA3 region of 

the hippocampus were determined using H&E and thionin staining 3 weeks after 

icv injections of RP or Aβ25-35. Counts of H&E stained pyramidal neurons in the 

CA1 region of the hippocampus revealed no differences in neuronal numbers 

between treatment groups (Figure 19I). There was a significant reduction in 

neuronal numbers in the CA3 region of the hippocampus in Aβ25-35 treated rats 

compared to RP treated animals (p<0.05). With CAT-SKL treatment this 

significant reduction in neuronal numbers was no longer observed. There were 

no significant differences in pyramidal cell numbers between Aβ25-35 and 

RP+CAT-SKL or Aβ+CAT-SKL treated rats (Figure 19J).  

In order to further examine neuronal morphology and changes in neuronal 

number in response to Aβ25-35 toxicity thionin staining was completed. The 

number of neurons identified as being irregular over the total number of neurons 

in the CA3 region of the hippocampus was determined, giving the reported 

measure of percentage of irregular neurons. There was a significant increase in 

percentage of irregular neurons in the CA3 region in Aβ25-35 administered animals  
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Figure 18. CAT-SKL reduces astrocyte activation in the CA3 region of the 
hippocampus. (A-D) Representative photomicrographs of GFAP immunolabeled 

astrocytes in the CA3 region of the hippocampus of RP, RP+CAT-SKL, Aβ and 

Aβ+CAT-SKL treated rats respectively. Scale bar 100µm. (E) Optical density 

measurements of GFAP immunopositive astrocytes in the CA3 region of the 

hippocampus shown as a percentage of the mean value of the RP group. 

Different letters represent statistically significant differences (One-way ANOVA, 

Tukey’s post-hoc, p<0.05). 
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Figure 19. Neuronal integrity in the CA1 and CA3 regions of the 
hippocampus. Representative photomicrographs of Hematoxylin and Eosin 

stained cells in (A-D) the CA1 and (E-H) CA3 region of the hippocampus in RP, 

RP+CAT-SKL, Aβ and Aβ+CAT-SKL treated rats respectively. Scale bar 100µm. 

(I-J) Pyramidal cell numbers in the CA1 and CA3 subfields of the hippocampus 

shown as a percentage of the control RP group. Different letters represent 

statistically significant differences (One-way ANOVA, Tukey’s post hoc, p<0.05) 
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compared to RP (p<0.01), RP+CAT-SKL (p<0.05) and Aβ+CAT-SKL (p<0.05) 

administered animals. This increase in irregular neurons was prevented by CAT-

SKL treatment. No differences in counts were seen between RP, RP+CATSKL, 

or Aβ+CAT-SKL treated rats (Figure 20).  

3.2.6 Behavior Testing: Morris Water Maze 

To determine whether Aβ25-35 toxicity resulted in learning and memory 

deficits and to also examine if CAT-SKL treatment was able to alleviate memory 

or learning impairments animals were trained on a spatial learning task in the 

Morris water maze (MWM), followed by two probe trials. The spatial task was 

used to assess learning and the probe trials were used to assess reference 

memory. Reference memory was determined based on animals’ preference for 

the platform area when the platform was absent. Probe trial 1 took place on day 

12 (D12), to assess short-term reference memory retention and probe trial 2 was 

completed on day 19 (D19) to assess long-term reference memory retention.  

Latency, path length and swimming speed during spatial learning  

Rats were trained in the MWM 8 days after icv administration of Aβ25-35 or 

RP. Rats were subject to a total of 16 spatial learning trials over a period of 4 

days, with 4 trials per day. During the training days, latency (s) to reach the 

platform, distance traveled (m) to reach the platform and average swimming 

speed (m/s) were measured and analyzed. Latency and distance travelled to find 

the platform decreased significantly over the course of acquisition training for all 

treatment groups (p<0.001 Day 4 vs. Day 1), indicative of successful learning of 

the task. There were no differences in latency or distance travelled to find the 

platform between treatment groups, suggesting Aβ25-35 toxicity did not impair 

spatial learning (Figure 21A-B). Average swimming speed appeared to decrease 

over the training period for all groups, however this was not significant except for 

the RP+CAT-SKL group who showed a significant reduction in mean swimming 

speed over the course of the spatial learning trials (p<0.05 Day 1 vs. Day 4). 
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Figure 20. Thionin staining in the hippocampus. Representative 

photomicrographs of thionin stained cells in the CA3 subfield of the hippocampus 

in RP, RP+CAT-SKL, Aβ and Aβ+CAT-SKL treatment groups. Areas boxed at 

lower power (20x) (A-D) are shown at higher power (40x) in the panel below (E-
H). Representative irregular neurons are indicated by arrows, scale bar 100µm. 

(I) The number of irregular neurons shown as a percentage of total neuronal 

counts in the hippocampal CA3 region. Data are presented as mean ± SEM, 

means with different letters are significantly different (One-way ANOVA, Tukey’s 

post hoc, p<0.05). 
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There were no differences in mean swimming speed between treatment groups 

across training days (Figure 21C).   

Probe Trial 1 on Day 12 (D12): Short-term memory retention 

On day 12, 24 hours following the last spatial learning trial, rats were 

subject to their first probe trial. The percentage of time spent and the percentage 

of distance travelled in the target zone and average of the adjacent zones was 

determined for the probe trial. The time spent and distance travelled in the target 

quadrant was taken as an index of rats’ memory capacity. All treatment groups 

spent significantly more time in the target zone than in the adjacent zones during 

the D12 probe trial (p<0.05 for RP and RP+CAT-SKL, p<0.001 for Aβ and p<0.01 

for Aβ+CAT-SKL; Figure 22A). RP+CATSKL, Aβ and Aβ+CAT-SKL also travelled 

a significantly greater distance in the target zone than in the adjacent zones 

(p<0.05, p<0.01, p<0.01 respectively; Figure 22B). The greater time spent and 

distance travelled in the target zone over the adjacent zones indicates rats 

remembered the platform location and sought it out during the D12 probe trial. 

No differences in percentage of time spent or distance travelled in the target 

zone was identified between treatment groups (Figure 22A-B).   

Probe Trial 2 on Day 19 (D19): Long-term memory retention 

On day 19, 7 days after the first probe trial, rats were subjected to a 

second probe trial to assess long-term reference memory retention. As was done 

for the first probe trial the percentage of time spent and the percentage of 

distance travelled in the target zone and average of the adjacent zones was 

measured and analyzed. There were no significant differences in percentage of 

time spent in the target zone versus the adjacent zones across treatment groups. 

However, RP+CAT-SKL, and Aβ+CAT-SKL treated animals all spent a 

significantly greater percentage of time in the target zone than Aβ administered 

animals (p<0.01 for RP+CAT-SKL vs. Aβ, p<0.05 for Aβ+CAT-SKL vs Aβ) 

(Figure 22C). Animals from all treatment groups showed no significant 

differences in distance travelled in the target zone compared to the adjacent  
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Figure 21. Spatial learning during the hidden platform Morris Water Maze 
(MWM) task. (A) Mean latency and (B) Path length to find the hidden platform in 

the MWM during four consecutive days of training for RP, RP+CAT-SKL, Aβ and 

Aβ+CAT-SKL treatment groups. Rats received 4 training trials per day with an 

inter-trial interval of 20 minutes. Animals from all groups showed a reduction in 

the mean latency and distance traveled to reach the hidden platform across 

training days. (C) Average swimming speed for all treatment groups for each of 

the training days during the spatial learning phase. No differences in mean speed 

were seen between treatment groups (Two-way ANOVA, Bonferroni postest, 

p<0.05).  
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zones except for RP+CAT-SKL treated animals who travelled a greater distance 

in the target zone than in adjacent zones (p<0.05; Figure 22D). RP, RP+CAT-

SKL, and Aβ+CAT-SKL animals all travelled a greater distance in the target zone 

than Aβ only animals (p<0.05 for RP vs. Aβ, p<0.001 for RP+CAT-SKL vs. Aβ, 

p<0.01 for Aβ+CAT-SKL vs Aβ).  

Comparison between probe trial on D12 and D19  

The percentage of time spent and percentage of distance travelled in the 

target zone on D12 (Probe 1) and D19 (Probe 2) were compared to determine if 

there were any changes in reference memory across probe trials. Aβ 

administered animals spent significantly less time and travelled significantly less 

distance in the target zone on D19 compared to D12 (p<0.01). No significant 

differences in time spent or distance travelled in the target quadrant between 

D12 and D19 were found for RP, RP+CAT-SKL and Aβ+CAT-SKL treated rats 

(p>0.05; Figure 23 A-B).  The reduction in time spent and distance traveled in 

the target quadrant on D19 compared to D12 for Aβ25-35 animals indicates long-

term reference memory deficits, which was effectively ameliorated in Aβ animals 

treated with CAT-SKL. 

Cued learning 

On days 20-21 rats under went cued platform learning. Cued learning was 

used as a control procedure in order to determine if any differences observed in 

the MWM could be attributed to either a difference in motivation to escape the 

water, or an inability to use cues to locate the hidden platform. A cue directly 

attached to the platform was used to indicate the platforms position. Animals 

were subjected to a total of 8 cued learning trials and data are presented as the 

mean of the 8 trials. Animals across treatment groups showed no significant 

differences in the time it took them to locate the platform, or distance travelled to 

find the platform (Figure 24A-B). Average swimming speed was not significantly 

different between treatment groups (Figure 24C). Thus, rats across treatment 

groups demonstrated similar motivation and abilities to escape the water.  
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Figure 22.  Probe trials: Short and long term memory retention. The 

percentage of time spent and percentage of distance travelled in the target zone 

and the average of the adjacent zones for RP, RP+CAT-SKL, Aβ and Aβ+CAT-

SKL treated groups for (A-B) Probe trial 1, day 12 and (C-D) Probe trial 2, day 

19. Means with different letters signify significance (Two-way ANOVA, Bonferroni 

post-test, p<0.05).  
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Figure 23. CAT-SKL reduces Aβ25-35 induced impairments in long-term 
reference memory. (A) The percentage of total time spent and (B) percentage 

of total distance traveled in the quadrant where the platform was located 24 

hours following the last spatial learning trial (Probe 1) and 8 days after the last 

spatial training trial (Probe 2) for RP, RP+CAT-SKL, Aβ and Aβ+CAT-SKL 

treatment groups. Data are presented as mean ± S.E.M. Different letters indicate 

significance (Two-way ANOVA, Bonferoni post hoc, p<0.05).  
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Figure 24. Cued learning during the Morris Water Maze (MWM). (A) Mean 

latency and (B) mean path length to find the cued platform in the MWM averaged 

over 8 trials for RP, RP+CAT-SKL, Aβ and Aβ+CAT-SKL treated rats. No 

differences in mean latency or distance traveled to reach the platform were seen 

between treatment groups. (C) Average swimming speed for all treatment groups 

over 8 cued learning trials. There were no differences in mean swimming speed 

between treatment groups. Data are presented as the mean ± SEM of the 8 cued 

learning trials (One-way ANOVA, Tukey’s post hoc, p<0.05). 
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The results of this investigation in a rat model of amyloid toxicity revealed 

two important findings. Firstly, the age of the animal plays a major role in the 

development of pathological changes in response to Aβ25-35 toxicity. Secondly, 

we have demonstrated for the first time that the targeted antioxidant CAT-SKL, a 

genetically modified catalase molecule, is effective in preventing the pathological, 

inflammatory and cognitive deficits induced by amyloid toxicity. In accordance 

with previous findings this study showed that a single icv injection of Aβ25-35 in 

male Wistar rats resulted in pathological changes in the brain 3 weeks after 

injection (Whitehead et al., 2005ab; Cheng et al., 2006; Zussy et al., 2011; 2013).  

Specifically, increased inflammation in the basal forebrain and thalamus, 

cholinergic loss in the MSN/VDB and loss of neuronal integrity in the 

hippocampus were shown. Moreover, this pathological response to Aβ25-35 

toxicity was shown to be greater in 6 and 9 months old animals than in 3 months 

old animals. This suggests that at the ages of 6 and 9 months, the rodent brain is 

already more vulnerable to Aβ25-35 toxicity than it was at 3 months. Additionally, 

this study was the first to use and demonstrate the beneficial effects of the 

targeted antioxidant CAT-SKL in reducing Aβ25-35 toxicity in an animal model. 

CAT-SKL was able to reduce cholinergic neuronal loss, decrease 

neuroinflammation and attenuate long-term memory deficits induced by Aβ25-35 

toxicity (Summarized in Figure 25).  

4.1 Neuroinflammation  

It has been well established that neuroinflammation plays a role in the 

pathogenesis of AD, and that Aβ in particular contributes to the 

neuroinflammatory response (Akiyama et al., 2000). The cellular mediators of 

inflammation, microglia and astrocytes, were detected using OX-6 and GFAP 

antibodies respectively, with increased microgliosis and astrocytosis being taken 

as correlates of inflammation in the brain. Astrocyte activation in response to Aβ 

toxicity has been repeatedly reported in cell culture and in animal models of AD 

(Glass et al., 2010). This study showed an increase in astrocyte density in the 

CA3 region of the hippocampus in Aβ25-35 administered 6 months old rats. 
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However, no differences, using optical density measurements, in astrocyte 

density were identified in the thalamus or CA1 subfield of the hippocampus in 

rats regardless of treatment or age. The lack of differences seen in astrocyte 

activation could in part be due to the inefficiency of optical density measurements 

to detect changes in astrocyte reactivity. Astrocytes only occupy a portion of the 

area from which optical density measurements were taken. Thus, even a large 

increase in astrocytes would only result in a small change in optical density 

measurements. Additionally, work by Zussy et al., reported increased GFAP 

levels in the frontal cortex, amygdala and hypothalamus in response to Aβ 

injection, however no changes in GFAP levels were identified in the 

hippocampus (Zussy et al., 2013). Therefore, it may be that activation and 

proliferation of astrocytes did not occur in the regions of the brain (thalamus, 

hippocampus) examined in this study.  

 Six and 9 months old animals showed a significant increase in microglia 

in the thalamus in response to Aβ25-35 administration compared to 3 months old 

animals. The involvement of the thalamus in AD has not received the same 

amount of attention as other brain structures. However, amyloid deposits and 

neurofibrillary tangles have been shown to occur in almost all thalamic nuclei in 

the human AD brain (Braak and Braak, 1990). Moreover, structural imaging 

studies have shown reductions in thalamic volume in the brains of AD patients, 

with thalamic atrophy correlating with impaired cognitive performance (de Jong et 

al., 2008; Zarei et al., 2009). In animal models of the disease Aβ deposition, 

neuroinflammation and neurodegeneration have been shown to occur in the 

thalamus. Work by Miao et al., have shown in a transgenic mouse model of AD 

that with increasing age there is extensive deposition of Aβ in the thalamic 

microvasculature and that regions of the thalamus showing Aβ accumulation also 

demonstrate enhanced levels of inflammatory cells (Miao et al., 2005; Fan et al., 

2007). Thus, the increased microglia activation in this region is in accordance 

with the reported susceptibility of this region to AD pathology.  
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Aβ-induced toxicity elicited an age and dose-dependent increase in 

microglia in the MSN/VDB of the basal forebrain. Higher doses of Aβ25-35 

administration resulted in a significant increase in microglia in the MSN/VDB in 3, 

6 and 9 months old rats. Additionally, 6 and 9 months old rats had an increase in 

microglia activation in this region when compared to 3 months old treatment 

matched animals. This is in accordance with other studies in rodents that have 

demonstrated administration of Aβ1-40 and Aβ25-35 results in increased levels of 

reactive astrocytes and microglia in the basal forebrain (Scali et al., 1999, 

Giovannini et al., 2002). The MSN and VDB are part of the basal forebrain 

cholinergic system, which provides major cholinergic inputs to the hippocampus 

and neocortex (D’Hooge and De Deyn, 2001; Auld et al., 2002). 

Neuroinflammation has been shown to occur in susceptible regions of the AD 

brain, and basal forebrain cholinergic cells have been shown to be selectively 

vulnerable to AD pathology (Auld et al., 2002). Furthermore, these Aβ-induced 

inflammatory responses are thought to contribute to cholinergic hypofunction, 

which is a well described change associated with human AD pathogenesis.   

4.2 The basal forebrain cholinergic system 

A significant decrease in the number of chAT immunolabeled cholinergic 

neurons in the MSN/VDB of the basal forebrain was seen in Aβ25-35 500nmol 

administered animals 6 and 9 months of age. This is in agreement with previous 

studies that have demonstrated both single injection or prolonged exposure to Aβ 

peptides, including Aβ1-40, Aβ1-42 and Aβ25-35, induces degeneration of cholinergic 

neurons and results in memory impairment in rodents (Harkany et al., 1995; 

Terranova et al., 1996; Vaucher et al., 2001; Colom et al., 2010;). Most of the 

studies examining cholinergic loss in response to Aβ toxicity however, have 

directly injected Aβ peptides into various basal forebrain structures including the 

MSN and nucleus basalis of Meynert (Terranova et al., 1996; Colom et al., 2010). 

This study was able to demonstrate cholinergic hypofunction in the MSN/VDB in 

response to icv Aβ25-35 administration, better demonstrating the selective 

vulnerability of this cholinergic neuronal population to Aβ toxicity, as amyloid was 
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not directly injected into this region. Zussy et al., have shown similar results with 

icv Aβ25-35 injections resulting in a decrease in cholinergic neurons in the basal 

forebrain when examined at 3 weeks and 6 weeks post icv Aβ administration 

(Zussy et al., 2011; 2013). Demonstrating a loss of cholinergic neurons in the 

basal forebrain is of significance since it is believed to be one of the earliest 

pathological events in AD and may contribute to the cognitive impairment 

associated with the disease process (Auld et al., 2002).  

The interplay between neuroinflammation and cholinergic neuronal loss in 

the basal forebrain has not been extensively studied. However, the Aβ-induced 

increase in microglia activation in this region accompanied by a decrease in 

cholinergic neuronal numbers demonstrated in this study suggests inflammation 

and cholinergic loss may be linked. The contribution of neuroinflammation to 

cholinergic degeneration is supported by in vitro work that showed brain 

inflammation, and in particular excessive microglia activation, selectively 

damages cholinergic neurons in primary rat basal forebrain mixed neuronal/glial 

cultures (McMillian et al., 1995). Additionally, infusion of lipopolysaccharide, a 

potent inflammatory molecule, into the basal forebrain of young rats has been 

shown to induce an extensive inflammatory response accompanied by a 

significant loss of cholinergic neurons (Wenk et al., 2000). It is thought that 

inflammatory processes that activate microglia and astrocytes results in the 

release of cytokines and ROS, which in excess can be detrimental to cellular 

functioning. Cholinergic neurons in the basal forebrain appear to be particularly 

susceptible to the damaging effects of such molecules. Therefore, the increase in 

microglia in the MSN/VDB in response to Aβ25-35 injection could be contributing to 

cholinergic dysfunction in this region.  

4.3 Neuronal integrity 

Aβ25-35 induced toxicity was also associated with histopathological 

changes in the hippocampus. The histological stains H&E and thionin revealed a 

loss of pyramidal cells in the CA3 region of the hippocampus in Aβ25-35 

administered 6 and 9-month-old animals. However, no changes in hippocampal 
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cell numbers were identified in the CA1 hippocampal subfield. Similar results 

have been demonstrated by other groups showing decreases in cell numbers in 

the CA1, CA2 and CA3 regions of the hippocampus (Stepanichev et al., 2004; 

Zussy et al., 2011; 2013). The loss of hippocampal cells as shown by histological 

stains suggests impairments in neuronal integrity, however cell counts alone do 

not confirm cell death. Work by others on the toxicity of the Aβ25-35 fragment 

indicates that hippocampal cell loss is most likely the result of apoptotic 

processes (Castro et al., 2010; Guo et al., 2013; Zussy et al., 2013). Cell death, 

and more specifically apoptosis, could be more thoroughly analyzed using 

alternative approaches including the labeling of apoptotic cells through dUTP 

nick end-labeling (TUNEL), or through examination of caspase-3 and caspase-6 

expression, both of which play a role in the execution phase of cell apoptosis. 

Alternatively, necrosis could be examined. Evaluation of apoptosis and necrotic 

cellular markers could confirm neurodegeneration in the regions examined, and 

furthermore delineate the way in which cells are dying.  

4.4 CAT-SKL  

This study was the first to use the targeted antioxidant CAT-SKL to try to 

reduce the toxicity induced by Aβ25-35 in the mature rat brain. CAT-SKL is a 

genetically engineered derivative of the antioxidant enzyme catalase. The SKL 

targeting sequence enables catalase to be more effectively targeted to 

peroxisomes, where its main function is to metabolize H2O2 to oxygen and water. 

Metabolism of H2O2 is critical, because it can react with Fe2+ to generate hydroxyl 

radicals, which are highly reactive species capable of inducing protein, lipid and 

DNA damage (Markesbery and Carney, 1999; Milton, 2004; Trippier et al., 2013). 

Aβ25-35 toxicity was induced in 6 months old male Wistar rats. Animals 6 month of 

age were used based on the findings from aim 1 of this study that demonstrated 

significantly greater pathology and inflammation in 6 months old Aβ25-35 

administered animals in comparison to 3 months old treatment matched animals.  

In the present experiments, CAT-SKL was shown to reduce microglia 

activation in the MSN/VDB and thalamus of 6 months old Aβ25-35 administered 
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rats. Reduction in microglia activation is likely a secondary consequence of the 

anti-oxidant properties of the CAT-SKL molecule. By decreasing ROS production, 

the toxicity induced by Aβ would be lessend therby decreasing the activation and 

proliferation of inflammatory microglia and astrocytes. CAT-SKL may also have 

aided in reducing the production of inflammatory molecules. Previous studies in 

vitro have demonstrated the ability of CAT-SKL supplementation to reduce the 

expression of the inflammatory cytokine TNF-α in a human cell model of 

psoriasis (Young, 2008). Moreover, CAT-SKL has been shown to protect rat 

myocytes from hypoxia-reoxygeneation and ischemia reperfusion injury via 

reduction of oxidative stress in cell culture (Undyala et al., 2011).  

The demonstrated ability of CAT-SKL to reduce oxidative stress and 

inflammatory molecules is of particular relevance since Aβ is believed to exert its 

toxicity in part by increasing ROS production. This has been demonstrated in 

neuronal and astrocyte cell cultures where addition of Aβ results in increased 

levels of ROS, and in particular H202 levels (Behl et al., 1994; Goodman et al., 

1994; Manelli and Puttfarcken, 1995; Harris et al., 1996). Moreover, in vivo 

continuous infusion of Aβ1-40 has been shown to increase H2O2 formation, reduce 

the activity of H2O2 degrading enzymes and increase the activity of H2O2 

generating enzymes in the rat brain (Kaminsky and Kosenko, 2008). Thus, the 

ability of CAT-SKL to specifically metabolize H2O2 may be of importance in 

reducing Aβ mediated toxicity. Aβ is also known to upregulate the production of 

inflammatory molecules, and activate microglia and astrocytes. Thus, CAT-SKL 

may be exerting its beneficial effect by reducing Aβ-induced production of ROS 

and inflammatory molecules, which in turn results in decreased microglia 

activation and an overall reduction in the inflammatory response.  

Treatment with CAT-SKL was also able to decrease cholinergic neuronal 

loss in the MSN/VDB of the basal forebrain, and promoted neuronal survival in 

the CA3 region of the hippocampus. Presumably this reduction in neuronal loss 

is related to the decreased inflammation seen following CAT-SKL treatment. Aβ, 

inflammation and ROS work in a self-propagating cycle, with the result being 
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excessive neuroinflammation and oxidative damage that can disrupt normal 

cellular functioning and ultimately lead to neuronal death. Stimulation of ROS 

production and activation of inflammatory molecules in culture has been shown 

to induce neuronal death.  Moreover, Aβ has been shown to mediate cell death 

via its production of ROS (Kadowaki et al., 2005).  Therefore, the protective 

effect of CAT-SKL on neuronal functioning and survival could be via CAT-SKL 

mediated reduction in ROS and inflammation.  

Previous studies have investigated the role of catalase in maintaining 

oxidative equilibrium. Addition of catalase to neuronal cultures challenged with 

Aβ has been shown to reduce H2O2 levels and improve neuronal survival (Behl et 

al., 1994; Manelli and Puttfracken, 1995; Zhang et al., 1996). Moreover, inhibition 

of catalase activity has been shown to enhance the cytotoxicity of Aβ in neuronal 

cultures (by increasing ROS levels), indicating an important role of this 

antioxidant enzyme in maintaining oxidative balance (Behl et al., 1994; Milton, 

2001). Work in a transgenic mouse model of AD has demonstrated the beneficial 

effects of using a superoxide dismutase/catalase mimetic, EUK-207, to reduce 

Aβ pathology. EUK-207 was shown to reduce oxidation of nucleic acids and lipid 

peroxidation, and was able to decrease Aβ and tau accumulation (Clausen et al., 

2012). Moreover, the impact of ROS, and in particular H2O2 levels on longevity 

has been examined in a transgenic mouse line overexpressing human catalase. 

The study demonstrated a significant enhancement in murine lifespan in mice 

overexpressing catalase when compared to wild type controls. This increased 

longevity was attributed in part to the reduction in H202 levels and oxidative stress 

(Schriner et al., 2005). Taken together these studies provide evidence for the 

protective role of catalase in aging, and in reducing Aβ toxicity. The CAT-SKL 

molecule may be of further benefit due to its unique targeting signal that directs it 

to the organelle where it can carry out its function- the peroxisome.  A model of 

Aβ associated free radical oxidative stress, and the proposed interference of 

CAT-SKL in the pathway are outlined in Figure 25.  
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Figure 25. Summary of pathology induced by Aβ25-35 toxicity with and 
without CAT-SKL treatment (A) Outline of pathology induced by Aβ25-35 icv 

administration in rats (B) Pathology in rats administered Aβ25-35 and treated with 

CAT-SKL. Boxes outlined in green were demonstrated in this study.  
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4.5 Behavior Testing: Morris Water Maze 

Spatial learning and reference memory was evaluated in rats using the 

MWM (D’Hooge and De Deyn 2001;Vorhees and Williams, 2006). No differences 

in performance were identified between RP, RP+CATSKL, Aβ and Aβ+CATSKL 

treatment groups during the spatial learning task in the MWM, indicating animals 

from all groups learned the task to the same degree. Other groups examining the 

learning capabilities of rats in the MWM following icv injection of Aβ peptides, 

including Aβ25-35, have shown deficits in spatial learning (Nabeshima and Nitta, 

1994; Chen et al., 1996; Delobette et al., 1997; Guo et al., 2013). The 

discrepancy between our finding and that of others could be attributed to 

differences in the time at which behavior testing was started, and/or due to the 

aggregation state of the Aβ peptide injected. Work by Delobette et al., showed 

that the physical state of the peptide, whether aggregated or soluble, at the time 

of injection influences animals performance in the spatial acquisition phase of the 

MWM (Delobette et al., 1997). Moreover, a study examining the time course 

based changes in response to Aβ25-35 toxicity showed that spatial acquisition in 

rats starting behavioral testing one-week post Aβ25-35 injection did not 

demonstrate spatial learning deficits. However, those animals beginning testing 2 

or 3 weeks following Aβ25-35 administration showed spatial acquisition 

impairments in the MWM (Zussy et al., 2011). Our study began spatial training 8 

days after Aβ25-35 injection, and thus the short time frame may not have been 

sufficient to allow for Aβ25-35 toxicity to impair spatial learning.  

Reference memory was assessed during the probe trials, with probe trial 1 

being used to evaluate short-term reference memory retention and probe trial 2 

as an assessment of long-term reference memory (Patil et al., 2009). Animals 

from all treatment groups successfully remembered the platform location during 

the first probe trial, as indicated by their preference for the target zone over 

adjacent zones. Additionally, no differences in performance between treatment 

groups was identified, indicating at this time point Aβ25-35 toxicity did not result in 

impairments in reference memory. During the second probe trial, 19 days after 
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Aβ25-35 injection, animals showed a significantly decreased preference for the 

target zone than animals from other treatment groups. Aβ25-35 injected animals 

also spent less time and travelled a shorter distance in the target zone during the 

second probe trial compared to the first probe trial. This decreased preference for 

the target zone during the second probe trial was not seen in Aβ25-35 

administered animals treated with CAT-SKL. Taken together this indicates that 

Aβ25-35 icv administration induces long-term reference memory deficits, and 

moreover treatment with CAT-SKL is able to attenuate Aβ25-35 induced long-term 

reference memory impairments. These results confirm that cognitive impairment 

develops approximately 3 weeks after the administration of amyloid peptides in 

rats (Zussy et al., 2011).  

  During cued learning no differences in swimming speed, path length, or 

latency to reach the cued platform location were identified between treatment 

groups. Cued learning served as an important control procedure, as the task 

requires many of the same basic abilities (intact eyesight, swimming ability) basic 

strategies (learning to swim away from the wall, learning to climb on the platform) 

and the same motivation (escape from the water) as the spatial version of the 

task. If animals are not capable of performing the cued task it casts doubt on the 

ability of animals to learn using distal cues in the spatial task (Vorhees and 

Williams, 2006). Since animals from all treatment groups were found equally 

competent at completing the cued task, differences in memory retention can 

more reliably be attributed to differences in treatment.   

The deficits seen in long-term reference memory could be a consequence 

of cholinergic neuronal loss in the MSN/VDB of the basal forebrain induced by 

Aβ25-35 toxicity. Moreover, the ability of CAT-SKL to reduce long-term reference 

memory deficits in Aβ25-35 injected rats could be due in part to the ability of CAT-

SKL to rescue cholinergic neurons. Previous studies have demonstrated that 

lesions of the MSN and/or nucleus basalis of the basal forebrain impair MWM 

performance in rodents (D’Hooge and De Deyn, 2001). Intracerebroventricular 

injection of Aβ25-35 in mice has also been shown to induce MWM memory 
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impairments that were reversed by the cholinergic agents tacrine and nicotine. 

Tacrine is an acetylcholinesterase inhibitor, and nicotine is an acetylcholine 

receptor agonist, both of which exert their effects by promoting cholinergic 

functioning.  The ability of tacrine and nicotine to reverse the behavioral deficits 

induced by Aβ25-35 administration suggests that cholinergic dysfunction 

contributes to spatial learning and reference memory impairments (Maurice et al., 

1996). The Aβ25-35 induced cholinergic deficits accompanied by impairments in 

long term reference memory seem to be in accordance with the well-described 

cholinergic dysfunction and memory impairments reported in AD.  

4.6 Limitations and Future Directions  

There are several limitations to this study, most of which are likely to be 

resolved with further investigation. This study only examined the pathology 

induced by Aβ-toxicity 21 days following icv administration. Evaluation of 

pathology at additional time points would allow for a better understanding of the 

time course of Aβ25-35 induced pathological changes in the brain and moreover 

could help determine if Aβ-induced pathology is progressive in this model. 

Additionally, this model only replicates some of the Aβ-induced pathological 

changes associated with AD pathogenesis. AD is a complex disease and the 

sequence of events causing it is not fully understood. Thus, no animal model is 

able to fully simulate all aspects of the human AD condition. This does not 

negate the usefulness of modeling aspects of the human disease in animals as 

investigations in such models can help dissect out the complexity of the human 

condition and provide useful information on the pathogenic impact and underlying 

mechanisms of specific components of the disease process. 

Intracerebroventricular administration of Aβ25-35 in older animals provides an 

adult-onset model of Aβ toxicity that demonstrates pathological changes 

representative of the early stages of the disease process. Such a model is of 

particular use when evaluating co-morbid conditions as has been done in our lab 

in the past (Whitehead et al., 2005ab; 2007ab).  
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This study was able to demonstrate the beneficial effect of CAT-SKL in 

reducing Aβ25-35 toxicity in the rat brain, however numerous questions remain 

unanswered and warrant further investigation in regards to the mechanism by 

which CAT-SKL is reducing Aβ toxicity. Ongoing work in our lab is currently 

investigating lipid peroxidation and DNA oxidation levels, both indicators of 

oxidative stress, in the brains of rats treated with and without CAT-SKL. This 

combined with more rigorous analysis of oxidative damage in the brain via the 

use of biochemical assays will help elucidate whether CAT-SKL is exerting its 

effect by reducing oxidative stress and increasing catalase levels in the rat brain. 

Furthermore, since this was one of the first studies to use CAT-SKL in vivo and 

information regarding the pharmacokinetics and pharmacodynamics of CAT-SKL 

are limited, the optimal quantity and dosages of CAT-SKL are uncertain and 

warrants further investigation. Finally, this was a proof-of principle study with 

CAT-SKL administration beginning a week prior to Aβ25-35 icv injection; therefore, 

the neuroprotective effects of CAT-SKL may be due to prevention rather than 

treatment of Aβ25-35 toxicity. Future studies are needed to elucidate whether CAT-

SKL would be beneficial in reducing pre-existing Aβ-induced pathology.  
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 This study demonstrated the importance of considering the age of the 

animal when modeling Aβ toxicity. Intracerebroventricular administration of Aβ25-

35 in animals 6 and 9 months of age resulted in increased pathology compared to 

Aβ25-35 induced pathology in 3 months old animals. Older animals showed 

increased microglia activation in the thalamus and MSN/VDB, decreased number 

of cholinergic neurons in the basal forebrain, and loss of neuronal integrity in the 

hippocampus. The majority of studies investigating Aβ toxicity in non-transgenic 

models of the disease administer Aβ in 2-3 month old animals. However, AD is a 

disease of the elderly, with the most important non-genetic risk factor for late-

onset AD being age. A number of changes occur in the brain with age, including 

increased levels of ROS, increased production of inflammatory mediators, 

reduced functioning of antioxidant enzymes, and accumulation of modified lipids 

and proteins. While these changes alone may not manifest themselves as 

impairments, the progressive accumulation of them over time may alter the brain 

in such a way that renders it vulnerable to age-associated disease processes. 

Interestingly, even at 6 and 9 months we were able to show increased Aβ 

induced pathology, speaking to the important role that even these ages plays in 

rendering the brain vulnerable to insult. Although 6 and 9 months is not 

considered old for a rat, these ages provide a more physiologically relevant 

equivalent to an adult brain than that of a 3 month animal (Quinn, 2005; 

Sengupta, 2011). Therefore, icv administration of Aβ in animals 6 or 9 months of 

age provides a model for adult-onset Aβ toxicity with pathological changes that 

reflect the early stages of AD pathogenesis.  

Using this adult-onset model of Aβ25-35 toxicity, we then investigated 

whether the targeted antioxidant, CAT-SKL could reduce Aβ25-35 induced 

pathology. Treatment with CAT-SKL decreased Aβ-induced microglia activation 

and reduced cholinergic loss in the MSN/VDB of the basal forebrain. Moreover, it 

decreased astrocyte activation and promoted neuronal survival in the CA3 region 

of the hippocampus. CAT-SKL treatment also attenuated long-term reference 

memory deficits induced by Aβ25-35 administration. The precise mechanism by 

which CAT-SKL was able to reduce Aβ toxicity in vivo is unknown; however, the 
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neuroprotective effects of the molecule are likely attributed to its antioxidant and 

anti-inflammatory properties. This preclinical data provides support for the use of 

CAT-SKL in reducing neuroinflammation and long-term reference memory 

deficits induced by Aβ25-35.  

Substantial evidence exists implicating oxidative stress and 

neuroinflammation in the pathogenesis of AD. However, whether oxidative stress 

is an initiator of AD pathogenesis or is a mediator of the disease process remains 

to be answered. Nonetheless, oxidative stress appears to occur during the early 

stages of the disease process, before the appearance of amyloid plaques and 

neurofibrillary tangles in both humans and in animals models of the disease 

(Dumont and Beal, 2011). Therapeutics aimed at restoring or maintaining the 

homeostatic balance between production and elimination of ROS, and thus 

reducing oxidative stress and inflammation during the early stages of the disease 

may help in slowing disease progression and may aide in the protection of at-risk 

individuals from the development of AD. The antioxidant molecule, CAT-SKL, 

may therefore be a viable therapeutic approach for reducing oxidative stress and 

neuroinflammation during the beginning stages of AD pathogenesis.  
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