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Abstract 
 The final step of phenylalanine biosynthesis in planta is catalyzed by arogenate 

dehydratases (ADTs). Previously cloned ADT-CFP fusion genes were used to provide an 

in depth study of the subcellular localization of all six ADTs from Arabidopsis thaliana. 

Through co-localization of ADT-CFPs with a stroma-marker it is shown that most ADTs 

localize to stroma-filled projections from chloroplasts called stromules. The localization 

of ADT5 and ADT2 provide evidence for additional, non-enzymatic roles. In the case of 

ADT5, it is found to localize to the nucleus, suggestive of an uncharacterized nuclear 

role. The localization patterns of ADT2 are suggestive of a role in chloroplast division. 

This secondary role is investigated through analysis of localization patterns in 

N. benthamiana, A. thaliana and several chloroplast division mutants. In addition, 

chloroplast morphology is examined in adt2 mutant plants, and the effect of this mutation 

on the localization of a known chloroplast division protein is examined. 

Keywords 

arogenate dehydratase, phenylalanine biosynthesis, subcellular localization, stromules, 

chloroplast division, agroinfiltration, transient transformation, arc mutants, FtsZ
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1 Introduction 

1.1 Phenylalanine and its significance 

 Phenylalanine is an aromatic amino acid that is only synthesized by plants and 

microorganisms (Maeda and Dudareva, 2012). Despite the human body’s inability to 

synthesize phenylalanine it is essential for human life and must therefore be obtained 

through our diet (Maeda and Dudareva, 2012). Like most amino acids, phenylalanine is 

incorporated into proteins during their synthesis, but its importance is not limited to that 

role. In plants, phenylalanine serves as a precursor for the synthesis of secondary 

metabolites such as flavonoids (Samanta et al., 2011). These are a diverse group of 

phenolic compounds that act as cellular signaling molecules, protect plant cells from 

ultraviolet-light, and are important pigments responsible for flower colour (Samanta et 

al., 2011). Phenylalanine is also required for the synthesis of monolignols, monomers that 

assemble into lignin, a compound that is required for the structural integrity of plants 

(Liu, 2012). In mammals, phenylalanine is a precursor to the neurotransmitter dopamine 

and the hormones epinephrine and norepinephrine by its conversion to tyrosine followed 

by subsequent modifications (Fernstrom and Fernstrom, 2007; Udenfriend and Cooper, 

1952) The importance of phenylalanine to humans extends beyond our inherent 

biological need for it, as it is an industrially important compound. For example, 

phenylalanine is required for the production of aspartame, an artificial sweetener, 

produced globally at upwards of 15,000 tons per year (Leuchtenberger et al., 2005). 

Given the importance of phenylalanine to plant and animal life, increasing our knowledge 

of the enzymes and processes involved in its synthesis will be of benefit to society.  

1.2 Phenylalanine biosynthesis 

 Phenylalanine biosynthesis (Fig. 1) is an extension of the shikimate pathway, a 

series of enzyme catalyzed biochemical reactions connecting the metabolism of 

carbohydrates to the synthesis of aromatic amino acids (Herrmann and Weaver, 1999). 

The end product of the shikimate pathway is chorismate, the last common precursor to 

the synthesis of the three aromatic amino acids tyrosine, tryptophan and phenylalanine



 

 

Figure 1. Phenylalanine biosynthesis. 

Phenylalanine biosynthesis occurs downstream of the shikimate pathway. Chorismate, 

the last common precursor to all aromatic amino acids, is converted to prephenate by 

CM. Synthesis of phenylalanine from prephenate can occur through one of two pathways 

depending on the organism. In microorganisms phenylalanine biosynthesis 

predominantly occurs through the pathway shown on the left. Prephenate is dehydrated 

and decarboxylated by PDT to phenylpyruvate. Transamination of phenylpyruvate to 

phenylalanine is subsequently catalyzed by PPAT. In plants phenylalanine biosynthesis 

occurs predominantly through the pathway on the right, which utilizes the same 

biochemical reactions but in opposite order. Prephenate is transaminated to arogenate by 

PAT. Arogenate is then dehydrated and decarboxylated by an ADT synthesizing 

phenylalanine. 

CM: chorismate mutase; PDT: prephenate dehydratase, PPAT: phenylpyruvate 

aminotransferase, PAT: prephenate aminotransferase, ADT: arogenate dehydratase. 

 

Adapted from Cho et al. (2007). 
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(Tzin and Galili, 2010). Synthesis of phenylalanine from chorismate begins with the 

conversion of chorismate to prephenate catalyzed by chorismate mutase (CM) (Eberhard 

et al., 1993; Tzin and Galili, 2010). Downstream of prephenate, phenylalanine can be 

synthesized via one of two pathways depending on the organism (Maeda and Dudareva, 

2012).  In microorganisms, prephenate is dehydrated and decarboxylated by prephenate 

dehydratase (PDT) synthesizing phenylpyruvate (Maeda and Dudareva, 2012). A 

transamination of phenylpyruvate by phenylpyruvate aminotransferase (PPAT) 

synthesizes phenylalanine (Maeda and Dudareva, 2012). In plants, the same biochemical 

reactions occur, but in opposite order. Prephenate is first transaminated by prephenate 

aminotransferase (PAT) synthesizing arogenate (Bonner and Jensen, 1985). Arogenate is 

then dehydrated and decarboxylated to phenylalanine by an arogenate dehydratase (ADT) 

(Cho et al., 2007). 

1.3 AROGENATE DEHYDRATASES (ADTs) 

 The genome of the model plant Arabidopsis thaliana encodes many gene families 

(The Arabidopsis Genome Initiative, 2000).  In A. thaliana there are six genes that code 

for ADTs (ADT1: At1G11790, ADT2: At3G07630, ADT3: At2G27820, ADT4: 

At3G44720, ADT5: At5G22630 and ADT6: At1G08250) (Cho et al., 2007; Ehlting et al., 

2005). Plant ADTs have three domains: an N-terminal transit peptide, an internal 

catalytic domain responsible for catalyzing the dehydration/decarboxylation reaction, and 

a C-terminal ACT (aspartokinase, chorismate mutase, TyrA) domain (Cho et al., 2007). 

ACT domains are a conserved feature of enzymes involved in amino acid biosynthesis, 

and typically regulate enzyme activity allosterically through ligand binding (Liberles et 

al., 2005). While the ACT domains of ADTs have not been characterized in detail, 

bacterial PDTs are inhibited upon binding of phenylalanine, causing the enzyme to 

transition from an active open state to an inactive closed state (Tan et al., 2008).  The 

relationship between ADTs and bacterial PDTs extends beyond the presence of an ACT 

domain as they share a high degree of amino acid sequence similarity (Cho et al., 2007; 

Ehlting et al., 2005). The similarity between ADTs and PDTs led to the identification of 

the six ADTs in the A. thaliana genome (Ehlting et al., 2005). This occurred prior to any 
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functional characterization of the enzymes since it was previously shown that ADT 

activity was present in the chloroplasts of the higher plants, Nicotiana silvestris and 

spinach, while PDT activity was absent (Jung et al., 1986). ADT activity was confirmed 

after all six A. thaliana genes were cloned and expressed in Escherichia coli and it was 

determined that they could synthesize phenylalanine from arogenate (Cho et al., 2007). 

Interestingly, ADT1, ADT2 and ADT6 are capable of using prephenate as a substrate and 

thus have PDT activity as well (Cho et al., 2007). However, the PDT activity of these 

three enzymes is limited because the catalytic efficiency is much higher when arogenate 

is used as a substrate (Cho et al., 2007).  

1.3.1 Subcellular localization of ADTs 

 In silico analysis of amino acid sequences indicated that the N-terminal portion of 

ADTs is likely a transit peptide allowing for protein import into chloroplasts (Crawley, 

2004), consistent with ADT activity being detected in chloroplasts (Jung et al., 1986). 

Initial studies of ADT subcellular localization were performed in protoplasts, plant cells 

that have been enzymatically treated to remove the cell wall, and showed that all six 

ADTs localized uniformly throughout the chloroplast stroma (Rippert et al., 2009). 

However, the cells used to generate the protoplasts were from cell suspension cultures 

(Rippert et al., 2009) and such a system may not reflect the complexity of what is 

occurring in planta. Therefore, Bross (2011) cloned all six ADTs from A. thaliana as 

CYAN FLUORESCENT PROTEIN (CFP) fusion genes in pCB, a transfer-DNA (T-DNA) 

containing binary vector in which the expression of genes in planta is regulated by the 

Cauliflower Mosaic Virus (CaMV) 35s promoter. After transforming Agrobacterium 

tumefaciens with pCB encoding ADT-CFP fusion genes, agroinfiltration was used to 

transiently express the fusion genes in Nicotiana benthamiana leaves (Bross, 2011). 

Confocal microscopy was used to determine the subcellular localization of each 

fluorescently labeled ADT (Bross, 2011). The localization of ADTs in planta was more 

complex than what had been previously observed in protoplasts (Bross, 2011; Rippert et 

al., 2009). With the exception of ADT6, which was observed in the cytosol, all ADTs 

localized to tail-like structures extending from the body of chloroplasts (Bross, 2011). 
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Aside from localizing to these structures, ADT2 and ADT5 possessed unique 

localization patterns that are suggestive of additional non-enzymatic roles (Bross, 2011). 

In the case of ADT2, it was observed as a band across the middle of a chloroplast or as an 

aggregation of protein at a chloroplast pole (Bross, 2011). These localization patterns are 

similar to those of chloroplast division proteins (Miyagishima, 2011), and suggest that 

ADT2 may play a role in the division process. In the case of ADT5, it was seen to 

localize to globular structures resembling nuclei (Bross, 2011). Therefore, the subcellular 

localization patterns of ADTs in planta appear to be much more complex than was 

previously realized, and will require further examination to understand their significance.   

1.4 Stromules 

 The tail-like structures that ADTs localize to in planta (Bross, 2011) are similar to 

a known feature of the structure of chloroplasts (Fig. 2) called stromules. Stromules 

(stroma-filled tubules) are stoma-filled projections of the plastid membrane (Gray et al., 

2001). Stromules are variable in appearance, and can be long, elaborately shaped tubules, 

or shorter protrusions (Gunning, 2005; Köhler and Hanson, 2000; Natesan et al., 2005). 

They are also dynamic in nature and can extend, retract, and branch along their length 

(Gunning, 2005). Stromules can also create stroma-filled vesicles by budding off from 

their tip, a process called tip-shedding (Gunning, 2005). Visualization of stromules using 

confocal microscopy is not possible without the presence of stroma-targeted fluorescent 

proteins (Gray et al., 2011). Typically, confocal microscopy identifies chloroplasts based 

on fluorescence from chlorophyll within the thylakoid membrane, and thylakoids are not 

present in stromules (Gray et al., 2001; 2011). 

1.4.1 Function of stromules 

 While stromules have been observed in a wide range of plant species (Natesan et 

al., 2005), their function has not been fully elucidated. However, there are several 

possible functions that have been proposed. The presence of stromules creates an increase 

in plastid surface area without substantially increasing plastid volume (Gray et al., 2001; 

Natesan et al., 2005). This property could, in theory, increase the capacity of plastids to 



 

 

Figure 2. Structure of a chloroplast. 

Chloroplasts are ovoid organelles with an outer and an inner membrane. Between the two 

membranes is the intermembrane space. Chloroplasts contain a protein rich fluid called 

stroma, where thylakoids are present. Thylakoids are membranous structures surrounding 

a lumen that can stack forming a granum. Contained within the thylakoid membrane is 

chlorophyll, a pigment required to visualize chloroplasts using confocal microscopy. 

Stroma-filled protrusions formed by the outer and inner membranes called stromules can 

extend from the body of the chloroplast, but do not contain thylakoids and therefore are 

not visible through chlorophyll fluoresence. Stromules are highly variable in size and 

shape, and are able to bud off from the chloroplast, forming vesicles. 

 

Adapted from Bross (2011). 
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transport metabolites and macromolecules to other areas of the cell (Natesan et al., 

2005). Consistent with a role in transport it has been shown that fluorescently labeled 

proteins can shuttle between plastids connected by stromules (Köhler et al., 1997; Kwok 

and Hanson, 2004a). While supporting evidence exists only for inter-plastidic transport, 

stromules have been reported to associate closely with mitochondria (Gunning, 2005), 

endoplasmic reticulum (Schattat et al., 2011) and nuclei (Kwok and Hanson, 2004b) 

although these remain purely qualitative observations. The close association between 

stromules and the nucleus raises the possibility that stromules may be capable of 

transporting molecules to the nucleus, facilitating communication between the two 

organelles (Krause et al., 2012; Kwok and Hanson, 2004b). In addition, the vesicles 

stromules form by tip shedding (Gunning, 2005) may have functional significance. It has 

been speculated that they could recycle stromal proteins if the vesicle comes into contact 

and fuses with another plastid (Hanson and Sattarzadeh, 2011). Alternatively, these 

vesicles may dispose of stromal proteins by sending them to the vacuole for degradation 

as a way to degrade stromal proteins without degrading the entire plastid (Hanson and 

Sattarzadeh, 2011; Ishida et al., 2008). Currently, evidence for a role of stromules in 

increasing metabolite transport is lacking. As ADTs synthesize phenylalanine, an amino 

acid needed throughout the cell, their localization to tail-like structures resembling 

stromules (Bross, 2011) is intriguing. Thus, it should be determined if ADTs localize to 

stromules by co-localizing ADT-CFP fusion proteins with a fluorescently tagged stroma-

localized protein allowing stromule visualization using confocal microscopy. 

1.4.2 Stromule induction and formation 

 While there are many hypotheses as to the function of stromules, researchers are 

also studying if stromules are induced under specific conditions. In a comprehensive 

study, it was shown that stromule formation is induced in response to abiotic stressors 

such as drought and high salinity (Gray et al., 2012). The induction of stromules under 

these conditions is due to the actions of two phytohormones, abscisic acid (ABA) and 

ethylene (Gray et al., 2012). Application of compounds inhibiting signal transduction 
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pathways associated with either ABA or ethylene such as AgNO3, an inhibitor of 

ethylene signaling, can cause a reduction in stromule formation (Gray et al., 2012).  

 While stromules can be induced under conditions of abiotic stress, this does not 

explain the molecular mechanisms governing their formation and movement. Stromules 

closely associate with actin microfilaments (Kwok and Hanson, 2004c), and are inhibited 

upon application of compounds that destabilize actin polymers (Kwok and Hanson, 

2003), indicating stromules need the actin cytoskeleton to form. The actin-associated 

formation of stromules is dependant on myosins, as application of 2,3-butanedione 

monoxime (BDM), an inhibitor of myosin ATPase activity, nearly abolishes the presence 

of stromules (Natesan et al., 2009). More specifically, a plant specific class of myosins 

(myosin XI) is responsible for stromule formation and movement (Natesan et al., 2009). 

In A. thaliana there are 13 genes encoding different myosin XI sub-classes (Reddy and 

Day, 2001) and functional redundancy exists between them (Peremyslov et al., 2008). 

While it is not known if stromules result from the actions of a specific sub-class of 

myosin XI, RNA interference against myosin XI or transient expression of tail domains 

of myosin XI are able to inhibit stromule formation (Natesan et al., 2009). The inhibition 

of stromules caused by expression of myosin XI tail domains likely results from a 

dominant negative effect as they inhibit the function of wild-type myosin XI (Avisar et 

al., 2008).  

 Much of what is known about stromule formation has been deduced from what 

inhibits their formation. However, as stromules are hypothesized to transport materials, it 

is conceivable that stromule inhibition could provide evidence for stromule-mediated 

transport if inhibition of stromules is found to reduce transport of a molecule or protein of 

interest. 

1.5 Chloroplast division 

 Initial studies by Bross (2011) found that ADT2-CFP localizes to a band at the 

equatorial plane (middle) of chloroplasts or to the pole of a chloroplast. These 

localization patterns are interesting because they are similar to proteins involved in 
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chloroplast division (Miyagishima, 2011), suggesting ADT2 may have a role in this 

process. Chloroplast division is regulated by the size of chloroplasts (Pyke, 1999) and is 

initiated by the sequential formation of proteinaceous rings at the equatorial plane of a 

dividing chloroplast (Miyagishima and Kabeya, 2010). In A. thaliana there are four rings 

(Fig. 3) involved in the division of a chloroplast, located in both the stroma and the 

cytosol (Pyke, 2013). 

 The earliest known event in chloroplast division is the formation of the innermost 

division ring, the Z-ring (Miyagishima, 2011). The Z-ring is composed of the tubulin-like 

protein Filamentous temperature sensitive Z (FtsZ) (Vitha et al., 2001). There are three 

FtsZ proteins encoded in the A. thaliana genome; FtsZ1-1, FtsZ2-1 and FtsZ2-2 

(Osteryoung and Vierling, 1995; Osteryoung et al., 1998). All forms of FtsZ are able to 

polymerize with each other, forming filaments that are assembled into the Z-ring at the 

equatorial plane of a dividing chloroplast (TerBush et al., 2012; 2013; Vitha et al., 2001).  

 The formation of the Z-ring is regulated by the coordinated actions of several 

proteins that allow the Z-ring to form only at the equatorial plane of a dividing 

chloroplast (Fig. 4A) (TerBush et al., 2013). An important regulator of Z-ring positioning 

is ACCUMULATION AND REPLICATION OF CHLOROPLASTS 3 (ARC3), which 

inhibits FtsZ polymerization (Zhang et al., 2013) and is believed to be active away from 

the equatorial plane, towards the poles of chloroplasts (TerBush et al., 2013). As a result 

of ARC3 activity the Z-ring is restricted to the equatorial plane (TerBush et al., 2013). 

Another protein involved in Z-ring placement is the transmembrane protein ARC6 (Vitha 

et al., 2003). ARC6 spans the inner membrane, and acts to anchor and stabilize FtsZ 

filaments into the Z-ring (Vitha et al., 2003). 

 The next ring to form is the inner plastid-dividing (PD) ring, located in the stroma 

between the Z-ring and the inner membrane (Miyagishima and Kabeya, 2010). The 

composition of this ring is unknown having only been visualized using electron 

microscopy, where it appears as a dark, electron dense region at the stromal side of the 

inner membrane (Miyagishima and Kabeya, 2010). Although no components of the inner  



 

 

Figure 3. Cross-section of division rings at the equatorial plane of a chloroplast. 

Chloroplast division in higher plants requires the sequential formation of four rings at the 

equatorial plane of a chloroplast. There are two rings in the stroma, the Z-ring composed 

of FtsZ1 and FtsZ2 (orange and yellow circles) filaments and the inner PD ring of 

unknown composition. The remaining rings are located in the cytosol. The outer PD ring 

is of unknown composition in higher plants, but is composed of polyglucan filaments in 

C. merolae. The ARC5 ring provides some of the constricting force required to divide 

chloroplasts. 

 

FtsZ: Filamentous temperature sensitive Z; PD: plastid-dividing; ARC5: 

ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 

 

Adapted from Glynn et al. (2007).
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Figure 4. Overview of chloroplast division components. 

This schematic is a simplified overview of chloroplast division focusing on components 

relevant to this thesis. 

 (A) The placement of the Z-ring is a regulated process. ARC3 inhibits FtsZ 

polymerization away from the equatorial plane, restricting Z-ring formation to this area. 

ARC6 spans the inner membrane and allows the Z-ring to form by stabilizing and 

anchoring FtsZ filaments. 

 

Adapted from TerBush et al. (2013). 

 

(B) The stromal division rings are connected to the cytosolic rings by transmembrane 

proteins in the inner and outer membranes. In the inner membrane ARC6 and PARC6 

recruit PDV2 and PDV1 in the outer membrane. The presence of PDV1 and PDV2 act to 

recruit cytosolic ARC5 to the division plane.  

 

Adapted from Glynn et al. (2009). 

 

FtsZ: Filamentous temperature sensitive Z; ARC: ACCUMULATION AND 

REPLICATION OF CHLOROPLASTS; PARC6: PARALOG OF ARC6; PDV: 

PLASTID DIVISION. 
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PD ring are known, it is hypothesized to be composed of uncharacterized chloroplast 

division proteins (Miyagishima and Kabeya, 2010).  

 The third ring to form is the outer PD ring, located at the cytosolic face of the 

outer membrane (Miyagishima and Kabeya, 2010; Yoshida et al., 2010). Like the inner 

PD ring, it is of unknown composition in higher plants (Miyagishima and Kabeya, 2010). 

However, in the unicellular algae Cyanidioschyzon merolae the outer PD ring is 

composed of polyglucan filaments and proteins associated with these filaments (Yoshida 

et al., 2010). In C. merolae these polyglucan filaments are synthesized by PLASTID-

DIVISION RING1, a protein conserved in higher plants including A.thaliana (Yoshida et 

al., 2010). This suggests that the outer PD ring is of similar composition in chloroplasts 

of plants (Yoshida et al., 2010). 

 The final, and outermost ring to form is composed of the cytosolic dynamin-like 

protein ARC5 (Gao et al., 2003; Yoshida et al., 2010). During division chloroplasts 

become constricted leading to the separation of the chloroplast into two smaller daughter 

chloroplasts (Pyke, 1999). The role of ARC5 in division is to provide some of this 

constricting force needed for complete division of chloroplasts (Gao et al., 2003; Yoshida 

et al., 2006). 

  As stromal and cytosolic division rings are separated by the chloroplast 

membranes there needs to be a way of connecting the stromal rings, which form first, to 

the cytosolic rings, which form later (Glynn et al., 2008; 2009; Holtsmark et al., 2013; 

Miyagishima et al., 2006). This occurs via transmembrane proteins in both the inner and 

outer membranes (Fig. 4B). In the inner membrane ARC6 and PARALOG OF ARC6 

(PARC6) recruit PLASTID DIVISION2 (PDV2) and PDV1, respectively, in the outer 

membrane (Glynn et al., 2008; 2009). The presence of PDV1 and PDV2 in the outer 

membrane at the division plane is believed to recruit ARC5 (Miyagishima et al., 2006; 

Holtsmark et al., 2013). Although the inner and outer PD rings are located between the Z-

ring and the ARC5 ring (Miyagishima, 2011), their role in connecting the division rings 

is not understood. 
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  The discovery of many chloroplast division components occurred after 

studying mutant plants with abnormal chloroplast morphology (Pyke, 2013). In 

A. thaliana the accumulation and replication of chloroplasts (arc) mutants are 

chloroplast division mutants generated through random mutagenesis and identified by 

screening for unusual chloroplast size, number or shape (Pyke and Leech 1992; 1994; 

Pyke et al., 1994). The arc3 (Pyke and Leech, 1992), arc5 (Pyke and Leech, 1994) and 

arc6 mutants (Pyke et al., 1994) are among the best-characterized chloroplast division 

mutants, as the position of the Z-ring as determined by FtsZ localization is known in each 

(Glynn et al., 2007; Vitha et al., 2001; 2003).  

 In arc3 mutants multiple Z-rings are able to form in a single chloroplast (Glynn et 

al., 2007) because functional ARC3 protein is not present to restrict the Z-ring to the 

equatorial plane (TerBush et al., 2013). As a result of Z-ring misplacement asymmetrical 

division can occur (Zhang et al., 2013) causing arc3 chloroplasts to be heterogeneous in 

size and shape, although on average they are larger in size and fewer in number per cell 

than wild-type (Pyke and Leech, 1992). 

  In arc5 mutants, many chloroplasts are severely enlarged and centrally 

constricted appearing dumbbell shaped (Pyke and Leech, 1994), as the mutant arc5 

protein cannot efficiently constrict and divide chloroplasts (Gao et al., 2003). In arc5 

mutants the stromal division machinery is unaffected and the Z-ring remains present in 

the stroma at the central constriction (Vitha et al., 2001).  

 The arc6 mutant has a particularly severe phenotype, with mesophyll cells 

containing only two chloroplasts on average (Pyke et al., 1994). The presence of ARC6 

early in division is required for the Z-ring to form and as a result Z-rings do not form in 

arc6 chloroplasts (Vitha et al., 2003). Instead, FtsZ localizes to multiple short filaments 

that appear randomly scattered in the stroma of arc6 chloroplasts (Vitha et al., 2003).  

 The known position of a critical chloroplast division protein such as FtsZ in arc3 

(Glynn et al., 2007), arc5 (Vitha et al., 2001) and arc6 mutants (Vitha et al., 2003) 

makes them useful tools for investigating the role of a putative chloroplast division 
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protein such as ADT2. By expressing ADT2-CFP in these mutants its localization 

patterns can be compared with those of FtsZ to provide evidence for a possible role in 

division. 

1.6 Agrobacterium-mediated transgene expression 

 A. tumefaciens is a soil bacterium that can induce tumor formation in plants 

(Gelvin, 2003). Its ability to do so relies on sequences contained on a tumor-inducing 

plasmid (Ti-plasmid) (Gelvin, 2003). The Ti-plasmid encodes VIRULENCE (VIR) genes 

and contains the T-DNA, a region defined by the left-border and right-border sequences 

that flank it (Gelvin, 2003). Proteins encoded by VIR genes allow A. tumefaciens to sense 

chemicals, such as acetosyringone, that are released by the plant in response to wounding 

(Statchel et al., 1985). This initiates a signal cascade mediated by VIR proteins resulting 

in the transfer of the T-DNA to plant cells where it can be expressed (Gelvin, 2003). The 

T-DNA encodes genes involved in phytohormone synthesis that cause uncontrolled cell 

growth when expressed in planta (Escobar and Dandekar, 2003), and genes involved in 

the synthesis of opines, compounds A. tumefaciens can metabolize to obtain nutrients 

(Zupan et al., 2000).  

 For use in molecular biology, sequences on the Ti-plasmid are modified and 

partitioned into two separate plasmids: a helper Ti-plasmid and a T-DNA containing 

binary vector (Bevan, 1984; Hoekema et al., 1983). The helper Ti-plasmid encodes VIR 

genes but does not contain a T-DNA and is present in strains of A. tumefaciens developed 

for molecular biology (Hoekema et al., 1983). The T-DNA is contained on a separate 

binary vector, and the phytohormone and opine synthesis genes are replaced with 

sequences of interest (Bevan, 1984; Hoekema et al., 1983). Once the T-DNA containing 

binary vector is transformed into A. tumefaciens carrying a helper Ti-plasmid the bacteria 

now contains the VIR genes and the T-DNA required for expression of a gene of interest 

in planta (Bevan, 1984; Hoekema et al., 1983). 

 Agrobacterium-mediated plant transformations can create stably transformed 

plants, that is, plants with a copy of the T-DNA within the genome of every cell using 
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methods such as the floral dip (Clough and Bent, 1998). Stable transformation allows 

for transgene expression in all tissues, but is also time consuming and relies on random 

integration of T-DNA into the genome, which can result in positional effects (Clough and 

Bent, 1998; Gelvin, 2003). A. tumefaciens can also be used to transiently transform plants 

using methods such as agroinfiltration (Yang et al., 2000). This involves pressure 

infiltrating A. tumefaciens into the underside of leaves using a blunt ended syringe. 

Although transgene expression is limited to leaf cells, the time until transgene expression 

can be analyzed is measured in days rather than months (Yang et al., 2000). 

Agroinfiltration is commonly performed in relatives of tobacco, such as N. benthamiana, 

while its effectiveness has historically been limited in A. thaliana (Wroblewski et al., 

2005).  

1.7 Hypotheses and objectives 

 Initial studies of ADT subcellular localization in planta (Bross, 2011) were brief. 

However, the complexity of the observed subcellular localization patterns raises 

questions as to what these patterns represent. This thesis intends to re-examine the 

subcellular localization of all ADTs through agroinfiltration of N. benthamiana and 

A. thaliana. 

This thesis will address three main hypotheses: 

 Firstly, the localization of ADTs to tail-like structures appearing outside of the 

body of chloroplasts (Bross, 2011) leads to the hypothesis that ADTs localize to 

stromules. This hypothesis will be tested by co-expressing ADT-CFP fusion proteins with 

a fluorescently labeled stroma-marker allowing for stromule visualization using confocal 

microscopy. 

 Secondly, the localization of ADT5-CFP to globular structures resembling nuclei 

(Bross, 2011) leads to the hypothesis that ADT5 localizes to the nucleus. This hypothesis 

will be tested by co-expressing ADT5-CFP with a fluorescently tagged nuclear marker 

allowing for visualization of the nucleus using confocal microscopy.  
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 Finally, the observation that ADT2-CFP is visualized at the equatorial plane or 

pole of chloroplasts (Bross, 2011) leads to the hypothesis that ADT2 is involved in 

chloroplast division. To investigate a possible secondary role for ADT2, multiple 

approaches will be used. Firstly, ADT2-CFP localization patterns will be extensively 

observed to determine ADT2-CFP localization in dividing chloroplasts. Chloroplasts in 

an adt2 mutant will be visualized for the first time, to determine if a link can be 

established between ADT2 function and chloroplast division. ADT2-CFP will also be 

expressed in arc3, arc5 and arc6 chloroplast division mutants to determine if its 

localization patterns are altered in response to mutations affecting chloroplast division. 

Finally, a fluorescently tagged chloroplast division protein will be developed to 

determine if chloroplast division proteins are misplaced in an adt2 mutant. 
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2 Materials and Methods 

2.1 Media, media supplements, solutions, and buffers 

2.1.1 Media 

 Media was prepared in double-distilled H2O (ddH2O) in either solid or liquid 

form. In the case of solid media, 15 g of agar was added per litre. Media was autoclaved 

for 20 minutes at 121°C. 

Agrobacterium-induction media 

To 1 L of YEB media (see recipe below): 10 mL 1 M 2-(N-morpholino)ethanesulfonic 

acid (MES) and  500 µL 200 mM acetosyringone. 

Lysogeny broth (LB) media 

For 1 L:  10 g tryptone, 5 g yeast extract and 10 g NaCl. 

Super optimal growth with catabolite repression (SOC) media 

For 1 L: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 20 mL 1 M glucose, 10 mL 0.25 M 

KCl,  and 5 mL 2 M MgCl. pH adjusted to 7.0 with NaOH. 

Yeast extract and beef (YEB) media 

For 1 L:  5 g peptone, 5 g beef extract, 5 g sucrose, 1 g yeast extract, 0.49 g MgSO4.  

2.1.2 Media supplements 

Media was supplemented with appropriate antibiotics for selection. 

Antibiotic Stock Solutions 

 Stock solutions of kanamycin (60 mg/mL), streptomycin (50 mg/mL), gentamycin 

(50 mg/mL) and spectinomycin (100 mg/mL) were prepared by dissolving the antibiotic 

in ddH2O followed by filter sterilization. Stock solutions of rifampicin (25 mg/mL) were 
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prepared by dissolving the antibiotic in dimethyl sulfoxide (DMSO). All stock 

solutions are stored at -20°C. 

 Antibiotics were supplemented in media at the following concentrations. 

Gentamycin: 15 µg/mL; kanamycin: 60 µg/ml; rifampicin: 10 µg/mL; spectinomycin: 

100 µg/mL; streptomycin: 50 µg/mL. 

2.1.3 Solutions 

Acetosyringone Stock Solution 

Acetosyringone stock solution was prepared in DMSO at 200 mM, and stored at -20°C. 

AgNO3 stock solution 

AgNO3 stock solutions was prepared in ddH2O at 120 mM. The solution was filter 

sterilized and stored at room temperature. 

Alkaline lysis solution I 

For 100 mL: 5 mL 1 M glucose, 2.5 mL Tris-HCl (pH 8) and 200 µL 0.5 M 

ethylenediaminetetraacetic acid (EDTA) (pH 8) was added to ddH2O. The solution was 

autoclaved and stored at 4°C.  

Alkaline lysis solution II 

For 5 mL: 200 µL 5 M NaOH and 500 uL 10% w/v sodium dodecyl sulfate was added to 

ddH2O. The solution was prepared fresh prior to use. 

Alkaline lysis solution III 

For 100 mL: 60 mL potassium acetate and 11.5 mL of glacial acetic acid was added to 

ddH2O. The solution was autoclaved and stored at 4°C. 
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2,3-butanedione monoxime (BDM) stock solution 

BDM stock solution was prepared in ddH2O at 100 mM. The solution was filter sterilized 

and stored at room temperature. 

Gamborg’s Solution 

For 1 L: 3.2 g Gamborg’s B5 medium with vitamins and 20 g sucrose was added to 

ddH2O. Solution was autoclaved, after which 10 mL 1 M MES and 1 mL acetosyringone 

stock solution were added and was stored at room temperature. 

L-ascorbic acid stock solution 

L-ascorbic acid stock solution was prepared in ddH2O at 1 M. The solution was filter 

sterilized and stored at room temperature. 

2.1.4 Buffers 

Buffers were prepared in concentrated forms (50X or 10X) and diluted with ddH2O for 

use at 1X. 

50X Tris base, acetic acid, EDTA (TAE ) buffer  

For 1 L: 242 g Tris base, 57.1 mL glacial acetic acid and 100 mL 0.5 M EDTA (pH 8.0) 

was added to ddH2O. 

10X Tris base, EDTA (TE) buffer 

For 1L: 100 mL 1M Tris-Cl (pH 8.0) and 20 mL 0.5 M EDTA (pH 8.0) was added to 

ddH2O.  

2.2 Bacterial strains  

2.2.1 A. tumefaciens strains 

 All transient transformations of plants were performed using A. tumefaciens strain 

LBA4404 (Hoekema et al., 1983) or strain GV3101 (Koncz and Schell, 1986). 
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2.2.2 E. coli strains  

 E. coli strains DH5α, DH10B, and DB3.1 (Invitrogen catalogue number 11319-

019,  13033-015, and 11782-018) were used for the propagation of plasmids for cloning 

purposes. Plasmid DNA containing the control of cell death B (ccdB) gene for negative 

selection were propagated in E. coli strain DB3.1, while non-ccdB containing plasmids 

were propagated in E. coli strain DH5α or DH10B. 

2.3 Plants 

2.3.1 A. thaliana 

 Three accessions of A. thaliana were used: Columbia-0 (Col-0), Landsberg erecta 

(Ler) and Wassilewskija (Ws). Seeds were obtained from the Arabidopsis Biological 

Resource Center (ABRC), stock numbers CS1092 (Col-0), CS20 (Ler) and CS915 (Ws). 

Plants were grown in soil (pro-mix) and were vernalized for 4 days at 4°C prior to being 

placed in a Conviron CMP 4030 growth chamber. Plants were grown with a 16 hour light 

(150 µM photons/m2/s) and 8 hour dark cycle. The temperature during the light cycle was 

24°C and during the dark cycle was 22°C. A. thaliana were watered with a 20 mM 

solution of L-ascorbic acid. 

 Several mutant lines of A. thaliana were also used in transient transformation 

assays. The growth conditions were identical to what was described for wild-type 

accessions. The mutations are described in detail below. 

adt2 mutants 

 The adt2 plants are homozygous for the adt2-1D allele, which has a point 

mutation in the ACT domain that results in a serine to alanine substitution (Huang et al., 

2010). As a result the enzyme is insensitive to feedback inhibition by phenylalanine 

(Huang et al., 2010). Seeds of homozygous adt2 plants (accession Col-0) were 

generously provided by Dr. Tengfang Huang and Dr. Georg Jander (Boyce Thompson 

Institute for Plant Research, Ithaca, New York).  
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arc3 mutants 

 The arc3 plants are homozygous for the arc3-1 allele, an ethyl methanesulfonate 

(EMS) induced point mutation that causes a guanine to adenine transversion in the 13th 

exon  (Pyke and Leech, 1992; Shimada et al., 2004). This results in a premature stop 

codon, creating a truncated protein (Shimada et al., 2004). Seeds for arc3 mutant plants 

(accession Ler) were obtained from the ABRC (stock number CS264) thanks to the 

original donation by Kevin Pyke (Pyke and Leech, 1992).  

arc5 mutants 

 The arc5 plants are homozygous for the arc5-1 allele, an EMS induced point 

mutation that causes a guanine to adenine transversion in the 5th exon resulting in a 

premature stop codon (Gao et al., 2003; Pyke and Leech, 1994). Seeds for arc5 mutant 

plants (accession Ler) were obtained from the ABRC (stock number CS1633) thanks to 

the original donation by Kevin Pyke (Pyke and Leech, 1994).  

arc6 mutants 

 The arc6 plants are homozygous for the arc6-1 allele, a point mutation that causes 

a cytosine to thymine transition in exon 3 resulting in a premature stop codon (Pyke et 

al.,1994; Vitha et al., 2003). Seeds for arc6 mutant plants (accession Ws) were obtained 

from the ABRC (stock number CS286) thanks to the original donation by Rachel Leech 

(Pyke et al., 1994).  

2.3.2 N. benthamiana 

 N. benthamiana seeds were generously provided by Hong Zhu and Dr. Rima 

Menassa (Agriculture Canada, London, Ontario). Seeds were sown in soil (pro-mix) and 

N. benthamiana plants were grown in a Conviron CMP 4030 growth chamber. Plants 

were grown with a 16 hour light (100 µM photons/m2/s) and 8 hour dark cycle. The 

temperature during the light cycle was 24°C and during the dark cycle was 22°C.  
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2.4 Plasmids 

 Plasmids used in this study are either T-DNA containing binary vectors used for 

transient transformation of plants or Gateway® compatible vectors used for cloning. 

2.4.1 ADT-CFP plant expression vectors 

 All six A. thaliana ADTs were previously cloned in pCB, a derivative of pEZT-

NL (Carnegie cell imaging project, http://deepgreen.stanford.edu) that has the 

ENHANCED GREEN FLUORESCENT PROTEIN coding sequence replaced with the 

CFP coding sequence (Bross, 2011).  In planta expression of ADT-CFP fusion genes 

encoded in pCB is regulated by the CaMV 35s promoter. In bacteria, the presence of pCB 

can be selected for using kanamycin. 

2.4.2 p19 plant expression vector 

 The p19 vector encodes the p19 protein from tomato bushy stunt virus, a 

suppressor of post-transcriptional gene silencing (PTGS) (Silhavy et al., 2002). The p19 

vector is of unknown origin. In this study p19 is present in all transient transformations, 

as expression of p19 increases transgene expression by decreasing PTGS (Voinnet et al., 

2003). 

2.4.3 Vector encoding a stroma-marker 

 The T-DNA containing binary vector pt-yk was obtained from the ABRC (stock 

number CD3-997), thanks to the original donation by Andreas Nebenführ (Nelson et al., 

2007). The vector contains a T-DNA encoding the plastid transit peptide of the small-

subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from tobacco 

fused to the YELLOW FLUORESCENT PROTEIN (YFP) coding sequence. Expression is 

regulated in planta by the CaMV double-enhanced 35s promoter, and the vector allows 

for selection in bacteria using kanamycin. As this fusion protein is targeted to the stroma 

it allows for visualization of stromules (Nelson et al., 2007). In this study, this construct 

will be referred to as TP-YFP. 
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2.4.4 Vector encoding a nuclear marker 

 The T-DNA containing binary vector pEarleygate301-YFP encoding A. thaliana 

NUCLEOPORIN1 fused to YFP (NUP1-YFP) was generously provided by Dr. Gang Tian 

and Dr. Yuhai Cui (Agriculture Canada, London, Ontario). The expression of NUP1-YFP 

is regulated in planta by its native promoter, and the vector allows for selection in 

bacteria using kanamycin (Lu et al., 2010). As the NUP1-YFP fusion protein localizes to 

the nuclear pore it allows for visualization of the nuclear membrane. 

2.4.5 Dominant negative myosin XI expression constructs 

 A. tumefaciens GV3101 containing plasmid pCB302 encoding dominant negative 

forms of N. benthamiana myosin XI-2 and XI-K were generously provided by Jamie 

McNeil and Dr. Rima Menassa (Agriculture Canada, London, Ontario) (Avisar et al., 

2008). Each construct encodes the globular tail domain of each myosin XI. Expression of 

the dominant negative constructs in pCB302 is regulated in planta by the nopaline 

synthase promoter (Avisar et al., 2008; Xiang et al., 1999). The presence of the vector 

can be selected for in bacteria with kanamycin (Xiang et al., 1999). 

2.4.6 Gateway® compatible vector encoding FtsZ2-1 

 Vector pLIC6 encoding A. thaliana FtsZ2-1 cDNA was obtained from the ABRC, 

(stock number DKLAT2G36250), thanks to the original donation by Dr. Savithramma 

Dinesh-Kumar (Popescu et al., 2007). The FtsZ2-1 insert is flanked by attachmentB 

(attB) sites allowing recombination with a donor vector using Gateway® technology 

(Popescu et al., 2007). The vector allows for selection in bacteria using spectinomycin. 

2.4.7 Donor vector 

 The donor vector pDONR221 (Invitrogen catalogue number 12536-017) contains 

the ccdB negative selectable marker gene flanked by attP sites allowing for 

recombination with attB sites using Gateway® technology. The vector allows for 

selection in bacteria using kanamycin. 
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2.4.8 Destination vector  

 E. coli DB3.1 harboring the T-DNA containing destination vector pEarleygate101 

(ABRC stock number CD3-683; Earley et al., 2006) were generously provided by 

Dr. Gang Tian and Dr. Yuhai Cui (Agriculture Canada, London, Ontario). The vector 

contains the ccdB negative selectable marker gene flanked by attR sites allowing for 

recombination with attL sites in an entry vector using Gateway® technology (Earley et 

al., 2006). In pEarleygate101, inserted genes are expressed as C-terminally tagged YFP 

fusion proteins by the CaMV 35s promoter (Earley et al., 2006).  

2.5 Cloning methodology 

2.5.1 Plasmid isolation, digestion, gel electrophoresis and purification 

 Isolation of plasmid DNA was performed using the mini-prep alkaline lysis 

method as described in Sambrook and Russell (2001). Isolated plasmid DNA was stored 

at -20ºC in TE buffer. Restriction digests of plasmid DNA, were performed using 

Fermentas FastDigest restriction enzymes according to the manufacturers instructions. 

Digested plasmid DNA was size separated using gel electrophoresis. Gels were prepared 

as 0.8% agarose in TAE buffer, stained with ethidium bromide and visualized under 

ultraviolet light. Isolation of gel fragments of interest were performed using a PureLink™ 

Quick Gel Extraction Kit (Invitrogen catalogue number K2100-12) according to the 

manufacturer’s instructions. 

2.5.2 Gateway® technology 

 BP reactions were performed using 6 µl of gel purified attB flanked FtsZ2-1 

fragments combined with 2 µL of isolated pDONR221 and 0.5 µL of Gateway® BP 

Clonase™ II enzyme mix (Invitrogen catalogue number 11789-020).  

 LR reactions were performed using 6 µl of gel purified attL flanked FtsZ2-1 

fragments combined with 2 µL of isolated pEarleygate101 and 0.5 µL of Gateway® LR 

Clonase™ II enzyme mix (Invitrogen catalogue number 11791-020).  
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 Both BP and LR reactions were left to incubate overnight at room temperature 

for approximately 12 hours. 

2.6 Transformation procedures 

2.6.1 Bacterial Transformations 

 E. coli DH5α made chemically competent using a modification of the method 

described by Hanahan (1983) were transformed using the heat shock method as described 

in Sambrook and Russell (2001). Cells recovered for 1.5 hours at 37°C in non-selective 

SOC media. Successful transformants were selected on solid LB media supplemented 

with appropriate antibiotics. E. coli stocks were snap frozen with liquid nitrogen in 25% 

glycerol and stored at -80ºC.  

 A. tumefaciens LBA4404 made electrocompetent according to Wise et al. (2006) 

were transformed using the Gene Pulser® II electroporator (Bio-rad). Settings used for 

electroporation were 2.5 kV, a capacitance of 25 µF and a resistance of 400 Ω. Following 

electroporation A. tumefaciens recovered at 28ºC in non-selective YEB media for 

2 hours. Successful transformants were selected on solid YEB media with appropriate 

antibiotics. A. tumefaciens stocks were snap frozen with liquid nitrogen in 25% glycerol 

and stored at -80ºC.  

2.6.2 Plant transformations 

 Agroinfiltration (Yang et al., 2000) was used for all plant transformations. Two 

days prior to infiltration, a 3 mL starter culture of YEB media containing appropriate 

antibiotics was inoculated with A. tumefaciens containing a construct of interest, while a 

separate culture was inoculated with A. tumefaciens containing a construct encoding p19. 

These cultures were grown at 28ºC in an incubator-shaker (250 rpm) for approximately 

20 hours. After this time, 50 µL of the starter culture was used to inoculate a 50 mL 

culture of Agrobacterium-induction media containing appropriate antibiotics. This culture 

was then grown at 28ºC in an incubator-shaker (250 rpm) for 20 to 22 hours. The 50 mL 

cultures were pelleted by centrifugation at 3000 rpm for 30 minutes at room temperature. 
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After discarding the supernatant the pelleted bacteria were resuspended in Gamborg’s 

solution to an optical density at 600 nm (OD600) of approximately 1.0 unless specified 

otherwise. The resuspended bacteria were then placed in a shaker (250 rpm) at room 

temperature for an hour. After this time resuspended A. tumefaciens containing a 

construct of interest were mixed with A. tumefaciens containing the p19 construct in a 1:1 

ratio unless specified otherwise. The mixed A. tumefaciens are then pressure infiltrated 

into the underside of leaves using a blunt ended 1 mL tuberculin syringe.  

 For co-infiltrations where two transgenes of interest are expressed the procedure 

is identical, except A. tumefaciens containing an additional construct is also grown and 

infiltrated. The ratios of A. tumefaciens used for co-infiltrations were 1:1:1 

(p19:construct1:construct2) unless specified otherwise. 

 Infiltrations were performed in both N. benthamiana and A. thaliana. The 

procedure used for transformation of each species was similar, although differences exist 

in the age of plants used for the transformation. N. benthamiana plants used for 

transformations were between 4 and 6 weeks of age, while A. thaliana used for 

transformations were between 3 and 4 weeks of age. In addition, A. thaliana used for 

transformations were watered from seed with 20 mM L-ascorbic acid and were 

transferred to fresh soaked soil immediately following infiltration. 

2.7 Measurements and statistics 

 Stromules and chloroplasts were measured in this study using the measure tool 

from ImageJ 1.45s (Rasband, 2007-2013). Stromules were considered to be any extension 

from the chloroplast greater than 1 µm in length. For non-linear stromules several 

measurements were taken to account for bends and curves and subsequently added 

together to provide a more accurate measurement of stromule length. Chloroplasts were 

measured in a straight line across their longest axis. Average stromule and chloroplast 

lengths were compared between groups using a student’s t-test, while the proportion of 

chloroplasts with stromules and cells with ADT5 in nuclei were compared using a two-

proportion Z-test. 
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2.8 Confocal microscopy 

 Visualization of the subcellular localization of fusion proteins was performed 

using a Leica SP2 confocal laser scanning microscope located at Agriculture Canada 

(London, Ontario). Samples of leaf tissue were punched from intact plant leaves and 

placed on a glass slide on top of a water droplet. A cover slip with Vaseline around the 

edges was then placed on top of the leaf section to form a watertight seal with the glass 

slide. A 63x water immersion objective lens was used for all imaging. A 405 nm blue 

diode laser was used to excite CFP and chlorophyll. Emission of CFP fluorescence was 

detected from between 440-485 nm (CFP channel) and chlorophyll fluorescence was 

detected from between 630-690 nm (chlorophyll channel). When YFP was also present in 

a sample it was subsequently excited using a 514 nm argon laser. Emission of YFP 

fluorescence was detected from between 540-550 nm (YFP channel). All images were 

taken 5 days post-infiltration unless otherwise specified. All scaling, merging and 

processing of images were performed using ImageJ 1.45s (Rasband, 2007-2013). 
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3 Results 

3.1 ADT-CFP subcellular localization in N. benthamiana 

 Initial studies of ADT localization in planta observed that ADT-CFPs localize to 

tail-like structures outside of the region of chlorophyll fluorescence (Bross, 2011). 

However, this study only briefly examined the subcellular localization of ADTs, and 

most images obtained were low magnification overviews. Prior to re-examining ADT-

CFP subcellular localization, several controls were performed to ensure that detectable 

fluorescence will only result from the presence of fluorescent proteins and chlorophyll. 

The following controls were performed: agroinfiltration with A. tumefaciens containing a 

construct encoding p19 (a suppressor of PTGS expressed in all transient transformations) 

and an empty pCB vector; infiltration with A. tumefaciens only containing an empty pCB 

vector; and uninfiltrated N. benthamiana leaves. In all controls only chlorophyll 

fluorescence was detected and no fluorescence was observed in the CFP and YFP 

channels (Fig. 5A-C). This ensures that any fluorescence detected in the CFP and YFP 

channels in the ensuing experiments will only result from the presence of fluorophores.  

 To re-examine the in planta subcellular localization of all six ADTs, 

agroinfiltration was used to transiently express them as ADT-CFP fusion proteins in the 

leaves of N. benthamiana. Confocal imaging of ADT-CFP localization was performed 

with emphasis on obtaining more detailed, higher magnification images. The subcellular 

localization of ADT-CFP fusion proteins was consistent with data obtained by Bross 

(2011) (Fig. 6A-F). ADT-CFPs frequently localize to tail-like structures near the 

chloroplast but not directly overlapping with chlorophyll fluorescence (Fig. 6A-E). The 

only exception to this was ADT6-CFP, which localized in the cytosol (Fig. 6F). The 

shape and length of these structures were variable, ranging from short protrusions from 

the chloroplast body (Fig. 6C-D) to long and narrow ones (Fig. 6A-B, E). This variation 

was observed for each ADT-CFP, as they were all observed in tail-like structures of 

different shapes and lengths. While the fluorescence observed was generally highest in 



 

 

Figure 5. Transformation controls for N. benthamiana. 

Prior to expression of fluorescently labeled fusion proteins, it must be ensured that any 

detected fluorescence will be due to the presence of the desired fluorophores. Controls 

were performed using: 

(A) Uninfiltrated plants.  

(B) Plants infiltrated with A. tumefaciens only containing an empty pCB vector (EV).  

(C) Plants infiltrated with A. tumefaciens containing p19 and an EV. 

 A 405 nm blue diode laser was used to excite CFP and chlorophyll, while a 

514 nm argon laser was subsequently used to excite YFP. Fluorescence was collected 

from 440-485 nm for CFP, from 540-550 nm for YFP and from 630-690 nm for 

chlorophyll. The parameters described above are used for all confocal imaging and will 

no longer be specified in each figure legend.  

(A-C) In all control transformations and uninfiltrated plants only chlorophyll 

fluorescence was detected. 

 

Scale bars are 20 µm.
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Figure 6. Subcellular localization of ADT-CFPs in N. benthamiana. 

All six ADTs were transiently expressed as ADT-CFP fusion proteins in N. benthamiana. 

Images of chlorophyll fluorescence (left) and ADT-CFPs (middle) are displayed 

separately and merged (right) for each ADT-CFP. 

(A) ADT1-CFP.  

(B) ADT2-CFP.  

(C) ADT3-CFP.  

(D) ADT4-CFP. 

(E) ADT5-CFP. 

(F) ADT6-CFP. 

(A-F) With the exception of ADT6 in the cytosol (F), all ADTs localize to tail-like 

structures outside of the main body of the chloroplasts (A-E). The appearance these 

structures is variable, from long and narrow (A-B, E) to short and pointed (C-D). 

Although fluorescence is generally highest in these structures fluorescence is also present 

in the body of the chloroplasts (A, C-E) suggesting that protein is present in the stroma. 

Scale bars are 5 µm.
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these structures there was often some ADT-CFP fluorescence within the body of the 

chloroplast (Fig. 6A,C-E), suggesting that some protein is present in the stroma. 

3.2 Co-expressing ADT-CFPs with a stroma marker 

 The presence of ADT-CFP fusion proteins in structures appearing to extend from 

chloroplasts led to the hypothesis that ADT-CFPs are localizing to stromules. The transit 

peptide of the small subunit of RuBisCO C-terminally fused to YFP (TP-YFP) localizes 

to the stroma allowing for stromules to be visualized (Nelson et al., 2007) and will be 

used to test this hypothesis. Thus, the plasmid pt-yk encoding TP-YFP was transformed 

into A. tumefaciens LBA4404 and all six ADT-CFP fusion proteins were co-expressed 

with TP-YFP to determine if ADT-CFPs localize to stromules or are aggregating outside 

of chloroplasts. 

 Prior to co-expressing the two fusion proteins it must be ensured that any detected 

fluorescence in the CFP and YFP channels are the result of only the desired fluorophore. 

To determine if crosstalk between CFP and YFP would be an issue agroinfiltration was 

used to transiently express ADT2-CFP (representative of CFP fluorescence) and TP-YFP 

(representative of YFP fluorescence) individually in N. benthamiana. Each fusion protein 

was excited sequentially with a 405 nm blue diode laser followed by a 514 nm argon 

laser. Excitation of CFP with the 405 nm laser resulted in detectable CFP fluorescence in 

the CFP and YFP channels indicating that crosstalk is occurring (Fig. 7A). However, 

excitation of CFP with the 514 nm laser resulted in no detectable CFP fluorescence in 

any channel (Fig. 7A). Excitation of YFP with a 405 nm laser resulted in no detectable 

YFP fluorescence in any channel, while excitation with the 514 nm laser resulted in 

detectable YFP fluorescence only in the YFP channel, and TP-YFP localized to the 

stroma and stromules of chloroplasts (Fig. 7B). Thus, the only crosstalk observed was 

CFP crossing into the YFP channel when excited with a 405 nm laser (Fig. 7A). 

Therefore, crosstalk can be avoided by sequential excitation and fluorescence detection. 

The 405 nm laser will be used for CFP and chlorophyll excitation, while the 514 nm laser 

will be used sequentially excite YFP because no CFP fluorescence enters the YFP 



 

 

Figure 7. Testing for crosstalk. 

ADT2-CFP (A) and TP-YFP (B) were transiently expressed individually to assess 

detection of CFP and YFP fluorescence, respectively. Images of chlorophyll 

fluorescence, CFP, and YFP are shown individually from left to right.  

(A) Excitation of CFP with the 405 nm blue diode laser allows for strong detection of 

CFP fluorescence in the CFP channel and residual fluorescence in the YFP channel. 

Excitation of CFP with the 514 nm argon laser does not result in detectable CFP 

fluorescence in any channel. Chlorophyll fluorescence is detectable upon excitation with 

either laser. 

(B) Excitation of YFP with the 405 nm argon laser does not result in detectable YFP 

fluorescence in any channel. Excitation of YFP with the 514 nm argon laser results in 

detection of YFP fluorescence only in the YFP channel. TP-YFP localizes to the stroma 

allowing for visualization of stromules (arrow). Chlorophyll fluorescence is detectable 

upon excitation with either laser. 

 

Scale bars are 5 µm.
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channel when this laser is used (Fig. 7A). 

 All six ADT-CFP fusion proteins were then co-expressed with TP-YFP in 

N. benthamiana. Initial attempts using agroinfiltration with the described ratios of 

A. tumefaciens (Section 2.6.2) resulted in very strong TP-YFP fluorescence compared to 

ADT-CFP fluorescence, which was often undetectable (data not shown). Comparable 

levels of fluorescence were obtained by altering the agroinfiltration protocol. A 1:1 ratio 

of A. tumefaciens containing an ADT-CFP fusion construct to A. tumefaciens encoding 

p19 was infiltrated a day before a 1:1 ratio of A. tumefaciens containing the TP-YFP 

construct to A. tumefaciens encoding p19. In addition, A. tumefaciens containing the TP-

YFP construct was infiltrated at a lower OD600 of approximately 0.5. Visualization of 

subcellular localization was performed 4 days post-infiltration with TP-YFP (5 days post-

infiltration with an ADT-CFP).  

 Upon visualization of both fusion proteins the tail-like structures that ADT-CFPs 

localize to were also found to contain TP-YFP fluorescence (Fig. 8A-E). As TP-YFP is 

contained within the stroma, this result indicates that ADT-CFPs are as well. Thus, these 

tail-like structures are stromules as opposed to an aggregation of protein outside of 

chloroplasts. ADT6-CFP was the only exception to this, as ADT6-CFP and TP-YFP 

clearly localize to different areas (Fig. 8F). This is consistent with observations of ADT6-

CFP in the cytosol (Fig. 6F) (Bross, 2011).  

3.3 ADT-CFP subcellular localization in A. thaliana 

 Prior to this study, all data for the in planta localization of A. thaliana ADTs were 

obtained from N. benthamiana leaves. Thus, it was important to ensure that the 

localization patterns observed in N. benthamiana are also observed in A. thaliana, the 

native plant of these ADTs. Agroinfiltration was used to transiently express all ADT-CFP 

fusion genes in A. thaliana Col-0. ADT-CFP localization in A. thaliana is consistent with 

the localization patterns observed in N. benthamiana. ADT-CFPs commonly localized to 

stromule-like structures appearing to extend from the chloroplast, with varying levels of  



 

 

Figure 8. Co-expression of ADT-CFP fusion proteins with TP-YFP stroma marker. 

All six ADT-CFP fusion proteins were co-expressed with the TP-YFP stroma marker to 

determine if ADTs localize to stromules. Images of chlorophyll fluorescence and ADT-

CFPs are shown together in the left column. Images of TP-YFP are displayed in the 

middle column. The right column is a merge of chlorophyll fluorescence and areas where 

ADT-CFPs co-localize with TP-YFP, which are indicated in green (A-E). For ADT6-

CFP (F) the right column is a merge of ADT6-CFP, TP-YFP and chlorophyll 

fluorescence.  

(A-E) ADT1-CFP, ADT2-CFP, ADT3-CFP, ADT4-CFP and ADT5-CFP co-localize 

with TP-YFP in stromules.  

(F) ADT6-CFP localizes outside of chloroplasts in the cytoplasm.  

 

Scale bars are 5 µm.
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ADT-CFP fluorescence in the stroma (Fig. 9A-E). As observed in N. benthamiana 

ADT6-CFP localizes outside of the chloroplast to the cytosol (Fig. 9F). 

3.4 Nuclear localization of ADT5 

  Earlier studies of ADT5 localization found that it is observed in globular 

structures resembling nuclei 5 days post-infiltration (Bross, 2011). To re-examine this 

localization pattern agroinfiltration was used to express ADT5-CFP in N. benthamiana 

and A. thaliana Col-0. These globular structures resembling nuclei were observed in both 

plants (Fig. 10A-B). To determine if ADT5-CFP localizes to the nucleus it needed to be 

co-localized with a nuclear marker. NUCLEOPORIN-1 (NUP1) is a component of a 

nuclear pore complex in A. thaliana and was previously demonstrated to localize to the 

nuclear membrane as a YFP fusion protein (Lu et al., 2010). The plasmid 

pEarleygate301-YFP encoding NUP1-YFP was transformed into A. tumefaciens 

LBA4404. Agroinfiltration was then used to transiently co-express ADT5-CFP and 

NUP1-YFP fusion proteins in the leaves of N. benthamiana.  

 Confocal imaging of the localization of each fusion protein determined that 

NUP1-YFP localized around ADT5-CFP (Fig. 10C). As NUP1-YFP localizes to the 

nuclear membrane, this result confirms that ADT5-CFP is contained within the nucleus 

and appears to localize uniformly throughout the nucleoplasm. 

3.5 Stromule inhibition and ADT5 nuclear localization 

 Author’s note: All experiments in section 3.5 were performed with Ornela 

Kljakic, a second year student working under my supervision as part of her scholar’s 

elective research project. Ornela performed the agroinfiltrations under my supervision, I 

performed the confocal microscopy, and both of us measured stromules and cells with 

ADT5-CFP nuclear localization, while Ornela performed the statistical analysis. 

 From Fig. 11 one can observe that nuclei containing ADT5-CFP are often 

surrounded by chloroplasts that appear connected to the nucleus through stromules. This 

observation led to the hypothesis that ADT5 nuclear localization may be dependant on



 

 

Figure 9. Subcellular localization of ADT-CFPs in A. thaliana Col-0. 

All six ADT-CFP fusion proteins were transiently expressed in A. thaliana Col-0. 

Images of chlorophyll fluorescence and ADT-CFPs are displayed separately in the left 

and middle columns, respectively, and merged in the right column. 

(A-E) ADT1-CFP, ADT2-CFP, ADT3-CFP, ADT4-CFP and ADT5-CFP localize to 

structures resembling stromules of varying shapes and lengths, with varying levels of 

fluorescence in the stroma. 

(F) ADT6-CFP localizes outside of chloroplasts in the cytosol. 

 
Scale bars are 5 µm.
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Figure 10. ADT5-CFP nuclear localization. 

ADT5-CFP was transiently expressed in N. benthamiana (A), and A. thaliana Col-0 (B) 

(A-B) ADT5-CFP and chlorophyll fluorescence are shown merged.  

(A) ADT5-CFP localizes to globular structures resembling nuclei in N. benthamiana. 

(B) ADT5-CFP localizes to globular structures resembling nuclei in A. thaliana Col-0. 

(C) To determine if ADT5-CFP localizes to the nucleus it was co-expressed with NUP1-

YFP in N. benthamiana. Images of chlorophyll fluorescence and ADT5-CFP are shown 

merged (left). NUP1-YFP is shown alone (middle) and merged with ADT5-CFP and 

chlorophyll fluorescence (right). NUP1-YFP localizes to the nuclear membrane and 

surrounds ADT5-CFP confirming that it localizes to the nucleus. 

 

Scale bars are 5 µm.
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Figure 11. ADT5-CFP in stromules connecting to the nucleus. 

ADT5-CFP localized to nuclei that were often surrounded by chloroplasts, and in this 

image stromules (arrows) appear to connect the chloroplasts to the nucleus. Images of 

chlorophyll fluorescence (left) and ADT5-CFP (middle) are displayed separately and 

merged (right). 

 

Scale bars are 5 µm.
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stromule-mediated transport. To test this hypothesis a stromule inhibitor was needed to 

decrease the frequency of chloroplasts with stromules or to decrease stromule length, and 

subsequently test if ADT5 nuclear localization is decreased in response. Inhibition of 

stromule formation has been attained in past studies using AgNO3 (Gray et al., 2012), 

2,3-butanedione monoxime (BDM), or expression of myosin XI tail domains (Natesan et 

al., 2009). Therefore these three approaches were used to determine if stromule inhibition 

could be attained. 

 In order to test the efficacy of these three approaches, a sensitive system to detect 

stromule inhibition was needed. Bross (2011) observed that the transit peptide of ADT2 

fused to CFP (TP-ADT2-CFP) localized to especially long stromule-like extensions from 

chloroplasts. To confirm this observation agroinfiltration was used to express TP-ADT2-

CFP in N. benthamiana and long extensions were observed (Fig. 12A), supporting results 

by Bross (2011). To ensure that these were stromules, agroinfiltration was performed to 

transiently co-express TP-ADT2-CFP and TP-YFP. The two fusion proteins were co-

localized confirming that these extensions are stromules (Fig. 12B). Thus, the length of 

stromules visualized by TP-ADT2-CFP will provide a sensitive marker to detect stromule 

inhibition and all three approaches were tested. 

3.5.1 AgNO3 

 Incubation of tobacco seedlings in 120 µM AgNO3 for 16 hours was previously 

shown to significantly reduce the percentage of plastids with stromules (Gray et al., 

2012). As ADT5 nuclear localization typically occurs 5 days post-infiltration (Bross, 

2011) stromule inhibition should be sustained over this period of time. Incubating plants 

in 120 µM AgNO3 for 5 days is not practical, instead N. benthamiana were grown from 

seed in soil watered with 120 µM AgNO3. Plants grown under this condition did not 

display an adverse phenotype, and agroinfiltration was performed to transiently express 

TP-ADT2-CFP. Visualization of TP-ADT2-CFP localization revealed long and extensive 

stromules present throughout the infiltrated tissue indicating this treatment was not 

effective in reducing stromules (results not shown). Another approach was used to test 



 

 

Figure 12. Localization of TP-ADT2-CFP and co-localization with TP-YFP. 

TP-ADT2-CFP was transiently expressed alone (A) and co-expressed with TP-YFP (B). 

(A) Images of chlorophyll fluorescence (left) and TP-ADT2-CFP (middle) are displayed 

separately and merged (right). TP-ADT2-CFP localizes to long extensions from the 

chloroplast. 

(B) Images of chlorophyll fluorescence and TP-ADT2-CFP are shown merged (left). 

Images of chlorophyll fluorescence and TP-YFP are shown merged (middle). Regions 

where TP-ADT2-CFP and TP-YFP fluorescence overlapped are shown in green, merged 

with chlorophyll fluorescence (right). TP-ADT2-CFP co-localizes with TP-YFP in a 

stromule. 

 

Scale bars are 5 µm.
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the efficacy of AgNO3 on stromule inhibition. After agroinfiltration with 

A. tumefaciens encoding TP-ADT2-CFP leaves were infiltrated with 120 µm AgNO3 

every 24 hours for 5 days. This treatment stained the leaves a dark purple colour and 

caused necrosis of leaf tissue preventing confocal visualization. As a result, AgNO3 was 

judged not to be a suitable stromule inhibitor. 

3.5.2 BDM 

 Application of 1 mM BDM to lower epidermal peels of tobacco was shown to 

significantly reduce the percentage of plastids with stromules and the average length of 

stromules two hours after application (Natesan et al., 2009). As stromule inhibition 

should be sustained for 5 days to test the effect on ADT5 nuclear localization this 

procedure was modified. After agroinfiltration with A. tumefaciens encoding TP-ADT2-

CFP leaves were infiltrated with 1 mM BDM every 24 hours for 5 days. Unfortunately, 

this treatment caused necrosis of leaves after 2 to 3 days preventing visualization and as a 

result, BDM was judged not to be a suitable stromule inhibitor. 

3.5.3 Transient expression of myosin XI tail domains 

 Inhibition of stromule formation has previously been accomplished through 

transient expression of myosin XI tail domains (Natesan et al., 2009), which inhibit the 

function of wild-type myosin XI by creating a dominant negative effect (Avisar et al., 

2008). A. tumefaciens containing constructs for the tail domains of myosin XI-2 and 

myosin XI-K (Avisar et al., 2008) were used to test if a similar strategy could be 

effective. These constructs will henceforth be referred to as dominant negative myosin 

XI-2 (dnMyoXI-2) and dnMyoXI-K. Control agroinfiltrations were performed in 

N. benthamiana using A. tumefaciens containing the TP-ADT2-CFP construct and an 

empty pCB vector. Control infiltrations were performed on three occasions, and a total of 

554 chloroplasts were analyzed. Chloroplasts were analyzed if they contained any visible 

TP-ADT2-CFP fluorescence and were determined to have a stromule if the projection 

was longer than 1 µm. It was determined that in control plants 26.9% of chloroplasts had 

stromules (Fig. 13A) and the average length of these stromules was 4.62 µm (Fig. 13B). 



 

 

Figure 13. Effect of dnMyoXI-2 and dnMyoXI-K on stromules. 

Dominant negative myosin XI-2 and myosin XI-K (dnMyoXI-2 and dnMyoXI-K) were 

co-expressed with TP-ADT2-CFP to determine if they affect the percentage of 

chloroplasts having stromules (A) or the average length of stromules (B) compared to co-

expression with an empty vector. 

(A) In the empty vector control (orange) 554 chloroplasts were analyzed from three 

plants and 26.9% had stromules. In the treatment with dnMyoXI-2 (green) 395 

chloroplasts were analyzed from three plants and 22.3% had stromules. In the treatment 

with dnMyoXI-K (purple) 579 chloroplasts were analyzed from three plants and 14.3% 

had stromules. Significant differences (P<0.05) as determined by a two-proportion Z-test 

are indicated by different letters.  

(B) In the empty vector control (orange) 166 stromules were measured from three plants 

and the average length was 4.62 µm. In the dnMyoXI-2 treatment (green) 93 stromules 

were measured from three plants and had an average length of 2.71 µm. In the dnMyoXI-

K treatment (purple) 91 stromules were measured and had an average length of 3.48 µm. 

Significant differences (P<0.05) as determined by a t-test are indicated by different 

letters. 

 

Error bars show 95% confidence intervals.
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 To test if expression of dnMyoXI-2 or dnMyoXI-K has an effect on the 

proportion of chloroplasts having stromules or the average length of stromules 

agroinfiltration was performed using A. tumefaciens encoding TP-ADT2-CFP and either 

dnMyoXI-2 or dnMyoXI-K. Infiltrations were performed on three occasions for both 

dnMyoXI-2 and dnMyoXI-K treatments. For the dnMyoXI-2 treatment 395 chloroplasts 

were analyzed while for the dnMyoXI-K treatment 579 chloroplasts were analyzed. 

Treatment with dnMyoXI-2 non-significantly decreased (P>0.05) the percentage of 

chloroplasts with stromules to 22.3% (Fig. 13A). However, dnMyoXI-2 significantly 

reduced (P<0.05) the average length of stromules to 2.71 µm (Fig. 13B). Treatment with 

dnMyoXI-K significantly decreased (P<0.05) the percentage of chloroplasts with 

stromules to 14.3% (Fig. 13A) and also significantly decreased (P<0.05) the average 

length of stromules to 3.48 µm (Fig. 13B). 

 It followed that I wanted to determine if these constructs could also cause a 

decrease in ADT5-CFP nuclear localization by co-expressing dnMyoXI-2 and dnMyoXI-

K with ADT5-CFP. Control agroinfiltrations were performed using A. tumefaciens 

encoding ADT5-CFP and an empty pCB vector. The percentage of cells with ADT5-CFP 

detected in the nucleus was used to determine the extent of ADT5-CFP nuclear 

localization and cells were analyzed only if ADT5-CFP fluorescence was present. 

Control infiltrations were performed on three occasions representing a total of 131 cells, 

of which 24.9% had ADT5-CFP fluorescence visible in the nucleus (Fig. 14).  

 Agroinfiltration was then performed with A. tumefaciens encoding ADT5-CFP 

and either dnMyoXI-2 or dnMyoXI-K. This was performed on three occasions for both 

dnMyoXI-2 and dnMyoXI-K treatments. For the dnMyoXI-2 treatment 190 cells were 

analyzed and ADT5-CFP was detected in the nucleus in 5.79% of cells (Fig. 14), a 

significant decrease (P<0.05) from the control. For the dnMyoXI-K treatment 358 cells 

were analyzed and ADT5-CFP was detected in the nucleus in 3.91% (Fig. 14) of the 

cells, again a significant decrease (P<0.05) from the control.  



 

 

Figure 14. Effect of dnMyoXI-2 and dnMyoXI-K on ADT5-CFP nuclear 

localization. 

To test if expression of dnMyoXI-2 or dnMyoXI-K affects ADT5-CFP nuclear 

localization, they were co-expressed with ADT5-CFP and compared to co-expression of 

ADT5-CFP with an empty vector. In the empty vector control (orange) 131 cells were 

analyzed from three plants and ADT5-CFP was detected in the nucleus of 24.6% of these 

cells. In the treatment with dnMyoXI-2 (green) 190 cells were analyzed from three plants 

and ADT-CFP was visible in the nucleus of 5.76% of the cells. In the treatment with 

dnMyoXI-K (purple) 358 cells were analyzed from three plants and 3.91% had ADT5-

CFP visible in the nucleus. Significant differences (P<0.05) as determined by a two-

proportion Z-test are indicated by different letters. 

 

Error bars are 95% confidence intervals.
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Therefore, expression of dnMyoXI-2 and dnMyoXI-K were found to inhibit stromules 

and reduce the percentage of cells with ADT5-CFP in the nucleus, providing indirect 

evidence for stromule-mediated transport of ADT5 to the nucleus.  

3.6 ADT2 and chloroplast division 

 In addition to stromules, ADT2-CFP was also found at the equatorial plane and 

poles of chloroplasts (Bross, 2011) suggesting a role in chloroplast division. Initially, 

only these two patterns were observed (Bross, 2011), which do not represent all stages of 

chloroplast division. During division, chloroplasts increase in size and become 

constricted at the equatorial plane before they separate into two daughter chloroplasts 

(Pyke, 1999). To further investigate a possible role for ADT2 in chloroplast division, 

agroinfiltration was used to transiently express ADT2-CFP in N. benthamiana. In 

chloroplasts with no apparent central constriction ADT2-CFP localizes to a band around 

the equatorial plane (Fig. 15A). In elongated chloroplasts with a slight indentation, 

suggestive of early division, ADT2-CFP localizes as a band around the middle of the 

elongation (Fig. 15B). In chloroplasts with a clear indentation, indicative of a later stage 

of division, ADT2-CFP is found at the site of constriction (Fig. 15C). ADT2 localization 

to the poles of chloroplasts (Fig. 15D) is consistent with remnants of the division ring on 

daughter chloroplasts (Miyagishima, 2011). These localization patterns are consistent 

with a role in chloroplast division from the beginning of the process through the 

constriction stages until separation of chloroplasts occurs (Fig. 15E). 

 The size of chloroplasts appears to dictate when they divide, as prior to division 

chloroplasts increase in size (Pyke, 1999). If chloroplasts with ADT2-CFP at a pole 

represent recently divided chloroplasts, and those with ADT2-CFP as a band are in the 

process of dividing they should be smaller and larger than average chloroplasts, 

respectively. While chloroplast volume would be the most accurate way to measure 

chloroplast size it is difficult to determine, therefore, chloroplast size was measured as 

the length of a chloroplast across its longest axis. Uninfiltrated N. benthamiana plants 

were used to determine the average size of a chloroplast because they should contain 



 

 

Figure 15. ADT2-CFP localization and chloroplast division. 

Transient expression of ADT2-CFP in N. benthamiana was used to determine ADT2 

localization in chloroplasts at different stages of chloroplast division (A-D). Images of 

chlorophyll fluorescence (left) and ADT2-CFP (middle) are shown separately and 

merged (right).  

(A) ADT2-CFP is observed as a band around the equatorial plane of chloroplasts without 

significant elongation or constriction. 

(B) ADT2-CFP is observed as a band at the equatorial plane of elongated chloroplasts. 

(C) ADT2-CFP is observed at the site of constriction of highly constricted chloroplasts. 

(D) ADT2-CFP localizes to a pole of chloroplasts. 

(E) Diagram corresponding to different stages of chloroplast division. Left to right: 

division ring forms before constriction occurs (A); the chloroplast becomes elongated and 

a small indentation occurs indicating constriction is beginning (B); constriction proceeds 

such that the chloroplast is highly indented and dumbbell shaped (C); after division, 

remnants of the division ring remain on chloroplast poles (D).  

(E) Adapted from Miyagishima (2011). 

 

Scale bars are 5 µm.
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chloroplasts at many different developmental stages, and thus sizes. A total of 68 

chloroplasts were measured from three uninfiltrated plants and they had an average 

length of 5.08 µm (Table 1). In chloroplasts with ADT2-CFP present on a pole 75 

chloroplasts were measured from three different plants and the average length of these 

chloroplasts was significantly shorter (P<0.05) at 4.24 µm (Table 1). Lastly, in 

chloroplasts with ADT2-CFP localized to a band at the equatorial plane, 35 chloroplasts 

were measured from five plants with an average length of 6.69 µm (Table 1), 

significantly longer (P<0.05) than in uninfiltrated plants. The standard deviation from the 

mean also differed between the groups. Chloroplasts from uninfiltrated plants had the 

largest standard deviation, consistent with a mixed population of chloroplasts, while 

chloroplasts with ADT2-CFP at a pole had the lowest standard deviation, indicating that 

they are similar in size, consistent with newly divided chloroplasts (Table 1). The 

standard deviation of chloroplasts with ADT2 visualized as a band was larger than that of 

the polar group but smaller than chloroplasts from uninfiltrated plants (Table 1) as would 

be expected given that division occurs in stages (Pyke, 1999). These data support the 

hypothesis that different localization patterns are indicative of different chloroplast 

division stages.  

 Until this study, ADT2-CFP patterns consistent with chloroplast division have 

only been shown in N. benthamiana. To determine if the same patterns are observed in 

A. thaliana agroinfiltration was used to transiently express ADT2-CFP in the rosette 

leaves of A. thaliana Col-0, Ler, and Ws accessions. In all three accessions ADT2-CFP 

was observed as either a band at the equatorial plane of a chloroplast or at a pole (Fig. 16) 

confirming that ADT2-CFP localization is consistent with a role in chloroplast division in 

A. thaliana, the native plant of these ADTs. 

3.7 Chloroplast morphology in an adt2 mutant 

 The localization patterns of ADT2 strongly suggest a role in chloroplast division. 

Hence, it was hypothesized that a mutation to ADT2 would affect chloroplast division. 

While no known knockout lines exist for ADT2 (Corea et al., 2012) an adt2 mutant was 
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Table 1. Comparison of chloroplast lengths. 

Chloroplast Group 
Chloroplasts 

Measured 

Average Length 

(µm) 

Standard 

Deviation 

Uninfiltrated 68 5.08 1.12 

ADT2: pole 75 4.24* 0.60 

ADT2: band 35 6.69* 0.85 

* significantly different from the uninfiltrated control (P<0.05) as determined by a t-test.



 

 

Figure 16. ADT2-CFP localization in three A. thaliana accessions. 

ADT2-CFP was transiently expressed in three accessions of A. thaliana: Columbia-0 

(left), Landsberg erecta (middle), and Wassilewskija (right). All images show ADT2-

CFP and chlorophyll fluorescence merged. In each accession ADT2-CFP was visualized 

as a band at the equatorial plane (top images) or to the pole of a chloroplast (bottom 

images). 

 

Scale bars are 5 µm.
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identified in a screen for plants resistant to a toxic analog of phenylalanine (Huang et 

al., 2010). The mutation results in a single amino acid substitution in the ACT regulatory 

domain of ADT2 making the enzyme insensitive to feedback inhibition by phenylalanine 

(Huang et al., 2010). Homozygous adt2 mutant plants were grown from seed and 

chloroplast morphology was examined.  

 Chloroplast morphology in the adt2 mutant differs from wild-type A. thaliana 

Col-0 in plants of equal age (Fig. 17A-B). In the adt2 mutants large and irregularly 

shaped chloroplasts can be seen, different from the small oval shaped chloroplasts in 

wild-type A. thaliana.  These irregular adt2 chloroplasts vary in size and occur in many 

different shapes (Fig. 17C-F). Such large and irregularly shaped chloroplasts are 

consistent with impaired division. Despite the presence of these irregular chloroplasts, 

many chloroplasts were similar to wild-type in size and shape, indicating that chloroplast 

division is not completely compromised in this mutant. 

3.8 ADT2-CFP localization in the adt2 mutant 
 To determine if ADT2 localization is affected by the adt2 mutation 

agroinfiltration was used to transiently express ADT2-CFP in the rosette leaves of adt2 

plants. The localization of ADT2-CFP in adt2 mutants was variable (Fig. 18A-F) and 

differed from what is observed in wild-type A. thaliana Col-0 (Fig. 16). In centrally 

constricted chloroplasts ADT2-CFP was found at the site of constriction (Fig. 18A-C). 

However, the appearance of the bands was often unusual, and in some chloroplasts it 

appeared to split or fray along its length (Fig. 18A-B). In chloroplasts without central 

constrictions ADT2-CFP was frequently observed as short bands (Fig. 18A,C-E) even if 

the chloroplasts appeared wild-type in size and shape. At times ADT2-CFP bands were 

not linear, but seen to bend and branch along a chloroplast (Fig. 18E). ADT2-CFP was 

rarely found in chloroplasts that morphologically were most severely affected and only 

very faint bands or small punctate structures were observed (Fig. 18F). These unusual 

localization patterns further suggest that chloroplast division is affected by the adt2 

mutation.



 

 

Figure 17. Chloroplast morphology in an adt2 mutant. 

To determine if chloroplast morphology is affected by the adt2 mutation chloroplasts 

were examined and compared to chloroplasts in wild-type A. thaliana Col-0 of equal age. 

(A) An overview of chloroplasts in wild-type A. thaliana Col-0  

(B) An overview of chloroplasts in the adt2 mutant. 

 

(C-F) Chloroplasts in the adt2 mutant were irregular and heterogeneous in size and 

shape. 

 

Scale bars are 20 µm (A-B) or 5 µm (C-F).
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Figure 18. ADT2-CFP localization in the adt2 mutant. 

ADT2-CFP was transiently expressed in adt2 mutant plants to determine if ADT2-CFP 

localization is affected by the adt2 mutation. Images of chlorophyll fluorescence and 

ADT2-CFP are shown merged. 

(A) ADT2-CFP is observed as a band at the equatorial plane of a constricted chloroplast 

(left) and as several short bands (right). 

(B) ADT2-CFP is visible as a band at the equatorial plane of a constricted chloroplast. 

(C) ADT2-CFP is observed as a band at the equatorial plane of a constricted chloroplast 

(left) and as two short bands (right). 

(D) ADT-CFP localized to multiple short bands and a pole. 

(E) ADT2-CFP observed as non-linear bands along chloroplasts. 

(F) ADT2-CFP is observed as puncta (left arrow) and faint bands (right arrow) in 

severely affected chloroplasts 

 

Scale bars are 5 µm (A-E) or 10 µm (F).



 

 

70 

 



 

 

71 

3.9 ADT2-CFP localization in arc mutants 

 Chloroplast division is disrupted in the A. thaliana arc3, arc5 and arc6 mutants 

(Pyke and Leech, 1992; 1994; Pyke et al., 1994). Furthermore, these disruptions occur at 

different stages of chloroplast division, and the relative position of FtsZ is known in each 

mutant (Glynn et al., 2007; Vitha et al., 2001; 2003). Thus, it was hypothesized that 

ADT2-CFP would be mislocalized in these mutants in a predictable way. The arc 

mutants are from the Ler (arc3 and arc5) and Ws (arc6) accessions of A. thaliana, and 

ADT2-CFP was visualized at a pole or as a band at the equatorial plane in both 

accessions (Fig. 16), consistent with a role in chloroplast division. This ensures that any 

difference in ADT2-CFP localization in the arc mutants is due to the mutation and its 

effects on chloroplast division. Agroinfiltration was performed to express ADT2-CFP in 

the rosette leaves of each arc mutant. 

 In arc3 mutants, the Z-ring can form multiple times along a single chloroplast 

(Glynn et al., 2007), and arc3 chloroplasts are highly irregular in size and shape (Pyke 

and Leech, 1992). The localization of ADT2-CFP in arc3 mutants differs substantially 

from wild-type A. thaliana Ler. Instead of localizing to a single band placed at the 

equatorial plane of the chloroplast ADT2-CFP is observed as several bands across arc3 

chloroplasts (Fig. 19A-C) resembling the location of Z-rings in arc3 mutants (Glynn et 

al., 2007). The bands were variable in appearance in both their linearity and thickness 

(Fig.19A-C). Although arc3 chloroplasts are larger on average than those in wild-type 

A. thaliana (Pyke and Leech, 1992) the misplacement of the division ring creates a 

heterogeneous population of chloroplasts (Glynn et al., 2007; Pyke and Leech, 1992).  

The smaller chloroplasts in arc3 plants had ADT2 localization patterns that more closely 

resembled wild-type where ADT2-CFP was observed at a pole or as a single band 

(Fig. 19D). This polar localization pattern was never observed for larger chloroplasts in 

arc3 mutants. 

 In arc5 mutants, chloroplasts are larger in size and fewer in number compared to 

wild-type, and many have a central constriction corresponding to the location of the Z- 



 

 

Figure 19. ADT2-CFP localization in arc3 mutants. 

ADT2-CFP was transiently expressed in arc3 mutants to determine if ADT2-CFP 

localization is affected by the arc3 mutation.  

(A) Images of chlorophyll fluorescence (left) and ADT2-CFP (middle) are shown 

separately and merged (right). ADT2 localizes to multiple bands across the chloroplast.  

(B-D) Images of chlorophyll fluorescence and ADT2-CFP are shown merged. 

(B) ADT2-CFP localizes to thick linear bands across the chloroplast. 

(C) ADT2-CFP localizes to highly curved bands and shorter linear bands. 

(D) ADT2-CFP localizes to single central bands or to the poles of smaller chloroplasts. 

 
Scale bars are 5 µm.
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ring (Pyke and Leech, 1994; Vitha et al., 2001). The localization of ADT2-CFP in arc5 

mutants was predominantly to a band located at the central constriction (Fig. 20A-C), 

consistent with the location of the Z-ring (Vitha et al., 2001). The appearance of ADT2-

CFP bands was variable: some bands appeared straight and tightly wrapped around the 

constriction (Fig. 20A), while others appeared to curve along its length (Fig. 20B). On 

some chloroplasts ADT2-CFP was observed to localize to multiple bands on a single 

chloroplast (Fig. 20C), although they always appeared centered near an area of 

constriction. Chloroplasts that appear wild-type in size and shape were present in arc5 

mutants, and ADT2-CFP was observed as either a central band or toward a pole 

(Fig. 20C), similar to ADT2-CFP localization on wild-type chloroplasts. This polar 

localization pattern was never observed in large, centrally constricted chloroplasts. In 

addition, ADT2-CFP was observed in stromule-like structures (Fig. 20D) although if 

observed the stromules are typically longer and more convoluted in appearance than in 

wild-type plants.  

 In arc6 plants, the Z-ring does not form, and short rod-shaped bands of FtsZ, 

believed to be unassembled FtsZ filaments are found throughout the stroma (Vitha et al., 

2003). This is associated with arc6 chloroplasts being very large in size and few in 

number per cell (Pyke et al., 1994). In arc6 mutant chloroplasts ADT2-CFP localized to 

short bands (Fig. 21A) similar to what has been observed for FtsZ (Vitha et al., 2003). 

However, ADT2-CFP also localized to round punctate structures usually observed near 

the edge of a chloroplast (Fig. 21B), although they occasionally appeared detached from 

chloroplasts (Fig. 21C).  

3.10 Generation of an FtsZ2-YFP fusion construct 

 The localization of ADT2-CFP in arc mutants is consistent with that of FtsZ 

(Glynn et al., 2007; Vitha et al., 2001; 2003), suggesting that ADT2 and FtsZ are closely 

linked. Thus, it was of interest to investigate the relationship between the two proteins by 

determining if FtsZ localization is affected in the adt2 mutant. To accomplish this FtsZ 



 

 

Figure 20. ADT2-CFP localization in arc5 mutants. 

ADT2-CFP was transiently expressed in arc5 mutants to determine if ADT2-CFP 

localization is affected by the arc5 mutation.  

(A) Images of chlorophyll fluorescence (left) and ADT2-CFP (middle) are shown 

separately and merged (right). ADT2 localizes to a single linear band at the central 

constriction. 

(B-D) Images of chlorophyll fluorescence and ADT2-CFP are shown merged. 

(B) ADT2-CFP localizes in a curved band along the central constriction. 

(C) ADT2-CFP occasionally localized to multiple bands near the central constriction. In 

smaller arc5 chloroplasts, ADT2-CFP localized to a single equatorial band or to a pole of 

chloroplasts (arrows). 

(D) ADT2-CFP was infrequently observed as long stromule-like structures. 

 
Scale bars are 5 µm.
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Figure 21. ADT2-CFP localization in arc6 mutants. 

ADT2-CFP was transiently expressed in arc6 mutants to determine if ADT2 localization 

is affected by the arc6 mutation. Images of chlorophyll fluorescence (left) and ADT2-

CFP (middle) are shown separately and merged (right).  

(A) ADT2-CFP localizes to multiple short bands on arc6 chloroplasts. 

(B) ADT2-CFP is visualized as punctate structures at the periphery of the chloroplast. 

(C)  These punctate structures were occasionally viewed further away from the 

chloroplast, possibly in the cytosol. 

 

Scale bars are 5µm (A) or 10 µm (B-C).
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first needed to be visualized. To allow for FtsZ visualization, FtsZ2-1 was cloned as a 

YFP fusion construct using Gateway technology (Fig. 22). 

 Gateway technology uses enzyme mixes (BP and LR Clonase) that allow for 

homologous recombination between specific attachment (att) sequences (Invitrogen 

Corporation, 1999-2003). BP Clonase causes recombination between attB and attP sites 

in a BP reaction, creating attL sites. LR Clonase causes recombination between attL sites 

and attR sites, creating attB sites. 

 Plasmid pLIC6 containing FtsZ2-1 cDNA flanked by attB sites (Popescu et al., 

2007) was propagated in E. coli DH10B and isolated from overnight cultures. The 

isolated plasmid was restriction digested with HindIII, cutting pLIC6 twice on either side 

of the attB flanked FtsZ2-1 cDNA. The 2329 bp fragment containing attB flanked FtsZ2-

1 was excised from the gel and purified. The purified fragment was combined with the 

donor vector pDONR221, which encodes the ccdB gene (a negative selectable marker) 

flanked by attP sites. A BP reaction was performed overnight and transformed into 

chemically competent E. coli DH5α cells and transformants were selected with 

kanamycin. Successful transformants were identified by isolating plasmid DNA and 

restriction digesting it with AseI. After size separation of the digestion the 2608 bp band 

containing FtsZ2-1 now flanked by attL sites was observed, excised from the gel and 

purified. This purified fragment was combined with the destination vector 

pEarleygate101, which contains the ccdB gene flanked by attR sites. An LR reaction was 

performed overnight and transformed into chemically competent E. coli DH5α cells and 

transformants were selected with kanamycin. Successful transformants were identified 

after digestion with PstI revealed the expected five band sizes (6884, 3864, 813, 547 and 

345 bp; data not shown). In pEarleygate101 FtsZ2-1 is fused to YFP and  expression is 

regulated by the CaMV 35s promoter.



 

 

Figure 22. FtsZ2-1 cloning strategy. 

FtsZ2-1 cDNA encoded in pLIC6 was used to create an FtsZ2-YFP fusion gene using 

Gateway technology. In pLIC6 FtsZ2-1 is flanked by attB sites allowing for 

recombination with a donor vector using Gateway technology. The vector was digested 

with HindIII cutting pLIC6 on either side of the attB sites. The fragments were size 

separated on a gel and the 2329 bp band containing attB flanked FtsZ2-1 was extracted 

from the gel and purified. The purified gel fragment was combined with the donor vector 

pDONR221 and BP Clonase was added to perform a BP reaction generating an entry 

vector with FtsZ2-1 flanked by attL sites. The entry vector was digested with AseI cutting 

on either side of the attL sites and the fragments were size separated on a gel. A 2608 bp 

band containing FtsZ2-1 flanked by attL sites was extracted from the gel and purified. 

This fragment was combined with the destination vector pEarleygate101 and LR Clonase 

was added to perform an LR reaction. This generated an FtsZ2-YFP fusion construct with 

expression regulated in planta by the CaMV 35s promoter. 

 

A: AseI sites; H: HindIII sites.
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3.11 FtsZ2-YFP localization  

 Prior to expressing FtsZ2-YFP in the adt2 mutant it must be ensured that FtsZ2-

YFP localization is consistent with what has been documented in A. thaliana Col-0 

(Vitha et al., 2001), arc3 (Glynn et al., 2007), arc5 (Vitha et al., 2001) and arc6 mutants 

(Vitha et al., 2003).  The newly generated construct was transformed into A. tumefaciens 

LBA4404 and agroinfiltrations were performed to express FtsZ2-YFP in each plant. In 

A. thaliana Col-0, FtsZ2-YFP localized as expected at the equatorial plane of chloroplasts 

(Fig 23A). In arc3 plants FtsZ2-YFP localized to multiple bands across chloroplasts 

(Fig 23B). In arc5 mutants FtsZ2-YFP localized to bands centered at areas of 

chloroplasts appearing centrally constricted (Fig 23C). Finally, in arc6 plants FtsZ2-YFP 

localized to short bands appearing scattered within the chloroplasts (Fig. 23D). Therefore, 

FtsZ2-YFP localization was as expected in each plant. However, FtsZ2-YFP also 

localized to punctate structures on some chloroplasts in all plants in which it was 

expressed (data not shown). 

 To determine if FtsZ localization is affected by the adt2 mutation FtsZ2-YFP was 

transiently expressed in the rosette leaves of adt2 plants. Compared to wild-type 

A. thaliana Col-0 (Fig. 23A) FtsZ2-YFP localization was clearly different in adt2 

chloroplasts (Fig. 24A-B). Mostly, FtsZ2-YFP was found to form long curving filaments 

in adt2 chloroplasts. These could either be multiple bands of FtsZ2-YFP or longer 

spiraling filaments that twist and loop in the stroma (Fig. 24A-B). Therefore, the location 

of a known chloroplast division protein is affected by the adt2 mutation.



 

 

Figure 23. Testing FtsZ2-YFP localization. 

FtsZ2-YFP was transiently expressed in A. thaliana Col-0 (A), arc3 (B), arc5 (C), and 

arc6 mutants (D). All images show a merge of chlorophyll fluorescence and FtsZ2-YFP. 

(A) FtsZ2-YFP localizes to a band at the equatorial plane of A. thaliana Col-0 

chloroplasts. 

(B) FtsZ2-YFP localizes to multiple bands in arc3 chloroplasts. 

(C) FtsZ2-YFP localizes to bands at the central constriction (arrow) of arc5 chloroplasts. 

(D) FtsZ2-YFP localizes to short bands consistent with the appearance of filaments in 

arc6 chloroplasts. 

 

Scale bars are 5 µm.
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Figure 24. FtsZ2-YFP localization in adt2 mutants. 

FtsZ2-YFP was transiently expressed in adt2 mutants to determine if its localization is 

altered. Images of chlorophyll fluorescence (left) FtsZ2-YFP (middle) are shown 

separately and merged (right). 

(A) FtsZ2-YFP localizes to long, curving filaments within adt2 mutant chloroplasts. 

(B) FtsZ2-YFP appears to localize to several bands that may be long, spiraling filaments. 

 

Scale bars are 5 µm.
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4 Discussion 

 This study examined the in planta subcellular localization of ADTs through 

Agrobacterium-mediated transient transformation of N. benthamiana and A. thaliana. By 

co-localizing all six ADT-CFPs with a fluorescently tagged stromal protein it was found 

that most ADTs localize to stromules. The novel localization patterns of ADT5 and 

ADT2 were the focus of much of the remainder of this study. ADT5-CFP was co-

expressed with NUP1-YFP confirming that it localizes to the nucleus. In addition, 

indirect evidence was provided for a stromule-mediated method of transportation of 

ADT5-CFP to the nucleus. Finally, the localization patterns of ADT2-CFP were found to 

be highly suggestive of a role in chloroplast division in all plants studied, while an adt2 

mutant has altered chloroplast morphology and FtsZ localization patterns.  

4.1 ADTs localize to stromules 

 To determine if ADTs predominantly localize to stromules all ADT-CFP fusion 

genes were co-expressed with a fluorescent stromal marker (TP-YFP) in N. benthamiana. 

With the exception of ADT6-CFP (Fig. 8F), all ADT-CFPs were co-localized with TP-

YFP confirming that they are localizing to stromules as opposed to aggregating outside of 

chloroplasts (Fig. 8A-E). In theory, any stromal protein could be present in stromules but 

ADTs are unique because they often appear to accumulate in them rather than in the main 

body of the chloroplast. While the function of stromules remains the subject of debate, it 

is speculated that the increase in surface area associated with stromules can increase 

transport of materials, including metabolites, to other areas of the cell (Natesan et al., 

2005). Keeping this proposed function in mind, the localization of ADTs to stromules is 

consistent with their enzymatic function. If phenylalanine is synthesized in stromules and 

accumulates in them, it can be easily envisioned to be an efficient way of mediating 

phenylalanine transport to other areas of the cell. In the cytosol, phenylalanine is not only 

required for protein synthesis, but also as a precursor to the biosynthesis of 

phenylpropanoids such as flavonoids and lignin (Liu, 2012; Samanta et al., 2011). 

Interestingly, abiotic stressors such as drought and salt stress known to induce stromules 
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(Gray et al., 2012) are also associated with increased flavonoid levels in the leaves of 

plants (Agati et al., 2011; Mewis et al., 2012). This increase in flavonoids is supported at 

the transcriptional level as studies in rice found that enzymes in the flavonoid 

biosynthetic pathway are upregulated in response to salinity-induced stress (Walia et al., 

2005). Of particular interest to this study is an upregulation of PHENYLALANINE 

AMMONIA LYASE1 (PAL1) (Walia et al., 2005). PAL1 uses phenylalanine as a substrate 

to catalyze the first step of phenylpropanoid biosynthesis in the cytosol (Fraser and 

Chapple, 2011). This suggests there is an increased demand for cytosolic phenylalaine 

under the same conditions known to induce stromules. Therefore, the induction of 

stromules in response to abiotic stress could create an increased supply of phenylalanine 

to be incorporated into downstream cytosolic pathways.  

4.2 ADT6 is cytosolic  

 The only ADT-CFP fusion protein that does not localize to stromules is ADT6-

CFP (Fig. 8F). The cytosolic localization of ADT6 is in contrast with previous studies 

detecting ADT activity solely in chloroplasts of N. silvestris and spinach (Jung et al., 

1986). While phenylalanine biosynthesis has only been characterized in the chloroplasts 

of higher plants, there are other enzymes that have cytosolic isoforms (Maeda and 

Dudareva, 2012). For example, an enzyme in the shikimate pathway, 3-hydroxy-D-

arabino-heptulosonate 7-phosphate synthase (Ganson et al., 1986), and chorismate 

mutase 2 (CM2) (Eberhard et al., 1996), the last common enzyme required for the 

synthesis of all aromatic amino acids (Maeda and Dudareva, 2012). In the chloroplast, 

prephenate, which is synthesized by CM, is transaminated by PAT (Bonner and Jensen, 

1985) to produce arogenate used by ADTs to synthesize phenylalanine (Cho et al., 2007). 

While the only PAT identified in A. thaliana localizes to the chloroplast (Maeda et al., 

2011), aminotransferases often have broad substrate specificities (Maeda et al., 2011; 

Wightman and Forest, 1978) and the presence of a cytosolic aminotransferase capable of 

connecting the activity of CM2 to ADT6 cannot be ruled out. While a cytosolic pathway 

for phenylalanine biosynthesis remains uncharacterized, the presence of one seems 

advantageous given the need for phenylalanine in the cytosol. 
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4.3 ADT5 localizes to the nucleus 

 To confirm that ADT5 localizes to the nucleus ADT5-CFP and NUP1-YFP were 

co-expressed in N. benthamiana and it was clearly shown that ADT5-CFP is surrounded 

by the nuclear membrane (Fig. 10C). Given that ADT5 also localizes to chloroplasts, this 

result indicates that ADT5 localizes to two different subcellular compartments. There are 

several proteins that localize to both plastids and nuclei (Krause et al., 2012). This 

includes other enzymes such as phosphate-isopentyltransferase 3, an enzyme involved in 

cytokinin biosynthesis (Galichet et al., 2008; Krause et al., 2012), although like ADT5 its 

nuclear role is unknown (Krause et al., 2012). 

  Chloroplasts are able to communicate with the nucleus through retrograde 

signaling, a process believed to occur by the release of chemical signals from the 

chloroplast that result in changes in nuclear gene expression (Inaba et al., 2011). While 

retrograde signaling traditionally refers to chemical messengers, it is becoming apparent 

that proteins within the chloroplast can act as retrograde signals as well (Isemer et al., 

2012; Krause et al., 2012). One such protein is WHIRLY1 from A. thaliana, which can 

move directly from plastids to the nucleus (Isemer et al., 2012). In plastids, WHIRLY1 

contributes to plastid genome stability by preventing illegitimate recombination 

(Maréchal et al., 2009). In the nucleus it acts as a transcriptional activator of pathogen-

response genes (Isemer et al., 2012), consistent with the increased pathogen susceptibility 

associated with decreased WHIRLY1 DNA binding ability (Desveaux et al., 2005).  

 The mechanism through which proteins such as WHIRLY1 are able to move from 

the plastid to the nucleus is not known, however, stromules are a hypothetical mode of 

transport (Krause et al., 2012). Stromules can closely associate with nuclei and have even 

been observed extending into grooves of the nuclear membrane (Kwok and Hanson, 

2004b). In the case of ADT5, chloroplasts with stromules containing ADT5-CFP often 

appeared to connect directly with the nucleus (Fig. 11). Expression of dominant negative 

forms of myosin XI found to inhibit stromules (Fig. 13A-B) also significantly reduced 

ADT5-CFP localization to the nucleus (Fig. 14), providing indirect evidence of stromule-

mediated nuclear transport. As a note of caution, this result could be due to suppression 
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of other processes requiring myosin XI. Dominant negative inhibition of myosin XI-K 

reduces the movement of many organelles, including golgi stacks, peroxisomes and 

mitochondria (Avisar et al., 2008), while in this study only stromules were examined. 

Myosin associated movement along actin filaments is also needed for cytoplasmic 

streaming (Shimmen and Yokota, 2004). If the movement of proteins in the cytoplasm 

was inhibited, it could be argued that this would prevent nuclear transport by other 

means. Regardless, the appearance of stromules directly connecting to nuclei expressing 

ADT5-CFP (Fig. 11) makes a stromule-mediated nuclear transport system intriguing. 

Although alternate, more direct approaches to study this should be used. 

 Currently, it is unknown what role ADT5 plays in the nucleus, but as an enzyme 

involved in a biosynthetic pathway it is conceivable that it acts as a transcriptional 

regulator of upstream or downstream genes, or of other ADTs. There is precedence for an 

enzyme to act as a transcriptional regulator of related genes. A. thaliana HEXOKINASE1 

is involved in glucose metabolism in mitochondria, but also localizes to the nucleus 

where it forms part of a protein complex affecting transcription of genes involved in 

glucose signaling (Cho et al., 2006). While it is unknown if ADT5 acts as a 

transcriptional regulator of genes, evidence suggests that ADT5 activity cannot be 

compensated for by other ADTs (Corea et al., 2012). Of all available T-DNA insertion 

knockout lines for ADTs, the adt5 knockout is the only one with an obvious phenotype 

(Corea et al., 2012). In adt5 plants, stems lack the structural rigidity to stand erect and 

instead fall over, a phenotype associated with altered lignin composition (Corea et al., 

2012). At this point it is purely speculation if the nuclear role of ADT5 is to regulate 

genes in lignin biosynthesis, but ADT5’s role in the nucleus should be the subject of 

future research.  

4.4 ADT localization is identical in A. thaliana 

 Prior to this study the in planta localization of A. thaliana ADTs had only been 

examined in N. benthamiana (Bross, 2011). Transient transformation using 

agroinfiltration is widely used in N. benthamiana but has traditionally been difficult in 

A. thaliana (Wroblewski et al., 2005). In this current study, reliable transformation of 



 

 

91 
A. thaliana was achieved by infiltrating 3 to 4 week old plants gently with small 

volumes of A. tumefaciens. In addition, plants were grown from seed in soil watered with 

20 mM L-ascorbic acid, which seemed to decrease necrosis of leaves associated with 

agroinfiltration. As it was not the focus of this study, the reason for this was not 

addressed. However, because L-ascorbic acid can scavenge damaging reactive oxygen 

species (Gallie, 2013), the increased tolerance of A. thaliana to agroinfiltration may be 

due to a decrease in oxidative stress. As in N. benthamiana, all six ADT-CFPs in 

A. thaliana localized to stromule-like structures (Fig. 9A-E), with the exception of 

ADT6-CFP which appeared in the cytosol (Fig 9F). Similarly, the unique localization 

patterns of ADT2-CFP and ADT5-CFP are present in A. thaliana, localizing to bands and 

poles of chloroplasts (Fig. 16), and to nuclei (Fig. 10B), respectively. This was an 

important finding given that A. thaliana is the host plant of these proteins, and proves that 

the findings in N. benthamiana are not artifacts. However, it also supports 

N. benthamiana as a good model organism for determining the subcellular localization of 

A. thaliana proteins. It also demonstrates that agroinfiltration can be performed 

effectively in A. thaliana, which is significant given its wide use in plant biology and the 

availability of characterized mutant lines.  

4.5 ADT2 localization is consistent with chloroplast division 

 Early observations of ADT2 subcellular localization determined that ADT2-CFP 

localized to a band at the equatorial plane or towards a pole of a chloroplast (Bross, 

2011). The similarity of these patterns to those of chloroplast division proteins (Glynn et 

al., 2007) led to an investigation into a possible secondary non-enzymatic role of ADT2 

in chloroplast division. Initial evidence in support of this proposed function came from 

ADT2-CFP localization in dividing chloroplasts as indicated by an elongated and 

constricted appearance (Fig. 15B-C). ADT2-CFP was visualized as a band at the 

equatorial plane of chloroplasts both with and without areas of constriction and 

elongation (Fig. 15A-C), consistent with ADT2 localizing to the division plane early in 

the division process, similar to FtsZ and ARC6 (Vitha et al., 2001; 2003). ADT2-CFP is 

also observed at one pole of chloroplasts (Fig. 15D). In general, chloroplast division 
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proteins localize to the poles of chloroplasts as a consequence of the protein’s function 

or as a remnant of the division ring. For example, ARC3 is active towards the poles of 

chloroplasts and prevents Z-ring assembly there (TerBush et al., 2013). On the other hand 

proteins including PARC6, PDV1, PDV2 and ARC5 have also been found at the poles of 

chloroplasts (Glynn et al., 2009; Miyagishima et al., 2006). As these proteins are present 

at the division plane during constriction their polar localization is thought to represent 

remnants of protein left on daughter chloroplasts post-division (Miyagishima, 2011). As 

ADT2-CFP is present at the division plane of highly constricted chloroplasts (Fig. 15C), 

ADT2-CFP localization at the poles is expected to be a post-division remnant. Given that 

chloroplast division is regulated by size (Pyke, 1999), chloroplasts with ADT2-CFP at a 

pole should be smaller than average chloroplasts if they are newly divided chloroplasts. 

Similarly, chloroplasts with ADT2-CFP observed as a band should be larger in size than 

average chloroplasts if they represent dividing chloroplasts. Compared to the average 

length of chloroplasts in uninfiltrated plants those with ADT2-CFP at a pole and as an 

equatorial band were smaller and larger, respectively (Table 1). Chloroplasts with ADT2-

CFP at a pole also had a lower standard deviation (Table 1) than the other two groups, 

indicating that they are close in size to one another, as would be expected for newly 

divided chloroplasts. The standard deviation for chloroplasts with ADT2 as a band was 

higher than the polar chloroplasts but lower than those from uninfiltrated plants (Table 1), 

which makes sense because dividing chloroplasts would be at different stages of division. 

These results are highly suggestive of a role in chloroplast division in which ADT2 

localizes to the division plane early and remains there throughout the constriction stages 

and thus remains on the poles of newly divided chloroplasts. 

4.6 Chloroplast morphology is abnormal in adt2 mutants 

 As ADT2 localization suggests a role in chloroplast division, a second 

independent confirmation of this role was needed. As seen in the arc mutants (Pyke and 

Leech, 1992; 1994; Pyke et al., 1994), mutations in genes required for chloroplast 

division affect the appearance of chloroplasts. Therefore, chloroplasts in an adt2 mutant 

(Huang et al., 2010) were examined. 
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  Chloroplast morphology was altered in these mutants, and chloroplasts with a 

wide range of shapes and sizes were found (Fig. 17B-F). This finding establishes a more 

direct connection between chloroplast division and ADT2 function. The phenotype of 

chloroplasts in division mutants often yields clues into a protein’s function during this 

process. Chloroplasts in the adt2 mutant were heterogeneous in size and shape, ranging 

from enlarged and misshapen to wild-type in size and shape. Heterogeneous populations 

of chloroplasts can result from mutations in genes required for correct Z-ring placement, 

such as ARC3 (Pyke and Leech 1992; Shimada et al., 2004; Zhang et al., 2013) 

suggesting that ADT2 may be involved in Z-ring positioning.  

 The mutation responsible for these unusual chloroplasts is a point mutation that 

only causes a single amino acid substitution (Huang et al., 2010). Compared to the arc 

mutants, which are caused by nonsense mutations (Gao et al., 2003; Shimada et al., 2004; 

Vitha et al., 2003), this seems to be a subtle change. Therefore, ADT2 function is 

probably not abolished by this mutation but altered or reduced. This could explain why 

normally sized chloroplasts are relatively prevalent.  

 The location of the mutation in the C-terminal ACT domain (Huang et al., 2010) 

suggests that this region may be, at least in part, required for the chloroplast division 

function of ADT2. It has been shown that this mutation decreases the enzyme’s ability to 

respond to the allosteric inhibition by phenylalanine (Huang et al., 2010). In bacterial 

PDTs the allosteric binding of phenylalanine results in a conformational change to the 

enzyme, changing it from an active open state to an inactive closed state (Tan et al., 

2008). Such a conformational change has not been studied for ADTs, although, given the 

amino acid sequence similarity between ADTs and PDTs (Cho et al., 2007), a similar 

conformational change is likely in ADTs as well. While entirely hypothetical, this 

conformational change could be important for the chloroplast division function of ADT2. 

Alternatively, it could be that the single amino acid substitution changes the tertiary 

structure of the enzyme to such an extent that it decreases its ability to function in 

chloroplast division. While the abnormal chloroplast morphology in the adt2 mutant 

confirms that ADT2 has a role during chloroplast division, it is interesting that ADT2 is 
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the only ADT for which T-DNA knockout lines do not exist (Corea et al., 2012) 

raising the possibility that an ADT2 knockout is lethal.  

4.7 ADT2 localization in arc mutants 

 The arc3, arc5 and arc6 mutants of A. thaliana are affected in different stages of 

chloroplast division and FtsZ localization is known for each (Glynn et al., 2007; Vitha et 

al., 2001; 2003). ADT2-CFP was expressed in each mutant to determine if its localization 

was affected by the mutations and gain insight into its position in the division process 

relative to FtsZ. 

 In arc3 mutants, ADT2-CFP is predominantly found as multiple bands along 

chloroplasts (Fig. 19A-C), consistent with FtsZ localization in arc3 plants (Glynn et al., 

2007). In planta ARC3 is a regulator of Z-ring placement, restricting the Z-ring to the 

equatorial plane by inhibiting FtsZ polymerization in other areas of the chloroplast 

(Zhang et al., 2013). As ARC3 can interact with both FtsZ1 (Maple et al., 2007) and 

FtsZ2 it likely accomplishes this through a direct interaction (Zhang et al., 2013). 

Because ADT2 has a similar localization pattern to FtsZ in arc3 plants it indicates that 

ARC3 positions ADT2 in a similar manner to FtsZ. It is unknown how ARC3 affects 

ADT2 localization, though several possibilities are imaginable (Fig. 25A-C). One 

possibility is that ADT2 directly interacts with FtsZ, so misplacement of FtsZ will cause 

ADT2 to be misplaced as well (Fig. 25A). It is also possible that ARC3 interacts with 

ADT2 and FtsZ to position each protein independent from one another (Fig. 25B). 

Alternatively, ADT2 and ARC3 could both interact with FtsZ for correct Z-ring 

placement (Fig. 25C) and ADT2 is misplaced in arc3 mutants because the action of 

ADT2 alone is not sufficient for correct FtsZ positioning. 

 In arc6 mutants ADT2- CFP localizes to short rod-shaped bands in the stroma 

(Fig. 21A) resembling previously established FtsZ localization patterns (Vitha et al., 

2003). These results indicate that ARC6, like ARC3, is required for the correct 



 

 

Figure 25. Hypothetical models for ADT2 in chloroplast division. 

The models shown are hypothetical ways that ARC3 (A-C) and ARC6 (D-F) affect 

ADT2 localization. 

(A) ARC3 positions FtsZ and ADT2 localizes with FtsZ due to an interaction. 

(B) ARC3 interacts with ADT2 and FtsZ to position each protein independently. 

(C) ARC3 and ADT2 act together to position FtsZ. 

(D) ARC6 anchors FtsZ, ADT2 localizes with FtsZ due to an interaction. 

(E) ARC6 anchors FtsZ and ADT2 individually. 

(F) ADT2 and ARC6 act together to anchor FtsZ.
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positioning of both FtsZ and ADT2. ARC6 is involved early in chloroplast division 

and anchors FtsZ filaments in the Z-ring (Vitha et al., 2003). It is unknown how ARC6 

regulates ADT2 localization, however, as was the case for ARC3, several possibilities 

exist (Fig. 25D-F). If ADT2 directly interacts with FtsZ, ARC6 may affect its localization 

indirectly (Fig. 25D). Alternatively, ARC6 could interact with ADT2 and regulate its 

positioning independently from FtsZ (Fig. 25E). Another possibility is that ADT2 

interacts with ARC6 to anchor FtsZ (Fig. 25F) and neither protein on its own is sufficient 

for correct FtsZ placement. In arc6 mutants ADT2 was also frequently observed as round 

puncta near the periphery of chloroplasts (Fig. 21B), and occasionally away from 

chloroplasts (Fig. 21C). It is not known if these patterns have functional significance or if 

they are artifacts of ADT2-CFP over-expression.   

 ARC5 provides the force needed to constrict chloroplasts during division (Gao et 

al., 2003; Yoshida et al., 2006), and in arc5 mutants chloroplasts are enlarged and often 

centrally constricted (Pyke and Leech, 1994). ARC5 is recruited to the cytosolic face of 

the outer membrane after Z-ring placement (Gao et al., 2003) acting downstream of 

ARC6 and ARC3. Z-ring positioning in arc5 mutants is unaffected as FtsZ localizes to 

the equatorial plane (Vitha et al., 2001). Consistent with FtsZ localization ADT2-CFP 

also localizes to the central constriction (Fig. 20A-C) indicating that ADT2 resides at the 

division plane in later stages of division in agreement with ADT2-CFP localization in 

highly constricted chloroplasts in N. benthamiana (Fig. 15C). The appearance of ADT2 

bands around the central constrictions was variable and on occasion multiple bands were 

able to form (Fig. 20C) While ARC5 does not affect Z-ring placement the large size of 

arc5 chloroplasts could allow multiple Z-rings to form near the constriction if ARC3 

levels are sufficiently low. Alternatively, one cannot exclude the possibility that multiple 

bands result from over-expression of ADT2-CFP. In addition to being at the central 

constriction of arc5 chloroplasts, ADT2-CFP occasionally localized to long, convoluted 

stromule-like structures (Fig. 20D). While all three of these arc mutants are known to 

have an increased frequency of stromules in certain tissues (Holzinger et al., 2008), arc5 

was the only arc mutant where a stromule pattern was seen. While the reason for this is 
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not known, it was infrequently observed in arc5 mutants, and thus it may only be due 

to chance that it was not observed in the arc3 and arc6 mutants. The infrequent 

observation of ADT2-CFP in stromules of arc mutant chloroplasts could be due to 

inefficient chloroplast division, and hence division proteins remain at the site of 

constriction for a longer period of time preventing ADT2 from accumulating in 

stromules. 

4.8 The relationship between FtsZ and ADT2 

 ADT2 localization in arc3, arc5, and arc6 mutant plants suggests a close 

relationship between FtsZ and ADT2. To examine this FtsZ2-1 was cloned as a YFP 

fusion gene, to determine if a known chloroplast division protein is affected by the adt2 

mutation. Prior to expression in the adt2 mutant it was expressed first in wild-type 

A. thaliana Col-0, arc3, arc5 and arc6 mutants to ensure that FtsZ2-YFP localization is 

consistent with previous studies (Glynn et al., 2007; Vitha et al., 2001; 2003). In each 

case FtsZ2-YFP localized to the expected areas of chloroplasts (Fig. 23A-D). In arc5 

mutants multiple bands of FtsZ2-YFP were seen at the central constriction (Fig. 23C), as 

was observed with over-expression of ADT2-CFP in arc5 mutants (Fig. 20C). In all 

plants, FtsZ2-YFP was also found in punctate structures (data not shown) that could be 

artifacts of over-expression, although FtsZ puncta have been previously observed 

(Johnson et al., 2013).  

 The localization of FtsZ2-YFP in the adt2 mutant (Fig. 24A-B) was found to 

differ substantially from wild-type A. thaliana. FtsZ2-YFP formed long curving filaments 

in the stroma of adt2 chloroplasts (Fig. 24A-B). In some chloroplasts FtsZ2-YFP 

appeared to assemble into multiple rings (Fig. 24B), although due to the length and 

curvature of FtsZ2-YFP filaments observed these might represent filaments spiraling 

inside the chloroplast. Interestingly, long spiraling filaments of FtsZ are also seen in 

plants over-expressing ARC6 (Vitha et al., 2003), although a link between ADT2 and 

ARC6 has not been established and will require further study. The abnormal localization 

of FtsZ2-YFP in the adt2 mutant suggests that ADT2 is required for proper Z-ring 

placement. This is consistent with the heterogeneous populations of chloroplasts 
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observed in the adt2 mutant, because mutations in genes needed for proper Z-ring 

placement such as ARC3 (Zhang et al., 2013) also result in heterogeneously sized 

chloroplasts (Pyke and Leech, 1992). 

 The adt2 mutant is the only plant line in this study where the localization of 

ADT2-CFP (Fig. 18A-F) did not reflect that of FtsZ2-YFP (Fig. 24A-B). ADT2-CFP was 

never observed in long filaments, instead its pattern was variable. Although it was not 

clear if ADT2-CFP over-expression is able to rescue the phenotype, several images were 

obtained where ADT2-CFP was found at the division plane of constricted adt2 

chloroplasts (Fig. 18A-C). The appearance of the ADT2-CFP band along the constriction, 

as well as the appearance of the constricted chloroplasts themselves were often unusual. 

Constricted chloroplasts appeared to divide asymmetrically and bands of ADT2-CFP 

often appeared to fray along their length (Fig. 18A-B) or were not centered at the 

constriction (Fig. 18C). While not quantifiable, these constricted chloroplasts were seen 

more often when ADT2-CFP was being expressed. One could argue that if the mutant 

adt2 protein retains some of its chloroplast division function it may be interacting with a 

known chloroplast division protein, blocking ADT2-CFP from rescuing the phenotype. 

4.9 Summary and future directions 

 The localization of ADTs to stromules is intriguing given their enzymatic 

function and proposed functions of stromules in increasing metabolite transport (Natesan 

et al., 2005). Further research into a link between stromules and metabolite transport will 

need to be performed before the significance of ADT stromule localization can be 

established. As ADT-CFP fusion genes were overexpressed using the CaMV 35s 

promoter, future studies should look at the localization patterns using native ADT 

promoters to ensure these results are not artifacts of overexpression. The creation of 

stably transformed plant lines would also be beneficial, as it would extend our 

observation of ADTs from leaves to other tissues. Alternatively, antibodies could be 

developed against each ADT to directly detect their localization without using a fusion 

protein.  
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 In this study ADT5 was confirmed to localize to the nucleus in addition to 

chloroplasts. Although the nuclear role of ADT5 remains unknown, as a component of a 

biosynthetic pathway it could act as a transcriptional regulator of genes in the shikimate 

pathway or phenylpropanoid pathway. If ADT5 is a transcription factor it should be able 

to recognize specific DNA sequences. It would be worthwhile to determine if ADT5 can 

bind DNA through chromatin immunoprecipitation, and if it can the sequences it binds to 

should be determined. Comparative transcriptional profiling between adt5 knockout 

plants and wild-type A. thaliana could also be informative. It would be interesting to 

determine if there are changes in transcript levels in the absence of ADT5. Genes 

involved in lignin biosynthesis would be particularly interesting given the altered lignin 

content in adt5 plants (Corea et al., 2012).  

 Through stromule inhibition indirect evidence of stromule-mediated transport of 

ADT5 to the nucleus was provided in this study. Future studies will be needed to provide 

more direct and conclusive evidence. Transport of fluorescently labeled proteins between 

plastids connected by stromules was demonstrated using a fluorescence recovery after 

photo-bleaching (FRAP) approach (Köhler et al., 1997; Kwok and Hanson 2004a). By 

photo-bleaching one plastid fluorescence was shown to recover at the expense of the 

other plastid, indicating that fluorescently labeled protein could move from one plastid to 

another. A similar FRAP based study could be performed with ADT5 by photo-bleaching 

a nucleus and determining if fluorescence could recover at the expense of stromule-

connected chloroplasts. Alternatively, the development of photo-convertible fusion 

proteins such as EosFP (Wiedenmann et al., 2004) could be used. EosFP normally 

fluoresces green light but after excitation with ultraviolet light this changes to red light in 

a process known as photo-conversion. If ADT5 is cloned as an EosFP fusion gene, photo-

conversion could be used to specifically photo-convert a stromule connected to the 

nucleus, and then it can be observed if the change in fluorescent colour emitted by EosFP 

travels to the nucleus. 

 This study provides strong evidence for an involvement of ADT2 in chloroplast 

division. The similarities between ADT2 localization and that of FtsZ suggest that these 
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proteins are tightly linked. To further investigate this, ADT2-CFP should be 

expressed in FtsZ mutant plants, as localization patterns would provide insight as to how 

ADT2 behaves in the absence of FtsZ. Because there are multiple forms of FtsZ, it would 

be interesting to determine its localization patterns when different FtsZ isoforms are 

absent. This would further our knowledge as to how different FtsZ isoforms are related to 

ADT2. What is critically lacking in our understanding of ADT2 in chloroplast division is 

how it interacts with other division proteins. For example, yeast two-hybrid assays should 

be performed between ADT2 and other known chloroplast division proteins. This would 

be of particular interest for ARC3, ARC6 and FtsZ1 and FtsZ2, given that ARC3 and 

ARC6 affect ADT2 localization in a similar manner to FtsZ. If interactions are found 

they should be taken from yeast into a plant and bi-molecular fluorescence 

complementation could be performed to determine if these interactions occur in planta. 

Random or targeted mutations should also be induced in ADT2 to determine the region of 

the enzyme responsible for its chloroplast division role. Finally, other species of plants 

should be used to determine if ADT2’s chloroplast division function is conserved.  
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