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ABSTRACT 

 The structural integrity and functionality of the skeleton is maintained throughout 

life by remodeling, a process that involves the coordinated resorption of old bone by 

osteoclasts and formation of new bone by osteoblasts. Nucleotides are released from cells 

of the osteoblast lineage in response to mechanical stimulation and signal through two 

families of P2 nucleotide receptors – G protein-coupled P2Y receptors and ligand-gated 

P2X cation channels. Nearly every cell-type expresses multiple P2 receptor subtypes. 

However, the significance of these networks of receptors in any system remains unclear. 

In Chapter 2, we show that the endogenous network of P2 receptors expressed by 

osteoblasts permits graded increases in Ca2+ signaling over a million-fold range of ATP 

concentrations. P2Y receptors were found to mediate transient activation of the 

Ca2+/NFATc1 pathway, whereas stimulation of P2X7 caused sustained Ca2+/NFATc1 

signaling. Systemic and local acidosis regulates the activity of both osteoblasts and 

osteoclasts. The P2X7 receptor promotes osteoblast differentiation, and has been shown 

to increase cellular metabolism in other cell-types. However, whether P2X7 increases 

metabolic acid production in osteoblasts or any other system is unclear. In Chapter 3, we 

show that activation of P2X7 elicits a Ca2+-dependent increase in proton efflux from 

osteoblast-like cells. This increase in metabolic acid production is sustained, and 

dependent on glucose and PI3K activity. The P2X7 and Wnt/β-catenin pathways are both 

critical for the anabolic responses of bone to mechanical stimuli. However, whether these 

pathways interact to control osteoblast differentiation and function is unknown. In 

Chapter 4, we show that activation of P2X7 by exogenous nucleotides promotes 

inhibitory phosphorylation of GSK3β and transient β-catenin nuclear localization. 
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Stimulation of P2X7 also potentiates the β-catenin nuclear localization and transcriptional 

activation elicited by canonical Wnt signaling. In summary, we have shown that P2Y-

P2X receptor networks allow cells to sense a wide range of ATP concentrations, and 

transduce this input into distinct cellular responses. Additionally, we have found that 

P2X7 couples through multiple anabolic pathways in osteoblasts, including Ca2+/NFAT, 

PI3K/AKT and Wnt/β-catenin signaling. One or more of these pathways in turn may 

mediate the effects of P2X7 on osteoblast differentiation and mechanotransduction in 

bone.       

 

 

 

 

Keywords – adenosine 5’-diphosphate (ADP), adenosine 5’-triphosphate (ATP), 

apoptosis, β-catenin, canonical, cellular mechanotransduction, cellular metabolism, 

confocal microscopy, cyclooxygenase-2 (COX-2), cytosolic calcium, dose-to-duration 

coupling, extracellular calcium, glycogen synthase kinase 3β (GSK3β), 

immunofluorescence, knockout mice, lactic acid efflux, luciferase reporter, membrane 

blebbing, metabolic acid efflux, microphysiometer, nuclear factor of activated T cells 

(NFAT), osteoblasts, phosphatidylinositol 3-kinase (PI3K), phospholipase C (PLC), 

prostaglandin E2 (PGE2), proton efflux, purinergic P2 receptors, purinergic signaling, 

purinoceptor, P2X, P2X7, P2Y, real-time reverse transcription-polymerase chain reaction, 

spectrofluorimetry, terminal deoxynucleotidyl transferase dUTP nick end labeling, 

transcription factors, uridine 5’-triphosphate (UTP), Western blot, Wnt    



iv 

 

CO-AUTHORSHIP 

 Chapter 1 entitled “Introduction” was written by M.W. Grol with suggestions 

from Drs. S.J. Dixon and S.M. Sims. Certain sections were adapted from Grol et al., 

2009. Purinergic Signal. 5:205-221, and reproduced here with permission from Springer 

Science + Business Media (see Appendix B).  

Chapter 2 entitled “P2 Receptor Networks Regulate Signaling Duration over a 

Wide Dynamic Range of ATP Concentrations” was adapted from Grol et al., 2013. J.    

Cell Sci. 126:3615-3626, and reproduced here with permission from The Company of 

Biologists (see Appendix C). The publication was written by M.W. Grol and Dr. S.J. 

Dixon with suggestions from Drs. A. Pereverzev and S.M. Sims. Dr. A. Pereverzev grew 

up the NFAT luciferase reporter and NFATc1-EGFP fusion protein expression plasmids. 

All studies were performed by M.W. Grol. All experiments were carried out in the 

laboratories of Drs. S.J. Dixon and S.M. Sims. 

 Chapter 3 entitled “P2X7-mediated Calcium Influx Triggers a Sustained, PI3K-

dependent Increase in Metabolic Acid Production by Osteoblast-like Cells” was adapted 

from Grol et al., 2012. Am. J. Physiol. Endocrinol. Metab. 302:E561-E575, and 

reproduced here with permission from The American Physiological Society (see 

Appendix D). The publication was written by M.W. Grol and Dr. S.J. Dixon with 

suggestions from I. Zelner. Fourth year thesis student I. Zelner assisted with some of the 

proton efflux experiments, data from which are a part of the means reported in Figures 

3.2 B, 3.3 B, C and 3.4 B. All other studies were performed by M.W. Grol. All 

experiments were carried out in the laboratory of Dr. S.J. Dixon.    

 Chapter 4 entitled “P2X7 Nucleotide Receptor Signaling Potentiates the Wnt/β-



v 

 

catenin Pathway in Osteoblasts” was written by M.W. Grol with suggestions from Drs. 

S.J. Dixon and S.M. Sims. Dr. A. Pereverzev performed the Western blot analyses shown 

in Figures 4.6 and 4.7. Dental summer student Dr. P.J. Brooks performed the 

immunofluorescence analyses shown in Figure 4.1 under the supervision of M.W. Grol. 

All other studies were performed by M.W. Grol. All experiments were carried out in the 

laboratories of Drs. S.J. Dixon and S.M. Sims.    

 

 

 

 

 

 

  



vi 

 

ACKNOWLEDGEMENTS 

 During my doctoral studies, I have been privileged to be a part of both the Skeletal 

Biology Group (formerly the Canadian Institutes of Health Research (CIHR) Group in 

Skeletal Development and Remodeling) and the Department of Anatomy and Cell 

Biology at The University of Western Ontario. I have met many wonderful people over 

the past six years who have contributed to my success.  

 First and foremost, I would like to thank my supervisor, Dr. S. Jeffrey Dixon, for 

allowing me the opportunity to pursue research in this fascinating area of cell biology. 

Words cannot express how important his positive mentorship, encouragement and support 

have been to my success. He is one of the most intelligent, kindest and humble people I 

have had the pleasure to meet in life. An example of excellence both professionally and 

personally, he has truly helped to improve me both as a scientist and a human being. I 

would also like to acknowledge Dr. Stephen M. Sims for being like a second supervisor 

to me. His personal and professional advice and insight have been invaluable to my 

achievements during my doctoral studies.  

 The members of the Dixon and Sims laboratories have been instrumental to my 

success during my PhD. Specifically, Tom Chrones and Dr. Souzan Armstrong were 

invaluable resources during my studies. I want to thank both of you not only for the 

technical assistance you provided me over the years, but also for being amazing friends 

and colleagues. I am also thankful for the assistance of my colleague Dr. Alexey 

Pereverzev, who contributed significantly to this body of work. I will miss our many 

conversations about science and culture. Additionally, I sincerely appreciate the 

friendship of both current and past students, including Dr. Nattapon Panupinthu, Irene 



vii 

 

Zelner, Danielle Lapierre, Kim Beaucage, Ryan Shugg, Dr. Natsuko Tanabe, Jessica 

Jakob, Karen Ann Bridge, Benjamin Wheal, Dr. Patricia Brooks, Garth Brooks and Ryan 

Beach. Thank you all for the many laughs and support over the years. As my first fourth 

year thesis student, Irene contributed significantly to the studies examining P2X7 and 

cellular metabolism. Thank you for all of your hard work and determination. I also want 

to acknowledge Dr. Patricia Brooks for her tireless efforts and contributions over the past 

few summers to the studies on P2X7 and canonical Wnt signaling. Thank you for putting 

up with my very particular nature, and for being one of my closest and dearest friends. I 

am lucky to have met you. Finally, I am eternally thankful for my best friend and 

colleague Kim Beaucage. Thank you for your never ending understanding and support 

throughout my time in the Dixon and Sims laboratories. I really could not imagine this 

journey without our friendship to see me through. 

 I have also had the privilege to work with many amazing people as a member of 

the Skeletal Biology Group at The University of Western Ontario. I am grateful for the 

endless guidance and support provided by Erika Hegedues and Drs. Cheryle Séguin, 

Anita Woods and Veronica Ulici. Thank you for being people I could turn to and lean on 

in times of frustration, difficulty and need. I would also like to acknowledge the many 

friends who have gotten me to this point, including Drs. Ryan Gillespie and Rick Miron, 

Emily LeBlanc, Nicole Watts, Sadia Pabani, Chris Elliot, Shawna Kim and Matt 

McCann. I will always look back on our time together with fondness. Thank you for the 

laughs and support – I will miss you all greatly. 

 A number of staff and faculty in addition to those mentioned above have been 

instrumental in my success over the last six years. I greatly appreciate the positive advice 



viii 

 

and guidance provided by past and present members of my committee, including Drs. 

Frank Beier, Paul Walton and Dan Belliveau. I am also grateful for the tireless efforts of 

the administrative staff in the Department of Anatomy and Cell Biology, especially Debra 

Grant. Thank you for always having an answer to my questions. You made my life during 

graduate school so much easier. 

 One of my closest and most important friendships during my doctoral studies has 

been with Dr. Shirine Usmani. Thank you for not only being a fantastic colleague but also 

a caring, dependable and supportive friend and roommate. I couldn’t imagine this journey 

without our friendship to rely on. I am also grateful to the whole Usmani family, 

including Shirine’s parents, Dr. Aman Usmani and Mrs. Geraldine Voros Usmani, and 

Shirine’s sister, Dr. Yasmine Usmani. Thank you all for your encouragement and kind 

words over the years.  

During my doctoral studies, I have been lucky to receive stipend support in the 

form of an Ontario Graduate Scholarship (OGS) as well as both a CIHR Fredrick Banting 

and Charles Best Canada Graduate Scholarship (CGS) Masters and Doctoral Awards. 

Moreover, my research in the Dixon laboratory was funded by the CIHR. Given that this 

money is a generous donation from the Canadian public, I hope that one day my work 

might lead to development of interventions for bone diseases such as osteoporosis.   

 Lastly, I would like to express eternal gratitude to my family, especially my 

parents, Casey and Barbara Grol, and my brothers, Michael and Christopher. Thank you 

all for your unconditional love, support, guidance and encouragement during this process. 

There is no way I could have completed my PhD without all of you. I am truly blessed!  

 



ix 

 

TABLE OF CONTENTS 

Page 

ABSTRACT AND KEYWORDS ...................................................................................... ii 

CO-AUTHORSHIP ........................................................................................................... iv 

ACKNOWLEDGEMENTS ............................................................................................... vi 

TABLE OF CONTENTS ................................................................................................... ix 

LIST OF FIGURES ......................................................................................................... xiv 

LIST OF APPENDICES .................................................................................................. xvi 

LIST OF ABBREVIATIONS ......................................................................................... xvii 
 

CHAPTER ONE—INTRODUCTION ............................................................................... 1 

1.1  Chapter Summary ................................................................................................... 2 

1.2  Bone Physiology ..................................................................................................... 3 

1.2.1  Structure, Components, and Functions of Bone ........................................... 3 

1.2.2  Skeletal Development ................................................................................... 6 

1.2.3  Bone Remodeling .......................................................................................... 9 

1.3  Osteoblast Biology ............................................................................................... 18 

1.3.1  Master Transcription Factors and Transcriptional Coactivators 
Regulating Osteoblast Differentiation and Function .............................. 18 

1.3.2  Regulation of Bone Formation .................................................................... 26 

1.4  Ion Transporters and Regulation of Cytosolic pH in Osteoblasts ........................ 41 

1.4.1  Effects of Acid on Bone .............................................................................. 41 

1.4.2  Proton Production and Transport by Osteoblasts ........................................ 42 

1.5  P2 Nucleotide Receptors ...................................................................................... 47 

1.5.1  Sources and Fates of Extracellular Nucleotides .......................................... 47 

1.5.2  Classification and Properties of P2 Nucleotide Receptors.......................... 51 

1.5.3  P2 Nucleotide Receptors in Bone ............................................................... 53 

1.6  P2X7 in Osteoblasts ............................................................................................. 58 

1.6.1  Expression of P2X7 in Cells of the Osteoblast Lineage ............................. 58 

1.6.2  P2X7 Receptor Signaling in Osteoblasts .................................................... 59 

1.6.3  Functions of P2X7 Receptors in Osteoblasts .............................................. 62 



x 

 

1.6.4  Genetic Polymorphisms of the Human P2X7 Receptor ............................. 65 

1.7  Rationale and Objectives of the Research ............................................................ 68 

1.7.1  Role of P2 Receptor Networks in Osteoblasts ............................................ 68 

1.7.2  Regulation of Metabolic Acid Production in Osteoblasts by P2 
Receptors ................................................................................................. 69 

1.7.3  Cross-talk between P2X7 and Wnt/β-catenin Pathways in Osteoblasts ..... 70 

1.8  References ............................................................................................................ 71 

 

CHAPTER TWO—P2 RECEPTOR NETWORKS REGULATE SIGNALING 
DURATION OVER A WIDE DYNAMIC RANGE OF ATP 
CONCENTRATIONS ................................................................................................ 98 

2.1  Chapter Summary ................................................................................................. 99 

2.2  Introduction ........................................................................................................ 100 

2.3  Materials and Methods ....................................................................................... 103 

2.3.1  Materials and Solutions ............................................................................. 103 

2.3.2  Animals and Cell Culture .......................................................................... 104 

2.3.3  Fluorescence Measurement of [Ca2+]i ....................................................... 105 

2.3.4  Expression and Localization of NFATc1-EGFP ...................................... 106 

2.3.5  Immunofluorescence Localization of Native NFATc1 ............................. 107 

2.3.6  Real-time RT-PCR Analyses .................................................................... 108 

2.3.7  Luciferase Reporter Assay for NFATc1 ................................................... 109 

2.3.8  Statistical Analyses ................................................................................... 110 

2.4  Results ................................................................................................................ 111 

2.4.1  Effect of ATP Concentration on the Duration of Cytosolic Ca2+    
Signals ................................................................................................... 111 

2.4.2  P2X7 is Essential for Sustained Cytosolic Ca2+ Signaling Elicited by 
High Concentrations of ATP ................................................................. 118 

2.4.3  Source of Ca2+ Underlying the Transient and Sustained Elevations of 
[Ca2+]i Elicited by ATP ......................................................................... 123 

2.4.4  Effect of ATP Concentration on the Duration of NFATc1 Nuclear 
Localization ........................................................................................... 129 

2.4.5  P2X7 is Essential for Sustained NFATc1 Nuclear Localization Elicited 
by High Concentrations of ATP ............................................................ 134 

2.4.6  Effects of Nucleotides on NFAT Transcriptional Activity ....................... 137 



xi 

 

2.4.7  P2X7 is Essential for Mediating Effects of High Concentrations of    
ATP on NFAT Transcriptional Activity................................................ 143 

2.5  Discussion .......................................................................................................... 146 

2.5.1  P2 Receptor Networks Impart Sensitivity over a Wide Dynamic Range 
of ATP Concentrations .......................................................................... 146 

2.5.2  P2 Receptor Networks Enable Dose-to-Duration Encoding of 
Ca2+/NFAT Signaling ............................................................................ 150 

2.5.3  Potential Physiological Roles of P2 Receptor Networks in Osteoblasts .. 152 

2.6  References .......................................................................................................... 154 
 

CHAPTER THREE—P2X7-MEDIATED CALCIUM INFLUX TRIGGERS A 
SUSTAINED, PI3K-DEPENDENT INCREASE IN METABOLIC ACID 
PRODUCTION BY OSTEOBLAST-LIKE CELLS ................................................ 160 

3.1  Chapter Summary ............................................................................................... 161 

3.2  Introduction ........................................................................................................ 162 

3.3  Materials and Methods ....................................................................................... 166 

3.3.1  Materials and Solutions ............................................................................. 166 

3.3.2  Cells and Culture ....................................................................................... 167 

3.3.3  Morphological Assessments ..................................................................... 168 

3.3.4  Measurement of Proton Efflux .................................................................. 169 

3.3.5  Measurement of Lactate Efflux................................................................. 170 

3.3.6  Spectrofluorometric Measurement of [Ca2+]i ............................................ 171 

3.3.7  Assessment of Apoptosis  ......................................................................... 172 

3.3.8  Statistical Analyses ................................................................................... 172 

3.4  Results ................................................................................................................ 174 

3.4.1  The P2X7 Agonist BzATP Induces Dynamic Membrane Blebbing in 
MC3T3-E1 Osteoblast-like Cells .......................................................... 174 

3.4.2  Effects of BzATP on Proton Efflux from MC3T3-E1 Cells ..................... 177 

3.4.3  Role of P2X7 in Mediating Nucleotide-induced Increases in Proton 
Efflux ..................................................................................................... 183 

3.4.4  Effects of P2X7 Agonists on Survival and Apoptosis of MC3T3-E1 
Cells ....................................................................................................... 186 

3.4.5  Role of Glucose Metabolism in Generating Sustained Nucleotide-
induced Proton Efflux............................................................................ 194 



xii 

 

3.4.6  Dependence of Nucleotide-induced Proton Efflux on Ca2+ ...................... 199 

3.4.7  Dependence of Nucleotide-induced Proton Efflux on PI3K Signaling .... 204 

3.5  Discussion .......................................................................................................... 211 

3.5.1  BzATP Elicits Membrane Blebbing in Osteoblast-like Cells Expressing 
the P2X7 Receptor ................................................................................ 211 

3.5.2  P2X7 Receptors Stimulate Sustained Proton Efflux ................................. 214 

3.5.3  Dependence of P2X7-induced Proton Efflux on Ca2+ .............................. 216 

3.5.4  Role of PI3K in Mediating P2X7-induced Proton Efflux ......................... 218 

3.5.5  Potential Physiological Roles of P2X7-induced Ca2+ Elevation, PI3K 
Signaling and Proton Efflux in Osteoblast Regulation and Function.... 220 

3.6  References .......................................................................................................... 221 
 

CHAPTER FOUR—P2X7 NUCLEOTIDE RECEPTOR SIGNALING 
POTENTIATES THE WNT/β-CATENIN PATHWAY IN OSTEOBLASTS ........ 227 

4.1  Chapter Summary ............................................................................................... 228 

4.2  Introduction ........................................................................................................ 229 

4.3  Materials and Methods ....................................................................................... 233 

4.3.1  Materials and Solutions ............................................................................. 233 

4.3.2  Animals and Cell Culture .......................................................................... 235 

4.3.3  Immunofluorescence Localization of β-catenin ........................................ 236 

4.3.4  Luciferase Reporter Assay for β-catenin Transcriptional Activity ........... 236 

4.3.5  Western Blot Analysis of GSK3α/β Phosphorylation ............................... 237 

4.3.6  Statistical Analyses ................................................................................... 239 

4.4  Results ................................................................................................................ 240 

4.4.1  Effect of the P2X7 Agonist BzATP on Wnt-induced β-catenin Nuclear 
Localization ........................................................................................... 240 

4.4.2  Effect of BzATP on Wnt-induced β-catenin Transcriptional Activity ..... 243 

4.4.3  P2X7 is Essential for Mediating Effects of Nucleotides on Wnt-  
induced β-catenin Transcriptional Activity ........................................... 243 

4.4.4  Activation of P2X7 Increases Inhibitory Phosphorylation of GSK3α/β ... 253 

4.5  Discussion .......................................................................................................... 258 

4.5.1  P2X7 Potentiates the Wnt/β-catenin Pathway .......................................... 258 

4.5.2  P2X7 Promotes Inhibitory Phosphorylation of GSK3β ............................ 263 



xiii 

 

4.5.3  Potential Physiological Roles of P2X7-induced Potentiation of 
Canonical Wnt Signaling in Osteoblasts ............................................... 264 

4.6  References .......................................................................................................... 266 
 

CHAPTER FIVE—GENERAL DISCUSSION ............................................................. 273 

5.1  Summary and Conclusions ................................................................................. 274 

5.1.1  Role of P2 Receptor Networks in Osteoblasts: Objective, Summary   
and Conclusions..................................................................................... 274 

5.1.2  Regulation of Metabolic Acid Production in Osteoblasts by P2 
Receptors: Objective, Summary and Conclusions ................................ 276 

5.1.3  Cross-talk between P2X7 and Wnt/β-catenin Pathways in Osteoblasts: 
Objective, Summary and Conclusions .................................................. 278 

5.2  Limitations of the Research ................................................................................ 280 

5.3  Contributions of the Research to the Current State of Knowledge .................... 283 

5.4  References .......................................................................................................... 290 
  

APPENDIX A ................................................................................................................. 296 

APPENDIX B ................................................................................................................. 299 

APPENDIX C ................................................................................................................. 301 

APPENDIX D ................................................................................................................. 303 

APPENDIX E ................................................................................................................. 305 
 

CURRICULUM VITAE ................................................................................................. 307 

  

  



xiv 

 

LIST OF FIGURES 

FIGURE              Page 

1.1  Bone Remodeling by Osteoblasts and Osteoclasts .................................................... 12 

1.2  Transcriptional Control of Osteoblast Differentiation ............................................... 20 

1.3  Schematic of the Canonical Wnt/β-catenin Signaling Pathway in           
Osteoblasts ............................................................................................................... 29 

1.4  Schematic of the Ca2+/NFAT Signaling Pathway in Osteoblasts .............................. 34 

1.5  Schematic of the Class I PI3K/AKT Signaling Pathway in Osteoblasts ................... 39 

1.6  Regulation of Cytosolic pH by Transporters in Osteoblasts ...................................... 45 

1.7  Extracellular Nucleotides and P2 Nucleotide Receptors in                     
Mammalian Cell-Types ........................................................................................... 50 

1.8  P2 Nucleotide Receptors in Bone .............................................................................. 56 
 

2.1  P2 Nucleotide Receptor-induced Elevations in Cytosolic Free Ca2+ are  
Dependent on ATP Concentration ......................................................................... 113 

2.2  Vehicle-induced Elevations in [Ca2+]i are Suppressed by ATP ............................... 115 

2.3  Vehicle-induced Elevations in [Ca2+]i are Blocked by a P2 Nucleotide Receptor 
Antagonist .............................................................................................................. 117 

2.4  The Percentage of Cells Exhibiting P2 Nucleotide Receptor-induced Elevations  
in [Ca2+]i is Dependent on ATP Concentration ...................................................... 120 

2.5  The P2X7 Receptor is Required for Sustained Elevations in [Ca2+]i ....................... 122 

2.6  Distinct Sources of Ca2+ Underlie Transient and Sustained Elevations in [Ca2+]i ... 126 

2.7  P2Y2 and/or P2Y4 Mediate Elevations in [Ca2+]i Elicited by ATPlow ...................... 128 

2.8  Live-Cell Confocal Microscopy Reveals that Duration of NFATc1 Nuclear 
Localization is Dependent on ATP Concentration ................................................ 131 

2.9  Duration of NFATc1 Nuclear Localization is Dependent on ATP Concentration .. 133 

2.10  The P2X7 Receptor is Required for Sustained NFATc1 Nuclear Localization .... 136 

2.11  P2 Nucleotide Receptor-induced Changes in NFAT Transcriptional Activity   
are Dependent on ATP Concentration ................................................................... 139 

2.12  P2 Nucleotide Receptor-induced Changes in NFAT Transcriptional Activity   
are Mediated by Ca2+/Calcineurin Signaling ......................................................... 142 

2.13  The P2X7 Receptor is Required for Changes in NFAT Transcriptional Activity 
Elicited by ATPhigh or BzATP................................................................................ 145 

2.14  Proposed Role for P2 Nucleotide Receptor Network in ‘Dose-to-Duration’ 
Encoding of Ca2+/NFATc1 Signaling .................................................................... 148 



xv 

 

3.1  The P2X7 Agonist BzATP Induces Membrane Blebbing in MC3T3-E1 
Osteoblast-like, but not UMR-106 Osteosarcoma Cells ........................................ 176 

3.2  BzATP Causes a Sustained Increase in Proton Efflux from MC3T3-E1 Cells  ...... 179 

3.3  Increases in Proton Efflux are Dependent on BzATP Concentration ...................... 182 

3.4  P2X7 Receptor Agonists alone Induce Sustained Increases in Proton Efflux ......... 185 

3.5  BzATP Induces an Increase in Proton Efflux from MC3T3-E1 but not          
UMR-106 Cells ...................................................................................................... 188 

3.6  Blockade of P2X7 Receptors Suppresses the Increase in Proton Efflux Induced  
by BzATP ............................................................................................................... 190 

3.7  P2X7 Agonists do not Induce Death of MC3T3-E1 Cells ....................................... 193 

3.8  Sustained Increase in Proton Efflux Induced by BzATP is Dependent on 
Extracellular Glucose ............................................................................................. 196 

3.9  BzATP Increases Lactate Production by MC3T3-E1 Cells ..................................... 198 

3.10  Patterns of [Ca2+]i Elevations Elicited by P2 Receptor Agonists........................... 201 

3.11  Initiation of the BzATP-induced Increase in Proton Efflux is Dependent on 
Extracellular Ca2+ ................................................................................................... 203 

3.12  The Irreversible PI3K Inhibitor Wortmannin Inhibits the Sustained Increase in 
Proton Efflux Induced by  BzATP ......................................................................... 206 

3.13  The Reversible PI3K Inhibitor LY 294002 Inhibits Maintenance of the 
Sustained Increase in Proton Efflux Induced by BzATP ....................................... 209 

3.14  Proposed Role for P2X7 Receptor Signaling in Regulation of the PI3K/AKT 
Pathway and Cellular Metabolism ......................................................................... 213 

 

4.1  The P2X7 Agonist BzATP Potentiates β-catenin Nuclear Localization Elicited  
by Canonical Wnt3a ............................................................................................... 242 

4.2  BzATP Potentiates β-catenin Transcriptional Activity Elicited by Wnt3a ............. 245 

4.3  P2X7 Receptor Agonists Potentiate β-catenin Transcriptional Activity Elicited  
by Wnt3a ................................................................................................................ 248 

4.4  P2X7 Receptor Antagonists Block the Effects of BzATP on Wnt3a-induced       
β-catenin Transcriptional Activity ......................................................................... 250 

4.5  Functional P2X7 Receptors are Required for Complete Activation of Wnt3a-
induced β-catenin Transcriptional Activity ........................................................... 252 

4.6  BzATP Induces Inhibitory Phosphorylation of GSK3α/β ....................................... 255 

4.7  A P2X7 Antagonist Blocks BzATP-induced Inhibitory Phosphorylation of 
GSK3α/β ................................................................................................................ 257 

4.8  Possible Mechanism for Cross-talk between P2X7 Nucleotide Receptor and 
Canonical Wnt Signaling Pathways in Cells of the Osteoblast Lineage ............... 260 



xvi 

 

LIST OF APPENDICES 

APPENDIX              Page 

A.  Supplementary Video Legends ................................................................................. 297 

B.  Permission for Reproduction from Springer Science + Business Media .................. 300 

C.  Permission for Reproduction from The Company of Biologists ............................... 302 

D.  Permission for Reproduction from The American Physiological Society ................ 304 

E.  Ethics Approval of Animal Use................................................................................. 306 



xvii 

 

LIST OF ABBREVIATIONS 

[Ca2+]i  cytosolic free Ca2+ concentration 

1,25(ΟΗ2)D3 1,25 dihydroxyvitamin D3 

α-MEM α-minimum essential medium 

A 438079 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine hydrochloride 

A 740003 N-[1-[[(cyanoamino)(5-quinolinylamino)methylene]amino]-2,2-dimethylpropyl]-           

    3,4 dimethoxybenzene-acetamide 

ADP  adenosine 5’-diphosphate 

ALP  alkaline phosphatase 

AMP  adenosine 5’-monophosphate 

ANOVA  analysis of variance 

AP-1  activator protein 1 

APC  adenomatous polyposis coli 

ATF4  activating transcription factor 4 

ATP  adenosine 5’-triphosphate 

BMD  bone mineral density 

BMP  bone morphogenetic protein 

BMU  basic multicellular unit 

BSP  bone sialoprotein 

BzATP  2’,3’-O-(4-benzoylbenzoyl)ATP 

C/EBP  CCAAT/enhancer binding protein 

CaMKII calmodulin-dependent protein kinase II 

cAMP  adenosine 3’,5’-cyclic monophosphate 

CCL8  monocyte chemoattractant chemokine (C-C motif) ligand 8 

CIHR  Canadian Institutes of Health Research 

CK1  casein kinase 1 

COL1  collagen type I 

COX-2  cyclooxygenase-2 

CTGF  connective tissue growth factor 

DAPI  4,6-diamidino-2-phenylindole 



xviii 

 

DKK1  dickopff 1 

DMEM  Dulbecco’s Modified Eagle Medium 

DMSO  dimethyl sulfoxide 

Dvl  dishevelled 

E-5’-NT ecto-5’-nucleotidase 

E-NPP  ecto-nucleotide pyrophosphatase/phosphodiesterase 

E-NTPDase ecto-nucleoside 5’-triphosphate diphosphohydrolases 

EGFP  enhanced green fluorescent protein 

EGR  early growth response protein 

EGTA  ethylene glycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid  

ERK  extracellular signal-regulated kinase 

FBS  fetal bovine serum 

FC  average fluorescence intensity in the cytosol 

FGF  fibroblast growth factor 

FN  average fluorescence intensity in the nucleus 

Foxp3  forkhead box protein 3 

Fzd  frizzled receptors 

GATA  GATA-binding protein 

GSK3β  glycogen synthase kinase 3β 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

IGF  insulin-like growth factor 

IHH  Indian hedgehog 

IL  interleukin 

IP3  inositol 1,4,5-trisphosphate 

JNK  c-jun NH2-terminal protein kinase 

LPA  lysophosphatidic acid 

LRP  lipoprotein receptor-related protein 

LY 294002 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one 

M-CSF  macrophage colony stimulating factor 

MAPK  mitogen-activated protein kinase 

MCT  monocarboxylate transporter 



xix 

 

MEF-2  myocyte enhancer factor-2 

mTORC mammalian target of rapamycin complex 

NF-κB  nuclear factor-κB 

NFATc1-4 nuclear factor of activated T-cells, cytoplasmic 1-4 

NHE  Na+/H+ exchanger 

OCN  osteocalcin 

OGR  ovarian cancer G protein-coupled receptor 

OPG  osteoprotegerin 

OPN  osteopontin 

OSX  osterix 

PBS  phosphate-buffered saline 

PDGF  platelet-derived growth factor 

PGE2  prostaglandin E2 

pHi  cytosolic pH 

pHo  extracellular pH 

Pi  inorganic phosphate 

PI3K  phosphatidylinositol 3-kinase 

PIP2  phosphatidylinositol-4,5-bisphosphate 

PIP3  phosphatidylinositol-3,4,5-trisphosphate 

PKA  protein kinase A 

PKC  protein kinase C 

PLA2  phospholipase A2 

PLC  phospholipase C 

PLD  phospholipase D 

PPi  pyrophosphate 

PTEN  phosphatase and tensin homolog 

PTH  parathyroid hormone 

RANK  receptor activator of nuclear factor κB 

ROCK  Rho-associated protein kinase 

RT-PCR reverse transcription-polymerase chain reaction 

RUNX2 runt-related transcription factor 2 



xx 

 

SEM  standard error of the mean 

SOST  sclerostin 

SOX9  sex-determining region Y (SRY)-box 9  

TGFβ  transforming growth factor β 

TNAP  tissue non-specific alkaline phosphatase 

TRAP  tartrate-resistant acid phosphatase 

TUNEL terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling 

UDP  uridine 5’-diphosphate 

UTP  uridine 5’-triphosphate 

VEGF  vascular endothelial growth factor 



1 
 

 

 

 

 

 

 

CHAPTER ONE 

 

 
INTRODUCTION1 

                                                 
1 Certain sections of this Chapter has been reproduced with permission from: 

Grol, M.W., N. Panupinthu, J. Korcok, S. M. Sims, and S.J. Dixon. 2009. Expression, 
signaling, and function of P2X7 receptors in bone. Purinergic Signal. 5(2):205-221, with 
some modifications. 



2 
 
1.1  Chapter Summary 

   Bone consists of a mineralized extracellular matrix, composed largely of 

collagen type I and hydroxyapatite, and three major cell-types: the bone-resorbing 

osteoclast, the bone-forming osteoblast and the mechanosensitive osteocyte (terminally 

differentiated osteoblast). The structural integrity and functionality of bone are 

maintained throughout life by remodeling, a process that involves the coordinated 

resorption of old or damaged bone and its replacement with newly mineralized bone 

matrix. Osteoblast proliferation, differentiation, and function are regulated by the actions 

of key transcription factors including RUNX2, OSX and ATF4. Various autocrine, 

paracrine and endocrine mediators in turn modulate the activity of these and other 

transcription factors to control bone formation. Mechanical loading is an important 

anabolic stimulus in the vertebrate skeleton. In this regard, nucleotides such as ATP are 

released from osteoblast lineage cells in response to mechanical stimulation and signal 

through two families of cell surface P2 nucleotide receptors – the P2Y family of G 

protein-coupled receptors and the P2X family of ligand-gated cation channels. Nearly 

every cell-type including osteoblasts expresses multiple P2Y and P2X receptor subtypes, 

though the significance of these networks of P2 receptors is unclear. P2X7 loss-of-

function mice exhibit decreased periosteal bone formation, increased trabecular bone 

resorption and impaired anabolic responses to mechanical loading. Activation of P2X7 

receptors by exogenous nucleotides in vitro couples to production of LPA and PGE2, 

resulting in increased osteoblast differentiation and matrix mineralization. However, the 

underlying signaling events mediating the effects of P2X7 in osteoblasts remain largely 

undefined. In this chapter, the rationale and objectives of the research will be discussed.           
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1.2  Bone Physiology 

1.2.1  Structure, Components and Functions of Bone 

The skeleton is composed anatomically of flat bones, including the skull bones, 

mandible and scapulae, and long bones, such as the humeri, radii, ulnae, femurs, tibiae 

and fibulae (Baron, 2003; Clarke, 2008). Long bones consist of two rounded epiphyses 

separated by a hollow shaft, or diaphysis, with flared, cone-shaped metaphyses between 

them (Baron, 2003; Clarke, 2008). The exterior of both long and flat bones is formed by a 

dense layer of calcified tissue termed cortical (or compact) bone. In the diaphysis of long 

bones, the cortical bone is thick and encloses the hematopoietic bone marrow within the 

medullary cavity. Moving toward the metaphyses and epiphyses, cortical bone becomes 

progressively thinner and the marrow space fills with a honeycomb-like network of thin, 

calcified plates and rods termed trabecular (or cancellous) bone. The spaces between 

trabeculae in both long and flat bones are filled with hematopoietic bone marrow, which 

is continuous with the diaphyseal medullary cavity in long bones (Baron, 2003; Clarke, 

2008). As a result of its organization, bone has two surfaces at which it is in contact with 

soft tissues: an external periosteal surface and an internal endosteal surface. The endosteal 

surface is further subdivided into trabecular, endocortical and intracortical (or Haversian) 

surfaces based on location. These four surfaces serve as sites for bone formation and 

resorption during growth and remodeling.  

 The extracellular matrix of bone consists of mineral and organic material. The 

organic matrix is composed largely of collagen type 1 (COL1) (Baron, 2003; Clarke, 

2008). A number of noncollagenous proteins are also present, including osteopontin 

(OPN), bone sialoprotein (BSP) and osteocalcin (OCN), which are thought to regulate 
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bone cell activity and the process of mineralization. The mineral content of bone is 

mostly hydroxyapatite [Ca10(PO4)6(OH)2], with trace amounts of carbonate, magnesium, 

and acid phosphate. Following remodeling, collagen fibers are arranged in parallel layers 

at right angles to one another resulting in a lamellar structure. Spindle- or plate-shaped 

crystals of hydroxyapatite then form on and between collagen fibers in the same general 

orientation (Baron, 2003; Clarke, 2008). This organization of the collagenous matrix 

together with the mineral component provides the resistance of bone to mechanical strain. 

In some instances, when bone is formed rapidly, as observed during development and 

fracture healing, collagen fibers are first deposited loosely in randomly oriented bundles 

(termed woven bone) before subsequently being remodeled into lamellar bone.      

In addition to its matrix, bone is composed of three major cell-types responsible 

for regulation of its synthesis and remodeling: the bone-forming osteoblast, the 

mechanosensitive osteocyte (terminally differentiated osteoblasts embedded within the 

bone matrix), and the bone-resorbing osteoclast (Baron, 2003; Clarke, 2008). Cells of the 

osteoblast lineage develop from mesenchymal progenitor cells that also give rise to other 

cell-types including chondrocytes, adipocytes, and fibroblasts (Minguell et al., 2001; 

Harada and Rodan, 2003). In contrast, osteoclasts form by the fusion of mononucleated 

precursors of the monocyte/macrophage lineage derived from hematopoietic origins 

(Boyle et al., 2003; Teitelbaum and Ross, 2003; Novack and Teitelbaum, 2008). The 

major function of mature osteoblasts is to synthesize and secrete osteoid, the organic 

phase of the bone matrix, and regulate its mineralization (Baron, 2003; Clarke, 2008). 

Ultrastructurally, osteoblasts exhibit a cuboidal morphology and are characterized by the 

presence of a well-developed rough endoplasmic reticulum and a large Golgi apparatus – 
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two structures that are essential for extensive matrix protein synthesis. Osteoblasts also 

exhibit numerous processes on their secreting (or apical) side that extend deep into the 

osteoid matrix forming contacts with osteocytes (Dudley and Spiro, 1961; Baron, 2003). 

As mature osteoblasts secrete osteoid, a subset becomes embedded within the 

bone matrix and terminally differentiates to form osteocytes. The remaining osteoblasts 

either undergo apoptosis or become quiescent bone lining cells (Bonewald, 2011). 

Transition from osteoblasts to osteocytes leads to reductions in cytoplasmic volume and 

in the size of the rough endoplasmic reticulum and Golgi apparatus; changes that reflect 

an overall decrease in protein synthesis and secretion. In addition to these morphological 

changes, older osteocytes, embedded deeper within the mineralized bone, exhibit 

glycogen accumulations within the cytoplasm (Baron, 2003). During their maturation, 

osteocytes develop extensive cell processes housed within canaliculi in calcified bone. 

These processes metabolically and electrically link osteocytes, through gap junctions 

(composed primarily of connexin 43), to other osteocytes, bone lining cells, and mature 

osteoblasts. In fact, it is thought that mechanotransduction, the process through which 

mechanical stimuli are translated into cellular responses, is mediated primarily by this 

syncytial network of osteocytes in bone (Bonewald, 2011).  

Mononucleated precursors of the monocyte/macrophage lineage proliferate and 

fuse to form mature, multinucleated osteoclasts at the bone surface (Novack and 

Teitelbaum, 2008).  In contrast to the osteoblast, the major function of the osteoclast is 

bone resorption. At the ultrastructural level, osteoclasts are characterized by the presence 

of approximately 4-20 nuclei, abundant mitochondria, an extensive Golgi apparatus, and 

numerous vesicles filled with lysosomal enzymes and vacuoles containing acid 



6 
 
phosphatase. However, the most prominent feature of an actively resorbing osteoclast is 

its ruffled border – a region consisting of deep plasma membrane folds in contact with the 

bone matrix (Baron, 2003). To resorb mineralized bone, active osteoclasts create an 

acidic microenvironment to dissolve bone mineral, while secreting various proteases and 

other hydrolases to degrade the organic matrix (Novack and Teitelbaum, 2008).  

Throughout life, bones of the skeleton impart mechanical stability for body 

posture, provide protection to vital organs, and serve as sites for muscle attachments to 

permit locomotion. Moreover, bone provides an environment for hematopoiesis and is a 

major repository for Ca2+ and inorganic phosphate (Pi), thus contributing to systemic ion 

homeostasis (Baron, 2003; Clarke, 2008). To maintain its mass and functionality 

throughout life, bone undergoes remodeling, a dynamic process that involves its 

coordinated resorption and formation (see below). In adults under physiological 

conditions, resorption and formation are tightly coupled, and perturbations to this balance 

cause bone loss in metabolic diseases such as osteoporosis and inflammatory diseases 

including rheumatoid arthritis and periodontitis (Novack and Teitelbaum, 2008).  

 

1.2.2 Skeletal Development 

The vertebrate skeleton is produced by cells from three distinct embryonic 

lineages. The craniofacial bones are derived from neural crest cells, whereas axial and 

appendicular bones arise from cells of the paraxial mesoderm (somites) and lateral plate 

mesoderm, respectively (Olsen et al., 2000). During embryonic development, cells of 

these lineages migrate to sites of future skeletal elements, adhere and proliferate to form 

highly cellular mesenchymal condensations, and undergo differentiation (Hall and 
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Miyake, 2000). Bone formation within these mesenchymal condensations occurs by one 

of two distinct processes: intramembranous ossification (flat bones) and endochondral 

ossification (long bones).  

 Intramembranous ossification – Mesenchymal condensations, which form in 

highly vascularized areas of the embryonic connective tissue, predetermine the site, size, 

and shape of future skeletal elements (Hall and Miyake, 2000). During intramembranous 

ossification, mesenchymal progenitor cells within these condensations proliferate and 

differentiate directly into osteoblasts, forming ossification centres (Karaplis, 2002; Baron, 

2003). The osteoblasts within these centres produce osteoid consisting of irregular 

collagen fibre bundles interspersed between embryonic blood vessels. The resulting 

calcification of this matrix is delayed and disorganized, resulting in irregular 

mineralization that leads to the formation of woven bone. At the external face of woven 

bone, vascularized mesenchyme condenses to form the periosteum, and thickening of 

trabeculae deep to the periosteal surface leads to formation of the woven bone collar; a 

structure that is later replaced by mature lamellar bone (or cortical bone) through 

remodeling. The spongy (or trabecular) bone that persists internally is also remodeled into 

lamellar bone, and the embryonic vascular tissue between trabeculae becomes the 

hematopoietic bone marrow (Karaplis, 2002; Baron, 2003). 

 Endochondral ossification – The process by which a cartilage template (or 

cartilage anlagen) is deposited and subsequently replaced by bone is termed endochondral 

ossification (Karaplis, 2002; Baron, 2003; Kronenberg, 2003). In the vertebrate embryo, 

mesoderm-derived mesenchymal progenitor cells form condensations as described above 

(Hall and Miyake, 2000). However, unlike intramembranous ossification, cells at the 
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centre of these mesenchymal condensations undergo chondrocyte differentiation 

(Karaplis, 2002; Baron, 2003; Kronenberg, 2003). Chondrocytes emerge and secrete a 

cartilaginous extracellular matrix rich in collagen type II and the proteoglycan aggrecan, 

leading to formation of the cartilage anlagen. Mesenchymal cells surrounding the anlagen 

form a perichondrium, which consists of an outer fibrous layer and an inner chondrogenic 

layer.  

Chondrocyte proliferation and matrix production contribute to enlargement of the 

cartilage anlagen. Division of chondrocytes within the cartilage anlagen drives interstitial 

(or longitudinal) growth, whereas appositional growth of the template is accomplished by 

perichondrial cells (Karaplis, 2002). Eventually, mature chondrocytes at the centre of the 

template become postmitotic and undergo hypertrophy. These hypertrophic (or enlarged) 

chondrocytes secrete a matrix rich in collagen type X and direct its calcification 

(Karaplis, 2002; Baron, 2003; Kronenberg, 2003). Hypertrophic chondrocytes also 

stimulate adjacent perichondrial cells to become osteoblasts, leading to the formation of a 

woven bone collar (future cortical bone), which encompasses the future mid-shaft (or 

diaphysis) (Kronenberg, 2003). Following mineralization of the bone collar, and in 

response to proangiogenic factors, such as vascular endothelial growth factor (VEGF), 

produced by hypertrophic chondrocytes, blood vessels invade the cartilage template. At 

the same time, hypertrophic chondrocytes undergo apoptosis, leaving behind an acellular 

scaffold to guide bone formation (Karaplis, 2002; Baron, 2003; Kronenberg, 2003).  

Vascular invasion of the cartilage anlagen brings the blood supply that will form 

the future hematopoietic bone marrow. Moreover, the invading blood vessels provide a 

source of osteoblast progenitors for bone formation (Baron, 2003). Following resorption 
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of the calcified cartilage matrix by osteoclasts, osteoblasts differentiate and form a layer 

of woven bone guided by cartilaginous remnants (Karaplis, 2002; Baron, 2003). The 

resulting bony trabeculae are referred to as the primary spongiosa. During a second cycle 

of bone remodeling, this woven bone, as well as remnants of the cartilage matrix, are 

replaced by lamellar bone resulting in formation of mature trabecular bone called 

secondary spongiosa (Baron, 2003).  

The growth plate is established shortly after formation of the primary ossification 

centre within the future diaphysis. Longitudinal bone growth during embryonic 

development and postnatally is driven by the growth plate, which provides a continuous 

source of cartilaginous matrix for conversion to bone (Karaplis, 2002). Chondrocytes 

within the growth plate are arranged into serial columns of resting, proliferating, 

prehypertrophic and hypertrophic chondrocytes (Stevens and Williams, 1999). In early 

childhood, secondary centres of ossification form within the cartilaginous epiphyses by a 

similar mechanism described above for the primary ossification centre. Cartilage is 

retained at the joint surface (articular cartilage) and at the growth plate, which extends the 

full width of the bone (within the metaphysis) separating the epiphysis and diaphysis on 

either end (Karaplis, 2002).   

 

1.2.3 Bone Remodeling 

Bone remodeling occurs asynchronously at millions of sites throughout the 

skeleton, regulated by autocrine, paracrine, and endocrine mediators as well as 

mechanical stimuli (Harada and Rodan, 2003). This process provides a mechanism for 

preventative maintenance of the skeleton and the targeted replacement of fatigued or 
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damaged bone. In addition, it allows prompt access to mineral stores in response to 

reduced serum Ca2+ and Pi levels (Parfitt, 1994). Bone remodeling is accomplished by the 

sequential actions of osteoclasts and osteoblasts, which form a transient structure at 

localized sites within the skeleton, termed the basic multicellular unit (BMU) (Frost, 

1986). At intracortical surfaces, the BMU appears as a tunnel-shaped cavity consisting of 

osteoclasts at its leading edge and a trailing closing cone lined by osteoblasts, with 

connective tissue, blood vessels and nerves localized to its centre (the site of the future 

Haversian canal). In contrast, BMUs at trabecular and endocortical surfaces form trenches 

resulting in the replacement of packet-like regions of bone matrix (Parfitt, 1994). At all 

sites, bone remodeling involves the same four distinct phases: activation, resorption, 

reversal, and formation (Parfitt, 1994; Mundy et al., 2003; Sims and Gooi, 2008) (Figure 

1.1).       

Activation Phase – Localized damage to the bone matrix provides signals 

necessary to initiate remodeling, resulting in recruitment of osteoclast precursors to the 

bone surface (Parfitt, 1994; Sims and Gooi, 2008). Cells of the osteoblast lineage promote 

osteoclast precursor recruitment and differentiation through expression of two key 

signaling molecules: macrophage colony stimulating factor (M-CSF) and receptor 

activator of nuclear factor κB ligand (RANKL) (Boyle et al., 2003; Teitelbaum and Ross, 

2003). On the other hand, osteoprotegerin (OPG), a soluble decoy receptor also secreted 

by osteoblast lineage cells, can bind RANKL, thereby limiting signaling through receptor 

activator of nuclear factor κB (RANK), the receptor for RANKL, and inhibiting 

osteoclast formation and function.   

The osteocyte is a key sensor for microdamage within the skeleton 
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Figure 1.1 Bone Remodeling by Osteoblasts and Osteoclasts.  

The structural integrity and functionality of the skeleton is maintained throughout 

life by bone remodeling; a process that involves the removal of old bone by osteoclasts 

and its replacement by osteoblasts. Bone remodeling at any one site within the skeleton 

takes up to four months and occurs in four phases: activation, resorption, reversal and 

formation. In response to localized damage to the bone matrix or the actions of systemic 

hormones, factors are released from osteoblast lineage cells resulting in recruitment of 

monocyte/macrophage precursors to the bone surface. Differentiation of these precursors 

leads to formation of a mature osteoclast characterized by its attachment to the bone 

surface (mediated by integrins such as αvβ3) and formation of a specialized apical 

membrane structure termed the ruffled border. Transport of protons and secretion of 

hydrolytic enzymes across the ruffled-border membrane causes dissolution of bone 

mineral and degradation of the organic matrix. The activation and resorption phases take 

~3 weeks to complete, and end with death of the osteoclast by apoptosis. During reversal, 

factors released either from the bone matrix or directly by the osteoclast lead to 

recruitment and proliferation of mesenchymal progenitor cells at the site of resorbed 

bone. These mesenchymal precursors then differentiate to form osteoblasts. Over the next 

3 months, osteoblasts form bone through secretion of an organic matrix composed 

primarily of collagen type 1 (COL1), termed osteoid, and regulate its subsequent 

mineralization. During this process, a number of osteoblasts become embedded within the 

matrix and terminally differentiate into osteocytes, the most abundant cell-type in bone. 
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(Sims and Gooi, 2008; O'Brien et al., 2013). Studies have demonstrated that increased 

bone remodeling at sites of microdamage is preceded by osteocyte apoptosis (Verborgt et 

al., 2002; Noble et al., 2003; Mann et al., 2006; Cardoso et al., 2009). Deletion of 

osteocytes in vivo causes increased RANKL expression that is associated with increases 

in bone resorption (Tatsumi et al., 2007). In contrast, loss of RANKL specifically in 

osteocytes leads to increased cancellous bone mass associated with decreases in 

osteoclast numbers and resorption markers (Xiong et al., 2011). In this same study, 

osteocyte-specific deletion of RANKL was shown to protect against bone loss caused by 

skeletal unloading. Anatomically, osteocyte apoptosis appears to localize to areas of 

fatigue damage, whereas expression of factors that promote bone remodeling, including 

RANKL and VEGF, are elevated in osteocytes surrounding these apoptotic cells 

(Kennedy et al., 2012). In addition to mechanical stimuli, many local and systemic 

factors, including prostaglandin E2 (PGE2), interleukins (ILs), parathyroid hormone 

(PTH), 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), and corticosteroids, mediate their 

effects on osteoclast differentiation and activity by signaling through osteoblasts, bone 

lining cells and/or osteocytes to modulate expression of RANKL and OPG (Martin, 

2004).  

 In the early stages of osteoclast differentiation, M-CSF acts on its receptor c-Fms 

to stimulate proliferation and expression of RANK in cells of the monocyte/macrophage 

lineage. Through its interactions with RANK, RANKL, in concert with M-CSF, drives 

overt osteoclastogenesis in precursor cells resulting in formation of mature, 

multinucleated osteoclasts at the bone surface (Boyle et al., 2003; Teitelbaum and Ross, 

2003). In addition to their unique morphology, mature osteoclasts are characterized by 
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expression of a variety of genes, including tartrate-resistant acid phosphatase (TRAP), 

cathepsin K, calcitonin receptor and β3-integrin (Lacey et al., 1998). Rank-/- and Rankl-/- 

mice exhibit severe osteopetrosis (increased bone mass) due to a complete lack of mature 

osteoclasts and osteoclast-mediated bone resorption (Dougall et al., 1999; Kong et al., 

1999; Li et al., 2000). Similarly, op/op mice, which possess an inactivating mutation in 

the gene encoding M-CSF, present with a high bone mass phenotype at birth (Begg et al., 

1993). However, bone mass progressively normalizes to control levels as op/op mice age 

concomitant with the delayed appearance of TRAP-positive osteoclasts. Taken together, 

these data demonstrate that while RANKL-RANK signaling is absolutely required for 

osteoclast differentiation in vivo, other factors, such as VEGF, may be able to substitute 

for M-CSF to promote osteoclastogenesis (Niida et al., 1999).    

 In both precursors and mature osteoclasts, binding of RANKL to RANK activates 

multiple signaling pathways, including mitogen-activated protein kinases (MAPKs), 

phosphatidylinositol 3-kinase (PI3K), and Ca2+/calcineurin. In turn, these pathways 

activate several transcription factors such as activator protein-1 (AP-1) family members 

(e.g., c-fos), nuclear factor-κB (NF-κB), and nuclear factor of activated T cells, 

cytoplasmic 1-4 (NFATc1-4) (Boyle et al., 2003; Teitelbaum and Ross, 2003). Of these, 

NFATc1 is believed to be one of the master transcriptional regulators of osteoclast 

differentiation downstream of RANKL signaling. Nfatc1-/- embryonic stem cells fail to 

form osteoclasts in response to RANKL, and ectopic NFATc1 expression in precursor 

cells is sufficient to drive osteoclastogenesis in the absence of RANKL stimulation 

(Takayanagi et al., 2002). Impaired osteoclast differentiation and NFATc1 expression is 

also observed following inhibition of calcineurin in vitro (Ishida et al., 2002). In addition 
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to NFATc1, c-fos and NF-κB have been shown to play critical roles at various stages of 

osteoclastogenesis (Grigoriadis et al., 1994; Iotsova et al., 1997). 

 Resorption Phase – Bone resorption begins with attachment of mature, 

multinucleated osteoclasts to the bone surface (Parfitt, 1994; Sims and Gooi, 2008). 

Osteoclast attachment to the extracellular matrix is mediated by a family of heterodimeric 

transmembrane receptors called integrins. At least four integrin receptors are expressed 

by mature osteoclasts: the classical vitronectin receptor αvβ3 (predominant integrin 

receptor in osteoclasts); the collagen receptors αvβ5 and α2β1; and αvβ1, which bind a 

variety of extracellular matrix proteins through an Arg-Gly-Asp (RGD) motif, including 

vitronectin, collagen, OPN and BSP (Nesbitt et al., 1993). In addition to vitronectin, αvβ3 

also interacts with other RGD-containing bone matrix proteins such as OPN (Miyauchi et 

al., 1991). The importance of integrin receptor signaling in osteoclast biology is 

emphasized by the ability of αvβ3 antibodies, RGD mimetics, and RGD peptides to inhibit 

bone resorption in vitro (Sato et al., 1990; Horton et al., 1991; Lakkakorpi et al., 1991) 

and in vivo (Fisher et al., 1993). Moreover, deletion of the gene encoding β3 integrin in 

mice leads to an osteosclerotic phenotype (increased bone mass) resulting from deficits in 

osteoclast-mediated bone resorption and spreading (McHugh et al., 2000). Integrin-

mediated attachment of the osteoclast to the bone surface results in its polarized 

morphology, consisting of a ruffled border at the osteoclast-bone interface, surrounded by 

an annular sealing zone – a ring of actin localized within podosomes at the site of 

osteoclast adhesion (Baron, 2003; Novack and Teitelbaum, 2008). The primary function 

of the sealing zone is to isolate the resorption site and restrict lacunar acid leakage.  

 During bone resorption, vacuolar H+-ATPases within the ruffled-border 
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membrane of the osteoclast acidify an extracellular compartment termed the resorption 

lacuna, leading to dissolution of bone mineral and exposure of the organic matrix (Baron, 

2003; Novack and Teitelbaum, 2008). Bicarbonate, which is generated during this 

process, leaves the cell in exchange for chloride at the basolateral membrane. To maintain 

electroneutrality within the resorbing osteoclast, chloride channels, localized within the 

ruffled-border membrane, permit passive movement of chloride into the resorption 

compartment. Next, collagenous and non-collagenous matrix proteins exposed by the 

process of demineralization are degraded by a variety of hydrolytic enzymes, such as 

cathepsin K, matrix metalloproteinase 9 and TRAP, released from the osteoclast by 

exocytosis (Baron, 2003; Novack and Teitelbaum, 2008). Fragments of these matrix 

proteins are then endocytosed and released from the cell at its basolateral membrane. The 

importance of osteoclast-mediated resorption during bone remodeling is highlighted by 

the osteopetrotic phenotypes observed in mice and humans carrying loss-of-function 

mutations in various osteoclast channel proteins and enzymes, such as the ClC-7 chloride 

exchanger and cathepsin K, associated with lacunar acidification and protein digestion 

(Gelb et al., 1996; Kornak et al., 2001). 

Reversal Phase – Following osteoclast-mediated bone resorption, mononuclear 

cells of unknown lineage modify the resorbed surface in preparation for bone formation, 

and deposit a substance referred to as the cement (or reversal) line (Parfitt, 1994; Baron, 

2003). The cement line is a thin, mineral-deficient, sulfur-rich layer of matrix that 

separates new bone from the old bone matrix (Schaffler et al., 1987).  

The coupling signals that direct bone formation to sites of bone resorption remain 

unclear. Older theories postulated that proteins present within the cement line, such as 



17 
 
OPN, could serve as signals to initiate bone formation (McKee and Nanci, 1996). Others 

suggest that growth factors, including insulin-like growth factors (IGFs), transforming 

growth factor β (TGFβ), and bone morphogenetic proteins (BMPs), are released from 

bone matrix during the resorption phase, and function to recruit osteoblast precursors to 

resorbed surfaces and promote osteoblastogenesis (Mundy et al., 2003; Sims and Gooi, 

2008). More recently, a number of studies have demonstrated that osteoclasts can serve as 

a direct source of both soluble and membrane-bound factors that stimulate osteoblast 

proliferation and differentiation (Zhao et al., 2006; Pederson et al., 2008; Walker et al., 

2008), findings that implicate the osteoclast itself in the coupling of bone resorption to 

formation. 

Bone Formation Phase – The formation phase of the remodeling cycle begins 

when cells of osteoblast lineage, recruited to the resorbed surface following the reversal 

phase, proliferate and differentiate into mature osteoblasts (regulation of osteoblast 

differentiation is described below) (Parfitt, 1994; Sims and Gooi, 2008). Following 

secretion and subsequent mineralization of the osteoid, some osteoblasts die by apoptosis 

or become quiescent and line the inactive bone surface (bone lining cells). Still other 

osteoblasts, which were embedded within the bone matrix during its formation, terminally 

differentiate into osteocytes (Baron, 2003; Clarke, 2008; Sims and Gooi, 2008; 

Bonewald, 2011).  
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1.3  Osteoblast Biology 

1.3.1 Master Transcription Factors and Transcriptional Coactivators Regulating 

Osteoblast Differentiation and Function 

 As the cells responsible for bone formation and regulation of osteoclast 

differentiation and function, osteoblasts are essential for normal skeletal development and 

remodeling. Extensive analyses of human genetic bone disorders and mouse models of 

skeletal disease have revealed a number of key transcription factors as well as 

transcriptional coactivators required for differentiation of osteoblasts from mesenchymal 

progenitors (Figure 1.2). As these factors function only at specific times during 

osteoblastogenesis, their expression defines the various developmental stages within the 

osteoblast lineage.  

 SOX9 – Sex-determining region Y (SRY)-box 9 (SOX9), a transcription factor 

containing a SRY-related high-mobility-group-box DNA binding domain, is expressed in 

all non-hypertrophic chondrocytes including articular chondrocytes (Wright et al., 1995; 

Ng et al., 1997; Zhao et al., 1997; Davies et al., 2002). The importance of SOX9 in 

skeletal biology was first established when an inactivating mutation in the human gene 

was shown to cause campomelic dysplasia, a disease characterized by severe cartilage 

abnormalities (Foster et al., 1994; Wagner et al., 1994). Subsequent studies using a 

variety of animal models provided the conclusive evidence that SOX9 is the key 

transcription factor for chondrocyte differentiation (Bi et al., 1999; Bi et al., 2001; 

Akiyama et al., 2002; Kist et al., 2002). In addition to its role during chondrogenesis, 

SOX9 marks the mesenchymal progenitor cells that give rise to cells of the osteoblast 

lineage (Akiyama et al., 2005). Though the exact function of SOX9 in osteoblast
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Figure 1.2 Transcriptional Control of Osteoblast Differentiation.  

Commitment of mesenchymal progenitor cells to the osteoblast lineage is 

controlled by a number of key transcriptional events during osteoblastogenesis. The 

chondrocyte master transcription factor sex-determining region Y (SRY)-box 9 (SOX9) is 

first upregulated in mesenchymal progenitors that give rise to either chondrocytes or 

osteoblasts. The osteoblast master transcription factor runt-related transcription factor 2 

(RUNX2) is then expressed resulting in formation osteochondroprogenitors. Subsequent 

downregulation of SOX9 gives rise to RUNX2-positive osteoprogenitors. The actions of 

RUNX2 at this stage of osteoblastogenesis result in expression of osteoblast-specific 

genes, including collagen type I (COL1) and alkaline phosphatase (ALP), and the 

upregulation of Osterix (OSX), a second osteoblast master transcription factor. In turn, 

OSX regulates expression of COL1 and bone sialoprotein (BSP) and, together with 

RUNX2, promotes formation of the pre- (or immature) osteoblast. The transcription 

factor ATF-4 accumulates specifically within later stage osteoblasts, and functions 

downstream of, but in concert, with RUNX2 and OSX to activate expression of mature 

osteoblast markers such as osteocalcin (OCN). In addition, ATF-4 post-transcriptionally 

modulates cellular amino acid uptake to control COL1 synthesis. Taken together, the 

actions of ATF-4, OSX, and RUNX2 are necessary to promote acquisition of the mature 

osteoblast phenotype. At the same time, the canonical Wnt transcriptional coactivator β-

catenin is also required at all stages of the osteoblast differentiation cascade. In this 

regard, loss of β-catenin in osteochondroprogenitors, osteoprogenitors or preosteoblasts 

results in chondrogenic differention of these cells. At the terminal stages, mature 

osteoblasts either differentiate to form osteocytes or bone lining cells, or undergo 

apoptosis. Transcriptional regulation is shown in green; posttranscriptional regulation is 

shown in blue. Red asterisks indicate the existence of a disease-causing mutation in 

humans.        
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differentiation is unclear, it is known to be absent from mature osteoblasts (Long, 2012).    

 RUNX2 – Runt-related transcription factor 2 (RUNX2), a member of the Runt 

domain family of transcription factors, is a master regulator of osteoblast differentiation 

(Long, 2012). During limb development, RUNX2 is first expressed in 

osteochondroprogenitors of the chondrogenic mesenchyme following and dependent upon 

SOX9 expression (Akiyama et al., 2005). Subsequent to formation of the cartilage 

anlagen, RUNX2 localizes more specifically to cells of the osteoblast lineage and 

perichondrium (Ducy et al., 1997; Otto et al., 1997). Though RUNX2 expression is 

slowly lost in differentiating chondrocytes (Ducy et al., 1997; Bialek et al., 2004; Hinoi et 

al., 2006a), it is upregulated during hypertrophy where it controls expression of collagen 

type X α1 (Enomoto et al., 2000; Zheng et al., 2003).  

 Studies in mice and humans have demonstrated unequivocally that RUNX2 is 

required for osteoblast differentiation during both endochondral and intramembranous 

ossification. In humans, heterozygous inactivating mutations in the RUNX2 gene cause 

cleidocranial dysplasia, a disease characterized by hypoplastic or absent clavicles, 

delayed closure of the fontanelles, dental abnormalities, and delayed skeletal development 

(Lee et al., 1997; Mundlos et al., 1997; Zhou et al., 1999). Genetically modified mice 

with RUNX2 haploinsufficiency phenotypically copy human patients with cleidocranial 

dysplasia (Lee et al., 1997; Otto et al., 1997); whereas, homozygous deletion of this 

transcription factor results in a cartilaginous skeleton completely devoid of osteoblasts 

(Komori et al., 1997; Otto et al., 1997). Consistent with evidence that human mutations in 

RUNX2 abolish its DNA-binding ability, deletion of the RUNX2 nuclear localization 

signal, located at its COOH-terminus, recapitulates the phenotype of Runx2-/- mice (Choi 
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et al., 2001). Ducy and colleagues further solidified the importance of RUNX2 in 

osteoblast differentiation by demonstrating that its forced expression in nonosteoblastic 

cells could upregulate a variety of osteoblast-specific genes (Ducy et al., 1997). RUNX2 

has since been shown to directly regulate many genes critical to the osteoblast phenotype, 

including COL1, alkaline phosphatase (ALP), OPN, osteonectin, and OCN (Harada et al., 

1999; Kern et al., 2001; Otto et al., 2003; Lian et al., 2004; Schroeder et al., 2005). In 

addition to its roles during embryogenesis, RUNX2 regulates a variety of functions in 

mature osteoblasts, including the synthesis of bone matrix proteins (Ducy et al., 1999).    

 During limb development, RUNX2 expression is regulated by a number of 

important growth factors. Prehypertrophic and early hypertrophic chondrocytes within the 

endochondral cartilage anlagen express Indian hedgehog (IHH), which promotes 

osteoblast differentiation of adjacent perichondrial cells (St-Jacques et al., 1999). 

Perichondrial progenitor cells in Ihh-/- mice fail to express RUNX2 resulting in an 

endochondral skeleton lacking osteoblasts (St-Jacques et al., 1999; Long et al., 2004). At 

the same time, osteoblasts derived via intramembranous ossification still form in IHH-

deficient mice (St-Jacques et al., 1999), indicating that IHH signaling is not required for 

intramembranous osteoblast differentiation. In addition to IHH, BMP-2 has been shown 

to induce Smad-dependent expression of RUNX2 in a mesenchymal progenitor cell line 

(Lee et al., 2000; Lee et al., 2003). Moreover, Smad proteins are known to physically 

interact with RUNX2 to cooperatively regulate osteoblast-specific gene expression 

downstream of BMP signaling (Zhang et al., 2000; Ito and Miyazono, 2003; Miyazono et 

al., 2004). 

 OSX – A transcription factor belonging to the Sp-family of Krüppel-like zinc 
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finger proteins, Osterix (OSX) is essential for osteoblast differentiation and function. 

Homozygous deletion of OSX in mice results in the complete absence of osteoblasts and 

associated bone formation (Nakashima et al., 2002). Though bones formed by 

intramembranous ossification in OSX-deficient mice fail to calcify, endochondral skeletal 

elements do contain some mineralized matrix; however, this matrix resembles calcified 

cartilage as opposed to bone (Nakashima et al., 2002). Given that the skeleton of 

RUNX2-deficient mice is completely nonmineralized (Komori et al., 1997; Otto et al., 

1997), these data suggest that RUNX2 and OSX together regulate osteoblast 

differentiation, whereas RUNX2 alone controls chondrocyte hypertrophy. Detailed 

analyses of Runx2-/- and Osx-/- mice further revealed that while RUNX2 is expressed in 

Osx-/- embryos, expression of OSX is absent in Runx2-/- embryos (Nakashima et al., 

2002). Taken together, these data demonstrate that OSX functions downstream of 

RUNX2 in the control of osteoblastogenesis (Nakashima et al., 2002). In addition to its 

roles during skeletal development, OSX regulates differentiation and function of 

osteoblasts and osteocytes in postnatal life (Zhou et al., 2010). 

 OSX controls the expression of a variety of matrix proteins, such as COL1, BSP, 

and OCN, in cells of the osteoblast lineage (Nakashima et al., 2002). The expression of 

OSX is in turn regulated by a number of transcription factors and signaling pathways (see 

detailed discussion below). Consistent with OSX functioning downstream of RUNX2 

during osteoblastogenesis, RUNX2 directly interacts with the OSX promoter (Nishio et 

al., 2006), and regulation of OSX expression has been shown to be mediated by both 

RUNX2-dependent and -independent mechanisms (Celil and Campbell, 2005; Matsubara 

et al., 2008). BMP-2 also induces expression of OSX during osteoblast differentiation of 
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mesenchymal progenitors in vitro through Smad-dependent and -independent signaling 

(Celil and Campbell, 2005; Celil et al., 2005; Matsubara et al., 2008).  

 ATF4 – Activating transcription factor 4 (ATF4), a member of the basic Leu 

zipper family of transcription factors, is ubiquitously expressed, but selectively 

accumulates in osteoblasts due to lack of proteasomal degradation (Yang and Karsenty, 

2004). In humans, misregulation of ATF4 activity, caused by loss-of-function mutations 

in genes encoding neurofibromatosis 1 and ribosomal S6 kinase 2, is associated with the 

skeletal phenotypes observed in neurofibromatosis type I and Coffin-Lowry syndrome, 

respectively (Yang et al., 2004; Elefteriou et al., 2006). Consistent with these findings, 

Atf4-/- mice exhibit delays in skeletal development and a low bone mass phenotype 

throughout postnatal life (Yang et al., 2004). Molecular markers of differentiated 

osteoblasts, including BSP and OCN, are decreased in ATF4-deficient mice; whereas, 

genes associated with earlier stages, such as RUNX2, OSX and COL1α1, remain 

unchanged (Yang et al., 2004). These data suggest that ATF4 functions downstream of 

RUNX2 and OSX to regulate terminal osteoblast differentiation. In addition to its effects 

on osteoblastogenesis, absence of ATF4 in mice leads to severe impairments in bone 

formation owing to decreased COL1α1 synthesis by mature osteoblasts (Yang et al., 

2004).    

Unlike other transcription factors, ATF4 promotes osteoblast differentiation and 

function through both transcriptional and post-transcriptional mechanisms. ATF4 binds 

the promoters of OCN and RANKL, thereby directly activating transcription of these 

genes (Yang and Karsenty, 2004; Yang et al., 2004; Elefteriou et al., 2005; Elefteriou et 

al., 2006). In addition, ATF4 regulates amino acid import independent of its 
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transcriptional activity to ensure proper synthesis of bone matrix proteins, such as COL1, 

by mature osteoblasts (Yang et al., 2004; Elefteriou et al., 2006). 

β-catenin – Though not specifically expressed in cells of the osteoblast lineage, β-

catenin, the transcriptional coactivator of canonical Wnt signaling (discussed in detail 

below), plays a critical role in the regulation of osteoblast differentiation and bone 

formation during development. Homozygous deletion of β-catenin in mesenchymal 

progenitor cells results in a lack of mineralized bone matrix within both intramembranous 

and endochondral skeletal elements of the murine embryo (Day et al., 2005; Hill et al., 

2005; Hu et al., 2005). Though perichondrial and periosteal cells in these β-catenin-/- mice 

express a number of early osteoblast markers, including ALP, COL1α1 and RUNX2, at 

similar or reduced levels compared to controls, they fail to form mature osteoblasts as 

evidenced by the complete absence of OSX and OCN expression (Hill et al., 2005; Hu et 

al., 2005). Loss of β-catenin in more differentiated osteoblasts (RUNX2+;OSX+) results in 

a similar absence of both OCN-positive osteoblasts and mineralized bone matrix (Rodda 

and McMahon, 2006). The requirement for β-catenin during osteoblastogenesis seems to 

be associated with Wnt signaling, as phenotypic characteristics of mice lacking 

lipoprotein receptor-related protein (LRP) 5 and LRP6 in mesenchymal progenitors 

closely resemble those observed in β-catenin-deficient embryos (Joeng et al., 2011). 

Taken together, these data show that β-catenin functions downstream of RUNX2 but 

upstream of OSX to regulate osteoblast maturation and function at multiple stages of 

differentiation in a Wnt-dependent manner. In this regard, β-catenin directly regulates 

expression of COL1α1 and COL1α2 (Glass et al., 2005), and enhances RUNX2 

expression and transcriptional activity (Gaur et al., 2005). Since RUNX2 can directly 
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regulate transcription of the Osx gene (Celil and Campbell, 2005; Nishio et al., 2006; 

Matsubara et al., 2008), β-catenin may indirectly regulate OSX expression through its 

interactions with RUNX2. Another mechanism by which β-catenin promotes osteoblast 

differentiation is through suppression of other mesenchymal cell fates. In this regard, loss 

of β-catenin in mesenchymal progenitor cells causes ectopic chondrocyte differentiation 

at sites of osteoblastogenesis, such as the perichondrium and periosteum (Day et al., 

2005; Hill et al., 2005). Moreover, Wnt/β-catenin signaling has been reported to promote 

osteoblast differentiation in mesenchymal precursor cells and mouse embryonic 

fibroblasts in part by suppressing expression of key adipogenic transcription factors 

(Kang et al., 2007).  

     

1.3.2 Regulation of Bone Formation 

 Bone formation is regulated during skeletal development and remodeling by a 

number of local and systemic factors including Wnts, BMPs, TGF-β, fibroblast growth 

factors (FGFs), platelet-derived growth factors (PDGFs), PTH, glucocorticoids and 

mechanical loading (Harada and Rodan, 2003; Long, 2012). Each of these stimuli in turn 

activates an array of intracellular signaling pathways that have been implicated in the 

regulation of osteoblast differentiation, survival and function. In this section, signaling 

pathways pertinent to this thesis, including Wnt, Ca2+/NFAT and PI3K/AKT signaling, 

will be discussed. The importance of adenosine 3’,5’-cyclic monophosphate (cAMP)/ 

protein kinase A (PKA) and MAPK signaling in bone formation has been reviewed by 

others (Swarthout et al., 2002; Soltanoff et al., 2009; Marie, 2012; Greenblatt et al., 2013) 

and will not be mentioned below. 
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 Wnt signaling – Canonical and noncanonical signaling mediated by the Wnt 

family of cysteine-rich secreted glycoproteins is essential for the regulation of cell 

proliferation and differentiation during skeletal development and bone remodeling 

(Westendorf et al., 2004; Bodine and Komm, 2006; Hartmann, 2006; Krishnan et al., 

2006; Long, 2012; Baron and Kneissel, 2013). Moreover, canonical Wnt signaling is a 

critical mediator of anabolic responses of the skeleton to mechanical loading (Bonewald 

and Johnson, 2008; Bonewald, 2011; Baron and Kneissel, 2013). 

 Canonical Wnt signaling is initiated when Wnt ligands bind Frizzled receptors 

(Fzd) and their co-receptors low density LRP5 or LRP6 leading to stabilization and 

subsequent accumulation of β-catenin within the cytosol. As a result, β-catenin 

translocates to the nucleus where it activates transcription of Wnt target genes 

(MacDonald et al., 2009) (for more detailed information, see Figure 1.3). Alternatively, 

non-canonical Wnt ligands act through Fzd receptors independent of LRP5/6 and β-

catenin to stimulate signaling pathways involving Ca2+ and Ca2+-sensitive effectors 

(including protein kinase C (PKC), Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) and NFAT), the small GTPases Rho and Rac, Rho-associated protein kinase 

(ROCK) and c-Jun NH2-terminal kinase (JNK) (Veeman et al., 2003; Seifert and 

Mlodzik, 2007; Wang and Nathans, 2007; Angers and Moon, 2009). Though both 

canonical and noncanonical pathways regulate osteoblastogenesis and bone formation in 

mice, known mutations associated with human skeletal disease appear to target canonical 

Wnt signaling alone in postnatal life (Baron and Kneissel, 2013). 

 As opposed to skeletal development, the role of Wnt/β-catenin signaling in 

postnatal bone homeostasis is less clear. In humans, loss-of-function mutations in the
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Figure 1.3 Schematic of the Canonical Wnt/β-catenin Signaling Pathway in 

Osteoblasts.  

In the absence of Wnt, β-catenin is targeted to a multiprotein destruction complex 

within the cytosol consisting of the scaffolding protein axin, the tumor suppressor 

adenomatous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β), and casein 

kinase 1 (CK1). GSK3β and CK1 phosphorylate β-catenin at specific serine/threonine 

residues within its NH2-terminal, resulting in its polyubiquitination and proteasomal 

degradation. Canonical Wnt ligands bind to a dual receptor complex, consisting of the 

Wnt co-receptors low-density lipoprotein receptor-related protein (LRP) 5 or LRP6 and 

one of 10 known seven-pass transmembrane Frizzled receptors (Fzd). Upon activation of 

the receptor complex, the scaffolding protein dishevelled (Dvl) binds Fzd and recruits the 

destruction complex to the plasma membrane. Actions of GSK3β and CK1 at the 

membrane lead to phosphorylation of LRP5/6, which further enhances destruction 

complex recruitment. As a result, the destruction complex is inhibited and 

phosphorylation of β-catenin is suppressed, thereby allowing it to accumulate within the 

cytosol and translocate to the nucleus to activate Wnt target gene expression. 



29 
 
   



30 
 
LRP5 gene cause osteoporosis-pseudoglioma syndrome, an autosomal recessive disease 

of juvenile-onset characterized by low bone mass and increased skeletal fragility (Gong et 

al., 2001). Conversely, gain-of-function mutations in the same gene cause high bone mass 

syndrome by lowering LRP5’s affinity for extracellular Wnt inhibitors, such as dickopff 1 

(DKK1) and sclerostin (SOST) (Boyden et al., 2002; Little et al., 2002; Ai et al., 2005; 

Ellies et al., 2006; Semenov and He, 2006). In addition, a number of polymorphisms in 

the LRP5 gene have been associated with differences in human bone mineral density and 

fracture risk (Urano et al., 2004; Ferrari et al., 2005; Hartikka et al., 2005; Koller et al., 

2005; Kiel et al., 2007). Similar to findings in humans, homozygous deletion of LRP5 in 

mice leads to reduced postnatal bone mass caused by impaired osteoblast proliferation 

and function with little-to-no alteration in osteoclastogenesis and bone resorption (Kato et 

al., 2002). Loss of a single LRP6 allele further exacerbates the phenotype seen in Lrp5-/- 

mice (Holmen et al., 2004), demonstrating that both LRP5 and LRP6 influence postnatal 

bone remodeling. Alternatively, mice overexpressing a human gain-of-function LRP5 

mutation exhibit high bone mass resulting from increased osteoblast activity and reduced 

apoptosis (Babij et al., 2003). As opposed to findings during embryogenesis (described 

above), deletion of β-catenin in more mature osteoblasts (either COL1+ or COL1+;OCN+) 

causes osteopenia of the postnatal skeleton due to decreased osteoblast-mediated OPG 

expression, which results in non-cell-autonomous increases in osteoclast differentiation 

and bone resorption (Glass et al., 2005; Holmen et al., 2005). However, unlike the LRP5-

deficient mouse models, osteoblastogenesis and bone formation are unaffected in these β-

catenin-/- mice (Glass et al., 2005; Holmen et al., 2005).   

Differences in the postnatal phenotypes of LRP5- and β-catenin-deficient mouse 
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models suggest that LRP5/6 may activate other pathways independent of Wnt/β-catenin 

signaling. In this regard, non-canonical Wnt signaling via CaMKII has been shown to 

transcriptionally repress adipogenesis, while inducing RUNX2 expression to promote 

osteoblast differentiation (Takada et al., 2007). Wnt3a and Wnt7b both signal in part via 

PKCδ to stimulate osteoblastogenesis from mesenchymal progenitor cells in vitro (Tu et 

al., 2007). In this regard, PKCδ-/- mice exhibit deficits in bone formation during 

embryogenesis resulting from impaired osteoblast differentiation (Tu et al., 2007). 

Canonical Wnt signaling within osteocytes is essential for the sensing of and 

anabolic responses to mechanical stimuli in bone (Bonewald and Johnson, 2008; 

Bonewald, 2011; Baron and Kneissel, 2013). Mature osteocytes are known to selectively 

secrete SOST (van Bezooijen et al., 2004; Poole et al., 2005), a glycoprotein that 

antagonizes LRP5/6 to inhibit Wnt/β-catenin signaling (MacDonald et al., 2009). In the 

absence of mechanical stimuli, SOST diffuses to the bone surface through the canalicular 

system where it inhibits osteoblast-mediated bone formation (van Bezooijen et al., 2004; 

Poole et al., 2005). In mice, skeletal loading or unloading leads to corresponding 

decreases or increases in SOST expression, respectively (Robling et al., 2008; Tu et al., 

2012b). Elevations in serum SOST levels are also observed in human patients subjected 

to periods of prolonged immobilization (Gaudio et al., 2010). In agreement with these 

findings, genetic deletion of SOST or treatment with a SOST antibody protects against 

bone loss after unloading in mice (Lin et al., 2009; Tian et al., 2011); whereas, forced 

overexpression of SOST in osteocytes reduces load-induced bone formation (Tu et al., 

2012b). Moreover, both whole-body and osteocyte-specific homozygous deletion of 

LRP5 almost completely abolishes the anabolic response of the murine ulna to 
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mechanical loading (Sawakami et al., 2006; Zhao et al., 2013). 

Ca2+/NFAT signaling – In general, stimulation of specific receptors that couple to 

elevations of cytosolic free Ca2+ concentration ([Ca2+]i) result in activation of calcineurin, 

a serine/threonine phosphatase that dephosphorylates NFATc1-4 transcription factors 

within the cytosol leading to their nuclear translocation and transcriptional activation 

(Rao et al., 1997; Hogan et al., 2003; Macian, 2005) (for more detailed information, see 

Figure 1.4). Though classically described as a master regulator of osteoclastogenesis 

(Boyle et al., 2003; Teitelbaum and Ross, 2003; Novack and Teitelbaum, 2008), the 

Ca2+/NFAT pathway has since been shown to play important roles in regulation of 

osteoblast proliferation, differentiation, and function.   

 Bone marrow-derived mesenchymal precursors and MC3T3-E1 osteoblast-like 

cells express all isoforms of calcineurin A and B. Overexpression of calcineurin Aα in 

differentiating cultures of MC3T3-E1 cells enhances osteoblastogenesis as evidenced by 

increases in expression of RUNX2, ALP, BSP and OCN (Sun et al., 2005). Moreover, 

calvarial bones transduced with calcineurin Aα in situ exhibit marked increases in BMP-

2-induced bone formation (Sun et al., 2005). In contrast, homozygous deletion of 

calcineurin Aα in mice causes decreased bone formation within the postnatal skeleton and 

attenuated osteoblast differentiation of mesenchymal precursor cells in vitro (Sun et al., 

2005). Pharmacological inhibition of calcineurin using FK506 phenotypically copies both 

the in vivo and in vitro effects seen in calcineurin Aα-deficient mice (Koga et al., 2005; 

Sun et al., 2005), further demonstrating the importance of the Ca2+/calcineurin pathway in 

osteoblast biology.  

 In addition to calcineurin, embryonic fibroblasts from Nfatc1-/- mice exhibit



33 
 
 

 

 

 

 

Figure 1.4 Schematic of the Ca2+/NFAT Signaling Pathway in Osteoblasts.  

In resting cells, nuclear factor of activated T-cells, cytoplasmic 1-4 (NFATc1-4) 

proteins are phosphorylated and localized to the cytosol. Activation of receptors coupled 

to specific Ca2+ signaling pathways trigger elevations of cytosolic Ca2+ concentration 

([Ca2+]i) that lead to calmodulin-dependent activation of the serine/threonine phosphatase 

calcineurin. Dephosphorylation of NFATc1-4 by calcineurin causes a conformational 

change that exposes their nuclear localization signal resulting in their nuclear 

translocation and transcriptional activation. These events are opposed by kinases, 

including casein kinase 1 (CK1) and glycogen synthase kinase 3β (GSK3β), which help 

to maintain NFATc1-4 in a phosphorylated state within the cytosol (maintenance kinase) 

and/or induce rephosphorylation of nuclear NFATc1-4 proteins to expose a nuclear 

export signal and promote export of NFATc1-4 from the nucleus (export kinases). Within 

the nucleus, NFATc1-4 interact with a number of transcriptional binding partners, such as 

activator protein-1 (AP-1) family members (e.g., c-fos), transcription factor GATA-

binding protein 3 (GATA3), CCAAT/enhancer binding protein (C/EBP), early growth 

response protein (EGR) 1/4, myocyte enhancer factor-2 (MEF-2), forkhead box protein 3 

(Foxp3) and Osx, allowing for integration of Ca2+ signaling with many other signaling 

pathways. 
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decreased osteoblast differentiation in response to BMP-2 treatment in vitro (Koga et al., 

2005). Moreover, loss of NFATc2 in mice leads to reduced embryonic bone formation 

and trabecular bone volume with no observed changes in osteoclast numbers or bone 

resorption (Koga et al., 2005). Conversely, mice expressing a constitutively active variant 

of NFATc1 (NFATc1nuc) in osteoblasts display increased bone formation owing to 

enhanced proliferation in vivo and in vitro (Winslow et al., 2006). A more recent study 

demonstrates that canonical Notch signaling inhibits embryonic bone formation and 

osteoblast differentiation in vivo through suppression of NFATc1 transcriptional activity 

in osteoblasts (Tu et al., 2012a), thereby confirming an important role for NFATc1 in 

osteoblast proliferation and differentiation. NFATc1 may regulate osteoblastogenesis 

through its interactions with OSX, which lead to enhanced OSX-dependent 

transcriptional activity at the COL1α1 promoter (Koga et al., 2005). At the same time, 

NFATc1nuc mice exhibit increased osteoclastogenesis associated with osteoblast-mediated 

expression of the monocyte chemoattractant chemokine (C-C motif) ligand 8 (CCL8) 

(Winslow et al., 2006), thereby implicating osteoblast-specific NFATc1 activity in the 

regulation of osteoclast differentiation and bone resorption.          

Despite numerous genetic and pharmacological investigations into its role in bone 

formation, little-to-nothing is known regarding the physiological ligands that activate 

Ca2+-sensitive NFAT transcription factors in osteoblasts. In this regard, PTH and 

connective tissue growth factor (CTGF) activate Ca2+-sensitive NFAT transcription 

factors in osteoblast-like and stromal cell lines (Huang et al., 2010; Smerdel-Ramoya et 

al., 2010). The Ca2+/NFAT pathway has also emerged as a key regulator of 

mechanotransduction in cells of the osteoblast lineage. Specifically, C3H10T1/2 or 
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marrow-derived mesenchymal progenitor cells subjected to mechanical strain exhibit 

Wnt-independent inhibition of glycogen synthase kinase 3β (GSK3β), resulting in 

activation of β-catenin and NFATc1 (Sen et al., 2009). Whereas strain-induced activation 

of β-catenin inhibited adipogenesis in these cells, NFATc1 promoted osteoblast 

differentiation through transcriptional activation of the cyclooxygenase-2 (COX-2) gene 

(Sen et al., 2009). Fluid shear stress also activates the Ca2+/NFATc1 pathway in human 

mesenchymal precursors and MC3T3-E1 osteoblast-like cells resulting in increased 

COX-2 expression (Celil Aydemir et al., 2007). Interestingly, exposure of osteoblasts to 

fluid shear stress in vitro triggers NFATc1 activation in a manner dependent upon release 

of ATP into the extracellular milieu and subsequent P2 nucleotide receptor signaling 

(Riddle et al., 2007). However, the specific P2 receptors that couple to the Ca2+/NFATc1 

pathway in cells of the osteoblast lineage remain unknown. 

PI3K/AKT signaling – Class IA and IB PI3Ks are heterodimeric lipid kinases 

composed of a regulatory and catalytic subunit that act via AKT-dependent and                

-independent mechanisms to regulate various cellular processes, including proliferation, 

metabolism, survival, differentiation, and cytoskeletal organization (Vivanco and 

Sawyers, 2002; Engelman et al., 2006; Manning and Cantley, 2007). In brief, activation 

of class I PI3Ks causes phosphorylation of phosphatidylinositol-4,5-bisphosphate (PIP2) 

leading to formation of the potent second messenger phosphatidylinositol-3,4,5-

trisphosphate (PIP3); a reaction that is reversed by phosphatase and tensin homolog 

(PTEN). The serine/threonine protein kinase AKT  is recruited to the plasma membrane 

through direct binding of its pleckstrin-homology domain to PIP3 and subsequently 

activated through phosphorylation by PDK1 and mTORC2 (Vivanco and Sawyers, 2002; 
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Engelman et al., 2006; Manning and Cantley, 2007) (for more detailed information, see 

Figure 1.5).  

A number of important roles for PI3K/AKT signaling in skeletal biology have 

emerged in recent years (Guntur and Rosen, 2011). Whole-body deletion of AKT1 or 

AKT1/AKT2 causes reductions in longitudinal bone growth and mineralization in murine 

embryos resulting from decreased proliferation, increased apoptosis and delayed 

chondrocyte hypertrophy (Peng et al., 2003; Ulici et al., 2009). Pharmacological 

inhibition of PI3K in tibial organ cultures also leads to reduced endochondral ossification 

and bone length in vitro (Ulici et al., 2008). Conversely, chondrocyte-specific loss of 

PTEN causes constitutive PI3K signaling within growth plate chondrocytes resulting in 

greater skeletal size, premature chondrocyte differentiation and increased postnatal bone 

mass (Ford-Hutchinson et al., 2007). Studies using cell culture models have demonstrated 

that PI3K/AKT signaling also functions in mesenchymal progenitor cells to promote 

osteoblast differentiation downstream of BMP-2 (Ghosh-Choudhury et al., 2002; Fujita et 

al., 2004). In this regard, RUNX2 overexpression in vitro upregulates components of the 

PI3K/AKT pathway and pharmacological inhibition of PI3K or introduction of dominant-

negative AKT diminishes DNA-binding of RUNX2 and RUNX2-dependent transcription 

(Fujita et al., 2004). 

 Like canonical Wnt and Ca2+/NFAT signaling, the PI3K/AKT pathway also 

mediates mechanotransduction in cells of the osteoblast lineage. Mechanical loading by 

fluid shear stress enhances PGE2 release in MC3T3-E1 osteoblast-like, MLO-Y4 

osteocyte-like and primary calvarial cells in vitro (Li et al., 2005). In this regard, fluid 

shear stress and PGE2 both activate PI3K/AKT signaling in MLO-Y4 cells, leading to
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Figure 1.5 Schematic of the Class I PI3K/AKT Signaling Pathway in Osteoblasts. 

Class IA phosphatidylinositol 3-kinases (PI3Ks) are heterodimers consisting of a 

p85 regulatory subunit (p85α, p85β, p55γ, p55α, or p50α) and a p110 catalytic subunit 

(p110α, p110β, or p110δ) that are activated by growth factor receptor tyrosine kinases 

(RTKs). Recruitment and activation of class IA PI3Ks at the plasma membrane is 

mediated by binding to phosphorylated RTKs or phosphorylated RTK-bound adaptor 

molecules (depending on the receptor). Class IB PI3Ks are also heterodimers that consist 

of a p101 regulatory subunit and a p110γ catalytic subunit. In contrast to class IA PI3Ks, 

class IB PI3Ks are activated by G protein-coupled receptors via interactions with Gβγ 

subunits of heterotrimeric G proteins. Activation of both class IA and class IB PI3Ks 

results in phosphorylation of phosphatidylinositol-4,5-bisphosphate (PIP2, blue) leading 

to formation of the potent second messenger phosphatidylinositol-3,4,5-trisphosphate 

(PIP3, red). PI3K signaling is attenuated by phosphatase and tensin homologue (PTEN)-

dependent dephosphorylation of PIP3 (not shown). The serine/threonine protein kinase 

AKT is then recruited to the plasma membrane through direct binding to PIP3 and 

subsequently activated through phosphorylation by PDK1 and mTORC2 (PDK1 and 

mTORC2 are not shown on diagram).  
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inactivation of GSK3β and subsequent nuclear localization of β-catenin independent of 

canonical Wnt ligands (Xia et al., 2010). In turn, β-catenin binds the connexin 43 

promoter and activates its transcription to presumably increase osteocyte intercellular 

communication (Xia et al., 2010). Further studies have also demonstrated that fluid shear 

stress in primary human and mouse osteoblasts as well as MC3T3-E1 osteoblast-like cells 

can activate AKT through Ca2+-dependent stimulation of focal adhesion kinase and Src, 

resulting in β-catenin nuclear translocation, activation of c-fos and COX-2 gene 

expression, and increased osteoblast proliferation (Rangaswami et al., 2012). 

Interestingly, the P2X7 nucleotide receptor couples to production of PGE2 in cells of the 

osteoblast lineage (Panupinthu et al., 2008), and P2X7 signaling is required to mediate the 

effects of fluid shear stress in osteoblast-like and osteocyte-like cells in vitro (Li et al., 

2005). 
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1.4 Ion Transporters and Regulation of Cytosolic pH in Osteoblasts  

1.4.1 Effects of Acid on Bone 

 The vertebrate skeleton contains a large quantity of the alkaline mineral 

hydroxyapatite, which can be utilized to buffer systemic acid if acid-base balance falls 

outside the appropriate physiological limits  (Arnett, 2008). In addition to passive, 

physiochemical dissolution of bone mineral, the negative effects of systemic and local 

acidosis on the skeleton (depletion of bone mineral) have been attributed to alterations in 

the activities of osteoclasts and osteoblasts (Bushinsky, 2001; Arnett, 2003; Arnett, 

2008). Acidification of culture medium increases resorption pit formation in cultures of 

rat, avian and human osteoclasts (Arnett and Dempster, 1986; Arnett and Dempster, 

1987; Arnett, 2008; Arnett and Spowage, 1996). At pH 7.4 or above, rat osteoclasts 

exhibit almost no resorptive activity, and are insensitive to RANKL and other 

proresorptive agents. Conversely, reductions of as little as 0.1 pH units are sufficient to 

double osteoclast-mediated pit formation, with a maximum response observed at pH 6.8 

in vitro (Arnett and Spowage, 1996). Acid activation of osteoclasts increases expression 

or function of a number of enzymes required for bone resorption, including carbonic 

anhydrase II, vacuolar-type H+-ATPase, cathepsin K, and TRAP (Nordstrom et al., 1997; 

Biskobing and Fan, 2000; Arnett, 2008). Moreover, extracellular acidification acts 

through the proton-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1) 

to promote osteoclast survival and resorption pit formation downstream of Ca2+/NFATc1 

signaling (Komarova et al., 2005; Pereverzev et al., 2008).  

In contrast to its effects on bone resorption, acidosis causes decreased bone 

formation in vitro (Bushinsky, 2001; Arnett, 2003; Arnett, 2008); however, the precise 
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effects of extracellular acidification on osteoblast function are somewhat unclear (Arnett, 

2008). Bushinsky and colleagues demonstrated that acidification of osteoblast culture 

medium during in vitro differentiation inhibits bone nodule formation and mineralization 

as well as decreases expression of extracellular matrix genes including OPN, COL1α1 

and matrix gla protein (Sprague et al., 1994; Frick et al., 1997; Frick and Bushinsky, 

1998). A second group has since reported decreased alkaline phosphatase activity (a 

marker of early osteoblasts) and reduced mineralization of bone nodules in cultures of 

differentiating osteoblasts with no observed changes in COL1α1 expression or osteoblast 

proliferation (Brandao-Burch et al., 2005). In any event, it is of great interest to 

understand the regulation of extracellular pH (pHo) given its dramatic effects on 

osteoblast and osteoclast function as well as its greater role in controlling systemic 

acidosis.  

 

1.4.2 Proton Production and Transport by Osteoblasts 

Acute alterations to cellular physiology, as occurs during activation of receptor-

mediated signaling, lead to increased rates of metabolism that culminate in formation of 

acid metabolites such as carbonic, lactic, and pyruvic acids. Changes to cytosolic pH 

(pHi) associated with this increased metabolic flux in turn influence a number of cellular 

processes, including vesicular trafficking, cellular metabolism, cytoskeletal remodeling, 

and signaling mediated by Ca2+ and cAMP (Puceat, 1999; Loiselle and Casey, 2010). To 

this end, every cell expresses ion transporters that function to take-up or expel protons 

(H+) or H+ equivalents to maintain an appropriate pHi. However, H+ extrusion can also 

affect pHo in the bone microenvironment, which, as discussed in section 1.4.1, may lead 
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to changes in osteoblast and osteoclast function. 

In cells of the osteoblast lineage, H+ transport mechanisms maintain pHi 

homeostasis and may regulate local interstitial fluid pHo to control bone remodeling 

(Figure 1.6). The ubiquitous Na+/H+ exchanger (NHE) and the Na+-independent Cl-

/HCO3
- exchanger are thought to be two of the main transport mechanisms through which 

pHi is maintained in osteoblasts (Green, 1994). In addition to regulation of pHi, these 

transport proteins may also control cell volume (Green, 1994) and polarity during 

migration (Frantz et al., 2007).  

Of the 6 isoforms that have been identified and sequenced in mammalian cells 

(Orlowski and Grinstein, 1997), cells of the osteoblast lineage express NHE-1, -3, -4 and   

-6 (Green, 1994; Mobasheri et al., 1998; Liu et al., 2011). Activation of NHE is achieved 

through acidification of pHi, [Ca2+]i, osmotic stress and cell spreading (Orlowski and 

Grinstein, 1997). In turn, NHE functions to export a H+ in exchange for a Na+ to increase 

pHi (Green, 1994; Orlowski and Grinstein, 1997). Recent evidence demonstrates that both 

NHE-1 and -6 localize to the basolateral surface of human osteoblasts and are upregulated 

during in vitro matrix mineralization (Liu et al., 2011), suggesting that NHE isoforms 

may play a role in the process of mineralization. 

Expression and functional analyses have demonstrated that osteoblasts express 

Na+-independent Cl-/HCO3
- exchangers such as anion exchanger 2 (Redhead, 1988; 

Green, 1994; Liu et al., 2011), which, like NHE-1 and -6, localize to the basolateral 

surface of differentiating human osteoblasts in vitro (Liu et al., 2011). The exchanger is 

activated by alkaline pHi, and allows the transport of Cl-, HCO3
- or OH- in opposite 

directions via a single anion translocation site (Green, 1994). Under physiological
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Figure 1.6 Regulation of Cytosolic pH by Transporters in Osteoblasts.  

Proton (H+) and HCO3
- transport mechanisms maintain cytosolic pH (pHi) in cells 

of the osteoblast lineage. Modulation of pHi influences a variety of cellular functions such 

as metabolism and signaling, whereas changes to extracellular pH (pHo) alter osteoblast 

and osteoclast activity. In cells of the osteoblast lineage, increased cytosolic acidity 

activates Na+/H+ exchangers (NHEs; osteoblasts express NHE-1,-3,-4 and -6) to promote 

H+ efflux in exchange for influx of Na+ across the plasma membrane. On the other hand, 

alkalinisation of the cytosol stimulates efflux of HCO3
- or OH- through Na+-independent 

Cl-/HCO3
- exchangers such as anion exchanger 2. Osteoblasts also express proton-linked 

monocarboxylate transporters (MCTs) such as MCT2 and MCT8, which in most cell-

types mediate lactic acid extrusion into the extracellular space. However, in cells of the 

osteoblast lineage, the role of MCTs in lactic acid transport remains unclear.    
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conditions, the Na+-independent Cl-/HCO3

- exchanger will acidify the cell given that 

direction of transport is determined solely by anion distribution across the plasma 

membrane (Green, 1994). Though one study has reported activation of this exchanger by 

PTH in calvarial cell cultures (Redhead, 1988), little-to-nothing is known regarding their 

significance in osteoblast biology.      

 During glycolysis, two molecules of lactic acid are produced for every molecule 

of glucose consumed. To maintain proper rates of glycolytic flux, lactic acid is extruded 

from the cell by H+-linked monocarboxylate transporters (MCTs) (Juel and Halestrap, 

1999). Eight MCTs have been identified in mammals, and the distribution of each varies 

significantly from tissue-to-tissue (Juel and Halestrap, 1999). Recent studies have 

demonstrated expression of MCT2 and MCT8 in postnatal long bones as well as in 

cultures of calvarial and osteoblast-like cells (Hinoi et al., 2006b; Williams et al., 2008; 

Capelo et al., 2009). Though their exact functions in bone remain unclear, MCT2 may 

mediate the cytoprotective effects of pyruvate against hydrogen peroxide-induced cell 

death in osteoblasts (Hinoi et al., 2006b). On the other hand, expression patterns of MCT8 

in vitro and in vivo suggest a potential role for this transporter in modulation of thyroid 

hormone effects on osteoblastogenesis and bone development (Williams et al., 2008; 

Capelo et al., 2009). However, to date, no one MCT transporter has been directly 

associated with lactic acid efflux in cells of the osteoblast lineage.  
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1.5 P2 Nucleotide Receptors 

1.5.1 Sources and Fates of Extracellular Nucleotides 

 In both the peripheral and central nervous system, nucleotides such as ATP serve 

as transmitters or co-transmitters that act on pre- or postjunctional synaptic membranes to 

elicit a variety of neuronal responses (referred to as purinergic neurotransmission) 

(Burnstock, 2007). Nucleotides are also released physiologically from nearly every cell-

type in response to mechanical stimulation, including shear stress and osmotic swelling, 

hypoxia and activation of receptor-mediated signaling (Bodin and Burnstock, 2001; 

Lazarowski et al., 2011). Although the exact mechanisms remain widely debated, 

growing evidence suggests that nucleotide release may be mediated by either vesicular 

exocytosis or transporter and channel proteins such as ATP-binding cassette transporters, 

volume-regulated anion channels, and connexin or pannexin hemichannels, depending on 

the cell-type (Bodin and Burnstock, 2001; Lazarowski et al., 2011). In cells of the 

osteoblast lineage, ATP release in response to hypoxia, fluid shear stress and hypotonic 

shock is thought to be mediated by vesicular exocytosis (Genetos et al., 2005; Romanello 

et al., 2005; Riddle et al., 2007; Orriss et al., 2009; Brandao-Burch et al., 2012). 

Constitutive vesicular release of ATP is also observed in primary cultures of rat 

osteoblasts and murine osteoclasts, and is dependent on P2X7 nucleotide receptor 

signaling (Brandao-Burch et al., 2012).  

 The levels of extracellular nucleotides and nucleosides are controlled by a number 

of membrane-bound ecto-nucleotidases, including ecto-nucleoside 5’-triphosphate 

diphosphohydrolases (E-NTPDase), ecto-nucleotide pyrophosphatase/ phosphodiesterases 

(E-NPP), ALPs and ecto-5’-nucleotidases (E-5’-NT) (Zimmermann et al., 2012). E-
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NTPDase1-3 and -8 as well as E-NPP1-3 and ALPs catalyze the conversion of nucleoside 

5’-tri- and diphosphates to nucleoside 5’-monophosphates. Adenosine 5’-monophosphate 

(AMP) is in turn hydrolyzed by both ALPs and E-5’-NTs to produce adenosine 

(Zimmermann et al., 2012). The products of ATP and UTP hydrolysis then act through 

distinct cell-surface nucleotide and nucleoside receptors to exert their physiological 

effects (described below) (Figure 1.7).  

In addition to their roles in purinergic signaling, E-NPP1 and ALPs regulate the 

respective production and hydrolysis of the biological calcification inhibitor inorganic 

pyrophosphate (PPi) (Zimmermann et al., 2012). Global disruption of the E-npp1 gene in 

mice causes periosteal hyperostosis (excessive bone growth and mineralization) and 

trabecular osteopenia at certain sites (i.e., calvaria and spine) within the skeleton that is 

associated with decreased levels of PPi and ectopic calcification of arteries, joints and 

tendons (Sakamoto et al., 1994; Okawa et al., 1998; Rutsch et al., 2001). Conversely, 

homozygous deletion of tissue nonspecific alkaline phosphatase (TNAP) results in 

osteomalacia (hypomineralized skeleton) and increased PPi levels (Narisawa et al., 1997; 

Fedde et al., 1999). The abnormal PPi levels and some (but not all) mineralizaiton defects 

observed in Tnap-/- or E-npp1-/- mice are normalized and reversed in mice lacking both 

enzymes (Hessle et al., 2002), emphasizing the importance of PPi homeostasis in 

regulation of bone matrix mineralization. 

Finally, the actions of many ecto-nucleotidases generate Pi (Zimmermann et al., 

2012), which is required for formation of hydroxyapatite, and may even serve as a 

signaling molecule to regulate osteoblast differentiation (Hansen et al., 1976; Khoshniat 

et al., 2011). 
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Figure 1.7 Extracellular Nucleotides and P2 Nucleotide Receptors in Mammalian 

Cell-Types.  

Most mammalian cell-types synthesize and release nucleotides either 

constitutively or in response to various stimuli. Once in the extracellular space, levels of 

nucleotides are controlled by the actions of several families of ecto-nucleotidases, 

including ecto-nucleoside 5’-triphosphate diphosphohydrolases (E-NTPDase), ecto-

nucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (ALPs) 

and ecto-5’-nucleotidases (E-5’-NT). ATP, UTP and their breakdown products bind to 

distinct P2 nucleotide receptors present on the cell surface. Additionally, adenosine binds 

to P1 receptors, whereas UDP-glucose, which is synthesized intracellularly and released, 

signals through P2Y14.  
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1.5.2 Classification and Properties of P2 Nucleotide Receptors 

 Extracellular nucleotides bind to cell surface P2 nucleotide receptors expressed in 

a virtually every cell-type and tissue. These receptors are divided into two families: the 

P2Y family of G protein-coupled receptors and the P2X family of ligand-gated cation 

channels. Multiple subtypes of  P2Y and P2X receptors have been identified in mammals, 

including eight P2Y subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14) and seven subtypes of 

P2X (P2X1-7) (Abbracchio et al., 2006; Khakh and North, 2006).  

 Metabotropic P2Y receptors – P2Y receptors are members of the rhodopsin 

family of G protein-coupled receptors characterized by the presence of an extracellular 

NH2 terminus, an intracellular COOH-terminus, and seven transmembrane domains 

(Abbracchio et al., 2006; Burnstock, 2007). The transmembrane-spanning regions of P2Y 

receptors contribute to formation of the ligand binding pocket, whereas both the 

intracellular loops and COOH-termini regulate downstream intracellular signaling and 

receptor activity (Abbracchio et al., 2006; Burnstock, 2007). Sequence variability 

amongst P2Y receptors results in differences in their selectivity for endogenous purine 

and pyrimidine nucleotides. In this regard, ADP is more potent than ATP at P2Y1 

receptors, whereas uridine nucleotides have no effect. In contrast, ATP and ADP bind 

P2Y11, P2Y12 and P2Y13 with equal potency. UTP and ATP are strong agonists for P2Y2 

and P2Y4, but UDP and ADP display only weak receptor binding. On the other hand, 

UDP and UDP-glucose are the only purinergic agonists known to activate P2Y6 and 

P2Y14, respectively (Abbracchio et al., 2006; Burnstock, 2007).  

 Intracellular signaling downstream of P2Y receptors involves activation of one of 

four heterotrimeric G protein isoforms (Gs, Gq/11, Gi or Go) and its associated effectors 
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(Abbracchio et al., 2006; Burnstock, 2007). P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 typically 

couple through Gq/11 to activation of phospholipase C (PLC) culminating in the formation 

of inositol 1,4,5-trisphosphate (IP3) and subsequent release of Ca2+ from intracellular 

stores (Abbracchio et al., 2006; Burnstock, 2007). Additionally, evidence suggests that 

P2Y2, P2Y4 and P2Y6 can interact with Gi/o, Gi and Gs, respectively. In contrast, P2Y12, 

P2Y13 and P2Y14 couple to Gi and in turn inhibit adenylyl cyclase to lower cAMP 

production within the cell (Abbracchio et al., 2006; Burnstock, 2007).  

 Ionotropic P2X receptors – A single P2X subunit consists of two transmembrane 

domains, a large N-glycosylated, disulfide-rich extracellular loop, and intracellular NH2- 

and COOH-termini, the latter of which possess consensus binding motifs for various 

protein kinases (Khakh and North, 2006; Browne et al., 2010). Functional channels are 

either homo- or heteromultimers composed of three P2X subunits. The extracellular 

domain of a multimeric P2X receptor harbors the inter-subunit binding site for ATP as 

well as binding sites for competitive antagonists and modulatory metal ions (Browne et 

al., 2010; Hattori and Gouaux, 2012). In contrast, transmembrane domains 1 and 2 

function in channel gating and formation of the ion pore, respectively (Khakh and North, 

2006; Browne et al., 2010). Given that most P2X channels are permeable to Na+, K+ and 

Ca2+, receptor activation results in depolarization and Ca2+ influx across the plasma 

membrane (Khakh and North, 2006; Browne et al., 2010), thereby contributing to 

downstream signaling (Surprenant and North, 2009). 

 Unlike P2Y family members, which interact with various combinations of adenine 

and uridine nucleotides, P2X receptors are activated physiologically by ATP. At the same 

time, channel gating varies greatly amongst the different P2X subtypes with respect to 
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kinetics of activation, desensitization, and recovery (North, 2002). For instance, P2X1 

and P2X3 exhibit rapid desensitization of inward currents in the continued presence of 

agonist. On the other hand, currents elicited by P2X2 and P2X4 exhibit slow rates of 

decay (North, 2002). Interestingly, prolonged stimulation of P2X7 receptors with 2’,3’-O-

(4-benzoylbenzoyl)ATP (BzATP, a relatively potent P2X7 agonist) or high 

concentrations of ATP (in the millimolar range) elicit sustained inward currents that 

deactivate slowly relative to all other P2X receptors, even following removal of agonists 

(Surprenant et al., 1996; Naemsch et al., 2001; North, 2002).       

  

1.5.3 P2 Nucleotide Receptors in Bone 

Cells of the osteoblast lineage possess a variety of P2 receptors, including P2Y1, 

P2Y2, P2Y6, P2Y12-14 and P2X1-7 (Orriss et al., 2010; Orriss et al., 2012), many of which 

are expressed in a differentiation-dependent manner (Orriss et al., 2006; Orriss et al., 

2012). In this regard, transcript and protein for the P2Y2 receptor increases in cultures of 

differentiating rat osteoblasts. In contrast, P2Y4 and P2Y6 transcripts are present only at 

more intermediate stages of osteoblastogenesis. Levels of P2X2, P2X5, P2X6 and P2X7 

receptor protein, which are largely expressed in differentiating osteoblasts, are decreased 

to various degrees in more mature cells. Conversely, transcript and protein for the P2X4 

receptor are most highly expressed in terminally differentiated osteoblasts. On the other 

hand, levels of P2X1 and P2X3 receptor protein remain constant at all stages of in vitro 

osteoblastogenesis (Orriss et al., 2006; Orriss et al., 2012).  

Nucleotides elicit a number of diverse responses in cultures of primary osteoblasts 

and osteoblast-like cells. Stimulation of P2Y1 or P2Y2 in human SaOS-2 osteosarcoma 
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cells and primary osteoblasts induces elevations of [Ca2+]i and potentiates c-fos 

expression elicited by PTH/cAMP signaling (Bowler et al., 1999; Bowler et al., 2001). 

ATP in the micromolar range synergistically enhances PDGF- and IGF-1-induced 

proliferation of human MG-63 osteoblast-like cells via an unidentified P2 receptor 

(Nakamura et al., 2000). Increases in proliferation of both human and rat osteoblast-like 

cell lines can also be elicited by micromolar concentrations of ATP or UTP alone through 

a variety of potential downstream effectors, including PKC, PI3K, p38 MAPK, 

extracellular signal-regulated kinase (ERK) 1/2 and JNK1 (Nakamura et al., 2000; Katz et 

al., 2008; Katz et al., 2011). In addition to their effects on proliferation, stimulation of 

P2Y2 with either ATP or UTP inhibits matrix mineralization in cultures of differentiating 

osteoblasts (Hoebertz et al., 2002; Orriss et al., 2007); however, lack of mineralization in 

these cultures is due at least in part to production of PPi (Orriss et al., 2007). At the same 

time, similar concentrations of these same nucleotides activate RUNX2 in the osteoblast-

like HOBIT cell line (Costessi et al., 2005). It has also been suggested that skeletal 

mechanotransduction is mediated by nucleotide release and subsequent P2 receptor 

activation in osteoblasts and osteoclasts (Dixon and Sims, 2000) (Figure 1.8). 

Generation of whole-body knockout mouse strains for various P2Y and P2X 

receptor subtypes has confirmed a number of important roles for purinergic signaling in 

postnatal skeletal homeostasis in vivo. Particularly important roles for ADP in bone 

remodeling have been demonstrated from analyses of P2Y12- and P2Y13-deficient mice 

(Su et al., 2012; Wang et al., 2012). In this regard, homozygous deletion of P2Y12 causes 

increased bone mass and decreased osteoclast numbers with no effect on osteoblast 

numbers or bone formation parameters in vivo (Su et al., 2012). Studies of P2y12-/- 
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Figure 1.8 P2 Nucleotide Receptors in Bone.  

Schematic diagram illustrating the potential roles for nucleotide signaling in bone. 

ATP and other nucleotides are released from cells of the osteoblast lineage in response to 

mechanical stimuli and accumulate at sites of inflammation or injury within the skeleton. 

Extracellular nucleotides signal through networks of cell-surface P2 nucleotide receptors 

expressed by osteoblasts and osteoclasts to modulate bone remodeling.  
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osteoclasts in vitro revealed that these cells do have the capacity to differentiate but fail to 

adhere and resorb mineralized substrates in response to ADP treatment (Su et al., 2012). 

On the other hand, loss of P2Y13 results in a low bone mass phenotype characterized by 

reduced bone formation rates and decreased osteoblast and osteoclast numbers; changes 

that are associated with impaired osteoblast and osteoclast differentiation in vitro (Wang 

et al., 2012). However, osteoblasts from P2y13-/- mice also exhibit a reduced ratio of 

RANKL/OPG (Wang et al., 2012), which suggests that the osteoclast effects in this model 

may be non-cell autonomous. In addition to P2Y receptors, genetically modified mice 

carrying a non-functional P2X7 receptor have been shown to exhibit diminished 

periosteal bone formation, excessive trabecular bone resorption, and impaired skeletal 

responses to mechanical loading (Ke et al., 2003; Li et al., 2005). With the discovery of 

loss-of-function polymorphisms in P2X7 that associate with accelerated bone loss and 

vertebral fracture risk in postmenopausal women (Gartland et al., 2012; Jorgensen et al., 

2012), this ATP-selective P2 receptor has been brought to the forefront in 

musculoskeletal research. 
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1.6 P2X7 in Osteoblasts 

1.6.1 Expression of P2X7 in Cells of the Osteoblast Lineage 

Over 15 years ago, Collo and coworkers noted expression of P2X7 in the 

developing vertebrae and mandible of E19 rat embryos by in situ hybridization (Collo et 

al., 1997). However, there have since been conflicting reports regarding expression of 

P2X7 receptors in cells of the osteoblast lineage. Expression of P2x7 transcripts was 

initially demonstrated in the MG-63 human osteoblast-like cell line (Nakamura et al., 

2000). On the other hand, specific immunostaining for the receptor could not be detected 

in osteoblast-enriched cultures of rat calvarial cells (Hoebertz et al., 2000). A subsequent 

study conducted by Gartland and colleagues localized the P2X7 receptor to a 

subpopulation of human bone-derived cells in vitro using immunocytochemical analyses 

and pore-formation assays (Gartland et al., 2001). However, others reported that the P2X7 

agonist BzATP failed to elicit elevations of [Ca2+]i or to induce pore formation in 

osteoblasts from cultures of adherent human bone marrow cells (Jorgensen et al., 2002), 

leading these authors to conclude that functional P2X7 receptors are not expressed by 

osteoblasts.   

More recent investigations have provided consistent evidence for the expression 

of P2X7 receptors in cells of the osteoblast lineage. In 2003, the presence of P2x7 

transcripts was demonstrated in cultures of mouse calvarial cells (Ke et al., 2003).  

Moreover, BzATP induced pore formation in approximately 30% of calvarial osteoblasts 

from wild-type but not P2x7-/- mice, indicating that functional P2X7 receptors are 

expressed by only a subpopulation of calvarial cells. P2X7 protein expression was later 

confirmed in mouse calvarial cultures and MC3T3-E1 osteoblast-like cells by 
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immunoblot analysis (Li et al., 2005). More recently, the expression of P2 receptors and 

nucleotide responses were examined during the differentiation of rat calvarial cells in 

vitro (Orriss et al., 2006). Using conventional RT-PCR, P2r7 transcripts were found to be 

present at all time points examined in culture (from days 6 to 15).   

Membrane blebbing is a unique response exhibited by some cell-types following 

activation of P2X7 receptors (North, 2002). Panupinthu and coworkers characterized 

blebbing in cultured calvarial cells to verify expression of functional P2X7 receptors in 

vitro (Panupinthu et al., 2007). In these experiments, live cells were loaded with the 

fluorescent dye FM4-64 to label membranes and morphology was monitored by confocal 

microscopy. BzATP induced formation of multiple dynamic blebs, which enlarged and 

shrunk in an asynchronous manner, and did not contain FM4-64-stained intracellular 

membranes. Approximately 40% of cultured rat and murine calvarial cells exhibited 

dynamic membrane blebbing in response to BzATP or high concentrations of ATP. In 

contrast, BzATP did not induce blebbing of calvarial cells from P2x7-/- mice (Panupinthu 

et al., 2007). These findings provide further evidence for heterogeneous expression of 

functional P2X7 receptors in calvarial cells. At the same time, calvarial cultures contain 

cells at various stages of osteoblast differentiation, a fact that could explain the 

heterogeneous pattern of P2X7 expression.     

 

1.6.2 P2X7 Receptor Signaling in Osteoblasts 

ATP and BzATP induce opening of the P2X7 nonselective cation channel, which 

is permeable to Na+, K+ and Ca2+. This event leads to elevation of [Ca2+]i and 

depolarization of the membrane potential. However, expression of multiple subtypes of 
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P2X and Ca2+-mobilizing P2Y receptors on cells of the osteoblast lineage (Orriss et al., 

2006) make it difficult to attribute responses to specific P2 receptors. Moreover, 

heterogeneity within calvarial cell cultures and other in vitro osteoblast models adds to 

the complexity of interpreting data from single-cell electrophysiology or Ca2+ 

fluorescence studies. Thus, future work comparing responses of osteoblasts isolated from 

P2x7-/- mice and wild-type controls should prove informative.   

In many cell-types, decreasing divalent cation concentrations in the extracellular 

fluid potentiates the effects of P2X7 agonists, leading to formation of aqueous pores 

within the plasma membrane permeable to molecules as large as 900 Da (Pelegrin and 

Surprenant, 2006). Though its physiological relevance remains to be determined, this 

phenomenon has proven useful in characterizing P2X7 receptor expression. In this regard, 

high concentrations of ATP or BzATP induced uptake of ethidium bromide (394 Da) by 

cultured osteoblasts in divalent cation-free buffer (Gartland et al., 2001). In a separate 

study, cells on the ectocranial surfaces of calvariae, a site of active osteogenesis, 

exhibited pore formation in response to BzATP, thereby establishing that osteogenic cells 

express functional P2X7 receptors in situ (Panupinthu et al., 2008). This finding also 

confirmed that P2X7 expression in bone cells is not an artifact of in vitro culture, as has 

been found for some P2 receptors in other systems (Turner et al., 1997). Moreover, P2X7 

receptors mediated dye uptake by mouse calvarial cells in response to fluid shear stress 

(Li et al., 2005), suggesting that pore formation may play a role in mechanotransduction.   

In other cell-types, P2X7 receptor activation leads to stimulation of phospholipase 

D (PLD) and A2 (PLA2) activity (Humphreys and Dubyak, 1996; Alzola et al., 1998), 

suggesting that P2X7 may couple to the production of bioactive lipids. In this regard, 
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fluid shear stress stimulates production of PGE2 by osteoblasts in a manner dependent on 

P2X7 receptor signaling (Li et al., 2005). Panupinthu and coworkers have since identified 

a role for lipid signaling pathways in mediating P2X7-induced blebbing in osteoblasts 

(Panupinthu et al., 2007). Specifically, activation of P2X7 receptors leads to stimulation 

of PLD and PLA2, resulting in production of the potent lipid mediator lysophosphatidic 

acid (LPA). LPA then acts through its G protein-coupled receptor to induce membrane 

blebbing via a pathway dependent on ROCK. Thus, a number of the effects of P2X7 

receptor activation in osteoblasts may be mediated by PGE2and LPA. 

Ca2+ influx through the P2X7 channel could couple to a number of intracellular 

signaling pathways activated by elevated [Ca2+]i. In this regard, Ca2+ entry mediated by 

the P2X7 receptor leads to NFAT activation in microglial-like cells (Ferrari et al., 1999) 

and enhances IL-1β secretion from monocyte and macrophage cell lines (Gudipaty et al., 

2003).  However, the role of P2X7-mediated Ca2+ influx in cells of the osteoblast lineage 

remains to be elucidated. 

Most recently, P2X7 receptors have been shown to mediate ERK1/2 activation by 

fluid shear stress in an osteoblast-like cell line (Liu et al., 2008; Okumura et al., 2008). 

The phosphorylation of ERK1/2 required ATP release, and appeared to be dependent on 

both elevation of [Ca2+]i and activation of PKC (Liu et al., 2008). In summary, P2X7 

receptors in cells of the osteoblast lineage couple to multiple signaling pathways. It will 

be of considerable interest to examine cross-talk among P2X7 receptor signaling and 

pathways that function downstream of other P2 receptors, as well as those activated by 

osteotropic hormones, growth factors and cytokines.  
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1.6.3 Functions of P2X7 Receptors in Osteoblasts 

Overall, P2x7-/- mice are viable and fertile and cannot be distinguished from wild-

type littermates by gross observation alone (Solle et al., 2001). Nevertheless, defects have 

been described including impaired IL-1 release from P2x7-/- macrophages challenged with 

ATP (Solle et al., 2001). Moreover, when arthritis is induced using a monoclonal anti-

collagen antibody, P2x7-/- mice exhibit an attenuated inflammatory response compared to 

wild-type controls (Solle et al., 2001; Labasi et al., 2002). In 2003, Ke and coworkers 

characterized the effects of targeted disruption of P2x7 on bone formation and remodeling 

(Ke et al., 2003). Unexpectedly, this study identified a skeletal phenotype for the P2x7-/- 

mouse consistent with a role for this receptor in osteogenesis. Specifically, when 

compared to wild-type littermates, adult P2x7-/- mice displayed significant reduction in 

total and cortical bone content. Moreover, radiographs and peripheral quantitative 

computed tomography analyses demonstrated that femoral bone diameters were smaller 

in P2x7-/- mice compared with wild-type controls, consistent with impaired periosteal 

bone formation. In contrast, femur length did not differ, indicating that P2X7 receptors do 

not regulate the longitudinal growth of bones. Since longitudinal growth is mediated 

primarily by the cartilaginous growth plate, this finding is in keeping with the absence of 

P2X7 in cells of the chondrocyte lineage (unpublished observations).   

When double calcein labeling was used to reveal sites of active osteogenesis, 

reduced rates of bone formation were observed in P2x7-/- mice, as revealed by the shorter 

interlabeling distance at periosteal surfaces of the tibial shafts (Ke et al., 2003). The 

unique phenotype of the P2x7-/- mouse prompted Ke and colleagues to speculate that 

these mice may possess decreased sensitivity to mechanical loading (Ke et al., 2003). 
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This hypothesis was tested directly by Li and coworkers, who used an in vivo ulnar 

loading system to compare the anabolic effects of mechanical stimulation in P2x7-/- and 

control mice (Li et al., 2005). Interestingly, the sensitivity to mechanical loading was 

reduced by up to 73% in P2x7-/- mice as demonstrated by dual-fluorochrome labeling, 

establishing that the effects of mechanical stimulation on periosteal bone formation are 

dependent on the P2X7 receptor.   

The skeletal phenotype of a second P2x7-/- mouse has been described by Gartland 

and coworkers (Gartland et al., 2003). In contrast to the observations made by Ke et al. 

(2003), these mice showed no overt skeletal phenotype with the exception of thicker 

cortical bones than their wild-type controls. This discrepancy could be due to the different 

strategies used to generate the mice or their different genetic backgrounds. In this regard, 

the P2x7-/- mice characterized by Gartland and coworkers were constructed by insertion 

of a lacZ gene at the beginning of exon 1 of P2x7 (Sim et al., 2004). Due to the existence 

of an endogenously expressed P2X7 splice variant, this strategy created an inadvertent 

tissue-specific knockout (Nicke et al., 2009; Taylor et al., 2009) in which the presence or 

absence of P2X7 in osteoblasts has yet to be examined. In contrast, the P2x7-/- mice 

described by Ke and colleagues carried a deletion within the region encoding C-terminal 

amino acids 506-532 (Solle et al., 2001). Though P2X7 is present in this mouse model, 

the protein is truncated at its COOH-terminus causing inefficient trafficking to the cell 

membrane and greatly diminished receptor function (Masin et al., 2012). It is also 

noteworthy that the decrease in bone density observed by Ke and colleagues was more 

pronounced in adult male mice, whereas Gartland and coworkers analyzed the bones of a 

relatively small number of animals, the gender of which was not specified.   
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Since a number of cell-types express P2X7 receptors, it was not known until 

recently whether the phenotype of the P2x7-/- mouse was due to an intrinsic defect in 

osteoblast function or to an indirect effect mediated by other cell-types. To address this 

question, Panupinthu and colleagues employed a well-characterized bone formation assay 

in which rat and murine calvarial osteoblasts differentiate and form bone-like nodules in 

vitro (Panupinthu et al., 2008). BzATP induced pore formation in cells within these 

nodules, indicating that the calvarial cells responsible for osteogenesis in vitro express 

functional P2X7 receptors. Moreover, activation of P2X7 receptors by exogenous 

nucleotides stimulated osteoblast differentiation and enhanced mineralization. On the 

other hand, the expression of osteoblast markers was suppressed in calvarial cells from 

P2x7-/- mice compared to wild-type controls. Interestingly, the stimulatory effects of 

P2X7 activation on bone formation in vitro were dependent on both LPA signaling and 

cyclooxygenase activity. Thus, P2X7 receptors enhance bone formation through an 

osteoblast-autonomous mechanism. Moreover, this study identified a novel signaling axis 

that links P2X7 receptors to production of LPA and cyclooxygenase metabolites, which 

in turn stimulate osteogenesis. The involvement of LPA, which signals in part through 

Rho, is consistent with the role of RhoA and ROCK in driving the differentiation of 

osteoblasts from mesenchymal stem cells (McBeath et al., 2004). Moreover, the 

dependence of osteogenesis on cyclooxygenase activity is in keeping with the well-

established role of prostaglandins in stimulating bone formation (Ma et al., 1995) and in 

mediating skeletal mechanotransduction in vivo (Ehrlich and Lanyon, 2002).  

It is possible that P2X7 may have other important functions in cells of the 

osteoblast lineage. For example, it has been suggested that ATP and other organic 
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phosphates provide a source of Pi, which is required for the formation of bone mineral 

crystals (Nakano et al., 2007). In this regard, P2X7 receptor activation triggers ATP 

efflux (Pellegatti et al., 2005), providing a possible source of Pi to support mineralization.  

It is also possible that P2X7 receptors on osteoblasts are involved in the processing and 

secretion of cytokines, as is well-established in leukocytes (Gabel, 2007). Lastly, 

activation of P2X7 receptors promotes apoptosis in a number of cell systems (Adinolfi et 

al., 2005b). In fact, Gartland and coworkers interpreted P2X7-induced membrane 

blebbing of human bone-derived cells as reflecting apoptosis (Gartland et al., 2001). In 

addition, ATP and BzATP induced delayed release of lactate dehydrogenase from 

osteoblastic cells, indicating cell death. However, Panupinthu and coworkers found 

BzATP-induced membrane blebbing of murine calvarial cells was reversible upon 

removal of agonist, indicating that P2X7 receptors do not induce acute cell death 

(Panupinthu et al., 2007). Moreover, stimulation of P2X7 receptors in MC3T3-E1 

osteoblastic cells does not activate caspase 3, a key mediator of apoptosis (Li et al., 

2005), arguing against a proapoptotic effect. Future studies are needed to clarify the roles 

of P2X7 receptors in regulating survival and other functions of osteoblasts. 

 

1.6.4 Genetic Polymorphisms of the Human P2X7 Receptor 

P2X7 is among the most polymorphic of P2 receptors (Di Virgilio and Wiley, 

2002), with 40 nonsynonymous, amino-acid altering SNPs currently identified (Wesselius 

et al., 2011; Wesselius et al., 2012; Husted et al., 2013). When J.S. Wiley and co-workers 

examined 712 subjects (554 Caucasian) for the presence of 5 loss-of-function 

polymorphisms, 51% of Caucasian subjects were found to be wild-type at the five alleles, 
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40% were heterozygous and 9% carried at least two loss-of-function alleles (Shemon et 

al., 2006).  

Polymorphisms identified within the coding region of the human P2X7 receptor 

have a wide range of outcomes, such as gain-of-function (Cabrini et al., 2005), loss-of-

function (Gu et al., 2001; Wiley et al., 2002), impairment of cytokine release (Sluyter et 

al., 2004a; Sluyter et al., 2004b), and altered cell death (Le Stunff et al., 2004). The 

Thr357>Ser variant is present in ~11% of the population and Glu496>Ala occurs in over 

25% of Caucasian subjects (Dao-Ung et al., 2004). Loss-of-function SNPs Glu496>Ala 

and Ile568>Asn are both associated with increased 10-year fracture risk in post-

menopausal women (Ohlendorff et al., 2007). In this regard, the Glu496Ala variant 

results in reduced pore-forming ability (Gu et al., 2001) without altering channel function 

(Boldt et al., 2003), whereas the Ile568Asn variant prevents normal channel trafficking 

and function (Wiley et al., 2003). Loss-of-function SNP Arg307>Gln has also been linked 

to lower lumbar spine bone mineral density (Gartland et al., 2012) and an increased rate 

of bone loss (Jorgensen et al., 2012). Conversely, the gain-of-function SNP Ala348>Thr 

is associated with lower vertebral fracture incidence during the 10 years after menopause 

(Jorgensen et al., 2012).  

Increased skeletal fragility in patients with loss-of-function polymorphisms in the 

P2X7 receptor is consistent with decreased susceptibility of osteoclasts to apoptosis 

(Ohlendorff et al., 2007). As well, impaired osteoblast differentiation and bone formation 

may contribute to increased fracture risk. It is worth noting that the skeletal changes 

observed in postmenopausal women with loss-of-function polymorphisms of the P2X7 

receptor (Ohlendorff et al., 2007) correspond to the phenotypic changes in the P2x7-/- 
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mouse described by Ke and coworkers (Ke et al., 2003).   
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1.7 Rationale and Objectives of the Research 

Given the importance of purinergic signaling in osteoblast biology, the overall 

objective of this thesis was to identify and characterize the signal transduction pathways 

that function downstream of P2X7 and other P2 receptors in cells of the osteoblast 

lineage. The following three specific objectives were proposed: 

 

1.7.1 Role of P2 Receptor Networks in Osteoblasts 

 Rationale – All mammalian cell-types including osteoblasts express multiple P2Y 

and P2X receptor subtypes, each with varying affinities for purine and pyrimidine 

nucleotides (Volonte et al., 2006; Burnstock and Verkhratsky, 2009). Though functions 

have been attributed to individual subtypes of P2Y and P2X receptors in cells of the 

osteoblast lineage (Orriss et al., 2010; Orriss et al., 2011), the mechanisms by which they 

interact to regulate osteoblast differentiation and function remain unclear. More 

importantly, the overall significance of such an extensive network of distinct P2 

nucleotide receptors remains a mystery in the field of purinergic signaling (Volonte et al., 

2006; Burnstock, 2008). 

 In response to extracellular nucleotides, many P2Y and P2X receptors including 

P2X7 signal through elevations in [Ca2+]i to elicit changes in cell behaviour (Abbracchio 

et al., 2006; Khakh and North, 2006; Burnstock, 2007; Browne et al., 2010). The Ca2+-

regulated transcription factor NFATc1 plays an essential role in the differentiation of 

osteoblasts (Koga et al., 2005; Winslow et al., 2006); however, mechanisms leading to 

activation of NFATc1 in osteoblasts are unknown.  

 Specific Objective 1 – To characterize the P2 network expressed by cells of the 
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osteoblast lineage and elucidate the role of P2Y and P2X receptor subtypes in regulation 

of Ca2+/NFATc1 signaling in these cells.  

 

1.7.2 Regulation of Metabolic Acid Production in Osteoblasts by P2 Receptors 

Rationale – Many metabolic demands are placed on osteoblasts during their 

differentiation and in the production and mineralization of the bone extracellular matrix. 

Given that the P2X7 receptor promotes osteoblastogenesis and bone formation both in 

vitro and in vivo (Ke et al., 2003; Li et al., 2005; Panupinthu et al., 2008), it is possible 

that it also regulates metabolism in cells of the osteoblast lineage. In this regard, 

exogenous expression of P2X7 receptors has been shown to elicit elevations in resting 

mitochondrial Δψ, basal mitochondrial Ca2+ and intracellular ATP content (Adinolfi et 

al., 2005a). These changes are dependent both on P2X7-mediated pore-formation and 

autocrine/paracrine stimulation by endogenously released ATP. However, whether P2 

receptors such as P2X7 couple to changes in cellular metabolism in osteoblast lineage 

cells remains unexplored. 

Changes in pHo regulate the activities of both osteoblasts and osteoclasts 

(Bushinsky, 2001; Arnett, 2003; Arnett, 2008). Receptor-mediated increases in cellular 

metabolism cause corresponding elevations in metabolic acid production (McConnell et 

al., 1992). Efflux of these acid metabolites from the cell in turn acidifies pHo in the bone 

microenvironment. Though evidence suggests that P2X7 can increase cellular metabolism 

(Adinolfi et al., 2005a), its ability to regulate metabolic acid production in osteoblasts or 

other cell-types remains unexplored.  

Specific Objective 2 – To determine the effects of signaling through P2X7 as well 
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as other P2 receptor subtypes on energy metabolism in cells of the osteoblast lineage.  

 

1.7.3 Cross-talk between P2X7 and Wnt/β-catenin Pathways in Osteoblasts 

 Rationale – In bone, the process through which mechanical stimuli are translated 

into cellular responses, known as mechanotransduction, has been proposed to be mediated 

by nucleotide release and subsequent P2 receptor activation in osteoblasts and osteoclasts 

(Dixon and Sims, 2000). The P2X7 nucleotide receptor and Wnt/β-catenin pathway both 

promote osteoblast differentiation (Westendorf et al., 2004; Bodine and Komm, 2006; 

Hartmann, 2006; Krishnan et al., 2006; Panupinthu et al., 2008; Long, 2012; Baron and 

Kneissel, 2013) and are critical for anabolic responses of bone to mechanical loading (Li 

et al., 2005; Bonewald and Johnson, 2008; Bonewald, 2011; Baron and Kneissel, 2013). 

Activation of P2X7 in cerebellar granule neurons leads to inhibition of GSK3β, a negative 

regulator of canonical Wnt signaling, through mechanisms dependent on PI3K/AKT, 

PKC, and CaMKII (Leon et al., 2006; Ortega et al., 2009; Ortega et al., 2010). However, 

the ability of P2X7 to couple to GSK3β in cells of the osteoblast lineage remains 

unknown. Moreover, whether the P2X7 and Wnt pathways interact to modulate activation 

of β-catenin remains unexplored in any system.  

 Specific Objective 3 – To investigate whether P2X7 and canonical Wnt signaling 

pathways interact to regulate β-catenin-mediated gene expression. 
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CHAPTER TWO 

 

 
P2 RECEPTOR NETWORKS REGULATE SIGNALING DURATION 

OVER A WIDE DYNAMIC RANGE OF ATP CONCENTRATIONS1 

                                                 
1 This Chapter has been reproduced with permission from: 

Grol, M.W., A. Pereverzev, S. M. Sims, and S.J. Dixon. 2013. P2 receptor networks 
regulate signaling duration over a wide dynamic range of ATP concentrations. J. Cell Sci. 
126:3615-3626, with some modifications. 
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2.1  Chapter Summary 

The primordial intercellular signaling molecule ATP acts through two families of 

cell-surface P2 receptors – the P2Y family of G protein-coupled receptors and the P2X 

family of ligand-gated cation channels. Multiple P2 receptors are expressed in a variety of 

cell-types. However, the significance of these networks of receptors in any biological 

system remains unknown. Using osteoblasts as a model system, we found that a low 

concentration of ATP (10 µM, ATPlow) induced transient elevation of cytosolic Ca2+; 

whereas, a high concentration of ATP (1 mM, ATPhigh) elicited more sustained elevation. 

Moreover, graded increases in the Ca2+ signal were achieved over a remarkable million-

fold range of ATP concentrations (1 nM to 1 mM). Next, we demonstrated that ATPlow 

caused transient nuclear localization of the transcription factor NFATc1; whereas, 

ATPhigh elicited more sustained localization. When stimulated with ATPhigh, osteoblasts 

from P2X7 loss-of-function mice showed only transient Ca2+/NFATc1 signaling; in 

contrast, sustained signaling was observed in wild-type cells. Additional experiments 

revealed a role for P2Y receptors in mediating transient signaling induced by low ATP 

concentrations. Thus, distinct P2 receptors with varying affinities for ATP account for 

this wide range of sensitivity to extracellular nucleotides. Finally, ATPhigh, but not 

ATPlow, was shown to elicit robust expression of the NFAT target gene Ptgs2 (encoding 

COX-2), consistent with a crucial role for the duration of Ca2+/NFAT signaling in 

regulating target gene expression. Taken together, ensembles of P2 receptors provide a 

mechanism by which cells sense ATP over a wide concentration range, and transduce this 

input into distinct cellular signals. 
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2.2  Introduction 

Purine and pyrimidine nucleotides represent a primordial and pervasive class of 

intercellular chemical messengers (Burnstock and Verkhratsky, 2009). Many stimuli, 

including shear stress, mechanical stretch, osmotic swelling and hypoxia, trigger release 

of nucleotides from cells via mechanisms such as vesicular exocytosis and plasma 

membrane channels or transporters (Burnstock, 2007b). Once in the extracellular milieu, 

nucleotides act on target cells through two families of P2 nucleotide receptors – the P2Y 

family of G protein-coupled receptors and the P2X family of ligand-gated cation channels 

(Abbracchio et al., 2006; Khakh and North, 2006).  

Eight P2Y subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11–14) and seven subtypes of 

P2X (P2X1–7) have been identified in mammals, and are involved in regulating processes 

such as secretion, cell proliferation, differentiation, motility and death (Khakh and North, 

2006; Burnstock, 2007a; Burnstock and Verkhratsky, 2010). Many P2Y receptors, 

including P2Y1, P2Y2, P2Y4 and P2Y6, couple to activation of phospholipase C (PLC), 

resulting in formation of inositol 1,4,5-trisphosphate (IP3) and subsequent release of Ca2+ 

from intracellular stores (Burnstock, 2007a). In contrast, homo- or heteromultimers of 

three ionotropic P2X receptor subunits form functional channels permeable to Na+, K+ 

and Ca2+ (Browne et al., 2010). Consequently, activation of P2X receptors results in 

membrane depolarization and, in many cases, Ca2+ influx. P2Y receptors are activated by 

one or more of adenosine 5’triphosphate (ATP), adenosine 5’-diphosphate (ADP), uridine 

5’-triphosphate (UTP), uridine 5’-diphosphate (UDP) or UDP-glucose, with P2Y1, P2Y2, 

P2Y4, and P2Y11-13 exhibiting some degree of sensitivity for ATP; in contrast, members of 

the P2X receptor family are activated solely by ATP (Burnstock, 2007a). 
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 All mammalian cell-types express multiple P2 receptor subtypes, each with 

varying affinities for purine and pyrimidine nucleotides (Volonte et al., 2006; Burnstock 

and Verkhratsky, 2009). Bone-forming osteoblasts can express P2Y1, P2Y2, P2Y6, P2Y12-

14 and P2X1-7, and several have been shown to regulate distinct processes in these cells 

(Orriss et al., 2010). For instance, activation of P2Y1 or P2Y2 enhances osteoblast 

responses to systemic factors such as parathyroid hormone (PTH) (Bowler et al., 1999; 

Bowler et al., 2001). ATP or UTP, acting through P2Y2, inhibit matrix mineralization in 

cultures of differentiating osteoblasts (Hoebertz et al., 2002; Orriss et al., 2007). In 

contrast, activated P2X7 receptors enhance osteoblast differentiation and increase bone 

formation (Ke et al., 2003; Panupinthu et al., 2008). More recently, P2Y12 and P2Y13 have 

also been shown to positively regulate osteoblast proliferation and differentiation in vitro 

and in vivo (Syberg et al., 2012; Wang et al., 2012). Though the functions of individual 

P2Y and P2X receptors have been examined in osteoblasts and other cell-types, 

mechanisms by which multiple P2 receptor subtypes act in concert to regulate cellular 

differentiation and function remain unclear in any system (Volonte et al., 2006).  

The nuclear factor of activated T-cells (NFAT) family of transcription factors 

includes four members that are regulated by cytosolic Ca2+ (NFATc1-4) (Crabtree and 

Olson, 2002). In resting cells, NFATc1-4 are phosphorylated and localized to the cytosol. 

Receptor-mediated elevation in cytosolic free Ca2+ concentration ([Ca2+]i) leads to 

activation of calcineurin, a serine/threonine phosphatase that dephosphorylates NFATc1-

4, resulting in their nuclear translocation and transcriptional activation (Hogan et al., 

2003). Though classically described as master regulators of T-cell development and 

function, NFATc1-4 also play essential roles in the differentiation and function of 
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neuronal, muscle and bone cells, including osteoblasts and osteoclasts (Hogan et al., 

2003; Sitara and Aliprantis, 2010; Moore and Goldberg, 2011). However, whether P2 

receptors signal through NFAT in bone-forming osteoblasts remains unexplored. 

In the present study, we show that endogenous co-expression of multiple P2Y and 

P2X receptors provides a novel mechanism for dose-to-duration encoding of Ca2+/NFAT 

signaling. Using osteoblasts as a model system, we found that increases in Ca2+ signaling 

could be achieved over a million-fold range of ATP concentrations. Low concentrations 

of ATP acting through P2Y receptors caused transient elevation of Ca2+ and brief nuclear 

localization of NFATc1, but failed to induce expression of NFAT target genes. In 

contrast, high ATP concentrations acting through P2X7 elicited sustained Ca2+/NFATc1 

signaling and robust NFAT transcriptional activity. Taken together, these data show that 

P2 receptor networks provide a mechanism by which cells sense ATP over a wide range 

of concentrations and transduce this input into distinct cellular signals. 
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2.3  Materials and Methods 

2.3.1  Materials and Solutions 

α-Minimum essential medium (α-MEM), heat-inactivated fetal bovine serum 

(FBS), antibiotic solution (10,000 U/ml penicillin, 10,000 µg/ml streptomycin, and 25 

µg/ml amphotericin B), trypsin solution, Dulbecco’s phosphate buffered saline (DPBS), 

Medium 199 buffered with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 

(25 mM) and HCO3
− (4 mM) (M199), HCO3

−-free MEM, Dulbecco’s modified Eagle 

medium (high glucose) (DMEM), UltraPureTM distilled water (DNase/RNase-free) and 

HEPES were obtained from GIBCO (Life Technologies Inc., Burlington, ON, Canada). 

Fluo-4 acetoxymethyl ester (fluo-4-AM), indo-1-AM and Pluronic F-127 were obtained 

from Molecular Probes (Life Technologies Inc.). FuGENE 6 and X-tremeGENE 9 were 

from Roche Diagnostics (Laval, QC, Canada). TRIzol reagent and were obtained from 

Invitrogen (Life Technologies Inc.). RNeasy Mini Kit was from QIAGEN (Toronto, ON, 

Canada). TaqMan One-Step reverse transcriptase-polymerase chain reaction (RT-PCR) 

Master Mix Reagents kit, cyclooxygenase-2 (COX-2 or Ptgs2) primers and probe 

(Mm00478374_m1) and 18S ribosomal RNA primers and probe were obtained from 

Applied Biosystems (Life Technologies Inc.). Passive Lysis Buffer, 5X and Bright-GloTM 

Luciferase Assay System were purchased from Promega (Madison, WI, USA). 

Biotinylated goat anti-mouse antibody, fluorescein-conjugated streptavidin (FITC) and 

Vectashield mounting medium with 4,6-diamidino-2-phenylindole (DAPI) were obtained 

from Vector Laboratories (Burlingame, CA, USA). NFATc1 mouse monoclonal antibody 

was obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Normal goat 

serum, collagenase type II, ethylene glycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic 
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acid tetrasodium salt (EGTA), ATP disodium salt, UTP trisodium salt hydrate, 2’-3’-O-

(4-benzoylbenzoyl)adenosine 5’-triphosphate (BzATP) triethylammonium salt, 1-oleoyl-

sn-glycero-3-phosphate (LPA) and suramin sodium salt were obtained from Sigma-

Aldrich (St. Louis, MO, USA). U 73122 was from Enzo Life Sciences (Plymouth 

Meeting, PA, USA). 3-[[5-(2,3-Dichlorophenyl)-1H-tetrazol-1-yl]methyl]pyridine 

hydrochloride (A 438079 HCl) was from Tocris Bioscience (Ellisville, MO, USA). 

HEPES buffer consisted of (in mM): 135 NaCl, 5 KCl, 1 MgCl2, 1 CaCl2, 20 HEPES and 

10 glucose, adjusted to pH 7.30±0.02, 290±5 mosmol/L. CaCl2 was omitted where 

indicated.   

 

2.3.2  Animals and Cell Culture 

The P2X7 loss-of-function (knockout) mouse, generated as previously described 

(Solle et al., 2001), was obtained from Pfizer. Though P2X7 is present in this genetically 

modified mouse model, the protein is truncated at its COOH-terminus resulting in greatly 

diminished receptor function (Masin et al., 2012). Colonies of both wild-type and 

knockout mice were maintained in a mixed genetic background (129/Ola × C57BL/6 × 

DBA/2) by crossbreeding of heterozygous mice. All procedures were approved by the 

Council on Animal Care at the University of Western Ontario and were in accordance 

with the guidelines of the Canadian Council on Animal Care.  

Calvarial osteoblasts were isolated from 5- to 7-d-old mice using sequential 

collagenase digestion, as previously described (Panupinthu et al., 2008). Freshly isolated 

calvarial osteoblasts were plated at a density of 1.0-1.5 × 104 cells/cm2 on Nunc six-well 

plates (Thermo Fisher Scientific, Rochester, NY, USA) and maintained in α-MEM 
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supplemented with 10% FBS and 1% antibiotic solution (culture medium) at 37°C and 

5% CO2. After confluence was reached (~3-5 days), cells were trypsinized and plated for 

experiments.  

The MC3T3-E1 osteoblast-like cell line was obtained from the American Type 

Culture Collection (Rockville, MD). A clonal non-transformed cell line established from 

newborn mouse calvaria (Sudo et al., 1983), variants of MC3T3-E1 cells have since been 

isolated that exhibit different phenotypic characteristics in vitro (Wang et al., 1999). For 

the present studies, the MC3T3-E1 Subclone 4 line was selected as these cells exhibit 

properties of osteoblasts, including elevation of adenosine 3’,5’-cyclic monophosphate 

(cAMP) in response to PTH and expression of transcripts for runt-related transcription 

factor 2 (RUNX2), bone sialoprotein (BSP) and osteocalcin (OCN). Moreover, cultures 

form mineralized bone-like nodules upon supplementation with ascorbic acid and 

phosphate (Wang et al., 1999). Expression of P2X7 receptors in these cells has been 

demonstrated previously (Li et al., 2005; Qi et al., 2007; Okumura et al., 2008).  

 

2.3.3  Fluorescence Measurement of [Ca2+]i 

For confocal microscopy, MC3T3-E1 cells or calvarial osteoblasts were plated at 

a density of 1.5 × 104 cells/cm2 on 35-mm glass bottom dishes (MatTek Corporation, 

Ashland, MA, USA) in culture medium. After 2 d, cells were placed in serum-free 

medium and incubated overnight. For experiments, cells were loaded with fluo-4 by 

incubation with fluo-4-AM (2 µg/ml) and 0.1% Pluronic F-127 for 30-45 min at 37°C and 

5% CO2. Medium was then replaced with M199 supplemented with 1% antibiotic 

solution, and cells were observed by live-cell confocal microscopy (model LSM 510; Carl 
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Zeiss Inc., Jena, Germany) at ~28°C using a Plan-Apochromat 40× objective (1.2 NA) 

with 488-nm Ar+ ion laser excitation. The emission wavelength was filtered at 500-550 

band pass and images were captured every 500 ms in time-lapse mode. 

 For spectrofluorimetry, MC3T3-E1 cells were loaded with indo-1 as previously 

described (Grol et al., 2012). For measurement of [Ca2+]i, 1 ml aliquots of indo-1-loaded 

cell suspensions (~1.0 × 106 cells) were sedimented and resuspended in 2 ml Ca2+-

containing or Ca2+-free Na+-HEPES buffer in a fluorometric cuvette at room temperature. 

Changes in [Ca2+]i were then monitored using a dual-wavelength spectrofluorimeter 

(Model RF-M2004; Photon Technology International, South Brunswick, NJ, USA) at 355 

nm excitation and emission wavelengths of 405 and 485 nm.   

 

2.3.4  Expression and Localization of NFATc1-EGFP 

The enhanced green fluorescent protein (EGFP)-tagged NFATc1 (NFATc1-

EGFP) fusion protein expression vector was purchased from GE Healthcare (Amersham 

Place, UK). For live-cell studies, MC3T3-E1 cells were plated at a density of 1.5 × 104 

cells/cm2 on 35-mm glass bottom dishes in culture medium. After 1 d, cells were 

transfected with the NFATc1-EGFP expression vector using FuGENE 6 according to 

manufacturer’s instructions. At 1 d post-transfection, cells were placed in serum-free 

medium and incubated overnight. On the day of the experiment, medium was replaced 

with M199 supplemented with 1% antibiotic solution, and cells were observed by 

confocal microscopy at ~28°C using a Zeiss Plan-Apochromat 40× objective (1.2 NA) 

with 488-nm Ar+ ion laser excitation. The emission wavelength was filtered at 500-550 

nm band pass, and image stacks of 2-µm slices were captured every 5 min in time-lapse 
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mode. Changes in subcellular localization were quantified by comparing the average 

fluorescence intensity in the nucleus (FN) to the average fluorescence intensity of an area 

of equal size in the cytosol (FC). Values of the ratio FN/FC were plotted as a function of 

time, and values for FN/FC exceeding 1 were taken to indicate nuclear localization. 

For fixed-cell studies, MC3T3-E1 cells were plated at a density of 1.5 × 104 

cells/cm2 on 12-mm glass coverslips in Falcon 24-well plates (BD Biosciences, 

Mississauga, ON, Canada) in culture medium. After 1 d, cells were transfected with the 

NFATc1-EGFP expression vector as described above. At 1 d post-transfection, cells were 

placed in serum-free medium and incubated overnight. On the day of the experiment, 

cells were incubated with test substances for the indicated times. Cells were then fixed 

with paraformaldehyde (4%) in sucrose solution (2%), sealed using Vectashield mounting 

medium with DAPI, and visualized by fluorescence microscopy. Cells were categorized 

as positive for nuclear localization of NFATc1-EGFP if fluorescence intensity of the 

nucleus exceeded that of the cytoplasm. The proportion of cells exhibiting nuclear 

localization was then calculated. Representative images were acquired using a Zeiss Plan-

Apochromat 40× objective (1.2 NA) at a slice thickness of 2 µm with one of the 

following configurations: 1) 405-nm diode or 488-nm Ar+ ion laser excitation with 

emission wavelengths filtered at 420-480 or 505-550 nm band pass, respectively; or 2) 

730-nm Chameleon multiphoton or 488-nm Ar+ ion laser excitation with emission 

wavelengths filtered at 390-465 or 500-550 nm band pass, respectively. 

 

2.3.5  Immunofluorescence Localization of Native NFATc1 

Calvarial osteoblasts were plated at a density of 1.5 × 104 cells/cm2 on 12-mm 
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glass coverslips in Falcon 24-well plates in culture medium. After 2 d, cells were placed 

in serum-free medium and incubated overnight. On the day of the experiment, cells were 

incubated with test substances for the indicated times. Cells were then fixed with 

paraformaldehyde (4%) in sucrose solution (2%), permeabilized with 0.1% Triton X-100 

in DPBS for 10 min, and blocked for 1 h with 1% normal goat serum in DPBS (blocking 

solution). To detect subcellular localization of native NFATc1, cells were incubated 

overnight at 4°C with a mouse monoclonal antibody (1:100 in blocking solution). The 

next day, cells were incubated with a biotinylated goat anti-mouse antibody (1:200 in 

blocking solution) for 2 h followed by 15 min incubation with fluorescein-conjugated 

streptavidin (FITC; 1:100 in DPBS). Stained samples were then sealed using Vectashield 

mounting medium with DAPI, and visualized by fluorescence microscopy. Cells were 

categorized as positive for nuclear localization of NFATc1 if fluorescence intensity of the 

nucleus exceeded that of the cytoplasm. Representative images were acquired using a 

Zeiss Plan-Apochromat 40× objective (1.2 NA) at a slice thickness of 2 µm with the 

appropriate excitation wavelengths and emission filters as described above. 

 

2.3.6  Real-time RT-PCR Analyses 

MC3T3-E1 or calvarial osteoblasts were plated at a density of 1.5 × 104 cells/cm2 

on Falcon 6-well plates in culture medium. After 2 d, cells were placed in serum-free 

medium and incubated overnight. On the day of the experiment, cells were incubated with 

test substances for the indicated times. Total RNA was isolated using TRIzol reagent and 

the RNeasy Mini Kit according to manufacturer’s instructions. Real-time PCR was 

performed using the ABI Prism 7900 HT Sequence Detector (PerkinElmer) with 15 µl 
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final reaction volumes containing 50 ng RNA sample, TaqMan One-Step RT-PCR Master 

Mix Reagents, and one of Ptgs2 or 18S ribosomal RNA primers and probes. Reverse 

transcription was performed at 48°C for 30 min followed by 40 cycles of amplification at 

an annealing temperature of 60°C. Reactions for each sample were performed in 

triplicate. All samples were normalized to 18S ribosomal RNA, and time 0 or vehicle-

treated controls using the delta-delta cycle threshold (ΔΔCt) method. 

 

2.3.7  Luciferase Reporter Assay for NFATc1 

The NFAT luciferase reporter plasmid (pGL3-NFAT luciferase, plasmid 17870) 

was obtained from Addgene (Cambridge, MA, USA). This plasmid possesses three copies 

of the NFAT site cloned upstream of the minimal interleukin (IL)-2 promoter (Clipstone 

and Crabtree, 1992). MC3T3-E1 and calvarial osteoblasts were transfected in suspension 

with the NFAT luciferase reporter vector using FuGENE 6 or X-tremeGENE 9 according 

to manufacturers’ instructions. Cells were subsequently plated at a density of 3.0 × 104 

cells/cm2 on Falcon 48-well plates in culture medium. At 1 d post-transfection, cells were 

placed in serum-free medium and incubated overnight. On the day of the experiment, 

cells were treated with test substances and subsequently incubated for 24 h. Cell lysates 

were then prepared by incubation with 65 µl of Passive Lysis Buffer, 1X per well at room 

temperature for a minimum of 30 min with agitation. To assess luminescence, 15 µl of 

lysate was combined with 15 µl of Bright-Glo Luciferase Reagent in a 96-well white 

plate (Greiner Bio-One, Monroe, NC, USA). Reactions for each sample were performed 

in triplicate. Luminescence was measured using 2-s integration per well on a LMAX II384 

microplate reader (Molecular Devices, Downingtown, PA, USA). 
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2.3.8  Statistical Analyses 

Data are shown as means ± S.E.M. Differences between two groups were assessed 

using t tests. Differences among three or more groups were evaluated by one-way 

analysis of variance followed by a Tukey multiple comparisons test, or two-way analysis 

of variance (ANOVA) followed by a Bonferroni multiple comparisons test. Differences 

were accepted as statistically significant at p < 0.05. 
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2.4  Results 

2.4.1  Effect of ATP Concentration on the Duration of Cytosolic Ca2+ Signals 

Cells of the osteoblast lineage express multiple subtypes of P2Y and P2X 

nucleotide receptors (Orriss et al., 2012). Given the central role for Ca2+ in P2 receptor 

signaling, we investigated the functional significance of endogenous P2 receptor 

networks by assessing Ca2+ signaling elicited by extracellular ATP. MC3T3-E1 

osteoblast-like cells were loaded with the Ca2+-sensitive dye fluo-4, and changes in 

[Ca2+]i were monitored using real-time imaging of live cells by confocal microscopy 

(Figure 2.1 A). A low concentration of ATP (10 μM, which activates some P2Y and all 

P2X receptor subtypes except P2X7; ATPlow) induced large, transient elevations in [Ca2+]i 

that recovered to baseline within ~240 s after stimulation (data are whole-field Ca2+ 

responses, Figure 2.1 A, B; Video 2.1, video legend in Appendix A). In contrast, a higher 

ATP concentration (1 mM, which activates some P2Y and all P2X receptor subtypes 

including P2X7; ATPhigh) elicited larger, more sustained elevations in [Ca2+]i exceeding 

20 min in duration (Figure 2.1 A, B; Video 2.2, video legend in Appendix A). Vehicle 

elicited a small elevation in [Ca2+]i (Figure 2.1 A, B), consistent with fluid shear-induced 

release of ATP and slight P2 receptor activation (Figures 2.2 and 2.3), as described 

previously (Ke et al., 2003; Li et al., 2005). 

To further characterize ATP-induced Ca2+ signaling, changes in [Ca2+]i were 

assessed in response to ATP concentrations from 1 nM to 10 mM. We first plotted the 

peak amplitude of the Ca2+ signal against ATP concentration (Figure 2.1 C).  

Remarkably, graded increases in the peak Ca2+ response were observed over a million-

fold range of ATP concentrations (1 nM to 1 mM).  The amplitude at 10 mM ATP was
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Figure 2.1 P2 Nucleotide Receptor-induced Elevations in Cytosolic Free Ca2+ are 

Dependent on ATP Concentration.  

MC3T3-E1 cells were loaded with the Ca2+-sensitive dye fluo-4 and changes in 

[Ca2+]i were monitored by confocal microscopy. Concentrations of ATP indicated are 

final concentrations in the bath. Each concentration was tested on separate cell samples. 

A, representative fields of cells treated with vehicle, ATPlow (10 µM) or ATPhigh (1 mM). 

Scale bar is 20 µm. Videos 2.1 and 2.2 show responses to ATPlow and ATPhigh, 

respectively (video legends in Appendix A). B, changes in [Ca2+]i were quantified from 

the average responses of cells in a single field as (F/Fo)-1, where F is fluorescence 

intensity and Fo is baseline fluorescence observed prior to treatment. At the point 

indicated by the arrows, cells were treated with vehicle (Veh), ATPlow or ATPhigh were 

added. Traces are representative of responses from 8 independent preparations. C, peak 

amplitude was quantified as the maximal rise in [Ca2+]i above basal levels. Responses to 

vehicle are indicated by the letter V. D, the sustained phase was quantified as the 

amplitude of the Ca2+ response at 10 min post-treatment. E, change in [Ca2+]i was also 

quantified as the area under the curve, providing a combined measure of amplitude and 

duration. The area was determined from the beginning of agonist-induced elevation in 

[Ca2+]i until cytosolic Ca2+ recovered to within 15% of baseline. The inset shows an 

expanded view. Data in C-E are means ± S.E.M. (n = 8 independent preparations). 
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Figure 2.2 Vehicle-induced Elevations in [Ca2+]i are Suppressed by ATP.  

MC3T3-E1 cells were loaded with the Ca2+-sensitive dye fluo-4 and changes in 

[Ca2+]i were monitored by confocal microscopy. A and C, where indicated by the arrows, 

cells were treated with vehicle (Veh) or ATPlow (10 µM). After ~7.5 min, the same fields 

of cells were treated with ATPlow or vehicle. Pre-addition of ATPlow suppressed Ca2+ 

responses elicited by vehicle addition. Traces are representative of responses from 4 

independent preparations. B and D, Ca2+ elevations were analyzed for their peak 

amplitude. Pre-addition of vehicle did not significantly affect subsequent responses to 

ATPlow (B). In contrast, pre-addition of ATPlow significantly suppressed subsequent 

responses to vehicle (D). These data suggest that small elevations in [Ca2+]i induced by 

addition of vehicle may arise from fluid shear-induced release of ATP. α indicates 

significant difference between treatments (p < 0.05). Data are means ± S.E.M. (n = 8-9 

samples from 4 independent preparations). 
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Figure 2.3 Vehicle-induced Elevations in [Ca2+]i are Blocked by a P2 Nucleotide 

Receptor Antagonist.  

[Ca2+]i of MC3T3-E1 cells loaded with fluo-4 was monitored using confocal 

microscopy. A, cells were incubated for a minimum of 45 min in the absence (Control) or 

presence of the P2 receptor antagonist suramin (100 µM). Where indicated by the arrows, 

cells were then treated with vehicle (Veh). Suramin suppressed Ca2+ responses elicited by 

vehicle addition. Traces are representative of responses from 3 independent preparations. 

B, Ca2+ elevations were analyzed for their peak amplitude. α indicates significant effect of 

P2 antagonist compared to control (p < 0.05). Data are means ± S.E.M. (n = 9 samples 

from 3 independent preparations). Taken together with the results presented in Figure 2.2, 

these data further support the notion that addition of vehicle creates fluid shear, leading to 

release of endogenous ATP and subsequent P2 receptor signaling. Consistent with this 

conclusion, there was virtually no Ca2+ response to vehicle when added to cells suspended 

in a fluorometric cuvette with continuous stirring (Figure 2.6 A, D), a condition in which 

cells were constantly exposed to an unchanging fluid shear stimulus. 
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slightly reduced, likely reflecting chelation of extracellular Ca2+ by this high 

concentration of ATP. In contrast, only ATP concentrations >100 µM elicited a sustained 

Ca2+ signal (measured as amplitude 10 min post-treatment, Figure 2.1 D).2 Finally, we 

quantified the magnitude of responses as the area under the fluorescence-time curve, 

providing a combined measure of both amplitude and duration. In this case, concentration 

dependence was clearly biphasic (Figure 2.1 E). The first phase began at ~1 nM and 

plateaued at ~1 µM ATP, whereas the second phase began at ~100 µM and plateaued at 

~1 mM ATP.   

 

2.4.2  P2X7 is Essential for Sustained Cytosolic Ca2+ Signaling Elicited by High 

Concentrations of ATP 

Extracellular ATP activates a number of P2Y and P2X receptor subtypes at 

concentrations within the nM to µM range; in contrast, P2X7 is stimulated solely at ATP 

concentrations exceeding 100 µM (Khakh and North, 2006; Burnstock, 2007a). 

Therefore, we investigated whether P2X7 receptors mediate the effects of high ATP 

concentrations. Changes in [Ca2+]i were examined following treatment of osteoblast-like 

cells with vehicle, ATPlow or BzATP (300 µM) in the absence or presence of A 438079 

(10 µM), a specific P2X7 antagonist (Nelson et al., 2006; Donnelly-Roberts and Jarvis, 

2007) (Figure 2.5 A-C). Although not specific for P2X7, BzATP is a more potent agonist 

than ATP at the P2X7 receptor (North, 2002). In the absence of antagonist, BzATP 

elicited a large, sustained elevation in cytosolic Ca2+, whereas ATPlow induced a more

                                                 
2 Similar patterns of concentration dependence were observed when percentages of cells 
exhibiting elevation of [Ca2+]i were examined (Figure 2.4).   
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Figure 2.4 The Percentage of Cells Exhibiting P2 Nucleotide Receptor-induced 

Elevations in [Ca2+]i is Dependent on ATP Concentration.  

[Ca2+]i of MC3T3-E1 cells loaded with fluo-4 was monitored using confocal 

microscopy. Concentrations of ATP indicated are final concentrations in the bath. Each 

concentration was tested on separate cell samples. Responses to vehicle are indicated by 

the letter V. A, data are the percentage of responding cells in a field at the indicated 

concentration of ATP. In this case, cells were considered to have responded when the 

peak amplitude (i.e. maximal rise in [Ca2+]i) was ≥ 100% of basal levels. B, data are the 

percentage of cells in a field exhibiting a sustained Ca2+ response at the indicated 

concentration of ATP. In this case, cells were considered to have a sustained response 

when the amplitude at 10 min post-treatment was ≥ 50% of basal levels. Data for both A 

and B are means ± S.E.M. (n = 8 independent preparations). These single cell data closely 

resemble Ca2+ responses seen in whole-field analyses presented in Figure 1 C, D. Thus, 

the dependence of Ca2+ signaling on ATP concentration is due, at least in part, to changes 

in the proportion of responding cells. 



120 
 



121 
 
 

 

 

 

 

 

Figure 2.5 The P2X7 Receptor is Required for Sustained Elevations in [Ca2+]i.  

A, [Ca2+]i of MC3T3-E1 cells loaded with fluo-4 was monitored using confocal 

microscopy. Cells were incubated for 5-10 min in the absence or presence of the specific 

P2X7 antagonist A 438079 (10 µM). At the point indicated by the arrows, cells were then 

treated with vehicle (Veh), ATPlow (10 µM) or BzATP (300 µM). Traces are 

representative of responses from 6 independent preparations. B and C, Ca2+ elevations 

were analyzed for their (B) peak amplitude and (C) sustained phase. α indicates 

significant difference from vehicle; β indicates significant difference between ATPlow and 

BzATP (p < 0.05). Data are means ± S.E.M. (n = 12 samples from 6 independent 

preparations). D, calvarial osteoblasts from wild-type and P2X7 knockout mice were 

loaded with fluo-4 and changes in [Ca2+]i were monitored. Where indicated by the arrows, 

cells were treated with Vehicle (Veh), ATPlow (10 µM), ATPhigh (1 mM) or BzATP (300 

µM). Traces are representative of responses from 6 independent preparations. E and F, 

Ca2+ elevations in calvarial osteoblasts were analyzed for amplitudes of the peak (E) and 

sustained phase (F). α indicates significant difference from Vehicle within the same 

genotype; β indicates significant difference between ATPhigh or BzATP and ATPlow 

within the same genotype (p < 0.05). Data are means ± S.E.M. (n = 10-11 samples from 6 

independent preparations). 
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transient increase (Figure 2.5 A-C). A 438079 abolished the sustained phase of the 

BzATP-induced response, converting it to a transient increase comparable to that elicited 

by ATPlow (Figure 2.5 A-C). A 438079 had no effect on Ca2+ elevation induced by 

ATPlow, consistent with the specificity of this P2X7 receptor antagonist. 

 To confirm the role of P2X7 in mediating effects of high concentrations of ATP or 

BzATP on cytosolic Ca2+ signaling, changes in [Ca2+]i were examined in primary 

calvarial osteoblasts isolated from wild-type mice and mice with loss of P2X7 function 

(knockout) (Figure 2.5 D-F). Stimulation of wild-type calvarial osteoblasts with ATPlow 

induced transient elevations in [Ca2+]i that returned to baseline within ~240 s, whereas 

ATPhigh and BzATP (300 µM) both elicited more sustained elevations of [Ca2+]i 

exceeding 20 min in duration. In contrast, responses to ATPhigh in calvarial osteoblasts 

from knockout mice were comparable to those induced by ATPlow, and treatment with 

BzATP had no significant effect on [Ca2+]i (Figure 2.5 D-F). Taken together, 

pharmacological and genetic evidence establish that the sustained elevations in [Ca2+]i 

induced by BzATP or high concentrations of ATP are mediated by activation of P2X7 

receptors.  

 

2.4.3  Source of Ca2+ Underlying the Transient and Sustained Elevations of [Ca2+]i 

Elicited by ATP   

Several P2Y receptors couple to activation of PLC, resulting in release of Ca2+ 

from intracellular stores (Burnstock, 2007a). In contrast, P2X receptors form channels 

that in many cases permit Ca2+ influx (Browne et al., 2010). We next determined the 

source of Ca2+ required for the transient and sustained elevations of [Ca2+]i. To assess the 
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contribution of intracellular stores, changes in [Ca2+]i were examined following treatment 

with vehicle, ATPlow or BzATP (300 µM) in the absence or presence of the PLC inhibitor 

U 73122 (1 µM) (Figure 2.6 A-C). U 73122 abolished the response induced by ATPlow 

and the transient component of the Ca2+ signal elicited by BzATP. In contrast, the 

inhibitor had no significant effect on the sustained phase of the BzATP-induced response 

(Figure 2.6 A-C).  

To determine the role of extracellular Ca2+, changes in [Ca2+]i were examined 

following treatment of cells with vehicle, ATPlow or BzATP (300 µM) in the presence or 

absence of extracellular Ca2+ (Figure 2.6 D-F). Removal of extracellular Ca2+ abolished 

the sustained phase of the BzATP-induced response. In contrast, there was no significant 

effect on the transient component of the responses to ATPlow and BzATP (Figure 2.6 D-

F). Taken together, these data are consistent with ATPlow activating P2Y receptors, 

leading to release of Ca2+ from intracellular stores. On the other hand, BzATP activates 

both P2Y receptors and P2X7, leading to transient release of Ca2+ from intracellular 

stores and sustained influx, respectively.  

We further investigated the nature of the P2Y receptors mediating transient Ca2+ 

signaling. UTP (10 µM) elicited responses comparable to those elicited by ATPlow, 

providing further evidence for involvement of P2Y receptors. Next, we examined 

responses to sequential addition of ATPlow and UTP and observed marked cross-

desensitization (Figure 2.7), consistent with the agonist specificities of P2Y2 and/or P2Y4 

(Burnstock, 2007a). 
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Figure 2.6 Distinct Sources of Ca2+ Underlie Transient and Sustained Elevations in 

[Ca2+]i.  

MC3T3-E1 cells were loaded with the Ca2+-sensitive dye indo-1 and suspended in 

HEPES buffer in a fluorometric cuvette with continuous stirring. Changes in [Ca2+]i were 

monitored by fluorescence spectrophotometry, and quantified as the ratio of emission 

intensity at 405 nm to that at 485 nm. A, cells were incubated for 300 s in the absence or 

presence of the PLC inhibitor U 73122 (1 µM) in Ca2+-containing HEPES buffer. At the 

point indicated by the arrows, cells were then treated with Vehicle (Veh), ATPlow (10 

µM) or BzATP (300 µM). Traces are representative of responses from 4 independent 

preparations. B and C, Ca2+ elevations were analyzed for their (B) peak amplitude and (C) 

sustained phase. α indicates significant difference from Vehicle; β indicates significant 

difference between ATPlow and BzATP (p < 0.05). Data are means ± S.E.M. (n = 7 

samples from four independent preparations). D, cells were incubated for 100 s in the 

absence or presence of the Ca2+ chelator EGTA (0.5 mM) in Ca2+-containing or 

nominally Ca2+-free HEPES buffer, respectively. At the point indicated by the arrows, 

cells were then treated with Vehicle (Veh), ATPlow (10 µM) or BzATP (300 µM). Traces 

are representative of responses from four independent preparations. E and F, Ca2+ 

elevations were analyzed for amplitudes of the peak (E) and sustained phase (F). α 

indicates significant difference from Vehicle; β indicates significant difference between 

ATPlow and BzATP (p < 0.05). Data are means ± S.E.M. (n = 6 samples from four 

independent preparations). 
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Figure 2.7 P2Y2 and/or P2Y4 Mediate Elevations in [Ca2+]i Elicited by ATPlow.  

[Ca2+]i of MC3T3-E1 cells loaded with fluo-4 was monitored using confocal 

microscopy. A, C and E, where indicated by the arrows, cells were treated with ATPlow 

(10 µM) or UTP (10 µM). After ~7.5 min, the same cells were treated again with ATPlow 

or UTP. B, D and F, Ca2+ elevations were analyzed for their peak amplitude. Pre-addition 

of ATPlow significantly attenuated a second response to ATPlow (B). Interestingly, pre-

addition of UTP significantly attenuated a subsequent response to ATPlow (D). Similarly, 

pre-addition of ATPlow significantly attenuated a subsequent response to UTP (F), 

indicating cross-desensitization. For control experiments, pre-addition of ATPlow was 

followed by treatment of lysophosphatidic acid (10 µM), which acts through distinct Ca2+ 

mobilizing G protein-coupled receptors on osteoblasts (not shown). In this case, the 

degree of cross-desensitization was significantly less. These control data argue against the 

possibility that cross-desensitization of nucleotide responses are due simply to depletion 

of intracellular Ca2+ stores. Taken together with the data presented in A-F, this suggests 

that ATP and UTP interact with a common receptor, likely P2Y2 and/or P2Y4. Traces are 

representative of responses from 4 independent preparations. α indicates significant 

difference between treatments (p < 0.05). Data are means ± S.E.M. (n = 8 samples from 4 

independent preparations). 
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2.4.4  Effect of ATP Concentration on the Duration of NFATc1 Nuclear 

Localization 

Elevations in [Ca2+]i can activate calcineurin, resulting in NFATc1 translocation 

from the cytoplasm to the nucleus (Crabtree and Olson, 2002; Hogan et al., 2003). To 

characterize the dynamics of NFATc1 activation in response to ATP, osteoblast-like cells 

were transfected with EGFP-tagged NFATc1, and subcellular localization was monitored 

by confocal imaging of live cells. In the absence of agonists, NFATc1-EGFP was 

uniformly distributed throughout the cytoplasm, with little if any fluorescence in the 

nucleus (Figure 2.8). ATP (0.01-1 mM) and BzATP (300 µM) all induced prompt 

translocation of NFATc1-EGFP to the nucleus. Low concentrations of ATP (10-100 μM) 

elicited transient nuclear localization of NFATc1-EGFP, with recovery of cytosolic 

fluorescence less than 90 min after stimulation (Figure 2.8; Video 2.3, video legend in 

Appendix A). In contrast, ATPhigh and BzATP both induced more sustained nuclear 

localization of NFATc1-EGFP that persisted for at least 2 h (Figure 2.8; Video 2.4, video 

legend in Appendix A).   

 To quantify NFATc1 activation, osteoblast-like cells expressing NFATc1-EGFP 

were treated and fixed at various time points. The percentage of cells exhibiting nuclear 

localization of NFATc1-EGFP was determined and expressed as a function of nucleotide 

concentration or time. When assessed 15 min after addition of nucleotide, nuclear 

localization of NFATc1-EGFP was induced in a concentration-dependent manner over a 

relatively narrow range for ATP and UTP (from ~0.1 to 1 µM) and BzATP (from ~1 to 

100 µM) (Figure 2.9 A). Responses to low concentrations of ATP and UTP and higher 

concentrations of BzATP indicate involvement of multiple P2 receptor subtypes.
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Figure 2.8 Live-Cell Confocal Microscopy Reveals that Duration of NFATc1 

Nuclear Localization is Dependent on ATP Concentration.  

MC3T3-E1 cells were transfected with plasmids encoding EGFP-tagged NFATc1 

and changes in subcellular localization of NFATc1-EGFP were monitored by confocal 

microscopy. A, representative fields of cells treated with Vehicle, ATPlow (10 µM), 

ATPhigh (1 mM) or BzATP (300 µM). Scale bars are 20 µm. Videos 3 and 4 show 

responses to ATPlow and BzATP, respectively (video legends in Appendix A). B, to 

quantify subcellular localization of NFATc1-EGFP, the average pixel intensity of the 

nucleus (FN) and the average pixel intensity of an area of equal size in the cytosol (FC) 

were determined. Values of the ratio FN/FC were plotted as a function of time, and values 

for FN/FC exceeding 1 were taken to indicate nuclear localization. Plots are representative 

time courses of nuclear localization for the cells marked with a white asterisk in (A). The 

time of addition of test substance is indicated by the vertical broken line. Data are 

representative responses of cells from a minimum of 4 independent transfections. 
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Figure 2.9 Duration of NFATc1 Nuclear Localization is Dependent on ATP 

Concentration.  

MC3T3-E1 cells were transfected with plasmids encoding EGFP-tagged NFATc1. 

A, cells were treated with the indicated concentrations of UTP, ATP or BzATP and fixed 

at 15 min. The number of cells exhibiting nuclear localization was expressed as a 

percentage of the total number of transfected cells. Data are means ± S.E.M. (n = 3 

independent experiments performed in triplicate). B, cells were treated with Vehicle, 

ATPlow (10 µM), ATPhigh (1 mM) or BzATP (300 µM) and fixed at the indicated times. 

Nuclei were stained with DAPI (blue). Images are representative of responses from 4 

independent preparations. Scale bar is 20 µm. C, cells were treated with vehicle, ATPlow, 

ATPhigh or BzATP, and fixed at time points from 0 to 240 min. The percentage of cells 

exhibiting nuclear localization of NFATc1 was quantified. Data are means ± S.E.M. (n = 

4 independent experiments performed in triplicate).  
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Moreover, at this early time point, NFATc1 responds to ATP over a relatively narrow 

dynamic range of concentrations. 

We next examined the time course of NFATc1 nuclear translocation. Consistent 

with the live-cell data (Figure 2.8), nuclear localization of NFATc1-EGFP elicited by 

ATPlow was transient, with recovery of cytosolic localization in all cells by 90 min 

(Figure 2.9 B, C). In contrast, ATPhigh and BzATP both induced sustained localization of 

NFATc1-EGFP to the nucleus that persisted for up to 3 h (Figure 2.9 B, C). Thus, 

elevations in [Ca2+]i elicited by increasing ATP concentrations are transduced into graded 

increases in the duration of NFATc1 nuclear localization. Moreover, effects of BzATP 

and ATPhigh implicate the P2X7 receptor in mediating prolonged NFATc1 nuclear 

localization. 

 

2.4.5  P2X7 is Essential for Sustained NFATc1 Nuclear Localization Elicited by 

High Concentrations of ATP 

To investigate whether P2X7 receptors mediate sustained NFATc1 nuclear 

localization, MC3T3-E1 cells were transfected with EGFP-tagged NFATc1 and treated 

with vehicle, ATPlow or BzATP (300 µM) in the absence or presence of A 438079 (10 

µM). A 438079 abolished the sustained phase of the BzATP-induced response, 

converting it to a transient response comparable to that elicited by ATPlow (Figure 2.10 A, 

B). In contrast, this antagonist had no effect on the transient nuclear localization of 

NFATc1-EGFP stimulated by ATPlow.  

 To confirm the role of P2X7 receptors in mediating sustained nuclear localization 

of NFATc1, primary calvarial osteoblasts were isolated from P2X7 knockout and wild-
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Figure 2.10 The P2X7 Receptor is Required for Sustained NFATc1 Nuclear 

Localization.  

A, MC3T3-E1 cells were transfected with plasmids encoding EGFP-tagged 

NFATc1. Cells were incubated for 5-10 min in the absence or presence of A 438079 (10 

µM). Next, cells were treated with Vehicle, ATPlow (10 µM) or BzATP (300 µM) and 

fixed at the indicated times. Images are representative responses of cells from six 

independent preparations. Scale bar is 20 µm. B, the percentage of MC3T3-E1 cells 

exhibiting NFATc1 nuclear localization was quantified. α indicates significant difference 

between BzATP and ATPlow (p < 0.05). Data are means ± S.E.M. (n = 6 independent 

experiments performed in triplicate). C, calvarial osteoblasts from wild-type (WT) and 

P2X7 knockout (KO) mice were treated with Vehicle, ATPlow (10 µM), ATPhigh (1 mM) 

or BzATP (300 µM) and fixed at 15 or 120 min. Subcellular localization of endogenous 

NFATc1 was detected by immunofluorescence (green). Nuclei were stained with DAPI 

(blue). Images are representative responses from 3-4 separate preparations. Scale bar is 

20 µm. D, The percentage of calvarial osteoblasts exhibiting NFATc1 nuclear localization 

was quantified. α indicates significant difference from vehicle within the same genotype; 

β indicates significant difference between ATPhigh or BzATP and ATPlow within the same 

genotype (p < 0.05). Note the expanded y-axis scale in right panel. Data are means ± 

S.E.M. (n = 6-8 samples from 3-4 independent preparations).  
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type mice. Cultures were treated with vehicle, ATPlow, ATPhigh or BzATP (300 µM), and 

fixed at 15 or 120 min (Figure 2.10 C, D). Endogenous NFATc1 was labeled using a 

monoclonal antibody and localized by immunofluorescence (Figure 2.10 C). The 

percentage of cells exhibiting nuclear localization was determined for each treatment at 

15 and 120 min (Figure 2.10 D). Stimulation of wild-type calvarial osteoblasts with 

ATPlow induced transient NFATc1 nuclear localization, whereas ATPhigh and BzATP both 

elicited sustained localization (Figure 2.10 C, D). In contrast, responses of osteoblasts 

from knockout mice to ATPhigh and BzATP were transient and comparable to those 

elicited by ATPlow (Figure 2.10 C, D). Approximately 35% of wild-type osteoblasts 

responded to ATPhigh and BzATP at 120 min (Figure 2.10 D, right panel), in keeping with 

the percentage of primary calvarial osteoblasts reported previously to express functional 

P2X7 receptors (Panupinthu et al., 2007).  

Taken together, these experiments establish that the sustained nuclear localization 

of NFATc1 elicited by BzATP or high concentrations of ATP is mediated by activation of 

P2X7 receptors; whereas, transient localization induced by low concentrations of ATP is 

due to activation of higher affinity P2 receptors.  

 

2.4.6  Effects of Nucleotides on NFAT Transcriptional Activity 

To determine if differences in duration of P2 receptor-induced Ca2+/NFATc1 

signaling give rise to corresponding alterations in expression of NFAT target genes, 

MC3T3-E1 cells were treated with vehicle, ATPlow, ATPhigh or BzATP (300 µM). Total 

RNA was isolated at various times, and expression of the NFATc1 target gene Ptgs2 

(encoding COX-2) was assessed by real-time RT-PCR (Figure 2.11 A). BzATP and



138 
 
 

 

 

 

 

 

 

Figure 2.11 P2 Nucleotide Receptor-induced Changes in NFAT Transcriptional 

Activity are Dependent on ATP Concentration.  

A, MC3T3-E1 cells were treated with vehicle, ATPlow (10 µM), ATPhigh (1 mM) 

or BzATP (300 µM), and total RNA was isolated at the indicated times. Real-time RT-

PCR was performed to assess expression levels of the NFATc target gene Ptgs2 

(encoding COX-2). Data were normalized to levels of 18S, and are shown relative to 

values for vehicle-treated cultures at 0 min. α indicates significant difference from vehicle 

at each time point; β indicates significant difference between ATPhigh or BzATP and 

ATPlow at each time point (p < 0.05). Data are means ± S.E.M. (n = 9 samples from 3 

independent preparations). B, MC3T3-E1 cells were transfected with an NFAT luciferase 

reporter plasmid and treated with vehicle, ATPlow, ATPhigh or BzATP. After 24 h, cell 

lysates were collected and luminescence was assessed as a measure of NFAT 

transcriptional activity. Luminescence was expressed relative to vehicle. α indicates 

significant difference from vehicle; β indicates significant difference between ATPhigh or 

BzATP and ATPlow (p < 0.05). Data are means ± S.E.M. (n = 12 samples from 4 

independent preparations).    
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ATPhigh elicited dramatic increases in expression of Ptgs2 that peaked at 3 h before 

returning to baseline by 6 h after treatment. In contrast, ATPlow did not induce any 

increase in Ptgs2 expression. 

The Ptgs2 promoter contains binding sites for many transcription factors in 

addition to NFAT (Kang et al., 2007). To more specifically assess changes in NFAT 

transcriptional activity, osteoblast-like cells were transfected with an NFAT luciferase 

reporter and treated with vehicle, ATPlow, ATPhigh or BzATP (300 µM). After 24 h, cell 

lysates were collected and luminescence was assessed as a measure of NFAT 

transcriptional activity (Figure 2.11 B). Similar to the pattern observed for Ptgs2, BzATP 

and ATPhigh both elicited significant increases in NFAT transcriptional activity. In 

contrast, ATPlow did not induce any significant change compared to vehicle (Figure 2.11 

B). Taken together, sustained Ca2+/NFATc1 signaling elicited by high concentrations of 

ATP or BzATP is associated with robust expression of NFAT target genes. 

To confirm a role for the Ca2+/calcineurin pathway in regulation of NFAT 

transcriptional activity, changes in Ptgs2 expression and NFAT reporter activity were 

examined (Figure 2.12). Osteoblast-like cells were treated with vehicle, ATPlow, ATPhigh 

or BzATP (300 µM) in the presence or absence of the calcineurin inhibitors cyclosporin 

A (1 µM) or FK506 (1 µM). Both cyclosporin A and FK506 significantly suppressed 

expression of Ptgs2 induced by ATPhigh and BzATP (Figure 2.12 A). Moreover, in 

osteoblast-like cells transfected with the NFAT luciferase reporter, the effects of BzATP 

and ATPhigh were abolished by inhibition of calcineurin (Figure 2.12 B). These 

observations are consistent with nucleotide-induced changes in Ptgs2 expression and 

NFAT reporter activity being mediated by activation of the Ca2+/calcineurin pathway.
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Figure 2.12 P2 Nucleotide Receptor-induced Changes in NFAT Transcriptional 

Activity are Mediated by Ca2+/Calcineurin Signaling.  

A, MC3T3-E1 cells were incubated for 30 min in the absence or presence of 

calcineurin inhibitors cyclosporin A (1 µM) or FK506 (1 µM). Next, cells were treated 

for 3 h with vehicle, ATPlow, ATPhigh or BzATP in the continued absence (Control) or 

presence of inhibitor. Total RNA was then isolated and real-time RT-PCR was performed 

to assess expression levels of Ptgs2. Data are normalized to levels of 18S and are shown 

relative to values for control cultures treated with vehicle. α indicates a significant 

difference from vehicle; β indicates significant difference between ATPhigh or BzATP and 

ATPlow. δ indicates significant effect of inhibitor (p < 0.05). Data are means ± S.E.M. (n = 

6 samples from 3 independent preparations). B, MC3T3-E1 cells transfected with the 

NFAT luciferase reporter plasmid were incubated for 30 min in the absence (Control) or 

presence of cyclosporin A (1 µM) or FK506 (1 µM). Next, cells were treated with 

vehicle, ATPlow, ATPhigh or BzATP in the continued absence or presence of inhibitor. 

After 24 h, cell lysates were collected and luminescence was assessed. Luminescence was 

expressed relative to values for control cultures treated with vehicle. α indicates 

significant difference from vehicle; β indicates significant difference between ATPhigh or 

BzATP and ATPlow (p < 0.05). Data are means ± S.E.M. (n = 9 samples from 3 

independent preparations).   
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2.4.7  P2X7 is Essential for Mediating Effects of High Concentrations of ATP on 

NFAT Transcriptional Activity 

Changes in Ptgs2 expression and NFAT reporter activity were examined in 

osteoblast-like cells following treatment with vehicle, ATPlow, ATPhigh or BzATP (300 

µM) in the absence or presence of A 438079 (10 µM). A 438079 completely abolished 

the effects of ATPhigh and BzATP both on expression of Ptgs2 (Figure 2.13 A) and on 

luminescence in osteoblast-like cells transfected with the NFAT luciferase reporter 

(Figure 2.13 B).  

 To confirm the involvement of P2X7 receptors, changes in Ptgs2 expression and 

NFAT reporter activity were examined in primary calvarial osteoblasts isolated from 

P2X7 knockout and wild-type mice. Stimulation of wild-type calvarial osteoblasts with 

ATPhigh or BzATP (300 µM) induced significant expression of Ptgs2 at 3 h, whereas 

ATPlow had no effect (Figure 2.13 C). In contrast, ATPlow, ATPhigh and BzATP all failed 

to elicit expression of Ptgs2 in calvarial osteoblasts from knockout mice (Figure 2.13 C). 

Moreover, in primary calvarial osteoblasts transfected with the NFAT luciferase reporter, 

ATPhigh induced an increase in luminescence that was absent in cells from knockout mice 

(Figure 2.13 D)3. These observations establish that the increase in NFAT transcriptional 

activity and target gene expression elicited by BzATP or high concentrations of ATP is 

mediated by activation of the P2X7 receptor. 

                                                 
3 In primary calvarial cell cultures from wild-type and P2X7 knockout mice, BzATP has toxic 
effects unrelated to P2X7 receptor signaling (unpublished observations). These effects are not 
observed in cultures of MC3T3-E1 cells. As a result, ATPhigh but not BzATP was used to activate 
P2X7 in experiments employing calvarial cells transfected with the NFAT reporter plasmid. 
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Figure 2.13 The P2X7 Receptor is Required for Changes in NFAT Transcriptional 

Activity Elicited by ATPhigh or BzATP.  

A, MC3T3-E1 cells were incubated for 5-10 min in the absence (Control) or 

presence of A 438079 (10 µM). Next, cells were treated for 3 h with vehicle, ATPlow (10 

μM), ATPhigh (1 mM) or BzATP (300 μM) in the continued absence or presence of 

antagonist. Real-time RT-PCR was performed to assess expression levels of Ptgs2. Data 

were normalized to levels of 18S and are shown relative to values for control cultures 

treated with vehicle. Note the expanded y-axis scale. B, MC3T3-E1 cells transfected with 

the NFAT luciferase reporter plasmid were incubated for 5-10 min in the absence or 

presence of A 438079 (10 µM). Next, cells were treated with Vehicle, ATPlow, ATPhigh or 

BzATP in the continued absence or presence of antagonist. After 24 h, cell lysates were 

collected and luminescence was assessed. Luminescence was expressed relative to values 

for control cultures treated with vehicle. For both (A) and (B), α indicates significant 

difference from vehicle; β indicates significant difference between ATPhigh or BzATP and 

ATPlow (p < 0.05). Data are means ± S.E.M. (n = 9 samples from three independent 

preparations). C, primary osteoblasts from wild-type and P2X7 knockout mice were 

treated with vehicle, ATPlow, ATPhigh or BzATP, and total RNA was isolated at 3 h. Real-

time RT-PCR was performed to assess expression levels of Ptgs2. Data were normalized 

to levels of 18S and are shown relative to values for wild-type cultures treated with 

vehicle. D, primary osteoblasts were transfected with an NFAT luciferase reporter 

plasmid and treated with vehicle, ATPlow or ATPhigh. After 24 h, cell lysates were 

collected and luminescence was assessed. Luminescence was expressed relative to values 

for wild-type cultures treated with vehicle. For both (C) and (D), α indicates significant 

difference from vehicle within the same genotype; β indicates significant difference 

between ATPhigh or BzATP and ATPlow within the same genotype (p < 0.05). Data are 

means ± S.E.M. (n = 9-12 samples from 3-4 independent preparations).  



145 
 



146 
 
2.5  Discussion 

In this study, we examined ATP-induced Ca2+/NFAT signaling through a network 

of endogenously expressed P2 nucleotide receptors. We show that ensembles of P2Y and 

P2X receptor subtypes impart sensitivity over a wide range of ATP concentrations, and 

provide a mechanism by which cells transduce ATP levels into distinct cellular signals 

(Figure 2.14). Specifically, low concentrations of ATP act through P2Y receptors to elicit 

transient Ca2+/NFAT signaling; whereas, high ATP concentrations act through P2X7 to 

induce more sustained Ca2+/NFAT signaling that culminates in robust target gene 

expression. These findings demonstrate that the Ca2+/NFAT pathway functions in dose-

to-duration encoding of P2 receptor stimuli.  

 

2.5.1  P2 Receptor Networks Impart Sensitivity over a Wide Dynamic Range of 

ATP Concentrations 

Previous studies examining the characteristics of individual P2Y and P2X receptor 

subtypes have demonstrated that each exhibits distinct affinities for purine and pyrimidine 

nucleotides. Of the P2 receptor subtypes sensitive to ATP, P2Y2, P2X1, P2X3 and P2X5 

have the highest affinities, with responses seen at relatively low ATP concentrations (<1 

µM); in contrast, P2X7 has the lowest affinity with activation occurring at much higher 

concentrations of ATP (Ralevic and Burnstock, 1998). Though informative, many of 

these earlier studies used heterologous expression to characterize individual P2 receptor 

subtypes. However, expression of a single P2Y or P2X subtype does not recapitulate 

responses mediated by a network of P2 receptors. Moreover, overexpression of a single 

receptor could perturb interactions among endogenous P2 receptors, such as P2Y
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Figure 2.14 Proposed Role for the P2 nucleotide Receptor Network in ‘Dose-to-

Duration’ Encoding of Ca2+/NFATc1 Signaling.  

Expression of multiple P2 receptor subtypes provides a novel mechanism by 

which cells can sense ATP over a million-fold concentration range, and transduce these 

inputs into distinct cellular signals. Stimulation of one or more P2Y receptor subtypes by 

low ATP concentrations leads to activation of phospholipase C (PLC) and subsequent 

formation of inositol 1,4,5-trisphosphate (IP3). IP3 binds the IP3 receptor (IP3R) on the 

membrane of the endoplasmic reticulum (E.R.), resulting in transient release of Ca2+. This 

transient elevation of [Ca2+]i causes brief NFATc1 nuclear localization, but fails to elicit 

expression of NFAT target genes (left). In contrast, activation of the P2X7 receptor by 

high ATP concentrations triggers sustained influx of Ca2+ and prolonged NFATc1 nuclear 

localization, resulting in robust NFAT target gene expression (right). Although transient 

elevation of [Ca2+]i does not induce NFAT target gene expression, it activates other 

effectors that regulate important functions such as cytoskeletal remodeling, cell motility 

and secretion. P.M. stands for plasma membrane; N.M. stands for nuclear membrane. 
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dimerization and the formation of heteromeric P2X receptors. Thus, results of these 

earlier studies may not represent the physiological behavior of P2 receptor networks. For 

these reasons, we examined concentration-dependent responses to ATP mediated by a 

network of P2 receptors endogenously expressed in osteoblasts.  

Characterization of the concentration dependence of ATP-induced Ca2+ signaling 

in osteoblasts revealed, for the first time in any system, that graded increases in the Ca2+ 

response could be achieved over a remarkably broad range of ATP concentrations (1 nM 

to 1 mM). The physiological effects of many other intercellular messengers are also 

mediated by multiple receptor subtypes. However, few if any of these receptor families 

exhibit as wide a range of affinities as those observed for ATP in the purinergic system. 

For instance, prostaglandin E2 (PGE2) acts through four G protein-coupled receptors 

(EP1–4), which exhibit an ~100-fold range in EC50 for PGE2 (Abramovitz et al., 2000; 

Hata and Breyer, 2004). LPA, another lipid mediator, acts through at least five G protein-

coupled receptors, LPA1-5, with a similar 100-fold range in EC50 (Bandoh et al., 2000; 

Anliker and Chun, 2004; Lee et al., 2006). On the other hand, the excitatory 

neurotransmitter L-glutamate, which like ATP signals through families of metabotropic 

and ionotropic receptors, elicits responses at low and high concentrations of L-glutamate 

(Conn and Pin, 1997; Traynelis et al., 2010). However, it has not been reported that L-

glutamate can induce graded, dose-dependent increases in the amplitude or duration of a 

common intracellular signal. Nevertheless, given its similarities to the purinergic system, 

the principles described in the present study for ATP signaling may also be applicable to 

the glutaminergic system. 
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2.5.2  P2 Receptor Networks Enable Dose-to-Duration Encoding of Ca2+/NFAT 

Signaling 

In addition to relaying qualitative information about the presence or absence of a 

stimulus, receptors and their associated signaling pathways must also transmit 

quantitative information about stimulus intensity. “Dose-to-duration” encoding refers to 

the process by which information about the concentration of a stimulus is transduced as 

duration of the signal, permitting distinct cellular responses to different agonist 

concentrations (Behar et al., 2008). In yeast, the switch from proliferation to 

differentiation and/or mating is dependent both on pheromone concentration and the 

duration of downstream mitogen-activated protein kinase (MAPK) activity. Behar et al. 

(2008) proposed a model in which negative feedback regulation of the yeast pheromone 

receptor causes dose-dependent decreases in its affinity for ligand to allow for signaling 

beyond initial saturation.  

As opposed to regulating the affinity of a single receptor, we describe a novel 

mechanism for dose-to-duration encoding in which the presence of multiple P2Y and P2X 

receptors, with different affinities for ATP, determine the duration of Ca2+/NFATc1 

signaling. We demonstrated that low concentrations of ATP (1 nM to 100 µM) induce 

transient Ca2+ elevation and NFATc1 activation, whereas higher ATP concentrations (300 

µM to 10 mM) elicit more sustained Ca2+/NFATc1 signaling. 

Ca2+ signaling is a central mechanism by which P2 receptors elicit changes in cell 

behaviour in response to extracellular nucleotides. A number of groups have shown that 

ATP and other nucleotides can elicit transient or sustained Ca2+ signals in a variety of 

other cell-types (Oshimi et al., 1999; Moller et al., 2000; Nobile et al., 2003; Korcok et 
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al., 2004). The role of the Ca2+-regulated NFAT transcription factors in P2 receptor 

signaling has also been examined previously (Ferrari et al., 1999; Abbott et al., 2000; 

Kataoka et al., 2009; Shiratori et al., 2010). However, no previous studies have employed 

a concentration range capable of revealing the relationship between ATP dose and 

Ca2+/NFAT signal duration described in the present study. Moreover, we provide the first 

evidence demonstrating that P2 receptors utilize the duration of Ca2+/NFAT signaling to 

elicit distinct responses to different concentrations of extracellular ATP.   

In general, signal duration can control distinct cell functions in a variety of 

biological systems. In the neuronal PC12 cell line, transient activation of extracellular 

signal-regulated kinase (ERK) by epidermal growth factor stimulates proliferation; 

whereas prolonged ERK activation, elicited by nerve growth factor, promotes 

differentiation (Vaudry et al., 2002). Similarly, in yeast, vegetative growth patterns are 

mediated by transient MAPK signaling at low pheromone levels; whereas, growth arrest 

and mating are initiated by sustained MAPK signaling in response to high levels of 

pheromone (Dohlman and Thorner, 2001). In the present study, we found that transient 

Ca2+/NFAT signaling elicited by low concentrations of ATP resulted in no measureable 

increase in NFAT transcriptional activity. Nevertheless, these Ca2+ transients regulate 

other important aspects of osteoblast function. For example, such Ca2+ events activate ion 

channels, regulate cytoskeletal remodeling and stimulate secretion in other cell-types 

(Berridge, 2012). In this regard, low concentrations of ATP have been reported to induce 

functional changes in cells of the osteoblast lineage. For instance, stimulation of P2 

receptors with micromolar concentrations of ATP increases the proliferation of 

osteoblasts and osteoblast-like cells (Nakamura et al., 2000; Katz et al., 2011). In 
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addition, micromolar concentrations of ATP and UTP activate the osteoblast master 

transcription factor runt-related transcription factor 2 (RUNX2) in the osteoblast-like 

HOBIT cell line (Costessi et al., 2005). In addition to these previously reported effects of 

low ATP concentrations, we found that high concentrations of ATP elicited sustained 

Ca2+/NFATc1 signaling to stimulate NFAT transcriptional activity. Thus, we demonstrate 

that different ATP concentrations are transduced into distinct cellular signals. 

 

2.5.3  Potential Physiological Roles of P2 Receptor Networks in Osteoblasts 

Mechanotransduction, the process by which mechanical stimuli are translated into 

cellular responses, has been suggested to be mediated by nucleotide release and 

subsequent P2 receptor signaling in bone (Dixon and Sims, 2000; Robling et al., 2006). 

Phenotypic examination of knockout mouse strains for various P2Y and P2X receptor 

subtypes has indeed revealed a number of skeletal phenotypes, helping to solidify the 

importance of purinergic signaling in bone. Whole-body deletion of P2Y6, P2Y12 or 

P2Y13 results in decreased bone resorption, and loss of P2Y13 leads to decreased bone 

formation (Orriss et al., 2011a; Orriss et al., 2011b; Su et al., 2012; Wang et al., 2012). 

Furthermore, genetically modified mice carrying a non-functional P2X7 receptor exhibit 

diminished periosteal bone formation, excessive trabecular bone resorption, and impaired 

skeletal responses to mechanical loading (Ke et al., 2003; Li et al., 2005). The findings of 

the present study provide the first evidence that expression of multiple P2 receptor 

subtypes increases the range over which differences in ATP concentration can be sensed 

by a cell. This phenomenon provides a novel mechanism by which osteoblasts may 

transduce differences in ATP concentration and, therefore, intensity of mechanical stimuli 
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over a remarkably wide dynamic range.  

We also demonstrate for the first time that P2X7 receptors couple to the 

Ca2+/NFATc1 pathway in osteoblasts. Our lab has previously demonstrated that 

activation of P2X7 receptors by exogenous nucleotides leads to production of LPA and 

PGE2 by osteoblasts, culminating in enhanced differentiation and matrix mineralization 

(Panupinthu et al., 2008). The Ca2+/NFATc1 pathway also plays an important role in the 

regulation of osteoblast differentiation (Koga et al., 2005; Winslow et al., 2006), but until 

now the pathways underlying NFATc1 activation in osteoblasts have remained obscure. 

In the present study, we found that Ca2+/NFATc1 signaling stimulates expression of 

COX-2 downstream of the P2X7 receptor in osteoblasts. Given the important role of 

COX-2 and PGE2 in osteoblast differentiation and responses to mechanical stimuli 

(Blackwell et al., 2010), we propose that the Ca2+/NFATc1 axis may play an important 

role in mediating P2X7 receptor signaling during skeletal development and 

mechanotransduction.     

The ability of ATP to elicit distinct responses over a wide dynamic range of 

concentrations, as described for osteoblasts in the present study, may also occur in other 

cell-types, many of which express multiple subtypes of P2 receptors. In this regard, 

greatly varying amounts of ATP are released into the extracellular fluid under different 

circumstances – smaller amounts during neurotransmission and paracrine signaling, and 

massive amounts in response to trauma and cell lysis (Burnstock, 2007b). The presence of 

an ensemble of P2 receptors would allow osteoblasts and other cell-types to respond 

appropriately in each of these different situations.   
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CHAPTER THREE 

 

 
P2X7-MEDIATED CALCIUM INFLUX TRIGGERS A SUSTAINED, 

PI3K-DEPENDENT INCREASE IN METABOLIC ACID 

PRODUCTION BY OSTEOBLAST-LIKE CELLS1 

                                                 
1 This Chapter has been reproduced with permission from: 

Grol, M.W., I. Zelner, and S.J. Dixon. 2012. P2X7-mediated calcium influx triggers a 
sustained, PI3K-dependent increase in metabolic acid production by osteoblast-like cells. 
Am. J. Physiol. Endocrinol. Metab. 302:E561-E575, with some modifications. 
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3.1  Chapter Summary 

The P2X7 receptor is an ATP-gated cation channel expressed by a number of cell-

types including osteoblasts. Genetically modified mice with loss of P2X7 function exhibit 

altered bone formation. Moreover, activation of P2X7 in vitro stimulates osteoblast 

differentiation and matrix mineralization, though underlying mechanisms remain unclear. 

As osteogenesis is associated with enhanced cellular metabolism, our goal was to 

characterize the effects of nucleotides on metabolic acid production (proton efflux) by 

osteoblasts. The P2X7 agonist BzATP (300 μM) induced dynamic membrane blebbing in 

MC3T3-E1 osteoblast-like cells (consistent with activation of P2X7 receptors), but did 

not induce cell death. Using a Cytosensor microphysiometer, we found that 9-min 

exposure to BzATP (300 µM) caused a dramatic increase in proton efflux from MC3T3-

E1 cells (~2-fold), which was sustained for at least 1 h. In contrast, ATP or UTP (100 

µM), which activate P2 receptors other than P2X7, failed to elicit a sustained increase in 

proton efflux. Specific P2X7 receptor antagonists, A 438079 and A 740003, inhibited the 

sustained phase of the BzATP-induced response. Extracellular Ca2+ was required during 

P2X7 receptor stimulation for initiation of sustained proton efflux; and removal of 

extracellular glucose within the sustained phase abolished the elevation elicited by 

BzATP. In addition, inhibition of phosphatidylinositol-3-kinase blocked the maintenance, 

but not initiation of the sustained phase. Taken together, we conclude that brief activation 

of P2X7 receptors on osteoblast-like cells triggers a dramatic, Ca2+-dependent stimulation 

of metabolic acid production. This increase in proton efflux is sustained, and dependent 

on glucose and phosphatidylinositol-3-kinase activity. 
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3.2  Introduction 

Bone remodeling is a dynamic process that relies on a delicate balance between 

formation and resorption by osteoblasts and osteoclasts, respectively. A combination of 

local and systemic factors, including parathyroid hormone (PTH), insulin-like growth 

factors (IGFs), estrogen and bone morphogenetic proteins (BMPs), act in concert with 

mechanical stimuli to modulate skeletal homeostasis (Harada and Rodan, 2003). 

Mechanical load enhances bone formation resulting in improved skeletal strength 

(Robling et al., 2006). Osteoblasts release adenosine 5’-triphosphate (ATP) and other 

nucleotides in response to mechanical stimuli (Genetos et al., 2005; Li et al., 2005), and it 

has been suggested that these molecules mediate mechanotransduction in bone (Dixon 

and Sims, 2000).  

 Extracellular nucleotides signal through P2 receptors expressed in a variety of 

cell-types, including osteoblasts and osteoclasts. These receptors are divided into two 

families – the P2Y family of G protein-coupled receptors and the P2X family of ligand-

gated cation channels (Khakh and North, 2006; Burnstock, 2007). Currently, eight P2Y 

subtypes (P2Y1, 2, 4, 6, 11–14) and seven subtypes of P2X (P2X1–7) have been identified in 

mammals. The metabotropic P2Y receptors possess an extracellular NH2-terminus, an 

intracellular COOH-terminus, and seven transmembrane domains, and signal through 

heterotrimeric G proteins (Burnstock, 2007). In contrast, ionotropic P2X receptor 

subunits are composed of two transmembrane domains, a large N-glycosylated 

extracellular loop, and intracellular NH2- and COOH-termini. Functional channels, 

composed of homo- or heteromultimers of three P2X subunits (Khakh and North, 2006), 

are permeable to cations, resulting in membrane depolarization and, in many cases, Ca2+ 
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influx upon receptor activation. Unlike P2Y family members that are activated by adenine 

or uracil nucleotides, or both, P2X receptors are activated solely by adenine nucleotides 

(Burnstock, 2007). 

Relative to other P2X family members, the P2X7 receptor is unique in that i) it is 

activated only by relatively high concentrations of extracellular ATP (>100 µM); ii) it 

possesses an extended intracellular COOH-terminus, containing putative interaction 

domains for structural and signaling proteins (Kim et al., 2001); and iii) it causes dynamic 

blebbing of the plasma membrane in numerous cell-types (Qu and Dubyak, 2009). The 

P2X7 receptor is expressed in cells of the osteoblast lineage (Gartland et al., 2001; Grol et 

al., 2009) together with other P2X and P2Y subtypes (Dixon and Sims, 2000; Orriss et al., 

2010). Ke et al. (2003) demonstrated that genetically modified mice, in which P2X7 

function is disrupted, exhibit diminished periosteal bone formation and excessive 

trabecular bone resorption. Moreover, Li et al. (2005) found that these same mice also 

exhibit impaired skeletal responses to mechanical load, implicating P2X7 in 

mechanotransduction in vivo. Interestingly, other investigators have described a distinct 

skeletal phenotype in a second mouse model in which P2X7 expression is disrupted 

(Gartland et al., 2003). However, recent studies have revealed this second model to be an 

inadvertent tissue-specific knockout (Nicke et al., 2009; Taylor et al., 2009), in which the 

presence or absence of P2X7 in osteoblasts has yet to be determined. In keeping with the 

phenotype of the first mouse model (Ke et al., 2003), our lab has shown that activation of 

P2X7 receptors by exogenous nucleotides couples to production of the potent lipid 

mediator lysophosphatidic acid (LPA) in cells of the osteoblast lineage, resulting in 

dynamic membrane blebbing and enhanced osteogenesis (Panupinthu et al., 2007; 
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Panupinthu et al., 2008). However, many of the signaling pathways and downstream 

effects of P2X7 activation in osteoblasts remain to be elucidated.  

Numerous metabolic demands are placed on osteoblasts during differentiation, 

and in the production and mineralization of osteoid. In this regard, osteoblast 

differentiation is associated with a striking increase in cellular metabolism (Komarova et 

al., 2000; Chen et al., 2008). Whereas osteoblast progenitors rely primarily on glycolytic 

metabolism, induction of osteoblast differentiation leads to increases in aerobic 

respiration and ATP production (Komarova et al., 2000). In addition, differentiated 

osteoblasts possess an increased number of mitochondria with hyperpolarized 

transmembrane potentials, indicative of enhanced mitochondrial activity (Komarova et 

al., 2000; Chen et al., 2008). Heterologous expression of P2X7 in HEK293 and HeLa 

cells hyperpolarizes the mitochondrial membrane, and increases basal mitochondrial Ca2+ 

levels and intracellular ATP content (Adinolfi et al., 2005a). However, it is not known 

whether activation of P2X7 influences metabolism in cells, such as osteoblasts, which 

express these receptors endogenously. 

In the present study, we used a Cytosensor microphysiometer to monitor 

metabolic acid production (proton efflux) from osteoblasts in real time as a measure of 

cellular metabolism (McConnell et al., 1992). We show that activation of P2X7 elicits a 

large and sustained increase in proton efflux. Initiation of the response is dependent on 

Ca2+ influx through activated P2X7 receptors, whereas its maintenance is dependent on 

phosphatidylinositol 3-kinase (PI3K) activity and the availability of glucose. These data 

show for the first time that stimulation of P2X7 elicits a dramatic increase in metabolic 

acid production and efflux, which is triggered by elevation of cytosolic free Ca2+ 
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concentration ([Ca2+]i) and is sustained in part by PI3K-activated glucose metabolism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



166 
 
3.3  Materials and Methods 

3.3.1  Materials and Solutions 

α-Minimum essential medium (α-MEM) buffered with HCO3
- (26 mM), heat-

inactivated fetal bovine serum (FBS), antibiotic solution (10,000 units/ml penicillin, 

10,000 μg/ml streptomycin, and 25 μg/ml amphotericin B), trypsin solution, Dulbecco’s 

phosphate buffered saline (DPBS), HCO3
--free MEM, MEM amino acids solution (50×), 

L-glutamine, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), HEPES 

buffer solution (1 M), and UltraPureTM distilled water (DNase/RNase-free) were obtained 

from GIBCO (Life Technologies Inc., Burlington, ON, Canada). BSA (fraction V, fatty-

acid free) was from Roche Diagnostics (Laval, QC, Canada). HCO3
-- and glucose-free 

Dulbecco’s modified Eagle medium (DMEM), ATP disodium salt, uridine 5’triphosphate 

(UTP) trisodium salt hydrate, 2′,3′-O-(4-benzoylbenzoyl)ATP (BzATP) 

triethylammonium salt, lactate dehydrogenase, β-NAD, glycine buffer, and ethylene 

glycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid tetrasodium salt (EGTA) were 

from Sigma-Aldrich (St. Louis, MO, USA). FM4-64 and indo-1 acetoxymethyl ester 

(indo-1-AM) were from Molecular Probes (Life Technologies Inc.). Click-iT® terminal 

deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) Alexa Fluor® 

488 imaging assay was from Invitrogen (Life Technologies Inc.). Vectashield mounting 

medium with 4,6-diamidino-2-phenylindole (DAPI) was from Vector Laboratories 

(Burlingame, CA, USA). 3-(5-(2,3-Dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine 

hydrochloride (A 438079 HCl) and N-[1-[[(cyanoamino)(5-quinolinylamino) 

methylene]amino]-2,2-dimethylpropyl]-3,4 dimethoxybenzene-acetamide (A 740003) 

were from Tocris Bioscience (Ellisville, MO, USA). Wortmannin, 2-(4-morpholinyl)-8-



167 
 
phenyl-4H-1-benzopyran-4-one (LY 294002), and staurosporine were from Calbiochem 

(EMD Biosciences, Inc., San Diego, CA, USA). Nucleotides were dissolved in the 

appropriate buffer, A 438079 HCl was dissolved in water and stored in aliquots at -20 °C, 

and FM4-64, A 740003, wortmannin, LY 294002, and staurosporine were dissolved in 

dimethyl sulfoxide (DMSO) and stored in aliquots at -20 °C.  

 Standard superfusion medium, used in experiments monitoring proton efflux, was 

HCO3
--free MEM supplemented with HEPES (1 mM) and BSA (1 mg/ml). Glucose 

dependence was investigated using DMEM supplemented with HEPES (1 mM) and BSA 

(1 mg/ml) with or without glucose (5.5 mM, glucose-containing and glucose-free 

medium, respectively). Ca2+-dependence experiments were performed using Ca2+-

containing and Ca2+-free buffers. Ca2+-containing buffer consisted of (in mM): 5.4 KCl, 

1.8 CaCl2, 0.8 MgSO4, 116.4 NaCl, 1 NaH2PO4·H2O, 2 L-glutamine, 5.5 glucose and 1 

HEPES, supplemented with MEM amino acids solution (1X) and BSA (1 mg/ml). Ca2+-

free buffer contained no added CaCl2 and was supplemented with EGTA (0.5 mM). For 

morphological assessments, culture medium was removed and replaced with nominally 

divalent cation-free buffer containing (in mM): 140 NaCl, 5 KCl, 20 HEPES and 10 

glucose. For measurements of [Ca2+]i, indo-1-loaded cells were suspended in HEPES 

buffer containing (in mM): 135 NaCl, 5 KCl, 1 MgCl2, 1 CaCl2, 10 glucose, and 20 

HEPES. All media and buffers described above were adjusted to 290 ± 5 mOsm/L and pH 

7.30 ± 0.02. 

 

3.3.2  Cells and Culture 

The MC3T3-E1 osteoblast-like cell line (subclone 4) was obtained from the 
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American Type Culture Collection (Rockville, MD, USA). The UMR-106 cell line, 

isolated from a rat osteosarcoma, was also obtained from the American Type Culture 

Collection (Rockville, MD). Like the MC3T3-E1 cell line, UMR-106 cells exhibit several 

properties of osteoblasts, including collagen type 1 (COL1) production, high alkaline 

phosphatase (ALP) activity, responsiveness to PTH and formation of mineralized tumors 

in vivo (Partridge et al., 1983). However, unlike the MC3T3-E1 cells, UMR-106 cells do 

not express P2X7 (Panupinthu et al., 2008). MC3T3-E1 and UMR-106 cells were 

subcultured twice weekly and maintained in α-MEM containing HCO3
- (26 mM) 

supplemented with 10% FBS and 1% antibiotic solution in humidified 5% CO2 at 37 °C. 

 

3.3.3  Morphological Assessments 

For time-lapse recordings, cells were trypsinized, plated at a density of 1.0-1.5 × 

104 cells/cm2 on 35-mm culture dishes (Nunc, Thermo Fisher Scientific, Rochester, NY, 

USA) in supplemented α-MEM, and cultured for 24-48 h. For recordings, culture medium 

was removed and replaced with nominally divalent cation-free buffer. Dishes were placed 

on a heater stage (~35 °C) mounted on an inverted phase-contrast microscope (Nikon 

Plan-Fluor ×20 objective, 0.45 numerical aperture). For quantitative analysis, the 

percentages of cells in each field exhibiting membrane blebbing before and after addition 

of test substances were determined. A single field was analyzed from each cell 

preparation. Experiments were performed on at least three independent preparations.  

 For live-cell confocal microscopy, MC3T3-E1 cells were plated at a density of 1.5 

× 104 cells/cm2 on 35-mm glass bottom culture dishes (MatTek Corporation, Ashland, 

MA, USA) for 24 h in supplemented α-MEM. Membranes were labelled by incubation 
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with lipophilic fluorescent probe FM4-64 (2 µg/ml) in medium for 15 min at 37 °C. 

Medium was then replaced with nominally divalent cation-free buffer, and cells were 

observed by confocal microscopy at ~28-30 °C (Zeiss model LSM 510, Jena, Germany). 

Images were acquired using Zeiss Plan-Apochromat ×63 objective (1.4 numerical 

aperture) and 488 nm Ar+ ion laser excitation. The emission was filtered at 560 nm long 

pass, and images were captured using time-lapse mode. 

 

3.3.4  Measurement of Proton Efflux 

MC3T3-E1 and UMR-106 cells were seeded on porous polycarbonate membranes 

(Transwell, 12-mm diameter, 3-µm pore size; Corning Inc. Costar, Corning, NY) in 

supplemented α-MEM at a density of 8.8 × 104 cells/cm2 and 3.5 × 104 cells/cm2, 

respectively.  After 48 h, cells adhering to the polycarbonate membranes were placed in 

microflow chambers and positioned above silicon-based potentiometric sensors, which 

detect changes in extracellular pH (pHo) of as little as 10-3 units (Cytosensor 

microphysiometer, Molecular Devices, Sunnyvale, CA) (McConnell et al., 1992). Cells 

were continuously superfused at a rate of 100 µl/min with medium at 37 °C. Superfusion 

media with low buffering power were used to enhance the small alterations in pHo arising 

by efflux of protons from cells. Each chamber was supplied with medium from one of 

two reservoirs selected by a computer-controlled valve. Test substances were directly 

introduced in superfusion medium, and changes in proton efflux were monitored. The lag 

time between a valve switch and the arrival of test solutions at the microflow chambers 

was 4–5 s. 

Surface potential of each silicon sensor, corresponding to the pHo, was plotted as a 
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voltage-time trace. At 37 °C, 61 mV corresponds to 1 pH unit. To measure the rate of 

acidification (net cellular efflux of proton equivalents), fluid flow to cells was stopped 

periodically for 30 s. During this time, acid accumulated in the microflow chamber 

(volume 2.8 µl) causing pHo to decrease. Measurement of acidification rate was obtained 

by linear least-squares fit to the slope of the pHo-time trace during the time when fluid 

flow to the cells was stopped. Due to an artefact arising from changing medium, the first 

data point after beginning superfusion with agonist was sometimes omitted from the 

trace. 

 

3.3.5  Measurement of Lactate Efflux 

Extracellular lactate was measured using a spectrophotometric assay based on 

generation of NADH via the catalytic action of lactate dehydrogenase [modified from 

(Santhanagopal et al., 2001)]. Briefly, cells were seeded at a density of 1.5 × 104 cells/cm2 

on 60-mm culture dishes (BD Biosciences, Franklin Lakes, NJ, USA) in supplemented α-

MEM for 48 h. On the day of the experiment, growth medium was replaced by α-MEM 

supplemented with BSA (1 mg/ml) and 1% antibiotic solution (serum-free) in 5% CO2 at 

37 °C. After 3 h, cultures were incubated with BzATP or vehicle. Samples of media (100 

µl) were then collected for lactate determination. To measure lactate concentration, 6.9 µl 

of each sample was combined with 193.1 µl of lactate assay solution (50 mg β-NAD 

dissolved in 10 ml glycine buffer, 20 ml deionized H2O and 17 U/ml lactate 

dehydrogenase) in a 96-well UV-plate (Corning Inc., Costar, Corning, NY, USA). The 

plate was incubated at 37 °C for 15-30 min and absorbance at 340 nm was quantified with 

a microplate reader (Tecan, Durham, NC, USA). The concentration of lactate in each 
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sample was determined from a standard curve of absorbance for known lactate 

concentrations. 

 

3.3.6  Spectrofluorometric Measurement of [Ca2+]i 

Changes in [Ca2+]i were measured using spectrofluorimetry, as previously 

described (Santhanagopal et al., 2001). Briefly, MC3T3-E1 cells were seeded at a density 

of 1.5 × 104 cells/cm2 on 60-mm culture dishes (BD Biosciences) in supplemented α-

MEM for 48 h. On the day of the experiment, cells were loaded with indo-1 by incubation 

in serum-supplemented medium with indo-1-AM (2 µg/ml) for 30 min at 37 °C and 5% 

CO2. After loading, cells were washed with PBS and harvested by trypsinization. 

Supplemented medium was added to neutralize the trypsin, and cells were then 

sedimented and resuspended in HEPES-buffered MEM (catalog no. 41200). For 

measurement of [Ca2+]i, 1 ml aliquots of indo-1-loaded cell suspensions (~1.0 × 106 

cells/ml) maintained at room temperature in HEPES-buffered MEM were sedimented and 

resuspended in 2 ml HEPES buffer in a fluorometric cuvette at room temperature. Test 

substances were added directly to the cuvette. 

 [Ca2+]i was monitored using a dual-wavelength spectrofluorimeter (Model RF-

M2004, from Photon Technology International, South Brunswick, NJ) at 355 nm 

excitation and emission wavelengths of 405 and 485 nm. The system software was used 

to calculate the ratio, R, which is the fluorescence intensity at 405 nm divided by the 

intensity at 485 nm. [Ca2+]i was determined from the relationship [Ca2+] = Kd[(R-

Rmin)/(Rmax-R)]β, where Kd (for the indo-1-Ca2+ complex) was taken as 250 nm, Rmin and 

Rmax were the values of R at low and saturating concentrations of Ca2+, respectively, and 
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β was the ratio fluorescence at 485 nm measured at low and saturating Ca2+ 

concentrations. 

 

3.3.7  Assessment of Apoptosis 

MC3T3-E1 cells were seeded at a density of 1.5 × 104 cells/cm2 on 12-mm glass 

coverslips (Fisher Scientific, Ottawa, ON, CANADA) in 24-well culture plates (BD 

Biosciences) in supplemented α-MEM for 48 h. On the day of the experiment, growth 

medium was replaced by α-MEM supplemented with BSA (1 mg/ml) and 1% antibiotic 

solution (serum-free) in 5% CO2 at 37 °C. Three hours later, cultures were incubated with 

test substances. After 24 h, cells were fixed with paraformaldehyde (4%) in sucrose 

solution (2%), permeabilized with 0.25% Triton X-100 in PBS, and assessed for 

apoptosis using the Click-iT® TUNEL Alexa Fluor® 488 imaging assay according to 

manufacturer’s instructions. Selected untreated samples from each experiment were 

incubated with DNase I before staining as a positive control for the TUNEL assay. After 

staining, coverslips were sealed using Vectashield mounting medium with DAPI and 

visualized by confocal microscopy (Zeiss model LSM 510). Images were acquired using 

Zeiss Plan-Apochromat ×40 objective (1.2 numerical aperture) with 730-nm Chameleon 

multi-photon or 488-nm Ar+ ion laser excitation, and  the emission was filtered at 390-

465 nm or 500-550 nm band pass, respectively. The total number of cells and the number 

of TUNEL-positive cells were determined from randomly selected fields. 

 

3.3.8  Statistical Analyses 

Proton efflux was normalized as a percentage of basal efflux in standard 
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superfusion medium before addition of test substance or change of superfusion solution. 

This normalization compensated for differences in cell numbers among the chambers. 

Results are presented as means ± S.E.M. Differences between two groups were evaluated 

by t test. Differences among three or more groups were evaluated by one-way or two-way 

analysis of variance (ANOVA) followed by Tukey or Bonferroni multiple comparison 

tests. Differences were accepted as statistically significant at p < 0.05. 
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3.4  Results 

3.4.1  The P2X7 Agonist BzATP Induces Dynamic Membrane Blebbing in MC3T3-

E1 Osteoblast-like Cells 

Among P2 nucleotide receptors, the ability to induce membrane blebbing is a 

unique property of P2X7 (North, 2002). Using primary cultures of rat and murine 

calvarial cells, we have shown previously that activation of P2X7 elicits dynamic and 

reversible blebbing of the plasma membrane in only a subpopulation of these cells 

(Panupinthu et al., 2007). To investigate the proportion of MC3T3-E1 cells expressing 

functional P2X7 receptors, we monitored morphology using time-lapse phase-contrast 

microscopy. Prior to addition of agonist, few cells exhibited membrane blebs (Figure 3.1 

A, Before). Cultures were then treated with the P2X7 agonist BzATP (300 µM) or vehicle 

for 20 min. BzATP caused cellular retraction followed by dynamic plasma membrane 

blebbing (Figure 3.1 A, BzATP; Video 3.1, video legend in Appendix A). In contrast, 

UMR-106 cells exhibited cellular retraction but no membrane blebbing in response to 

BzATP (Figure 3.1 A, BzATP; Video 3.2, video legend in Appendix A), consistent with 

the absence of P2X7 in these cells.  

To further characterize the dynamic changes in morphology of individual MC3T3-

E1 cells exposed to BzATP, membranes were stained with the fluorescent lipophilic dye 

FM4-64, and cells were observed by live-cell confocal microscopy. BzATP (300 µM) 

induced the formation of multiple membrane blebs that enlarged and shrunk 

asynchronously (Figure 3.1 B). These blebs occurred over the entire cell surface and did 

not contain FM4-64-stained intracellular membranes. 

 We used the time-lapse recordings to quantify the percentage of cells exhibiting
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Figure 3.1 The P2X7 Agonist BzATP Induces Membrane Blebbing in MC3T3-E1 

Osteoblast-like, but not UMR-106 Osteosarcoma Cells.  

A, morphology of MC3T3-E1 and UMR-106 osteoblast-like cells was monitored 

by time-lapse phase-contrast microscopy. Cultures were bathed in nominally divalent 

cation-free buffer at ~35 °C for 10 min (Before). Cells were then treated with BzATP 

(300 µM). Data are representative fields of cells from 4 independent preparations. Scale 

bar is 20 µm. White arrows indicate blebbing cells. Videos 3.1 and 3.2 show responses of 

MC3T3-E1 cells and UMR-106 cells to BzATP, respectively (video legends in Appendix 

A). B, to examine bleb morphology, MC3T3-E1 cells were loaded with FM4-64 to stain 

membranes, and observed using confocal microscopy. Cells were bathed in nominally 

divalent cation-free buffer. BzATP (300 µM) was added at time 0 min. Images show 2-

µm-thick optical sections through a single cell at 5 min intervals (N = nucleus). Images 

are representative of cells demonstrating dynamic membrane blebbing from 4 

independent preparations. Scale bar is 20 µm. C, percentage of MC3T3-E1 and UMR-106 

cells exhibiting dynamic membrane blebbing determined from time-lapse movies 

obtained before and during 20 min of treatment with vehicle or BzATP (300 µM). α 

indicates significant difference compared with respective vehicle for each cell line (p < 

0.05). Data are means ± S.E.M. (n = 8 samples from 6 independent preparations for 

MC3T3-E1 cells, n = 6 samples from 4 independent preparations for UMR-106 cells).   
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membrane blebbing. BzATP induced significant blebbing of the plasma membrane in 

MC3T3-E1 cells (85 ± 3%; Figure 3.1 C), thereby establishing the expression of 

functional P2X7 receptors in the majority of these cells. As expected, no significant 

increase in the percentage of blebbing cells was seen following treatment of UMR-106 

cells with BzATP (Figure 3.1 C). Thus, in contrast to UMR-106 cells (which do not 

express P2X7) and primary bone cell systems (in which only a subpopulation of cells 

express functional P2X7 receptors), the vast majority MC3T3-E1 osteoblasts expressed 

functional P2X7 receptors. Consequently, we used the MC3T3-E1 cell line to 

characterize the effects of P2X7 activation on metabolic acid production by osteoblasts. 

 

3.4.2  Effects of BzATP on Proton Efflux from MC3T3-E1 Cells 

To assess changes in cellular metabolism, proton efflux from MC3T3-E1 cells 

was monitored by microphysiometry. Basal proton efflux in standard superfusion medium 

remained steady for periods of > 60 min. Superfusion with BzATP (300 µM) for 9 min 

caused dramatic changes in proton efflux (Figure 3.2). The first phase of the BzATP-

induced response (initial phase) consisted of a variable, transient depression in proton 

efflux, which reached its maximum at 1.5-3 min after addition of BzATP, followed by a 

slow increase to levels above basal by 9 min in the presence of agonist. The second phase 

(sustained phase) occurred following removal of BzATP, and was characterized by a 

large sustained increase in proton efflux that lasted for > 1 h following agonist removal 

(Figure 3.2). A transient overshoot in proton efflux was also observed immediately upon
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Figure 3.2 BzATP Causes a Sustained Increase in Proton Efflux from MC3T3-E1 

Cells. 

MC3T3-E1 cells were cultured on porous polycarbonate membranes, and proton 

efflux was monitored by microphysiometry. Cells were superfused with standard 

medium, and at 1.5 min intervals, superfusion was interrupted for 30 s to measure 

acidification rate. Net efflux of proton equivalents (proton efflux) was calculated from the 

acidification rate and expressed as a percentage of basal proton efflux. Where indicated 

by the shaded area, MC3T3-E1 cells were superfused with BzATP (300 μM, closed 

symbols) or vehicle (open symbols) in standard medium for 9 min. A, data are 

representative traces from 4 independent preparations. B, data are means ± S.E.M. of 8 

samples from 4 independent preparations. Data points for BzATP from 22.5-60 min are 

significantly different compared with vehicle at the same time points (p < 0.05).  
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washout of BzATP2. Treatment with vehicle did not cause any appreciable change in 

proton efflux. To exclude the possibility that responses to BzATP were due to direct 

interaction with the silicon sensor, cells were devitalized with 1% Triton X-100 and then 

superfused with agonist. The basal proton efflux from non-vital cells was zero, and no 

changes were observed upon superfusion with BzATP (300 µM), ruling out the 

possibility of interaction with the silicon sensor.   

 We next investigated the dependence of these changes in proton efflux on BzATP 

concentration (Figure 3.3). The initial phase of the BzATP response was quantified as the 

average increase in proton efflux above basal within the 9 min during which BzATP was 

applied. The sustained phase was quantified as the average increase in proton efflux 

above basal, 12-30 min after washout of BzATP. BzATP (100 µM, a concentration 

sufficient to fully activate several P2 receptors, but only partially activate P2X7) elicited 

an initial, transient increase in proton efflux (49 ± 19%, p < 0.05; Figure 3.3 B), but no 

significant sustained phase (Figure 3.3 C). In contrast, BzATP (300 µM, a concentration 

sufficient to fully activate P2X7) induced a large sustained elevation in proton efflux (86 

± 18%, p < 0.05; Figure 3.3 C). These data are consistent with a role for P2X7 in 

triggering the sustained increase in proton efflux, and subsequent studies were performed 

using a concentration of 300 µM BzATP. 

                                                 
2 The transient depression in proton efflux upon exposure to BzATP and subsequent overshoot in 
proton efflux upon washout of BzATP are due to the presence of triethylammonium in the BzATP 
preparation. Upon superfusion with BzATP solution, influx of unprotonated triethylammonium 
transiently increases pHi, leading to brief suppression of proton efflux. On the other hand, upon 
washout, efflux of unprotonated triethylammonium transiently decreases pHi, leading to a 
transitory increase in proton efflux (Reyes, J.P., M.W. Grol, S.M. Sims, and S.J. Dixon. 2013. 
Receptor-independent effects of 2'(3')-O-(4-benzoylbenzoyl)ATP triethylammonium salt on 
cytosolic pH. Purinergic Signal. [Epub ahead of print; DOI:10.1007/s11302-013-9365-4]).   
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Figure 3.3 Increases in Proton Efflux are Dependent on BzATP Concentration.  

MC3T3-E1 cells were superfused with standard medium, and proton efflux was 

monitored. A, where indicated by the shaded areas, MC3T3-E1 cells were challenged 

with indicated concentrations (μM) of BzATP or vehicle (not shown) in standard medium 

for 9 min. Data are representative traces from 4 independent preparations. B, amplitude of 

the initial phase, quantified as the average increase in proton efflux above basal during 

application of BzATP or vehicle. C, amplitude of the sustained phase, quantified as the 

average increase in proton efflux above basal, 12-30 min following removal of BzATP or 

vehicle (indicated by gray-outlined boxes in A (i-iii)). For both B and C, α indicates 

significant difference compared with vehicle (p < 0.05). Data are means ± S.E.M. (n = 4-8 

samples from 4 independent preparations). 
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3.4.3  Role of P2X7 in Mediating Nucleotide-induced Increases in Proton Efflux 

In addition to P2X7, cells of the osteoblast lineage express a number of other P2X 

and P2Y nucleotide receptors. BzATP is not specific for P2X7 as it also activates a 

number of other P2 receptors (North, 2002), including P2Y11, P2X1, P2X3 and P2X4 

(Bianchi et al., 1999; Communi et al., 1999; Naemsch et al., 2001), with similar potency. 

Thus, responses to BzATP alone cannot be used to establish involvement of the P2X7 

receptor. To investigate the nucleotide receptors mediating the effects of BzATP on 

proton efflux, we first tested the effects of other P2 receptor agonists. Parallel samples of 

cells were superfused with low concentrations of ATP (100 µM, which activates P2X1-5 

and many P2Y receptors) and UTP (100 µM, which activates P2Y2, P2Y4 and P2Y6 

receptors), and high concentrations of ATP (1 mM) and BzATP (300 µM), both of which 

also activate P2X7. Responses to UTP and a low concentration of ATP (100 µM) 

consisted only of a transient elevation in proton efflux during agonist application (Figure 

3.4 Ai and ii). On the other hand, the response to a higher concentration of ATP (1 mM) 

consisted of both initial transient and sustained elevations in proton efflux (Figure 3.4 

Aiii)3. Transient elevations in proton efflux caused by UTP (100 µM) and ATP (0.1-1 

mM) during the initial phase were significantly different compared to vehicle-treated 

cultures (Figure 3.4 Bi). Consistent with the involvement of P2X7, only a high 

concentration of ATP (1 mM) elicited a significant and sustained increase in proton efflux 

following washout of agonist, similar to that seen with BzATP (300 µM) (Figure 3.4 Bii). 

Since UTP (and uridine 5’-diphosphate (UDP)) can only activate certain members of the 

P2Y receptor family, the initial transient phase is most likely due to activation of P2Y
                                                 
3 The transient depression and overshoot in proton efflux observed with the triethylammonium+ 
salt of BzATP were not observed with ATP, which was applied as a Na+ salt. 
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Figure 3.4 P2X7 Receptor Agonists alone Induce Sustained Increases in Proton 

Efflux.  

MC3T3-E1 cells were superfused with standard medium, and proton efflux was 

monitored. A, where indicated by the shaded areas, MC3T3-E1 cells were challenged 

with BzATP (300 μM), ATP (100 μM or 1 mM), UTP (100 μM) or vehicle (not shown) 

in standard medium for 9 min. Data are representative traces from 3-5 independent 

preparations. B (i), amplitude of the initial phase, quantified as the average increase in 

proton efflux above basal during application of agonist. B (ii), amplitude of the sustained 

phase, quantified as the average increase in proton efflux above basal, 12-30 min after 

application of agonist (indicated by gray-outlined boxes in A). For both B and C, α 

indicates significant difference compared with vehicle (p < 0.05). Data are means ± 

S.E.M. (n = 5-8 samples from 3-5 independent preparations). 
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receptors. On the other hand, the sustained phase in most likely triggered by P2X7.  

 We used two approaches to confirm the involvement of P2X7 receptors in 

triggering the sustained phase of BzATP-induced proton efflux. First, we compared 

responses of MC3T3-E1 cells (which express P2X7) and UMR-106 cells (which do not 

express P2X7). Parallel samples of MC3T3-E1 and UMR-106 cells were superfused with 

BzATP (300 µM) or vehicle (Figure 3.5 A). Proton efflux from UMR-106 cells was 

suppressed in the presence of BzATP (~60% of basal levels). However, BzATP failed to 

elicit the sustained increase seen in MC3T3-E1 cells (Figure 3.5 B). Second, we 

examined the effects of A 438079 and A 740003, two specific P2X7 antagonists (Nelson 

et al., 2006; Donnelly-Roberts and Jarvis, 2007). Although treatment with A 438079 or A 

740003 (10 µM) had no appreciable effect on basal proton efflux (Figure 3.6 A, C), both 

significantly blocked the sustained phase of the BzATP-induced response (Figure 3.6 B, 

D). Taken together, we conclude that the sustained phase of nucleotide-induced increase 

in proton efflux from osteoblast-like cells is triggered by activation of P2X7.             

 

3.4.4  Effects of P2X7 Agonists on Survival and Apoptosis of MC3T3-E1 Cells 

Activation of P2X7 promotes apoptosis in a number of cell systems (Adinolfi et 

al., 2005b), though its ability to promote cell death in osteoblasts is controversial. ATP 

and BzATP have been shown to induce delayed release of lactate dehydrogenase from 

osteoblast-like cells (Gartland et al., 2001), indicating cell death. However, we have 

reported previously that BzATP-induced membrane blebbing of murine calvarial cells 

was reversible upon removal of agonist, suggesting that P2X7 receptors do not induce
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Figure 3.5 BzATP Induces an Increase in Proton Efflux from MC3T3-E1 but not 

UMR-106 Cells.  

MC3T3-E1 and UMR-106 cells were superfused with standard medium, and 

proton efflux was monitored. A, parallel samples of MC3T3-E1 (A (i)) and UMR-106 (A 

(ii)) cells were challenged with BzATP (300 μM, closed symbols) or vehicle (open 

symbols) in standard medium for 9 min, where indicated by the shaded areas. Data are 

representative traces from 3 independent preparations. B, amplitude of the sustained 

phase, quantified as the average increase in proton efflux above basal, 12-30 min 

following application of vehicle (Veh) or BzATP (Bz) (indicated by gray-outlined boxes 

in A (i-ii)). α indicates significant difference compared with respective vehicle for each 

cell line (p < 0.05). Data are means ± S.E.M. (n = 3-9 samples from 3 independent 

preparations).  
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Figure 3.6 Blockade of P2X7 Receptors Suppresses the Increase in Proton Efflux 

Induced by BzATP.  

MC3T3-E1 cells were superfused with standard medium, and proton efflux was 

monitored. A, parallel samples of MC3T3-E1 cells were initially superfused with 

standard medium. Subsequently, samples were superfused with either control (ddH2O, A 

(i)) or the P2X7 antagonist, A 438079 (10 µM, A (ii)), for the period indicated by the 

horizontal bar beneath the graph. After 6 min, cultures in both A (i) and A (ii) were 

superfused with either vehicle (open symbols) or BzATP (300 µM, closed symbols) where 

indicated by the shaded area, in the continued presence of the appropriate medium. B, 

amplitude of the sustained phase, quantified as the average increase in proton efflux 

above basal, 12-30 min after application of vehicle or BzATP (indicated by gray-outlined 

boxes in A (i-ii)). C, parallel samples of MC3T3-E1 cells were initially superfused with 

standard medium. Subsequently, samples were superfused with either control (DMSO, C 

(i)) or the P2X7 antagonist, A 740003 (10 µM, C (ii)), for the period indicated by the 

horizontal bar beneath the graph. After 6 min, cultures in both C (i) and C (ii) were 

superfused with either vehicle (open symbols) or BzATP (300 µM, closed symbols) where 

indicated by the shaded area, in the continued presence of the appropriate medium. D, 

amplitude of the sustained phase, quantified as the average increase in proton efflux 

above basal, 12-30 min after application of vehicle or BzATP (indicated by gray-outlined 

boxes in C (i-ii)). For both A and C, data are representative traces from 3-4 independent 

preparations. For both B and D, α indicates significant difference compared to respective 

vehicle (p < 0.05). Data are means ± S.E.M. (n = 5-12 samples from 3-4 independent 

preparations). 
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acute cell death (Panupinthu et al., 2007). Moreover, stimulation of P2X7 receptors in 

MC3T3-E1 cells does not activate caspase 3 (Li et al., 2005), a key mediator of apoptosis, 

arguing against a pro-apoptotic effect. To determine whether the increased proton efflux 

elicited by activation of P2X7 might be associated with induction of apoptosis, we 

investigated the effects of prolonged P2X7 stimulation on apoptosis and survival of 

MC3T3-E1 cells. Cultures were incubated with vehicle, BzATP (300 µM), ATP (1 mM) 

or staurosporine (1 µM, positive control) for 24 h in the absence of serum. Cultures were 

then fixed, permeabilized, subjected to TUNEL, and visualized by confocal microscopy 

(Figure 3.7 A). Staurosporine induced apoptosis in close to 99% of cells, whereas BzATP 

or ATP caused only a slight increase in the percentage of TUNEL-positive cells 

compared to vehicle (Figure 3.7 B). In this regard, staurosporine alone induced a 

significant decrease in total cell number, whereas treatment with BzATP had no 

significant effect (Figure 3.7 C). Interestingly, ATP slightly increased the total number of 

cells per coverslip compared to vehicle (Figure 3.7 C), consistent with an increase in 

proliferation. In summary: i) the percentage of cells exhibiting TUNEL staining after 

treatment with BzATP or ATP (~5%) was substantially less than the total number of cells 

expressing functional P2X7 receptors (~85%, Figure 3.1); and ii) neither BzATP nor a 

high concentration of ATP caused a decrease in the total number of cells. These findings 

rule out the possibility that the P2X7-induced increase in proton efflux is associated with 

induction of apoptosis or cell death. 
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Figure 3.7 P2X7 Agonists do not Induce Death of MC3T3-E1 cells.  

Cultures of MC3T3-E1 cells were bathed in serum-free α-MEM supplemented 

with bovine albumin (1 mg/ml) and 1% antibiotic solution for 3 h, and subsequently 

treated with vehicle (Veh), BzATP (300 μM, Bz), ATP (1 mM, ATP high), or 

staurosporine (1 µM, St). After 24 h, cells were fixed, permeabilized and subjected to 

TUNEL to identify apoptotic cells (green). Nuclei were stained with DAPI (blue). A, 

samples were visualized by confocal microscopy. Data are representative images from 3 

independent preparations performed in duplicate. Scale bar is 20 µm. B, to quantify 

apoptosis, the number of TUNEL-positive cells was expressed as a percentage of the total 

number of cells in a field. C, the total number of cells per coverslip for each treatment 

was determined. For both B and C, α indicates significant difference compared with 

vehicle (p < 0.05). β indicates a significant difference compared to staurosporine. Data 

are means ± S.E.M. (n = 3 independent preparations each performed in duplicate). 
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3.4.5  Role of Glucose Metabolism in Generating Sustained Nucleotide-induced 

Proton Efflux 

Transient changes in proton efflux can arise from the activation or inhibition of 

transporters mediating the movement of proton equivalents across the plasma membrane; 

however, sustained increases in proton efflux reflect increases in the production of proton 

equivalents and their subsequent extrusion. Therefore, we considered the possibility that 

the sustained phase was due to enhanced glucose metabolism. We first investigated 

dependence of the sustained phase on extracellular glucose. Parallel samples of MC3T3-

E1 cells were treated with BzATP (300 µM) or vehicle in standard superfusion medium 

(containing 5.5 mM glucose). Subsequently, when BzATP-treated cells were within the 

sustained phase, samples were superfused with glucose-free medium, resulting in a large, 

rapid decrease in proton efflux in both vehicle- and BzATP-treated samples to 

comparable levels (Figure 3.8). Thus, most if not all of the sustained phase of the 

nucleotide-induced response is dependent on the presence of extracellular glucose.  

 Next, we assessed the effects of BzATP on extracellular lactate levels. MC3T3-E1 

cells were incubated with BzATP (300 µM) or vehicle, and medium samples were 

collected for analysis over a 3-h period. BzATP caused a significant increase in 

extracellular lactate concentration (indicative of lactate efflux), compared with vehicle-

treated cultures (Figure 3.9)4. In MC3T3-E1 cells, the observed ~250% increase in lactate 

efflux (from 0.5 to 3 h) is comparable to the magnitude of the sustained increase in proton 

efflux induced by BzATP.  Taken together, these data are consistent with the sustained

                                                 
4 When tested in UMR-106 cells, neither BzATP (300 µM) nor ATP (1 mM) induced a significant 
increase in extracellular lactate concentration relative to vehicle-treated cultures (data not shown), 
in keeping with a role for the P2X7 receptor in mediating this response. 
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Figure 3.8 Sustained Increase in Proton Efflux Induced by BzATP is Dependent on 

Extracellular Glucose.  

MC3T3-E1 cells were superfused with standard medium, and proton efflux was 

monitored. A, where indicated by the shaded area, parallel samples of MC3T3-E1 cells 

were challenged with BzATP (300 μM, closed symbols) or vehicle (open symbols) in 

standard running medium for 9 min. Subsequently, both samples were superfused with 

glucose-free medium for 9 min, where indicated by the horizontal bar beneath the graph. 

Data are representative traces from 3 independent preparations. B, amplitude of the 

response, quantified as the change in proton efflux relative to basal, calculated at the 

times indicated by I and II in panel A. α indicates significant difference compared with 

respective vehicle (p < 0.05). Data are means ± S.E.M. (n = 6-8 samples from 3 

independent preparations). 
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Figure 3.9 BzATP Increases Lactate Production by MC3T3-E1 Cells.  

Cultures of MC3T3-E1 cells were bathed in serum-free α-MEM supplemented 

with bovine albumin (1 mg/ml) and 1% antibiotic solution for 3 h, and subsequently 

treated with BzATP (300 μM) or vehicle (beginning at time 0). Samples of extracellular 

medium were collected for lactate determination at the indicated times. To calculate 

lactate efflux (change in extracellular lactate concentration per hour), data were fit by 

linear regression from 0.5-3 h. α indicates significant difference compared with vehicle at 

the same time point (p < 0.05). Data are means ± S.E.M. (n = 3 samples from 3 

independent preparations). 
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phase arising from enhanced rates of glycolytic metabolism.  

 

3.4.6  Dependence of Nucleotide-induced Proton Efflux on Ca2+ 

To characterize signaling mechanisms underlying the actions of nucleotides on 

proton efflux, we investigated the role of Ca2+ influx through P2X7 receptors. Since 

P2X7-induced Ca2+ signaling in cells of the osteoblast lineage had not been characterized 

previously, we first examined changes in [Ca2+]i of indo-1-loaded cells by fluorescence 

spectrophotometry. In MC3T3-E1 cells, BzATP (300 µM) induced both a transient and 

sustained increase in [Ca2+]i, whereas UTP or ATP (100 µM) elicited only a transient 

elevation (Figure 3.10 A). The initial transient increase in [Ca2+]i is likely due to 

activation of P2Y receptors, causing release of Ca2+ from intracellular stores. A 438079 

(10 µM) blocked the sustained increase in [Ca2+]i elicited by BzATP in MC3T3-E1 cells 

(not shown). Moreover, UTP or ATP (100 µM) both elicited a transient elevation in 

[Ca2+]i  in UMR-106 cells, whereas BzATP (300 µM) had no effect (Figure 3.10 B), 

consistent with a role for P2X7 in sustained Ca2+ signaling.  

We next assessed the role of Ca2+ influx through P2X7 in initiating nucleotide-

induced proton efflux. Parallel samples of MC3T3-E1 cells were superfused with Ca2+-

containing or Ca2+-free medium. Superfusion with Ca2+-free medium had no appreciable 

effect on basal proton efflux (Figure 3.11 A). Subsequently, cells were treated with 

BzATP (300 µM) or vehicle in the continued presence or absence of extracellular Ca2+. 

Removal of Ca2+ from the superfusion medium abolished the BzATP-induced response 

(Figure 3.11 A). Upon reintroduction of Ca2+ to the superfusion medium, BzATP-induced 

proton efflux remained completely inhibited (10 ± 9%) when compared with the sustained
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Figure 3.10 Patterns of [Ca2+]i Elevation Elicited by P2 Receptor Agonists.  

MC3T3-E1 cells (A) or UMR-106 cells (B) were loaded with the Ca2+-sensitive 

dye indo-1 and suspended in Ca2+-containing HEPES buffer in a fluorometric cuvette 

with continuous stirring. [Ca2+]i of parallel samples was monitored by fluorescence 

spectrophotometry. Where indicated by the arrows, vehicle, UTP (100 μM), ATP (100 

μM, ATP low) or BzATP (300 μM) was added directly to the cuvette. Data are 

representative traces from 3 to 4 independent preparations, each assayed in duplicate. 
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Figure 3.11 Initiation of the BzATP-induced Increase in Proton Efflux is Dependent 

on Extracellular Ca2+.  

MC3T3-E1 cells were superfused with standard medium, and proton efflux was 

monitored. A, parallel samples of MC3T3-E1 cells were initially superfused with 

standard medium. Subsequently, samples were superfused with either Ca2+-containing 

medium (1.8 mM Ca2+ (+ Ca2+), A (i)) or calcium-free medium with 0.5 mM EGTA (- 

Ca2+, A (ii)) for the period indicated by the horizontal bar beneath the graph. After 6 

min, cultures in both A (i) and A (ii) were superfused with vehicle (open symbols) or 

BzATP (300 μM, closed symbols) where indicated by the shaded areas, in the continued 

presence of the appropriate medium. Data are representative traces from 5 independent 

preparations. B, amplitude of the sustained phase, quantified as the average increase in 

proton efflux above basal, 12-30 min after application of vehicle or BzATP (indicated by 

gray-outlined boxes in A (i-ii)). α indicates significant difference compared with 

respective vehicle (p < 0.05). Data are means ± S.E.M. (n = 9-10 samples from 5 

independent preparations). C, where indicated by the shaded area, parallel samples of 

MC3T3-E1 cells were challenged with BzATP (300 μM) in standard running medium for 

9 min. Subsequently, samples were superfused with either Ca2+-containing medium (1.8 

mM Ca2+ (+ Ca2+), closed symbols) or calcium-free medium with 0.5 mM EGTA (- Ca2+, 

open symbols) for 9 min, where indicated by the horizontal bar beneath the graph. Data 

are representative traces from 3-5 independent preparations. D, amplitude of the response, 

quantified as the change in proton efflux relative to basal, calculated at the times 

indicated by I and II in C. The filled bars represent responses of cells in the continuous 

presence of 1.8 mM Ca2+. The unfilled bars represent responses of cells exposed to Ca2+-

free medium. Data are means ± S.E.M. (n = 6-13 samples from 3-5 independent 

preparations). 
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phase in control cells exposed to BzATP in the presence of extracellular Ca2+ (149 ± 

22%, p < 0.05; Figure 3.11 B).   

 We then investigated the role of extracellular Ca2+ in maintaining the sustained 

phase of the BzATP-induced response (subsequent to its initiation). Parallel samples of 

MC3T3-E1 cells were treated with BzATP (300 µM) in standard medium and, during the 

sustained phase, BzATP-treated cells were superfused with either standard medium or 

Ca2+-free medium. Removal of extracellular Ca2+ had no appreciable effect on proton 

efflux (Figure 3.11 C, D). Thus, initiation (but not maintenance) of the sustained phase 

requires the presence of extracellular Ca2+, indicating that influx of Ca2+ through activated 

P2X7 receptors is necessary to trigger sustained proton efflux.   

 

3.4.7  Dependence of Nucleotide-induced Proton Efflux on PI3K Signaling 

Many growth factors and hormones stimulate cellular metabolism through 

activation of the PI3K-AKT pathway (Engelman et al., 2006; Hammerman et al., 2004). 

PI3K signaling also plays important roles in osteoblast differentiation (Fujita et al., 2004; 

Ghosh-Choudhury et al., 2002; Peng et al., 2003). Moreover, the PI3K pathway in 

osteoblasts mediates the increase in metabolic acid production induced by IGF-1 

(Santhanagopal and Dixon, 1999). Consequently, it was of interest to explore whether 

P2X7 activates PI3K signaling in osteoblasts. To characterize the role of PI3K signaling 

in mediating the effects of nucleotides on proton efflux, parallel samples of MC3T3-E1 

cells were first treated with the irreversible PI3K inhibitor wortmannin (100 nM) or its 

vehicle (DMSO) in standard superfusion medium for 9 min. Wortmannin slightly 

decreased basal proton efflux (Figure 3.12 A), suggesting that unstimulated metabolism
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Figure 3.12 The Irreversible PI3K Inhibitor Wortmannin Inhibits the Sustained 

Increase in Proton Efflux Induced by BzATP.  

MC3T3-E1 cells were superfused with standard medium, and proton efflux was 

monitored. A, parallel samples of MC3T3-E1 cells were initially superfused with 

standard medium. Subsequently, samples were superfused with either control (- Wort, 

closed symbols) or the irreversible PI3K inhibitor, wortmannin (100 nM, + Wort, open 

symbols), for the period indicated by the horizontal bars beneath the graphs. After 9 min, 

cultures were superfused with either BzATP (300 µM, Bz, A (i)) or Vehicle (Veh, A (ii)) 

where indicated by the shaded areas, in the continued presence of the appropriate 

medium. Data are representative traces from 4 independent preparations. B, amplitude of 

the sustained phase, quantified as the average increase in proton efflux above basal, 12-30 

min after application of vehicle or BzATP (indicated by gray-outlined boxes in panel A). 

α indicates significant difference compared to respective vehicle (p < 0.05). β indicates 

significant effect of wortmannin (p < 0.05). Data are means ± S.E.M. (n = 6-8 samples 

from 4 independent preparations).  
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in osteoblast-like cells is partially dependent on PI3K activity. Subsequently, cells were 

treated with BzATP (300 μM) or vehicle in the continued presence of wortmannin or 

DMSO (Figure 3.12 A). The PI3K inhibitor partially blocked the sustained phase of the 

BzATP response (41 ± 8%) compared to parallel cultures treated with BzATP alone (104 

± 13%, p < 0.05; Figure 3.12 B)5.  

To examine the role of PI3K signaling in initiation and maintenance of the 

sustained phase of the BzATP-induced response, we used LY 294002 – a specific and 

reversible PI3K inhibitor, structurally unrelated to wortmannin. To assess initiation, 

parallel samples of MC3T3-E1 cells were treated with LY 294002 (30 µM) or its vehicle 

(DMSO) in standard superfusion medium for 15 min. Like wortmannin, LY 294002 

decreased basal proton efflux (Figure 3.13 A), confirming that baseline metabolism in 

osteoblast-like cells is partially dependent on the PI3K activity. Subsequently, cells were 

treated with BzATP (300 μM) or vehicle in the continued presence of LY 294002 or 

DMSO (Figure 3.13 A). LY 294002 significantly inhibited the sustained phase of the 

BzATP response (34 ± 6%; Point I, Figure 3.13 B) compared to parallel cultures treated 

with BzATP in the absence of the inhibitor (82 ± 10%; Point I, Figure 3.13 B)6. 

Interestingly, upon washout of LY 294002, proton efflux recovered to levels comparable 

with those observed in control cells exposed to BzATP in the presence of DMSO (Point 

II, Figure 3.13 B). Thus, PI3K activity is not essential to trigger the sustained phase of

                                                 
5 Since wortmannin suppressed basal proton efflux compared to DMSO alone, data were also 
corrected for the effects of wortmannin on baseline at the sustained phase. Even with values 
corrected, the PI3K inhibitor still significantly blocked the sustained phase of the BzATP 
response (69 ± 16%) compared to parallel cultures treated with BzATP in the absence of inhibitor 
(104 ± 20%). 
6 Since LY294002 suppressed basal proton efflux compared to DMSO alone, data were also 
corrected for the effects of LY 294002 on baseline. Even with values corrected, the PI3K inhibitor 
still significantly blocked the sustained phase of the BzATP response (50 ± 12%) compared to 
parallel cultures treated with BzATP in absence of inhibitor (90 ± 17%). 
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Figure 3.13 The Reversible PI3K Inhibitor LY 294002 Inhibits Maintenance of the 

Sustained Increase in Proton Efflux Induced by BzATP.  

MC3T3-E1 cells were superfused with standard medium, and proton efflux was 

monitored. A, parallel samples of MC3T3-E1 cells were initially superfused with 

standard medium. Subsequently, samples were superfused with either control (- LY, 

closed symbols) or the reversible PI3K inhibitor, LY 294002 (30 µM, + LY, open 

symbols), for the period indicated by the horizontal bar beneath the graph. After 15 min, 

cultures were superfused with BzATP (300 µM, Bz) or vehicle (not shown) where 

indicated by the shaded areas, in the continued presence of the appropriate medium. Data 

are representative traces from 5 independent preparations. B, amplitude of the response, 

quantified as the change in proton efflux relative to basal, calculated at the times 

indicated by I and II in panel A. α indicates significant effect of LY 294002 (p < 0.05). 

Data are means ± S.E.M. (n = 7-10 samples from 5 independent preparations). C, where 

indicated by the shaded area, parallel samples of MC3T3-E1 cells were challenged with 

BzATP (300 μM, Bz) in standard running medium for 9 min. Subsequently, samples were 

superfused with either control (- LY, closed symbols) or LY 294002 (+ LY, open 

symbols) for 9 min, where indicated by the horizontal bar beneath the graph. Data are 

representative traces from 3 independent preparations. D, amplitude of the response, 

quantified as the change in proton efflux relative to basal, calculated at the times 

indicated by III and IV in panel C. α indicates significant effect of LY 294002 (p < 0.05). 

Data are means ± S.E.M. (n = 7 samples from 3 independent preparations). 
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nucleotide-induced proton efflux.   

To assess the role of PI3K signaling in maintenance of the sustained phase of the 

BzATP-induced proton efflux, parallel samples were treated with BzATP (300 µM) and 

subsequently superfused with either LY 294002 (30 μM) or DMSO for 9 min, before 

returning to standard superfusion medium (Figure 3.13 C). LY 294002 caused a 

significant decrease in proton efflux (31 ± 4%; Point IV, Figure 3.13 D) compared to cells 

treated with BzATP in the absence of inhibitor (89 ± 14%; Point IV, Figure 3.13 D)7. 

Consistent with its reversibility, removal of LY 294002 from the superfusion medium 

resulted in complete recovery of proton efflux to levels comparable with the sustained 

phase observed in cells exposed to BzATP in the absence of inhibitor (Figure 3.13 C). 

Thus, maintenance of the sustained phase, but not its initiation, is dependent on PI3K 

activity. 

 

 

 

 

 

 

 

 

                                                 
7 Since LY294002 suppressed basal proton efflux compared to DMSO alone (not shown), data 
were corrected for the effects of LY 294002 on baseline. With values corrected, LY294002 still 
significantly blocked the sustained phase of the BzATP response (37 ± 6%) compared to parallel 
cultures treated with BzATP alone (105 ± 21%). 
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3.5  Discussion 

The P2X7 receptor plays a role in the regulation of osteogenesis (Ke et al., 2003; 

Panupinthu et al., 2008) and is required for full response of the skeleton to mechanical 

loading (Li et al., 2005), but the mechanisms underlying its effects in osteoblasts are 

poorly understood. In this study, we examined changes in cellular metabolism triggered 

by activation of endogenous P2 nucleotide receptors in osteoblast-like cells. We show for 

the first time in any system that brief activation of P2X7 elicits a large and sustained 

increase in metabolic acid production that requires Ca2+ for initiation and is maintained 

by PI3K signaling, resulting in enhanced glucose metabolism (Figure 3.14). As well, this 

is the first report that, in osteoblast-like cells, P2X7 couples to sustained Ca2+ and PI3K 

signaling – pathways known to enhance osteoblast differentiation, leading to increased 

bone formation.  

 

3.5.1  BzATP Elicits Membrane Blebbing in Osteoblast-like Cells Expressing the 

P2X7 Receptor 

In this study, we investigated the effects of P2X7 receptor activation on osteoblast 

metabolism. Whereas UMR-106 cells do not express P2X7 (Panupinthu et al., 2008), 

studies by others have confirmed expression of this receptor in MC3T3-E1 cells by RT-

PCR (Qi et al., 2007; Okumura et al., 2008), Western blot and pore formation assays (Li 

et al., 2005). However, as pore formation has been observed for other P2X receptor 

subtypes, including P2X2, P2X2/3 and P2X4 (North, 2002), it cannot be used to 

demonstrate specifically the expression of functional P2X7 receptors. Membrane 

blebbing is a characteristic unique to activation of P2X7 (North, 2002). In the present
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Figure 2.14 Proposed Role for P2X7 Receptor Signaling in Regulation of the 

PI3K/AKT Pathway and Cellular Metabolism.  

Osteoblasts are subjected to a number of metabolic demands during differentiation 

and in the production and mineralization of the bone extracellular matrix. The P2X7 

nucleotide receptor promotes osteoblast differentiation and matrix mineralization. Brief 

activation of P2X7 in osteoblast-like cells elicits a large sustained increase in proton 

efflux, which is associated with elevated lactic acid production. Initiation of this 

metabolic response is dependent on Ca2+ influx through activated P2X7 receptors, 

whereas maintenance is dependent on PI3K activity and availability of extracellular 

glucose. Interestingly, Ca2+ has been shown to activate PI3K in other systems through 

Pyk2 and Ras. Taken together, this study shows for the first time that P2X7 signaling 

promotes aerobic glycolysis and PI3K/AKT signaling in cells of the osteoblast lineage – 

two processes known to enhance osteoblast differentiation, leading to increased bone 

formation. 



213 
 



214 
 
study, we demonstrated that MC3T3-E1 osteoblast-like cells, but not UMR-106 

osteosarcoma cells, display blebbing in response to BzATP. Previous work from our lab 

has shown that BzATP or high concentrations of ATP induce formation of plasma 

membrane blebs in approximately 40% of cultured rat and murine calvarial cells 

(Panupinthu et al., 2007), providing evidence for heterogeneous expression of functional 

P2X7 receptors in calvarial cell cultures. In contrast, over 85% of MC3T3-E1 cells 

exhibited membrane blebbing following stimulation of P2X7, indicating that these cells 

represent a more homogenous population with respect to expression of functional P2X7. 

Thus, the MC3T3-E1 cell line was an ideal model with which to assess signaling and 

metabolic pathways activated by stimulation of endogenous P2X7 receptors. 

 

3.5.2  P2X7 Receptors Stimulate Sustained Proton Efflux 

In the present study, we demonstrated that the P2X7 agonist BzATP (300 µM) 

elicits a sustained increase in metabolic acid production by osteoblast-like cells. 

However, as osteoblasts express multiple P2 receptor subtypes, it was possible that the 

sustained increase in proton efflux elicited by BzATP was not activated specifically by 

P2X7 receptors. In this regard, low concentrations of ATP or UTP (100 µM), which 

activate other P2 receptors but not P2X7, elicited only a transient increase in proton 

efflux that, upon removal of either agonist, returned to basal levels. These responses are 

in keeping with changes in proton efflux previously reported for ATP or UTP (10 µM) in 

primary astrocyte cultures (Dixon et al., 2004). In contrast, a high concentration of ATP 

(1 mM), known to activate the P2X7 receptor, recapitulated the sustained increase in 

proton efflux elicited by BzATP. Providing further evidence for involvement of P2X7, 
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BzATP did not elicit a sustained increase in proton efflux from UMR-106 cells, which do 

not express the P2X7 receptor. Moreover, we showed that the BzATP-induced response 

in MC3T3-E1 cells was blocked by A 438079 and A 740003, recently developed 

antagonists that specifically block P2X7 (Nelson et al., 2006; Donnelly-Roberts and 

Jarvis, 2007).  

The sustained phase of P2X7-induced proton efflux observed in this study is 

consistent with a net increase in metabolic acid production, rather than simply activation 

of proton efflux pathways. Had only proton efflux mechanisms been activated, the 

response would have been transient, lasting only until a more alkaline steady-state 

cytosolic pH was established. Such transient responses are often mediated by activation 

of Na+/H+ exchangers (NHEs), associated with phospholipase C (PLC)-mediated 

mobilization of Ca2+ from intracellular stores. In contrast, sustained proton efflux with 

delayed onset that persists even after removal of the agonist (as observed in this study) 

generally involves activation of protein kinases (McConnell et al., 1992) (see below).  

The mechanisms underlying P2X7-induced acid production are unclear, but may 

involve increased ATP hydrolysis or efflux (Burnstock, 2008), lipolysis or 

glycogenolysis, followed by glycolysis (producing lactic acid) or oxidative 

phosphorylation (producing carbonic acid). In the present study, the sustained increase in 

proton efflux was dependent on the presence of extracellular glucose. Moreover, 

activation of P2X7 was associated with an increase in lactate efflux that was sustained for 

at least 3 h, establishing that the response was due, at least in part, to stimulation of 

glycolytic metabolism. These findings are in contrast to those previously reported for 

growth factor effects in osteoblasts, in which IGF-1-induced proton efflux was 



216 
 
independent of extracellular glucose (Santhanagopal and Dixon, 1999). 

 

3.5.3  Dependence of P2X7-induced Proton Efflux on Ca2+ 

Stimulation of P2X7 triggers rapid and sustained elevations of [Ca2+]i in HEK293 

cells heterologously expressing P2X7 receptors (Gudipaty et al., 2003). Such elevations 

in [Ca2+]i mediate a number of important physiological functions in many cell-types, 

including inhibition of neuritogenesis in the Neuro-2a neuroblastoma cell line (Gomez-

Villafuertes et al., 2009), neuroprotection in primary cerebellar granular neurons (Ortega 

et al., 2009), and regulation of interleukin (IL)-1β secretion from monocytes and 

macrophages (Gudipaty et al., 2003). In the present study, we demonstrated that 

stimulation of osteoblasts with BzATP elicits a biphasic elevation in [Ca2+]i, consisting of 

an initial transient and sustained phase. The initial transient increase in [Ca2+]i induced by 

nucleotides has been shown previously to be due to activation of P2Y receptors, leading 

to release of Ca2+ from intracellular stores (Reimer and Dixon, 1992; Gudipaty et al., 

2003). Consistent with these reports, we showed that activation of P2Y receptors by UTP 

elicited only an initial transient increase in proton efflux in osteoblasts. That BzATP also 

elicited a rapid Ca2+ transient in osteoblasts is consistent with BzATP activating P2 

receptors other than P2X7 in MC3T3-E1 cells. In contrast, the sustained Ca2+ elevation 

elicited by BzATP is mediated specifically by the P2X7 receptor and arises by influx of 

Ca2+ from the extracellular milieu.  

The similarity in patterns of Ca2+ signaling and proton efflux induced by 

exogenous nucleotides suggests a role for Ca2+ in regulation of proton production 

downstream of P2 receptors in osteoblasts. In this regard, we observed that extracellular 
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Ca2+ is required to initiate, but not maintain, BzATP-induced proton efflux. Ca2+ influx 

through activated P2X7 receptors may directly stimulate proton efflux, independent of 

cellular metabolism.  For instance, Ca2+ can acidify the cytosol by displacing protons 

from common binding sites (Austin and Wray, 2000). Ca2+ also increases the rate at 

which NHE1 transports protons from the cytosol to the extracellular fluid (Okada et al., 

2002). However, these two mechanisms would only give rise to transient increases in 

proton efflux. Thus, influx of Ca2+ through the P2X7 receptor appears to modulate 

cellular metabolism.  

Cytosolic Ca2+ is a known regulator of ATP synthesis and utilization, thereby 

affecting the formation of acid metabolites (lactic and carbonic acids) (Balaban, 1990; 

Smart and Wood, 2000). Several dehydrogenases of the citric acid cycle, including 

pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, 

succinate dehydrogenase and malate dehydrogenase, are positively regulated by 

elevations in mitochondrial [Ca2+], resulting in enhanced rates of oxidative 

phosphorylation (Denton, 2009; Griffiths and Rutter, 2009). Mitochondrial [Ca2+] may 

also directly regulate the ATP synthase complex to increase ATP production (Denton, 

2009). In this regard, HEK293 and HeLa cells heterologously expressing P2X7 exhibit 

more mitochondria with hyperpolarized transmembrane potentials, and greater basal 

mitochondrial Ca2+ and intracellular ATP content than non-transfected cells (Adinolfi et 

al., 2005a). These effects are presumably dependent on tonic stimulation of P2X7 by 

secreted ATP, and implicate P2X7 in the positive regulation of cellular metabolism. On 

the other hand, Adinolfi and coworkers (Adinolfi et al., 2005a) provide evidence that 

stimulation of these heterologous P2X7 receptors by exogenous ATP causes 
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depolarization of the mitochondrial transmembrane potential that is accompanied by a 

large increase in mitochondrial [Ca2+], mitochondrial fragmentation and cell death. 

Interestingly, we confirmed a previous report (Li et al., 2005) that stimulation of 

endogenous P2X7 receptors in MC3T3-E1 cells does not elicit cell death. This 

discrepancy highlights potential differences in signaling by endogenously versus 

heterologously expressed P2X7 receptors. 

 

3.5.4  Role of PI3K in Mediating P2X7-induced Proton Efflux 

There are few reports concerning regulation of the PI3K-AKT pathway by P2X7 

in any cell type, and opposing effects have been described. For instance, stimulation of 

P2X7 in non-small cell lung cancer, HepG2 liver hepatocyte and Panc1 human pancreatic 

cell lines decreases constitutive and insulin-induced total and nuclear phosphorylated 

AKT (Mistafa et al., 2008; Mistafa and Stenius, 2009). Moreover, in Neuro-2a 

neuroblastoma cells, inhibition or knockdown of P2X7 led to increased AKT 

phosphorylation and activity (Gomez-Villafuertes et al., 2009). In contrast, BzATP acts 

through P2X7 receptors to stimulate PI3K-dependent AKT phosphorylation in cultures of 

rat astrocytes and cerebellar granular neurons (Jacques-Silva et al., 2004; Liu et al., 2010; 

Ortega et al., 2010). Consistent with the latter, we observed that PI3K activity is required 

to maintain proton efflux downstream of the P2X7 receptor, demonstrating that PI3K 

signaling is sustained for an extended period of time following activation of P2X7 in 

osteoblast-like cells.  

Several mechanisms may underlie the coupling of P2X7 to activation of the PI3K-

AKT pathway. In cultures of rat cortical astrocytes, activation of P2X7, as well as other 
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P2 receptors, stimulated AKT phosphorylation in a manner dependent upon extracellular 

and cytosolic Ca2+, PI3K and a Src family kinase (Jacques-Silva et al., 2004; Liu et al., 

2010). The lipid kinase PI4K is one of many signaling proteins that form the P2X7 

receptor complex; a complex that, in part, is responsible for signaling downstream of 

P2X7 (Kim et al., 2001). It has been suggested that phosphatidylinositol-4-phosphate 

(generated by PI4K following stimulation of the P2X7 receptor) may serve as a substrate 

for PI3K leading to activation of AKT (Jacques-Silva et al., 2004). Elevations in [Ca2+]i 

also appear critical in coupling P2X7 to activation of the PI3K-AKT pathway. In this 

regard, heterologously expressed P2X7 activates the proline-rich/Ca2+-activated tyrosine 

kinase Pyk2 (Gendron et al., 2003), a kinase that associates with Src tyrosine kinases to 

stimulate the Ras-PI3K pathway (Kodaki et al., 1994). Ca2+ can also trigger AKT 

phosphorylation through CaMKK, independent of Pyk2, Src tyrosine kinases or PI3K 

(Yano et al., 1998). Ultimately, additional studies will be needed to determine how P2X7 

couples to PI3K signaling in cells of the osteoblast lineage.        

The PI3K-AKT pathway regulates several cellular processes that may contribute 

to proton efflux; these include uptake of nutrients such as amino acids and glucose, the 

activity of several glycolytic enzymes and ATP production (Hammerman et al., 2004; 

Engelman et al., 2006). For example, AKT directly increases activities of the glycolytic 

enzymes hexokinase and phosphofructokinase-2 in Rat1a fibroblasts and cardiac muscle, 

respectively. The importance of the PI3K-AKT pathway in regulation of glycolytic 

metabolism is in keeping with our results demonstrating that BzATP-induced increase in 

proton efflux is dependent on extracellular glucose and PI3K activity, and arises at least 

in part from increased rates of lactic acid production and efflux.   
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3.5.5  Potential Physiological Roles of P2X7-induced Ca2+ Elevation, PI3K 

Signaling and Proton Efflux in Osteoblast Regulation and Function 

To the best of our knowledge, the present study is the first to report that P2X7 

couples to sustained Ca2+ and PI3K signaling in osteoblasts. Interestingly, both the Ca2+-

NFATc1 (Koga et al., 2005) and PI3K-AKT (Fujita et al., 2004) pathways play important 

roles in osteoblast differentiation. Activation of the PI3K-AKT pathway also enhances 

survival in many cell-types (Hammerman et al., 2004; Engelman et al., 2006); a 

phenomenon that may explain the resistance of osteoblasts to P2X7-induced apoptosis 

seen in several other cell-types (Adinolfi et al., 2005a). 

 It is possible that metabolic acid production induced by P2X7 plays a role 

osteoblast function. During the synthesis and secretion of osteoid by active osteoblasts in 

vivo, the pHo in the region between the osteoblast layer and the mineralizing front affects 

both the rate of mineral formation and its phase transformation. An acidic zone beneath 

the active osteoblast layer may prevent premature mineralization of the osteoid seam 

during bone formation. It is also possible that acid production by cells of the osteoblast 

lineage activates osteoclastic bone resorption (Arnett and Spowage, 1996; Komarova et 

al., 2005; Pereverzev et al., 2008). In vitro studies of pit formation by rat osteoclasts have 

shown that there is little, if any, resorptive activity at values of pHo >7.3. Slight decreases 

in pHo markedly stimulate osteoclastic resorption, which is maximally active at values 

<7.0 (Arnett and Spowage, 1996). Taken together, the effects of P2X7 on Ca2+ and PI3K 

signaling, as well as metabolic acid production, described in the present study may help to 

explain the mechanism by which P2X7 promotes osteogenesis in vivo. 
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4.1  Chapter Summary 

The P2X7 and Wnt/β-catenin pathways regulate osteoblast differentiation and are 

critical for anabolic responses of bone to mechanical loading. However, whether these 

pathways interact to control osteoblast activity is unknown. The purpose of this study was 

to investigate effects of P2X7 activation on Wnt/β-catenin signaling in osteoblasts. Using 

MC3T3-E1 osteoblast-like cells, we found that canonical Wnt3a elicited an increase in β-

catenin nuclear localization that peaked at 3 h and slowly returned to baseline within 24 h. 

In contrast, BzATP caused transient nuclear localization only at 0.5 h post-treatment. 

Notably, Wnt3a and BzATP together elicited a dramatically sustained β-catenin nuclear 

localization compared to Wnt3a alone. Wnt3a also induced an increase in transcriptional 

activity of β-catenin that was potentiated by treatment with BzATP. On the other hand, 

BzATP alone did not increase β-catenin transcriptional activity. Consistent with 

involvement of P2X7, a high ATP concentration (1 mM) potentiated β-catenin 

transcriptional activity elicited by Wnt3a, whereas low concentrations of ATP, ADP or 

UTP (10 µM) failed to elicit a response. BzATP-induced potentiation of β-catenin 

transcriptional activity elicited by Wnt3a was inhibited by two distinct P2X7 antagonists. 

Moreover, responses to Wnt3a in calvarial cells from P2rx7 knockout mice were 

significantly less than in cells from wild-type controls. This potentiation was associated 

with GSK3β inhibitory phosphorylation induced downstream of activated P2X7 

receptors, suggesting that P2X7 may potentiate canonical Wnt signaling through GSK3β. 

Taken together, we show for the first time that P2X7 activation prolongs and potentiates 

Wnt/β-catenin signaling. Thus, crosstalk between P2X7 and Wnt/β-catenin pathways may 

modulate osteoblast activity in response to mechanically-induced ATP release in bone. 
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4.2  Introduction 

Mechanical loading of the skeleton greatly influences bone remodeling, a process 

that relies on the coordinated removal of old or damaged bone by osteoclasts and 

formation of new bone by osteoblasts (Robling et al., 2006). In cells of the osteoblast 

lineage, a variety of mechanical stimuli, including fluid shear stress and tensile strain, 

regulate proliferation, differentiation, survival and function both in vitro and in vivo 

(Thompson et al., 2012). The process by which these mechanical stimuli are translated 

into cellular responses, termed mechanotransduction, is thought to be mediated by the 

release of autocrine and paracrine factors, including adenosine 5’-triphosphate (ATP), 

nitric oxide (NO) and prostaglandin E2 (PGE2), that in turn activate a number of 

downstream signaling pathways such as Ca2+/nuclear factor of activated T-cells (NFAT), 

adenosine 3’,5’-cyclic monophosphate (cAMP)/protein kinase A (PKA), 

phosphatidylinositol 3-kinase (PI3K)/AKT and Wnt/β-catenin (Papachristou et al., 2009; 

Thompson et al., 2012).  

The canonical Wnt/β-catenin pathway plays a critical role in osteoblast 

differentiation (Westendorf et al., 2004; Bodine and Komm, 2006; Hartmann, 2006; 

Krishnan et al., 2006; Long, 2012; Baron and Kneissel, 2013), and in response of the 

skeleton to mechanical loading (Bonewald and Johnson, 2008; Bonewald, 2011; Baron 

and Kneissel, 2013). In resting cells, β-catenin forms a complex with glycogen synthase 

kinase 3β (GSK3β) and other proteins, resulting in its phosphorylation and subsequent 

degradation (MacDonald et al., 2009). Upon binding of canonical Wnt ligands to the 

appropriate Frizzled receptor (Fzd)-lipoprotein receptor-related protein (LRP) 5/6 co-

receptor complex, GSK3β activity is suppressed and β-catenin is stabilized. As a result, β-
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catenin accumulates within the cytosol and translocates to the nucleus to activate target 

gene expression (MacDonald et al., 2009). The absence of mechanical loading in vivo 

leads to a rapid loss in bone mass associated with release of the LRP5/6 antagonist 

sclerostin (SOST) from osteocytes (Robling et al., 2008; Lin et al., 2009; Tu et al., 2012) 

concomitant with decreased bone formation and increased bone resorption (Robling et al., 

2006). On the other hand, increased loading reduces SOST levels (Robling et al., 2008; 

Lin et al., 2009; Tu et al., 2012) and activates canonical Wnt signaling (Robinson et al., 

2006; Lin et al., 2009; Tu et al., 2012) to promote bone formation resulting in greater 

bone mass (Robling et al., 2006). Mice with either deletion of LRP5 or overexpression of 

SOST in osteocytes exhibit impaired anabolic responses to mechanical load (Sawakami et 

al., 2006; Tu et al., 2012; Zhao et al., 2013), confirming a critical role for the Wnt/β-

catenin pathway in skeletal mechanotransduction.  

Activation of β-catenin is elicited following fluid shear stress or tensile strain in a 

number of osteoblast and osteocyte cell culture systems (Norvell et al., 2004; Armstrong 

et al., 2007; Case et al., 2008; Sen et al., 2008; Santos et al., 2009; Sen et al., 2009; Case 

et al., 2010; Case et al., 2011). At the same time, primary calvarial osteoblasts from 

LRP5-deficient mice exhibit no differences in ATP release, PGE2 production or 

extracellular signal-regulated kinase (ERK) 1/2 activation in response to fluid shear stress 

(Sawakami et al., 2006). The canonical Wnt antagonist dickopff 1 (DKK1) also fails to 

inhibit β-catenin nuclear localization elicited by tensile strain in CIMC-4 osteoblast-like 

cells (Case et al., 2008). Thus, mechanisms independent of canonical Wnt signaling 

appear to mediate activation of β-catenin in osteoblast lineage cells downstream of 

mechanical stimulation.   
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Extracellular nucleotides, released in response to mechanical stimuli, signal 

through P2 receptors expressed in osteoblasts and most other cell types. These receptors 

are further divided into two subfamilies: the P2Y family of G protein-coupled receptors, 

and the P2X family of ligand-gated cation channels (Abbracchio et al., 2006; Khakh and 

North, 2006; Burnstock, 2007). Mice in which P2X7 receptor function is disrupted 

(knockout) exhibit diminished periosteal bone formation and increased trabecular bone 

resorption (Ke et al., 2003), and impaired anabolic responses of the skeleton to 

mechanical load (Li et al., 2005). P2X7 couples to production of lysophosphatidic acid 

(LPA) and PGE2 in cells of the osteoblast lineage to promote osteoblast differentiation 

and matrix mineralization in vitro (Panupinthu et al., 2008). Additionally, P2X7 is 

required to mediate the effects of fluid shear stress in cultures of osteoblast-like and 

osteocyte-like cells (Li et al., 2005). We have recently demonstrated that P2X7 activates 

PI3K/AKT signaling in MC3T3-E1 osteoblast-like cells (Grol et al., 2012), a pathway 

that inhibits GSK3β in other systems. However, it is not known whether P2X7 receptors 

couple to inhibition of GSK3β in osteoblasts. Moreover, though GSK3β inhibition is 

linked to activation of β-catenin, no studies to date have evaluated whether P2X7 may 

cross-talk with Wnt signaling to enhance β-catenin target gene expression.  

In the present study, we show that stimulation of P2X7 receptors by exogenous 

nucleotides in MC3T3-E1 osteoblast-like cells promotes transient β-catenin nuclear 

localization with no detectable change in transcriptional activity. On the other hand, P2X7 

activation prolongs β-catenin nuclear localization and potentiates transcriptional 

activation elicited by canonical Wnt signaling. Moreover, this potentiation is associated 

with the inhibitory phosphorylation of GSK3β induced by activated P2X7 receptors, 
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suggesting that P2X7 may promote Wnt/β-catenin signaling through GSK3β. Taken 

together, these data show for the first time in any system that P2X7 activation can 

potentiate Wnt/β-catenin signaling, a mechanism through which osteoblast activity may 

be modulated in response to mechanically-induced ATP release in bone. 
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4.3  Materials and Methods 

4.3.1  Materials and Solutions 

α-Minimum essential medium (α-MEM), heat-inactivated fetal bovine serum 

(FBS), antibiotic solution (10,000 U/ml penicillin, 10,000 µg/ml streptomycin, and 25 

µg/ml amphotericin B), trypsin solution, Dulbecco’s phosphate buffered saline (DPBS) 

and Dulbecco’s modified Eagle medium (high glucose) (DMEM) were obtained from 

GIBCO (Life Technologies Inc., Burlington, ON, Canada). β-catenin (L54E2) mouse 

monoclonal and phospho-GSK3α/β (Ser21/9) rabbit polyclonal antibodies were from Cell 

Signaling Technologies Inc. (Danvers, MA, USA). GSK3α/β mouse monoclonal, horse 

radish peroxidase (HRP)-conjugated goat anti-rabbit and HRP-conjugated goat anti-

mouse antibodies were obtained from Santa Cruz Biotechnology Inc. (Dallas, TX, USA). 

Alexa Fluor® 488 goat anti-mouse antibody was from Molecular Probes (Life 

Technologies Inc.). Vectashield mounting medium with 4,6-diamidino-2-phenylindole 

(DAPI) was obtained from Vector Laboratories Inc. (Burlingame, CA, USA). BCA 

Protein Assay Kit, SuperSignal West Pico Chemiluminescent Substrate and Restore 

PLUS Western Blot Stripping Buffer were obtained from Pierce (Thermo Fisher 

Scientific, Inc., Rockland, IL, USA). Precision Plus ProteinTM Kaleidoscope Standards 

and nitrocellulose transfer membranes were from Bio-Rad Laboratories Inc. (Hercules, 

CA, USA). Phospho-GSK3α/β (Tyr279/216) rabbit polyclonal antibody, NuPAGE® LDS 

Sample Buffer, 4X, NuPAGE® Sample Reducing Agent, 10X, NuPAGE® Antioxidant, 

NuPAGE® MOPS SDS Running Buffer, 20X, NuPAGE® Transfer Buffer, 20X and 

NuPAGE® Bis-Tris Gels, 1.5 mm, 10 well were obtained from Novex (Life 

Technologies Inc.). Gel blot paper was from Whatman (GE Healthcare Life Sciences, 
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Piscataway, NJ, USA). KODAK® BioMax® light autoradiography film was obtained 

from VWR International (Mississauga, ON, Canada). Mini-Complete Protease Inhibitor 

tablets, FuGENE 6 and X-tremeGENE 9 were from Roche Diagnostics (Laval, QC, 

Canada). Passive Lysis Buffer, 5X and Bright-GloTM Luciferase Assay System were 

obtained from Promega (Madison, WI, USA). Bovine albumin (BSA), Fraction V was 

from Fisher Scientific (Thermo Fisher Scientific Inc.). Recombinant mouse Wnt3a was 

obtained from either R&D Systems, Inc. (Minneapolis, MN, USA) or Abcam, Inc. 

(Cambridge, MA, USA). Normal goat serum, collagenase type II, Phosphatase Inhibitor 

Cocktail II, ATP disodium salt, adenosine 5’-diphosphate (ADP) disodium salt, uridine 

5’-triphosphate (UTP) trisodium salt hydrate and 2’-3’-O-(4-benzoylbenzoyl)adenosine 

5’-triphosphate (BzATP) triethylammonium salt were obtained from Sigma-Aldrich (St. 

Louis, MO, USA). 3-[[5-(2,3-Dichlorophenyl)-1H-tetrazol-1-yl]methyl]pyridine 

hydrochloride (A 438079 HCl) and N-[1-[[(cyanoamino)(5-quinolinylamino) 

methylene]amino]-2,2-dimethylpropyl]-3,4-dimethoxybenzeneacetamide (A 740003) 

were from Tocris Bioscience (Ellisville, MO, USA). Phosphatase Inhibitor Cocktail IV 

was from Calbiochem (EMD Biosciences, San Diego, CA). 

RIPA buffer (for protein isolation) consisted of: 50 mM Tris pH 7.5, 150 mM 

NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulphate (SDS), 

and 2 mM EDTA, pH 8.0 supplemented with 2 Mini-Complete Protease Inhibitor tablets 

(Roche Diagnostics), 200 µl Phosphatase Inhibitor Cocktail II (Sigma-Aldrich) and 400 

µl Phosphatase Inhibitor Cocktail IV (Calbiochem) in 20 ml total volume. 
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4.3.2  Animals and Cell Culture 

The P2X7 loss-of-function (knockout) mouse, generated as previously described 

(Solle et al., 2001), was obtained from Pfizer. Though P2X7 is present in this genetically 

modified mouse model, the protein has a COOH-terminal truncation that greatly 

diminishes receptor function (Masin et al., 2012). Colonies of wild-type and knockout 

mice were maintained in a mixed genetic background (129/Ola × C57BL/6 × DBA/2) by 

crossbreeding of heterozygous mice. All procedures were approved by the Council on 

Animal Care at the University of Western Ontario and were in accordance with the 

guidelines of the Canadian Council on Animal Care.  

Calvarial osteoblasts were isolated from 5- to 7-d-old mice using sequential 

collagenase digestion, as previously described (Panupinthu et al., 2008). Freshly isolated 

calvarial osteoblasts were plated at a density of 1.0-1.5 × 104 cells/cm2 on Nunc six-well 

plates (Thermo Fisher Scientific, Rochester, NY, USA) and maintained in α-MEM 

supplemented with 10% FBS and 1% antibiotic solution (culture medium) at 37°C and 

5% CO2. After confluence was reached (~3-5 days), cells were trypsinized and plated for 

experiments.  

The MC3T3-E1 osteoblast-like cell line (subclone 4) was obtained from the 

American Type Culture Collection (Rockville, MD, USA). MC3T3-E1 cells were 

subcultured twice weekly and maintained in culture medium at 37°C and 5% CO2. These 

cells endogenously express P2X7 and Wnt signaling components, and are responsive to 

canonical Wnt3a (Li et al., 2005; Spencer et al., 2006; Qi et al., 2007; Okumura et al., 

2008; Caverzasio et al., 2013). 
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4.3.3  Immunofluorescence Localization of β-catenin 

MC3T3-E1 cells were plated at a density of 1.5 × 104 cells/cm2 on 12-mm glass 

coverslips in Falcon 24-well plates in culture medium. After 2 d, cells were placed in 

serum-free medium and incubated overnight. On the day of the experiment, cells were 

incubated with test substances for the indicated times. Cells were then fixed with 

paraformaldehyde (4%) in sucrose solution (2%), permeabilized with 0.1% Triton X-100 

in DPBS for 10 min, and blocked for 1 h with 1% normal goat serum in DPBS (blocking 

solution). To detect subcellular localization of β-catenin, cells were first incubated for 1 h 

with a mouse monoclonal antibody (1:200 in blocking solution) followed by a 2 h 

incubation with an Alexa Fluor® 488 goat anti-mouse antibody (1:200 in blocking 

solution) at room temperature. Stained samples were then sealed using Vectashield 

mounting medium with DAPI, and visualized by confocal microscopy (model LSM 510; 

Carl Zeiss Inc., Jena, Germany) using a Zeiss Plan-Apochromat 40× objective (1.2 NA) at 

a slice thickness of 2 µm with 488-nm Ar+ ion laser excitation and emission wavelengths 

filtered at 500-550 nm band pass. To quantify subcellular localization of β-catenin, the 

average fluorescence intensity of an area in the nucleus (FN) and the average fluorescence 

intensity of an area of equal size in the cytosol (FC) were determined. Values of the ratio 

FN/FC greater than or equal to 1.25 were taken to indicate nuclear localization of β-catenin 

protein. Twelve images were obtained per coverslip for each treatment, and the FN/FC 

ratios for all cells within a field were analyzed (~20-30 cells per field).  

 

4.3.4  Luciferase Reporter Assay for β-catenin Transcriptional Activity 

The β-catenin luciferase reporter plasmid (pBARL) was obtained from Dr. 
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Randall Moon (University of Washington, Seattle, WA, USA). This plasmid consists of 

twelve TCF response elements (or β-catenin binding sites) cloned upstream of Promega’s 

minP© minimal promoter (Biechele and Moon, 2008). MC3T3-E1 and calvarial 

osteoblasts were transfected in suspension with the β-catenin luciferase reporter vector 

using FuGENE 6 or X-tremeGENE 9 according to manufacturers’ instructions. Cells 

were subsequently plated at a density of 3.0 × 104 cells/cm2 on Falcon 48-well plates (or 

Nunc 48-well plates for calvarial cells) in culture medium. At 1 d post-transfection, cells 

were placed in serum-free medium and incubated overnight. On the day of the 

experiment, cells were treated with test substances and subsequently incubated for 24 h. 

Cell lysates were then prepared by incubation with 65 µl (or 100 µl for calvarial cells) of 

Passive Lysis Buffer, 1X per well at room temperature for a minimum of 30 min with 

agitation. To assess luminescence, 15 µl of lysate was combined with 15 µl of Bright-Glo 

Luciferase Reagent in a 96-well white plate (Greiner Bio-One, Monroe, NC, USA). 

Reactions for each sample were performed in triplicate. Luminescence was measured 

using 2-s integration per well on a LMAX II384 microplate reader (Molecular Devices, 

Downingtown, PA, USA). 

 

4.3.5 Western Blot Analysis of GSK3α/β Phosphorylation 

MC3T3-E1 cells were plated at a density of 1.5 × 104 cells/cm2 on Falcon 60-mm 

dishes in culture medium. After 1 d, cells were placed in serum-free medium and 

incubated overnight. On the day of the experiment, cells were incubated with test 

substances for the indicated times. Cellular protein was then collected by lysing cells on 

ice in RIPA lysis buffer supplemented with protease and phosphatase inhibitors. Cell 
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lysates were homogenized by sonication at 20% for 5 s on ice using a Sonic 

Dismembrator (Model 500; Fisher Scientific) followed by sedimentation at 13,000×g for 

10 min at 4 °C. The resulting supernatant was used for Western blot analysis. Protein 

concentration was determined with the Pierce BCA protein assay kit. Equivalent amounts 

of protein (10-15 µg) were prepared with NuPAGE® Sample Reducing Agent (1X) and 

NuPAGE® LDS Sample Buffer (1X), and resolved on NuPAGE® Bis-Tris 

polyacrylamide gels in 1X NuPAGE® MOPS SDS Running Buffer (1X). Proteins were 

then transferred to nitrocellulose membranes by electroblotting at 30 V for 90 min at 4º C. 

After transfer, membranes were washed for 5 min in Tris-buffered saline (TBS) 

with 0.05% Tween 20 (TBST; washing solution) before being blocked for 1 h with 5% 

BSA in TBST (blocking solution) at RT. To detect phospho-GSK3α/β (Ser21/9), 

phospho-GSK3α/β (Tyr279/216) or total GSK3α/β, membranes were incubated overnight 

at 4 °C with a phospho-GSK3α/β (Ser21/9) rabbit polyclonal antibody (1:1000 in 

blocking solution),  phospho-GSK3α/β (Tyr216/279) rabbit polyclonal antibody (1:1000 

in blocking solution), or GSK3α/β mouse monoclonal antibody (1:5000 in blocking 

solution), respectively. The next day,  membranes were subjected to three 5-min washes 

in TBST, incubated with the appropriate secondary antibody at a dilution of 1:20000 in 

blocking solution at RT and washed three more times for 5 min each in TBST. 

Antibody/protein complexes were visualized by 1, 3 or 5 min incubations of the 

membrane in SuperSignal West Pico Chemiluminescent Substrate followed by exposure 

using KODAK® BioMax® light autoradiography film and a KODAK® M35A X-OMAT 

processor. Band intensities on immunoblots were quantified by densitometry using 

Quantity One v4.5.2 (Bio-Rad Laboratories Inc.), and normalized to total GSK3α/β signal 
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(loading control). For repeated probing, membranes were stripped with Restore PLUS 

Western Blot Stripping Buffer for 5-20 min at RT (or 37 °C) followed by one wash with 

TBST. 

 

4.3.6  Statistical Analyses 

Data are shown as means ± S.E.M. Differences between two groups were assessed 

using t tests. Differences among three or more groups were evaluated by one-way 

analysis of variance (ANOVA) followed by a Tukey multiple comparisons test, or two-

way ANOVA followed by a Bonferroni multiple comparisons test. Differences were 

accepted as statistically significant at p < 0.05. 
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4.4  Results 

4.4.1 Effect of the P2X7 Agonist BzATP on Wnt-induced β-catenin Nuclear 

Localization 

Canonical Wnt ligands signal through Fzd-LRP5/6 co-receptor complexes within 

the plasma membrane, leading to stabilization and subsequent translocation of β-catenin 

from the cytoplasm to the nucleus (MacDonald et al., 2009). To assess whether P2X7 

receptor signaling could influence Wnt-induced nuclear localization of β-catenin in 

osteoblasts, MC3T3-E1 cells were treated with canonical Wnt3a (20 ng/ml) or its vehicle, 

and the P2X7 receptor agonist BzATP (300 µM) or its vehicle, alone or in combination. 

Samples were fixed at various time points, processed for β-catenin immunofluorescence, 

and visualized by confocal microscopy (Figure 4.1 A). To quantify subcellular 

localization of β-catenin, average pixel intensity for areas of equal size within the nucleus 

(FN) and the cytosol (FC) were determined. Values of FN/FC exceeding 1.25 were taken to 

indicate nuclear localization (Figure 4.1 B). In the absence of agonists, β-catenin 

localized to cell junctions and the cytoplasm, with little or no fluorescence in the nucleus 

(Figure 4.1 A, B). Wnt3a alone elicited a gradual increase in the percentage of osteoblasts 

with β-catenin nuclear localization, which peaked at 3 h and slowly returned to baseline 

by 24 h (Figure 4.1 A, B). In contrast, BzATP alone caused transient nuclear localization 

in nearly all cells only at 0.5 h after treatment (Figure 4.1 A, B). Notably, when cells were 

treated with Wnt3a and BzATP in combination, β-catenin nuclear localization was more 

rapid and sustained compared to Wnt3a alone (Figure 4.1 A, B).  

To assess the degree (or intensity) of β-catenin nuclear localization at each time 

point, the average value for FN/FC in a field was determined and plotted. In keeping with
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Figure 4.1 The P2X7 Agonist BzATP Potentiates β-catenin Nuclear Localization 

Elicited by Canonical Wnt3a.  

A, MC3T3-E1 osteoblast-like cells were seeded at a density of 1.5 × 104 cells/cm2 

on glass coverslips and cultured for 2 days. Cells were then placed in serum-free media 

and incubated overnight. The next day, cells were treated under serum-free conditions 

with recombinant mouse canonical Wnt3a (20 ng/ml) or its vehicle (0.2% BSA; BSA) in 

the presence of either BzATP (300 µM) or its vehicle (Vehicle), and fixed at the indicated 

times. To observe changes in subcellular localization of β-catenin, immunofluorescence 

was performed using a β-catenin monoclonal antibody (green) and visualized by confocal 

microscopy. Data are representative images from 4 independent preparations each 

performed in duplicate. Scale bar is 20 µm. B, β-catenin nuclear localization was assessed 

by measuring the average pixel intensity of an area in the nucleus (FN) and an area of 

equal size in the cytosol (FC). The proportion of all cells within 24 fields (12 per 

coverslip) exhibiting β-catenin nuclear localization was analyzed for each condition. 

Values of the ratio FN/FC greater than or equal to 1.25 were taken as indicating nuclear 

localization. The number of cells exhibiting nuclear localization was expressed as a 

percentage of the total number of cells for each treatment group. C, the ratio of FN/FC (an 

indication of the intensity of β-catenin nuclear localization) for all cells analyzed was 

plotted for each treatment at times indicated. For both B and C, α indicates a significant 

effect of BzATP on Wnt3a-induced β-catenin nuclear localization compared to Wnt3a 

alone at the same time point (p < 0.05). Data are means ± S.E.M. (n = 4 independent 

preparations each performed in duplicate).  
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observations made when assessing the percentage of responding cells, the intensity of β-

catenin nuclear localization was significantly greater at all-time points other than 3 h in 

cultures treated with Wnt3a and BzATP compared to Wnt3a alone (Figure 4.1 A, C). 

Thus, stimulation of only P2X7 promotes brief, transient β-catenin nuclear localization, 

whereas activated P2X7 receptors prolong and increase nuclear localization of β-catenin 

elicited by canonical Wnt signaling. 

 

4.4.2 Effect of BzATP on Wnt-induced β-catenin Transcriptional Activity 

To determine if BzATP affects β-catenin transcriptional activity elicited by 

canonical Wnt signaling, MC3T3-E1 cells were transfected with a β-catenin luciferase 

reporter and treated with Wnt3a (20 ng/ml) or its vehicle, and BzATP (300 µM) or its 

vehicle, alone or in combination. After 24 h, cell lysates were collected and luminescence 

was assessed as a measure of β-catenin transcriptional activity (Figure 4.2). Wnt3a alone 

induced a dramatic increase in β-catenin transcriptional activity (Figure 4.2). 

Interestingly, although BzATP alone induced nuclear localization of β-catenin at 0.5 h, it 

did not increase β-catenin transcriptional activity in these cells. In keeping with the 

analysis of β-catenin subcellular localization, the combination of Wnt3a and BzATP 

significantly enhanced transcriptional activity compared to that induced by Wnt3a alone 

(Figure 4.2).   

 

4.4.3 P2X7 is Essential for Mediating Effects of Nucleotides on Wnt-induced β-

catenin Transcriptional Activity 

Since BzATP can activate other P2 nucleotide receptors in addition to P2X7
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Figure 4.2 BzATP Potentiates β-catenin Transcriptional Activity Elicited by Wnt3a. 

MC3T3-E1 osteoblast-like cells were transfected in suspension with a β-catenin 

luciferase reporter plasmid, seeded at a density of 3.0 × 104 cells/cm2 in a 48-well plate, 

and cultured for 1 day. Cells were then placed in serum-free media and incubated 

overnight. The next day, cells were treated under serum-free conditions with recombinant 

mouse Wnt3a (20 ng/ml) or its vehicle (0.2% BSA; BSA) in the presence of either 

BzATP (300 µM) or its vehicle (Vehicle). After 24 h, cell lysates were collected and 

luminescence was assessed as a measure of β-catenin transcriptional activity. The 

luminescence for each treatment was expressed relative to BSA + Vehicle. α indicates a 

significant effect of treatment on β-catenin transcriptional activity compared to BSA + 

Vehicle (p < 0.05). β indicates significant effect of BzATP on Wnt3a-induced β-catenin 

transcriptional activity (p < 0.05). Data are means ± S.E.M. (n = 21 samples from 7 

independent preparations). 
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(North, 2002), the effects of additional P2 agonists on Wnt-induced β-catenin 

transcriptional activity were assessed. MC3T3-E1 cells transfected with the β-catenin 

luciferase reporter were treated with Wnt3a (20 ng/ml) or its vehicle and varying 

concentrations of ATP, ADP, UTP or their vehicle, alone or in combination (Figure 4.3 

A-C). Whether in the absence or presence of Wnt3a, neither ADP nor UTP altered β-

catenin transcriptional activity (Figure 4.3 B, C). A low concentration of ATP (10 µM) 

also failed to elicit a response (Figure 4.3 A). In contrast, a high ATP concentration (1 

mM) significantly potentiated β-catenin transcriptional activity compared to Wnt3a alone 

(Figure 4.3 A), consistent with involvement of the low-affinity P2X7 receptor.  

To further assess the role of P2X7, pharmacological and genetic approaches were 

utilized. First, MC3T3-E1 cells transfected with the β-catenin luciferase reporter were 

treated with Wnt3a (20 ng/ml) or its vehicle and BzATP (300 µM) or its vehicle, alone or 

in combination, in the presence or absence of the P2X7 antagonists A 438079 (10 µM) or 

A 740003 (10 µM) (Figure 4.4). A 438079 (Figure 4.4 A) and A 740003 (Figure 4.4 B) 

both abolished the BzATP-induced potentiation of Wnt3a signaling, but did not 

significantly alter the effects elicited by Wnt3a alone. Next, changes in Wnt signaling 

were assessed in primary osteoblasts isolated from wild-type mice and mice with loss of 

P2X7 function (knockout) (Figure 4.5). Both wild-type and knockout calvarial osteoblasts 

transfected with the β-catenin luciferase reporter displayed significant increases in β-

catenin transcriptional activity in response to Wnt3a (20 ng/ml) (Figure 4.5). However, 

the response to Wnt3a was significantly less in knockout cells compared to wild-type 

(Figure 4.5). Taken together, these findings demonstrate that P2X7 receptor signaling 

cross-talks with the Wnt/β-catenin pathway to enhance its activity in cells of the
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Figure 4.3 P2X7 Receptor Agonists Potentiate β-catenin Transcriptional Activity 

Elicited by Wnt3a.  

MC3T3-E1 osteoblast-like cells transfected with the β-catenin luciferase reporter 

plasmid were treated under serum-free conditions. A, cells were treated with recombinant 

mouse Wnt3a (20 ng/ml) or its vehicle (0.2% BSA; BSA) in the presence of either 10 µM 

ATP (ATPlow), 1 mM ATP (ATPhigh) or their vehicle (Vehicle). After 24 h, cell lysates 

were collected and luminescence was assessed. Luminescence for each treatment was 

expressed relative to BSA + Vehicle. B, cells were treated with recombinant canonical 

Wnt3a (20 ng/ml) or its vehicle (0.2% BSA; BSA) in the presence of either 10 µM ADP 

(ADPlow), 1 mM ADP (ATPhigh) or their vehicle (Vehicle). After 24 h, luminescence was 

assessed as described in (A). C, cells were treated with recombinant canonical Wnt3a (20 

ng/ml) or its vehicle (0.2% BSA; BSA) in the presence of either 10 µM UTP (UTP) or its 

vehicle (Vehicle). After 24 h, luminescence was assessed as described in (A). For A, B 

and C, α indicates a significant effect of treatment on β-catenin transcriptional activity 

compared to BSA + Vehicle (p < 0.05). β indicates significant effect of nucleotide on 

Wnt3a-induced β-catenin transcriptional activity (p < 0.05). Data are means ± S.E.M. (n = 

21 samples from 7 independent experiments).  
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Figure 4.4 P2X7 Receptor Antagonists Block the Effects of BzATP on Wnt3a-

induced β-catenin Transcriptional Activity.  

MC3T3-E1 osteoblast-like cells transfected with the β-catenin luciferase reporter 

plasmid were treated under serum-free conditions. Cells were incubated for 5-10 min in 

the absence or presence of the specific P2X7 antagonist A 438079 (10 μM, Panel A) or a 

second P2X7 antagonist A 740003 (10 µM, Panel B). Next, cells were treated with 

recombinant mouse Wnt3a (20 ng/ml) or its vehicle (0.2% BSA; BSA) in the presence of 

either BzATP (300 µM) or its vehicle (Vehicle). After 24 h, cell lysates were collected 

and luminescence was assessed. Luminescence for each treatment was expressed relative 

to DMSO + BSA + Vehicle. For both A and B, α indicates a significant effect of 

treatment on β-catenin transcriptional activity compared to Control + BSA + Vehicle (p < 

0.05). β indicates significant effect of BzATP on Wnt3a-induced β-catenin transcriptional 

activity (p < 0.05). δ indicates significant effect of the antagonist (p < 0.05). Data are 

means ± S.E.M. (n = 18 samples from 6 independent experiments).  
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Figure 4.5 Functional P2X7 Receptors are Required for Complete Activation of 

Wnt3a-induced β-catenin Transcriptional Activity.  

Calvarial osteoblasts from wild-type and P2X7 loss-of-function (knockout) mice 

were transfected with the β-catenin luciferase reporter plasmid, and treated under serum-

free conditions with recombinant mouse Wnt3a (20 ng/ml) or its vehicle (0.2% BSA; 

BSA). After 24 h, cell lysates were collected and luminescence was assessed. 

Luminescence for each treatment was expressed relative to BSA treatment in wild-type 

cells. α indicates a significant effect of Wnt3a on β-catenin transcriptional activity 

compared to BSA treatment (p < 0.05). β indicates significant effect of genotype (p < 

0.05). Data are means ± S.E.M. (n = 21 samples from 7 independent experiments). 



252 
 



253 
 
osteoblast lineage.     

 

4.4.4 Activation of P2X7 Increases Inhibitory Phosphorylation of GSK3α/β 

During canonical Wnt signaling, stabilization of β-catenin is achieved in part 

through inhibition of GSK3β (MacDonald et al., 2009). To determine whether P2X7 

couples to inhibition of GSK3β in cells of the osteoblast lineage, the effects of BzATP on 

GSK3α/β phosphorylation were examined (Figure 4.6). Treatment of MC3T3-E1 cells 

with BzATP (300 µM) inhibited GSK3α/β as indicated by the significant increase in 

inhibitory phosphorylation of both GSK3α and GSK3β at serines 21 and 9, respectively 

(Figure 4.6 A, B). On the other hand, BzATP had no effect on the phosphorylation status 

of tyrosine residues 279 (GSK3α) or 216 (GSK3β), both of which are associated with 

activation of GSK3 (Figure 4.6 A). Consistent with involvement of P2X7, A 438079 (10 

µM) suppressed the inhibitory phosphorylation of GSK3α/β induced by BzATP (Figure 

4.7 A, B). Thus, P2X7 may potentiate canonical Wnt signaling through inhibition of 

GSK3β, though further experiments are required. 
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Figure 4.6 BzATP Induces Inhibitory Phosphorylation of GSK3α/β.  

A, MC3T3-E1 osteoblast-like cells were seeded at a density of 1.5 × 104 cells/cm2 

in a 6-well plate and cultured for 1 day. Cells were then placed in serum-free media and 

incubated overnight. The next day, cells were treated under serum-free conditions with 

vehicle (V) or BzATP (300 µM; BzATP) for the times indicated, and total protein was 

harvested. Samples were subjected to immunoblot analyses using specific phospho-serine 

21/9 and phospho-tyrosine 279/216 GSK3α/β antibodies. As a loading control, blots were 

also probed for total GSK3α/β. Bands were visualized by the ECL method. Images are 

representative blots from 3-5 independent preparations. B, phospho-serine 21/9, phospho-

tyrosine 279/216 and total GSK3α/β bands were evaluated by densitometry. The ratio of 

phospho-GSK3α/β to total GSK3α/β was determined for serine and tyrosine residues, and 

results were normalized to vehicle. Treatment with BzATP had no significant effect on 

the phosphorylation status of tyrosine 279/216 (data not shown). Interestingly, additional 

bands not consistent with the molecular weight of GSK3α/β were also detected with this 

antibody after treatment with BzATP. It is likely that the antibody is non-specific, and 

detected a distinct phosphorylation event on a second protein of unknown identity. α 

indicates a significant difference from 0 min (p < 0.05). Data are means ± S.E.M. (n = 3-5 

independent preparations). 
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Figure 4.7 A P2X7 Antagonist Blocks BzATP-induced Inhibitory Phosphorylation of 

GSK3α/β.  

A, MC3T3-E1 osteoblast-like cells were incubated for 20 min in the presence of 

the P2X7 antagonist A 438079 (10 µM) or its vehicle (Control). Next, cells were treated 

with vehicle or BzATP (300 μM; BzATP) for 5 min, and total protein was subsequently 

harvested. Samples were subjected to immunoblot analyses using a specific phospho-

serine 21/9 GSK3α/β antibody. As a loading control, blots were also probed for total 

GSK3α/β. Bands were visualized by the ECL method. Images are representative blots 

from 3 independent preparations. B, phospho-serine 21/9 and total GSK3α/β bands were 

evaluated by densitometry. The ratio of phospho-GSK3α/β to total GSK3α/β was 

determined, and results were normalized to Control + Vehicle. α indicates a significant 

difference from Control + Vehicle (p < 0.05). β indicates a significant effect of the 

antagonist (p < 0.05). Data are means ± S.E.M. (n = 3 independent preparations). 
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4.5  Discussion 

In the present study, we investigated the effects of P2X7 receptor activation on 

Wnt/β-catenin signaling in cells of the osteoblast lineage. We show for the first time in 

any system that activation of P2X7 by exogenous nucleotides promotes transient β-

catenin nuclear localization. Notably, stimulation of P2X7 prolongs β-catenin nuclear 

localization and potentiates transcriptional activation elicited by canonical Wnt signaling 

(Figure 4.8). This potentiation is associated with the inhibitory phosphorylation of 

GSK3β induced by activated P2X7 receptors, suggesting that P2X7 may potentiate 

Wnt/β-catenin signaling through GSK3β. P2X7-induced potentiation of Wnt/β-catenin 

signaling is a novel mechanism through which osteoblast activity may be modulated in 

response to mechanically-induced ATP release in bone. 

  

4.5.1 P2X7 Potentiates the Wnt/β-catenin Pathway 

A number of P2 receptors have been shown to modulate signaling mediated by 

growth factors and hormones leading to changes in osteoblast proliferation, 

differentiation and function. For instance, P2Y2 potentiates c-fos expression elicited by 

parathyroid hormone (PTH)/cAMP signaling (Bowler et al., 1999; Bowler et al., 2001). 

ATP also synergistically enhances platelet-derived growth factor (PDGF) and insulin-like 

growth factor (IGF)-1-induced proliferation of human MG-63 osteoblast-like cells 

through an unidentified P2 receptor (Nakamura et al., 2000). Micromolar concentrations 

of ATP activate runt-related transcription factor 2 (RUNX2) in the osteoblast-like HOBIT 

cell line (Costessi et al., 2005), and β-catenin has been shown to interact with RUNX2 to 

enhance osteoblast gene expression (Gaur et al., 2005). In this regard, stimulation of the
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Figure 4.8 Possible Mechanism for Cross-talk between P2X7 Nucleotide Receptor 

and Canonical Wnt Signaling Pathways in Cells of the Osteoblast Lineage. 

The P2X7 and Wnt/β-catenin pathways regulate osteoblast differentiation, and are 

critical for anabolic responses of the skeleton to mechanical load. Activation of canonical 

Wnt signaling by Wnt3a alone elicits a sustained increase in β-catenin nuclear 

localization and transcriptional activity (left panel). Activation of P2X7 receptor signaling 

causes inhibitory phosphorylation of GSK3β and promotes transient nuclear localization 

of β-catenin, but fails to elicit changes in β-catenin transcriptional activity (middle panel). 

Notably, stimulation of P2X7 receptors in the presence of Wnt3a leads to a dramatic 

potentiation of β-catenin nuclear localization and transcriptional activity compared to 

Wnt3a alone (right panel). Taken together, this study provides the first evidence of 

crosstalk between the P2X7 and Wnt/β-catenin pathways, a novel mechanism through 

which osteoblast activity may be modulated in response to mechanically-induced ATP 

release in bone. 
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ADP-sensitive P2Y13 receptor in cerebellar granule neurons leads to PI3K/AKT-

dependent inhibition of GSK3β, resulting in nuclear localization of β-catenin (Ortega et 

al., 2008). As transcripts for P2Y13 have been detected in cultures of MC3T3-E1 cells and 

primary rat calvarial osteoblasts (Qi et al., 2007; Orriss et al., 2010), P2Y13 may also 

modulate canonical Wnt signaling in our system. However, we found that low 

concentrations of ATP, UTP and ADP did not potentiate β-catenin transcriptional activity 

in the presence or absence of Wnt3a. In contrast, both BzATP and high ATP 

concentrations elicited potentiation indicating that P2X7 alone modulates canonical Wnt 

signaling in osteoblasts. At the same time, mechanisms underlying the effects P2X7 on 

the Wnt/β-catenin pathway remain to be elucidated. 

PTH, bone morphogenetic proteins (BMPs) and other bone anabolic pathways 

modulate Wnt/β-catenin signaling to regulate the proliferation, differentiation and 

function of osteoblast lineage cells. In the present study, we demonstrate that P2X7 

receptors can induce transient nuclear localization of β-catenin and additively increase β-

catenin nuclear localization elicited by Wnt3a at early time points. The speed with which 

β-catenin is activated downstream of P2X7 suggests its effects are mediated by 

modulation of intracellular signaling pathways upstream of changes in gene expression. 

In this regard, the PTH 1 receptor (PTH1R) interacts with dishevelled (Dvl) when bound 

to PTH, resulting in rapid stabilization and nuclear localization of β-catenin independent 

of Wnt ligands or LRP5/6 (Romero et al., 2010). The PTH-PTH1R complex also couples 

to the cAMP/PKA pathway to facilitate canonical Wnt signaling through inhibition of 

GSK3β in osteoblast-like SaOS-2 cells (Suzuki et al., 2008). Previous work by our lab 

demonstrated that the P2X7 receptor couples to production of PGE2 to promote osteoblast 
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differentiation and matrix mineralization (Panupinthu et al., 2008). Moreover, studies by 

others have shown that P2X7 is required for fluid shear stress-induced release of PGE2 

and associated signaling in vitro (Li et al., 2005). Like PTH, PGE2 also signals at least in 

part through Gαs downstream of fluid shear stress to activate cAMP/PKA and PI3K/AKT 

signaling, both of which inhibit GSK3β leading to activation of β-catenin in the absence 

of canonical Wnts (Kitase et al., 2010; Xia et al., 2010). Thus, the early, rapid 

potentiation of the Wnt/β-catenin pathway elicited by P2X7 may involve PGE2 signaling. 

 In addition to its transient effects, stimulation of P2X7 prolonged Wnt3a-induced 

β-catenin nuclear localization compared to Wnt3a alone. Notably, prolonged (but not 

transient) activation of canonical Wnt signaling was associated with increases in β-

catenin transcriptional activity. Nucleotides are rapidly degraded once released into the 

extracellular environment by actions of ecto-nucleotidases present on the cell surface 

(Zimmermann et al., 2012). Thus, it is likely that the prolonged potentiation of canonical 

Wnt signaling mediated by P2X7 is due at least in part to changes in expression of 

secondary factors such as canonical Wnt ligands and antagonists. In this regard, 

intermittent PTH signaling decreases expression of Wnt pathway antagonists such as 

SOST and DKK1 (Bellido et al., 2005; Keller and Kneissel, 2005; Guo et al., 2010; Yao 

et al., 2011). Additionally, BMP-2 has been shown to activate β-catenin transcriptional 

activity leading to increased expression of Wnt ligands and their receptors in 

differentiating cultures of primary calvarial osteoblasts (Chen et al., 2007). At the same 

time, BMP can stimulate expression of canonical Wnt antagonists such as DKK1 and 

SOST, and mice deficient in either the BMP receptor type 1A or the BMP-7 receptor 

ACVR1 specifically in osteoblasts exhibit increased Wnt/β-catenin signaling (Kamiya et 
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al., 2010; Kamiya et al., 2011). We have demonstrated previously that prolonged 

Ca2+/NFATc1 signaling downstream of P2X7 leads to prolonged expression of 

cyclooxygenase-2 (COX-2) (Grol et al., 2013). Interestingly, NFATc1 has been shown to 

function downstream of strontium ranelate in vitro to elicit expression of canonical Wnt3a 

and non-canonical Wnt5a (Fromigue et al., 2010). Taken together, whereas transient 

activation of β-catenin downstream of P2X7 is likely due to modulation of intracellular 

signaling, the prolonged potentiation may be mediated by longer-term changes in the 

expression of canonical Wnt pathway components.  

 

4.5.2 P2X7 Promotes Inhibitory Phosphorylation of GSK3β 

 One mechanism through which anabolic factors such as PTH and PGE2 modulate 

β-catenin activity is by inhibiting GSK3β through cAMP/PKA and PI3K/AKT signaling 

(Suzuki et al., 2008; Kitase et al., 2010; Xia et al., 2010). In the present study, we found 

that activation of P2X7 receptors leads to inhibitory phosphorylation of GSK3β. These 

findings are consistent with observations in cultures of cerebellar granule neurons, in 

which activation of P2X7 inhibits GSK3β in a manner dependent upon protein kinase C 

(PKC) signaling (Ortega et al., 2009; Ortega et al., 2010). In this regard, we have shown 

previously that activation of P2X7 in osteoblast-like cells couples to PI3K/AKT signaling 

(Grol et al., 2012), a pathway that has been previously associated with GSK3β inhibition 

in osteoblast lineage cells (Xia et al., 2010). Moreover, in osteoclasts, P2X7 couples to 

activation of various Ca2+-sensitive PKC isoforms including PKCα and PKCβ 

(Armstrong et al., 2009). Thus, both PI3K/AKT and PKC may mediate the effects of 

P2X7 on GSK3β.  
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 Interestingly, inhibition of GSK3β protects cerebellar granule neurons from cell 

death induced by PI3K inhibition (Ortega et al., 2009; Ortega et al., 2010). In osteocytes, 

activation of β-catenin downstream of PGE2 and/or fluid shear stress promotes survival in 

response to skeletal unloading or glucocorticoid treatment (Kitase et al., 2010; Xia et al., 

2010; Bonewald, 2011). Activation of P2X7 promotes apoptosis in many, but not all cell 

types (Adinolfi et al., 2005). In this regard, cells of the osteoblast lineage are resistant to 

P2X7-induced cell death, a phenomenon that may be mediated in part by activation of 

PI3K/AKT signaling downstream of the P2X7 receptor in these cells (Grol et al., 2012). 

The finding that P2X7 also couples to inhibitory phosphorylation of GSK3β inhibition in 

osteoblasts further suggests that, in addition to serving as a potential point of cross-talk 

with the canonical Wnt pathway, GSK3β inhibition may promote osteoblast survival 

downstream of P2X7 activation.  

 

4.5.3 Potential Physiological Roles of P2X7-induced Potentiation of Canonical Wnt 

Signaling in Osteoblasts 

Homozygous deletion of either P2X7 or canonical Wnt signaling components 

such as LRP5 in mice reduces anabolic responses of the skeleton to mechanical load (Li 

et al., 2005; Sawakami et al., 2006; Zhao et al., 2013). The crosstalk identified between 

these two pathways in the present study may help to explain how each increases 

osteoblast differentiation and bone formation during mechanotransduction. Experimental 

evidence suggests that ATP acts upstream of LRP5-dependent signaling as an initial 

transducer of mechanical stimuli in cells of the osteoblast lineage (Sawakami et al., 

2006). Thus, ATP signaling through P2X7 may be required to sensitize quiescent cells to 
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mechanical stimuli to permit activation the Wnt/β-catenin pathway. In this regard, 

microstrain increases expression of Wnt/β-catenin target genes in MC3T3-E1 osteoblast-

like cells, an effect that can be potentiated by pretreatment with Wnt ligand (Robinson et 

al., 2006). Given that ATP is released from these cultures in response to mechanical 

stimuli (Li et al., 2005; Sawakami et al., 2006), this potentiation may in fact be mediated 

by signaling through P2X7.  

Based on the extensive genetic data demonstrating importance of the Wnt/β-

catenin pathway in adult bone homeostasis, a SOST antibody was recently developed for 

use as an anabolic therapy for the treatment of osteoporosis. In keeping with the 

experimental evidence, this treatment, in both humans and animal models, promotes bone 

formation concomitant with reduction in bone resorption markers resulting in overall 

increases in bone mass (Li et al., 2010; Ominsky et al., 2010; Paszty et al., 2010; Padhi et 

al., 2011). In the present study, we demonstrate that responses to canonical Wnt3a in 

calvarial cells from P2X7 knockout mice are significantly less than in cells from wild-

type controls. Common loss-of-function polymorphisms in the human P2X7 receptor are 

associated with lower lumbar spine bone mineral density and increased fracture risk in 

post-menopausal women (Ohlendorff et al., 2007; Gartland et al., 2012; Jorgensen et al., 

2012). Taken together with the data presented here, this suggests that individuals with 

reduced P2X7 receptor function could exhibit a blunted response to anabolic therapies 

targeting canonical Wnt signaling for the treatment of osteoporosis. 
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5.1 Summary and Conclusions 

This thesis evaluated signaling downstream of P2X7 and other P2 nucleotide 

receptors in cells of the osteoblast lineage. We demonstrate that endogenous P2Y-P2X 

receptor networks allow cells to sense a wide range of adenosine 5’-triphosphate (ATP) 

concentrations, and transduce this input into distinct cellular responses. Additionally, we 

found that P2X7 couples through multiple anabolic pathways, including Ca2+/nuclear 

factor of activated T-cells, cytoplasmic 1 (NFATc1), phosphatidylinositol 3-kinase 

(PI3K)/AKT, and Wnt/β-catenin signaling, to promote changes in gene expression and 

cellular metabolism. The specific objectives and findings of each data chapter are 

summarized below. 

 

5.1.1 Role of P2 Receptor Networks in Osteoblasts: Objective, Summary and 

Conclusions 

Specific Objective of Chapter 2 – To characterize the P2 network expressed by cells of 

the osteoblast lineage by elucidating the role of P2Y and P2X receptor subtypes in 

regulation of Ca2+/NFATc1 signaling in these cells. 

Summary of Methodology and Results  

1. Changes in cytosolic free Ca2+ concentration ([Ca2+]i) and the subcellular 

localization and transcriptional activity of NFATc1 were assessed using 

MC3T3-E1 osteoblast-like cells and primary calvarial osteoblasts from wild-

type and P2X7 knockout mice. 

2. Graded increases in the magnitude and duration of cytosolic Ca2+ signaling 

were achieved over a remarkable million-fold range of ATP concentrations (1 

nM to 1 mM).  
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3. A low concentration of ATP (10 µM, ATPlow) activated P2Y2 and/or P2Y4 

receptors to cause release of Ca2+ from intracellular stores resulting in 

transient elevation of [Ca2+]i.  

4. Sustained elevations of [Ca2+]i elicited by treatment with a high concentration 

of ATP (1 mM, ATPhigh) or 2’,3’-O-(4-benzoylbenzoyl)ATP (BzATP) were 

mediated by activation of P2X7 receptors and subsequent Ca2+ influx.  

5. ATPlow caused transient nuclear localization of NFATc1; whereas, ATPhigh or 

BzATP elicited more sustained localization. 

6. Sustained nuclear localization of NFATc1 elicited by BzATP or ATPhigh was 

mediated by activation of P2X7 receptors; whereas, transient localization 

induced by ATPlow was due to activation of higher affinity P2Y receptors. 

7. ATPhigh or BzATP, but not ATPlow, elicited robust expression of the NFAT 

target gene Ptgs2 (encoding cyclooxygenase-2 (COX-2)) and increased 

NFAT transcriptional activity. 

8. The increase in NFAT target gene expression and transcriptional activity 

elicited by BzATP or ATPhigh was mediated by activation of the P2X7 

receptor. 

Conclusions and Significance 

1. Ensembles of P2Y and P2X receptor subtypes impart sensitivity over a wide 

range of ATP concentrations, and provide a mechanism by which cells 

transduce differences in ATP levels into distinct cellular signals. 

2. The Ca2+/NFATc1 pathway can function as a transducer in dose-to-duration 

encoding of P2 receptor stimuli. 
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3. This phenomenon provides a novel mechanism by which osteoblasts may 

transduce differences in ATP concentration and, therefore, intensity of 

mechanical stimuli over a wide dynamic range. 

4. The effects of P2X7 on Ca2+/NFATc1 signaling may contribute to the 

mechanisms by which this P2 receptor promotes osteoblast differentiation and 

function.  

 

5.1.2 Regulation of Metabolic Acid Production in Osteoblasts by P2 Receptors: 

Objective, Summary and Conclusions 

Specific Objective for Chapter 3 – To determine the effects of signaling through P2X7 as 

well as other P2 receptor subtypes on energy metabolism in cells of the osteoblast 

lineage. 

Summary of Methodology and Results 

1. A Cytosensor microphysiometer was used to monitor metabolic acid 

production (proton efflux) from MC3T3-E1 osteoblast-like cells in real time 

as a measure of cellular metabolism. Additionally, changes in lactic acid 

efflux and [Ca2+]i were assessed. 

2. A high concentration of ATP (1 mM) or BzATP caused a sustained increase 

in proton efflux; whereas, low concentrations of ATP or UTP (100 µM) 

elicited only a transient increase. 

3. The sustained phase of BzATP-induced proton efflux was mediated by 

activation of P2X7 receptors. 

4. The increase in proton efflux elicited by BzATP was not associated with 
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induction of apoptosis. 

5. The sustained phase of BzATP-induced proton efflux was dependent on the 

presence of extracellular glucose. 

6. BzATP elicited an increase in lactic acid efflux that was of comparable 

magnitude to the sustained increase in proton efflux induced by activation of 

P2X7.  

7. Ca2+ influx through activated P2X7 receptors initiated sustained proton efflux. 

8. Maintenance but not initiation of sustained proton efflux elicited by BzATP 

was dependent on activation of PI3K signaling. 

Conclusions and Significance 

1. Brief activation of P2X7 elicits a large and sustained increase in metabolic 

acid production that requires Ca2+ for initiation and is maintained by PI3K 

signaling, resulting in enhanced glucose metabolism via increased glycolytic 

flux. 

2. As the PI3K/AKT pathway enhances cell survival, its activation in osteoblasts 

may explain the resistance of these cells to P2X7-induced apoptosis observed 

in many other cell-types. 

3. The effects of P2X7 on Ca2+ and PI3K signaling, as well as glycolytic 

metabolism and lactic acid efflux, may contribute to mechanisms by which 

this P2 receptor promotes osteoblast differentiation and matrix mineralization.  

4. Metabolic acid production induced by P2X7 may provide a coupling 

mechanism by which osteoblasts can activate osteoclasts to promote bone 

resorption. 
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5.1.3 Cross-talk between P2X7 and Wnt/β-catenin Pathways in Osteoblasts: 

Objective, Summary and Conclusions 

Specific Objective for Chapter 4 – To investigate whether P2X7 and canonical Wnt 

signaling pathways interact to regulate β-catenin-mediated gene expression in osteoblasts. 

Summary of Methodology and Results 

1. Changes in the phosphorylation of glycogen synthase kinase 3β (GSK3β), and 

the subcellular localization and transcriptional activity of β-catenin were 

assessed using MC3T3-E1 osteoblast-like cells and primary calvarial 

osteoblasts from wild-type and P2X7 knockout mice. 

2. The P2X7 agonist BzATP caused brief transient nuclear localization of β-

catenin. 

3. Canonical Wnt3a and BzATP caused more rapid and sustained β-catenin 

nuclear localization compared to Wnt3a alone. 

4. Wnt3a induced an increase in the transcriptional activity of β-catenin that was 

potentiated by treatment with BzATP; in contrast, BzATP alone did not 

increase β-catenin transcriptional activity. 

5. A high concentration of ATP (1 mM), but not a low ATP concentration (10 

µM) or any concentration of adenosine 5’-diphosphate (ADP) or uridine 5’-

triphosphate (UTP) (0.01-1 mM), potentiated β-catenin transcriptional activity 

elicited by Wnt3a. 

6. The potentiation of β-catenin transcriptional activity elicited by BzATP was 

mediated by activation of the P2X7 receptor. 

7. Responses to Wnt3a in calvarial cells from P2X7 knockout mice were 
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significantly less than in cells from wild-type controls. 

8. BzATP increased inhibitory phosphorylation of GSK3β through activation of 

the P2X7 receptor. 

Conclusions and Significance 

1. Activation of the P2X7 receptor potentiates Wnt/β-catenin signaling in cells of 

the osteoblast lineage, a potential mechanism through which osteoblast 

activity may be modulated in response to mechanically-induced ATP release 

in bone.  

2. P2X7-mediated potentiation of the Wnt/β-catenin pathway is associated with 

inhibitory phosphorylation of GSK3β, suggesting that P2X7 may potentiate 

the effects of canonical Wnt ligands through GSK3β. 

3. Given that GSK3β inhibition can promote cell survival, its inhibition in 

osteoblasts may help to explain the resistance of these cells to P2X7-induced 

apoptosis observed in many other cell-types. 
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5.2 Limitations of the Research 

Assessment of P2 nucleotide receptor signaling in vitro: The studies described in 

this thesis relied primarily on use of the MC3T3-E1 osteoblast-like cell line to evaluate 

signaling events downstream of P2 nucleotide receptors such as P2X7. As discussed in 

Chapter 3, only approximately 40% of cultured rat and murine calvarial cells express 

functional P2X7 receptors (Panupinthu et al., 2007). In contrast, P2X7 is present in over 

85% of MC3T3-E1 cells. Thus, the MC3T3-E1 cell line was an ideal model with which to 

assess P2X7 receptor signaling. To confirm a role for P2X7 in various processes, 

calvarial cells from P2X7 knockout mice and specific P2X7 antagonists were also 

employed. Though unequivocal in vitro evidence for a role of P2X7 in cellular 

metabolism as well as Ca2+/NFATc1, PI3K/AKT and Wnt/β-catenin signaling pathways 

is shown, these responses may not reflect responses of osteoblast lineage cells in vivo. 

Additionally, nucleotides were applied exogenously to cultured cells in these studies; 

whereas in vivo, release of nucleotides is elicited by mechanical loading, trauma or other 

stimuli. Taken together, future studies should verify activation of Ca2+/NFAT and Wnt/β-

catenin downstream of the P2X7 receptor in vivo. This could be accomplished by crossing 

NFAT luciferase or TOPGAL β-catenin reporter mouse strains with the P2X7 knockout 

mouse (DasGupta and Fuchs, 1999; Solle et al., 2001; Wilkins et al., 2004), and 

subjecting these mice to axial ulnar loading (induces bending of the ulna) or high 

frequency, low amplitude vibration (Thompson et al., 2012). Alternatively, load-bearing 

bones isolated from wild-type and P2X7 knockout mice following exposure to 

mechanical loading could be processed and analyzed by real-time reverse transcriptase-

polymerase chain reaction (RT-PCR) or Western blot to assess changes in NFAT and β-
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catenin target genes. 

Though it is unlikely that changes in [Ca2+]i could be assessed in vivo, a method 

for ex vivo real-time imaging of Ca2+ signaling in calvarial bone explants was recently 

described (Ishihara et al., 2013). This protocol would provide a three-dimensional context 

in which to confirm the patterns of P2 receptor-induced Ca2+ signaling described in this 

thesis. Moreover, changes in [Ca2+]i following exposure to nucleotides could be 

determined in both osteoblasts on the calvarial surface and osteocytes embedded within 

the bone matrix.  

In this thesis, undifferentiated cultures of calvarial osteoblasts were used to 

examine signaling downstream of P2X7 and other P2 receptors. However, evidence 

suggests that osteocytes are more sensitive than osteoblasts to mechanical stimuli in terms 

of fluid shear stress-induced prostaglandin E2 (PGE2) release (Klein-Nulend et al., 1995; 

Kamel et al., 2010). Moreover, Ca2+ signaling responses to nucleotides have been shown 

to increase during in vitro osteoblast differentiation (Orriss et al., 2006), and the 

complement of P2 receptors and ecto-nucleotidases is also modulated during 

osteoblastogenesis (Orriss et al., 2006; Noronha-Matos et al., 2012; Orriss et al., 2012; 

Roszek et al., 2013). Thus, the studies described in this thesis should ultimately be 

repeated at various stages of osteoblast differentiation to assess possible differences in P2 

receptor signaling.  

Genetically modified mouse models: Calvarial osteoblasts isolated from P2X7 

knockout mice were used in this thesis to confirm a role for P2X7 in various signaling 

events in vitro. These mice were generated previously by exchanging the Cys506 to Pro532 

section of the P2X7 receptor COOH-terminal domain with a neomycin cassette oriented 
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in the 3’-5’ direction (Solle et al., 2001). Though initial evidence suggested that protein 

for P2X7 was absent in these mice (Solle et al., 2001), recent work has demonstrated the 

existence of a COOH-terminal truncated version of the receptor in these mice (Masin et 

al., 2012). The truncated P2X7 receptor exhibits impaired plasma membrane trafficking 

as well as greatly diminished BzATP-evoked whole cell currents (Masin et al., 2012). To 

further complicate interpretations from this knockout mouse model, a naturally occurring 

P451L loss-of-function polymorphism exists in many common strains of laboratory mice 

such as C57Bl/6 and DBA/2 (Adriouch et al., 2002). This polymorphism occurs in the 

COOH-terminus of P2X7, and reduces pore formation, Ca2+ signaling and ATP release 

elicited either by BzATP or ATP compared to controls (Adriouch et al., 2002; Suadicani 

et al., 2009). Given that the P2X7 knockout used in this thesis was maintained on a mixed 

genetic background (129/Ola × C57Bl/6 × DBA/2), the magnitude of differences between 

wild-type and knockout mice in our studies may be underestimated. Future development 

of tissue-specific knockouts for P2X7 will prove invaluable for conclusively 

demonstrating the function of this nucleotide receptor in bone cells.  
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5.3 Contributions of the Research to the Current State of Knowledge 

 P2 receptor networks in mammalian cell-types: Prior to this thesis, the biological 

significance of networks of P2Y and P2X receptors in any cell type was unknown. We 

show that ensembles of P2 receptors provide a mechanism by which cells sense ATP over 

a wide concentration range, and transduce this input into distinct patterns of 

Ca2+/NFATc1 signaling. At the same time, the studies described here examined only one 

of four Ca2+-regulated NFAT transcription factors. Growing evidence suggests that 

NFATc1-4 are differentially regulated by kinases that control their subcellular 

localization (Macian, 2005). The constitutive export kinases for Ca2+-regulated NFAT 

transcription factors are casein kinase 1 (CK1) and GSK3β (Beals et al., 1997a; Beals et 

al., 1997b; Zhu et al., 1998; Okamura et al., 2004). Inducible kinases, including p38 

mitogen-activated protein kinase (MAPK) and c-jun NH2-terminal kinase (JNK), 

differentially phosphorylate NFATc1-4 – p38 MAPK acts on NFATc2 and NFATc4, 

whereas JNK acts on NFATc1 and NFATc3 (Chow et al., 2000; Gomez del Arco et al., 

2000; Yang et al., 2002). Phosphorylation mediated by either p38 MAPK or JNK in turn 

potentiates CK1 activity (Macian, 2005). Additionally, protein kinase A (PKA)-

dependent phosphorylation of NFATc1 may be required prior to phosphorylation by 

GSK3β (Sheridan et al., 2002). Taken together, additional studies are needed to assess 

whether other Ca2+-regulated NFAT transcription factors in addition to NFATc1 mediate 

dose-to-duration coupling downstream of endogenous P2Y-P2X receptor networks. 

 A number of pathways in addition to Ca2+/NFATc1 signaling are activated by 

P2Y and P2X receptor subtypes in cells of the osteoblast lineage. Treatment of ROS 

17/2.8 osteoblast-like cells with exogenous ATP activates extracellular signal-regulated 
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kinase (ERK)1/2 in a dose- and time-dependent manner, presumably through P2Y2 (Katz 

et al., 2006). Moreover, fluid shear stress stimulates P2X7 via Ca2+-dependent ATP 

release, resulting in activation of ERK1/2 in cultures of MC3T3-E1 cells and primary 

calvarial osteoblasts (Liu et al., 2008; Okumura et al., 2008). Interestingly, duration of 

ERK activation in neuronal PC12 cells has been shown to regulate distinct cellular 

functions, with transient activation stimulating proliferation and prolonged activation 

promoting differentiation (Vaudry et al., 2002). Given the critical role for ERK in bone 

morphogenetic protein (BMP)- and insulin-like growth factor (IGF)-1-induced osteoblast 

differentiation (Gallea et al., 2001; Celil and Campbell, 2005; Ge et al., 2007; Ge et al., 

2012), it would be of interest to determine whether ERK, like the Ca2+/NFATc1 pathway, 

functions in dose-to-duration encoding of P2 receptor stimuli. 

 Effects of P2X7 activation on anabolic signaling pathways in osteoblasts: In this 

thesis, P2X7 was shown to activate multiple anabolic pathways in osteoblast lineage cells, 

including Ca2+/NFATc1, PI3K/AKT, and Wnt/β-catenin signaling. Each of these 

pathways in turn may promote osteoblast differentiation and matrix mineralization 

downstream of the P2X7 receptor. In this regard, NFATc1 and PI3K/AKT signaling drive 

osteoblast differentiation downstream of BMP-2 at least in part through interactions with 

Osterix (OSX) and runt-related transcription factor 2 (RUNX2), respectively (Ghosh-

Choudhury et al., 2002; Fujita et al., 2004; Koga et al., 2005). β-catenin also enhances 

RUNX2 expression and transcriptional activity (Gaur et al., 2005), and canonical Wnt 

signaling is essential for osteoblastogenesis during skeletal development and remodeling  

(Westendorf et al., 2004; Bodine and Komm, 2006; Hartmann, 2006; Krishnan et al., 

2006; Long, 2012; Baron and Kneissel, 2013). Taken together, future studies examining 
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the role of these signaling pathways downstream of P2X7 will provide valuable insights 

into how this P2 receptor regulates osteoblast differentiation and function.     

 In addition to modulation of the anabolic pathways described above, we found 

that acute stimulation of the P2X7 receptor promotes metabolic acid efflux from 

osteoblast-like cells primarily through increased rates of glycolysis. Interestingly, recent 

evidence has suggested that modulation of glycolytic metabolism downstream of Wnt-

lipoprotein receptor-related protein (LRP) 5 signaling provides an additional mechanism 

promoting osteoblast differentiation in vitro and in vivo (Esen et al., 2013) (see below). 

 Role for cellular metabolism in regulation of osteoblast differentiation: Many 

growth factors and hormones stimulate cellular metabolism through activation of the 

PI3K/AKT pathway, which in turn increases nutrient uptake and glycolytic enzyme 

activity to drive ATP production (Hammerman et al., 2004; Engelman et al., 2006). 

Earlier studies in vitro demonstrated that prolonged Wnt treatment promotes 

mitochondrial biogenesis through activation of β-catenin (Yoon et al., 2010). However, 

recent evidence suggests that acute treatment with Wnt3a in osteoblast lineage cells also 

stimulates glucose consumption, glycolytic metabolism and lactic acid production 

through increased expression of key glycolytic enzymes such as hexokinase, 

phosphofructokinase, and lactate dehydrogenase A (Esen et al., 2013). The effects of 

acute Wnt3a on glycolytic metabolism are mediated by LRP5-dependent activation of 

mTORC2/AKT downstream of Rac1, independent of β-catenin. Moreover, knockdown of 

mTORC2, lactate dehydrogenase A or phosphofructokinase 1 greatly reduces 

upregulation of alkaline phosphatase (ALP), collagen type 1 (COL1) α1 and bone 

sialoprotein (BSP) in response to Wnt3a but not BMP-2 (Esen et al., 2013). In this thesis, 
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it is shown that brief activation of P2X7 by exogenous nucleotides elicits a large and 

sustained increase in proton efflux that is maintained by PI3K signaling, resulting in 

enhanced glucose metabolism and increased lactic acid production. Given findings for 

Wnt3a described by Esen and colleagues, this suggests that increased glycolytic 

metabolism elicited by activation of P2X7 may contribute to its effects on osteoblast 

differentiation. Thus, future studies assessing the role of glycolytic metabolism in P2X7-

induced osteoblast differentiation should be performed.  

Besides the metabolic effects described in this thesis, activation of P2X7 was also 

shown to potentiate canonical Wnt signaling in cells of the osteoblast lineage. In this 

regard, expression of functional P2X7 receptors was required for full activation of β-

catenin downstream of Wnt3a. However, the effect of P2X7 receptor signaling on Wnt3a-

induced glycolytic metabolism remains to be investigated. It is possible that functional 

P2X7 receptors are required, at least in part, for the metabolic response elicited by Wnt3a 

in cells of the osteoblast lineage.  

 P2 receptors and mechanotransduction in bone: Our lab has proposed previously 

that mechanotransduction in bone is mediated, at least in part, by nucleotide release and 

subsequent P2 receptor signaling in osteoblasts and osteoclasts (Dixon and Sims, 2000). 

In this thesis, it is shown for the first time that P2Y-P2X receptor networks provide a 

mechanism by which cells sense ATP over a wide concentration range, and transduce this 

input into distinct cellular signals. This phenomenon may explain how osteoblasts 

transduce differences in the intensity of mechanical loads to modulate bone mass. In this 

regard, bone loss associated with skeletal unloading might result from the complete 

absence of P2 receptor signaling; whereas, modest mechanical loading would maintain 
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bone mass through activation of low affinity P2 receptors (equivalent to the effects of 

ATPlow). On the other hand, large increases in loading, due to an increase in weight 

bearing exercise or skeletal trauma, may greatly increase ATP concentration within the 

bone microenvironment, resulting in P2X7-induced bone formation (equivalent to the 

effects of ATPhigh). That the P2X7 receptor potentiates Wnt/β-catenin signaling suggests 

that both the P2X7 and canonical Wnt pathways may be required for maximal anabolic 

responses of the skeleton to mechanical stimuli.  

Implications for cancer: P2X7 expression is upregulated in many malignant 

cancers including chronic B lymphocytic leukemia (Adinolfi et al., 2002), prostate (Slater 

et al., 2004a), lobular and ductal breast carcinomas (Slater et al., 2004b), and thyroid 

papillary carcinoma (Solini et al., 2008). Though virtually undetectable in healthy tissues, 

extracellular ATP is in the hundreds of micromolar range in the tumor microenvironment 

(Pellegatti et al., 2008), a concentration sufficient to stimulate the low affinity P2X7 

receptor. Mice inoculated with HEK293 or mouse CT26 carcinoma cells overexpressing 

P2X7 develop tumors of greater size compared to controls (Adinolfi et al., 2012). These 

P2X7-expressing tumors are characterized by increased cell proliferation, reduced 

apoptosis, elevated levels of activated NFATc1 and greater neoangiogenesis compared to 

control tumors (Adinolfi et al., 2012). In addition to its role in tumor size and vascular 

infiltration, expression of P2X7 is associated with increased rates of metastasis in 

papillary thyroid carcinoma (Gu et al., 2010). Moreover, TGFβ-1-induced migration of 

human lung cancer A549 cells is dependent on ATP release and subsequent P2X7 

receptor signaling (Takai et al., 2012). The enhanced migration and invasiveness 

associated with expression of P2X7 is thought to be dependent on vascular endothelial 
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growth factor (VEGF) release and protease production (Gu and Wiley, 2006; Jelassi et al., 

2011). In this thesis, we show that P2X7 stimulates sustained proton efflux associated 

with increased lactic acid production in response to exogenous ATP. Extracellular 

acidification promotes apoptosis of healthy tissues while promoting degradation of the 

extracellular matrix in growing tumors (Dhup et al., 2012). Additionally, lactate within 

the tumor microenvironment is associated with increased tumor cell migration, 

immunosuppression, VEGF secretion and vascular invasion (Hirschhaeuser et al., 2011; 

Dhup et al., 2012). Thus, P2X7 activation may also play a role in promoting tumor 

growth and metastasis by lowering extracellular pH (pHo) and providing a source of 

extracellular lactate. 

During tumor progression, many cancer cells acquire a metabolic phenotype, 

described as the Warburg effect, which involves a shift from oxidative phosphorylation to 

glycolytic metabolism even under normal oxygen concentrations (Warburg, 1956; Cairns 

et al., 2011). As a result, these cells derive significant amounts of energy from aerobic 

glycolysis through conversion of glucose to lactate. In this thesis, P2X7 was found to 

induce the Warburg effect in osteoblast-like cells through a mechanism dependent upon 

both Ca2+ and PI3K signaling. Esen and colleagues also show that Wnt3a-LRP5 signaling 

induces glycolytic metabolism through Rac1 and mTORC2/AKT (Esen et al., 2013). In 

addition to P2X7, various components of the canonical Wnt signaling pathway such as β-

catenin are upregulated or mutated in breast, colorectal and other human cancers (Anastas 

and Moon, 2013). The ability of P2X7 to potentiate Wnt signaling suggests that 

concomitant upregulation of the P2X7 and Wnt pathways may drastically increase tumor 

invasiveness through both canonical and potentially metabolic mechanisms. Future 
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studies evaluating the role of P2X7 in cancer cell migration and metabolism (both alone 

and together with Wnt) are likely to provide valuable insights into cancer cell biology. 
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Video 2.1 A Low Concentration of ATP (10 µM) Elicits a Transient Increase in 

Cytosolic Free Ca2+.  

MC3T3-E1 cells were loaded with the Ca2+-sensitive dye fluo-4 and changes in 

[Ca2+]i were monitored by live-cell confocal microscopy under serum-free conditions. 

Cultures were bathed in M199 supplemented with 1% antibiotic solution at ~25 °C and 

ATP (10 µM; ATPlow) was added at 10 min. Movie begins at 0 min and ends at 30 min 

real-time. Image intervals are 1.5 s and frames are shown at 100 frames/s. Width of the 

field is 230 µm.  

 

Video 2.2 A High Concentration of ATP (1 mM) Elicits a Sustained Increase in 

Cytosolic Free Ca2+.  

MC3T3-E1 cells were loaded with the Ca2+-sensitive dye fluo-4 and changes in 

[Ca2+]i were monitored by live-cell confocal microscopy under serum-free conditions. 

Cultures were bathed in M199 supplemented with 1% antibiotic solution at ~25 °C and 

ATP (1 mM; ATPhigh) was added at 10 min. Movie begins at 0 min and ends at 30 min 

real-time. Image intervals are 1.5 s and frames are shown at 100 frames/s. Width of the 

field is 230 µm. 

 

Video 2.3 A Low Concentration of ATP (10 µM) Elicits NFATc1-EGFP Nuclear 

Translocation of Transient Duration.  

MC3T3-E1 cells were transfected with plasmids encoding EGFP-tagged NFATc1 

and changes in subcellular localization of NFATc1-EGFP were monitored by live-cell 

confocal microscopy under serum-free conditions. Cultures were bathed in M199 

supplemented with 1% antibiotic solution at ~25 °C and ATP (10 µM; ATPlow) was 

added at 12.5 min. Movie begins at 0 min and ends at 197 min real-time. Image intervals 

are 2.5 min and frames are shown at 10 frames/s. Width of the field is 230 µm.  

 

Video 2.4 The P2X7 Agonist BzATP Elicits NFATc1-EGFP Nuclear Translocation 

of Sustained Duration.  

MC3T3-E1 cells were transfected with plasmids encoding EGFP-tagged NFATc1 

and changes in subcellular localization of NFATc1-EGFP were monitored by live-cell 
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confocal microscopy under serum-free conditions. Cultures were bathed in M199 

supplemented with 1% antibiotic solution at ~25 °C and BzATP (300 µM) was added at 

12.5 min. Movie begins at 0 min and ends at 194 min real-time. Image intervals are 2.5 

min and frames are shown at 10 frames/s. Width of the field is 154 µm. 

 

Video 3.1 BzATP Induces Dynamic Membrane Blebbing in MC3T3-E1 Osteoblast-

like Cells. 

MC3T3-E1 cells were monitored by time-lapse phase-contrast microscopy. 

Cultures were bathed in nominally divalent cation-free buffer at ~35 °C and BzATP (300 

µM) was added at 10 min. Movie begins at 0 min and ends at 30 min real-time. The 

majority of cells exhibit dynamic blebbing in response to BzATP, indicating the presence 

of functional P2X7 receptors. Image intervals are 3 s and frames are shown at 50 

frames/s. Width of the field is 530 µm.  

 

Video 3.2 BzATP Induces Retraction but not Membrane Blebbing in UMR-106 

Osteosarcoma Cells.  

UMR-106 cells were monitored by time-lapse phase-contrast microscopy. 

Cultures were bathed in nominally divalent cation-free buffer at ~35 °C and BzATP (300 

µM) was added at 10 min. Movie begins at 0 min and ends at 30 min real-time. The 

majority of cells exhibit retraction, but not membrane blebbing in response to BzATP. 

Lack of blebbing is consistent with the absence of P2X7 receptors in these cells. Image 

intervals are 3 s and frames are shown at 50 frames/s. Width of the field is 530 µm.  
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