
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-7-2013 12:00 AM 

Approaches Toward Combining Positron Emission Tomography Approaches Toward Combining Positron Emission Tomography 

with Magnetic Resonance Imaging with Magnetic Resonance Imaging 

Geron A. Bindseil 
The University of Western Ontario 

Supervisor 

Prof. Blaine Chronik 

The University of Western Ontario 

Graduate Program in Physics 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Geron A. Bindseil 2013 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Bindseil, Geron A., "Approaches Toward Combining Positron Emission Tomography with Magnetic 
Resonance Imaging" (2013). Electronic Thesis and Dissertation Repository. 1419. 
https://ir.lib.uwo.ca/etd/1419 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1419&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=ir.lib.uwo.ca%2Fetd%2F1419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1419?utm_source=ir.lib.uwo.ca%2Fetd%2F1419&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


APPROACHES TOWARD COMBINING POSITRON EMISSION 
TOMOGRAPHY WITH MAGNETIC RESONANCE IMAGING 

 
  

Integrated Article Thesis 
 
 
 

by 
 
 
 

Geron André Bindseil 
 
 
 
 

Graduate Program in Physics 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

Doctor of Philosophy 
 
 
 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Geron A Bindseil 2013 

	
  



 

ii 

 

Abstract 

Positron emission tomography (PET) and magnetic resonance imaging (MRI) 

provide complementary information, and there has been a great deal of research 

effort to combine these two modalities. A major engineering hurdle is that 

photomultiplier tubes (PMT), used in conventional PET detectors, are sensitive to 

magnetic field. This thesis explores the design considerations of different ways of 

combining small animal PMT-based PET systems with MRI through 

experimentation, modelling and Monte Carlo simulation. A proof-of-principle 

hybrid PET and field-cycled MRI system was built and the first multimodality 

images are shown. A Siemens Inveon PET was exposed to magnetic fields of 

different strengths and the performance is characterized as a function of field 

magnitude. The results of this experiment established external magnetic field 

limits and design studies are shown for wide range of approaches to combining 

the PET system with various configurations of field-cycled MRI and 

superconducting MRI systems. A sophisticated Monte Carlo PET simulation 

workflow based on the GATE toolkit was developed to model the Siemens Inveon 

PET. Simulated PET data were converted to the raw Siemens list-mode format 

and were processed and reconstructed using the same processing chain as the data 

measured on the actual scanner. A general GATE add-on was developed to 

rapidly generate attenuation correction sinograms using the precise detector 

geometry and attenuation coefficients built into the emission simulation. Emission 

simulations and the attenuation correction add-on were validated against measured 

data. Simulations were performed to study the impact of radiofrequency coil 

components on PET image quality and to test the suitability of various MR-

compatible materials for a dual-modality animal bed. 
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Chapter 1  

1 Combining PET with MRI: An Introduction 

This thesis examines a variety of approaches to combining two imaging 

modalities: positron emission tomography (PET) and magnetic resonance imaging 

(MRI). The focus of these investigations was to explore how an MRI system can 

affect PET and ways of minimizing interactions. This thesis includes magnetic 

field exposure tests on a small animal PET system, an analysis of the feasibility of 

various approaches of combining a specific PET scanner with MRI, experimental 

work on a proof-of-principle PET-MRI system, validation tests of a 

comprehensive Monte Carlo PET simulation methodology, and a Monte Carlo 

study of the effects of MR-compatible bed materials and radiofrequency (RF) coil 

components on PET imaging performance. In this introduction, I describe the 

primary motivations and technical challenges associated with combining PET and 

MRI. In addition, I discuss Monte Carlo based modelling techniques for PET 

imaging. I also survey combined PET-MRI implementations to-date. Finally, I 

provide a thesis overview. 

1.1 Why PET-MRI? 

Work towards combining PET and MRI has been an active area of research and 

development. The motivation for using PET and MR image data together comes 

from the complementary information provided by the fundamentally different 

contrast mechanisms of the two modalities. 
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1.1.1 Principles of PET 

In PET, a positron-emitting radioactive nuclide with a short half-life (also called a 

radiotracer) is injected into the subject and image contrast arises from differences 

in the concentration of the radiotracer throughout the body. With appropriate 

corrections, it is possible to measure radiotracer concentration quantitatively. PET 

data can also provide information on the dynamics of radiotracer distribution over 

time. The main stages of PET image generation include acquiring coincidence 

emission data, histogramming data into sinogram representation, applying 

corrections, and reconstructing a map of activity concentration. 

During the acquisition stage, the PET system collects data for millions of 

radioactive decays. Each positron emitted by an unstable nucleus begins with 

some kinetic energy and loses most of its energy in collisions before it undergoes 

an annihilation interaction with an electron. The average displacement from the 

original point of decay to the location of annihilation is called positron range and 

is typically on the order of one millimetre in tissue for the most common PET 

radioisotopes. In the most common case, when the positron-electron annihilation 

occurs, the total energy of both particles is transformed into two gamma rays 

(called annihilation photons) travelling in approximately opposite directions, each 

having energy 511 keV, equal to the rest mass energy of a positron or electron. In 

the centre of mass frame of reference, both annihilation photons travel in exactly 

opposite directions, ensuring momentum is conserved. Annihilation photons have 

high enough energy that many will pass through several centimetres of tissue 

without being scattered or absorbed. 
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The scintillation crystal in the PET detector is designed to have a high photon 

interaction cross-section and will stop a fraction of the annihilation photons. A 

photomultiplier tube or solid-state detector can detect the flash of light produced 

when an annihilation photon interacts with a scintillation crystal. When two 

photon detections occur on opposites sides of the scanner within a short window 

of time (in coincidence), it is likely that both photons originated from the same 

annihilation event and the PET system records the coordinates of the two crystal 

elements involved. The detector cannot distinguish coincident photons arising 

from a single annihilation pair from those that occur randomly; however, it is 

possible to estimate the random detection rate and correct for this effect. 

The lines connecting each scintillation crystal pair in the detector are called lines 

of response (LOR). After acquiring millions of coincidence events, the data are 

sorted into a sinogram projection representation, where each element in the 

sinogram represents the total number of coincidences detected in a unique LOR. 

The LORs are ordered in the sinogram with respect to angle, distance to the centre 

of the field of view, and also tilt in the case of 3D imaging. Each LOR has a fixed 

width that depends on the detector geometry and the number of coincidences 

measured in a particular LOR depends on the total activity it contains. The 

detection efficiency in a particular LOR is the same regardless of the location of 

the activity along the LOR. The coincidence detection rate is also influenced by 

photon scattering and attenuation within the scanner bore as well as systematic 

differences in crystal detection efficiency. Various methods exist for correcting 

for these effects. 
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Data in the sinogram are then reconstructed to produce images showing the 

distribution of activity. A wide range of PET reconstruction algorithms have been 

implemented and these can be categorized as either analytic or iterative. The most 

commonly used analytic reconstruction technique is filtered back-projection 

(FBP), which uses an inverse Radon transform [1] and has the advantage of being 

computationally fast, but is deterministic and does not include information that 

may be known a priori. While FBP reconstructs images in two dimensional axial 

planes, analytic reconstruction approaches have been implemented in three 

dimensions [2]. Iterative reconstruction algorithms incorporate statistical 

information about the acquisition (such as positron range, photon pair non-

colinearity, or detector response) to improve accuracy, minimize image artefacts 

and improve resolution. Iterative approaches require significantly greater 

computational resources when compared with analytic methods, and the resulting 

image depends on the choice of parameters and the number of iterations.  The 

methods in most widespread use include maximum likelihood expectation 

maximization (MLEM) [3], ordered subsets expectation maximization (OSEM) 

[4] and maximum a posteriori (MAP) [5]. A detailed review of iterative 

reconstruction algorithms is given by Qi and Leahy [6]. 

Detector operation and corrections to PET data will be discussed later in this 

work; however, a comprehensive review of PET physics and instrumentation is 

given by Cherry, et al. [7]. 

The strength of PET lies in the broad variety of biologically relevant molecules 

that have been made into radiotracers, providing a range of molecularly specific 

targeted contrast possibilities [8]. The most widely used radiotracer is 18F-
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fluorodeoxyglucose ([18F]FDG), a glucose analogue, which is used to study 

cellular metabolism and has important applications in oncology and neuroscience. 

There are other radiotracers based on molecules used in the normal functioning of 

the body, such as oxygen or water. Radiotracers can also be designed to bind to 

specific receptors and can be used for cell tracking and proliferation [9].  

1.1.2 Principles of MRI 

The image contrast mechanisms offered by MRI are also wide-ranging but 

provide different information than PET. MRI sequences can be designed to 

produce contrast involving magnetic relaxation properties, spectroscopy, flow, 

diffusion, perfusion, and functional information. Contrast agents offer further 

possibilities for imaging the physiological properties of blood vessels and tissue 

structures. MRI contrast mechanisms arise from fundamentally different physics 

processes than PET contrast. In brief, MRI probes the magnetic relaxation 

properties of tissues in spatially separated voxels that span the field of view. In 

conventional MRI, a strong, stable and homogeneous magnetic field polarizes the 

hydrogen nuclei in tissue to produce a bulk magnetization. Radiofrequency (RF) 

magnetic pulses are used to perturb the tissue magnetization and RF pickup coils 

sense the time-varying properties of the response. To form images, gradient 

magnetic fields oriented in each direction are used to encode spatial information. 

A detailed treatment of MR physics, MRI pulse sequences, and image formation is 

outside the scope of this work, but many well-written texts are available [10,11]. 
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1.1.3 The Complementary Roles of PET and MRI 

PET and MRI provide complementary information: PET offers the ability to probe 

tissue function and pharmacokinetics, while MRI can image morphologic 

structures with high resolution and contrast, and investigate the microscopic tissue 

environment. There are benefits that come from the combination of the two 

modalities in neurological applications, cardiac studies and tumour imaging 

[12,13]. Combining PET with MRI is attractive for scientific and clinical 

diagnostic applications. PET images generally show little or no anatomical 

structure and the ability to resolve features in PET images is limited by the 

fundamental physics processes of positron travel and the non-colinearity of 

annihilation photons, and these effects cannot be overcome completely with 

corrections or better detection hardware [14-16]. High spatial resolution MRI 

images can be co-registered and overlaid to provide an anatomical reference for 

low-resolution PET hotspots. Unlike other anatomical imaging modalities such as 

x-ray computed tomography (CT), MRI offers the possibility of excellent soft 

tissue contrast. Modest improvements in positron range effects are possible for 

fully simultaneous PET-MRI systems where a strong magnetic field is present 

during PET acquisition [17]. Another benefit for simultaneous or interleaved PET-

MRI is the potential to use MR data to provide motion correction for PET 

acquisitions, with the potential to significantly reduce PET image blurring when 

imaging the abdomen [18,19]. 

1.2 Technical Challenges for Combining PET with MRI 

PET and MRI have developed and matured independently over the past several 

decades. Until very recently, PET systems have not been designed with 
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consideration given to restrictions imposed by the MRI environment. With the 

exception of some purpose-built systems, such as the one described in Chapter 4, 

MRI scanners have likewise not been designed with PET compatibility in mind. 

Before the development of specialized PET-MRI systems, conventional PET 

scanners had gamma ray detectors based on well-characterized photomultiplier 

tube (PMT) technology and straightforward schemes of attenuation correction 

based on CT or transmission sources. The trend in MRI system design for both 

human and small animal scanners has been towards higher main magnetic field 

strengths, stronger and more compact gradient coils, and higher channel number 

RF coils having many discrete elements. These aspects of conventional PET and 

MRI system design must be carefully considered and potentially redesigned to 

accommodate the additional constraints that arise from combining the two 

modalities. 

1.2.1 Sensitivity of PET Detectors to the MRI Environment 

All PET detection systems must capture 511 keV photons efficiently and output 

corresponding electrical signals rapidly to an event processing system. 

Conventional PET detectors use PMTs to convert scintillation light into electrical 

pulses. PMTs operate by accelerating electrons along defined trajectories. 

Exposure to magnetic field can affect PMT operation because the electrons 

experience Lorentz forces that alter their path. For very weak fields, changes to 

electron trajectories internal to PMTs are insignificant and do not result in changes 

to PMT performance. For strong fields, such as those associated with MRI 

systems, PMTs can experience significant reductions in count-rate and systems for 
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position determination may not function properly. A more detailed treatment of 

this topic is given in Chapter 2. 

Any implementation of combined PET-MRI using PMT-based detectors must 

ensure that the detectors do not experience strong magnetic fields. This can be 

achieved by placing the PMTs in a location with low magnetic field or using 

dynamically controlled magnetic fields to ensure the magnetic field is weak 

during PET acquisition. For tightly integrated PET-MRI systems, including those 

that can acquire PET and MRI data simultaneously, PET detectors must be 

redesigned to use either magnetic field insensitive light detectors, such as linear-

mode avalanche photodiodes (APD) or Geiger-mode APDs, known as silicon 

photomultipliers (SiPM), or long optical fibres to carry scintillation light to PMTs 

placed in a low-field location. In simultaneous PET-MRI systems, it is also 

necessary to add metal shielding to the detector housing to minimize 

electromagnetic interactions of the gradient and RF fields on the PET detector 

electronics [20-24].  PET detection systems are described further in Section 1.4 of 

this chapter. 

1.2.2 Attenuation Correction of PET Data 

Gamma rays released during positron annihilation may undergo interactions with 

tissue or other material as they travel from the point of generation to the detector, 

along the line of response between two detector elements. For PET, interactions 

are typically either photoelectric absorption or Compton scattering, both of which 

result in fewer annihilation photons reaching the correct detector pair than would 

be the case without attenuating material. Each line of response has a different 

attenuation profile that depends on the geometry of the detection system and the 
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material inside the scanner bore. PET data can be corrected to compensate for the 

scattered and absorbed photons by measuring or estimating the probability of 

attenuation along each line of response. In conventional PET systems, attenuation 

correction is typically done by direct measurement of attenuation probabilities 

along lines of response, either through a separate CT image [25] or by rotating a 

transmission source around the subject [26]. These approaches capture all 

attenuating material within the PET imaging bore. A more detailed introduction 

on the physics of attenuation and scattering in the context of PET and methods of 

correcting for these effects can be found in Chapter 6. 

PET-MRI systems that have PET detectors integrated with the MRI system use 

MR data to estimate attenuation correction factors for each line of response. MR-

based attenuation correction methods have several limitations. MR images show 

only tissue inside the RF coil, and other attenuating material such as the RF coil 

and the bed must be included in the correction. To overcome this, CT data for the 

RF coil and bed can be combined with the MR-based attenuation map. This can be 

problematic if flexible RF coils are used; however, using MRI-visible markers in 

the flexible RF coil, an attenuation map can be estimated using a non-rigid 

transformation of a prior CT scan [27]. In cases where tissues lie outside of the 

MRI field of view (i.e. the arms when imaging the abdomen) attenuation estimates 

based on PET images can be used [28] or specialized MR sequences can be used 

to extend the MR field of view [29]. Another limitation is that MR sequences 

cannot measure attenuation properties directly (atomic electron structure and 

density); however, MR-based attenuation maps can be estimated using tissue 

segmentation, atlas-based approaches, or methods that use MR data with 
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uncorrected PET emission data. Detailed reviews of current MR-based attenuation 

correction methods are given by Bezrukov, et al. [30] and Wagenknecht, et al. 

[31]. 

1.2.3 Design Considerations for MR Hardware 

For highly integrated PET-MRI approaches, MRI systems must be redesigned to 

accommodate the PET hardware. Some approaches have been a significant 

departure from conventional MRI design. One example of this is field-cycled MRI 

where a resistive electromagnet can be turned on or off in a matter of hundreds of 

milliseconds enabling the use of PMT-based PET detectors during the times the 

magnetic fields are off [32,33]. Other such approaches include split 

superconducting magnets where long optical fibres carry scintillation light out 

through a gap in the cryostat to PMT detectors placed in a region with low 

magnetic field [34] and PET-MRI systems based on permanent magnets [35,36]. 

Other methods have used conventional superconducting MR cryostats, but with 

the PET detectors inserted into an axial gap between sections of a split gradient 

coil [37,38]. PET inserts have been integrated with unmodified MRI scanners for 

small animal applications and human brain imaging at the cost of significant radial 

space within the MR bore [24]. For simultaneous PET-MRI approaches, 

consideration should be given to the design of RF coils, such as moving discrete 

components outside of the PET field of view and using different materials to 

improve photon attenuation and scatter characteristics. This topic is discussed in 

greater depth in Chapter 7. 
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1.3 Monte Carlo PET Simulation  

Monte Carlo methods are useful for simulating systems that do not behave 

deterministically. A Monte Carlo simulation incorporates the fundamental 

statistical properties of the system modelled and samples the possible random 

outcomes with many repetitions. In this way, a Monte Carlo simulation can 

accurately model the general behaviour of a complicated system by using simple 

assumptions about the nature of its constituent parts. 

In the context of PET physics, the statistical behaviour of the random processes of 

radioactive decay and photon interaction with matter are well understood. 

Therefore, Monte Carlo simulations are naturally suited for modelling PET 

systems. Monte Carlo PET emission simulations typically incorporate well-

validated physics models for radioactive decay, positron travel, positron-electron 

annihilation, annihilation photon non-colinearity, photon-matter interactions, 

secondary particle generation, energy deposition by annihilation photons in 

scintillation crystal and the dynamic response of detection electronics. With 

modern computing capability, positron decays and the resulting interactions can 

be simulated efficiently for billions of decay events, matching the conditions 

typical in experimental acquisitions. Monte Carlo PET simulations are an 

appealing way of characterizing the performance of different detector geometries 

or phantom configurations without the need for experimentation. Furthermore, 

Monte Carlo PET simulations can provide insight into effects that are not possible 

to measure experimentally, such as scattering behaviour. 
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Several Monte Carlo simulation packages are in use in the high-energy physics 

and nuclear imaging communities; however, the GEANT4 toolkit (GEometry 

ANd Tracking) developed by CERN was the first to be coded in object-oriented 

C++, and is actively supported with a large user base [39,40]. Since the mid 

2000s, several packages based on GEANT4 have been developed for tomographic 

emission simulation to add convenient features, such as detector digitization, and 

improve flexibility and ease of use. The most notable examples in active 

development are GATE (GEANT4 Application for Tomographic Emission) 

[41,42] and GAMOS (GEANT4-based Architecture for Medicine-Oriented 

Simulations) [43]. 

Third-party software is commonly used to process data and reconstruct images 

from Monte Carlo PET simulation output; however, this may introduce systematic 

errors between simulated and experimental images, which arise from differences 

in data processing algorithms.  To reduce the possibility of such effects, simulated 

PET data can be converted to the raw data format of the physical scanner 

modelled so that both sets of data go through the same processing chain. This 

concept is discussed in further detail in Chapter 5. Furthermore, there is no 

standard way to produce attenuation correction sinograms for simulated PET data 

and many simulation studies omit attenuation and scatter corrections entirely. 

Without attenuation correction, quantitative activity measurements from PET 

images are inaccurate and the intensity may vary across the image. Chapter 6 

introduces a novel method of generating attenuation sinograms quickly within 

GATE. 
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1.4 PET Detectors 

A typical PET block detector consists of an array of scintillation crystal elements 

coupled optically to a light detector. When a gamma ray deposits most or all of its 

energy in one of the crystal elements, the resulting burst of light is detected in 

such a way that allows the identification of the crystal that was hit. Crystal 

elements can be made smaller to improve the localization of the gamma ray and 

increase image resolution down to the point where resolution is limited by the 

fundamental physics of positron range and photon non-colinearity [16,44]. 

Alternative detector designs based on monolithic scintillator crystals have also 

been studied [45]. The block detectors are set up in a ring geometry to form the 

PET detector. Photons detected by the scintillation detector trigger electrical 

pulses, which are used to produce a timing signal in the coincidence detection 

system. The PET electronics also reject pulses with heights that are below or 

above a certain range. By windowing the full energy peak, the detector can 

exclude some of the annihilation photons that have Compton scattered before 

reaching the detector, can reject multiple photons arriving in the same detector 

simultaneously, and can exclude some photons that scatter multiple times within 

the detector. 

A variety of combinations of different scintillator materials have been 

implemented in PET systems to date. The qualities desirable in a PET scintillation 

crystal include high detection efficiency for 511 keV photons (high density and 

large interaction cross section), high light yield, fast rise times for coincidence 

detection, and fast decay times to reduce detector dead time [46]. The suitability 

of various scintillators for PET has been studied extensively [47-49]. The 
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scintillators in most widespread use in modern PET scanners include LSO 

(Lu2SiO5:Ce), LYSO ((Lu2-Y)SiO5:Ce), GSO (Gd2SiO5:Ce), and the long-used 

BGO (Bi4Ge3O12). 

Until recently, scintillation light was typically detected with an array of 4 PMTs or 

with a position-sensitive PMT (PSPMT); however, solid-state light detectors, such 

as APDs or SiPMs, are being employed in an increasing variety of PET systems, 

especially in PET-MRI applications. Block detectors based on fractional light 

detection with 4 PMTs are discussed in detail in Chapter 4, and the operation of 

PSPMT-based detectors is described in Chapter 2. These types of detectors, which 

use the acceleration and multiplication of electrons to amplify signals, have been 

used for many years because of their high gain (~106), fast recovery times, 

robustness, and well-characterized energy response. Figure 1.1 below shows the 

general operating principles of a PSPMT-based scintillation detector. For PET-

MRI applications, the main shortcomings of PMT and PSPMT sensors are their 

high sensitivity to magnetic fields and large physical size. In contrast, APDs and 

SiPMs are highly compact and their performance is not significantly affected by 

strong magnetic fields. 



 

 

 

 

15 

 

Figure 1.1: Schematic showing a PET detector ring (left) and a drawing of the 
operation of a PSPMT-based scintillation detector (right). A positron annihilation 
results in two photons, each of which can be detected by a single detector. If an 
annihilation photon is stopped by a scintillation crystal, a flash of light will appear in 
the scintillator, which causes electrons to be ejected from the photocathode within the 
photomultiplier detector. The initial electrons are accelerated through a dynode chain, 
with each successive dynode at a higher potential. At each dynode the number of 
electrons increases until the flood of electrons reach the final anode and cause a 
negative pulse in the anode output voltage signal. The voltage pulses from all the 
detectors are fed into the coincidence detection electronics. 

Energetic electrons entering a semiconductor create electron-hole pairs due to 

impact ionization. For linear-mode APDs, a reverse bias voltage just below the 

breakdown voltage is applied to the semiconductor (typically 100-1500 V) and 

when a photoelectron creates electron-hole pairs this bias voltage results in 

avalanche breakdown [50]. APD gain typically ranges from 100-1000 and is 

sensitive to temperature. To improve the signal gain, an external low-noise 

preamplifier is required [51,52]. Like PMTs, the output pulse height of an APD is 
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proportional to the number of scintillation photons detected. APDs have high 

quantum efficiency [53] and their simple design makes them straightforward and 

relatively inexpensive to manufacture. SiPMs were designed to overcome the 

main shortcomings of linear-mode APDs: low gain and high bias voltage. A SiPM 

consists of a dense array of thousands of miniature APDs with each APD operated 

in Geiger-mode. In this mode, the reverse bias voltage is set slightly higher than 

the breakdown voltage and each APD element can detect a single photon. The 

result is that SiPMs only require bias voltages of 30-100 V and can achieve high 

gains comparable to those of PMTs (~105-106) [54]. Due to their increased 

complexity, SiPMs are significantly more challenging to manufacture than APDs 

and, until recently, SiPMs were not available commercially in sufficient quantities 

and at low enough cost for widespread use in new PET systems. As costs 

decrease, SiPMs are expected to replace APDs as the photodetector of choice in 

combined PET-MRI applications and may also replace PMTs in standalone PET-

CT systems.  

1.5 Developments in Combined PET-MRI 

Approaches to combining PET and MRI have been proposed and implemented as 

far back as the mid 1990s with the first small animal prototypes using long optical 

fibres to carry scintillation light to PMTs placed in a region of reduced magnetic 

field several metres from the MR system.  The first such system was developed 

for a 0.2 T open geometry MRI at UCLA [55] and similar approaches were 

developed further by several groups throughout the next decade [35,56-59] 

including one with a split MRI geometry [60,61]. An alternative approach to PET-

MRI using field-cycled MRI was proposed in 2006 by Handler, et al. [62]. In the 
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mid 2000s, APD-based PET inserts were developed first for preclinical 

applications [21,63-66] and then for human brain imaging [67]. Since the late 

2000s, several designs for sequential human PET-MRI systems using a shared 

patient transport system have been demonstrated [68-70]. The first commercial 

preclinical PET-MRI system was introduced in 2011 by Mediso (Budapest, 

Hungary) and was based on a sequential coaxial geometry using a 1 T permanent 

magnet MRI. In the same year, Siemens (Knoxville, TN) introduced a whole-body 

human simultaneous PET-MRI system, which used an APD-based PET detector 

integrated into the bore of a 3 T MRI [38]. The development of hybrid systems 

based on SiPM detectors is currently an active area of research [71-73]. Detailed 

reviews of historical and current developments in PET-MRI have been published 

recently [74-76]. 

1.6 Thesis Overview 

The central theme of this thesis is the investigation of how to combine PMT-based 

small-animal PET systems with MRI. This work focuses on characterization and 

mitigation of the effects a MRI scanner can have on PET systems of various 

architectures. MRI systems can affect PET in two primary ways: strong magnetic 

fields can interfere with the operation of PET detectors, and RF coil components 

introduce increased scattering and attenuation during PET acquisition. The 

experimental work and design studies described in Chapters 2 – 4 focus on how 

magnetic fields can affect PET systems, and investigates various approaches to 

overcome this obstacle. Specifically, in Chapter 2 the results of magnetic field 

exposure tests on a commercial stand-alone PET system are presented. These 

results are used to inform the studies described in Chapter 3, in which several 
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strategies for installation of a commercial PET system in the vicinity of an MRI 

system are investigated. In Chapter 4, the results of work to develop and evaluate 

a fully-integrated form of PET-MRI are presented and the first combined PET-

MR images obtained with that system are shown.  Chapters 5 and 6 lay the 

foundation for a sophisticated Monte Carlo PET simulation methodology, which 

is used in Chapter 7 to investigate how RF coils can affect PET image quality in 

fully-integrated PET-MR systems.  

In Chapter 2, I characterize the performance of the PSPMT-based Siemens Inveon 

small animal PET system in the presence of an external magnetic field. My 

intention here was to investigate how this high-performance scanner could be 

combined in the same imaging facility with an MRI scanner. To do this it was 

necessary to establish magnetic field exposure limits on the scanner, which had 

not been done previously. I exposed the PET scanner to axial magnetic fields 

ranging from 0 – 3 mT using a large homogenous electromagnet built around the 

PET detector housing. I investigated a variety of PET performance metrics using a 

large homogenous cylinder source and a point source at different positions within 

the scanner bore. I determined that the effect of magnetic field on the performance 

of the Siemens Inveon PET was not significant up to 0.9 mT, and that imaging at 

2 mT could not be recommended. 

My contributions to the experiments described in Chapter 2 included the 

experimental design, the construction of the coil, and all data acquisition and 

analysis. I was also the lead author of the manuscript. Brian Dalrymple and Frank 

Van Sas machined the spindles on which the coil segments were wound. Andrew 

Boivin assisted with the coil winding and construction of the support structure. 
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In Chapter 3, I describe different approaches to setting up a PET-MRI facility 

using the Siemens Inveon PET scanner. The first approach I describe is an 

extension of the proof-of-principle PET and field-cycled MRI system for 

interleaved scanning. For the other approaches, the PET image would be acquired 

sequentially with the MRI image and the animal would be moved from one 

imaging region to the next between scans. I investigated the feasibility of the 

following approaches: constructing a new field-cycled MRI system with an axial 

gap large enough for the PET detectors, building a field-cycled MRI scanner with 

no axial gap and docking the PET system to the end of the MRI system, using a 

superconducting MRI scanner with an actively powered electromagnetic shield 

coil to reduce the fringe field at the PET detectors, and arranging the PET and 

MRI scanners in the same room separated by a certain distance. 

I conducted all design studies described in this chapter. Chad Harris wrote the 

boundary element method code that I used to investigate different electromagnetic 

shielding options. Will Handler and Tim Scholl wrote the code I used to model the 

electromagnetic and thermal properties of the field-cycled MRI systems. Joe Gati 

provided the floor plans for the 9.4 T MRI suite. 

In Chapter 4, I demonstrate a method of interleaved PET-MRI using field-cycled 

MRI with PMT-based PET detectors and I show the first multimodality images. In 

this experimental proof-of-principle demonstration, I inserted block PET detectors 

from a human scanner into an axial gap in the field-cycled MRI system and I 

imaged a multimodality phantom using an interleaved acquisition workflow of 

approximately 1 s PET and 1 s MRI.  This demonstrated the feasibility of this 

approach to PET-MRI. 
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My contribution to this experiment involved the final system integration, writing 

code for PET data processing, and the complete experimental acquisition. I 

integrated the PET detectors into the axial gap of the MRI system and analysed 

their effect on magnetic field inhomogeneity. I determined that the increased 

inhomogeneity was unacceptable for MR imaging and I solved this problem by 

enhancing the field-cycled MRI system with additional second-order magnetic 

field shim coils, which I constructed. I designed and built an electronic system 

that provided dynamic interleaving control of the PET acquisition based on a 

blanking signal from the MRI console and I modified the MR pulse sequence to 

incorporate this control. Prior to the PET-MRI experiment, I calibrated the PET 

detectors, generated look up tables for flood histograms and implemented a 

normalization procedure. Following this, I designed and assembled the PET-MRI 

phantom and performed the experimental acquisition. I wrote all of the PET data 

processing and image reconstruction code and performed all of the analysis. I was 

the lead author of the manuscript reproduced in Chapter 4. Kyle Gilbert, Will 

Handler, Tim Scholl and Blaine Chronik designed and built the original field-

cycled MRI system and wrote the original pulse sequences. Hao Peng and Will 

Handler assembled the PET detectors. Will Handler designed and set up the PET 

acquisition hardware and wrote software to record the raw data.   

In Chapter 5, I present a Monte Carlo simulation architecture for the Siemens 

Inveon PET and compare simulated and experimental data for the NEMA NU 4-

2008 image quality phantom. I describe the methodology of using the 

histogramming and reconstruction software of the Inveon scanner to process 

simulated data. The significance of this approach is that differences between 



 

 

 

 

21 

images from simulated data and those acquired on the physical scanner can be 

attributed to differences in the emission simulation and not to differences in 

sinogram production or image reconstruction algorithms. The details of the data 

processing code are given in the appendices. 

In Chapter 6, I present a general add-on to the GATE Monte Carlo package for 

producing attenuation correction sinograms using the 511 keV attenuation 

coefficients in the emission simulation. I describe the benefits and limitations of 

this new approach and show the results of two validation tests. The add-on code is 

given in the appendices. 

In Chapter 7, I use a Monte Carlo simulation to investigate the effect of different 

bed construction materials on the design of a small-animal holder compatible with 

both PET and MRI. Furthermore, I investigate the effects of photon attenuation 

and scattering for RF coil components present in the PET field of view through 

Monte Carlo simulation. I show that discrete coil components can have a 

significant effect on PET images even if they are included in attenuation 

correction. Further, the results indicated that even with RF coils designed to 

minimize photon attenuation, it is necessary to include the RF coil in the 

attenuation correction to achieve quantitative accuracy in PET images. 

In these three chapters on Monte Carlo PET studies, I wrote all of the GATE 

macro code with the exception of the geometric specification of the Siemens 

Inveon PET detector, which I modified from a version obtained from Arda Konik. 

I wrote the following code, which is available in the appendices: a script to run 

GATE simulations on multiple CPUs simultaneously in batch mode, a program to 
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convert the GATE ROOT output files into Siemens list-mode format, and a 

general GATE add-on to produce attenuation correction sinograms. I designed and 

performed all simulations and experiments and analysed all of the data used in 

these chapters. For the experiment described in Chapter 5, Hamed Moazami filled 

the NEMA NU 4-2008 with 18F-FDG and measured the activity in a well counter. 

In Chapter 8, I conclude the thesis by summarizing the major findings and I 

suggest possible directions for future research. 

The appendices include descriptions of important software algorithms developed 

during the course of this project and explain how they can be accessed and used. 

In Appendix A.1, I provide code for converting the data output from the PET 

emission simulation to the raw listmode data format used by the Siemens Inveon 

PET scanner. In Appendix A.2 I describe a simple script for running multiple 

instances of a GATE simulation simultaneously on multi-CPU computers. In 

Appendix A.3, I describe the GATE macro codes for the PET phantoms and 

sources used in the NEMA NU 4-2008 standard. In Appendix A.4, I describe the 

GATE attenuation correction add-on.  The add-on is written in a general form that 

can be used on different scanner geometries without significant modification.  
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Chapter 2  

2 Magnetic field exposure tests on a Siemens Inveon 
small animal PET system1 

When siting a photomultiplier tube (PMT)-based small-animal PET scanner near 

an MRI system, it is important to investigate how PET performance is affected by 

external magnetic field and determine the field limit below which performance is 

not degraded. In this study, an electromagnet was used to expose a Siemens 

Inveon PET scanner to axial magnetic fields of various strengths. Most 

investigated metrics suggested that the PMT-based PET system tested could 

withstand fields up to 0.9 mT without significant effects. 

2.1 Introduction 

There has been significant interest in the development of small animal imaging 

systems that permit the simultaneous or sequential acquisition of positron 

emission tomography (PET) data and magnetic resonance (MR) images.  Over the 

past decade, several independent groups have developed working prototypes of 

MR-compatible small animal PET inserts or optical light guide arrangements that 

have been shown to acquire PET and MR data simultaneously [1-7]. In addition to 

its relevance in preclinical research, combined PET-MRI is becoming increasingly 

important in neuroscience and oncology. 

                                                

 
1
 A manuscript based on the contents of this chapter was in preparation at the time of thesis 

publication. 
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One option for imaging facilities without access to specialized simultaneous PET-

MRI hardware is to implement a time sequential approach whereby standalone 

PET and MRI systems are used. In fact, with two separate scanners, there are 

many advantages to having both placed in proximity: a single bed can be used for 

both scans keeping the animal fixed in position, the animal can remain connected 

to heating and gas anaesthetic between modalities and all radioactivity remains 

confined to one room. Importantly, conducting both scans immediately in 

succession with the same bed would also enable the use of an a priori rigid body 

transformation matrix for the co-registration of PET and MR image data and 

would allow for studies to be performed that use both the functional information 

from PET, and the anatomical information from MRI. 

PET systems typically employ photomultiplier tube (PMT)-based detectors, which 

are sensitive to magnetic fields. Specialized MRI scanners with negligible fringe 

magnetic field can be positioned near PET scanners without concern [8]. If a PET 

system were positioned too close to a high-field conventional MRI system, the 

stronger fringe field would affect PET system performance. When designing a 

time sequential PET-MRI facility with a conventional MRI scanner, it is important 

to balance the desire for proximity with the need to avoid reducing PET 

performance. Therefore, it is necessary to determine limits for magnetic field 

exposure or in other words, determine how closely the two scanners can be 

positioned. In this study, the authors investigated how the performance of a small 

animal PET system in widespread use, the Siemens Inveon Dedicated PET 

(Siemens Medical Solutions), was affected by external magnetic fields of various 



 

 

 

 

33 

strengths, to guide the placement of the Inveon system with respect to pre-existing 

MRI scanners. 

2.2 Materials and Methods 

2.2.1 PET System Description 

The Siemens Inveon Dedicated PET detector consists of a ring of 16 PET 

modules; with each module having a row of four lutetium oxyorthosilicate (LSO) 

crystal blocks (1.59x1.59x10 mm crystals in each 20x20 block) coupled to four 

position-sensitive photomultiplier tubes (model R8900-C12; Hamamatsu 

Photonics). The PET system permits fast scanning due to its very high sensitivity 

(up to 10% at the centre of the field of view) and has a large axial field of view 

(12.7 cm) enabling whole-mouse imaging [9,10]. 

Each detector contains a scintillator crystal array connected to a smaller-area 

photomultiplier tube via a tapered optical light guide [11]. The internal structure 

of the photomultiplier tube includes a grid of metal channel dynodes with the 

dynodes in each channel separated by a small distance to minimize crosstalk. 

After traveling through the light guide, optical scintillation photons hit the 

photocathode inside the photomultiplier tube. Electrons ejected from the 

photocathode are accelerated through a potential difference and directed onto one 

of the dynode channels using a focusing mesh. Secondary electrons generated 

from the first dynode are accelerated towards the dynode directly beneath the first 

dynode. This process repeats until the electrons hit a single large dynode and the 

subsequent photoelectrons reflect back to hit the cross-plate anode, which is 

arranged in two intersecting layers and permits position determination [12]. 
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Exposing the detector to an external magnetic field results in a deflection of the 

electron trajectory within the photomultiplier tube. 

2.2.2 Magnetic Field Test Setup 

A resistive electromagnet, built around the PET detector housing, as shown in 

Figure 2.1, was constructed to provide the magnetic field. The geometry and 

orientation of the magnet was chosen to produce a field with the same symmetry 

as the detector ring, such that each detector block, at the same axial position, 

experienced the same field profile. The device was designed to be as close as 

possible to a Helmholtz coil geometry given the constraints of the PET system 

dimensions and it consisted of two identical solenoids of 100 turns each with an 

average radius of 28.1 cm and a centre-to-centre separation of 34.6 cm. A DC 

power supply (Agilent 6032A) was used in constant current mode to control the 

strength of the magnetic field. The magnetic field in the bore was measured using 

a Hall effect field probe and these measurements were used to verify field values 

from a Biot-Savart Law computational model of the electromagnet. With a 

verified model it is possible to calculate the magnetic field within the detector 

blocks; the result shown in Figure 2.2 indicates that the field magnitude varies by 

approximately ± 3% within the detectors with data from the computational model. 

This variation is not expected to have a significant effect on the results. All field 

values reported henceforth are the average magnitudes within the PMTs, unless 

otherwise stated. 
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Figure 2.1: Photographs of the geometry of the experimental setup. The current 
through the electromagnet was varied to produce a range of magnetic field 
magnitudes through the PET detectors. 
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Figure 2.2: Simulated contour map of the magnetic field magnitude in the vicinity of 
the PET detectors. The dark and light grey boxes indicate the position and size of the 
scintillator crystal and position-sensitive photomultiplier tube, respectively. The 
arrows show the direction of the magnetic field within each photomultiplier tube. For 
illustration, contour values are shown for an applied current of 3.46 A producing an 
average field of 1 mT within the photomultiplier tubes. 
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2.2.3 Phantom Descriptions and Acquisition Parameters 

Two sealed-source phantoms were used: A homogeneous cylinder source (Ge-68, 

1.8 MBq, radius: 3 cm, length: 16 cm) was used to measure reconstructed activity, 

noise and image artifacts, and a point source (Na-22, 0.22 MBq, diameter: 0.25 

mm, 1 cm3 plastic cube) was used to measure reconstructed positioning accuracy 

and resolution. Acquisitions were performed during the application of various 

sustained magnetic field strengths ranging from zero to 3.0 mT.  

At each field value, a full detector setup was performed followed by a 

normalization scan (component-based, 3 billion counts) and a blank transmission 

scan (15 hours). The manufacturer recommends doing these calibrations at regular 

intervals as well as whenever the PET system is moved or serviced. Calibrating 

the crystal look up tables during the detector setup is necessary because magnetic 

fields stretch and skew the position profile. 

The cylinder source was positioned at the centre and the acquisition workflow 

included a 60-minute transmission scan followed by a 45-minute emission scan. 

The point source was positioned at nine locations throughout the field of view and 

an 11-minute emission acquisition was collected for each position. For all 

acquisitions, the time and energy coincidence windows were 3.432 ns and 350-

650 KeV, respectively. 

2.2.4 Reconstruction Parameters and Analysis Methods 

The data from each acquisition were reconstructed using a filtered back-projection 

algorithm (Inveon Acquisition Workplace 1.5; Siemens Medical Solutions) with 

the default parameters recommended by the manufacturer (128x128x159 
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resolution with voxel dimensions: (0.776383, 0.776383, 0.796) mm, projection 

filter: ramp, projection cut-off (nyquist): 0.5). The Ge-68 cylinder source images 

were reconstructed with attenuation correction. For the Na-22 point source 

acquisitions, the source and holder represented a relatively small amount of 

attenuating material and image reconstruction was performed without a 

transmission-based attenuation correction. 

The Ge-68 Image analysis was performed using the manufacturer’s software 

(Inveon Research Workplace 3.0; Siemens Medical Solutions) and point source 

resolution and positioning accuracy were computed using MATLAB (The 

MathWorks). For the cylinder source scans, the prompts rate was determined by 

source data in the sinogram header file. The mean reconstructed activity and 

image noise were investigated by measuring the percentage standard deviation 

(standard deviation divided by mean) of the voxel intensities in a cylindrical 

volume of interest spanning nearly the complete active volume (length: 12 cm, 

radius: 2.5 cm). A correction for the decay of Ge-68 between scans was applied. 

The average gantry temperature was recorded and the reconstructed activity 

values were scaled by the temperature dependence of the light yield of LSO 

detectors, -0.2%/ºC, as reported by Mao, et al. [13]. Mean linear attenuation 

coefficients for the cylinder were measured from attenuation maps computed 

using transmission data to investigate how attenuation correction is affected by 

magnetic field. The uncertainty of the prompts rate was estimated by repeating the 

acquisition and analysis 20 times at zero field. The uncertainty of the 

reconstructed activity was estimated by a combination of repeated measurement 
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and the error associated with translating the volume of interest by one voxel along 

each direction. 

Crystal efficiency maps and position profiles were also generated from the 

cylindrical source. Energy spectra could not be analysed directly because the 

manufacturer’s software does not provide access to the raw spectrum data; 

however, we report the energy resolution and photopeak energy bin computed 

during detector setup for selected crystals in a representative detector. For these 

same crystals, screen captures of the emission and transmission energy spectra are 

shown for various magnetic field strengths. The magnetic field dependence of the 

timing resolution is analysed for the same detector. 

For the point source, resolution was measured in the radial (x), tangential (y) and 

axial (z) directions by computing the full width at half maximum (FWHM) 

according to the method described in the NEMA NU 4-2008 standards document 

[14]. For each direction, a profile through the peak was produced, then the 

maximum was determined by fitting a parabola to the three data points closest to 

the peak, and finally the width at half maximum was computed by linear 

interpolation. The coordinates of the point source were determined by the 

locations of the maxima from the parabolic fits. Uncertainties associated with the 

coordinates and resolutions were estimated by repeating the acquisition and 

analysis 10 times at zero field, removing and replacing the point source between 

each repetition. 
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2.3 Results 

2.3.1 Count Rate and Attenuation Coefficient 

The prompts rate and reconstructed activity for data collected with the magnetic 

field present are shown in Figure 2.3(a) as a function of applied magnetic field 

(normalized to 1 at zero field). As the magnetic field increased, the prompts rate 

did not change significantly up to 0.9 mT. The reconstructed activity in the 

volume of interest tended to decrease as the field increased, consistent with the 

decrease in the mean attenuation coefficient seen in Figure 2.3(b). The measured 

attenuation coefficient decreased by 3% between zero field and 2.0 mT. When the 

reconstructed activity values were scaled to account for differences in measured 

attenuation coefficient from the zero field case, the reconstructed activity 

appeared to more closely match the prompts rate behaviour as a function of field. 

The decrease in measured attenuation coefficient with increasing field strength 

can be explained by the effect of Compton scattered transmission photons, as 

discussed later in this chapter. Artifacts were not apparent in reconstructed images 

of the cylinder source up to 2.0 mT, as seen in Figure 2.3(c). The average 

percentage standard deviation image noise was 39.7% and the variation in this 

value was ± 0.2 % across the images between zero field and 2.0 mT. As a 

comparison, for a data set of 20 repetitions at zero field analysed identically, the 

variation in the percentage standard deviation was also ± 0.2 %. Although detector 

setup was performed at 3.0 mT, the normalization procedure failed to produce a 

normalization sinogram at this field and image results could not be compared 

directly. 
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Figure 2.3: (a) Plot of prompts rate and reconstructed activity normalized to the value 
at zero field as a function of applied magnetic field for the cylinder source. The 
reconstructed activity values are also shown after adjusting to account for changes in 
the attenuation coefficient relative to the attenuation coefficient measured at zero 
field. (b) Plot of mean attenuation coefficient as a function of applied magnetic field. 
The proportional decline of the attenuation coefficient as the field increased appears 
to correlate with the increasing divergence between the prompts rate and the 
reconstructed activity. The error bars are estimated from repeated emission and 
transmission scans (20 repetitions) and uncertainty in the temperature measurement. 
(c) Reconstructed images of the cylindrical source at various fields showing the 
central axial slice (top) and the central coronal slice (bottom) using the same contrast 
colour scheme. All emission data were corrected for the decay of Ge-68 and gantry 
temperature. 
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2.3.2 Image Resolution and Positioning Accuracy 

Figure 2.4 shows that the image resolutions for the point source in the radial (x), 

tangential (y) and axial (z) directions were not significantly affected for various 

point source positions through the range of magnetic fields tested. The maximum 

deviations of the FWHM from the zero field case were typically less than 5 per 

cent. The positioning accuracy of the reconstructed point source for each 

coordinate as a function of applied magnetic field is shown in Figure 2.5. The 

values correspond to the displacement from the coordinates of the point source 

image at zero field. 
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Figure 2.4: Full width at half maximum in each direction for the reconstructed image 
of a point source located at nine positions in the field of view as a function of 
magnetic field. The uncertainty in positioning was estimated by taking the standard 
deviation for multiple repetitions at zero field: ±0.01 mm for radial (x);  ±0.007 mm 
for tangential (y); and ±0.005 mm for axial (z). 
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Figure 2.5: Position displacement as a function of magnetic field relative to the case 
at zero field for images of a reconstructed point source at nine positions in the field of 
view. The uncertainty in positioning was estimated by taking the standard deviation 
for multiple repetitions at zero field: ±0.06 mm for radial (x);  ±0.004 mm for 
tangential (y); and ±0.01 mm for axial (z). To set the x position, the point source cube 
was positioned manually against a stopper, increasing the positioning uncertainty for 
the radial (x) direction. 

2.3.3 Position Profiles, Energy Spectra and Time Resolution 

Figure 2.6 shows the position profiles acquired during detector setup for a typical 

block at a range of field strengths. An analysis of the energy spectra for three 

crystals in this block is also included as a function of magnetic field. As the 

external field increased, the magnitude of changes in peak coordinates in the 
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position profile increased showing that electron trajectories within the 

photomultiplier tube were sensitive to magnetic field. Figure 2.7 shows the 

emission energy spectra for three crystal positions for several magnetic field 

strengths. The energy bin of the photopeak maximum tended to decrease with 

greater field strengths, while the energy resolution worsened at higher fields. The 

transmission energy spectra are shown in Figure 2.8. 

Differences in the profiles and energy spectra between zero field and 0.9 mT were 

inconsequential to the detector setup procedure. Although the positions of the 

photopeak in the emission energy spectra had changed at 0.9 mT, it was 

nevertheless possible to distinguish the photopeak and the noise shoulder for each 

crystal. At 2.0 mT, the photopeak was mixed with the noise shoulder for some of 

the crystals.  The coordinates of peaks in the position profile were still 

identifiable, but there was a reduction in the number of counts for crystals near the 

centre of the block and the position profile was skewed. At this field, the 

distortion of the position profiles prevented the peak finding algorithm from 

automatically generating proper look up tables for most blocks. It was therefore 

necessary to select each peak position manually during detector setup – a process 

that took approximately 30 hours to complete. These effects were worse at 3.0 mT 

where some crystals had very few counts and it was necessary to infer the 

locations of peaks near the block centre. 
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Figure 2.6: Analysis of flood source position profiles for the same detector block at 
different field strengths (topmost position farthest from the bed side). (a) The energy 
bins of the photopeak maxima are shown for three separate crystals: Top left corner 
(position [x,y] = [0,0]), top centre (position [10,0]) and centre (position [10,10]). The 
dashed line indicates the approximate upper extent of noise in the energy spectra 
where the noise shoulder would dominate the photopeak. (b) The energy resolution of 
each photopeak (FWHM) is shown as a function of magnetic field. (c) The peaks in 
the position profiles correspond to the coordinates of scintillation events in each of 
the 400 crystals in the detector. Up to 2.0 mT, positions could be clearly identified for 
each crystal in most detectors. At 3.0 mT, the crystals near the centres of most blocks 
had very few counts and the positions could not be identified. 
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Figure 2.7: Emission energy spectra for the three crystal indices analyzed in Figure 
2.6 shown at various field strengths. The spectra shown are screen captures from the 
detector setup utility and are given without axes. The number of bins on the 
horizontal axis is 1024 and each spectrum is normalized to the same vertical height. 
The red vertical line in each spectrum indicates the energy bin of the photopeak (511 
keV).  As the field increased, the energy bin of the photopeak tended to decrease, 
consistent with a reduction in absolute detector efficiency. All photopeaks were 
distinguishable from the noise threshold up to 0.9 mT. 
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Figure 2.8: Transmission energy spectra for the three crystal indices analyzed in 
Figure 2.6 and Figure 2.7 shown at various field strengths. The energy of the 
photopeak was 122 keV. The energy bin of the photopeak in the transmission energy 
spectra tended to decrease with increasing magnetic field, similar to the case for the 
emission data. 
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Figure 2.9 shows the magnetic field dependence of the timing resolution (FWHM) 

for the same detector block analysed in Figure 2.6. The time performance 

worsened as the field increased. Other detector blocks showed similar behaviour. 

 

Figure 2.9: Block time resolution as a function of magnetic field for the same 
detector block as in Figure 2.6. 

2.3.4 Efficiency Maps 

Efficiency maps are shown at various field strengths for the ring of blocks closest 

to the bed side of the scanner in Figure 2.10(a) for the emission data and in Figure 

2.10(b) for the blank transmission data. Each crystal element efficiency is 

normalized to 1 for the case at zero field. The efficiency maps of one block at 2.0 

mT, highlighted in cyan, are expanded in Figure 2.10(c) and Figure 2.10(d) for 

emission and transmission data, respectively. It should be noted that as field 

increased, the efficiency generally became lower in the centre but did not change 
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significantly at the edges. Figure 2.10(e) and Figure 2.10(f) show the efficiency 

line profiles at various field strengths for the highlighted block using the crystals 

bounded by the white dashed lines in the expanded efficiency maps. For the 

emission efficiency maps, there were no significant changes up to 0.9 mT. The 

crystal efficiencies for the transmission data were somewhat more sensitive to 

magnetic field and variations in efficiency of approximately ± 10% were observed 

in some blocks at 0.9 mT. 

 

Figure 2.10: (a) & (b) Efficiency map of the same ring of 16 detector blocks closest 
to the bed side of the scanner at various magnetic field magnitudes for emission data 
(a) and for blank transmission data (b). The three other rings of blocks are not 
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displayed, but showed a similar response. The greyscales represent the counts 
assigned to each crystal normalized to the acquisition at zero field. (c) & (d) An 
expanded view of the particular block highlighted by the cyan box. The white dashed 
lines represent the bounds of the pixels used to produce the line profiles in (e) & (f) at 
various field strengths. 

2.4 Discussion 

The degradation of multiple measures of PET performance in the presence of an 

external magnetic field was evident. External fields of 0.9 mT and below resulted 

in no significant changes in most investigated metrics, with the exception of a 1% 

decrease in transmission scan sensitivity. At 2.0 mT, significant changes appeared 

in quantitative measures of PET performance; however no visible artifacts or 

distortions appeared in reconstructed images at this field. At 3.0 mT, the detector 

position profiles were significantly affected and it was not possible to perform a 

normalization calibration. 

 The distortions and count-rate drops affecting the position profile at higher 

field strengths are consistent with changes visible in the efficiency maps and can 

be understood by considering the deflection of the electron trajectory within the 

photomultiplier tube. With the magnetic field oriented along the scanner’s axial 

direction, the Lorentz force acting on electrons initially moving radially outward 

will cause an azimuthal deflection. Under such conditions, a gamma ray 

scintillation occurring in a particular crystal may be registered at a different 

azimuthal coordinate than would be the case at zero field. This explanation is 

consistent with the azimuthal shift of peak coordinates in the flood source position 

profiles, as observed in Figure 2.6 in the horizontal direction. The changes 

observed in the position profiles and efficiency maps are in reality more 
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complicated due to non-radial components of the election trajectory. The extent of 

distortions in the position profile was not extreme at the fields tested and it was 

possible to generate look up tables accurately up to 2.0 mT. 

One might assume that the electron path would be primarily in the radial direction, 

and that therefore the detectors would be most sensitive to magnetic fields 

oriented parallel to the photocathode, along the axial direction, where the field 

component is perpendicular to the electron path. However, it has been shown that 

the R8900 photomultiplier tube is most sensitive to the field component 

perpendicular to the photocathode, along the radial direction of the scanner 

[12,15]. The most significant deflections are likely to occur between the 

photocathode and the first dynode, or between the last dynode and the anode, 

where the electron path is longest. Compared with previous position-sensitive 

photomultiplier tube designs from the manufacturer, which were used in previous-

generation small animal PET scanners, the area of the photocathode in the R8900 

is larger than the area of the dynode grid, requiring a focusing mesh. The result is 

a longer, non-radial electron path between the photocathode and the first dynode 

when compared with earlier devices. Therefore the R8900 is expected to be more 

sensitive to external magnetic fields. In a future study, the effects from fields of 

different directions should be investigated. 

The time resolution worsened as the field increased. The limit specified by the 

manufacturer for acceptable timing performance is 1.5 ns FWHM. At fields lower 

than 2.0 mT, the timing performances of the detectors were well within this limit. 

Changes in the time resolution were not a limiting factor for operating the PET 

scanner in the presence of magnetic fields. 
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For higher fields, we observed a reduction in count rate for the central crystals in 

each block with some blocks being more sensitive to this effect than others. At the 

same field strength, transmission acquisitions showed a greater drop in sensitivity 

than emission acquisitions. The most likely cause is the lower energy of the Co-57 

photons (122 keV) used in the transmission scan. The Co-57 photopeaks were 

closer to the noise level in the energy spectra and thus more susceptible to small 

shifts in the position of the photopeak than the 511 keV photopeaks in the 

emission data. Up to 0.9 mT, the distribution of counts was sufficiently uniform in 

both the emission and transmission efficiency maps that it was possible to correct 

for the small variations through normalization and blank transmission calibrations. 

At 2.0 mT, the variation in crystal efficiency for the transmission scan was 

substantial for most blocks, and at 3.0 mT, both the transmission and emission 

efficiency maps were significantly affected. 

Despite the distortions observed in the position profiles, there were no apparent 

changes in image quality observed for the Ge-68 cylinder source up to 2.0 mT.  

The apparent reduction in reconstructed activity up to 0.9 mT can be attributed to 

the –1.5%/mT reduction in measured attenuation coefficient. At 2.0 mT, the 

sensitivity of the emission acquisition was lower by approximately 3% when 

corrected for the field dependence of the attenuation correction. This suggests that 

the reconstructed activity can be corrected for images with attenuation correction 

for fields up to 0.9 mT. One explanation for the decrease in measured attenuation 

coefficient is the presence of Compton scattered photons in the transmission scan 

combined with field-dependent changes in the detector energy spectra. 

Attenuation correction factors are computed from the comparison of blank 
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transmission data, with no attenuating material in the bore, to transmission data 

with attenuating material present. Lower-energy Compton scattered photons are 

present in the transmission scan, but not in the blank scan. At higher fields, the 

detector gain decreases and the energy window begins to include more spurious 

prompts due to electronic noise and small-angle Compton scattered transmission 

photons. These changes to the energy spectra have a greater effect on transmission 

acquisitions due to their already low starting energy (122 keV). As the field 

increases, a greater fraction of Compton scattered photons are detected in the 

energy window, which results in a reduction of the apparent attenuation. 

No meaningful off-axis distortions were observed for images of the point source at 

fields up to 2.0 mT. FWHM resolutions did not change meaningfully for all 

positions tested up to 0.9 mT, while at 2.0 mT, the FWHM changed by a 

maximum of 5%. All changes in position relative to the zero field case were 

significantly smaller than the resolution of the scanner up to 2.0 mT and could be 

attributed to uncertainties in the physical placement of the point source.   

This study suggests an upper limit of 0.9 mT external magnetic field when siting a 

Siemens Inveon PET in the vicinity of an MRI scanner. The effects on PET 

performance are significant beyond 2.0 mT and it would be clearly inadvisable to 

operate the PET scanner under conditions much beyond this field strength. A 

typical actively-shielded preclinical MRI scanner with main field between 7.0 T 

and 11.7 T has a 0.5 mT fringe field at a radial distance approximately ± 2 m from 

the centre. Under such an arrangement, sequential PET and MRI imaging where 

the animal is moved from one scanner to the other in close proximity would be 

feasible for many existing imaging facilities. Recently, lower field MRI systems 
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having negligible fringe field have been made commercially available. PMT-

based PET scanners can be placed in close proximity to these types of MRI 

systems [8]. 

2.5 Conclusion 

The performance of the Siemens Inveon photomultiplier tube based small animal 

PET system was investigated during exposure to axial magnetic fields of various 

strengths. For external fields with magnitude 2.0 mT and higher, significant 

changes were observed in quantitative measures of PET performance. Such effects 

were negligible at fields between 0 – 0.9 mT. 
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Chapter 3  

3 Approaches to Combining the Siemens Inveon PET 
with MRI1 

In this chapter, I survey the feasibility of different methods of utilizing the 

Siemens Inveon small animal PET scanner in a PET-MRI facility. 

3.1 Introduction 

The Siemens Inveon small animal PET is in widespread use with well over 100 

installations worldwide. There has been considerable interest in setting up 

preclinical imaging facilities with the capability to acquire both PET and MRI 

images in the same study. Until very recently, hybrid simultaneous PET-MRI 

systems for small animal applications were not available commercially and 

considerable engineering effort has been directed to developing one-off MR-

compatible PET inserts for use with high-field superconducting MRI scanners. On 

the other end of the spectrum, some facilities have used sequential imaging 

workflows, which involve moving the animal between a room containing the MRI 

scanner and a different room containing the PET scanner. This latter approach has 

the advantage of requiring no unconventional scanner modifications or 

compromises to PET or MRI performance.  However, a significant limitation to 
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this two-room approach is that the accuracy of co-registration is reduced if the 

animal is transferred from one bed to another or the animal is roused from 

anaesthesia between scans. In this chapter, I explore various approaches of siting a 

small animal PET scanner, specifically the Siemens Inveon PET, in the same 

room as an MRI scanner. 

There are several desirable criteria for combining PET and MRI in the same room 

that should guide the choice of approach. It is important that PET and MRI 

performance are not significantly compromised compared with standalone PET or 

MRI procedures. The results from Chapter 2 suggest that for the Siemens Inveon 

PET, performance is not impacted at magnetic fields below approximately 1 mT. 

It is also important to design the facility so that PET and MRI images can be co-

registered accurately. Ideally, the same animal holder should be used for both 

modalities so that the co-registration method would be an a priori rigid-body 

transformation. It is also desirable to have the dual modality facility take up 

minimum physical floor space. Other important criteria include the following: The 

combined system should be easy for end users to operate, the cost of additional 

equipment should be significantly less than the costs of the scanners themselves, 

and the room should not require significant modifications (physical, electrical, 

chilled water supply, etc.) beyond what is typical for a small-animal MR imaging 

facility. 

3.2 Combining the Inveon PET with Field-Cycled MRI 

Current approaches to systems that integrate PET and MRI in a compact system 

typically (a) modify MRI in some manner to make it compatible with 
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conventional PET, or (b) alter PET hardware to make it compatible with 

conventional MRI. One approach of the second type has been to employ 

avalanche photodiodes (APD), or other solid-state detectors, which are unaffected 

by magnetic fields, in place of PMTs in an MR-compatible PET insert. An 

approach of the first type is to use field-cycled MRI (FCMRI) with a conventional 

PMT-based PET system. Combining PET with FCMRI would enable the use of 

commercially available, highly optimized PET systems with potentially little 

physical modification. 

In a type of FCMRI called prepolarized FCMRI, two sets of resistive 

electromagnets independently produce the polarizing and readout magnetic fields. 

The polarizing field supplies the main magnetization and must be strong, but need 

not have high spatial or temporal uniformity. Conversely, the readout field must 

have high spatial and temporal uniformity, but need not be strong [1].  A fully-

functional FCMRI system has been built and has generated images of good quality 

[2]. The magnetic fields of the FCMRI system can be turned on and off during a 

scan allowing PMTs to operate normally during the time the field is off. Proof-of-

principle tests have shown that linear and mesh PMTs recovered normal operation 

within 2-3 milliseconds of the field being turned off with no long-term effects [3]. 

An example of a PMT-based PET system operating successfully when interleaved 

with an FCMRI system has been demonstrated in Chapter 4. While this proof-of-

principle system used coarse PET detectors from a human-scale scanner, PET 

detectors with smaller scintillator crystal pitch are more appropriate for small 

animal imaging.  
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In this section, I describe two designs for a PET-FCMRI system specifically based 

on the Siemens Inveon small-animal PET: The first design concept is an extension 

of the proof-of-principle approach described in Chapter 4 where the PET detectors 

are placed in an axial gap in the FCMRI system. The second concept is a docking 

geometry where the FCMRI system is aligned axially with the PET system, 

similar to the geometry of PET-CT. 

3.2.1 Interleaved Field-Cycled MRI – Common Imaging Region 

3.2.1.1 System Description 

A larger-scale FCMRI system with an axial gap was under consideration for 

integration with the Inveon PET system. The proposed geometry is shown in 

Figure 3.1. At 60 kW, the polarizing magnet produces a polarizing magnetic field 

of 0.5 T. Calculations showed that the readout-field inhomogeneity after 

mechanical shimming was expected to be less than 100 ppm over a 10 cm 

diameter sphere.  Resistive shimming could be used to further reduce the 

inhomogeneity to better than 10 ppm. 



 

 

 

 

62 

 

Figure 3.1: Cross-sectional view through a design of a PET/FCMRI system showing 
PET ring (center), polarizing magnet (two inner coils on either side of the PET ring) 
and readout magnet (six outer coils). The inner diameter is 16 cm. 

The proposed system offers increased flexibility in PET-MRI sequences. Figure 

3.2 shows a simple interleaved sequence. This will necessarily result in a reduced 

duty cycle for both modalities compared with simultaneous PET-MRI approaches. 

Alternate sequences could conduct MR while the animal metabolizes the 

radiotracer and then acquire subsequent PET images interleaved with further MRI 

data acquisition. 

PET ring 
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magnet 
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Figure 3.2: A prototypical timing sequence for the interleaved PET-FCMRI system. 
PET data can be acquired while all magnetic fields are switched off. Bp represents the 
strong polarizing magnetic field, Br represents the homogeneous and stable readout 
magnetic field, RF refers to radiofrequency pulses, and G refers to gradient coil 
operation. 

3.2.1.2 Discussion 

The proposed PET-FCMRI approach could have several advantages over other 

PET-MRI approaches but the system integration carries substantial risk. 

One appealing advantage of this approach is that PET data can be acquired in a 

quasi-simultaneous manner with MRI data. This would enable the possibility to 

perform MR-based motion correction of the PET images for changes that occur on 

time scales longer than tens of seconds. Another significant benefit is that the PET 

and MRI imaging regions occupy the same location. There would be no need to 

move the animal between modalities. The transformation required to coregister 
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PET and MR image data would be straightforward to characterize and would be 

the same for every scan. 

Like other methods proposed in this chapter, this approach uses the commercially 

available Inveon system offering state-of-the-art timing resolution, energy 

resolution, and highly optimized event processing hardware. While FCMRI is less 

mature than conventional MRI, it is likely more critical to achieve the best 

possible PET resolution rather than maximize MR image quality. FCMRI image 

quality is more than sufficient for the anatomical detail required for image 

coregistration. Furthermore, FCMRI has several advantages over conventional 

MRI: the ability to vary the amplitude and duration of the polarizing field offers 

novel T1 dispersion contrast possibilities; substantially reduced susceptibility 

artifacts enable imaging around metallic devices; lower required RF power 

drastically reduces the specific absorption rate; gradient operation only in the 

readout magnetic field renders the system virtually silent. 

The primary drawback of this approach is that the detector ring of the PET system 

would need to be removed from its standard housing and placed in the axial gap of 

the FCMRI system. One problematic engineering challenge is to implement a 

temperature control system for the detector ring because the lutetium orthosilicate 

(LSO) based scintillator is sensitive to temperature and experiences a change in 

light yield of -0.2%/ºC [4]. 

Another disadvantage is that the hybrid system would no longer benefit from the 

attenuation correction technique implemented on the original PET scanner. For 

attenuation correction, the Siemens Inveon includes two rotating Co-57 point 
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sources that are used in combination with bed motion to produce CT-like 

transmission data. While attenuation correction is less important in small animal 

imaging when compared with human imaging, it remains a necessary correction in 

order to measure quantitative tracer uptake values in small animals. Thus, a 

different system of attenuation correction would need to be implemented, such as 

an MR-based approach or rotating an external rod source around the animal and 

holder. These additional steps add complexity and an extra step in software to the 

PET imaging protocols and would substantially reduce the ease of use. 

3.2.2 Sequential Imaging with PET Docked to FCMRI 

3.2.2.1 System Description 

Here we describe designs for a larger-scale FCMRI system for docking with the 

Inveon PET system. The FCMRI system would be a standalone scanner, which 

could achieve greater field strength and better homogeneity when compared with 

the design described in the previous section. The proposed geometry is shown in 

Figure 3.3. At 60-kW-continuous operation (180 A and 330 V), the main magnet 

would produce 0.7 T, and would be rough-shimmed to ~250 ppm homogeneity 

over a 10-cm-diameter sphere. First- and second-order resistive shims would be 

used to further reduce the inhomogeneity to better than 10 ppm. The main magnet 

wire would have 7x7 mm cross-section with a 5-mm-diameter liquid cooling 

channel. With 7 parallel cooling channels for each magnet half, the temperature 

rise under full load could be brought below 20ºC with commercially available 

chillers. With gradients and shims, the bore diameter would be 15.9 cm. The 

length, diameter and mass of the system would be 72.5 cm, 61 cm and approx. 

900 kg, respectively. The resistance and inductance would be 1.85 Ω and 0.81 H. 
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Figure 3.3: Cross-sectional view through the design of the FCMRI system. Shown 
(starting from center): 10-cm-diameter imaging volume, birdcage RF coil, RF shield, 
gradient set, second-order shims, main magnet. Liquid cooling inlet manifold shown 
on ends. 

The proposed docking geometry is shown in Figure 3.4. The system is best suited 

for sequential PET-MRI sequences. This FCMRI system is designed so that it can 

be operated in continuous mode with 100% duty cycle for conventional MR 

sequences, but it can also be operated with dynamic field and prepolarization. The 

spacing of the two systems can be adjusted to account for support structures, and 

one proposed support structure is shown in Figure 3.5. 

main magnet 
shim coils 

gradient coils 

RF coil 
and 

shield 



 

 

 

 

67 

 

Figure 3.4: Docking geometry of the combined PET and field-cycled MRI system. 
An extendible bed (not shown) would move the subject between PET and MR 
imaging regions using the built in bed motion control system of the PET scanner. No 
modifications to the PET system would be necessary; however, a different bed would 
need to be constructed. 

 

Figure 3.5: Geometry of the PET-FCMRI docked system showing support structures. 
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3.2.2.2 Discussion 

Like the previous approach, using field-cycled MRI enables several unique MR 

imaging capabilities; however, in this proposed arrangement, the Siemens Inveon 

PET would remain intact and retain the full functionality of the attenuation 

correction and detector temperature control systems. 

The design and construction of a FCMRI system without a gap would present 

somewhat less of an engineering challenge than building such a system with an 

axial gap because gradient coils could be designed on a simple cylindrical 

geometry. 

While this approach has far fewer risks than the split FCMRI approach described 

in the previous section, there are several disadvantages from the perspective of 

system integration. For this approach, the PET and MR imaging regions are 

physically separate and the subject must be moved between the two regions by 

some movable bed mechanism. Interleaved imaging on time scales of about one 

minute is still conceivable, but this would require a bed motion control system that 

can move the animal between imaging regions rapidly and without human 

interaction. If the bed motion control system built into the Siemens Inveon were to 

be used for this purpose, it would be necessary to make modifications to the PET 

acquisition software. This automatic motion would only be possible if the FCMRI 

imaging region were unfeasibly close to the PET imaging region. For the 

geometry proposed here, the built in system can supply fine motion control, but 

the animal bed would need to be manually extended to reach the MR imaging 

region. Automatic motion between modalities could be achieved by placing the 

bed on a track controlled independently from the built in motion system, but this 
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is undesirable because the transmission scanning protocols rely on precise bed 

movements controlled by the scanner. Therefore, this docking PET-MRI approach 

is best suited for sequential imaging protocols. For a bed that moves linearly 

between the two imaging regions, the accuracy of PET-MRI image coregistration 

would be less than the case for a common imaging region arrangement, but it 

would be at least as good as arrangements where the bed is detached from one 

scanner and physically moved to the other scanner. 

3.3 Combining the Inveon PET with Conventional 
Superconducting MRI Systems 

Unlike field-cycled MRI where the all magnetic fields can be turned off in a short 

period of time, conventional superconducting MRI scanners have a strong main 

magnetic field that is always on. The so-called ‘fringe-field’ in the vicinity of a 

conventional MRI scanner is orders of magnitude weaker than the main magnetic 

field inside the scanner bore, but can still be strong enough to affect the operation 

of PET detectors. If the Siemens Inveon PET is to be used in the same room as a 

conventional MRI system, the magnetic field in the PET detector ring should be 

under 1 mT in the axial direction (see Chapter 2). To achieve this, the PET system 

can be placed sufficiently far from the MRI scanner that the fringe field at the 

detector ring is under 1 mT. For arrangements where the systems are closer 

together, the detectors must be shielded magnetically to bring the field at the 

detectors below 1 mT. The detectors can be shielded passively with permanent 

magnets and mu-metal casing, an approach taken in some human scale PET-MRI 

systems [5,6]; however, this would require extensive hardware modification of the 

Siemens Inveon PET and the use of permanent magnets would preclude moving 
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the scanner to a different location without removing the magnets. An alternative 

approach to shielding that avoids modifications to the PET system is to use an 

external electromagnet to null the fringe magnetic field at the position of the PET 

detectors. In this section, I analyse two arrangements for a PET-MRI facility 

based on the Siemens Inveon PET and a conventional superconducting MRI: 

using an actively powered electromagnetic shielding coil and separating the 

scanners within the room. 

3.3.1 Dynamically-Controlled Electromagnetic Shielding of the 
PET Scanner 

In this section, I describe an approach to PET-MRI in which a resistive 

electromagnet shield coil is used to null the field at the PMTs of the Siemens 

Inveon PET system in the vicinity of a superconducting MRI system. 

3.3.1.1 System Description 

The proposal described here is based on a Magnex 2.0 T 310-mm-bore MRI, 

although the method of designing the shield coil is general and can be applied to 

any MRI system. Our laboratory had recently come into possession of this 

particular MRI system and I studied it for this application. For ease of 

construction, the coil geometries investigated were single cylinders of various 

lengths, radii and axial positions. During exposure to magnetic fields, the 

Hammammatsu R8900 PMTs in the Siemens Inveon suffer changes in gain and 

efficiency. As long as the spatial field profile does not change with time, the PET 

system can be calibrated to account for the small changes in gain and efficiency 

that result from weak magnetic fields with negligible affect on performance. 

Based on the results from Chapter 2 and the findings reported by Kawasaki, et al. 
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[7], the goal was to reduce the magnetic field at the PET detector ring to 

significantly below 0.3 mT (radial, xy) and 1.0 mT (axial, z).  

The targeted shield coil was designed using the boundary element method 

implemented by Harris, C.T., et al. [8] with data for the MRI fringe field obtained 

from the manufacturer by a personal communication. A cylindrical ring of null-

field targets extended 15 cm axially along the length of the 12-cm-long four-PMT 

module (1.5 cm buffer on either end) and extended from a radius of 8 cm (the face 

of the scintillator) to 14 cm (1 cm beyond the PMT). The distance between the 

centre of the MRI system and the PET system was chosen to be 1.7 m. While 

larger separations would reduce power requirements, the range of bed motion 

must be short enough for cables and supply lines to remain connected between 

PET and MRI scans. Field profiles and power requirements were analysed for a 

range of coil radii and lengths at various positions between the PET and MRI 

scanners. From among the approximately 100 candidate coils investigated, one 

design having low power requirements and good shielding was selected. The 

geometry of the proposed arrangement is shown in Figure 3.6. 
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Figure 3.6: Geometry of the PET-MRI concept with active electromagnetic 
shielding. Shield coil windings are shown without the coil support structure. 

The candidate shielding coil has radius 75 cm and length 60 cm and its front end 

is located 90 cm from the centre of the MRI system. The coil consists of a single 

layer of 34 variable-separation turns with a 10.7-mm minimum wire separation. 

The hollow wire to be used has 10x10-mm cross-section with a 5-mm-diameter 

liquid cooling channel. The characteristics of the shield coil are summarized in 

Table 3.1. 
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Table 3.1: Electromagnetic and physical characteristics of the candidate shield coil. 

The proposed design successfully reduces the maximum magnetic field at the 

location of the detector PMTs from approximately 8 mT to better than 0.1 mT 

with the shield coil energized, lower than the required 1 mT limit. A plot of 

magnetic field as a function of distance for the cases with and without shielding is 

shown in Figure 3.7 and field maps showing the field in the detector before and 

after are shown in Figure 3.8. One suggested room layout based on room F5-122 

in St. Joseph’s Hospital in London, Ontario is proposed in Figure 3.9. This 

particular room has more floor space than is necessary for this approach.  

Characteristic  

Inductance 2.1 mH 
Resistance 34 mΩ 

Efficiency (average over null region) 0.016 mT/A 
5 Gauss line (minimum radius) 2.2 m 

Net force on coil (z-axis) 720 N 
Mass (copper / total) 120 / 200 kg 

Wire length 160 m 
Current (DC) 460 A 

Power 7300 W 
Parallel cooling channels 4 

Cooling water flow at 3.5 atm 130 cc/s 
Temperature rise 14 ºC 
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Figure 3.7: Plot of magnetic field magnitude as a function of distance from the centre 
of the MRI scanner at a radial distance r = 10 cm (the radial distance of the PMTs in 
the PET detector ring). The magnetic field magnitude at the PET detectors is reduced 
by two orders of magnitude when the shield coil is energized. The PET system can be 
moved up to 10 cm closer to the shield coil and any distance farther and still 
experience a magnetic field below the target threshold. 
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Figure 3.8: Magnetic field magnitude map in the vicinity of the PET detectors 
without shielding (top) and with shielding (bottom). Field data for the 2 T MRI was 
obtained from the manufacturer and field data for the coil was from a Biot-Savart 
Law model implemented in MATLAB which does not include the susceptibility of 
the PET detectors. Note that the colourmaps have different scales. The origin of the 
coordinate system is the MRI isocentre. The dashed line shows the location of the 
four PMTs that make up one module. To account for positioning error, the shield coil 
was designed to null the field over the entire region shown. The maximum magnitude 
field in the detectors was 8.2 mT without shielding and 0.08 mT with shielding. The 
jaggedness of the contour lines are due to coarse sampling. 
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Figure 3.9: Proposed floor plan for the actively shielded PET system in the same 
room as the 2.0 T MRI system. The MRI scanner is represented by the box in the 
centre of the room. The shield coil (coil dimensions not to scale) is positioned 
between the Siemens Inveon PET and the MRI scanner. The 5 gauss line (0.5 mT 
line) is shown. In this arrangement, the PET system can be operated only when the 
shield coil is energized. 

3.3.1.2 Discussion 

The design study and simulations have shown that an actively controlled 

electromagnetic shield coil can be used to reduce the magnetic field in the close 

vicinity of a superconducting MRI system sufficiently to allow the normal 

operation of a Siemens Inveon PET. The shield would be energized during PET 

imaging and would be turned off during MRI acquisitions. Unlike most high-field 
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small animal MRI systems commercially available, the particular MRI scanner 

used in this study had no self-shielding and its fringe field is generally stronger 

than would be the case with a more modern scanner, even at much higher main 

field strengths. Despite this added difficulty, the power requirements for the coil 

are essentially equivalent to those of present-day insert gradient coil systems and 

would be acceptable for this application.  

The primary challenge in the operation of this system is certainly expected to be 

interaction between the shield and the superconducting magnet. Additional flux 

from the shield coil in the MRI system may affect the stability of the main 

magnetic field. The allowed distance between the PET and MRI systems directly 

affects the shield requirements and further trade-offs are possible. It would also be 

possible to add a term in the algorithm cost-function that represents coupling 

between the shield and magnet. The result would be increased power deposition in 

the shield. 

Several negative aspects of this approach include the added requirement for a 

separate power supply and chilled water source for the shielding electromagnet 

and the construction of the magnet itself. These aspects add to the cost and 

complexity of combining the Siemens Inveon in the same room as an MRI 

scanner. The main benefit is reducing the floor space requirements for the PET-

MRI facility. When compared with simply separating the PET and MRI systems 

physically in the same room, this approach is worth considering primarily for 

facilities where only a small physical space is available for the PET-MRI imaging 

suite.  
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3.3.2 Separating the PET and MRI Scanners in the Same Room 

For imaging suites with more physical space, it may be practical to arrange the 

PET and MRI systems so that the fringe magnetic field experienced by the PET 

detectors is weak enough that it does not affect PET performance. For the Siemens 

Inveon PET, the fringe field should be weaker than 1 mT (10 gauss). 

3.3.2.1 System Description 

There is no standard room size or facility arrangement for small animal MRI 

installations. In this section, I describe two options for the floor plan of a PET-

MRI facility using the 2.0 T unshielded MRI scanner in St. Joseph’s Hospital 

(London, Ontario) Room F5-122 based on fringe field data from the manufacturer. 

I also propose arrangements for installing the Siemens Inveon PET in a typical 

high-field 9.4 T shielded MRI facility. The model for the 9.4 T suite was the 

CFMM facility at Robarts Research Institute (London, Ontario) Rooms 130-133. 

For the laboratory at St. Joseph’s Hospital, one arrangement where the PET and 

MRI systems are oriented along a common axis is proposed in Figure 3.10. The 

field profile, shown in Figure 3.11, demonstrates that for the maximum centre-to-

centre separation of 5.2 m, the field is below 0.3 mT. For a fringe field magnitude 

of 1 mT, the systems can be brought closer together to a separation of 3.5 m. 
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Figure 3.10: Proposed floor plan for the PET system in the same room as the 2.0 T 
MRI system. The MRI scanner, represented by the box, is positioned as far as the 
room size allows from the PET system. The 5 gauss line (0.5 mT line) is shown. 
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Figure 3.11: Simulated magnetic field magnitude as a function of distance for the 
PET-MRI arrangement shown in Figure 3.10. For this geometry, the magnetic field 
direction is primarily in the axial direction with respect to the PET system. 

A side-to-side arrangement is also possible given the floor layout in the laboratory 

at St. Joseph’s Hospital. The floor plan is shown in Figure 3.12 and a photograph 

of the proposed arrangement is shown in Figure 3.13. The field profile is shown as 

a function of radial distance in Figure 3.14. While the magnetic field would vary 

slightly across the PET detector ring in this geometry, the magnitude of the fringe 

field is, in general, weaker in the radial direction and the PET system can be 

placed closer to the MRI system than would be the case if the scanners were 

aligned in a collinear manner. At the maximum separation allowed by the size of 

the room (approximately 5 m centre-to-centre), the field would be approximately 
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0.2 mT in the PET detector ring. For a 1mT field at the PET detectors, the systems 

can be brought to approximately 2.9 m centre-to-centre. 

 

Figure 3.12: Alternative side-by-side floor plan for the PET system in the same room 
as the 2.0 T MRI system. The MRI scanner, represented by the box, is oriented 
parallel to the PET scanner separated by a certain radial distance. The 5 gauss line 
(0.5 mT line) is shown. 
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Figure 3.13: Photographs of the PET-MRI scanning room showing the room 
geometry. The PET and MRI systems are placed on opposite sides of the room. 
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Figure 3.14: Simulated magnetic field magnitude as a function of radial distance for 
the side-by-side PET-MRI arrangement shown in Figure 3.12. Similar to the axial 
collinear geometry, the magnetic field direction is also primarily in the axial direction 
with respect to the PET system; however, the magnitude of the field varies across the 
PET detector ring. For comparison, the grey dashed lines show the (axial) distances 
of the 0.3 mT and 1 mT field lines and the difference is shown by the arrow. 

For the high-field small animal MRI scanner, it was also possible to find locations 

within the facility for the Siemens Inveon PET where the fringe field is weaker 

than 1 mT (10 gauss). One option where the PET system is placed in a nearby 

room is shown in Figure 3.15 and another option where the PET system is inside 

the MRI room is shown in Figure 3.16. 
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Figure 3.15: Proposed floor plan of a PET-MRI facility in a typical 9.4 T MRI suite 
with the PET system located in a separate area but part of the same imaging suite. 
The magnetic field experienced by the PET system is negligible in this location. 
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Figure 3.16: Alternative floor plan for a PET-MRI facility in a typical 9.4 T MRI 
suite with the PET system in the same room as the MRI system. At this location, the 
PET detectors would experience a magnetic field of approximately 0.1 mT. 

3.3.2.2 Discussion 

The fringe field map surrounding superconducting MRI systems at two facilities 

indicated that there were locations having field magnitude below 1 mT. This 

shows that external magnetic fields would not preclude installing the Siemens 

Inveon PET in the same room as a superconducting MRI for the imaging 
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laboratory layouts studied. To prevent RF interference from the PET system, an 

RF bottle should be used with the MRI scanner.  

Like the other approaches discussed in this chapter, for this arrangement, precise 

PET and MRI image co-registration can be achieved by using a common animal 

bed for both modalities that can be moved reproducibly to the exact same position 

within each modality. All hoses should connect at the rear so that the bed can be 

removed and transported without disconnecting heating or anaesthetic lines. These 

lines should connect to anaesthetic and heating equipment on a mobile cart that 

can be moved between scanners. To make use of the precise position control 

required for transmission scans, the bottom of the bed should clamp onto the 

motion control mechanism of the PET system. The bed should also slide into an 

RF coil inside the MRI bore where a set of stoppers would ensure precise and 

reproducible axial positioning. PET and MR images could then be co-registered in 

software using a pre-set rigid-body transformation. Following animal preparation, 

the typical scanning workflow would be to acquire MR images, remove the bed, 

carry it over to the PET system, perform a transmission scan for attenuation 

correction, inject radioisotope and finally acquire PET data. 

When moving the PET system into place, it would be advisable to tether the 

scanner to a wall to reduce the risk of strong forces causing projectile motion. The 

PET system should also be chained or bolted securely to the wall or floor once it 

is in its permanent position to prevent anyone from moving the scanner 

accidentally. In concern for MR safety, some sort of physical barrier separating 

the two systems with a gate is recommended where possible. The barrier would 

act as a reminder of the magnetic field danger for individuals working around the 
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PET scanner and would reduce the risk of accidentally bringing non-MR-

compatible tools or equipment close to the MR system. Such a barrier would be 

practical in the proposed arrangement at St. Joseph’s Hospital, where there may be 

a large fraction of the room that is outside the 5 gauss line that can be accessed 

from the main room entrance. 

When compared with the other techniques described in this chapter, the appeal of 

this approach lies in its simplicity, its low cost, its lack of major additional 

hardware, and requiring no software or hardware modifications to PET or MRI 

systems other than a multimodality animal bed. This method would be the easiest 

to implement at other institutions, provided the MRI facility has a large enough 

space that the PET system can be placed in a location with low field. The context 

of the approach described here was high-field superconducting MRI scanners; 

however, several vendors are now offering small animal MRI systems based on 

permanent magnets or low-field superconducting magnets having very weak 

fringe field profiles. For such MRI systems, the Siemens Inveon PET could be 

placed immediately adjacent to the MRI scanner [9]. 
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Chapter 4  

4 First Image from a Combined PET and Field-cycled 
MRI System1 

In this demonstration, two PMT-based PET detectors were integrated with a field-

cycled MRI system by placing them into an axial gap. The first multimodality 

images from the combined PET and field-cycled MRI system demonstrate the 

potential of this approach to combining PET and MRI. 

4.1 Introduction 

Modalities such as MRI and CT yield excellent contrast and resolution for 

visualizing anatomy, while positron emission tomography (PET) gives localized 

information about biochemical processes. There is significant interest in 

combining anatomical and functional information [1]. 

There are three ways to acquire multimodality images: One can do this with 

physically separate systems and combine the information using image registration 

techniques after the fact. Another way is to integrate two systems sharing a 

common bore axis with a bed that moves between the two fields of view for 

sequential imaging (for example, PET/CT, which is now widespread [1]). Finally, 

one can do this in a fully integrated manner where the imaging regions of the two 

                                                

 
1
 A version of this chapter has been published: First image from a combined positron emission 

tomography and field-cycled MRI system. Bindseil GA, Gilbert KM, Scholl TJ, Handler WB, Chronik 
BA. Magn Reson Med. 2011 Jul;66(1):301-5. 
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systems coincide, acquiring data either completely simultaneously or in an 

interleaved fashion. 

Of these three ways, the fully integrated approach is preferable because it would 

allow motion correction for the functional data [2] and would enable the user to 

track dynamic processes using both modalities [3]. Motion correction is 

significantly limited with sequential imaging sequences such as those used in 

PET/CT studies. Completely simultaneous imaging is important for studying 

physiological processes that occur quickly relative to the speed of the imaging 

method.  Interleaved imaging is acceptable when the processes are relatively slow, 

and can generally provide motion correction when the movement or deformation 

occurs. Another unique advantage of simultaneous imaging is the ability to study 

processes that are not repeatable, such as those involving learning [4]. 

Unlike PET/CT, combining PET with MRI allows completely simultaneous or 

interleaved multimodality imaging. Other important advantages of PET/MRI over 

PET/CT include reduced total radiation dose and superior soft tissue contrast [5]. 

For small-animal imaging, the reduction in radiation dose can be substantial, thus 

enabling serial and longitudinal studies [6]. Improved soft tissue contrast is 

significant since PET studies typically involve functional analysis of soft tissue. 

While PET/MRI offers numerous benefits, a serious technical challenge to 

combining the two modalities exists: Conventional PET detectors based on 

photomultiplier tubes (PMTs) cannot operate in the environment of the strong 

magnetic fields of an MR scanner. As a result, PET/MRI is currently an area of 
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active research and development and only a limited number of prototypes exist 

[4,7,8]. 

Simultaneous PET/MRI would require specialized PET detectors that are 

compatible with conventional static-field MRI systems. One such approach 

employs optical fibres to relay scintillation light from crystals inside the scanner 

to PMTs located in the fringe field [9-12]. A similar method uses an actively 

shielded split superconducting magnet with optical fibers guiding scintillation 

light out radially to a ring of PMTs in the fringe field [13]. These approaches 

generally preserve MRI performance; however, PET detection efficiency is 

reduced due to a loss of scintillation light from the limited coupling to the optical 

fibres. Another promising approach for simultaneous PET/MRI uses 

semiconductor-based detectors, such as avalanche photodiodes or silicon 

photomultipliers, which are unaffected by magnetic fields [3,14-16]. In principle, 

PET systems based on semiconductor-based detectors can achieve similar 

performance to PMT-based systems; however, semiconductor-based systems are 

still in the early stages of development and are not yet widely available. Recent 

approaches to small-animal PET/MRI using semiconductor-based detectors 

inserted into the magnet bore have had low absolute PET sensitivity when 

compared to commercial PMT-based systems due primarily to the limited radial 

space budget which places constraints on the thickness of the scintillation crystal 

[14].  

Interleaved imaging could be accomplished using conventional PMT-based 

detectors if the MR system were itself time-varying, such as with field-cycled 

MRI [17-20] based on resistive electromagnets, where the main magnetic field can 
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be rapidly cycled off in 30 ms. Conventional PMTs can operate normally during 

the times when all magnetic fields are off. This approach would have the 

advantage of using existing, well-characterized PET detector systems. 

One common form of field-cycled MRI, called prepolarized MRI, uses two 

independent magnets. The strong polarizing magnet produces the initial 

magnetization of the sample. Then, standard MR imaging is done in the 

environment of a lower-strength readout field with high spatial and temporal 

uniformity. Field-cycled MRI systems can produce images of comparable quality 

to clinical superconducting systems [20]. In addition to its PET compatibility, 

field-cycled MRI can offer unique benefits over traditional MRI. One such 

advantage is the ability to dynamically vary the magnitude of the main field, 

offering novel T1-dispersion contrast [21]. Other benefits include: significantly 

reduced susceptibility artifacts, the ability to image around metallic implants [22]; 

substantially reduced specific absorption rate (SAR) due to low radiofrequency 

(RF) power requirements; and silent gradient operation resulting from imaging at 

low-field. 

In this note, we report on our work in implementing and demonstrating the first 

PET/MRI system for interleaved operation based on a field-cycled MRI platform. 

We present the first dual-modality image generated on such a system. The 

intention was to demonstrate the feasibility of this approach to combining PET 

and MRI. 
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4.2 Methods 

A field-cycled MRI system with a 9-cm axial gap for the insertion of a group of 

PET detectors near the isocenter of the scanner was used to generate MR images 

[17]. The polarizing and readout magnets were pulsed to fields of 0.3 T and 94 

mT, respectively.  The system had a full set of first- and second-order shim coils 

to compensate for the reduced homogeneity introduced by the gap and the 

susceptibility of the PET detectors. The imaging regions of the PET and field-

cycled MRI systems were coincident, permitting both PET and MR data to be 

acquired without movement of the subject. The system geometry is shown in 

Figure 4.1. A complete description of the field-cycled MRI system and its 

operation appears in reference [17]. All imaging was performed with an 8.3-cm-

diameter low-pass birdcage RF coil driven in quadrature and tuned at 4.0 MHz. 

The field-cycled MRI system was interfaced to a Varian Unity Inova console for 

image acquisition. 

 

Figure 4.1: Schematic of PET detectors in field-cycled MRI system. The two PET 
detectors are located in the axial gap. All dimensions shown in centimeters. 
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The PET system consisted of two blocks of detectors connected through an RF-

shielded feed-through panel to a CAEN coincidence detection system (Viareggio, 

Italy) located outside the RF shed. Each PET detector block, obtained from a 

decommissioned Siemens-CTI ECAT 951 clinical system, consisted of four PMTs 

optically coupled to a block of bismuth germanate scintillator and housed within a 

mu-metal enclosure. The scintillation crystal was cut into an array of 8x8 fingers, 

each having a pitch approximately 6.2 x 5.6 x 30 mm3 along the axial-, azimuthal- 

and radial-directions, respectively, when defined with respect to the centre of the 

field of view (FOV).  In conventional fashion, each crystal finger in the array is 

cut to various depths so that scintillation light is shared among the four PMTs in a 

way that permits the identification of the position of gamma ray interactions post-

acquisition by Anger logic [23]. Signals from each PMT were amplified by a 

custom pre-amplifier and output to an acquisition system that recorded energy and 

timing information of coincidences. The efficiencies of the 64 crystal fingers in 

each detector were normalized by analyzing flood data acquired by attaching a 

point source to the opposing detector. The spatial sensitivity of the PET system 

was highest at the isocenter and decreased rapidly with increasing radial distance 

due to the two-detector geometry. 

The feasibility of simultaneously acquiring PET and MR images was tested using 

a PET/MRI phantom. The phantom consisted of a triangular arrangement of 

positron-emitting point sources (Na-22, 2.6-year half-life, 0.11-MBq total activity, 

10-mm separation between sources, 1-mm diameter per source, triangular casing 

with 2.54-cm side-length) embedded in an onion.  The phantom was placed at the 

centre of the FOV of both systems. 
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To acquire all lines of response for the PET data with only two detectors, it was 

necessary to manually rotate the phantom (including the RF coil) in 12 steps of 

15° each and combine the PET data post-acquisition. For consistency across all 

phantom rotation angles, PET and MR data were acquired at each rotation step in 

an interleaved sequence as shown in Figure 4.2. Each interleaving cycle began 

with a polarization and readout interval lasting 1252 ms followed by a PET 

acquisition interval of 950 ms. During MR operation, incoming signals to the PET 

detection hardware were rejected. All magnets were off and no PET data were 

recorded during intervals of 500 ms before and 50 ms after PET acquisition. Thus, 

the repetition time (TR) for the combined PET/MRI sequence was 2752 ms. A 

total of 83 s of PET data were recorded at each rotation angle. The MR image 

from only the first rotation angle was kept. 

 

Figure 4.2: Timing diagram for interleaved sequence of field-cycled MRI and PET. 
Bpol provides the initial polarization, and all MR imaging is done during the readout 
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interval. After a delay of 500 ms, PET data acquisition is started. The sequence 
repeats after a TR of 2752-ms. Relative pulse magnitudes and timing are to scale. 

PET data were filtered using a 300-700 keV energy window and a 50-ns 

coincidence-timing window, yielding approximately 15,000 coincidence 

detections per rotation angle. The sinogram was generated by stitching together 

the data from the different rotation steps.  The geometry of the detector allowed 

for a sinogram of 15 equally-spaced distance bins and a total of 85 angle bins, for 

a single axial slice without rebinning. The sinogram was zero padded to 31 

distance bins. The sinogram was reconstructed using filtered back-projection with 

a ramp filter and without attenuation correction. Two iterations of smoothing by 

linear interpolation using the MATLAB function interp2 were applied to the 

image for ease of viewing. Image results are also shown for nearest neighbour 

interpolation. These interpolation methods increase the number of pixels but do 

not alter the spatial resolution of the PET image.  The PET image was then scaled 

to match the dimensions of the MR image and superimposed. 

4.3 Results 

Figure 4.3 shows the original PET image reconstructed using either linear or 

nearest-neighbour interpolation in the back-projection step. Also shown are the 

images after smoothing by linear interpolation. 
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Figure 4.3: PET image reconstructed using linear interpolation for back-projection in 
the original resolution (a) and after smoothing (b). The same sinogram was 
reconstructed using nearest-neighbor interpolation for back-projection and is shown 
before smoothing (c) and after smoothing (d). Smoothing was performed by applying 
two iterations by linear interpolation as an aid in visualization on account of the 
coarseness of the pixels in the original image. 

Figure 4.4 shows the PET and MR images as well as the superposition of the PET 

and MR images acquired in an interleaved manner on the combined PET and 

field-cycled MRI system. No artifacts are apparent in the PET image and no 

significant ghosting or phase encoding artifacts appear in the MR image. 

Additionally, the solid radioactive sources do not appear to have produced 
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susceptibility artifacts in the MR image; this is due to the low readout field of the 

FCMRI system. 

 

Figure 4.4: Smoothed nearest-neighbor PET image (a) and MR (b) image (not to 
scale). (c) Photograph of the phantom showing radioactive sealed source inside onion. 
The triangular cavity cuts through the entire onion. (d) Superimposition of PET onto 
MR image. The PET image was resized so that the separation between PET peaks 
was 10 mm in MR image space. MR imaging parameters: three-dimensional fast 
spin-echo; bandwidth = 20.03 kHz; FOV = 10 x 10 x 2 cm; echo train length = 8; Navg 
= 6; Imaging matrix = 192 x 128 x 6; TR/TE = 2752 ms/21 ms; Tscan = 32 min; view 
= single transverse slice. Here, TR and Tscan include PET acquisition stages. 
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Layers of the onion are apparent in the MR image. On the reverse side of the 

triangular source, a small section of onion protruded into the interior of the 

triangular hole and is visible in the top left edge of the hole in the MR image. The 

three point sources are readily distinguishable in the PET image. 

4.4 Discussion and Conclusions 

The dimensions of the detectors limit resolution in PET. The crystal arrays in the 

human-scale clinical detectors used in this experiment are coarse compared with 

those typical of modern small-animal PET detectors, resulting in less precise 

position determination. A next-generation combined modality imager based on 

this approach would employ a ring of PET detectors optimized for a smaller FOV 

and a higher resolution.  

A systematic source of noise in the PET image arises when coincidence data are 

reconstructed using only two detectors. In this case, the centre of the FOV is 

oversampled compared with off-axis positions. This effect occurs because the 

number of possible lines of response decreases as the distance from the centre of 

the imaging region increases, resulting in a radial shading in the reconstructed 

image. The spatial sensitivity of the PET image was corrected by appropriately 

weighting parts of the sinogram based on the geometry of the detection scheme. 

This normalization has the effect of amplifying the noise away from the centre of 

the image. The lower right point source in the PET image was closest to the centre 

of the FOV where the sensitivity is twice that of the positions of the other two 

point sources. 
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The presence of mu-metal-encased PET detectors in the gap of the field-cycled 

MRI system reduces the homogeneity of the readout field. However, since all 

imaging takes place at low field, distortions from readout field inhomogeneity are 

small. Nevertheless, removing the mu-metal shielding would improve field 

homogeneity in future experiments. 

The acquisition time for the imaging sequence used in this experiment could be 

improved with a significant reduction of the 500-ms delay that preceded the PET 

acquisition stage. Magnetic field pulsing tests on linear and mesh PMTs have 

shown recovery to normal operation within several milliseconds of the field being 

turned off, with no long-term effects and that PET images produced by the 

detectors used in this experiment show no discernable degradation when the data 

are acquired interleaved with a strong magnetic field compared with a zero-field 

acquisition [24]. 

Although multimodality imaging was done in an interleaved manner, it is also 

possible to acquire PET and MR data in a sequential order as in Figure 4.5. 

Sequential imaging may be appropriate in animal PET studies where radioisotope 

is injected intraperitoneally and significant tumour uptake begins to occur tens of 

minutes after injection [25]. In such a study, MR images could be acquired during 

the initial uptake period after which PET data could be acquired without moving 

the animal from the imaging bed. 
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Figure 4.5: Conceptual timing for (a) sequential and (b) interleaved imaging 
sequences for PET and field-cycled MRI. 

While higher polarizing field strengths would result in improved signal-to-noise, 

power and cooling requirements, which scale as the square of the field, place 

severe limitations on the field of resistive electromagnets. The system described 

here used a 200-V/150-A direct current power supply, which limited the 

polarizing field to 0.3 T at approximately 50% duty cycle. With the use of 

capacitor banks and reduced duty cycle, it may be possible to achieve polarizing 

fields in excess of 1 T. 

The successful generation of the first dual modality PET and field-cycled MRI 

image demonstrates the feasibility of this approach to PET/MRI. Further tests are 

necessary to quantitatively evaluate the performance of this system under a variety 

of conditions.  
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Chapter 5  

5 Validation Tests on a Monte Carlo PET Simulation 
Architecture based on GATE1 

In this chapter, a new implementation of a Monte Carlo PET simulation 

architecture is described. This approach uses the histogramming and image 

reconstruction software of the Siemens Inveon PET to reduce possible 

inconsistencies between experimental and simulation workflows.  To validate the 

architecture, this chapter presents a precise model of the NEMA NU 4-2008 

image quality phantom and source distribution implemented in the Monte Carlo 

package GATE. Using the NEMA image quality measurement protocols, images 

from simulated data were compared with experimental images from the Siemens 

Inveon PET, with all corrections and reconstructions done using the software of 

the scanner. The simulated images showed good agreement with the experimental 

images, displaying matching activity distributions. 

5.1 Introduction 

Positron emission tomography (PET) has become an indispensable modality for 

preclinical studies using small animals. There have been many recent 

developments in the design and characterization of new high-performance small 

animal PET systems employing a variety of geometries and scintillator materials. 

                                                

 
1
 At the time of this thesis publication, a manuscript based on this chapter was in the final stage of 

preparation for submission. 
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As a result, the importance of Monte Carlo simulations for assessing the 

performance of new PET systems has grown. One of the best-supported and 

widely used Monte Carlo frameworks for PET simulation is the GEANT4 

Application for Tomographic Emission (GATE) package, maintained by the 

OpenGATE Collaboration [1]. The underlying GEANT4 Monte Carlo code has 

been validated extensively for fundamental physics interactions. GATE models of 

several commercial human-scale PET systems have been validated experimentally 

[2-4] and small animal PET systems have also been studied [5-8]. Model 

definitions for common PET phantoms for human-scale systems have been 

included with the GATE distribution; however, phantom models for small animal 

systems have not been generally available. 

The National Electrical Manufacturers Association (NEMA) has published a set of 

phantom designs (NU 4-2008) for measuring the performance of small animal 

PET scanners [9]. Bahri, et al. [10] were among the first to make an extensive 

study with the NEMA NU 4-2008 image quality phantom. These phantoms and 

their associated scanning procedures are now considered to be the standard for the 

measurement of small animal PET system performance [11-15]. The geometries 

of most of the NEMA NU 4-2008 phantoms are simple and can be implemented 

easily in GATE. These include mouse-, rat- and monkey-sized scatter phantoms as 

well as a point source phantom. The exception is the NEMA small animal image 

quality phantom, which consists of an intricate arrangement of both hot 

(activity—containing) and cold (activity void) regions. This phantom is designed 

to measure uniformity, recovery coefficient and the accuracy of attenuation and 

scatter corrections. 
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To address the need for useful and accurate phantom models the authors have 

implemented a detailed definition of the NEMA image quality phantom in GATE 

and validated the simulated phantom with experimental data. The purpose of this 

paper is to describe the approach of integrating simulated PET data into 

experimental workflows and also to make the NEMA image quality phantom 

widely available to GATE users modelling small animal PET systems. The codes 

for the other NEMA NU 4-2008 phantoms are also provided in the appendices for 

convenience, but detailed results are not provided for them. 

5.2 Materials & Methods 

5.2.1 Description of the NEMA NU 4-2008 Image Quality Phantom 

The NEMA NU 4-2008 image quality phantom consists of a poly(methyl 

methacrylate) (PMMA) cylinder with an internal diameter of 30 mm and length 50 

mm containing three main structural regions. The first is a group of five fillable 

rods of diameters incremented from 1 mm to 5 mm containing water with activity. 

The rods are directly connected to a large cylindrical chamber. Within this 

chamber at the end opposite the rods are two smaller chambers: one containing 

water with no activity and the other containing air. Nylon screws and rubber 

gaskets seal the openings on either end of the phantom. A scale drawing of the 

NEMA image quality phantom is shown in Figure 5.1. 
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Figure 5.1: Scale drawing of the NEMA NU-2008 image quality phantom. Nylon 
screws are shown in dark grey and PMMA is shown in light grey. The main body of 
the phantom is filled with activity-containing water. The two smaller chambers at the 
top of the phantom contain non-radioactive water (left) and air (right). Six small 
nylon screws on the lower face of the phantom and several rubber gaskets are 
included in the model, but not shown in this drawing. 

The elemental compositions of materials are defined in GATE using either mass 

fractions or element ratios in a materials definition file. The definitions used for 

the phantom construction materials are summarized in Table 5.1. 

10 mm 
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Table 5.1: Material definitions for NEMA NU 4-2008 image quality phantom. 

The NEMA specification calls for a total activity of 3.7 MBq (± 5%) 18F in the 

water-filled hot regions at the beginning of data acquisition. The GATE macro 

files containing the geometric definition of this phantom and the source 

distribution are described in the Appendix. 

It should be noted that the physical phantom used for the experiment differed 

slightly from the NEMA design and had the rods at a slightly different orientation 

(rotated slightly). In the simulation, the geometry of the phantom was chosen to 

match the physical phantom. This rotation is not expected to affect the results. The 

GATE macro files provided are for the phantom as specified in the NEMA 

standard, matching the orientation shown in Figure 5.1. 

Material Density (g/cm3) 
Elemental Composition 
(mass fraction) 

PMMAa 1.19 Hydrogen (0.080538) 
Carbon (0.599858) 
Oxygen (0.319614) 

Nylon 1.14 Hydrogen (0.097976) 
Carbon (0.636856) 
Nitrogen (0.123779) 
Oxygen (0.141389) 

Rubber (Buna-N) 0.99 Hydrogen (n = 9) 
Carbon (n = 7) 
Nitrogen (n = 1) 

aPMMA is included as ‘plexiglass’ in the default GATE materials definition file. 
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5.2.2 Monte Carlo Simulation Architecture 

A GATE PET emission simulation was conducted with the image quality phantom 

using a model of the Siemens Inveon PET system (Siemens Medical Solutions, 

Knoxville, TN). The author developed software to convert coincidence data from 

the Monte Carlo simulation to the list mode format of the commercial scanner. 

Then, all sinogram generation and reconstruction of simulated data were 

performed on the software used to process list mode data from the real scanner 

(Inveon Acquisition Workplace 1.5). The benefit of having a common processing 

path for experimental and simulated data is that it allows images to be compared 

directly without the concern of having different data correction and reconstruction 

algorithms. 

The PET system model was obtained from Konik, et al. [7] and was modified by 

rotating the detector ring 11.25 degrees to align the detector blocks with their 

positions on the physical scanner. The detector comprises four 16-block rings, 

each detector block containing a 20 × 20 array of 1.5 mm × 1.5 mm × 10 mm 

lutetium orthosilicate (LSO) scintillator crystals attached to a position sensitive 

photomultiplier tube (see Figure 1.1). Only the scintillator crystal arrays were 

simulated. Light transport and shielding around the scintillator arrays were not 

modelled. As a consequence, the simulated system is expected to have greater 

sensitivity than the real scanner because these sources of loss are not included in 

the simulation. Furthermore, the lack of shielding at the ends of the detector could 

have an impact on the scatter fraction in the simulation; however, these effects 

would be minor because there was no simulated activity outside the axial field of 

view. The intrinsic radioactivity of LSO from 176Lu was not simulated because the 
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comparatively high source activity and narrow energy window make any effects 

negligible [16].  

A 3-mm-thick semi-circular pallet matching the dimensions of the carbon-fibre-

reinforced polymer pallet included with the actual scanner was included in the 

model. The actual material composition and density of the physical pallet were 

unknown, so estimates were obtained from suppliers. In the simulation, a density 

of 1.58 g/cm3 was assumed and the mass fractions were as follows: carbon 

(0.845), hydrogen (0.043) and oxygen (0.112). 

The digitizer parameters in the simulation were chosen to match experimental 

values. The energy and coincidence timing windows were set to 350-650 keV and 

3.43 ns, respectively. The coincidence sorter was set to the policy 

takeWinnerOfGoods for cases with three or more detections within the 

coincidence timing window. This policy records the two highest-energy detections 

that would form a valid line of response. Energy blurring was set to 14.6%, 

consistent with values measured experimentally [11]. 

From the simulation, it was possible to distinguish coincidences arising from 

different positron decays (random coincidences) from those arising from a single 

positron decay. These random coincidences were inserted twice into the listmode 

data stream: once as a normal coincidence event packet, and a second time as a 

random coincidence event packet. In this way, the simulated random events match 

the characteristics of the way random coincidences are treated by the PET system 

during an actual acquisition. 
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Radioactivity was modelled as 18F in water. Positron decay was simulated using 

the positron energy spectrum of 18F, which is built into GATE. The total activity 

was 3.7 MBq distributed uniformly throughout the hot regions. 

The following physics models were enabled in the GATE simulation: positron 

annihilation, photoelectric effect (standard model), Compton scattering (standard 

model), Rayleigh scattering (Penelope model), electron ionization (standard 

model), bremsstrahlung radiation (standard model), and multiple scattering for 

electrons and positrons. The models included interaction cross-sections for each of 

these effects. The MersenneTwister random number engine was selected in the 

GATE parameters. 

The simulation was run on a Mac Pro (Apple, Cupertino, CA) with 2 × 2.26 GHz 

Quad-Core Intel Xeon CPUs and 16 GB RAM. GATE version 6.1 [17] and ROOT 

version 5.3 were used. The total simulated time was 20 minutes and coincidence 

event output data from the emission simulation were recorded in the ROOT file 

format. To reduce computation time, the time course of the simulation was split 

into 80 parts evenly distributed in time with 8 simultaneous processes running at a 

given time. Each simulation had a different random number engine seed. The total 

computation time was 49 hours. 

5.2.3 Simulated Data Processing Chain 

Coincidence data from the ROOT files were processed with in-house software to 

form a single list mode file in the format used by the Siemens Inveon PET, 

including prompt and delayed coincidences as well as time marks. 



 

 

 

 

115 

Normalization calibration data were generated with a GATE emission simulation 

of a homogenous cylinder source (diameter: 6 cm, length: 12.7 cm, activity: 1 

MBq) and stored in the ROOT file format. The physical properties and material 

composition of the cylinder were obtained from the manufacturer of the 

normalization phantom used in the experiment. These properties are described 

further in Chapter 6. Ge-68 is used in the physical calibration cylinder source; 

however, to reduce simulation time, the simulated source was modelled as a 

generator of back-to-back gamma rays in the region of activity. The activity was 

chosen to be lower than the typical value (~107 decays per second) to shorten 

simulation time by reducing random events. This is not expected to have a 

significant impact on the normalization. Approximately 3.0 × 109 prompts were 

simulated for the normalization data. A list mode format file was generated from 

the ROOT files and the normalization correction sinogram was produced with the 

commercial software using the component-based algorithm. Scattered events were 

included in the normalization data. 

The authors extended the GATE package by adding a custom actor class to 

produce an attenuation correction sinogram in the format used by the Siemens 

PET reconstruction software. Chapter 6 contains a detailed explanation of this 

new approach. This method produces an ideal noiseless attenuation correction 

sinogram. On the scanner, attenuation correction sinograms are generated using a 
57Co transmission source and this introduces an additional source of noise in the 

experimental images, which is not present in simulated images. 

The simulated and experimental data reconstruction pipeline is shown 

schematically in Figure 5.2. The benefit of this approach is that the data 
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processing chain for experimental and simulated data is identical for many steps 

of the workflow. 

 

Figure 5.2: Schematic showing the workflow of experimental and simulated data 
reconstruction and corrections. In the simulation, the attenuation correction sinogram 
is computed directly from the lines of response through the phantom materials. In 
contrast, on the physical scanner, to compute the attenuation correction sinogram 
requires a blank transmission scan in addition to the transmission data with the 
phantom present. 

5.2.4 Experimental PET Acquisition 

A NEMA image quality phantom was filled with water containing 18F-

fluorodeoxyglucose (18F-FDG) with activity 3.7 ± 0.1 MBq at the start of 

scanning, measured with a gamma counter. The phantom was positioned in the 

centre of the field of view on a carbon fibre pallet. A 20-minute emission 
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acquisition was performed on a Siemens Inveon Dedicated PET installed in our 

lab with the same parameters as the simulation. The phantom was then kept in the 

same position while the activity was allowed to decay to less than 1% of the 

original value (10 half-lives). Then, a 30-minute transmission scan was performed 

using the two built in 57Co rotating sources to generate an attenuation correction 

sinogram. 

5.2.5 Image Reconstruction and Analysis 

Images for both simulated and experimental data were reconstructed using Inveon 

Acquisition Workplace 1.5 using the OSEM2D algorithm with 16 subsets and 4 

iterations. For both images, the following corrections were applied: decay, scatter, 

arc, deadtime, component-based normalization, and attenuation correction. 

The images were analysed to assess uniformity, recovery coefficients and the 

accuracy of corrections according to the protocols in the NEMA standard. All 

analysis was performed with MATLAB (The MathWorks Inc.). Due to the higher 

expected count rate for the simulation, the reconstructed activity of the simulation 

was scaled down by a factor of 0.841 such that the mean activity of the large 

uniform region matched that of the experimental image. The NEMA analysis 

protocols are described below. 

Uniformity 

A cylindrical volume of interest (VOI) with diameter 22.5 mm and length 10 mm 

was drawn in the centre of the large uniform region. The mean activity 

concentration, the percentage standard deviation (%STD) and the minimum and 

maximum values in the VOI were computed. 
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Recovery Coefficients 

The image slices containing the central 10 mm length of the five rods were 

averaged to form one slice of lower noise. Then, the transverse coordinates of the 

maximum value pixel in each rod were recorded. These transverse coordinates 

were used to create line profiles in the axial direction along each rod. The mean 

activity concentration along each of the five line profiles was computed and 

divided by the mean activity concentration found in the uniform section to obtain 

the recovery coefficient for each rod. The percentage standard deviation of the 

recovery coefficient (%STDRC) was computed as follows: 

 

%STDRC =100!
STDlineprofile
Meanlineprofile

"
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2

 (5.1) 

Accuracy of Corrections 

Cylindrical VOIs with diameter 4 mm and length 7.5 mm were drawn over the 

centres of the air- and water-filled cold regions. The spill over ratio (SOR) was 

computed as the ratio of the mean activity in the cold regions to the mean of the 

uniform hot region, expressed as a percentage. The uncertainties of the SOR 

values were also computed. 

5.3 Results 

Images reconstructed from experimental and simulated data are shown in Figure 

5.3. The geometric distribution of reconstructed activity in the simulated image 

can be seen to match well with the experimental image. 



 

 

 

 

119 

 

Figure 5.3: Reconstructed PET images of the NEMA NU 4-2008 image quality 
phantom for experimental data (top) and simulated data (bottom). Two transverse 
slices and one coronal slice are shown with no interpolation applied. The 
reconstructed activity distribution in the simulated image shows agreement with the 
experimental image. Higher noise is visible in the experimental image due to the 
fewer prompts recorded in the experimental acquisition. 

The number of coincidence events recorded in the experimental acquisition was 

1.8 × 108 prompts, whereas in the simulation there were 2.2 × 108 prompts of 

which there were 1.8 × 108 true coincidences, 3.6 × 107 object-scattered 

coincidences (16.4% scatter fraction), and 2.2 × 106 random coincidences (1.0% 

random rate). While it is impossible to distinguish true and scattered coincidences 

in the experimental data stream, the number of random coincidences detected in 

Experiment 

Simulation 
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the experiment by the delayed timing window approach was 1.5 × 106 (0.85% 

random rate). 

The percentage standard deviations of the uniform region of the images were 

7.0% (experiment) and 6.2% (simulation). The simulation contained more 

prompts than the experiment, which is a reason for the lower %STD of the 

simulated image. After truncating the simulated listmode data file so that the 

number of prompts matched that of the experiment, the %STD value for the 

simulation was found to be 6.8%, consistent with what would be expected from 

Poisson statistics. 

The mean recovery coefficients for the five rods are shown in Figure 5.4 for 

experimental and simulated images. The error bars of the experimental and 

simulated recovery coefficients overlapped for each rod size. 
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Figure 5.4: Mean recovery coefficient as a function of rod diameter for experimental 
and simulated images. The error bars represent the standard deviation calculated with 
Equation (5.1). Lines connecting the data points are meant as guides to the eye. The 
recovery coefficient is lower for the smaller rods because of the partial volume effect. 

The SORs for the experimental image were (4.51 ± 0.08) % for the air-filled cold 

region and (5.29 ± 0.09) % for the water-filled region. For the simulated image, 

the SORs were (6.37 ± 0.09) % for the air-filled region and (6.77 ± 0.08) % for the 

water-filled region. SORs were highly dependent on the choice of reconstruction 

algorithm and whether scatter and attenuation corrections were applied, as was 

found by Bahri, et al. [10] using the previous-generation Siemens FOCUS 120 

PET system and by Anizan, et al. [18] using the Siemens Inveon. In all cases, the 
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simulated image had significantly higher SOR values than the experimental image 

(p<0.01, using Student’s t-test) for a range of reconstruction algorithms. 

5.4 Discussion 

A visual comparison of the experimental and simulated images shows that the 

GATE phantom model is an accurate representation of the NEMA specification. 

The phantom model implemented is a good model for the GATE community to 

use to assess the quality of scanner simulations. 

The image quality measurements do not match exactly for all indicators in both 

images. This is likely due to the experimental conditions not matching the ideal 

simulated conditions. The higher absolute counts recorded in the simulation was 

the likely cause of the percentage standard deviation of the uniform region 

(%STD) being lower for the simulated image. If the number of prompts in the 

simulation were the same as the experiment, the %STD of the simulated image is 

6.8%, which is very close to the 7.0% recorded for the experimental image. The 

fact that the attenuation correction method did not add noise into the simulation 

may also have contributed to the lower noise in the simulated image. In light of 

this, the %STDs and the RCs of the both images were in agreement with 

experimental results published by Disselhorst, et al. [13]. The SORs for the 

experimental image were also consistent with those published by Disselhorst, et 

al. [13] and Anizan, et al. [18]; however, the SORs were higher for the simulated 

image indicating the possibility of more photon scattering in the simulated 

phantom or bed than was the case experimentally. It is not possible to measure 

scatter fraction experimentally; however, since the reconstruction pathway was the 
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same for both experimental and simulated images, we suspect that the cause of 

these differences was in the emission simulation. One possibility is that the choice 

of models for physics processes may have had an impact on the rate of scattering. 

In this simulation, standard model Compton scattering processes were used for all 

materials; however, non-parameterized models designed for use at lower energies, 

such as those based on the Livermore or Penelope data libraries, may be more 

accurate and should be investigated. Another possible source of differences in 

scattering behaviour between measured and simulated data is that the thin 

shielding material in the gantry of the scanner was not included in the simulation. 

The shielding geometry and material were unknown to the authors, but this could 

be included in future simulations with data from the manufacturer. While 

differences between simulation and experiment were observed by McIntosh, et al. 

[16] due to the non-linear energy response of the LSO-based detectors of the 

Inveon scanner, this effect is not expected to be important in this study because of 

the higher energy window used here (350-650 keV). 

5.5 Conclusion 

A precise definition of the NEMA NU 4-2008 image quality phantom for small 

animal PET scanners has been implemented in the GATE Monte Carlo 

framework. Images of the phantom generated from simulated and experimental 

data sets were analysed according to the NEMA protocol. The simulated image 

showed good agreement with the experimental image; however, spill over ratios 

were higher in the simulated images. The NEMA NU 4-2008 image quality 

phantom is now available for Monte Carlo GATE simulations of small animal 

PET and SPECT systems. 
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Chapter 6  

6 Attenuation Correction Sinogram Add-On to GATE1 

This chapter describes a custom add-on that extends the GATE Monte Carlo PET 

simulation package to produce attenuation correction sinograms. The method 

implemented here is computationally fast and uses the photon interaction cross-

sections and precise phantom and detector geometries of the emission simulation. 

6.1 Introduction 

PET images are reconstructed from sets of sinograms. A sinogram is a matrix 

representation of the coincidence emission data acquired by the PET detector. 

Each element of a sinogram corresponds to a particular pair of crystal elements 

and the line that connects two crystals is called a line of response (LOR). When a 

positron annihilation event occurs in the PET field of view, the two annihilation 

photons will arrive at opposing detector crystals within a very short time of each 

other if they do not interact and their direction lies along one of the possible 

LORs. The central principle of PET imaging is that the number of coincidences 

detected along any LOR in a given period of time is proportional to the total 

activity contained in that LOR. 

                                                

 
1
 A manuscript based on the contents of this chapter was in preparation at the time of thesis 

publication. 



 

 

 

 

128 

In real PET systems, several corrections are necessary to increase the accuracy of 

the activity map generated by the PET reconstruction algorithm. The most 

important of these corrections include normalization, attenuation correction, 

scatter correction, random correction, dead-time correction, decay correction and 

arc correction. Normalization corrects both geometric and intrinsic variation in 

crystal detection efficiency. Attenuation correction improves the quantitative 

accuracy of PET images by incorporating information about the distribution of 

attenuating material in the PET field of view. Scatter correction methods model 

the effect of Compton scattering within the object being imaged and attempt to 

reduce the added blurring and noise that results from scattering in PET images. 

Random correction adjusts the measured activity downward by estimating the rate 

of simultaneous random detections arising from two different positron emissions. 

Dead-time correction adjusts the measured activity upward to account for the rate 

of missed coincidence detections due to detector dead-time. Arc correction 

compensates for the variation in the spacing between lines of response due to the 

circular nature of the detector ring. This chapter focuses on attenuation correction. 

6.1.1 Principles of Attenuation Correction 

As an annihilation photon travels from the point of generation through tissues and 

other materials, there is a chance that it could undergo one or more interactions. 

For the energies relevant to PET, the most important interactions are the 

photoelectric effect and Compton scattering. The probabilities of these 

interactions depend on photon energy, material composition, and density. If these 

are known, the attenuation behaviour can be described by the linear attenuation 
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coefficient, µ. For photons travelling through attenuating material, the photon 

intensity, I, after the photons have travelled a length x will be 

I x( ) = I0e!µx , (6.1) 

where I0  is the incident intensity such that the transmittance will be , and the 

fraction attenuation will be (1 – I I0 ). For the same path length, a material having 

a larger attenuation coefficient, µ, will reduce the photon intensity to a greater 

extent. The total attenuation coefficient is the sum of the attenuation coefficients 

for each interaction process: 

µtotal = µCompton + µphotoelectric +! . (6.2) 

For 511 keV photons passing through water, biological tissue and typical plastics, 

the photoelectric effect is several orders of magnitude less likely to occur than 

Compton scattering. Conversely, scintillation crystal materials are designed to 

have a high probability of photoelectric effect interactions. 

If the photons travel through different materials with attenuation coefficients 

µ1, µ2, µ1,…,µn having path lengths x1, x2, x1,…,xn , the total transmittance will be 

I
I0

= e! µ1x1+µ2x2+µ3x3+!+µnxn( ) . (6.3) 

For PET imaging, photon attenuation will reduce the number of annihilation 

gamma ray pairs measured in each LOR. This can be corrected by multiplying the 

I I0
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measured number of counts in an LOR by the attenuation correction factor, ACF, 

which is equal to the inverse of the expected transmission:  

ACF =
I0
I
= e+ µ1x1+µ2x2+µ3x3+!+µnxn( ) . (6.4) 

An attenuation correction sinogram is a matrix of ACF values for each line of 

response. If the sinogram ordering of the attenuation and emission sinograms are 

the same, the two sinograms can be multiplied together on an element-by-element 

basis prior to reconstruction to produce an attenuation corrected PET image [1]. 

Attenuation correction sinograms typically represent 2D axial slices and to correct 

3D emission data, reconstruction algorithms must interpolate the attenuation 

sinograms or rebin the emission sinograms. 

Attenuation coefficients represent the likelihood that a photon will undergo an 

interaction within a given length of material. For photoelectric effect interactions, 

the photon is completely absorbed; however, for Compton scattering interactions, 

the photon changes direction and loses some of its energy but is not completely 

attenuated. Both analytical and Monte Carlo techniques have been implemented in 

reconstruction algorithms to estimate and correct for the presence of scattered 

photons in PET data [2-5]. 

In a photoelectric effect interaction, a photon transfers all of its energy to an 

electron. The original photon is completely absorbed, and in a scintillator, as the 

electron moves through the crystal, its scattering will result in the production of 

secondary photons, through crystal excitation and fluorescence. Compton 

scattering is the dominant interaction for 511 keV photons in biological materials. 
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In Compton scattering, a photon collides inelastically with an electron, 

transferring a fraction of its energy to the electron and changing its direction. For 

511 keV photons, small photon scattering angles are significantly more likely than 

large angles. Figure 6.1 shows how Compton scattering probability for 511 keV 

photons varies as a function of photon scattering angle, calculated using the Klein-

Nishina formula [6,7]. 

 

Figure 6.1: Relative probability of Compton scattering as a function of 511 keV 
photon scattering angle shown in Cartesian form (left) and in polar form (right). The 
likelihood of small-angle scattering is significantly greater than large-angle scattering. 

Photons that undergo large-angle Compton scattering are not detected because the 

coincidence may occur in an invalid LOR or the remaining photon energy may be 

too low. Compton scattering at smaller angles introduces noise and blurring into 

PET images because the incorrect LORs are incremented. However, photons that 

are scattered through very small angles may still be assigned to the correct LOR or 

a nearest neighbour LOR with little or no effect on the image. Small-angle 

scattered photons are indistinguishable from unscattered photons in transmission 
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scan or CT-based measurements of photon attenuation. Attenuation coefficients 

generated from models should be adjusted downward to remove the contribution 

due to small-angle Compton scattering. The magnitude of this adjustment is 

dependent on the detector geometry and can be estimated by computing the 

maximum scattering angle that would put the resulting annihilation photons in an 

adjacent (nearest neighbour) LOR, as shown in Figure 6.2. The interaction 

probability of Figure 6.1 can be integrated over this small angle range to estimate 

a global adjustment factor. For the Siemens Inveon detector geometry, the 

scattering angle should be below 1.77° to be considered small-angle scattering as 

defined above. Integrating Figure 6.1 for this angle range suggests that 2.8% of 

scattered photons fall within this limit, yielding an adjustment factor of 0.973. The 

adjustment factor depends on the assumptions used to determine which scattering 

angles should be included or excluded from the ACF calculation. The requirement 

to adjust attenuation coefficients may be considered a drawback of model-based 

attenuation correction schemes when compared with those based on measured or 

simulated transmission data. 
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Figure 6.2: Detector geometry of the Siemens Inveon PET showing the approximate 
angular range for small-angle Compton scattering. The annihilation photon labeled 
ray 2 has undergone Compton scattering, but should not be considered as having been 
attenuated. Attenuation correction factors should be adjusted to exclude the 
contribution from small-angle scattering. For the Siemens Inveon PET detector 
configuration shown, it is estimated that 2.8% of singly scattered annihilation photons 
would result in no change in the LOR or be placed in a nearest neighbour LOR with 
negligible impact on the final image. 

6.1.2 Attenuation Correction in Monte Carlo PET Studies 

The Geant4 Application for Tomographic Emission (GATE) Monte Carlo 

simulation package is among the most widespread codes in use for modelling PET 

and SPECT systems [8] and has recently been extended to enable modelling of CT 

and radiotherapy systems [9]. GATE lacks a built-in method for rapidly 

generating attenuation correction sinograms. Some GATE simulation studies of 

small-animal PET systems have not included attenuation correction [10,11]; 

however, a variety of approaches have been used for human-scale PET models 

and for some small-animal PET models. In some studies, a measured CT or 

transmission image is used to generate a voxelized geometry for the emission 
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simulation and the measured CT or transmission data can be used to produce 

attenuation correction sinograms for the simulation [12,13]. In other studies, 

analytic or voxelized phantoms are imported into a third-party forward-projection 

tool to produce attenuation correction sinograms [14,15]. GATE CT simulations 

could be used to model phantom attenuation, and while CT simulations are 

computationally intensive, various acceleration techniques have been proposed 

[9]. A similar approach is to simulate singles-mode transmission data, such as 

using rotating Co-57 or Ge-68 sources [16]. 

This chapter introduces a novel approach that extends the GATE package to 

enable the rapid generation of attenuation correction sinograms. The algorithm 

presented here is highly integrated with GATE and uses the exact material 

definitions and geometries modelled in the emission simulation. 

6.2 Methods 

6.2.1 Concept 

The GATE attenuation correction add-on described in this chapter loops over each 

line of response and computes its associated attenuation correction factor. The 

algorithm tracks the path of a geantino (an imaginary particle in Geant4 that does 

not interact) fired from the centre of one detector crystal toward the other 

corresponding crystal, passing through the field of view. The attenuation 

correction factor is built up by obtaining both the path lengths through various 

materials, including the bed, and the associated 511 keV cross-sections used by 

the emission simulation. 
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For the detector geometry and crystal pitch of the Siemens Inveon PET, shown in 

Figure 6.2, attenuation coefficients generated using this model-based approach 

were reduced by approximately 2.8% to account for small-angle Compton 

scattering assuming the average scattering location is at the centre. This factor was 

computed with the following assumption: photons that scatter once at the centre 

do not contribute to the ACF if the scattering angle is small enough that the new 

path would intersect with the detector no farther than one crystal element away 

from the original path (less than 1.77° on the Siemens Inveon scanner). This 

simple estimate gives the approximate magnitude of the effect; however, each 

LOR will have a slightly different response that is dependent on the path of the 

LOR and the distribution of attenuating material. In the results described in this 

Chapter, a single global correction factor was used. 

6.2.2 Implementation 

The attenuation correction add-on is implemented as a GATE actor class and can 

be called from a macro script. The add-on consists of two C++ classes with 

associated header files and must be complied along with the GATE package prior 

to use. The GateAttenuationCorrectionActorMessenger class allows the user to set 

variables such as the sinogram dimensions and output file name. The 

GateAttenuationCorrectionActor class contains the main code. Appendix A.4 

contains instructions for obtaining and implementing the code. 

The algorithm is designed to loop over all lines of response to match the precise 

ordering of the Siemens PET sinogram format. The crystal identification scheme 

was obtained from Siemens for converting GATE emission data to the proprietary 

list-mode format, as described in Chapter 5; however, the sinogram ordering was 
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not known. To determine the sinogram ordering, artificial list-mode data files 

were generated, each containing only coincidences between a different specific 

crystal pair. Then, the list-mode files were processed using the histogramming 

software in Inveon Acquisition Workplace and the location of the corresponding 

LORs were identified in the resulting sinograms. 

The Geant4 tracking classes give access to the parameters of the simulation at the 

various stages of initialization (“run”), particle generation (“event”), and particle 

tracking (“step”). When the run is first initialized, the attenuation correction actor 

computes the linear attenuation coefficients of all materials included in both 

phantom and detector geometries and stores these values in an array. Additional 

arrays are allocated in memory to store crystal coordinates and ACF values. The 

algorithm then computes the coordinates of the centres of all the crystal elements 

in the detector from the internal specification of the detector geometry. The crystal 

coordinates array is ordered in terms of the azimuthal crystal ID (range 0 – 319 for 

the Inveon) and the axial ring number (range 0 – 79)2. 

At the beginning of each primary particle generation event, the appropriate crystal 

pair is selected and the starting position and direction of the geantino particle is 

set. The geantino is then tracked as it steps through phantom materials on its way 

to the opposing crystal element. For each step through a single phantom material, 

                                                

 
2
 The algorithm was designed to compute the proper ordering for any general block-crystal PET 

detector geometry and values relevant to the Siemens Inveon PET are shown in parenthesis. 
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the exact path length and attenuation coefficient3 are multiplied and added to a 

cumulative sum µx( )cumulative = µ1x1 + µ2x2 + µ3x3 +! . When the geantino reaches 

the opposing crystal, tracking is stopped and the ACF is computed according to 

equation (6.4). When the ACFs of all possible LORs have been computed, the 

ACF values are written to the output sinogram in 32-bit floating-point binary 

representation. 

6.2.3 Validation Testing 

Two studies were performed to validate the GATE attenuation correction 

processing chain. The aim was to verify that the Siemens Inveon Acquisition 

Workplace software correctly interpreted the simulated AC map. In the first 

investigation, attenuation correction sinograms of different distributions of 

attenuating material were produced and the reconstructed attenuation maps were 

analysed. The second experiment was to compare emission images acquired on 

the actual scanner with and without attenuation correction to simulated PET 

images using a model of the same simple phantom. 

In each experiment, an attenuation correction sinogram was produced using the 

GATE add-on. The attenuation sinograms were reconstructed to produce 

attenuation maps using the filtered back-projection (FBP) algorithm implemented 

                                                

 
3
 The attenuation coefficient of air is subtracted from the phantom material attenuation coefficient for 

each step to account for the different LOR lengths. Also, an attenuation correction scale factor is 
applied to account for small-angle Compton scattering (2.8% reduction for the Inveon PET). On the 
actual scanner, the transmission scan procedure compensates for both effects inherently. 
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in the Inveon Acquisition Workplace 1.5 software (ramp filter). The voxel values 

of the attenuation maps were linear attenuation coefficient (LAC) values. PET 

emission images were also reconstructed using this algorithm. Attenuation maps 

and emission images were analysed using AsiPro, an image analysis tool designed 

specifically for Siemens PET image data. 

6.2.3.1 Accuracy of Attenuation Maps 

A cylindrical solid phantom containing three thick parallel rods was implemented 

in GATE. The bulk material of the large cylinder was poly(methyl methacrylate) 

(PMMA) and different rod material compositions were chosen to have different 

LAC values. One arrangement (test A) had materials with large differences in 

LAC (lithium, air, and aluminum), and the other arrangement (test B) used typical 

biological materials (lung, bone, and water). Figure 6.3 shows the geometry of the 

phantom and the LAC values of the various materials used in tests A & B, which 

were computed internally by the GATE physics models.  
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Figure 6.3: Phantom model for testing the accuracy of attenuation maps generated by 
the simulation. Three rods of different material are shown embedded in a large 
cylinder of PMMA. The material definitions (density and composition) were the same 
as those contained in the default materials database distributed with the GATE 
package. The ‘RibBone’ material definition was used for bone. The linear attenuation 
coefficient (LAC) values computed by the GATE physics models at 511 keV are 
shown for PMMA and the three materials used in each test configuration. The dashed 
circle indicates the location where the LAC value of PMMA was measured in the 
reconstructed attenuation map. 

For each configuration of the phantom model shown in Figure 6.3, an attenuation 

correction sinogram was produced by the GATE add-on and an attenuation map 

was reconstructed with filtered back-projection using the Siemens software. The 

pixel values of the attenuation maps contained the attenuation coefficient for  

511 keV photons. The attenuation maps were analysed in two ways: First, the 

reconstructed LAC values were measured using four circular regions of interest 

(diameter 10 mm) drawn in the centres of each of three rods and in the bulk 

PMMA material shown by the dashed circle in Figure 6.3. The results were 

compared with the internal LAC values computed by the GATE physics models. 
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Second, a horizontal line profile was computed through the centre of the 

attenuation map and the results were plotted to show the extent of spatial 

variations. The thickness of the line profile spanned 5 pixels (approximately 4.2 

mm). 

6.2.3.2 Comparison of Simulated and Measured PET Images 

In the second test, images from an emission simulation were compared with PET 

images acquired on the actual scanner and the effects of attenuation and scatter 

corrections were investigated. The Siemens reconstruction software uses a 

proprietary direct analytical calculation for scatter correction. PET data were 

acquired on the physical scanner using the homogenous cylindrical Ge-68 source, 

pictured in Figure 6.4, placed at the centre of the field of view. The active volume 

of the source had diameter 55.8 mm, length 130 mm, and total activity 1.66 MBq 

at the time of acquisition. 

 

Figure 6.4:  Photograph of the Ge-68 phantom used on the physical scanner. A model 
based on this phantom was used in the simulation. 
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A model of the physical phantom was implemented in GATE. The precise 

geometry and estimates for material compositions were obtained from the 

manufacturer. The inner active region was Ge-68 suspended in epoxy with 

diameter 55.8 mm and length 130 mm. The outer casing was polyethylene with an 

inner diameter of 55.8 mm, an outer diameter of 60 mm, and 7.4-mm-thick caps 

on either end of the inner epoxy. The manufacturer designed the epoxy to have an 

expected LAC of 0.104 cm-1. The positron emitting source was modelled as a 

uniform distribution of 1.66 MBq Ga-68 with half-life 271 days. Ga-68 is the 

short-lived positron-emitting daughter nucleus of the long-lived Ge-68. The 

simulation included the energy spectrum of Ga-68 decay and positron travel. 

The simulation and experiment were both 45-minute emission acquisitions with 

energy window 350-650 keV and coincidence timing window 3.43 ns. The 

properties of the simulation were identical to those described in Chapter 5. For the 

simulated data, the GATE add-on was used to generate an attenuation correction 

sinogram. For the experimental data, a 1-hour Co-57 transmission scan of the 

phantom (657,000,000 prompts) was performed to generate the attenuation 

correction sinogram. A 15-hour blank transmission scan and a normalization scan 

(3 billion prompts) were acquired immediately prior to the experiment. 

The simulated emission data were processed according to the workflow described 

in Chapter 5. Emission images for both simulated and measured data were 

reconstructed with 2D FBP for three cases: with no attenuation correction, with 

attenuation correction, and with both attenuation and scatter corrections applied. 

Attenuation correction data generated from the GATE add-on was used for the 

simulated emission data and transmission scan data was used for attenuation 
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correction of the emission data acquired on the physical scanner. For the images 

with both attenuation and scatter corrections, a cylindrical volume of interest 

(VOI) was drawn in the centre of active region in the image (diameter 39 mm, 

length 64 mm) and the mean voxel value was measured. Because the precise 

activity was known, simulated and experimental images for each case were scaled 

by the same factor so that the mean voxel value within the VOI for the image with 

scatter and attenuation corrections was 5.23 kBq/cm3. 

Horizontal line profiles through the middle of the image were measured for each 

of the experimental and simulated images to investigate uniformity and the effect 

of the corrections. To reduce noise, each line profile was averaged across 125 

axial planes (∆z = 99.5 mm) and also across 5 vertical planes (∆y = 3.9 mm). Line 

profiles were plotted for the cases with no attenuation correction (no AC), with 

attenuation correction (AC only), and with both attenuation and scatter correction 

(AC + SC).   

6.3 Results of Validation 

6.3.1 Accuracy of Attenuation Maps 

The attenuation maps for test A and test B are plotted in Figure 6.5. A comparison 

of the linear attenuation coefficients used internally by the GATE simulation and 

the values measured from the attenuation map are summarized in Table 6.1. 
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Figure 6.5: (a) & (b) Reconstructed attenuation maps for the two configurations. The 
greyscale in (a) has a range 0 – 0.23 cm-1 and the range in (b) is 0 – 0.18 cm-1. The 
streaking visible in the attenuation maps is a property of the discrete number of lines 
of response and filtered back-projection reconstruction algorithm. (c) & (d) 
Horizontal line profiles through the centre of the attenuation maps. For each material, 
the reconstructed attenuation coefficient matched the value generated by the GATE 
physics models. In the figure, plexiglass refers to PMMA. 
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Table 6.1: Comparison of linear attenuation coefficients used by the GATE 
simulation with values measured from the reconstructed attenuation maps. 

For each material, the linear attenuation coefficients measured from the 

attenuation map were equal to the values used internally by the emission 

simulation within the given uncertainties. This result demonstrated that the 

reconstruction algorithm implemented in the Siemens Inveon Acquisition 

Workplace software correctly interpreted the attenuation correction sinograms 

generated by the GATE add-on. 

6.3.2  Comparison of Simulated and Measured PET Images 

Figure 6.6 compares the attenuation map generated by the GATE add-on with the 

map generated from the transmission scan. Each map accurately reproduced the 

correct attenuation coefficient, as provided by the manufacturer, within the 

phantom. Unlike the measured attenuation map, the map generated by the 

simulation had no noise. 

Material 

GATE Internal Linear 
Attenuation Coefficient 

(cm-1) 

Linear Attenuation Coefficient 
in the Reconstructed Image 

(cm-1) 

PMMA (Test A) 0.1112 0.1111 ± 0.0004a 
PMMA (Test B) 0.1112 0.1119 ± 0.0004 

Lithium 0.04009 0.0402 ± 0.0002 
Air 1.153 × 10-5 (–0.3 ± 0.4) × 10-5 

Aluminum 0.2254 0.2252 ± 0.0003 
Lung 0.02479 0.0248 ± 0.0001 

Bone 0.1714 0.1712 ± 0.0002 
Water 0.0962 0.0959 ± 0.0003 

aAll reported uncertainties are standard error of the mean using 110 voxels. 
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Figure 6.6: Axial and coronal views of the reconstructed attenuation maps generated 
by the GATE add-on (a) and the transmission scan on the actual scanner (b). They 
greyscale range is 0 – 0.145 cm-1 for both attenuation maps.  (c) Line profiles through 
both attenuation maps show the agreement between simulated and measured 
attenuation coefficients. 
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Reconstructed emission images are shown in Figure 6.7 for the cases with no 

attenuation correction and with both attenuation and scatter correction applied. A 

dip in the reconstructed activity was visible in the centres of the images with no 

attenuation correction. For the images with all corrections applied, the percentage 

standard deviation in the VOI was 37.7% for the simulated image and 37.4% for 

the experimental image. 

 

Figure 6.7: Filtered back-projection PET emission images for simulated data and 
data acquired on the physical scanner. Images reconstructed with no attenuation 
correction are shown on the left, and those with attenuation and scatter corrections 
applied are shown on the right. The greyscale range for all images is 1 – 10 kBq/cm3. 

Line profiles through the centre of the image are shown in Figure 6.8 for each of 

the three reconstruction configurations. For the cases with no attenuation 

correction, the reconstructed activity is lower in the centre of the phantom than the 
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edges for both simulation and experiment, as expected. Applying attenuation 

correction without scatter correction appeared to overcompensate for this effect. 

When scatter correction is applied with attenuation correction, the uniformity of 

both the simulated and experimental images improved and the noise outside the 

active region was reduced. 

 

Figure 6.8: Line profiles through the images reconstructed from simulated data (a) 
and data measured on the actual scanner (b). 

6.4 Discussion and Conclusion 

The validation tests demonstrate that the GATE add-on produces accurate 

attenuation correction sinograms in the data format of the Siemens Inveon PET. 

We have shown that attenuation and scatter corrections are important for rat-sized 

phantoms. 

The GATE add-on approach introduced here has several appealing benefits. The 

computation time to generate the entire set of attenuation correction sinograms is 

several minutes on a single workstation computer for a typical small-animal PET 
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configuration. This is significantly faster than would be the case for simulated CT 

data, which requires the simulation of a very large number of photons. In addition, 

this approach uses the 511 keV linear attenuation coefficients computed by the 

physics models used in the emission simulation. Another important benefit is that 

the GATE add-on method uses the exact geometry of the phantom and detector 

ring used in the emission simulation. Any analytic or voxelized geometry can be 

used, including voxelized animal or human models. This is superior to using a 

third-party program to compute the attenuation map because it eliminates the 

possibility of geometric or material mismatch between the emission simulation 

and the attenuation correction sinogram generation. While the current 

implementation of the GATE add-on produces an ideal noiseless attenuation 

correction sinogram, the algorithm can be customized to add noise to mimic that 

of measured transmission attenuation data, which could be estimated from 

measured data. In addition, the GATE add-on has been designed to generate 

attenuation correction sinograms for any PET detector geometry that uses the 

block-detector configuration and is suitable for modelling both human- and 

animal-scale scanners. 

This approach also has several limitations. Due to the effect of small-angle 

Compton scattering, the linear attenuation coefficients provided by the GATE 

physics models slightly overestimate the true photon attenuation within a line of 

response and the attenuation correction factors must be adjusted to compensate for 

this effect. The adjustment implemented in the GATE add-on is a simple first-

order estimate of the magnitude of the effect. With a better understanding of the 

effect, a more sophisticated approach that considers the path of the line of 
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response through the phantom geometry could be added to improve accuracy. The 

reconstructed attenuation maps were in good agreement with the known 

attenuation coefficients, suggesting that the assumptions used for the small-angle 

Compton scattering adjustment were likely reasonable. Another limitation of the 

GATE add-on is that phantom geometries having interfaces with large differences 

in attenuation coefficient may produce streak artefacts in attenuation maps 

because the sinogram does not sample the edges of interfaces perfectly. In a 

transmission scan on a real scanner, these effects are typically masked by 

incoherent noise; however, the GATE add-on produces noise-free attenuation 

sinograms. The computation of attenuation correction factors could be improved 

by averaging two or more linear paths through each line of response, rather than 

using one path going from crystal centre to crystal centre.  
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Chapter 7  

7 Effect of MR-Compatible Bed Materials and RF Coil 
Components on PET Performance1 

This chapter contains two related Monte Carlo PET investigations. The first is a 

study of how inclusion of various MR-compatible materials in the animal holder 

impacts PET performance. The second investigates the effect of discrete RF coil 

components on PET imaging and the importance of including the RF coil in 

attenuation correction. 

7.1 Monte Carlo PET Simulation of Effect on Image 
Quality of Various MR-Compatible Animal Bed 
Materials 

7.1.1 Introduction 

A single animal imaging bed suitable for both PET and MRI is a requirement for 

simultaneous techniques and is desirable for sequential methods in order to 

eliminate animal positioning differences between modalities. It is important to 

investigate the effects of different MR-compatible bed materials on PET image 

quality. A suitable material for the animal holder should have low scattering and 

absorption of photons. A comprehensive Monte Carlo simulation has been 

developed that uses the actual histogramming and image reconstruction software 

                                                

 
1
 The content of this chapter has not been submitted for publication to any journal. Versions of some 

of the figures and text contained in this chapter have appeared in conference contributions presented by 
the author. 
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of the commercial PET system. This process was used to investigate how different 

MR-compatible bed materials affect PET image quality. 

7.1.2 Methods 

Simulated PET data were generated with the GEANT4 Application for 

Tomographic Emission (GATE) package [1,2]. The Siemens Inveon small-animal 

PET scanner was modelled. The coincidence timing and energy windows were 

3.43 ns and 350-650 keV with a 14.6% energy blurring. Simulated emission data 

were first converted to the list-mode data format of the scanner and then all 

histogramming and reconstruction were performed in the scanner’s software using 

the method described in Chapter 5. Attenuation correction sinograms were 

generated within GATE by a custom algorithm that calculates an attenuation 

correction factor between each crystal pair as described in Chapter 6. OSEM3D-

MAP reconstruction was performed with default settings (16 subsets and 4 

iterations) and scatter correction was selected. The MAP reconstruction uses prior 

information about the detector geometry to improve the accuracy of the 

reconstructed activity map. 

The NEMA small animal image quality phantom (see Figure 5.1) with an initial 

activity of F-18 at 3.7 MBq was simulated for 20 minutes [3]. The decay of F-18 

and positron annihilation were included in the simulation. The phantom was 

located on slightly larger animal bed consisting of a 6.35-mm-thick half-tube with 

six small lengthwise internal channels for heating water. The bed also contained 

two delrin tubes for anaesthetic gas. The simulated bed geometry is shown in 

Figure 7.1. 
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Figure 7.1: (a) CAD model of the PET-MRI mouse bed model. Parallel tubes carry 
anaesthetic gas to and from the nose cone. All anaesthetic gas and heating water lines 
connect at the rear of the bed. (b) & (c) Schematic of the simulated phantom 
geometry. The NEMA NU 4-2008 phantom is shown in green with acrylic screws 
(blue) and rubber gaskets (red) sitting on the animal holder (white). The blue in the 
bed corresponds to the heating water channels. The grey rods are delrin anaesthetic 
gas lines. The white wireframe boxes indicate the position of the PET detector 
scintillator crystal blocks. 

The four different bed materials tested were: PMMA, PVC, G10, and FR4. For 

comparison, the phantom was also simulated with the standard carbon fibre pallet 

included with the scanner. Carbon fibre is typically used with PET; however, it is 

also electrically conductive and thus in some circumstances unsuitable for PET-
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MRI due to RF heating [4]. A summary of the densities and elemental 

compositions or mass fractions of the simulated materials is given in Table 7.1. 

Table 7.1: Material definitions used in PET simulations for MR-compatible animal 
holders. 

Each image was scaled by a single calibration factor such that the mean voxel 

value was 1 in the uniform region of the carbon fibre case. Recovery coefficients 

Material Density (g/cm3) 
Elemental Composition 
(mass fraction) 

PMMAa 1.19 Hydrogen (0.080538) 
Carbon (0.599858) 
Oxygen (0.319614) 

PVC 1.65 Hydrogen (n = 3) 
Carbon (n = 2) 
Chlorine (n = 1) 

G10 1.70 Hydrogen (0.0660184) 
Carbon (0.268193) 
Oxygen (0.417187) 
Silicon (0.219883) 
Chlorine (0.0287186) 

FR4 1.70 Hydrogen (0.0684428) 
Carbon (0.278042) 
Oxygen (0.405633) 
Silicon (0.180774) 
Bromine (0.0671092) 

Carbon Fibre 1.58 Hydrogen (0.043) 
Carbon (n = 0.845) 
Nitrogen (n = 0.112) 

aPMMA is included as ‘plexiglass’ in the default GATE materials definition file. 
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for activity-filled rods of various diameters, and the spill over ratios (SORs) for 

the water- and air-filled cold regions were computed according to the methods 

described in Chapter 5. 

7.1.3 Results 

The normalized mean activities in the uniform region, percentage standard 

deviations, SORs and scatter fractions are summarized in Table 7.2 for various 

bed materials. Recovery coefficients for various rod diameters are shown in 

Figure 7.2. PMMA and PVC tended to have better performance measures than 

G10 and FR4. The differences in SOR values between each material were 

statistically significant (p<0.01, using Student’s t-test). 

Table 7.2: Simulated PET Performance Measures for Various Bed Construction 
Materials.a 

Bed 
Material  

Mean in 
Uniform 
Region 
(Normalized to 
Carbon Fibre)  

Percent 
Standard 
Deviation 
(%)  

SOR, 
Water 
Cavity 
(%)  

SOR, 
Air 
Cavity 
(%)  

Total 
Coincidences 
(prompts) 
(×108)  

Fraction of 
Coincidences 
Scattered (%) 

Carbon 
Fibre 
Pallet  

1.0000  4.53 6.58  4.77  2.1968  16.6 

PMMA  0.9969  5.67  5.72 3.82  2.1709  17.7 

PVC  0.9977  5.72  6.49  4.21  2.1706  17.4 

G10  0.9986  6.73 7.36  4.25  2.1402  18.5 

FR4  0.9992  6.53  7.69  4.10 2.1403  18.5 
aThe uncertainty in the SOR values was ± 0.01 in each case (standard error). 
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Figure 7.2: Mean recovery coefficient associated with each activity-containing rod 
for various animal bed materials. 

7.1.4 Discussion and Conclusions 

The results suggest that of the MR-compatible bed materials tested, PMMA had 

the least impact on PET image quality when compared with the standard carbon 

fibre pallet. Overall, PMMA and PVC tended to have better performance 

measures than G10 and FR4. While differences in some performance metrics were 

significant between materials, none of the four materials tested resulted in a severe 

degradation in PET image quality compared with the carbon fibre pallet. 

Therefore, a wider range of materials could be considered when developing a 

PET-MRI bed system. 
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7.2 Design Considerations of RF Coils for PET-MRI 
Applications and their Impact on PET Performance 

7.2.1 Introduction 

Attenuation correction of PET images is necessary for obtaining quantitative 

results. Methods of MR-based attenuation correction typically involve using MR 

data to segment materials having different attenuation properties, such as soft 

tissue, air, lung and bone [5,6], and several other alternate methods have been 

proposed [7-9]. In simultaneous PET-MRI, the RF coil must be located inside the 

PET detector ring. While this can be avoided in sequential PET-MRI with two 

separate scanners, it is sometimes desirable to have an RF coil built into the 

patient or animal handling system which remains in place during PET acquisition. 

Herrick, et al. have used a Monte Carlo simulation to show that the presence of 

RF coil materials within a PET detection system can result in a significant 

increase in photon scattering [10]. Increased scattering and absorption result in 

greater image noise and lower detection sensitivity. Furthermore, many RF coils 

consist of a symmetrical arrangement of discrete highly attenuating components: 

copper, solder and capacitors. 

RF coil components in the PET field of view introduce additional sources of 

photon scatter and attenuation. MR-based attenuation correction schemes are 

complicated by the fact that the RF coil does not appear in the MR image. Since 

the RF coil does not appear in the MR image, non-MR attenuation correction 

methods are required. The most common approach is to combine a CT attenuation 

map of the RF coil with the MR-generated attenuation map to produce a full 

attenuation map [7]. This approach requires the precise alignment of CT and MR 
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image spaces, which is not always practical, especially for flexible coils or those 

with variable positioning. In these cases, RF coil attenuation correction is 

sometimes omitted. For flexible surface coils typically used in human scanners, 

global sensitivity losses of up to 5% have been observed with even greater local 

effects in PET images near RF coil elements [11,12]. In this section, I use a Monte 

Carlo simulation to investigate and identify any significant effects the RF coil 

components have on PET image quality. I also explore the effect of omitting RF 

coil attenuation correction on the quantitative accuracy of PET images. 

7.2.2 Methods 

7.2.2.1 Monte Carlo Simulation Architecture 

Simulated PET data were generated with the GEANT4 Application for 

Tomographic Emission (GATE) package version 6.1, which is based on the 

GEANT4 Monte Carlo toolkit [1,2]. There are three stages to PET image 

generation: data acquisition, histogramming data into sinograms and 

reconstruction. The Siemens Inveon dedicated small-animal PET scanner was 

modeled. The detector is composed of 4 axial 16-block rings with each block 

containing a 20 x 20 array of lutetium oxyorthosilicate (LSO) scintillator having 

dimensions (1.51 x 1.51 x 10) mm. Coincidence energy and timing windows were 

set to 350-650 keV and 3.43 ns, with a 14.6% energy blurring applied. 

In order to make the image generation workflow as close as possible to an 

experimental PET workflow, simulated emission data were first converted to the 

raw list-mode data format of the commercial PET scanner and then all 

histogramming and reconstruction were performed in the commercial software 
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according to the method described in Chapter 5. Normalization of the PET 

detection scheme was accomplished by acquiring simulated coincidence data from 

a uniform cylindrical Ge-68 source (radius: 3 cm, length: 12.7 cm) for a total of 3 

billion coincidences, followed by conversion to list-mode format and 

histogramming by the component-based method implemented in the commercial 

software. Attenuation correction (AC) sinograms were generated within GATE by 

the custom algorithm described in Chapter 6 that computes the attenuation 

correction factor for each line of response (crystal centre to crystal centre) using 

the material definitions, phantom geometry and interaction cross-sections used 

internally by the emission simulation. All emission reconstructions were 

performed in the commercial software using the two-dimensional Ordered Subset 

Expectation Maximization (OSEM2D) method with default settings (16 subsets 

and 4 iterations, Fourier rebinning) including scatter correction using the direct 

analytical calculation method built into Inveon Acquisition Workplace where 

indicated.  

7.2.2.2 Phantom and RF Coil Model 

The mouse-sized phantom, shown in red in Figure 7.3, consisted of a water-filled 

acrylic cylinder (inner radius: 15 mm, outer radius: 16.75 mm, length: 60 mm) 

centred in the field of view. The water volume contained a uniform initial activity 

of the positron emitter F-18 at 3.7 MBq with each simulation lasting 20 minutes. 

The decay of F-18 and positron annihilation were included in the simulation. The 

phantom was located on a slightly larger animal bed (described in section 7.1.2) 

consisting of a 6.35-mm-thick acrylic half-tube with six small lengthwise internal 
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channels for heating water. The bed also contained two delrin tubes for 

anaesthetic gas. 

An RF coil was modelled as an 8-rung birdcage coil just wide enough to contain 

the bed and phantom. The conductor consisted of copper tape (thickness: 0.2 mm, 

width: 6 mm), shown yellow, placed on a 3-mm-thick acrylic former, not shown. 

Two 5-mm-thick end plates, not shown, supported a RF shield (copper thickness: 

0.03 mm) at 1.4 times the radius of the RF coil supported by a 3-mm-thick acrylic 

former, shown in wireframe. Two models of an 8-rung birdcage RF coil were 

tested: a band-pass coil and a high-pass coil. For the band-pass coil, sets of two 

capacitors (combined dimensions: 1.86 x 2.55 x 5.1 mm) were placed at the centre 

of each rung and between each rung connection on each end ring of the coil. The 

high-pass coil had no capacitors on the axial rungs and instead had a continuous 

strip of copper. The capacitor material was chosen to be a 1:1 mixture of BaTiO3 

and Pd70Ag30 for the body, shown green, and Cu90Sn10 for the terminators, shown 

blue. Lead-free Sn95.8Ag3.5Cu0.7 solder joints (thickness: 1.5 mm), shown grey, 

connected each conductor rung to the end rings and each capacitor to the copper 

conductor. Attenuation maps reconstructed from the simulated attenuation 

correction sinograms by filtered back-projection show the linear attenuation 

coefficients for the phantom, bed, and various coil configurations in Figure 7.4. 
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Figure 7.3: Simulation geometry. The band-pass birdcage coil model with low-pass 
capacitors on the rungs is shown. A high-pass coil was also modeled which had no 
capacitors on the rungs. The homogenous cylindrical phantom, shown in red, rests on 
the same PET bed model discussed earlier. The RF coil consists of the following 
materials: copper tape (yellow), capacitors (green), terminators (blue), and solder 
(grey). The RF coil is supported by a copper former (not shown) and the wireframe 
shows the location of the RF shield. 
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Figure 7.4: 511 keV attenuation maps of the central transverse plane with no RF coil 
(left), the high-pass RF coil (middle), and the band-pass RF coil (right). The maps 
show linear attenuation coefficient and were reconstructed from the attenuation 
correction sinogram. The capacitor attenuation coefficient was ~0.7 cm-1; however, 
all maps were windowed with a scale 0 – 0.4 cm-1. A smoothing filter (linear 
interpolation) was applied. In the band-pass RF coil attenuation map, the streaks are 
due to the abrupt difference in attenuation coefficient between the capacitors and the 
adjacent material and arise because of the nature of the sampling of the sinogram and 
reconstruction algorithm. 

7.2.2.3 Simulation Setup and Image Analysis 

Two investigations were performed: The first test compared PET image noise and 

artefacts for the cases with and without the band-pass RF coil present, applying all 

corrections. The purpose was to analyse images from the best and worst case 

scenarios. The second test compared images reconstructed with and without the 

RF coil included in the attenuation correction for the cases with the band-pass 

coil, the high-pass coil and no RF coil. The purpose was to investigate the errors 

introduced by not including the RF coil in attenuation correction. 

For the first test, two cases were modelled with full attenuation and scatter 

corrections: with the RF coil and without the RF coil. Statistics were recorded for 
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prompts (total coincidences), scatters (coincidences with at least one Compton 

scatter interaction), randoms (coincidences originating from different decays) and 

trues (valid coincidences with no scattering). Each image was scaled so that the 

total activity in the region of activity matched the known activity. The standard 

deviation of the reconstructed activity in the voxels in the region of activity was 

computed. 

For the second test, three emission simulations were performed: with no RF coil, 

with a high-pass coil and with a band-pass coil. All images included attenuation 

correction for the bed and phantom. For the cases with an RF coil present, images 

were reconstructed with and without the attenuation correction of the RF coil. For 

ease of comparison, each image was scaled with the same factor such that the 

mean activity per voxel in the phantom volume was 100 for the image with no RF 

coil. Variations in reconstructed activity along the axial length of the phantom 

were investigated by averaging the activity in groups of four adjacent slices and 

plotting the difference from the mean activity of the entire phantom. Images were 

also compared with scatter correction enabled or disabled in the image 

reconstruction algorithm to test the effectiveness of including this correction on 

the quantitative accuracy of the reconstructed activity. 
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7.2.3 Results 

7.2.3.1 Comparison With and Without Band-Pass RF Coil 

Data for the emission simulation and image analysis are shown in Table 7.3 for 

the cases with and without the band-pass RF coil. The scatter fraction was 

significantly greater for the simulation with the RF coil. Figure 7.5 shows the 

reconstructed PET images for both cases. The standard deviations of the activity 

in the case with no RF coil and with the RF coil were 4.0 Bq/voxel and 5.0 

Bq/voxel, respectively, where the actual activity in each water voxel was 41.9 Bq. 

Table 7.3: Comparison of simulation results for the cases with and without RF coil. 

Property No RF Coil Band-Pass RF Coil 
Percent Change 

(relative to no RF) 

prompts 207 × 106 190 × 106 – 8.2 % 

trues 168 × 106 140 × 106 – 17 % 

scatters 36 × 106 47 × 106 + 30 % 

randoms 2.3 × 106 2.1 × 106 – 8.7 % 

scatter fraction 17.4 % 24.7 % + 42 % 

total sensitivity 4.96 % 4.55 % – 8.3 % 

percentage 
standard deviation 

9.5 % 11.9 % + 25 % 



 

 

 

 

166 

 

Figure 7.5: Reconstructed PET images showing the central axial slice. The greyscale 
has units Bq/voxel. The images on the left correspond to the simulation with no RF 
coil present, and those on the right are for the case with the RF coil, including the RF 
coil in attenuation and scatter corrections. The top row shows the PET images with a 
zoom factor of 2 and full greyscale. Increased noise (25% higher standard deviation) 
and a circular-shape artifact are apparent in the RF coil image (top right) when 
compared to the case with no RF coil (top left). The bottom row shows the full field 
of view windowed to make the background noise visible. The case with the RF coil 
(bottom right) shows significantly increased noise outside the phantom when 
compared with the case with no RF coil (bottom left). A symmetric artifact arising 
from the ring of 8 capacitors is evident. 

7.2.3.2 Effect of Omitting the RF Coil in Attenuation Correction 

With the RF coils included in the attenuation correction, the reconstructed activity 

matched that of the image with no RF coil within two percent. Omitting the RF 
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coil from the attenuation correction resulted in a significant drop in the 

reconstructed activity, as shown in Figure 7.6. When no attenuation correction 

was applied, the mean activity was reduced to 60-70% of the correct value, 

depending on the whether an RF coil was present. 

 

Figure 7.6: Relative reconstructed activities averaged over the phantom volume are 
shown for simulations with the two RF coil models and scatter correction. The 
activity values are scaled to a reference image from a simulation with no RF coil 
present (100%). Omitting the RF coil in the attenuation correction (AC) results in a 
significant underestimation of the activity. Error bars were too small to be visible. 

Figure 7.7 shows how the reconstructed activity varied axially along the phantom 

for various cases. Deviations from the average phantom activity of several percent 

were apparent in the central region for the band-pass RF coil. Table 7.4 shows the 
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effect of scatter correction on the mean relative activity for images with full 

attenuation correction. 

 

Figure 7.7: Axial profile of the mean activity with scatter correction. Four slices 
were averaged to produce each data point. The presence of rung capacitors in the 
band-pass coil results in greater variation across the image along the axial direction. 

Table 7.4: Mean relative activity in the central slice for scatter correction enabled or 
disabled. 

 
Scatter Correction 

Enabled 
Scatter Correction 

Disabled 

No RF Coil (reference) 100 100 

High-Pass RF Coil 100.9 ± 0.3 102.6 ± 0.3 

Band-Pass RF Coil 101.6 ± 0.3 103.8 ± 0.3 

 

band-pass capacitor 
and solder 
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7.2.4 Discussion and Conclusions 

A Monte Carlo simulation that used the histogramming and reconstruction 

software of the commercial system modelled showed that the presence of discrete 

RF coil components, specifically capacitors and solder, within the PET field of 

view results in a significant increase in image noise and a potential for image 

artefacts. This study suggests that birdcage RF coils with capacitors located in the 

middle of the rungs (band-pass) are not suitable for combined PET-MRI. Care 

must also be taken when designing array coils for PET-MRI due to the high 

number of discrete capacitor components surrounding the subject in close 

proximity. The use of high-channel number array coils remains an outstanding 

problem for human simultaneous PET-MRI. 32 channel (and higher) receive coil 

arrays are critical for accelerated imaging and there is no obvious way to design 

these coils without discrete components in the field of view. Currently, CT 

attenuation data of rigid RF coils in human PET-MRI scanners are included in the 

PET reconstruction, but the attenuation from flexible array coils is not considered.  

The Monte Carlo PET simulations also showed that for PET-MRI studies to be 

quantitative, it is necessary to include the RF coil in the attenuation correction. 

Attenuation correction is especially important in applications where RF coils with 

capacitors in the PET field of view cannot be avoided. Even with attenuation 

correction, discrete components in RF coils located within the PET field of view 

can result in increased variations in reconstructed activity across the PET image. 

Analysis of images with and without scatter correction showed that scatter 

correction could improve quantitative accuracy by several percent with an RF coil 

present. 
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Chapter 8  

8 Conclusion and Future Work 

8.1 Thesis Summary 

The central aim of this thesis was to investigate approaches of combining MRI 

with small animal PET systems with detectors based on photomultiplier tubes 

(PMT). Various aspects of PET-MRI system integration and design considerations 

were explored through experimentation and Monte Carlo simulation. 

MRI provides excellent soft tissue contrast for imaging anatomy, while PET 

provides functional information about cellular metabolism with exceptional 

sensitivity. Combining PET with MRI in a dual-modality system provides the 

ability to co-register PET images with anatomical features, among other benefits. 

Thus, approaches for developing combined PET and MRI systems are of great 

interest. The physics challenge of this integration arises from the incompatibility 

of conventional PET detectors containing PMTs with magnetic fields. Several 

tactics to overcome this include the following: PMTs can be replaced with solid-

state detectors immune to magnetic fields, the MRI system can be adapted to 

accommodate conventional PET detectors or MRI and PET systems can be 

separated sufficiently to minimize interference. The majority of research in the 

past five years has been focused on developing MR-compatible PET inserts for 

simultaneous imaging. This thesis describes the exploration and development of 

the latter two approaches to PET-MRI. 
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A high-performance commercial small animal PET scanner was obtained and 

methods of integrating this PET system with MRI were investigated. Chapter 2 

described magnetic field exposure experiments on the PET system to characterize 

performance and image quality as a function of magnetic field. The results of this 

experiment established external magnetic field limits, indicating that the PET 

system could be operated during exposure to fields up to 0.9 mT with negligible 

effect on image quality. Based on this field limit, Chapter 3 surveyed a wide range 

of approaches to combining the PET system with various configurations of field-

cycled MRI and superconducting MRI systems. For each case, a design study was 

conducted and the advantages and shortcomings were discussed. A feature of 

field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the 

use of conventional PMT-based PET detectors. Chapter 4 described the 

integration of a prototype PET system using conventional PMT-based detectors 

with a field-cycled MRI scanner. Interleaved PET and MRI acquisition of a dual 

modality phantom was performed, generating a co-registered PET-MRI image and 

demonstrating the feasibility of this approach. Next, a Monte Carlo PET 

simulation workflow was implemented to inform the design of animal holders 

compatible with both PET and MRI and to investigate the impact of the presence 

of a radiofrequency coil on PET image quality. Chapter 5 introduced a 

sophisticated simulation workflow where the simulated PET data were converted 

to the raw list-mode data format of the commercial scanner modelled. This 

approach was implemented so that the histogramming and image reconstruction 

pathways of the simulated data matched those of the experimentally acquired data. 

The simulation was validated against experimental data in Chapter 5 using a 

highly precise GATE model for the NEMA NU 4-2008 image quality phantom. 
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Chapter 6 introduced a novel method of rapidly generating attenuation correction 

sinograms for simulated PET studies using an add-on built into GATE. Several 

validation tests demonstrated the effectiveness of this approach. Finally, in 

Chapter 7, Monte Carlo PET studies were performed to investigate the impact of 

different MR-compatible bed materials on PET performance and image quality. 

Furthermore, simulations were used to study the impact of discrete RF coil 

components on photon scattering, attenuation and image quality, and to 

investigate the importance of including the RF coil in attenuation correction on the 

quantitative accuracy of PET images. 

8.2 Future Work 

Several designs for combining the commercial PET system with MRI were 

explored in this thesis. A design for removing the PET detector ring from the 

Siemens Inveon and inserting it into a new field-cycled MRI scanner was 

considered, but not pursued. A design study showed that building a field-cycled 

MRI system for docking on the end of the PET system, using a track to move the 

animal holder between scanners, was feasible and could be considered for further 

development. Next, the concept of placing the PET scanner in the vicinity of a 

conventional superconducting MRI system was investigated. Designs for active 

electromagnet shield coils to null the magnetic field in the PET detectors were 

investigated; however, this approach introduces unnecessary complication when 

compared to the alternative of physically separating the scanners within the same 

room. Therefore, small animal MRI facilities that have sufficient floor space 

should consider the simple approach of placing the PET system in a location 

where the fringe magnetic field is below 0.9 mT. 
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The magnetic field exposure tests in Chapter 2 were limited to fields oriented in 

the axial direction of the PET system. In general, due to physical room constraints, 

the optimal location for a PET system in an MR suite may be such that the fringe 

field at the PET detectors is oriented in a non-axial direction. Additional 

experiments are needed to characterize the performance of the PET system when 

exposed to fields in a variety of directions. This would necessitate either the use of 

a larger coil than the one used in Chapter 2 or moving the PET system within the 

fringe field of an actual MRI system. 

The final system integration will require the construction of a common bed that 

can be used with both PET and MRI modalities, such as the design proposed in 

Chapter 7. If an RF coil is to be integrated with the bed, the design should ensure 

that the capacitors are outside the PET field of view. 

The Monte Carlo simulation could be made more accurate by including materials 

part of the actual detector housing, such the thin aluminium cylinder that protects 

the scintillator crystal rings, including scintillation light detection in the model, 

and using more sophisticated physics models that are more accurate at low 

energies. To implement any of these changes it would be necessary to also repeat 

the normalization simulation, a process that took nearly two months to complete 

on an 8-CPU computer using the fastest parameters. Access to a computer cluster 

would allow these modifications to be simulated in a reasonable amount of time. 

8.3 Conclusion 

Research into combined PET-MRI has developed and expanded rapidly 

throughout the past fifteen years. This thesis describes several original 
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contributions to this field. The first hybrid system to combine PET and field-

cycled MRI was demonstrated. Results from the magnetic field exposure tests on 

the Siemens Inveon PET will be important to other institutions considering a 

sequential PET-MRI small animal imaging facility with both scanners in the same 

room. The Monte Carlo simulation results yielded useful insights into RF coil 

design for simultaneous PET-MRI approaches, and the significant consequences 

of omitting the RF coil from attenuation correction were revealed. In addition to 

these contributions to the field of PET-MRI research, this thesis includes 

contributions that are expected to be of broad utility to the GATE PET simulation 

community, specifically, the novel attenuation correction add-on and the precise 

implementation of the NEMA NU 4-2008 small animal PET phantoms. 
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Appendix A  

Some of the programs, classes and scripts that were developed during the course 

of this thesis work may be useful to other researchers. Because they include 

thousands of lines of code, it is impractical to include the code directly in this 

thesis document. Instead, the source codes are made available as supplementary 

data and also on Prof. Chronik’s group website, which can be accessed through 

the website of the Department of Physics and Astronomy at Western University 

(http://physics.uwo.ca). At the time of thesis publication, Prof. Chronik’s website 

was available at the following URL: http://silverberg.physics.uwo.ca 

A summary of the available codes is given below. 

A.1 Code to Convert GATE ROOT Output to Siemens Inveon 
List-mode Format (root2lst_multi) 

Description 

This C++ program processes GATE ROOT files containing coincidences and 

outputs a Siemens Inveon list mode data format “.lst” file that can be used by 

Inveon Acquisition Workplace for making sinograms and reconstruction. The 

directory where root files are stored should contain files named with the following 

convention: filename_0.root, filename_1.root, filename_2.root, etc. The user must 

specify the number of files to process in the directory. 

From the command line, the usage for root2lst_multi is as follows: 

root2lst_multi <trues> <num_root_files> <rootfile_path> <output_file_name> 
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<trues>: set to ‘trues’ for only true unscattered coincidences, ‘prompts’ for all 

prompts, and ‘prompts_plus_delays’ to include random coincidences as delayed 

event packets. 

<num_root_files>: set the number of root files to process in the directory. 

<first_root_file_name>: set the path to the first root file. For example: 

/Data/inveonPET/inveonPET_0.root. 

<output_file_name> set the name of the list-mode file for output. For example: 

/Data/inveonPET/filename.lst 

Availability 

root2lst_multi.cpp 

A.2 Batch Script to Split GATE Simulations into Multiple Runs for 
Parallel Processing on Multi-CPU Computers 

Description 

This perl script splits large GATE simulation runs into multiple runs of equal 

time. The user specifies the maximum number of CPUs to use, the start time of 

the simulation, the number of seconds of simulated time for each run, and the total 

number of runs. This script requires no compilation and is a simpler alternative to 

the GATE Job Splitter (‘gjs’) that is distributed with the latest versions of GATE. 

The script requires the Forks::Super perl package which is available from the code 

repository at http://www.cpan.org. It should be noted that improvements in 

computation time can be achieved as long as the number of simultaneous runs is 
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less than or equal to the number of available physical processors. As of GATE 

6.1, the use of additional logical processing cores (i.e. through hyper-threading) 

does not decrease the total computation time. 

Availability 

gate_batch_splitter.pl 

A.3 Specification of the NEMA NU 4-2008 Phantom and Source 
Macros in GATE 

Description 

This set contains the GATE macro files for the phantom geometries and source 

distributions of the small animal PET imaging protocols of the NEMA NU 4-2008 

standard. These files can be used to test the accuracy of GATE simulations of 

small animal PET scanners, regardless of the scanner geometry. 

Availability 

phantom_nema_image_quality.mac 

phantom_nema_point_source.mac 

phantom_nema_mouse_scatter.mac 

phantom_nema_rat_scatter.mac 

phantom_nema_mouse_scatter.mac 

source_nema_image_quality.mac 
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source_nema_point_source.mac 

source_nema_mouse_scatter.mac 

source_nema_rat_scatter.mac 

source_nema_mouse_scatter.mac 

A.4 GATE Attenuation Correction Add-on 

The GATE attenuation correction add-on consists of two classes and two headers. 

These must be inserted into the GATE source directory and compiled. To use the 

GATE add-on to generate an attenuation correction sinogram, the user runs a 

special GATE macro different from the emission simulation macro. The 

attenuation macro should call the same phantom and detector macros as the 

emission simulation. The attenuation correction actor is called after the physics 

processes are initialized and before the run is initialized as follows: 

# Initialize Physics Processes 
/control/execute physics.mac 
 
# Attenuation Correction Actor 
/gate/actor/addActor AttenuationCorrectionActor myAtten 
/gate/actor/myAtten/attachTo world 
/gate/actor/myAtten/setNumProjectionBins 128 
/gate/actor/myAtten/setNumAngleBins 160 
/gate/actor/myAtten/setNumAxialSinograms 159 
/gate/actor/myAtten/save my_attenuation_sinogram.atn 
 
# Initialize Run  
/gate/run/initialize 

The add-on requires that a source be initialized with the total number of primaries 

equal to the number of LORs. For the case above, the number of LORs required is 

128 × 160 ×159 = 3256320 and the number of primaries can be set as follows: 

/gate/application/setTotalNumberOfPrimaries 3256320 
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Availablility 

Sources (../GATE/source/digits_hits/src/): 

GateAttenuationCorrectionActor.cc 

GateAttenuationCorrectionActorMessenger.cc 

Headers (../GATE/source/digits_hits/include/): 

GateAttenuationCorrectionActor.hh 

GateAttenuationCorrectionActorMessenger.hh 
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