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Abstract 

Multiple sclerosis (MS) is the most common neurological disease in young Canadians, 

yet its etiology remains obscure. Two possibly related findings in MS are brain iron 

deposition and the presence of small veins in white matter lesions. This thesis concerns 

the development and application of 3 Tesla magnetic resonance imaging tools to image 

iron and veins in early multiple sclerosis. 

To facilitate measurements of iron concentration as well as production of cerebral 

venograms, we first optimized multi-echo susceptibility weighted imaging (SWI), using 

numerical simulations and input from physicians. We validated measurements of R2*, an 

MRI parameter that scales linearly with iron concentration. 

Subsequently, we proposed quantification of the caliber of the internal jugular veins 

(IJVs) from magnetic resonance venograms. IJVs are implicated in the chronic 

cerebrospinal venous insufficiency model of MS, an increasingly disputed theory that 

attributes iron deposition in MS to venous abnormalities. We report that the coefficient of 

variation of measurements of average cross-sectional area of the IJVs is on the order of 

7%. 

We performed quantitative investigations of iron concentration in a cohort of patients at 

risk of MS diagnosis, compared to healthy controls. We report increased R2* (putative 

iron) in deep as well as cortical grey matter in patients. We subsequently measured IJV 

area, finding a trend for reduced total IJV caliber in patients; however, we found no 

correlation between R2* changes and IJV area. 

We investigated the ability of multi-echo SWI to detect central veins within white matter 

hyperintensities (WMHs). We found that patients who converted from clinically isolated 

syndrome (CIS) to MS had a larger fraction of lesions with central veins compared to 

patients with non-converted CIS and healthy controls. Moreover, all patients who 
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received a diagnosis of MS within the study window had >40% lesions with central veins 

at their CIS baselines, suggesting there may be predictive value in this biomarker. 

The subjects from these last two studies represent a subset of our cohort in an ongoing 

longitudinal study. Using methodology described herein, we are equipped to further 

investigate different biomarkers of disease to better understand early pathology in MS. 

 

Keywords 

Multiple sclerosis, MRI, brain iron, clinically isolated syndromes, susceptibility weighted 

imaging, cervical veins 
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1 Introduction 

This thesis is concerned with the development and application of magnetic resonance 

imaging (MRI) techniques for the study of pathological components in early multiple 

sclerosis (MS) including iron accumulation and a role for veins. This chapter will provide 

the background and rationale for imaging studies described in this thesis. First, a 

summary of natural history, imaging, and pathology of MS is presented. Second, relevant 

details of MRI techniques employed herein are provided, culminating in a description of 

susceptibility weighted imaging and !!∗ relaxometry. Third, in order to address a recent 

theory of MS pathogenesis, normal drainage of blood from the central nervous system 

(CNS) and chronic cerebrospinal venous insufficiency (CCSVI) are discussed. Finally, 

this chapter concludes with a brief overview of subsequent chapters of this thesis.  

1.1 Multiple Sclerosis 

1.1.1 Natural history 

Multiple sclerosis (MS) is the most prevalent neurological disease that affects young 

adults in Canada, with roughly 55,000 to 75,000 individuals affected1. Prevalence varies 

by region, but MS affects approximately 88 per 100,000 individuals in London, Ontario, 

and 85 per 100,000 in surrounding Middlesex County2. MS affects more than twice as 

many women as it does men3, an unexplained bias. Curiously, this ratio has been steadily 

increasing since the early 20th century, also for unknown reasons; this is potentially 
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related to environmental or gene-environment contributions. MS affects primarily 

Caucasians of Northern European ancestry4. 

In 85% of individuals with MS, disease onset is marked by a clinically isolated syndrome 

(CIS), typically affecting the optic nerves, spine, or brainstem5. In brief, a CIS is an acute 

or sub-acute episode of neurological disturbance due to a single white matter lesion; this 

may be the first evidence of MS, although further studies are required to confirm or 

exclude MS as the diagnosis. A brief summary of common differential diagnoses for MS 

is provided below.  In general, 30-70% of patients presenting with a CIS will eventually 

be diagnosed with clinically definite MS (CDMS)6. In 80-90% of patients with MS, 

disease course is initially marked with relapsing/remitting symptoms – so called relapsing 

remitting MS (RRMS)4. In these patients, disease onset is usually in the third or fourth 

decade of life. The interval between relapses is random, but early in the disease course 

relapses typically occur once a year, decreasing in frequency with time. Eventually, the 

disease is marked by a steady worsening of symptoms that occurs independently of 

relapses. At this stage, the disease is called secondary progressive MS (SPMS)7. In one 

study, median time to SPMS from diagnosis of RRMS was 21.4 years, occurring at a 

median age of 53.7 years8. 

In the remaining 10-20% of patients, the disease is characterized by steady progression of 

symptoms in the absence of relapses from onset9. This disease is termed primary 

progressive MS (PPMS) and generally carries the worst prognosis10. Although 

immunomodulatory drugs can reduce the frequency and severity of relapses in RRMS, 
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they are of no benefit for progressive symptoms. Onset of PPMS is generally during the 

fourth or fifth decade. 

In about one quarter of patients, MS never affects activities of daily living; alternatively, 

15% of patients become severely disabled within a short time4. 

1.1.2 Magnetic resonance imaging for MS 

MRI has an intimate role in the diagnosis of MS, where it is used to establish that the 

disease shows dissemination in space (DIS) as well as dissemination in time (DIT)11. 

Moreover, MRI can be used to evaluate and exclude many typical differential diagnoses 

in patients with MS-like presentations12. Current diagnostic criteria rely on MRI to 

visualize white matter lesions in different regions of the brain and spinal cord. Based on 

MRI findings, DIS can be demonstrated with one or more T2 lesions (i.e. a lesion with 

hyperintense signal on T2-weighted images) in at least two of four white matter areas: 

periventricular, juxtacortical, infratentorial, and spinal cord (however, symptomatic 

brainstem and cord lesions are excluded from lesion counts). DIT can be demonstrated by 

a new T2 or contrast-enhancing lesion (i.e. a lesion with hyperintense signal on T1-

weighted images following intravenous injection of a contrast agent) on a follow-up 

MRI, or the simultaneous presence of asymptomatic contrast-enhancing and non-

enhancing lesions at any time.  

As noted above, the exclusion of other neurological disorders is an essential step when 

considering an MS diagnosis12. In general, there is a long list of diseases that share 
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radiological similarities with MS largely owing to the relatively limited specificity of 

abnormalities visualized by clinical MRI images (namely, hyperintense foci on T2 

weighted images). How MRI may be used to vet a list of possible diagnoses is beyond the 

scope of this thesis (this information is available elsewhere13). Inflammatory 

demyelinating diseases that may challenge the differential diagnosis include atypical 

presentations of MS (acute presentations, Balo’s sclerosis, tumefactive disease), acute 

disseminate encephalomyelitis, and neuromyelitis optica. The extensive list of diseases 

with similar MRI findings as MS despite distinct underlying pathologies includes 

vascular, metabolic, and neurodegenerative disorders. Additionally, many rheumatic 

diseases (Lupus, Sjögren’s syndrome, Behçet’s syndrome) may have neurological 

presentations14 and MRI findings which can be challenging to differentiate from MS. 

MRI-based criteria for MS diagnosis have been proposed and revised several times since 

200111,15-17, with a trend towards becoming simpler to use and less reliant on the use of a 

contrast agent. In addition to being an invasive and potentially uncomfortable procedure, 

intravenous administration of contrast agent holds a small risk of severe allergic 

reaction18. Revisions to diagnostic criteria have maintained a relatively high specificity to 

CDMS of approximately 90%, but sensitivity remains modest, at best. One study 

estimated sensitivity of the new criteria to CDMS to be at 72%19 (in other words, there 

was a tendency to under-diagnose/miss cases of MS). In that study, diagnosis with 

CDMS took a median of 8 months from clinical presentation, and in some individuals 
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diagnosis may take years20. Clearly, the ideal criteria would facilitate high specificity, 

high sensitivity diagnosis to be made at first presentation. 

The current diagnostic criteria do not indicate what MRI field strength is appropriate for 

these studies11; however, the criteria are generally based on the most common clinical 

strength of 1.5 T. As higher field strength scanners become more prevalent, extension of 

these criteria to different field strengths is imperative. It is clear from several studies that 

inflammatory white matter lesions are increasingly visible at higher field. One estimate 

suggests a 40% increase in the number of lesions detected at 3 T compared to 1.5 T21, 

although it is unclear how this will affect diagnosis and prognosis for patients22,23. 

MRI contrasts (meaning image contrasts achieved by different acquisition methods) that 

are typically used in the clinic (generally at 1.5 T) do not visualize all damage to 

neurological tissues in MS, and therefore do not provide a complete assessment of 

disease burden. Non-conventional MR techniques (i.e. not yet used in a clinical setting) 

allow evaluation of diffuse changes to normal appearing white matter24, lesions in grey 

matter25, as well as iron accumulation26. It remains to be seen how these novel techniques 

can be used to complement existing diagnostic criteria. Ultimately, advanced MRI 

methods may provide better assessment of risk of conversion from CIS to MS27. 

1.1.3 Pathology 

MS is generally held to be a chronic autoimmune disorder of the CNS28,29. Manifestation 

of the disease arises from interactions between inherited predisposition30 and 
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environmental factors31. The most familiar pathology of MS, and that from which the 

disease takes its name, is the demyelinating plaque or lesion of the white matter. 

Characteristically positioned along small veins32, white matter plaques in MS are by 

definition disseminated throughout the CNS. 

Early in the lifetime of a lesion (i.e. when the lesion is referred to as an active plaque), 

adhesion molecules on the endothelial surface of a post-capillary venule interact with 

mononuclear cells (T cells, B cells, and macrophages) to facilitate the invasion of these 

cells from the circulation into the CNS parenchyma through the blood brain barrier33. 

Activated autoreactive T cells (i.e. that recognize one or more neuro self-antigens) 

produce cytokines that mediate the inflammatory environment and may cause direct 

injury to oligodendrocytes and myelin. Activated B cells also secrete cytokines and 

produce demyelinating antibodies34. Macrophages may adopt a pro-inflammatory 

phenotype: this appears to be associated with, and potentially induced by, high iron 

uptake35. Alternatively, macrophages may adopt an anti-inflammatory phenotype 

involving phagocytosis/clearance of myelin debris, which is necessary for remyelination 

of denuded axons36. Additionally, active plaques are characterized by edema, apoptosis of 

oligodendrocytes37, and the presence of reactive microglia38. There is considerable 

heterogeneity in the pathology of white matter lesions as well: Lucchinetti et al.39 have 

characterized four fundamentally different types of demyelination from large pathology 

studies. Type I lesions demonstrate primarily T cell mediated demyelination. Type II 

lesions also show T cell mediated damage, in addition to antibody-mediated changes. 
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Both Type III and IV lesions show extensive damage to and loss of oligodendrocytes, 

with Type IV lesions being found exclusively in PPMS. 

Alternatively, chronic plaques in MS are distinguished by diminished/absent 

inflammation40, relative lack of reactive glia, astrocytic scarring41, and myelin-laden 

macrophages typically found at the rim of the lesion35. Remyelination is the reparative 

process by which denuded axons are invested with new myelin sheaths. Remyelination 

may be present in chronic lesions, but is typically only located to the outer rim of the 

lesion42. Axonal transection and degeneration occur not only within the active lesion, but 

also in the chronic lesion43 where the lack of trophic factors provided by myelin is 

postulated to be responsible for axonal loss44. 

It has become increasingly apparent that damage to neurological tissues in multiple 

sclerosis extends beyond white matter. Demyelinating lesions are found in as much as 25-

30% of the grey matter, as opposed to 5-15% of white matter45. Atrophy has been 

reported in both grey and white matter of MS patients, although grey matter atrophy 

appears to correlate better with disease disability than measures of white matter46,47. Over 

the past three decades, iron accumulation has been consistently reported in regions of the 

brain affected by multiple sclerosis26, although its role is, as of yet, unclear. Moreover, 

the close association of MS plaques and cerebral veins, noted from the earliest 

descriptions of the disease32, remains incompletely explained and may be central to the 

evolution of the plaque and the disease. These two findings – increased iron and 
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association of pathology with cerebral veins – form the central motivation for this thesis 

and will be discussed respectively below. 

1.1.4 Iron in MS 

Neurological tissues normally contain high concentrations of iron48. In white matter, 

many components of the enzymatic machinery required for myelin synthesis and 

maintenance require iron as a catalytic center. As such, the normally high levels of intra-

cellular iron, generally stored in ferritin, are unsurprising. The oft-cited calorimetry study 

of Hallgren and Sourander established that iron accumulates with age in cortical grey 

matter and, at a greater rate, in deep grey matter structures in the normal brain49. 

Dysregulation of iron homeostasis is a feature of several neurological conditions, 

including Alzheimer50 and Parkinson’s51 diseases. Starting in the early 1980’s, a series of 

histological studies suggested abnormal iron accumulation might occur in MS as well. 

The study of Craelius et al. demonstrated the presence of iron reactivity surrounding MS 

lesions and associated with nearby blood vessels52. Adams found evidence of increased 

iron storage protein haemosiderin within the vein wall in MS lesions consistent with 

previous microhemorrhage, and concluded that the cerebral vein wall in MS is subject to 

extensive inflammatory damage53. Using a highly sensitive iron-staining technique, 

Levine et al. demonstrated increased iron in reactive microglia, ameboid microglia, 

macrophages, oligodendrocytes, and myelin within MS lesions50, which may suggest an 

underlying iron metabolism disorder. The specific mechanism of iron accumulation in 
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MS remains unknown. Serum levels of transferrin receptor (whose ligand is the iron-

binding protein transferrin) are increased in MS patients54; iron in this form can be 

transported across the blood brain barrier and released as elemental iron into the brain 

interstitial fluid55. Alterations in brain iron levels may be a downstream effect of an 

autoimmune response56; alternatively, iron may provoke inflammation directly35. In 

either case, iron might serve as a source of oxidative stress57 (to which lipid-rich tissue, 

such as myelin, is especially susceptible58), thus increasing tissue damage. 

In passing, it is interesting that iron and its homeostasis are major factors involved in 

inflammation in settings outside the CNS, where iron levels correlate with markers of 

chronic inflammation59.  Notably, in rheumatic diseases, ferritin levels predict disease 

activity60, and removal of iron is associated with improved clinical outcomes61. 

Owing to its high sensitivity to iron, MRI was utilized in several early studies of iron in 

MS, especially with respect to deep grey matter iron where it continues to be a preferred 

tool for such work. Drayer was the first to interpret decreased signal intensity on T2-

weighted images of MS patients in several deep grey matter structures as increased iron62. 

Increased iron in basal ganglia structures has since been confirmed by numerous MRI 

studies using T2 hypointensity63, relaxation rate64, phase65, and magnetic field 

correlation66. The significance of deep grey matter iron is unknown in MS, although it 

may cause cellular damage57 and thus contribute to clinical disability67. 

As these studies tend to have been performed cross-sectionally in time on patients with 

CDMS, they have not established (i) at what stage of the disease iron accumulation 
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occurs (both within lesions and in deep grey matter), or (ii) whether iron is a primarily a 

cause or consequence of pathology. At least two recent studies have interrogated iron 

levels in deep grey matter or patients with CIS (a subset of who presumably will be 

diagnosed with MS), working under the hypothesis that, if iron is a cause of MS, it 

should be present at first clinical presentations. However, these studies have found 

contradictory results, with one reporting iron is increased in patients with a CIS68, and the 

other finding no such difference67. These contrasting results are likely related to 

methodological differences in iron concentration measurements or age of CIS patients as 

described more thoroughly in the Discussion in Chapter 4. 

1.1.5 Small veins in MS 

An anatomical association of MS lesions and small veins has been known for over a 

century, although pathological consequences of this association remain unclear. In 1868, 

Charcot reported that sclerotic plaques of MS were typically positioned along small 

veins, as determined from analyses of autopsy specimens32. In 1916, Dawson described 

lesions of MS that spread along prominent periventricular veins69. Today, such lesions 

are known to be very typical for MS and are known as Dawson’s fingers70. In 1963, Fog 

reported on 30 MS plaques from cadaver brains, stating such lesions typically followed 

the course of small veins71. 

Functionally, the central venule within a lesion is directly involved in the lesion’s 

pathogenesis. Breakdown of the blood brain barrier precedes symptoms and other MRI 
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signs of a new lesion72. In the acute lesion40,53, perivenous inflammation and cuffing of 

the vascular wall are present and are associated with infiltration of mononuclear cells, 

demyelination, and axonal damage. In chronic lesions, evidence of long-standing 

vascular injury includes thickening or hyalinization of the vein wall, in addition to signs 

of previous microhemorrhage73. 

More recently, MRI has been used to demonstrate the presence of a central venule in 

many MS plaques72,74. Recent studies have proposed that the presence of a central vein 

within white matter T2 hyperintensities may be specific to MS, and this specificity could 

be exploited for the benefit of diagnosis75,76.  

Over the past century, various theories have been put forth that attribute the origins of 

MS pathology to venous occlusion or reflux in (relatively large) intra- or extra-cranial 

vessels resulting in microhemorrhage including pathological iron deposition upstream 

(putatively at the position of a subsequent lesion)77. In such a model, iron is a driving 

factor for inflammation and subsequent antigen presentation. While these theories might 

initially appeal to logic inasmuch as an association of demyelinating foci with small veins 

and iron is known, they have been insufficient with respective to objective evidence or 

scientific support. However, evidence is more supportive of increased iron in MS as 

secondary to an autoimmune response that is associated with (1) increased transport of 

iron into the brain from circulation54, and/or, (2) irregular metabolism of iron56. In these 

cases, a subsequent toxic57 or pro-inflammatory role35 for increased iron cannot yet be 

ruled out. 
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1.2 Gradient Echo Imaging 

Gradient echo imaging forms the foundation of many applications on modern magnetic 

resonance imaging (MRI) systems78. Gradient echo imaging has found many practical 

applications where rapid imaging with low power deposition is required79, including 

dynamic cardiac imaging, MR angiography, perfusion imaging, and functional MR 

studies. The gradient echo acquisition represents the most basic MRI experiment: after 

excitation of spins in the imaging volume with a radio-frequency (RF) pulse, a readout 

gradient is applied and the signal is sampled80. Gradient echo sequences form the basis 

for much of the imaging work described in this thesis. 

1.2.1 Gradient echo signal: Magnitude 

After RF excitation, transverse magnetization (i.e. which generates signal) will decrease 

in magnitude with time, due to thermodynamic effects. This process is called transverse 

relaxation, and is characterized by an exponential rate of !!, or its inverse, the decay time 

constant !!81. !! is inversely proportional to water concentration. !! will also increase in 

the presence of iron. Variations in magnetic field within the imaging voxel cause spins to 

precess at a range of frequencies resulting in dephasing, or loss of coherence. In gradient 

echo imaging, this dephasing is not reversed. Therefore, the measured magnitude of the 

vector sum of these spins is reduced compared to what is expected due to !! decay alone. 

This additional field-induced decay is characterized by rate !!! , or its inverse, the decay 

time constant !!!
79. !!!  is dependent on the sample and machine, and will increase with 
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increasing iron concentrations in the imaging volume. The effective transverse relaxation 

of magnetization magnitude occurs due to both thermodynamic (!!) and field-induced 

(!!! ) effects, and is characterized by a rate !!∗ (Eq. 1.1), or equivalently, its inverse, the 

relaxation time !!∗ (Eq. 1.2). 

        [1.1] 

      [1.2] 

The magnitude (S) of gradient echo signal therefore depends on the effective transverse 

relaxation rate, in addition to the time at which the signal is sampled (i.e. the echo time, 

TE), and the steady state signal (S0), as described in Eq. 1.3. 

      [1.3] 

1.2.2 Gradient echo signal: Phase 

Magnetization, which gives rise to MR signal, is a vector, having both magnitude and 

phase. Once magnetization is excited into the transverse plane, it precesses about the 

magnetic field at a frequency that is linearly related to magnetic field; equivalently, 

frequency offset (Δω) from resonance is proportional to the shift (ΔB) from the main 

magnetic field	
  as in Eq. 1.4, where the constant of proportionality (γ) is the gyromagnetic 

ratio. 

       [1.4] 
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 The phase (ϕ) of magnetization represents the difference in phase accrued by some time 

(TE) compared to on-resonance spins (i.e. those spins where Δω=0), as in Eq. 1.5a; or, 

after considering the relationship presented in Eq. 1.4, as in 1.5b. 

      [1.5a] 

      [1.5b] 

The phase of the signal measured for a given voxel is the phase of the vector sum of all 

magnetizations within the voxel. In reality, there will be a range of magnetic fields within 

the voxel; in other words, it would be inappropriate to assume a single value of ΔB for the 

entire voxel. The interpretation of voxel phase is further complicated by the fact that a 

range of transverse relaxation times within a voxel will cause magnetizations to 

contribute differentially to measured phase, especially at increasing TEs. The measured 

phase of a voxel can be considered related to an average	
  ΔB	
  within the voxel, weighted 

towards positions within the voxel with the largest magnetization at the TE. 

The distribution of magnetic susceptibilities within the imaging volume of interest, for 

example the brain, gives rise to changes in ‘local’ (ideally, microscopic and mesoscopic) 

magnetic field (Blocal)
82. However, inhomogeneities in the main magnetic field and abrupt 

magnetic susceptibility interfaces (for example, at the sinuses) result in a so-called 

‘background’ field (Bbackground). Any deviation from the main field	
   ΔB, to which 

magnetization phase is proportional (Eq. 1.5b), is thus the superposition of deviations due 

to local and background effects83, as in Eq. 1.6. 
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    [1.6] 

Background contributions are generally undesirable and efforts are made to remove them 

from the phase image before further processing. The background field tends to vary 

slowly over the image; therefore its effects on phase can be removed with spatial high-

pass filtering. A number of such techniques have been proposed to remove these 

unwanted contributions from phase, including heuristic approaches (homodyne 

filtering84, fitting of high order polynomials85) and application of physical models (dipole 

fitting86, SHARP filtering87). In reality, the classification of field shifts into ‘local’ and 

‘background’ is quite arbitrary and in many cases, appears to be retrospectively defined: 

those contributions which can be removed with by the implemented spatial filter are 

deemed ‘background,’ and everything else, ‘local.’ 	
   

In clinical practice, phase data are nearly always discarded, with exceptions limited to 

phase contrast angiography88, where phase is sensitized to flow speed by application of 

magnetic field gradients. In research settings, phase contrast has been exploited for an 

increasing number of applications in recent years, including calculation of quantitative 

susceptibility maps89, measurement of cerebral metabolic rate of oxygen90, and 

measurement of iron concentrations91. Due to field shifts that arise in the presence of 

deoxygenated blood, phase plays a crucial role in susceptibility weighted imaging, as 

described below. 

Ultimately, both phase and !!∗ (and thus magnitude, as in Eq. 1.3) are dependent on the 

distribution of magnetic field within the imaging volume. Differences in phase are related 
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to differences in ΔB between voxels. Differences in magnitude may be attributed to 

differences in ΔB experienced by magnetization within voxels (i.e. differences in !!!  

between voxels) in addition to differences in !!. 

1.2.3 Blood oxygenation level dependent (BOLD) effect 

The BOLD effect represented a major breakthrough in the visualization of capillaries, 

venules, and veins by using deoxyhemoglobin as an intrinsic contrast agent92. In blood, 

the transverse relaxation times (!! and !!∗) are a function of deoxyhemoglobin content 

and thus of blood oxygenation. As oxygenation increases, deoxyhemoglobin 

concentration decreases, and the relaxation times – and thus the signal in !! or !!∗ 

weighted images – will increase. 

Early work in animals and humans demonstrated that the BOLD effect could be exploited 

to image veins, visibility of which was a function of available signal-to-noise ratio, 

degree of oxygenation, and size of vessel93. Shortly thereafter, the BOLD mechanism 

found use in functional MRI, where the increase in oxygenation that accompanies neural 

activation results in increase of MRI signal94. 

The study of Lai et al. was the first to describe efforts to enhance BOLD contrast in 

gradient echo images to improve visibility of veins95. In that study, a commutator filter 

was described that incorporated information from the complex image into the magnitude 

image, wherein some venous contrast was present and attributable to the BOLD effect. 

This formed the basis for MR venography with susceptibility weighted imaging (SWI) 
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where phase data is used directly to enhance BOLD contrast in magnitude images, as 

described in the subsequent section. 

1.2.4 Susceptibility weighted imaging (SWI) 

Extending the work of Lai et al., Reichenbach formally described imaging small veins 

using the phase image explicitly to enhance magnitude contrast96. This technique was 

originally referred to as BOLD MR venography, however it has since been named 

susceptibility weighted imaging. At 3 T and with a resolution of 0.5x0.5x1.0 mm3, SWI 

was estimated to visualize veins with diameters on the order of 100 to 200 μm97, which 

speaks to the remarkable ability of SWI for visualizing small veins. 

In SWI processing83, the low spatial frequency components of the phase image 

(putatively those arising from ΔBbackground in Eq. 1.6) are first removed using homodyne 

filtering. The resulting filtered phase image is used to create a phase mask. The typical 

function98 used to create this mask image is described in Eq. 1.7, and illustrated with 

Figure 1.1, although other functions are certainly possible. Effectively, this particular 

function scales negative phases of –π to 0 rad (-180° to 0°) linearly from 0 to 1, and sets 

all positive phase (0 to +π rad, i.e. 0° to +180°) to 1. 

    [1.7] 

Due to paramagnetic deoxyhemoglobin99, voxels containing veins typically will have 

negative phase and thus will be assigned values less than 1 in the phase mask.  
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Figure 1.1 SWI processing. Phase and magnitude data are reconstructed. The background 
field contributions to phase are removed using homodyne filtering. The filtered phase 
image (Φ) is converted to a mask [f(Φ)], using the plotted function. The mth power of the 
mask is multiplied with the magnitude image. A minimum intensity projection (mIP) 
over 10 mm is shown, where veins are readily apparent. 
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By multiplying the phase mask with itself several times, contrast between veins and 

surrounding tissue can be enhanced. However, while venous contrast can be accentuated 

by increasing the exponential power of the phase mask, generally referred to as m, doing  

so also increases noise, therefore the optimal value of m must be carefully considered100. 

Multiplication of the mth power of the phase mask with the magnitude image (wherein 

veins may have some contrast already in part due to the BOLD effect) results in enhanced 

venous contrast, i.e. veins appear darker. If illustrating venous vessel contiguity is the 

goal of the study, adjacent slices can be viewed as a minimum intensity projection (mIP).  

These steps are illustrated in Fig. 1.1.  

The technical foundations of SWI processing were well established by the early 2000’s 

and work has continued to optimize acquisition101 and post-processing parameters100,102. 

One component of the post-processing chain that is very flexible and thus a research 

target is the mask function. While the linear mask function described above (Eq. 1.7) is 

the commonest function, other functions have been proposed for specific applications, 

such as improving contrast of veins for oblique acquisitions103, improving contrast of 

implanted microelectrodes104, and kidney imaging105.  

Since its earliest descriptions as a technique for venography, SWI has found uses in 

visualizing other tissues in the brain, such as blood products, iron, and calcium. As a 

result, major clinical applications of SWI are numerous106 and include investigations for 

trauma, stroke, cerebral amyloid angiopathy, and tumor grading. 
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1.2.5 Multi-echo gradient echo and !!∗   relaxometry 

Extension of gradient echo to multiple acquisitions of signal (i.e. at a series of TEs) after 

the RF excitation allows multiple contrasts to be acquired in the same sequence. By 

serially sampling the decay of magnetization, one obtains a dataset from which !!∗ can be 

measured for each voxel. The most basic approach to measuring !!∗ involves fitting the 

magnitude data from each voxel as a function of TE to the exponential decay function107 

(Eq. 1.3). Phase data can be incorporated into the curve fit in order to eliminate 

undesirable increases in !!∗ due to magnetic field inhomogeneity across the voxel108, an 

effect that is more pronounced with increasing voxel size. !!∗ can also be measured by 

summing measurements of !! and !!! , although this may require novel pulse 

sequences109. 

Each of !!, !!! , and !!∗ has been used in the study of iron in chronic brain disorders110, 

however for the following reasons, !!∗ appears to be the most widely used. A linear 

relationship between local iron concentration and !!∗ has been chemically validated85; 

moreover, !!∗ images show contrast that correlates well with histological iron stains111. 

Well-known trends in brain iron accumulation with age have been reproduced with !!∗ 

mapping107. !!∗ has been used to study brain iron accumulation in chronic brain disorders 

including multiple sclerosis67, Parkinson’s112, Alzheimer’s113, essential tremor114, and 

non-specific demyelination115. In the brain, !!∗ is also sensitive to myelin content and has 

been used to characterize location, direction, and myelination of white matter fiber 

bundles116. !!∗ mapping in non-brain is also useful for iron studies, such as in the liver117 
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and heart118. Like !!, !!∗ will decrease in the presence of increasing water concentration; 

and like !!! , !!∗ will increase in the presence increasing field inhomogeneity, although in 

the brain, iron and myelin are the major sources of such inhomogeneity. 

SWI images and !!∗ maps contain useful and potentially complementary information 

regarding the anatomy and quantitation, respectively, of different perturbers in the brain. 

However, SWI processing involves only a single-echo gradient echo dataset, whereas !!∗ 

mapping requires multiple echoes. Multi-echo SWI processing has been proposed in 

previous studies103,108 and allows generation of high-quality venograms in addition to 

intrinsically co-registered !!∗ maps. However, no previous work has identified the 

optimal method by which a series of echoes can be combined into a single SWI image. 

This is the focus of Chapter 2 of this thesis. 

1.3 Venous Drainage of the CNS 

Owing largely to the well-established but unexplained association of MS lesions and 

small veins in the brain, a number of theories have been proposed in the last century that 

attempt to connect circulatory abnormalities to MS etiology. In the 1930’s, Putnam 

studied obstructed venous flow in the cerebral veins of dogs119, and described similarities 

between resulting symptoms and those experienced by patients with MS. In the late 

1970’s and 80’s, Schelling postulated that venous reflux into the CNS may be associated 

with MS120. In the last decade, a theory proposed by an Italian vascular surgeon 

suggested a direct link between occlusion of extra-cranial veins, cerebral 
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microhemorrhages, and iron-mediated inflammation in MS121. These theories have been 

met with substantial scientific evidence to the contrary, but questions still remain. Are 

venous abnormalities associated with MS? And if so, do they represent an integral 

component in disease pathogenesis? Is there an association with iron deposition? We 

attempt to address these issues, in part, in Chapter 4 of this thesis. An overview of the 

topic is presented here. 

1.3.1 Normal drainage of the CNS 

The vascular system that drains the cerebrum can be divided into two parts: the 

superficial system and deep cerebral venous system122. The superficial system consists of 

superficial cerebral veins that run along the cortex and receive blood from subcortical 

white matter and cortical grey matter. These veins empty into dural sinuses, which 

include the occipital sinus and superior sagittal sinus. These sinuses flow posteriorly and 

inferiorly and merge at the confluence of the sinuses. The deep cerebral system drains 

deep white matter and deep grey matter via the internal cerebral veins and the Vein of 

Rosenthal. The site of drainage of this system is the great vein of Galen, which then 

empties into the straight sinus123. The straight sinus runs posteriorly and joins with the 

superficial sinuses at the confluence of sinuses. The confluence then bifurcates into the 

left and right transverse sinuses, through which blood flows anteriorly as these vessels 

become the left and right sigmoid sinuses. The sigmoid sinuses turn inferiorly as they 

become confluent with the left and right internal jugular veins (IJVs) at the cranial base. 

These veins are identified in a time-of-flight magnetic resonance venogram in Figure 1.2. 
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Figure 1.2 Sagittal maximum intensity projection of time of flight magnetic resonance 
venogram of major intracranial veins. A sinus (more properly, a dural venous sinus) is a 
venous channel, but unlike a vein, the walls of a sinus are composed of dura mater. 
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Veins of the cerebellum drain into adjacent sinuses, including the transverse, occipital, 

and straight sinuses123. The veins of the brainstem form a venous plexus (a network or 

tangle of veins), parts of which may become continuous with spinal veins, or empty into 

nearby sinuses. 

In addition to draining blood from the brain, the IJVs also drain much of the skull and 

deep parts of the neck and face122. Each IJV descends parallel to the ipsilateral carotid 

artery: at its termination, the IJV joins with the subclavian vein to form the 

brachiocephalic vein. This vein in turn merges with the contralateral vessel and empties 

into the superior vena cava. Slightly superior to the IJV termination, the inferior bulb is a 

dilation of the IJV that is present in most individuals. Superior to the bulb are a pair of 

valves124. 

The vertebral vein forms from numerous tributaries of internal venous plexuses within 

the vertebral canal, which exit the canal at the first cervical vertebra124. The vein 

descends through transverse foramina of the cervical vertebra as a plexus and emerges 

from the transverse foramen of the sixth cervical vertebra. Subsequently, the vertebral 

vein empties into the brachiocephalic vein, but also communicates with deep thoracic, 

lumbar, and intercostal veins. The azygos vein is the final collector for this system, and 

represents an alternative pathway for blood to return to the right atrium125. 

In addition to the IJVs, numerous tributaries, which are variable between individuals, 

may form anastomoses (cross-links) between veins of the neck. As such, the veins of the 

neck cannot necessarily be entirely separated122 and it is not possible to define a single 
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normal anatomy for drainage of the CNS. The main veins of the neck are identified in a 

magnetic resonance venogram in Figure 1.3. 

1.3.2 Chronic cerebrospinal venous insufficiency (CCSVI) 

An Italian vascular surgeon, Paulo Zamboni, first proposed parallels in the inflammatory 

environment of MS lesions and ulcers associated with chronic venous disease in 2006, 

and suggested that a similar pathological substrate – impaired venous drainage – was to 

blame121. Specifically, Zamboni proposed that inflammation in both diseases was iron-

dependent. He interpreted reflux during Valsalva maneuver in a patient with MS as 

evidence of insufficient venous flow, and suggested that such insufficiency might lead to 

iron deposition and inflammation upstream, i.e. in the CNS. 

In subsequent studies, Zamboni interrogated intracranical126 and extracranial127 

hemodynamics in a larger group of MS patients using ultrasound and selective 

venography. Five ultrasound-measureable parameters were identified to be typical of a 

condition Zamboni called CCSVI. A subject in whom two or more parameters were 

detected was said to have CCSVI. A diagnosis of CCSVI was found to overlap perfectly 

with a diagnosis of MS128. In interpreting this remarkable association, Zamboni suggested 

that structural abnormalities in the IJVs and azygos vein (which are main outflow routes 

for venous blood from the brain, as described in section 1.3.1) resulted in venous reflux, 

increased intracranial pressure, extravasation of red blood cells, and ultimately iron-

mediated inflammation. 
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Figure 1.3 Coronal maximum intensity projection of time of flight magnetic resonance 
venogram of major cervical veins. Vertebral veins are not readily separable from other 
veins and have not been labeled.  
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Subsequently, an association between venous abnormalities and MS became the focus of 

intense scrutiny. Several ultrasound studies failed to reproduce as strong of association 

between CCSVI and MS as reported initially129,130, or failed to detect CCSVI in MS at 

all131,132. In rebuttal, Zamboni claimed this was due to lack of operator training for 

sonography133. Reports of normal intracranial pressure134 and normal cerebrospinal fluid 

(CSF) ferritin levels135 in MS patients were also inconsistent with the CCSVI model. 

Weinstock-Gutman et al. reported CCSVI in MS patients, however found no relation to 

clinical disability, raising further questions about the relevance of the CCSVI 

condition136. Indeed, major questions about CCSVI remain unanswered, including 

whether it exists at all, and if so, if it is associated with MS137. 

Fueling the controversy surrounding CCSVI, Zamboni reported on an endovascular 

surgery for CCSVI, describing it to be initially successful at treating extracranial venous 

stenoses138. Reports of positive clinical outcomes in patients were taken with 

considerable caution given the lack of blinding or control wings in these studies139. 

Enthusiasm for the procedure was increased dramatically by media reports despite the 

absence of any conclusive evidence that treatment of CCSVI was indicated in MS140. 

While sonography is the only imaging technique with which CCSVI can be diagnosed 

(CCSVI is, after all, an ultrasound-defined entity)128,141, it suffers from several setbacks 

including a large dependence on operator training. For this reason, and because 

sonography is foreign to conventional MS studies, a number of research groups have 

investigated the suitability for magnetic resonance imaging for studying extracranial 
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veins in patients with MS142-144. MRI techniques are less dependent on operator training 

and allow 3D visualizing of the intra- and extra-cranial vasculature. In general, these 

studies suggest that time-of-flight (TOF) magnetic resonance venography (MRV) may be 

a suitable method by which to visualize the internal jugular veins. While the neurological 

community grows increasingly reluctant to consider a role for CCSVI in MS, recent 

MRV studies have shown structural abnormalities of the IJVs (such as narrowing or 

flattening) to be more prevalent in MS patients than healthy controls143,144. Such studies 

have used a subjective or categorical rating scale to classify vessel anatomy. It is our 

belief that a quantitative measure of vessel caliber would be more useful in such work. 

The suitability of TOF MRV for quantitative measures of IJV caliber is the focus of 

Chapter 3 of this thesis, and in Chapter 4, we describe the application of such 

measurement techniques in patients with CIS. 

1.4 In This Thesis 

This thesis is concerned with work done thus far in an on-going longitudinal MRI study 

of iron in patients with CIS at high risk of MS diagnosis. Given the unresolved question 

regarding iron’s role as either a cause or consequence of MS, we identify the following as 

the objective for this thesis: to characterize MRI biomarkers associated with iron 

deposition in patients with early presentations of MS. Specifically, we identify the 

following specific aims, each of which is the basis for a subsequent chapter. Specific 

Aim 1: to optimize an MRI post-processing technique to create both cerebral venograms 

and quantitative images for measuring iron. Specific Aim 2: to establish reproducibility 
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of quantitative measures of IJV caliber, given the proposed (and increasingly tenuous 

role) for these veins in MS pathogenesis. Specific Aim 3: to compare relative levels of 

iron between CIS patients and healthy controls, in order to determine the spatial 

distribution of any increased iron present early in the disease. Specific Aim 4: to 

determine if, using techniques developed in this thesis, venules can be detected within 

lesions in CIS patients. Such venules may be involved in iron deposition53 and may also 

have predictive value for subsequent MS diagnosis145. Thus, with work proposed here, 

we are able to investigate a role in early MS for not only iron but additionally veins that 

drain the CNS - including cerebral venules (about which lesions are centred) and cervical 

veins, which ostensibly have a role in MS pathogenesis as mediators of iron deposition. 

1.4.1 Specific Aim 1: Multi-echo SWI 

Multi-echo SWI allows for generation of an image with contrast derived from the 

distribution of susceptibility within the brain (i.e. a SWI image, useful for visualizing 

veins), in addition to a quantitative !!∗ map, the latter being particularly useful for 

quantifying iron. It has been shown that !!∗-weighted magnitude images are sufficient for 

discrimination of MS plaques from other non-specific lesions in white matter at ultra-

high field strengths, based on the presence of a central vein76. However, at clinical field 

strengths the endogenous contrast in the !!∗-weighted magnitude is insufficient for this 

type of analysis75. Multi-echo SWI may provide the necessary boost in venous contrast at 

clinical field strengths to facilitate improved diagnostic specificity based on the presence 

of a central vein. With this in mind, Chapter 2 of this thesis describes efforts to optimize 
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multi-echo SWI processing and characterize improvements in the contrast of a number of 

structures in healthy controls. We also perform measurements of !!∗ and validate our 

measurements against previously reported values. Part of this work has been accepted for 

publication in the American Journal of Neuroradiology. This sequence and post-

processing form the methodological foundation for our on-going longitudinal study of 

CIS patients. 

1.4.2 Specific Aim 2: Time of flight MRV reproducibility 

As described in Section 1.3.2, an interesting, if not altogether convincing, theory has been 

proposed that attributes MS pathogenesis to extra-cranial venous pathology resulting in 

cerebral iron deposition. Most MR studies of CCSVI examine the IJVs with a categorical 

rating scale144, which may in fact be suboptimal. In Chapter 3 of this thesis, we 

investigate quantitative measures of IJV caliber including the cross-sectional area as 

measured from TOF MRV. Specifically, this chapter is concerned with establishing the 

inter-scan reproducibility of these metrics in healthy controls. 

1.4.3 Specific Aim 3: Study of iron in clinically isolated syndromes 

In Chapter 4 of this thesis, we use !!∗   maps to establish differences in iron between our 

study’s cohort of CIS patients and healthy controls. First, changes in !!∗ with age are 

estimated from the normal cohort. Next, the expected normal contributions to aging are 

removed from !!∗ datasets for both patients and healthy controls. For each voxel in the 

brain, statistical testing is used to determine if there are any differences between groups 
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in age-corrected !!∗ and thus, potentially iron. For clusters of voxels where significant 

differences were found, regions of interest are defined. Correlations of the average !!∗ in 

each region of interest with additional imaging and clinical measures are investigated in 

order to explain the observed differences. To assess the predictive value of increased !!∗ 

for MS diagnosis, we compare !!∗ increases between those CIS patients who have been 

diagnosed with MS since recruitment and those who remain unconverted. Additionally, 

as a potential explanation for increased iron in MS, we explore the cross-sectional area of 

the IJVs in both patients and healthy controls using methodology proposed in Chapter 3. 

1.4.4 Specific Aim 4: Imaging central veins in MS lesions 

It has been proposed that a large fraction of lesions with MRI-detectable penetrating 

veins in potential MS is predictive of future MS diagnosis; however, questions remains 

about the practical feasibility of this technique. In Chapter 5 of this thesis, we employ 

tools proposed in Chapter 2 (multi-echo SWI) to characterize the visibility of veins 

within white matter hyperintensities (WMHs). Using multi-echo SWI, WMHs in all 

subjects are rated for the presence of a central vein. The prevalence of veins within 

WMHs is compared between healthy controls, CIS patients who have not yet converted 

to MS (after approximately 1 year of follow up), and CIS patients who have converted to 

MS. Moreover, the predictive value of a high percentage of lesions with central veins for 

conversion to MS is evaluated on a patient-by-patient basis. 
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The last chapter of this thesis summarizes the work performed for this thesis and also 

briefly discusses some prospective analyses to be carried out on study data. 
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A modified version of this chapter has been published in the American Journal of Neuroradiology. Quinn 

MP, Gati JS, Klassen LM, Lin AW, Bird JR, Leung SE, Menon RS. Comparison of multiecho processing 

schemes for SWI with use of linear and non-linear mask functions. Am J Neuroradiol AJNR. DOI: 

10.3174/ajnr.A3584. 2013, © by American Society of Neuroradiology. 

2 Comparison of multi-echo post-processing schemes for 

susceptibility weighted imaging with use of linear and 

non–linear mask functions 

2.1 Introduction 

Susceptibility weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique 

that exploits the effect of variations in magnetic susceptibility (the degree of 

magnetization of a material in response to an applied magnetic field) on gradient echo 

signal to produce enhanced image contrast. Most MRI studies reconstruct only the 

magnitude image; phase is generally discarded. However, the phase data contain 

potentially useful information about inclusions in the imaging volume that change the 

local magnetic field, i.e. of non-homogeneous magnetic susceptibility. SWI processing 

allows this information to be incorporated into the magnitude image since the underlying 

structure may not necessarily be visible on magnitude alone1. 

SWI was originally used to produce high-resolution venograms2. SWI has found 

additional uses in clinical and research settings due to its sensitivity to other 

physiologically relevant magnetic field perturbers such as blood products3, iron4 and 

calcium5. However, single-echo SWI is useful in the visualization but not the 

quantification of field perturbers. Modifications of SWI allow simultaneous 

quantification of the nature or amount of the perturber. For example, the effective 

transverse relaxation rate (!!∗), which can be extracted from multi-echo gradient echo 
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data via voxel-wise curve fitting, is a metric that scales linearly with iron concentration in 

the brain6.  

Brainovich et al.7 described a post-processing scheme for dual-echo gradient echo data. 

In this scheme, average phase and average magnitude volumes were generated and 

subsequently used to produce a single SWI volume. Denk and Rauscher8 used a multi-

echo acquisition with five echoes to produce five SWI volumes that were subsequently 

averaged to produce a single average SWI volume. They reported improvements in 

contrast to noise ratio (CNR) of veins compared to conventional SWI. Additionally, they 

described computation of !!∗ maps as a natural extension of the multi-echo acquisition. In 

all cases, a conventional linear phase mask function for SWI was employed. The use of 

alternative mask functions theoretically results in increased CNR of cerebral veins9, 

although this claim has not been rigorously tested in vivo. 

There are two main goals of this work: first, a comparison of three SWI post-processing 

schemes (single echo and two multi-echo methods); and second, a comparison of the 

conventional (i.e. linear) mask function with a novel non-linear mask function. We 

identified the following objectives: (i) to describe and outline modifications to previously 

published multi-echo SWI, as well as describe a non-linear mask function, (ii) to 

optimize the number of mask function multiplications for all combinations of post-

processing scheme and mask function; and, (iii) to compare all post-processing schemes 

and mask functions in vivo using both quantitative and radiological assessments. 

This work has been presented, in part, at the 20th Annual Meeting of the ISMRM10. 
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2.2 Methods 

Processing was performed in MATLAB (The MathWorks, Inc., Natwick, MA) and FSL 

(FMRIB, Oxford, UK). Statistical analyses were performed in SPSS (IBM, Armonk, 

NY). 

2.2.1 SWI post-processing schemes 

Three post-processing schemes were compared: one for single-echo SWI and two for 

multi-echo SWI. First, single-echo SWI processing involves background phase removal 

using the homodyne method11, generation of a phase mask, and multiplication of the mth 

power of the mask by the magnitude image12. 

Second, the multi-echo SWI method of Denk and Rauscher8 was modified, and herein is 

referred to as the post-average method. Post-average multi-echo SWI involves single-

echo SWI processing on data from each echo, and averaging of the resulting images. 

Denk and Rauscher prescribe this technique with a linearly (in echo time) increasing 

homodyne filter width to remove background contributions to phase from each echo in 

order to account for the additional phase wrapping at longer echo times. We used a 

constant (with echo time) filter size, as a compromise between eliminating phase wraps in 

later echoes and preserving the relevant contrast between echoes in a consistent manner. 

Third, a frequency-based method for multi-echo SWI was used, and is based upon the 

method described initially by Brainovich et al.7. For the image volume reconstructed 

from each echo, the background phase was removed using the homodyne method. 
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Successive phase images were then temporally unwrapped using MATLAB’s 1D unwrap 

function on the echo time dependent voxel data. Each unwrapped phase image was then 

divided by its corresponding TE to produce a frequency image. A weighted average of 

frequency was calculated from these individual frequency images: weights were inversely 

proportional to the variance of the frequency: (magnitude)2(TE)2. A mask was computed 

from the average frequency image, and its mth power was multiplied by the average 

magnitude image for that slice. This method is similar to what has been described by 

Brainovich et al.7 but additionally involves the temporal unwrapping of phase, as well as 

masking the weighted average of frequency maps rather than the arithmetic mean of the 

phase images. While the mean of the frequency maps is a physical and intuitive quantity, 

the mean of the phase images used by Brainovich et al.7 is not logical from a physical or 

mathematical perspective. 

For the homodyne filter, a 2D Hann window (one period of a raised cosine) with 

dimensions equal to 30% (for multi-echo) or 20% (for single-echo) of the respective 

matrix dimensions, rounded to the nearest integer, was employed. This constant width 

filter, in conjunction with the temporal phase unwrapping that was used, resulted in the 

ability to remove all relevant phase wraps. 

2.2.2 SWI mask functions  

Two different mask functions were compared. First, the conventional linear mask 

function was used. In general form, the linear mask, L, is defined as follows: 



 

 

 

52 

.                          [2.1] 

For single-echo and post-average, X=-π rad is used, with x in radians. For frequency-

based SWI where x is in units of Hertz, X is set to the equivalent value: 

(-π rad)(1 cycle/2π rad)(1/TEaverage)=18.2 Hz, where TEaverage is the average of the echo 

times used (described below). 

Second, a non-linear mask function was used. This Hann-derived mask, H, is defined as 

follows: 

.              [2.2] 

The values X and x can be expressed in either units of phase or frequency. X was set to π 

(for single-echo and post-average) or the equivalent value of 18.2 Hz (for frequency-

based SWI). Compared to the linear filter, it was expected that this filter would result in 

reduced image noise and increased contrast for negative phase/frequency structures. 

2.2.3 MR imaging 

All scanning was performed on a 3T MRI scanner (TIM Trio, Siemens Medical 

Solutions, Erlangen, Germany) using a 32-channel head coil. For evaluation and 

comparison of different SWI post-processing schemes, 10 healthy volunteers were 

scanned (7 women/3 men; mean±standard deviation age=28±7 years). Data were 

L(x) =






0 if x < −X
1
X (x+X) if −X ≤ x ≤ 0
1 if x > 0

H(x) =






0 if x < −X
1
2

�
1 + cos

�
πx
X

��
if −X ≤ x ≤ 0

1 if x > 0
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collected using a single-echo 3D gradient echo (TE/TR=20/30 ms, BW=80 Hz/pixel, 

TA=6:28, fully flow-compensated) and multi-echo 3D gradient echo sequence (TE1=10 

ms, echo spacing=7 ms, 6 echoes, TR=52 ms, BW=160 Hz/pixel, TA=11:12, first echo 

fully flow-compensated). For both sequences, common parameters were: matrix, 448 x 

336 x 60; field of view, 224 x 178 x 60 mm3,; flip angle, 12°; slice oversampling, 12.5%. 

Both acquisitions were accelerated with GRAPPA (R=2, reference lines=24). Phase data 

from each channel were combined on-line using vendor software. This study was 

approved by the institutional review board. Informed consent was obtained in writing 

from all participants. 

Six SWI volumes were created per subject: three post-processing schemes with two mask 

functions each. The single-echo magnitude volume was registered to the first echo 

magnitude of the multi-echo volumes to allow careful comparison of the different 

methods on individual vessels or regions even if motion were present between the 

different volumes.  Single-echo SWI volumes were computed, following which the 

magnitude registration parameters were applied. 

2.2.4 Numerical optimization 

A 2D numerical phantom was created to evaluate the CNR of a vein using different post-

processing schemes and mask functions. The purpose of this simulation was to optimize 

the number of mask multiplications, m, for different post-processing schemes. The 

phantom consisted of a 512x512 array. All pixels were assigned values of the effective 

transverse relaxation time, !!∗ (32 ms), and equilibrium signal, S0 (425), based on their 
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measured values in white matter (WM) in the in vivo multi-echo data. One column was 

designated the vein compartment and assigned a frequency which was varied for different 

trials. All other pixels were assigned a frequency of zero for all trials. This is similar to a 

previously described simulation to optimize the number of mask multiplications for 

conventional SWI12. 

Data were simulated by creating magnitude and phase image pairs for different TEs. At a 

given TE, signal magnitude was calculated according to: 

 .              [2.3] 

Phase was calculated as (frequency)x(TE). Each magnitude and phase pair was converted 

into real and imaginary images, to each of which normally distributed noise with standard 

deviation of 18 was added to ensure comparable signal-to-noise ratio (SNR) in simulated 

data when compared to periventricular WM using our acquisition parameters. The noisy 

real and imaginary images were then converted back to magnitude and phase. 

A multi-echo data set was simulated by creating magnitude/phase pairs for TEs of 10, 17, 

24, 31, 38 and 45 ms. From the same simulated multi-echo data, one multi-echo SWI 

image was generated according to each of the four possible combinations of multi-echo 

post-processing scheme (post-average and frequency-based) and mask function (linear 

and non-linear). 

Single-echo data were simulated by creating one magnitude/phase pair at TE=20 ms. 

Noise was decreased by a factor of 20.5 to simulate decreased noise accompanying the 

S(TE) = S0 exp(−TE/T ∗
2 )
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reduction in bandwidth from 160 Hz/pixel in the multi-echo acquisition to 80 Hz/pixel in 

the single-echo acquisition. Additionally, the WM S0 was decreased by 16% to account 

for the reduction in steady state signal accompanying the decrease in TR. For the 

simulated single-echo data, one SWI image was produced with each mask function. 

Contrast was measured as the difference in mean signals between two regions of interest 

(ROIs) in the SWI volumes: one placed in the vein compartment, and one in the WM 

compartment. The CNR was calculated as this contrast divided by the standard deviation 

of the signal in the latter ROI, which is the standard definition of CNR used in SWI 

numerical optimization13. 

2.2.5 Visual optimization 

Values of the mask power, m, were also optimized by three radiology residents, each with 

29 months experience, who rated SWI images from four volunteers. For each volunteer, 

image volumes included each of the six SWI combinations processed with a range of m 

values. Images processed with the linear mask function were processed with m’s from 0 

to 11, incremented in steps of 1. Images processed with the non-conventional filter were 

processed with m’s from 0 to 55, incremented in steps of 5. This larger range and coarser 

increment of m values was found to yield a similar range of contrasts to the images 

processed with the conventional mask. Accordingly, raters were shown 24 sets of 12 

volumes. The raters were not blinded to the value of m, but each set was presented in a 

random order to ensure experience from early sets did not influence rating of later sets. 

Rating instructions were as follows: “For each set, identify the single value of m which is 
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optimal. When considering optimal m, consider SWI quality from a radiological 

standpoint. Please consider how structure contrast as well as image noise are affected by 

choice of m. Specifically, you should consider the visibility of veins (both small veins 

such as those at the lateral ventricles, and large veins) as well as other structures that may 

be targeted with SWI such as: red nucleus, subthalamic nucleus, globus pallidus.” Each 

rater performed rating independently. To evaluate inter-rater agreement, two-way mixed 

average measures interclass correlation coefficient was calculated for the pooled ratings. 

2.2.6 Measurements of !!∗ 

!!∗ images were calculated by performing a voxel-wise curve fit of the magnitude time 

curve to Eq. 2.3 above. The fitting was performed using the Levenberg-Marquardt 

algorithm for non-linear least-squares curve fitting. 

2.2.7 ROI analyses 

For in vivo data, ROI analyses were used to compare optimized SWI techniques. For 

each subject, ROIs were drawn in the right hemisphere of single-echo, linearly masked 

SWI volume and propagated into the other volumes. SNR was approximated in the 

frontal WM of all subjects as the mean divided by standard deviation of the signal in the 

ROI. CNR was measured between various anatomical structures [globus pallidus (GP), 

optic radiations (OR), periventricular veins, subthalamic nucleus (STN), and red nucleus 

(RN)] and adjacent WM as the difference between mean values of signal in two ROIs 
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(one in the structure of interest, one in adjacent WM) divided by the standard deviation of 

signal in the WM ROI. 

2.2.8 Visual comparison 

The same three raters evaluated the optimized SWI images with respect to visibility of 

different structures. For each of the ten volunteers, the six different SWI volumes were 

assigned a random letter for blinding purposes. Raters were instructed to rank the 

volumes from best (rank 1) to worst (rank 6) for different structures. Specific instructions 

were: “consider: the contrast of the structure with surrounding tissue, the ability to 

resolve its borders, and how image noise influences visibility.” Visibility was ranked for 

the same structures in which CNR was measured. Qualitative impression of SNR in 

frontal WM was also ranked. Images were rated for severity of artifacts at sinuses from 

least severe (rank 1) to most severe (rank 6). 

To evaluate inter-rater agreement, interclass correlation coefficient was calculated on 

rankings of each structure analyzed. For each volunteer, for each combination of 

processing scheme and mask function, the three ranks assigned by the raters were 

averaged to create a mean rank. To separately test the significance of the two main effects 

(processing scheme and filter), for each level of each main effect, mean ranks were added 

across all levels of the other main effect. Non-parametric related samples tests were then 

used to compare all levels of a given effect: Friedman test for scheme, Wilcoxon signed-

rank test for filter. Where appropriate, the Wilcoxon test was used post-hoc with 

Bonferroni correction. 
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2.3 Results 

2.3.1 Optimization of m 

Plots of CNR as a function of the mask power m are presented (Figure 2.1) for several 

different choices of the frequency of the vein compartment of the numerical phantom. 

Optimal values of m depend strongly on frequency of the vein; minimum and maximum 

values of optimal m over the range of frequencies investigated are presented in Table 2.1. 

According to simulation, greater CNR is achievable with the non-linear mask, although 

typically larger values of m are required. Simulation predicts that the frequency-based 

method allows the greatest CNR, and that both multi-echo methods are superior to single-

echo SWI. 

Optimization of m was also performed via visual rating of images. To measure the 

optimal value of m for a given processing combination, the median (across the four 

volunteers) of the median (across the three raters) is reported in Table 2.1. In all cases, 

the optimal value as determined by the raters falls within the range of optimal values 

predicted by simulation. The interclass correlation coefficient was found to be 0.96, 

indicating excellent inter-rater agreement. When implementing different SWI techniques 

herein, we use the values of m determined to be optimal by the raters. 
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Figure 2.1 CNR versus number of mask multiplications (m) for different SWI post-
processing schemes (red: single-echo, blue: post-average, green: frequency-based) and 
mask functions (solid: linear, dashed: non-linear) as simulated for a vein of varying 
frequency in WM. Simulated frequencies were: -1.0 Hz (a), -2.5 Hz (b), -5 Hz (c), -10.0 
Hz (d). 
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Table 2.1 Optimization of m 

  

Simulation Radiologist Rating 

  

Min. 

optimal ma 

Max. 

optimal mb Optimal m (minc,maxd) 

Single echo Linear 4 17 6 (4,7) 

 

Non-linear 11 >60 35 (20,35) 

Post-average Linear 3 15 7 (5,10) 

 

Non-linear 14 >60 35 (25,45) 

Frequency-based Linear 3 15 5 (2,7) 

 

Non-linear 8 >60 25 (20,40) 
a,bMinimum, maximum values, respectively, of m that yield maximum CNR for any 
frequency of vein simulated. 
c,dMinimum, maximum values, respectively, assigned by any of the three raters. 
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2.3.2 In vivo data 

Minimum intensity projections through 4 mm for a subset of a slice at the level of the 

basal ganglia are shown in Figure 2.2 for all permutations of post-processing scheme and 

mask function, using optimal values of m from Table 2.1. 

In general, the non-linear mask function results in improved noise characteristics 

compared to the linear filter, and its use also dramatically enhances contrast in some 

regions, for example for large veins (arrow in Fig. 2.2f) and at the edges of the basal 

ganglia (arrowheads in Fig. 2.2f). Small veins which are not visible in single-echo SWI 

are readily detected in all implementations of multi-echo SWI, such as at the horns of the 

ventricles (arrows in Fig. 2.2b), although their appearance is smoother and more 

continuous when the linear filter and/or post-average processing is used. 

2.3.3 ROI analyses 

Normalized measurements of SNR and CNR are presented in Figure 2.3. The non-linear 

mask function results in a significantly larger SNR or CNR (P<0.05 for GP, P<0.01 for 

periventricular veins, STN; P<0.001 for frontal WM, OR, RN). The frequency-based 

scheme results in significantly larger CNR or SNR than both post-average and single-

echo, except for GP where no significant difference is detected between post-average and 

frequency-based processing, although both result in significantly larger CNR than single-

echo. Specific P-values are presented for pair-wise comparisons of processing scheme in 

Fig. 2.3. 
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Figure 2.2 Minimum intensity projections through 4 mm at the basal ganglia for different 
SWI post-processing schemes (first column: single-echo, second column: post-average, 
third column: frequency-based) and mask functions (first row: linear mask, second row: 
non-linear mask). 
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Figure 2.3 CNR for GP (a), OR (b), periventricular veins (PVV) (c), STN (d), RN (e), 
and SNR for frontal WM (f). Filled black circles: linear mask function; empty squares: 
non-linear mask function. Points: mean; bars: standard error (n=10). Values have been 
normalized by the mean value of the metric in linearly masked single-echo SWI. 
Illustrated are significant P-values for pairwise comparison of post-processing schemes 
(* P<0.05, ** P<0.01, *** P<0.001). 
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2.3.4 Visual comparison 

Mean ranks are presented (Figure 2.4) for qualitative impression of SNR of frontal WM, 

and for visibility of various structures. For all paramagnetic perturbers (GP, STN, RN, 

periventricular veins), the linear filter resulted in significantly (P<0.001) greater visibility 

(equivalently, lower mean rank). The post-average scheme resulted in significantly lower 

mean ranks than both frequency-based and single-echo schemes for these structures as 

well – except periventricular veins, where there was no significant difference between 

post-average and frequency-based processing. In contrast, for visibility of OR and SNR 

of frontal WM, the non-linear filter was ranked as significantly better (P<0.001). For OR, 

the frequency-based scheme was significantly better than both single-echo and post-

average schemes. Specific P-values are presented for pair-wise comparisons of 

processing scheme in Fig. 2.4. Mean ranks of artifact severity are presented (Figure 2.5). 

In general, the linear mask function results in less severe artifacts, (P<0.001); the post-

average scheme results in the least severe artifacts. Inter-rater agreement, as assessed by 

interclass correlation coefficient, was excellent (frontal WM, 0.88; GP, 0.93; OR, 0.85; 

periventricular veins, 0.82; STN, 0.91; RN, 0.93; artifacts, 0.96). 

2.3.5 !!∗ measurements 

Values of !!∗ are presented in Table 2.2 as measured in ROI’s placed in various 

structures. For comparative purposes, values reported by Denk and Rauscher8, Perán et 

al.14, and Gelman et al.15 are provided. 
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Figure 2.4 Mean rank of visibility for GP (a), OR (b), periventricular veins (PVV) (c), 
STN (d), RN (e), and mean rank of visual impression of signal to noise ratio for frontal 
WM (f). Filled black circles: linear mask function; empty squares: non-linear mask 
function. Points: median; bars: interquartile range (n=10). Illustrated are significant P-
values for pairwise comparison of post-processing schemes (* P<0.05). 
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Figure 2.5 Mean rank of artifact severity at sinuses. Filled black circles: linear mask 
function; empty squares: non-linear mask function. Points: median; bars: interquartile 
range (n=10). Illustrated are significant P-values for pairwise comparisons of post-
processing schemes      (* P<0.05, ** P<0.01). 
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Table 2.2 !!∗ measurements 

  Literature Values 

 !!∗ (s
-1) 

Denk and 

Rauscher 2010 
Perán et al 2007 

Gelman et al 

1999a 

frontal WM 19.2 ± 1.4 19.7 ± 1.1 18.48 ± 1.5 21.9 ± 1.7 

frontal grey 

matter 
13.9 ± 1.0 15.26 ± 2.1 13.30 ± 3.9 17.8 ± 2.1 

OR 22.4 ± 2.3 21.1 ± 1.0 -- -- 

GP 37.7 ± 4.0 -- 33.99 ± 3.7 37.8 ± 2.4 

putamen 26.1 ± 4.9 27.1 ± 1.0 24.08 ± 2.2 26.1 ± 1.5 

Values shown are mean ± standard deviation. 
a !!∗ values presented in this column are calculated as the sum of !! and !!!  reported by 
Gelman et al. Standard deviations presented are root sum of squares of standard 
deviations of !! and !!! . 

 

 

 

 



 

 

 

68 

2.4 Discussion 

This study presents a comparison of (i) different SWI processing schemes, and, (ii) 

different mask functions, in terms of SWI image quality as assessed by ROI analysis and 

visual rating. 

2.4.1 SWI optimization 

Our choice of m for implementation in human data was based on optimized values as 

determined by radiologist raters. This is justified for several reasons: (i) in all cases, rater-

optimized values fell within the range of optimal m predicted by simulation; (ii) raters 

were instructed to consider the influence of m not only on veins but also on other 

structures and noise; (iii) there was excellent inter-rater agreement; and (iv) radiologists 

are the end-users of SWI. Our optimal m value for linearly masked single-echo (i.e. 

conventional) SWI was 6. In contrast, conventional SWI is virtually always implemented 

with m=4. This choice is influenced by a seminal SWI study12 where CNR vs m was 

simulated for a comparable range of vein phases. As in our simulation, that study found 

that a lower m is required for maximum CNR for increasingly large phase. Our raters 

found a slightly larger value of m to be most suitable. As our optimizations involved 

simulation and rating, they are more comprehensive than previous efforts. We have 

endeavored to choose values of m that are suitable for optimal visibility of a range of 

structures, however, if re-optimization is required for a specific application, it should be 

performed by trained raters. 
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2.4.2 In vivo data 

For small veins, typical targets of SWI, ROI measurements in vivo agree with those 

predicted by simulation: optimal CNR can be achieved with the non-linear mask 

implemented with a frequency-based processing scheme. This conclusion can be 

extended to CNR of paramagnetic perturbers in general. However, according to visual 

assessment by trained raters, these same structures are most visible when SWI is 

performed with the linear mask and post-average processing. This apparent contradiction 

highlights a discrepancy between CNR and qualitative impression of visibility. While the 

non-linear filter and frequency-based scheme might independently result in more 

dramatic contrast (for example, at the edges of GP in Fig. 2.2f), they do not necessarily 

increase the information content of the image compared to other implementations of 

multi-echo SWI. Rather, their implementation can result in an image with harsher 

contrast wherein more subtle structure is less apparent. Images appear ‘burnt-out’ when 

contrast is too high, with little gradation in the greyscale, which was interpreted by raters 

as potential loss of information. It appears that maximum contrast should not be the 

exclusive target when optimizing visibility. 

The non-linear mask function and frequency-based processing demonstrated best 

performance with respect to frontal WM and OR, a diamagnetic perturber, as judged by 

both quantitative measures in ROI analyses, and visual ranking. For both frontal WM and 

OR, we do not expect the mean signal in an ROI to change after multiplication with the 

described mask functions, given their zero or positive frequency, respectively. Therefore, 
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the improved performance of non-linear mask function and frequency based processing 

for frontal WM and OR can be attributed to the reduced noise introduced into the image 

in these regions by these post-processing strategies, given the absence of changes in mean 

signal or contrast. 

One limitation of multi-echo SWI is increased scan time. Fewer echoes or reduced 

coverage could be used to reduce scan time. Alternatively, if coverage were expanded to 

allow imaging of the entire supratentorial brain, scan time would be on the order of 20 

minutes. In addition to SWI, it is possible to obtain many contrasts from this acquisition, 

including !!∗ maps, frequency maps, and quantitative susceptibility maps. Given the high-

yield nature of this acquisition, the parameters recommended here are not unreasonable in 

a clinical setting. 

2.4.3 !!∗ measurements 

Measured values of !!∗ agree closely with previously reported values. In the case of the 

GP as well as the putamen, the standard deviations we report are higher than in other 

papers. This result does not reflect less precise measurements. !!∗ is approximately linear 

to iron concentration6, which varies considerably with age in these structures16. Since this 

study involved a range of ages, we expect a large variation in iron concentration in basal 

ganglia structures and the corresponding values of !!∗. In white matter and grey matter, 

our values of standard deviations are intermediate to and smaller than, respectively, 

previously reported values. Thus, our measurements of !!∗ have comparable accuracy and 

precision to previously reported values.  
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2.4.4 Field inhomogeneity artifacts 

Multi-echo SWI processing, in particularly post-average, typically resulted in less severe 

field inhomogeneity artifacts compared to single-echo SWI. Denk and Rauscher8 showed 

that, by employing a filter width that varies with echo time, field inhomogeneity artifacts 

could be reduced further in post-average processing while preserving contrast elsewhere 

in the image. To limit the matrix of comparisons in the present study, we elected not to 

investigate the effects of an adaptive filter, although we expect its use would result in 

further reduction of these artifacts. 

2.4.5 Prospective applications 

Ultimately, our recommendation for SWI implementation depends on the desired 

application and allowed time. Certainly, it is clear that any implementation of multi-echo 

SWI results in superior images than single-echo SWI. 

For radiological use, post-average processing and the linear filter are favored. Given its 

favored performance for visualizing paramagnetic perturbers, this implementation of 

multi-echo SWI seems especially well suited to the study of neurodegenerative diseases 

in which iron deposition is implicated. In addition, this technique might have a role in the 

study of traumatic brain injury, stroke, and other conditions where abnormalities in 

vasculature or blood products are involved. One specific diagnostic application is 

assessing the presence of veins within white matter lesions. At 7 T, this has been 

demonstrated to be specific to multiple sclerosis17, however current techniques at 3 T lack 
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the sensitivity to delineate such veins. Optimized multi-echo SWI holds promise for 

reproducing these findings at clinical field strengths. 

In this study, volunteers were free of pathology and raters were thus only able to evaluate 

visibility of normal structure. It is possible that the high contrast, low noise properties of 

either (or both) frequency-based processing and the non-linear filter may facilitate more 

rapid detection of very subtle pathology such as microbleeds. Alternatively, while 

frequency-based, non-linearly filtered SWI may be undesirable for radiological 

assessment, such an image may be optimal for automated tasks where high contrast and 

low noise would be favored such as STN segmentation for electrode targeting, computer-

based delineation of veins, or registration tasks. 

2.5 Conclusion 

Linearly masked post-average SWI is the recommended implementation of multi-echo 

SWI for radiological use; however, non-linearly masked frequency-based SWI may have 

use in computer-based segmentation or registration. A discrepancy between measures of 

CNR and subjective impressions of visibility was found, highlighting an important 

caution for SWI optimization. 
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3 Metrics of internal jugular vein anatomy obtainable from 

time of flight magnetic resonance venography: 

Applicability to chronic cerebrospinal venous 

insufficiency 

3.1 Introduction 

Recently, a role for structural and functional abnormalities of intra- and extra-cranial 

veins in the pathogenesis of multiple sclerosis (MS) has been proposed1-3. This so-called 

chronic cerebrospinal venous insufficiency (CCSVI) is reported to involve occlusion of 

major veins, frequently one or both of the internal jugular veins (IJVs)3. CCSVI has 

motivated some patients to seek out endovascular treatments, despite growing doubt that 

CCSVI in MS exists at all4. 

A diagnosis of CCSVI requires extra-cranial and trans-cranial color-coded Doppler 

sonography5. These tools are foreign to the conventional study of MS. The vast majority 

of imaging for the diagnosis and monitoring of MS involves MRI6. Doppler sonography 

is well suited for visualizing and quantifying blood flow, and is relatively portable and 

inexpensive compared to MRI, but obviously does not demonstrate central nervous 

system lesions. For logistical reasons, the addition of an extensive sonography study is 

generally not warranted for MS investigations. If however, imaging of the draining 

cerebral veins is desired, MRI can instead be used to produce three-dimensional 

venograms of high quality and is capable of determining the presence of structural 

abnormalities7,8. Susceptibility weighted imaging (SWI) is capable of visualizing intra-
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cranial veins with sizes on the order of the voxel dimensions, but is not appropriate for 

visualizing major intra- or extra-cranial veins. Alternatively, time-of-flight (TOF) MR 

venography (MRV), which enjoys clinical acceptance for intra-cranial venography9 and 

can be used for extra-cranial venography, does not require administration of a contrast 

agent and is an acceptable addition to research protocols on the criteria of safety for 

control subjects.  

The objective of this study is to classify metrics of IJV anatomy (CSA) obtainable from 

TOF venograms. Specifically, we present strategies for the measurement of these metrics, 

as well as expected reproducibility in healthy subjects. The results are discussed in the 

context of suitability of TOF MRV for the study of CCSVI in MS. 

3.2 Methods 

3.2.1 MR imaging 

This study was approved by the institutional research ethics board. Informed written 

consent was obtained from all participants. Nine healthy volunteers (6 females, mean 

age±standard deviation = 25±7 years) with no history of neurological or vascular disease 

were recruited. Volunteers were scanned on a 3T MR scanner (TIM Trio, Siemens 

Medical Solutions, Erlangen, Germany) with a 12-channel head coil and 4-channel neck 

coil. Two-dimensional MR venography was performed in the axial plane using the 

following parameters: TR/TE = 39/4.99 ms; flip angle, 50º; slice thickness, 2 mm; gap, -

0.4 mm; matrix, 640 x 303; field of view, 400 mm x 250 mm; number of slices, 110; 

GRAPPA acceleration factor, 2. An inferior saturation slab was used to null arterial 
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signal. This sequence was performed three times for each volunteer. Between scans, 

volunteers were instructed to rotate their head and neck and then return to a comfortable 

centerline position. This paradigm was employed to introduce variation between scans 

similar to what might be observed in serial scans within a longitudinal study. 

3.2.2 Measurements of CSA 

Left and right IJVs were segmented in each slice using a semi-automated 2D region-

growing tool in OsiriX version 3.9.4 32 bit (Geneva, Switzerland). Specifically, a seed 

point was manually placed within the IJVs on each slice. Subsequently, a region of 

interest containing all neighboring pixels with intensities greater than a user-defined 

segmentation threshold was generated. The same threshold was used for all 

segmentations. 

Trends in CSA and its reproducibility were assessed at three positions of interest along 

each IJV that were commonly observed in volunteers: (I) a local minimum in area near 

the transverse process of the first cervical vertebra (C1), (II) a local maximum in area 

where the common facial vein enters the IJV, and, (III) a local maximum in area at the 

inferior bulb of the IJV. Positions were chosen independently for each volume; no 

co-registration was performed. The average CSAs of the right and left IJVs were also 

computed by taking the mean of CSA of all slices between the sigmoid sinus and either 

the confluence of the IJV with the subclavian vein or wherever the IJV was obscured by 

respiratory/flow motion. Intra-subject variation in CSA at each position of interest and in 
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average CSA on each side was quantified as the standard deviation (SD) and the 

coefficient of variation (CV) of the three measurements for each volunteer. 

3.2.3 Statistical analyses  

Differences in left versus right IJV anatomy were assessed at the three positions of 

interest and for the average area along the entire vessel. The mean values (across the 

three acquisitions) of CSA at each position of interest as well as average CSA were 

calculated for each volunteer. Subsequently, these four left-right pairs of metrics were 

independently compared using the Wilcoxon signed-rank test. Statistical analyses were 

performed in GraphPad Prism version 5.0 (GraphPad Software, La Jolla, California). A 

two-sided P-value of 0.05 was deemed significant for all tests.  

3.3 Results 

A representative maximum intensity projection from a single volunteer is shown (Figure 

3.1a). The three positions of interest in this study are clearly visible and are identified 

with Roman numerals for the right IJV. Vascular signal is decreased in the inferior-most 

slices, as is expected due to turbulent flow and respiratory motion. From the same 

acquisition, representative axial images are presented In Fig. 3.1b (superior-most) 

through Fig. 3.1d (inferior-most). The right IJV is clearly larger in caliber than the left.  

At each of positions I, II, and III, arithmetic means and SDs of area measurements were 

calculated for each volunteer (for left and right IJVs separately); CVs were calculated for 

each subject at each position from those metrics as (SD)/(mean) x 100%. Additionally, in  
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Figure 3.1 Representative time of flight venogram. Maximum intensity projection is 
shown in (a), where the levels of the three positions interrogated in this study are 
approximately identified with arrows. Position I is a minimum in cross sectional area 
(CSA) near the first cervical vertebra (C1), position II is a local maximum in CSA at the 
merge with the common facial vein, and position III is a local maximum in CSA at the 
inferior bulb. Both internal jugular veins are visible in the representative axial slices in 
(b) through (d). At the narrowing in the IJV near C1 shown in (b), the IJVs are 
highlighted with arrows. In (c) and (d), the subject’s right IJV (on the reader’s left) is 
visibly of larger caliber than the left. 
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each subject, a single value (for each of left and right IJVs) of mean of average CSA was 

measured as the mean of the three average CSA measurements, as was SD of these three 

measurements and, subsequently, CV. As measured from these metrics in all volunteers, 

grand mean CSA (mean of means) and root-mean-square (rms) SD and rms CV are 

tabulated in Table 3.1 for left and right IJVs.  

 

 

 

Table 3.1 Summary of IJV CSA metrics and reproducibility. 
  Left Right 

Position I 
  

grand mean (mm2) 17.8 29.1 

rms SD (mm2) 2.7 3.5 

rms CV (%) 28 20 

Position II 
  

grand mean 75.1 98.1 

rms SD 5.0 7.5 

rms CV 7 8 

Position III 
  

grand mean 82.9 123.8 

rms SD 4.0 8.2 

rms CV 6 8 

Average CSA 
  

grand mean 44.9 66.8 

rms SD 2.0 4.4 

rms CV 5 7 
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It is readily clear that these metrics of IJV CSA tend to be larger on the right than the left. 

This trend was found to be significant for the average area (P=0.008) and for position III: 

the local maximum at the facial vein (P=0.02). A trend was apparent at the other two 

positions investigated: the local minimum near C1 (P=0.07) and the local maximum at 

the inferior bulb (P=0.06). 

3.4 Discussion 

The objective of this study was to characterize metrics of IJV anatomy obtainable from 

TOF MRV that might be used for evaluation of CCSVI in MS. Previous studies have 

investigated the suitability of TOF MRV for CCSVI using qualitative scales that vary 

from study to study. For example, in previous studies, IJVs have been dichotomously 

classified as stenotic or normal10, rated from normal to severely narrowed on a 4-point 

ordinal scale11, or categorized in terms of morphology12. This makes direct comparison of 

results challenging. To our knowledge, ours is the first work to rigorously study a 

quantitative metric (CSA) using a semi-automated area measurement tool. Advantages of 

such an approach are that CSA is a continuous (as opposed to dichotomous or 

categorical) variable, and logically one would anticipate such measurements to be 

associated with less ambiguity, increased reproducibility, and less dependence on the 

rater than previously implemented methods. 

In general, we find that the right IJV is of consistently larger caliber than the left, in line 

with previous studies13. It is imperative that future studies of CCSVI consider normal 

left/right differences in order to avoid false positive for occlusion, especially on the left 
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side. Additionally, a minimum near C1 is present in all volunteers. Indeed, we report a 

grand mean CSA of the minimum near C1 of the left and right IJV to be approximately 

20 mm2 and 30 mm2, the former being considerably smaller than the ostensibly 

pathological CSA described by Zamboni and colleagues of 30 mm2 3. A recent study of 

CCSVI in MS notes that as many as 78% of MS patients have IJV “stenosis” at the C1–2 

level when interrogated with MRV11. That study did not have a control wing: the findings 

of the present study imply this narrowing may in fact be normal, as was reported by 

another recent study14. 

While the volunteers in this study were free of pathological narrowing, the minimum in 

CSA of the IJV near C1 can serve as a model of stenosis. At this position, we find that 

the rms SD of CSA is on the order of 3 mm2.  Stenosis of the IJV has been defined as 

CSA less than 30 mm2 3: this is an order of magnitude larger than our expected 

measurement error. Our observations favor a conclusion that TOF MRV is a sufficiently 

reproducible method by which stenoses in CCSVI can be quantitatively studied without 

resorting to an additional modality such as ultrasound. This conclusion is in line with a 

previous study that finds TOF MRV to have modest image-reimage stability for 

qualitative monitoring of morphologic features of the IJV15. In particular, measurements 

of average CSA (i.e. along the entire vessel) are the most reproducible of all metrics 

studied here (CV≤7%); classification of this metric in MS patients is required in the 

future. Average CSA measurements have the additional benefit that no co-registration is 

required to guarantee perfect alignment. Other authors have investigated the caliber of 

IJVs after dividing the vessel into segments, for example, into lower, mid, and upper 
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thirds16, or lower and upper halves10. While such an approach was not described in this 

study, it is certainly possible given that we measure CSA for all slices of the IJVs. This 

would simply involve defining segments to be studied, and averaging the CSA of all 

slices within each segment. 

To our knowledge, no previous studies have attempted to quantify intra-subject 

reproducibility of IJV CSA measured with ultrasound, so a direct comparison between 

modalities is not possible. However, at least three advantages of MRI over ultrasound are 

noteworthy. First, CCSVI imaging with ultrasound requires extensive training5, the 

absence of which can dramatically affect diagnostic outcomes17. Second, even mild 

pressure exerted by the ultrasound probe inevitably alters the vein diameter, likely 

leading to false-positive results14. Third, maximum intensity projections of MRV data 

allow simultaneous visualization of the entire three-dimensional cervical venous 

vasculature (ex. Fig. 3.1a). 

Advantages of TOF over contrast enhanced MRV are two-fold: first, the former does not 

require the administration of a contrast agent, making its use more acceptable in studies 

involving a control wing; and second, in-plane resolutions of TOF MRV are typically 

higher than for contrast enhanced MRV, allowing for more precise measurements of CSA 

and more confident visualization of stenosis. 

TOF MRV can be used to monitor morphological features of the cervical venous 

vasculature, whereas both anatomy and flow are of interest in CCSVI. Additional studies 

are required to identify an optimal MR strategy by which flow may be interrogated, 
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although a recent study suggests a strong association between reductions in IJV caliber 

and reductions in flow10. 

Additional analyses of the potential dependence of CSA on acquisition parameters and 

segmentation threshold would be useful. Despite this, the proposed methodology is well 

suited for quantitative comparisons between patients and healthy controls, assuming the 

same parameters, including segmentation threshold, are used for all groups. 

This study was not without limitations. The paradigm employed to introduce variation 

between serial scans – readjustment of head and neck – was relatively simple compared 

to what might be expected between scans on separate days or separate scanners. 

Additionally, a number of factors that were not accounted for might introduce variation in 

caliber of IJVs, including hydration level, clothing, and how tightly the subject is packed 

into the imaging coil. Ultimately, the present study classifies the contribution to CSA 

variation due to measurement error. Comprehensive evaluations in a patient cohort of 

scan-rescan stability of TOF MRV for measurement of IJV mean CSA are presented in 

Chapter 4 of this thesis. 

3.5 Conclusion 

We find that TOF MRV can be used for robust quantitative assessments of IJV anatomy. 

In healthy controls, we find that the right IJV is of larger caliber than the left, an 

important consideration for CCSVI studies. A characteristic narrowing of the IJV near C1 

is present in all volunteers and must not be confused with pathological stenosis in 

patients. We recommend that these metrics of IJV anatomy, in particular average CSA, 
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be classified in patients with MS in order to evaluate the presence of a structural substrate 

for CCSVI. 
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4 Increased deep grey matter iron is present in clinically 

isolated syndromes 

4.1 Introduction 

In multiple sclerosis (MS), abnormal iron deposition within subcortical nuclei1 and at the 

periphery of some white matter lesions2 has been known to exist for decades. However, 

this evidence has been derived from cross-sectional imaging studies, or from ex vivo 

work, and thus does not establish whether the observed iron accumulation was a cause or 

consequence of pathology in MS. 

The presence of iron in MS has generally been thought to be secondary to an 

autoimmune response that either affected normal metabolism of brain iron3 or induced 

extravasation of hemoglobin-containing red blood cells into the central nervous system 

(CNS) parenchyma2. However, it has also been recognized that increased brain iron could 

directly promote oxidative damage at many levels in the cell4. The disease stage at which 

iron accumulation is detected might provide insight into iron’s role (or roles) in MS. 

In this work, we performed quantitative MRI investigations of brain iron in patients with 

a clinically isolated syndrome (CIS) who are at high risk of being diagnosed with MS in 

order to determine if iron is present in early MS and if so, to determine its spatial 

distribution. Using a well-validated surrogate MRI-derived metric of iron (the effective 

transverse relaxation rate, !!∗)
5, we evaluated iron in the brains of CIS patients on a 

voxel-by-voxel basis. For clusters of voxels where differences in !!∗ (and thus potentially 
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iron) were detected between groups, mean !!∗ was regressed against a number of disease 

status-related parameters. 

To further explore the observed increases in iron in deep grey matter in CIS, we 

measured the caliber of the major extra-cranial veins. These vessels have been implicated 

in a theory that proposes iron accumulation occurs in the brains of MS patients as a 

consequence of abnormal venous drainage of the CNS6. According to this chronic 

cerebrospinal venous insufficiency (CCSVI) theory, CNS iron, derived from extravasated 

red blood cells, mediates damage as a potent chemo-attractant for pathogenic cellular 

effectors. While an association of MS lesions with small venules has been observed since 

the earliest descriptions of the disease7, the abnormal venous drainage theory lacks 

independent verification. Using magnetic resonance venography (MRV) and offline 

segmentation, we measured the mean cross-sectional areas (CSAs) of the internal jugular 

veins (IJVs) in patients and healthy controls. Subsequent correlations between IJV CSA 

and mean !!∗ in regions where significantly increased iron was detected allowed for 

assessment of any association between increases in iron and IJV caliber. 

Ultimately, the main focus of the present study – differences in brain iron between 

healthy controls and patients with clinically isolated syndromes – need not be coupled 

with the topic of CCSVI. Indeed, while the support for a pathogenic role for venous 

abnormalities in MS becomes increasingly tenuous, the timeline of well-established iron 

accumulation in MS remains an unresolved, yet important issue for addressing potentially 

early pathological changes in MS patients. 
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4.2 Materials and Methods 

4.2.1 Subject recruitment 

Twenty-two CIS patients were prospectively recruited from the MS clinic in the London 

Health Sciences Centre. Inclusion criteria were: (1) a single clinical attack indicative of 

risk for developing MS according to McDonald’s 2010 criteria8, (2) less than one year 

from clinical presentation, (3) 18 to 50 years of age, (4) no contraindication for serial 

MRI scanning, (5) ability to provide informed consent. Sixteen healthy controls were 

recruited from the general population. Cohort demographics are provided (Table 4.1). 

Informed, written consent was obtained from all study participants. This study was 

approved by the Health Sciences Research Ethics Board of The University of Western 

Ontario. 

Table 4.1 Cohort demographics 

 
Controls Patients P 

n 16 22 -- 

Age [mean (SD)] 38.6 (7.6) 36.7 (7.6) 0.44a 

females 13 17 1.00b 

EDSS [median 

(95% CI)] 
-- 1.0 (0.0,1.125) -- 

Disease duration 

[mean (SD)] days 
-- 235 (183) -- 

aTwo-sided t-test 
bFisher’s exact test 
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4.2.2 MR imaging  

All study participants were imaged on a 3T MRI system (TIM Trio, Siemens Medical 

Solutions, Erlangen, Germany). Using a 32-channel head coil, the following contrasts 

were acquired. Axial FLAIR: TE/TI/TR = 136/2850/15000 ms; voxel size = 1x1x3 mm3. 

Axial T2-weighted turbo spin echo: TE/TR = 99/5100 ms; voxel size = 1x1x3 mm3. T1-

weighted (T1w) three-dimensional MPRAGE: TI/TE/TR = 900/6.9/2060 ms; voxel size = 

0.5x0.5x1.0 mm3. Three-dimensional multi-echo gradient echo (GRE): TE1/∆TE/TR = 

10/7/52 ms (6 echoes). Three GRE volumes were acquired, with approximately 15 to 20 

mm of overlap between adjacent slabs, providing full brain coverage including the 

cerebellum. With a 12-channel head coil and 4-channel neck coil, two-dimensional time 

of flight (TOF) MRV was performed in the axial plane using the following parameters: 

TE/TR = 5/50 ms; voxel size = 0.8x0.6x2.0 mm3; 0.4 mm overlap between slices; flip 

angle = 50º. An inferior saturation slab was used to null arterial signal. 

4.2.3 Multi-echo gradient echo processing 

Image processing was performed in MATLAB (The Mathworks, Natwick, MA), FSL 

(FMRIB, Oxford, UK), and OsiriX (Geneva, Switzerland). 

To quantify iron, maps of !!∗ were calculated for each multi-echo gradient echo slab via a 

voxel-wise curve fit to a single exponential decay curve. Mean magnitude from each 

GRE slab was registered to the T1w volume using the FSL tool FLIRT. Registration 

parameters were then applied to the !!∗ slabs. Co-registered !!∗ slabs were concatenated 

by arithmetic averaging of overlapping voxels. 
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For each volunteer, the T1w volume was then registered to the MNI_152 1x1x1 mm3 

template provided with FSL. These registration parameters were then applied to the 

concatenated !!∗ volume. The !!∗ volume, now in the space of the template, was blurred 

using a 3D Gaussian kernel (full-width at half maximum, 6 mm) and down sampled to 

3x3x3 mm3. 

4.2.4 Measurements of CSA 

From the TOF volumes, the right and left IJVs were segmented in each slice using a 

semi-automated region-growing tool in OsiriX, where a seed point was first placed within 

the IJV. Subsequently, all neighbouring pixels with intensities greater than a user-defined 

threshold (constant for all segmentations) were included in an ROI, the area of which was 

reported. For each participant, mean CSA was calculated for both right and left IJVs 

along their extent from the sigmoid sinus to the confluence of the IJV with the subclavian 

vein, generally at the level of the first thoracic vertebra. Mean CSA of both right and left 

IJVs were compared between patients and controls using two-sided t-tests or Mann-

Whitney U test, depending on distribution of data as assessed with Shapiro-Wilk testing, 

using SPSS version 20.0 (IBM, Armonk, NY). Since the two IJVs form a downstream 

bifurcation from a common major draining cerebral vein, we combined the CSAs of the 

two IJVs together as the best indicator of a venous return anomaly from the brain. To 

establish the test-retest reproducibility of the CSA measurements, IJVs were segmented 

and measured in MRVs from a follow-up scan, nominally 4 months later. Additionally, 

correlations between right, left, and total CSA with EDSS and disease duration were 

performed. 
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4.2.5 Lesion segmentation 

Lesions were segmented on FLAIR via seed-point-based semi-automated region growing, 

as well as manually where the semi-automated method did not yield accurate borders. 

FLAIR volumes were registered to the 1x1x1 mm3 template; these registration 

parameters were applied to the lesion masks. Lesion masks were then blurred as above, 

downsampled to 3x3x3 mm3 to be matched to the aforementioned !!∗ volumes. All values 

in the blurred masks greater than a threshold of 0.05 (determined by visual inspection to 

be suitable) were assigned as lesion. 

4.2.6 Image-based general linear model (GLM) analysis 

A modified age-adjusted t-test was performed for each voxel in the co-registered 3x3x3 

mm3 !!∗ volumes between patients and controls as follows. The change in !!∗ with age 

due to normal aging was estimated by linear regression of !!∗ against age in the healthy 

control cohort. This effect was subsequently subtracted from all subjects. Specifically, in 

a given subject, for each voxel, the rate of change of !!∗ with age (as estimated in all 

healthy controls) was multiplied by the subject’s age. This value was then subtracted 

from the measured value of !!∗ in that voxel to ‘adjust’ it for age. A two-sided t-test was 

then performed for each voxel in the age-adjusted volumes. Data points coming from 

lesions were excluded. 

This is highly similar to what is done in an age-adjusted t-test (i.e. a t-test with age as a 

covariate), except that the effect of the covariate was measured only on one study group 

(healthy controls), not both groups. We felt this to be appropriate given that the rate of 
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change of !!∗ with age in patients is possibly influenced by disease duration. Therefore, 

the most reliable way to estimate the effect of age alone on !!∗ is to calculate the 

covariate coefficients in healthy controls. A potential limitation of this methodology is 

that we have a relatively small group of controls from which to estimate the coefficients; 

however, we do have a relatively large and well-sampled range of ages (from early 20’s 

to late 40’s), which is arguably of equal importance. In the future, this study’s 

methodology will be extended to a larger group of subjects and we anticipate improved 

accuracy of this method at such time. 

Significant clusters were identified as groups of >10 edge-wise neighboring significant 

voxels after controlling the false discovery rate at 10%. Anatomically similar clusters 

were grouped to select ROIs. In patients, mean value of !!∗ in each group of clusters as 

regressed against a number of parameters, including age, extended disability status scale 

(EDSS), disease duration, and IJV CSA. For correlations involving non-normally 

distributed parameters, as determined by Shapiro-Wilk testing, Spearman correlation was 

used. Otherwise, Pearson correlation was employed.  

After a mean clinical follow-up time of 11.2 months after recruitment into the study, 8 

CIS patients had converted to MS. To investigate if !!∗ differences (potentially iron) at 

baseline relate to subsequent conversion to clinically definite MS, mean age-adjusted !!∗ 

levels in the ROIs identified above were compared between healthy controls, patients 

who had not yet converted from CIS, and patients who had converted to clinically 

definite MS. Comparisons were made using a one-way ANOVA and Tukey post-hoc 

testing. 



 

 

94 

4.2.7 Lesion !!∗ analyses 

Average lesion !!∗ was calculated for each patient using co-registered lesion masks and 

!!∗ volumes at a resolution of 1x1x1 mm3, before blurring. Average lesion !!∗ was 

correlated against the clinical/imaging parameters. 

4.3 Results 

4.3.1 !!∗ depends on age in the cortex, putamen, edge of lateral 

ventricles 

Representative slices are shown in the first column of Figure 4.1 of the results of age-

correlation, where regression coefficients are overlaid on the template. Expected trends 

due to iron accumulation with age are seen: !!∗ increases with age in various cortical 

areas, and at an increased rate in the putamen and red nucleus (arrows in Fig. 4.1c, d 

respectively). Moreover, negative coefficients were found in significant clusters at the 

lateral ventricles (arrows in Fig. 4.1b) and edge of the brain, consistent with age-related 

atrophy as cerebrospinal fluid has a lower !!∗ than grey and white matter. 

4.3.2 In patients, !!∗ is decreased in normal appearing white 

matter (NAWM) and increased in deep grey matter and 

cortical areas 

In the second column of Fig. 4.1, clusters are shown at positions where the age-adjusted 

difference in !!∗ between patients and controls was significant. Positive values indicate  
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Figure 4.1 Representative results from voxel-wise age-adjusted t-tests. Coefficients for 
age (a-d) as estimated in healthy controls reveal !!∗ increases with age in various cortices, 
putamen, and red nuclei; as well, !!∗ decreases with age around the edges of the lateral 
ventricles and brain. Age-adjusted differences between patients and controls are shown in 
the second column (e-h), where lesions have been excluded. Patients have decreased !!∗in 
deep white matter as well as increased !!∗ in the bilateral thalamus (g), right pulvinar (g), 
and some cortices, including the posterior cingulate (e). The color look-up table at left of 
a and b applies to the first column. The color look-up table at the left of e and f applies to 
the second column. 
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increased !!∗ (putative iron) in patients. In some white matter regions, patients have 

decreased !!∗ (arrows in Fig. 4.1e, f). The presence of clusters of reduced !!∗ in white 

matter despite exclusion of lesions indicates these significant changes between patients 

and controls are not due to classical demyelination alone. Moreover, patients have 

increased !!∗ in the medial thalamus (arrows in Fig. 4.1g), in a region encompassing the 

right pulvinar, and in the bilateral globus pallidus (arrowheads in Fig. 4.1g), and, while 

not shown here, the right putamen. At several positions within cortical grey matter, 

patients have significantly increased !!∗, for example, within a significant cluster in the 

posterior cingulate (arrowhead in Fig. 4.1e). 

4.3.3 Mean CSA of the right IJV is reduced in patients compared 

to controls 

Metrics of mean IJV CSA are tabulated (Table 4.2) for controls and patients. No 

differences between patients and controls were detected for the left IJV. The mean CSA 

of the right IJV was significantly smaller for patients than controls. While not a 

significant difference, there was a trend (P<0.10) for the total CSA to be smaller in 

patients than in healthy controls. There were no significant correlations for any CSA 

metric (right, left, or sum) with age (evaluated over patients and controls), EDSS, or 

disease duration (evaluated over patients only). A Bland-Altman difference plot is shown 

(Figure 4.2), pooled for all subjects, to establish test-retest stability of total CSA. Neither 

the bias of the difference between baseline and follow-up measurements, nor the 

correlation between axes is significantly different from zero, which suggests IJV CSA is 

well reproducible. 
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Table 4.2 Mean cross-sectional areas of internal jugular veins 

 

Controls (n=16) 

Mean (SD) [mm2] 

Patients (n=22) 

Mean (SD) [mm2] P 

Left 54.2 (27.8) 52.6 (25.0) 0.679a 

Right 96.0 (31.5) 65.7 (28.6) 0.004 

Total (sum) 148.5 (42.2) 123.3 (39.2) 0.066 

Two sided t-test, except for a where Mann-Whitney U test was used. 
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Figure 4.2 Bland-Altman difference plot of baseline and 4 month follow-up of total IJV 
CSA, pooled for all subjects. The dashed horizontal lines represent the 95% confidence 
intervals of the bias of the difference between the two measurements. This bias, as well 
as the correlation between difference and average, is not significantly different from zero. 
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4.3.4 Correlations of !!∗ differences with clinical and imaging 

parameters 

Anatomically similar significant clusters were grouped into categories, as presented 

(Table 4.3). Mean !!∗ was measured for all such clusters within a category and 

correlations with disease status parameters were made in patients. Significant P-values 

and correlation coefficients are listed (Table 4.3). Of note, for no ROI was a significant 

correlation with IJV CSA detected. 

4.3.5 Baseline !!∗ levels do not differ between MS and 

unconverted CIS 

Figure 4.3 presents !!∗   values in the ROIs identified in Table 4.3, as measured at baseline, 

for: healthy controls, unconverted CIS patients, and MS patients (i.e. patients who had 

CIS at baseline and have since received a diagnosis of MS). In no case was there a 

significant difference between CIS and MS patients; from visual inspection the 

distribution of !!∗ values is highly similar for both patient groups for all ROIs 

investigated. 

4.3.6 Lesion !!∗ has no association with IJV CSA 

Average lesion !!∗ was not significantly correlated with any parameter, including any IJV 

CSA metric. Mean lesion !!∗ in patients was 15.4±2.0 s-1. No lesions had a bright rim on 

!!∗. 
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Figure 4.3 Mean !!∗ at baseline for healthy controls (HC, n=16), CIS patients who have 
not converted to MS (CIS, n=14), and MS patients (MS, n=8, i.e. those subjects who 
were in the CIS group at baseline that have since received a diagnosis of clinically 
definite MS). For ROIs identified previously: bilateral thalamus and right pulvinar (a), 
bilateral globus pallidus (b), right putamen (c), cortical hotspots (d), and white matter 
cool spots (e). Error bars denote standard deviations. All significant pairwise differences 
are indicated: *, P<0.05; **, P<0.01, ***, P<0.001. 
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4.4 Discussion 

In this study, we evaluated brain iron in patients at high risk for a diagnosis of MS. With 

our voxel-wise methodology, we were able to reproduce well-known findings regarding 

iron accumulation with age9: specifically, iron increases in numerous sub-cortical nuclei, 

and, at a lesser rate, in various cortical areas. 

Previous 3T MRI studies have investigated differences in brain iron between patients 

with CIS and controls with conflicting results. In the study of Khalil et al., patients with 

MS had significantly increased !!∗ in the basal ganglia compared to both CIS patients and 

controls, whereas no differences were detected between CIS patients and controls10. In 

that study, comparisons between patients and controls were made for !!∗ measured in 

ROIs which are large in volume compared to the voxel-wise analyses performed in the 

present study. Thus, an exclusively ROI-based approach has inherently reduced 

sensitivity to iron deposition that is limited to only a portion of a structure. In contrast, 

Hagemeier at al. used a MRI phase-based measurement to quantify iron that is sensitive 

to variations in iron content within a structure11. In that study, the authors found evidence 

of increased iron in CIS patients compared to healthy controls in the pulvinar, putamen, 

caudate, and total sub-cortical deep grey matter. A difference in ages of subjects in each 

study might also account for the different results. Khalil et al. studied a cohort of CIS 

patients of ages 33.7±10.3 years and a healthy control cohort of ages 36.7±13.7 years. In 

contrast, in Hagemeier et al.’s study, the CIS patients (40.1±10.4 years) and healthy 

controls (42.8±14 years) were older. One possibility is that, in CIS/MS, normal age-
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related accumulation of iron is accelerated so that a difference is only detected at an older 

age. 

Our results suggest that iron accumulation in deep grey matter nuclei including the 

putamen, globus pallidus, pulvinar, and medial portion of the thalamus has occurred by 

the earliest clinical stages of the disease. Whether iron accumulation preceded other 

pathology, occurred immediately after inflammation began, or is ongoing at the time of 

clinical presentation remains unknown; this question will benefit from longitudinal 

studies. Iron in these structures is in keeping with known iron accumulation and 

potentially related atrophy in clinically definite MS1,12,13. In particular, increased thalamic 

iron may mediate damage4 and contribute to common clinical symptoms associated with 

the thalamus that can be present early in the disease course, including fatigue14 and 

cognitive decline15. Curiously, a recent study at 7 T, which used quantitative 

susceptibility mapping to interrogate iron levels in CIS patients, found increased iron in 

CIS16, but failed to reproduce the above-mentioned and well-accepted trends in iron 

accumulation with age. None of these previous studies have investigated correlations 

between !!∗ differences and IJV caliber. 

Our finding of no differences in !!∗ between MS and unconverted CIS may suggest that 

increased brain iron is a nonspecific finding of early demyelinating disease. This must be 

interpreted with caution because the stratification is not perfect: likely some currently 

unconverted CIS patients will be diagnosed with MS in the future. With longitudinal 

follow-up of this patient cohort, we will have more accurate diagnosis for all patients; 

such comparisons will be more telling at that time. 
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We find that at some positions within the cortex, CIS patients have significantly 

increased !!∗, after age adjustment, compared to controls. This result may indicate that 

cortical iron accumulation occurs in early MS. Such iron may be implicated with grey 

matter lesions17 and is consistent with the growing notion that the cortex is not spared in 

MS evolution18. As cortical changes in !!∗ were unanticipated, the study was not designed 

to investigate the presence of cortical demyelination that might co-localize with putative 

iron increases. 

In the future, we intend to compare observed iron changes in patients to the magnitude of 

healthy age-related increases in iron. This could be done by dividing significant 

differences in !!∗ between patients and healthy controls by healthy rates of change of !!∗ 

with age. These rates were estimated in the present study from 16 healthy controls. The 

observed rates (Fig. 4.1 a-d) were measured from a large and relatively well-sampled 

range of ages and agree with well-known relationships of iron and atrophy with age in 

different parts of the brain. Therefore we felt these values were sufficiently accurate for a 

first order correction of !!∗ data prior to t-test (indeed, this is a standard process for age-

adjusted t-tests). However, given that conversion of !!∗ differences into equivalent years 

of ageing would involve a division by rate of change of !!∗, it would be very sensitive to 

noise/inaccuracies in the rate of change data. Increased recruitment into the present study 

is anticipated in the future; this data will facilitate more robust correlations between !!∗ 

and age. 

In this study, we detected positions in lesion-free white matter with significantly reduced 

!!∗ in patients compared to controls. These regions are located in areas where WM lesions 
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are commonly observed in MS patients. Previous studies have interpreted decreased 

relaxation rates in the NAWM of MS brains as decreased myelin or iron content, 

inflammation, glial proliferation, and/or axonal loss19. Such changes in NAWM may 

precede development of lesions; however, as decreases in !!∗ are non-specific, further 

work remains to be done to identify specific disease mechanisms responsible. For 

example, it is even possible that iron is diffusely increased in these regions and other 

factors changing !!∗ overwhelm the expected increase due to iron. 

To evaluate a potential role for the extracranial venous system in the observed iron 

increases, we measured the CSA of the IJVs. We found a difference between CIS patients 

and controls in the mean CSA of the right IJV only. Mean CSA metrics obtained from 

TOF MRV are operator independent and reproducible. It is well known that the right IJV 

is generally of larger caliber than the left20,21 – this difference is less pronounced in 

patients with CIS. Our finding of significant differences in IJV caliber between patients 

and controls is consistent with a recent study that found that patients with clinically 

definite MS have significantly flattened IJVs compared to controls22, although the 

evaluation of vessel caliber in that study was based on subjective rating by blinded 

radiologists. The authors of that study did not report differences for left and right IJVs 

separately, so it is difficult to make a complete comparison. Ultimately, we must be 

cautious when interpreting IJV flattening or reduction of CSA as this may represent: 

reduced intraluminal pressure which fails to force the vessel to be round, improper IJV 

development, or external (i.e. outside of IJV) source of vessel pinching/occlusion. 

We did not directly interrogate flow, nor did we quantify CSA metrics for vessels other 

than the IJVs; however, at least one of the IJVs is invariably involved in every potential 
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CCSVI case23. Retrograde/turbulent flow may result in reduced signal intensity within the 

vessel, but this does not necessarily translate to a reduction in CSA given the very high 

and relatively uniform contrast that we found to be typical between IJVs and surrounding 

tissue. If substantial flow abnormalities were present, then it is possible that a reduced 

CSA would be measured due to reduction in signal intensity at the edge of a vessel where 

such turbulence was present and this could fall below the segmentation threshold. 

However, such abnormalities would also be associated with poor venous contrast and 

ghosting or phase-encode artifacts; such artifacts are absent in the IJVs in our data. We 

found the IJVs to be almost always very well demarcated with excellent contrast from 

surrounding tissue in controls and patients alike. Therefore, our finding of reduced CSA 

is most likely explained as reduction in the real CSA of the IJV; it is a remote possibility 

that reduced CSA may be a consequence of highly turbulent/retrograde flow, given that 

the artifacts that should accompany such flow disturbances are absent. Such artifacts are 

notoriously variable from scan session to scan session whereas we have successfully 

demonstrated that there is no significant scan-rescan variability in CSA metrics. Even if 

there were a change in CSA introduced by turbulence or retrograde flow, our data show 

that this is consistent over time. The lack of correlation between CSA and age suggests 

that CSA is not a dynamically evolving property of the IJVs in adults. Moreover, CSA is 

not related to conventional clinical metrics such as EDSS or disease duration. 

To explore correlates of !!∗ changes in CIS, we performed a regression of !!∗ against 

various potentially disease related parameters for patients for clusters where the age-

adjusted difference in !!∗ between groups was significant. The positive correlation 

between EDSS, a measure of clinical disability, and thalamic !!∗ suggests worsening 
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clinical status with increased brain iron. This result is consistent with findings in definite 

MS10. The observed negative correlation of cortical grey matter increases in !!∗ with age 

might indicate patients with CIS are more susceptible to increased tissue loss or atrophy 

at these positions with age, possibly due to iron-related oxidative stress. We found no 

evidence that changes in IJV caliber are related to changes in !!∗ in any structure, 

including putative iron accumulation in grey matter, or diffuse damage in NAWM.  

White matter !!∗ is typically on the order of 20 s-1 24; however, in white matter lesions in 

CIS, !!∗ was measured to be dramatically smaller, suggesting against significant intra-

lesion iron in CIS. The lack of association between IJV CSA and lesion !!∗ also 

contradicts vein-mediated deposition of iron in classical MS lesions. The absence of 

bright lesion rims on !!∗ may indicate that iron arrives at these positions later in the 

disease2. 

4.5 Conclusion 

In summary, we find that CIS patients have increased !!∗, a putative metric of iron 

deposition, in deep and cortical grey matter compared to controls. Damage to NAWM is 

present in CIS, as indicated by reduction in !!∗. These !!∗ changes may be nonspecific for 

early demyelinating disease and of limited predictive value for future MS diagnosis: 

future work is needed to confirm these hypotheses. Our observations confirm IJV 

narrowing at the earliest stages of MS, but do not support a role for venous caliber 

changes in explaining the increased iron deposition observed in CIS. Other events must 

give rise to the detected changes in !!∗. 
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5 Central veins in white matter hyperintensities can be 

detected at 3 T and may be predictive of an MS 

diagnosis 

5.1 Introduction 

Demonstration of white matter lesions with magnetic resonance imaging (MRI) is central 

to multiple sclerosis (MS) diagnosis1. However, white matter hyperintensities (WMHs) 

are not specific to MS and may reflect a number of physiological processes other than 

inflammatory demyelination (which is itself not specific to MS), including metabolic, 

vascular, and neurodegenerative disorders2. Requirements for MS diagnosis include that 

demyelinating lesions be proved as disseminated in space and time, moreover mimics of 

MS must be excluded from the differential3. Ultimately, the process of diagnosing a 

patient with MS can take months or years4. 

An early and accurate diagnosis with MS will allow quality of life to be retained through 

early initiation of disease-appropriate management5. To that end, there is a growing 

interest in identifying biomarkers to facilitate discrimination between MS and non-MS at 

first clinical presentation. 

One such biomarker may be an MRI-detectable penetrating vein within a WMH. MS 

lesions have been known to be venocentric since the earliest descriptions of the disease6. 

It was not until 2000 that Tan and colleagues directly demonstrated this physiological 

finding in vivo with MRI7. Interest in this biomarker has grown in subsequent years. 
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In particular, several studies performed by the Nottingham group have addressed this 

topic8-11, and have taken advantage of the excellent visibility of small veins achievable 

with 7T MRI. In one study, they reported that all patients who converted from suspected 

MS to clinically definite MS had >40% white matter lesions with central veins at 

baseline11. It must be noted that 7T MRI is exclusively a research tool, with virtually no 

prospect for clinical use in the near future. In clinical practice, 3T and more commonly 

1.5T MRI systems are used; however at these lower field strengths, the visibility of veins 

using conventional image contrasts is diminished and the practically of the proposed 

biomarker remains unestablished. Our objectives in the present study are to determine 

how well central veins in WMHs can be detected using our multi-echo SWI methodology 

at 3T, and also to investigate the value of such MRI-detectable penetrating veins in 

WMHs for predicting conversion from clinically isolated syndromes (CIS) to MS. 

5.2 Methods 

5.2.1 Subject recruitment 

The same patient and control cohorts as in Chapter 4 of this thesis were studied. In short, 

22 patients with a CIS suggestive of MS were recruited from the MS Clinic at the London 

Health Sciences Centre. Additionally, 16 age- and sex-matched healthy controls were 

recruited from the general population. Informed, written consent was obtained from all 

study participants. The Health Sciences Research Ethics Board of The University of 

Western Ontario approved this study. 
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From a mean follow-up of 11.2 months, updated clinical statuses for all patients were 

available, namely whether or not an MS diagnosis had been made. 

5.2.2 MR imaging 

All study participants were imaged on a 3T MRI system (TIM Trio, Siemens Medical 

Solutions, Erlangen, Germany). Relevant contrasts acquired include 2D axial FLAIR: 

TE/TI/TR = 136/2850/15000 ms; in-plane resolution = 1x1 mm2, 50 slices, slice 

thickness = 3 mm. 3D T1-weighted (T1w) MPRAGE: TI/TE/TR = 900/6.9/2060 ms; 

voxel size = 0.5x0.5x1.0 mm3. Additionally, 3D multi-echo gradient echo (GRE): 

TE1/∆TE/TR = 10/7/52 ms (6 echoes), voxel size = 0.5x0.5x1.0 mm3. Three GRE 

volumes were acquired, with approximately 15 to 20 mm of overlap between adjacent 

slabs, providing full brain coverage including the cerebellum. 

5.2.3 Image processing 

Processing was performed in MATLAB (The MathWorks, Inc., Natwick, MA) and FSL 

(FMRIB, Oxford, UK). 

Magnitude and phase data from each GRE slab were combined to produce multi-echo 

susceptibility weighted images (SWI) according to post-average processing with the 

conventional, linear mask function as described in Chapter 2. From magnitude data, maps 

of S0, the steady state signal, were generated via voxel-wise curve fit to Eq. 2.3. 

Using transformation matrices calculated from co-registering mean magnitude for each 

slab to the T1w volume (as in Chapter 4), SWI and S0 volumes were transformed into the 

space of the corresponding T1w volume for that patient. The three registered slabs of 
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each contrast for a given patient were concatenated by arithmetic averaging of 

overlapping voxels. To remove T1-weighting and the effect of flip-angle variations over 

the imaging slab from SWI, the S0 volume was first median-filtered with a 5x5x5 mm3 

kernel to smooth and denoise the volume. The full-brain SWI volume was divided by the 

filtered S0 volume to produce a full-brain SWI with consistent contrast throughout the 

volume. Representative SWI images before and after correction with filtered S0 are 

shown in Figure 5.1. FLAIR volumes were co-registered to T1w volumes using the 

FLIRT tool from FSL. 

5.2.4 Image analysis 

SWI and FLAIR for each volunteer (patients and controls), as processed above, were 

saved to a directory with a random label. All identifiers were removed to ensure image 

rating was blinded. Vein rating was performed for one subject at a time, as follows. 

FLAIR and SWI were loaded in FSLVIEW viewer, which allows volumes to be viewed 

in the three orthogonal planes simultaneously. WMHs were identified on FLAIR; only 

WMHs with a maximum dimension in one of the three orthogonal planes of at least 3 mm 

were rated. FLAIR image was then toggled off to reveal the SWI image. The presence of 

a central vein was then rated (yes or no) using the criteria proposed by Tallantyre9. 

Venous vessels were hypointense on SWI and were only counted if they (i) could be 

visualized in at least 2 perpendicular planes, (ii) appeared linear in at least 1 plane, and 

(iii) were completely surrounded by hyperintense signal in at least 1 plane. The total 

number of WMHs and the total number of venocentric WMHs were recorded for each 

volunteer. 
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Figure 5.1 Multi-echo SWI images before (a-c) and after (d-f) correction by division with 
blurred S0. Unwanted effects of non-uniform flip angle, T1-weighting, and receive coil 
sensitivity are mitigated using this methodology. 
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We acknowledge that the number and distribution of WMHs in a given subject had the 

potential to unblind the primary rater in this study with respect to subject status (patient 

versus control). We evaluated this possibility as follows. Thirteen lesions from different 

subjects were cropped from surrounding tissue. A secondary rater, blinded to the original 

rating results, was shown these cropped lesions one at a time and asked to rate for a 

central vein. As a measure of inter-rater agreement, Cohen’s kappa was calculated to be 

0.70, indicating adequate agreement. For future work, we propose rating by consensus of 

two physicians to improve inter-rater agreement. 

5.2.5 Statistical evaluation 

All statistical analyses were performed in Prism v. 5.0 (GraphPad, LaJolla, CA). 

Using Fisher’s exact test, WMH counts (venocentric versus non-venocentric) were 

compared between healthy controls and all CIS patients. Using Chi-squared, WMH 

counts were compared between healthy controls, CIS patients who did not convert to MS 

by follow-up, and CIS patients who did convert to MS by follow-up. Post-hoc 

comparisons were made between pairs of columns using Fisher’s exact test with Holm-

Bonferroni correction of P-values. 

For each subject, the %LCV (percentage lesions with central veins) was calculated as 

(number of WMHs with a central vein)/(total number of WMHs)x100%. Using two-sided 

t-test, %LCV was compared between healthy controls and all CIS patients. Using one-

way ANOVA with Tukey post hoc, %LCV was compared between healthy controls, CIS 

patients who did not convert to MS by follow-up, and CIS patients who did convert to 

MS by follow-up. 
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5.3 Results 

Representative FLAIR and SWI images are shown for a venocentric WMH in Figure 

5.2a,b and for a non-venocentric WMH in Fig. 5.2c,d. Despite similar appearance on 

FLAIR, a radiological standard for lesion identification, there is a differential appearance 

on SWI. 

By the follow-up, 8 patients had been diagnosed with MS. These patients make up the 

MS group referred to subsequently; all other patients comprise the non-converted CIS 

group. Group totals of WMHs with and without central veins are presented (Table 5.1). 

In the MS group, 67% of all lesions were venocentric; in non-converted CIS, 50% of 

lesions were venocentric; in the healthy control group, 24% of WMHs were venocentric. 

In the entire baseline CIS group, of 288 lesions, 59% were venocentric. When comparing 

WMH venocentricity counts in healthy controls to all CIS patients, Fisher’s test yields 

P=0.0003. When considering all three groups separately, the Chi-square test yielded a 

highly significant P<0.0001. P-values from post-hoc pair-wise comparisons, corrected for 

multiple comparisons, were: between healthy controls and non-converted CIS, P=0.013; 

between healthy controls and MS, P<0.001; and between non-converted CIS and MS, 

P=0.011.  

Means and standard deviations of %LCV were calculated for healthy controls (12±19%, 

n=8) and all patients with CIS at baseline (55±33%, n=20) and compared with a t-test, 

yielding P=0.002. Figure 5.3 presents %LCV for each subject: healthy controls, 

unconverted CIS, and MS patients (ANOVA P=0.0004, post hoc significant pairwise 

differences illustrated). 
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Figure 5.2 FLAIR (a,c) and multi-echo SWI (b,d) of a venocentric WMH in a patient 
with MS (a,b) and of a non-venocentric WMH (c,d) in a healthy control. 
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Table 5.1 Contingency table of WMH counts in healthy controls and patients. 

 

Healthy 

Controls 

Non-converted 

CIS 
MS 

Venocentric WMHs 7 65 106 

Non-venocentric WMHs 22 64 53 
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Figure 5.3 %LCV for different study groups. Patients with diagnosed MS show a 
substantial increase in %LCV compared to both other groups. The dashed line indicates 
%LCV of 40%, proposed to allow discrimination between MS and non-MS. All subjects 
with no WMHs (8 controls, 2 non-converted CIS) were excluded from this analysis. 
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5.4 Discussion 

In this study, we investigated a newly proposed biomarker for MS – MRI detectable 

veins within white matter lesions – using post-average multi-echo SWI with a linear 

mask function at 3 T, as optimized in Chapter 2. We are able to detect such veins using 

our methodology and differentiate between WMHs with and without central veins (Fig. 

5.2). This study did not include imaging at 7 T, thus it is impossible to directly compare 

our sensitivity to small veins using 3 T versus 7 T, but given the similarity of our results 

to previous work at 7 T, as will be elaborated on below, we are confident our sensitivity 

is similar. 

When comparing the number of WMHs with and without central veins between study 

groups, it is clear that we are able to detect significantly more WMHs with central veins 

in patients with MS, as compared to both unconverted CIS patients and to healthy 

controls. Various studies at 7 T have reported that in MS patients, the fraction of lesions 

with central veins ranges from 59%12 to 92%13. Our detected incidence of central veins 

within MS lesions (67%) appears to be at the lower end of this range.  

Given the intimate role of a central vein in the development of a lesion in MS (Chapter 1, 

Section 1.1.5), it is not unreasonable to expect all MS plaques to be associated with 

central veins. Indeed, by use of SWI post-contrast injection, Tan et al. demonstrated 

central veins in 99% of MS lesions7. Measurements of %LCV<100% in MS are likely 

due to failure to visualize a certain fraction of veins, perhaps those that fall below the 

detection threshold due to size, orientation, or oxygenation. 
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There is a significantly larger fraction of lesions that are venocentric in the non-converted 

CIS group compared to healthy controls (50% versus 24%). This suggests either (1) 

several MS patients remain in the non-converted CIS group who have yet to be 

diagnosed, (2) venocentric lesions are a feature of other diseases which might be 

indistinguishable from MS at early clinical presentations, or (3) both of the above. 

According to the literature, WMHs in individuals in the healthy control cohort may be 

associated with relatively benign pathology such as high blood pressure14 or headache15, 

neither of which are necessarily associated with venocentric pathology. Alternatively, 

these WMHs may be idiopathic and without clinical manifestation. Healthy controls 

included in this study had relatively few WMHs (median: 2, min: 1, max: 7) but it is not 

unrealistic that these foci could occasionally be associated with a vein merely ‘by chance’ 

given the ubiquitous nature of veins in the brain. 

When evaluating %LCV on a subject by subject basis (Fig. 5.3) we are able to reproduce 

the 7T finding of Tallantyre et al. that all patients with MS have %LCV>40% at 

baseline10. This reinforces speculation that detection of this biomarker at first clinical 

presentation may have utility in expediting MS diagnosis. Due to the relatively short 

study window (less than 1 year, although patients will continue to be followed until 2 

years) it is likely that some CIS patients who have not yet received an MS diagnosis will 

eventually receive one. In fact, the non-converted CIS group shows a bi-modal tendency, 

with one cluster of patients (%LCV>40%) having %LCV distinctly larger than the other 

cluster (%LCV<40%). An interesting hypothesis that awaits confirmation at the study’s 

completion is that those non-converted CIS patients in the upper cluster will eventually 

be diagnosed with MS, and those in the lower cluster will not. Given the short follow-up, 



 

 

123 

and the fact that we expect many non-converted CIS patients to yet receive an MS 

diagnosis, at this time calculation of positive and negative predictive values is 

inappropriate.  

A single other 3T study has also reported that venocentric lesions in possible MS are 

predictive of subsequent MS diagnosis16. That study used single-echo SWI (potentially a 

more practical approach, as discussed below). The authors, however, did not report 

fraction of lesions that were venocentric; rather, they reported the total number of large 

lesions with penetrating veins for each patient. This rating methodology may not be 

useful in radiological presentations with numerous small foci. 

One significant limitation of the present study is the choice of MRI contrast for vein 

detection. As implemented here, multi-echo SWI requires approximately 32 minutes for 

full brain coverage. This is prohibitively long for clinical use. We did not investigate the 

ability of multi-echo SWI with fewer echoes, or single-echo SWI (both of which require 

reduced scan time) to visualize intra-lesional veins. Given the increasing prevalence of 

3T systems in clinical use (both in developed and developing countries), investigating the 

feasibility of imaging this biomarker at 1.5 T may be a less important goal than 

optimization at 3 T, given the increased venous contrast at the latter field. 

Moreover, as alluded to previously, the specificity of this biomarker to MS remains 

unestablished. Certainly, not all CIS patients have MS17. The prospective value of this 

biomarker might be diminished if large values of %LCV are also detected in common 

MS mimics. To partially address this question, we are currently recruiting patients with 
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WMH who have clinical diagnoses other than MS to serve as a control group for the 

same type of analyses described herein. 

Two notable challenges for all scientists working in this field remain. The first: what to 

do in the case of patients with very small or large lesion burdens? In the first case, what is 

the minimum number of lesions that must be rated (and therefore be present) to obtain a 

confident evaluation? In this study, we had 2 patients with no WMHs. In the second case, 

might it be appropriate to rate only a subset of the lesions in order to obtain a 

representative but accurate %LCV? Using hypergeometric distribution methodology, 

Tallantyre et al. report that if only 10 lesions per patient were rated (in patients with >10 

lesions), the diagnosis of MS/non-MS could correctly be predicted with 90% certainty in 

44 out of 45 patients tested10. 

The second challenge is: what constitutes a penetrating vein from a radiological 

standpoint? The shape of the lesion, and possibly the course of the vein within are 

relevant. In several studies, criteria for venocentricity are clearly and unambiguously 

outlined; in others, they are absent. It would be best to adopt a common set of criteria, 

such as those used herein and originally outlined in the works of the Nottingham group9. 

5.5 Conclusion 

We report that WMHs with penetrating veins can be detected in MS using multi-echo 

SWI at 3 T. A larger fraction of venocentric WMHs were detected in MS (67%) 

compared to non-converted CIS patients (50%), and healthy controls (24%). Our 

sensitivity to central veins appears to be in line with that of higher field systems. 
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Preliminary results in a cohort of CIS patients that are being followed serially are 

consistent with previous reports that a large %LCV at baseline is highly predictive of a 

subsequent MS diagnosis. 
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6 Conclusion 

In this thesis, we have proposed and developed methodology that has allowed subtle 

components of multiple sclerosis pathology to be probed with MRI, especially in regard 

to iron accumulation and a role for veins. To implement this methodology in the context 

of early MS, we have recruited a cohort of patients with clinically isolated syndromes 

(CIS) as well as healthy controls; we are currently following these cohorts longitudinally 

with scans every 4 months over a 2-year period. This chapter provides a brief summary 

and discussion of experiments described in this thesis. Possible extensions of this study 

and methodology are discussed. 

6.1 Thesis Summary and Discussion 

For decades, an association has been recognized between MS and iron accumulation in 

deep grey matter nuclei1 as well as focally within lesions2. Questions posed about iron’s 

role as either a mediator of damage or as an epiphenomenon remain unanswered3. In this 

thesis, we sought to characterize biomarkers associated with iron deposition in patients 

with early presentations of MS. 

Chapter 2 addressed Specific Aim 1: to optimize an MRI post-processing technique to 

produce both cerebral venograms and quantitative images for measuring iron. In this 

regard, we established an optimal method to perform multi-echo susceptibility weighted 

imaging (SWI), a qualitative contrast that yields excellent visibility of small veins and 

iron-rich structure. Such a contrast holds promise for investigating changes in early MS, 

given the established, yet incompletely understood link between small veins, iron 
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accumulation, and the disease. In addition to the above-mentioned central objective of the 

chapter, we demonstrated that numerical simulation and scoring by trained raters are not 

equivalent in terms of optimization of contrast for SWI. One particularly promising 

application of this technique to which we are looking forward is the study of central veins 

within white matter hyperintensities in MS (as described in Chapter 5) versus in other 

neurological conditions. Moreover, the advantage of a multi-echo gradient echo sequence 

is that such data facilitate computation of maps of !!∗, a quantitative parameter which is 

highly sensitive to iron levels in the brain4 (as used in Chapter 4). In this chapter, we also 

validated our measurements of !!∗ against numerous previously reported values. 

Chapter 3 addressed Specific Aim 2: to establish reproducibility of quantitative 

measures of internal jugular vein (IJV) caliber, given the proposed role for these veins in 

MS pathogenesis. Inasmuch, we proposed methodology to obtain quantitative metrics of 

IJV caliber from axial time of flight magnetic resonance venograms. We established that 

these metrics are sufficiently reproducible to allow the anatomy of these veins to be 

described in a quantitative manner. We report coefficient of variation of measurements of 

average CSA along the entire vessel to have typical values on the order of 7%; this is our 

motivation for using this metric in Chapter 4.  

Chapter 4 addressed Specific Aim 3: to compare relative levels of iron between CIS 

patients and healthy controls. We applied above methodology to study differences in iron 

that potentially manifest early in MS by comparing !!∗ for each voxel in the brain 

between healthy controls and patients with CIS. Evidence for increased iron was found in 

deep as well as cortical grey matter. Increased thalamic iron was associated with clinical 

disability, suggesting that iron may cause tissue damage; alternatively, iron deposition 
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may occur as a possibly quiescent epiphenomenon very soon after the primary pathology. 

With future work, we intend to track iron levels in deep brain structures over time to 

differentiate between the two scenarios. If initially high iron levels are responsible for 

toxicity, they may not increase. If iron accumulation is a side-effect of an ongoing (and 

possibly immune-related) process throughout the disease, then we expect iron levels to 

increase with time. Of course, a dual role for iron is possible – as both a cause and 

consequence of pathology. Our preliminary finding that iron levels at CIS may not 

necessarily be predictive of subsequent MS diagnosis is very intriguing and requires 

additional clinical diagnoses for our unconverted CIS cohort before confirmation. 

Perhaps increased brain iron is typical early on in several idiopathic demyelinating 

diseases, whereas MS is additionally marked by iron accumulation throughout the 

disease? At the very least, our current findings, including correlation between deep grey 

matter iron and clinical status, serve as a reminder that MS is a disease that extends 

beyond the white matter and includes factors in addition to inflammatory demyelination.  

In white matter, we did not detect increased !!∗ at lesion rims, a correlate of increased 

iron at these positions5 that is known from histology. Beyond that, we are limited in our 

ability to comment on the presence of lesion iron. We detected decreased !!∗ within 

lesions. In MS tissue, we expect increases in R2* to be specific for increased iron, while 

acknowledging many factors can contribute to a decrease in R2* (even in the presence of 

increased iron) including demyelination and edema. Following longitudinal studies and 

use of different quantitative contrasts (such as local frequency), we will be able to 

comment on intra-lesion iron as a function of time.  



 

 

130 

Taking our findings in deep grey matter and white matter lesions together, a possible 

scenario emerges where iron in at least two compartments (deep grey matter and lesion) 

accumulates differentially throughout the disease and thus may reflect different 

contributions to tissue damage. 

To explore one possible explanation of iron increases in the deep brain, we measured the 

calibers of the IJVs. We found that the right IJV was significantly narrower in patients 

than in healthy controls and the total IJV CSA (i.e. summed across left and right IJVs) 

trended towards being lower in patients. This finding will need to be explored in the 

context of longitudinal data for robustness. One important findings is that, after 

regression between !!∗ increases and total IJV CSA, we found no evidence that these iron 

increases were a function of IJV caliber, suggesting another disease mechanism must be 

responsible for iron accumulation at these positions. In summary, increased iron is 

present in early clinical stages of MS, but this is not due to vessel occlusion. Venous 

abnormalities may exist in MS, but appear not to be functionally related to pathogenesis. 

While CIS represents a relatively early point in the clinical disease course (ex. relative to 

RRMS or SPMS), there is likely a window of a finite length of time between onset of 

CNS inflammation and CIS. Information about iron concentration in affected tissue 

during this window would be highly useful for elucidating iron’s role in MS. In the 

future, insights into this problem may be acquired via imaging studies in groups of 

individuals at high risk for developing MS or in appropriate animal models. 

In the studies described herein, we did not use quantitative susceptibility mapping 

(QSM), a relatively new technique for quantitative brain imaging6, although a brief 
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discussion is warranted here. In a quantitative susceptibility map, which is derived from 

phase data, voxel intensity scales with local magnetic susceptibility, an intrinsic property 

of the tissue (unlike !!∗). Like !!∗, tissue susceptibility scales linearly with iron 

concentration7 and is strongly influenced by myelin content8. An advantage of QSM is 

that these images can be generated from a single gradient echo, although multi-echo GRE 

can also be used. Using QSM, at least two studies have reported on increases in iron in 

CIS compared to healthy controls by taking mean values in relatively large ROIs9,10. 

These results suggest that QSM is more sensitive to iron than !!∗, as a previous study 

using the ROI approach with !!∗ failed to detect any difference between CIS and 

controls11. However, an inherent problem with using QSM for the study of iron is that in 

the presence of high iron concentrations, the signal-to-noise ratio in the phase image will 

be reduced. This might lead to unreliable estimates of tissue susceptibility at these 

positions. 

A major challenge with QSM is the extensive post-processing, errors in which can lead to 

image artifacts. In brief, a local frequency map is generated by unwrapping phase and 

then filtering the unwrapped phase to remove background field contributions. Since a 

very robust frequency map is required to create QSM of acceptable quality, homodyne 

filtering is not sufficient. Instead, filtering is performed using more sophisticated 

models6,12. Subsequently, this filtered and unwrapped phase is scaled to create a local 

frequency map. The Fourier transform of this frequency map is divided by a dipole kernel 

to produce the (Fourier transform) of the quantitative susceptibility map. This last step, 

the field-to-source inversion, in particular is challenging as for some positions in Fourier 

space, the kernel is equal to zero; therefore, the inversion is ill-posed and a solution 
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cannot be found. A number of techniques have been proposed to overcome this 

challenge, and can be found in the literature13. 

QSM has also been used to study white matter fiber tracts by considering myelin as an 

anisotropic perturber of magnetic field14, as opposed to a magnetic dipole (such as 

punctate iron). While this is an area of ongoing research and optimization, this speaks to 

the potential of QSM to study both myelin and iron. 

In our studies, we did not use QSM for two major reasons. First, our phase data included 

open-ended fringe lines15, a phase artifact that is the result of sub-optimal combination of 

data from different receiver elements in the RF coil. In the presence of open-ended fringe 

lines, all phase unwrapping algorithms currently used for QSM do not produce an 

acceptable result. For SWI, unwrapping and filtering are performed automatically and 

simultaneously by the homodyne method; although, as pointed out above, this type of 

phase filtering is insufficient for QSM. Without properly unwrapped phase maps, QSM 

cannot be performed. Second, at the onset of the study, optimization of QSM was in its 

infancy and robust validations of a linear relationship between QSM and iron 

concentration were absent. Therefore, our MRI protocol was designed with the goal of 

generating !!∗, which remains a widely used marker for iron, even alongside QSM8. 

Indeed, if the phase unwrapping challenge can be overcome in the future, we anticipate 

performing QSM in addition to relaxometry to study changes in iron and myelin in early 

MS. 

Chapter 5 addressed Specific Aim 4: to determine if venules can be detected within 

lesions in CIS patients. We used optimized multi-echo SWI (Chapter 2) to interrogate the 
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presence of central venules in white matter hyperintensities (WMHs). We find that 

patients who have converted from CIS to MS had, at baseline, a significantly larger 

fraction of WMHs with central veins compared to non-converted CIS patients, as well as 

to healthy controls. More significantly, we also found that all patients who had been 

diagnosed with MS within the (relatively short) study window had, at baseline, >40% 

lesions with central veins. This supports previous work suggesting this biomarker could 

be used to predict MS diagnosis at first clinical presentation16. Challenges remain when 

considering the clinical feasibility this biomarker, including studying its specificity for 

MS lesions, adoption of standard sequences and rating schemes, and large sample size 

validation. 

6.2 Future Work 

The CIS and healthy control cohorts described in Chapters 4 and 5 are part of an ongoing 

study, where all subjects are imaged every 4 months over a 2-year window. One strength 

of our experimental design is that, by the end of the study, we will have reasonable 

confidence in terms of an MS diagnosis of each CIS patient. This will facilitate 

comparisons not between only patients and controls, but also between healthy controls, 

patients who had MS at baseline, and those who did not. Ultimately, this will allow us to 

increase the specificity of our analyses and make conclusions about the predictive value 

at CIS of different metrics and factors for conversion to MS. The following are specific 

experiments we intend to perform using this longitudinal data. 
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6.2.1 Longitudinal study of deep grey matter iron 

In Chapter 4 of this thesis, we compared !!∗ between all patients and healthy controls in a 

cross-sectional manner (i.e. at study baseline). By the study’s conclusion, we will be able 

to evaluate temporal changes including rates of change of !!∗ (either for each voxel in the 

brain or for specific structures). An interesting question would be: do patients with early 

MS demonstrate increased rates of iron accumulation compare to healthy controls, or are 

local concentrations of iron relatively constant in time during this phase of the disease? 

Phrased alternatively, we know there are differences in the intercepts of plots of iron 

versus time for CIS patients and controls; are there also differences in the slopes? 

Increased iron at baseline in MS compared to healthy controls is required if (but does not 

necessarily indicate that) iron is a primary cause of damage to deep grey matter structure. 

Alternatively, accumulation of iron with time might favour iron’s role as one of an 

epiphenomenon of disease11. Only after both possibilities have been thoroughly vetted on 

the entire study cohort will we be able to draw useful conclusions. 

6.2.2 Longitudinal study of lesion iron and microstructure 

The exact pathogenic mechanism of plaque development (including any role for iron) 

remains unknown. One possibility is that the neuro auto-antigen for unknown reasons 

(potentially related to environmental or genetic factors) stimulates an immune response 

that results in irregular iron metabolism17. In this case, increased iron may only be 

detectable after it has been sequestered by macrophages later in the lesion’s lifetime18. 

Alternatively, increased iron may be detectable in the earliest stages of lesion 

pathogenesis as an immediate result of increased iron transport19 or microhemorrhage2. It 
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is unknown whether iron is directly responsible for inflammation and attraction of 

cellular effectors, as proposed by Zamboni20, although if iron is a driving force for 

damage, it should be present early in the lesion’s development. With our longitudinal 

study data, we intend to perform retrospective and prospective analyses of lesions to 

determine the spatial and temporal patterns of lesion iron via !!∗ measurements. In the 

literature, it has been reported that as many as one quarter of white matter lesions in 

CDMS have a hypointense rim on gradient echo magnitude images (corresponding with 

increased !!∗) indicative of iron21. One study suggested that such iron accumulation 

patterns are exclusive to the subset of lesions that are chronically active18. In our CIS 

patients, no such signal changes at any lesions’ rims were seen at baseline. This is 

consistent with iron accumulating at the lesion rim later in the disease; however after 

quantitative analyses of serial data for many lesions we will have a more complete 

picture. 

Recently, it has been proposed that local frequency (an additional quantitative contrast 

attainable from gradient echo images) is very sensitive to changes in tissue 

microstructure, including changes in myelin and axons, during the progression of lesion 

pathology in MS22, and could be used to estimate the activity within the lesion. This 

hypothesis has only been explored through numerical simulation, as well as cross-

sectionally in vivo. The longitudinal nature of our data set will eventually facilitate 

tracking of intra-lesional signal changes over time on a lesion-by-lesion basis, which will 

allow us to study both lesion microstructure, and as noted above, iron. 
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6.2.3 Study of venocentricity of white matter lesions 

From the earliest descriptions of MS, the venocentric characteristic of plaques was 

noted23. A central venule is certainly involved in the inflammatory machinery of the 

plaque2, including iron deposition. Recently, numerous MRI studies16,24,25 have proposed 

this finding might be non-invasively detected as a prospective biomarker for MS. We 

explored this issue in Chapter 5, in a proof-of-principle experiment.  

Given the prospective nature of our cohort, and increased recruitment that is anticipated, 

we plan on extending the preliminary work presented in Chapter 5 of this thesis with 

respect to a role for venocentric lesions in predicting conversion to MS. While the study 

presented in Chapter 5 was limited by low sample size, we aim to recruit until a total of 

30 to 50 CIS patients. By the study’s conclusion, we will be able to determine with 

confidence if a high percentage of lesions with central veins at baseline is predictive of 

subsequent MS diagnosis; our preliminary work suggests this is the case. Two recent 

studies have reported on iron at the lesion rim in MS compared to other conditions, as 

indicated by hypointense signal on !!∗ weighted MRI at the edge of the lesion21,26. 

Perhaps the coincidental findings of increased iron and a central vein would improve 

specificity of this methodology. 

Given that white matter hyperintensities on T2-weighted MRI are notoriously non-

specific, one aspect of MS diagnosis for which this methodology would be highly useful 

is differentiating MS from other neurological diseases on the basis of lesions with central 

veins. Very few studies have investigated the presence of central veins in white matter 

lesions of other diseases. Sinnecker and colleagues showed that in neuromyelitis optica 
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spectrum disorders (which involve inflammatory demyelination and can be confused with 

MS) only 35% of WMHs had a central vein, as opposed to 92% in MS21. This result 

suggests the approach explored in Chapter 5 has potential to differentiate between the 

two. Alternatively, Lummel et al. reported WMHs in patients with small vessel disease 

were as often found along small veins as in MS (78% versus 80%)27. Certainly, work 

remains to be done to establish in which diseases, if any, venocentric WMHs are 

expected in addition to MS. 

To further investigate these topics, we are recruiting an additional cohort of patients for 

our study: patients with clinical diagnoses of neurological diseases other than MS but 

with similar white matter hyperintensities (migraine, neurological presentations of 

systemic autoimmune diseases, vascular disorders). We intend to recruit 20 patients in 

this category that are age- and sex- matched to our control and CIS cohorts for a single 

MRI using our 3T protocol. A revision to our ethics protocol has recently been submitted 

to this effect. 

The addition of this non-MS patient group will allow us to probe the specificity of 

venocentric lesions, and potentially iron-containing lesions, to MS. Moreover, this new 

group can serve as an alternative control when evaluating, for example, deep brain iron 

levels or IJV CSA in MS. This will allow us to address additional relevant questions: Are 

increases in iron, or changes in vein caliber (as detected in Chapter 4) specific to MS, or 

prevalent in other neurologic disease as well? 
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6.2.4 Longitudinal study of IJV caliber 

In Chapter 4, we reported that the right IJV was of significantly reduced mean CSA in 

CIS patients than in healthy controls, while no significant differences were found for the 

left IJV, or sum of means. Following IJV CSA longitudinally in our complete cohort will 

establish whether this difference is truly robust and if it is limited to MS, or if it is present 

in other neurological conditions. This methodology will also allow us to examine the 

possibility that IJV CSA is a dynamic property in MS (reflecting adaptive venous return). 

6.3 In closing 

The central objective of this thesis was to characterize MRI biomarkers associated with 

iron deposition in patients with early presentations of MS; major findings in this regard 

are summarized here. We found that metrics of brain iron were increased in CIS patients, 

a cohort which included several early MS cases. While increased iron in MS is well 

known, the predictive value of increased iron in CIS of a future MS diagnosis remains 

unclear. Moreover, while IJVs were of reduced caliber in CIS patients, this was not 

associated with metrics of iron accumulation, suggesting that another mechanism must be 

responsible for iron deposition. Finally, we have reproduced ultra high field strength 

findings that small veins can be detected within MS plaques, suggesting that there may be 

diagnostic value in classifying the fraction of lesions which have a central vein in early 

clinical presentations. 
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