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Abstract 

Alpha-thalassemia mental retardation, X-linked (ATRX) is a SWI/SNF-like chromatin 

remodeling protein, enriched at heterochromatic regions of the genome.  Disruption of ATRX 

in humans causes a neurodevelopmental disorder known as ATR‐X Syndrome, and has been 

linked to paediatric neuronal cancers, suggesting an important role for ATRX in the 

regulation of chromatin structure in the developing brain.  At the outset of this study direct 

ATRX target genes had not yet been identified. This thesis identifies imprinted genes as 

targets of ATRX in the developing brain, and explores the mechanism of ATRX regulation at 

these sites, using the H19/Igf2 imprinted domain as a model.  My findings indicate that in the 

forebrain ATRX localizes to the maternal allele of the H19 imprinting control region (H19 

ICR) with methyl CpG binding protein 2 (MeCP2), CCCTC‐binding factor (CTCF) and 

Cohesin, three important regulators of chromatin structure. ATRX is recruited by MeCP2 to 

the H19 ICR, where it then governs the profile of post‐translational histone modifications and 

nucleosome occupancy to maintain CTCF and Cohesin binding.  CTCF and Cohesin are 

essential constituents of the cis and trans chromatin interactions that regulate the expression 

of imprinted genes.  Loss of either ATRX or MeCP2 disrupts cis chromosomal interactions 

across H19/Igf2.  A role for ATRX in cis at several imprinted genes is supported by its ability 

to bind directly to many imprinted domains.  Taken together, these findings indicate that 

ATRX can regulate the expression of target genes in the brain by altering nucleosome 

positioning to control local chromatin interactions.   
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Chapter 1  
Portions of Chapter 1 are reproduced with permission from (Kernohan and Bérubé, 2010) 

(Appendix A)   

1 General Introduction 
As our understanding of the genome evolves, we are continually discovering the complex 

and dynamic nature of its regulation.  In addition to the encoded DNA sequence, we now 

know that epigenetic regulatory mechanisms can dictate and refine gene expression.  

Imprinted genes are a distinct class of epigenetically regulated genes that are 

preferentially expressed from one parental allele.  A number of these genes are crucial for 

placental function and embryonic growth in mice and humans(Lefebvre, 2012; 

Piedrahita, 2011).  Disruption of imprinted genes is also associated with several 

neurodevelopmental disorders, although the role and regulation of genomic imprinting in 

the brain remains largely unresolved(Kernohan and Bérubé, 2010).  Mutations in alpha-

thalassemia mental retardation, X-linked (ATRX), encoding the ATRX chromatin 

remodeling protein, cause a neurological syndrome known as ATR-X Syndrome(Gibbons 

et al., 1995b).  Studies in mice have confirmed a requirement for ATRX in brain 

development(Bérubé et al., 2005); however, direct gene expression targets of ATRX in 

the brain have not yet been identified.  The work presented herein reveals that ATRX 

regulates the expression of imprinted genes during the developmental switch from a 

highly proliferative to a post-mitotic state occurring in the neonatal brain.  The H19/Igf2 

imprinted domain was used as a model to elucidate the mechanisms by which ATRX 

regulates gene expression. 

1.1 The ATRX Gene and Protein 

1.1.1 The ATRX Gene and Protein 
The Alpha-Thalassemia mental Retardation X-linked (ATRX) gene contains 36 exons and 

spans over 300 kb of genomic DNA on the X chromosome(Picketts et al., 1996).  ATRX 

is translated into two protein isoforms, the full length 280 kDa ATRX protein, and a 

truncated 200 kDa protein known as ATRXt(Garrick et al., 2004) (Figure 1-1).  ATRXt is 
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generated from the alternative splicing of exon 11, which results in the use of an 

alternative polyA signal(Garrick et al., 2004).  ATRX and ATRXt are highly conserved 

between mouse and human and their abundance differs throughout development, 

suggesting each may have important biological functions(Garrick et al., 2004; Gecz et al., 

1994; Picketts et al., 1998).   

  

The ATRX protein has two main conserved domains: an ADD domain and a SWI/SNF 

domain, joined by a large flexible linker region(Picketts et al., 1998) (Figure 1-1).  The 

ATRX-DNMT3-DNMT3L (ADD) domain, named for its homology to the DNMT3 

family of DNA methyltransferases, is located at the N-terminus and is comprised of a 

plant homeo domain (PHD)-like zinc-finger, a GATA-like zinc finger, and an alpha-

helical region(Aapola et al., 2000; Argentaro et al., 2007; Xie et al., 1999).  Together 

these motifs are responsible for ATRX's ability to associate with DNA and other proteins 

(Argentaro et al., 2007; Cardoso et al., 2000; Dhayalan et al., 2011; Wong et al., 2010).  

The switch/sucrose non-fermenting (SWI/SNF) domain is located at the C-terminus and 

contains seven highly conserved collinear helicase motifs(Flaus et al., 2006), which 

confer ATRX's ATPase activity(Tang et al., 2004).  Amino acid sequence alignment has 

shown that ATRX's SWI/SNF domain is similar to Rad54, a DNA translocase, and to 

other SWI/SNF proteins that function in complexes utilizing the energy of ATP to 

translocate along the chromatin fiber(Flaus et al., 2006).  SWI/SNF protein translocation 

modifies the histone-DNA interface in a process known as chromatin remodeling, which 

functions to regulate chromatin structure and gene expression(Reviewed in (Clapier and 

Cairns, 2009; Euskirchen et al., 2012; Hargreaves and Crabtree, 2011; Kasten et al., 

2011)) (discussed in section 1.4.1).  In vitro biochemical studies have confirmed that 

ATRX is a DNA translocase(Mitson et al., 2011; Xue et al., 2003), and that its ATPase 

activity is dependent on the presence of nucleosomes(Tang et al., 2004).  Importantly, 

ATRXt lacks the SWI/SNF domain and therefore likely does not function as an ATPase 

or chromatin remodeler(Garrick et al., 2004).  Aside from this, little is known about the 

structure or function of ATRXt.        
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Early immunofluorescence studies demonstrated that ATRX is a nuclear protein that 

localizes largely to pericentromeric heterochromatin (PCH) and ribosomal DNA, both of 

which are repetitive heterochromatic regions(McDowell et al., 1999).  More recently, 

genome-wide chromatin immunoprecipitation (ChIP) studies have shown that in addition 

to these sites, ATRX is also enriched at GC-rich regions and telomeric repeats(Law et al., 

2010).  ATRX may target heterochromatin by recognizing specific post-translational 

histone modifications, including the presence of H3K9me3 and absence of H3K4me2 and 

H3K4me3(Dhayalan et al., 2011; Eustermann et al., 2011; Lewis et al., 2010; Wong et 

al., 2010).  Additionally, ATRX can be recruited to these sites by other proteins.  For 

example, it was found that ATRX functions with the death domain associated protein 

DAXX at telomeres(Lewis et al., 2010).  When the G-rich telomeric repeat sequences are 

single stranded, as occurs during DNA replication or transcription, they are predicted to 

form physical DNA structures called G-quadruplexes(Bifi et al., 2013).  It was proposed 

that DAXX recruits ATRX to G-quadruplex-DNA where it translocates along the 

chromatin fibre to help insert H3.3 and resolve these DNA structures(Goldberg et al. 

2010; Law et al., 2010; Lewis et al., 2010; Wong et al., 2010).  This relationship with 

DAXX is likely one of many partnerships ATRX forms throughout the genome, as 

interactions have already been described with a number of other proteins, including the 

heterochromatin associated protein HP1α(Lechner et al., 2005), the polycomb group 

protein EZH2(Cardoso et al., 1998), and the methyl CpG-binding protein MeCP2(Nan et 

al., 2007).  The function and dynamics of these partnerships throughout the genome are 

not yet known.   
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Figure 1-1. The ATRX gene and protein 

 

(A) Schematic of the ATRX gene. Boxes mark exons, while horizontal lines represent 

introns.  Marks above the gene symbolize ATR-X Syndrome mutation sites: filled circles 

represent truncating mutations, open circles signify missense mutations or small deletions 

which maintain the open reading frame, horizontal lines indicate deletion mutations, and 

recurrent mutations are illustrated by larger circles with the number of families indicated.  

Overall, the spectrum of ATR-X mutations highlights the ADD and SWI/SNF helicase 

domains as chiefly affected. (B) Schematic of the ATRX and ATRXt proteins displays 

the organization of the ADD and SWI/SNF domains and the truncation site for ATRXt.    

 

Reproduced with permission from: Gibbons et al. (2008) Human Mutation 29(6):796-

802.  (Appendix B)   
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1.1.2 Mutations in the ATRX Gene Cause X-linked Mental 
Retardation 

ATR-X Syndrome is a neurodevelopmental disorder associated with moderate-to-severe 

cognitive deficits, lack of speech development, microcephaly (reduced brain size), 

seizures, facial dysmorphisms, and genital, skeletal, and urogenital 

abnormalities(Gibbons et al., 1995a; Gibbons et al., 1995b; Gibbons et al., 1992).  

Patients are also commonly afflicted with alpha-thalassemia, a type of anaemia resulting 

from reduced alpha-globin expression in red blood cells(Gibbons et al., 1995a; Gibbons 

et al., 1995b; Gibbons et al., 1992).  Signs of ATR-X Syndrome are evident at birth and 

affect multiple organ systems, but most notably the central nervous system(Gibbons et 

al., 1995a; Gibbons et al., 1995b; Gibbons et al., 1992).  This rare syndrome 

predominantly affects males and is a consequence of inherited mutations in the ATRX 

gene(Gibbons et al., 1995b; Gibbons et al., 1992).  Females who inherit ATRX mutations 

are unaffected due to a skewed pattern of X-inactivation(Gibbons et al., 1992).  Currently 

approximately 200 ATR-X patients have been identified, carrying a total of 113 different 

ATRX mutations, all of which lie within the ADD domain (49%), the SWI/SNF domain 

(30%), or are truncating (21%)(Gibbons et al., 2008) (Figure 1-1).  A number of 

mutations within the SWI/SNF domain have been demonstrated to compromise ATPase 

and DNA translocase activity(Mitson et al., 2011), while those in the ADD domain 

impair ATRX's DNA and/or protein binding capacity(Cardoso et al., 2000).  The 

distribution of disease mutations indicate that alterations in other regions of the protein 

are either undisruptive or lethal.  To date all ATR-X mutations studied function as 

hypomorphic alleles, and no patients have been documented with a complete lack of 

ATRX protein, suggesting that ATRX-null mutations are not compatible with 

life(Gibbons et al., 2008).  While the limited cohort of ATR-X patients largely precludes 

studies employing patient samples, analysis of erythroid cells have highlighted a link 

between ATRX and DNA methylation(Gibbons et al., 2000).  It was found that ribosomal 

DNA repeats, Y chromosome repeats, and subtelomeric repeats were abnormally 

methylated in erythroid cells from ATR-X patients(Gibbons et al., 2000).  Whether this 

phenomenon occurs elsewhere in the genome and contributes to the ATR-X phenotype 

remains unknown.    
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1.1.3 ATRX is Required for Mouse Brain Development 
Several mouse models have been created in an effort to understand the developmental 

role of ATRX and the various pathologies seen in ATR-X Syndrome patients(Bagheri-

Fam et al., 2011; Bérubé et al., 2002; Bérubé et al., 2005; Garrick et al., 2006; Medina et 

al., 2009; Nogami et al., 2011; Seah et al., 2008; Shioda et al., 2011; Solomon et al., 

2009).  However, these do not necessarily replicate the human syndrome, which results 

from hypomorphic mutations rather than complete loss of ATRX(Gibbons and Higgs, 

2000).  To date, only one mouse model has been created which recapitulates patient 

mutations; this model lacks exon 2 as seen in patients with more mild forms of mental 

retardation(Nogami et al., 2011).  Brain morphology in the ATRX-exon2 mutant model 

was largely normal; however, dendritic spine formation was abnormal in the medial 

prefrontal cortex, and hippocampal functioning was altered(Nogami et al., 2011).  Other 

models have focused on effects of removing the entire ATRX protein.  Ablation of full-

length ATRX starting at the 8–16 cell stage (using GATA1- driven expression of Cre 

Recombinase) causes embryonic lethality due to defective formation of the extra-

embryonic trophoblast and abnormal imprinted X-inactivation in the placenta(Garrick et 

al., 2006).  To circumvent this lethality and study the effects of ATRX loss of function 

during the development of the central nervous system, a system was utilized where Cre 

recombinase is conditionally expressed under the control of the forkhead box G1 (Foxg1) 

promoter(Hebert and McConnell, 2000).  Mating the Foxg1Cre+/- males to AtrxloxP 

heterozygous females generates male mice with a conditional loss of the full length 

ATRX protein in the forebrain beginning at embryonic day 8.5 (E8.5) (referred to as 

ATRX-null and ATRX-KO hereafter)(Bérubé et al., 2005).  ATRXt protein levels are 

unaffected due to the placement of loxP sites following the alternatively spliced 

exon(Bérubé et al., 2005).  ATRX-null mice are smaller than littermate controls, display 

reduced forebrain size, and most die in the neonatal period of unknown causes(Bérubé et 

al., 2005).  Overall, ATRX-null mice provide a valuable tool to study the effects of 

ATRX on various processes throughout neuronal development, including gene 

transcription.    
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1.1.4 ATRX in Replication and Mitosis 
While ATRX’s classification as a chromatin remodeling protein and its effect on alpha-

globin expression has led to a focus on gene regulation, a second role for ATRX has also 

emerged.  ATRX is highly enriched at PCH of condensed mitotic chromosomes and 

becomes hyperphosphorylated during mitosis, suggesting it may also play a role during 

this phase of the cell cycle(Bérubé et al., 2000; McDowell et al., 1999).  RNAi depletion 

of ATRX in cultured human cells followed by live video analysis uncovered many 

mitotic abnormalities, including defects in chromosome congression and cohesion, 

abnormal spindle morphology, and binucleated cells(Ritchie et al., 2008). Similar effects 

were also reported during meiosis in ATRX-deficient mouse oocytes(Baumann et al., 

2010; De La Fuente et al., 2004).  Moreover, analysis of the ATRX-null developing 

forebrain revealed evidence of mitotic defects and highlighted a concomitant increase in 

DNA damage foci(Ritchie et al., 2008; Watson et al., 2013).  It was found that DNA 

damage occurred mainly at the replication fork, and resulted in increased p53-dependent 

cell death(Bérubé et al., 2005; Seah et al., 2008; Watson et al., 2013).  Interestingly, the 

combined loss of ATRX and p53 provided only a partial recovery in postnatal brain size, 

suggesting there are multiple ATRX-dependent pathways necessary to achieve proper 

neuronal development.  The identification and characterization of ATRX functions and 

potential transcriptional targets will likely provide insight into the neurodevelopmental 

roles of the ATRX protein.   

1.2 The MeCP2 Gene and Protein 

1.2.1 MeCP2 
The methyl CpG binding protein 2 (MeCP2) gene encodes a nuclear methyl CpG binding 

protein that can bind directly to chromatin(Lewis et al., 1992; Meehan et al., 1992).  This 

53 kDa protein has three main functional domains: a methyl binding domain(Nan et al., 

1993), nuclear localization signal(Kudo, 1998; Nan et al., 1996) and a transcriptional 

repression domain(Jones et al., 1998; Nan et al., 1998) (Figure 1-2A).  Identification of 

these domains led to the hypothesis that MeCP2 functions as a global transcriptional 

repressor by binding methylated DNA and recruiting histone deacetylases (HDACs)(Nan 

et al., 1998). However, expression profiling studies have shown that the loss of MeCP2 
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results in only subtle changes in gene expression and do not support a role as a classical 

transcriptional repressor(Jordan et al., 2007; Nuber et al., 2005; Tudor et al., 2002; 

Urdinguio et al., 2008).  Emerging studies have shown that MeCP2 can associate with 

both methylated and unmethylated DNA(Hansen et al., 2010; Yasui et al., 2007), and is 

frequently found within both active and inactive genes(Yasui et al., 2007), further 

complicating the questions surrounding the function of MeCP2.  ChIP profiles have 

demonstrated that MeCP2 is enriched at specific sites(Yasui et al., 2007; Yasui et al., 

2013), where it may play a role in regulating higher-order chromatin structure and 

organization(Horike et al., 2005; Yasui et al., 2007).  However, it also appears to coat 

large regions of chromosomes where it competes with histone H1 to bind 

internucleosomal regions and may compact nucleosomal arrays(Nikitina et al., 2007; 

Skene et al., 2010).  Further studies are needed before any conclusions can be drawn on 

the localization patterns and functions of MeCP2 throughout the genome.  It is plausible 

that MeCP2 has multiple binding patterns and functions, depending on its genomic 

environment and/or interaction partners.       

 

MeCP2 has been shown to interact with a number of other proteins, including the 

corepressors mSin3a and cSki(Kokura et al., 2001; Nan et al., 1998), heterochromatin 

associated proteins HP1(Agarwal et al., 2007), DNMT1(Kokura et al., 2001) and 

H3K9MTase(Fuks et al., 2003b), as well as a number of transcriptional regulators 

including YY1(Forlani et al., 2010), and ATRX(Nan et al., 2007).  The MeCP2-ATRX 

interaction was first reported in an in vitro yeast-two-hybrid screen for MeCP2-

interactors, and it was subsequently demonstrated that these proteins co-localize at 

PCH(Baker et al., 2013; Nan et al., 2007).  Importantly, loss of ATRX had no effect on 

MeCP2 enrichment, while mutation or loss of MeCP2 abrogated ATRX localization to 

PCH(Baker et al., 2013; Nan et al., 2007).  The interaction domains between ATRX and 

MeCP2 were also mapped, demonstrating that a region overlapping the methyl binding 

domain of MeCP2 interacts with the SWI/SNF domain of ATRX(Baker et al., 2013; Nan 

et al., 2007) (Figure 1-2B).  Whether ATRX and MeCP2 co-localize elsewhere in the 

cell, and the dynamics and function of this partnership have not yet been investigated.     
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Figure 1-2. MeCP2 function and interaction with ATRX 
 
(A) The canonical role of MeCP2 in gene regulation.  MeCP2 binds to methylated DNA, 

along with HDACs and corepressor proteins to repress target genes. (B) Protein structure 

and interaction of ATRX and MeCP2.  Deletion analysis has shown that the helicase 

domain of ATRX binds within the methyl binding domain of MeCP2.   MBD, methyl 

binding domain; TRD, transcriptional repression domain 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

1.2.2 MeCP2 Mutations in Humans and Mice Cause Rett 
Syndrome 

Rett Syndrome (RTT) is an autism-spectrum disorder associated with severe and 

progressive neurological abnormalities(Hagberg et al., 1983).  Over 95% of RTT cases 

are due to spontaneous mutations in MeCP2, a gene located on the X chromosome at 

Xq28(Amir et al., 1999).  In males, MeCP2 mutations on the single X chromosome lead 

to neonatal encephalopathy and infant mortality(Kankirawatana et al., 2006; Schule et al., 

2008).  In RTT females, X chromosome inactivation results in only half the cells 

expressing the mutant MeCP2, while the other half express the normal protein.  Girls 

affected with RTT develop apparently normal until the emergence of overt phenotypes at 

6–18 months of age(Armstrong, 2002; Shahbazian and Zoghbi, 2001).  RTT phenotypes 

include postnatal microcephaly, ataxia, gait apraxia, loss of language, seizures, and 

respiratory dysfunction(Armstrong, 2002; Shahbazian and Zoghbi, 2001).  The MeCP2 

protein is ubiquitously expressed, though it is most abundant in the mature brain(Balmer 

et al., 2003; Kishi and Macklis, 2004).  This expression profile is likely responsible for 

the predominantly postnatal neurological RTT phenotype, though few reports have 

analyzed a role for MeCP2 prior to the onset of symptoms.        

  

A number of mouse models of RTT have been generated utilizing global Cre-mediated 

Mecp2 deletions or truncations(Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 

2002).  These mutant mice exhibit many aspects of the disorder, including a postnatal 

onset of symptoms such as motor impairment, tremors, breathing abnormalities, and limb 

stereotypies(Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 2002). Interestingly, 

several groups have been able to partially rescue these murine RTT phenotypes by re-

expressing MeCP2 through various means(Giacometti et al., 2007; Guy et al., 2007; 

Luikenhuis et al., 2004; Tropea et al., 2009). These studies demonstrated that neuronal 

defects induced by MeCP2 deficiency might be reversible.  In addition to aiding in the 

development of RTT treatments, RTT mouse models provide a system to study the role(s) 

of MeCP2 throughout development.      
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1.2.3 MeCP2 and Gene Regulation 
Expression profiling studies conducted in RTT humans and mice have uncovered many 

MeCP2 regulated genes, including several involved in brain development (e.g. brain 

derived neurotrophic factor (Bdnf)(Zhou et al., 2006b), and the GABRB3 receptor 

(Gabrb3)(Samaco et al., 2005)), and a number of imprinted genes(Horike et al., 2005; 

Samaco et al., 2005). The links between MeCP2 and imprinted gene expression are 

numerous, but have been the subject of controversy(LaSalle, 2007).  Some features of 

RTT are reminiscent of Angelman Syndrome, an imprinting disorder affecting genes 

within human 15q11–13, including UBE3A(Jedele, 2007).  While two independent 

studies found MeCP2 deficiency in humans and mice decreased UBE3A/Ube3a 

expression(Makedonski et al., 2005; Samaco et al., 2005), these outcomes could not be 

reproduced by others(Jordan and Francke, 2006).  Second, MeCP2 was found to bind 

within the 6qA1 imprinted domain and govern the expression of the four imprinted 

genes: Dlx5, Sgce, Peg10 and Calcr(Horike et al., 2005). It was suggested that loss of 

MeCP2 altered 6qA1 chromatin structure, at least in the region surrounding Dlx5(Horike 

et al., 2005); however, MeCP2 regulation of Dlx5 has also been disputed(Miyano et al., 

2008).  Finally, in vitro studies have shown that MeCP2 can bind to the imprinting 

control region (ICR) within the H19/Igf2 domain and repress transcription(Drewell et al., 

2002), but allele-specific or in vivo binding has not yet been analyzed.  Overall, these 

lines of evidence suggest a complex link between MeCP2 and imprinted genes that 

requires further study.       

1.3 Genomic Imprinting 

1.3.1 Imprinted Genes 

Epigenetic regulation encompasses different mechanisms that modify gene expression in 

a heritable manner without affecting the DNA sequence.  The major types of epigenetic 

modifications include DNA methylation, post-translational histone modifications, non-

coding RNAs (ncRNAs), and higher-order chromatin structure.  Collectively, these marks 

alter the environment of the chromatin fiber and the relative accessibility of chromatin 

remodeling proteins, transcription factors and transcriptional machinery to the DNA.  

Genomic imprinting is a distinctive form of epigenetic regulation resulting in mono-
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allelic, parent-of-origin-dependent gene expression.  For example, the H19 imprinted 

gene is maternally expressed, while the paternal allele is silent(Bartolomei et al., 1991).  

At present, there are approximately 150 confirmed imprinted genes identified in the 

mouse genome(MRC Harwell, 2013).  These genes are generally conserved among 

mammals, and often cluster in large domains which are dispersed throughout the 

genome(MRC Harwell, 2013).   

In the 1980's a number of groups used pronuclear transfer experiments in mice to 

demonstrate that imprinted genes are essential for growth and development(Cattanach 

and Kirk, 1985; McGrath and Solter, 1984a; b; Surani et al., 1984). These experiments 

included the transfer of pronuclei between one-cell stage embryos to create diploid 

parthenogenetic embryos possessing two oocyte-derived genomes and androgenetic 

embryos with two sperm-derived genomes(Cattanach and Kirk, 1985; McGrath and 

Solter, 1984a; b; Surani et al., 1984).  Both the parthenogenetic and androgenetic 

embryos failed to survive beyond early postimplantation development(Cattanach and 

Kirk, 1985; McGrath and Solter, 1984a; b; Surani et al., 1984). These pre-eminent 

experiments established that the maternal and paternal genetic contributions are not 

equivalent, and that both are necessary for the mouse to develop normally(Cattanach and 

Kirk, 1985; McGrath and Solter, 1984a; b; Surani et al., 1984).  We now know that the 

expression of several imprinted genes begins as early as preimplantation embryogenesis 

and persists throughout development in a range of tissues(Huntriss et al., 1998; MRC 

Harwell, 2013; Ohlsson et al., 1994; Tremblay et al., 1997; 2013a; Wu et al., 2013b), 

although it is markedly higher in the placenta and brain(Wu et al., 2013b). The 

mechanisms that govern imprinted gene expression are multifaceted and remain a subject 

of intense investigation. 

1.3.2 Imprinting Mechanisms 
While each imprinted domain may possess unique regulatory features, imprinted gene 

expression is generally controlled by DNA methylation, post-translational histone 

modifications, ncRNAs, and higher-order chromatin structures(Ideraabdullah et al., 

2008).  A hallmark of imprinted domains is the presence of differentially methylated 

regions (DMRs), which are CpG-rich regulatory sequences methylated on one parental 
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allele(Smith and Meissner, 2013).  In this context, DNA methylation blocks the binding 

of activating proteins and transcriptional machinery, and functions as a recognition site 

for repressive factors(Smith and Meissner, 2013).  A subset of DMRs act as imprinting 

control regions (ICRs) based on evidence that deletion of these sequences ablates 

imprinting across their respective domains(Spahn and Barlow, 2003).  DNA methylation 

at these sites originates in the germline and is maintained throughout development(Spahn 

and Barlow, 2003).  DMRs are also marked by post-translational histone modifications 

that track DNA methylation; repressive marks (e.g., meH3K9, meH3K27 and meH4K20) 

are associated with the silent methylated allele while active marks (e.g., AcH3 and AcH4) 

are found on the active unmethylated allele(Fournier et al., 2002; Henckel et al., 2009; 

Umlauf et al., 2004).  Histone modifications can alter the biochemical nature of the 

chromatin fibre and provide a code that is recognized by regulatory proteins(Fischle et 

al., 2003).  The combination of DNA methylation and histone modifications at DMRs is 

essential to direct proper imprinted gene expression.   

 

Perhaps the least understood feature that governs imprinting involves ncRNAs.  Every 

imprinted cluster discovered to date includes at least one ncRNA, but the mechanisms by 

which they influence imprinted gene expression are not well understood.  Imprinted 

mRNAs and ncRNAs are always oppositely expressed, suggesting that ncRNAs could 

repress mRNA genes.  Three theories have been put forward to explain the mechanics of 

this repression: transcript degradation through the RNAi pathway; repression via 

heterochromatin spreading; and transcriptional effects(reviewed in (Koerner et al., 2009; 

Royo and Cavaille, 2008; Wan and Bartolomei, 2008)).  While the mechanisms are 

unclear and may be specific to each transcript, accumulating studies show that ncRNAs 

likely play a vital role in imprint regulation(Koerner et al., 2009; Royo and Cavaille, 

2008; Wan and Bartolomei, 2008).  

 

The development of chromosome conformation capture (3C) and its derivatives have 

enabled the analysis of three dimensional (3D) chromatin interactions within imprinted 

domains(Dekker et al., 2002; Dostie et al., 2006; Fullwood and Ruan, 2009; Lieberman-

Aiden et al., 2009; Simonis et al., 2006; Zhao et al., 2006b) (discussed in Section 1.4.2).  
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These chromatin loop structures alter gene proximity to regulatory sites, such as 

enhancers, DMRs and matrix-attachment regions (MARs).  To date, loop structures have 

been studied at three imprinted domains: H19/Igf2(Burke et al., 2005; Kurukuti et al., 

2006; Li et al., 2008; Murrell et al., 2004; Nativio et al., 2009; Qiu et al., 2008; Vu et al. 

2010), Dlx5/Dlx6(Horike et al., 2005), and Gtl2/Dlk1(Braem et al., 2008).  While we are 

just beginning to understand the significance and regulation of these configurations, it is 

clear that they require the presence of specific proteins, including the CCCTC-binding 

factor (CTCF) insulator protein and the Cohesin complex(Han et al., 2008; Ishihara et al., 

2006; Kurukuti et al., 2006; Nativio et al., 2009) (discussed in Section 1.4.3).  As 

technologies improve we can anticipate that a complex array of interactions between 

chromatin and related proteins will be uncovered at many imprinted domains.   

1.3.3 Imprinted Gene Networks 
Recently, several independent studies have described co-regulation of a number of 

imprinted genes during cellular differentiation(Andrade et al.2009; Lui et al., 2008; 

Varrault et al., 2006).  Together, these papers suggest that many imprinted genes are 

involved in an epigenetically regulated gene network essential for embryonic growth and 

development(Andrade et al. 2010; Berg et al., 2011; Lui et al., 2008; Varrault et al., 

2006) (Figure 1-3).  It was proposed that during development, expression of these genes 

is coordinated in a context-dependent manner to facilitate adaptation to genetic and 

environmental changes(Andrade et al. 2010; Kernohan and Bérubé, 2010; Lui et al., 

2008; Varrault et al., 2006).  Within the brain, these genes are highly expressed in 

embryogenesis and repressed in the mature brain (e.g., H19, Igf2, Dlk1, Zim1 and Grb10 

(Bartolomei et al., 1991; Kernohan et al., 2010; Kim et al., 1999; Liu et al., 2009; 

Svensson et al., 1995; Weber et al., 2001)).  For many of these genes, this expression pat-

tern matches their functions. For example, the growth factor Igf2 and the apoptosis 

inhibitor Grb10 are highly expressed during neurogenesis when cells are rapidly dividing, 

but are unnecessary and silenced in post-mitotic cells of the mature brain(DeChiara et al., 

1990; Hu et al. 2010). However, for several other genes the function is not yet known 

(e.g., H19) and the purpose of postnatal suppression remains elusive.  In line with the 

suggestion that many imprinted genes are linked and co-regulated, studies surveying 
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genome-wide interactions of the H19 ICR revealed that it can interact with a number of 

imprinted domains on multiple chromosomes, and that these connections are cell-type 

specific(Ling et al., 2006; Sandhu et al., 2009; Zhao et al., 2006b). Furthermore, they 

demonstrated that the H19 ICR could promote transvection of epigenetic states to other 

imprinted genes(Sandhu et al., 2009).  From these studies, it was proposed that the H19 

ICR might function as a master regulator controlling the expression of all imprinted gene 

network (IGN) domains(Sandhu et al., 2009) (Figure 1-3). While we are just beginning to 

understand this IGN, stringent control of all its components is likely essential for proper 

development, and perturbations of this equilibrium could have deleterious effects.  
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Figure 1-3. Context-dependent imprinted gene networks 

 

A number of recent studies provide evidence for the existence of an imprinted gene 

network (IGN).  The IGN theory posits that as cells differentiate from embryonic tissues 

into terminal lineages there is coordinate regulation of imprinted genes in each tissue and 

developmental time point(Ling et al., 2006; Sandhu et al., 2009; Zhao et al., 2006b). 

Furthermore, it has been proposed that the H19 ICR may function as a master regulator of 

this network, as it associates with a number of imprinted domains on multiple 

chromosomes, and is required for trans interactions amongst imprinted genes in some cell 

types.    

 

Reproduced with permission from Kernohan and Bérubé (2010) Epigenomics 2:743-763. 

(Appendix A) 
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1.3.4 The H19/Igf2 Imprinted Domain 
The H19/Igf2 imprinted domain is the most well characterized imprinted region in the 

mouse genome, and its regulation has been studied in depth in mouse embryonic 

fibroblasts, embryonic stem cells, and the liver.  The H19 gene product is a 2.3 kb 

maternally expressed ncRNA(Brannan et al., 1990).  Loss of H19 causes a slight 

overgrowth phenotype in mice(Leighton et al., 1995), while ectopic expression leads to 

late embryonic lethality(Brunkow and Tilghman, 1991).  It was suggested this lethality 

might be due to exogenous expression in the brain, though the exact cause of death was 

never determined(Brunkow and Tilghman, 1991). The H19 gene locus also produces a 

microRNA, miR-675(Cai and Cullen, 2007).  miR-675 is thought to be involved in 

cellular proliferation and growth regulation(Keniry et al., 2012).  Insulin-like growth 

factor 2 (Igf2), encodes a potent growth factor expressed from the paternal allele, except 

in the brain where its expression is bi-allelic(DeChiara et al., 1991).  IGF2 deficiency 

leads to growth retardation(DeChiara et al., 1990), and its overexpression causes an 

overgrowth phenotype(Morison et al., 1996).  Both H19 and Igf2 are highly expressed 

prenatally and downregulated postnatally in many tissues, including the brain(Svensson 

et al., 1995; Weber et al., 2001).  The regulation of this expression pattern remains 

elusive.   

  

Genomic imprinting of the 90 kb H19/Igf2 region is primarily accomplished by four 

paternally methylated DMRs, including the ICR that lies 2 kb upstream of the H19 

gene(Bartolomei et al., 1993; Brandeis et al., 1993; Feil et al., 1994; Ferguson-Smith et 

al., 1993; Frevel et al., 1999; Moore et al., 1997; Thorvaldsen et al., 1998; Tremblay et 

al., 1997; Tremblay et al., 1995) (Figure 1-4A).  DNA methylation from the paternal H19 

ICR has also been reported to spread to the H19 promoter and aid in silencing of the 

paternal H19 gene(Bartolomei et al., 1993; Ferguson-Smith et al., 1993; Sasaki et al., 

1995; Srivastava et al., 2000; Tremblay et al., 1995).  In addition to DNA methylation, 

the H19 ICR is enriched for several active post-translational histone modifications on the 

unmethylated maternal allele, including acetylation of histone H3 and H4, while the silent 

paternal allele is marked with repressive histone modifications and variants, including 

H3K27, H3K9 and H4K20 methylation and the variant macroH2a(Choo et al., 2006; 
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Choo et al., 2007; Grandjean et al., 2001; Kacem and Feil, 2009).  Together, the 

epigenetic marks within the ICR likely serve as recognition sites for numerous proteins, 

including CTCF and Cohesin.  The H19 ICR contains four maternal CTCF binding sites 

which are responsible for imprinted H19/Igf2 expression and the maintenance of an 

unmethylated state on the maternal allele(Bell and Felsenfeld, 2000; Choo et al., 2006; 

Choo et al., 2007; Hark et al., 2000; Schoenherr et al., 2003) (Figure 1-4A).  Finally, the 

H19 ICR produces a number of small ncRNAs, though these transcripts do not affect 

imprinting and are of unknown function(Takahashi et al., 2012).     

 

In addition to the H19 ICR the H19/Igf2 domain contains several other regulatory 

sequences, including a MAR(Greally et al., 1997), and three enhancers specific for 

mesoderm, endoderm, and the brain (brain enhancer known as centrally conserved 

domain (CCD))(Ainscough et al., 2000; Ainscough et al., 1997; Charalambous et al., 

2004; Ishihara et al., 2000; Jones et al., 2001; Leighton et al., 1995; Yoo-Warren et al., 

1988) (Figure 1-4A).  These regulatory sequences are brought together within the nucleus 

to cooperate in regulating proper H19 and Igf2 expression(Burke et al., 2005; Guibert et 

al., 2012; Han et al., 2008; Kurukuti et al., 2006; Li et al., 2008).  As a result of 

differential methylation, the H19 ICR interacts with the other DMRs and regulatory 

elements to form disparate looping structures of the maternal and paternal alleles, 

positioning H19 and Igf2 into active and silent chromatin domains(Burke et al., 2005; 

Guibert et al., 2012; Han et al., 2008; Kurukuti et al., 2006; Li et al., 2008) (Figure 1-4B).  

These interactions require the presence of CTCF and Cohesin at the maternal H19 

ICR(Han et al., 2008; Kurukuti et al., 2006; Nativio et al., 2009).  Studies have also 

reported that MeCP2 binds within the H19 ICR and can repress H19 transcription in 

vitro(Drewell et al., 2002), however in vivo or allele-specific binding of MeCP2 has not 

yet been demonstrated.   
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Figure 1-4. Genomic organization and regulation of the H19/Igf2 imprinted domain 

(A) Schematic of the H19/Igf2 domain.  Genes are depicted in black and regulatory 

elements in grey.  Numbers indicate the relative position from the start of the H19 ICR.  

Methylated DNA is represented as black circles, and unmethylated DNA as grey circles.  

The enlarged image of the H19 ICR displays the four CTCF binding sites as grey boxes 

with CTCF and Cohesin enrichment demonstrated. (B) Simplified diagram representing 

chromatin interactions of the H19 ICR.  The unmethylated maternal ICR interacts with 

the unmethylated DMR1, while the methylated paternal ICR interacts with the 

methylated  DMR2(Burke et al., 2005; Guibert et al., 2012; Han et al., 2008; Kurukuti et 

al., 2006; Li et al., 2008).   
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1.3.5 Imprinted Genes in the Brain 
The majority of imprinted genes are expressed at at least one developmental stage in the 

brain; however, most of their functions remain to be determined(Davies et al., 2005).  

From the genes characterized thus far, it is evident that many are essential for 

neurological processes(Davies et al., 2005).  Davies et al. categorized these functions, 

which include intracellular signaling (Gnas and RasGrf1), protein trafficking and 

processing (Copg2, Ube3a and Usp29), transcriptional regulation (Peg3 and Mash2), 

RNA processing (Snrpn), and growth and cell cycle control (Cdkn1c, Ndn, and 

Zac1)(Davies et al., 2005).  Additionally, some imprinted genes have an obvious 

biochemical function in neuronal cells. For example, Dlx5 is required for the migration of 

neural progenitor cells and for the differentiation of immature precursors into 

GABAergic neurons(Anderson et al., 1997; Stuhmer et al., 2002).  Given the multitude of 

roles imprinted genes play in the brain, it is not surprising that the disruption of genomic 

imprinting in humans has been linked to a number of neurodevelopmental syndromes, 

including Angelman Syndrome(Kishino et al., 1997; Matsuura et al., 1997), Prader–Willi 

Syndrome(Ledbetter et al., 1981; Miller et al., 2009; Muscatelli et al., 2000; Ren et al., 

2003), and Turner Syndrome(Kesler et al., 2003; McCauley et al., 1987; Skuse et al., 

1997)(reviewed in (Kernohan and Bérubé, 2010)). Together, the human and mouse data 

underscore the importance of imprinted gene expression in development and implicate 

the nervous system as primarily affected.   

1.4 Chromatin Structure and Protein Regulators 

1.4.1 Chromatin Structure and Remodeling Proteins 

DNA in the nucleus is wrapped around an octamer of histone proteins in 147 base pair 

increments to form nucleosomes, which are then organized into a condensed fiber and 

folded into chromosomes.  This composite of DNA and proteins is known as chromatin, 

and plays multiple roles within the cell, including packaging the DNA into a small 

volume, regulating gene expression, and facilitating mitosis.  Chromatin from inactive 

regions of the genome is densely packaged into heterochromatin, effectively maintaining 

gene silencing.  In transcriptionally active regions, DNA is in an open highly accessible 

state known as euchromatin.  Post-translational histone modifications and DNA 
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methylation contribute to the formation and maintenance of both euchromatin and 

heterochromatin.  Additionally, a number of chromatin remodeling proteins can alter or 

maintain chromatin states.  In general, chromatin remodelers are a diverse group of 

proteins that utilize the energy of ATP to disrupt or remodel protein-DNA complexes, 

often to govern gene transcription.  Transcriptional effects are accomplished through 

either facilitating or blocking polymerase binding and regulating nucleosomes.  

Nucleosome remodeling processes includes nucleosome removal, destabilization, 

repositioning or replacement with histone variants.  In general, the combination of 

activities by chromatin remodelers is essential for proper chromatin structure and thus 

gene regulation. (reviewed in (Quina et al., 2006)) 

1.4.2 Higher-Order Chromatin Architecture 

Within the interphase nucleus, chromosomes occupy a defined space, termed 

chromosome territories, where loops are formed in cis to strategically fold subregions of 

a chromosome(reviewed in (Cremer and Cremer, 2001; Cremer and Cremer, 2010; 

Cremer et al., 2006; Zhao et al., 2009)).  These cis loops facilitate interactions between 

genes, and local and long-range regulatory sequences.  In addition, chromosome loops 

can sometimes extend beyond the confines of these territories and bring genomic regions 

from different chromosomes into close proximity. These short- and long-range 

chromosomal interactions can enhance or inhibit gene expression and thus are highly 

relevant to genomic regulation, including the mono-allelic and coordinated expression of 

imprinted genes.   

To date, chromatin looping has been studied at a number of regions, including alpha-

globin(Bau et al., 2011; Kim et al., 2009a; Vernimmen et al., 2007), beta-globin(Junier et 

al., 2012; Kim and Dean, 2004; Noordermeer and de Laat, 2008; Splinter et al., 2006), 

TH2(Yao et al., 2012), IFNG(Hadjur et al., 2009; Sekimata et al., 2009), MHC class 

II(Majumder and Boss, 2010; Ribeiro de Almeida et al., 2012), IgH(Ju et al., 2011), 

H19/Igf2(Burke et al., 2005; Guibert et al., 2012; Han et al., 2008; Kurukuti et al., 2006; 

Li et al., 2008), Dlx5/Dlx6(Horike et al., 2005), and Gtl2/Dlk1(Braem et al., 2008).  With 

the increasing number of chromatin architecture studies, it is clear that we are only 

beginning to understand the complex network of chromosomal interactions that exists 
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throughout the genome.  Furthermore, very little is known about the proteins and 

mechanisms that form and maintain these structures, or the consequences of disrupting 

these systems.  Recently, the CTCF and Cohesin proteins have emerged as major players 

in chromatin structure and are proposed to act as global architectural regulators, though 

their effects have only been investigated at a limited number of sites(Gause et al., 2008; 

Wendt and Peters, 2009) (discussed in Section 1.4.3).  Additionally, a few site-specific 

regulatory proteins have been identified, including BRG1 within the alpha-globin 

domain(Kim et al., 2009a), and GATA-1 , FOG-1, EKLF, NLI, and BRG1 at the beta-

globin locus(Drissen et al., 2004; Kiefer et al., 2011; Kim et al., 2009b; Song et al., 2007; 

Vakoc et al., 2005),  though little is known about the mechanism of many of these 

proteins.  Overall, as we advance our understanding of this new and exciting field of 3D 

genome architecture, we will likely uncover many novel protein functions and 

mechanisms.   

1.4.3 Cohesin and CTCF 

The Cohesin complex consists of four subunits: structural maintenance of chromosome 

(SMC)1, SMC3, radiation mutant 21 (Rad21) and stromal antigen 1/2 (SA1/SA2). 

Cohesin was initially discovered and characterized for its role in maintaining sister 

chromatid cohesion during mitosis(Barbero, 2011; Michaelis et al., 1997; Moser and 

Swedlow, 2011; Uhlmann and Nasmyth, 1998).  The Cohesin complex is proposed to 

function as a ring, encircling DNA strands to tether them together(Anderson et al., 2002; 

Gruber et al., 2003; Guacci et al., 1997; Losada et al., 1998; Michaelis et al., 1997; Toth 

et al., 1999).  The protein interactions within the ring have been mapped: the N and C 

terminal domains of each SMC protein, called the head region, fold together to form an 

ATPase domain, while the connecting coiled-coil region forms a hinge.  To form the ring, 

both the head and hinge regions of SMC1 and SMC3 interact, though the interaction of 

the head domains is mediated by Rad21 and stabilized by SA1/SA2(reviewed in 

(Remeseiro and Losada, 2013; Seitan and Merkenschlager, 2012)) (Figure 1-5).  In 

addition to the Cohesin proteins, several accessory factors are involved in loading and 

maintaining Cohesin on DNA, including precocious dissociation of sisters 5 (PDS5), 

nipped- B-like protein (NIPBL) and wings apart-like (WAPL)(Gause et al., 2010; Kueng 
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et al., 2006; Panizza et al., 2000; Seitan et al., 2006; Vaur et al., 2012).  Cohesin is loaded 

onto chromatin in telophase and released with sister chromatid separation in 

prophase/anaphase(Shamu and Murray, 1992; Shintomi and Hirano, 2010; Sumara et al., 

2000; Wang et al., 2008; Watrin et al., 2006).  The dynamics of loading and unloading of 

Cohesin onto chromatin throughout the cell cycle are complex and are being resolved, 

though will not be discussed here((reviewed in (Mehta et al., 2012; Remeseiro and 

Losada, 2013; Seitan and Merkenschlager, 2012)).  Interestingly, human mutation in the 

genes encoding Cohesin proteins (SMC1A and SMC3) as well as the NIPBL loading 

factor causes Cornelia de Lange Syndrome (CdLS), which is characterized by numerous 

developmental and neurological defects(Ben-Asher and Lancet, 2004; Krantz et al., 2004; 

Revenkova et al., 2009).    
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Figure 1-5. Structure of the Cohesin complex 

Cohesin contains four subunits, SMC1, SMC3, Rad21 and SA1/SA2.  These subunits 

interact to form a ring that can encircle DNA.   
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Emerging studies suggest that in addition to Cohesin's canonical role in sister chromatid 

cohesion and cell division, it may also function in DNA damage repair and transcriptional 

regulation(Remeseiro and Losada, 2013).  It is predicted that the CdLS phenotype results 

from transcriptional effects as Cohesin mutants defective for chromosome cohesion are 

not viable(Dorsett, 2007; Nasmyth and Haering, 2009; Revenkova et al., 2009).  Cohesin 

is proposed to govern gene transcription by tethering DNA loops together to regulate 

chromatin architecture(Gause et al., 2008; Rubio et al., 2008; Stedman et al., 2008).  This 

effect has been reported at multiple genomic sites, including the T cell receptor alpha 

locus(Seitan et al., 2011) and the H19/Igf2 imprinted domain(Nativio et al., 2009). 

Furthermore, genome-wide ChIP studies have demonstrated that Cohesin co-localizes 

with the insulator protein CTCF at more than 8,000 genomic locations(Rubio et al., 

2008).  CTCF is required for Cohesin enrichment at these sites, and it is predicted that 

together CTCF and Cohesin establish DNA-DNA interactions throughout the 

genome(Rubio et al., 2008).     

CTCF is a sequence-specific DNA binding protein that functions in both transcriptional 

regulation and higher-order genomic organization.  Genome-wide studies have shown a 

staggering 14,000-20,000 CTCF binding sites throughout the genome, including a 

disproportionately large number within gene-enriched regions(Kim et al., 2007).  The 

sequence specificity of CTCF is thought to be conferred by its zinc finger domain, which 

contacts particular genomic sites using different combinations of its 11 zinc 

fingers(Filippova et al., 1996).  Intriguingly, it has also been shown that on average 10 

nucleosomes are precisely positioned surrounding each CTCF binding site, with CTCF 

located in a larger than normal linker region(Fu et al., 2008; Kanduri et al., 2002; Zhao et 

al., 2006a).  As a transcriptional regulator, CTCF is recognized as a vertebrate insulator 

protein and can function to block enhancer promoter interactions, or as a boundary 

between chromatin states(Bell et al., 1999).  Regarding chromatin architecture, CTCF 

recruits the Cohesin complex throughout the genome to facilitate 3D genomic 

organization, earning it the title "master weaver of the genome"(Phillips and Corces, 

2009; Rubio et al., 2008).  Overall, it is clear that CTCF is important throughout the 

genome, though we still lack a complete understanding of its regulation and specific 

functions.   
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1.5 Chromosome Conformation Capture Technology 
With the development of chromosome conformation capture (3C)(Dekker et al., 2002) 

our understanding of the genome evolved from a linear organization to a complex three 

dimensional one.  3C is a cutting-edge molecular technique used to study chromatin 

interactions in vivo.  It accomplishes this through first cross-linking interacting chromatin 

within the cell. Following DNA isolation and restriction enzyme digest, an enzyme is 

used to ligate the cross-linked fragments together. The cross-link is reversed, leaving a 

library of DNA fragments containing the once distant binding regions joined together.  

The analysis of 3C libraries involves choosing a region of interest contained within one 

restriction fragment (termed bait sequence), and surveying its interactions.  Interactions 

are quantified by Taqman qRT-PCR using a primer and probe to the bait sequence, and a 

series of primers that amplify restriction fragments of interest (Figure 1-6).  As 3C is a 

technically complex protocol, establishing reliable controls for data analysis is essential. 

These include evaluating digestion, PCR primer, and fixation efficiencies, and DNA 

concentrations(Dekker, 2006).  Studies utilizing 3C have already uncovered many 

genomic sites involved in higher-order interactions and it is anticipated that this number 

will continue to grow substantially.    

While very informative, 3C studies are limited to a candidate approach that is biased and 

not appropriate to survey larger genomic regions.  To facilitate a large scale approach, a 

number of groups have developed 3C variants. These include circular chromosome 

conformation capture and chromosome conformation capture on chip (4C)(Gheldof et al., 

2012; Simonis et al., 2006; Zhao et al., 2006b), chromosome conformation capture 

carbon copy (5C)(Dostie et al., 2006), combined chromosome conformation capture ChIP 

cloning (6C)(Tiwari and Baylin, 2009), Global 3C interactions (Hi-C)(van Berkum et al., 

2010), and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET)(Li 

et al., 2010)(techniques reviewed in (de Wit and de Laat, 2012)).  While each technique 

has its advantages and disadvantages, I utilized 4C in the present study because it 

provides an unbiased genome-wide screen of interaction sites from a bait sequence of 

interest (Figure 1-6).  Briefly, following 3C library production, the samples are digested 

with a secondary restriction enzyme and self-ligated to form circular 3C recombined 
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molecules.  The samples are then PCR amplified with primers directed from the bait 

across the unknown interacting sequence.  Traditionally, these 4C products were 

analyzed by custom tiled microarrays.  Recently a few groups, including ours, have 

utilized next generation sequencing to establish an unbiased interactome(Gheldof et al., 

2012; Papantonis et al., 2012; Splinter et al., 2012; Xu et al., 2011) (Figure 1-6).   

Overall, 3C and 3C derivatives shed light on how chromatin is organized within the cell.   
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Figure 1-6. Schematic of the 3C and 4C protocols 

Interacting chromatin is first cross-linked within the cell, then digested with a restriction 

enzyme and ligated.  The cross-link is then reversed, leaving a library of 3C recombined 

DNA fragments.  3C studies are quantified by Taqman real-time PCR. For 4C, this 

library of interacting fragments is then digested with a secondary enzyme and self-ligated 

to form circular DNA molecules. PCR is conducted with primers extending away from 

the bait fragment, creating a library of unknown interacting sequences. This 4C library is 

then analyzed by high-throughput sequencing or microarray. UI, unknown interactor.     
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1.6 Thesis Overview 
 
The overarching objective of this study was to identify genes regulated by the ATRX 

chromatin remodeling protein, and to define the underlying mechanisms for gene 

regulation by ATRX. 

1.6.1 Rationale and Hypothesis 

Disruption of ATRX function in humans causes ATR-X Syndrome, a severe mental 

retardation disorder; however, we currently do not fully understand the role of ATRX in 

the brain.  While ATRX has been classified and characterized as a chromatin remodeling 

protein, no direct gene targets had been identified at the onset of the present study.  

Transcriptional profiling of a forebrain specific ATRX-null mutant mouse suggested that 

imprinted genes, a class of genes regulated by chromatin structure and epigenetic 

modifications, might be affected by the loss of ATRX.  The misregulation of imprinted 

genes in humans has also been linked to neurological disorders.  I therefore hypothesized 

that ATRX regulates the expression of imprinted genes in the brain, by binding to 

regulatory sites within imprinted domains and modifying the epigenetic environment and 

chromatin structure.   

1.6.2 Chapter Two: ATRX Partners with Cohesin and MeCP2 and 
Contributes to Developmental Silencing of Imprinted Genes 
in the Brain 

  
This initial study describes a requirement for ATRX in the postnatal silencing of a 

neuronal IGN.  The loss of ATRX causes an increase in IGN transcripts, including H19 

and Igf2, in the postnatal brain.  Using the H19/Igf2 domain as a model, the mechanism 

of ATRX regulation at imprinted genes was examined.  In the wild-type forebrain, we 

could show that ATRX forms a complex with MeCP2 and Cohesin and that this complex 

is enriched on the maternal allele of the H19 ICR.  Loss of ATRX results in diminished 

binding of Cohesin to this region and altered enrichment of post-translational histone 

modifications. Similar effects were detected at a DMR within a second imprinted domain, 

Gtl2/Dlk1.  I concluded that ATRX, along with its binding partners MeCP2 and Cohesin, 
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regulates the neuronal IGN, and propose that this regulation is accomplished by 

controlling cis and trans chromatin interactions of imprinted domains.      

1.6.3 Chapter Three: ATRX is Recruited by MeCP2 to Alter 
Nucleosome Positioning, CTCF Occupancy, and Long-
Range Chromosomal Interactions 

 

Higher-order chromatin structure is essential for the regulation of imprinted genes, 

though the proteins and mechanisms responsible are largely unknown. To expand our 

understanding of the role of ATRX at imprinted domains, I examined the effects of 

ATRX loss on chromatin structure.  Again, I used the H19/Igf2 domain as a model.  In 

other cell types, cis and trans interactions involving the H19 ICR are thought to regulate 

H19/Igf2 and IGN expression, respectively(Burke et al., 2005; Guibert et al., 2012; Han 

et al., 2008; Kurukuti et al., 2006; Li et al., 2008; Ling et al., 2006; Sandhu et al., 2009; 

Zhao et al., 2006b).  I utilized 3C and 4C techniques to analyze chromatin structure.  The 

results show that the H19 ICR forms numerous cis and trans chromosomal interactions in 

the mouse brain.  Loss of ATRX affects cis interactions throughout H19/Igf2 and these 

structural deficits are accompanied by an altered nucleosome distribution within the ICR 

and a failure to maintain CTCF binding.  I demonstrate that ATRX is recruited to the H19 

ICR by MeCP2.  Predictably, MeCP2 deficiency also resulted in loss of chromatin 

interactions.  Finally, I show ATRX binding within many IGN domains and propose a 

model where MeCP2 targets ATRX to each imprinted gene of the IGN in a temporally 

regulated manner.  ATRX then enacts a transcriptional switch through the control of 

nucleosome positioning, CTCF binding, and chromatin looping to repress imprinted 

genes in the postnatal brain.  Overall,  this thesis identifies a novel mechanism of ATRX 

in the control of gene expression by altering nucleosome positioning in an allele-specific 

manner, thus enabling CTCF occupancy and chromatin looping.     
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Chapter 2  

2 ATRX Partners with Cohesin and MeCP2 and 
Contributes to Developmental Silencing of Imprinted 
Genes in the Brain 

Prior to the research presented in this chapter, no direct gene expression targets of the 

ATRX protein had been identified.  A previous study from our laboratory reported a 

series of microarray experiments in control and ATRX-null forebrains at E13.5 and 

P0.5(Levy et al., 2008).  Further analysis of these microarrays revealed that the 

expression of several imprinted genes, including H19, Igf2, Sgce, Peg10 and Dlx5 were 

upregulated at P0.5, but not at E13.5.  In this chapter I sought to investigate whether 

ATRX was required for the direct regulation of imprinted gene expression in the mouse 

forebrain and began to investigating a mechanism for this regulation.     

  

This chapter was previously published as (Kernohan et al., 2010). Permission for 

reproduction is found in Appendix C. 

2.1 Introduction 
Mounting evidence indicates that the maintenance of chromatin architecture is essential 

for normal human development and cognitive function.  Several human disorders, such as 

Alpha-Thalassemia mental Retardation, X linked (ATR-X), Rett (RTT), Cornelia de 

Lange (CdLS), Roberts, Rubinstein-Taybi and Immunodeficiency, Chromosome 

instability and Facial anomalies (ICF) Syndromes, are caused by mutations in key 

regulators of chromatin structure and function(Amir et al., 1999; Deardorff et al., 2007; 

Gibbons et al., 1995; Hansen et al., 1999; Krantz et al., 2004; Musio et al., 2006; Petrij et 

al., 1995; Vega et al., 2005).  Although clearly distinct from one another, many of these 

disorders share similar clinical features.  Whether common symptoms are due to 

underlying interlinked molecular mechanisms is still poorly understood. 

ATR-X Syndrome, caused by mutations in the ATRX gene, is one of the prototypical 

disorders of chromatin dysfunction(Gibbons et al., 2008).  ATRX belongs to the sucrose 
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non-fermenting 2 (SNF2) family of chromatin remodeling proteins, a class of enzymes 

that utilize the energy of adenosine tri-phosphate (ATP) hydrolysis to disrupt nucleosome 

stability(Eisen et al., 1995; Picketts et al., 1996).  ATR-X patients typically exhibit severe 

mental retardation, lack of speech development, seizures, microcephaly, alpha-

thalassaemia and other developmental defects(Gibbons and Higgs, 2000).  Atrx loss-of-

function studies in mice have revealed its requirement for the normal development of the 

extra-embryonic trophoblast(Garrick et al., 2006) and of the cerebral cortex and 

hippocampus(Bérubé et al., 2005; Seah et al., 2008).  At the molecular level, epigenetic 

alterations have been detected, including abnormal levels of DNA methylation at 

repetitive elements(Gibbons et al., 2000).  Recently, it was reported that ATRX and 

methyl CpG binding protein 2 (MeCP2) interact in vitro, and that they co-localize at 

pericentromeric heterochromatin(Nan et al., 2007).  MeCP2, like ATRX, is essential for 

normal brain function, and females with heterozygous mutations develop Rett syndrome, 

an autism-spectrum neurodevelopmental disorder(Amir et al., 1999).  Importantly, 

MeCP2 is required for the proper localization of ATRX at pericentromeric 

heterochromatin in mature neurons of the mouse brain as determined by 

immunofluorescence studies(Nan et al., 2007).   

We previously reported that loss of ATRX results in altered expression of certain genes 

in the mouse forebrain, including the ancestral pseudoautosomal genes(Levy et al., 2008).  

However, we also found that depletion of ATRX in human somatic cells resulted in 

chromosome misalignment and sister chromatid cohesion defects during mitosis(De La 

Fuente et al., 2004; Ritchie et al., 2008).  Thus, it appears that ATRX plays a dual role in 

the regulation of cohesion during mitosis and the control of gene expression in 

interphase.  This is reminiscent of the Cohesin complex, which has well-established 

functions in both mitotic chromosome cohesion and gene expression.  The regulation of 

gene expression by Cohesin and its regulatory factors is thought to underlie 

developmental defects seen in patients with CdLS(Borck et al., 2007; Deardorff et al., 

2007; Kawauchi et al., 2009; Krantz et al., 2004; Liu et al., 2009; Musio et al., 2006).   

We now demonstrate that ATRX, MeCP2 and Cohesin interact in the mouse brain in vivo 

and co-localize at the H19/Igf2 and Gtl2/Dlk1 imprinted regions.  At the H19/Igf2 
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domain, this interaction is maternally-biased at the H19 ICR.  We further show that 

ATRX is required for normal recruitment of MeCP2, Cohesin and the insulator protein 

CTCF and alters the expression of a connected network of imprinted genes in the 

postnatal brain.  We speculate that ATRX, along with its binding partners Cohesin and 

MeCP2, regulates the expression of this imprinted gene network (IGN) by controlling 

higher-order chromatin structure.  

2.2 Materials and Methods 

2.2.1 Animal Husbandry 

Conditional deletion of Atrx in the mouse forebrain was achieved by crossing AtrxloxP 

females with heterozygous Foxg1Cre knock-in males, as previously described(Bérubé et 

al., 2005).  The AtrxloxP line was kindly provided by D. Higgs (Weatherall Institute of 

Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom). For the 

developmental studies, midday of vaginal plug discovery was considered E0.5.  For 

allele-specific expression studies, pups were obtained by mating 129Sv female mice with 

Mus musculus castaneus male mice (CAST; The Jackson Laboratory).  To generate 

polymorphic ATRX-deficient animals, heterozygous AtrxloxP/wt Foxg1Cre+/- females 

(129Sv) were mated with CAST males.  Mecp2tm2Bird mice were generated by crossing 

B6;129P2-Mecp2tm2Bird heterozygous females (The Jackson Laboratory) with wild-type 

males (C57BL6, The Jackson Laboratory).  All animal studies were conducted in 

compliance with the regulations of The Animals for Research Act of the province of 

Ontario, the guidelines of the Canadian Council on Animal Care, and the policies and 

procedures approved by the University of Western Ontario Council on Animal Care.   

2.2.2 Co-Immunoprecipitation 

Nuclear lysates, obtained from forebrain tissue using the Nuclear and Cytoplasmic 

Extraction kit (NE-PER, Thermo Scientific) were incubated with anti-ATRX antibody 

(Fxnp5, gift of Richard Gibbons), anti-SMC3 antibody (Bethyl Laboratories) or anti-

MeCP2 (gift of Janine M. LaSalle) for 2 hours at 4 oC.  Normal sheep and rabbit IgG 

(Santa Cruz), and chicken IgY (Santa Cruz) were used as negative controls. Samples 

were then incubated with Dynabeads protein G (Invitrogen) for one hour at 4 oC.  The 

http://www.informatics.jax.org/searches/accession_report.cgi?id=MGI:3700191�
http://www.informatics.jax.org/searches/accession_report.cgi?id=MGI:3700191�


64 

 

supernatant was then re-incubated 1 hour with Dynabeads protein G for one hour.  The 

two aliquots were then combined.  Immunoprecipitates were washed 5 times with 1ml of 

0.1% Tween-20 in phosphate buffered saline (PBS), eluted, and resolved on 8% SDS-

PAGE.  Western blot analysis was carried out using an anti-ATRX antibody (H300, 

Santa Cruz), anti-MeCP2 (gift of Janine M. LaSalle), anti-SMC1, anti-SMC3, and anti-

Rad21 (Bethyl Laboratories).  

2.2.3 ChIP Analysis 

Mouse forebrain tissue was rinsed in cold PBS, cut and homogenized.  Minced tissue was 

diluted with DMEM (Sigma-Aldrich) and passed through a 70 μm cell strainer (BD 

Falcon) to ensure single cell suspension.  For chromatin immunoprecipitation, an EZ-

ChIP (Upstate) kit was used according to the manufacturer’s instructions.  Briefly, cells 

were cross-linked in 1% formaldehyde, lysed in SDS buffer and sonicated.  

Immunoprecipitation was performed using the following antibodies:  anti-ATRX (Fxnp5, 

gift of Richard Gibbons), anti-ATRX (Bethyl laboratories), anti-SMC1 (Bethyl 

laboratories), anti-SMC3 (Bethyl laboratories), anti-CTCF (Upstate) and antibodies to 

MeCP2, H3Ac, H4Ac, H3K9me2, H3K9me3 and H4K20me3 (Upstate). Rabbit 

(Upstate), sheep (Santa Cruz), and goat (Santa Cruz) IgGs were used as controls.  Input 

samples represent 1/25 of total chromatin input.  Conditions for amplification were as 

follows: 95 °C for 5 minutes followed by 30 cycles of 95 °C for 30 seconds, 55.5 °C for 

30 seconds, and 72 °C for 30 seconds. A final extension was performed at 72 °C for 5 

minutes. Real-time PCR experiments were conducted with 95 °C for 5 minutes followed 

by 35 cycles of 95 °C for 10 seconds, 55.5 °C for 20 seconds, and 72 °C for 30 seconds.  

ChIP re-ChIP experiments were performed as described above, with the following 

exceptions: subsequent to incubation with the first antibody, samples were washed with 

low and high salt buffers (Upstate) and eluted in 10 mM DTT (Invitrogen) for 40 

minutes.  Eluted samples were diluted with re-ChIP buffer (20 mM Tris-HCl, pH 8.0, 2 

mM EDTA, 150 mM NaCl, and 0.1% Triton X-100) and immunoprecipitated overnight 

with the second antibody. This procedure was repeated for the sequential triple ChIP 

experiment.  Allele-specific ChIP analysis was performed as described on 129Sv/CAST 

F1 forebrain tissue.  PCR amplification was performed for the H19 ICR region 5’ and the 



65 

 

resulting product digested with SacI and MfeI (NEB) for 2 to 4 hours at 37 oC and 

resolved on a 7% polyacrylamide gel.  The gel was stained with ethidium bromide and 

visualized via a UV trans-illuminator (BioRad). Primer sequences are available upon 

request.  

2.2.4 Quantitative ChIP 

ChIP products obtained from P17 AtrxFoxg1Cre and littermate control forebrain tissue were 

amplified in duplicate or triplicate with iQTM SYBR® Green master mix (BioRad) on a 

Chromo-4 thermocycler using the following conditions: 95 °C for 5 minutes followed by 

40 cycles of 95 °C for 10 seconds, 55 °C for 20 seconds, 72 °C for 30 seconds, and a final 

melting curve generated from 55 to 95 °C in increments of 1°C per plate read.  Fold 

change and % input formulas were adapted from (Mukhopadhyay et al., 2008) as follows: 

Fold change = 2^(∆CtControl-∆CtControl)-(∆CtControl-∆CtKO); ∆Ct= (Cttarget – CtGapdh promoter).  

% Input = 100*[2^(∆CtInput-∆CtInput)-(∆CtInput-∆CtAb)] /25.  Error bars represent the 

standard error of the mean. The significance of non-uniform relative enrichment was 

determined via repeated-measure ANOVA across target binding sites. Primer sequences 

for all regions are available upon request.   

2.2.5 Semi-Quantitative and Quantitative RT-PCR 

Total RNA was obtained from AtrxFoxg1Cre and littermate control forebrains using the 

RNeasy mini kit (QIAGEN) and reverse-transcribed into complementary DNA (cDNA) 

as described(Ritchie et al., 2008). Control reactions without reverse transcriptase were 

prepared in parallel.  cDNA was amplified using gene-specific primers using the 

following conditions:  25-35 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, and 72 

°C for 1 minute.  For quantitative RT-PCR, cDNA was amplified with iQTM SYBR® 

Green master mix (BioRad) using the standard curve Ct method of quantification.  

Experiments were performed on a Chromo-4 thermocycler (MJ Research) and analyzed 

with Opticon Monitor 3 and GeneX (BioRad Laboratories) software.  Gene expression 

analysis was repeated in triplicate for each sample.  Conditions for amplification were as 

follows: 35 cycles of 95 °C for 10 seconds, 55 °C for 20 seconds, 72 °C for 30 seconds, 

and a final melting curve generated in increments of 0.5 °C per plate read.  Standard 
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curves were generated for each primer pair using three-fold serial dilutions of control 

cDNA.  Primer efficiency was calculated as E = [10(-1/slope) – 1] * 100%, where a 

desirable slope is –3.32 and r2 > 0.990.  All data was corrected against beta-actin or 

Gapdh as an internal control.  Unless otherwise indicated, the error bars represent the 

standard error of the mean. 

2.2.6 Allele-Specific Expression Analysis 

H19 and Snrpn allelic expression assays were performed on cDNA obtained from P0.5 

129Sv/CAST F1 forebrains using the LightCycler Real Time PCR System (Roche 

Molecular Biochemicals).  H19 analysis was conducted as described previously(Mann et 

al., 2003; Thorvaldsen et al., 2002).  Briefly, 0.3 μm primers (Sigma Genosys), 0.15 μm 

labeled probes (TIB Molbiol), and 3 mM MgCl2 were added to Ready-to-Go PCR beads 

(Invitrogen).  Following amplification, a melting curve analysis was conducted at 95 °C 0 

sec, 50 °C 1 min, and then the temperature was raised in increments of 0.2°C from 50 to 

85°C with continuous fluorescence acquisition.  For Snrpn analysis, 0.5 μm primers 

(Sigma Genosys), 0.3 μm labeled probes (TIB Molbiol), and 3 mM MgCl2were added to 

Ready-to-Go PCR bead, and PCR amplification was performed(Mann et al., 2003). The 

melting curve analysis was performed  at 95 °C for 2 minutes, 45 °C for 2 minutes, and 

fluorescence acquisition occurred continuously as the temperature was increased from 45 

to 85 °C in 0.2 °C increments.  The data was analyzed using the LightCycler Software 

Data Analysis function.   

2.2.7 Bisulfite Mutagenesis 

Genomic DNA isolated from the forebrain of two pairs of AtrxFoxg1Cre and littermate 

control mice was mutagenized with sodium bisulfite using an EpiTect Bisulfite 

Conversion Kit (QIAGEN) according to the manufacturer’s instructions.  PCR 

amplification was carried out with primers specific for bisulfite-treated DNA.  All DMRs 

were amplified by the nested or semi-nested PCR approach using previously described 

conditions(Lopes et al., 2003; Lucifero et al., 2002; Olek et al., 1996; Takada et al., 

2002).  The resulting nested PCR products were ligated into the pCR2.1 vector using a 

TOPO-TA cloning kit (Invitrogen), according to the manufacturer’s instructions.  
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Positive clones were sequenced (DNA Sequencing Facility at the Robarts Research 

Institute) using an ABI GeneAmp Thermocycler and analyzed using an Applied 

Biosystems 3730 Analyzer.  Clones were only accepted at ≥95% cytosine conversion.  

Non-converted cytosine residues and mismatched base pairs were used to ensure that 

accepted clones originated from a unique template DNA.   

2.3 Results 

2.3.1 Interaction of ATRX, MeCP2 and Cohesin in the Mouse 
Brain in vivo 

We previously demonstrated that depletion of ATRX resulted in reduced sister chromatid 

cohesion(Ritchie et al., 2008) and aberrant expression of specific genes in the mouse 

brain(Levy et al., 2008), suggesting similar modes of action for ATRX and Cohesin.  

Based on the observed effects on chromosomal cohesion, we examined whether Cohesin 

was associated with ATRX in SH-SY5Y neuroblastoma cell extracts.  Co-

immunoprecipitation experiments showed that a portion of nuclear SMC1, one of the 

components of the Cohesin ring complex, interacts with ATRX in these cells 

(Supplementary Figure 2-7A).  To determine if this interaction also occurs in vivo, we 

performed similar immunoprecipitation experiments using mouse forebrain tissue.  We 

identified interactions between ATRX and the Cohesin subunits SMC1 and SMC3 in 

mouse forebrain at postnatal day 17 (P17) (Figure 2-1A).  At this developmental time 

point, most cells within the forebrain are post-mitotic, indicating that the observed 

interactions are probably unrelated to sister chromatid cohesion.  We verified specificity 

of interactions using mice with conditional deletion of the long isoform (but not the short 

isoform, which lacks the ATPase domain) of ATRX in the mouse forebrain (AtrxFoxg1Cre 

mice, defined as “ATRX KO” here on)(Bérubé et al., 2005).  Interaction between ATRX 

and SMC1 was greatly reduced in ATRX KO forebrain, demonstrating the specificity of 

the immunoprecipitation (Supplementary 2-7B).  Similar results were obtained for SMC3 

in HeLa cell extracts transiently depleted of ATRX protein using RNA interference 

(Supplementary Figure 2-7C). 
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The methyl-binding protein MeCP2 was recently shown to associate with ATRX(Nan et 

al., 2007), but interaction of the endogenous proteins had not yet been validated in mouse 

brain.  We show that endogenous MeCP2 co-immunoprecipitates with ATRX, and also 

with SMC1 and SMC3 in wild-type forebrain, but not in forebrain tissue from MeCP2-

null mice (MeCP2tm2Bird ), suggesting that these proteins are part of a macromolecular 

complex in the mouse brain (Figure 2-1A.B).  The interactions between ATRX, MeCP2 

and Cohesin subunits still occurred upon treatment with DNAse I (Supplementary Figure 

2-7D).  We also confirmed the specificity of the MeCP2 antibody by Western blot 

analysis of wild-type and MeCP2-null forebrain tissue (Supplementary Figure 2-7E).  

Thus, we identified protein interactions in the mouse brain between several regulators of 

chromatin structure that are associated with developmental congenital disorders. 
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Figure 2-1. ATRX, MeCP2, and Cohesin interact in vivo in the mouse forebrain 

(A) ATRX was immunoprecipitated from P17 mouse forebrain extracts, and Western blot 

analysis was performed for SMC1, SMC3, and MeCP2 (top left panel). The results show 

that these three proteins are immunoprecipitated with ATRX. Top right panel: in a similar 

manner, SMC1, SMC3, and ATRX were detected in MeCP2 immunoprecipitates. Bottom 

panels: the reverse immunoprecipitations were also performed, showing that SMC1 and 

SMC3 immunoprecipitates contain ATRX and MeCP2 protein, confirming the 

interactions between these proteins. Control reactions were done with IgG. (B) SMC1, 

SMC3, and ATRX were immunoprecipitated from control and MeCP2 KO (TM2) 

forebrain extracts, followed by Western blot analysis with an anti-MeCP2 antibody. In all 

cases, no band was observed in the MeCP2 KO (TM2) immunoprecipitates, 

demonstrating the specificity of these interactions. 

 

 

 

 

 

 



70 

 

2.3.2 Co-Occupancy of ATRX, Cohesin and MeCP2 at the 
Maternal H19 ICR  

Preliminary data from a microarray study of ATRX–deficient mouse brains demonstrated 

that the H19 imprinted gene is among the genes upregulated in the absence of 

ATRX(Levy et al., 2008).  The H19/Igf2 imprinted domain located on mouse 

chromosome 7 contains several differentially methylated regions (DMRs), including one 

positioned 2 kb upstream of H19 that acts as an imprinting control region (ICR).  The 

H19 ICR is methylated on the silent paternal allele in many tissues, including the 

brain(Bartolomei et al., 1993; Ferguson-Smith et al., 1993), and we hypothesized that this 

genomic site could be a target of ATRX and its interacting partners MeCP2 and Cohesin  

in the mouse brain.  Chromatin immunoprecipitation (ChIP) was performed along a large 

region of the H19 ICR as well as flanking genomic sites using an antibody specific for 

ATRX (depicted in Figure 2-2A).  We detected substantial enrichment of ATRX at the 

mid-portion of the H19 ICR, with primers H19-5 (Figure 2-2B).  The interaction of 

ATRX at this site was greatly decreased in the ATRX KO forebrain, demonstrating the 

specificity of the ATRX ChIP reaction (Figure 2-2B).  To determine whether the ChIP-

PCR represented a true enrichment of ATRX, we performed quantitative ChIP analysis at 

the H19 ICR and outlying regions using two different ATRX antibodies, and detected 

significant enrichment at the H19-5 region of the H19 ICR compared to flanking 

sequences (Figure 2-2C; ATRX-1 p=0.003, ATRX-2 p=0.005).  We also showed similar 

enrichment of MeCP2 and of SMC1 at the same site (MeCP2 p=0.008, SMC1 p=0.03), 

while analysis of nonspecific IgG and the transcription factor PROX1 revealed nominal 

enrichment (Figure 2-2C, Supplementary 2-8A).  Additionally, quantitative profiling of 

ATRX, MeCP2 and SMC1 across the unrelated Gapdh promoter region revealed no 

peaks of binding, demonstrating the specificity of enrichment of these proteins at the H19 

ICR (Supplementary Figure 2-8B).  Although binding of ATRX, Cohesin and MeCP2 

was enriched at the H19 ICR, it was possible that binding to this site occurred 

independently in different cells of the forebrain.  To address this question, we performed 

sequential ChIP for ATRX and SMC1, ATRX and MeCP2, and ATRX, SMC3 and 

MeCP2, and could show co-occupancy at region H19-5’ of the H19 ICR (a smaller 
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region of H19-5) (Figure 2-2D).  Sequential ChIP was negative at the Gapdh promoter 

region, demonstrating that the interaction with the H19 ICR is specific (Figure 2-2D).  

Since H19 is expressed in an allele-specific manner, we wanted to examine whether 

ATRX, MeCP2 and Cohesin displayed allele-specific binding at the H19 ICR.  To 

achieve this, we generated 129Sv/CAST F1 mice that are polymorphic within this region, 

thereby allowing the parental alleles to be distinguished.  F1 forebrain tissue was 

processed for ChIP followed by allele-specific restriction digest analysis of amplified 

DNA.  ATRX, MeCP2, SMC1 and SMC3 were all preferentially enriched on the 

maternal allele of the H19 ICR (Figure 2-2E and Supplementary Figure 2-10B).  We 

validated allele-specificity by confirming the paternal-specific deposition of the histone 

variant macroH2A(Choo et al., 2007), and the maternal enrichment of acetylated histone 

H3 (H3Ac) and H4 (H4Ac) (Figure 2-2F).  In all cases, even with controls, we did not 

observe 100% allelic enrichment, perhaps reflecting the mosaic nature of the tissue (i.e. 

neurons vs. glia).  Taken together, this data suggests that ATRX preferentially binds to 

the maternal allele of the H19 ICR with Cohesin and MeCP2. 

 

 

 

 

 

 

 

 

 

 
 



72 

 

 

Figure 2-2. ATRX, MeCP2, and Cohesin are preferentially bound to the maternal 

H19 ICR in mouse forebrain 

 

(A) Genomic organization and alignment of primers utilized for PCR amplification of 

ChIP reactions. Numbers indicate the relative nucleotide position from the start of the 

H19 ICR region. Grey boxes indicate CTCF-binding sites. (B) PCR of ChIP DNA shows 

enrichment of ATRX at the region flanked by primer pair H19-5 of the H19 ICR. ATRX 

ChIP of region H19-5 was also performed on control and ATRX KO forebrain tissue 

(right panel). (C) A peak of enrichment of ATRX, MeCP2, and SMC1 at region H19-5 
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was confirmed by quantitative ChIP analysis. Graphs depict a representative enrichment 

profile. Statistical analysis revealed that deviation from uniform binding was significant, 

even accounting for interexperimental variability (ATRX-1, p = 0.003; ATRX-2, p = 

0.005; MeCP2, p = 0.008; SMC1, p = 0.030). (D) Co-localization of ATRX, MeCP2, and 

Cohesin at region H19-5′ of the H19 ICR was verified by double or triple sequential ChIP 

experiments. Input represents one-tenth of the input sample. (E and F) Allelic analysis of 

ATRX, MeCP2, and Cohesin interaction with region H19-5′ of the H19 ICR shows that 

these proteins were enriched on the maternal allele in the mouse forebrain. Similar allelic 

analysis was performed for macroH2A (paternal) and acetylated histones H3 and H4 

(maternal) at region H19-5′ as controls. For allelic analysis, amplicons from ChIP-

isolated 129Sv/CAST F1 forebrain DNA were digested with MfeI (129Sv maternal-

specific site) or SacI (CAST paternal-specific site) enzymes. Inp, input; mH2A, 

macroH2A; H3Ac, acetylated histone 3; H4Ac, acetylated histone 4; U, uncut; C, cut; 

Mat, maternal; Pat, paternal; M, standard marker. The asterisk indicates a 500 bp marker 

in the standard (Invitrogen). 
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2.3.3 Loss of ATRX Does Not Affect DNA Methylation at the H19 
ICR but Results in an Altered Profile of Histone Tail 
Modifications 

DNA methylation plays a central role in the regulation of genomic imprinting at the 

H19/Igf2 domain(Biniszkiewicz et al., 2002; Li et al., 1993).  In light of the reported 

aberrant patterns of DNA methylation in ATR-X patients and in ATRX-null mouse 

embryonic stem (ES) cells(Gibbons et al., 2000), we assessed whether ATRX contributes 

to the maintenance of DNA methylation at the H19/Igf2 DMRs in the mouse brain.  We 

performed the bisulfite mutagenesis and sequencing assay on control and ATRX-null 

forebrain tissue.  At the H19 ICR, we detected approximately 50% methylated alleles in 

both control and ATRX-null samples, indicating DNA methylation of this region is 

preserved in the absence of ATRX (Figure 2-3A).  The H19/Igf2 genomic domain is 

regulated by long-range chromatin interactions in the liver, a process mediated in part by 

the DMRs and their DNA methylation state(Kurukuti et al., 2006; Murrell et al., 2004).  

We therefore extended bisulfite sequencing analysis to the Igf2 DMR1 and DMR2 

regulatory regions, and determined that they are largely unmethylated in both control and 

ATRX KO newborn forebrain (Supplementary Figure 2-9A).  To verify whether ATRX 

deficiency can affect DNA methylation at other genomic sites in the brain, we also 

investigated DNA methylation at ribosomal DNA (rDNA) gene repeats.  Loss of ATRX 

in the forebrain resulted in hypomethylation of the 18S rDNA repeats (Supplementary 

Figure 2-9B) as was previously reported in mouse ES cells and ATR-X patients(Garrick 

et al., 2006; Gibbons et al., 2000).  However, no change in DNA methylation was 

observed at the 28S rDNA repeats, major satellite, minor satellite (except for one sample) 

or IAPgag repeats in the ATRX KO forebrain nor in relative amplification of the latter 

three repeats (Supplementary Figure 2-9C,D).  Thus, ATRX deficiency perturbs DNA 

methylation at specific repetitive elements in the brain, but not at the H19 ICR and Igf2 

DMRs, suggesting alternative mechanistic effects of ATRX at this imprinted domain.  

 

The potential link between ATRX and a change in epigenetic markings at the H19 ICR 

was further investigated by quantitative ChIP analysis of various histone tail post-

translational modifications at the H19 ICR.  We observed increased acetylation of 

histones H3 and H4 (H4Ac and H3Ac) in the ATRX-null forebrain, suggesting that loss 
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of ATRX induces a more accessible, open chromatin state (Figure 2-3B).  Histone 

modifications including H3K9me2, H3K9me3 and H4K20me3 are generally 

characteristic of condensed chromatin states.  We observed no change in H3K9me2 

enrichment, but detected a trend towards decreased levels of H4K20me3 and H3K9me3 

in the ATRX-null forebrain (Figure 2-3B).  Collectively, these analyses demonstrate that 

the absence of ATRX at the maternal H19 ICR does not induce changes in DNA 

methylation but correlates with an altered pattern of histone tail modifications reflecting 

reduced chromatin compaction.  
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Figure 2-3. Effects of ATRX loss of function on the epigenetic state of the H19 ICR 

 
(A) Bisulfite mutagenesis and sequencing analysis of the H19 ICR region revealed no 

change in DNA methylation upon loss of ATRX in forebrain tissue. At least 12 alleles 

from each sample were analyzed, and individual alleles are represented as a string of 16 

CpGs. The total percent methylation for each sample is indicated in parentheses. 

Unmethylated CpGs are represented as empty circles, and methylated CpGs are 

represented as filled circles. (B) Quantitative ChIP analysis of histone H3 and H4 

modifications in control and ATRX KO forebrain tissue at region H19-5′ of the H19 ICR. 

Enrichment of activating marks H3Ac and H4Ac were increased, whereas repressive 

marks H3K9me3 and H4K20me3 were decreased in the absence of ATRX. Graphed data 

represent the mean fold change in enrichment across three control and ATRX KO 

littermate pairs. Data were normalized to amplification of the Gapdh promoter region. 

See also Supplementary Figure 2-9. 
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2.3.4 Allele-Specific Regulation of H19 by ATRX 
 
The presence of ATRX, Cohesin and MeCP2 at the maternal H19 ICR, combined with 

the changes in histone marks suggested that these proteins could play a direct role in the 

regulation of H19 expression, and perhaps of the neighboring Igf2 gene.  Semi-

quantitative expression analysis of three ATRX KO and control newborn forebrain 

samples showed increased expression of H19 and Igf2 in the absence of ATRX (Figure 2-

4A).  Quantitative expression analysis by real-time PCR of the forebrain at various 

developmental time points showed that H19 and Igf2 gene expression is not altered at 

embryonic day (E) 13.5.  In contrast, expression of these genes was increased 2 to 4 fold 

in the ATRX deficient forebrain at postnatal days (P) 0.5 and 17 (Figure 2-4B).  Thus, 

loss of ATRX does not affect H19 and Igf2 gene expression during the peak of 

neurogenesis in the developing forebrain, but results in increased expression of both 

genes during the postnatal growth deceleration phase.  

 

Atrx gene inactivation in the forebrain of the ATRX KO mice occurs at approximately 

E8.5, when H19 and Igf2 imprinted expression has already been established.  Increased 

levels of H19 might therefore be due to failure to maintain paternal allelic silencing, or to 

an imprint-independent mechanism that would alter maternal H19 transcript levels.  To 

determine the allelic source of additional H19 transcripts, we mated Atrx heterozygous 

females (AtrxloxP/+:Cre+/-) with wild-type CAST males to generate F1 polymorphic ATRX 

KO and control mice.  We obtained a 129Sv/CAST P0.5 Atrx heterozygous female that 

displayed decreased Atrx expression and increased H19 expression compared to a control 

littermate (Figure 2-4C), allowing for allelic analysis of H19 using a Lightcycler allelic 

melting assay(Thorvaldsen et al., 2002).  As previously reported, H19 and Snrpn were 

expressed solely from the maternal and paternal alleles, respectively, in control mouse 

forebrain tissue (Figure 2-4D,E)(Leff et al., 1992; Svensson et al., 1995b).  Analysis of 

H19 expression in the F1 ATRX-deficient forebrain revealed that increased expression of 

H19 was not due to re-activation of the paternal allele, since transcripts were still derived 

solely from the maternal allele (Figure 2-4F).  We conclude that ATRX-deficiency results 

in aberrant H19 gene transcription and that this effect is specific to the maternal allele.  
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Postnatal silencing of the H19 gene in the brain was previously reported(Svensson et al., 

1995a).  We examined the temporal expression pattern of H19 in the forebrain and 

confirmed that transcript levels decrease over the first two weeks after birth 

(Supplementary Figure 2-10A).  We also observed an enrichment of repressive histone 

modifications (H3K9me2, H3K9me3 and H4K20me3) on the H19 ICR maternal allele in 

the P17 brain, along with ATRX and MeCP2 (Supplementary Figure 2-10B).  Taken 

together, these results suggest that ATRX participates in the silencing of the maternal 

H19 gene in the postnatal mouse brain. 
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Figure 2-4. Allele-specific control of H19 gene transcription by ATRX 

 

(A) Semiquantitative RT-PCR analysis showing increased transcript levels of H19 and 

Igf2 in three sets of control and ATRX KO littermate-matched neonatal (P0.5) forebrains, 

whereas beta-actin transcript levels were not altered. (B) Real-time PCR analysis shows 

that H19 and Igf2 upregulation occurred in the ATRX KO postnatal forebrain (P0.5 and 

P17), but was not affected in the embryonic period (E13.5). Expression data for Atrx with 

primers specific for the long isoform were included as a control. Graphed data represent 

the mean relative expression level, and error bars depict standard error of the mean from 

biological replicates. The asterisk indicates p < 0.05, and double asterisks denote p < 

0.005, as determined by a two-tailed t test. All results are normalized to beta-actin 

expression. (C) Quantitative RT-PCR analysis confirms upregulation of H19 and 
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decreased Atrx expression in the Atrx+/− forebrain tissue (bottom right). Error bars depict 

standard deviation of technical replicates. Real-time RT-PCR of H19 and Atrx in an 

F1Atrx+/− forebrain. (D and E) Allelic melting curve analyses with hybridization probes 

(C57BL/6 and 129Sv homologous, CAST mismatched) revealed paternal-specific 

expression of (D) Snrpn and maternal-specific expression of (E) H19 in control 

129Sv/CAST F1 forebrain. (F) Analysis of a 129Sv/CAST F1 forebrain heterozygous for 

ATRX revealed that H19 transcripts are still largely produced from the maternal allele. 

Homozygous C57BL/6, which has an identical sequence to 129Sv, and Mus musculus 

casteneous (CAST) samples were included as controls. Mat, maternal; Pat, paternal; B6, 

C57BL/6; Atrx+/−, ATRX heterozygote 
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2.3.5 Co-Occupancy of ATRX, MeCP2 and Cohesin at the 
Gtl2/Dlk1 Imprinted Cluster 

We next wanted to determine whether ATRX, MeCP2 and Cohesin co-occupancy is 

specific to the H19 ICR or also occurs at other imprinted regions in the forebrain.  We 

chose to investigate the Gtl2/Dlk1 imprinted cluster on mouse chromosome 12 because it 

shares many features with the H19/Igf2 region, including the presence of several 

similarly positioned DMRs(Takada et al., 2002; Wylie et al., 2000).  One DMR overlaps 

with the Gtl2 promoter and extends into exon 1 and intron 1 of the gene (Figure 2-5A).  

This DMR was a logical candidate genomic region to investigate, as it is required for 

normal imprinting of Gtl2/Dlk1(Steshina et al., 2006), is bound by MeCP2 in mouse 

cerebellum(Jordan et al., 2007), and contains  a putative Cohesin/CTCF-consensus 

site(Paulsen et al., 2001).  We performed quantitative ChIP analysis to investigate the 

level of enrichment of ATRX, MeCP2 and SMC1 at three sites within the DMR and one 

site 5’ of the DMR.  Region GD-2 was previously reported to display asymmetric 

enrichment of histone H3 and H4 acetylation(Carr et al., 2007), GD-3 was shown to be 

bound by MeCP2(Jordan et al., 2007), and GD-4 contains a putative CTCF-binding site 

(see diagram in Figure 2-5A).  All three proteins were associated with the DMR in P17 

mouse brain (Figure 2-5B), but unlike the situation observed at the H19 ICR, the peaks of 

enrichment did not overlap but were adjacent within the DMR region.  We observed 

highest binding of ATRX at GD-2, the site of allelic histone acetylation (Figure 2-5B), 

while MeCP2 was most enriched at GD-3 and SMC1 at GD-4 (Figure 2-5B).  ChIP using 

IgG or an antibody against the transcription factor PROX1 did not show enrichment 

across this region (Figure 2-5B, Supplementary Figure 2-8A). 

Direct binding at the Gtl2 DMR suggested that ATRX may be required to maintain 

normal Dlk1 and Gtl2 gene expression during brain development.  We measured 

transcript levels of both genes in control and littermate-matched ATRX KO forebrain 

tissue.  Similar to what we observed for H19 and Igf2, Dlk1 expression was not changed 

at E13.5, but was considerably increased in mutants in the postnatal period, at P0.5 and 

P17 (Figure 2-5C).  In contrast, Gtl2 expression was not affected in the ATRX KO 

forebrain (Figure 2-5C).  A temporal survey of Dlk1 and Gtl2 expression revealed that 
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Dlk1 is gradually silenced postnatally while Gtl2 expression levels stayed more constant 

(Supplementary Figure 2-10A).  We conclude that ATRX binds to the Gtl2 DMR with 

Cohesin and MeCP2 and silences Dlk1, without influencing the expression of Gtl2. 
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Figure 2-5. ATRX, MeCP2, and Cohesin bind within the Gtl2/Dlk1 imprinted 

domain 

(A) Genomic organization and alignment of regions analyzed by ChIP (GD-1, GD-2, 

GD-3, and GD-4). Numbers indicate the relative nucleotide position from the Gtl2 

transcription start site. The asterisk denotes the predicted CTCF-binding site. (B) 

Quantitative ChIP analysis of ATRX, SMC1, and MeCP2 within the Gtl2 DMR. Regions 

analyzed are indicated on the x axis. ATRX (n = 4), p = 8.868e-07; MeCP2 (n = 2); 

SMC1 (n = 3), p = 0.05218. (C) Real-time RT-PCR analysis of Dlk1 and Gtl2 mRNA 

expression at E13.5, P0.5, and P17. Graphed data represent the mean relative expression 

level, and error bars depict standard error of the mean from biological replicates. 

Expression of Dlk1 is increased in postnatal forebrain tissue lacking ATRX protein, 

whereas expression of Gtl2 remains unaffected at all developmental time points 

examined. The asterisk indicates p < 0.01.GD, Gtl2 DMR 
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2.3.6 ATRX is Required for Chromatin Occupancy of Cohesin, 
CTCF and MeCP2  

The effects of ATRX deficiency on H19 and Dlk1 transcript levels led us to postulate that 

ATRX controls occupancy of its binding partners at the H19 ICR and at the Gtl2 DMR.  

Using quantitative ChIP analysis of control and ATRX KO forebrain, we established that 

loss of ATRX in the mouse forebrain causes a decrease in SMC1 and CTCF occupancy at 

the H19 ICR (Figure 2-6A) and could show a significant decrease specifically at region 

H19-5 (Figure 2-6B), indicating that the presence of ATRX at the maternal H19 ICR is 

required for SMC1 and CTCF occupancy.  Conversely, ATRX was not required for 

occupancy of MeCP2 at this site (Figure 2-6A,B) .  

We also examined the outcome of ATRX deficiency at the Gtl2 DMR.  Again, loss of 

ATRX reduced occupancy of SMC1 and CTCF at the DMR, at region GD-4 (Figure 2-

6C).  In contrast to the results obtained at the H19 ICR, MeCP2 enrichment was also 

decreased in the absence of ATRX within the Gtl2 DMR at region GD-3 (Figure 2-6C).  

We conclude that the presence of ATRX at the maternal H19 ICR and Gtl2 DMR is 

necessary for the full recruitment of SMC1 and CTCF, but the requirement of ATRX for 

MeCP2 binding differs between sites.   
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Figure 2-6. Occupancy of SMC1, MeCP2, and CTCF at the H19 ICR and Gtl2 DMR 

(A) ChIP analysis was performed across the H19 ICR in control and ATRX KO 

littermate-matched forebrains. Occupancy of CTCF and SMC1 was decreased in the 

ATRX KO samples at region H19-5, whereas MeCP2 occupancy was unchanged at this 

site. (B) Enrichment of SMC1, CTCF, and MeCP2 at region H19-5 was further quantified 

in additional brains (n = 3). (C) ChIP analysis was performed at the Gtl2 DMR in control 

and Atrx null forebrain (SMC1 and CTCF, n = 3; MeCP2, n = 2). Loss of ATRX in 

forebrain causes decreased occupancy of SMC1, CTCF, and MeCP2 at regions GD-4, 

GD-4, and GD-3, respectively (depicted in Figure 2-5A). Error bars depict standard error 

of the mean. p values were determined by a two-tailed t test. 

http://www.sciencedirect.com.proxy2.lib.uwo.ca/science/article/pii/S153458071000016X#fig5�
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2.3.7 Regulation of an Imprinted Gene Network (IGN) by ATRX in 
the Mouse Brain 

H19, Igf2 and Dlk1 have been linked to networks of co-regulated imprinted 

genes(Gabory et al., 2009; Lui et al., 2008; Varrault et al., 2006; Zhao et al., 2006).  One 

network was identified by a meta-analysis of microarray datasets, revealing co-regulation 

of imprinted genes.  Expression of these genes was also found to be altered in mice 

lacking the imprinted Zac1 gene, a member of the identified network(Varrault et al., 

2006). A second study reported a group of imprinted genes (including H19 and Igf2) that 

were coordinately downregulated in a DNA methylation-independent manner during 

postnatal growth deceleration in multiple organs(Lui et al., 2008).  Interestingly, in 

addition to regulating the H19/Igf2 imprinted domain, the maternal H19 ICR also 

mediates interchromosomal interactions of a network of imprinted genes(Zhao et al., 

2006).  This network was different in mouse liver compared to ES cells, indicating tissue 

specificity of these interactions.  The presence of ATRX, Cohesin and MeCP2 at the 

maternal H19 ICR suggested that they might participate in trans-regulation of imprinted 

genes and therefore would affect the expression of other imprinted genes.  Expression of 

several imprinted genes was evaluated by qRT-PCR in control and ATRX KO forebrain 

at E13.5, P0.5 and P17.  In addition to H19, Igf2 and Dlk1, we identified twelve other 

imprinted genes that displayed increased expression in the postnatal ATRX-null 

forebrain, including Slc38a4, Dcn, Peg10, Mest, Grb10, Zac1, Sgce, Copg2, Cdkn1c, 

Nnat, Rian, and Ndn (Table 1).  None of the  imprinted genes tested were upregulated at 

E13.5, however Copg2as2, Nnat and Rian were moderately downregulated at this 

embryonic time point (data not shown).  The list of imprinted genes displaying increased 

expression in the absence of ATRX show a substantial overlap with the imprinted gene 

networks (IGNs) previously reported (Table 1)(Lui et al., 2008; Varrault et al., 2006).   
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Table 1. Imprinted gene expression in the ATRX KO forebrain 
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2.4 Discussion 
Our data link ATRX to two other important regulators of chromatin structure, to the 

proper occupancy of Cohesin and CTCF at two imprinted genes, and to the control of a 

network of imprinted genes in the developing brain.  We identified direct target genes of 

ATRX in the mouse brain, and demonstrated that ATRX, MeCP2, and Cohesin bind to 

chromatin with a bias towards the maternal allele.  It is unlikely that the effects on gene 

expression are merely due to morphological defects in the ATRX-null forebrain, since we 

could show direct binding of ATRX at cis-regulatory sites.  An important aspect of our 

findings is their possible relevance to human developmental diseases.  We provide the 

first glimpse of the cooperation between ATRX, Cohesin and MeCP2 in the regulation of 

common gene targets, perhaps explaining similarities between the associated human 

syndromes.  Thus, the failure to properly suppress a subset of imprinted genes in the 

brain could potentially contribute to cognitive deficiencies characteristic of ATR-X, RTT 

and CdLS Syndromes. 

The co-localization of ATRX and MeCP2 previously reported at pericentromeric 

heterochromatin in the mouse brain(Nan et al., 2007) raised the question whether they 

also interact at specific target genes along chromosomal arms.  We now provide evidence 

that ATRX and MeCP2 converge to regulate common target genes.  Several of the 

imprinted genes that we found to be affected by loss of ATRX also show altered 

expression in MeCP2-null tissues, including H19, Dlk1 and Zac1(Fuks et al., 2003; 

Urdinguio et al., 2008).  However, our results show that ATRX is required for MeCP2 

binding to the Gtl2 DMR, but not the H19 ICR, suggesting that additional factors 

influence the dynamics of binding at different genomic sites.   

The observation that both ATRX and MeCP2 are enriched on the maternal allele of the 

H19 ICR was unexpected, as enrichment on the silenced methylated paternal allele would 

have seemed more likely.  However, their presence on the maternal allele might enable 

the postnatal silencing of H19 in the mouse brain(Pham et al., 1998).  In this context, one 

would indeed expect to observe the recruitment of suppressive factors to the active 

maternal allele.  This is further corroborated by the unchanged methylation status and 

altered chromatin composition observed in the ATRX KO forebrain.  We speculate that 
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MeCP2 and ATRX are required to silence imprinted genes with functions that are 

essential during neurogenesis, but unnecessary or detrimental in the mature brain.   

There is supporting evidence that mechanistically, MeCP2 and Cohesin function in 

chromosomal looping(Hadjur et al., 2009; Horike et al., 2005; Mishiro et al., 2009; 

Nativio et al., 2009).  The presence of ATRX at target genes with Cohesin and MeCP2 

suggests that it may also modulate chromatin loop formation by promoting specific long-

range interactions.  The involvement of Cohesin in this complex sheds new light on the 

importance of cohesion for accurate gene regulation.  Much excitement was generated by 

recent publications describing the co-localization of Cohesin with the CTCF insulator 

protein at multiple genomic sites, and the requirement of Cohesin in the insulator 

functions of CTCF(Parelho et al., 2008; Wendt et al., 2008).  More recently, Nativio et al 

reported the involvement of Cohesin in long-range chromatin interactions within the 

IGF2-H19 locus in human cells(Nativio et al., 2009).  The fact that ATRX is essential to 

achieve full occupancy of Cohesin and CTCF at target imprinted domains, potentially 

implicate ATRX in the regulation of higher order chromatin conformation, insulator 

functions, or mono-allelic gene regulation.  It is possible that CTCF and Cohesin perform 

their insulator functions in different tissues in collaboration with various SNF2 chromatin 

remodeling proteins(Ishihara et al., 2006).  

We determined that ATRX is able to suppress the expression of many imprinted genes in 

the postnatal period.  The affected genes show a striking overlap with the previously 

reported ZAC1-related IGN, linked by their coordinated pattern of expression in many 

tissues (Table 1).  Importantly, our data show that expression of Zac1 itself is deregulated 

upon loss of ATRX in the brain.  The maternal H19 ICR has been shown by 4C analysis 

to mediate interactions with several imprinted genes(Zhao et al., 2006).  These 

interchromosomal interactions differed substantially between mouse liver and embryonic 

stem cells, suggesting that the interaction network involving the H19 ICR is tissue 

specific, or reflects the proliferative capacity of cells.  Viewed in the context of the 

neonatal brain, the coordination of this network of imprinted genes might be required to 

ensure proper brain maturation and synchronization could be enabled by the recruitment 

of specific genes into close proximity via chromatin interactions.  The concept of trans-
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interaction and trans-regulation of imprinted genes is still controversial and the possible 

involvement of ATRX in the regulation of an IGN in postnatal brain will require further 

investigation. 

The role of the imprinted genes controlled by ATRX has not yet been well characterized 

in the brain, perhaps not surprisingly if these genes are largely suppressed during brain 

maturation.  However, many of the genes within this network have defined functions 

during mouse placentation, which  is intriguing considering that ATRX is an essential 

placental regulator(Garrick et al., 2006).  Furthermore, there is evidence that ATRX is 

required for imprinted X chromosome inactivation in extraembryonic tissues, and 

somatic cells(Baumann and De La Fuente, 2009; Garrick et al., 2006).  Several important 

questions remain to be answered, namely whether ATRX controls IGNs in other tissues, 

especially in the placenta, and whether ATRX’s mono-allelic effects also come into play 

during imprinted X chromosome inactivation.  Future studies will be directed at 

identifying additional common target genes of ATRX, Cohesin, MeCP2 and CTCF in the 

brain and other tissues, and to investigate the mechanism of regulation at target genes.  

Although it is unlikely that ATRX, Cohesin and MeCP2 only target genes that are 

imprinted, our findings show that these chromatin proteins can bind specific genomic 

sites in an allele-specific manner.  Whether ATRX’s function is often influenced by 

mono-allelic features will require further investigation.  It will be important to further 

probe the underlying molecular regulation by these chromatin proteins, in order to gain 

insight into the control of mono-allelic expression, long-range chromatin gene regulation, 

and a better understanding of the molecular neuropathogenesis underlying the associated 

human disorders. 
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2.5 Supplementary Figures 

 

Figure 2-7. Co-immunoprecipitation of ATRX and SMC1 in SH-SY5Y cells, 

forebrain tissue and HeLa cells and effects of DNAse I treatment on interactions 

between ATRX, MeCP2 and Cohesin subunits 

 

(A) ATRX was immunoprecipitated from human SH-SY5Y neuroblastoma cells and 

Western blot analysis revealed the presence of SMC1. (B) ATRX protein was 

immunoprecipitated from control and ATRX KO forebrain tissue and Western 

blot analysis showed that association with SMC1 is reduced in the KO samples. 
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(C) Co-immunoprecipitation experiments were repeated in HeLa cell extracts transiently 

depleted of ATRX protein by RNA interference. (D) Different combinations of co-

immunoprecipitation experiments were performed in the absence (-) or presence (+) of 

DNAse I. (E) Western blot analysis of MeCP2 KO and control forebrain protein extracts 

demonstrates specificity of MeCP2 antibody used for co-immunoprecipitation 

experiments. NE: nuclear protein extracts, CE: cytoplasmic protein extracts, Inp: Input, 

KO: ATRX KO, C: control. 
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Figure 2-8. ChIP controls demonstrate specificity of protein enrichment at the H19 

ICR and Gtl2 DMR 

 

(A) ChIP of the transcription factor PROX1 across the H19 ICR and Gtl2 DMR reveals 

minimal enrichment, demonstrating the specificity of ATRX, MeCP2 and Cohesin 

enrichment at these sites. Refer to Figures 2-2 and 2-5 for primer alignment of H19 and 

Gtl2 domains, respectively. (B) Genomic organization and alignment of primers utilized 

for PCR amplification of ChIP reactions at the Gapdh locus (top). Numbers indicate the 

relative nucleotide position from the transcription start site. ChIP for ATRX, MeCP2 and 

SMC1 indicates minimal enrichment across the Gapdh region. 
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Figure 2-9. DNA methylation analysis of Igf2 DMR1, Igf2 DMR2, rDNA and 

repetitive elements in the ATRX null forebrain 

 

(A) Bisulfite mutagenesis and sequencing analysis of the Igf2 DMR1 and Igf2 DMR2 in 

two control and ATRX KO littermate pairs. Individual alleles are represented as a line, 

unmethylated CpGs are represented as empty circles, and methylated CpGs as filled 

circles. The total percent methylation for each sample is indicated in parentheses. 
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(B) Southern blot analysis of DNA methylation at 18S and 28S rDNA repeats. (Top) 

Restriction map of the transcribed portion of the rDNA genes. Alignments of the 

methylation sensitive probes RIB4 and RIB3 are indicated. (Bottom) 18S rDNA 

methylation was analyzed by digestion with BamHI/SmaI and probed with RIB4 while 

28s rDNA repeat methylation was analyzed by digestion with EcoRI/PvuI 

and probed with RIB3. (C) McrPCR analysis of DNA methylation at major satellite, 

minor satellite and IAPgag repeats. DNA methylation at repeat sequences was measured 

by the inverse ability of unmethylated DNA fragments to amplify PCR products with 

primer sets specific to each repeat class. Samples were normalized against equal input 

levels of internal control undigested DNA. (D) Southern blot analysis of DNA 

methylation at major satellite, minor satellite and IAPgag repeats. Major satellite 

methylation was analyzed by digestion with HpyCH41V and probed with pMR150. 

Minor satellite methylation was determined by digestion with HpaII and probed with 

pSAT. IAPgag methylation was assessed by digestion with HpaII and probed with pIAP. 
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Figure 2-10. Temporal profile of H19, Dlk1 and Gtl2 expression and accumulation of 

suppressive histone marks at the maternal H19 ICR in the postnatal brain 

 

(A) Semi-quantitative RT-PCR expression analysis of the mouse forebrain from E13.5 to 

P14 illustrates gradual downregulation of the H19 and Dlk1 genes in the postnatal period 

and a more constant expression level of Gtl2. Numbers on the right indicate expected size 

of the PCR amplicons. (B) Allelic ChIP analysis of histone modifications on 

129Sv/CAST F1 forebrain at the H19 ICR demonstrates enrichment of repressive marks 

H3K9me2, H3K9me3 and H4K20me3 on the maternal allele, reflecting postnatal 

repression of H19 in the forebrain. Inp: input, U: uncut, C: cut, Mat: Maternal, Pat: 

paternal, M: standard marker. 
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2.6 Supplementary Methods 

2.6.1 Cell Culture 

SH-SY5Y and HeLa cells were cultured in DMEM high glucose medium (Sigma) 

supplemented with 10% FBS, in 5% CO2 atmosphere.   Transient ATRX depletion in 

HeLa cells was achieved using siRNA interference as previously described(Ritchie et al., 

2008).     

2.6.2 Co-Immunoprecipitations 

Extracts from SH-SY5Y cells, HeLa cells, and mouse forebrain were immunoprecipitated 

as described in the main text, with the following exceptions: antibodies were incubated 

with lysates overnight at 4 oC followed by incubation for 1 hour with protein G-

Sepharose (Pharmacia).  For DNAse digestion experiments, prior to 

immunoprecipitation, samples were incubated with 100U/mL DNAse1 (Sigma) at room 

temperature for 15 minutes.     

2.6.3 Western Blot Analysis 

Nuclear and cytoplasmic protein extracts were obtained from MeCP2 KO (B6.129P2(C)-

Mecp2tm1.1Bird/J, Jackson Laboratories #003890) and control forebrains using the Nuclear 

and Cytoplasmic Extraction kit (NE-PER, Thermo Scientific).  Protein extracts were 

resolved on 8% SDS-PAGE, and incubated with anti-MeCP2 (gift of Janine M. LaSalle) 

for one hour.   

2.6.4 ChIP Analysis 

ChIP was performed on P17 wild-type forebrains as described in the main text. 

Additionally, immunoprecipitation was performed with anti-PROX1 (Covance). Samples 

were analyzed by real-time RT-PCR as described in the main text.  Primer sequences for 

all regions are available upon request.   

2.6.5 Methylation-Sensitive Southern Blot Analysis 

P0.5 forebrain tissue was collected, digested with Proteinase K and purified using the 

standard phenol:chloroform extraction method.  For the IAPgag and minor satellite 
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analyses, DNA from three ATRX KO and littermate control pairs was digested with the 

methylation-sensitive restriction enzyme HpaII and its methylation insensitive 

isoschizomer MspI.  DNA for the major satellite blot was digested with methylation-

sensitive HpyCH41V.  DNA for the 18S rDNA blot was digested with BamHI and 

methylation-sensitive SmaI, while DNA for the 28S rDNA blot was digested with EcoRI 

and methylation-sensitive PvuI.  pIAP, pMR150 and pSAT probes were obtained from F.  

Dick (London Regional Cancer Program; University of Western Ontario, London, 

Canada) and have been previously published(Lehnertz et al., 2003).  RIB3 and RIB4 

probes were generated by PCR as previously described(Gibbons et al., 2000).  

2.6.6 McrPCR Methylation Analysis 

Genomic DNA was digested with the restriction enzyme McrBC (New England Biolabs), 

which only cleaves methylcytosine of the form (G/A)mC in the recognition sequence 

5´…PumC(N40-30000)PumC…3´.  Quantitative real-time PCR was used to determine the 

relative levels of unmethylated DNA at IAPgag, major satellite, minor satellite and rDNA 

repeats, following a previously published protocol(Martens et al., 2005).  Conditions for 

amplification were as follows: 95 °C for 5 minutes followed by 25-35 cycles of 95 °C for 

10 seconds, 55 °C for 20 seconds, 72 °C for 30 seconds, and a final melting curve 

generated in increments of 0.5 °C per plate read.  Major satellite and minor satellite 

samples were diluted 100-fold due to high copy number in the mouse genome (Martens et 

al., 2005).  Standard curves were generated for each pair using three-fold serial dilutions 

of control littermate cDNA.  Primer efficiency was calculated as E = [10(-1/slope) – 1] * 

100%, where a desirable slope is –3.32 and r2 > 0.99.  All data was corrected against 

equal input levels of internal control undigested DNA.  

2.6.7 Semi-Quantitative RT-PCR 

RNA was extracted and cDNA generated as described in the main text from male wild-

type forebrains at days E13.5, P0.5, P2, P4, P6, P8, P10, P12 and P14. cDNA was 

amplified using gene-specific primers under the following conditions:  95 °C for 5 

minutes, followed by 29 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, and 72 °C 

for 1 minute.   
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Chapter 3 

3 ATRX Regulates Nucleosome Positioning, CTCF 
Occupancy and Long-Range Chromosomal Interactions 

My initial studies revealed that ATRX controls the expression of imprinted genes and 

promotes CTCF and Cohesin binding within the H19 ICR and Gtl2 DMR.  At the onset 

of this study CTCF and Cohesin had recently been recognized as proteins vital for 

chromatin interactions throughout the genome, including within the H19/Igf2 imprinted 

domain and between H19/Igf2 and other IGN members(Han et al., 2008; Kurukuti et al., 

2006; Nativio et al., 2009; Zhao et al., 2006b).  This led me to investigate whether the 

loss of ATRX would also affect chromatin interactions at H19/Igf2 and perhaps other 

imprinted domains, providing a potential mechanism for ATRX regulation of imprinted 

genes.  

3.1 Introduction 
Recent technological advancements have greatly evolved our understanding of the 

genome, from a linear organization to a complex three dimensional structure(de Wit and 

de Laat, 2012).  Chromosomes within the nucleus are strategically folded to facilitate 

interactions of genes and regulatory sequences, both within and between 

chromosomes(reviewed in (Cremer and Cremer, 2001; Cremer and Cremer, 2010; 

Cremer et al., 2006; Zhao et al., 2009)).  These short- and long-range interactions can 

inhibit or enhance gene expression, and are highly relevant to genomic control.  

Regulation of higher-order chromatin structure is not well understood, but likely involves 

chromatin remodeling factors.  Chromatin remodeling factors are a diverse group of 

proteins that utilize the energy of ATP to alter the histone-DNA interface, thus affecting 

chromatin structure(Travers et al., 2012).            

Alpha-thalassemia mental retardation, X-linked (ATRX) is a switch/sucrose non-

fermenting  (SWI/SNF)-like chromatin remodeling protein, implicated in 

neurodevelopmental syndromes and cancer in humans(Gibbons et al., 1995a; Gibbons et 

al., 1995b; Gibbons et al., 1992; Je et al., 2012; Jiao et al., 2012a; Liu et al., 2012; 
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Weisbrod et al., 2013).  The ATRX protein has two main conserved domains, an ATRX-

DNMT3-DNMT3L (ADD) domain and a switch/sucrose non-fermenting (SWI/SNF) 

domain(Picketts et al., 1998).  The SWI/SNF domain confers ATPase-dependent 

translocase activity(Tang et al., 2004;Flaus et al., 2006), while the ADD domain 

recognizes and interacts with DNA and other proteins(Argentaro et al., 2007; Cardoso et 

al., 2000; Dhayalan et al., 2011; Wong et al., 2010).  ATRX binds throughout the genome 

to enact diverse functions.  To date, roles have been reported in DNA replication(Leung 

et al., 2013; Watson et al., 2013), mitosis(Ritchie et al., 2008), meiosis(De La Fuente et 

al., 2004), telomere stability(Bower et al., 2012; de Wilde et al., 2012; Heaphy et al., 

2011; Lewis et al., 2010; Lovejoy et al., 2012; Watson et al., 2013; Wong et al., 2010) 

and gene expression(Law et al., 2010; Levy et al., 2008).  Genome-wide studies have 

reported that ATRX is enriched at GC-rich and repetitive sequences, such as CpG-

islands, DNA repeats, and telomeres, including  many predicted to form secondary DNA 

structures called G-quadruplexes(Law et al., 2010).  ATRX is thought to translocate 

along DNA to aid in the resolution of G-quadruplexes and facilitate DNA replication and 

transcription(Law et al., 2010).  This mechanism of ATRX-dependent gene regulation 

was proposed at the alpha-globin domain, where ATRX binds G-rich tandem repeat 

sequences and modulates gene expression in cis(Law et al., 2010).  However, ATRX 

deficiency causes the misexpression of numerous genes throughout the genome(Levy et 

al., 2008).  Given the diverse roles of the ATRX protein, it is likely that ATRX also has 

multiple functions in transcriptional regulation.     

Imprinted genes are a class of genes expressed in a parent-of-origin manner and regulated 

by epigenetic factors, including higher-order chromatin looping(Kernohan and Bérubé, 

2010).  We previously demonstrated a requirement for ATRX in the transcriptional 

repression of a network of imprinted genes, including H19 and Igf2, in the mouse 

brain(Kernohan et al., 2010).  At the H19/Igf2 domain, we found that ATRX forms a 

complex with methyl CpG binding protein 2 (MeCP2) and Cohesin on the maternal allele 

of the H19 imprinting control region (ICR)(Kernohan et al., 2010).  Loss of ATRX 

caused a reduction in CCCTC-binding factor (CTCF) and Cohesin binding that correlated 

with an increase in H19 and Igf2 transcripts(Kernohan et al., 2010).  However, the 
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function of ATRX at the H19 ICR, and its role in repressing H19/Igf2 expression is not 

known.   

Transcription from H19/Igf2 is regulated by chromatin looping which is mediated by the 

H19 ICR and requires CTCF and Cohesin(Burke et al., 2005; Guibert et al., 2012; Han et 

al., 2008; Kurukuti et al., 2006; Li et al., 2008).  As ATRX affects CTCF and Cohesin 

occupancy, we set out to investigate a possible role for ATRX in mediating looping of 

this domain.  We utilized circular chromosome conformation capture (4C) and 

quantitative chromosome conformation capture (3C) to evaluate interactions of the H19 

ICR in the neonatal brain.  We demonstrate that the loss of ATRX significantly reduces 

chromosomal interactions with specific H19/Igf2 sites.  Architectural changes across 

H19/Igf2 coincide with a failure to maintain CTCF binding, likely as a result of ATRX-

mediated nucleosome occupancy within the 5' H19 ICR.  Finally, we report that MeCP2 

recruits ATRX to the H19 ICR, and that the loss of MeCP2 also results in defects in 

H19/Igf2 chromatin structure.  We propose a model where MeCP2 recruits ATRX to the 

maternal H19 ICR to repress H19/Igf2 expression.  Once recruited to the ICR, ATRX 

modifies nucleosome occupancy to maintain an extended linker region which 

accommodates CTCF binding, thus promoting long-range chromosomal interactions and 

gene repression.   

3.2 Materials and Methods 

3.2.1 Animal Husbandry 

The Atrx gene was conditionally deleted in the mouse forebrain by mating AtrxloxP female 

mice with heterozygous Foxg1Cre male mice as previously described(Bérubé et al., 

2005).  AtrxloxP line was kindly provided by D. Higgs (Weatherall Institute of Molecular 

Medicine, John Radcliffe Hospital, Oxford, United Kingdom). For the developmental 

studies, midday of vaginal plug discovery was considered E0.5.  For allele-specific 

expression studies, pups were obtained by mating 129Sv female mice with Mus musculus 

castaneus male mice (CAST; The Jackson Laboratory).  MeCP2null mice were generated 

by crossing MeCP2loxP females (Jackson Laboratories Stock # 007177) with a ubiquitous 

Cre line driven by the EIIa promoter (Jackson Laboratories Stock #003724).  All animal 
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studies were conducted in compliance with the regulations of The Animals for Research 

Act of the province of Ontario, the guidelines of the Canadian Council on Animal Care, 

and the policies and procedures approved by the University of Western Ontario Council 

on Animal Care.  

3.2.2 Circular Chromosome Conformation Capture (4C)  

4C protocol was based on (Gheldof et al., 2012).  Briefly, following 3C library 

preparation, 100 μg of DNA was digested with MseI (H19 ICR) (100 U; New England 

Biolabs) overnight at 37 oC.  MseI was chosen to provide a minimum 200 base pairs from 

the primary to secondary restriction sites, allowing for efficient circularization.  The 

enzyme was deactivated for 25 minutes in 1.3% SDS at 65 oC and DNA was recovered 

by standard phenol/chloroform extraction.  Digestion efficiency was confirmed to be 

>96% by real-time PCR across 5 sites throughout the genome.  DNA was resuspended in 

ligation buffer with 50 U T4 DNA ligase (Roche Diagnostics) and 1 μM ATP and 

incubated at 16 oC for 5 days.  DNA was purified by phenol/chloroform extraction and 

amplified with the Expand Long Template PCR system (Roche Diagnostics) and site 

specific reverse primers directed from the H19 ICR. PCR products were resolved on a 

1% agarose gel, and extracted in 3 aliquots using a QIAquick gel extraction kit (Qiagen); 

undigested band, <230 base pairs and >230 base pairs.  The >230 base pair fraction was 

sheared enzymatically using the Ion Shear Plus Reagents incubating at 37 oC for 5 

minutes, and then combined with the <230 base pair fraction and 1/6th of the undigested 

self-ligation fragment before barcoding with the Ion Xpress Barcode Adapters 1-16 kit.  

Sequencing was performed using the Ion Torrent Personal Genome Machine (Life 

Technologies) with 318 chips and 200 base pair sequencing chemistry according to 

manufacturers protocols at the London Regional Genomics Centre.   

3.2.3  4C Analysis 

Ion Torrent reads were mapped by TMAP Suite 3.2.1 and supplied in BAM format. 

These were converted to SAM format using samtools(Li et al., 2009) and sorted by 

chromosome and position prior to analysis. The individual chromosome sequences of the 

Genome Reference Consortium Mouse Build 38 were downloaded from the UCSC 
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genome browser web site. A custom script, written in Perl, was used to generate a file for 

each chromosome containing the EcoRI restriction endonuclease coordinates. A second 

custom script parsed the SAM file and enumerated the total number of reads that mapped 

to each restriction endonuclease cleavage interval, and the number of unique reads 

mapping to each interval. Reads were assumed to be identical if they were in the same 

orientation and had the same starting positions.  The total number of unique mapping 

reads for each dataset was between 52,162 and 303,823.  Because the ratio of reads in 

any interval to the total was very small, standard statistical techniques were used to 

construct a robust estimator of the underlying proportions. Specifically, underlying 

proportions were estimated using a multinomial-Poisson model in a Bayesian context 

using a minimally-informative reference prior(Berger and Bernardo, 1992; Berger et al., 

2009). Since fold-change is the usual measure of effect-size, all expectations were taken 

with respect to log_2-proportions. For compatibility with the UCSC genome browser, the 

expected log_2-proportions were mapped back to linear-space and multiplied by an 

arbitrary integer scaling factor. 

3.2.4  Chromosome Conformation Capture (3C)  

3C libraries were prepared essentially as previously described(Vernimmen et al., 2007), 

with the same controls.  Briefly, neonatal mouse forebrain and/or liver tissue was 

dissected, rinsed in DMEM (Sigma-Aldrich) and cut.  Minced tissue was diluted in 

DMEM (Sigma-Aldrich) with 10% FBS (Sigma-Aldrich) and passed through a 70 μm 

cell strainer (BD Falcon) to ensure single cell suspension.  The cell suspension was 

incubated at 37 oC for 30 minutes to equilibrate.  Cells were cross-linked in 1% 

formaldehyde (Sigma-Aldrich), rinsed 3x with cold PBS (Sigma-Aldrich) and lysed 

[Lysis buffer: 10mM Tris pH 8 (Sigma-Aldrich), 10mM NaCl (Sigma-Aldrich), 0.2% 

NP40 (Sigma-Aldrich), and 1x protease inhibitors (Roche Diagnostics)].  Nuclei were 

resuspended in 1.2x restriction buffer (Roche Diagnostics buffer H) and 3% SDS (Sigma-

Aldrich) and incubated at 37 oC for 1 hour, followed by addition of 2% TX-100 (Sigma-

Aldrich) and incubation for a second hour. EcoRI (400 U; Roche Diagnostics) was added 

and incubated overnight at 37 oC.  The enzyme was deactivated for 25 minutes in 1.3% 

SDS at 65 oC.  Digested DNA was incubated in lysis buffer with 1% TX-100 (Sigma-
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Aldrich) for one hour, followed by the addition of T4 DNA ligase (100 U; Roche 

Diagnostics).  Ligation was performed for 4 hours at 16 oC followed by 30 minutes at 

room temperature.  The cross-link was reversed and protein degraded by addition of 300 

μg Proteinase K(PK) (BioShop Canada Inc.) and incubation overnight at 65 oC.  RNA 

was degraded by addition of 300 μg RNAse A (Roche Diagnostics) and incubated for 30 

minutes at 37 oC.  DNA was purified by phenol/chloroform extraction. Samples were 

prepared in parallel that lacked either the EcoRI or T4 DNA ligase enzymes.  Digestion 

efficiency was confirmed to be >96% by real-time PCR across 5 sites spanning the 

H19/Igf2 domain.    

3.2.5 Quantitative 3C Analysis 

Library amplification and quantification was conducted as described 

previously(Vernimmen et al., 2007), with the same controls.  Briefly, PCR reactions, 

primers and probes were optimized on a library of randomly ligated BAC DNA 

containing the H19/Igf2 domain (RP23-50N22) and XPB (RP23-148C24) (clones were 

obtained from TCAG Genome Resource Facility, The Hospital for Sick Children 

Toronto).  All H19/Igf2 primer combinations were tested to amplify in linear correlation 

with the amount of BAC DNA and within 2 Cts.  All 3C data was corrected to primer 

efficiency and calculated relative to XPB/ERCC3 amplification, a genomic region 

demonstrated to have equivalent looping structures in many tissues, including liver and 

brain(Tiwari et al., 2008).  This also controls for differences in chromatin concentrations 

and cross-linking efficiency between samples.  3C template obtained from P0.5 control 

and Atrxnull and littermate control forebrains were amplified in duplicate with Taqman 

Universal PCR Master Mix (Applied Biosystems) on a Chromo-4 thermocycler (BioRad) 

using the following conditions: 50 °C for 2 minutes, then 95 °C for 10 minutes, followed 

by 50 cycles of 95 °C for 10 seconds, 60 °C for 1 minute.   All primer combinations were 

visualized on polyacrylamide gels to confirm amplification of the correct sequences.  For 

all reactions, a negative bait site located approximately 100 kb downstream of H19 was 

also used; the lack of interactions from this site ensured specificity of ICR interactions.   
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3.2.6 DNA FISH and Immunofluorescence  

DNA FISH protocol was adapted from (Dorin et al., 1992).  Neonatal brains were fixed 

overnight in 4% paraformaldehyde (Sigma-Aldrich), equilibrated in 30% sucrose-PBS, 

frozen in O.C.T. (Tissue Tek) and sectioned at 8 μm.  Antigen retrieval was performed 

using 0.3% sodium citrate (Sigma-Aldrich) for an hour.  Slides were dehydrated in an 

ethanol series of 70% for 2 minutes, 90% for 2 minutes, and 100% for 5 minutes, 

followed by denaturation in 70% formamide/2xSSC for 5 minutes at 65 oC.  Slides were 

again dehydrated as described above and then incubated with 0.05 μg of DIG and/or 

biotin-labeled probe/hybridization buffer [83% formamide (Sigma-Aldrich), 3.3x SSC 

(Sigma-Aldrich), 0.02 μM dextran sulfate, and 30 μg salmon sperm DNA (Sigma-

Aldrich)] overnight at 37 oC in a humidified chamber.  Probes were prepared by nick 

translation of BAC DNA (H19/Igf2:RP23-50N22, Gapdh:RP23-319C23, Peg10/Sgce: 

RP23-327D3, Dcn:RP23228L10, Slc38a4: RP23-304B5, Grb10: RP23-298L21, 

Dlk1:RP23-385B6, Zac1:RP23-259L24, Mest:RP23-269K7 (all clones obtained from 

TCAG Genome Resource Facility, The Hospital for Sick Children Toronto) using the 

Biotin and DIG- Nick Translation Kits (Roche Diagnostics) and purified using the High 

Pure PCR Product Purification Kit (Roche Diagnostics) as per manufacturer’s 

instructions.  Slides were washed in 50% formamide/2xSSC for 2 x 5 minutes, and 

2xSSC for 2 x 5minutes.  Sections were incubated with the primary antibody for 1 hour at 

room temperature, washed for 15 minutes in PBS, and incubated with the secondary 

antibody for 1 hour. Sections were counterstained with DAPI (Sigma-Aldrich; D9542) 

and mounted in Slowfade Gold Antifade Reagent (Invitrogen).  Primary antibodies used 

were as follows: anti-ATRX H-300 (1:250; Santa Cruz Biotechnology) anti-DIG (1:100; 

Roche Diagnostics), and anti-Biotin (1:500; Abcam).  Secondary antibodies used were as 

follows: goat-anti rabbit Alexa 594 (1:800; Invitrogen) and goat anti-mouse Alexa 488 

(1:800; Invitrogen). Images were taken at 0.3 μm intervals across the 8 μm section using 

the Olympus FV1000 confocal microscope and FV10-ASW 2.1 image acquisition 

software (Olympus).  Volocity software (PerkinElmer) was used to compile 3D images 

and make distance measurements in 3D.  For co-localization analysis, FISH signals with 

a centre-to-centre distance of less than 1 μm were considered to be interacting(Sandhu et 

al., 2009).   
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3.2.7 ChIP-Sequencing Analysis 

Raw sequencing data for ATRX embryonic stem cell ChIP-sequencing was downloaded 

from the NCBI Sequence Read Archive (Accession number GSE22162), and aligned to 

the mouse genome using Bowtie version 0.12.8 in the -n alignment mode.  During 

alignment duplicate sequences were removed, up to 3 mismatches were allowed, and 

reads that aligned to more than one location were discarded.  Genome-wide data tracks 

were generated using custom Perl scripts to extend reads to their fragment lengths and 

normalized to 20 million reads.  Data was visualized in the UCSC Genome Browser(Kent 

et al., 2002). 

3.2.8 Chromatin Immunoprecipitation 

ChIP was conducted as previously described(Kernohan et al., 2010) with the following 

exceptions:  cells were dissected and fixed immediately at 37 °C, then washed in PBS 

containing 1x protease inhibitor cocktail (Roche Diagnostics), immunoprecipitation was 

conducted with anti-ATRX (H300; Santa Cruz) and anti-CTCF (Cell Signaling), DNA-

antigen complexes were retrieved by incubation with protein A agarose beads (Cell 

Signaling), and LiCl wash was omitted.  ChIP products were amplified in duplicate with 

iQTM SYBR® Green master mix (BioRad) on a Chromo-4 thermocycler using the 

following conditions: 95 °C for 5 minutes followed by 40 cycles of 95 °C for 10 seconds, 

57.5 °C for 20 seconds, 72 °C for 30 seconds, and a final melting curve generated from 

55 to 95 °C in increments of 1.0 °C per plate read.  Ct values were obtained and % input 

and fold-change calculated as previously described(Kernohan et al., 2010). 

3.2.9 Nucleosome Density Analysis  

Neonatal mouse forebrain was dissected, rinsed in 37 oC DMEM (Sigma-Aldrich) and 

passed through a 70 μm cell strainer (BD Falcon) to ensure single cell suspension.  The 

cell suspension was incubated at 37 oC for 30 minutes to equilibrate.  Cells were fixed in 

1% formaldehyde (Sigma-Aldrich) for 5 minutes and rinsed 3x with cold PBS containing 

protease inhibitors (Roche Diagnostics).  Cells were resuspended in lysis buffer [0.34 M 

sucrose, 60 mM KCl, 15 mM Tris-HCl, 15 mM NaCl, 0.5% NP-40 and 1x protease 

inhibitors (Sigma Aldrich)] and flash-frozen and thawed 3x, nuclei were spun down, and 
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resuspended in micrococcal nuclease digestion buffer (NEB).  Micrococcal Nuclease (2 

U) was added and incubated at 37 oC for 5 minutes then quenched with EDTA.  Cells 

were lysed with 1% SDS and cross-links reversed by incubation at 65 oC for 5 hours, 

followed by RNAse and PK digestion and phenol/chloroform extraction.  DNA was 

amplified in duplicate with iQTM SYBR® Green master mix (BioRad) on a Chromo-4 

thermocycler (MJ Research) using the following conditions:  35 cycles of 95 °C for 30 

seconds, 57.5 °C for 30 seconds, and 72 °C for 1 minute.  Quantification was conducted 

using the standard curve Ct method of quantification and normalized to amplification 

from Gapdh and beta-actin.   

3.3 Results  

3.3.1 ATRX Mediates Higher-Order Chromatin Structure of the 
H19/Igf2 Imprinted Domain  

We previously reported that ATRX localizes to the H19 ICR where it mediates binding of 

CTCF and Cohesin(Kernohan et al., 2010), proteins known to be required for H19/Igf2 

higher-order chromatin structure(Guibert et al., 2012; Han et al., 2008; Kurukuti et al., 

2006; Li et al., 2008; Nativio et al., 2009; Rubio et al., 2008).  This led us to postulate 

that ATRX is also required for proper H19/Igf2 chromatin looping, providing an 

explanation for elevated H19 and Igf2 transcript levels in the Atrxnull forebrain.  To 

evaluate interactions of the H19 ICR we utilized 4C, a 3C based molecular technique 

used to screen for genome-wide interactions in vivo(reviewed in (Sajan and Hawkins, 

2012)).  3C libraries were generated from P0.5 forebrains utilizing EcoRI, then redigested 

with MseI and self-ligated to form circular 3C recombined molecules.  The samples were 

then PCR amplified with primers directed from the H19 ICR 'bait sequence' across the 

interacting fragments and sequenced to provide a genome-wide unbiased analysis.  

Sequencing results were aligned to an EcoRI digested genome.  While chromatin looping 

of H19/Igf2 has been reported elsewhere(Burke et al., 2005; Guibert et al., 2012; Han et 

al., 2008; Kurukuti et al., 2006; Li et al., 2008), none of these studies utilized whole-

genome sequencing to generate an unbiased screen and none have been conducted on 

forebrain tissue.  We began by establishing the pattern of interactions in the control 

forebrain and found a series of contacts, including the insulin (Ins) and insulin like 
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growth factor 2 (Igf2) genes, Igf2 differentially methylated region 1 (DMR1), Igf2 

DMR2, matrix-attachment region 3 (MAR3), centrally conserved domain (CCD), and the 

H19 promoter and downstream enhancers (Figure 3-1A).  To determine if the loss of 

ATRX affects interactions of the H19 ICR, we compared 4C libraries from control and 

Atrxnull forebrains. We found reduced interaction frequencies across numerous sites 

including the CCD, MAR3 and DMR1 (Figure 3-1A), demonstrating that ATRX is 

required for interactions of the H19 ICR across the H19/Igf2 domain.        

 To confirm ATRX-dependent effects on chromatin structure within H19/Igf2, we utilized 

quantitative 3C.  We designed this analysis with the same EcoRI primary digestion, 

thereby dividing the 140 kb region into 45 fragments stretching from the Ins gene to the 

H19 enhancers (Figure 3-1B).  We designed a forward primer and Taqman probe to the 

H19 ICR (EcoRI restriction fragment used as bait), and numerous reverse primers in 

other EcoRI fragments covering intergenic regions as well as key elements identified in 

the 4C screen.  To provide further confirmation of interaction frequencies at a subset of 

sites, a second primer was designed to the other end of the restriction fragment.  For 

validation of the 3C approach, we began with an analysis of neonatal liver and forebrain.  

A similar interaction profile of the H19 ICR was observed in the liver and forebrain.  

Thus, the interactions previously reported(Qiu et al., 2008) and confirmed here in 

neonatal liver are also present in the neonatal brain (Supplementary Figure 3-7B).  These 

profiles also mirror the interactions observed in our 4C experiments, demonstrating the 

reliability and robustness of our in vivo 3C and 4C analyses.  We next quantified 

interactions in control and Atrxnull forebrains (Figure 3-1C,D).  Similar to our 4C 

experiments, we found that the loss of ATRX diminished interactions across the H19/Igf2 

domain, with significant reductions at the Igf2 DMR1 (region E/F; p=0.001 and 0.0003), 

MAR3 (region I; p=0.0052 and 0.0038), CCD (region L; p=0.0001 and 0.0001) and the 

endodermal enhancer (region Q; p=0.0004 and 0.0105) (Figure 3-1C,D).  Conversely, 

interactions with Ins (region B), the intergenic site between MAR3 and the CCD (region 

K) and the region downstream of the H19 enhancers (region T) were unaltered.   For a 

subset of samples, expression analysis was performed in tandem with the 3C analysis to 

confirm that gene expression and chromatin looping were changed in the same brain 
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samples (Supplementary Figure 3-7C).  We conclude that ATRX is required for 

intrachromosomal interactions of the H19 ICR in the neonatal forebrain.   
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Figure 3-1 ATRX is required for intrachromosomal interactions across the H19/Igf2 

imprinted domain 

(A) 4C interactions profile of the H19 ICR in neonatal control and Atrxnull forebrain tissue 

reveals that ATRX is necessary for chromosomal contacts across H19/Igf2. The H19 ICR 

bait sequence is highlighted in yellow. (B) Schematic representation of the H19/Igf2 

imprinted domain and alignment of primers utilized for PCR amplification of 3C 

reactions.  Numbers indicate the relative nucleotide position from the start of the H19 

ICR.  Grey boxes represent the position of genes and black boxes demarcate regulatory 

elements.  Vertical black lines indicate the position of EcoRI restriction site and black 

arrows represent primers used for analysis.   The bait sequence primers and probe are 
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marked as a red arrow and black asterisk, respectively. (C) 3C analysis was performed 

across the H19/Igf2 domain in control and Atrxnull littermate matched forebrains.  

Interaction frequencies were significantly reduced at the DMR1, MAR3, CCD, and the 

endodermal enhancer.  Image depicts a representative interaction profile. (D) Interaction 

frequencies across the region were quantified in additional brains (n=5).  p values were 

determined by a two tailed t-test, *p<0.05, **p<0.01, ***p<0.0001.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 

 

3.3.2 ATRX Acts in Cis to Regulate the Expression of Imprinted 
Genes  

In addition to intrachromosomal interactions, the H19 ICR can interact in trans with 

other imprinted domains on multiple chromosomes(Ling et al., 2006; Sandhu et al., 2009; 

Zhao et al., 2006).  We investigated if these interactions occur in the brain and if they are 

mediated by ATRX, perhaps providing a mechanism for ATRX regulation of the 

imprinted gene network (IGN).  To determine if the H19/Igf2 genomic region co-

localizes with other imprinted genes in the brain, we conducted DNA fluorescent in situ 

hybridization (FISH) analysis on newborn brain sections, followed by confocal 

microscopy and three dimensional (3D) image analysis.  To facilitate comparison with 

published embryonic stem cell data, we defined an interaction as FISH signals with a 

centre-to-centre distance of less than 1 μm in 3D(Sandhu et al., 2009).  We quantified the 

localization of H19/Igf2 with the top eight imprinted genes affected by the loss of ATRX 

(Slc38a4, Grb10, Dlk1, Dcn, Zac1, Mest and Peg10/Sgce)(Kernohan et al., 2010).  We 

also included Gapdh as a control that should display random localization. All gene 

regions, with the exception of Peg10/Sgce, co-localize with H19/Igf2 with interaction 

frequencies characteristic of transient events that are consistent with previously reported 

embryonic stem cell data (Figure 3-2A,B).  Peg10/Sgce did not co-localize with 

H19/Igf2, but rather exhibited a random localization profile similar to that of Gapdh.  

Therefore, the regulation of this imprinted domain is likely independent of H19 and/or 

other IGN members.  We next assessed whether ATRX is required for interactions 

between H19/Igf2 and other IGN domains.  3D DNA FISH analysis of cortical sections 

from three control/Atrxnull  littermate matched pairs revealed no significant difference in 

interaction frequencies upon loss of ATRX (Figure 3-2A,B).  This result suggests that 

while IGN domains co-localize transiently in the forebrain, their interaction with the 

H19/Igf2 genomic region is not regulated by ATRX. 

 

We previously reported that ATRX also localizes within a second imprinted domain on 

mouse chromosome 12, Gtl2/Dlk1(Kernohan et al., 2010) suggesting that ATRX may be 

recruited to several imprinted domain to regulated gene expression in cis.  Analysis of 

previously published ATRX ChIP-sequencing data from embryonic stem cells(Law et al., 
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2010) reveals that ATRX directly binds in proximity to many imprinted genes, with the 

majority of binding sites overlapping known DMRs and ICRs (Figure 3-3).  We were 

able to confirm ATRX localization to these sites in P0.5 forebrains by ChIP, and propose 

that ATRX is likely required to regulate chromosomal interactions in cis at individual 

imprinted genes, but not by promoting their co-localization in the nucleus.  
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Figure 3-2 The H19/Igf2 imprinted domain forms ATRX-independent 

interchromosomal interactions with specific IGN members 

(A) Collapsed confocal series (top), and 3D reconstructed serial confocal images 

(bottom) of neonatal cortical nuclei showing superimposed hybridization signals for 

H19/Igf2 (green) and other IGN members (red). Cells are counterstained with DAPI 

(blue).  Scale bar: 0.5 μm. (B) Frequency of hybridization signals from IGN member 

either overlapping or in close physical proximity to H19/Igf2 DNA FISH signal. Graphed 

data represent the mean interaction frequency from three control and ATRX-null 

littermate pairs. One hundred cells were counted for each animal and signals with a 3D 

centre-to-centre distance of less than 1 μm were considered to represent an interaction.  

Slc38a4, Grb10, Dlk1, Dcn, Zac1 and Mest display co-localization with H19/Igf2, while 

Peg10/Sgce and Gapdh do not. Interaction frequencies were not affected by the loss of 

ATRX in the forebrain.  
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Figure 3-3 ATRX binds DMRs and ICRs throughout the IGN 

Previously published ChIP-sequencing from embryonic stem cells was analyzed(Law et 

al., 2010) and demonstrates binding of ATRX at many imprinted domains.  ATRX 

enrichment at these sites was confirmed in the forebrain, demonstrating ATRX 

recruitment is a common IGN regulatory mechanism.  Graphs depict average % input, 

n=3, error bars represent SEM 
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3.3.3 ATRX is Recruited to the H19 ICR to Regulate Nucleosome 
Positioning and Maintain CTCF Occupancy     

ATRX-mediated silencing of imprinted genes is limited to the postnatal brain(Kernohan 

et al., 2010).  This led us to enquire whether ATRX is present at the H19 ICR in the 

embryonic brain and then functions upon neuronal maturation, or whether it is absent 

embryonically before being recruited in the late gestational/neonatal period to affect 

chromatin looping.  To address this question, we conducted chromatin 

immunoprecipitation (ChIP) for ATRX on embryonic day 13.5 (E13.5) and P0.5 

forebrains.  We found ATRX enrichment within the H19 ICR at P0.5 but not E13.5 

(Figure 3-4B), demonstrating that ATRX must be recruited to the H19 ICR in the late 

gestational/neonatal period.  ATRX-deficiency in the forebrain at P17 results in 

decreased CTCF binding at the H19 ICR(Kernohan et al., 2010), leading us to question if 

ATRX functions to recruit or maintain CTCF at this site.  ChIP for CTCF on E13.5 and 

P0.5 control forebrains revealed similar patterns of CTCF binding with high enrichment 

at sites H19-2 and H19-4 (Figure 4C), indicating CTCF is present at the H19 ICR prior to 

ATRX occupancy.  Furthermore, we find that CTCF enrichment in ATRX-deficient 

forebrains is normal at E13.5 but reduced at P0.5 (Figure 3-4D).  We conclude that 

ATRX recruitment to the H19 ICR in the neonatal brain functions to maintain CTCF 

binding.   

 

Recent reports have suggested ATRX targets DNA enriched for G-quadruplex structures, 

where it can aid in insertion of histone H3.3(Goldberg et al., 2010; Law et al., 2010; 

Wong et al., 2010) and we hypothesized that this mechanism may account for the 

differences in CTCF binding at the H19 ICR.   However, we found no sequences 

predicted to form G-quadruplexes in the H19 ICR(Scaria et al., 2006).  ChIP for H3.3 in 

control and ATRX-null neonatal forebrains showed that the loss of ATRX caused a small 

increase in H3.3 occupancy across the 5' region of the H19 ICR, which is inconsistent 

with decreased H3.3 deposition observed at ATRX-deficient telomeres(Goldberg et al., 

2010) (Supplementary Figure 3-8B).  To determine if this increase was specific to H3.3, 

we conducted ChIP for histone H2A and found a similar increase in enrichment 
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(Supplementary Figure 3-8B).  Based on these findings, we propose that ATRX does not 

target G-quadruplex DNA or function to insert H3.3 at the H19 ICR.        

 

Several studies have noted that CTCF bound regions are often devoid of 

nucleosomes(Davey et al., 2003; Fu et al., 2008; Kanduri et al., 2002; Kelly et al., 2012; 

Teif et al., 2012).  Given that ATRX has DNA translocase activity(Xue et al., 2003; 

Mitson et al., 2011),  and that we observed a slight increase in histone proteins in the 

absence of ATRX at the H19 ICR, we speculated that ATRX could be shuttling 

nucleosomes within the ICR, resulting in nucleosome devoid regions. To test if ATRX 

affects nucleosome positioning, we digested control and Atrxnull neonatal forebrains with 

micrococcal nuclease, which digests all DNA not protected by proteins, including 

histones.  This analysis is more precise and sensitive than the ChIP for histones as it 

generates smaller fragments. Samples were evaluated by qRT-PCR with primers tiling 

the H19 ICR in 100 bp fragments (Figure 3-4A). Amplification revealed a trend towards 

an increase at site B overlapping the CTCF bound region  (Supplementary Figure 3-9B).  

ATRX binds only the maternal allele(Kernohan et al., 2010), and the presence of the 

paternal allele might attenuate the detection of maternal allele-specific effects.  To 

circumvent this problem, we further digested micrococcal nuclease processed samples 

with McrBC, an enzyme that degrades GC-rich methylated DNA, including the paternal 

allele of the H19 ICR (Figure 3-4E). Paternal-specific McrBC digestion was confirmed 

by allelic analysis in 129Sv/Castaneous polymorphic mice (Supplementary Figure 3-

9C,D).  McrBC digested Atrxnull brains displayed significantly increased amplification 

over controls in regions B and C (Region B, p=0.016; Region C, p=0.05), indicating an 

increase in nucleosome protection within this area in mutant compared to control brains 

(Figure 3-4F).  Regions B and C of the H19 ICR overlap the two previously reported 

ATRX-dependent CTCF binding sites(Kernohan et al., 2010), and are in close proximity 

to the ATRX-enriched region.  Conversely, we find no significant changes in protection 

elsewhere in the H19 ICR, illustrating a site-specific effect on nucleosome occupancy 

(Figure 3-4F).  This substantiates our hypothesis that ATRX regulates nucleosome 

occupancy within the 5' region of the H19 ICR and provides a mechanism for the 

decrease in H19 ICR CTCF binding and chromatin interactions in the Atrxnull brain.       
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Figure 3-4 ATRX is recruited to the H19 ICR to govern nucleosome occupancy and 

CTCF binding in the neonatal brain 

(A) Schematic representation of the H19 ICR and alignment of primers used for qPCR of 

ChIP (top) and nucleosome occupancy (bottom) analysis.  Grey boxes indicate the 

position of CTCF binding sites, and the ATRX/MeCP2 site is marked in red.  Numbers 

indicate the relative position from the start of the H19 ICR.  ChIP for ATRX (B) and 

CTCF (C) in E13.5 and P0.5 forebrains shows that while CTCF is enriched at both E13.5 

and P0.5, ATRX is limited to the neonatal brain and is required for neonatal CTCF 

enrichment (D) (n=3 for each, error bars depict SEM). (E) Schematic of allele-specific 

micrococcal nuclease digestion protocol. (F) qPCR of micrococcal nuclease and McrBC 

digested DNA depicts maternal DNA protected by histones. A significant increase in 

nucleosome occupancy was observed within regions B and C of the H19 ICR. Graphs 

depict average fold change and statistical analysis was performed by a two-tailed t-test 

(n=3, errors bars depict SEM). *=p<0.05         

* *
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3.3.4 MeCP2 Recruits ATRX to the H19 ICR in the Neonatal Brain 
to Govern intrachromosomal Interactions  

We previously reported co-localization of ATRX with MeCP2 at the H19 ICR, and that 

loss of ATRX did not affect MeCP2 enrichment at this site(Kernohan et al., 2010).  

MeCP2 has been shown to recruit ATRX to PCH(Baker et al., 2013; Nan et al., 2007), 

leading us to question if MeCP2 also recruits ATRX to genic regions.  To address this 

question, we performed ChIP for ATRX in control and MeCP2null neonatal brains and 

found that in the absence of MeCP2, ATRX failed to occupy the H19 ICR (Figure 3-

5A,B).  Therefore, MeCP2 binding at the H19 ICR is required for the recruitment of 

ATRX. 

 

As MeCP2 is required for ATRX binding at the H19 ICR, and the loss of ATRX causes 

defects in intrachromosomal interactions of this region, we predicted that the loss of 

MeCP2 would also affect H19/Igf2 architecture.  We conducted 4C and 3C in control and 

MeCP2null neonatal forebrains and found by both methods that MeCP2-deficiency results 

in chromatin structure defects more dramatic than those observed following the loss of 

ATRX.  4C analysis displayed a decrease in interactions across H19/Igf2 including the 

CCD, MAR3 and DMR1 regions (Figure 3-5C).  Quantitative 3C analysis revealed that, 

like ATRX, MeCP2null brains had significantly decreased interaction frequencies with the 

Igf2 DMR1 (region E/F; p=0.008 and 0.001 ), MAR3 (region I; p= 0.001), CCD (region 

L; p= 0.0007) and the endodermal enhancer (region Q; p=0.0008).  Additionally, 

decreased interactions were observed with the Ins gene (Region B; p=0.05), and the 

intergenic regions K and N (region K; p=0.009; region N; p=0.001) (Figure 3-5D,E).  

Together these data demonstrate that MeCP2 recruits ATRX, and likely additional 

unidentified factors, to the H19 ICR in the neonatal brain to govern long-range 

chromosomal interactions at the H19/Igf2 genomic region. 

 

 

 

 

 



128 

 

 

Figure 3-5 MeCP2 is required for ATRX binding and intrachromosomal 

interactions of the H19/Igf2 domain 

(A) Schematic of H19 ICR as depicted in Figure 3-4, with hypothesized recruitment of 

ATRX by MeCP2. (B) Analysis of ChIP for ATRX in control and MeCP2null neonatal 

brains demonstrated a requirement of MeCP2 for ATRX enrichment within the H19 ICR. 

(C) 4C interaction profile of the H19 ICR in neonatal control and MeCP2null forebrains 

demonstrates a requirement for MeCP2 in H19 ICR chromatin interactions. (D) Genomic 



129 

 

organization and primer alignment for 3C analysis as depicted in Figure 3-1. (E) 3C 

analysis was performed across the H19/Igf2 domain in control and MeCP2null littermate 

matched forebrains.  Interaction frequencies were decreased at all sites across the region.  

Image depicts a representative interaction profile. (F) Interaction frequencies across the 

region were further quantified in additional brains (n=3).  p values were determined by a 

two tailed t-test, *p<0.05, **p<0.01, ***p<0.0001.             
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3.4 Discussion  
Our findings demonstrate a novel mechanism for the ATRX chromatin remodeling 

protein in the control of gene expression through the regulation of higher-order chromatin 

interactions.  We define an in vivo three-step mechanism where MeCP2 recruits ATRX to 

the H19 ICR to regulate nucleosome occupancy, thus maintaining CTCF binding and 

facilitating intrachromosomal contacts.  In the absence of ATRX, these mechanisms are 

disrupted, leading to improper chromatin organization and a failure to properly silence 

imprinted genes (Figure 3-6).  

 

In view of recent work showing that Cohesin and CTCF enable higher-order chromatin 

looping within imprinted domains and that ATRX alters CTCF and Cohesin dynamics 

within these regions(Guibert et al., 2012; Han et al., 2008; Kernohan et al., 2010; 

Kurukuti et al., 2006; Li et al., 2008; Nativio et al., 2009; Rubio et al., 2008), a logical 

prediction was that the loss of ATRX would disrupt chromatin looping.  We detected 

changes in H19 ICR interactions with the DMR1, MAR3, CCD, and enhancer sequences.  

The disruptions in chromatin folding we observe (formation of an ICR-DMR1-MAR3 

complex) parallel the maternal-specific effects following loss of CTCF(Kurukuti et al., 

2006).  A maternal allele-specific effect is corroborated by our previous study showing 

that ATRX localizes to the maternal H19 ICR and affects maternal H19 

expression(Kernohan et al., 2010).  These findings link the ATRX chromatin remodeling 

protein to the control of chromatin looping.  As the loss of ATRX affects the expression 

of numerous genes in the brain(Levy et al., 2008), it is possible that ATRX may regulate 

chromatin looping at multiple sites throughout the genome to govern gene expression.      

  

ATRX recognizes G-quadruplex DNA structures and is proposed to resolve these 

formations to facilitate DNA replication and transcription(Goldberg et al., 2010; Law et 

al., 2010; Wong et al., 2010).  This mechanism has been proposed at telomeres(Goldberg 

et al., 2010; Law et al., 2010; Wong et al., 2010) and some specific genes(Law et al., 

2010; Levy,M., unpublished data).  We now define a novel mechanism of ATRX 

targeting and function which is independent of G-quadruplexes.  We find that MeCP2 

recruits ATRX to H19/Igf2, where ATRX then functions to modulate nucleosome 
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occupancy within the 5' H19 ICR.  Genome-wide studies have demonstrated that CTCF 

binds in an extended linker region. At the H19 ICR, improper placement of a nucleosome 

within a CTCF binding site abrogates CTCF binding and compromises insulator activity 

in vitro(Kanduri et al., 2002).  Thus, the positioning of nucleosomes within the ICR is 

essential.  ATRX may redistribute nucleosomes by sliding along the chromatin fiber in a 

process termed translocation.  Accordingly, ATRX has been demonstrated to have DNA 

translocase activity(Mitson et al., 2011; Xue et al., 2003).  In the absence of ATRX, 

improper nucleosome distribution leads to CTCF eviction from the H19 ICR.  This 

mechanism of CTCF regulation is similar to that proposed to regulate the chicken 

lysozyme locus(Lefevre et al., 2008), and may occur throughout the genome by site-

specific chromatin remodelers.  ATRX recruitment to maintain CTCF binding suggests 

that a 'developmental switch' must occur at the H19 ICR to elicit gene silencing.  While 

we still lack a complete picture of the events within the H19 ICR at this time, gene 

silencing likely requires protein recruitment (including ATRX), epigenetic modifications 

and changes in long-range chromatin interactions.  Overall, these observations provide a 

novel mechanism for ATRX regulation of CTCF binding and chromatin looping.   

 

 Several years ago it was suggested that MeCP2 binding surrounding imprinted genes 

may indicate a role in chromatin looping(Yasui et al., 2007), and that loss of MeCP2 

alters chromatin interactions within a small area surrounding the Dlx5 imprinted 

gene(Horike et al., 2005).  We now provide definitive evidence that MeCP2 recruits 

ATRX to regulate chromatin looping and that the loss of MeCP2 abrogates chromatin 

interactions across the 90 kb H19/Igf2 imprinted domain.  Looping defects in the absence 

of MeCP2 are more severe and affect more sites than those observed in the absence of 

ATRX, implying that MeCP2 recruits additional factors that promote chromatin 

interactions or has other unidentified functions in promoting chromatin structure.  

Genome-wide ChIP studies have shown that MeCP2 binds throughout the genome and 

affects the expression of multiple genes(Yasui et al., 2007).  In light of our results, it is 

possible that MeCP2 functions at many locations to recruit site-specific chromatin 

remodeling proteins and control chromatin architecture.  Importantly, our analysis was 

conducted in the neonatal brain, a time when MeCP2 is thought to have limited or no 
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function due to low expression levels.  Our data clearly demonstrates that MeCP2 

regulates chromatin structure during early development, despite low protein levels in the 

nucleus. This is an important difference in the ATRX-MeCP2 partnership at PCH versus 

the H19 ICR; at PCH it was reported that MeCP2 did not affect ATRX enrichment until 

seven weeks of age(Baker et al., 2013), while MeCP2 is required for ATRX localization 

to the H19 ICR at birth.  The expansion of studies on MeCP2 and gene regulation to 

earlier developmental stages will help to elucidate the full role of MeCP2 in early 

neurodevelopment.     

An emerging theory proposes that some imprinted genes are jointly regulated in a cell-

type specific network(Andrade et al. 2010; Kernohan et al., 2010; Lui et al., 2008; 

Sandhu et al., 2009; Varrault et al., 2006; Zhao et al., 2006).  In the nervous system, this 

sort of coordinated control of gene expression might be necessary during cellular 

differentiation and/or neuronal maturation, and could be facilitated by close subnuclear 

proximity or even direct allelic interactions.  ATRX is required for the postnatal silencing 

of this connected network of imprinted genes in the brain(Kernohan et al., 2010).  We 

now extend these studies and show that neuronal IGN members indeed co-localize in the 

brain, but were not able to find any evidence of ATRX regulation of these interactions.  

Instead, we show that ATRX independently localizes to imprinted domains throughout 

the IGN, and propose that ATRX governs intrachromosomal interactions across each 

domain in parallel.   

   

The repercussions of failing to suppress the expression of H19 and other imprinted genes 

in the brain are unknown, as the role of these genes has not yet been fully characterized.  

Given that misexpression of imprinted genes causes neurodevelopmental 

syndromes(reviewed in (Kernohan and Bérubé, 2010), the failure to suppress IGN 

components in the brain could potentially contribute to cognitive deficiencies 

characteristic of ATR-X and Rett Syndromes.  Additionally, ATRX-null mutations and 

over-expression of imprinted genes have been linked to cancer, including central nervous 

system cancers(Bower et al., 2012; de Wilde et al., 2012; Jelinic and Shaw, 2007; Jiao et 

al., 2012b; Jiao et al., 2011; Kannan et al., 2012; Liu et al., 2012; Lovejoy et al., 2012; 

Schwartzentruber et al., 2012; Weisbrod et al., 2013), suggesting that ATRX regulation 
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of imprinted genes could also have important implications for tumorigenesis.  H19 is 

upregulated in many types of cancer, including bladder(Ariel et al., 1995; Ariel et al., 

2000; Byun et al., 2007; Elkin et al., 1995; Luo et al., 2013a; b; Verhaegh et al., 2008), 

ovarian(Kim et al., 1998; Tanos et al., 1999), breast(Berteaux et al., 2008; Berteaux et al., 

2005; Yballe et al., 1996), leukemia/lymphoma(Takeuchi et al., 2007), and lung 

cancers(Kondo et al., 1995).  While the role of this non-coding RNA in tumorigenesis 

remains elusive, H19 overexpression has been shown to increase tumor progression in 

mice(Lottin et al., 2002).  Treatments are currently in development utilizing BC-819, a 

vector carrying the diptheria toxin A (DTA) gene, encoding a strong inhibitor of protein 

synthesis, under the control of the H19 promoter(Mizrahi et al., 2009).  As normal cells 

in mature tissues do not express H19, utilizing the H19 promoter selectively targets and 

destroys cancerous cells(Mizrahi et al., 2009).  If imprinted genes, including H19, are 

identified as upregulated in ATR-X null cancers, this treatment could also be utilized to 

treat the array of ATRX-null tumors.     
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Figure 3-6 Proposed model 

(a) In the wildtype brain, MeCP2 recruits ATRX to the maternal H19-ICR in the late 

embryonic/neonatal period. ATRX translocates along the chromatin fiber and alters 

nucleosome positioning to generate an extended linker region and promote CTCF 

occupancy. CTCF then dictates intrachromosomal interactions. (b) In the absence of 

ATRX, increased nucleosome occupancy disrupts CTCF binding, leading to a loss of 

intrachromosomal interactions.      
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3.5 Supplementary Figures 

 

 

Figure 3-7 Liver and forebrain 3C analysis 

(A) Schematic representation of the H19/Igf2 imprinted domain and 3C assay as depicted 

in Figure 3-1. (B) Chromatin looping analysis confirms previous interactions reported in 

the neonatal liver(Qiu et al., 2008), and identifies a similar interaction profile in the 

forebrain. (C) Gene expression from the control/Atrxnull forebrain depicted in Figure 3-1C 

demonstrates an upregulation of H19 and Igf2 and misregulation of chromatin looping in 

the same brain. Error bars represent standard deviation of technical error.   
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Figure 3-8 ATRX does not target G-quadruplexes or insert histone H3.3 at the H19 

ICR. 

(A) Schematic of the H19 ICR and alignment of primers. (B) ChIP in control and Atrxnull 

brains demonstrates a small increase in enrichment of H3.3 and H2A within the 5' region 

of the H19 ICR.   
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Figure 3-9 Analysis of nucleosome density in the ATRX-null forebrain 

(A) Schematic of the H19 ICR and alignment of primers as depicted in Figure 3-3. (B) 

qPCR of micrococcal nuclease digested DNA demonstrates quantification of DNA 

protected by histones. A small increase in nucleosome occupancy was observed within 

some regions of the H19 ICR. Graphs depict average fold change. (C) Confirmation of 

paternal H19 ICR specific digest by McrBC using F1 polymorphic 129Sv 

(maternal)/Castaneous (paternal) mice.  MfeI digests 129Sv maternal DNA and McrBC 

digests methylated  paternal DNA.  DNA was digested and then amplified using primers 

spanning the MfeI restriction site.  Schematic of protocol is detailed in (D).           
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Chapter 4 

4 Discussion and Future Directions 
ATR-X Syndrome patients exhibit severe mental retardation, developmental 

abnormalities and alpha-thalassemia(Gibbons et al., 1995a; Gibbons et al., 1995b; 

Gibbons et al., 1992).  While the link between ATRX mutations and alpha-thalassemia 

is indicative of ATRX's capacity to regulate alpha-globin expression, no direct gene 

targets have been identified and little is known about ATRX function.  Overall, this body 

of work identified a group of genes regulated by ATRX and defined the first mechanistic 

role of ATRX in gene regulation.   

In Chapter two, I documented a requirement for ATRX in the postnatal silencing of a 

network of imprinted genes in the mouse brain, including H19, Igf2 and Dlk1.  I began to 

explore the mechanism of this regulation and found that in the brain ATRX forms a 

complex with MeCP2 and Cohesin at the H19 ICR and Gtl2 DMR.  Loss of ATRX 

results in an altered profile of post-translational histone modifications and reduced CTCF 

and Cohesin binding.  As CTCF and Cohesin are known architectural proteins, this data 

suggested that ATRX might regulate imprinted gene expression through the control of 

higher-order chromatin structure.  (Kernohan et al., 2010) 

Chapter three further explores the mechanism of ATRX's regulation at imprinted genes in 

the brain.  Using H19/Igf2 as a model, I found that MeCP2 is required for ATRX 

recruitment to the H19 ICR, where it governs nucleosome occupancy to maintain CTCF 

binding.  I utilized 3C and 4C techniques to evaluate in vivo chromatin interactions and 

demonstrated that the loss of ATRX or MeCP2 caused a significant decrease in cis 

interactions of the H19 ICR.  Finally, I established that ATRX binds within many 

imprinted domains and I propose a model in which ATRX localizes to each IGN region 

to control local chromatin structure and modulate gene expression in the neonatal brain.    
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4.1 The ATRX-MeCP2-Cohesin Complex 

My data demonstrates a functional connection between four important epigenetic 

regulators: ATRX, MeCP2, CTCF and the Cohesin complex.  The co-localization of 

ATRX and MeCP2 has previously been demonstrated, where MeCP2 deficiency or 

mutation abrogates ATRX enrichment at PCH( Nan et al., 2007).  A recent study 

demonstrated that MeCP2 binds DNA via an AT-hook domain, and that this domain is 

required for stable localization of MeCP2 to PCH and consequently ATRX 

recruitment(Baker et al., 2013).  These studies raised the possibility that ATRX and 

MeCP2 could cooperate at other sites in the genome.  I demonstrated that ATRX and 

MeCP2 co-localize at multiple imprinted genes, and that MeCP2 recruits ATRX to the 

H19 ICR.  It is plausible that MeCP2 utilizes the same AT-hook domain to bind 

imprinted regions, forming a stable interaction with DNA to recruit ATRX.  Loss of 

ATRX causes an up-regulation of imprinted genes in the postnatal brain.  Similarly, loss 

of MeCP2 has also been reported to cause an increase in several of these transcripts, 

namely H19, Dlk1, and Zac1(Fuks et al., 2003; Urdinguio et al., 2008).  These data 

suggest that ATRX and MeCP2 can cooperate to influence gene expression, at least at 

imprinted genes.      

 

Previous studies in our laboratory demonstrated that ATRX is required for proper sister 

chromatid cohesion(Ritchie et al., 2008), the canonical function of the Cohesin 

complex(Barbero, 2011; Michaelis et al., 1997; Moser and Swedlow, 2011; Uhlmann and 

Nasmyth, 1998).   This led to our investigation and identification of an interaction 

between ATRX and Cohesin proteins.  In addition to its mitotic role, the Cohesin 

complex also functions as a transcriptional regulator(Lara-Pezzi et al., 2004; Remeseiro 

and Losada, 2013).  Cohesin is often recruited by CTCF to genic regions, where it 

governs chromatin architecture and subsequent gene expression(Rubio et al., 2008).  This 

effect has been demonstrated at numerous sites, including the H19 ICR(Rubio et al., 

2008).  I found that ATRX and MeCP2 localize with Cohesin to the H19 ICR, and that 

the loss of ATRX caused a reduction of Cohesin and CTCF at this site.  Notably, we 

cannot detect an interaction between CTCF and ATRX or MeCP2 (Jiang, Y., unpublished 

data).  This could be due to a lack of interaction between these proteins or that the antigen 
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recognition site(s) are masked by these interactions.  The interaction between MeCP2 and 

Cohesin is also novel and perhaps surprising as the loss of MeCP2 has not been reported 

to cause mitotic cohesion abnormalities.  This suggests that the MeCP2-Cohesin 

interaction may be restricted to cells which are not undergoing mitosis, for example post-

mitotic neurons, or that MeCP2 and Cohesin only function together to regulate gene 

expression.  Alternatively, if the MeCP2-Cohesin complex functions in mitosis, the loss 

of MeCP2 may trigger a compensatory response, for example the recruitment of 

additional proteins to aid in proper mitotic progression.  In the future, it will be important 

to determine whether the ATRX-MeCP2-Cohesin complex binds elsewhere in the 

genome to regulate gene expression and/or chromatin structure.  One possibility is PCH, 

where ATRX and MeCP2 interact(Baker et al., 2013; Nan et al., 2007), and Cohesin 

regulates pericentric chromatin loops(Stephens et al., 2013). 

 

In a clinical context, ATRX, MeCP2 and Cohesin are implicated in ATR-X, RTT and 

CdLS Syndromes, respectively(Amir et al., 1999; Ben-Asher and Lancet, 2004; Gibbons 

et al., 1992; Krantz et al., 2004; Revenkova et al., 2009).  While each of these disorders 

manifests with numerous cognitive and physical symptoms, some commonalities include 

developmental delay, microcephaly and growth deficiencies.  Though these interactions 

have yet to be confirmed in human cells, it is possible that the cooperation of these 

proteins in the brain, and potentially other tissues, may lead to similarities between their 

associated syndromes.  With regards to ATR-X and RTT Syndromes, MeCP2 targeting of 

ATRX to genes in the neonatal brain could contribute to the postnatal onset of RTT 

neuronal deficits in patients and mice.  Loss of ATRX causes misregulation of numerous 

genes in the mouse forebrain(Levy et al., 2008), an effect that probably contributes to 

neurodevelopmental defects in ATRX-null mice and potentially plays a role in ATR-X 

Syndrome.  If a subset of these genes require the recruitment of ATRX by MeCP2, 

patients with either ATR-X or RTT will have misregulation of these genes and the 

associated consequences.  A recent study reported that ATRX is not localized at PCH in 

neurons of mice with mutations in an AT-hook domain of MeCP2(Baker et al., 2013).  

This defect occurred in the mature brain and was theorized to result in compromised 

chromatin structure(Baker et al., 2013).  I have now extended Baker et al.'s findings and 
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shown that MeCP2 does target ATRX to regulate chromatin structure and that this occurs 

in the neonatal brain.  The timing of the this regulation is just prior to the onset of RTT 

symptoms(Armstrong, 2002; Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 2002; 

Shahbazian and Zoghbi, 2001), and therefore has potential to play a causative role in 

RTT etiology.  While ATR-X Syndrome manifests much earlier(Gibbons et al., 1995a; 

Gibbons et al., 1995b; Gibbons et al., 1992), ATRX-MeCP2 targets may add to the 

neuronal deficits observed in patients.  Overall, the identification of additional binding 

sites for the ATRX-MeCP2 and ATRX-MeCP2-Cohesin complex, including analysis of 

the mature brain, and other tissues, might aid in the identification of novel therapeutic 

targets to treat the array of conditions affected by ATRX, MeCP2 and Cohesin.   

4.2 Allele-Specific Binding of ATRX at Intergenic 

Regulatory Regions 

At the outset of this study, no direct gene targets for ATRX had been reported.  I 

identified imprinted genes as affected by the loss of ATRX.  ATRX affects these genes 

directly by binding to intergenic regulatory sequences.  A subsequent study by Law et al. 

reported ChIP sequencing for ATRX in mouse embryonic stem cells, providing 

information on the enrichment profile of ATRX throughout the mouse genome(Law et 

al., 2010).  They found 1305 ATRX binding sites, including 456 in gene bodies, 78 at 

promoters and 771 in intergenic regions(Law et al., 2010).  Among these intergenic sites 

are several ICRs and DMRs in imprinted domains.  However, imprinted genes are rare in 

the genome (approximately 150 to date (MRC Harwell, 2013); the abundance of 

intergenic ATRX sites suggests that ATRX targets many types of regulatory sequences, 

not just those near imprinted genes.  The role ATRX plays at these sites remains 

unknown.  I found that ATRX is required for chromatin looping within imprinted 

domains.  It is possible that ATRX-bound intergenic regions are sites of chromatin-

chromatin contact, and that ATRX helps to form or maintain chromatin interactions at 

these locations.  This may also be true of some ATRX-bound genic and promoter regions.  

Alternatively, ATRX may have a yet undiscovered function at these sites.  Notably, the 

ATRX ChIP sequencing experiment by Law et al. was conducted in embryonic stem 
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cells.  It is probable that a portion of ATRX binding sites are cell-type specific, and that 

the binding profile in the brain may differ, at least at some sites.          

    

I discovered that ATRX binds chromatin and regulates expression in an allele-specific 

manner.  Within the H19/Igf2 domain, ATRX binds the maternal allele of the H19 ICR 

and silences the maternal H19 gene.  Loss of ATRX does not affect the silent paternal 

allele.  Given that members of the ATRX-dependent IGN all exhibit postnatal repression, 

and imprinted genes that remain highly expressed are not affected (e.g. Gtl2), I predict 

that ATRX binds the active allele and represses active transcription of each IGN domain.  

Within imprinted domains, the presence of allele-specific proteins, for example 

CTCF(Szabo et al., 2000), is essential for the establishment and maintenance of 

imprinted expression.  ATRX now joins the small cohort of allelic binding proteins.  

However, the role of ATRX is to modulate expression from the active allele, not to 

establish or maintain imprinted expression.  Further studies are needed to determine if 

any of the additional ATRX binding sites are allele-specific, what attracts ATRX to these 

sites and what limits binding to one allele.  Analysis of ATRX ChIP-sequencing by Law 

et al. revealed that ATRX binds preferentially at CpG-islands and repetitive sequences, 

many of which form G-quadruplexes(Law et al., 2010).  They demonstrated that ATRX 

can bind G-quadruplex DNA in vitro, and suggested that ATRX targets genomic sites by 

recognizing these secondary structures in the DNA(Law et al., 2010).  While the H19 

ICR is a CpG-island, it does not contain any repeat sequences or predicted G-

quadruplexes.  Therefore, my results have also uncovered a novel method for ATRX 

targeting to DNA.  ATRX may recognize the ICR, and one parental allele, through an 

epigenetic signature, including lack of DNA methylation and a specific combination of 

post-translational histone modifications.  Indeed, recent literature has shown that ATRX 

can recognize the presence of H3K9me3 and absence of H3K4me2 and 

H3K4me3(Dhayalan et al., 2011; Eustermann et al., 2011; Lewis et al., 2010; Wong et 

al., 2010).  Furthermore, ATRX binding at the ICR is probably mediated by other 

proteins, including MeCP2.  Further research is required to establish the pattern of 

modifications that attracts ATRX to one allele of imprinted domains, and to determine if 

any proteins other than MeCP2 are required.         
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4.3 ATRX Regulates Nucleosome Positioning and 
CTCF Binding 

It has been accepted for many years that transcription can be controlled by the 

accessibility of regulatory proteins to the DNA, which largely depends on DNA 

packaging into nucleosomes(Muchardt and Yaniv, 1999; Travers et al., 2012).  

Nucleosome occupancy can be influenced by nucleosome positioning sequences in the 

DNA and ATP-dependent chromatin remodeling proteins(Becker and Horz, 2002; 

Travers et al., 2012).  Together, these factors dictate whether certain DNA sequences are 

present in the accessible linker region between nucleosomes or are concealed by the 

histone octamer(Becker and Horz, 2002; Travers et al., 2012).  In vitro studies evaluating 

nucleosome occupancy across the H19 ICR have uncovered that nucleosome distribution 

in this 2 kb region is not random, but rather includes nucleosomes positioned at specific 

sequences(Davey et al., 2003; Fu et al., 2008; Kanduri et al., 2002).  These sequences 

surround, but do not overlap, the CTCF binding sites(Davey et al., 2003; Fu et al., 2008; 

Kanduri et al., 2002).  To test the relationship between CTCF and nucleosome 

occupancy, Kanduri et al. generated an in vitro assay that situated a CTCF consensus 

sequence within a positioned nucleosome(Kanduri et al., 2002).  They found that 

nucleosome occupancy within the CTCF consensus site compromised CTCF binding and 

insulator function(Kanduri et al., 2002), indicating the importance of proper nucleosome 

distribution at the ICR.  However, studies have found that DNA sequences which 

strongly position nucleosomes in vitro often fail to precisely localize nucleosomes in 

vivo(Li et al., 1997).  Nucleosome positioning in vivo requires the addition of chromatin 

remodeling proteins, which can either translocate or evict nucleosomes(Li et al., 1997; 

Rippe et al., 2007).  I found that ATRX affects the distribution of nucleosomes at the 5' 

region of the H19 ICR, which contains two CTCF binding sites.  I propose that this 

increase in nucleosome occupancy might be responsible for decreased CTCF enrichment 

at this site in the ATRX-null brain.  As CTCF is already bound to the H19 ICR prior to 

ATRX occupancy, I propose that ATRX controls nucleosome positioning to maintain, 

rather than to establish CTCF binding.  To achieve this regulation,  ATRX may 

redistribute nucleosomes by sliding along the chromatin fiber in a process termed 

translocation.  Accordingly, in vitro biochemical studies have demonstrated that ATRX 
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can function as a DNA translocase(Mitson et al., 2011; Xue et al., 2003).  Similar 

functions have been reported for other chromatin remodeling proteins.  For example, the 

Chromatin Structure Remodeling (RSC) complex interacts with specific DNA sequences 

to translocate nucleosomes along the chromatin fiber(van Vugt et al., 2009).  

Alternatively, ATRX could affect nucleosome positioning indirectly through non-coding 

transcripts since transcription of non-coding RNAs has been shown to redistribute 

nucleosomes and affect CTCF binding(Lefevre et al., 2008).  The H19 ICR produces a 

number of non-coding RNAs(Takahashi et al., 2012) and ATRX could regulate 

nucleosome distribution by controlling transcription of these sequences.  In the ATRX-

null brain, an increase in ICR transcription could redistribute nucleosomes over the 

CTCF binding sites, thus evicting CTCF. This model has been previously shown at the 

chicken lysozyme locus(Lefevre et al., 2008), but has yet to be evaluated in a mammalian 

system.  It is also possible that these models are not mutually exclusive, and that ATRX 

controls nucleosome occupancy through both nucleosome translocation and the 

regulation of non-coding RNAs.  Further studies are required to completely elucidate the 

role of ATRX in governing nucleosome distribution.  First it must be determined if the 

ICR produces non-coding transcripts in the brain, and if their expression is affected by 

the loss of ATRX.  This can be done by qRT-PCR on cDNA from control and ATRX-

null brains with primers tiling the ICR.  To evaluate the contribution of ATRX 

translocase function to nucleosome positioning at the ICR, a mouse model could be 

generated with a mutation  inhibiting ATRX's translocase activity.  A suitable candidate 

is a missense mutation in the SWI/SNF domain, termed L1746S, which was recently 

discovered in a patient(Mitson et al., 2011).  Characterization of the ATRX-L1746S 

protein revealed that it is present at relatively normal levels, can bind DNA, and has 

appropriate DNA-stimulated ATPase activity(Mitson et al., 2011).  However, this mutant 

is unable to translocate along DNA(Mitson et al., 2011).  Comparison of nucleosome 

positioning across the ICR in mice harbouring the L1746S mutation with controls would 

determine the contribution of ATRX translocation to nucleosome distribution.    
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4.4 A Novel Role for ATRX in the Regulation of Higher-

Order Chromatin Structure 

At the H19/Igf2 imprinted domain, cis interactions of the H19 ICR regulate H19 and Igf2 

expression(Burke et al., 2005; Guibert et al., 2012; Han et al., 2008; Kurukuti et al., 

2006; Li et al., 2008).  These interactions require the presence of CTCF and Cohesin(Han 

et al., 2008; Kurukuti et al., 2006; Nativio et al., 2009; Zhao et al., 2006).  As ATRX 

affects H19 and Igf2 expression, and the localization of CTCF and Cohesin to the H19 

ICR, I predicted that the loss of ATRX would also affect H19/Igf2 chromatin structure.  I 

found a significant decrease in interactions of the H19 ICR across H19/Igf2 in the ATRX-

null brain.  To further confirm a role for ATRX in intrachromosomal looping of 

imprinted domains, I have also generated preliminary 4C data analyzing interactions of 

the Gtl2 DMR (Appendix D).  The Gtl2 DMR, located in the Gtl2/Dlk1 imprinted domain 

on mouse chromosome 12, is the second site where I have demonstrated binding of 

ATRX, MeCP2, CTCF and Cohesin.  I found that the loss of ATRX altered chromatin 

contacts across the Gtl2/Dlk1 domain.  Together, these data demonstrate for the first time 

that ATRX can affect higher-order chromatin structure. I propose that ATRX elicits these 

effects through the control of nucleosome positioning and consequently CTCF and 

Cohesin binding.  As CTCF physically links Cohesin to chromatin(Rubio et al., 2008), 

the loss of CTCF binding (due to altered nucleosome occupancy), would decrease 

Cohesin enrichment.  This is supported by an approximately equal reduction in CTCF 

and Cohesin at the H19 ICR in the ATRX-null brain.  Cohesin is theorized to physically 

encircle DNA loops to tether regions together.  Thus, the loss of Cohesin in the ATRX-

null brain would result in a lack of DNA tethering, and the decrease in chromatin contacts 

observed.  Interestingly, chromatin looping at the alpha-globin(Kim et al., 2009) and 

Interleukin 2R-alpha domains(Yasui et al., 2002) has been shown to depend on 

nucleosome occupancy and chromatin remodeling proteins.  It remains to be seen if 

nucleosome occupancy is linked with Cohesin binding at these sites, and/or if ATRX also 

plays a role at these domains.   
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The loss of ATRX affects the expression of numerous genes(Levy et al., 2008). As CTCF 

and Cohesin binding sites are abundant throughout the genome(Rubio et al., 2008), it is 

plausible that ATRX-dependent chromatin looping it not unique to imprinted genes, but 

rather is a common function of ATRX.  One potential candidate is the alpha-globin locus.  

The majority of ATR-X patients present with some degree of alpha-thalassaemia, caused 

by a downregulation of the alpha-globin genes(Gibbons, 2006).  In erythroid cells, 

chromatin looping positions the alpha-globin genes into an active conformation, which is 

not present in non-erythroid cells where alpha-globin is repressed(Vernimmen et al., 

2007; Vernimmen et al., 2009; Zhou et al., 2006).  Furthermore, studies evaluating alpha-

globin looping in chicken and human cells have found that CTCF has a different binding 

profile in erythroid versus non-erythroid cells(Furlan-Magaril et al., 2011; Mahajan et al., 

2009), suggesting an active role for CTCF in loop formation and gene regulation.  

Numerous proteins have been documented as contributors to the alpha-globin locus 

configuration, including GATA-1(Escamilla-Del-Arenal and Recillas-Targa, 2008), and 

BRG1(Kim et al., 2009); it is plausible that ATRX is also involved.  Like ATRX, BRG1 

is an ATP-dependent SWI/SNF chromatin remodeling protein that regulates nucleosome 

occupancy(Rippe et al., 2007), and was recently shown to function within an imprinted 

domain on human chromosome 20 (L3MBTL1/SGK)(Aziz et al., 2013).  ATRX may 

function in concert with other chromatin remodeling proteins, including BRG1, to control 

looping in cis at H19/Igf2, alpha-globin, and multiple other regions throughout the 

genome.  Like CTCF and Cohesin, ATRX may emerge as an important factor in 

chromatin looping, at least at some sites.            

 

While the position of nucleosomes influences CTCF and Cohesin binding and is probably 

a strong contributing factor in the regulation of H19/Igf2 architecture by ATRX, it may 

not be the only factor.  In interphase, ATRX is tightly associated with the nuclear 

matrix(Bérubé et al., 2000).  The nuclear matrix is a dynamic structural network within 

the nucleus thought to play a role in the formation and/or maintenance of nuclear 

architecture by tethering to specific DNA sequences known as matrix-attachment regions 

(MARs)(Pederson, 2000).  For example, matrix mediated looping has been demonstrated 

at the beta-globin domain where inter-MAR association at the base of chromatin loops is 
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necessary for proper beta-globin expression(Wang et al., 2009).  The H19/Igf2 domain 

contains four MAR regions, including MAR3 located between H19 and Igf2(Greally et 

al., 1997).  While it is unknown if ATRX binds these MARs in the brain, my 3C and 4C 

data sets clearly demonstrate that that the H19 ICR interacts with MAR3, and that this 

interaction is dependent on the presence of ATRX.  It is possible that ATRX is involved 

in tethering H19/Igf2 MAR sites to the matrix, aiding in the formation or maintenance of 

chromatin loops.  Overall, it is clear that ATRX can compartmentalize DNA into higher-

order chromatin structure to govern gene expression.   

4.5 Chromatin Looping and Gene Expression 

It has long been recognized that enhancers can exist and function at large distances from 

their target genes(Stadhouders et al., 2012).  Technologies evaluating higher-order 

chromatin structure have provided evidence that looping mechanisms are responsible for 

this long-distance gene regulation.  In the classical model, a distant enhancer loops into 

close proximity of a gene promoter to regulate its expression.  This model is largely 

based on studies at the beta-globin domain, where a distal enhancer, termed the locus 

control region, loops from over 40 kb away to interact with the beta-globin promoter and 

activate gene expression(Palstra et al., 2008a).  However, as studies continue to discover 

a complex array of chromatin interactions throughout the nucleus, it is clear that the 

relationship between chromatin looping and gene regulation is rarely this simple.  The 

study of genes expressed in specific cell types has provided insight into the relationship 

between chromatin looping and gene expression.  For example, in undifferentiated 

erthyroblasts the mouse alpha-globin locus is linear and alpha-globin is not 

expressed(Vernimmen et al., 2007).  Upon differentiation, chromatin contacts are formed 

between alpha-globin genes and regulatory elements, inducing gene 

expression(Vernimmen et al., 2007).  However, it is equally possible that these chromatin 

contacts are merely formed as a consequence of transcription, perhaps through the 

association of adjacent sites with the same transcription factory.  The hypothesis of 

chromatin looping as a transcriptional by-product was disputed by a study which 

demonstrated that chromatin interactions of the H19/Igf2 domains persist throughout 
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mitosis when genes are silent(Burke et al., 2005).  These results corroborate that 

chromatin looping facilitates gene transcription.   

 

I propose that ATRX regulates the expression of H19 and Igf2 in the postnatal brain by 

controlling H19/Igf2 intrachromosomal looping.  In the ATRX-null brain, the loss of 

chromatin contacts could cause an increase in H19 and Igf2 expression through various 

means.  These include H19 and Igf2 being placed into closer proximity of enhancers, or 

alternatively at a greater distance from yet undiscovered repressive elements.  A full 

understanding of all genomic elements located in the H19/Igf2 domain, and their role in 

silencing imprinted genes in the postnatal brain, is required to understand the relationship 

between ATRX, H19/Igf2 chromatin structure and gene regulation.  Importantly, my data 

provide the first mechanistic link between ATRX and the control of gene expression.  It 

remains possible that altered chromatin structure in the absence of ATRX is a secondary 

consequence to increased transcription.  To distinguish between a direct and indirect 

effect on chromatin looping, control and ATRX-null cells could be treated with 

pharmacological inhibitors to prevent transcription.  For example, the chemical alpha-

amanitin interacts with RNA polymerase II to inhibit transcriptional initiation and 

elongation(Seifart and Sekeris, 1969).  Another possibility is 5,6-dichloro-1-β-D-

ribofuranosylbenzamidazole which inhibits elongation by RNA polymerase 

II(Yamaguchi et al., 1999).  Analysis of treated and untreated control cells would reveal 

if transcription is required for H19/Igf2 loop formation or maintenance. A similar 

analysis in ATRX-null cells would determine if looping differs in ATRX-null cells in the 

presence or absence of extra H19 and Igf2 transcripts.  Based on my model of 

nucleosome positioning governing CTCF and Cohesin occupancy, I predict that 

additional H19 and Igf2 transcription is not responsible for altered looping.  Furthermore   

a similar study utilizing transcriptional inhibition and analysis of chromatin structures at 

the beta-globin locus revealed that altering transcription had no effect on beta-globin 

looping(Palstra et al., 2008b).  
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4.6 MeCP2 Regulation of Imprinted Genes and 

Chromatin Architecture 

Mutations in the MeCP2 gene were identified over a decade ago as the causative factor 

for Rett Syndrome(Amir et al., 1999).  Since then, MeCP2 has been a subject of intense 

investigation; however, we still lack a clear picture of its function(s).  MeCP2 was 

originally identified and characterized as a methylated-DNA binding protein, which 

bound to target genes with the co-repressor Sin3A and recruited histone 

deacetylases(HDACs), effectively repressing local genes(Ashraf and Ip, 1998; Ballestar 

and Wolffe, 2001).  Emerging studies continue to challenge this original view of a simple 

transcriptional repressor; MeCP2 is now known to largely coat the genome, binding 

unmethylated DNA as well as methylated DNA, and it is frequently associated with 

actively transcribed genes(Hansen et al., 2010; Yasui et al., 2007).  While future research 

may reconcile these seemingly conflicting roles, it seems more likely that MeCP2 has 

diverse functions throughout the genome.  These functions could depend on the genomic 

context, post translational modifications and/or protein interaction partners.  Allele-

specific binding of MeCP2 had previously been demonstrated within the U2af1-rs1 and 

Dlx5/Dlx6 imprinted domains(Gregory et al., 2001; Horike et al., 2005). At these sites 

MeCP2 binds the silent methylated allele, and is associated with either imprint 

establishment or maintenance(Gregory et al., 2001; Horike et al., 2005).  I identified an 

interaction between MeCP2 and ATRX/Cohesin on the unmethylated maternal allele of 

the H19 ICR.  Localization to the unmethylated allele was surprising, and suggested that 

the role of MeCP2 at imprinted genes is complex and may differ between domains, or 

may be specific to developmental stages and cell types.  At H19/Igf2, binding to the 

unmethylated allele could be mediated by other proteins that somehow override MeCP2's 

preference for methylated DNA.  I predict that MeCP2 also binds the unmethylated allele 

of other neuronal-IGN targets and is involved in H19, Igf2, and IGN silencing, though 

this has not yet been evaluated.  In support of this hypothesis, in vitro studies have 

demonstrated that MeCP2 binding at the H19 ICR is repressive(Drewell et al., 2002).  

Understanding the role of MeCP2 at other IGN sites is complicated by many conflicting 

studies on MeCP2 and gene regulation. While several groups have linked MeCP2 to the 
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regulation of imprinted genes, including Ube3a(Makedonski et al., 2005; Samaco et al., 

2005), Zac1(Urdinguio et al., 2008), Dlk1(Urdinguio et al., 2008), and Dlx5(Horike et 

al., 2005; Miyano et al., 2008), there are an equal number of reports refuting these 

claims(Jordan and Francke, 2006; Schule et al., 2007).  The irreproducibility of these 

studies is probably due to the small transcriptional effects produced by MeCP2, as well as 

differences in the cell types and developmental stages examined.  My results outline the 

need for careful and detailed allele-specific ChIP and expression analysis in the MeCP2-

null brain to determine the effect of MeCP2 on IGN transcription. 

 

In 2005 a great deal of excitement was generated surrounding a study identifying MeCP2 

as a mediator of chromatin looping and imprinting of the Dlx5 gene(Horike et al., 2005).  

However, this chromatin looping analysis was not quantitative, and the regulation of Dlx5 

by MeCP2 was later contested(Horike et al., 2005; Miyano et al., 2008; Nakashima et 

al.2010; Schule et al., 2007).  A role for MeCP2 in chromatin looping was further 

suggested by reports of MeCP2 binding in numerous intergenic regions throughout the 

genome and an in vitro study which utilized electron microscopy to visualize DNA loops 

connected by a single MeCP2 molecule(Ghosh et al., 2010; Yasui et al., 2007).  

However, none of the above studies provide conclusive evidence for MeCP2-mediated 

higher-order chromatin architecture.  I have now demonstrated that MeCP2-deficiency 

causes a clear and dramatic loss of chromatin interactions across the 90 kb H19/Igf2 

imprinted domain. I have also generated preliminary data showing a similar result at the 

Gtl2/Dlk1 imprinted domain (Appendix D).  Comparison of my ATRX-null and MeCP2-

null 3C and 4C data sets revealed that MeCP2 affects chromatin interactions at more sites 

and to a greater extent than ATRX.  This suggests that, in addition to ATRX, MeCP2 

probably recruits other proteins essential for chromatin looping.  It will be important to 

determine if MeCP2 regulation of chromatin structure is unique to imprinted genes, or if 

this form of regulation occurs at other sites.  Given the widespread abundance of MeCP2 

throughout the genome(Skene et al., 2010), it is plausible that MeCP2 recruits different 

chromatin remodeling factors and proteins to various sites to control chromatin 

architecture. 
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In the mouse brain, MeCP2 is expressed at low levels before birth and increases 

dramatically during the first three weeks of life(Kishi and Macklis, 2004; Skene et al., 

2010).  Due to this expression pattern, and the postnatal onset of Rett Syndrome in 

humans and mice(Armstrong, 2002; Chen et al., 2001; Guy et al., 2001; Shahbazian et 

al., 2002; Shahbazian and Zoghbi, 2001), the vast majority of studies concentrate on 

MeCP2's effects in the mature brain.  The longstanding belief was that MeCP2 was not 

required during neurogenesis(Guy et al., 2007; Guy et al., 2001; Kishi and Macklis, 

2004). My results counter these assumptions by demonstrating that MeCP2 is required 

for ATRX binding to the H19 ICR and MeCP2-deficiency nearly abolishes chromatin 

looping in the neonatal brain.  This neonatal function of MeCP2 occurs before MeCP2 

levels have reached their maximum and before disease onset in mutant mice.  A role for 

MeCP2 earlier in development is supported by several studies reporting consequences of 

MeCP2 deficiency beginning in the neonatal period(De Filippis et al., 2010; Forbes-

Lorman et al., 2012; Gantz et al., 2011; Kurian et al., 2008; Picker et al., 2006).  The 

identification of MeCP2 targets in the neonatal brain would be very informative, as gene 

expression changes before the onset of overt phenotypes may contribute to disease 

etiology.  A few years ago, several groups demonstrated that re-expression of MeCP2 in 

the postnatal brain caused a partial reversal of Rett Syndrome-like symptoms in MeCP2-

null mice(Giacometti et al., 2007; Guy et al., 2007; Luikenhuis et al., 2004; Tropea et al., 

2009).  While there may be numerous technical and biological explanations for the partial 

phenotypic rescue, it remains possible that the loss of MeCP2 in early development 

causes irreparable damage to the nervous system.  Overall, my research highlights a need 

for studies evaluating MeCP2 function and targets much earlier in development.   

4.7  Trans-Chromosomal Interactions of the Imprinted 

Gene Network 

Recent technological advancements have greatly enhanced our ability to query genome-

wide 3D chromatin interactions and revealed that interactions between chromosomes may 

be important for gene regulation(Apostolou and Thanos, 2008; Brickner and Brickner, 

2012; Spilianakis et al., 2005; Williams et al., 2010).  For example, in erythroid cells the 

active alpha-globin and beta-globin genes associate with numerous  actively transcribed 
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genes on other chromosomes(Schoenfelder et al., 2010).  It was proposed that this 

interaction reflects co-localization with preferred transcription partners at transcription 

factories(Schoenfelder et al., 2010).  Studies evaluating the H19 ICR have found that in 

addition to cis interactions, the H19 ICR also interacts in trans with other imprinted 

domains(Sandhu et al., 2009; Zhao et al., 2006).  Many of these connections are cell type 

specific and depend on the presence of CTCF(Sandhu et al., 2009; Zhao et al., 2006).  

Together, the identification of the IGN and trans interactions of the H19 ICR sparked a 

theory of IGN regulation through one central mechanism(Andrade et al. 2008; Kernohan 

and Bérubé, 2010; Lui et al., 2008; Sandhu et al., 2009; Varrault et al., 2006).  As ATRX 

regulates CTCF occupancy at the H19 ICR and IGN expression, we predicted that ATRX 

might regulate interactions between imprinted domains.  Using 3D-FISH of cortical 

sections, I demonstrated that imprinted domains indeed co-localize in a small percentage 

of cells in the mouse forebrain (5-10%).  Nevertheless, I did not detect a change in 

interaction frequencies in the ATRX-null brain.  This relatively low co-localization 

frequency might reflect transient interactions, for example as a result of co-localization at 

a transcription factory.  FISH experiments are limited in resolution by the probe size and 

microscopy visualization. It is still formally possible that despite co-localization on a 

macro scale, loss of ATRX causes changes in interactions between the H19 ICR and 

specific IGN sites on a smaller scale.  My results do not rule out the presence of a central 

mechanism which contributes to IGN regulation.  However, I have established that if 

such a mechanism exists, it is independent of ATRX.  Furthermore, as MeCP2 recruits 

ATRX to imprinted domains, I predict that this mechanism is also independent of 

MeCP2.   

4.8 Implications of Aberrant Imprinted Gene 

Expression to Brain Development 

Accumulating evidence suggests that imprinted genes are regulated as a developmental 

network which is highly expressed in embryogenesis and silenced in postnatal 

tissues(Andrade et al. 2010; Berg et al., 2011; Lui et al., 2008; Varrault et al., 2006).  In 

the brain, I have shown that ATRX is required for this coordinated transcriptional 

program which represses expression of imprinted genes following neurogenesis.   These 
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results suggest that ATRX may function to co-regulate groups of genes.  In the future, it 

will be important to determine if this coordinated control of gene sets is a common 

mechanism of ATRX, or whether this is unique to imprinted genes.   

 

Imprinted genes are overexpressed in the ATRX-deficient mouse brain, but we can only 

speculate at this point what the physiological ramifications might be.  This question is 

further complicated for targets, like H19, which do not yet have a clear function.  The 

H19 gene locus produces a 2.3 kb non-coding RNA(Brannan et al., 1990), and a 

microRNA, miR-675(Cai and Cullen, 2007).  miRNAs are a class of small non-coding 

RNAs (~22 nucleotides in length) which can function in transcriptional and post-

transcriptional regulation(Lee and Vasudevan, 2013).  Overexpression of miR-675 results 

in reduced cellular proliferation(Keniry et al., 2012) perhaps due to an interaction 

between miR-675 and the growth-promoting insulin-like growth factor 1 receptor 

transcript (Igf1r)(Keniry et al., 2012).  In the context of neuronal development, an 

increase in miR-675 could lead to reduced neuronal proliferation and contribute to 

microcephaly.  Later in development, this could result in reduced proliferation of 

neuronal stem cells in the dentate gyrus, which are important for learning and memory.  It 

is unclear what effect elevated levels of H19 would have.  For other genes, the potential 

consequences of overexpression in the central nervous system are more obvious.  For 

example, Dlx5 encodes a protein required for neuronal migration and 

differentiation(Anderson et al., 1997; Stuhmer et al., 2002).  As such, misexpression of 

Dlx5 could signal aberrant neuronal organization, or improper differentiation into mature 

neurons.  Overall, imprinted genes have diverse functions and their overexpression could 

potentially lead to defects in a number of essential neuronal processes, including cellular 

replication, fate and death(Davies et al., 2005).   

 

Genetic or epigenetic abnormalities within a number of imprinted domains cause a group 

of developmental syndromes known as Imprinting Disorders.  These disorders include 

Angelman Syndrome(Kishino et al., 1997; Matsuura et al., 1997), Prader–Willi 

Syndrome(Ledbetter et al., 1981; Miller et al., 2009; Muscatelli et al., 2000; Ren et al., 

2003), Beckweith-Wiedemann Syndrome(DeBaun et al., 2002), and Turner 



167 

 

Syndrome(Kesler et al., 2003; McCauley et al., 1987; Skuse et al., 1997).  Together these 

syndromes emphasize the importance of maintaining normal expression of imprinted 

genes during development(reviewed in (Wilkins and Ubeda, 2011)).  Of these conditions, 

Prader-Willi Syndrome(Gunay-Aygun et al., 2001; Holm et al., 1993), Angelman 

Syndrome(Williams et al., 2006), and Turner Syndrome(Elsheikh et al., 2002; McCauley 

et al., 1987) result in abnormal neurodevelopment, and Beckweith-Wiedemann Syndrome 

is frequently associated with autism(Kent et al., 2008).  The link between Imprinting 

Disorders and neurodevelopment ascertains that the aberrant expression of imprinted 

genes can disrupt brain development and function.  This suggests that the misexpression 

of imprinted genes in the ATRX-null mouse brain may contribute to the neuronal 

deficiencies observed in our ATRX-null mouse model, including increased cell death and 

microcephaly(Bérubé et al., 2005; Seah et al., 2008).  As ATRX-null mice die very early 

(P0.5-P30), it is not possible to determine if these mice have impaired neurological 

function, and any potential contributions of imprinted gene misexpression.  To bypass 

early neurodevelopmental defects, an inducible ATRX-null mouse could be generated 

utilizing the Cre-ERT system in conjunction with the Foxg1 promoter.  Exposure of pups 

to tamoxifen just before birth (via mother), would delete ATRX in the mouse forebrain, 

prior to imprinted gene silencing.  This would hopefully circumvent early lethality and 

facilitate analysis of ATRX deficiency in the mature brain.              

 

In addition to congenital disorders, misregulation of imprinted genes has also been 

implicated in cancer.  The loss of imprinting has been documented in many cancers, 

including chronic myeloid leukaemia (100%)(Randhawa et al., 1998), ovarian tumors 

(80%)(Kamikihara et al., 2005), Wilms’ tumors (70%)(Mummert et al., 2005), colorectal 

cancer (66%)(Nakagawa et al., 2001; Ohlsson et al., 1999), renal-cell carcinomas 

(50%)(Oda et al., 1998), oesophageal cancer (50%)(Hibi et al., 1996) and lung 

adenocarcinoma (47-85%)(Kohda et al., 2001)(reviewed in (Jelinic and Shaw, 2007)).  

Additionally, patients with Beckwith-Wiedemann and Prader-Willi Syndromes are at 

higher risk for developing childhood cancers than the general population(Davies et al., 

2003; Weksberg et al., 2010).  This is not surprising as a large proportion of imprinted 

genes play roles in embryonic or placental growth(Morison et al., 2005).  Imprinted genes 
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linked to cancer thus far include: H19, IGF2, MEST, DCN, GTL2, KCNQ1, and CDKN1C 

(reviewed in (Jelinic and Shaw, 2007) and (Uribe-Lewis et al., 2011)).  Recently, ATRX 

mutations or aberrant expression has been identified in various cancer types(Bower et al., 

2012; de Wilde et al., 2012; Jiao et al., 2012; Jiao et al., 2011; Kannan et al., 2012; Liu et 

al., 2012; Lovejoy et al., 2012; Schwartzentruber et al., 2012; Weisbrod et al., 2013).  

Amongst these, Liu et al identified a subtype of gliomas that harboured ATRX mutations, 

along with IDH1/2 and p53(Liu et al., 2012).  They evaluated the expression profile of 

these tumors and reported a list of up-regulated genes, which includes many imprinted 

genes(Liu et al., 2012).  This observation, coupled with the aforementioned statistics on 

imprinted gene regulation and cancer, suggests that the misregulation of imprinted genes 

may contribute to tumorigenesis in ATRX-deficient cancers.  The identification of 

imprinted genes as affected in ATRX-deficient tumors is important as therapies are in 

development targeting these genes, and would be available to treat ATRX-null cancers.              

 

Taken together, the clinical data clearly indicate that imprinted genes play an essential 

role in neurodevelopment and tumorigenesis.  Reports investigating imprinted gene 

expression in both the developmental disorders and cancers most often observe a loss of 

imprinting, effectively causing a two-fold increase in transcript levels.  While the loss of 

ATRX does not reactivate expression of the silent parental allele, we observe a two fold 

increase in transcript levels of many imprinted genes, effectively recapitulating transcript 

levels produced by reactivation of a silent allele.  Furthermore, the majority of imprinting 

disorders and cancer phenotypes result from aberrant expression of one imprinted 

domain. Given that ATRX loss of function affects the expression of various imprinted 

genes, it is difficult to predict their additive effects.  To determine if imprinted genes 

factor into the etiology of ATR-X Syndrome, it would be imperative to test expression in 

mouse models recapitulating patient mutations and neuronal samples from ATR-X 

individuals.  ATR-X Syndrome results from hypomorphic mutations and not a complete 

loss of ATRX protein (as in our mouse model)(Gibbons et al., 2008).  Therefore, it is 

possible that imprinted genes would not be affected by patient ATRX mutations, which 

still retain some function.  It is also possible that only a subset of mutations would affect 

the expression of imprinted genes; for example, mutations in the SWI/SNF chromatin 
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remodeling domain.  In my proposed model for IGN regulation, the loss of SWI/SNF 

activity would lead to a failure to redistribute nucleosomes, thus resulting in improper 

intrachromosomal structure and gene expression.  Furthermore, future investigations 

should also evaluate the status of imprinted transcripts in ATRX-deficient cancers.  

While it is often difficult to determine cause and effect in a tumor genome, there are 

numerous studies linking overexpression of imprinted genes to cancer formation(Jelinic 

and Shaw, 2007).  Though the misexpression of imprinted genes is probably not the 

initiating even in ATRX-null cancers (alternative lengthening of telomeres (ALT) has 

been identified as a main contributor(Bower et al., 2012; de Wilde et al., 2012; Heaphy et 

al., 2011; Lovejoy et al., 2012; Nguyen et al., 2013)), it is possible that the expression of 

these transcripts facilitate growth of cancerous cells.  If imprinted genes are affected in 

ATR-X patients and ATRX-null cancers, the identification of these genes as targets may 

facilitate the development of novel therapies.       

4.9 Proposed Model and Remaining Questions  

The body of work described in this thesis demonstrates that ATRX is required for proper 

postnatal silencing of the neuronal IGN.  My data supports a model in which ATRX is 

recruited by MeCP2 to DMRs, where it governs nucleosome occupancy to maintain 

CTCF and Cohesin binding, ultimately leading to proper formation of local chromatin 

architecture and gene silencing.  In the absence of ATRX, chromatin is in a more relaxed 

and open configuration, resulting in increased transcription of H19 and Igf2 (Figure 3-6). 

This model suggests that a developmental switch must be activated at DMR/ICR 

sequences to initiate transcriptional repression in the neonatal brain.  This switch likely 

involves compacting the chromatin from a euchromatic to a heterochromatic state to 

initiate or maintain silencing.  The loss of ATRX significantly compromises silencing of 

imprinted genes; however, these genes still undergo some level of repression in the 

ATRX-null brain(Kernohan, K., data not shown).  It is therefore likely that ATRX is not 

the only protein involved in this developmental program, and that other yet unidentified 

factors are also required.  ATRX could recruit other proteins, or has other yet unidentified 

functions leading to this effect.  Why is it that CTCF and Cohesin need to be actively 

maintained in the postnatal brain, or, if maintenance is constantly required, what serves 
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this function embryonically? Perhaps different chromatin remodeling factors function at 

the H19 ICR when the adjacent genes are highly expressed, or the more open chromatin 

state negates a need for active CTCF maintenance.  We do not yet know what directs 

MeCP2 to this site, and at what time this occurs.  Given the expression pattern of MeCP2, 

perhaps MeCP2 becomes enriched in the late embryonic/neonatal brain when protein 

levels have reached a particular threshold, but this idea requires experimental 

confirmation.  It remains to be seen what changes drive postnatal repression.  This could 

be one or more alteration in chromatin interactions, epigenetic effects, repressive protein 

recruitment or activator protein exclusion.  IGN silencing occurs in many tissues, 

including the lung, kidneys and heart(Lui et al., 2008).  We do not yet understand what 

signals IGN repression in other tissues.  Is ATRX involved in IGN regulation in many 

cell types, or are there tissue specific proteins and regulatory systems?  My data 

demonstrating maternal-specific ATRX binding at the H19 ICR and the sites of decreased 

chromatin interactions (ICR-DMR1-MAR3 complex) suggests a maternal specific effect.  

However, it remains possible that the loss of ATRX affects both parental alleles.  This 

could be due to yet unknown ATRX binding sites outside of the ICR on the paternal 

allele, or signalling between the alleles.  Finally, it will be important to determine if the 

ATRX-MeCP2-Cohesin complex or ATRX or MeCP2 independently affect looping at 

other non-imprinted genes.  In turn, this knowledge will be essential for the 

understanding of the function of these proteins 

 

Overall, the work presented in this thesis has identified the first direct gene targets of the 

ATRX chromatin remodeling protein.  The data shows that ATRX binds intergenic 

regulatory regions (DMRs and ICRs) with MeCP2 to regulate gene expression in an allele-

specific manner.  Using the H19/Igf2 domain as a model, I demonstrated that ATRX is 

recruited by MeCP2 in the neonatal brain to regulate nucleosome positioning, and 

consequently CTCF/Cohesin binding and higher-order chromatin interactions.  These ATRX-

dependent chromatin interactions are required for the coordinated transcriptional repression 

of imprinted genes following neurogenesis in the mouse brain.  The identification of 

additional ATRX gene targets and the mechanism of ATRX regulation throughout the 
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genome, including a potential role in governing chromatin architecture, will be imperative for 

a full understanding of the function of ATRX.   
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Chapter 2 is reproduced from a manuscript in Developmental Cell:  
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Appendix D: Preliminary 4C data supporting a role for ATRX and MeCP2 in the 

control chromatin looping at the Gtl2/Dlk1 imprinted domain 

4C interaction profile of the Gtl2 DMR in neonatal control, Atrxnull and MeCP2null 

forebrains demonstrates that the Gtl2 DMR makes many contacts stretching from 

upstream of Gtl2 to downstream of the microRNA cluster.  These interactions are 

dependent on the presence of ATRX (A) and MeCP2(B).   
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