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Abstract 

Climate warming and increased atmospheric nitrogen deposition may substantially influence 

biosphere C cycling over the next century by altering ecosystem processes such as 

productivity and decomposition. Field studies are commonly used to explore plant responses 

to global change, although the underlying mechanisms can be difficult to isolate owing to the 

lack of control of factors such as plant-animal interactions. Ultimately, indirect effects via 

herbivore and detritivore responses may feedback to influence plant responses to the 

experimental treatments. The goal of this thesis was to explore interactions among biotic and 

abiotic drivers of carbon dynamics within the context of experimental warming and nitrogen 

addition in the field. 

Evidence from a herbivore exclusion experiment revealed that mollusc effects on net primary 

productivity were more pronounced in warmed plots than in ambient temperature plots, 

likely as a result of temperature-related increases in mollusc metabolic activity and plant 

consumption rate. Furthermore, the effects of rodent exclusion on grass biomass were 

significantly greater in N-fertilized plots than non-fertilized plots. Feeding experiments 

suggested that this finding is likely attributed to increased grass palatability in response to N 

addition.            

Results from a litter decomposition experiment indicated that warming impeded the 

contribution of detritivores to carbon turnover, though this effect was transient. Increased 

precipitation over the course of the experiment may have promoted recovery of the 

detritivore community, and could also account for the significant detritivore effects observed 

following one year of incubation. Reciprocal litter transplants between the treatments plots 

and untreated areas of the field indicated that the observed responses from the main 

experiment were unlikely to be accounted for by the individual effects of litter quality or 

microenvironment alone. 

Overall, the influence of global change factors such as warming and increased atmospheric 

nitrogen deposition on carbon-related processes such as productivity can be substantially 

modified by indirect effects on herbivore dynamics, with consumer-specific treatment effects 

suggesting that this relationship is complex and can depend on both diet quality and 

microclimate. Though detritivores were relatively insensitive to warming and N addition as 
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decomposition progressed, they likely play an important role in the overall magnitude of 

ecosystem C turnover. 

Keywords 

Global change, warming, N deposition, field experiment, Poa pratensis, Bromus inermis, 

plant, biomass, herbivore, rodent, Microtus pennsylvanicus, Deroceras reticulatum, soil, 
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Chapter 1  

1 General Introduction  

Terrestrial ecosystem dynamics are largely regulated by the biogeochemical cycling of 

carbon (Schimel 1995). The net effects of carbon sequestration and respiration at the 

ecosystem level result from complex multi-trophic interactions within the animal-plant-

soil continuum (Fig. 1.1). The factors often assumed to be most central to these 

interactions are climate and plant quality (Swift et al. 1979, Forchhammer et al. 2005, 

Stiling and Moon 2005), which in turn are subject to drivers of global change such as 

warming and nitrogen deposition (IPCC 2007, Xia and Wan 2008). Although previous 

research has also addressed the consequences of environmental change for animal (Bale 

et al. 2002), and soil (Mosier 1998) dynamics, it remains unclear how biotic and abiotic 

controls of carbon dynamics interact within the context of global change field 

experiments.    

1.1 Plant-ecosystem carbon relations 

1.1.1 Carbon regulation of plant fitness and community structure 

Plant-C relations exist as a series of carbon gains and losses resulting from 

photosynthesis and the combination of intrinsic plant carbon requirements for processes 

such as maintenance, growth and reproduction, coupled with the influence of interacting 

environmental factors including climate, soil nutrient availability, herbivores and other 

biota (Pearcy et al. 1987). Carbon acquired through photosynthetic assimilation may be 

subsequently respired in response to plant energy demand, stored as sugars, structural 

carbohydrates, and other C-based compounds, utilized for phytomass synthesis, or 

exported from the plant as root exudates and volatile organic compounds (Garnier 1991, 

Kesselmeier and Staudt 1999, Kuzyakov and Domanski 2000). Ultimately, allocation 

patterns are suggested to maximize plant fitness (DeAngelis et al. 2012), such as carbon 

reinvestment in the development of new leaf tissue for photosynthesis, as well as C 

allocation to root growth for structural support, and nutrient and water acquisition. From 

a fitness perspective, plant survival and reproductive output are highly correlated with net 
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productivity gains (Bazzaz et al. 1987), while the outcome of plant competitive 

interactions contributes substantially to plant community structure (Goldberg and Barton 

1992). Extrapolating to the ecosystem level, interspecific variation in plant community 

carbon relations has a significant impact on broad-scale patterns of biosphere carbon 

cycling and sequestration (Chapin 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1.1. Major ecological processes involved in the transfer of carbon 
terrestrial ecosystem. Modified from 
Compounds, DIC – Dissolved Inorganic Compounds, 
Compounds 

 

 

 

 

 

 

 

 

Major ecological processes involved in the transfer of carbon 
Modified from Chapin et al. (2009). VOC – Volatile Organic 

Dissolved Inorganic Compounds, DOC – Dissolved Org
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1.1.2 Heterotrophic influences on plant carbon 

As the result of millions of years of coevolution, plant-carbon dynamics have been 

substantially influenced by interactions with heterotrophic organisms (Berenbaum 1983, 

Thompson 2009), with consequences ranging from individual plant behaviours (Karban 

2008) to the structuring of entire plant communities (Becerra 2007). For instance, 

mycorrhizal fungi stimulate costly plant production and the release of C-based root 

exudates into the soil (Kuzyakov and Domanski 2000) although, in exchange, the fungi 

serve to greatly enhance plant acquisition of water and nutrients from the soil (Narula et 

al. 2009). Likewise, pollinators are often rewarded with nectar or other carbon-based 

resources, and the chemical attraction of insects to host plants is often attributed to the 

odour of carbon volatiles (Raguso 2004, Kessler and Baldwin 2011). In contrast to these 

mutualistic associations, phytophagy confers costly shifts in C allocation to plant 

maintenance (Holland et al. 1996) as well as the production of defense compounds 

(Arnold and Schultz 2002), often resulting in an overall reduction in plant fitness  (Louda 

1983, Whitham and Mopper 1985). However, low levels of herbivory may also benefit 

host plants by the stimulation of nutrient cycling and plant growth (Belovsky and Slade 

2000).  

While global estimates of herbivory indicate that much less plant tissue is consumed than 

what is available (Roy et al. 2001), indirect herbivore effects contribute substantially to 

ecosystem carbon dynamics. Regardless of the tissue quantity removed, folivores often 

prefer young, highly nutritious plant leaves (Hanley et al. 1995), and concentrating 

feeding activity on seedlings not only increases the likelihood of plant mortality, but even 

sub-lethal consumption preempts future production of photosynthetic plant tissue 

(Marquis 1992, Peters 2007). Poor quality resources generally avoided by herbivores are 

often characterized by low tissue digestibility, and by low decomposability due to their 

reduced N content and high lignin concentration (Meentemeyer 1978, Mattson 1980). 

Conversely, palatable plants generally exhibit high litter turnover rates (Grime et al. 

1996). Together, these relationships suggest that the effects of herbivore diet preference 
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may lead to plant community dominance by low quality, slow decomposing plant species, 

the consequences of which may strongly influence ecosystem C cycling (Pastor and 

Naiman 1992). Other important determinants of plant palatability include carbon-based 

defenses such as phenolics (Bennett and Wallsgrove 1994), the evolution of which has 

been greatly influenced by the history of interactions with primary consumers (Roy et al. 

2001). 

1.1.3 Plant carbon as detritus 

Soil C sequestration plays a crucial role in biosphere C dynamics, and more than 80% of 

terrestrial carbon is stored in the form of highly stable soil organic matter (SOM; IPCC 

2007), which consists of plant, animal, and microbial residues in various stages of decay.  

At an estimated 1500 Pg (1Pg = 1015 g) of carbon, the terrestrial stock accounts for 

approximately twice the atmospheric C pool (Trumbore 2000). Of all carbon sources, 

senesced plant material represents the largest contribution to SOM formation (Schimel 

1995, Kalbitz et al. 2000), suggesting that litter turnover is an integral component of 

ecosystem carbon storage. Furthermore, over short time scales the majority of soil-

respired carbon is derived from young SOM pools (Trumbore 2000), largely because soil 

heterotrophs are highly sensitive to new litter inputs (Bowden et al. 1993). Plant 

decomposition dynamics can also influence ecosystem productivity, because litter decay 

is associated with nitrogen mobilization (McGill and Cole 1981), while physical and 

chemical properties of the litter layer may suppress the establishment of new seedlings 

(Bosy and Reader 1995) and influence overall plant community structure (Facelli and 

Pickett 1991).  

The decomposition of plant material is predominantly controlled by climate, tissue 

chemistry, and biotic activity (Swift et al. 1979, Aerts 1997). Assuming substrate supply 

and enzyme activity are not limiting, the rate of litter decomposition is positively 

correlated with temperature (Meentemeyer 1978), while plant secondary metabolites such 

as tannins promote carbon sequestration by forming recalcitrant products during the 

process of decay (Horner et al. 1988).  Of the interacting biota, saprophytic 

microorganisms exhibit the greatest influence over litter turnover, because they are able 
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to produce enzymes which break down components of plant material, such as lignin, that 

are resistant to decomposition (Masai et al. 2007). In turn, limits to decomposer activity 

and hence carbon cycling include litter quality, as well as soil temperature and moisture 

(Schlesinger and Andrews 2000). In addition to microbes, soil fauna also contribute 

significantly to litter breakdown, both directly through the consumption and fractionation 

of detritus, and indirectly through litter-soil mixing as well as through the consumption of 

microbial saprobes  (Swift et al. 1979, Wall et al. 2008).  In general, detritivores play an 

important role in plant decomposition and their removal has significant consequences for 

litter turnover and nutrient cycling (Seastedt 1984, Wall et al. 2008). As with their 

microbial counterparts, soil fauna are sensitive to environmental conditions such as soil 

temperature and moisture (Didden 1993, Simpson et al. 2012), with strong regional and 

seasonal variation in detritivore community composition (Levings and Windsor 1996, 

Ekschmitt et al. 2003). 

1.2 Climate warming and ecosystem carbon cycling 

1.2.1 Warming and plant community dynamics 

Anthropogenic global change is expected to dramatically alter terrestrial ecosystem 

dynamics over the next century (Fig. 1.2). As a consequence of increasing atmospheric 

CO2 concentration, global mean surface air temperatures are expected to increase 1.4 to 

5°C by 2100 (Houghton et al. 2001). Already climate warming is causing shifts in plant 

phenology and range distributions at a global scale (Walther et al. 2002), which may have 

significant consequences for ecosystem structure and productivity (Van der Putten 2012). 

At the individual plant level, warming can enhance the production of proteins associated 

with plant development and phytomass synthesis (Swarbreck et al. 2011), as well as 

influence reproductive effort (Liu et al. 2012), root mortality (Wan et al. 2004), and leaf 

chemistry (Sardans et al. 2012). Likewise, elevated levels of evapotranspiration in 

response to increasing temperatures can decrease plant water use efficiency, as well as 

increase overall plant water stress (Allen et al. 2003), which in turn can influence 

biodiversity (Thomas et al. 2004) and ecosystem productivity (Ciais et al. 2005). 

Furthermore, increased variability in precipitation patterns (both timing and amount) will 
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be an important component of climate change (Weltzin et al. 2003), suggesting that in 

some regions the negative effects of warming on plant water relations may be further 

exacerbated by interactions with drought (Luo et al. 2008). Ultimately, interspecific 

variation in plant responses to warming will contribute substantially to shifts in plant 

community species composition (e.g. Hoeppner and Dukes 2012), and overall ecosystem 

dynamics may be particularly sensitive to  changes at the functional group level. For 

example, effects of warming on photosynthetic carbon assimilation differ between C3 

and C4 plants species (Sage and Kubien 2007), thus ecosystem consequences may be 

further pronounced due to shifts in their relative persistence under climate change 

(Collatz et al. 1998). 

Warming may further alter the temporal dynamics of ecosystem carbon cycling by 

influencing processes associated with plant phenology (Menzel et al. 2006). One of the 

primary concerns related to climate change is the possible asynchrony in species 

interactions (Tylianakis et al. 2008, Yang and Rudolf 2010), the potential consequences 

of which include plant species extinctions resulting from failed plant-pollinator 

associations (Memmott et al. 2007). Alternatively, advancement of the growing season 

may function to alleviate herbivory pressure from consumers such as migrating caribou, 

which are unable to track temporal shifts in resource availability (Post and Forchhammer 

2008). Other phenological consequences of warming include changes to the overall 

length of the growing season, primarily due to the importance of temperature cues for 

plant cold acclimation and de-acclimation processes in fall and spring, respectively 

(Kalberer et al. 2006). In some regions, earlier cold de-acclimation in response to 

warming may result in greater ecosystem productivity (Rammig et al. 2010). However, 

the influence of warming on acclimation dynamics may vary as some plant species are 

more sensitive to changes in photoperiod (Kalberer et al. 2006), suggesting that 

interspecific differences in acclimation responses to changing temperatures may lead to 

shifts in ecosystem structure. Warming may also influence plant phenology indirectly due 

to earlier snow melt, which can also impact plant production (Myneni et al. 1997). 

However, seasonal temperature effects are likely to vary regionally, because ecosystem 

responses to warming over winter may negatively impact plant communities in colder 
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climates (Kreyling 2010). Winter warming can increase the occurrence of transient mid-

winter thaw events that remove the protective thermal insulation provided by snow cover, 

resulting in plant freezing damage and reduced productivity (Bokhorst et al. 2011).     
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        Figure 1.2. Overview of ecosystem parameters subject to the effects  
        of global change. Modified from Ostle et al. (2009). 
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1.2.2 Global warming and C turnover 

Temperature is an important component of both plant litter decomposition and SOM 

cycling dynamics (Post et al. 1982, Coûteaux et al. 1995), and consequently global 

warming may significantly increase ecosystem carbon respiration (Jones et al. 2005, Wu 

et al. 2011). One of the main concerns regarding rising temperatures is the possibility of a 

carbon-cycle climate feedback, whereby increased respiration further exacerbates the 

magnitude of climate warming (Fig. 1.2; Cox et al. 2000). This is particularly pertinent in 

northern ecosystems, where the melting of permafrost may release substantial quantities 

of carbon in various forms, causing a runaway greenhouse effect (Serreze and Francis 

2006). Even in milder climates, where extensive soil carbon stocks form relatively stable 

C pools that exhibit turnover rates on the scale of centuries to millennia (Trumbore et al. 

1990), this older, more recalcitrant carbon may be strongly affected by warming, because 

the temperature sensitivity of C turnover increases in response to declining substrate 

quality (Davidson and Janssens 2006, Conant et al. 2008). However, C efflux responses 

to warming might only be transient, and soil respiration thermal acclimation has been 

reported (Bradford et al. 2010), likely due to physiological changes such as reduced 

carbon use efficiency in the decomposer community (Tucker et al. 2013). Furthermore, 

the magnitude of the respiration response may depend on interactions of warming with 

other drivers of global change such as drought, which can negate the effects of increased 

temperature on soil C efflux (Schindlbacher et al. 2012).  

Ecosystem processes such as soil respiration and biogeochemical nutrient cycling are 

largely determined by microbial decomposition of plant litter (Aerts 1997). Warming 

may significantly influence litter turnover (Shaw and Harte 2001) and microbial 

responses to increased temperature are, therefore, an important component of predicting 

future changes in carbon dynamics. Community responses to increased temperature 

include changes to microbial biomass C and N (Belay-Tedla et al. 2009, Bell et al. 2010), 

as well as community composition (Zhang et al. 2005). Functionally, climate change may 

have a significant influence on microbial extracellular enzyme activity, or EEA (Henry 

2012).  German et al. (2012) found that the reaction rates of numerous extracellular 

enzymes directly responsible for the breakdown of SOM including cellobiohydrolase, 
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beta-glucosidase, beta-xylosidase, α-glucosidase, and N-acetyl-beta-d-glucosaminidase, 

varied in response to warming, although other field studies have reported no in situ 

temperature effects on either oxidative or hydrolytic EEA (Bell et al. 2010, Kardol et al. 

2010). Regardless, functional shifts in enzyme activity in response to direct warming 

effects may result from the temperature sensitivity of enzymatic reaction rates (Aerts 

2006), as well as from changes in microbial enzyme production (Cusack et al. 2010). 

Indirectly, decomposition dynamics may vary with respect to the thermal kinetics of 

available carbon substrates, because the temperature sensitivities of the latter are related 

to substrate molecular complexity (Davidson and Janssens 2006). Furthermore, initial 

litter substrate properties including overall lability may be related to changes in tissue 

chemistry in response to warming during the plant growth phase (Sardans et al. 2012). 

1.3 Nitrogen deposition and ecosystem carbon cycling 

1.3.1 Plants and N availability 

Nitrogen limitation contributes substantially to the restriction of plant growth and 

reproduction on a global scale (White 1993). Although nitrogen represents the most 

dominant component of the atmosphere, it exists predominantly (>99%) in the form of an 

inert dinitrogen gas, thus remaining inaccessible to most biota (Sprent 1987). The limited 

quantities of atmospheric nitrogen that get naturally incorporated into the biosphere result 

predominantly from the activities of N-fixing microorganisms (Schlesinger 1991), 

although both lightning (Soderland and Rosswall 1982) and rock weathering (Morford et 

al. 2011) also contribute. In turn, nitrogen recycling through the ecosystem depends on 

microbial mineralization of N-bound substrates (Booth et al. 2005), or alternatively direct 

uptake of dissolved organic N by plants (Näsholm et al. 2009). Plant nitrogen demand is 

primarily related to the requirements of photosynthetic machinery such as Ribulose-1,5-

bisphosphate carboxylase oxygenase, or Rubisco, the enzyme most directly responsible 

for the carboxylation process in plant CO2 fixation  (Chapin et al. 1987). At the level of 

an individual leaf, rates of carbon assimilation are positively related to nitrogen content, 

as is leaf chlorophyll content (Evans 1983). Nitrogen availability also has important 

implications for both plant vegetative and reproductive development (Nightingale 1948).  
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Atmospheric nitrogen deposition is predicted to increase substantially over the next 

century in many regions (Galloway et al. 2004). Owing to fertilizer use, N-emissions 

from internal combustion engines, and the cultivation of leguminous crops, 

anthropogenic nitrogen fixation currently exceeds N fixation by all natural sources 

combined (Vitousek 1994), and this manipulation of the nitrogen cycle will have 

significant consequences for ecosystem dynamics (Vitousek et al. 1997). Nitrogen 

fertilization can influence plant tissue chemistry (Johnson et al. 2001), transpiration rate 

(Bowman et al. 1995), N use efficiency (Heskel et al. 2012), and patterns of  resource 

allocation (Tilman and Wedin 1991). Likewise, increased N availability can increase both 

photosynthetic activity and biomass accumulation (Brix 1971, Baddeley et al. 1994, Xia 

and Wan 2008), which extrapolated to the level of plant communities often leads to 

increased ecosystem productivity (Lebauer and Treseder 2008). However, productivity 

gains may prove to be only short-term, because chronic N enrichment has the capacity to 

shift plant growth limitation from nitrogen to phosphorus supply (Phoenix et al. 2003). 

Additionally, plant responses to nitrogen availability can vary by species, with 

interspecific differences in N effects leading to changes in plant competitive interactions 

and species diversity (Liira et al. 2012). As with consequences of global warming, effects 

of N deposition can manifest at the level of functional groups, and C3 plants may gain 

competitive superiority over C4 plants (Tilman and Lehman 2001) owing to the decline 

in the advantage of high nitrogen use efficiency that benefits C4 plants under N-limiting 

conditions (Tilman 1990).  While nitrogen addition may simply shift community 

dominance to a small number of N-demanding species (Silvertown 1980), more extreme 

whole-ecosystem consequences include the conversion of nutrient-poor heathlands to 

relatively nutrient-rich grasslands (Aerts and Berendse 1988). Furthermore, N deposition 

can increase ecosystem invasibility by exotic flora (Dukes and Mooney 1999), the 

establishment of which can substantially alter ecosystem structure and function (Levine 

et al. 2003, Hooper et al. 2005). The ultimate consequences of these changes to species 

composition and ecosystem biodiversity include dramatic alterations to both hydrological 

and nutrient (C and N) cycling dynamics (Liao et al. 2008, Ehrenfeld 2010), as well as 

overall ecosystem productivity (Hooper et al. 2005).  
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1.3.2 Effects of N deposition on plant decomposition 

Shifts in ecosystem litter decomposition dynamics will also result from both direct and 

indirect effects of atmospheric N deposition (Manning et al. 2008). After climate effects, 

substrate quality represents the most influential component of plant litter decay (Swift et 

al. 1979, Coûteaux et al. 1995). Initial litter C/N and lignin/N content are suggested to 

influence plant decomposition rates, although the relative importance of each component 

may vary as decay progresses (Berg 1986, Taylor et al. 1989). Nitrogen fertilization can 

significantly alter these ratios (Baron et al. 2000), as well as overall plant N content (Xia 

and Wan 2008), although the resultant rates of litter turnover may increase, decrease, or 

remain unchanged (Knorr et al. 2005). The direction of this response likely varies with 

respect to the stage of litter decomposition, because N addition can impede the turnover 

of lignin-dense litter fractions typical of advanced substrate decay (Fog 1988). 

Plant decomposition is highly dependent on soil microorganisms (Swift et al. 1979), the 

activities of which may be strongly regulated by N availability (Craine et al. 2007) 

suggesting that changes in microbial dynamics are a critical component of ecosystem 

responses to N deposition. In general, microbes respond positively to increased substrate 

N concentration, resulting in increased litter turnover (Melillo et al. 1982, Hobbie 2005). 

However, N deposition also imposes direct effects on decomposers, shifting soil 

parameters such as microbial biomass and community composition (Compton et al. 2004, 

Frey et al. 2004, Treseder 2008). Functionally, N addition can increase the production 

and activity of microbial extracellular enzymes, such as cellulases, which are responsible 

for the breakdown of labile carbon litter fractions (Zeglin et al. 2007). Conversely, N 

fertilization impedes the production of oxidases, which function to decompose resistant 

substrate components such as lignin (Sinsabaugh et al. 2002). Together, these 

relationships may represent the mechanisms responsible for the variable effects of 

nitrogen enrichment on patterns of decomposition (Carreiro et al. 2000). 

From an ecosystem perspective, N deposition can have broadscale effects on C 

respiration and soil nutrient dynamics (Phoenix et al. 2012). Although nitrogen 

enrichment may increase soil respiration under certain scenarios (Gallardo and 
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Schlesinger 1994), it is likely to decrease C efflux for most ecosystems (Janssens et al. 

2010, Ramirez et al. 2012), partially due to the stabilization of old soil carbon pools in 

response to N addition (Neff et al. 2002). Conversely, N mineralization tends to increase 

under nitrogen addition, with concomitant decreases in overall soil C/N (Nave et al. 

2009). Likewise, increased N availability can increase efflux of nitrogen gases such as 

N2O (Magill et al. 1997). Indirectly, nitrogen deposition can influence decomposition 

dynamics through modification of plant community structure, thus altering the quality of 

litter entering the detrital system (Suding et al. 2005, Vinton and Goergen 2006).  

1.4 Herbivore and detritivore responses to global change 

1.4.1 Global Warming 

Historical records suggest that global warming can substantially alter plant-herbivore 

dynamics (Wilf and Labandeira 1999). Although herbivores may respond to increased 

temperature indirectly through changes in plant phenology (Dewar and Watt 1992, van 

Asch and Visser 2007), nutrient stoichiometry (Tan et al. 1978, Thorvaldsson et al. 2007) 

or secondary defense chemistry (Zvereva and Kozlov 2006), direct effects of global 

warming are likely to have equally important consequences for primary consumers, 

particularly insects (Fig. 1.2; Bale et al. 2002, Robinet and Roques 2010). Temperature 

has a strong influence on insect life history traits, including growth rate (Tauber et al. 

1986), diapause (Hodek and Hodkova 1988), and voltinism (Altermatt 2010). Many 

studies have reported increased insect abundances in response to increased temperature 

(reviewed in Bale et al. 2002), although Adler et al. (2007) reported negative effects of 

warming on the population growth rate of aphids. Likewise, among other invertebrates, 

moisture-sensitive terrestrial molluscs are susceptible to desiccation stress (Carne-

Cavagnaro et al. 2006). Ultimately, the nature of these relationships depends on species-

specific thermal optima (Rouault et al. 2006). General patterns of invertebrate herbivore 

fitness responses to warming suggest positive effects increase with latitude, and are 

related to temperature regulation of ectothermic metabolism (Deutsch et al. 2008). 

Ecosystem consequences of herbivore responses to warming may include significant 

shifts in both plant community structure (Woodward 1992) and food-web dynamics 
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(Petchey et al. 1999). These changes may be related to greater feeding pressure resulting 

from increases in herbivore population densities (Cannon 1998, Coley 1998), the effects 

of which may be further amplified by a decreased occurrence of herbivore pathogen 

infection (Stireman et al. 2005). Shifts in plant/herbivore dynamics are likely to be the 

most extreme in polar regions, where climate warming is predicted to be more substantial 

than in tropical and temperate zones (Hodkinson et al. 1998). Likewise, warming may 

disproportionately benefit insect species inhabiting colder climates in general, because 

increased temperatures could mitigate the high overwintering mortality typically 

experienced in these regions, although this effect may be offset by the loss of protective 

snow cover (Bale and Hayward 2010). Negative consequences of warmer temperatures 

on overwintering insects include the depletion of both energy and water stores (Williams 

et al. 2012). Likewise, warming over summer may stress insects by exposing them to 

temperatures above their upper thermal limits (Calosi et al. 2008). Assuming overall net 

effects of warming on insect fitness are positive however, geographic range expansion of 

insect pests may occur as a result of increased overwintering survival and increased 

population densities coupled with increased invasibility of regions that have traditionally 

been too cool for successful pest establishment (Wallner 1987, Battisti et al. 2005). 

Moreover, the risk of pest outbreaks resulting from these novel plant-herbivore 

interactions is of major concern in both natural (Ayres and Lombardero 2000) and 

agricultural (Cannon 1998) ecosystems, and may have significant ecological and 

economic consequences (Ayres and Lombardero 2000).  

Detritivore responses will also contribute to shifts in ecosystem dynamics under global 

warming (Lavelle et al. 1997). Increased temperatures can impose severe climatic stress 

on soil organisms (Pritchard 2011), reducing detritivore abundance, biomass and speices 

richness (Briones et al. 1997, Xu et al. 2012). Soil microclimate has an important 

influence on detritivore responses, and negative effects of warming are most pronounced 

in xeric systems (Blankinship et al. 2011). Interannual climate variation may also play a 

role – e.g. Harte et al. (1996) reported that warming increased mesofaunal biomass and 

diversity in moist soils, but the opposite occurred when soils were dry. Because wet soils 

are generally able to support large populations of soil fauna (Wardle 2002), important 
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interactions are likely to occur between changes in global temperatures and precipitation 

patterns. Where moisture is not limiting, increases in both the abundance and overall 

activity of detritivores in response to warming may significantly influence ecosystem 

carbon cycling as a result of changes in litter processing dynamics (Cole et al. 2002). 

Like herbivores, detritivore responses to warming in cold biomes may be of particular 

importance to ecosystem dynamics, because litter turnover within these regions is 

typically a slow process (Aerts 2006). Furthermore, increased temperatures may expand 

detritivore ranges, which in turn can have important consequences for broadscale patterns 

of decomposition and C cycling (Van Geffen et al. 2011). 

1.4.2 Nitrogen Deposition 

Herbivore feeding dynamics are largely determined by the quality of plant resources 

(Moran and Hamilton 1980, Owen-Smith and Novellie 1982, Raupp and Denno 1983). 

Although optimal foraging theory suggests that energy intake is the most influential 

factor governing forage selection (Macarthur and Pianka 1966, Charnov 1976), 

herbivores may be equally sensitive to differences in plant N content (White 1993). 

Herbivore nitrogen demand is driven primarily by a stoichiometric mismatch between 

primary producers and their respective consumers, because phytomass is largely 

composed of N-free structural carbohydrates such as cellulose, resulting in much larger 

C/N ratios (e.g. 20:1 in herbaceous angiosperms) relative to those of animals such as 

mammals and insects (7:1 and 4:1, respectively; Reiners 1986). Herbivore nitrogen 

requirements are further exaggerated during breeding periods (Awmack and Leather 

2002), and the inability to synthesize essential amino acids necessitates their dependence 

on plant-based sources (Dadd 1973). 

Anthropogenic nitrogen deposition has the potential to strongly influence plant-herbivore 

interactions on a global scale (Fig. 1.2; Tylianakis et al. 2008). For instance, nitrogen 

fertilization can significantly increase diet palatability to herbivores (Hartley et al. 1995, 

Strengbom et al. 2003). Positive effects of high N diets include increased herbivore body 

mass, reduced development time, and increased reproductive output (White 1978, 

Cameron and Eshelman 1996). Although herbivore responses to increased N availability 
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are often attributed to the effects of higher nutrient content, they may also reflect 

reductions in C-based plant defenses (Coley et al. 1985, Throop and Lerdau 2004). In 

addition to dietary implications, nitrogen enrichment can influence resource patch use by 

herbivores, including increased activity in response to increased vegetation N content 

(Bakker et al. 2005), or conversely decreased activity should fertilization reduce patch 

biodiversity (Hall et al. 1991). Likewise, an increase in patch biomass in response to N 

addition can influence habitat use, because some herbivores depend on dense vegetation 

for refuge from predation (Mossman 1955). 

Detritivores contribute substantially to the processes of plant decomposition (Swift et al. 

1979) and terrestrial C cycling (Osler and Sommerkorn 2007), so their responses to N 

deposition therefore have large consequences for ecosystem carbon turnover (Fig. 1.2; 

Blankinship et al. 2011). Litter quality is an important component of detritivore 

dynamics, particularly with respect to tissue N content (Hendriksen 1990, Hättenschwiler 

and Bretscher 2001). Increased leaf nitrogen concentration in response to N fertilization 

can be retained post-senescence (Henry et al. 2005), indicating that changes in plant 

chemistry under N deposition are likely to have important consequences for detritivore 

activity. Additionally, the influence of nitrogen enrichment on the soil microenvironment 

can have direct consequences for soil fauna, including the negative effects of salt 

desiccation (Lohm et al. 1977) and ammonium toxicity (Wei et al. 2012). Although 

organisms occupying lower trophic positions may not respond as strongly to nitrogen 

input as those in higher positions (Murphy et al. 2012), possibly due to factors such as the 

dilution of N effects on resource quality by nitrogen resorption during senescence,  

overall N effects on detritivore communities can include changes in both abundance and 

species richness (Haddad et al. 2000, Wimp et al. 2010). 

1.5 Global change and carbon dynamics in grass-

dominated systems 

Grass-dominated ecosystems are of great ecological importance in both temperate and 

tropical regions (Cramer et al. 2008), and they account for more than 25% of Earth’s 

vegetated surface area (Ramankutty and Foley 1999). Furthermore, grasslands contain 
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approximately 12% of terrestrial SOM (Schlesinger 1977) and 30% of the terrestrial soil 

carbon stock (Anderson 1991), representing an important component of global carbon 

storage  (Scurlock and Hall 1998, Conant et al. 2001). However, these highly productive 

systems also exhibit pronounced rates of biomass turnover (Gill and Jackson 2000) and C 

respiration (Verburg et al. 2004), suggesting that grassland processes contribute to both 

sink and source dynamics of global C cycling.    

Anthropogenic global change may contribute substantially to shifts in both the structure 

and function of grass-dominated ecosystems (Stevens et al. 2004, Lin et al. 2013). 

Factors such as climate warming and increased N deposition have influential effects on 

decomposition (Frey et al. 2004, Bontti et al. 2009), plant competition and community 

structure (Zavaleta et al. 2003, De Boeck et al. 2008),  plant-animal relations (Moise & 

Henry 2012), and ecosystem carbon cycling (Schimel et al. 1990, Zeng et al. 2009). The 

importance of these responses may be further magnified because there is a predicted 

geographic expansion of grass systems under future environmental scenarios (Emanuel et 

al. 1985, Lin et al. 2013). Field experiments are commonly used to explore the effects of 

global change factors on ecosystems, because they allow for the interpretation of 

ecosystem responses within the context of realistic ecological assemblages and natural 

environmental variability (Carpenter 1996). However, a major drawback inherent to this 

methodology includes potential artifacts imposed by treatment infrastructure, such as 

influences on humidity and airflow when using warming cloches (Kennedy 1994), or 

unrealistic drying effects associated with the employment of soil heating cables (Shaver 

et al. 2000).  Furthermore, the addition of nutrients to simulate increased mineralization 

under climate warming is common, yet likely inaccurate and ultimately misleading due to 

unrealistic consequences for factors such as mycorrhizal associations (Woodward 1992).  

Global change manipulations in field experiments can have important implications for 

plant-animal interactions (Tylianakis et al. 2008). In plot-level field studies, the indirect 

effects of experimental treatments on plants, mediated through herbivore responses, can 

represent the most significant component of overall plant responses (Peters et al. 2006).  

Warming effects on plant community structure can vary dramatically depending on the 

intensity of grazing pressure (Post and Pedersen 2008, Olofsson et al. 2009). Likewise, 
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manipulation of the detritivore community can significantly influence plant 

decomposition responses to global change (Coûteaux et al. 1991, Rouifed et al. 2010), 

and the negative effects of ammonium toxicity (Wei et al. 2012), salt desiccation (Lohm 

et al. 1977), and temperature stress (Pendall et al. 2008) on soil fauna may diminish their 

overall role in litter fragmentation.  

Herbivores such as molluscs and small mammals can have a strong influence on  plant 

dynamics in grass-dominated systems (Ostfeld et al. 1997, Strauss et al. 2009), but the 

cryptic nature of their feeding habits (e.g. they are nocturnal, obscured by the plant 

canopy, and they selectively feed on seedlings) suggests their influence within the 

context of global change field studies may be difficult to detect without explicit 

quantification. More importantly, owing to the small spatial scale inherent to many of 

these studies, exaggerated levels of herbivory may result from concentrated herbivore 

activities within the treatment plots that contain the highest quality resources (Moise and 

Henry 2010). In addition, although many detritivores operate at smaller spatial scales 

than  herbivores, and are therefore less likely to actively choose between treatment plots, 

potential interactions between global change drivers and the effects of soil fauna on litter 

turnover remain largely unexplored in decomposition experiments (Wall et al. 2008). 

Overall, these relationships suggest that there is a critical need to better understand the 

interactive effects of biotic and abiotic drivers of plant dynamics in the context of global 

change field experiments in order to improve the accuracy of predicted shifts in 

ecosystem carbon dynamics under future environmental scenarios.      

1.6 Major study species 

The field study components of this thesis were conducted in a temperate old field located 

in London, Ontario, Canada. This site was formerly an agricultural field, and it was sown 

with grasses and left unmanaged (no plowing or mowing for almost 30 years). The 

dominant plant species include the graminoids Poa pratensis L. and Bromus inermis 

Leyss., while the forbs Cirsium arvense L., Lotus corniculatus L., Solidago altissima L., 

Daucus carota L, and Asclepias syriaca L. are also present in patches. A plot-level global 

change field manipulation was initiated at this location in 2006. My field experiments 
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were conducted in the context of the year-round warming and nitrogen addition treatment 

plots that were part of this experiment. Feeding experiments were performed in the 

Duckhouse animal facility located at Western University. Experimental grass diets used 

in these assays consisted of P. pratensis and B. inermis grown at the field site.   

 

Results from small mammal live trapping revealed that the meadow vole (Microtus 

pennsylvanicus) was the most common rodent herbivore at our field site, although the 

short-tailed shrew and deer mouse were also present. Meadow voles contribute 

significantly to the structure of grassland plant communities (Howe et al. 2006). 

Likewise, variation in resource quality has important consequences for meadow vole diet 

preferences (Bergeron and Jodoin 1987) as well as habitat use (Oatway and Morris 2007), 

suggesting that they are likely to exhibit sensitivity to shifts in plant community 

dynamics under global change.  Evidence from pitfall trapping indicated that the grey 

field slug (Deroceras reticulatum Müller) was the most abundant molluscan herbivore. 

Like meadow voles, D. reticulatum also responds to variation in plant quality (Dirzo and 

Harper 1982), and is an important herbivore in both natural (Strauss et al. 2009) and 

agroecosystems (South 1992). Furthermore, shifts in patterns of herbivory by D. 

reticulatum may contribute significantly to changes in plant community composition 

(Cleland et al. 2006).  

1.7 Dissertation structure 

My dissertation consists of four chapters, each developed and prepared as manuscripts for 

publication. These manuscripts are thematically linked by the overarching hypothesis that 

interactive effects between animals and drivers of global change (warming and nitrogen 

deposition) influence carbon-centric ecosystem processes such as primary productivity 

and plant decomposition. Chapters 2 and 3 have been published, while Chapters 4 and 5 

are currently under review for publication. In Chapter 2, I present a theoretical 

consideration of potential shortcomings associated with the lack of control inherent in 

field experiments. Specifically, I discuss how herbivore activities within the context of 
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global change experiments may represent a significant artifact, confounding the 

interpretation of observed treatment responses. 

In Chapter 3, I investigated the effects of herbivore exclusion on plant community 

responses to the interactive effects of warming and nitrogen addition. Because herbivores 

are sensitive to changes in diet and habitat quality, shifts in their feeding activities in 

response to treatment manipulations may feed back to influence overall plant responses to 

drivers of global change. However, interactions between these factors remain largely 

unexplored in the context of plot-level field studies, thus the mechanisms governing 

treatment effects remain difficult to isolate. Understanding the contribution of herbivores 

to these relationships will be critical for predicting ecosystem changes under future 

environmental scenarios. For this study, I examined the effects of rodent and mollusc 

exclusion on the aboveground net primary productivity of grasses and forbs across the 

growing season.    

In Chapter 4, I explored the consequences of N enrichment on diet and habitat choice in 

the meadow vole, M. pennsylvanicus. Evidence from Chapter 3 revealed that rodent 

herbivores responded positively to N fertilization, and the experiments described in 

Chapter 4 were conceived in order to explore potential underlying mechanisms, such as 

changes in grass palatability and plot microenvironment. Moreover, there is currently 

little information on meadow vole responses to nitrogen manipulation of grasses, despite 

the importance of grasses to vole diet and foraging dynamics. For this study, I quantified 

both relative meadow vole activity (measured indirectly as number of tracks) across 

global change treatment plots, as well as the relative consumption of fertilized and non-

fertilized grasses in a cafeteria-style feeding experiment. 

In Chapter 5, I investigated the interactive effects of detritivores, warming, and N 

addition on grass litter decomposition. Despite the possibility for detritivores to 

contribute substantially to litter turnover dynamics, studies investigating decomposition 

responses to global change focus primarily on microbial responses. Factors such as 

warming and N deposition may impose both direct and indirect effects on soil fauna, 

resulting in changes to the patterns and magnitude of faunal litter processing. For this 
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study I prepared two separate types of grass litter samples, one allowing for detritivore 

access and the other restricting it, and incubated them in the global change treatment 

plots. Additional litter transplantation trials were established in order to investigate the 

mechanisms (i.e. plant quality, plot microenvironment) governing litter mass loss 

responses in the main experiment.   

1.8 References 

Adler, L. S., P. de Valpine, J. Harte, and J. Call. 2007. Effects of long-term experimental 

warming on aphid density in the field. Journal of the Kansas Entomological Society 

80:156–168. 

Aerts, R. 1997. Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial 

ecosystems: a triangular relationship. Oikos 79:439–449. 

Aerts, R. 2006. The freezer defrosting: global warming and litter decomposition rates in 

cold biomes. Journal of Ecology 94:713–724. 

Aerts, R., and F. Berendse. 1988. The effect of increased nutrient availability on 

vegetation dynamics in wet heathlands. Vegetatio 76:63–69. 

Allen, L. H., D. Pan, K. J. Boote, N. B. Pickering, and J. W. Jones. 2003. Carbon dioxide 

and temperature effects on evapotranspiration and water use efficiency of soybean. 

Agronomy Journal 95:1071–1081. 

Altermatt, F. 2010. Climatic warming increases voltinism in European butterflies and 

moths. Proceedings of the Royal Society B - Biological Sciences 277:1281–1287. 

Anderson, J. M. 1991. The effects of climate change on decomposition processes in 

grassland and coniferous forests. Ecological Applications 1:326–347. 

Arnold, T., and J. Schultz. 2002. Induced sink strength as a prerequisite for induced 

tannin biosynthesis in developing leaves of Populus. Oecologia 130:585–593.  



23 

 

 

 

Awmack, C. S., and S. R. Leather. 2002. Host plant quality and fecundity in herbivorous 

insects. Annual Review of Entomology 47:817–844. 

Ayres, M. P., and M. J. Lombardero. 2000. Assessing the consequences of global change 

for forest disturbance from herbivores and pathogens. The Science of the Total 

Environment 262:263–286. 

Baddeley, J. A., S. J. Woodin, and I. J. Alexander. 1994. Effects of increased nitrogen 

and phosphorus availability on the photosynthesis and nutrient relations of three arctic 

dwarf shrubs from Svalbard. Functional Ecology 8:676–685. 

Bakker, E. S., R. C. Reiffers, H. Olff, and J. M. Gleichman. 2005. Experimental 

manipulation of predation risk and food quality: effect on grazing behaviour in a central-

place foraging herbivore. Oecologia 146:157–167. 

Bale, J. S., and S. A. L. Hayward. 2010. Insect overwintering in a changing climate. The 

Journal of Experimental Biology 213:980–994. 

Bale, J. S., G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, J. 

Butterfield, et al. 2002. Herbivory in global climate change research: direct effects of 

rising temperature on insect herbivores. Global Change Biology 8:1–16. 

Baron, J. S., H. M. Rueth, A. M. Wolfe, K. R. Nydick, E. J. Allstott, J. T. Minear, and B. 

Moraska. 2000. Ecosystem responses to nitrogen deposition in the Colorado Front Range. 

Ecosystems 3:352–368. 

Battisti, A., M. Stastny, S. Netherer, C. Robinet, A. Schopf, A. Roques, and S. Larsson. 

2005. Expansion of geographic range in the pine processinonary moth caused by 

increased winter temperatures. Ecological Applications 15:2084–2096. 

Bazzaz, F. A., N. R. Chiariello, P. D. Coley, and L. F. Pitelka. 1987. Allocating resources 

to reproduction and defense. Bioscience 37:58–67. 



24 

 

 

 

Becerra, J. X. 2007. The impact of herbivore-plant coevolution on plant community 

structure. Proceedings of the National Academy of Sciences of the United States of 

America 104:7483–7488. 

Belay-Tedla, A., X. Zhou, B. Su, S. Wan, and Y. Luo. 2009. Labile, recalcitrant, and 

microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains 

subjected to experimental warming and clipping. Soil Biology and Biochemistry 41:110–

116. 

Bell, T. H., J. N. Klironomos, and H. A. L. Henry. 2010. Seasonal responses of 

extracellular enzyme activity and microbial biomass to warming and nitrogen addition. 

Soil Science Society of America Journal 74:820-828. 

Belovsky, G. E., and J. B. Slade. 2000. Insect herbivory accelerates nutrient cycling and 

increases plant production. Proceedings of the National Academy of Sciences of the 

United States of America 97:14412–14417. 

Bennett, R. N., and R. M. Wallsgrove. 1994. Secondary metabolites in plant defense 

mechanisms. New Phytologist 127:617–633. 

Berenbaum, M. 1983. Coumarins and caterpillars: a case for coevolution. Evolution 

37:163–179. 

Berg, B. 1986. Nutrient release from litter and humus in coniferous forest soils - a mini 

review. Scandinavian Journal of Forest Research 1:359–369. 

Bergeron, J. M., and L. Jodoin. 1987. Defining “high quality” food resources of 

herbivores: the case for meadow voles (Microtus pennsylvanicus). Oecologia 71:510–

517. 

Blankinship, J. C., P. A. Niklaus, and B. A. Hungate. 2011. A meta-analysis of responses 

of soil biota to global change. Oecologia 165:553–565. 



25 

 

 

 

Bokhorst, S., J. W. Bjerke, L. E. Street, T. V. Callaghan, and G. K. Phoenix. 2011. 

Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, 

reproduction, growth, and CO2 flux responses. Global Change Biology 17:2817–2830. 

Bontti, E. E., J. P. Decant, S. M. Munson, M. A. Gathany, A. Przeszlowska, M. L. 

Haddix, S. Owens, et al. 2009. Litter decomposition in grasslands of central North 

America (US Great Plains). Global Change Biology 15:1356–1363. 

Booth, M. S., J. M. Stark, and E. Rastetter. 2005. Controls on nitrogen cycling in 

terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs 

75:139–157. 

Bosy, J. L., and R. J. Reader. 1995. Mechanisms underlying the suppression of forb 

seedling emergence by grass (Poa pratensis) litter. Functional Ecology 9:635–639. 

Bowden, R. D., K. J. Nadelhoffer, R. D. Boone, J. M. Melillo, and J. B. Garrison. 1993. 

Contributions of aboveground litter, belowgroud litter, and root respiration to total soil 

respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research 

23:1402–1407. 

Bowman, W. D., T. A. Theodose, and M. C. Fisk. 1995. Physiological and production 

responses of plant growth forms to increases in limiting resources in alpine tundra: 

implications for differential community response to environmental change. Oecologia 

101:217–227. 

Bradford, M. A., B. W. Watts, and C. A. Davies. 2010. Thermal adaptation of 

heterotrophic soil respiration in laboratory microcosms. Global Change Biology 

16:1576–1588. 

Briones, M. J. I., P. Ineson, and T. G. Piearce. 1997. Effects of climate change on soil 

fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant 

experiment. Applied Soil Ecology 6:117–134. 



26 

 

 

 

Brix, H. 1971. Effects of nitrogen fertilization on photosynthesis and respiration in 

Douglas-Fir. Forest Science 17:407–414. 

Calosi, P., D. T. Bilton, and J. I. Spicer. 2008. Thermal tolerance, acclimatory capacity 

and vulnerability to global climate change. Biology Letters 4:99–102.  

Cameron, G. N., and B. D. Eshelman. 1996. Growth and reproduction of hispid cotton 

rats (Sigmodon hispidus) in response to naturally occurring levels of dietary protein. 

Journal of Mammalogy 77:220–231. 

Cannon, R. J. C. 1998. The implications of predicted climate change for insect pests in 

the UK, with emphasis on non-indigenous species. Global Change Biology 4:785–796. 

Carne-Cavagnaro, V. L., M. A. Keller, and G. H. Baker. 2006. Soil moisture and soil type 

influence the breeding behavior of the pest snail Cernuella virgata (da Costa). Applied 

Soil Ecology 33:235–242. 

Carpenter, S. R. 1996. Microcosm experiments have limited relevance for community 

and ecosystem ecology. Ecology 77:677–680. 

Carreiro, M. M., R. L. Sinsabaugh, D. A. Repert, and D. F. Parkhurst. 2000. Microbial 

enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 

81:2359–2365. 

Chapin, F. S. 2003. Effects of plant traits on ecosystem and regional processes: a 

conceptual framework for predicting the consequences of global change. Annals of 

Botany 91:455–463. 

Chapin, F. S., A. J. Bloom, C. B. Field, and R. H. Waring. 1987. Plant responses to 

multiple environmental factors. Bioscience 37:49–57. 

Chapin, F. S., J. McFarland, A. D. McGuire, E. S. Euskirchen, R. W. Ruess, and K. 

Kielland. 2009. The changing global carbon cycle: linking plant-soil carbon dynamics to 

global consequences. Journal of Ecology 97:840–850.  



27 

 

 

 

Charnov, E. L. 1976. Optimal foraging, marginal value theorem. Theoretical Population 

Biology 9:129–136. 

Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogée, V. Allard, M. Aubinet, et al. 

2005. Europe-wide reduction in primary productivity caused by the heat and drought in 

2003. Nature 437:529–533. 

Cleland, E. E., H. A. Peters, H. A. Mooney, and C. B. Field. 2006. Gastropod herbivory 

in response to elevated CO2 and N addition impacts plant community composition. 

Ecology 87:686–694. 

Cole, L., R. D. Bardgett, P. Ineson, and J. K. Adamson. 2002. Relationships between 

enchytraeid worms (Oligochaeta), climate change, and the release of dissolved organic 

carbon from blanket peat in northern England. Soil Biology and Biochemistry 34:599–

607. 

Coley, P. D. 1998. Possible effects of climate change on plant/herbivore interactions in 

moist tropical forests. Climate Change 39:455–472. 

Coley, P. D., J. P. Bryant, and F. S. Chapin. 1985. Resource availability and plant 

antiherbivore defense. Science 230:895–899. 

Collatz, G. J., J. A. Berry, and J. S. Clark. 1998. Effects of climate and atmospheric CO2 

partial pressure on the global distribution of C4 grasses: present, past, and future. 

Oecologia 114:441–454. 

Compton, J. E., L. S. Watrud, L. A. Porteous, and S. DeGrood. 2004. Response of soil 

microbial biomass and community composition to chronic nitrogen additions at Harvard 

Forest. Forest Ecology and Management 196:143–158. 

Conant, R. T., R. A. Drijber, M. L. Haddix, W. J. Parton, E. A. Paul, A. F. Plante, J. Six, 

et al. 2008. Sensitivity of organic matter decomposition to warming varies with its 

quality. Global Change Biology 14:868–877. 



28 

 

 

 

Conant, R. T., K. Paustian, and E. T. Elliott. 2001. Grassland management and 

conversion into grassland: effects on soil carbon. Ecological Applications 11:343–355. 

Coûteaux, A. M., M. Mousseau, M. Célérier, M. Celerier, P. Bottner, and M. Cofiteaux. 

1991. Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf 

litter with animal food webs of different complexities. Oikos 61:54–64. 

Coûteaux, M-M., P. Bottner, and B. Berg. 1995. Litter decomposition, climate and litter 

quality. Trends in Ecology & Evolution 10:63–66. 

Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell. 2000. Acceleration 

of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 

408:184–187. 

Craine, J. M., C. Morrow, and N. Fierer. 2007. Microbial nitrogen limitation increases 

decomposition. Ecology 88:2105–2113. 

Cramer, V. A., R. J. Hobbs, and R. J. Standish. 2008. What’s new about old fields? land 

abandonment and ecosystem assembly. Trends in Ecology & Evolution 23:104–112. 

Cusack, D. F., M. S. Torn, W. H. McDowell, and W. L. Silver. 2010. The response of 

heterotrophic activity and carbon cycling to nitrogen additions and warming in two 

tropical soils. Global Change Biology 16:2555–2572. 

Dadd, R. H. 1973. Insect nutrition: current developments and metabolic implications. 

Annual Review of Entomology 18:381–420. 

Davidson, E. A., and I. A. Janssens. 2006. Temperature sensitivity of soil carbon 

decomposition and feedbacks to climate change. Nature 440:165–173. 

De Boeck, H. J., C. M. H. M. Lemmens, C. Zavalloni, B. Gielen, S. Malchair, M. Carnol, 

R. Merckx, et al. 2008. Biomass production in experimental grasslands of different 

species richness during three years of climate warming. Biogeosciences 5:585–594. 



29 

 

 

 

DeAngelis, D. L., S. Ju, R. Liu, J. P. Bryant, and S. A. Gourley. 2012. Plant allocation of 

carbon to defense as a function of herbivory, light and nutrient availability. Theoretical 

Ecology 5:445–456. 

Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. 

Haak, and P. R. Martin. 2008. Impacts of climate warming on terrestrial ectotherms 

across latitude. Proceedings of the National Academy of Sciences of the United States of 

America 105:6668–6672. 

Dewar, R. C., and A. D. Watt. 1992. Predicted changes in the synchrony of larval 

emergence and budburst under climatic warming. Oecologia 89:557–559. 

Didden, W. 1993. Ecology of terrestrial Enchytraeidae. Pedobiologia 37:2–29. 

Dirzo, R., and J. L. Harper. 1982. Experimental studies on slug-plant interactions: III. 

Differences in the acceptability of individual plants of Trifolium repens to slugs and 

snails. Journal of Ecology 70:101–117. 

Dukes, J. S., and H. A. Mooney. 1999. Does global change increase the success of 

biological invaders? Trends in Ecology & Evolution 14:135–139. 

Ehrenfeld, J. G. 2010. Ecosystem consequences of biological invasions. Annual Review 

of Ecology, Evolution, and Systematics 41:59–80. 

Ekschmitt, K., T. Stierhof, J. Dauber, K. Kreimes, and V. Wolters. 2003. On the quality 

of soil biodiversity indicators: abiotic and biotic parameters as predictors of soil faunal 

richness at different spatial scales. Agriculture, Ecosystems & Environment 98:273–283. 

Emanuel, W. R., H. H. Shugart, and M. P. Stevenson. 1985. Climate change and the 

broad-scale distribution of terrestrial ecosystem complexes. Climatic Change 7:29–43. 

Evans, J. R. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum 

aestivum L.). Plant Physiology 72:297–302. 



30 

 

 

 

Facelli, J. M., and S. T. A. Pickett. 1991. Plant litter: its dynamics and effects on plant 

community structure. Botanical Review 57:1–32. 

Fog, K. 1988. The effect of added nitrogen on the rate of decomposition of organic 

matter. Biological Review 63:433–462. 

Forchhammer, M. C., E. Post, T. B. G. Berg, T. T. Høye, and N. M. Schmidt. 2005. 

Local-scale and short-term herbivore-plant spatial dynamics reflect influences of large-

scale climate. Ecology 86:2644–2651. 

Frey, S. D., M. Knorr, J. L. Parrent, and R. T. Simpson. 2004. Chronic nitrogen 

enrichment affects the structure and function of the soil microbial community in 

temperate hardwood and pine forests. Forest Ecology and Management 196:159–171. 

Gallardo, A., and W. H. Schlesinger. 1994. Factors limiting microbial biomass in the 

mineral soil and forest floor of a warm-temperate forest. Soil Biology and Biochemistry 

26:1409–1415. 

Galloway, J. N., F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. 

Seitzinger, G. P. Asner, et al. 2004. Nitrogen cycles: past, present, and future. 

Biogeochemistry 70:153–226. 

Garnier, E. 1991. Resource capture, biomass allocation and growth in herbaceous plants. 

Trends in Ecology & Evolution 6:126–131. 

German, D. P., K. R. B. Marcelo, M. M. Stone, and S. D. Allison. 2012. The Michaelis-

Menten kinetics of soil extracellular enzymes in response to temperature: a cross-

latitudinal study. Global Change Biology 18:1468–1479. 

Gill, R. A., and R. B. Jackson. 2000. Global patterns of root turnover for terrestrial 

ecosystems. New Phytologist 147:13–31. 

Goldberg, D. E., and A. M. Barton. 1992. Patterns and consequences of interspecific 

competition in natural communities: a review of field experiments with plants. American 

Naturalist 139:771–801. 



31 

 

 

 

Grime, J. P., J. H. C. Cornelissen, K. Thompson, and J. G. Hodgson. 1996. Evidence of 

causal connection between anti-herbivore defence and the decomposition rate of leaves. 

Oikos 77:489–494. 

Haddad, N. M., J. Haarstad, and D. Tilman. 2000. The effects of long-term nitrogen 

loading on grassland insect communities. Oecologia 124:73–84. 

Hall, A. T., P. E. Woods, and G. W. Barrett. 1991. Population dynamics of the meadow 

vole (Microtus pennsylvanicus) in nutrient-enriched old- field communities. Journal of 

Mammalogy 72:332–342. 

Hanley, M. E., M. Fenner, and P. J. Edwards. 1995. An experimental field study of the 

effects of mollusc grazing on seedling recruitment and survival in grassland. Journal of 

Ecology 83:621–627. 

Harte, J., A. Rawa, and V. Price. 1996. Effects of manipulated soil microclimate on 

mesofaunal biomass and diversity. Soil Biology and Biochemistry 28:313–322. 

Hartley, S. E., K. Nelson, and M. Gorman. 1995. The effect of fertiliser and shading on 

plant chemical composition and palatability to Orkney voles, Microtus-arvalis 

orcadensis. Oikos 72:79–87. 

Hättenschwiler, S., and D. Bretscher. 2001. Isopod effects on decomposition of litter 

produced under elevated CO2, N deposition and different soil types. Global Change 

Biology 7:565–579. 

Hendriksen, N. B. 1990. Leaf litter selection by detritivore and geophagous earthworms. 

Biology and Fertility of Soils 10:17–21. 

Henry, H. A. L. 2012. Soil extracellular enzyme dynamics in a changing climate. Soil 

Biology and Biochemistry 47:53–59. 

Henry, H. A. L., E. E. Cleland, C. B. Field, and P. M. Vitousek. 2005. Interactive effects 

of elevated CO2, N deposition and climate change on plant litter quality in a California 

annual grassland. Oecologia 142:465–473. 



32 

 

 

 

Heskel, M. A., O. R. Anderson, O. K. Atkin, M. H. Turnbull, and K. L. Griffin. 2012. 

Leaf- and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in 

two Arctic tundra species. American Journal of Botany 99:1702–1714. 

Hobbie, S. E. 2005. Contrasting effects of substrate and fertilizer nitrogen on the early 

stages of litter decomposition. Ecosystems 8:644–656. 

Hodek, I., and M. Hodkova. 1988. Multiple role of temperature during insect diapause: a 

review. Entomologia Experimentalis et Applicata 49:153–165. 

Hodkinson, I. D., N. R. Webb, J. S. Bale, W. Block, S. J. Coulson, and A. T. Strathdee. 

1998. Global change and arctic ecosystems: conclusions and predictions from 

experiments with terrestrial invertebrates in Spitsbergen. Arctic and Alpine Research 

30:306–313. 

Hoeppner, S. S., and J. S. Dukes. 2012. Interactive responses of old-field plant growth 

and composition to warming and precipitation. Global Change Biology 18:1754–1768. 

Holland, J. N., W. Cheng, and D. A. Crossley. 1996. Herbivore-induced changes in plant 

carbon allocation: assessment of below-ground C fluxes using Carbon-14. Oecologia 

107:87–94. 

Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, J. H. Lavorel, D. M. 

Lawton, et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of 

current knowledge. Ecological Monographs 75:3–35. 

Horner, J. D., J. R. Gosz, and R. G. Cates. 1988. The role of carbon-based plant 

secondary metabolites in decomposition in terrestrial ecosystems. American Naturalist 

132:869–883. 

Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. 

Maskell, et al. 2001. Climate Change 2001: The Scientific Basis. Contribution of 

Working Group I to the Third Assessment Report of the Intergovernmental Panel on 

Climate Change. Cambridge University Press, Cambridge, UK. 



33 

 

 

 

Howe, H. F., B. Zorn-Arnold, A. Sullivan, and J. S. Brown. 2006. Massive and 

distinctive effects of meadow voles on grassland vegetation. Ecology 87:3007–3013. 

IPCC. 2007. Climate Change 2007: synthesis report. Contribution of Working Groups I, 

II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate 

Change. (C. W. Team, R. K. Pachaur, & A. Reisinger, eds.). IPCC, Geneva. 

Janssens, I. A., W. Dieleman, S. Luyssaert, J. Subke, M. Reichstein, R. Ceulemans, P. 

Ciais, et al. 2010. Reduction of forest soil respiration in response to nitrogen deposition. 

Nature Geoscience 3:315–322. 

Johnson, C. R., B. A. Reiling, P. Mislevy, and M. B. Hall. 2001. Effects of nitrogen 

fertilization and harvest date on yield, digestibility, fiber, and protein fractions of tropical 

grasses. Journal of Animal Science 79:2439–2448. 

Jones, C., C. McConnell, K. Coleman, P. Cox, P. Falloon, D. Jenkinson, and D. Powlson. 

2005. Global climate change and soil carbon stocks; predictions from two contrasting 

models for the turnover of organic carbon in soil. Global Change Biology 11:154–166. 

Kalberer, S. R., M. Wisniewski, and R. Arora. 2006. Deacclimation and reacclimation of 

cold-hardy plants: current understanding and emerging concepts. Plant Science 171:3–16. 

Kalbitz, K., S. Solinger, J-H. Park, B. Michaelzik, and E. Matzner. 2000. Controls on the 

dynamics of dissolved organic matter in soils: a review. Soil Science 165:277–304. 

Karban, R. 2008. Plant behaviour and communication. Ecology Letters 11:727–739. 

Kardol, P., M. A. Cregger, C. E. Campany, and A. T. Classen. 2010. Soil ecosystem 

functioning under climate change: plant species and community effects. Ecology 91:767–

781. 

Kennedy, A. D. 1994. Simulated climate change: a field manipulation study of polar 

microarthropod community response to global warming. Ecography 17:131–140. 



34 

 

 

 

Kesselmeier, J., and M. Staudt. 1999. Biogenic volatile organic compounds (VOC): an 

overview on emission, physiology and ecology. Journal of Atmospheric Chemistry 

33:23–88. 

Kessler, D., and I. T. Baldwin. 2011. Back to the past for pollination biology. Current 

Opinion in Plant Biology 14:429–434. 

Knorr, A. M., S. D. Frey, and P. S. Curtis. 2005. Nitrogen additions and litter 

decomposition: a meta-analysis. Ecology 86:3252–3257. 

Kreyling, J. 2010. Winter climate change: a critical factor for temperate vegetation 

performance. Ecology 91:1939–1948. 

Kuzyakov, Y., and G. Domanski. 2000. Carbon input by plants into the soil. Review. 

Journal of Plant Nutrition and Soil Science 163:421–431. 

Lavelle, P., D. Bignell, M. Lepage, V. Wolters, P. Roger, P. Ineson, O. W. Heal, et al. 

1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. 

European Journal of Soil Biology 33:159–193. 

Lebauer, D. S., and K. K. Treseder. 2008. Nitrogen limitation of net primary productivity 

in terrestrial ecosystems is globally distributed. Ecology 89:371–379. 

Levine, J., M. Vila, C. M. D’Antonio, J. S. Dukes, K. Grigulis, and S. Lavorel. 2003. 

Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal 

Society B - Biological Sciences 270:775–781. 

Levings, S. C., and D. M. Windsor. 1996. Seasonal and annual variation in litter 

arthropod populations. In E. G. J. Leigh, A. S. Rand, & D. M. Windsor, eds., The ecology 

of a tropical forest: seasonal rhythms and long-term changes (pp. 355–387). Smithsonian 

Institutional Press, Washington, DC. 

Liao, C., R. Peng, Y. Luo, X. Zhou, X. Wu, C. Fang, J. Chen, et al. 2008. Altered 

ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New 

Phytologist 177:706–714. 



35 

 

 

 

Liira, J., N. Ingerpuu, R. Kalamees, M. Moora, M. Pärtel, K. Püssa, E. Roosaluste, et al. 

2012. Grassland diversity under changing productivity and the underlying mechanisms - 

results of a 10-yr experiment. Journal of Vegetation Science 23:919–930. 

Lin, H., Q. Feng, T. Liang, and J. Ren. 2013. Modelling global-scale potential grassland 

changes in spatio-temporal patterns to global climate change. International Journal of 

Sustainable Development & World Ecology 20:83–96. 

Liu, Y., J. Mu, K. J. Niklas, G. Li, and S. Sun. 2012. Global warming reduces plant 

reproductive output for temperate multi-inflorescence species on the Tibetan plateau. 

New Phytologist 195:427–436. 

Lohm, U., H. Lundkvist, T. Persson, and A. Wiren. 1977. Effects of nitrogen fertilization 

on the abundance of enchytraeids and microarthropods in Scots pine forests. Studia 

Forestalia Suecica 140:1–23. 

Louda, S. M. 1983. Seed predation and seedling mortality in the recruitment of a shrub, 

Haplopappus venetus (Asteraceae), along a climatic gradient. Ecology 64:511–521. 

Luo, Y., D. Gerten, G. Le Maire, W. J. Parton, E. Weng, X. Zhou, C. Keough, et al. 2008. 

Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon 

and water dynamics in different climatic zones. Global Change Biology 14:1986–1999. 

Macarthur, R. H., and E. R. Pianka. 1966. On optimal use of a patchy environment. 

American Naturalist 100:603–609. 

Magill, A. H., J. D. Aber, J. J. Hendricks, R. D. Bowden, J. M. Melillo, and P. A. 

Steudler. 1997. Biogeochemical response of forest ecosystems to simulated chronic 

nitrogen deposition. Ecological Applications 7:402–415. 

Manning, P., M. Saunders, R. D. Bardgett, M. Bonkowski, M. A. Bradford, R. J. Ellis, E. 

Kandeler, et al. 2008. Direct and indirect effects of nitrogen deposition on litter 

decomposition. Soil Biology and Biochemistry 40:688–698. 



36 

 

 

 

Marquis, R. J. 1992. Selective impact of herbivores. In R. S. Fritz & E. L. Simms, eds., 

Plant resistance to herbivores and pathogens (pp. 391–325). University of Chicago Press, 

Chicago, IL. 

Masai, E., Y. Katayama, and M. Fukuda. 2007. Genetic and biochemical investigations 

on bacterial catabolic pathways for lignin-derived aromatic compounds. Bioscience, 

Biotechnology, and Biochemistry 71:1–15. 

Mattson, W. J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of 

Ecology and Systematics 11:119–161. 

McGill, W. B., and C. V. Cole. 1981. Comparative aspects of cycling of organic C, N, S, 

and P through soil organic matter. Geoderma 26:267–286. 

Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. 

Ecology 59:465–472. 

Melillo, J. M., J. D. Aber, and J. F. Muratore. 1982. Nitrogen and lignin control of 

hardwood leaf litter decomposition dynamics. Ecology 63:621–626. 

Memmott, J., P. G. Craze, N. M. Waser, and M. V Price. 2007. Global warming and the 

disruption of plant-pollinator interactions. Ecology Letters 10:710–717. 

Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kübler, et al. 

2006. European phenological response to climate change matches the warming pattern. 

Global Change Biology 12:1969–1976. 

Moise, E. R. D., and H. A. L. Henry. 2010. Like moths to a street lamp: exaggerated 

animal densities in plot-level global change field experiments. Oikos 119:791–795. 

Moise, E. R. D., and H. A. L. Henry. 2012. Interactions of herbivore exclusion with 

warming and N addition in a grass-dominated temperate old field. Oecologia 169:1127–

1136. 



37 

 

 

 

Moran, N., and W. D. Hamilton. 1980. Low nutritive quality as a defense against 

herbivores. Journal of Theoretical Biology 86:247–254. 

Morford, S. L., B. Z. Houlton, and R. A. Dahlgren. 2011. Increased forest ecosystem 

carbon and nitrogen storage from nitrogen rich bedrock. Nature 477:78–81. 

Mosier, A. R. 1998. Soil processes and global change. Biology and Fertility of Soils 

27:221–229. 

Mossman. 1955. Light penetration in relation to small mammal abundance. Journal of 

Mammalogy 36:564–566. 

Murphy, S. M., G. M. Wimp, D. Lewis, and R. F. Denno. 2012. Nutrient presses and 

pulses differentially impact plants, herbivores, detritivores and their natural enemies. 

PloS one 7:e43929. 

Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani. 1997. Increased 

plant growth in the northern latitudes from 1981 to 1991. Nature 386:698–702. 

Narula, N., E. Kothe, and R. K. Behl. 2009. Role of root exudates in plant-microbe 

interactions. Journal of Applied Botany and Food Quality 82:122–130. 

Näsholm, T., K. Kielland, and U. Ganeteg. 2009. Uptake of organic nitrogen by plants. 

New Phytologist 182:31–48. 

Nave, L. E., E. D. Vance, C. W. Swanston, and P. S. Curtis. 2009. Impacts of elevated N 

inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 

153:231–240. 

Neff, J. C., A. R. Townsend, G. Gleixner, S. J. Lehman, J. Turnbull, and W. D. Bowman. 

2002. Variable effects of nitrogen additions on the stability and turnover of soil carbon. 

Nature 419:915–917. 

Nightingale, G. T. 1948. The nitrogen nutrition of green plants. II. Botanical Review 

14:185–221. 



38 

 

 

 

Oatway, M. L., and D. W. Morris. 2007. Do animals select habitat at small or large 

scales? An experiment with meadow voles (Microtus pennsylvanicus). Canadian Journal 

of Zoology 85:479–487. 

Olofsson, J., L. Oksanen, T. Callaghan, P. E. Hulme, T. Oksanen, and O. Suominen. 

2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change 

Biology 15:2681–2693. 

Osler, G. H. R., and M. Sommerkorn. 2007. Toward a complete soil C and N cycle: 

incorporating the soil fauna. Ecology 88:1611–1621. 

Ostfeld, R. S., R. H. Manson, and C. D. Canham. 1997. Effects of rodents on survival of 

tree seeds and seedlings invading old fields. Ecology 78:1531–1542. 

Ostle, N. J., P. Smith, R. Fisher, F. I. Woodward, J. B. Fisher, J. U. Smith, D. Galbraith, 

et al. 2009. Integrating plant-soil interactions into global carbon cycle models. Journal of 

Ecology 97:851–863. 

Owen-Smith, N., and P. Novellie. 1982. What should a clever ungulate eat? American 

Naturalist 119:151–178. 

Pastor, J., and R. J. Naiman. 1992. Selective foraging and ecosystem processes in boreal 

forests. American Naturalist 139:690–705. 

Pearcy, R. W., O. Björkman, M. M. Caldwell, J. E. Keeley, R. K. Monson, and B. R. 

Strain. 1987. Carbon gain by plants in natural environments. Bioscience 37:21–29. 

Pendall, E., L. Rustad, and J. Schimel. 2008. Towards a predictive understanding of 

belowground process responses to climate change: have we moved any closer? 

Functional Ecology 22:937–940. 

Petchey, O. L., P. T. McPhearson, T. M. Casey, and P. J. Morin. 1999. Environmental 

warming alters food-web structure and ecosystem function. Nature 402:69–72. 



39 

 

 

 

Peters, H. A., E. E. Cleland, H. A. Mooney, and C. B. Field. 2006. Herbivore control of 

annual grassland composition in current and future environments. Ecology Letters 9:86–

94. 

Peters, H. A. 2007. The significance of small herbivores in structuring annual grassland. 

Journal of Vegetation Science 18:175–182. 

Phoenix, G. K., R. E. Booth, J. R. Leake, D. J. Read, J. P. Grime, and J. A. Lee. 2003. 

Simulated pollutant nitrogen deposition increases P demand and enhances root-surface 

phosphatase activities of three plant functional types in a calcareous grassland. New 

Phytologist 161:279–290. 

Phoenix, G. K., B. A. Emmett, A. J. Britton, S. J. M. Caporn, N. B. Dise, R. Helliwell, L. 

Jones, et al. 2012. Impacts of atmospheric nitrogen deposition: responses of multiple 

plant and soil parameters across contrasting ecosystems in long-term field experiments. 

Global Change Biology 18:1197–1215. 

Post, E., and M. C. Forchhammer. 2008. Climate change reduces reproductive success of 

an Arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal 

Society of London. Series B, Biological Sciences 363:2369–2375. 

Post, E., and C. Pedersen. 2008. Opposing plant community responses to warming with 

and without herbivores. Proceedings of the National Academy of Sciences of the United 

States of America 105:12353–12358. 

Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Stangenberger. 1982. Soil carbon 

pools and world life zones. Nature 298:156–159. 

Pritchard, S. G. 2011. Soil organisms and global climate change. Plant Pathology 60:82–

99. 

Raguso, R. A. 2004. Why are some floral nectars scented? Ecology 85:1486–1494. 

Ramankutty, N., and J. A. Foley. 1999. Estimating historical changes in global land 

cover : croplands from 1700 to 1992. Global Biogeochemical Cycles 13:997–1027. 



40 

 

 

 

Ramirez, K. S., J. M. Craine, and N. Fierer. 2012. Consistent effects of nitrogen 

amendments on soil microbial communities and processes across biomes. Global Change 

Biology 18:1918–1927. 

Rammig, A., A. M. Jönsson, T. Hickler, B. Smith, L. Bärring, and M. T. Sykes. 2010. 

Impacts of changing frost regimes on Swedish forests: incorporating cold hardiness in a 

regional ecosystem model. Ecological Modelling 221:303–313. 

Raupp, M. J., and R. F. Denno. 1983. Leaf age as a predictor of herbivore distribution 

and abundance. In R. F. Denno & M. S. McClure, eds., Variable plants and herbivores in 

natural and managed systems (pp. 91–124). Academic Press, New York. 

Reiners, W. A. 1986. Complementary models for ecosystems. American Naturalist 

127:59–73. 

Robinet, C., and A. Roques. 2010. Direct impacts of recent climate warming on insect 

populations. Integrative Zoology 5:132–142. 

Rouault, G., J-N. Candau, F. Lieutier, L-M. Nageleisen, J-C. Martin, and N. Warzee. 

2006. Effects of drought and heat on forest insect populations in relation to the 2003 

drought in Western Europe. Annals of Forest Science 63:613–624. 

Rouifed, S., I. T. Handa, J-F. David, and S. Hättenschwiler. 2010. The importance of 

biotic factors in predicting global change effects on decomposition of temperate forest 

leaf litter. Oecologia 163:247–256. 

Roy, J., B. Saugier, and H. A. Mooney. 2001. Terrestrial global productivity. Academic 

Press, San Diego, CA. 

Sage, R. F., and D. S. Kubien. 2007. The temperature response of C(3) and C(4) 

photosynthesis. Plant, Cell & Environment 30:405–414. 

Sardans, J., A. Rivas-Ubach, and J. Peñuelas. 2012. The C:N:P stoichiometry of 

organisms and ecosystems in a changing world: a review and perspectives. Perspectives 

in Plant Ecology, Evolution and Systematics 14:33–47. 



41 

 

 

 

Schimel, D. S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change 

Biology 1:77–91. 

Schimel, D. S., W. J. Parton, T. G. F. Kittel, D. S. Ojima, and C. V Cole. 1990. Grassland 

biogeochemistry: links to atmospheric processes. Climatic Change 17:13–25. 

Schindlbacher, A., S. Wunderlich, W. Borken, B. Kitzler, S. Zechmeister-Boltenstern, 

and R. Jandl. 2012. Soil respiration under climate change: prolonged summer drought 

offsets soil warming effects. Global Change Biology 18:2270–2279. 

Schlesinger, W. H. 1977. Carbon balance in terrestrial detritus. Annual Review of 

Ecology and Systematics 8:51–81. 

Schlesinger, W. H. 1991. Biogeochemistry: an analysis of global change. Academic 

Press, San Diego, CA. 

Schlesinger, W. H., and J. A. Andrews. 2000. Soil respiration and the global carbon 

cycle. Biogeochemistry 48:7–20. 

Scurlock, J. M. O., and D. O. Hall. 1998. The global carbon sink: a grassland perspective. 

Global Change Biology 4:229–233. 

Seastedt, T. 1984. The role of microarthropods in decomposition and mineralization 

processes. Annual Review of Entomology 29:25–46. 

Serreze, M. C., and J. A. Francis. 2006. The Arctic amplification debate. Climatic 

Change 76:241–264. 

Shaver, G. R., J. Canadell, F. S. Chapin, J. Gurevitch, J. Harte, G. Henry, P. Ineson, et al. 

2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis. 

Bioscience 50:871–882. 

Shaw, M. R., and J. Harte. 2001. Control of litter decomposition in a subalpine meadow-

sagebrush steppe ecotone under climate change. Ecological Applications 11:1206–1223. 



42 

 

 

 

Silvertown, J. 1980. The dynamics of a grassland ecosystem: botanical equilibrium in the 

Park Grass Experiment. Journal of Applied Ecology 17:491–504. 

Simpson, J. E., E. Slade, T. Riutta, and M. E. Taylor. 2012. Factors affecting soil fauna 

feeding activity in a fragmented lowland temperate deciduous woodland. PloS one 

7:e29616. 

Sinsabaugh, R. L., M. M. Carreiro, and D. A. Repert. 2002. Allocation of extracellular 

enzymatic activity in relation to litter composition, N deposition, and mass loss. 

Biogeochemistry 60:1–24. 

Soderland, R., and T. Rosswall. 1982. The nitrogen cycles. In O. Hutzinger, ed., 

Handbook of environmental chemistry (pp. 62–81). Springer-Verlag, Berlin, Germany. 

South, A. 1992. Terrestrial slugs: biology, ecology, and control. Champan & Hall, 

London, UK. 

Sprent, J. I. 1987. The ecology of the nitrogen cycle. Cambridge University Press, 

Cambridge, UK. 

Stevens, C. J., N. B. Dise, J. O. Mountford, and D. J. Gowing. 2004. Impact of nitrogen 

deposition on the species richness of grasslands. Science 303:1876–1879. 

Stiling, P., and D. C. Moon. 2005. Quality or quantity: the direct and indirect effects of 

host plants on herbivores and their natural enemies. Oecologia 142:413–420. 

Stireman, J. O., L. A. Dyer, D. H. Janzen, M. S. Singer, J. T. Lill, R. J. Marquis, R. E. 

Ricklefs, et al. 2005. Climatic unpredictability and parasitism of caterpillars: implications 

of global warming. Proceedings of the National Academy of Sciences of the United 

States of America 102:17384–17387. 

Strauss, S. Y., M. L. Stanton, N. C. Emery, C. A. Bradley, A. Carleton, D. R. Dittrich-

reed, O. A. Ervin, et al. 2009. Cryptic seedling herbivory by nocturnal introduced 

generalists impacts survival, performance of native and exotic plants. Ecology 90:419–

429. 



43 

 

 

 

Strengbom, J., J. Olofsson, J. Witzell, and J. Dahlgren. 2003. Effects of repeated damage 

and fertilization on palatability of Vaccinium myrtillus to grey sided voles, Clethrionomys 

rufocanus. Oikos 103:133–141. 

Suding, K. N., S. L. Collins, L. Gough, C. Clark, E. E. Cleland, K. L. Gross, D. G. 

Milchunas, et al. 2005. Functional- and abundance-based mechanisms explain diversity 

loss due to N fertilization. Proceedings of the National Academy of Sciences of the 

United States of America 102:4387–4392. 

Swarbreck, S. M., E. A. Sudderth, S. B. St.Clair, R. Salve, C. Castanha, M. S. Torn, D. 

D. Ackerly, et al. 2011. Linking leaf transcript levels to whole plant analyses provides 

mechanistic insights to the impact of warming and altered water availability in an annual 

grass. Global Change Biology 17:1577–1594. 

Swift, M. J., O. Heal, and J. M. Anderson. 1979. Decomposition in terrestrial ecosystems. 

University of California Press, Berkley, CA. 

Tan, G. Y., W. K. Tan, and P. D. Walton. 1978. Effects of temperature and irradiance on 

seedling growth of smooth bromegrass. Crop Science 18:133–136. 

Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal adaptation of insects. Oxford 

University Press, Oxford, UK. 

Taylor, B. R., D. Parkinson, and W. J. F. Parsons. 1989. Nitrogen and lignin content as 

predictors of litter decay rates: a microcosm test. Ecology 70:97–104. 

Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. 

Collingham, B. F. N. Erasmus, et al. 2004. Extinction risk from climate change. Nature 

427:145–148. 

Thompson, J. N. 2009. The coevolving web of life. American Naturalist 173:125–140. 

Thorvaldsson, G., G. F. Tremblay, and H. T. Kunelius. 2007. The effects of growth 

temperature on digestibility and fibre concentration of seven temperate grass species. 

Acta Agriculturae Scandinavica, Section B - Plant Soil Science 57:322–328. 



44 

 

 

 

Throop, H. L., and M. T. Lerdau. 2004. Effects of nitrogen deposition on insect 

herbivory: implications for community and ecosystem processes. Ecosystems 7:109–133. 

Tilman, D. 1990. Constraints and tradeoffs: toward a predictive theory of competition 

and succession. Oikos 58:3–15. 

Tilman, D., and C. Lehman. 2001. Human-caused environmental change: impacts on 

plant diversity and evolution. Proceedings of the National Academy of Sciences of the 

United States of America 98:5433–5440. 

Tilman, D., and D. A. Wedin. 1991. Plant traits and resource reduction for five grasses 

growing on a nitrogen gradient. Ecology 72:685–700. 

Treseder, K. K. 2008. Nitrogen additions and microbial biomass: a meta-analysis of 

ecosystem studies. Ecology Letters 11:1111–1120. 

Trumbore, S. 2000. Age of soil organic matter and soil respiration: radiocarbon 

constraints on belowground C dynamics. Ecological Applications 10:399–411. 

Trumbore, S. E., G. Bonani, and W. Wolfli. 1990. The rate of carbon cycling in several 

soils from AMS 14C measurements of fractionated soil organic matter. In A. F. 

Bouwman, ed., Soils and the greenhouse effect (pp. 405–414). John Wiley, New York. 

Tucker, C. L., J. Bell, E. Pendall, and K. Ogle. 2013. Does declining carbon-use 

efficiency explain thermal acclimation of soil respiration with warming? Global Change 

Biology 19:252–263. 

Tylianakis, J. M., R. K. Didham, J. Bascompte, and D. A. Wardle. 2008. Global change 

and species interactions in terrestrial ecosystems. Ecology Letters 11:1351–1363. 

Van Asch, M., and M. E. Visser. 2007. Phenology of forest caterpillars and their host 

trees: the importance of synchrony. Annual Review of Entomology 52:37–55. 



45 

 

 

 

Van der Putten, W. H. 2012. Climate change, aboveground-belowground interactions, 

and species’ range shifts. Annual Review of Ecology, Evolution, and Systematics 

43:365–383. 

Van Geffen, K. G., M. P. Berg, and R. Aerts. 2011. Potential macro-detritivore range 

expansion into the subarctic stimulates litter decomposition: a new positive feedback 

mechanism to climate change? Oecologia 167:1163–1175. 

Verburg, P. S. J., J. A. Arnone, D. Obrist, D. E. Schorran, R. D. Evans, D. Leroux-

swarthout, D. W. Johnson, et al. 2004. Net ecosystem carbon exchange in two 

experimental grassland ecosystems. Global Change Biology 10:498–508. 

Vinton, M. A., and E. M. Goergen. 2006. Plant–soil feedbacks contribute to the 

persistence of Bromus inermis in tallgrass prairie. Ecosystems 9:967–976. 

Vitousek, P. M. 1994. Beyond global warming: ecology and global change. Ecology 

75:1861–1876. 

Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, A. Pamela, D. W. Schindler, 

W. H. Schlesinger, et al. 1997. Human alteration of the global nitrogen cycle: sources and 

consequences. Ecological Applications 7:737–750. 

Wall, D. H., M. A. Bradford, M. G. St. John, J. A. Trofymow, V. Behan-Pelletier, D. E. 

Bignell, J. M. Dangerfield, et al. 2008. Global decomposition experiment shows soil 

animal impacts on decomposition are climate-dependent. Global Change Biology 

14:2661–2677. 

Wallner, W. E. 1987. Factors affecting insect population dynamics: differences between 

outbreak and non-outbreak species. Annual Review of Entomology 32:317–340. 

Walther, G-R., E. Post, P. Convey, A. Menzel, C. Parmesank, T. J. C. Beebee, J-M. 

Fromentin, et al. 2002. Ecological responses to recent climate change. Nature 416:389–

395. 



46 

 

 

 

Wan, S., R. J. Norby, K. S. Pregitzer, J. Ledford, and E. G. O’Neill. 2004. CO2 

enrichment and warming of the atmosphere enhance both productivity and mortality of 

maple tree fine roots. New Phytologist 162:437–446. 

Wardle, D. A. 2002. Communities and ecosystems: linking the aboveground and 

belowground components. Princeton University Press, Princeton, NJ. 

Wei, C., H. Zheng, Q. Li, X. Lü, Q. Yu, H. Zhang, Q. Chen, et al. 2012. Nitrogen 

addition regulates soil nematode community composition through ammonium 

suppression. PloS one 7:e43384. 

Weltzin, J. F., M. E. Loik, S. Schwinning, G. David, P. A. Fay, B. M. Haddad, J. Harte, 

et al. 2003. Assessing the response of terrestrial ecosystems to potential changes in 

precipitation. Bioscience 53:941–952. 

White, T. C. R. 1978. The importance of a relative shortage of food in animal ecology. 

Oecologia 33:71–86. 

White, T. C. R. 1993. The inadequate environment. Springer-Verlag, Berlin. 

Whitham, T. G., and S. Mopper. 1985. Chronic herbivory: impacts on architecture and 

sex expression of Pinyon pine. Science 228:1089–1091. 

Wilf, P., and C. C. Labandeira. 1999. Response of plant-insect associations to paleocene-

eocene warming. Science 284:2153–2156. 

Williams, C. M., J. Hellmann, and B. J. Sinclair. 2012. Lepidopteran species differ in 

susceptibility to winter warming. Climate Research 53:119–130. 

Wimp, G. M., S. M. Murphy, D. L. Finke, A. F. Huberty, and R. F. Denno. 2010. 

Increased primary production shifts the structure and composition of a terrestrial 

arthropod community. Ecology 91:3303–3311. 

Woodward, F. I. 1992. Predicting plant responses to global environmental change. New 

Phytologist 122:239–251. 



47 

 

 

 

Wu, Z., P. Dijkstra, G. W. Koch, J. Peñuelas, and B. A. Hungate. 2011. Responses of 

terrestrial ecosystems to temperature and precipitation change: a meta-analysis of 

experimental manipulation. Global Change Biology 17:927–942. 

Xia, J., and S. Wan. 2008. Global response patterns of terrestrial plant species to nitrogen 

addition. New Phytologist 179:428–439. 

Xu, G-L., T. M. Kuster, M. S. Günthardt-Goerg, M. Dobbertin, and M-H. Li. 2012. 

Seasonal exposure to drought and air warming affects soil Collembola and mites. PloS 

one 7:e43102. 

Yang, L. H., and V. H. W. Rudolf. 2010. Phenology, ontogeny and the effects of climate 

change on the timing of species interactions. Ecology Letters 13:1–10. 

Zavaleta, E. S., M. R. Shaw, N. R. Chiariello, H. A. Mooney, and C. B. Field. 2003. 

Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on 

grassland diversity. Proceedings of the National Academy of Sciences of the United 

States of America 100:7650–7654. 

Zeglin, L. H., M. Stursova, R. L. Sinsabaugh, and S. L. Collins. 2007. Microbial 

responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 

154:349–359. 

Zeng, D-H., L-J. Li, T. J. Fahey, Z-Y. Yu, Z-P. Fan, and F-S. Chen. 2009. Effects of 

nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland. 

Biogeochemistry 98:185–193. 

Zhang, W., K. M. Parker, Y. Luo, S. Wan, L. L. Wallace, and S. Hu. 2005. Soil microbial 

responses to experimental warming and clipping in a tallgrass prairie. Global Change 

Biology 11:266–277. 

Zvereva, E. L., and M. V. Kozlov. 2006. Consequences of simultaneous elevation of 

carbon dioxide and temperature for plant-herbivore interactions: a meta-analysis. Global 

Change Biology 12:27–41.  



48 

 

 

 

Chapter 2  

2 Like moths to a streetlamp: exaggerated animal 

densities in plot-level global change field 

experiments1 

2.1 Global change field experiments at the plot level 

Climate change, elevated atmospheric carbon dioxide concentrations and increased 

atmospheric N deposition are all environmental factors predicted to have large effects on 

ecosystems over the next century at a global scale.  Global change experiments in the 

field have generally focused on the responses of plants (e.g. Harte and Shaw 1995, 

Shaver and Chapin 1995, Dukes et al. 2005), the main primary producers and most 

influential structural component of most terrestrial ecosystems.  Although many valuable 

mechanistic data regarding plant responses to global change also have been obtained 

under controlled growth conditions, the use of field experiments is necessary to observe 

these responses in the context of natural plant assemblages, established soil microbial 

communities, background climate variability and associations with animals such as 

pollinators and herbivores (Carpenter 1996).  Unfortunately, the tradeoff of added realism 

is that the mechanisms responsible for changes in productivity and plant species 

composition in response to experimental treatments can be difficult to identify, given the 

potential contributions of numerous indirect effects to the overall treatment effect. 

Various techniques have been used to explore the effects of warming in field experiments 

(e.g. open top chambers, overhead heaters, passive night time heating curtains, fluid filled 

pipes or heated wires; see review by Shen and Harte 2000), and likewise there have been 

                                                 

1
 A version of this chapter has been published and is presented here with permission from 

John Wiley and Sons Publications 

Citation: Moise ERD and Henry HAL. 2010. Like moths to a streetlamp: exaggerated 
animal densities in plot-level global change field experiments. Oikos 119:791-795 
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a range of manipulations to simulate changes in precipitation (sprinklers, drip irrigation, 

rain gutters, snow removal; Frampton et al. 2000, Hardy et al. 2001), elevated 

atmospheric CO2 (e.g. open top chambers, free-air exchange rings; Hall et al. 2005, 

Peters et al. 2007) and increased atmospheric nitrogen deposition (aqueous N addition or 

addition of slow release pellets or salts; Lindberg and Persson 2004, Cleland et al. 2006).  

The development of newer techniques has often been prompted by a desire to avoid 

artifacts inherent in the older techniques, as in free-air exchange rings for CO2 delivery, 

which were designed to avoid the unwanted effects of open top chambers on other 

environmental factors such as wind, humidity and temperature (Miglietta et al. 2001).  

However, the common trait of these techniques, both new and old, is that they are 

typically applied at the plot level.  While statistical significance can be achieved through 

replication, there is a concern that small-scale studies that attempt to extrapolate plot-

level results to ecosystem-level responses often lead to inaccurate interpretation, since 

such localized manipulations can easily ignore relationships present at the community or 

ecosystem level (Kareiva and Anderson 1988, Schindler 1998, Englund and Cooper 

2003). 

2.2 Like moths to a street lamp 

In addition to the introduction of potentially confounding microclimate artifacts, a 

concern about experimental infrastructure in global change experiments has been that it 

can physically restrict the access of influential herbivores or pollinators, whose activities 

may interact with the experimental treatments.  Examples include the blocking of caribou 

and muskox feeding by warming infrastructure (Post and Pedersen 2008) and the 

exclusion of specialist butterfly pollinators from open top CO2 chambers as a result of the 

updraft of air (C. Field pers. comm.).  However, free access to experimental plots does 

not ensure that global change treatments feature realistic densities of herbivores, 

detritivores or pollinators.  On the contrary, much like moths swarm around streetlamps, 

animals that prefer the local conditions in treated plots may congregate at artificially high 

densities, or conversely, those that are repelled by the treatments may choose to avoid 

them.  Although these behavioural preferences may be interpreted as realistic 
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community-level responses to global change treatments (i.e. animals that prefer heated 

plots might be expected to flourish in a warmer climate, or the opposite might be 

expected for animals that shun heated plots), the animal densities in experimental plots 

may nonetheless grossly exaggerate their future densities in response to global change.  

As an illustration of this point, I conducted a warming experiment and was intrigued to 

discover a turkey nesting under an overhead heater in a one square meter area plot.  If 

other turkeys would have found the other heated plots to be equally inviting, then by 

extrapolation I could have arrived at the erroneous conclusion that the density of turkeys 

under future climate conditions would be one per square meter!  Clearly, the turkey was 

merely responding to the localized treatment effect, and in order to survive it needed to 

be subsidized by resources beyond the area of the experimental plot.  Likewise, animals 

repelled by a localized treatment can simply choose to remain in the matrix surrounding 

experimental plots, whereas in a future world they would not be privileged with such a 

choice; rather, they would be forced to tolerate the new conditions, re-locate over a long 

distance or perish.  While turkeys nesting under heaters are easy to detect, other animals 

might be far less conspicuous, particularly if they are small or if their use of plots varies 

diurnally (e.g. nocturnal feeders) or seasonally (e.g. under the snowpack).  Selective 

herbivory on newly germinating plants early in the growing season may also go 

unnoticed but have a large and disproportionate effect on the relative species abundance 

of adult plants later in the season (Hanley et al. 1995).  Here, I describe how these 

potential animal congregation and avoidance artifacts may have been overlooked in the 

interpretation of results from many plot-level global change field experiments.  I also 

provide suggestions for how to best interpret the results of these experiments and how to 

isolate the effects of these artifacts from the more meaningful treatment effects. 

2.3 Valid projection or artifact? 

The manner and extent to which animals respond either directly or indirectly to 

experimental treatments likely vary among global change factors (Fig. 2.1).  For example, 

while nitrogen fertilization can directly decrease the abundance of sensitive species such 

as gastropods through direct toxicity (Huhta et al. 1983) or salt-induced desiccation 
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(Lohm et al. 1977), these direct effects are likely transient.  However, with respect to 

indirect effects, both nitrogen addition and elevated CO2 can alter plant nutritional quality 

or species composition (Hartley et al. 2000, Zavaleta et al. 2003), and when these 

treatments are applied at the plot level, herbivores may choose between the more (or less) 

palatable plants in the plots and those in the surrounding area.  Conversely, herbivores 

would not be given such a choice in a future environment, since these changes in 

vegetation quality would take place at a landscape scale.  When nitrogen or CO2 

additions increase plant biomass (Owensby et al. 1994), increased shading by leaf canopy 

can also provide a cooler microclimate than the surrounding area at the soil surface.  In 

contrast to nitrogen addition and elevated CO2, both warming and simulated precipitation 

changes almost always have direct and persistent effects on plot microclimate, and they 

can also have indirect effects on animals by altering plant species composition and the 

nutritional quality of the plants within a plot (Peñuelas et al. 2008).  The direct effects of 

warming on microclimate suitability can vary diurnally and seasonally.  For example, 

while warming may deter a given herbivore from a plot by exacerbating desiccation and 

heat stress at noon on a hot summer day (Sjursen et al. 2005, Carne-Cavagnaro et al. 

2006), the same herbivore may prefer warmed plots on cool nights or in the spring or fall.  

Extreme levels of animal congregation can also occur in early spring when snow melts 

earlier in warmed plots than in the surrounding area (Roy et al. 2004).  

There are numerous examples of global change field experiments where changes in 

animal abundance in response to treatments at the plot level have been used to infer 

changes in animal densities under future environmental conditions (Table 2.1a) or where  

direct measures, such as leaf damage, have been used to quantify herbivory (Table 2.1b).  

In both cases, these studies have focused primarily on small invertebrate herbivores such 

as insects or gastropods.  The extent to which these studies are vulnerable to density 

artifacts likely depends on the incidence of animal immigration and emigration. The 

studies that are most vulnerable to density artifacts are those where field manipulations 

present no physical barriers to animal movement (e.g. Haddad et al 2000, Sternberg 2000, 

Roy et al. 2004 and Adler et al. 2007).  As suggested by Roy et al. (2004), these small-

scale field manipulations may serve only to present elaborate choice experiments.  In 
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contrast, Agrofleece sheets applied to cloches by Strathdee et al. (1993) likely restricted 

most animal movement; however, the behaviour of some animals may be disrupted by 

confinement to a small plot (Underwood 1986).  Frampton et al. (2000) also attempted to 

reduce animal dispersal by erecting 20 cm high polythene barriers around each plot, but 

they may have only restricted the movement of some flightless arthropods, and would be 

less effective against flying organisms such as Diptera and some Hymenoptera and 

Hemiptera, which were all present.  Similarly, open top chambers used by Stiling et al. 

(2002) and Hall et al. (2005) were 3 m high, but Lepidoptera were the major herbivores 

present in both studies and thus would have been able to fly  over the barriers.  Others, 

such as Miles et al. (1997) and Whittaker and Tribe (1998), who used cloches as passive 

solar heaters, and Richardson et al. (2002), who used open top chambers, intentionally 

designed their plot edge barriers to allow the passage of animals.  Overall, both measures 

of animal densities and herbivore damage in field plots can potentially be criticized for 

their vulnerabilities to the congregation and avoidance artifacts described above.  

However, these artifacts can also explain important changes in plant productivity and 

species composition in global change studies that neglect to measure herbivore effects, 

and these effects may instead be mistakenly attributed to direct plant responses (Fig. 2.1; 

Peters et al. 2006).  
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a) Herbivore 
abundance

warming or H2Owarming or H2O N or CO2N or CO2

b) Plant response:

- species composition
- tissue quality

- biomass/cover 

Figure 2.1. Potential mechanisms whereby global change treatments (ovals) both 
directly and indirectly affect a) herbivore abundances, and b) plant responses, in 
experimental field plots.  The dotted arrows denote effects that potentially lead to 
exaggerated responses resulting from animals congregating in or being repelled by 
the plots. 
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Study Manipulated variable Herbivore response

a) changes in herbivore abundance 

Strathdee et al . (1993) Temperature Increased abundance of the arctic aphid Acyrthosiphon svalbardicum

Miles et al.  (1997) Temperature Increased density of the heather psyllid Strophingia ericae  

Whittaker and Tribe (1998) Temperature Increased density of the spittlebug Neophilaenus lineatus

Frampton et al.  (2000) Precipitation Increased abundance of farmland arthropods in response to water 

Haddad et al.  (2000) Nitrogen Increased insect abundance

Sternberg (2000) Temperature, precipitation Species specific effects on gastropod abundance

Adler et al. (2007) Temperature Decreased abundance of the aphid Obtusicauda coweni

b) changes in herbivore damage

Richardson et al . (2002) Temperature, nutrients Species specific effects on insect abundance and plant biomass removal 

Stiling et al.  (2002) CO 2 Decreased herbivore densities and leaf consumption 

Roy et al. (2004) Temperature Increased plant damage

Hall et al.  (2005) CO 2 Decreased herbivory damage

Table 2.1. Global change studies that have measured herbivore responses at the plot-level in the field. 
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2.4 Suggested improvements for the interpretation of global 

change treatments in the field 

Although field plots may harbor unrealistically high or low densities of animals as the 

result of experimental treatments, qualitatively, the preference by an animal for a specific 

set of environmental conditions may indicate the future success of this species under 

those conditions.  In addition, despite the potential risks of misinterpreting animal 

responses to plot-level global change treatments they, in some cases, provide useful 

mechanistic information (Table 2.2).  For animals that operate at a small spatial scale, 

useful quantitative responses may be obtained.  For example, changes in soil 

microarthropods, nematodes or soil microorganisms in response to global change 

treatments (e.g. Kennedy 1994, Treonis et al. 2002, Yergeau and Kowalchuk 2008) may 

provide meaningful quantitative data if their movements in and out of plots are relatively 

limited.  Likewise, for animals that remain sessile, even over a single life stage or season, 

plot level global change experiments may be appropriate for studying phenological or 

physiological responses; examples include warming effects on gall flies overwintering in 

goldenrod stems (Irwin and Lee 2003) and the time to first hatching in insect eggs 

(Masters et al. 1998).   

If it is suspected that the densities of herbivores are exaggerated in response to global 

change treatments, direct plant responses can be isolated through the use of exclosed 

subplots within the main experimental plots (Peters et al. 2006).  Similarly, enclosures 

such as mesh bags containing insects (Adler et al. 2007) may be used to explore 

interactions among the experimental treatments and herbivore feeding, once again, 

provided that confinement does not strongly influence herbivore behaviour (Underwood 

1986).  Changes in food preferences within plots in response to global change treatments, 

relative to preferences in control plots (Peters 2000), can also provide meaningful 

predictive data.  Finally, the results from plot level global change experiments can be 
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integrated with gradient studies or time series analyses conducted at the landscape scale 

(Dollery et al. 2006, Wiedermann et al. 2009).   
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 Suggested improvement Reference

Restrict extrapolation of animal responses to sessile organisms or life 
or stages, or organisms that operate at an extremely small spatial scale  
 (e.g. bacteria). 

 

 
 

Embed animal exclosures or enclosures in plots. Peters et al. 2006

 
Quantify changes in herbivore feeding preferences in response to  
treatments. 

Integrate with gradient studies or time series analyses at the landscape 
scale. 

Lindroth et al. 1997 

Dollery et al. 2006
Wiedermann et al. 2009

Masters et al. 1998 

Table 2.2. Suggested improvements for the interpretation of results from global change  
experiments conducted at the plot level in the field. 
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2.5 Conclusions 

Given that global change experiments conducted in the field often operate over multiple 

years and require large investments of time and resources, it is understandable why 

researchers often attempt to explore all possible community and ecosystem responses.  

However, I contend that these experiments are best-suited for exploring the responses of 

sessile organisms, and interactions among plants and animals must be carefully 

considered in the interpretation of these experiments.  Moving forward, it is crucial that 

we bear in mind the potential for unintentional, or hidden effects (Huston 1997), of plot 

level manipulations. Although my examples have dealt primarily with potential artifacts 

caused by herbivores, congregation in plots or avoidance of plots by influential 

detritivores or pollinators could also feed back on plant growth.  Overall, despite the 

valuable mechanistic data that can be obtained from plot-level field experiments, it is 

clear that their results must also be interpreted in the context of complementary studies 

conducted at the landscape level.    
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Chapter 3  

3 Interactions of herbivore exclusion with warming 

and N addition in a grass-dominated temperate old 

field2  

3.1 Introduction 

Climate warming and increased atmospheric nitrogen deposition over the next century 

are both expected to exert strong bottom-up effects on primary producers and ecosystems 

(Woodward 1992, Cleland et al. 2007). Warming can influence primary production by 

extending the plant growing season (Zhou et al. 2001) or by altering photosynthesis 

(Hobbie and Chapin 1998) and soil nutrient dynamics (Koch et al. 2007), and nitrogen 

addition increases plant production in most terrestrial systems (LeBauer and Treseder 

2008).  Although less frequently examined in the context of global change field 

experiments, the ability of top-down factors to regulate primary producers is also well-

established (Huntly 1991, Borer et al. 2005).  Feeding by large mammalian herbivores is 

often both conspicuous and dramatic (Milchunas and Lauenroth 1993), while the actions 

of small, inconspicuous herbivores are much less obvious (MacDougall and Wilson 

2007). For example, small rodents and molluscs can substantially alter plant community 

biomass and species composition (Hanley et al. 1995a, Howe et al. 2006). Understanding 

the role of small herbivores may, therefore, be critical for understanding plant responses 

in the context of global change field experiments (Moise and Henry 2010).   

In a broad context, the simultaneous influences of top-down and bottom-up on plant 

productivity have led to investigations of the relative importance, as well as potential 

                                                 

2
 A version of this chapter has been published and is presented here with permission from 

Springer-Verlag. 

Citation: Moise ERD and Henry HAL. 2010. Like moths to a streetlamp: exaggerated 
animal densities in plot-level global change field experiments. Oikos 119:791-795 
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interaction, of these factors (Power 1992, Turkington 2009).  How might these 

interactions be expected to occur, however, in the context of warming and increased N 

availability? Changes in plant species composition, tissue quality and chemical defenses 

in response to warming (Peñuelas et al. 2008) and N addition (Ayres 1993, Hartley et al. 

1995, Somers et al. 2008), can affect herbivore feeding.  Likewise, changes in 

aboveground cover in response to these factors may provide shelter to small herbivores 

that are vulnerable to predation when exposed (Mossman 1955), as well as alter soil 

surface temperatures by modifying soil shading (Hutchison and Henry 2010). Warming 

can also directly influence herbivores; while the densities of insect herbivores often 

increase in response to warming (Miles et al. 1997, Whittaker and Tribe 1998), warming 

can negatively affect moisture-sensitive animals such as land molluscs (Carne-Cavagnaro 

et al. 2006).  Some animals even respond directly to nitrogen application (Lohm et al. 

1977, Huhta et al. 1983), but more often herbivores are attracted to plants fertilized with 

nitrogen, resulting in increased grazing pressure (Hartley and Mitchell 2005).  

Despite the potential for interactions between top-down and bottom-up effects on plants, 

a recent meta-analysis by Gruner et al. (2008) found little support for interactions 

between herbivory and nutrient addition. However, this analysis of 191 studies was 

limited to only 15 studies in terrestrial systems that generally did not exhibit significant 

herbivore removal effects, thus limiting the ability to detect interactions between top-

down and bottom-up effects.  Therefore, the importance of interactions between 

herbivory and bottom-up effects for plants in terrestrial systems remains an open 

question.  Gruner et al. (2008) also suggested that research on this topic may move 

forward by simultaneously examining multiple producer resources and by considering the 

combined effects of multiple herbivore taxa. 

I used rodent and mollusc exclosures in the plots of a warming and nitrogen addition field 

experiment to test the hypothesis that herbivore effects interact with plant biomass 

responses to these treatments. Based on the assumption that nitrogen addition improves 

plant tissue quality, I predicted that the effects of rodent and mollusc exclusion would be 

higher in the N-fertilized plots than in control plots. Additionally, based on the 

assumption that molluscs would avoid heat-induced desiccation, I predicted that the 
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effects of mollusc exclusion would be lower in heated plots than in ambient temperature 

plots. 

3.2 Methods 

3.2.1 Study site 

I conducted this experiment in a temperate old field located in London, Ontario, Canada 

(43o 01’ 45” N 81o 12’ 50” W, elevation 264 m). This site is a former agricultural field 

that has not been plowed or mowed for more than 25 years. The mean annual temperature 

for the site is 7.5 °C, with a low monthly mean of -6.3 °C (January) and a high monthly 

mean of 20.5 °C (July), and a mean annual precipitation of 818 mm (Canadian Climate 

Normals 1971–2000, Environment Canada, National Climate Data and Information 

Archive).  The dominant plant species are the grasses Poa pratensis L. and Bromus 

inermis Leyss., with the forbs Cirsium arvense L. and Lotus corniculatus L. present in 

patches (Hutchison and Henry 2010).  Common herbivores present at the site (based on 

Longworth and pitfall trapping) include the meadow vole, Microtus pennsylvanicus, and 

the grey field slug Deroceras reticulatum, although other rodent, rabbit, snail and insect 

herbivores are also present. 

3.2.2 Nitrogen addition and warming experiment 

I administered warming and N addition treatments to 1 m2 circular plots arranged in a 

factorial block design, with two temperature levels (warmed and ambient) crossed with 

two nitrogen treatments (N addition and control), divided among 10 blocks (n=10 for 

each treatment combination, for a total of 40 plots; see Turner and Henry (2009) for a 

description of the full experiment).  Warming of approximately 2-3 °C at the soil surface 

was attained using 150 W ceramic infrared heaters (Zoo-Med Laboratories, San Luis 

Obispo, CA, USA), which mimic solar heating, but without the production of 

photosynthetically active radiation (Shen and Harte 2000).  Warming of the plots began 

in late November 2006.  Each year, a pulse of 2 g m-2 of N was added as aqueous 

ammonium nitrate in spring to simulate nitrogen inputs from snow melt, and an 

additional 4 g m-2 y-1 of N as slow release ammonium nitrate pellets in early summer to 
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simulate continuous N deposition throughout the summer.  This rate of addition is 

consistent with rates of atmospheric nitrogen deposition expected in this region by 2050 

(Galloway and Cowling 2002). 

3.2.3 Exclosure design and implementation 

I constructed rodent exclosures out of steel mesh cylinders (30 cm tall, 20 cm diameter, 

mesh size 0.5 cm) fastened to wooden stakes, and mollusc exclosures out of sewer-grade 

PVC pipe (20 cm internal diameter, 10.5 cm height) with copper mollusc-repellant tape 

applied to the exterior top 5 cm.  In early April 2009, I placed one rodent exclosure and 

one mollusc exclosure in each of the 40 global change plots, with the bases of the rodent 

exclosures resting flush against the soil, and the mollusc exclosures driven 5 cm into the 

soil.  For biomass sampling, I placed permanent 12 cm diameter sampling rings on the 

surface of the ground in each of the exclosures, as well as a control sampling ring in a 

non-exclosed area of each plot.  All exclosures were inspected weekly to ensure they had 

not been breached by the target organisms.  I also set up 6 blocks of mollusc exclosures 

without copper tape outside of the treatment plots to test for the effect of the PVC pipe 

alone relative to unexclosed areas.   

3.2.4 Sampling regime 

I estimated aboveground plant biomass non-destructively in the sampling rings five times 

between June and November 2009 (8-10 June, 20-22 July, 24-26 August, 28-30 

September, 8-10 November) using allometric equations for converting plant shoot height 

into dry weight.  To develop the allometric equations, for each of the five sampling 

periods I destructively sampled shoots outside of the plots from the four species that 

occurred in the sampling rings (the grasses P. pratensis and B. inermis, and the forbs C. 

arvense and L. corniculatus), and dried the tissue at 60 °C for 72 hours prior to weighing.   

The two dominant grasses account for approximately 96% of the total biomass at our site, 

and the two dominant forb species account for >90% of the total forb biomass (Hutchison 

and Henry 2010).  I counted individual leaves for P. pratensis and whole tillers for B. 

inermis, and included both green shoots and the current year's senesced shoots.  Thus, my 
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biomass estimates were of cumulative biomass production minus losses to herbivory or 

other factors.   

3.2.5 Data analysis 

I calculated rodent and mollusc exclosure effects for each plot by subtracting the 

cumulative biomass from the control sampling ring from that of the rodent and mollusc 

exclosures, respectively.  I then used repeated measures ANOVA to test for differences in 

exclosure effects between the warming and N addition treatments, with warming, N 

addition and their interaction term as between-subjects factors, and date and all 

interactions between date and warming and N addition as within-subjects factors (plot 

was included as a random factor nested in warming and N addition).  With respect to 

covariance structure, the analysis produced very similar results regardless of whether the 

model assumed unstructured covariance or whether AR or Toeplitz covariance structures 

were used to account for dependence between time points (the latter two increased the 

significance of the P-values slightly).  When ANOVA results were significant (P < 0.05), 

I used a Tukey’s test to identify the significantly different treatment combinations. I 

performed the analyses using the Fit model platform in JMP 4.0 (SAS Institute; SPSS 

was used to test different covariance structures).  I used exclosure effects on both 

aboveground grass biomass and total aboveground biomass (grasses and forbs) as 

dependent variables, and also analyzed exclosure effects on B. inermis biomass as a 

percentage of total grass biomass.  The presence of forbs in the sampling rings was too 

intermittent to justify an analysis of forb biomass alone.  I analyzed grass shoot 

abundance and height for a representative month (July) in a similar manner as for 

biomass, but without repeated measures. 

3.3 Results 

3.3.1 Responses of exclosure effects to N addition 

Across sampling dates, grass biomass was consistently highest in nitrogen-fertilized 

rodent exclosures, but grass biomass did not increase with nitrogen addition in non-

exclosed areas (Fig. 3.1a).  The effect of rodent exclusion on grasses (in Fig. 3.1a, the 
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difference between a filled or open bar in the ‘rodent exclosure’ column and the 

corresponding bar in the ‘non-exclosed’ column – statistical results presented in Table 

3.1) was more than double in fertilized plots than in non-fertilized plots (P=0.003), 

whereas the effect of mollusc exclusion did not increase significantly for N-fertilized 

grasses (P=0.509; Fig. 3.1a).  Grass shoot abundance generally increased inside of rodent 

exclosures, whereas shoot height was most sensitive to nitrogen addition (Fig. 3.2).  

Rodent exclusion increased B. inermis biomass as a percentage of total grass biomass by 

7% in non-fertilized plots, whereas this percentage increase was significantly higher 

(27%) in N-fertilized plots (P<0.001).  There were no significant treatment effects on the 

response of grass species composition to mollusc exclusion.  Total biomass in non-

exclosed areas was higher in non-fertilized plots than in N-fertilized plots (Fig. 3.1b). The 

effect of rodent exclusion on total biomass was significantly higher in fertilized plots than 

in non-fertilized plots (P<0.001), but there was a significant date × nitrogen interaction 

(P=0.014) caused by an increased response of the rodent exclusion effect to N in July and 

August (Fig. 3.1b). 
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Figure 3.1. Cumulative aboveground biomass of a) grasses and b) all vegetation in 
fertilized (open bars) and non-fertilized (filled bars) plots in non-exclosed areas, mollusc 
exclosures and rodent exclosures, pooled over warming treatments (n=20).  
Corresponding statistical results for treatment effects on exclosure effects (with exclosure 
effects estimated as the biomass difference between exclosed and non-exclosed areas 
within a fertilization treatment) are presented in Table 3.1. 
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Effect F     P F    P
F P F  P

between-subjects

W(1,33) 3.45     0.072 5.28    0.028*    5.51     0.025*   1.07     0.308

N (1,33) 10.09     0.003** 14.59 <0.001*** 0.44       0.51   1.60     0.214

W×N (1,33) 0.12     0.736 0.62    0.436     0.13      0.717   1.30     0.262

within-subjects

D (4,138) 6.92   <0.001*** 2.26    0.066 5.75   <0.001***   2.62     0.038*

W×D (4,138) 0.56    0.689 1.29    0.276 1.28      0.279   0.33     0.859

N×D(4,138) 2.46    0.048* 3.25    0.014* 0.51      0.726   1.11     0.355

W×N×D(4,138) 0.93    0.446 1.22    0.304 0.66      0.618   1.14     0.342

W - warming; N - Nitrogen; D - Date. 

Asterisks denote significance (*0.05-0.01,**0.01-0.001,***<0.001). 

Mollusc exclusion

Grasses

Rodent exclusion 

Total Grasses Total

Table 3.1. Summary of ANOVA F and P-values for effects of treatment and date on estimates of rodent and mollusc 
effects (the biomass difference between exclosed and non-exclosed areas within a given global change treatment) on 
grasses alone and total aboveground biomass in a grass-dominated old field. Degrees of freedom are displayed in 
parentheses after the effects. 
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Figure 3.2. Mean abundances and heights of a) P. pratensis leaves and b) B. inermis 
tillers in non-exclosed and rodent exclosed subplots receiving no fertilization (filled bars) 
and N fertilization (open bars).  Error bars denote standard error, and different lower case 
letters within a panel indicate a statistical difference between bars based on a Tukey’s 
HSD test (P<0.05). 
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3.3.2 Responses of exclosure effects to warming 

In non-exclosed areas, both grass and total biomass were higher in ambient temperature 

plots than in warmed plots (Fig. 3.3a, b).  The effect of mollusc exclusion on grass 

biomass was higher in warmed plots than in ambient temperature plots (P=0.025), and 

grass abundance was generally higher inside mollusc exclosures than in non-exclosed 

areas (Fig. 3.4).  However, there was no significant difference in plant biomass between 

control PVC rings that lacked copper tape and non-exclosed areas (P=0.28).  A 

significant influence of date on the effect of mollusc exclusion resulted from there being 

no substantial exclusion effect on the first sampling date, but a significant effect 

thereafter (Fig. 3.3a, b).  Although warming did not significantly influence the effect of 

rodent exclusion on grass biomass, for total biomass there was a significant increase in 

the effect of rodent exclusion in warmed plots (P=0.028).  The effect of mollusc 

exclusion on total biomass did not respond significantly to warming (P=0.308), and for 

all analyses, there were no significant interactions between nitrogen and warming with 

respect to exclosure effects on plant biomass.      
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Figure 3.3. Cumulative aboveground biomass of a) grasses and b) all vegetation in 
ambient temperature plots (filled bars) and warmed plots (open bars) in non-exclosed 
areas, mollusc exclosures and rodent exclosures, pooled over nitrogen treatments (n=20). 
Corresponding statistical results for treatment effects on exclosure effects (with exclosure 
effects estimated as the biomass difference between exclosed and non-exclosed areas 
within a warming treatment) presented in Table 3.1. 
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Figure 3.4. Mean abundances and heights of a) P. pratensis leaves and b) B. inermis 
tillers in non-exclosed and mollusc exclosed subplots in ambient temperature plots (filled 
bars) and in warmed plots (open bars).  Error bars denote standard error, and different 
lower case letters within a panel indicate a statistical difference between bars based on a 
Tukey’s HSD test (P<0.05). 
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3.4 Discussion 

3.4.1 Herbivores and global change field studies 

My results demonstrated that the exclusion of herbivores can interact substantially with 

warming and N addition to influence aboveground plant biomass.  In addition, multiple 

types of herbivores can contribute to this effect simultaneously, with variation between 

herbivore taxa in how they respond to different treatments and how they affect different 

plant functional groups.  Accounting for losses of biomass to herbivory is one of the main 

challenges of estimating net primary production (Fahey and Knapp 2007), and my results 

suggest that herbivores can differentially influence estimates of production between 

treatment and control plots.  

Throughout my experiment, non-exclosed areas featured an intact upper canopy of 

undamaged grass shoots, such that the effects of herbivory were relatively inconspicuous 

upon casual examination of the plots.  While I made no attempt to explicitly distinguish 

herbivory from other herbivore-related effects such as trampling, upon close examination 

of the shoot bases under the thick litter layer, substantial evidence of herbivory was 

observed.  Such inconspicuous feeding is consistent with the dominant herbivores at my 

site.  Meadow voles construct tunnels in the litter under tall grass swards to avoid avian 

predators (Mossman 1955), and harvest the fresh and highly nutritious re-growth of grass 

shoots within these tunnels.  Thus, unlike other grazers such as cattle or geese that can 

clip down the entire grass sward to a uniform low height, feeding by voles can be mostly 

hidden and highly localized.  At my site, the reduction in shoot abundance in non-

exclosed areas relative to rodent exclosed areas was consistent with localized feeding.  

Slugs, another dominant herbivore at the site, forage nocturnally (Newell 1966, Lyth 

1983), and the grey field slug concentrates feeding on seedlings (Byers and Bierlein 

1982, Hanley et al. 1995b).  This feeding strategy can be difficult to detect, and the 

removal of seedlings can be more destructive than an equivalent amount of feeding on 

larger plants, because of the pre-emption of future growth (Marquis 1992, Peters 2007).  

Although my non-destructive sampling technique, which accounted only for differences 

in leaf and tiller abundance and length, was potentially vulnerable to biases caused by 
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chewing along leaf margins and the resulting reduction in leaf thickness in non-exclosed 

areas, there was no evidence of such feeding damage at my site. Besides feeding, other 

herbivore activities that could have influenced plant biomass outside the exclosures 

include tunneling into the grass and litter layer, and urine and fecal inputs.  However, 

concerning the latter, I would have expected increased nutrient inputs from urine and 

feces to increase plant biomass, rather than reduce it. 

3.4.2 The influence of nitrogen on exclosure effects 

The effects of rodent exclusion, but not those of mollusc exclusion, increased in response 

to nitrogen addition. This finding is consistent with vole feeding trials that have 

demonstrated an increased palatability of nitrogen-enriched plant tissue (Hartley et al. 

1995, Lantova and Lanta 2008), but not with those that have shown increased 

consumption of nitrogen-enriched plants by slugs (Gebauer 2002).  Nevertheless, the 

insensitivity of slug plant consumption to nitrogen addition has been previously observed 

(Cleland et al. 2006).  Vole abundance increased in a nitrogen addition field experiment 

conducted by Treberg et al. (2010), although herbivore effects on plant biomass were not 

quantified, and the authors hypothesized that the voles might be directly attracted to the 

fertilizer pellets.  In addition to changes in plant tissue quality, N fertilization could result 

in a denser canopy cover, which can protect small mammals from avian predators (Birney 

et al. 1976), and vole density has correlated previously with increased plant cover 

(Mossman 1955, Hall et al. 1991).  Over the longer term, changes in plant species 

composition caused by fertilization can also alter vole abundance, possibly in the 

opposite direction than expected (Boonstra and Krebs 2006).      

Although there was no appropriate cage control available for the rodent exclosures to rule 

out potential direct effects of the cages on plant growth, as described above, careful 

observation at ground level confirmed the presence of substantial vole feeding in non-

exclosed areas and an absence of vole feeding in rodent exclosed areas (this observation 

was also consistent with the shoot abundance data).  Likewise, the large N fertilization 

effect inside rodent exclosures was consistent with the strong N limitation on plant 

biomass production at my site (Turner and Henry 2009).  The lack of an N addition effect 

on plant biomass outside the rodent exclosures was consistent with more intense 
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herbivore activity in the N addition plots, and by definition could not be explained by 

direct cage effects or other associated artifacts.  Finally, with my analysis of differences 

in exclosure effects among N treatments, any direct effects of the rodent exclosures on 

plant growth would have effectively cancelled out.  While an exclosure diameter of 20 

cm could be perceived as relatively small, the grasses grew mostly vertically, and the 

subplots were sufficiently large to accommodate as many as 100 individual grass shoots 

each.  Because the grasses at my site are clonal, I could not exclude the possibility that 

resources were shared underground between exclosed and non-exclosed tillers.  However, 

any such resource sharing would only have functioned to dampen the observed exclosure 

effects. 

The effect of rodent exclusion was moderate in June and increased through July, after 

which the effect remained stable.  This pattern likely reflects an emphasis on shoot 

feeding during the active growth phase of the plants, with the latter slowing dramatically 

in mid-July with decreased soil moisture and seed set (Hutchison and Henry 2010).  

Trends in exclusion effects on grasses in response to nitrogen addition were similar to 

trends in exclusion effects on total biomass, which can be explained by grasses making 

up approximately 96% of the total aboveground biomass at my site.   However, while the 

presence of herbivores appeared to equalize aboveground grass biomass in non-exclosed 

areas between fertilized and non-fertilized plots, total aboveground biomass decreased in 

non-exclosed areas in fertilized plots.  

3.4.3 The influence of warming on exclosure effects 

Contrary to my hypothesis, warming increased the effects of mollusc exclusion on grass 

biomass.  Nevertheless, a more thorough examination of the timing of slug feeding and 

their temperature optima provides an explanation for this effect.  In particular, although 

warming can cause water stress for slugs during the day, as noctural feeders (Newell 

1966, Lyth 1983), nighttime temperatures may be more relevant for slug feeding.  

Feeding by the grey field slug increases with increasing temperature until a peak of 14 °C 

(Wareing and Bailey 1985).  In comparison, the average minimum nightly temperatures 

at our site over May, June, July, August, September, and October were 6.7, 12.2, 13.2, 

14.6, 10.5, and 3.8 °C, respectively (Climate Data Online, Environment Canada, National 
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Climate Data and Information Archive). Given that the heaters warm the soil surface by 

approximately 2-3 °C in my experiment, the warming would typically move the slugs 

closer to their optimal feeding temperature at night.  While warming possibly influenced 

grass tissue quality and hence palatability, increased grass biomass production in 

response to warming can increase plant C:N ratios and decrease grass leaf N, P, and K 

(Tan et al. 1978, Shen et al. 2009), and the effect of warming is generally one of 

decreasing grass digestibility (Thorvaldsson et al. 2007).  Outside of the plots, the lack of 

a significant difference in plant biomass between PVC rings lacking copper tape and non-

exclosed areas indicated that mollusc exclusion, and not the presence of the PVC rings 

alone, was responsible for the exclosure effects. There was no substantial influence of 

warming on mollusc exclusion effects for the first sampling date, but likewise, the 

influence of warming on mollusc exclusion ceased to increase over the second half of the 

summer, which was consistent with the reduced production of new grass shoots at this 

time. 

While for grasses there was a significant increase in the effect of mollusc exclusion with 

warming and no effect of warming on the effect of rodent exclusion, the opposite 

occurred for total biomass.  Nevertheless, a single forb species, the legume Lotus 

corniculatus, was mostly responsible for the difference between grass biomass and total 

biomass, and this species was distributed patchily at the site, and not present in many of 

the experimental blocks.  I also made no effort to quantify the effects of herbivore 

exclusion on belowground plant biomass in my experiment.  In previous years, root 

biomass decreased with warming and did not respond to nitrogen (Hutchison and Henry 

2010).  However, given the rapid root turnover of the dominant grasses at my site 

(Stewart and Frank 2008), and problems associated with sampling fine root biomass, it 

can be difficult to estimate cumulative root biomass from multiple estimates of standing 

root biomass. 

3.4.4 Conclusions 

My results demonstrated that interactions between top-down and bottom-up factors can 

have a substantial influence on plant biomass in a grass-dominated system.  In addition, 

they revealed taxon-specific variation in herbivore effects between warming and N 
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addition treatments. Although the potential for small herbivores such as voles and slugs 

to exert strong top-down effects on plant biomass is well-established in the literature, the 

litter layer can conceal much of their activity and damage in grass dominated-systems.  

Their influence on plant responses to global change factors in field experiments may 

therefore go undetected if it is not explicitly quantified or controlled for.  The responses 

of herbivores in my experiment may have reflected their preferences with respect to small 

scale spatial variation in food quality and environmental conditions among the plots and 

the surrounding area.  Thus, caution should be exercised in interpreting my results as a 

projection of the magnitude of top-down effects on plant biomass under future global 

change scenarios. Specifically, drivers of global change will act at much larger spatial 

scales than in the experimental plots, and at these larger scales the responses of other 

factors (e.g. predators, pathogens) to global change may have important top-down effects 

on herbivore populations.  Furthermore, in plot-level field experiments herbivores may 

concentrate their activities in the preferred treatment plots, whereas future environmental 

changes at larger spatial scales would not provide herbivores with such a choice (Moise 

and Henry 2010).  When consumer exclusion is not practical, monitoring of plot usage by 

herbivores (using traps, direct counts, dropping counts or tracking tunnels) or the scoring 

of herbivore damage may provide useful insights into the relative strength of top-down 

and bottom-up processes within the context of these experiments.  Future studies 

performed at the landscape scales may better address how top-down effects will 

contribute to the regulation of herbivore populations in response to global change. 
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Chapter 4  

4 Nitrogen effects on diet choice and habitat use by 

the meadow vole, Microtus pennsylvanicus 

4.1 Introduction 

Resource quality is one of the most important components of plant-animal interactions 

(Stiling and Moon 2005). Although traditional foraging theory suggests that herbivore 

feeding dynamics are governed primarily by energy requirements (Charnov 1976, 

Belovsky 1986), plant nitrogen availability may also play a critical role (White 1993). 

Nitrogen acquisition is an important component of the feeding dynamics of herbivores 

(Mattson 1980), particularly because they depend on plants as a source of essential amino 

acids (Dadd 1973). Likewise, plant N concentration is positively related to important 

forage nutritional components such as protein content, dry matter digestibility, and 

digestible energy (Mårell et al. 2002). In addition to direct dietary implications, plant 

quality can have important ecosystem-level consequences, because herbivore density 

(Grant et al. 1977) and community composition (De Sassi et al. 2012), as well as foraging 

dynamics (Day and Detling 1990, Throop and Lerdau 2004) are often related to N 

availability.   

Rodent herbivores are strongly influenced by variation in resource quality (Schetter et al. 

1998, Galende and Raffaele 2012). In general, herbivore feeding responses to increased 

N availability can be attributed to increased tissue nitrogen content (Hartley et al. 1995, 

Ball et al. 2000, Throop and Lerdau 2004), although changes in the concentration of 

secondary defense compounds may also contribute to fertilization effects (Rousi et al. 

1993). Implications of high protein diets include increased body mass and earlier sexual 

maturation (Cameron and Eshelman 1996), as well as increased reproductive success 

(White 1978).   Evidence from diet choice experiments suggests that voles respond to the 

fertilization of shrubs and tree seedlings (Hartley et al. 1995, Strengbom et al. 2003). 

Overall, however, graminoids represent a much larger component of the vole diet than 

woody species (Thompson 1965).  Although N addition can significantly influence grass 
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palatability in other species of small mammalian herbivores such as hares (Paupério and 

Alves 2008, Somers et al. 2008), and the effects of variation in other components of grass 

tissue quality such as silica content have been examined in voles (Massey and Hartley 

2006), surprisingly, very little is known regarding vole feeding responses to changes in 

grass tissue nitrogen. It is likely that voles would be sensitive to changes in grass tissue 

nitrogen, given that plant N concentration is correlated with meadow vole feeding 

preferences among plant species (Bergeron and Jodoin 1987, Marquis and Batzli 1989).  

In addition to its effects on diet preference, plant tissue quality can influence herbivore 

habitat use (Batzli and Lesieutre 1991). For instance, meadow voles can discriminate 

between resource patches of varying quality at relatively small spatial scales, although 

under conditions of high density this relationship may be replaced by habitat selection at 

the landscape-level (Oatway and Morris 2007). Nitrogen addition can increase patch 

visitation by herbivores (Bakker et al. 2005), or alternatively reduce patch use when 

fertilization leads to a loss of plant diversity or a decline in the quality of preferred forage 

species (Hall et al. 1991). Furthermore, increases in plant biomass in response to 

fertilization can influence the use of resource patches for refuge, because voles rely on 

overhead vegetative cover as a means of protection from avian predators (Mossman 

1955). Despite the importance of patch structure to herbivore protection, plant nutritive 

quality may be more important than sward height in determining plant-herbivore 

interactions (Somers et al. 2012), highlighting the need to distinguish between N effects 

on diet choice and microhabitat preference. Likewise, because rodent herbivores 

contribute substantially to plant community composition (Ostfeld et al. 1997, Howe et al. 

2006), understanding these relationships can have important implications for overall 

ecosystem structure.  

Temporal variation in N availability and demand may further complicate the influence of 

fertilization on plant-herbivore interactions. Consumer dietary nitrogen demands are 

particularly high during reproduction (Mattson 1980, Awmack and Leather 2002), 

suggesting that the effects of N addition may vary in relation to breeding periods. 

Likewise, the importance of grasses in the vole diet varies seasonally (Lindroth and 

Batzli 1984, Haken and Batzli 1996), and temporal variation in grass responses to N 
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addition (Wherley et al. 2009, Larsen et al. 2012) may influence the relative palatability 

of grasses collected from the field for use in diet experiments. Ideally, plant material 

collected from the field for feeding experiments should be routinely clipped in order to 

mimic the high quality re-growth preferred by hares and voles, but even in these cases, 

foliar protein content can vary significantly over time (Somers et al. 2012).  

The objective of this study was to determine the effects of N addition on grass 

palatability and resource patch selection by the meadow vole, Microtus pennsylvanicus, 

in a temperate old-field using a combination of feeding trials and tracking tunnel 

observations.  Based on the assumption that N addition would increase plant tissue N 

content, I predicted N addition would increase both grass palatability and microhabitat 

preference in the field. I explored temporal variation in N effects on herbivore dynamics 

by repeating the feeding trials and tracking tunnel observations multiple times across the 

plant growing season. I predicted that vole responses to grass N addition would be 

highest from early- to mid- growing season, when the grasses grow most actively.  

4.2 Methods 

4.2.1 Study site and forage preparation 

The study site was located in a temperate old field in London, ON, Canada (43°1′46″ N, 

81°12′52″ W). Previously used for agriculture, this site was sown with the perennial 

grasses Kentucky bluegrass (Poa pratensis L.) and smooth brome (Bromus inermis 

Leyss), and was not mowed or plowed in more than 25 years. Other vegetation at this site 

included the patchily distributed forbs Canada thistle (Cirsium arvense L.) and bird’s-foot 

trefoil (Lotus corniculatus L.). The mean annual temperature for the site is 7.5°C with a 

low monthly mean of −6.3°C (January) and a high monthly mean of 20.5°C (July), and 

mean annual precipitation of 818 mm, with a low monthly total of 61 mm (February) and 

a high monthly total of 97 mm (December) (1971-2000 Climate Normals, National 

Climate Data and Information Archive, Environment Canada).  

In May 2010, three 1-m2 N-fertilized plots were established at the site to generate forage 

material for the feeding experiments.  Each forage plot received 2 g of N in the form of 
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aqueous ammonium nitrate (2 L) in early June, July, and August for a total of 6 g N. This 

amount was chosen to match the addition rate used in the global change field experiment 

already established at this field site (see details below). An equivalent amount of de-

ionized water (2 L per plot) was added to each of three non-fertilized forage plots, which 

were separated from nitrogen plots by a 1 m2 buffer zone. Plot vegetation was kept short 

(approximately 3 cm) using a weed trimmer in order to maintain grass in a state of high 

quality re-growth similar to that of grass tillers fed upon by voles.  Trimmed material was 

removed from all plot surfaces following each clipping event. Likewise, plot litter was 

removed before each clipping and subsequently replaced to maintain humidity at the soil 

surface. Approximately two weeks following each nitrogen application, both P. pratensis 

and B. inermis material was cut and collected by hand for use in cafeteria-style feeding 

experiments. A sub-set of the grass material was oven-dried for 72 hours at 65 °C in 

order to estimate initial dry weights of the material used for the feeding trials. Nitrogen 

content of the dried control material was quantified using a Kjeldahl digestion procedure 

modified from Shirai and Kawashima (1993). Briefly, grass material was digested in 

concentrated sulfuric acid with zinc powder, and NH4-N in each digest was quantified 

colormetrically using a SmartChem 140 Discrete Autoanalyzer (Westco Scientific, CT, 

USA). 

4.2.2 Patch use trials 

Patch use trials were developed as part of a larger global change field experiment already 

established at the study site. The field experiment consisted of two temperature 

treatments (warmed and control), crossed with two levels of nitrogen addition (N 

fertilized and control) for a total of four treatment combinations.  These treatments were 

applied to 1-m2 circular plots distributed among ten blocks for a total of forty treatment 

plots; see Turner and Henry (2009) for full experiment details. Briefly, ceramic infrared 

heaters were used to warm the treatment plots by approximately 2-3°C at the soil surface, 

while nitrogen was added annually in two forms; a 2 g m-2 pulse of aqueous ammonium 

nitrate added at snowmelt in early-spring, while 4 g m-2 of slow-release ammonium 

nitrate pellets was added during early-summer. The application rate was based on 

estimates of increased atmospheric N deposition expected for this area by the year 2050 



91 

 

 

(Galloway et al. 2004). For the purpose of my experiment, each treatment plot was 

considered to be a resource patch. Although I did not anticipate that warming would have 

a direct effect on vole patch choice, I included these plots in my experiment because a 

previous study revealed that warming significantly increased plot biomass (Hutchison 

and Henry 2010), which in turn could influence the use of plots by voles based on the 

quantity of vegetative cover. In order to quantify meadow vole activity within resources 

patches tracking tunnels were constructed, with each consisting of a white tracking card 

and ink pad housed within a section of aluminum downspout measuring 35 × 8 × 6 cm. 

Once per month from June until September 2010, one tunnel was placed on the soil 

surface in each of the forty resource patches and retrieved following a 24 h period.  

Meadow vole prints were identified and track counts were used as an estimate of relative 

vole activity within resource patches. 

4.2.3 Vole collection and feeding assays 

A grid consisting of thirty Longworth traps was established across the entire field site (50 

m × 75 m) to collect meadow voles for feeding trials, as well as to determine vole 

densities using the Schnabel method (Sutherland 1996). Each trap contained cotton 

bedding and was baited with sunflower seeds. Trapping for the purpose of density 

estimates occurred once per month, with each event consisting of three consecutive 

trapping days. Traps were set in the early evening and inspected the next morning at 

approximately 09:00 am. Prior to the initiation of monthly trapping events, trapping grids 

were set and locked open for three consecutive days in order to allow animals to become 

familiar with the presence of the traps. During feeding trial periods, captured voles were 

transported back to the university animal holding facility. A total of 15 male and 11 

female meadow voles were used in the feeding trial assays, with average weights of 41.3 

g and 33.9 g, respectively.  At the holding facility the animals were fed a combination of 

dandelions and grass from the field site during a three day acclimation period, and were 

also provided access to water ad libitum. The light cycle was held at a constant 16L:8D 

for the duration of the experiment.  For cafeteria feeding assays, voles were provided 

either a P. pratensis or B. inermis diet consisting of both N fertilized and non-fertilized 

material, with individual trials being terminated once voles had removed roughly 75% of 
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either material as determined by visual estimation. Diet placement within each cage was 

randomly assigned to one of two locations in order to avoid positional bias. Following 

trial termination, all remaining material was oven dried at 65 °C for 72 h in order to 

determine consumption on a dry weight basis. A second set of trials was conducted 24 h 

following the termination of the first set. Values obtained over the two-day period were 

averaged within replicates (i.e. for each vole).  Animals were returned to the field site 

once the experiment was concluded. Feeding experiments were repeated three times 

(once in June, July, and August) with no animal being used in more than one month. This 

research conformed to ASM guidelines as outlined by Sikes and Gannon (2011). All 

procedures were performed according to protocols specified within Animal Use Protocol 

2010-043 granted to Dr. Hugh Henry by Animal Care and Veterinary Services at Western 

University. Meadow vole live capture was approved by the Ministry of Natural 

Resources, authorization number 1056963. 

4.2.4 Statistical analyses 

There was no significant difference between the consumption of P. pratensis and B. 

inermis material (P-values for June and July were 0.52 and 0.96, respectively; no analysis 

was performed for August because there was insufficient B. inermis material to perform 

species comparisons), so relative palatability values were pooled over grass species. For 

each of the three grass palatability trials, t-tests were performed to determine the effect of 

N addition on relative grass consumption. Because fertilized and non-fertilized 

consumption proportions sum to a value of 1 for each replicate, I compared fertilized 

grass consumption values to a hypothetical mean of 0.5, which represented zero feeding 

preference. I also performed t-tests to determine if nitrogen fertilization of forage plots 

significantly influenced grass N concentration. For each of the four resource patch use 

trials, a non-parametric Friedman test was conducted to determine if meadow vole track 

counts varied among treatment plots. T-tests were conducted using JMP 4.0 (SAS 

Institute), while Friedman tests were performed using SPSS 14.0 (Systat). 
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4.3 Results 

4.3.1 Feeding trials 

In the June feeding trial, the average consumption of the fertilized grasses was nearly 

double that of the control grasses (67% vs. 37%; p=0.02; Fig. 4.1), but there were no 

significant effects of N on diet choice in either July or August. Grass tissue N 

concentrations increased in response to N addition from 2.4% to 3.1% in June (p=0.006) 

and from 2.2% to 2.7% in July (p=0.01), but there was no significant difference among 

treatments in August (Fig. 4.2). 

4.3.2 Density measurements and track counts 

Based on Longworth trap data collected over summer 2010, the average meadow vole 

density across the entire field site was 239 voles/ha. In addition to meadow voles, other 

herbivorous rodents caught at this site included deer mice (Peromyscus spp.). However, 

trapping patterns suggest that deer mouse distributions were restricted to woodland 

habitats adjacent to the old field system. Tracking tunnels placed within experimental 

resource patches revealed that vole track counts were highly variable, with between 0 and 

32 counts per card.  However, there were no significant differences in counts among 

treatments during any month of the experiment (Table 4.1). 

 

 

 

 

 

 

 



94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

June July August

R
e

la
ti

v
e
 C

o
n

s
u

m
p

ti
o

n
 (

%
)

0

20

40

60

80

100

Control 

N Fertilized  

*

        Figure 4.1. Effects of N addition on grass palatability to meadow voles. Bars 
represent mean relative consumption values (±SE, n=8, 10, 8 for June, July, and 
August, respectively). Asterisk denotes within-month significant difference between 
the relative consumption of fertilized grass and a hypothetical value of 0.5 
representing zero preference. 
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Figure 4.2. Effects of N addition on grass diet nitrogen content. Bars represent mean N 
concentration values (±SE, n=7, 7, and 6 for June, July, and August, respectively). Within-
month significant differences are denoted by an asterisk. 
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Table 4.1. Summary of Friedman test P-values for warming (W) and nitrogen (N) effects 
on the number of meadow vole tracks (mean ± SE) in a plot-level field experiment set in 
a temperate old field. Data are arranged by month. 

 

 

 

 

 

 

 

 

 

 

Treatments

Control W N W/N X
2
-value P-value

June 4.89 (±1.37) 5.4 (±1.88) 5.44 (±1.18) 2.44 (±1.32) 0.5 0.92

July 0 4.5 (±1.97) 3.1 (±1.31) 4.56 (±1.54) 5.12 0.16

August 4.8 (±2.15) 2.1 (±1.45) 2.3 (±1.55) 0.8 (±0.8) 3.188 0.36

September 11.5 (±1.23) 3.4 (±2.56) 2.7 (±1.56) 4 (±2.27) 7.657 0.054

Degrees of freedom = 3 for each month
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4.4 Discussion 

4.4.1 Grass palatability trials 

Despite the importance of energy acquisition, herbivore feeding dynamics can also be 

determined by the maximization of nutrient intake (Simpson et al. 2004), an idea 

supported by evidence that forage quality has a strong influence over herbivore diet 

choice (Mattson 1980, Stiling and Moon 2005). Available N in plant tissue is often low 

relative to herbivore N demand (White 1993), and positive herbivore responses to 

nitrogen fertilization are often associated with increased plant tissue N content (Ball et al. 

2000, Throop and Lerdau 2004).  My feeding experiments revealed that nitrogen addition 

significantly increased grass palatability to meadow voles in the June feeding trial (Fig. 

4.1).  This result is consistent with previous studies that have demonstrated positive 

responses of voles to the N fertilization of a variety of woody plants, including bilberry 

(Strengbom et al. 2003), as well as heather shrubs and Sitka spruce seedlings (Hartley et 

al. 1995). Also, as described earlier, interspecific variation in plant N content is 

significantly related to forage species preferences in meadow voles (Bergeron and Jodoin 

1987, Marquis and Batzli 1989).     

My observation that voles only preferred N fertilized grasses early in the summer was 

consistent with results from an exclosure experiment (Moise and Henry 2012) previously 

conducted at my field site.  In the latter study, the exclosure effect increased in response 

to N addition, but only for the June sampling period, which could be explained by 

increased feeding by voles in the N addition plots at that time. The grass tissue N 

analyses I conducted in this chapter revealed that the effect of N addition on tissue N 

concentration was also highest early in the summer (Fig. 4.2), which coincides with the 

time when these cool-season (C3) grasses are most active, prior to seed set and the 

senescence of many leaves in July (Hutchison and Henry 2010). Although increased 

herbivore N demand may reflect greater nitrogen requirements during reproductive 

periods (Mattson 1980, Awmack and Leather 2002), meadow voles breed throughout 

both the spring and summer (Turner and Iverson 1973), and therefore breeding period 

would not explain why I observed meadow voles respond to increased grass N content in 



98 

 

 

the June feeding experiments but not in July. It is possible that despite the statistically 

significant effect of N addition on tissue N content in July, the overall increase in tissue 

nitrogen content at that time was not biologically significant with respect to vole feeding 

preferences (grass nitrogen content in response to N addition was 2.7% in July, compared 

to 3.2% in June).  This explanation is consistent with the finding of Hjältén et al. (2008) 

that differences in tissue N content between high N (2.8%) and low N (2.3%) poplar diets 

were too subtle to elicit a feeding response from M. pennsylvanicus. 

Overall, my results suggest that increased forage palatability is likely an important 

mechanism governing meadow vole responses to changes in N availability, a finding that 

is particularly important given the current lack of knowledge regarding microtine 

foraging responses to variation in grass N content. Furthermore, differences in N effects 

on vole feeding preferences observed across the growing season suggest that both the 

community- and ecosystem-level consequences of changes in nitrogen availability on 

patterns of herbivory are likely subject to temporal variation in intraspecific plant nutrient 

availability.  

4.4.2 Resource patch selection 

Soil nutrient availability and the resulting changes in plant tissue quality can influence 

vegetation patch use by herbivores (Batzli and Lesieutre 1991, Treydte et al. 2011).  In 

particular, herbivores may be attracted to patches in response to increased foliar N 

concentration (Drent and Van der Wal 1999, Bakker et al. 2005); however, I did not 

observe an effect of nitrogen fertilization or warming on meadow vole activity (Table 

4.1). The scale of my patch manipulations (each block consisted of 1-m2 plots, spaced 

approximately 1 m apart) was small relative to the extensive home range of meadow 

voles in grass dominated systems (~800-2000 m2; Blair 1940).  Therefore, it is possible 

that a larger patch size would be needed to influence vole activity. Although meadow 

voles possess some ability to select habitat at relatively small spatial scales, as population 

size increases space-use dynamics are predominantly determined at the landscape-scale 

by density-dependent processes such as conspecific interactions (Oatway and Morris 

2007), and there was a relatively high population density over the experimental period. 

Ultimately, intense intraspecific competition may have necessitated the use of lower 
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quality resources by subordinate individuals regardless of relative patch fitness value. 

Furthermore, regardless of density, herbivore interaction with less preferred patches may 

have occurred simply due to their proximity to high quality neighboring vegetation 

(Baraza et al. 2006).  

The lack of a treatment effect on vole activity may have alternatively resulted from 

meadow voles exhibiting greater sensitivity to nutrients other than N in the field.  In 

addition to N content, plant phosphorous availability is positively related to herbivore 

foraging preferences (Schütz et al. 2003) as well as herbivore abundance (Apple et al. 

2009). Likewise, increased meadow vole activity has been observed following the 

fertilization of patches with sodium phosphate (Inoye et al. 1987), possibly owing to the 

positive relationship between diet sodium content and vole reproductive success (Batzli 

1986).      

Shifts in vegetation stature in response to fertilization can negate potential N effects on 

resource patch use. Grass biomass increased significantly in response to N addition in the 

field plots where I ran my experiment (Kim and Henry, in press), and the C:N ratio of 

grasses increases with increased tiller height (Novoa and Loomis 1981, Belanger and 

Gastal 2000).  This growth dilution of nutrients can result in no increase in tissue N 

concentration, despite increases in total plant N.  However, the grass collected from the 

field for the feeding trials was mowed, which meant that N fertilization could not result in 

large increases in tiller height. Although increased plot biomass and vegetation height 

may benefit small herbivores by visually obstructing predators (Mossman 1955, 

Koivunen et al. 1998), it does not always result in greater patch use (van de Koppel et al. 

1996, Iason et al. 2002).  Furthermore, the voles may have been relatively insensitive to 

increases in aboveground biomass in the N addition plots because a thick (approximately 

5-10 cm deep) litter layer provided cover from predators across most of the site.  

Overall, my tracking tunnel data suggest that N addition had no effect on relative 

meadow vole activity across resource patches at my scale of observation, although this 

may have resulted from the overriding effects of additional components of vegetation 

quality, or possibly density-dependent herbivore population dynamics. The arrangement 
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of resource patches used for this study represents what is typical for many plot-level 

global change field experiments in grass-dominated systems.  Therefore, my findings 

may be applicable to similar field manipulations subject to small mammal herbivory. 

Although tracking tunnel observations may highlight potential herbivore influences on 

overall plant responses to treatment effects within the context of plot-level global change 

experiments, they are unlikely to predict changes in herbivore population dynamics under 

future environmental scenarios per se, because animals may simply congregate within 

preferred resource patches in plot-level field manipulations (Moise and Henry 2010).  

Inferences from adaptive habitat selection strategies may provide a more useful approach 

for predicting shifts in herbivore population dynamics in response to drivers of global 

change (e.g. Morris et al. 2011).  
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Chapter 5  

5 Interactive responses of grass litter decomposition 

to warming, nitrogen addition, and detritivore 

access  

 

5.1 Introduction 

Responses of soil processes remain a major uncertainty in attempts to predict ecosystem 

responses to global change (Pendall et al. 2008).  Changes to the dynamics of plant litter 

decomposition are an important component of these responses (Singh and Gupta 1977, 

Vitousek 1982), with the turnover of plant litter contributing to C flux between terrestrial 

and atmospheric pools (Chapin et al. 2002). Litter turnover also influences primary 

productivity because C and N mineralization are closely linked (McGill and Cole 1981), 

and litter can modify soil microclimate (Beatty and Sholes 1988, Deutsch et al. 2010), 

and interfere with the establishment of newly germinated plants (Bosy and Reader 1995).  

Overall, litter mass loss is correlated with climate, tissue chemistry and soil biology 

(Swift et al. 1979, Aerts 1997), all of which can be influenced by drivers of global 

change, such as climate warming and nitrogen deposition (Knorr et al. 2005, Aerts 2006, 

Blankinship et al. 2011).  Warming effects on decomposition can occur directly through 

changes to microbial activity and extracellular enzyme activity (Wan et al. 2007, 

Brzostek et al. 2012), and indirectly as a result of soil drying (Allison and Treseder 2008) 

or changes to plant tissue quality (An et al. 2005). Likewise, nitrogen addition can 

directly alter microbial activity (Carreiro et al. 2000), or may influence litter chemistry, 

altering its subsequent decomposition (Henry et al. 2005).  

In addition to the influence of bacteria and fungi on organic matter decomposition 

(Pritchard 2011), soil detritivores also contribute substantially to litter breakdown (Swift 
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et al. 1979, Wolters 2000, Wall et al. 2008).  Soil fauna can respond to warming and N 

addition (Hättenschwiler and Bretscher 2008, Blankinship et al. 2011, Holmstrup et al. 

2012), but the magnitude and direction of these responses can differ considerably from 

those of microbes. For example, in response to N addition, soil fauna can be sensitive to 

ammonium toxicity (Wei et al. 2012) or salt desiccation (Lohm et al. 1977).  

Furthermore, the combined effects of factors such as warming and fertilization on soil 

organisms can vary substantially from their individual effects (Sjursen et al. 2005).  

Evidence from microcosm experiments suggests that decomposition responses to global 

change treatments can be strongly influenced by detritivore effects (Coûteaux et al. 1991, 

Rouifed et al. 2010).  Nevertheless, many studies examining global change effects on 

decomposition often exclude soil fauna, and macrofauna in particular, which could not 

only result in an underestimate of litter turnover, but the effects of the latter could interact 

with the global change factors (Wall et al. 2008).   

The time scale of responses may further complicate the relationship between abiotic and 

biotic controls over decomposition.  For example, positive responses of C turnover to 

warming can occur shortly after litter incubation (Xu et al. 2012b), yet changes in carbon 

pools, microbial biomass and carbon use efficiency can negate the effect of warming over 

longer time scales (Bradford et al. 2008, Allison et al. 2010). Likewise, despite short-term 

positive effects of N addition on the decomposition of newly senesced litter, the turnover 

of recalcitrant material that accumulates as decay progresses can be slowed by N addition 

(Fog 1988), possibly as a result of the inhibition of ligninolytic enzyme activity (Carreiro 

et al. 2000). The responses of detritivores to variation in substrate quality can differ 

substantially from those of microbes (Scheu and Schaefer 1998), suggesting that these 

two groups may be differentially affected by changes in litter chemistry during 

decomposition. In addition, because the composition of soil fauna communities changes 

seasonally (Levings and Windsor 1996, Zhu et al. 2010), temporal differences in 

treatment effects can result from interspecific variation in detritivore sensitivity to factors 

such as warming and drought (Kardol et al. 2011).   

The objective of this study was to determine the interactive effects of warming, nitrogen 

addition and detritivore access on litter mass loss, both at six weeks post-incubation and 
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after one year, in a global change experiment conducted in a temperate old-field.  Based 

on the assumption that the responses of detritivores and microbes to warming and N 

addition would vary, I predicted there would be interactive effects of the global change 

treatments and detritivore manipulation on litter mass loss. To further explore the 

mechanisms (i.e. effects of litter origin and microenvironment) explaining mass loss 

responses in the global change experiment, I transplanted litter collected from the 

treatment plots into a common environment, and also transplanted untreated litter into the 

treatment plots.  I predicted that the additive effects of the litter origin and 

microenvironment incubations would equal the integrated response of treated litter 

incubated in the treatment plots.      

5.2 Methods 

5.2.1 Study site 

The experiment was conducted at an old field site in London, ON, Canada (43°1′46″ N, 

81°12′52″ W) between October 2010 and October 2011. The site is a former agricultural 

field that has not been plowed or mowed in over 25 years. Dominant vegetation at the site 

includes two grass species, Kentucky bluegrass (Poa pratensis L.) and smooth brome 

(Bromus inermis Leyss.), with the forb Canada thistle (Cirsium arvense L.) and legume 

bird’s-foot trefoil (Lotus corniculatus L.) present in patches.  The mean annual 

temperature for the site is 7.5°C (8.1°C over the experimental period), with a low 

monthly mean of −6.3°C (January) and a high monthly mean of 20.5°C (July), and mean 

annual precipitation of 981 mm (1100 mm over the experimental period), with a low 

monthly total of 61 mm (February) and a high monthly total of 97 mm (December) 

(Canadian Climate Normals 1971–2000, Environment Canada, National Climate Data 

and Information Archive). The soil is classified as silt loam glacial till (Hagerty and 

Kingston 2011), with pH 7.6 and composed of approximately 50% sand, 41% silt, and 

9% clay (Bell et al. 2010). 
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5.2.2 Warming and N addition experiment 

Warming and N addition treatments were applied to 1 m2 circular plots set up in a 

factorial block design, including two levels of warming (ambient and heated) crossed 

with two nitrogen treatments (control and N-fertilized). All four treatment combinations 

were replicated across ten different blocks for a total of 40 plots; see Turner and Henry 

(2009) for full details of the experiment. Increased temperature of approximately 2-3°C at 

the soil surface was achieved using 150 W ceramic infrared heaters (Zoo-Med 

Laboratories, San Luis Obispo, CA, USA) which mimic solar heating without the 

production of photosynthetically active radiation (Shen and Harte 2000). The plots were 

warmed continuously since late 2006. Soil temperature and moisture data were collected 

using 107-BAM-L temperature probes and CS-616 time domain reflectometers, 

respectively (Campbell Scientific Corp.). Nitrogen treatments began in early 2007 and 

were added annually in two forms: a 2 g m-2 pulse of aqueous ammonium nitrate added at 

snow melt in early-spring, and 4 g m-2 of slow-release ammonium nitrate pellets added in 

early-summer. Application rate was based on estimates of increased N deposition 

expected for this area by the year 2050 (Galloway et al. 2004). 

5.2.3 Sample collection and litter bag design 

In early September 2010, senesced tissue of both Poa pratensis and Bromus inermis was 

collected from the global change treatment plots, as well as from similar areas in the 

same field outside of the plots. Only standing dead material was collected in order to 

avoid including loose surface litter from previous years’ growth. Material was pooled for 

each treatment and allowed to air dry for three days at room temperature. A sub-set of 

control samples was dried at 65 °C for three days in order to estimate initial sample dry 

weights prior to field incubation.  

Litter subsamples were prepared for the decomposition experiment with a consistent 

3:1:1 ratio of B. inermis stems to B. inermis leaves to P. pratensis tillers in order to 

standardize litter content among subsamples. Two different litter presentation techniques 

were employed in order to manipulate detritivore access to the material. A detritivore 

restriction treatment was achieved using standard nylon mesh litter bags (10 × 5 cm bag 
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size, 100 µm mesh size, hereafter referred to as ‘mesh’ samples), which allowed for the 

exclusion of both meso and macro soil fauna. In order to allow free access to litter by 

detritivores, a second set of samples was constructed without the use of mesh by securing 

both ends of each litter sample using spring-loaded paper clamps (hereafter referred to as 

‘open’ samples). Two mesh samples and two open samples were placed in each plot.  The 

method of using bags with larger mesh sizes in order to allow detritivore access was not 

appropriate for my purposes because individual grass pieces were thin, and larger holes 

would have resulted in the loss of material. Litter pieces used for open samples were 

approximately 9 cm in length, similar to the length of pieces used in the mesh bags. 

Roughly 5% of the material was obstructed by the clamp contact points and hence 

restricted from detritivore access.  To identify potential differences in the direct effects of 

the mesh bags  vs. clamps on litter decomposition, control incubations were also 

conducted in the field to quantify the mass loss of mesh and open samples in the absence 

of soil fauna (through the use of plastic exclosures), both over six weeks (n=5) and over 

one year (n=5).   The control incubations were based on an approach suggested by 

Bradford et al. (2002) for testing for the effects of different mesh sizes on mass loss in the 

absence of soil fauna. 

5.2.4 Litter incubation 

Litter samples (both mesh and open) removed from the experimental plots were 

subsequently incubated in their corresponding treatment plots (e.g. litter from N addition 

plots was returned to the N addition plots).  In order to clarify the mechanisms (i.e. litter 

origin versus environmental conditions) underlying the treatment effects on litter mass 

loss, in addition to the aforementioned non-transplanted ‘integrated response’ samples, 

litter transplants were used to achieve two alternative incubation configurations: a ‘litter 

origin’ incubation, which involved the transplantation of litter from global change 

treatment plots into a common garden in the field, and  a ‘microenvironment’ incubation, 

which involved the transplantation of untreated litter from the surrounding field into the 

global change plots. For all incubations, litter samples were placed in direct contact with 

the soil surface and then covered using the loose litter that had been displaced to insert 

them.  Litter samples were recovered from the field at two different time periods; one 
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following six weeks of incubation, and another after one year. Following the incubation 

period, litter samples were oven-dried at 65°C for three days and then weighed. Final dry 

weights were compared with the water mass-corrected initial air dry weights in order to 

determine % mass loss. 

5.2.5 Data analyses 

For each of the six combinations of the two sampling dates and the three incubation 

configurations, I used three-way fixed-effects ANOVAs to test for the response of mass 

loss to the effects of the between-subjects factors (N addition, warming, and detritivore 

access) as well as their interaction terms. For soil temperature and moisture I used two-

way fixed-effects ANOVAs to test for the effects of warming and N addition, followed 

by Tukey’s tests to determine significantly different treatment combinations. All data 

distributions were checked for normality by visual examination of histograms. My 

analyses were conducted using the Fit model platform in JMP 4.0 (SAS Institute). I used 

% mass loss as the dependent variable which was calculated as 1- (final dry mass/initial 

dry mass). 

5.3 Results 

5.3.1 Integrated response incubations 

After six weeks of decomposition (Fig. 5.1a), mass loss varied on average from 13% to 

23%.  There was 4% greater mass loss in N fertilized plots than in control plots 

(p=0.0004, Table 5.1; all percent treatment effects are reported as absolute changes in % 

mass loss).  Additionally, there was a significant interaction between warming and 

detritivore access (p=0.0007), with open samples experiencing 5% greater mass loss than 

mesh samples in ambient temperature plots, but not in heated plots, and open samples in 

ambient temperature plots experiencing 5% higher mass loss than open samples in heated 

plots.  Heated plots experienced a significant decrease in soil moisture (Table 5.2).  

Control incubations confirmed that there were no direct effects of mesh bags vs. clamps 

on mass loss after six weeks (p=0.297; Open = 24.46% (±0.02%), Bag = 27.29% 

(±0.02%)).  
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After one year (Fig. 5.1b), mass loss varied on average from 47% to 75%.  There were 

significant increases in mass loss of 4%, 16%, and 20% with warming (p=0.017), 

nitrogen addition (p=0.004) and detritivore access (p<0.0001), respectively, although 

these main effects were not completely additive (there was a significant three-way 

interaction; p=0.032).  There was no significant effect of heating on mean soil 

temperature over one year (Table 5.2), because with increased melting of snow cover, the 

heated plots were exposed to cold air temperatures and were often colder than the 

ambient plots over winter.  Control incubations confirmed that there were no direct 

effects of mesh bags vs. clamps on mass loss after one year (p=0.638; Open = 55.11% 

(±0.03%), Bag = 57.29% (±0.03%)). 
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Figure 5.1. Interactive effects of N addition, warming, and detritivore access on litter mass 
loss (%) in the integrated response incubation after a) six weeks and b) one year. Bars 
represent means ± SE, with significant 3-way ANOVA results presented in the upper- left 
corner of the figure. 
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Six-Week Incubation One-Year Incubation

Integrated Litter Origin Microenvironment Integrated Litter Origin Microenvironment

W(1,67) 0.222   0.03* 0.437  0.017* 0.427 0.926

N(1,67)          0.0004***     0.008** 0.793    0.004** 0.356 0.952

D(1,67) 0.118 0.571    0.002**    <0.0001***  0.011*      <0.0001***

WxN(1,67) 0.469 0.962 0.425 0.159 0.94 0.078

WxD(1,67)          0.0007*** 0.804 0.72 0.877 0.755 0.387

NxD(1,67) 0.517  0.018* 0.024* 0.83 0.28 0.875

WxNxD(1,67) 0.116 0.158 0.827  0.032* 0.421 0.937

Degrees of freedom are displayed in parentheses after the effects

W  Warming, N Nitrogen, D  Detritivore Access

Significance *0.05–0.01, **0.01–0.001, ***<0.001

Table 5.1. Summary of ANOVA P-values for the effects of global change and detritivore access treatments on 
litter % mass loss in the field. Data are arranged by incubation regime nested within the six-week (Oct-Nov 
2010) and one-year (October 2010-2011) sampling periods. 
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                    Soil Temperature (°C) Soil Moisture (vol/vol)

                   Six Weeks Six Weeks One Year

Control 6.5 (±0.1)
a

10.0 (±0.1)          0.305 (±0.007)
a

0.316 (±0.006)
a

W 7.5 (±0.2)
b

10.3 (±0.2)          0.286 (±0.005)
b

0.301 (±0.005)
b

N 6.9 (±0.1)
ab

10.1 (±0.1)          0.304 (±0.004)
a

0.316 (±0.005)
a

WxN 7.1 (±0.2)
b

10.3 (±0.1)          0.284 (±0.007)
b

0.298 (±0.006)
b

W warming, N Nitrogen Addition

               One Year

Table 5.2. Summary of warming and N addition effects on mean (±SE) soil temperature (5 cm depth) and 
moisture (0-15 cm) measurements recorded in the global  change field experiment after six weeks (Oct-Nov 
2010) and one year (October 2010-2011) of litter incubation. Significant differences within a sampling 
period are denoted by different letter combinations for each soil variable. 
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5.3.2 Litter origin incubations 

For the litter origin incubations, after six weeks (Fig. 5.2a) there was a significant 

interaction between nitrogen addition and detritivore access (p=0.018), with material 

obtained from N fertilized plots experiencing 10% greater mass loss than material from 

non-fertilized plots when samples were open to detritivores, but not when detritivores 

were restricted. There was also increased mass loss of 4% in litter from warmed plots 

(p=0.03) and increased mass loss of 5% in litter from nitrogen addition plots (p=0.008).  

After one year (Fig 5.2b), detritivore access increased mass loss by 6% (p=0.011), but 

none of the other treatment effects were significant (Table 5.1). 

5.3.3 Microenvironment incubations 

For the microenvironment incubations, after 6 weeks (Fig. 5.3a) there was a significant 

interaction between nitrogen addition and detritivore access (p=0.024), with the mass loss 

of open samples double that of mesh samples in non-fertilized plots, but not in N-

fertilized plots. Open samples also experienced 6% greater mass loss than mesh samples 

(p=0.002).  After one year (Fig. 5.3b), detritivore access increased mass loss by 21% 

(p<0.0001), but there were no other significant treatment effects (Table 5.1).  
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Figure 5.2. Interactive effects of N addition, warming, and detritivore access on litter 
mass loss (%) in the litter origin incubation after a) six weeks and b) one year. Bars 
represent means ± SE, with significant 3-way ANOVA results presented in the upper-left 
corner of the figure. 
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Figure 5.3 Interactive effects of N addition, warming, and detritivore access on litter 
mass loss (%) in the microenvironment incubation after a) six weeks and b) one year. 
Bars represent means ± SE, with significant 3-way ANOVA results presented in the 
upper-left corner of the figure. 

 

 

 

 

M
a
s

s
 L

o
s

s
 (

%
)

0

20

40

60

80

100

Mesh

OpenP
D
: 0.002

P
NxD

: 0.024

C N W N+W

M
a

s
s
 L

o
s
s

 (
%

)

0

20

40

60

80
P

D
: <0.0001

(a) Six Weeks

(b) One Year



121 

 

 

5.4 Discussion 

5.4.1 Integrated responses after six weeks 

Soil fauna can contribute substantially to C cycling, both directly through fractionation 

and consumption of plant litter, and indirectly through interactions with the microbial 

community (Swift et al. 1979, Wolters 2000).  It follows that alterations to soil faunal 

assemblages can modify litter turnover responses to drivers of global change (Coûteaux 

et al. 1991, Rouifed et al. 2010).  After six weeks of incubation, open litter samples 

experienced greater mass loss than mesh samples in ambient temperature plots, but not in 

heated plots, suggesting that detritivore activities were reduced by warming.  In grass-

dominated systems, earthworms, mites, and other arthropods are the soil fauna that play 

the largest role in litter decomposition (Coleman et al. 1990, Bradford 2002, Uyl et al. 

2002).  Warming and associated decreases in soil moisture can impose climatic stress on 

the detritivore community (Pritchard 2011), decreasing soil fauna abundance, biomass, 

and diversity (Briones et al. 1997, Blankinship et al. 2011, Xu et al. 2012a). In my study, 

soil moisture from 0-15 cm depth was approximately 7% lower in warmed plots than in 

ambient temperature plots during the six week incubation period (Table 5.2).  Given that 

soil buffers the effects of warming (Lavelle and Spain 2001), more extreme differences 

were likely present at the soil surface, enhancing desiccation stress for the detritivores. 

My observation that samples in N addition plots experienced greater mass loss than 

samples in non-fertilized plots is consistent with other studies of the effects of N addition 

on grass turnover (Hunt et al. 1988).  However, both the direction and magnitude of N 

effects on litter decomposition often depend on site-specific factors (Hobbie 2005), with 

the trend of positive responses in systems exposed to low levels of background N 

deposition (<5 kg N ha-1 y-1; (Knorr et al. 2005). For comparison, the N deposition rate in 

the region of my study is approximately 6 kg N ha-1 y-1 (Total Inorganic N Deposition, 

National Atmospheric Deposition Program, 2006).  
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5.4.2 Integrated responses after one year 

After one year of litter incubation, the negative effect of warming on mass loss for open 

samples observed after six weeks was no longer present, and there were no significant 

interactions between detritivore access and the warming and N addition treatments.  

Acclimation or recovery by the detritivore community may explain such transient effects 

of warming and drought on C turnover (Balser et al. 2006, Holmstrup et al. 2012). 

Alternatively, warming effects on C dynamics can vary seasonally (Templer and 

Reinmann 2011), and the lack of an interaction between warming and detritivore access 

may reflect an absence of water stress over the spring and summer during the incubation 

period (precipitation over this time was ~20% above normal).  Regardless of the 

mechanism, mass loss in open samples after one year was 20% greater than in mesh 

samples, whereas the interaction between warming and detritivore access after six weeks 

only accounted for a difference of 2%, which likely explains why no residual effects of 

the six-week response were present after one year. In a previous study conducted in my 

field experiment, Hutchison and Henry (2010) reported estimates of aboveground net 

primary productivity ranging from 800 to 1500 g/m2/y in response to the warming and N 

addition treatments. Given that the carbon content of aboveground grass tissue at this site 

is approximately 40% (M. Turner, unpublished results), a 20% increase in mass loss in 

response to detritivore access following one year of litter incubation is equal to a 

increased litter turnover of approximately 174 g C/m2/y. Using these same correction 

factors, there was an overall positive effect of warming on mass loss after one year equal 

to increased litter turnover of approximately 28 g C/m2/y, which is consistent with the 

general trend of increased decomposition with increased temperature in the absence of 

drought (Aerts 2006, Butenschoen et al. 2011). The temperature sensitivity of organic 

matter decomposition may also increase over time in response to declining C quality 

(Conant et al. 2008). 

The positive effect of N addition on litter turnover observed after six weeks remained 

present after one year of incubation, at which point it was equal to increased litter 

turnover of approximately 30 g C/m2/y (see the detritivore access discussion above for 

the calculation of this estimate).  However, at later stages of decomposition, N 
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fertilization can impede the decay of the lignin-dense, recalcitrant fraction of plant litter 

(Fog 1988) as a result of decreases in microbial ligninolytic enzyme activity (Carreiro et 

al. 2000). However, lignin content does not always predict long-term N fertilization 

effects on grass decomposition (Hobbie 2008), possibly because the lignin content of 

grasses such as P. pratensis is relatively low (Holman et al. 2007).  

Although mesh litter bags are commonly used to study the dynamics of plant litter 

decomposition, the accuracy of results can be hindered by artifacts arising from spillage 

losses and changes to litter microclimate (Suffling and Smith 1974, Kampichler and 

Bruckner 2009). In my study, there was a risk that such artifacts could be confounded 

with differences in detritivore access between open and mesh-enclosed samples.  As 

described above, I conducted additional trials using physical exclosures to test for 

possible differences in litter mass loss between open samples and mesh bags that might 

be unrelated to detritivore access (e.g. effects of the mesh bags on microbial 

decomposition or moisture).  The lack of a difference between open and mesh sample 

controls for both time intervals suggests that the differences observed in the main 

experiment were caused primarily by detritivore access. However, in the case of the open 

samples, affixing the material at the ends likely obstructed the accessibility of some of 

this litter to some detritivores. Likewise, because microfauna have a body size <100 µm 

(Swift et al. 1979), this size class would not have been restricted from the mesh enclosed 

samples.  Therefore, the detritivore access effects I observed are likely a conservative 

estimate of actual soil faunal effects. 

5.4.3 Litter origin and microenvironment incubations 

Although interactions between detritivore access and warming were observed for the 

integrated response incubations after six weeks, for the litter origin and 

microenvironment incubations there were instead interactions between detritivore access 

and N addition, but none for warming.  With respect to litter origin, N-fertilized plants 

often exhibit high N content in their senesced tissues (Johnson 1992, Henry et al. 2005), 

and this N-rich material is often targeted by soil fauna (Hendriksen 1990, Hättenschwiler 

and Bretscher 2008), which is consistent with my results.  N addition also increased mass 

loss to some extent in mesh-enclosed samples, which is consistent with the stimulation of 
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microbial decomposition by N addition (Coûteaux et al. 1995, Aerts 1997). However, for 

the untreated litter transplanted into N addition plots detritivore access effects were 

reduced, suggesting that the added mineral N had a direct negative effect on detritivores.  

The opposing effects of litter origin and microenvironment on detritivore access effects 

may explain why no interactions between nitrogen addition and detritivore access 

occurred for the integrated response incubations.  Nevertheless, it remains curious why 

the warming effects observed for the integrated response incubations were not also 

observed for the microenvironment incubations.   

Following one year of incubation there were significant increases in mass loss with 

detritivore access, although the effect size for the litter origin incubations was less than a 

third of that of the other incubations, possibly as a result of low detritivore densities in 

the area of the field where the common garden plots were established. There were no 

interactions between N addition and detritivore access, which is similar to the results 

obtained for the integrated response incubations. Unlike the integrated response results, 

however, there were no effects of warming or N addition for either the tissue quality or 

microenvironment incubations. Much like the results obtained after six weeks, these 

results indicate unanticipated interactions between litter quality and microclimate in 

determining the integrated decomposition response. 

5.4.4 Conclusions 

Much of our current knowledge regarding the influence of environmental change on plant 

decomposition relies on evidence from mesh litter bag studies. As soil fauna may also 

exert significant influence over litter decay, further quantification of the detritivore 

response is critical to the understanding of the interactive effects between biotic and 

abiotic controls on litter turnover (Butenschoen et al. 2011, A’Bear et al. 2012). 

Interactions between global change and detritivore access treatments observed during the 

six week incubation highlight important differences between soil faunal and microbial 

responses that may ultimately influence the dynamics of litter turnover under future 

environmental conditions.  Nevertheless, my data suggest that acclimation of the 

detritivore community may occur over time, although I cannot rule out the potential role 

of seasonal shifts in soil fauna composition (Levings and Windsor 1996, Zhu et al. 2010).  
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Furthermore, simple mechanistic explanations of litter responses in global change 

experiments (i.e. litter origin, plot microclimate) may not be adequate, as I observed 

substantial differences between treatment responses in my integrated response, litter 

origin and microenvironment incubations. Although many of the interactive effects 

observed in this study were transient, indicating that their long-term implications for 

ecosystem dynamics may be minimal (legacy effects notwithstanding), the additive 

effects of warming, N addition, and detritivore access following one year of litter 

incubation suggest that the omission of soil faunal effects in global change litter bag 

studies may underestimate the magnitude of overall mass loss substantially. 
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Chapter 6  

6  General Discussion  

Processes such as plant carbon sequestration and litter turnover can be significantly 

altered by anthropogenic drivers of global change (Breymeyer and Melillo 1991, Gifford 

et al. 1995), yet the extent to which shifts in plant-herbivore and litter-detritvore 

relationships contribute to these changes has received little attention. In addition, faunal 

activities can substantially impede our ability to properly assess the direct responses of 

plant communities to experimental treatments within the context of plot-level global 

change field studies (Moise and Henry 2010). The main objective of my Ph.D. research 

was to quantify the interactive effects of biotic and abiotic controls on productivity and 

decomposition within the context of a global change field experiment. Furthermore, in 

order to investigate the potential mechanisms governing the observed responses, I 

conducted additional experiments to explore the effects of plant tissue quality and habitat 

microenvironment on both herbivore and detritivore foraging activity. Overall, these 

studies provided extensive insight into the consequences and underlying mechanisms of 

the altered plant-animal relationships that occurred in response to the manipulation of 

temperature and nitrogen availability. While detailed discussions of the experimental 

observations are included in the preceding chapters, here I synthesize the overall 

consequences of warming and N enrichment for ecosystem C dynamics, and highlight the 

potential mechanistic importance of factors such as plant quality and microenvironment, 

as observed from general trends across studies.  In addition, I identify key research foci 

for future investigation that may further clarify important components of ecosystem 

responses to global change. 

6.1 Global change and ecosystem C dynamics 

The results presented in Chapters 3 and 5 indicate that faunal responses to drivers of 

global change can substantially alter plant productivity and litter turnover, respectively, 

suggesting that these relationships may have important implications for C-related 

processes such as carbon assimilation, sequestration, and subsequent mobilization. 
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Chapter 3 involved the quantification of herbivore exclusion effects on aboveground net 

primary productivity responses to warming and N addition. Similarly, Chapter 5 

investigated the effects of global change on litter processing by soil fauna through the use 

of physical detritivore exclosures. 

6.1.1 Plant-herbivore interactions and plot C dynamics 

A key result from Chapter 3 was that the increase in grass biomass in response to the 

exclusion of rodents was significantly greater in nitrogen fertilized plots than non-

fertilized plots. Likewise, the increase in grass biomass in response to the exclusion of 

molluscs from heated plots was significantly greater than the change in grass biomass 

when they were excluded from ambient temperature plots. Together, these findings 

revealed that not only can drivers of global change significantly influence plant-herbivore 

interactions, but also that these relationships can be further complicated by taxon-specific 

herbivore responses to experimental treatments. Understanding interspecific variation in 

community-level responses to drivers of global change is of critical importance for 

predicting shifts in ecosystem dynamics under future environmental scenarios (Gilman et 

al. 2010). Because plant biomass production is associated with carbon sequestration 

(Tilman et al. 2006), the increased quantity of phytomass removed by exaggerated 

herbivory has important implications for overall C storage dynamics. Despite the 

potential for both warming (Huttunen et al. 2007) and nitrogen enrichment (Staalduinen 

et al. 2009) to promote plant compensatory growth following defoliation, in my study 

significant herbivore effects remained present throughout the entire growing season. 

In addition to the quantity of plant tissue removed, the timing of herbivory can have 

important implications for ecosystem C dynamics. In Chapter 3, grass biomass responses 

to herbivore exclusion were observed early in the growing season, which is consistent 

with the feeding habits exhibited by the dominant herbivores present at the field site (e.g. 

slugs preferentially consume new vegetation such as seedlings; Strauss et al. 2009). The 

defoliation of immature plants may have disproportionally strong effects on plant fitness 

as a result of the pre-emption of future phytomass production (Marquis 1992, Peters 

2007). Therefore, herbivore effects established early in the growing season would 
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negatively impact plot C storage potential by limiting the biosynthesis of new 

photosynthetic tissue. 

Although both the herbivore access and global change treatments had strong effects on 

grass productivity, previous studies within the same field experiment revealed that plot C 

dynamics may be equally sensitive to background climate variability. While both 

warming and N addition significantly increased plant productivity in 2008, reduced 

precipitation in 2007 was suggested to inhibit grass responses to the treatment effects 

(Hutchison and Henry 2010). This explanation is consistent with the positive relationship 

between terrestrial plant N responses and the quantity of annual precipitation (Xia and 

Wan 2008). Likewise, grass productivity can be insensitive to temperature manipulation 

when also subjected to drought conditions (Peñuelas et al. 2004). Therefore, during 

relatively dry years, when changes to plot vegetation structure or plant N status are absent 

or otherwise nonsignificant, it is unlikely that herbivore pressure would vary among 

treatment plots.  

Belowground plant-herbivore interactions were not explored as part of this dissertation, 

but a previous study at the same field site revealed that root biomass decreased in 

response to warming, and it remained insensitive to N enrichment (Hutchison and Henry 

2010).  These results suggest that the global change manipulations would, at most, have 

the effect of minimizing the role of belowground NPP as a carbon sink. Moreover, 

despite general patterns of high C allocation to root structures in grassland systems (Sims 

et al. 1978), long-term plant carbon sequestration is likely primarily associated with 

aboveground storage, because the dominant graminoid species in this experiment exhibit 

rapid root turnover (Stewart and Frank 2008). Even when carbon is stored in root systems 

for any relevant period of time, aboveground herbivory has substantial effects on soil 

processes (Bardgett et al. 1998), and it can indirectly deplete belowground plant C stores 

as a result from the upregulation of root carbon exudation in response to defoliation 

(Holland et al. 1996). This relationship suggests that shifts in the C dynamics of 

belowground tissues can both reflect as well as amplify carbon losses resulting from 

aboveground tissue removal. 
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6.1.2 Litter-detritivore interactions and plot C dynamics 

The relationship between fauna and litter turnover is important to understand in the 

context of global change, because the manipulation of detritivore communities can have 

significant implications for decomposition responses to factors such as increased CO2 

concentration and warming (Coûteaux et al. 1991, Rouifed et al. 2010). Much like for the 

plant-herbivore interactions, the effects of global change on the litter-detritivore 

interactions in Chapter 5 occurred shortly following initiation of the experiment. My 

results indicated that following six weeks of litter incubation, detritivore contributions to 

litter turnover were significantly greater in ambient temperature plots than in heated 

plots. These results are consistent with previous observations of the negative effects of 

warming on soil fauna activity in other systems (Lavelle et al. 1997). From an ecosystem 

perspective, this result may have important implications for carbon cycling dynamics, 

because detritivore litter processing facilitates plant decomposition (Swift et al. 1979). 

However, these interactive effects were no longer present following one year of litter 

incubation. Instead, litter mass loss increased substantially in the presence of detritivores, 

regardless of the presence of other treatments. Furthermore, additional evidence suggests 

that, much like the observations for grass productivity, the influence of climate variability 

on overall patterns of carbon turnover can override global change treatment effects.  For 

example, Bell et al. (2010) reported significant seasonal variation in microbial 

extracellular enzyme activity (EEA), despite observing minimal responses to warming or 

N addition.  

Implications of the one-year detritivore effects from Chapter 5 are two-fold. With regard 

to ecosystem dynamics, increased mass loss can have important consequences for soil 

resource availability, because carbon turnover is positively related to the mobilization of 

nutrients such as nitrogen (McGill and Cole 1981). Likewise, increased mass loss can 

promote plant productivity by negating the suppressive effects of litter on the 

establishment and growth of newly germinated plants (Bosy and Reader 1995). Secondly, 

the ecosystem consequences of increased carbon turnover may enhance net C efflux. 

Although grasslands often exhibit extensive soil C sequestration (Scurlock and Hall 

1998), a previous study of soil C flux at my field site revealed that the experimental plots 
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acted predominantly as a carbon source over two consecutive years (Kim and Henry, in 

press). Moreover, measurements of carbon gas exchange were insensitive to the global 

change treatments, much like the observed detritivore effects following one year of litter 

incubation in my experiment, suggesting that soil fauna may strongly contribute to 

overall C losses. Also, because heating lamps were temporarily shut off in the Kim and 

Henry study in order to allow for the physical placement of the CO2 flux chambers over 

treatment plots, the carbon flux data would have only represented possible indirect 

respiration responses to warming effects such as soil drying. Therefore, this result 

supports the suggestion that temperature effects on soil fauna desiccation stress were 

insufficient to influence C turnover over the long-term. 

6.2 Mechanisms governing shifts in plant-animals 
interactions in response to global change 

In order to investigate the potential mechanisms governing shifts in plant-animal 

interactions observed in Chapters 3 and 5, I conducted additional experiments to explore 

the effects of plant tissue quality and plot microenvironment on herbivore and detritivore 

activity. Results from Chapters 3, 4 and 5 indicated that shifts in diet and habitat patch 

quality in response to nitrogen manipulation can have important implications for both 

herbivore and detritivore foraging dynamics, while the warming effects observed in 

Chapters 3 and 5 suggest that temperature may also play a role. 

6.2.1 The role of plant quality 

Nitrogen enrichment had a substantial effect on plant-animal interactions, which reflects 

the central role of nitrogen in heterotroph feeding dynamics (Mattson 1980, White 1993). 

As mentioned above, the exclosure effects observed in Chapter 3 suggest that rodent 

herbivores responded positively to the nitrogen fertilization of resource patches, which is 

consistent with previous reports of increased herbivore foraging pressure in response to 

soil nutrient amendment (Ball et al. 2000, Throop and Lerdau 2004). While it was 

surprising that similarly disproportionate mollusc foraging effects were not observed in 

N-fertilized plots, molluscan herbivores common to the field site included the grey field 
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slug, Deroceras reticulatum, and the foraging activities of this species have been 

previously shown to be unaffected by plot N fertilization (Cleland et al. 2006).  

Evidence obtained from Longworth trapping revealed that the meadow vole, Microtus 

pennsylvanicus, was the most common rodent herbivore found at my study site, 

suggesting that its sensitivity to the manipulation of plant N availability strongly 

contributed to the exclosure effects. In general, meadow vole foraging dynamics have 

important implications for the structure of grassland communities (Howe et al. 2006), and 

meadow voles exhibit diet preferences that relate positively to natural variation in 

interspecific plant N content (Marquis and Batzli 1989). Likewise, some vole species 

have been shown to preferentially consume shrubs (Pedersen et al. 2011) and tree 

seedlings (Hartley et al. 1995) that have been grown under high N conditions. Although 

the perennial graminoid Poa pratensis (Kentucky bluegrass) is a dominant component of 

the meadow vole diet in many regions, surprisingly, meadow vole responses to the 

manipulation of grass nitrogen availability had previously received very little attention.  

In order to explore the potential influence of meadow vole feeding preferences on the plot 

biomasss responses to nitrogen enrichment observed in Chapter 3, part of Chapter 4 

focused on herbivore responses to grass N manipulation in a cafeteria-style feeding 

experiment. When provided the choice between grasses grown in either high-N or 

ambient-N conditions, grasses obtained from fertilized plots comprised 66% of meadow 

vole diet intake. This preference was consistent with increased grass tissue N content in 

response to nitrogen addition, providing support for the influence of plant quality as a 

mechanism driving shifts in plant-herbivore interactions under global change. This 

observation likely reflects herbivore sensitivity to the increased nutritive value of plants 

grown under high N availability including greater protein content and digestible energy 

(Mårell et al. 2002). Herbivores fed high protein diets often incur fitness benefits such as 

earlier sexual maturation (Cameron and Eshelman 1996), as well as improved 

reproductive success (White 1978).  

Although the fertilization effect on grass nitrogen content was significant for both the 

June and July (but not August) feeding assays, only the June trial resulted in a significant 
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meadow vole feeding response. Provided that changes in plant tissue chemistry were an 

influential component of meadow vole feeding patterns in the field experiment, this 

observation has important implications for variation in biomass production among plots. 

Because the N effect on meadow vole feeding preferences was only observed in the first 

of three feeding trials conducted over the field season, it coincided with the early-season 

establishment of rodent exclusion effects in N fertilized plots reported in Chapter 3, 

further suggesting a link between resource quality, plant-herbivore interactions and C 

dynamics in the field experiment.  With regards to the July feeding experiment, it is 

possible that the differences in diet N were too subtle to result in a significant feeding 

effect. This explanation is consistent with a previous study where there were significant 

differences in N content between experimental diets, but the effect of N addition on plant 

N (2.8% versus 2.3% for control diets) was likely too small to allow for significant 

discrimination by meadow voles (Hjältén et al. 2008). Moreover, because grass N uptake 

can vary across the growing season (Wherley et al. 2009, Larsen et al. 2012), then it is 

possible that disproportionate meadow vole feeding preferences across treatment plots 

might only occur following the establishment of a detectable, threshold difference in 

vegetation N content between nitrogen-fertilized and non-fertilized plots.  

In addition to N effects on plant-herbivore interactions, evidence from Chapter 5 suggests 

that nitrogen addition influenced litter processing by detritivores. In order to explore the 

individual effects of litter quality on detritivory, grass litter from N fertilized and non-

fertilized plots was removed from the field experiment and placed into a common garden 

environment. Although litter quality was not explicitly quantified in my study, a previous 

experiment conducted at my field site revealed that grass litter N content increased from 

0.79% to 0.97% in response to nitrogen addition (M. R. Vankoughnett, unpublished 

data).  Following six weeks of litter incubation, detritivore effects on litter mass loss were 

significantly greater for fertilized litter than non-fertilized litter. This result is consistent 

with previous observations of detritivore preference for plant litter containing high tissue 

N content (Hendriksen 1990). Much like for plant-herbivore interactions, this relationship 

highlights a possible mechanistic role of diet quality on shifts in litter-detritivore 

interactions in response to N deposition. While this result could have important 

implications for short-term C cycling dynamics, the effect was no longer present 
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following one year of decomposition, possibly in response to the general decline in litter 

lability and tissue quality over time. Likewise, similar N effects were absent from the 

main global change field experiment. Overall, results from my resource quality assays 

suggest that herbivores were more sensitive to shifts in plant quality in response to N 

addition than were detritivores, which is consistent with differential N effects observed 

across trophic levels in previous studies (Murphy et al. 2012). Grass ontogenic dynamics 

likely contribute to this relationship; the effect of nitrogen enrichment on the N content of 

live tissue at my field site can reach as high as double the N effect on plant litter (M. R. 

Vankoughnett, unpublished data), which may be partially attributed to nitrogen resorption 

during the onset of senescence. 

6.2.2 The role of plot microenvironment 

Results from Chapters 3 and 5 suggest that in addition to the importance of plant quality, 

shifts in plant-animal interactions may be related to the effects of nitrogen addition and 

warming on the microenvironment of experimental plots. The positive responses of slug 

herbivory to warming in Chapter 3 likely reflect increases in invertebrate feeding activity 

in response to increased temperature (Lactin and Johnson 1995, Kozłowski et al. 2011). 

Although water-sensitive fauna such as molluscs are subject to desiccation in response to 

increased temperature (Carne-Cavagnaro et al. 2006), the grey field slug, Deroceras 

reticulatum, is primarily nocturnal (Hommay et al. 1998), therefore its feeding activities 

are restricted to cool periods of the day. The average minimum nightly temperature over 

the course of the experiment was 10.2°C (the feeding rate of D. reticulatum increases 

with temperature until an optimum of 14°C; Wareing and Bailey 1985), thus it is possible 

that the increased soil surface warming of 2-3°C provided by the infrared heaters 

increased slug metabolic activity and resource demand.  

In contrast to the mollusc responses, evidence from the tracking tunnel observations 

suggests that microenvironment had a minimal effect on grass responses to rodent 

exclusion in N addition plots. Although increased sward height can benefit voles, because 

they rely on overhead vegetative cover to hide from predators (Mossman 1955), results 

from Chapter 4 indicated that M. pennsylvanicus activity was insensitive to increased plot 

biomass in N fertilized plots. This result was surprising given previous reports of the 
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association between mammalian herbivore habitat preference and resource patch 

vegetation structure (Van de Koppel et al. 1996, Koivunen et al. 1998). One possible 

explanation is that meadow voles were more responsive to components of vegetation 

other than plot structure, such as plant tissue phosphorous (Schütz et al. 2003) or sodium 

(Inoye et al. 1987) content. However, this explanation would not account for the 

substantial effects of rodent exclusion in N plots observed during the previous growing 

season. Although meadow voles possess the capacity to select habitat at a relatively small 

spatial scale, this process is replaced by foraging decisions at the landscape level when 

population densities are high (Oatway and Morris 2007). The latter scenario is supported 

by the relatively high vole population (239 voles/ha) observed at my field site during the 

microenvironment assay period, which is slightly higher than maximum meadow vole 

densities reported elsewhere (Christian 1971, Madison 1980). More importantly, this 

relationship suggests that interannual fluctuations in meadow vole population size may 

substantially modify herbivore impacts on plot biomass responses to the global change 

treatments.     

Similar to the mollusc responses observed in Chapter 3, the results in Chapter 5 also 

suggest that invertebrate foraging activity was influenced by physiological effects of the 

global change treatments. Soil moisture was significantly lower in warmed plots than in 

ambient plots following six weeks of litter incubation, and reduced detritivore effects can 

therefore possibly be attributed to desiccation stress. Previous studies have reported 

negative effects of warming on detritivore activity, particularly when precipitation is 

limited (Blankinship et al. 2011). This relationship likely reflects the overall importance 

of water relations on soil faunal dynamics (Lindberg et al. 2002). However, following 

one year of decomposition, detritivore effects were no longer suppressed in warmed 

plots, which may reflect potential faunal recovery or acclimation.  This explanation is 

consistent with previous reports of the recovery by soil organisms following drought 

stress (Maraldo and Holmstrup 2009, Holmstrup et al. 2012). It is also supported by the 

observation that mesic environments are capable of supporting a larger abundance of 

detritivores than xeric environments (Wardle 2002). In addition to the influence of 

warming, the effects of detritivory were reduced in N addition plots when litter material 

was added from untreated areas of field. This relationship suggests that the detritivores 
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may have experienced direct negative effects of fertilization such as ammonium toxicity 

(Wei et al. 2012) or salt desiccation (Lohm et al. 1977). However, similar to the influence 

of warming, this effect was also transient.    

In general, evidence from the microenvironment assays suggests that ectotherms such as 

slugs and insect detritivores were more sensitive to the physiological effects of global 

change treatments than were meadow voles. Likewise, although the absence of mollusc 

exclusion effects from N addition plots suggests that shifts in forage quality do not 

influence their feeding preferences, without conducting explicit palatability studies this 

conclusion would be premature. Moreover, previous feeding studies have reported 

significant effects of N enrichment on the diet preferences of several invertebrate 

herbivore taxa (Gebauer 2002, Throop and Lerdau 2004, Asplund et al. 2010). Together, 

these relationships suggest that, owing to their sensitivity to both direct and indirect 

treatment effects, ectotherms are likely to be more sensitive to the impacts of global 

change than are endotherms. This idea is supported by the prediction that climate change 

will cause significantly greater community disruption to plant interactions with 

ectotherms than with endotherms, owing primarily to the physiological regulation of 

ecothermic metabolism by environmental temperature (Sheldon et al. 2011). Ultimately, 

organismal physiology represents such a pertinent component to ecosystem dynamics that 

its principles serve as the foundation for the Metabolic Theory of Ecology which posits 

that the metabolic rate of biota regulate patterns and processes at all levels of ecological 

organization (Brown et al. 2004). A central component of this theory is the role of 

temperature on physiology, suggesting that the ecosystem consequences of warming will 

be substantial. With respect to herbivory, physiological responses of ecothermic 

herbivores to warming manipulations strongly contribute to shifts in consumer feeding 

rates (Dangles et al. 2013). 

6.3 Future research directions 

This dissertation has provided much support for the importance of shifting plant-animal 

relationships as drivers of ecosystem responses to global change.  However, there remain 

several research questions that would provide further insight into the consequences of 

anthropogenic disturbance on biotic/abiotic interactions and their effects on ecosystem 
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cycles and processes. While herbivores such as voles and slugs can exhibit significant 

control over plant community composition, other fauna such as herbivorous insects also 

contribute substantially to ecosystem structure and function. Likewise, although warming 

and N deposition are important components of global change, other factors such as 

increased CO2 and altered precipitation are equally important to explore, and may interact 

with warming and N addition. Finally, in addition to nutritive quality, shifts in plant 

defense secondary chemistry in response to drivers of global change may have a 

prominent role in governing changes in plant-animal interactions under future 

environmental scenarios. 

6.3.1 The ecological importance of insects 

Insects are a potentially influential group of herbivores that were not addressed by my 

thesis, primarily because their effects are diverse and can be episodic and spatially patchy 

in nature. Nevertheless, the patterns and magnitude of insect herbivory can influence 

plant fitness (Maron 1998), population (Crawley 1989) and community (Clay et al. 2005) 

dynamics, as well as ecosystem nutrient cycling (Kaukonen et al. 2013). Consequences of 

global change such as shifts in plant quality can strongly influence plant-herbivore 

interactions through changes in insect density, herbivory pressure, and growth rate 

(Throop and Lerdau 2004). Much like the distinct feeding patterns observed in voles and 

slugs, insects often exhibit strong feeding preferences for specific host plants (Mayhew 

1997), the hierarchal ordering of which can be switched in response to abiotic disturbance 

(Agrell et al. 2005). Insects are also sensitive to the direct effects of climate warming 

(Bale et al. 2002), and one of the greatest concerns with respect to insect responses to 

global change is the potential for pest outbreaks (Ayres and Lombardero 2000). The 

effects of increased temperature are of particular importance because warmer winters 

may result in increased insect survival (Cannon 1998). Moreoever, climate warming may 

also facilitate the invasion of pests into regions that have historically been too cold to 

allow for their establishment (Battisti et al. 2005). Conversely, warming may negatively 

impact insects living near or at their thermal optima (Deutsch et al. 2008). Shifts in plant-

insect interactions may be especially important in northern ecosystems, where warming is 

expected to be considerably more intense than at lower latitudes (Hodkinson et al. 1998).  
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In addition to herbivores, insect detritivores are an important component of ecosystem 

dynamics (Swift et al. 1979, Wolters 2000). Although Chapter 5 explored broadscale 

functional shifts in detritivore responses to global change, it did not include an 

investigation of the potential mechanistic role of changes in the composition of 

detritivore communities resulting from treatment manipulations. Previous studies have 

reported changes in the structure of soil fauna communities in response to factors such as 

increased CO2, warming, and N deposition (Hagvar and Klanderud 2009, Kardol et al. 

2011). Moreover, shifts in the relative abundance of important grassland detritivores 

including mites, nematodes, and earthworms can have substantial consequences for 

processes such as decomposition (Bradford 2002).  Although it is possible that reduced 

litter turnover by soil fauna in warmed plots reported in Chapter 5 may simply reflect 

suppressive temperature effects at the whole-community level, species-specific drought 

effects on mites are consistent with interspecific variation in their temperature tolerances 

(Siepel 1996). 

6.3.2 Other drivers of global change 

In addition to warming and N deposition, other drivers of global change, such as elevated 

atmospheric CO2 concentrations and altered precipitation regimes, will have important 

implications for ecosystem dynamics (Cramer et al. 2001, Weltzin et al. 2003). 

Moreover, the co-occurrence of these factors with the factors examined in this 

dissertation is likely to reveal important treatment interactions not readily apparent from 

the simple additive effects of individual treatments in isolation (Rustad 2008, Leuzinger 

et al. 2011). Owing to processes such as deforestation and fossil fuel combustion, the 

global atmospheric concentration of CO2 is predicted to double by 2100 relative to pre-

industrial revolution values (Houghton et al. 1995). Similar to N deposition, increased 

CO2 can increase plant productivity (Wand et al. 1999), with associated influences on 

herbivore feeding dynamics (Heagle 2003). However, in contrast to increases in plant 

tissue quality in response to N deposition, CO2 fertilization dilutes plant nutrient content 

(Cotrufo et al. 1998), which may negate positive herbivore responses to nitrogen 

fertilization, such as the increase in plant palatability observed in Chapter 4. 
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Alternatively, herbivores may increase consumption of plant material grown under high 

CO2 conditions in order to compensate for the reduction in tissue quality (Lincoln et al. 

1993).  

Another important component of climate change is the predicted increase in the 

variability of precipitation patterns (IPCC 2007). Both increases and decreases in 

precipitation quantity can influence processes such as ecosystem productivity and carbon 

exchange (Wu et al. 2011), while shifts in the timing of rain events may also play a 

crucial role (Chou et al. 2008). Altered precipitation patterns can modify plant-animal 

interactions through changes in plant productivity (Zhou et al. 2002) and chemistry (Torp 

et al. 2009). Likewise, insect herbivores respond positively to increased plant water 

content (Scriber 1979), although their responses to plants subjected to drought show 

mixed results (Larsson 1989). Changes in precipitation will also have important 

implications for decomposition, because both detritivore (Pritchard 2011) and microbial 

(Orchard and Cook 1983, Liu et al. 2009) communities are sensitive to soil moisture 

conditions. Moreover, because the effect of increased temperature on soil dynamics is 

amplified in dry environments (Blankinship et al. 2011), it is likely that changes in 

climate such as warming and drought will exhibit synergistic effects on litter turnover 

and soil respiration. 

6.3.3 Plant defenses and global change 

In addition to nutrient content, plant secondary metabolites play a critical role in 

mediating interactions with herbivores (Berenbaum 1995, Kliebenstein 2004). 

Compounds such as phenolics, tannins, and alkaloids both deter plant consumption and 

impede post-ingestion dry matter digestion and nitrogen assimilation (Rhoades and Cates 

1976). Similarly, the attraction of parasitoids to plants undergoing herbivore attack is 

related to shifts in the profile of green leaf volatiles (De Moraes et al. 1998). Drivers of 

global change will substantially alter the dynamics of plant chemical defense systems 

(Bidart-Bouzat and Imeh-Nathaniel 2008). For instance, increases in CO2 and N 

availability can increase plant tissue concentration of phenolics and alkaloids, 

respectively (Gerson and Kelsey 1999, Zvereva and Kozlov 2006). Likewise, both 

increased CO2 and O3 can affect the overall inducibility of plant defense pathways 
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(Bidart-Bouzat et al. 2005, Himanen et al. 2007), as well as the efficacy of plant volatile 

cues (Yuan et al. 2009). Changes in plant secondary chemistry may further influence 

decomposition dynamics owing to shifts in tissue lignin content (Sandermann Jr 1996, 

Matros et al. 2006). Ultimately, the modification of plant defense chemistry in response 

to global change is important for plant-animal interactions, including variation in feeding 

rate and herbivore performance (Lindroth et al. 1993). Exploring the extent to which 

these relationships indirectly contribute to plant community responses in global change 

field experiments may provide considerable mechanistic insight to future research. 

Despite established relationships between global change factors and plant chemical 

defenses, comparatively little is known regarding interactions of the former with physical 

defenses. For instance, in response to herbivory, graminoids can accumulate 

disproportionately large quantities of silicon in their leaves (Hodson 2005), forming 

opaline phytoliths, which may be an important defense against insect herbivores 

(Reynolds et al. 2009). Furthermore, grass silicon accumulation in response to defoliation 

is hypothesized to function as a deterrent to grazing herbivores (McNaughton and 

Tarrants 1983, Massey et al. 2007). This suggestion is supported by observed vole 

responses to silicon-fertilized diets, including reduced grass dry matter digestibility and 

palatability, decreased body weight, as well as greater fecal N content (Massey and 

Hartley 2006, E. R. D. Moise, unpublished). Drivers of global change such as N 

deposition may counteract silicon effects, because nitrogen addition is associated with 

increases in plant digestibility (Johnson et al. 2001). In a recent experiment, I observed 

that the survival rate of armyworms was significantly greater when fed leaves from corn 

plants grown under high-silicon, high-nitrogen conditions relative to the high-silicon 

treatment alone (E. R. D. Moise, unpublished). With respect to shifts in precipitation 

patterns, plant silicification may function to mitigate drought stress (Liang et al. 2007). 

Because plot-scale global change field experiments are often established in grassland 

systems, is it likely that Si-accumulating plant species contribute substantially to 

observed trends in plant community responses. Moreover, because the quantification of 

silicon effects is absent from these studies, the importance of physical defenses remains 

unknown in the context of environmental change. 
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6.4 Concluding remarks 

Shifts in species interactions in response to global change are well established in the 

literature (Tylianakis et al. 2008), yet the implications of these consequences remain 

largely unexplored in plot-level field experiments designed to assess direct plant 

responses to future environmental conditions. Much like moths being attracted to a light 

source, fauna may preferentially restrict their activities to the plots of specific 

experimental treatments (Moise and Henry 2010). The results presented in this 

dissertation reveal significant interactions between biotic and abiotic drivers of carbon-

related processes such as plant productivity and litter turnover. However, at the 

ecosystem scale there was strong evidence in this experiment for the insensitivity of 

carbon flux to indirect warming effects (Kim and Henry, in press), possibly related to 

detritivore dynamics, suggesting that overall terrestrial C dynamics may not be regulated 

at the community level. This disassociation between processes at differing levels of 

ecological organization supports the importance for a holistic approach to environmental 

research (Odum 1971). Regardless, the destabilization of community interactions in 

response to global change will have important implications for other facets of ecosystem 

dynamics, particularly with respect to environmental change, species relationships, and 

the consequences of changes in biodiversity on ecosystem structure and function 

(Vitousek 1997, Chapin et al. 2000).  

The effects of climate variability represent another important component to C dynamics 

in my field experiment. Evidence from this thesis coupled with observed trends from 

work by others at this site suggest that temporal variation in climate parameters may 

override plant responses to warming and N addition treatments. However, this 

relationship may have implications beyond the mitigation of treatment effects, because 

increases in the variation of temperature and precipitation are predicted as a consequence 

of global change (IPCC 2007). Because changes in climate variability, rather than 

averages, are likely to have a greater effect on ecosystem processes (Katz and Brown 

1992), there is a growing emphasis on the importance of ecosystem responses to extreme 

events such as heat waves (De Boeck et al. 2010) severe drought (Bréda et al. 2006), and 

soil freezing effects from reduced snow cover (Groffman et al. 2001). Likewise, there is a 
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critical need to better incorporate such variability into community-level global change 

field manipulations (Thompson et al. 2013). Ultimately, the application of these factors to 

the study of plant-animal relationships will contribute to a more comprehensive 

understanding of potential shifts in biotic/abiotic interactions under future environmental 

scenarios, and highlight how these changes may be reflected in modifications to 

ecosystem structure and function. 
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