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Abstract and Key Words

This thesis describes three separate research projects within the broad topic of
synthetic organic chemistry. The synthesis of alkyl-substituted siloles and their reactivity
in Diels—Alder chemistry is reported. Furthermore, the cleavage of the bicyclic adducts
by Tamao—Fleming oxidation has been achieved which reveals a highly substituted
cyclohexene-1,4-diol structure.

The second chapter describes the cycloaddition chemistry of alkoxy-activated
cyclobutane dicarboxylates with aldehydes, nitrones and nitrosoarenes. The cycloaddition
occurs, in the case of aldehydes, with uniformly high diastereoselectivity to afford
tetrahydropyrans in good to excellent yield. When nitrones were used as the dipolarophile
the cycloaddition occurs in a rather unselective manner though the formed oxazepanes
undergo equilibration to yield single diastereomers in most cases. The cycloaddition with
nitrosoarenes, however, proved an exception as the regioselectivity of the reaction was
dependant both on the nitrosoarenes and the catalyst employed.

Lastly, progress towards the synthesis of grandilodine A is reported. Several
routes were developed in attempts to form the central 8-membered ring; however,

successful ring closure has eluded this study.

Key Words: Diels—Alder, Dipolar Cycloaddition, Donor-Acceptor Cyclobutane,
Grandilodine A, Methodology, Natural Product, Nitrone, Nitrosoarene, Total Synthesis,

Tamao—Fleming Oxidation.
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Preface

The field of synthetic organic chemistry is a rich source of unsolved problems. It
continually challenges and inspires practitioners to create innovative solutions, discover
new processes, and apply these methods to the synthesis of complex target molecules.
Furthermore, it provides us with pleasing challenges to test our understanding of
fundamental principles and rewards our endeavors richly upon success. To this end, I
have worked towards expanding our understanding of several fundamental concepts
described within this thesis. Enclosed within are three projects which may seem, at first,
to be disparate. However, the broad nature of synthetic organic chemistry encompasses
all of these subjects. The synthetic methodologies of the first two chapters create
intriguing new molecules which may possess biological activity, or can be used as
platforms for the installation of further complexity. The last chapter explores the de novo
synthesis of a complex natural product and, while the process does not use any of the
methods developed in the first two chapters, serves as a lesson of current challenges in
synthetic organic chemistry that still need to be addressed and possibly as a stimulus for
further methodology development.

The first chapter demonstrates that siloles may engage productively in Diels—
Alder chemistry with exceptionally high levels of stereocontrol. I have also displayed the
value of the corresponding adducts in context by oxidatively cleaving the silicon-carbon
bonds; creating the complex cyclohexene-1,4-diol core of the eudesmanolide natural
products.

The second chapter of this thesis describes the investigation of donor-acceptor

strained ring systems. I, along with coworkers, was able to show that alkoxy-activated
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cyclobutane dicarboxylates could successfully undergo annulation events with two and
three atom dipoles to form a variety of unique bicyclic hetereocycles. These new
compounds have striking molecular architecture and may find application as novel
scaffolds for biological studies.

Lastly, I directed efforts towards the total synthesis of the recently disclosed
natural product grandilodine A. I explored multiple routes towards the total synthesis of
grandilodine A, yet was continually stymied by unanticipated intricacies that revealed
themselves through my studies. Despite the incomplete nature of the work, many lessons
were learned that may assist in the successful synthesis in the future.

Though these projects appear to be quite disparate in scope and nature, they serve
as a reminder of the wide breadth of the field of synthetic organic chemistry. I hope the
reader will find the body of work as stimulation for further studies, or as a valuable
resource of relevant background information.

-Andrew C. Stevens
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Chapter 1.  Diels—Alder Chemistry of Siloles and their Transformation into
Cyclohex-2-ene-1,4-diols.

This chapter describes the synthesis of siloles with substitution patterns that are
continuative toward natural product synthesis and their reactivity in Diels—Alder
chemistry. The cleavage of the resulting bicyclic adducts reported reveals a highly
functionalized cyclohexene-diol core. Relevant background information of silicon’s role
in organic synthesis is included. A portion of this work has been published in Organic
Letters." Portions of text and schemes have been reprinted in part with permission from
Stevens, A. C.; Pagenkopf, B. L. Org. Lett. 2010, 12, 3658-3661. Copyright © 2010

American Chemical Society.

1.1 Introduction: Silicon in Organic Synthesis

Silicon is the second most abundant element in our planet’s crust, after oxygen.’
The unique reactivity of silicon has promoted its extensive use in organic chemistry over
the past several decades.” Much of the chemistry associated with silicon is due to the
strength of the silicon-carbon, silicon-oxygen, and silicon-fluorine bonds (290 kJ/mol,
368 kJ/mol and 582 kJ/mol respectively).* The silicon-carbon and silicon-oxygen bonds
are strong enough to survive most organic transformations, but can be readily cleaved
under mild conditions which has led to the extensive use of silicon-based protecting
groups.” In addition, the ability of silicon to stabilize positive charges B to the functional
group has facilitated important carbon-carbon bond forming reactions such as the

Hosomi—Sakurai® and Mukaiyama aldol’ reactions. More recently, silicon has found use



as an activating group for cross-coupling chemistry where organosilicon reagents act as
nucleophilic donors (i.e., the Hiyama coupling).® This reaction allows toxic, expensive
and reactive organo-metallic reagents such as organozinc and organotin species to be
replaced with benign organosilicon reagents. Though initial findings required fluoride
sources to activate the silicon for cross-coupling, extensive investigations have found that
mild bases can be used as an alternative when the organosilane is appropriately
substituted.”

Silicon has also found use as a Lewis acid in a plethora of transformations when
weakly coordinating anions are present (e.g, TMSOTS)."” Recent reports from the
Leighton group have described the use of strain-release from silacycles which has
resulted in a new class of allylation reagents (1-1) which act as both an allylation source

and a Lewis acid (Figure 1.1).“’12

These reagents are important as allylations are one of
the most used reactions for the generation of new stereocenters and append a vital
synthetic handle for further chemical transformations. They have proven to be a viable
alternative to the commonly used Brown allylation, as the Leighton allylation reagents
are readily available from commodity chemicals (and are now commercially available),
are stable solids that can be stored for extended periods of time, have good
enantioselectivity and the products are easily separated from the reaction byproducts.
This is in contrast to the Brown allylation reagents which must be prepared fresh (a time-
intensive procedure), are exceedingly moisture sensitive and require extensive work-up

conditions to remove the by-products from the reaction products. Additionally,

derivatives of the silacycle have been synthesized and applied as the first enantioselective



silicon Lewis acids for a number of transformations including but not limited to Diels—

Alder,13 Mannich,14 and Pictet—Spengler'” reactions.
peng
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N Y Si %—~0, O~/ %~0, ,Ph
O¢ \SN O:NI ~o ): :Si\ ): Si
1

i S
nNCl me” N © me” N ©
M Me

\\p-Bl'CzH4 ©

11 1-2 1-3 14
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Figure 1.1. Enantioselective Silicon Based Lewis Acid Catalysts

The use of silicon as a lynchpin for novel strategies in synthetic chemistry has
also seen intense investigation. Application of the disparity between carbon-silicon and
carbon-oxygen bond strength allows for the Brook rearrangement (1-7 to 1-8 or 1-11 to
1-12), where a carbon-silicon bond is cleaved and an oxygen-silicon bond is formed,
creating a carbanion. Typically this carbanion is protolytically quenched; however,
tandem reactions involving the Brook rearrangement have recently been explored, most
notably by Smith and Takeda (Scheme 1.1). This strategy has been dubbed anionic relay
chemistry and is capable of engaging a diverse array of reaction partners for rapid and

efficient generation of libraries of compounds.'



Scheme 1.1. Type I and Type II Anion Relay Chemistry
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The widespread use of silicon as a protecting group has led to investigation of
silicon as a temporary tether or as a template, strategies explored both by Leighton and
Kozmin. Leighton has demonstrated this concept through a tandem
silylformylation/allylsilation sequence.'” Treatment of diallylsilyl ether (1-14) with
Rh(acac) under carbon monoxide atmosphere followed by Tamao—Fleming oxidation
afforded 1,3,5-triol 1-15 with high diastereoselectivity (Scheme 1.2). Extension of this
methodology to pendant alkynes allowed for an alternative stereochemical outcome.'® In
both cases the proposed stereochemical model implicates allyl transfer through activation
of the aldehyde (installed via silylformylation) in an intramolecular fashion and

intramolecular allyl transfer.



Scheme 1.2. Tandem Silylformylation/Allylation of Pendant Alkenes and Alkynes
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Kozmin has also developed chemistry whereby he uses silicon as a templating
reagent, allowing for an asymmetric rearrangement to occur.” meso-Silacyclopentene
oxide 1-20 was treated with a chiral amine base (1-25) to afford chiral allyl alcohol 1-21
(Scheme 1.3). Subsequent hydroxyl-directed epoxidation and epoxide opening allowed
for the synthesis of highly substituted silacyclopentane 1-23. Cleavage of the silicon-
carbon bonds (once again via Fleming—Tamao oxidation) revealed the polyol structure,
available with complete control over the stereochemical outcome at each stereogenic
center. Importantly, the chiral amine base was found to be capable of acting in a catalytic
fashion, allowing for application in large-scale reactions such as those required for total

synthesis. Subsequently, this methodology was applied in the enantioselective synthesis

of pinolidoxin.?

i) Rh(acac)(CO),

CO, PhH, 60 °C . OH OH OH
i) H,O,, NaHCO; R X
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i) Rh(acac)(CO),
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ii) HyO,, NaHCO; R)\)M

THF, MeOH, heat 118



Scheme 1.3. Enantioselective Rearrangement of Silacyclopenteneoxide and Application
for Total Synthesis
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Though there has been significant exploration of silacycles in organic chemistry,
there remain many opportunities that have not yet been realized. One such area of
potential utility is that of siloles, which have previously been extensively investigated for
their intriguing optoelectronic properties.”' It is readily apparent that siloles may undergo
Diels—Alder cycloadditions, as cyclopentadiene is a well explored diene for Diels—Alder
chemistry. It was somewhat surprising that there have only been few reports of Diels—
Alder chemistry of siloles, very limited in scope, and the adducts obtained have only had
rudimentary explorations as to their potential usefulness.”> At the onset of this work, it
was believed that the bicyclic adduct of a silole Diels—Alder reaction could undergo
silicon-carbon bond cleavage to form a highly functionalized cyclohex-2-ene-1,4-diol
(Scheme 1.4). The structural features contained in 1-28 could facilitate rapid access to a
diverse range of compounds, potentially leading to the synthesis of natural products such

. 23
as the eudesmanolides.



Scheme 1.4. Cyclohex-2-ene-1,4-diols from Siloles and Potential Applications
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1.2 Results and Discussion
1.2.1 Synthesis of a C-Unsubstituted Silole

The initial target of study was 1,1-diphenylsilole (1-30) as the limited hindrance
about the carbon ring would increase the likelihood of a successful Diels—Alder reaction®*
and the aromatic substituents on the silicon would enable the subsequent oxidative
cleavage of the silicon-carbon bond (Scheme 1.5).> The majority of research regarding
siloles has involved development for electrochemical purposes™ resulting in synthetic
strategies that are only suitable for siloles bearing aromatic substituents about the carbon
ring.”” Rapid preparation of siloles absent of an aromatic substituent has been reported
using flash vacuum pyrolysis,™ a process our lab was ill-equipped to perform.
Additionally, this method has only been demonstrated successfully with siloles bearing
small alkyl substituents on the silicon atom, which would prove ineffective for
subsequent Tamao—Fleming oxidation and as such, an alternative synthesis was explored.
It was believed that a direct oxidation or an oxidation-elimination sequence could provide
an expedient route to access silole 1-30 from commercially available

dichlorodiphenylsilane (Scheme 1.5).



Scheme 1.5. Proposed Synthetic Route to a C-unsubstituted Silole
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Synthetic efforts began with formation of dihydrosilole 1-19 (Scheme 1.6). The
material was readily available through either a two-step process by reaction of
dichlorodiphenylsilane with allylmagnesium bromide and subsequent RCM*’ or in a one-
step reductive cyclization of dichlorodiphenylsilane with Rieke magnesium and 1,3-
butadiene.”® The single step process was preferred due to shorter reaction times and the

potential to access tri- and tetrasubstituted olefins which would be problematic to form

via RCM.”!
Scheme 1.6. Synthesis of Silacyclopentene 1-19
ANMOBr A~ 133(0.75 mol %) Mes—N. N—-Mes
PhoSICl,  —————> Ph,Si > thsi@ cl.

77% AN 76% -
R N c” | Ph

131 119 Lo,

133

Mg*, 1,3-butadiene, THF Grubbs Il catalyst

58%

Unfortunately, direct oxidation of 1-19 with DDQ, MnQO,, Pd/C, and SeO, failed
to deliver the silole, thus a stepwise dihydroxylation/elimination reaction sequence was
explored (Scheme 1.7). Dihydrosilole 1-19 was dihydroxylated with OsO, and
K,Fe(CN)g¢ and the diol was converted to a bis-mesylate. Unfortunately, base promoted

elimination of the bis-mesylate (1-34) failed under a variety of reaction conditions.



Scheme 1.7. Oxidation-Elimination of Dihydrosilole 1-19
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As a double elimination was not possible, elimination of an allylic alcohol was
investigated. Through a sequence similar to that employed by Kozmin," allylic alcohol
1-21 was obtained through epoxidation of dihydrosilole 1-19 and epoxide rearrangement
with LDA (Scheme 1.8). Unfortunately, derivatives of compound 1-21 were highly
susceptible to silicon-carbon bond cleavage, as installation of relatively stable leaving
groups (sulfonates) resulted in elimination in situ to form silanol 1-35. This process also

occurred even when mild elimination protocols of Burgess® or Grieco>> were employed.

Scheme 1.8. Elimination via Allylic Alcohol

1) mCPBA (85% elimination N
Ph28i<j| ;i Pthi<j\ S PhZS:/j
2) LDA (91%) OH (50-76%) HO ~
119 1-21 1-35

Faced with difficulties in the formation of a C-unsubstituted silole, research was
directed towards the more stable C-substituted siloles (i.e, 1-40, Scheme 1.9).**
Additionally, since tertiary alcohols are more readily eliminated from dihydrosiloles than

are secondary alcohols, milder reaction conditions were expected to be applicable.*

1.2.2 Synthesis of 1,1-Diphenyl-3-methylsilole

The same three-step protocol was used to prepare tertiary alcohol 1-38 (Scheme
1.9). Reductive cyclization between dichlorodiphenylsilane, isoprene and Rieke
magnesium formed dihydrosilole 1-36, which was epoxidized with mCPBA.

Rearrangement of epoxide 1-37 with LDA occurred with complete regioselectivity to
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afford tertiary alcohol 1-38. Dehydration of tertiary alcohol 1-38 was achieved through
formation of the phenyl carbamate followed by thermolysis; however, only the dimeric
product 1-41 was obtained and the monomeric silole 1-40 was not observed. Lower-
temperature eliminations were examined via mesylates or tosylates but in sifu elimination

occurred and only the dimeric product was obtained.

Scheme 1.9. Preparation of an Alkyl Silole Dimer

Mg*, isoprene . mCPBA ]
Ph,SiCly ————— g Ph,Si. | ———— 3 PhySi o)
THF, 81% CH,Cl,, 85%
1-36 1-37
PhNCO, o
LDA, 0°C on  Sn(ethylhexanoate), AN
—» PhSi___ >  PhSi,__ NHPh
THF, 90% Et,0, reflux, 95%
1-38 1-39

PhoSi

PhMe, reflux Ph S'G/ spontaneous - 7 SiPh,
=
‘ 1-40 82% 141

Introduction of maleic anhydride as a dienophile during thermolysis of tertiary

carbamate 1-39 was successful in trapping the silole and Diels—Alder adduct 1-42 was
obtained in 83% yield (Scheme 1.10). Unfortunately, this interception strategy could not
be extended to other dienophiles. Attempts to crack the silole dimer (1-41) and trap it
with maleic anhydride were also unsuccessful and only slow decomposition of the dimer

was observed even under prolonged times at high temperature (refluxing xylenes).
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Scheme 1.10. Trapping of 1,1-Diphenyl-3-methylsilole with Maleic Anhydride

o Ph,Si
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1-39 83% 0
1-42

1.2.3 Synthesis of 3,4-Dimethyl-1,1-diphenylsilole

Buoyed by the successful formation of the Diels—Alder adduct, yet frustrated by
the inability to isolate the monomeric silole, attention was turned towards synthesis of a
C-disubstituted silole in hopes of isolating a monomeric compound whose reactivity
could be fully explored. To this end, the same 3-step protocol used previously was

applied to synthesize tertiary alcohol 1-45 (Scheme 1.11).

Scheme 1.11. Synthesis of 3,4-Dimethyl-1,1,-diphenylsilole (1-47)

Rieke Mg,

. 2,3-dimethylbutadiene mCPBA LDA, THF
Ph,SiCl, > PhySi. | Ph,Si 0 —>
THF, 66% CH,Cl,, 96% 0 °C, 90%
1-43 1-44
o
OH . PhNCO c))\\NHPh
/\:t tin(ethylhexanoate), /\:ﬁ PhMe =
Ph,Si >  Ph,Si — >  PhSi
= Et,0, 90% = reflux, 16h =
91%
1-45 1-46 1-47

Reductive cyclization of 2,3-dimethylbutadiene with diphenyldichlorosilane
afforded dihydrosilole 1-43. Epoxidation and subsequent rearrangement afforded allylic
alcohol 1-45 in good yield, producing only the endo-alkene. Subsequent conversion of
the allylic alcohol to carbamate 1-46 occurred readily and in high yield. Upon heating 1-
46 in toluene thermal elimination occurred to produce 3,4-dimethylsilole 1-47 without
formation of the dimer and only trace amounts of exo-elimination products (<5%). Single

step eliminations of allylic alcohol 1-45 to form the silole through a mesylate or tosylate
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were found to be unsatisfactory due to substantial (25%) formation of the exo isomer
which could not be separated from the silole. Investigation into the propensity of the
silole to dimerize found that 3,4-dimethyl-1,1-diphenylsilole (1-47) was very resilient, as
dimerization was not observed even over extended periods of time at elevated

temperatures.

1.2.4 Diels—Alder Reactions of Siloles

1.2.4.1 Thermal Diels—Alder Reaction

Having secured a reliable route to a monomeric silole, the breadth of the thermal
Diels—Alder cycloaddition was investigated (Table 1.1). Cycloadditions with highly
reactive dienophiles, such as maleic anhydride or maleimide (entries 1 and 2), were
complete after 16 h at room temperature while less reactive dienophiles, such as
fumarates and quinones (entries 3 - 5), required elevated temperatures to undergo
cyclization. Trisubstituted dienophiles (entries 6 and 7) or those bearing only a single
activating group (entries 8 - 10) did not react and only starting material was observed.
Acetylenic species (entry 11) did not undergo the reaction, and hetero-Diels—Alder

reactions did not occur (entry 12).



Table 1.1. Thermal Diels—Alder Reaction
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The reaction of benzyne with 3,4-dimethylsilole was also investigated (Scheme
1.12). Benzyne was generated through four different methods; however, each case failed

to provide the desired cycloadduct. Control tests were performed and, in the presence of

cyclopentadiene, the expected cycloadducts were formed.
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Scheme 1.12. Investigation of Benzyne Reactivity with Siloles
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Due to the sluggish nature of these silole Diels—Alder reactions and the somewhat

limited scope, methods for accelerating the reaction were investigated.

1.2.4.2 Lewis Acid Mediated and High Pressure Diels—Alder Reactions

Two known methods for the enhancement of Diels—Alder reaction, Lewis acid
activation and high pressure conditions, were explored.”> Though both accelerate Diels—
Alder reactions, they do so through different mechanisms.

The Diels—Alder reaction is a 4w + 27 pericyclic reaction that forms two new o-
bonds at the expense of two m-bonds. The net result is a new 6-membered ring that forms
in a strongly exergonic process (AH' ~ 16 to 18 kcal * mol™ and AS' ~ - 30 to - 40 cal »
K « mol™). The reaction occurs due to overlap between the HOMO of a diene and the
LUMO of a dienophile (or vice-versa in the case of inverse demand Diels—Alder
reactions) (Figure 1.2). The selectivity observed in Diels—Alder chemistry has, for many
years, been attributed to secondary orbital overlap between the diene and the electron
withdrawing groups on the dienophile. More recently, this rationale has fallen out of
favor as calculations have shown that the atoms presumed to engage in secondary orbital
interactions are situated relatively far (2.8 A) apart in the transition state structures.*® The

currently prevailing view is that a combination of steric interactions, solvent effects and
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electrostatic forces can successfully explain the typically high level of endo selectivity

found in Diels—Alder reactions.’®

Diels-Alder Frontier

Molecular Orbitals endo and exo selectivity

EDG endo exo
Z EWG S HOMOgiene HOMOgiene
N i :
— — Luvo EWG
........................... : EWG
-T-l- HOMO E LUMOyienophile LUMOgienophile

Figure 1.2. Frontier Molecillar Orbitals of Diels—Alder Reactions and Endo/Exo
Selectivity

Lewis acids serve as catalysts in Diels—Alder chemistry where they increase not
only the speed of the reaction, but also the selectivity. This process occurs through
coordination of the Lewis acid to the dienophile, lowering the energy of the LUMO and
causing better overlap between the diene and the dienophile resulting in an increased rate
of reaction.

After screening several Lewis acids, it was found that diethylaluminium chloride
mediated the reaction between the siloles and dienophiles, though one full equivalent of
Lewis acid was required to promote full conversion of the starting material (Table 1.2).
Lewis acidic conditions allowed for dienophiles bearing a single activating group (e.g.,
acrylates, methyl vinyl ketone, entries 3 - 6) to react at ambient temperature and reduced
reaction times (from 16 h to 2 h). Despite the increased rate of reaction of singly-
activated dienophiles, the Diels—Alder reaction was found to be quite limited as

disubstituted alkenes (entries 1, 7 - 10) did not undergo the cycloaddition unless both
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substituents on the dienophile were activating groups. Additionally, compounds prone to
polymerization (entry 2) could not be accessed as they were found to undergo
polymerization faster than the desired Diels—Alder reaction. Due to these limitations,

additional modes of Diels—Alder enhancement were investigated.

Table 1.2. Lewis Acid Mediated Diels—Alder Reaction

Ph,Si
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Ph,Si _ > AN
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1 ]\ 7 /HLOMe n.r.
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[e]
2 ﬁ“ polymer 8 %OMQ n.r.
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3 |HJ\ }%ﬁo 9 b n.r.
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4 coalle / 10 wo n.r
W CO,Me _ o
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Ph,Si
0 Et0,C__CO,Et
5 H\OE' }b\coza 11 | nr.
92%
Ph,Si

)]

(e}
7
| CCeHaBn CO(pCeHaBr)

75%

High pressure has also been explored for its effect on Diels—Alder chemistry.

7

Diels—Alder reactions have large negative volumes of activation,”’ and as such high

pressures accelerate the rate of reaction without necessitating high temperatures.”® High
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pressure reactions facilitated access to the same cycloadducts available using Lewis acid
catalysis (Table 1.3); however, compounds which were previously found to readily
polymerize preferentially underwent Diels—Alder cycloaddition (entry 4). Once again,
disubstituted olefins were found to be beyond the scope of the reaction unless both of the
substituents were activating groups (entries 1, 5 - 9) and trisubstituted olefins were found

to be unreactive, even if two of the substituents were activating groups (entries 10 and

).

Table 1.3. High Pressure Diels—Alder Reaction

Ph,Si
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PhSi, > 71l R
160 000 psi,16 h
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entry dienophile product, yield entry dienophile product, yield
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= ° o
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Ph,Si
EtO,C CO,Et
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11 T 9 o
OJ\E&O .

Ph

COMe

¥
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O PhySi

(&)]
N
O,
O
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1.2.5 Synthesis of Alternative Silole Substitution Patterns

Having successfully discovered complementary reaction conditions for the Diels—
Alder reaction with siloles, more interesting substrates with greater potential utility in
natural product synthesis were prepared.

Cyclohexyl-fused silole 1-62 was prepared from cyclohexanone according to the
route outlined in Scheme 1.13. Mannich reaction between cyclohexanone, dimethylamine
and formaldehyde followed by Wittig olefination and Hoffmann elimination afforded the
requisite diene (1-57). Reductive cyclization with Rieke magnesium and
dichlorodiphenylsilane produced dihydrosilole 1-58. Epoxidation with mCPBA,

rearrangement with LDA and elimination via carbamate thermolysis yielded silole 1-62.

Scheme 1.13. Synthesis of a Cyclohexyl-Fused Silole

9 Me,NH-HCI, PhsPMeBr
HCOH, HCI(aq) NMe, THF KOtBu Mel, EtZO ﬁMeS
0% 1% 5% ,

1-53 1-56
Ag,0, H,0 Mg*, Ph,SiCl, mCPBA
e >  Phsi | — > PRSI
93% THF, 93% CH,Cl,, 92%
1-57 1-58 1-59
~ PhNCO,
LDA, THF S5 tin(ethylhexanoate), S PhMe, reflux S5
— %  Ph,Si _ Ph,Si ———> PRSI
70% Et,0, 93% 94%
OH OCONHPh 1-62
1-60 1-61

A previously reported C-unsubstituted silole was also synthesized;”* however it
bore the very large mesityl groups about the silicon atom to prevent the previously
described dimerization (see Scheme 1.9) and silicon-carbon bond cleavage (see Scheme
1.8). Lithiation of mesityl bromide and treatment with tetrachlorosilane afforded

dichlorodimesitylsilane (Scheme 1.14). Reductive cyclization with 1,3-butadiene and
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Rieke magnesium afforded dihydrosilole 1-64. Epoxidation and epoxide rearrangement
formed allylic alcohol 1-66. The previous synthesis of silole 1-67 used a Chugaev
elimination to form the silole; however, a very low yield was reported (23-36%). It was

found that the Burgess reagent proved vastly superior, affording silole 1-67 in 72% yield.

Scheme 1.14. Synthesis of a C-unsubstituted Silole

tBulLi; SiCly . Rieke Mg, 1,3-butadiene
MesBr —— > Mes;,SiCl, > Mes,Sit |
THF, 54% THF, 28%
163 1-64
OH
mCPBA LDA, THF Burgess reagent =3
—_— Me328i<\/l\o —_— MeSZSi/\;r —_— MeSZSig
CH,Cl,, 84% 92% 72%
1-65 1-66 1-67

With siloles 1-62 and 1-67 in hand, the Diels—Alder reaction was explored using
the previously developed conditions (Table 1.4). Cyclohexyl-fused silole 1-62 was found
to undergo the cycloaddition with maleic anhydride, methyl fumarate, methylacrolein,
and methylvinyl ketone (entries 1 - 4) in yields comparable to those found with silole 1-
47. Likewise, C-unsubstitued silole 1-67 formed the desired cycloadducts with
methacrolein, methyl vinyl ketone, and benzoquinone (entries 5 - 7); however, there was
a noticeable increase in reaction times due to increased steric bulk of the mesityl

39
groups.
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Table 1.4. Additional Substituted Silole Substrates

ArSi
~ ~, denophile  R— |
Ph,Si -0r-  Mes,Si e 71 =< R"
= = conditions R
1-62 1-67 1-68a to 1-68d
1-69a to 1-69¢
entry dienophile product, yield entry dienophile product, yield
Ph,Si
0 @%o o Mes,Si
12 o 5° ﬁb\
Q 0 | OMe COMe
\ © 73%
75%
thsi MeSQSi
MeO,C ; COxMe o
2b \lL 6b Hj\ o)
CO,Me CO,Me I
72% 84%

Mes,Si

i

82%

Ph,Si *
L.,
b /] d
3 ")J\ OMe CO,Me 7
o

86%

PhySi

e A a

79%

TPhMe, 22 °C, 16 h. ° PhMe, ELAICI, 2 h. © PhMe, ELAICI, 24 h. ® CH,Cl,, 160 000 psi.

The relative stereochemistry of the Diels—Alder adducts was determined through
NMR by observing nOe interactions between the methine proton a to the electron-
withdrawing group and the aryl protons (Figure 1.3). Furthermore, the typically
diagnostic chemical shift difference between the axial and equatorial positions of all-
carbon [2.2.1] bicyclic systems suggests that the exo products were never formed in a

quantity sufficient to be detected by NMR spectroscopy.*
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Ph C
AN

S/ ‘) observed nOe

H
7
CO,Me

1-48h
Figure 1.3. Key nOe Interaction for Structural Determination

1.2.6 Tamao—Fleming Oxidation

The 7-silabicyclo[2.2.1]hept-2-ene framework displays several functional groups
that evoke opportunities for synthetic manipulation (Scheme 1.15). To illustrate this
point, oxidation of the carbon-silicon bond by the Tamao—Fleming reaction successfully
converted representative silole Diels—Alder adducts 1-48f, 1-48g, and 1-69c

diastereoselectively to their respective cis-diols in 44-50% isolated yield.

Scheme 1.15. Tamao—Fleming Oxidation of the Diels—Alder Adducts

OH

FhaS) KF, KHCO3, H,0; wR
7 —_—
%b\pe 1:1 THF:MeOH
OH
R = C(O)Me; 1-48f R = C(O)Me, (50%); 1-70a
R = CO,Me; 1-48g R = CO,Me, (50%); 1-70b
OH
Ph,Si COM
j’ |b KF, KHCO3, H,0, w-o2ve
R
COMe 4.1 THF:MeOH
1-69¢ (44%) OH

1-71

1.3 Concluding Remarks
In summary, the reactivity of siloles in Diels—Alder chemistry has been explored.
Various promoters, including elevated temperatures, Lewis acids, and high pressures

were necessary to expand the reaction scope with less active dienophiles and in all cases
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complete endo selectivity was observed. Furthermore, the resulting bicyclic adducts were
successfully cleaved to reveal highly substituted cyclohex-2-ene-1,4-diols. Future
research will focus on accessing alternate substitution patterns about the silole ring and

application of the 1,4-diol species in natural product synthesis.
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1.4 Experimental

The following section contains experimental procedures and characterization data

for the compounds prepared in Chapter 1.

1.4.1 General Experimental Details

All reactions were run under an argon atmosphere unless otherwise indicated.
Flasks were oven dried and cooled in a dessicator prior to use unless water was used in
the reaction. Solvents and reagents were purified by standard methods."!
Dichloromethane, diethyl ether, THF, and toluene were purified by passing the solvents
through activated alumina columns. All other chemicals were of reagent quality and used
as obtained from commercial sources unless otherwise noted. The progress of reactions
were monitored by TLC performed on F254 silica gel plates. The plates were visualized
by UV light (254 nm) or by staining with ceric ammonium molybdate.** Column
chromatography was performed with Silica Flash P60 60 A silica gel from Silicycle
according to the Still method.*

The 'H and *C NMR data were obtained on 400 or 600 MHz spectrometers. All
spectra were obtained in deuterated chloroform and were referenced to residual
chloroform at § 7.25 ppm for 'H spectra and the center peak of the triplet at § 77.0 (t) for
13C spectra. When peak multiplicities are given, the following abbreviations are used: s,
singlet; d, doublet; dd, doublet of doublets; ddd, doublet of doublet of doublets; t, triplet;
q, quartet; m, multiplet; br, broad; app, apparent. EI mass spectra were obtained on a
Finnigan MAT 8200 spectrometer at an ionizing voltage of 70 eV. Melting points were

obtained in an Electrothermal Mel-Temp instrument and are uncorrected.

General Reductive Cyclization Procedure for the Preparation of Dihydrosiloles

To a mixture of Rieke magnesium (1.5 equiv), prepared according to literature
procedures,” in THF was added the diene (1.0 equiv). After 30 min freshly distilled
diphenyldichlorosilane (1.2 equiv) was added dropwise and the reaction mixture was
stirred for an additional 16 h. The reaction mixture was diluted slowly with '% saturated
NH4Cl and the mixture was extracted with hexanes (3 x). The combined organic layers

were washed with water, brine, and dried (MgSQOy). After filtration through a pad of
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celite the solvent was removed under reduced pressure. The resulting oil was then

purified by flash chromatography (100% hexanes).

General Epoxidation Procedure

To a solution of dihydrosilole (1.0 equiv) in CH,Cl; at 0 °C was added mCPBA
(1.2 equiv) portion wise. The reaction was warmed to room temperature and stirred for 1
h. A half saturated solution of potassium carbonate was added and the reaction mixture
was stirred for 15 min. The layers were separated and the aqueous layer was extracted
with CH,Cl, (2 x). The combined organic layers were washed with half saturated
NaHCO;, water, brine, and dried (MgSQy). After filtration through a pad of celite the
solvent was removed under reduced pressure. The residue was subsequently purified by

flash chromatography (10:1 hexanes/EtOAc).

General Epoxide Rearrangement Procedure

To a solution of lithium diisopropylamide (2.0 equiv) in THF at 0 °C was added a
solution of epoxide (1.0 equiv) in THF. After the reaction was complete by TLC a half
saturated NH4Cl solution was added and the aqueous layer was extracted with EtOAc (3
x). The combined organic layers were washed with water, brine, and dried (MgSO,).
After filtration through a pad of celite the solvent was removed under reduced pressure.

The residue was purified by flash chromatography (5:1 hexanes/EtOAc).

General Carbamate Formation Procedure

A solution of allylic alcohol (1.0 equiv), phenyl isocyanate (1.5 equiv), and
tin(ethylhexanoate), (2 mol %) in Et;O was heated to reflux. After 4 h the solution was
allowed to cool to room temperature and the solvent was removed under reduced

pressure. The resulting oil was purified by flash chromatography (10:1 hexanes/ EtOAc).
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General Thermal Diels—Alder Procedure

A solution of silole (1.0 equiv) and dienophile (1.0 equiv) in toluene or xylene
(mixture of o,m,p isomers) was heated to reflux. After 16 h the solution was allowed to
cool to room temperature, the solvent was removed under reduced pressure, and the

residue was purified by column chromatography (hexanes/EtOAc).

General Lewis Acid Catalyzed Diels—Alder Procedure

To a solution of silole (1.0 equiv) and dienophile (1.0 equiv) in toluene was added
a solution of Et,AlICI (1.8 M in toluene, 1.0 equiv) and stirred for 2 h. Water was added,
followed by 1 M HCI to dissolve the aluminum salts, and the aqueous layer was extracted
with EtOAc (3 x). The combined organic layers were washed with half saturated
NaHCO;, brine, and dried (MgSQy,). After filtration through a pad of celite the solvent
was removed under reduced pressure. The resulting residue was then purified by flash

chromatography (hexanes/EtOAc).

General High Pressure Diels—Alder Procedure

A solution of silole (1.0 equiv) and dienophile (1.0 equiv) in CH,Cl, was placed
in a ~ 5 cm segment of heat shrinkable Teflon tubing which was pinched and sealed at
one end with a brass screw clamp. Excess air was squeezed from the tube and the open
end was sealed with a brass screw clamp. The vessel was then pressurized in a LECO
Tempres HPC 200 system at 13 kbar for 16 h, after which time the solvent was removed
under reduced pressure and the residue was purified by flash chromatography

(hexanes/EtOAc).

1.4.2 Experimental Details

1,1-Diphenylsilacyclopent-3-ene (1-19)
The title compound was prepared according to the general reductive cyclization
procedure to afford a colorless oil (1.66 g, 58%). Ry 0.66 (10:1
hexanes/EtOAc); '"H NMR (400 MHz, CDCls) & 7.62-7.60 (m, 4 H), 7.44-7.38 (m, 6 H),
6.07 (t,J= 1.1 Hz, 2 H), 1.89 (d, J = 1.0 Hz, 4 H); °C NMR (100 MHz, CDCl3) § 136.1,

Ph,Si
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135.0, 129.8, 128.2, 17.1. 'H and *C NMR spectra were in agreement with previously
reported data.*

1,1-Diphenylsilacyclopentane-3,4-diol (1-70)

oH To a mixture of alkene 1-19 (1.41g, 596 mmol, 1.0 equiv),
PhZSquH methanesulfonamide (0.57 g, 5.96 mmol, 1.0 equiv), KsFe(CN)s (5.89 g,
17.66 mmol, 3.0 equiv), and K,CO;3 (2.47 g, 17.88 mmol, 3.1 equiv) in H,O (4 mL) and
CH,Cl, (10 mL) was added OsO4 (30 mg, 0.118 mmol) and stirred until reaction
completion by TLC. The reaction mixture was diluted with H,O and extracted with
CH,CI; (3 x 40 mL). The combined organic layers were washed with brine, dried
(MgSO0y) and filtered through a pad of celite. The solvent was removed under reduced
pressure and the residue was purified by column chromatography (1:2 hexanes/EtOAc) to
afford the title compound as a white foam (1.54 g, 80%). R;0.20 (1:1 hexanes/EtOAc);
'H NMR (400 MHz, CDCl3) § 7.56-7.38 (m, 10 H), 4.04-3.97 (m, 2 H), 2.65 (s, 2 H),
1.77 (dd, J=14.8, 5.7 Hz, 2 H), 1.21 (dd, J = 14.4, 10.5 Hz, 2 H); °C NMR (100 MHz,
CDCls) & 134.9, 134.6, 129.7, 128.1, 78.1, 18.8. 'H and C NMR spectra were in

agreement with previously reported data.*®

1,1-diphenylsilacylopentane-3,4-diyl dimethanesulfonate (1-34)

oms To a solution of diol 1-70 (232 mg, 0.86 mmol, 1.0 equiv) and
thSquMs triethylamine (0.74 mL, 5.4 mmol, 6.3 equiv) in THF (5 mL) at 0 °C was
added methanesulfonyl chloride (0.17 mL, 2.1 mmol, 2.5 equiv). After 20 min the
reaction mixture was diluted with a half saturated solution of NaHCO; and CH,Cl,, the
layers were separated, and the aqueous layer was extracted with CH,Cl, (3 x 10 mL). The
combined organic layers were washed with brine and dried (MgSO,). After filtration
through a pad of celite the solvent was removed under reduced pressure and the residue
was purified by flash chromatography (5:1 hexanes/EtOAc) to afford the title compound
as a white solid (290 mg, 79%). Ry 0.36 (5:1 hexanes/EtOAc); mp 100 °C,
decomposition; 'H NMR (400 MHz, CDCls) & 7.53-7.41 (m, 10 H), 5.14-5.06 (m, 2 H),
3.09 (s, 6 H), 2.10-2.05 (m, 2 H), 1.57-1.51 (m, 2 H); >C NMR (100 MHz, CDCl;) &
134.5, 132.3, 130.7, 128.5, 83.8, 39.0, 17.0.
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3,3-Diphenyl-6-oxa-3-silabicyclo[3.1.0]hexane (1-20)
The title compound was prepared according to the general epoxidation
ths<>o procedure to afford a white solid (1.71 g, 85%). R, 0.44 (5:1
hexanes/EtOAc); mp 75-76°C; 'H NMR (400 MHz, CDCl3) & 7.57-7.53 (m, 4 H), 7.44-
7.35 (m, 6 H), 3.64 (t, /= 1.0 Hz, 2 H), 1.78 (dt, J = 16.2, 1.1 Hz, 2 H), 1.49 (ddd, J =
16.2, 1.8, 0.6 Hz, 2 H); °C NMR (100 MHz, CDCl3) § 135.3, 134.8, 129.6, 129.4, 128.0,
127.8, 58.0, 15.2. 'H and ">C NMR spectra were in agreement with previously reported

data.*’

1,1-Diphenylsilacyclopent-2-en-4-ol (1-21)

/X The title compound was prepared according to the general epoxide
PhZSICLOH rearrangement procedure to afford an orange oil (0.83 g, 91%). R,0.56 (1:1
hexanes/EtOAc); '"H NMR (400 MHz, CDCl;) § 7.59-7.45 (m, 4 H), 7.45-7.36 (m, 6 H),
7.07 (dd, J =10.0, 2.1 Hz, 1 ), 6.41 (dd, J=10.1, 1.8 Hz, 1 H), 5.01 (t, J=5.9, 1 H),
1.94 (dd, J=14.9, 7.5 Hz, 1 H), 1.80 (s, 1 H), 1.15 (dd, J = 14.9, 5.5 Hz, 1 H); °C NMR
(100 MHz, CDCls) § 157.6, 134.9, 134.8, 130.0, 129.8, 129.7, 128.0, 76.0, 21.6. 'H and

3C NMR spectra were in agreement with previously reported data.47

(Z2)-buta-1,3-dienyldiphenylsilanol (1-35)

/Y, To asolution of 1-21 (60 mg, 0.24 mmol, 1.0 equiv) in pyridine (2.0 mL) at 0
Pr:jg/;l °C was added p-toluenesulfonyl chloride (73 mg, 0.38 mmol, 1.6 equiv). After
the reaction was complete by TLC, 2 NaHCO; and CH,Cl, were added and the layers
were separated. The aqueous layer was extracted with CH,Cl, (2 x) and the combined
organic layers were washed with 1M HCI, water, brine and dried (MgSQOs). After
filtration through a pad of celite the solvent was removed under reduced pressure and the
residue was purified by flash chromatography (10:1 hexanes/EtOAc) to afford the
product as a colorless oil (42 mg, 70%). Ry 0.35 (5:1 hexanes/EtOAc); 'H NMR (400
MHz, CDCl3) 6 7.66 (d, J =7.2 Hz, 4 H), 7.46-7.38 (m, 6 H), 7.11 (t, /= 11.9 Hz, 1 H),
6.71 (dt, J=16.8, 10.6 Hz, 1 H), 6.00 (d, J = 14.3 Hz, 1 H), 5.34 (d, /= 16.6 Hz, 1 H),
5.23 (d, J=10.0 Hz, 1 H), 2.39 (s, 1 H); *C NMR (100 MHz, CDCl;) & 150.1, 137.0,
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136.2, 134.4, 130.0, 128.0, 127.1, 121.5; HRMS m/z 252.0964 (caled for C16H;¢OSi,
252.0970).

1,1-diphenyl-3-methyl-silacyclopent-3-ene (1-36)
The title compound was prepared according to the general reductive
thS(j( cyclization procedure to afford a colorless oil (3.42 g, 81%). R, 0.52 (5:1
Hex/EtOAc); "H NMR (400 MHz, CDCls) & 7.57-7.55 (m, 4 H), 7.42-7.34 (m, 6 H), 5.64
(s, 1 H), 1.84 (s, 5 H), 1.77 (s, 1 H); >*C NMR (100 MHz, CDCls) & 140.3, 136.4, 129.7,
128.1, 1249, 22.8, 22.0, 17.8. 'H and *C NMR spectra were in agreement with

previously reported data™

1-methyl-3,3-diphenyl-6-oxa-3-silabicyclo[3.1.0]hexane (1-37)

The title compound was prepared according to the general epoxidation
ths(:éo procedure to afford a white solid (2.95 g, 85%). R, 0.40 (5:1 Hex: EtOAc);
mp 75-76°C; 'H NMR (400 MHz, CDCl3) & 7.55-7.32 (m, 10 H), 3.42 (s, 1 H), 1.74 (t, J
=174 Hz, 1 H), 1.53 (d, J=15.8 Hz, 1 H) 1.51 (s, 3 H), 1.44 (d, J = 15.8 Hz, 1 H); "°C
NMR (100 MHz, CDCls) & 135.7, 135.4, 135.3, 134.8, 129.5, 129.4, 128.0, 127.7, 65.3,
64.9,22.6,20.2, 16.5; HRMS m/z 266.1135 (calcd for C;7H;30Si, 266.1127).

1,1-diphenyl-4-methylsilacyclopent-2-en-4-ol (1-38)
oH The title compound was prepared according to the general epoxide
PhaSi\— rearrangement procedure to afford an orange oil (2.34 g, 90%). R;0.20 (5:1
hexanes/EtOAc); '"H NMR (400 MHz, CDCls) & 7.64-7.60 (m, 4 H), 7.48-7.40 (m, 6 H),
6.97 (d,J=9.9 Hz, 1 H), 6.31 (d,J=9.9 Hz, 1 H), 2.19 (s, 1 H), 1.71 (d, /= 15.2 Hz, 1
H), 1.53 (d, J=15.4 Hz, 1 H), 1.48 (s, 3 H); >C NMR (100 MHz, CDCl3) § 161.5, 134.9,
129.7, 129.6, 128.0, 127.1, 81.4, 30.8, 27.4; HRMS m/z 266.1119 (calcd for C,7H;30S]i,

266.1127).
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1,1-diphenyl-3-methylsilacyclopent-2-en-4-yl phenylcarbamate (1-39)
The title compound was prepared according to the general carbamate
Ph28<:|<o formation procedure to afford the title compound as a white foam (0.41
OANHPh g, 95%). R, 0.38 (5:1 hexanes/EtOAc); mp 106-108 °C; 'H NMR (400
MHz, CDCl;) 6 7.52-7.44 (m, 4 H), 7.36-7.26 (m, 8 H), 7.23-7.18 (m, 2 H), 7.09 (d, J =
10.2 Hz, 1 H), 6.98-6.95 (m, 1 H), 6.41 (s, 1 H), 6.27 (d, J=10.2 Hz, 1 H), 1.97 (s, 1 H),
1.96 (d, J= 9.4 Hz, 1 H), 1.96 (s, 1 H), 1.66 (d, J = 14.8 Hz, 1 H), 1.50 (s, 3 H); °C
NMR (100 MHz, CDCl3) & 159.0, 138.1, 135.1, 134.94, 134,87, 134.3, 129.8, 129.7,
128.9, 128.0, 127.9, 127.7, 123.1, 90.5, 28.6, 25.0; HRMS m/z 385.1489 (calcd for
C24H23NO,Si, 385.1498).

1,1-diphenyl-3-methylsilole dimer (1-41)

PhySi A solution of carbamate 1-39 (120 mg, 0.31 mmol) in toluene (2.0 mL)
%iphz was heated to reflux. After 16 h, the reaction mixture was allowed to cool

g to room temperature and the solvent was removed under reduced pressure.
Purification of the residue by flash chromatography afforded the silole dimer as a white
solid (63 mg, 82%). R, 0.61 (5:1 hexanes/EtOAC); 'H NMR (400 MHz, CDCl3) & 7.53-
7.06 (m, 20 H), 5.77 (t, J = 1.3 Hz, 1 H), 4.91 (dt, J=5.7, 1.7 Hz, 1 H), 3.58 (d, J =8.8
Hz, 1 H), 2.54 (s, 1 H), 2.35 (ddd, J=5.7, 2.0, 0.9 Hz, 1 H), 2.20 (dd, J = 8.8, 2.2 Hz, 1
H), 1.96 (s, 3 H), 1.58 (d, J= 1.6 Hz, 3 H); °C NMR (100 MHz, CDCl;) & 166.0, 138.7,
138.5, 137.1, 137.0, 135.8, 135.6, 134.9, 134.0, 133.7, 129.4, 129.3, 128.9, 128.8, 128.2,
127.6, 127.4, 127.3, 123.9, 56.5, 38.6, 30.9, 29.5, 22.2, 20.9; HRMS m/z 347.1110 (calcd
for CyH303Si + H', 347.1103).

(¥)-endo-2,3-maleicanhydro-5-methyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene
(1-42)
Ph,Si A solution of carbamate 1-39 (80 mg, 0.21 mmol, 1.0 equiv) and maleic
7 g anhydride (23 mg, 0.23 mmol, 1.0 equiv) in toluene (2.0 mL) was heated to
o ° reflux and stirred for 16 h after which time the reaction mixture was
allowed to cool to room temperature, filtered, and the solvent was removed under

reduced pressure to afford the product as a orange solid (60 mg, 83%). Ry decomposition
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(Si0,); '"H NMR (400 MHz, CDCl3) & 7.49-7.19 (m, 10 H), 6.03-6.01 (m, 1 H), 3.56 (dd,
J=5.1,2.7Hz, 1 H), 2.98 (ddd, J= 5.5, 2.8, 1.3 Hz, 1 H), 2.87-2.86 (m, 1 H), 1.83 (d, J
= 1.6 Hz, 3 H); >C NMR (100 MHz, CDCls) § 173.5, 173.2, 156.1, 150.6, 135.8, 134.9,
133.5, 130.8, 130.7, 128.8, 128.0, 127.1, 47.5, 46.8, 37.7, 33.2, 20.39.; HRMS m/z
347.1110 (caled for C,1H,305Si + H', 347.1103).

3,4-dimethyl-1,1-diphenyl-silacyclopent-3-ene (1-43)
s <I The title compound was prepared according to the general reductive
cyclization procedure to afford a colorless oil (6.15 g, 66%). R; 0.63 (5:1
hexanes/EtOAc); '"H NMR (400 MHz, CDCls) & 7.59-7.56 (m, 4 H), 7.43-7.35 (m, 6 H),
1.89 (d, J = 1.1 Hz, 4 H), 1.80 (s, 6 H); °C NMR (100 MHz, CDCl3) & 136.4, 134.7,
130.7, 129.3, 127.9, 24.2, 19.3. 'H and *C NMR spectra were in agreement with

previously reported data.**
1,5-dimethyl-3,3-diphenyl-6-oxa-3-silabicyclo[3.1.0]hexane (1-44)

procedure to afford a white solid (598 g, 96%). Ry 0.44 (5:1
hexanes/EtOAc); mp 77-78; "H NMR (400 MHz, CDCls) § 7.60-7.56 (m, 4 H), 7.46-7.35
(m, 6 H), 1.84 (d, J=15.8 Hz, 2 H), 1.56 (d, J = 15.8 Hz, 2 H), 1.52 (s, 6 H); °C NMR
(100 MHz, CDCl3) 6135.8, 135.5, 135.4, 134.8, 129.4, 129.3, 128.0, 127.7, 68.9, 22.4,
20.3; HRMS m/z 280.1281 (caled for C13H20OS1, 280.1283).

/\:é The title compound was prepared according to the general epoxidation
Ph,Si (o)

3,4-dimethyl-1,1-diphenylsilacyclopent-2-en-4-ol (1-45)

_ OH The title compound was prepared according to the general epoxide
PhZSI\:E rearrangement procedure to afford an orange oil (5.69 g, 90%). R,0.25 (5:1
hexanes/EtOAc); 'H NMR (400 MHz, CDCls) § 7.59-7.56 (m, 4 H), 7.43-7.38 (m, 6 H),
592 (q,J=1.2Hz 1H),2.08(d,J=1.2Hz, 3 H),1.78 (d,J=15.2 Hz, 1 H), 1.74 (s, 1
H), 1.56 (d, J=15.2 Hz, 1 H), 1.42 (s, 3 H); >C NMR (100 MHz, CDCl3) § 169.8, 135.8,
135.1, 135.0, 134.9, 129.5, 129.5, 127.8, 122.8, 122.8, 82.3, 29.7, 29.7, 18.2; HRMS m/z
280.1275 (caled for C;3H00S1, 280.1283).
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3,4-dimethyl-1,1-diphenylsilacyclopent-2-en-4-yl phenylcarbamate (1-46)
< The title compound was prepared according to the general carbamate
ths<:go formation procedure to afford the title compound as a white foam (4.17
OJ\NHPh g, 95%). Ry 0.34 (5:1 hexanes/EtOAc); mp 108-111°C; 'H NMR (400
MHz, CDCls) § 7.60-7.57 (m, 4 H), 7.41-7.21 (m, 10 H), 7.03 (t, /= 7.2, 1 H), 6.56 (s, 1
H), 594 (d,J=1.6,1H),2.28 (d,J=14.4Hz, 1 H),2.00 (d,/J=1.2 Hz, 1 H), 1.76 (d, J
= 14.4 Hz, 1 H), 1.42 (s, 3 H); >C NMR (100 MHz, CDCl3) & 167.7, 152.4, 138.1, 135.3,
135.1, 129.8, 129.6, 129.5, 129.0, 128.9, 127.8, 123.2, 122.6, 118.6, 91.3, 28.3, 25.6,

18.3; HRMS m/z 399.1655 (calcd for C,5sHysNO,Si, 399.1655).

3,4-dimethyl-1,1-diphenylsilole (1-47)

/S A solution of carbamate 1-46 (3.78 g, 9.46 mmol, 1.0 equiv) in toluene (20
ths(]: mL) was heated to reflux. After 16 h the solution was allowed to cool to room
temperature and the solvent removed under reduced pressure. The residue was purified
by flash chromatography (10:1 hexanes/EtOAc) to afford the title compound as an
opaque solid (2.26 g, 91%). R, 0.64 (5:1 hexanes/EtOAc); mp 37-38 °C; 'H NMR (400
MHz, CDCls) 6 7.60-7.58 (m, 4 H), 7.40-7.34 (m, 6 H), 6.00 (d, /= 1.2 Hz, 2 H), 2.11 (d,
J=1.2Hz, 6 H); >C NMR (100 MHz, CDCl;) & 159.9, 135.4, 133.2, 129.7, 127.9, 123.8,
21.0; HRMS m/z 266.1189, (calcd for C;sH;30S1, 262.1178).

(x)-endo-2,3-maleicanhydro-5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene
(1-48a)

oS To a solution of silole 1-46 (55 mg, 0.21 mmol, 1.0 equiv), in toluene was

}\;YO added maleic anhydride (21 mg, 0.21 mmol, 1.0 equiv). After 16 h the

7 °  solvent was removed under reduced pressure and the residue was purified
by flash chromatography to afford the title compound as a white solid (75 mg, 90%). Ry
0.14 (5:1 hexanes/EtOAc); mp 165-168 °C; '"H NMR (400 MHz, CDCl;) & 7.54-7.28 (m,
10 H), 3.64 (dd, J= 1.8 Hz, 2 H), 2.88 (dd, J = 1.8 Hz, 2 H), 1.84 (s, 6 H); °C NMR (100
MHz, CDCls) 6 173.6, 135.5, 133.6, 133.5, 132.8, 130.8, 130.6, 129.4, 128.8, 128.1,
47.5,38.8, 16.7; HRMS m/z 360.1186 (calcd for C2,H»003S1, 360.1182).
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(x)-endo-2,3-maleimido-5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene

(1-48b)
Ph,Si To a solution of silole 1-46 (55 mg, 0.21 mmol, 1.0 equiv) in toluene was
4 °  added maleimide (21 mg, 0.21 mmol, 1.0 equiv). After 16 h the solvent was

NH

© removed under reduced pressure and the residue was purified by flash

chromatography to afford the title compound as a white solid a white solid (70 mg, 85%).
R;0.10 (5:1 hexanes/EtOAc); mp 175-177 °C; '"H NMR (400 MHz, CDCl3) & 7.86 (s, 1
H), 7.46-7.19 (m, 10 H), 3.32 (dd, /= 1.6 Hz, 2 H), 2.71 (dd, /= 1.6 Hz, 2 H), 1.71 (s, 6
H); °C NMR (100 MHz, CDCl3) & 179.1, 135.5, 133.7, 131.7, 130.4, 130.3, 128.6,
128.0, 110.8, 47.9, 37.9, 16.7; HRMS m/z 359.1229 (calcd for C2H2NO,Si, 359.1342).

(2R*,35*)-5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene-2,3-
dicarbonitrile (1-48c)

PhSi The title compound was prepared according to the general thermal Diels—
7 “ Alder procedure to afford a colorless oil (67 mg, 85%). Ry 0.11 (5:1
CN hexanes/EtOAc); '"H NMR (400 MHz, CDCl;) § 7.61-7.31 (m, 10 H), 3.56
(dd,J=5.9,2.3 Hz, 1 H), 2.83 (dd,J=5.9, 1.8 Hz, 1 H), 2.72 (s, 1 H), 2.64 (s, 1 H), 1.94
(s, 3 H), 1.90 (s, 3 H); >C NMR (100 MHz, CDCls) & 135.7, 135.6, 134.2, 132.3, 131.1,
130.8, 128.8, 128.7, 128.2, 120.9, 118.9, 39.8, 39.4, 35.3, 35.1, 16.8, 15.6; HRMS m/z

340.1388 (calcd for C,,H2oN,S1, 340.1396).

(2R*,3S*)-dimethyl 5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene-2,3-
dicarboxylate (1-48d)
Ph,Si The title compound was prepared according to the general thermal

CO,Me
7 Diels—Alder procedure, the general Lewis acid Diels—Alder procedure or

COMe the general high pressure Diels—Alder procedure to afford a pale yellow
oil. Ry 0.30 (5:1 hexanes/EtOAc); '"H NMR (400 MHz, CDCl3) & 7.51-7.50 (m, 2 H),
7.40-7.33 (m, 6 H), 7.26-7.23 (m, 2 H), 3.78-3.76 (m, 1 H), 3.70 (s, 3 H), 3.26 (s, 3 H),
3.24-3.23 (m, 1 H), 2.73 (m, 1 H), 2.69 (m, 1 H), 1.86 (s, 3 H), 1.9 (s, 3 H); °C NMR

(100 MHz, CDCl3) 6 175.3, 173.2, 135.5, 134.8, 134.4, 134.2, 131.9, 131.7, 129.8, 129.7,
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128.0, 127.7, 51.9, 51.5, 48.3, 47.4, 39.2, 38.4, 16.4, 15.6; HRMS m/z 406.1590 (calcd
for Co4H2604S1, 406.1600).

(£)-endo-5,6-(5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-en-2-
yl)dihydrobenzoquinone (1-48e)

Ph,Si The title compound was prepared according to the general thermal Diels—

o)
}\% Alder procedure or the general high pressure Diels—Alder procedure to
© afford an orange oil. Ryrdecomposition (Si0,); '"H NMR (400 MHz, CDCls)

§7.51-7.45 (m, 2 H), 7.34-7.29 (m, 8 H), 7.20-7.16 (m, 2 H), 6.62 (s, 2 H), 3.33 (s, 2 H),
1.60 (s, 6 H); °C NMR (100 MHz, CDCls) § 200.6, 142.9, 135.6, 134.9,134.3, 133.8,
132.8, 130.2, 128.6, 127.9, 49.3, 43.3, 16.7; HRMS m/z 370.1406 (caled for C2rHx40,Si,
370.1389).

(x)-endo-1-(5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-en-2-yl)ethanone
(1-489)
Ph,Si The title compound was prepared according to the general Lewis acid

}\i Diels—Alder procedure or the general high pressure Diels—Alder procedure
(0]
to afford a pale yellow oil. R, 0.38 (5:1 hexanes/EtOAc); 'H NMR (400

MHz, CDCls) § 7.56-7.54 (m, 2 H), 7.43-7.33 (m, 6 H), 7.27-7.23 (m, 2 H), 3.19 (ddd, J
=9.6, 5.6, 2.0 Hz, 1 H), 2.56 (t, J= 1.8 Hz, 1 H), 2.16 (s, 3 H), 2.08-1.96 (m, 2 H), 1.77
(d, J= 0.9 Hz, 3 H), 1.71 (d, J = 0.9 Hz, 3 H); >C NMR (100 MHz, CDCl;) & 209.6,
136.2, 135.6, 134.9, 133.9, 132.5, 129.8, 129.7, 129.6, 128.3, 127.6, 52.4, 39.9, 35.2,
28.7,16.9, 15.7; HRMS m/z 332.1592 (calcd for C5,H240Si, 332.1596).

(x)-endo-methyl 5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene-2-
carboxylate (1-48h)

Ph,Si The title compound was prepared according to the general Lewis acid
}\b\COZMe Diels—Alder procedure or the general high pressure Diels—Alder procedure
to afford a pale yellow oil. R;0.44 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl5) &
7.55-7.52 (m, 2 H), 7.45 (m, 6 H), 7.28 (m, 2 H), 3.64 (d, 3 H), 3.15 (ddd, J = 10.2, 5.2,
2.4 Hz, 1 H), 2.21-2.15 (m, 2 H), 1.99 (ddd, J=13.0, 5.7, 2.4 Hz, 1 H), 1.79 (d, /= 1.1



34

Hz, 3 H), 1.74 (d, J= 1.1 Hz, 3 H); °C NMR (100 MHz, CDCl;) & 176.5, 136.0, 135.6,
134.9, 133.9, 132.4, 130.5, 129.7, 129.6, 128.2, 127.6, 51.5, 43.6, 39.6, 35.1, 29.7, 16.6,
15.9; HRMS m/z 348.1531 (calcd for Co,H,40,S1, 348.1546).

(x)-endo-ethyl 5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene-2-
carboxylate (1-48i)
s The title compound was prepared according to the general Lewis acid
}\b\ Diels—Alder procedure to afford a pale yellow oil (100 mg, 92%). R, 0.45
¥ (5:1 Hexanes/EtOAc); 'H NMR (400 MHz, CDCly) & 7.55-7.24 (m, 10 H),
4.12-4.04 (m, 2 H), 3.13 (ddd, J=9.8, 4.7, 2.0 Hz, 1 H), 2.57 (dd, J = 2.3, 1.7 Hz, 1 H),
2.20-2.14 (m, 2 H), 1.99 (ddd, J=12.9, 5.9, 2.3 Hz, 1 H), 1.78 (d, J= 1.7 Hz, 3 H), 1.74
(d, J=1.7 Hz, 3 H), 1.25 (t, J = 7.2 Hz, 3 H); °*C NMR (100 MHz, CDCl3) § 176.0,
136.1, 135.6, 134.8, 133.9, 132.5, 130.5, 129.61, 129.57, 128.2, 127.6, 60.2, 43.8, 39.6,

35.1,29.6, 16.7, 15.7, 14.3; HRMS m/z 362.1708 (calcd for C23H260,S1, 362.1702).

(x)-endo-p-bromophenyl 5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene-2-
carboxylate (1-48j)

Ph;Si The title compound was prepared according to the general Lewis
}\b\coz(p-cemsr) acid Diels—Alder procedure to afford a pale yellow oil (100 mg,
75%). R;0.50 (5:1 Hexanes/EtOAc); '"H NMR (400 MHz, CDCl;) 8 7.61-7.60 (m, 1 H),
7.50-7.27 (m, 10 H), 6.98 (m, 2 H), 3.41 (ddd, /= 10.0, 5.3, 2.3 Hz, 1 H), 2.77 (t, J=1.8
Hz, 1 H), 2.33-2.29 (m, 2 H), 2.10 (ddd, J = 12.3, 4.1, 1.8 Hz, 1 H), 1.84 (s, 6 H); "°C
NMR (100 MHz, CDCl3) 6 174.3, 150.1, 135.8, 135.6, 135.4, 133.9, 132.3, 132.0, 130.1,
129.8, 129.7, 128.3,127.7, 123.3, 118.5, 44.0, 39.9,35.1, 29.7, 16.9, 15.7; HRMS m/z
488.0799 (calcd for C,7H,5Br0O,Si, 488.0807).

(x)-endo-5,6-dimethyl-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene-2-carbaldehyde
(1-48f)
Ph,Si The title compound was prepared according to the general high pressure

}\b){o Diels—Alder procedure to afford a yellow oil (50 mg, 84%). R, 0.42 (5:1
H hexanes/EtOAc); '"H NMR (400 MHz, CDCls) 8 9.44 (d, J = 2.3 Hz, 1 H),
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7.45 (m, 2 H), 7.36-7.26 (m, 6 H), 7.19-7.17 (m, 2 H), 3.02 (m, 1 H), 2.51 (t, J= 1.8 Hz,
1 H),2.19(d, J= 1.8 Hz, 1 H), 2.02 (ddd, J= 12.3, 9.4, 2.3 Hz, 1 H), 1.90 (ddd, J = 12.7,
5.1, 2.1 Hz, 1 H), 1.71 (s,3 H), 1.66 (s, 3 H); °C NMR (100 MHz, CDCls) § 204.6,
137.9, 135.8, 135.6, 133.9, 131.9, 130.0, 129.8, 129.8, 128.3, 127.7, 52.5, 37.7, 35.2,
26.9, 17.2, 15.7; HRMS m/z 318.1441(caled for C5Hp08Si, 318,1440).

2,2-diphenyl-1,3,4,5,6,7-hexahydrobenzo][c]silole (1-58)
s GO The title compound was prepared according to the general reductive
cyclization procedure to afford a colorless oil (2.70 g, 93%). R;0.29 (100%
hexanes); 'H NMR (400 MHz, CDCl3) & 7.65-7.63 (m, 4 H), 7.46-7.41 (m, 6 H), 2.13 (br
s, 4 H), 1.88 (br s, 4 H), 1.70 (p, J = 3.3 Hz, 4 H); °C NMR (100 MHz, CDCl) § 136.6,
134.8, 133.2, 129.3, 127.8, 31.1, 23.5, 22.5; HRMS m/z 290.1505 (calcd for CyH2,Si,
290.1491).

2,2-diphenyl-1,3,4,5,6,7-hexahydro-7a-oxo-benzo|c]silole (1-59)

The title compound was prepared according to the general epoxidation
thSi/\:Eo) procedure to afford a colorless oil (0.774 g, 92%). R,0.59 (5:1 hexanes/EA)
'H NMR (400 MHz, CDCl3) § 7.62-7.58 (m, 4 H), 7.47-7.36 (m, 6 H), 2.15 (dt, J= 14.9,
7.0 Hz, 2 H), 1.91 (dt, J=15.6, 6.3 Hz, 2 H), 1.88 (d, J = 15.6 Hz, 2 H), 1.56-1.49 (m, 2
H), 1.50 (d, J = 15.6 Hz, 2 H), 1.37-1.32 (m, 2 H); °C NMR (100 MHz, CDCl;) & 136.0,
135.7, 135.3, 134.9, 129.4, 129.2, 127.9, 127.7, 68.5, 30.9, 21.8, 20.6; HRMS m/z
306.1441 (calcd for Cy0H2,08i, 306.1440).

2,2-diphenyl-1,4,5,6,7,-hexahydro-benzo[c]silol-7a-ol (1-60)
oy  The title compound was prepared according to the general epoxide
Ph28i<;O rearrangement procedure to afford an orange oil (1.52 g, 90%). R,0.36 (5:1

hexanes/EA) '"H NMR (400 MHz, CDCls) § 7.60-7.54 (m, 4 H), 7.42-7.36
(m, 6 H), 5.86 (d, /= 1.2 Hz, 1 H), 2.62-2.50 (m, 2 H), 2.17 (dq, J = 13.7, 2.6 Hz, 1 H),
1.92-1.80 (m, 2 H), 1.64-1.62 (m, 1 H), 1.59 (brs, 1 H), 1.55 (s, 2 H), 1.51-1.48 (m, 1 H),

1.41-1.28 (m, 1 H); *C NMR (100 MHz, CDCl3) § 171.2, 136.1, 135.7, 134.9, 139.5,
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137.93, 127.90, 120.7, 81.1, 43.3, 32.7, 28.0, 27.8, 22.3; HRMS m/z 306.1461 (calcd for
C10H2,081, 306.1440).

2,2-diphenyl-1,4,5,6,7-hexahydro-benzo[c]silol-7a-yl phenylcarbamate (1-61)

The title compound was prepared according to the general carbamate

PhZSi/:O formation procedure to afford an orange oil (0.625 g, 93%). R, 0.58 (5:1

Oj\NHPh hexanes/EA) '"H NMR (400 MHz, CDCl5)  7.65-7.59 (m, 4 H), 7.43 (m,

10 H), 7.07 (t, J = 7.2 Hz, 1 H), 6.62 (br s, 1 H), 6.01 (d, /=0.8 Hz, 1 H), 2.73 (d, J =

14.1 Hz, 1 H), 2.62 (d, J = 12.9 Hz, 1 H), 2.49 (td, J = 13.0, 4.1 Hz, 1 H), 2.12 (d, J =

15.6 Hz, 1 H), 1.94-1.90 (m, 1 H), 1.80 (tt, /= 13.7, 3.9 Hz, 1 H), 1.72 (d, /= 16.0 Hz, 1

H), 1.61 (d, J=14.1 Hz, 1 H), 1.43-1.36 (m, 2 H); °C NMR (100 MHz, CDCl3) 5 169.7,

152.3, 138.2, 1354, 135.2, 135.0, 129.52, 129.48, 129.0, 128.0, 127.9, 127.8, 123.1,

121.3, 118.5, 90.9, 41.2, 33.0, 28.3, 24.0, 22.2; Low res. mass spec. m/z 425.1 (calcd for
Cy7H27NO5Si, 425.1).

2,2-diphenyl-4,5,6,7-tetrahydro-benzo[c]silole (1-62)

~ A solution of carbamate 1-61 (327 mg, 0.77 mmol, 1 equiv) in toluene (7
P“ZS/\;O mL) was heated to reflux. After 16 h the solution was allowed to cool to
room temperature and the solvent was removed under reduced pressure. The residue was
purified by flash chromatography (10:1 hexanes/EtOAc) to afford the title compound as a
pale yellow oil (204 mg, 94%). R, 0.58 (10:1 hexanes/EtOAc); 'H NMR (400 MHz,
CDCl3) 6 7.62-7.60 (m, 4 H), 7.43-7.34 (m, 6H), 5.93 (t, J = 1.4 Hz, 2 H), 2.64 (br s, 4
H), 1.67 (p, J= 3.3 Hz, 4 H); °C NMR (100 MHz, CDCl3) & 160.7, 135.4, 133.5, 129.6,
127.9,121.5,32.1, 23.9; HRMS m/z 288.1326 (calcd for Cy0H20Si, 288.1334).

(x)-endo-2,3-maleicanhydro-tetrahydrobenzo[c]-7,7-diphenyl-7-
silabicyclo[2.2.1]hept-5-ene (1-68a)
Ph,Si The title compound was prepared according to the general thermal Diels—
7 ©  Alder procedure to afford a colorless oil (65 mg, 75%). Ry 0.21 (5:1
7 ° hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) & 7.54-7.26 (m, 10 H), 3.65
(t, J=1.6 Hz, 2 H), 2.85 (t, J= 1.6 Hz, 2 H), 2.12 (br s, 4 H), 1.57 (br s, 4 H); °C NMR
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(100 MHz, CDCl3) 6 173.6, 135.8, 135.5, 133.7, 133.6, 130.7, 130.6, 129.5, 128.8,47.6,
36.9,27.7,22.8; HRMS m/z 386.1344 (calcd for C24H»,03S1, 386.1338).

(2R*,35*)-dimethyl tetrahydrobenzo[c]-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene-
2,3-dicarboxylate (1-68b)

Ph,S] come The title compound was prepared according to the general Lewis acid
4 Diels—Alder procedure to afford a pale yellow oil (49 mg, 72%). Ry
M 0.21 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCls) § 7.52-7.24

(m, 10 H), 3.79 (dd, J = 5.5, 2.3 Hz, 1 H), 3.70 (s, 3 H), 3.26 (s, 3 H), 3.24 (dd, J = 5.7,
2.2 Hz, 1 H),2.72 (t, J=1.8, Hz, 1 H), 2.66 (t, /= 2.0 Hz, 1 H), 2.29-2.24 (m, 1 H), 2.15-
2.08 (m, 1 H), 1.95-1.94 (m, 2 H), 1.60-1.47 (m, 4 H); °C NMR (100 MHz, CDCl3) &
175.3, "73.3, 137.4, 135.5, 135.1, 134.9, 134.2, 132.0, 129.8, 128.0,127.8, 127.6, 51.9,
51.5, 48.4,47.6, 37.3, 36.4, 27.7, 26.7,23.1, 23.0; Low res. mass spec. m/z 432.1 (caled

for C26H2804Si, 432.1 )

(x)-endo-methyl tetrahydrobenzo[c]-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-ene-2-
carboxylate (1-68c)

Ph,Si The title compound was prepared according to the general Lewis acid
@lb\cozwle Diels—Alder procedure to afford a yellow oil (78 mg, 82%). R,0.29 (5:1
hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) & 7.47-7.16 (m, 10 H), 3.55 (s, 3 H), 3.09
(ddd, /=9.9,5.2,2.2 Hz, 1 H), 2.46 (dd, /= 2.0, 1.2 Hz, 1 H), 2.14-2.07 (m, 3 H), 1.94-
1.89 (m, 4 H), 1.50-1.40 (m, 4 H); °C NMR (100 MHz, CDCl;) & 176.4, 137.7, 136.2,
135.6, 133.9, 133.5, 132.6, 129.60,129.56, 128.2, 127.5, 51.5, 43.7, 37.8, 33.0, 29.8, 27.9,
26.8, 23.3; HRMS m/z 374.1699 (calcd for C24H60,S1, 374.1702).

(x)-endo-1-(tetrahydrobenzo[c]-7,7-diphenyl-7-silabicyclo[2.2.1]hept-5-en-2-
yl)ethanone (1-68d)
Ph,Si The title compound was prepared according to the general Lewis acid
7 o Diels—Alder procedure to afford a yellow oil (90 mg, 79%). R, 0.30 (5:1
hexanes/EtOAc); 'H NMR (400 MHz, CDCls) § 7.58-7.24 (m, 10 H), 3.23
(ddd, J=9.4,5.3,2.2 Hz, | H), 2.54 (t,J= 1.2 Hz, 1 H), 2.24-2.18 (m, 2 H), 2.16 (s, 3



38

H), 2.08 (ddd, J = 12.5, 5.1, 2.0 Hz, 1 H), 2.03-1.97 (m, 3 H), 1.56-1.43 (m, 4 H); 1°C
NMR (100 MHz, CDCls) § 209.4, 137.8, 136.3, 135.5, 133.9, 132.7, 132.6, 129.6, 128.7,
127.5, 52.3, 38.0, 33.2, 28.7, 28.2, 27.4, 26.8, 23.1; HRMS m/z 358.1759 (calcd for
C,4H2608Si, 358.1753).

(x)-endo-methyl 7,7-dimesityl-7-silabicyclo[2.2.1]hept-5-ene-2-carboxylate (1-69a)

The title compound was prepared according to the general Lewis acid

Diels—Alder procedure to afford a yellow oil (18 mg, 73%). R;0.26 (5:1

coe hexanes/EtOAc); '"H NMR (400 MHz, CDCL;) & 6.82 (s, 1 H), 6.78 (s,

3H), 6.45 (t, /=59 Hz, 1 H), 6.24 (t,J=5.7 Hz, 1 H), 3.63 (s, 3 H), 3.14 (ddd, J = 10.0,
5.4,2.0Hz, 1 H), 2.88 (d, J=4.3 Hz, 1 H), 2.52(s, 3 H), 2.49 (s, 12 H), 2.29 (ddd, J =
12.5,10.2,2.3 Hz, 1 H), 2.23 (s, 3 H), 2.22 (s, 3 H), 1.82 (ddd, J=12.5, 5.5, 2.0 Hz, 1
H); °C NMR (100 MHz, CDCl3) § 176.5, 144.8, 143.8, 143.7, 139.1, 139.0, 135.5,
131.4, 130.2, 129.1, 121.0, 128.9, 128.4, 51.6, 42.4, 38.0, 37.9, 34.2, 29.4, 24.1, 22.9,

22.8,20.9; HRMS m/z 404.2161 (calcd for C,6H3,0,S1, 404.2172).

Mes,Si

(x)-endo-1-(7,7-dimesityl-7-silabicyclo[2.2.1]hept-5-en-2-yl)ethanone (1-69b)

The title compound was prepared according to the general Lewis acid
Diels—Alder procedure to afford a yellow oil (26 mg, 84%). R, 0.25 (5:1
hexanes/EtOAc); 'H NMR (400 MHz, CDCl;) & 6.82 (d, J=11.7 Hz, 2 H),
6.78 (s, 2 H), 6.41 (t, J=59 Hz, 1 H), 6.17 (t, /= 5.7 Hz, 1 H), 3.18 (ddd, J = 9.8, 5.5,
2.0 Hz, 1 H), 2.86 (d, /= 3.5 Hz, 1 H), 2.54 (s, 3 H), 2.52 (s, 3 H), 2.49 (s, 6 H), 2.25 (s,
3 H), 2.22 (s, 3 H), 2.14 (ddd, J = 12.5, 9.8, 2.3Hz, 1 H), 2.13 (s, 3 H), 1.89 (ddd, J =
12.4, 5.6, 2.0 Hz, 1 H); °C NMR (100 MHz, CDCl3) § 209.9, 144.7, 143.9, 139.1, 139.0,
135.6, 131.5, 129.5, 129.2, 129.0, 128.9, 128.4, 51.1, 37.9, 34.4, 28.8, 27.6, 24.1, 23.0,
22.9,22.8; HRMS m/z 388.2230 (calcd for C,sH3,08i, 388.2222).

Mes,Si

o
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(x)-endo-5,6-(7,7-dimesityl-7-silabicyclo[2.2.1]hept-5-en-2-yl)dihydrobenzoquinone
(1-69c)

Mes,Si The title compound was prepared according to the general high pressure
A o Diels—Alder procedure to afford an orange oil (20 mg, 86%). Ry 0.26 (5:1

g hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) § 6.83 (s, 2 H), 6.80 (s, 2

H), 6.68 (s, 2 H), 6.31 (dd, /=3.9, 3.1 Hz, 2 H), 3.43 (s, 2 H), 3.22 (s, 2 H), 2.56 (s, 6 H),
2.48 (s, 6 H), 2.24 (s, 3 H), 2.23 (s, 3 H); °C NMR (100 MHz, CDCl5) & 200.5, 144.9,
143.8, 143.1, 139.7, 139.6, 136.5,132.8, 130.0, 129.3, 129.1, 126.9, 126.6, 48.2, 41.5,

29.7,24.1, 23.0, 20.9; HRMS m/z 426.2016 (calcd for CosH300,S1, 426.2015).

1-((1R*,25*,5R*)-2,5-dihydroxy-3,4-dimethylcyclohex-3-enyl)ethanone (1-70a)
oH o To a mixture of Diels—Alder adduct 1-48f (60 mg, 0.18 mmol, 1.0 equiv),
‘\JJ\ KHCO; (107 mg, 1.07 mmol, 6.0 equiv), KF (62 mg, 1.07 mmol, 6.0 equiv)
OH in methanol (1.0 mL) and THF (1.0 mL) was added H,0O, (30% in H,O, 24
ulL, 0.21 mmol, 1.2 equiv). After 16 h a half saturated solution of Na,S;03 (2 mL) was
added and, after 30 min, CH,Cl, (5 mL) was added and the aqueous layer was extracted
with CH,Cl, (3 x 10 mL). The combined organic layers were washed with brine, dried
(MgS04) and filtered through a pad of celite. After the solvent was removed under
reduced pressure the residue was purified by flash chromatography (1:1 hexanes/EtOAc)
to afford the title compound as a white solid (16 mg, 50%). R;0.22 (1:1 hexanes/EtOAc);
mp 115-119 °C; '"H NMR (400 MHz, CDCls) & 4.05 (s, 3 H), 2.91-2.83 (m, 1 H), 2.20 (s,
3 H),2.11(d, J=8.8 Hz, 2 H), 2.07 (dt, /= 13.8, 3.1 Hz, 1 H), 1.77 (s, 3 H), 1.72 (s, 1
H), 1.67 (s, 3 H), 1.58 (td, J = 13.3, 3.8 Hz, 1 H); °C NMR (100 MHz, CDCl;) & 211.4,
129.8, 126.8, 69.1, 42.8, 33.8, 33.3, 28.2, 19.2, 16.7, HRMS m/z 185.1179 (calcd for
CioH10; + H', 185.1178).

(1R*,25* 5R*)-methyl 2,5-dihydroxy-3,4-dimethylcyclohex-3-enecarboxylate (1-70b)
OH To a mixture of Diels—Alder adduct 1-48g (62 mg, 0.18 mmol, 1.0 equiv),
weoMe K HCO, (107 mg, 1.07 mmol, 6 equiv), KF (62 mg, 1.07 mmol, 6.0 equiv)
)¢ in methanol (1 mL) and THF (1 mL) was added H,O, (30% in H,O, 24
pL, 0.21 mmol, 1.2 equiv). After 16 h a half saturated solution of Na,S,03

OH
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(2 mL) was added and, after 30 min, CH,Cl, (5 mL) was added and the aqueous layer
was extracted with CH,ClI, (3 x 10 mL). The combined organic layers were washed with
brine, dried (MgSO,) and filtered through a pad of celite. After the solvent was removed
under reduced pressure the residue was purified by flash chromatography (1:1
hexanes/EtOAc) to afford the title compound as a white solid (17 mg, 50%). R,0.16 (1:1
hexanes/EtOAc); mp 118-120 °C; 'H NMR (400 MHz, CDCl;) 6 4.27 (d, J = 8.2 Hz, 1
H), 4.01(s, 1 H), 3.76 (s, 3 H), 2.84 (ddd, /=12.9,9.4,29 Hz, 1 H), 2.71 (d,J=4.7, 1
H), 2.15 (dt, J=13.5, 2.9 Hz, 1 H), 1.80 (dt, J=12.5, 4.1 Hz, 1 H), 1.79 (s, 3 H), 1.77 (s,
3 H), 1.55 (s, 2 H); >C NMR (100 MHz, CDCl3) & 175.7, 132.5,130.0, 71.3, 68.4, 52.0,
43.5,32.2,17.1, 14.4; HRMS m/z 200.1056 (calcd for C,oH604, 200.1049).

(1S*,2R*,4R*)-methyl 1,4-dihydroxy-1,2,3,4,5,6,7,8-octahydronaphthalene-2-
carboxylate (1-71)
OH To a mixture of Diels—Alder adduct 1-69¢ (150 mg, 0.40 mmol, 1.0
poote equiv), KHCO;3; (240 mg, 2.40 mmol, 6.0 equiv), KF (133 mg, 2.40
OH mmol, 6.0 equiv) in methanol (2.0 mL) and THF (2.0 mL) was added
H,0, (30% in H,O, 54 pL, 0.48 mmol, 1.2 equiv). After 16 h a half saturated solution of
Na,S,0; (2 mL) was added and, after 30 min, CH,Cl, (5 mL) was added and the aqueous
layer was extracted with CH,Cl, (3 x 10 mL). The combined organic layers were washed
with brine, dried (MgSO,) and filtered through a pad of celite. After the solvent was
removed under reduced pressure the residue was purified by flash chromatography (1:1
hexanes/EtOAc) to yield the title compound as a white solid (16 mg, 50%). Ry 0.25 (1:1
hexanes/EtOAc); '"H NMR (400 MHz, CDCls) & 4.25 (d, J = 9.4 Hz, 1 H), 3.92 (s, 1 H),
3.75 (s, 3 H), 2.90 (br s, 1 H), 2.85 (ddd, J=12.8, 9.5, 3.1 Hz, 1 H), 2.33 (brd, J=15.2
Hz, 2 H), 2.13 (dt, J=13.8, 2.9 Hz, 1 H), 1.94 (br s, 2 H), 1.90 (br s, 1 H), 1.82 (dd, J =
13.5,3.7 Hz, 1 H), 1.77-1.71 (m, 2 H), 1.56-1.46 (m, 2 H); °C NMR (100 MHz, CDCl)
o 175.6, 134.2, 131.9, 71.0, 67.4, 52.0,43.5, 32.4, 27.6, 25.3, 22.42, 22.38; HRMS m/z
226.1203 (calcd for C;oH;603, 226.1205).
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Chapter 2.  Alkoxy-Activated Cyclobutane Dicarboxylates and their Application
in Cycloaddition Chemistry

This chapter describes the recently discovered annulation chemistry of alkoxy-
activated cyclobutane dicarboxylates with aldehydes, nitrones and nitrosoarenes.
Relevant background information regarding the reactivity of donor-accepter cyclobutanes
and the currently reported annulations of donor acceptor cyclobutanes with dipolar
reagents will be presented. The research in this chapter was carried out in collaboration
with colleagues Mahmoud Abd Rabo Moustafa (Ph.D.), Mr. Ben P. Machin, Mr. Cory
Palmer, Mr. Naresh Vemula, and Mr. Tyler Schon. Results are those generated by the
author unless otherwise attributed, which can be found below the presented examples.
Portions of this work has been published in peer reviewed journals.'? Portions of text and
schemes have been reprinted in part with permission from Moustafa, M. M. A. R;
Stevens, A. C.; Machin, B. P.; Pagenkopf, B. L. Org. Lett. 2010, 12, 47364738 and
Stevens, A. C.; Palmer, C.; Pagenkopf, B. L. Org. Lett. 2011, 13, 1528—1531. Copyright

© 2010-2011 American Chemical Society.

2.1 Introduction
2.1.1 Structure and Reactivity of Donor Acceptor Cyclobutanes

The prevalence of polycyclic frameworks containing heteroatoms in biological,
pharmaceutical, and other industrially relevant molecules (i.e., pesticides, herbicides,
etc.) necessitates efficient routes for their formation. Ideally, this should be accomplished
through a minimum number of steps and occur in high yield with control over

diastereoselectivity and regioselectivity. In this regard, dipolar annulations of donor
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acceptor (DA) cyclopropanes have been extensively developed as effective partners for
the rapid assembly of highly functionalized molecules,’ including precursors in natural
product total syntheses.* In contrast, DA cyclobutanes have only recently been explored
for application in dipolar annulations despite their preparation being known for a number
of years® and the similar magnitude of ring strain when compared to cyclopropanes (110
kJ/mol for cyclobutanes vs 115 kJ/mol for cyclopropanes).’

The strain present in the cyclobutane ring system originates from the constrained
bond angles which, for a planar cyclobutane, are 90°. This is a significant deviation from
the ideal 109.8° for a sp’ hybridized center, imparting a large degree of Baeyer strain. In
a planar cyclobutane, the methylene groups would be in an eclipsed position, resulting in
high levels of torsional strain. Puckering of the cyclobutane ring occurs to decrease the
torsional strain, but this reduces the C-C-C bond angles leading to an increase in angle
strain. Experimentally, cyclobutanes have been determined to deviate from planarity by

approximately 35° resulting in C-C-C bond angles of 88° (Figure 2.1).

______________ H H
NG JosS
My
Figure 2.1. Geometry of the Cyclobutane Ring

While the cyclobutane ring system has a high level of strain, forcing conditions
are required to induce ring cleavage. Installation of vicinal electron-donating and
electron-accepting functionalities allows for facile bond cleavage through maximizing
bond polarization. A prominent example of successful application of this strategy can be

seen in the de Mayo reaction where a transient cyclobutane is formed that rapidly
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undergoes fragmentation to afford 1,5-dicarbonyl species (Scheme 2.1).® This has been
extensively applied for the formation of medium-sized rings, such as in the synthesis of

taxol analogs.’

Scheme 2.1. Reactivity of the Cyclobutane Ring System via the de Mayo Reaction
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If, however, the electron donating group is not capable of terminating the reaction
sequence through formation of a neutral species, a stabilized zwitterionic intermediate
can be formed. This intermediate can be considered a 1,4-dipole equivalent which can be
quenched by nucleophilic or electrophilic sources to afford ring-opened products. The
pinnacle of this principle can be seen when a nucleophilic and electrophilic component
are tethered, such as in dipolar reagents, creating the opportunity for annulation events to
occur and leading to the formation of a new ring system (Scheme 2.2). This mode of
activation has been extensively developed for DA cyclopropanes;’ however, the

analogous reactivity pattern in DA cyclobutanes has only recently been investigated.

Scheme 2.2. Annulation of DA Cyclobutanes with Dipolar Reagents
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2.1.2 Dipolar Cycloadditions of DA Cyclobutanes

The first intermolecular cycloaddition of a DA cyclobutane was reported by Saigo
in 1991." It was disclosed that an amino-activated cyclobutane underwent an annulation
event with both aldehydes and ketones to generate tetrahydropyrans. This transformation
required stoichiometric TiCly for the reaction to proceed in modest yield, affording a

diastereomeric mixture of hemiketals after acidic hydrolysis of the intermediate aminal.

Scheme 2.3. (4 + 2) Cycloaddition Between Amino-Activated Cyclobutanes and

Aldehydes or Ketones
NTi R 1
MeoN CO,Me i)TiCly (1.5 equiv) HOo. .o. R
JOL i) MeOH, aq. HCI R2 5 examples
ROSR et = e 42-47% yield
e Fie ua COzMe mixture of diastereomers
2-8 29

Reactivity of this kind was seemingly abandoned until recently, with a number of
contributions occurring in rapid succession. In 2009 near simultaneous reports by
Johnson'' and Christie and Pritchard'? disclosed the reactivity of DA cyclobutanes with
carbon-based activating groups undergoing annulation events with aldehydes (Scheme
2.4). Both reports describe the process as being incredibly facile, requiring low catalytic
loadings of Sc(OTf); and affording tetrahydropyran products in high yield with excellent

diastereoselectivity.
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Scheme 2.4. (4 + 2) Cycloaddition Between DA Cyclobutanes and Aldehydes

(OC)3Co=Co(CO)3 (OC)3Co~
o COMe R O o0k 2-11
JL Ph > CO;Me SC(OTf)3 (5 mol %) _ 14 examples
R'” H > MeO,C Ph 34-95% yield
210 MeO,C cis selectivity
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R1” H | | MeO,C™ E O)—AI—Nsz
MeO,C : tBu 2
2412 :
213 - 2-14

20 examples MADNTf,

68-96% yield

54-96% de

While the report by Christie and Prichard demonstrated the feasibility of a highly
diastereoselective (4 + 2) cycloaddition of DA cyclobutanes, the scope of the reaction
was limited as only a single cyclobutane (2-10) was investigated and only electron-rich
aldehydes underwent the reaction in good yield. Electron-poor aldehydes suffered from
low yields and aliphatic aldehydes were found to not participate in the reaction. In
contrast, the report by Johnson explored a number of carbon-based cyclobutane activating
groups. They found that the annulation would occur between cyclobutanes and aromatic
aldehydes with Sc(OTf); in good yield and high diastereoselectivity; however, a different
catalyst (MADNTT,, 2-14) was required to facilitate the reaction between DA
cyclobutanes and aliphatic aldehydes. Additionally, and more importantly, preliminary
studies were undertaken to determine the mechanism of the reaction.

In efforts to elucidate the mechanism of the cycloaddition, an enantiomerically
enriched DA cyclobutane was prepared through a circuitous route (Scheme 2.5). The
racemic DA cyclobutane 2-15 was monosaponified and esterified with (—)-menthol. The

resulting diastereomers were separated and saponification of the pure (+)-diastereomer
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provided diacid 2-18. Subsequent esterification with Mel afforded enantiomerically

enriched DA cyclobutane (+)-2-15.

Scheme 2.5. Synthesis of an Enantiomerically Enriched DA Cyclobutane
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KOH Ph COsH Mel, KoCO3 Ph COsMe
—_— SCOH ——————> S CO,Me
H,O:EtOH (1:1) DMF, 56%
80 °C, 94% 96% ee
(+)-2-18 (+)-2-15

Treatment of the enantiomerically enriched DA cyclobutane 2-15 to the
cycloaddition conditions afforded surprising results (Scheme 2.6). Johnson found that at
low reaction conversions, despite having enantiomerically enriched cyclobutane, the
tetrahydropyran product was almost racemic. In addition, the enantiomeric purity of the
DA cyclobutane slowly degraded throughout the reaction; at 45% conversion the
enantiomeric excess of the DA cyclobutane was only 60%. This study demonstrated that,
unlike the case of DA cyclopropanes,” the analogous reaction with DA cyclobutanes

may be mechanistically more complex.

Scheme 2.6. (4 + 2) Cycloaddition Between Enantioenriched DA Cyclobutane 2-15 and

Benzaldehyde
COM Ph_O-_Ph COMe
j’\ P“W r° CoMe  Sc(OT)3 (2 mol %) U Phtr—cone
Ph H 0 e MeO,C"
CH,Cl,, 45% conversion MeOsC
(+)-2-15 (-)-2-19 (+)-2-15

16% ee 60% ee
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Other major reports in the field of DA cyclobutane annulation chemistry
investigate the reactivity of cyclobutanones. The first example of an intermolecular
annulation of cyclobutanones with a dipolar species was reported in 2008."* While
attempting to form ring-expansion products from cyclobutanone 2-20, a dimeric product
(2-22) was isolated (Scheme 2.7). Realizing that the dimer had occurred through a (4 + 2)
cycloaddition and cognizant of the potential of a (4 + 2) cycloaddition between
cyclobutanones and carbonyl compounds, they quickly realigned their objectives and

explored the annulation event.

Scheme 2.7. (4 + 2) Cycloaddition of Cyclobutanones with Carbonyl Species
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0 CH,Clp R 120" T 0 73-84%
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o Me \Me \Me
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2-25 2-26 2-27
-45°C,1h 93% <1%
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The fused cyclobutane 2-23 underwent smooth cycloaddition with benzaldehyde,
pivaldehyde, and acetophenone to afford the desired adducts in good yield and high
diastereoselectivity (Scheme 2.7). However, when non-fused cyclobutanone 2-25 was
subjected to the reaction conditions, the process was revealed to be stereorandom, and the

regioselectivity was opposite to that of cyclobutanone 2-23. The poor diastereoselectivity
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of the cycloaddition with ethoxy-substituted cyclobutanone 2-25 could be compensated
for by allowing the reaction to warm to room temperature, facilitating elimination of
ethanol and resulting in formation of dihydropyrone 2-27.

With regards to the opposite regioselectivity observed between the two
cyclobutanones, both steric and electronic factors were believed to be responsible. The
regioselectivity of the reaction, in the case of the fused cyclobutanone (2-23), was due to
high levels of ring strain that would be present if an eight-membered ring bearing two
double bonds were formed (2-28), while the high diastereoselectivity was believed to be
due to pseudo-equatorial approach of the carbonyl species (Scheme 2.8). In contrast, the
ethoxy-substituted cyclobutanone 2-25 cleaved at the more substituted carbon. Matsuo
attributed this reversal as cleaving at the bond more able to stabilize the developing
positive charge (following Lewis acid coordination of the cyclobutanone). This rationale
is likely incorrect, and cleavage at the more substituted carbon occured to form the more
substituted (and thermodynamically favored) enolate. The low diastereoselectivity
observed with cyclobutanone 2-25 was attributed to the reaction occurring through the

open zwitterionic intermediate 2-31.
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Scheme 2.8. Mechanistic Rationale for Observed Selectivity with Cyclobutanone
Cycloadditions
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Following their initial disclosure, Matsuo explored the potential of the (4 + 2)

cycloaddition to afford products in an enantioselective manner. This was realized through

appendage of an inexpensive auxiliary via an ether linkage. In this case, the auxiliary

would serve two purposes, to act as an activating group for the cyclobutanone and to

facilitate chirality transfer (Scheme 2.9)."> After exploration of a number of candidates, it

was shown that the L-ethyl lactate auxiliary (2-32) could afford dihydropyrone products

with moderate to high levels of enantiopurity. Interestingly, the addition of a second

metal chloride to the reaction mixture proved vital to achieving good levels of chirality

transfer, the most successful combination being TiCly and SnCl,, both in super-

stoichiometric quantities.



Scheme 2.9. Asymmetric Annulation of Cyclobutanones and Aldehydes
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Matsuo has also demonstrated that the activating group required for

cyclobutanone cleavage and subsequent annulation does not need to be an ether linkage,
as cobalt-alkyne complexes could also facilitate the cycloaddition, though alkynes would

not (Scheme 2.10).'® This is a similar finding to that of DA cyclopropanes where alkyne-

activated cyclopropanes dicarboxylates would react with nitrones to afford only trace

quantities of products; however, upon cobalt-complexation of the alkyne, the yield

dramatically increased to 90%.'” Surprisingly, the reaction between the cyclobutanone
bearing the alkyne-cobalt

complex (2-32) and aldehydes occurred in high

diastereoselectivity, in sharp contrast to when an ether linkage was used where the

diastereoselectivity was almost non-existent.

Scheme 2.10. (4 + 2) Cycloaddition Between Cyclobutanones Bearing an Alkyne-Cobalt

Complex and Aldehydes
o)
0 “;"eM H Tic Me 2-34
e 4 Me 13 examples
OAR chon 11-87% yield
\ 2Cl (000 0" R 88-98% de
(OC)sCo=Co(CO)s Co
2-33

(CO)

A number of alternative dipolarophile partners were also investigated by Matsuo
with varying degrees of success. Electron-rich olefins were explored though the scope
and selectivity of the processes were found to be somewhat limited.'® Electron-rich silyl

enol ethers participated in (4 + 2) cycloadditions with cyclobutanone 2-25 to afford

54
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cyclohexanone products (Scheme 2.11). A number of Lewis acids were explored and it
was found that EtAICI, facilitated the reaction in the highest yield. The selectivity of the
reaction with a number of acetophenone-derived silyl enol ethers was found to be high,
however extension of the reaction to silyl enol ethers derived from propiophenone
resulted in diastereomeric mixtures. Interesting the diastereomerically pure
cyclobutanone 2-37 underwent the (4 + 2) cycloaddition with a silyl enol ether to afford a
highly substituted cyclohexanone (2-38) with good control over the diastereoselectivity at

all three stereocenters.

Scheme 2.11. Cycloadditions Between Silyl Enol Ethers and Cyclobutanones

o]

oL Me OSiMe; . Me
\]t-EMe %\@ EtAICI, (1.3 equiv) - Me
R ° \ = OSiMe3
OEt X CHchQ, 78 °C Eto\\ Ar
2-25 X =OMe, Me, 2-36
H, Cl, NO, 5 examples
37-70% yield
o OB OSiMes 0
n
\]L—r %\© EtAICI, (1.3 equiv) @OB"
78°C Wi __A=0sim
OFt CH,Cl,, -78 °C £ zC iMe;
2-37 2-38

48%

The reactivity of allylsilanes with cyclobutanones was also investigated (Scheme
2.12)." In contrast to previously reported reactions with cyclobutanones, the reaction of
allylsilanes was found to proceed with only catalytic amounts of Lewis acid. A number of
Lewis acids were examined and SnCly; was found to afford the products in the highest
yield, though the diastereoselectivity was only 3:1. The diastereoselectivity issue could
once again be solved though elimination of ethanol by treating the isolated product with
TMSOTf. A number of symmetrically substituted cyclobutanones were examined,

providing comparable yields and diastereoselectivities throughout. Substitution about the
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silicon atom of the allyl silanes was also investigated and, upon examining allylsilane 2-
43, a peculiar rearrangement process occurred and a mixture of cyclohexanone 2-44 and
tetrahydropyrone 2-45 was obtained. The rearrangement was believed to occur through a

1,5-hydride shift followed by ring closure of the pendant enolate.

Scheme 2.12. Cycloaddition Between Allylsilanes and Cyclobutanones

o} R 0 R R
SR s, _SnCla (20 mol %) R TMSOTS R
~_SRs > L — .
- Z CH,Ch, 45°C o SiRs  CH,Cly SiRs
239 240 241
50-96% yield 60-94%
3:1dr.
e} \Et Et
\]L_‘t Et _~_-Teops _SnCly (20 mol %) _ Et
TBDPS
oFt CH,Cl, 45°C TBDPS
242 243 244 " a5
55% 22%

CuSn\
TBDPS\b*j}\ OS”CM
A
TBDPS

Subsequently, the reactivity of DA cyclobutanones and N-sulfonyl imines was
investigated and found to be a facile and useful process.”’ As in previous cases, TiCl; was
found to be the Lewis acid of choice for the cycloaddition, mediating the reaction at —45
°C within 1 h (Scheme 2.13). Fortuitously, the ethoxy-activating group was eliminated in
situ to afford dihydropyridones directly. The reaction scope was quite broad, as
substitution about the carbon portion of the imine was tolerant of electron-rich or poor
aryl rings, as well as conjugated and aliphatic substituents. The effects of nitrogen
substitution were not explored but N-tosyl groups can easily be cleaved, rendering

alternative nitrogen substitution patterns a non-issue. Exploration of the stereochemical
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outcome of the reaction with non-symmetrical cyclobutanones revealed that the process
occurred with almost no stereoselectivity. However, they were able to demonstrate the
applicability of this methodology by utilizing it in a rather rapid synthesis of the alkaloid

(¥)-bremazocine.

Scheme 2.13. Cycloaddition Between N-Sulfonyl Imines and Cyclobutanones

HO
i O
M M
O = " 6 steps

. . N M
Mo _NGR TiCl, (1.3 equiv) | e S ’
OFt CH,Cly, -45 °C ? R - ' N,\A
S
OH
2-25 2-46 (x)-bremazocine
13 examples

31-78% yield

The most recent, and possibly most impressive, example to date of the utility of
dipolar cycloaddition chemistry with cyclobutanones is the reactivity of cyclobutanones
and indoles for the generation of hydrocarbazoles (Scheme 2.14).*' The reaction
proceeded with high cis selectivity about the ring fusion; however, the relative
stereochemistry between the ring fusion and the ethoxy substitutent was moderate to
poor. The yield was moderate to excellent and once again they were able to remove the
ethoxy activating group to install an o,B-unsaturated ketone, circumventing the poor
diastereoselectivity of the reaction. Additionally, with proper substitution about the
indole nucleus, the cycloaddition could be influenced to occur with opposite

regioselectivity, revealing the strong influence that electronics play in the reaction.
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Scheme 2.14. (4 + 2) Dipolar Cycloaddition Between Cyclobutanones and Indoles

EtO

o Ve R
H TiCl, or EtAICI
T 8 oo °
EtNO, or CH,Cl, N Me
OFEt \ 78 to -45 °C 1 H Me
Pg Pg
2-25 Pg =Ts, Ns, CBz, Alloc, Bn, H 2-47
R =H, Me, Et 19 examples
31-98% yield
4-70% de
Me
Me EDG Me o
O\]L_t Ve ®_§ TiCls, CH,Cly EDC
_——
OFt ,}, -78 t0 -45 °C N
Pg by M OBt
2-25 Pg =Ts, Cbz 2-48
EDG = Me, SMe, OTBS 7 examples
46-90% yield
6-88% de

The utility of this process was demonstrated through the synthesis of (%)-
aspidospermidine (Scheme 2.15). An amino-activated cyclobutanone was synthesized
over seven steps to afford 2-50. An extensive Lewis acid screen was required to identify
that TMSOTT was capable of mediating the desired (4 + 2) intramolecular cycloaddition,
though once again a mixture of two diastereomers was formed. Another three steps were

required to complete the synthesis.

Scheme 2.15. Synthesis of (£)-Aspidospermidine from the (4 + 2) Cycloaddition of
Indoles and Cyclobutanones

Et
| 7 steps TMSOTf PhMe ’ll Et 3 S‘teps ngt
reflux 48%
Et (+32% C-22 epimer)
2-50

2-49 2-51 (x)-aspidospermidine

While a number of DA cyclobutanes have been employed in dipolar cycloaddition
chemistry, the bulk of the examples explore chemistry of cyclobutanones. Additionally,

the reactions typically lack control over the diastereoselectivity of the process and require
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super-stoichiometric amounts of Lewis acid activators. It would therefore be useful to
investigate DA cyclobutanes bearing alternative donating and accepting groups and
explore their reactivity in cycloaddition chemistry.

The Pagenkopf group has previously explored the dipolar cycloaddition chemistry
of DA cyclopropanes activated by alkoxy donating groups and ester withdrawing
groups.”**? It was believed, based the precedent set by Saigo,'’ Matsuo'* and

Johnson,'" that alkoxy-activated cyclobutane dicarboxylates could undergo cycloaddition

chemistry with a number of dipolarophiles to afford diverse and unique molecular

scaffolds.

2.2 Cycloadditions of Alkoxy-Activated Donor-Acceptor Cyclobutanes and

Dipolar Reagents

2.2.1 Synthesis of Alkoxy-Substituted Donor-Acceptor Cyclobutanes

At the outset of this work, Mahmoud Moustafa (Ph.D.) had developed a modified
procedure for the synthesis of alkoxy-activated DA cyclobutanes based upon the method
of Roberts (Table 2.1).”* The original procedure required stoichiometric zinc bromide to
form the cyclobutanes; however, this proved to be too aggressive of a Lewis acid, as only
cyclobutanes bearing the bulky #-butyl esters were stable enough under the reaction
conditions to be successfully isolated in appreciable quantities. Much weaker Lewis acids
were necessary to produce cyclobutanes bearing the less protective and more reactive
ethyl and methyl esters. This was readily accomplished using Yb(OTf)s;, which was only
required in catalytic amounts (10 mol %). It should be noted that prior to our report
Johnson had also observed this phenomenon and utilized Sc(OTf); as a catalyst for the

formation of a carbon-activated cyclobutane dicarboxylate through this method."'
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Table 2.1. Synthesis of Alkoxy-Activated Cyclobutane Dicarboxylates

o R0,C_COR? Yb(OTf); (10 mol %); o :CSéR; 2
] \n/ CH,Cl,, -78 °C U 2
2-52 2-53 2-54 t0 2-64
COsR COsR CO,R OMe CO,R
Qo;lj;CéZR ((jj;CézR EtoﬁcézR O:er‘_cézR
2-54; R = Et, 93%; 2-57; R=FEt, 84% 2-58;R=Me, 56% 2-60; R = Et, 70%
2-55; R = iPr, 61%; 2-59; R = Et, 80%
2-56; R = tBu, 72%;
MeO MeO
COR |  COR
>= COsR "/Er}COgR
2-61;: R = Et, 81% 2-62;: R = Me, 51%
2-63; R=Et, 71%
2-64; R = tBu, 59%

2.3 Results and Discussion

2.3.1 Annulation of Alkoxy-activated Cyclobutane Dicarboxylates and Aldehydes

With access to DA cyclobutanes bearing a variety of alkoxy-activating groups and
ester substitutions, we examined possible dipolar reagents for feasibility in cycloaddition
chemistry. Aldehydes were selected among the first dipolarophiles to be evaluated as
potential annulation partners with alkoxy-activated cyclobutane dicarboxylates.*

Our studies in this area began by examining the cycloaddition between
cyclobutane 2-54 and benzaldehyde (Table 2.2). After a brief Lewis acid screen,
Yb(OTY); was found to be the optimal choice, affording fused acetal 2-65a as a single
diastereomer in 70% yield.” Screening of the reaction conditions revealed that
temperature had little effect on the yield or diastereoselectivity (entries 1 — 3), and that
catalyst loadings as low as 0.5 mol % (entry 7) could be used, though prolonged reaction

times were necessary. At 2 mol % catalyst loadings, the reactions were complete in 2 min
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when quickly heated in the microwave reactor and allowed to cool (entry 8). For
convenience, however, 10 mol % of Yb(OTf); (entry 4) was used throughout this study as
the reactions were complete in 15 min at 0 °C. It is important to note that only a single
diastereomer was observed by NMR spectroscopy in this case, and in all subsequent

examples.

Table 2.2. Optimization of the (4 + 2) Cycloaddition Between DA Cyclobutane 2-54 and

Benzaldehyde
H H H
onjﬁc‘%fét conditions 0O -Ph
+ PhCHO —»
""CO,Et
H H  CO.Et
2-54 2-65a
conditions®
Yb(OTf)s PhCHO temp time
entry (mol %) (equiv) (°C) (min) yieldb (%)
1 10 3.0 -40 120 70
2 10 3.0 0 15 84
3 10 3.0 20 15 78
4 10 1.1 0 15 78
5 10 0.9 0 15 68
6 2 11 0 45 74
7° 0.5 1.1 25 18 h 79
8" 2 1.1 60 2 76

3 No reaction was observed at 0 °C. ® Reaction was conducted in a microwave reactor.
Optimization studies were conducted in conjunction with Ben Machin.

Having identified suitable reaction conditions, the scope of the transformation
was explored (Figure 2.2). Aromatic aldehydes were found to be excellent reaction
partners regardless of whether they were electron rich (2-65b), halogenated (2-65c),
electron poor (2-65d, 2-65e), or conjugated (2-65g to 2-65i). Heteroaromatic aldehydes
also underwent the cycloaddition (2-furfural, 2-thiofurfural, and indole-2-

carboxaldehyde, 2-65j to 2-65I).
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H H
0 O Ar
M'CozEt

ArCHO >
CH,Cl,, 0 °C, 15 min
H CO5Et
2-65a to 2-65I
H H Ph
0 O //
K “COzEt
H  COEt COS%Et H  COEt
2-65a, X =H, 78% 2-65f, 80% 2-65q, 62%
2-65b, X = OMe, 80%
2-65c¢, X = Cl, 89%
2-65d, X = CN, 88%
2-65e, X = NO,, 75%
H H Ts
0 (0] xR N
@iy ooy
""CO,Et
H CO,Et H COLE HCOLEL
H CO,Et
2-65h, R = Ph, 87% 2-65j, X =0, 71% 2-65l, 81%

2-65i, R = Me, 51%

2-65k, X =S, 69%

Compounds 2-65d, 2-65f, 2-65j and 2-65| were synthesized by Ben Machin.

Figure 2.2. Scope of the (4 + 2) Cycloaddition of DA Cyclobutanes and Aromatic and
Heteroaromatic Aldehydes

Related studies indicated that aliphatic aldehydes may require stronger Lewis

acids;'! however, in this study it was observed that the same Lewis acid, Yb(OTf)3, could

effectively catalyze the (4 + 2) cycloaddition between the alkoxy-substituted cyclobutane

dicarboxylates and aliphatic aldehydes (Figure 2.3). Examination of the reaction scope

revealed that linear (2-65m, 2-65n), branched (2-650), acetaldehyde (2-65p), and

cyclopropyl aldehydes (2-65q) all underwent the cycloaddition to provide exclusively the

cis bicyclic acetals.
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H H H
0 ‘\C(%Eét Yb(OTf)3 (10 mol %) oL OWLR
*~+ RCHO -
CH,Cly, 0 °C, 15 min nCOLEL
H

H COsEt
2-65m to 2- 65q
CO,Et H CO,Et CO,Et
2-65m, 68% 2-65n, 56% 2-650, 58%
MCOQEt m&
COEt COEt
2-65p, 51% 2-65q, 72%

Figure 2.3. (4 + 2) Cycloaddition of DA Cyclobutanes and Aliphatic Aldehydes

Lastly, several additional DA cyclobutanes were investigated (Table 2.3). Pyran-
fused cyclobutane 2-57 underwent successful cycloaddition with both aromatic and
aliphatic aldehydes to afford the all cis-products (2-66a, 2-66b). The ethoxy-substituted
cyclobutane 2-59 also participated in the cycloaddition with aromatic and aliphatic
aldehydes (2-67a, 2-65b). Furthermore, the cyclohexyl-fused cyclobutane 2-60
underwent cycloadditions with aromatic aldehydes to afford the fused ring systems 2-68a

to 2-68e, each as a single diastereomer.
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Table 2.3. Additional DA Cyclobutanes for the (4 + 2) Cycloaddition with Aldehydes

R® H

Yb(OTf); (10 mol %)  R'O~J-O~L-R
cyclobutane + RCHO >
CH,Cl,, 0 °C, 15 min R?2 "1CO,Et
H CO,Et
cyclobutane tetrahydropyran
oH ~COLEt oHoHR
CO,Et
H H  CO.Et
2-57 2-66a, R = Ph, 60%

2-66b, R = (CH,),Ph, 62%
H H

EtO QO R
EtO_ COEt
\Dh CO,Et HCO,EL

CO,Et
2-59 2-67a, R=Ph, 72%
2-67b, R = (CH,),Ph, 70%
OMe MeO H
(COEt J A
E :I:r CC2)2Et Ei Oi R
""CO,Et
H H CO,Et
2-60 2-68a, R = p-CsH,OMe, 76%

2-68b, R = p-CgH,Cl, 69%

2-68c, R = m-C¢H4NO,, 60%

2-68d, R = trans-C,H,Ph, 71%

2-68e, R = 2-thiophene, 56%
Compounds 2-68a to 2-68e were synthesized by Mahmoud Moustafa.

The assignment of stereochemistry of the cycloadducts was based on NMR
analysis (Figure 2.4). Observed nOe interactions between protons Hy and Hp indicated a
cis relationship in all adducts. Additionally, the small *Ji; coupling constant between the
ring fusion protons (Hs and H¢) of furan-fused (2-65) and pyran-fused (2-66)
cycloadducts indicated cis-ring fusions in both cases. The cyclohexyl-fused adducts (2-
68) were believed to bear trams-ring fusions based upon the lack of observed nOe
between the methoxy substituent and ring fusion proton, as well as other coupling

experiments.
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2R 2R

Ha _H Ha _H
0LLOLR 0 0GR
J=4T7Hz J=27Hz
""CO,Et ""CO,Et
Hc  CO.Et Hc  COsEt
2-65 2-66

' ‘ nOe interaction

y o\ 4 \ m scalar coupling

Ha . Hs MeO _ Hg

EtO g O..R Z_O-_R
U'COzEt m'coza
CO,Et H CO,Et
2-67 2-68

Figure 2.4. Selected NMR Interactions

The mechanism of (3 + 2) cycloadditions of carbon-activated cyclopropane
dicarboxylates has been the subject of study."” The reaction is believed to occur through
an intimate ion-pair (2-69) as seen in Scheme 2.16. The aldehyde acts as a nucleophile
and, following addition, a 120° rotation about the C-2/C-3 bond occurs to allow
nucleophilic ring closure via envelope-shaped intermediate 2-71. Overall, a net inversion
occurs at C-3 as if a SN2 reaction had taken place. Due to the formation of an ion-pair,
and the potential for the cyclopropane starting material to undergo racemization, this

mechanism has been exploited for use in dynamic kinetic asymmetric transformations.*

Scheme 2.16. Mechanism of the (3 + 2) Cycloadiditon Between DA Cycloproanes and

Aldehydes
Lae _0 OMe oo
€02
\O ?) H H MeO,C n
(30 /O )\ J\\ 1 2
MeOo R 07 e R™ ™7 ™R
R OMe ® R
2-69 2-70 2-71 2-72

When the (4 + 2) cycloaddition between alkoxy-activated cyclobutane
dicarboxylates and aldehydes is compared to the above (3 + 2) cycloaddition of

cyclopropanes, it is immediately evident that a similar mechanism is not operating
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(Scheme 2.17). Overall a net retention occurs at the carbon center bearing the activating
group, ruling out a direct Sy2 type reaction which would lead to a net inversion
(mechanism A). Alkylation of the aldehyde by the cyclobutane ring (mechanism B)
would lead to the observed stereochemistry; however, this mechanism is not believed to
be operating due to preliminary competition experiments between electron-rich
anisaldehyde and electron-deficient para-nitrobenzaldehyde (Scheme 2.18). The reaction
showed complete preference for the electron-rich aldehyde, indicating that the most likely
mechanism involves a nucleophilic, rather than electrophilic component. The remaining
pathway is similar to that proposed by Matsuo,'* where cleavage of the cyclobutane
occurs to form a zwitterionic intermediate (2-79), followed by annulation with an
aldehyde to afford the tetrahydropyran (2-78, mechanism C). Currently, the favored

pathway for the above reasons is that of mechanism C.

Scheme 2.17. Plausible Mechanisms for the (4 + 2) Cycloaddition of DA Cyclobutanes

and Aldehydes
R\fo
EtO
HoJEO o ! Ny
b R . LA
A) / HS ° 0
0 —> ®0 — 4
Q HY EtO !
EtO o
2-54 2.73
ERt?fo\ EtO__o
Yb 0
B O// ® Q _—Yb
( ) o O —_— R o O/ —_—
e ¥
EtO H EtO
2-54 2-76
OEt H
EO_o,_ EtO O\Yb o GO
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Scheme 2.18. Competition Experiment Between Electron-Rich and Deficient Aldehydes
0
el
M CoEt iy Ve
{jjﬁcgﬁ 5 equiv Yb(OTf)s (10 mol %)
+ L
7 CH,Cl,
H Hk@\
2-54 vo,

5 equiv

NO,

\

In conclusion, we have developed an efficient Yb(OTf); catalyzed (4 + 2) dipolar
cycloaddition between alkoxy-activated DA cyclobutanes and aldehydes. This process

occurs in high diastereoselectivity and yield to afford fused acetals under mild conditions.

2.3.2 Annulation of Alkoxy-Activated Cyclobutane Dicarboxylates and Nitrones
Having successfully demonstrated that alkoxy-activated DA cyclobutanes can
undergo annulations with aldehydes' and imines,” alternative dipolarophiles were
investigated. The abundance of cycloaddition chemistry with nitrones,”” combined with
the lack of exploration of 3-atom dipolarophiles in cyclobutane annulation chemistry, led
us to investigate their feasibility as annulation partners. A successful (4 + 3)
cycloaddition would result in a unique oxazepane structure. This intriguing structural
motif, though not naturally occurring, has been shown to be relevant as oxazepane
analogs of eudistomin natural products display antiviral® and antiproliferative® activity.
Yb(OTTf); has previously been shown to be an effective catalyst for the reaction

between nitrones and DA cyclopropanes,”®!

as well as in the previous section where it
catalyzed the cyclization of DA cyclobutanes with aldehydes, and thus was selected

initially for optimization studies (Table 2.4). Much to our delight, upon addition of

cyclobutane 2-54 to a solution of nitrone and 10 mol % Yb(OTf); in CH,Cl, the
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anticipated cycloadduct 2-81a was formed as a single diastereomer in 60% isolated yield
(entry 1).* Control tests demonstrated that a metal catalyst was not required for the
reaction to occur; however, extended reaction times were necessary and a mixture of two
apparently non-equilibrating diastereomers resulted (entry 2). A modest increase in yield
was observed when the nitrone, rather than the cyclobutane, was used as the limiting
reagent (compare entries 1 and 3). When the catalytic loading was decreased from 10 mol
% to 5 mol %, a mixture of two diastereomers was found if the reaction was stopped after
10 minutes (entry 4), and the diastereomeric ratio reversed when the reaction was
conducted at 0 °C (entry 5). In all cases, increasing the reaction time or catalyst loading
led ultimately to the single diastereomer 2-81a (entry 6) and, as expected, exposure of 2-
82a to Yb(OTf); resulted in isomerization to 2-8la. Further decreasing the reaction
temperature resulted in a complex mixture of diastereomers, and thus was not explored as
a viable option. Additionally, decreasing the catalytic loading of Yb(OTf); to 1 mol %
resulted in the formation of three diastereomers.” To date conditions have not been

identified that allow for exclusive formation of the trans diastereomer (2-82a).
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Table 2.4. Optimization of the (4 + 3) Cycloaddition of DA Cyclobutanes and Nitrones

© H 0 H', 0
Ph\ﬁ,o n 0 ~‘C86E;Et conditions Ph‘N’O F’h‘N’O
l Ph m 4 A mol sieves phv H phv H
CH.Clp, 20°C EtO,C "COZEt EtO,C "cozEt
2-54 2-81a 2-82a
cis trans
entry nitrone 2-54 Yb(OTf)3 time 2-81a yield
(equiv) (equiv) (mol %) (min) : 2-82a (%)
1 1.5 1.0 10 10 1.0:0.0 60
2 1.5 1.0 0 60 1.3:1.0 87°
3 1.0 1.2 10 10 1.0:0.0 81
4 1.0 1.2 5 10 1.7:1.0 78
5 1.0 1.2 5 10 1.0:2.2 91°
6 1.0 1.2 5 60 1.0:0.0 76

®Reaction conducted in the presence of 4 A molecular sieves. In the absence of both
molecular sieves and Lewis acids, no reaction occurs. "Reaction conducted at 0 °C.

The breadth of the cycloaddition reaction was then examined, and separate
experiments were conducted to obtain both diastereomeric mixtures and a single
diastereomer. The length of time required for single diastereomer formation was
dependent upon the electronic nature of the nitrone (Table 2.5). While electron-rich
nitrones required less than an hour to afford a single diastereomer (entries 1 — 3),
electron-deficient nitrones required extended reaction times (up to 24 h) to allow for full
conversion (entries 4 and 5). Additionally, when electron-deficient nitrones (entries 4 and
5) were subjected to the reaction condititions a third inseparable diastereomer (not
shown) was observed with short reaction times. The yields were found to be consistent
regardless of the electronic nature of the nitrone, though the extended times required for
equilibrating the diastereomeric mixtures resulted in lower yields due to competing

background decomposition of the product.



Table 2.5. Effect of C-Substitution on the Cyclobutane/Nitrone Cycloaddition

0°C
Yb(OTf)3 EtO,C ”002Et EtO,C ,'COzEt
+ (5 mol %) | 2-82at02-82e  2-81ato2-81e
o trans cis
Ph.®.0 H
N
(§ L »
Ar 22°C
1-24h Z
Et0,C CO,Et
2-81ato 2-81e
CIS
diastereomeric single cis
entrv  nitrone mixture® diastereomer”
y yield dr. yield
(%) (trans:cis:3rd) (%)
1 Ar = CgHs 91 69:31 76°
2 Ar = p-CgH,OCHj3 88 63:37 74°
3 Ar = p-CgH,CI 82 71:29 73°
4 Ar = p-CgH,CN 95 57:15:27 76°
5 Ar = p-CgH,NO, 90 63:11:26 73°

2

Conditions: 0 °C, 15 min. °Conditions: 22 °C, reaction allowed to proceed

until only a single product was observable by TLC. ‘Reactions required less
than 1 hour to form single diastereomers. ‘Reactions required 24 h to form
single diastereomers.

70

The stereochemistry of the cis and trans diastereomers were assigned based on

unambiguously confirmed by single crystal X-ray analysis (Figure 2.5).

nOe interactions. In the case of entry 3, the stereochemistry of both diastereomers was
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Figure 2.5. X-ray Structures of the cis and trans Diastereomers (2-81c and 2-82¢)

Next, the effect of N-substitution on the nitrone was examined (Table 2.6).
Nitrones bearing an electron-deficient N-aryl group were found to be viable reaction
partners (entries 2 and 3), as were electron-rich N-PMP (entries 4 - 6). An N-aliphatic
nitrone (N-benzyl) was also found to undergo the reaction; however, only a single

diastereomer was observed even under short reaction times (entry 7).
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Table 2.6. Effect of N-substitution on the Cycloaddition of DA Cyclobutanes and
Nitrones

e H oo
CO,Et
o SCOEt  YDB(OTR; (5 mol %) R.. 0

O N
+ (T -
Ar CH,CI,, 4 A mol sieves A H

EtO,C CO,Et

2-54 2-81a, 2-81f to 2-81k
diastereomeric single cis
entry  nitrone mixture® diastereomer”
yield dr yield
(%) (cis:trans:3") (%)
1 R = CgHs 91 31:69 76
Ar = CgHs
2 R = p-CsH4,CO,Me 68 16:40:44 52¢
Ar = CgHs
3 R = p-CsH4CO,Me 74 7:58:35 68
Ar = p'C6H4N02
4 R = p-C¢H,OMe 69 34:66 43
Ar = C5H5
5 R = p-C¢H,OMe 66 32:68 55
Ar = p-C¢H,CN
6 R = p-CsH,OMe 70 56:44 54
Ar = p-CsH,OMe
7 R =Bn - - 60
Ar = CgHs

Conditions: 0 °C, 15 min. "Conditions: 22 °C, reaction allowed to proceed until only a
single product was observable by TLC. ‘Incomplete conversion, 72:28 cis:trans after 24
h and 10 mol % Yb(OTf)s. Entry 7 was conducted by Cory Palmer.

Having found the reaction to be compatible with a variety of nitrones, additional
functionalities of the C-substituents were explored (Table 2.7). It was discovered that
heteroaromatic nitrone substituents worked well in the cycloaddition (entries 1 and 2).
Surprisingly, when naphthyl- or cinnamyl-substituted nitrones were subjected to the
reaction conditions, only single diastereomers were observed rather than diastereomeric
mixtures, similar to the results obtained with N-alkyl substitution (Table 2.7, entries 3 and
4 vs Table 2.6, entry 7). It was found that C-substitution was not necessary for the
reaction as a C-unsubstituted benzyl nitrone underwent the reaction to form exclusively

the cis adduct (entry 5).
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Table 2.7. Exploration of Nitrone Functionality Tolerance in the Cycloaddition

H o
© R. O
R.®.0 0SBk Yb(OTf); (5 mol %) N
L, " m > R H
CH,Cl,, 4 A mol sieves E0,c% CO "
2-54 2-811to 2-81p
(dr cis:trans)
diastereomeric single cis
entry nitrone oxazepane mixture® diastereomer”
yield (cis:trans) yield
® o p-tolyl OH °
p-tolyl S¥,.0 -olyl~ 2
1 \NI 1 85% 75%
% O Feor (55:45)
‘CO4Et
% ° COzEt 2
o o}
Ph \ﬁ,o Ph<y 77%
2 | s O\ (55:45) 67%
| / COgEt
H 0
® 0 ,0
Ph\N, Ph<y
3 - N/A 70%
/” COgEt
© Ph., O °
Ph.®.0 SN
4 NI i N/A 74%
kz . 2-napthyI™ H
“napthy EtO,C CO,Et
o}
o Pmb\N,O
5 Pmb~ 2.0 N/A 78%
I H

EtO,C COEt
®Conditions: 0 °C, 15 min. "Conditions: 22 °C, reaction allowed to proceed until only a
single product was observable by TLC. Entries 1, 2 and 5 were conducted by Cory
Palmer.

Lastly, two additional cyclobutanes were subjected to the reaction conditions with
several nitrones (Table 2.8). Pyran-fused cyclobutane 2-57 was found to react with
nitrones to produce diastereomeric cycloadducts (Table 2.8, entries 1-3). Unlike the
furan-fused examples, a mixture of three diastereomers was obtained that failed to
coalesce to a single product. Ethoxy-substituted cyclobutane 2-59 also successfully

formed the oxazepanes in good yield (entries 4 and 5), though a mixture of two
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diastereomers was formed. The highly crystalline material of entry 5 allowed for the
collection of single crystal X-ray data which permitted unambiguous assignment of the

two diastereomers formed during the reaction.

Table 2.8. Alternative Cyclobutane Substitution for the (4 + 3) Cycloaddition
e
Ph.®.0

N

Yb(OTf)3 (5 mol %) oxazepine
cyclobutane + m >

CH,Cl,, 20 °C ™ (drcis:itrans)
4 A mol sieves

entry cyclobutane oxazepane (ratio) yield
H o
COE Ph., 0<%
t
O __SCOE
(J:r Ar z z
EtO,C CO,Et EtO,C COEt
2:57 2-83ato2-83c  2-84ato 2-84c
1 Ar = CgHs 76:21 3 65%
2 Ar = p-C¢H,OMe 56:21 23 51%
3 Ar = p-CgH,CI 46:46 8 60%
o OEt R OEt
Ph<, - Ph. O
co N
o _s C%)EztEt L \N
U Ar - A
2.50 EtO,C CO,Et EtO,C CO,Et
2-85a, 2-85b 2-85a, 2-85b
4 Ar = CgHs 79 21 85%
5 Ar = p-C¢H,OMe 69 31 82%

Entries 1-5 were conducted by Cory Palmer

Unlike the case of the (4 + 2) cycloaddition between DA cyclobutane and
aldehydes, the (4 + 3) cycloaddition between DA cyclobutanes and nitrones occurs
initially with poor selectivity. This result may indicate that a different mechanism is in
operation, or that interception of the zwitterionic intermediate proposed in Scheme 2.17,
mechanism C occurs with poor selectivity. Currently, it is believed that the nitrone
intercepts zwitterion 2-80 with poor selectivity.

The mixture of diastereomers obtained during this study coalesced into a single

cis diastereomer when fused with a tetrahydrofuran ring system. The mechanism for
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epimerization at two of the chiral centers is presented in Scheme 2.19. The epimerization
adjacent to the quaternary center occurs in a retro-Mannich fashion following
coordination of the esters by the Yb catalyst. It can therefore easily be rationalized why
electron-deficient substrates would require extended reaction times for complete
conversion to a single diastereomer. Epimerization about the acetal position occurs

through acetal cleavage facilitated by either of the two acetal oxygen atoms.

Scheme 2.19. Equilibration of Diastereomers

Retro-Mannich fragmentation to facilitate epimerization.

‘L

Acetal cleavage to facilitate epimerization.

L,Yb O@

ntV=Q O
| 4

R‘N/l(

R H

RO,C (:202R

2-88a
or

‘l

oL, =
®#) 0
R\N,Oj$

R H
RO Cor

2-88b

In conclusion, we have developed a formal (4 + 3) cycloaddition between alkoxy-
activated cyclobutane dicarboxylates and nitrones to afford structurally unique 2,3.,4,6,7-
substituted oxazepanes. The reaction, in most cases, initially affords a diastereomeric
mixture which equilibrates to a single diastereomer. To date, all nitrones examined

successfully participated in the cycloaddition reaction.
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2.3.3 Annulation of Alkoxy-Activated Donor-Acceptor Cyclobutanes and

Nitrosoarenes

Having investigated nitrones, imines and aldehydes, further dipolarophiles
candidates were sought after. Nitroso compounds have been utilized in a variety of
transformations,’* such as dienes in hetero-Diels—Alder cycloadditions® and enophiles in
nitroso-ene chemistry.”® The most intriguing reports originate in their dichotomous
capacity to act as either nitrogen or oxygen transfer reagents in nitroso-aldol chemistry,
which can be controlled by judicious catalyst choice.”” Surprisingly, nitrosoarenens have
yet to see application in dipolar cycloaddition chemistry with strained ring systems such
as DA cyclopropanes or cyclobutanes.

Investigations into the reactivity of nitrosoarenes and DA cyclobutanes began
with examination of the reaction between cyclobutane 2-54 and nitrosobenzene (Table
2.9). While a variety of Lewis acids were found to catalyze the reaction, maximal yields
were obtained with Yb(OTY);. Additionally, decreasing the catalytic loading from 10 to 2

mol % dramatically increased product yield (compare entries 1 and 8).

Table 2.9. Catalyst Screening for the Cycloaddition Between DA Cyclobutanes and

Nitrosoarenes
o
co
O3 C(Z)EtEt ph. ,O  catalyst opN+g
<Jj + N —_—
CH,Clp CO,Et
CO,Et
2-54 2-89a
entry catalyst mol % yield (%)
1 Yb(OTh), 10 60
2 Sc(OTf); 10 55
3 La(OTf); 10 22
4 Zn(OTf), 10 61
5 Pr(OTf); 10 63
6 Yb(OTf); 5 72
7 Sc(OTf); 5 61
8 Yb(OTf); 2 92

Optimization conducted in conjunction with Tyler Schon.
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With optimal conditions at hand, the scope of the cycloaddition was examined
(Table 2.10). It was discovered that aryl halogen,*® ester, or ketone substituents were
tolerated (entries 2 — 5). Strong electron-withdrawing groups afforded moderate yields
(entries 6 and 7); however, a second, inseparable compound was detected comprising up
to 33% of the isolated mixture. Substrates with weakly electron-donating substituents
resulted in a substantially decreased yield (entry 8) and upon addition of a strongly
electron-donating group (entry 9), only trace quantities of product were detected.
Substrates that could sequester the Lewis acid did not react (entry 12), and hydroxamic
acid—derived nitroso compounds did not participate in the reaction, and only cyclobutane

decomposition was observed (entry 13).

Table 2.10. Examination of Nitrosoarene Compatibility in the (4 + 2) Cycloaddition

Ar
CO,Et H 1

{j:r;COZEEF Are L0 _YP(OTR); (2 mol %); oIN<g
N CH.Cl,, 22 °C “COEL
CO,Et
2-54 2-89a to 2-89h
entry  nitrosoarene regioselectivity yield (%)
1 Ar = CgHs >20:1 92
2 Ar = p-CgH,4Br >20:1 89
3 Ar = 2,4-CgH3Br; >20:1 47
4 Ar = p-C¢H,C(O)Me >20:1 69
5 Ar = p-C¢H,CO,Et 13:1 82
6 Ar = p-CsH,CN 31 61
7 Ar = p-CsHsNO, 4:1 59
8 Ar = p-CgH,CH3 >20:1 29
9 Ar = p-CgH,OCH3 - trage

10 Ar = p'C6H4N(CH3)2 - =
12 Ar = o-pyridine - -
13 Ar = C(0)CgHs - -
®No reaction. °Cyclobutane decomposition observed. Entries 4,7,8,9
were conducted by Tyler Schon.

A second Lewis acid catalyst screen was undertaken to improve reactivity with
electron-rich nitrosoarenes and Mgl, was found to facilitate the reaction of para-methoxy

nitrosobenzene (Table 2.11, entry 1), though a complete reversal of regiochemistry



78

occurred (vide infra). Interestingly, when prolonged reaction times were used or when the
isolated compound 2-90a was exposed to Mgl,, deoxygenation occurred to afford
pyrrolidine 2-91a. The more electron-rich para-dimethylaminonitroso benzene (entry 2)
afforded the pyrrolidine 2-91b directly, and isolation of the tetrahydrooxazine was not
possible. It was also found that Mgl, could catalyze the reaction with 2-nitrosopyridine
(entry 3) or electron-deficient nitrosoarenes (compare Table 2.11, entry 4 and Table 2.10,
entry 6); however, only the tetrahydrooxazines with electron donating groups (i.e., Table

2.11, entry 1 and 2) could be converted to the corresponding pyrrolidines with Mgl,.

Table 2.11. Mgl, Catalyzed (4 + 2) Cycloadditon of DA Cyclobutanes and Nitrosoarenes
SOt Mgl, “CORE
0 COj_Et Ar\Nf,O (50 mol %) 2.90
\: CH,Clp, 22°C , Ar

2-54 m <J;I;N)&coza
CO,Et
“COLEt 2
H H

CO,Et
2-89 291
entry nitrosoarene product yield (%)
1 Ar = CgH,OCHjs 2-90a 26
2 Ar = p-CgHsN(Me), 2-91b 21
3 Ar = o-pyridine 2-90b 28
4  Ar=p-CeH,CN 2-90b, 2-89i 13,22

Entries 1-4 conducted by Naresh Vemula.

Two additional alkoxy-activated cyclobutane dicarboxylates were investigated
and found to display analogous reactivity with nitrosoarenes under Yb(OTf); or Mgl,

conditions, though the reaction yields were rather poor (Table 2.12).



79

Table 2.12. Alternative Cyclobutanes in the (4 + 2) Cycloaddition with Nitrosoarenes

Yb(OTf)3 (2 mol %)

tetrahydrooxazine

Mgl, (50 mol %
cyclobutane + A™~\=© or Wiglz (50 mol %) > or
pyrrolidine
product yield
entr cyclobutane
y Y Yb(OTH); Mgl,
Ar
COZEt H 1 Ar
O _S.COE Mo
(J:r JEt EO/\I,\N/\C; C/\I;N)‘\“COZB
2 CO,Et
2-57 H Co‘jngt H ’
1 Ar = CgHs 2-92, 45% -
2 Ar = p-CgH,OMe - 2-93, 35%
3 Ar = p-CgHsNMe, - 2-94, 15%
””””””””””””””””””””””””””” A moowa
” "CO,Et
) CO,Et
2-59 e ozEtz CO,Et
4 Ar = CgHs 2-95, 21% -
5 Ar = p-CgH,OMe - 2-96, 38%

Entries 1-5 conducted by Naresh Vemula.

The stereo- and regiochemistry of the tetrahydrooxazines and pyrrolidines were

established by a combination of single crystal X-ray and NMR analyses. X-ray quality

crystals of compound 2-89b (Table 2.10, entry 2) and 2-93b (Table 2.12, entry 2) were

obtained and the ORTEP structures are depicted in Figure 2.6. The structures

unambiguously establish both the regiochemistry of the cyclization and the relative

stereochemistry at the ring fusion.
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Figure 2.6. X-ray Crystal Structures of 2-89b and 2-93

While the structure of 2-89b was firmly established by single crystal X-ray
diffraction, we set out to identify the structures of the product mixtures formed with
electron-deficient nitrosoarenes (Table 2.10, entries 5—7). The major product in each of
the cases was found to have nOe and ’N-"H HMBCAD interactions that were consistent
with those observed for 2-89b (Figure 2.7). The minor component of the mixtures
showed nOe interactions suggesting a cis ring fusion, and "N-'H HMBCAD data

indicated that a regioisomer, rather than a diastereomer, was formed.

nOe interactions 15N-'"H HMBCAD correlations
CN : CN
| | CN !
N : o-LN-
", . . 1
CO,Et ’CO,Et : COEt 1
H C02E12 H H|—'1 CO,Et E H CO,Et
2-89f major 2-89f minor 2-89f major 2-89f minor
product product H product product

Figure 2.7. Key "H-"H nOe and "’N-'"H HMBCAD Correlations for Structural
Determination of 2-89

Once again, the mechanism of the transformation has not yet been intensively

investigated, though it is currently believed to occur through a zwitterionic intermediate.
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With regards to the formation of pyrrolidine products from the tetrahydrooxazines, a
plausible mechanism is proposed in Scheme 2.20. A net reduction is occurring, and it is
believed that Mgl, is acting as the reductant in this case, as 50 mol % was required to
effect the transformation. Following formation of the tetrahydrooxazine, coordination of
oxygen by Mgl, occurs (2-98). The acetal is cleaved and the resulting oxacarbenium ion
is attacked by the pendant nitrogen atom (2-99). Finally, the initially displaced iodide
reacts with the attached Lewis acid, causing the N-O bond reduction and producing I,
MgO, and the pyrrolidine (2-101). Theoretically, one full equivalent of Mgl is required
for the transformation; however, maximum yields were observed only for 50 mol % of
Mgl,. Additionally, the fate of the I, in this reaction was not determined, as attempts to
detect I, were not successful. The low yield of the process also proved troublesome, as
decomposition occurs which convolutes the process of determining the operational

mechanism.

Scheme 2.20. Mechanism of Pyrrolidine Formation

|
I\/!g—l '\Illg" ("I"_g\_'\f e
H m: @D o Ar

o)
0O« _Ar O .Ar P73 oH,!lfAr ol x
E/\I/\/T e w o EJ\/T_AF_> @ ) COEt —> WCO2Et
"CO,Et "CO,Et "CO,Et CO,Et CO,Et
H  Co.Et CO,Et CO,Et H H

2-97 2-98 2-99 2-100 2-101

In conclusion, we have developed the first example of a dipolar cycloaddition
between DA cyclobutanes and nitrosoarenes. The regiochemistry and stereochemistry of
the cycloadducts has been determined by a combination of NMR and X-ray diffraction
analyses. The reaction proceeds well with electron-deficient or neutral nitrosoarenes to

form tetrahydrooxazines; however, other nitroso reagents are currently outside the scope
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of this reaction. Though the cycloaddition of DA cyclobutanes and nitrosoarenes is a
fascinating process, the poor yields even after extensive optimization studies leave much

to be desired.

2.4 Conclusions

In summary, cycloadditions of alkoxy-activated cyclobutane dicarboxylates with
aldehydes, nitrones, and nitrosoarenes have been developed. These processes facilitate
rapid access to structurally intriguing heterocyclic frameworks in moderate to excellent
yield. While a range of dipolarophile partners for annulation events have been reported,
this reactivity pattern with cyclobutanes is only in its infancy and further exploration will
surely prove a rich source of study. The mechanism for the high diastereoselectivity of
the cycloadditions with aldehydes and nitrosoarenes has not yet been extensively
investigated. Revelation of the mechanism will surely bring about new and intriguing
opportunities for this field of chemistry. In addition, elaboration of these cycloaddition
adducts remains to be explored which could prove invaluable in the synthesis of complex

natural products.
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2.5 Experimental

2.5.1 General Experimental Details

All reactions were run under an argon atmosphere. Flasks were oven dried and
cooled in a dessicator prior to use. Solvents and reagents were purified by standard
methods.” Dichloromethane and toluene were purified by passing the solvent through
activated alumina columns. Aldehydes were distilled immediately prior to use. All other
chemicals were of reagent quality and used as obtained from commercial sources unless
otherwise noted. The progress of reactions was monitored by thin layer chromatography
performed on F254 silica gel plates. The plates were visualized by UV light (254 nm) or
by staining with ceric ammonium molybdate,*” or KMnO,. Column chromatography was
performed with Silica Flash P60 60 A silica gel from Silicycle according to the Still
method.*!

The "H and >C NMR data were obtained on 400 or 600 MHz spectrometers. All
spectra were obtained in deuterated chloroform and were referenced to the residual
chloroform at & 7.25 ppm for 'H spectra and the center peak of the triplet at § 77.0 for °C
spectra. EI mass spectra were obtained on a Finnigan MAT 8200 spectrometer at an
ionizing voltage of 70 eV.

Compounds 2-65d, 2-65f, 2-65j, 2-65| and 2-68a to 2-68e were prepared by

others and are not included below.

2.5.2 Experimental Details

2.5.2.1 Cycloadditions of Aldehydes and Cyclobutanes
General Procedure for the Yb(OTf); Catalyzed Cycloaddition of Aldehydes and

Cyclobutanes

To a solution of Yb(OTf); (26 mg, 0.042 mmol, 10 mol %) in CH,Cl, (2 mL) at 0
°C was added aldehyde (0.45 mmol, 1.1 equiv) followed by cyclobutane (0.41 mmol, 1
equiv). After 15 min the reaction was flushed through a plug of SiO; and the solvent was

removed under reduced pressure and the residue was purified by flash chromatography

(hexanes/EtOAc).
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(3aR*,6R*,7aR*)-diethyl 6-phenyltetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-65a)

H H The title compound was prepared according to the general cycloaddition

{io/\t 'Ph procedure to afford a pale yellow oil (111 mg, 78%). R 0.14 (5:1

W cosl | hexanes/EtOAc); 'H NMR (600 MHz, CDCls) & 7.32 (d, J = 7.0 Hz, 2
H), 7.14 - 7.21 (m, 3 H), 5.41 (s, 1 H), 5.23 (d, J= 4.7 Hz, 1 H), 4.24 (dq, J= 7.1, 10.8
Hz, 1 H), 4.17 (dq, J=7.2, 10.6 Hz, 1 H), 4.09 (td, J= 6.4, 8.5 Hz, 1 H), 3.91 (td, J= 3.5,
7.9 Hz, 1 H), 3.59 (dq, J= 7.2, 10.6 Hz, 1 H), 3.31 (dq, J= 7.1, 10.8 Hz, 1 H), 2.37 (dd, J
=11.7, 13.5 Hz, 1 H), 2.30 (dd, J= 5.9, 13.5 Hz, 1 H), 2.10 - 2.17 (m, 1 H), 2.03 - 2.10
(m, 1 H), 1.70 - 1.75 (m, 1 H), 1.20 (t, J = 7.3 Hz, 3 H), 0.77 (t, J = 7.0 Hz, 3 H); °C
NMR (101 MHz, CDCl3) & 171.3, 169.2, 138.2, 128.0, 127.6, 127.4, 102.3, 75.6, 67.5,
61.9, 61.1, 59.3, 36.0, 31.4, 30.2, 14.0, 13.4; HRMS m/z 348.1583 (calcd for C1oHa4Os,

348.1573).

(3aR*,6R*,7aR*)-diethyl 6-(4-methoxyphenyl)tetrahydro-2H-furo[2,3-b]pyran-
5,5(3H)-dicarboxylate (2-65b)
ove The title compound was prepared according to the general
cycloaddition procedure to afford a viscous colorless oil (150 mg,
! C"OigtzE‘ 80%). Rr0.14 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) &
7.31(d, J=9.0 Hz, 2 H), 6.79 (d, J = 9.0 Hz, 2 H), 5.44 (s, | H), 5.28 (d, /=4.7 Hz, 1
H), 4.19 - 4.36 (m, 2 H), 4.11 - 4.19 (m, 1 H), 3.96 (td, J = 3.9, 8.0 Hz, 1 H), 3.76 (s, 3
H), 3.70 (dq, J= 7.1, 10.8 Hz, 1 H), 3.44 (dq, /= 7.3, 10.6 Hz, 1 H), 2.33 - 2.45 (m, 2 H),
2.09-224(m,2H),1.74-1.84 (m, 1 H), 1.27 (t, J=7.2 Hz, 3 H), 0.89 (t,J=7.2 Hz, 3
H); °C NMR (101 MHz, CDCl;) § 171.3, 169.2, 159.2, 130.4, 128.5, 112.9, 102.2, 75.2,
67.4,61.8, 61.1, 59.2, 55.2, 36.0, 31.3, 30.1, 14.0, 13.5; HRMS m/z 378.1689 (calcd for

Cy0H2607, 378.1679).
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(3aR*,6R*,7aR*)-diethyl 6-(4-chlorophenyl)tetrahydro-2H-furo[2,3-b]pyran-
5,5(3H)-dicarboxylate (2-65c¢)
a The title compound was prepared according to the general
cycloaddition procedure to afford a colorless oil (140 mg, 89%). Ry
) C"OCZEtzEt 0.14 (5:1 hexanes/EtOAc); 'H NMR (600 MHz, CDCl3) § 7.35 (d, J =
8.8 Hz, 2 H), 7.25 (d, /= 8.8 Hz, 2 H), 5.42 (s, 1 H), 5.28 (d, J=4.7
Hz, 1 H), 4.31 (dq, J=10.5, 7.6 Hz, 1 H), 4.224 (dq, J=10.5, 7.3 Hz, 1 H), 4.15 (td, J =
8.5,6.4 Hz, 1 H), 3.98 (ddd, J= 7.6, 7.6, 3.8 Hz, 1 H), 3.73 (dq, J=11.1, 7.6 Hz, 1 H),
3.49 (dq, J=10.5, 7.0 Hz, 1 H), 2.40 (dq, J = 11.1, 13.5 Hz, 2 H), 2.17 - 2.24 (m, 1 H),
2.11-2.17 (m, 1 H), 1.78 - 1.83 (m, 1 H), 1.27 (t, /= 7.3 Hz, 3 H), 0.90 (t, /= 7.6 Hz, 3
H); C NMR (101 MHz, CDCls) & 171.1, 169.0, 136.8, 133.7, 128.8, 127.7, 102.4, 75.0,
67.5, 62.0, 61.3, 59.2, 36.0, 31.2, 30.2, 14.0, 13.5; HRMS m/z 382.1171 (calcd for
Ci19H23Cl0Og, 382.1183).

(3aR*,6R*,7aR*)-diethyl 6-(4-nitrophenyl)tetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-65e)

NO:  The title compound was prepared according to the general

cycloaddition procedure to afford a white solid (121 mg, 75%). Ry
I e 0.21 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCLy) & 8.14 (d, J
=9.0 Hz, 2 H), 7.62 (d, J = 8.6 Hz, 2 H), 5.48 (s, 1 H), 5.30 (d, /= 5.1 Hz, 1 H), 4.23 -
437 (m, 2 H), 4.14 - 423 (m, 1 H), 4.01 (ddd, /= 7.8, 7.8, 4.3 Hz, 1 H), 3.74 (dq, J =
7.1, 10.8 Hz, 1 H), 3.51 (dq, /= 7.2, 10.8 Hz, 1 H), 2.39 - 2.54 (m, 2 H), 2.21 - 2.32 (m, 1
H), 2.08 - 2.20 (m, 1 H), 1.79 - 1.89 (m, 1 H), 1.28 (t, /= 7.2 Hz, 3 H), 0.90 (t, /= 7.2
Hz, 3 H); °C NMR (101 MHz, CDCl;) & 170.9, 168.7, 147.5, 145.6, 128.3, 122.7, 102.7,
74.9, 67.7, 62.2, 61.4, 59.1, 35.9, 30.8, 30.4, 14.0, 13.5; HRMS m/z 393.1419 (calcd for

Ci9H23NOg, 393.1424).
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(3aR*,6R*,7aR*)-diethyl 6-(phenylethynyl)tetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-659)
pn The title compound was prepared according to the general
W cycloaddition procedure to afford a pale yellow oil (80 mg, 62%). R,
INXSE™  0.14 (5:1 hexanes/EtOAc): "H NMR (600 MHz, CDCLy) § 7.33 (dd, J =
7.6, 1.8 Hz, 2 H), 7.22 - 7.24 (m, 2 H), 7.19 - 7.22 (m, 1 H), 5.31 (s, 1 H), 5.24 (d, J= 4.7
Hz, 1 H), 4.20 (q, J= 7.0 Hz, 2 H), 4.16 (qd, J = 7.2, 1.8 Hz, 2 H), 4.07 (td, J = 8.6, 6.7
Hz, 1 H), 3.83 (td, J = 8.2, 3.5 Hz, 1 H), 2.41 (dd, J = 14.1, 6.4 Hz, 1 H), 2.28 (dd, J =
13.8,10.2 Hz, 1 H), 2.15-2.22 (m, 1 H), 1.99 - 2.09 (m, 1 H), 1.71 - 1.76 (m, 1 H), 1.22
(t, J= 7.3 Hz, 3 H), 1.18 (t, J = 7.0 Hz, 3 H); °C NMR (101 MHz, CDCl;) & 168.7,
168.0, 131.7, 128.4, 128.2, 122.4, 101.2, 86.0, 85.0, 66.3, 64.4, 62.1, 61.9, 56.9, 33.6,
30.6,27.1, 14.0, 13.9; HRMS m/z 372.1570 (calcd for C,;H»40¢, 372.1573).

(3aR*,6R*,7aR*)-diethyl 6-styryltetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-65h)

H The title compound was prepared according to the general

H
oLOLPh
w cycloaddition procedure to afford a viscous colorless oil (133 mg,

“CO,Et

Ho GO 879%). Rr 0.20 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl;) 8
7.19 - 7.38 (m, 5 H), 6.60 (d, J = 16.0 Hz, 1 H), 6.47 (dd, J=16.0, 7.4 Hz, 1 H), 5.25 (d,
J=43Hz, 1 H),4.71 (dd, J= 7.0, 0.8 Hz, 1 H), 4.09 - 4.26 (m, 5 H), 3.86 - 3.94 (m, 1
H), 2.50 (dq, J = 7.0, 14.5 Hz, 2 H), 2.17 - 2.27 (m, 1 H), 1.96 - 2.06 (m, 1 H), 1.87 (dq, J
=12.1, 7.8 Hz, 1 H), 1.19 (t, J = 7.2 Hz, 3 H), 1.21 (t, J = 7.0 Hz, 3 H); >C NMR (101
MHz, CDCl3) § 170.4, 169.3, 136.6, 132.6, 128.4, 127.7, 126.6, 125.8, 102.0, 76.5, 67.7,
61.8, 61.4, 57.1, 36.0, 29.8, 28.8, 14.0, 14.0; HRMS m/z 374.1727 (calcd for Cy1Ha4Os,
374.1729).

(3aR*,6R*,7aR*)-diethyl 6-((E)-prop-1-enyl)tetrahydro-2H-furo[2,3-b]pyran-
5,5(3H)-dicarboxylate (2-65i)

H H The title compound was prepared according to the general cycloaddition

ol SN PN
m procedure to afford a colorless oil (65 mg, 51%). Ry 0.14 (5:1
2

H o COE hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) & 5.67 - 5.83 (m, 2 H),



87

5.18 (d,J=4.3 Hz, 1 H), 4.51 (d, J="7.4 Hz, | H), 4.12 - 4.28 (m, 4 H), 4.08 (td, J = 8.0,
5.9 Hz, 1 H), 3.86 (td, J= 7.9, 6.4 Hz, 1 H), 2.40 (dd, J = 6.8, 4.1 Hz, 2 H), 2.09 - 2.19
(m, 1 H), 1.93 - 2.05 (m, 1 H), 1.73 - 1.83 (m, 1 H), 1.67 (d, J=5.5 Hz, 3 H), 1.25 (t, J =
7.0 Hz, 3 H), 1.24 (t, J = 7.0 Hz, 3 H); "C NMR (101 MHz, CDCls) & 170.5, 169.3,
130.1, 127.3, 101.7, 76.5, 67.4, 61.7, 61.2, 56.8, 35.8, 29.5, 29.0, 17.7, 14.02, 13.99;
LRMS 312.1 (caled for CigHa406, 312.1).

(3aR*,6S*,7aR*)-diethyl 6-(thiophen-2-yl)tetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-65k)

P\ The title compound was prepared according to the general cycloaddition
{ﬁQ procedure to afford a yellow oil (100 mg, 69%). Ry 0.15 (4:1

A hexanes/EtOAc); 'H NMR (600 MHz, CDCls) & 7.22 (dd, J = 5.3, 1.2
Hz, 1 H), 6.99 (d, J=3.5 Hz, 1 H), 6.90 (dd, /= 5.3, 3.5 Hz, 1 H), 5.75 (s, 1 H), 5.30 (d,
J=53Hz, 1 H), 431 (dq, J= 7.0, 10.5 Hz, 1 H), 4.24 (dd, J = 7.0, 10.5 Hz, 1 H), 4.12 -
4.18 (m, 1 H), 3.95 (td, J=4.7, 8.2 Hz, 1 H), 3.86 (dq, /= 7.1, 10.8 Hz, 1 H), 3.71 (dq, J
=7.2,10.6 Hz, 1 H),2.44 (d, J = 8.2 Hz, 2 H), 2.18 - 2.25 (m, 1 H), 2.08 - 2.16 (m, 1 H),
1.84 (ddt J=11.9, 7.0, 4.9 Hz, 1 H), 1.28 (t, J = 7.6 Hz, 4 H), 1.00 (t, J = 7.3 Hz, 3 H);
3C NMR (101 MHz, CDCls) & 170.9, 168.7, 140.8, 125.8, 125.7, 125.0, 101.9, 72.8,
67.6, 62.0, 61.4, 59.0, 36.3, 30.7, 29.7, 14.0, 13.6; HRMS m/z 354.1145 (calcd for
C17H2206S, 354.1137).

(3aR*,6R*,7aR*)-diethyl 6-phenethyltetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-65m)

ool o The title compound was prepared according to the general
mt cycloaddition procedure to afford a colorless oil (105 mg, 68%). Ry
" S 025 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCly) § 7.17 - 7.23
(m, 2 H), 7.08 - 7.14 (m, 3 H), 5.02 (d, J=4.3 Hz, 1 H), 4.00 - 4.16 (m, 5 H), 3.74 - 3.82
(m, 2 H), 2.89 (ddd, J = 13.8, 9.5, 4.5 Hz, 1 H), 2.57 (ddd, J = 13.7, 9.0, 7.8 Hz, 1 H),
242 (dd, J=14.1, 6.6 Hz, 1 H), 2.13 - 2.27 (m, 2 H), 2.04 - 2.12 (m, 1 H), 1.77 - 1.93
(m, 2 H), 1.67 - 1.77 (m, 1 H), 1.18 (t, J = 7.0 Hz, 3 H), 1.14 (t, J = 7.0 Hz, 3 H); “C
NMR (101 MHz, CDCls) ¢ 170.6, 169.7, 141.7, 128.6, 128.2, 125.7, 102.6, 74.7, 67.6,
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61.6, 61.3, 56.2, 35.9, 33.2, 32.7, 30.3, 28.8, 13.94, 13.93; HRMS m/z 376.1880 (calcd
for C21H2806, 3761886)

(3aR*,6R*,7aR*)-diethyl 6-pentyltetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-65n)
ool The title compound was prepared according to the general
m cycloaddition procedure to afford a pale yellow oil (68 mg, 56%). Ry
oo 0.28 (5:1 hexanes/EtOAc); "H NMR (600 MHz, CDCl3) § 5.11 (d, J
=4.1 Hz, 1 H), 4.17 - 426 (m, 4 H), 4.08 (td, /= 7.9, 5.9 Hz, 1 H), 3.82 - 3.89 (m, 2 H),
2.49 (dd, J = 14.1, 7.0 Hz, 1 H), 2.32 (dd, J = 14.1, 5.9 Hz, 1 H), 2.12 - 2.18 (m, 1 H),
1.91-1.98 (m, 1 H), 1.83 - 1.90 (m, 2 H), 1.58 - 1.66 (m, 1 H), 1.44 - 1.51 (m, 1 H), 1.23
- 1.34 (m, 11 H), 0.88 (t, J= 7.0 Hz, 3 H); *C NMR (101 MHz, CDCl3) 6 171.0, 169.9,
102.6, 75.8, 67.6, 61.6, 61.3, 56.4, 36.0, 31.8, 31.6, 30.5, 28.9, 26.6, 22.6, 14.1, 13.99,
13.98; HRMS m/z 342.2042 (calcd for C;sH30Os, 342.2042).

(3aR*,6R*,7aR*)-diethyl 6-isopropyltetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-650)

The title compound was prepared according to the general cycloaddition

procedure to afford a yellow oil (85 mg, 58%). R, 0.29 (5:1
I Lo hexanes/EtOAc): 'H NMR (600 MHz, CDCly) § 5.10 (d, J = 4.7 Hz, 1
H), 4.14 - 4.29 (m, 5 H), 4.07 (dd, J = 14.6, 7.6 Hz, 1 H), 3.83 - 3.88 (m, 2 H), 2.46 (dd, J
=13.5, 7.6 Hz, 1 H), 2.30 (dd, J = 13.8, 6.1 Hz, 1 H), 2.19 (sxt, J = 6.4 Hz, 1 H), 2.08 -
2.14 (m, 1 H), 1.93 -2.00 (m, 1 H), 1.78 - 1.85 (m, 1 H), 1.29 (t, J= 7.4 Hz, 3 H), 1.27 (4,
J=17.4Hz, 3 H), 097 (d, J = 5.3 Hz, 3 H), 0.98 (d, J = 5.9 Hz, 3 H); °C NMR (101
MHz, CDCls) 6 171.7, 170.1, 102.6, 79.8, 67.8, 61.7, 61.4, 56.3, 36.3, 31.9, 30.9, 29.5,
20.6, 18.3, 13.92, 13.90; HRMS m/z 314.1730 (calcd for C;sH240¢, 314.1729).

4
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(3aR*,6R*,7aR*)-diethyl 6-methyltetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-65p)
ool The title compound was prepared according to the general cycloaddition
<Mcoza procedure to afford a yellow oil (61 mg, 51%). Ry 0.20 (5:1
" hexanes/EtOAc); 'H NMR (400 MHz, CDCly) 8 5.12 (d, J = 4.3 Hz, 1
H), 4.15-4.25 (m, 5 H), 4.05 (q,J=7.8 Hz, 1 H), 3.84 (q,J=7.4 Hz, 1 H), 2.38 (dd, J =
14.1, 7.4 Hz, 1 H), 2.30 (dd, /= 14.1, 6.2 Hz, 1 H), 2.07 - 2.16 (m, 1 H), 1.91 - 2.00 (m, 1
H), 1.78 - 1.86 (m, 1 H), 1.34 (d, /= 6.6, 3 H), 1.26 (t, /= 7.1 Hz, 3 H), 1.25 (t, J=7.1
Hz, 3 H); >C NMR (101 MHz, CDCl;) & 170.9, 169.7, 102.0, 71.0, 67.5, 61.7, 61.3, 56.3,
35.9, 29.9, 29.7, 29.2, 17.8, 14.0; HRMS m/z 287.1503 (calcd for Ci14H»O¢ + H',
287.1489).

(3aR*,6R*,7aR*)-diethyl 6-cyclopropyltetrahydro-2H-furo[2,3-b]pyran-5,5(3H)-
dicarboxylate (2-65q)
H oo H The title compound was prepared according to the general cycloaddition
ot procedure to afford a yellow oil (107, 72%). Ry 0.21 (5:1
H o COEU hexanes/EtOAc); 'H NMR (400 MHz, CDCLs) & 5.07 (d, J = 4.3 Hz, |
H), 4.14 - 4.28 (m, 4 H), 4.09 (td, J = 8.0, 6.6 Hz, 1 H), 3.86 (td, J = 8.0, 5.9 Hz, 1 H),
3.29 (d, J=9.8 Hz, 1 H), 2.40 (d, J= 7.0 Hz, 2 H), 2.05 - 2.14 (m, 1 H), 1.94 - 2.04 (m, 1
H), 1.69 - 1.79 (m, 1 H), 1.35 - 1.45 (m, 1 H), 1.28 (t, J= 7.2 Hz, 6 H), 0.57 - 0.65 (m, 1
H), 0.37 - 0.48 (m, 2 H), 0.21 - 0.28 (m, 1 H); *C NMR (101 MHz, CDCls) § 170.8,
169.7, 101.9, 79.5, 67.3, 61.7, 61.2, 56.7, 35.9, 30.0, 29.3, 14.0, 14.0, 12.7, 3.8, 3.7,
HRMS m/z 312.1581 (calcd for C14H,406, 312.1573).

’

(2R*,4aS*,8aR*)-diethyl 2-phenylhexahydropyrano[2,3-b]pyran-3,3(2H)-
dicarboxylate (2-66a)

" The title compound was prepared according to the general cycloaddition

(0] O Ph

EU procedure to afford a colorless oil (92 mg, 60%). Ry 0.33 (4:1
11CO,EL

H  COEt  hexanes/EtOAc); '"H NMR (400 MHz, CDCls) & 7.36 - 7.42 (m, 2 H),

7.16 - 7.26 (m, 3 H), 5.00 (d, J=2.3 Hz, 1 H), 5.00 (s, 1 H), 4.09 - 4.20 (m, 1 H), 4.01 -

4.09 (m, 1 H), 3.88 - 4.01 (m, 3 H), 3.64 - 3.70 (m, 1 H), 2.57 (dd, J = 14.2, 3.7 Hz, 1 H),
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247 (dd, J = 14.4, 5.1 Hz, 1 H), 1.90 - 1.98 (m, 1 H), 1.69 - 1.81 (m, 1 H), 1.50 - 1.63
(m, 3 H), 1.10 (t, J= 7.0 Hz, 3 H), 1.02 (t, J= 7.0 Hz, 3 H); >’C NMR (101 MHz, CDCl;)
8 170.8, 169.4, 138.5, 127.5, 127.4, 127.1, 99.2, 80.8, 62.5, 61.8, 60.7, 56.9, 35.2, 33.0,
24.9,24.0, 13.8, 13.7; HRMS m/z 362.1729 (calcd for Ca0H,606, 362.1729).

(2R*,4aS*,8aR*)-diethyl 2-phenethylhexahydropyrano(2,3-b]pyran-3,3(2H)-
dicarboxylate (2-66b)
oM o o, The ftitle compound was prepared according to the general
cycloaddition procedure to afford a colorless oil (94 mg, 62%). Ry
0.31 (4:1 hexanes/EtOAc); '"H NMR (600 MHz, CDCl;) & 7.25 - 7.29
(m, 2 H), 7.15-7.21 (m, 3 H), 4.83 (d, /=29 Hz, 1 H), 4.13 - 4.21 (m, 5 H), 3.94 - 3.98
(m, 1 H), 3.51 - 3.55 (m, 1 H), 3.05 (ddd, J=13.6, 9.5, 4.4 Hz, 1 H), 2.63 (ddd, J = 13.6,
9.5, 6.7 Hz, 1 H), 2.52 - 2.57 (m, 1 H), 2.50 (dd, J = 14.1, 8.8 Hz, 1 H), 2.11 (dd, J =
13.8, 4.4 Hz, 1 H), 1.73 - 1.78 (m, 1 H), 1.62 - 1.70 (m, 3 H), 1.58 (br. s., 1 H), 1.45 -
1.52 (m, 1 H), 1.40 - 1.45 (m, 1 H), 1.25 - 1.30 (m, 1 H), 1.22 (t, J= 7.3 Hz, 3 H), 1.23 (4,
J=17.3Hz, 3 H); >C NMR (101 MHz, CDCl3) § 170.2, 169.4, 142.3, 128.6, 128.2, 125.6,
98.4, 75.7, 64.9, 61.7, 61.2, 56.9, 33.8, 32.7, 32.3, 28.7, 26.0, 22.5, 14.0, 13.9; HRMS

m/z 390.2037 (caled for C2,H3006 390.2042).

"CO,Et
H  COEt

(2R*,6R*)-diethyl 6-ethoxy-2-phenyldihydro-2H-pyran-3,3(4H)-dicarboxylate
(2-67a)
H The title compound was prepared according to the general

\/O (0] Ph
\t;t' cycloaddition procedure to afford a colorless oil (75 mg, 72%). Ry

COC;'g‘ZEI 0.33 (4:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) § 7.43 - 7.47
(m, 2 H), 7.24 - 7.31 (m, 3 H), 5.10 (s, 1 H), 4.70 (dd, J=9.4, 2.3 Hz, 1 H), 4.11 - 4.19
(m, 2 H), 4.00 - 4.08 (m, 1 H), 3.87 - 3.98 (m, 2 H), 3.53 (dq, J=9.7, 7.1 Hz, 1 H), 2.62
(dt, J=13.7,4.3 Hz, 1 H), 2.15 (td, J = 13.4, 4.5 Hz, 1 H), 1.97 (tdd, J = 13.2,9.2, 4.3
Hz, 1 H), 1.82 - 1.89 (m, 1 H), 1.22 (t,J=7.0 Hz, 3 H), 1.16 (t, J = 7.0 Hz, 3 H), 0.96 (t,
J=7.2Hz, 3 H); >C NMR (101 MHz, CDCl3) § 171.0, 168.3, 139.2, 127.4, 127.3, 127.2,
102.5, 79.4, 64.4, 61.4, 60.7, 58.5, 31.1, 27.9, 15.1, 13.9, 13.5; HRMS m/z 350.1654

(calcd for C19H2606 3501729)
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(2R*,6R*)-diethyl 6-ethoxy-2-phenethyldihydro-2H-pyran-3,3(4H)-dicarboxylate
(2-67b)

o0 H o, The title compound was prepared according to the general

m;t cycloaddition procedure to afford a colorless oil (79 mg, 70%). Ry

“% 030 (4:1 hexanes/EtOAc); "H NMR (400 MHz, CDCLy) & 7.10 -

7.28 (m, 5 H), 4.41 (d,J=9.4 Hz, 1 H), 4.03 - 4.27 (m, 4 H), 3.90 - 4.01 (m, 1 H), 3.74

(d, J=10.2 Hz, 1 H), 3.40 - 3.54 (m, 1 H), 2.83 - 2.97 (m, 1 H), 2.49 - 2.70 (m, 1 H),

242-249 (m, 1 H),2.10-2.33 (m, 1 H), 1.91 - 2.03 (m, 1 H), 1.67 - 1.91 (m, 2 H), 1.44

-1.67 (m, 2 H), 1.11 - 1.28 (m, 9 H); °C NMR (101 MHz, CDCl;) & 170.8, 168.7, 141.8,

128.5, 128.3, 125.8, 102.4, 78.0, 70.7, 64.5, 61.3, 61.1, 56.2, 33.7, 33.5, 33.4, 33.1, 30.7,
28.1, 15.1, 14.0, 13.9; HRMS m/z 377.1962 (calcd for C,1H3006-H 377.1964).
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2.5.2.2 Cycloadditions of Nitrones and Cyclobutanes

All nitrones were prepared according to the following methods: a) Gautheron-
Chapoulaud, V.; Pandya, S. U.; Cividino, P.; Masson, G.; Py, S.; Vallee, Y. Synlett, 2001,
1281. b) Lo, M. M.-C.;Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572-4573.

Compounds 2-81k, 2-81l, 2-81m, 2-81p, 2-83a to 2-83c, 2-85a and 2-85b were

prepared by Cory Palmer and are not included below.

General Cycloaddition Procedure for the Formation of a Single Diastereomer:

To a mixture of nitrone (0.30 mmol, 1.0 equiv), Yb(OTf); (9.0 mg, 0.015 mmol,
0.05 equiv) and 4 A molecular sieves (1.0 g) in CH,Cl, (2 mL) at room temperature was
added cyclobutane (0.36 mmol, 1.2 equiv). Following convergence of the products to a
single diastereomer (as indicated by TLC) the reaction mixture was layered directly onto

a Si0, column and eluted with EtOAc/hexanes to afford the cis oxazepane compounds.

General Cycloaddition Procedure for the Formation of a Diastereomeric Mixture:

To a mixture of nitrone (0.30 mmol, 1.0 equiv), Yb(OTf); (9.0 mg, 0.015 mmol,
0.05 equiv) and 4 A molecular sieves (1.0 g) in CH,Cl, (2 mL) at 0 °C was added
cyclobutane (0.36 mmol, 1.2 equiv). Following consumption of the cyclobutane the
reaction mixture was layered directly onto a SiO; column and eluted with hexanes/EtOAc

to afford the oxazepane product as a mixture of cis and trans isomers.

Compound 2-81a, cis diastereomer

v o. The title compound was prepared according to the general cycloaddition
Ph\“gjg procedure for the formation of a single diastereomer to afford a pale
©\“\ CO"'COZEt yellow oil (100 mg, 76%). Ry 0.60 (33% EtOAc/hexanes); 'H NMR
- (600 MHz, CDCls) 6 7.40 (d, J = 5.9 Hz, 2 H), 7.08 - 7.22 (m, 7 H),

6.85 (t, J=6.7 Hz, 1 H), 5.58 (s, 1 H), 5.36 (d, /= 5.3 Hz, 1 H), 4.35 - 4.41 (m, 1 H),
4.29 - 435 (m, 1 H), 4.21 - 427 (m, 1 H), 3.99 (td, /= 2.3, 7.9 Hz, 1 H), 3.83 (dq, J =
7.1, 11.1 Hz, 1 H), 3.72 (dq, J= 7.2, 10.6 Hz, 1 H), 2.94 - 3.00 (m, 1 H), 2.60 - 2.66 (m, 1
H),2.46 (dd, J=2.9, 14.6 Hz, 1 H),2.23 -2.32 (m, 1 H), 1.81 - 1.87 (m, 1 H), 1.32 (t,J =
7.3 Hz, 3 H), 0.94 (t, J = 7.0 Hz, 3 H); °C NMR (101 MHz, CDCls) & 170.2, 168.8,
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149.2, 134.5, 130.7, 128.6, 128.2, 127.8, 122.0, 116.8, 108.5, 70.4, 68.1, 62.0, 61.9, 61.6,
40.4,34.2,31.8, 14.2, 13.6; HRMS m/z 439.1993(calcd for C,sH29NOg, 439.1995).

Compound 2-81a, trans diastereomer

H o The title compound was prepared according to the general cycloaddition

Ph<, -©
N . . . . .
procedure for the formation of a diastereomeric mixture, affording an

© CO’ZEOL inseparable mixture of cis and trans isomers (120 mg, 91%, cis:trans
31:61). Ry 0.60 (40% EtOAc/hexanes); 'H NMR (400 MHz, CDCls) Identifiable,
distinguishable, and diagnostic peaks for the trans diastereomer: 5.90 (s, 1 H), 5.17 (d, J
=7.8 Hz, 1 H). See spectra.

Compound 2-81b, cis diastereomer
H o. The title compound was prepared according to the general
Ph\“ g cycloaddition procedure for the formation of a single diastereomer
Meo/©‘\ CO;’Eto;t to afford a white solid (100 mg, 74%). R, 0.24 (20%
EtOAc/hexanes); 'H NMR (400 MHz, CDCls) & 7.30 - 7.36 (m, 2
H), 7.13 - 7.22 (m, 4 H), 6.83 - 6.89 (m, 1 H), 6.63 - 6.69 (m, 2 H), 5.52 (s, 1 H), 5.36 (d,
J=5.1Hz, 1 H), 427 -4.43 (m, 2 H), 4.18 - 427 (m, 1 H), 3.99 (td, /= 2.3, 8.2 Hz, 1
H), 3.82-3.91 (m, 1 H), 3.70 - 3.78 (m, 1 H), 3.69 (s, 3 H), 2.95 (dd, /= 14.1, 14.1 Hz, 1
H), 2.56 - 2.66 (m, 1 H), 2.43 (dd, J= 2.7, 14.5 Hz, 1 H), 2.20 - 2.32 (m, 1 H), 1.81 - 1.81
(m, 1 H), 1.32 (t, J=7.0 Hz, 3 H), 0.98 (t, /= 7.2 Hz, 3 H); *C NMR (101 MHz, CDCls)
5 170.2, 168.9, 159.2, 149.3, 131.8, 128.6, 126.6, 122.0, 116.8, 113.1, 108.4, 69.9, 68.0,
62.1, 61.8, 61.6, 55.0, 40.4, 34.2, 31.7, 14.2, 13.7; HRMS m/z 469.2107 (calcd for

Ca6H31NO7, 469.2101).

Compound 2-81b, trans diastereomer
The title compound was prepared according to the general
¢J cycloaddition procedure for the formation of a diastereomeric
@N‘ COzEt mixture to afford a mixture of separable cis and trans isomers (124
mg, 88%, cis:trans 37:63). R 0.21 (20% EtOAc/hexanes); 'H NMR
(400 MHz, CDCls) 6 7.33 (d, /= 7.8 Hz, 2 H), 7.16 - 7.25 (m, 2 H), 7.03 - 7.10 (m, 2 H),
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6.91 (t, J="7.2 Hz, 1 H), 6.65 - 6.71 (m, 2 H), 5.83 (s, 1 H), 5.17 (d, J = 7.8 Hz, 1 H),
4.33 (qq, J= 7.0, 10.6 Hz, 2 H), 3.97 - 4.11 (m, 2 H), 3.73 - 3.84 (m, 2 H), 3.71 (s, 3 H),
2.84 (d,J=14.9 Hz, 1 H), 2.74 - 2.83 (m, 1 H), 2.66 (dd, J = 10.9, 14.9 Hz, 1 H), 1.85 -
2.03 (m, 2 H), 1.30 (t, J = 7.0 Hz, 3 H), 0.83 (t, J= 7.0 Hz, 3 H); °C NMR (101 MHz,
CDCl3) & 170.8, 168.4, 159.2, 150.4, 131.5, 128.5, 125.6, 121.9, 116.8, 112.8, 111.7,
73.4,66.0, 62.2, 61.6, 61.5, 55.0, 37.2, 29.0, 28.1, 14.1, 13.5.

Compound 2-81c, cis diastereomer

H o. [The title compound was prepared according to the general

Ph., O
N cycloaddition procedure for the formation of a single diastereomer

o /©N‘ CO;EtOZ:t to afford a highly crystalline colorless solid (104 mg, 73%), R, 0.40
(33% EtOAc/hexanes); '"H NMR (400 MHz, CDCl3) & 7.34 (d, J =
8.6 Hz, 2 H), 7.16 - 7.21 (m, 4 H), 7.13 (d, /= 8.6 Hz, 2 H), 6.86 - 6.92 (m, 1 H), 5.55 (s,
1 H), 5.36 (d,J=5.5Hz, 1 H), 4.36 - 4.44 (m, 1 H), 4.29 - 4.36 (m, 1 H), 4.18 - 4.25 (m,
1 H), 4.03 (dt, J = 2.2, 8.1 Hz, 1 H), 3.89 (dq, J = 7.2, 10.8 Hz, 1 H), 3.75 (dq, J = 7.1,
10.8 Hz, 1 H), 2.91 (dd, J = 12.9, 14.5 Hz, 1 H), 2.58 - 2.69 (m, 1 H), 2.46 (dd, J = 2.7,
14.8 Hz, 1 H), 2.23 - 2.34 (m, 1 H), 1.88 - 1.83 (m,1 H), 1.33 (t,J= 7.2 Hz, 3 H), 0.98 (t,
J =72 Hz, 3 H); °C NMR (101 MHz, CDCl;) & 170.0, 168.7, 149.0, 134.2, 133.0,
131.9, 128.7, 128.0, 122.3, 116.9, 108.5, 70.0, 68.1, 62.0, 61.9, 61.8, 40.4, 34.1, 31.7,
14.2, 13.7; HRMS m/z 473.1607 (calcd for C,sH,3CINOg, 473.1605).

Compound 2-81c, trans diastereomer

H o The title compound was prepared according to the general
Ph\“N’O cycloaddition procedure for the formation of a diastereomeric
o /©‘\ CO;EtOZEt mixture to afford a mixture of separable cis and frans isomers (117
mg, 82%, cis:trans 29:71). R;0.36 (33% EtOAc/hexanes); 'H NMR

(400 MHz, CDCls) 6 7.30 (d, /= 7.4 Hz, 2 H), 7.19 - 7.25 (m, 2 H), 7.08 - 7.17 (m, 2 H),
7.01 - 7.06 (m, 2 H), 6.92 (t, J=7.4 Hz, 1 H), 5.83 (s, 1 H), 5.13 (d, /= 7.8 Hz, 1 H),
4.25-439 (m, 2 H), 3.95 - 4.11 (m, 2 H), 3.70 - 3.85 (m, 2 H), 2.88 (d, J = 14.8 Hz, 1
H), 2.75-2.84 (m, 1 H), 2.64 (dd, J=11.3, 149 Hz, 1 H), 1.82 - 1.99 (m, 2 H), 1.29 (t, J

= 7.2 Hz, 3 H), 0.82 (t, J = 7.0 Hz, 3 H); °C NMR (101 MHz, CDCls) & 170.6, 168.2,
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150.1, 134.1, 131.8, 131.5, 128.6, 127.7, 122.3, 116.9, 111.6, 73.5, 66.1, 62.4, 61.7, 61.2,
37.1,29.1, 28.0, 14.1, 13.5.

Compound 2-81d, cis diastereomer
o ’OH oo The title compound was prepared according to the general
\“"\QHJ cycloaddition procedure for the formation of a single diastereomer
Nc© Coz(E?tOzEt to afford a white solid (106 mg, 76%). Ry 0.42 (33%
EtOAc/hexanes); 'H NMR (400 MHz, CDCl3) & 7.47 - 7.52 (m, 2 H), 7.42 - 7.47 (m, 2
H), 7.12 - 7.21 (m, 4 H), 6.87 - 6.92 (m, 1 H), 5.61 (s, 1 H), 5.36 (d, J = 5.5 Hz, 1 H),
4.28 - 4.44 (m, 2 H), 4.22 (ddd, J= 5.3, 8.4, 10.6 Hz, 1 H), 4.01 (td, /= 2.1, 8.1 Hz, 1 H),
3.86 (dq, J=7.2,10.8 Hz, 1 H), 3.74 (dq, /= 7.1, 10.9 Hz, 1 H), 2.88 (dd, J = 12.9, 14.5
Hz, 1 H), 2.57 - 2.68 (m, 1 H), 2.48 (dd, J=2.7, 14.5 Hz, 1 H), 2.22 - 2.34 (m, 1 H), 1.82
- 186 (m, , 1 H), 1.33 (t, J=7.0 Hz, 3 H), 0.94 (t, J= 7.0 Hz, 3 H); >C NMR (101 MHz,
CDCl) 6 169.6, 168.4, 148.7, 139.8, 131.5, 131.3, 128.8, 122.7, 118.5, 116.9, 112.1,

108.6, 70.4, 68.1, 62.2, 61.9, 61.6, 40.3, 34.1, 31.9, 14.1, 13.6; HRMS m/z 464.1929
(calcd for C26H28N206, 464. 1947)

Compound 2-81d, trans diastereomer

The title compound was prepared according to the general

H o
Ph. O .. . . .
N cycloaddition procedure for the formation of a diastereomeric
o H . . . .
@ o,z MUXture to afford a mixture of separable cis, trans, and a third
NC 2

CO,Et

isomer (132 mg, 95%, cis:trans:3" 15:57:27). Ry 0.30 (33%
EtOAc/hexanes); 'H NMR (400 MHz,CDCls) 8 7.46 (d, J= 8.2 Hz, 2 H), 7.29 (d, J = 8.2
Hz, 2 H), 6.95 (t, J=7.2 Hz, 1 H), 5.91 (s, 1 H), 5.12 (d, /= 8.2 Hz, 1 H), 4.30 - 4.40 (m,
2 H), 4.19 - 428 (m, 1 H), 3.98 - 4.10 (m, 2 H), 3.74 - 3.83 (m, 2 H), 2.94 (d, /= 15.2
Hz, 3 H), 2.79 - 2.89 (m, 1 H), 2.65 (dd, J=11.3, 15.2 Hz, 3 H), 1.32 (t,J= 7.0 Hz, 3 H),
0.80 (t, J = 7.0 Hz, 3 H); >C NMR (101 MHz, CDCl3) & 170.3, 168.0, 149.8, 138.7,
131.2, 130.7, 128.7, 122.6, 118.4, 116.8, 112.0, 111.6, , 73.9, 66.1, 62.6, 61.9, 60.8, 37.0,
29.4,28.0, 14.1, 13.4.
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Compound 2-81e, cis diastereomer
The title compound was prepared according to the general

r

cycloaddition procedure for the formation of a single diastereomer
/@ " to afford bright yellow solid (106 mg, 73%). R, 0.39 (33%
EtOAc/hexanes); 'H NMR (400 MHz, CDCls) & 8.01 (d, J = 8.6 Hz,
2 H), 7.7 (d, J=9.0 Hz, 2 H), 7.14 - 7.21 (m, 4 H), 6.87 - 6.93 (m, 1 H), 5.68 (s, 1 H),
537(d,J=55Hz, 1H),4.29 -4.45 (m, 2 H), 4.24 (ddd, /= 5.5, 8.6, 10.6 Hz, 1 H), 4.01
(dt,J=2.3,82Hz 1 H),3.87 (dq, /= 7.2, 10.8 Hz, 1 H), 3.74 (dq, J = 7.2, 10.8 Hz, 1
H), 2.89 (dd, J = 12.9, 14.5 Hz, 1 H), 2.59 - 2.69 (m, 1 H), 2.50 (dd, /= 2.7, 14.8 Hz, 1
H), 2.23 - 2.36 (m, 1 H), 1.84 - 1.87 (m, 1 H), 1.34 (t, /= 7.0 Hz, 3 H), 0.96 (t, /= 7.0
Hz, 3 H); >*C NMR (101 MHz, CDCls) & 169.6, 168.4, 148.7, 147.6, 141.9, 131.5, 128.8,
122.8, 122.8, 116.9, 108.6, 70.1, 68.2, 62.3, 62.0, 61.6, 40.3, 34.1, 31.9, 14.2, 13.6.

Compound 2-81e, trans diastereomer
on. ’OH, o The title compound was prepared according to the general
‘\“w cycloaddition procedure for the formation of a diastereomeric
/© “COEt  mixture to afford a mixture of separable cis, trans, and a third
isomer (131 mg, 90%, cis:trans:3"™ 11:63:26). R, 0.27 (33% EtOAc/hexanes); 'H NMR
(400 MHz, CDCl3) & 8.04 (d, /= 8.6 Hz, 2 H), 7.32 (d, /=9.0 Hz, 2 H), 7.22 - 7.28 (m, 3
H), 7.15-7.22 (m, 3 H), 6.96 (t, J=7.2 Hz, 1 H), 6.31 (s, 1 H), 5.18 (d, /= 7.4 Hz, 1 H),
4.16 - 4.28 (m, 2 H), 3.96 - 4.13 (m, 4 H), 3.85 (dq, /= 7.1, 10.8 Hz, 1 H), 2.71 (dd, J =
5.1,14.5Hz, 1 H), 2.61 (dd, J=11.3, 14.5 Hz, 1 H), 2.45 - 2.56 (m, 1 H), 2.10 - 2.20 (m,
1 H), 1.81 - 1.97 (m, 1 H), 1.22 (t, J = 7.2 Hz, 3 H), 1.01 (t, J = 7.2 Hz, 3 H); °C NMR
(101 MHz, CDCls3) 6 170.8, 169.8, 149.2, 147.0, 143.3, 130.2, 129.0, 122.9, 122.3, 116.0,

111.0, 71.3, 68.3, 62.8, 62.3, 62.0, 43.1, 30.9, 30.0, 13.9, 13.6; HRMS m/z 484.1845
(calcd for C,5H,sN>0s, 484.1846).
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Compound 2-81f, cis diastereomer

MeO,C The title compound was prepared according to the general
@\ cycloaddition procedure for the formation of a single
‘“\ H  diastereomer to afford a white solid (78 mg, 52%). R, 0.32 (33%
“COEt
CO,Et

EtOAc/hexanes); 'H NMR (400 MHz, CDCls) & 7.85 (d, J = 9.0
Hz, 2 H), 7.41 (dd, J = 2.3, 7.4 Hz, 2 H), 7.21 (d, J=9.0 Hz, 2 H), 7.12 - 7.18 (m, 3 H),
5.71 (s, 1 H), 5.34 (d, J = 5.5 Hz, 1 H), 4.20 - 4.41 (m, 3 H), 4.00 (td, J=2.9, 8.1 Hz, |
H), 3.82 - 3.91 (m, 2 H), 3.81 (s, 3 H), 3.71 - 3.80 (m, 1 H), 2.94 (dd, J=12.5, 14.5 Hz, 1
H), 2.56 - 2.65 (m, 1 H), 2.49 (dd, J=3.1, 14.5 Hz, 1 H), 2.22 - 2.34 (m, 1 H), 1.81 - 1.89
(m, 1 H), 1.31 (t, J= 7.0 Hz, 3 H), 0.96 (t, /= 7.2 Hz, 3 H); °*C NMR (101 MHz, CDCls)
8 170.0, 168.5, 166.9, 153.0, 134.3, 130.7, 130.3, 128.4, 128.0, 123.0, 115.2, 108.8, 69.0,
68.3, 62.0, 61.9, 61.8, 51.7, 40.5, 34.0, 31.6, 14.1, 13.6; HRMS m/z 497.2043 (calcd for
Ca7H31NOg, 497.2043).

Compound 2-81f, trans diastereomer
MeOZC The title compound was prepared according to the general
cycloaddition procedure for the formation of a diastereomeric
©"“ H  mixture, affording an inseparable mixture of three diastereomers
COZE‘O = (101 mg, 68%, cis:trans:3™ 16:40:44). R, 032 (33%
EtOAc/hexanes); 'H NMR (400 MHz, CDCl;) Identifiable, distinguishable, and
diagnostic peaks of the trans diastereomer: 6.05 (s, 1 H), 5.19 (d, /= 7.4 Hz, 1 H); See

spectra.

Compound 2-81g, cis diastereomer
MeO,C The title compound was prepared according to the general
\@ QJ cycloaddition procedure for the formation of a single
™ co :t diastereomer to afford bright yellow solid (111 mg, 68%). R,0.29
(33% EtOAc/hexanes); 'H NMR (400 MHz, CDCls) & 8.03 (d, J
=8.6 Hz, 2 H), 7.93 (d, /=9.0 Hz, 2 H), 7.39 (d, J=9.0 Hz, 2 H), 7.30 (d, /= 9.0 Hz, 2

H), 6.12 (s, 1 H), 5.15 (d, J= 7.8 Hz, 1 H), 4.28 - 4.41 (m, 2 H), 4.13 - 4.21 (m, 1 H),
3.99 - 4.10 (m, 3 H), 3.86 (s, 3 H), 3.77 - 3.82 (m, 2 H), 2.97 (d, J = 14.5 Hz, 1 H), 2.65 -
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2.81 (m, 2 H), 1.87 - 2.02 (m, 3 H), 1.31 (t, J=7.0 Hz, 3 H), 0.83 (t, /= 7.2 Hz, 3 H) "°C
NMR (101 MHz, CDCl3) & 170.2, 167.7, 166.8, 153.4, 147.6, 140.6, 130.7, 130.5, 123.8,
122.9, 115.6, 111.9, 72.4, 66.3, 62.8, 62.1, 60.6, 51.8, 37.0, 29.3, 27.9, 14.1, 13.5; HRMS
m/z 542.1895 (calcd for Cy6H3 NO-, 542.1900).

Compound 2-81g, trans diastereomer

MeO,C Ho The title compound was prepared according to the general
@N’O cycloaddition procedure for the formation of a diastereomeric
@‘\“ "co: mixture, affording a separable mixture of three diastereomers
t
ON COEt

(120 mg, 74%, cis:trans:3"  7:58:35). R, 027 (33%
EtOAc/Hexanes); 'H NMR (400 MHz, CDCl3) & 8.05 (d, J = 9.0 Hz, 2 H), 7.95 (d, J =
9.0 Hz, 2 H), 7.29 (d, /= 9.0 Hz, 2 H), 7.23 (d, J=9.0 Hz, 2 H), 6.47 (s, 1l H), 5.19 (d, J
=7.4Hz 1 H),4.19-4.27 (m, 1 H), 4.06 - 4.17 (m, 2 H), 3.93 - 4.06 (m, 3 H), 3.87 (s, 3
H), 2.70 (d, J=8.6 Hz, 2 H), 2.30 - 2.43 (m, 1 H), 2.09 - 2.17 (m, 1 H), 1.83 - 1.96 (m, 1
H), 1.19 (t, J = 7.2 Hz, 3 H), 1.08 (t, J = 7.0 Hz, 3 H); >C NMR (101 MHz, CDCl5) &
170.4, 169.6, 166.7, 152.6, 147.1, 143.1, 131.1, 129.5, 123.2, 123.2, 114.1, 111.0, 69.6,
68.6, 63.0, 62.3, 62.2,51.9, 43.3, 31.3, 29.6, 13.9, 13.7.

Compound 2-81h, cis diastereomer

MeO "o The title compound was prepared according to the general
N cycloaddition procedure for the formation of a single diastereomer
©““Qf to afford a white solid (61, 43%). Ry 0.37 (33% EtOAc/hexanes);
C%2E IH NMR (600 MHz, CDCl3) & 7.36 (d, J= 7.0 Hz, 2 H), 7.12 - 7.19

(m, 3 H), 7.08 (d, J= 8.8 Hz, 2 H), 6.69 (d, /= 9.4 Hz, 2 H), 5.36 (d, /= 5.3 Hz, 1 H),
5.36 (s, 1H), 4.39 (dq, J= 7.2, 10.6 Hz, 1 H), 4.32 (dq, /= 7.1, 10.8 Hz, 1 H), 4.20 - 4.26
(m, 1 H), 3.95 -4.01 (m, 1 H), 3.80 (dq, /= 7.0, 10.5 Hz, 1 H), 3.69 (s, 3 H), 2.97 (t, J =
13.8 Hz, 1 H), 2.60 - 2.67 (m, 1 H), 2.44 (d, J = 14.6 Hz, 1 H), 2.22 - 2.30 (m, 1 H), 1.79
- 1.88 (m, 1 H), 1.33 (t, J= 7.0 Hz, 3 H), 0.91 (t, J= 7.0 Hz, 3 H); *C NMR (101 MHz,
CDCls) 6 170.2, 168.9, 142.9, 130.9, 128.1, 127.7, 119.3, 119.3, 113.6, 108.3, 71.7, 68.0,

62.0, 61.8, 61.6, 55.3, 40.4, 34.3, 31.8, 14.2, 13.5; HRMS m/z 469.2102 (calcd for
CasH31NO7, 469.2101).
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Compound 2-81h, trans diastereomer

Meo 0 The title compound was prepared according to the general
N cycloaddition procedure for the formation of a diastereomeric
©““QHJ mixture to afford a mixture of separable cis and frans isomers (97
S mg, 69%, cis:trans 34:66). R;0.33 (33% EtOAc/hexanes); 'H NMR
(400 MHz, CDCl3) 6 7.12 - 7.24 (m, 5 H), 7.08 (d, /= 7.0 Hz, 2 H), 6.75 (d, /= 9.4 Hz, 2
H), 5.66 (s, 1 H), 5.15 (d, J= 7.8 Hz, 1 H), 4.27 - 4.42 (m, 2 H), 4.03 - 4.15 (m, 1 H),
3.99 (td, 2.3,9.0 Hz, 1 H), 3.73 (s, 3 H), 3.69 - 3.77 (m, 2 H), 2.80 - 2.92 (m, 2 H), 2.66 -
2.75 (m, 1 H), 1.80 - 2.02 (m, 2 H), 1.33 (t, J=7.0 Hz, 3 H), 0.76 (t, J= 7.2 Hz, 3 H); "°C
NMR (101 MHz, CDCl3) 6 170.8, 168.4, 155.2, 144.2, 133.1, 130.5, 128.0, 127.4, 119.1,

113.6, 111.5,75.2, 66.0, 62.2, 61.5, 61.4,55.4,37.2,29.2,28.2, 14.1, 13.3.

Compound 2-81i, cis diastereomer

to afford a white solid (82 mg, 55%). Ry 0.26 (33%
EtOAc/hexanes); 'H NMR (600 MHz, CDCl;) & 7.42 - 7.48 (m, 4
H), 7.04 (d, /= 8.8 Hz, 2 H), 6.69 (d, J=9.4 Hz, 2 H), 5.40 (br. s., 1 H), 5.35(d, J=5.3
Hz, 1 H), 4.39 (dq, J = 7.1, 10.8 Hz, 1 H), 4.33 (dq, J = 7.0, 10.5 Hz, 1 H), 4.18 - 4.24
(m, 1 H), 3.99 (td, J = 2.3, 8.2 Hz, 1 H), 3.83 (dq, /= 7.1, 11.1 Hz, 1 H), 3.70 (s, 3 H),
3.67-3.74 (m, 1 H), 2.87 (dd, J=13.5, 13.5 Hz, 1 H), 2.60 - 2.67 (m, 1 H), 2.47 (dd, J =
2.3,14.6 Hz, 1 H), 2.24 - 2.31 (m, 1 H), 1.83 (br. d, J=8.8 Hz, 1 H), 1.33 (t, /= 7.0 Hz,
3 H), 0.91 (t, J = 7.3 Hz, 3 H); “C NMR (101 MHz, CDCl;) & 169.7, 168.5, 155.7,
142.3,139.8, 131.4, 131.4, 119.2, 118.5, 113.8, 112.0, 108.4, 71.6, 68.0, 62.2, 61.8, 61.6,
55.3,40.3,34.1, 31.9, 14.2, 13.6; HRMS m/z 494.2063 (calcd for C,7H30N,07,494.2053).

Meo@ "o The title compound was prepared according to the general
N cycloaddition procedure for the formation of a single diastereomer
NC co2

Et
COzEt
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Compound 2-81i, trans diastereomer

The title compound was prepared according to the general

cycloaddition procedure for the formation of a diastereomeric

@‘\“ COzEt mixture to afford a mixture of separable cis and trans isomers (98
mg, 66%, cis:trans 32:68). Ry 0.23 (33% EtOAc/hexanes); 'H

NMR (400 MHz, CDCls) 6 7.46 (d, J= 8.6 Hz, 2 H), 7.15 (d, /= 9.0 Hz, 4 H), 6.76 (d, J
=9.4 Hz,2 H), 5.69 (s, 1 H), 5.09 (d, /J=8.2 Hz, 1 H), 4.29 - 4.42 (m, 2 H), 3.99 (dt, J =
2.0, 9.0 Hz, 2 H), 3.73 (s, 3 H), 3.67 - 3.81 (m, 2 H), 2.91 (d, /= 14.9 Hz, 1 H), 2.79 -
291 (m, 1 H), 2.63 (dd, J=11.3,15.2 Hz, 1 H), 1.82 - 2.03 (m, 2 H), 1.31 (t, /= 7.0 Hz,
3 H), 0.78 (t, J= 7.0 Hz, 3 H); °C NMR (101 MHz, CDCls) & 170.3, 168.0, 155.6, 143.5,

138.4, 131.1, 131.0, 119.0, 118.5, 113.8, 111.9, 111.5, 75.0, 66.1, 62.5, 61.8, 60.9, 55.4,
37.0,29.3,28.0, 14.1, 13.4).

Compound 2-81j, cis diastereomer
The title compound was prepared according to the general
’\QJ cycloaddition procedure for the formation of a single diastereomer
@N‘ cCOZEt to afford white solid (81 mg, 54%). Ry 0.29 (33% EtOAc/hexanes);
11 NMR (400 MHz, CDCls) 5 7.28 (d. J = 9.0 Hz , 2 H), 7.07 (d, J
=9.0 Hz, 2 H), 6.63 - 6.71 (m, 4 H), 5.35 (d, J=5.5Hz, 1 H), 5.31 (s, 1 H), 4.34 - 4.42
(m, 1 H), 4.28 - 4.34 (m, 1 H), 4.24 - 4.18 (m, 1 H), 3.97 (td, /= 2.3, 8.2 Hz, 1 H), 3.79 -
3.88 (m, 1 H), 3.70 (s, 3 H), 3.69 (s, 3 H), 3.68 - 3.73 (m, 1 H), 2.94 (app. t, J = 1.33 Hz,
1 H), 2.56 - 2.70 (m, 1 H), 2.42 (br. d, J=12.5 Hz, 1 H), 2.20 - 2.33 (m, 1 H), 1.82 (br. d,
J=10.9 Hz, 1 H), 1.32 (t, J = 7.0 Hz, 3 H), 0.95 (t, J = 7.2 Hz, 3 H); °C NMR (101
MHz, CDCls) 6 170.3, 168.9, 159.2, 143.1, 132.0, 131.9, 126.5, 119.2, 113.6, 113.0,

108.2, 71.1, 67.9, 62.1, 61.8, 61.5, 55.3, 55.0, 40.4, 34.3, 31.7, 14.2, 13.7; HRMS m/z
499.2206 (calcd for C,7H33NOs, 499.2206).
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Compound 2-81j, trans diastereomer
MeO\@ W o The title compound was prepared according to the general
N cycloaddition procedure for the formation of a diastereomeric
@N‘Qi mixture, affording an inseparable mixture of cis and trans isomers
(105 mg, 70%, cis:trans d.r. 56:44). Rr0.29 (33% EtOAc/hexanes);
'H NMR (400 MHz, CDCl;) Identifiable, distinguishable, and diagnostic peaks for the
trans diastereomer: 5.60 (s, 1 H), 5.13 (d, J=8.2 Hz, 1 H); See spectra.

Compound 2-81n, cis diastereomer

"o The title compound was prepared according to the general cycloaddition

Ph© procedure for the formation of a single diastereomer to afford a bright
/”“\Qi yellow solid (98 mg, 70%). R;0.37 (33% EtOAc/hexanes); 'H NMR (600
o MHz, CDCl3) 6 7.28 - 7.34 (m, 5 H), 7.27 (m, 4 H), 7.19 - 7.25 (m, 1 H),
6.98 (t,J=7.0Hz, 1 H), 6.52 (dd, J=9.4, 15.8 Hz, 1 H), 6.29 (d, /= 15.8 Hz, 1 H), 5.38
(d, /=53 Hz, 1 H),5.01(d,J=9.4Hz 1 H),4.39 -445 (m, 1 H), 433 -4.39 (m, 1 H),
4.23 (ddd, J=5.3, 8.2, 10.5 Hz, 1 H), 4.07 - 4.14 (m, 2 H), 4.00 (dt, /= 2.6, 8.1 Hz, 1 H),
2.71 (dd, J=12.3, 14.1 Hz, 1 H), 2.62 - 2.68 (m, 1 H), 2.44 (dd, J = 1.2, 14.1 Hz, 1 H),
2.31(tdd, J=17.8,10.7, 12.5 Hz, 1H), 1.87 (pd, J= 2.9, 12.3 Hz, 1 H), 1.38 (t, /= 7.0 Hz,
3 H), 1.19 (t, J= 7.0 Hz, 3 H); C NMR (101 MHz, CDCl3) & 169.8, 169.0, 149.5, 136.2,
136.1, 128.7, 128.4, 127.8, 126.7, 122.3, 120.5, 116.9, 108.2, 70.5, 68.0, 61.9, 61.7, 61.7,

40.3,34.4,30.9, 14.2, 14.1; HRMS m/z 465.2143 (calcd for C,7H31NOg, 465.2151).

CO,Et

Compound 2-810, cis diastereomer

H o. The ftitle compound was prepared according to the general
Ph< /O o, . . . .
’\QQ cycloaddition procedure for the formation of a single diastereomer to
ZCtOzEt

“ = afford a colorless crystalline solid (109 mg, 74%). R; 0.38 (33%
CO.E
EtOAc/hexanes); 'H NMR (400 MHz, CDCl;) & 8.18 (br. s., 1 H),

7.78 (d,J="7.0 Hz, 1 H), 7.48 (d, J=8.2 Hz, | H), 7.45 (d, J=9.4 Hz, 1 H), 7.22 (t, J =
7.6 Hz, 1 H), 7.08 - 7.15 (m, 2 H), 7.03 - 7.05 (m, 3 H), 6.83 (t, J = 7.6 Hz, 2 H), 6.49 -
6.58 (m, 2 H), 5.22 (d, J= 5.1 Hz, 1 H), 4.05 - 4.29 (m, 3 H), 3.82 (td, J=2.1, 8.1 Hz, 1
H),3.12 -3.27 (m, 1 H), 2.95 (t, J= 13.3 Hz, 1 H), 2.79 (br. t, J= 7.42 Hz, 1 H), 2.52 (br.
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s, 1 H), 2.26 (dd, J=2.3, 14.5 Hz, 1 H), 2.02 - 2.17 (m, 1 H), 1.68 (br. d, J= 7.8 Hz, 1
H), 1.15 (t, J= 7.2 Hz, 3 H), 0.27 (t, J = 7.0 Hz, 3 H); °C NMR (101 MHz, CDCl3) &
170.6, 168.6, 149.2, 133.4, 132.6, 131.0, 128.7, 128.7, 128.5, 128.4, 125.6, 125.1, 124.8,
123.5, 122.3, 117.2, 108.7, 68.1, 62.3, 62.0, 61.6, 61.2, 40.6, 34.2, 32.2, 14.2, 12.9;
HRMS m/z 489.2150 (caled for CooH3 NOg, 489.2151).
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2.5.2.3 (4 + 2) Cycloaddition of Donor-Acceptor Cyclobutanes and Nitrosoarenes

Scalar coupling was eliminated from nOe experiments by using acquisition delays
of 500 ms. Signal intensity in 'H- "N HMBCAD experiments is proportional to 'H-">N
J-value, thus observed 2J1H-1 sn signals are significantly more intense than 37, 11H-15N Signals.
EI mass spectra were obtained on a Finnigan MAT 8200 spectrometer at an ionizing
voltage of 70 eV.

All nitrosoarenes not available commercially were prepared from the
corresponding anilines according to literature methods.**

Compounds 2-89d, 2-89g and 2-89h were prepared in collaboration with Tyler
Schon and are included below, compounds 2-89i, 2-90a, 2-90b, 2-91a, 2-91b and 2-92

to 2-96 were prepared by Naresh Vemula and the data is not included below.

General Procedure for the Yb(OTf); Catalyzed Cycloaddition of Nitrosoarenes and
Cyclobutanes

To a mixture of nitrosoarene (0.30 mmol, 1.0 equiv) and Yb(OTf); (4 mg, 0.006
mmol, 2 mol %) in CH,Cl, (3 mL) was added the cyclobutane (0.36 mmol, 1.2 equiv).
After complete consumption of the cyclobutane (as indicated by TLC) the reaction
mixture was layered directly onto a silica gel column and purified by flash

chromatography.

General Procedure for the Mgl, Catalyzed Cycloaddition of Nitrosoarenes and
Cyclobutanes

To a mixture of nitrosoarene (0.30 mmol, 1.0 equiv) and Mgl, (42 mg, 0.15
mmol, 50 mol %) in CH,Cl, (3 mL) was added the cyclobutane (0.36 mmol, 1.2 equiv).
After complete consumption of the cyclobutane (as indicated by TLC) the reaction
mixture was layered directly onto a silica gel column and purified by flash

chromatography.
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(4aR*,7aR*)-diethyl 1-phenyltetrahydro-1H-furo[2,3-c][1,2]oxazine-3,3(7aH)-
dicarboxylate (2-89a)
The title compound was prepared according to the general Yb(OTY);
J(; catalyzed cycloaddition procedure to afford a pale yellow oil (96 mg,

O Ny,

Q 92%). Ry 0.27 (2:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCls) &

()

‘CO,Et

H Coet 7.26 - 7.35 (m, 4 H), 6.97 - 7.02 (m, 1 H), 5.44 (d, J = 5.9 Hz, 1 H),
4.25-4.33 (m, 2 H), 4.15 - 4.24 (m, 2 H), 4.09 (td, J = 6.8, 8.5 Hz, 1 H), 3.93 (td, J = 3.9,
8.2 Hz, 1 H), 2.80 - 2.90 (m, 1 H), 2.60 (dd, J = 6.6, 14.1 Hz, 1 H), 2.16 (dq, J= 8.2, 12.7
Hz, 1 H), 2.04 (dd, J = 8.6, 14.1 Hz, 1 H), 1.83 - 1.92 (m, 1 H), 1.29 (t, J = 7.2 Hz, 3 H),
1.18 (t, J = 7.2 Hz, 3 H); °C NMR (101 MHz, CDCly) § 167.9, 167.6, 146.7, 128.5,
123.0, 117.5, 88.6, 83.6, 67.0, 62.2, 62.0, 33.3, 30.6, 29.6, 14.0, 13.9; HRMS m/z
349.1525 (caled for C1sHysNOg, 349.1525).

(4aR*,7aR*)-diethyl 1-(4-bromophenyl)tetrahydro-1H-furo[2,3-c][1,2]oxazine-
3,3(7aH)-dicarboxylate (2-89b)
Br The title compound was prepared according to the general Yb(OTf);
catalyzed cycloaddition procedure to afford a cream colored solid (114
ol Ny mg, 89%). R;0.27 (2:1 hexanes /EtOAc); 'H NMR (400 MHz, CDCl3) &
meoe 1-35 - 7:40 (m, 2 H), 7.18 - 7.23 (m, 2 H), 5.37 (d, J = 5.9 Hz, 1 H),
"OCOE 404433 (m, 2 H), 4.16 - 424 (m, 3 H), 4.08 (td, J = 7.0, 8.4 Hz, 1
H), 3.92 (td, J= 3.9, 8.2 Hz, 1 H), 2.79 - 2.89 (m, 1 H), 2.59 (dd, J = 6.6, 14.1 Hz, 1 H),
2.15 (dg, J = 8.1, 12.5 Hz, 1 H), 2.07 (dd, J = 7.8, 14.1 Hz, 1 H), 1.84 - 1.92 (m, 1 H),
1.28 (t, J=7.2 Hz, 3 H), 1.18 (t, J= 7.0 Hz, 3 H); °C NMR (101 MHz, CDCl5) & 167.8,
167.5, 1459, 131.4, 119.2, 115.8, 88.7, 83.6, 67.1, 62.3, 62.1, 33.4, 30.6, 29.4, 14.0,
14.0; HRMS m/z 427.0614 (calcd for CisH2,BrNOg, 427.0631).
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(4aR*,7aR*)-diethyl 1-(2,4-dibromophenyl)tetrahydro-1H-furo[2,3-c][1,2]oxazine-
3,3(7aH)-dicarboxylate (2-89c)

Br The title compound was prepared according to the general Yb(OTf);
catalyzed cycloaddition procedure to afford an orange oil (72 mg, 47%).
H ” R;0.37 (2:1 hexanes /EtOAc); 'H NMR (600 MHz, CDCls) & 7.88 (d, J
=8.8Hz, 1 H), 7.64 (d, /=2.3 Hz, 1 H), 7.38 (dd, /= 2.3, 8.8 Hz, 1 H),
559 (d, J=4.7 Hz, 1 H), 421 - 424 (m, 2 H), 4.13 - 4.18 (m, 2 H),
4.06 - 4.11 (m, 1 H), 4.00 - 4.06 (m, 1 H), 3.87 (q, /= 7.8 Hz, 1 H), 2.73 - 2.80 (m, 2 H),
2.52-2.56 (m, 1 H), 1.95-2.06 (m, 3 H), 1.19 (t, /= 7.3 Hz, 3 H), 1.04 (t,/=7.3 Hz, 3
H); °C NMR (151 MHz, CDCl3) & 168.0, 166.7, 143.9, 134.3, 130.2, 129.8, 123 .4,
120.2, 104.2, 69.0, 62.2, 62.0, 61.5, 36.1, 32.4, 27.4, 13.8, 13.6; HRMS m/z 504.9750

(calcd for C]gHz]BI‘zNOG, 5049736)

()

‘CO,Et

H  Co,Et

(4aR*,7aR*)-diethyl 1-(4-acetylphenyl)tetrahydro-1H-furo[2,3-c][1,2]oxazine-
3,3(7aH)-dicarboxylate (2-89d)
0 The title compound was prepared according to the general Yb(OTf);
catalyzed cycloaddition procedure to afford a cream colored solid (81
H mg, 69%). R 0.16 (2:1 hexanes /EtOAc); 'H NMR (400 MHz, CDCl;) &
. 7.88 (t,J=2.0 Hz, 1 H), 7.55 - 7.61 (m, 2 H), 7.34 - 7.41 (m, 1 H), 5.49
4 COSSZB (d, /J=6.3 Hz, 1 H), 4.25 - 436 (m, 2 H), 4.20 (qd, /= 1.0, 7.1 Hz, 3 H),
4.04 - 4.13 (m, 1 H), 3.94 (td, J = 3.9, 8.2 Hz, 1 H), 2.82 - 2.92 (m, 1 H), 2.60 (dd, J =
7.8, 14.1 Hz, 1 H), 2.58 (s, 3 H), 2.17 (dq, J = 8.0, 12.7 Hz, 1 H), 2.09 (dd, J = 8.2, 14.1
Hz, 1 H), 1.85 - 1.95 (m, 1 H), 1.30 (t, J = 7.0 Hz, 3 H), 1.18 (t, /= 7.2 Hz, 3 H); °C
NMR (101 MHz, CDCl3) 6 198.0, 167.8, 167.5, 147.2, 137.6, 128.8, 123.0, 122.2, 117.1,
88.6, 83.7,67.2,62.3,62.1,33.4, 30.6, 29.4, 26.7, 14.0, 13.9; HRMS m/z 391.1623 (calcd
for CyoH,5sNO7, 391.1631).
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(4aR*,7aR*)-diethyl 1-(4-(ethoxycarbonyl)phenyl)tetrahydro-1H-furo[2,3-
c][1,2]oxazine-3,3(7aH)-dicarboxylate (2-89¢)
CO,Et The title compound was prepared according to the general Yb(OTf);
catalyzed cycloaddition procedure to afford a pale yellow oil (104 mg,
AR 82%) as a 13:1 mixture of regioisomers (major regioisomer shown). Ry
OI’COZEt 0.21 (2:1 hexanes /EtOAc); '"H NMR (400 MHz, CDCl;) & 7.93 - 7.98
COEL (m, 2 H), 7.30 - 7.35 (m, 2 H), 5.54 (d, J = 5.9 Hz, 1 H), 4.26 - 4.36 (m,
4 H),4.13 -4.22 (m, 3 H), 4.06 - 4.13 (m, 1 H), 3.93 (td, /=3.9, 8.2 Hz, 1 H), 2.82 -2.91
(m, 1 H), 2.62 (dd, J = 6.4, 14.3 Hz, 1 H), 2.06 - 2.22 (m, 2 H), 1.90 (tdd, J = 4.2, 6.8,
12.5 Hz, 1 H), 1.36 (t, J= 7.0 Hz, 3 H), 1.30 (t, /= 7.2 Hz, 3 H), 1.16 (t, /= 7.2 Hz, 3
H); C NMR (151 MHz, CDCls) & 167.6, 167.3, 166.4, 150.5, 130.3, 124.2, 115.8, 88.1,
83.7,67.2,62.3, 62.2, 60.5, 33.2, 30.5, 29.2, 14.3, 14.0, 13.9; HRMS m/z 421.1742 (calcd
for C13sH23NOg, 421.1737).

H

(4aR*,7aR*)-diethyl 1-(4-cyanophenyl)tetrahydro-1H-furo[2,3-c][1,2]oxazine-
3,3(7aH)-dicarboxylate (2-89f)
N The title compound was prepared according to the general Yb(OTf);
catalyzed cycloaddition procedure to afford a cream colored solid (89
H mg, 61%) as a 3:1 mixture of regioisomers (major regioisomer shown).
R/ 0.22 (2:1 hexanes /EtOAc); 'H NMR (600 MHz, CDCl3) & 7.52 -
7.59 (m, 2 H), 7.36 - 7.41 (m, 2 H), 5.52 (d,J= 6.4 Hz, 1 H), 4.25 - 4.34
(m, 3 H), 4.16 - 4.23 (m, 3 H), 4.05 - 4.12 (m, 1 H), 3.93 (td, /=4.7, 8.2 Hz, 1 H), 2.84 -
291 (m, 1 H), 2.61 (dd, J= 6.4, 14.1 Hz, 1 H), 2.14 - 2.21 (m, 2 H), 1.87 - 1.94 (m, 2 H),
1.30 (t, J = 7.0 Hz, 3 H), 1.17 (t, J = 7.0 Hz, 3 H); °C NMR (151 MHz, CDCl;) see
spectra; HRMS m/z 374.1482 (calcd for C19H2oN,0¢, 374.1478).

"Co,Et

H  Co,Et

Minor Regioisomer: Identifiable, distinguishable, and diagnostic peaks of the minor
diastereomer: 'H NMR (600 MHz, CDCl;) & 8.12 - 808 (m, 2 H), 7.08 - 7.05 (m, 2 H),
5.59(d,J=4Hz, 1H), 1.15 (t, J=7.03 Hz, 3 H); See spectra.
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(4aR*,7aR*)-diethyl 1-(4-nitrophenyl)tetrahydro-1H-furo[2,3-c][1,2]oxazine-
3,3(7aH)-dicarboxylate (2-899)
NO, The title compound was prepared according to the general Yb(OTf);
catalyzed cycloaddition procedure to afford a yellow solid (70 mg, 59%)
H as a 4:1 mixture of regioisomers (major regioisomer shown). R0.19 (2:1
- hexanes /EtOAc); '"H NMR (400 MHz, CDCl;) & 8.14 - 8.20 (m, 2 H),
" COEL 937 742 (m, 2 H),558(d,J=63 Hz, 1 H), 427 - 436 (m, 2 H), 4.15
-4.24 (m, 2 H), 4.07 - 4.14 (m, 2 H), 3.95 (td, /= 4.3, 8.2 Hz, 1 H), 2.85 - 2.94 (m, 1 H),
2.62 (dd, J = 6.3, 14.5 Hz, 1 H), 2.15 - 2.24 (m, 2 H), 1.94 (td, J = 4.7, 11.9 Hz, 1 H),
131 (t, J=7.2 Hz, 3 H), 1.18 (t, J= 7.0 Hz, 3 H); >C NMR (151 MHz, CDCl3) § 167.4,
167.0, 152.0, 142.3, 124.7, 115.9, 88.0, 83.7, 67.5, 62.6, 62.4, 33.4, 30.3, 28.9, 14.0,
13.9; HRMS m/z 394.1377 (caled for Ci13H2,N2Og, 394.1376).
Minor Regioisomer: Identifiable, distinguishable, and diagnostic peaks of the minor
diastereomer: '"H NMR (400 MHz, CDCl3) & 8.12-808 (m, 2 H), 7.08-7.05 (m, 2 H), 5.59
(d,J=4Hz, 1 H), 1.15 (t,J=7.03 Hz, 3 H); See spectra.

(4aR*,7aR*)-diethyl 1-p-tolyltetrahydro-1H-furo[2,3-c][1,2]oxazine-3,3(7aH)-
dicarboxylate (2-89h)

The title compound was prepared according to the general Yb(OTf);

catalyzed cycloaddition procedure to afford a pale yellow oil (32 mg,
H 29%). R;0.29 (2:1 hexanes /EtOAc); 'H NMR (600 MHz, CDCl;) & 7.18
-7.21 (m, 2 H), 7.04 - 7.08 (m, 2 H), 5.34 (d, /= 5.9 Hz, 1 H), 4.22 -
4.33 (m, 2 H), 4.14 - 4.22 (m, 3 H), 4.06 (q, J = 8.8 Hz, 1 H), 3.90 (td, J
=3.8,83 Hz, 1 H), 2.78 - 2.85 (m, 1 H), 2.57 (dd, J = 6.4, 14.1 Hz, 1 H), 2.25 (s, 3 H),
2.12 (dq, J = 8.1, 12.6 Hz, 1 H), 2.02 (dd, J = 8.2, 14.1 Hz, 2 H), 1.83 - 1.89 (m, 1 H),
1.26 (t, J=7.0 Hz, 3 H), 1.17 (t, J= 7.3 Hz, 3 H); >C NMR (151 MHz, CDCl3) & 168.0,
167.8, 144.3, 132.7, 129.1, 118.0, 89.0, 83.6, 66.9, 62.1, 62.0, 33.3, 30.6, 29.6, 20.7, 20.6,
14.0, 14.0, 13.9; HRMS m/z 363.1686 (calcd for C19H25NOg 363.1682).

“’CO,Et
H  Co,Eet
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Chapter 3.  Studies Towards the Synthesis of Grandilodine A

This chapter describes studies towards the synthesis of grandilodine A. Relevant
background information regarding the alkaloid, as well as previous reported studies

directed towards the synthesis of the grandilodines and related alkaloids is presented.

3.1 Introduction
3.1.1 Grandilodine A

Complex natural products provide a unique opportunity for the chemical and
medicinal community, as many compounds isolated from natural sources have been
found to possess potent biological activity. Indeed, from the development of
chemotherapy for cancer treatment, greater than 48% of the small molecules used in the
treatment of cancer are either natural products or natural product derived." New and
intriguing compounds continue to be isolated, often times in such limited quantities to
allow only a cursory examination of their potential biological activity. One such series of
compounds isolated in 2011 are the grandilodines (Figure 3.1).> Preliminary examination
of the biological properties of the grandilodines revealed that both grandilodine A and C
restored vincristine activity in multidrug resistant KB cells (ICsy 4.35 and 4.11 ug/mL
respectively, in the presence of 0.1 ug/mL of vincristine) without showing cytotoxicity
against both drug-sensitive and drug-resistant cells in the absence of vincristine. While
this was a promising preliminary result, the sparse availability of these compounds has

hindered further studies from being undertaken.
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Figure 3.1. Grandilodines A-C

Synthetic organic chemistry provides a unique opportunity in this regard, as an
efficient synthesis of the grandilodines would allow for sufficient material to facilitate
full elucidation of the medicinal utility of this series of compounds. Additionally it would
allow for potential enhancement of their biological properties through structure-activity
relationship studies. The potential utility of these compounds aside, the grandilodines
possess a rare carbon framework. The central [4.2.2] bicyclic system poses a significant
synthetic challenge. Moreover, the adjacent quaternary and tertiary centers present in the
indoline core create additional impediment as the high steric requirements of the centers

would prove challenging to form.

3.1.2 Synthetic Efforts Towards the Grandilodines and Related Alkaloids

To date there have only been two reports of synthetic efforts towards the synthesis
of any of the grandilodine natural products. There are, however, two series of compounds
with closely related structures, the lapidilectines® and the lundurines® (Figure 3.2). Once
again there have only been a few reports of efforts towards their synthesis, which have
been summarized below. These studies can assist in illustrating some of the challenges

faced when constructing molecules with the peculiar [4.2.2] framework.
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Figure 3.2. The Lapidilectine and Lundurine Natural Products

3.1.2.1 Synthesis of the Indoloazocine Ring via Intramolecular Alkyne Cyclization

Echavarren and Van der Eycken have both developed methodologies for the
synthesis of the central indoloazocine ring of the grandilodine, lapidilectine, and
lundurine alkaloids, which utilize intramolecular alkyne cyclizations. Echavarren and
coworkers described a method that employs a gold catalyst and terminal alkynes;
however, the selectivity for the desired 8-endo-dig vs. the undesired 7-exo-dig processes
appears to be highly substrate dependent, though it is difficult to draw conclusions as
only four compounds were investigated (Scheme 3.1).” Subsequently, Van der Eycken
and coworkers developed a methodology using a propargyl amide as a cyclization
precursor, as opposed to a propargyl amine substrate.® This proved to be an advantageous
and most likely crucial alteration as complete selectivity for the 8-endo-dig pathway was
observed, affording the 8-membered ring products in good yield. Unfortunately, they
found that internal alkynes were required, as terminal alkynes afforded extremely slow

reactions (2 days) with low yield (21-25%) and extensive decomposition.
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Scheme 3.1. Indole-Alkyne Cyclizations for the Formation of Indoloazocines
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H
3-4
3-5
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40-85% yield
complete regioselectivity

Though the initial scope was limited, Echavarren and coworkers believed that
their gold-catalyzed cyclization would facilitate synthesis of the lundurines, and thus
embarked on the synthesis of the tetracyclic core (Scheme 3.2). Desiring an
enantioselective route, they first studied the synthesis of the pyrrolidine portion of the
molecule. Following a procedure developed by Germans and coworkers,® chloral
(trichloroacetaldehyde) and (S)-proline were condensed to form oxazolidinone 3-6 which
was alkylated with ((2-iodoethoxy)methyl)benzene, affording 3-7 in low yield.
Subsequent acidic cleavage of the oxazolidinone afforded the desired pyrrolidine. The
indole moiety was appended through an Sn2 reaction with indole derivative 3-9 to afford
3-10. The poor yields obtained throughout (1.6% over 4 steps) necessitated abandoning

this route and an alternative synthesis with a less complicated substrate was investigated.
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Scheme 3.2. Echavarren's Synthetic Efforts Towards the Lundurines
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The second route investigated by Echavarren began with Boc protection and
DIBAL reduction of commercially available indole-3-acetic acid methyl ester to afford
aldehyde 3-12 (Scheme 3.3). A pendant pyrrolidinone was then installed via reductive
amination and lactam formation with dimethyl (S)-glutamate. The synthesis of the
cyclization precursor was completed through ester reduction, oxidation with DMP,
alkyne formation with the Bestmann—Ohira reagent and Boc cleavage to afford alkyne 3-
14. Treatment of alkyne 3-14 with AuCl; afforded the cyclized product (3-15) in 55%
yield. Despite the poor overall efficiency (5% yield over 7 steps), the study demonstrated

the feasibility of this methodology for the synthesis of the indoloazocine skeleton.
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Scheme 3.3. Echavarren's Synthesis of the Tetracyclic Core
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3.1.2.2 Martin’s Approach Towards Lundurine A

The Martin group has disclosed studies towards the synthesis of the lundurine
alkaloids based on a double RCM approach.” They began the synthesis by formation of
amine partner 3-18 through bisalkylation of 3-16 with phenyl vinyl sulfoxide followed by
acidic hydrolysis of the Schiff base. The indole portion was created through electrophilic
bromination of indole derivative 3-19, N-tosylation and Suzuki cross-coupling to afford
vinyl indole 3-22. Silyl-group deprotection with TBAF gave alcohol 3-23. Oxidation of
the newly released alcohol with IBX and reductive amination with amine 3-23 afforded

3-24. Lastly, pyrolytic elimination of the two phenyl sulfoxides afforded key triene 3-25.
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Scheme 3.4. Preparation of the RCM Precursor
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Installation of the fourth and final olefin was accomplished through alkylation of
3-25 with either crotonyl chloride or allyl bromide to afford tetraenes 3-26 and 3-27
(Scheme 3.5). It was found that amide 3-26 would not undergo RCM with a variety of
different RCM catalysts. In contrast, amine 3-27 underwent RCM with all catalysts
surveyed to afford 3-28; however, Grubbs I provided the superior yield. They
subsequently described that the next RCM event could also be catalyzed by Grubbs I,
Grubbs II, or Schrock catalysts to afford tetracycle 3-29. Regrettably, this process was
found to be irreproducible approximately one year after being reported and the

publication was retracted.'®
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Scheme 3.5. RCM for Formation of the Indoloazocine Skeleton of Lundurine A
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3.1.2.3 Studies towards Grandilodine C

Sarpong recently disclosed studies towards the synthesis of lapidilectine-type
alkaloids, including grandilodine C and the lapidilectine and lundurine natural products."’
Key steps in his strategy include a four component Ugi coupling and three methods for
formation of the indoloazocine ring system. The synthesis began with a four-component
Ugi coupling leading to adduct 3-33. The undesired enamide artifact of the Ugi reaction
was cleaved through acidic methanolysis to afford a methyl ester, which underwent
subsequent Dieckmann condensation, dehydration and protection of the indole nitrogen

through methyl carbamate formation, to afford 3-35. Fission of the cyclohexanone ring
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was accomplished through silyl enol ether formation, dihydroxylation with OsO4 and

oxidative cleavage with Pb(OAc), to afford 3-36 in 64% yield over the three steps.

Scheme 3.6. Sarpong's Synthesis of the Cyclization Precursor
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With efficient access to 3-36, a number of methods to form the indoloazocine ring
were investigated (Scheme 3.7). Conversion of 3-36 to aryl bromide 3-39, carboxcylic
acid 3-37 or dimethyl acetal 3-38 was achieved efficiently through standard procedures.
Friedel—Crafts reactions could be accomplished through carboxylic acid 3-37 or dimethyl
acetal 3-38 to afford 3-40 or 3-41 respectively. The indoloazocine ring could also be
formed through a radical cyclization by subjection of aryl bromide 3-39 to AIBN and
dodecane thiol, affording ketone 3-40. This study represents the most efficient route to
form the indoloazocine ring system to date and includes adequate functionality for further

studies.
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Scheme 3.7. Sarpong’s Synthesis of the Indoloazocine Ring
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3.1.2.4 Pearson’s Total synthesis of Lapidilectine B

To date, the only completed synthesis of the lapidilectine, lundurine, or
grandilodine natural products has been that of Pearson and coworkers who have
successfully synthesized lapidilectine B.'? The successful route relied on construction of
the [4.2.2] ring system at a late stage, preceded by a (3 + 2) cycloaddition between
azaallyllithium 3-42 and vinylsulfide (Scheme 3.8). The cycloaddition precursor was
synthesized from 3-oxindole 3-43, which was made available through a Smalley azido-

enolate cyclization of 3-44.
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Scheme 3.8. Pearson's Retrosynthesis of Lapidilectine B
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The synthesis began with monobenzylation and oxidation of cis/trans-
cyclohexane-1,4-diol to give ketone 3-45 (Scheme 3.9). Enol-triflate formation and
stannylation afforded stannane 3-47 which underwent a Stille carbonylative cross-
coupling to afford 3-48. Conjugate addition of vinylmagnesium bromide and cleavage of
the nitrogen protecting group produced amine 3-49. Installation of an azide was
accomplished by conversion of the amine to a diazonium salt with sodium nitrite and
HCI, followed by displacement with sodium azide. Subsequent Smalley azido-enolate
cyclization afforded 3-50 as a 2.2:1 mixture of separable diastereomers. N-Acylation with
methylchloroformate and dihydroxylation of the terminal olefin afforded 3-51. Allylation
of the ketone with allylmagnesium bromide and subsequent periodate cleavage afforded
an aldehyde which was ketalized in acidic methanol to afford methyl acetal 3-52 as a
single diasterecomer whose stereochemistry was confirmed through X-ray
crystallography. Ozonolysis of the newly installed terminal olefin with a reductive
workup afforded a primary alcohol which was immediately protected as a TBDPS ether

(3-53). Completion of the (3 + 2) cycloaddition precursor was accomplished through
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reductive removal of the benzyl protective group with Pearlman’s catalyst followed by

Ley oxidation to afford ketone 3-54.

Scheme 3.9. Synthesis of the Cycloaddition Precursor
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With ketone 3-54 in hand, the stage was set for the key (3 + 2) cycloaddition
(Scheme 3.10). Condensation of aminomethyltributylstannane with ketone 3-54 afforded
intermediate 3-55 which, upon treatment with phenylvinyl sulfide and n-butyllithium,
underwent the (3 + 2) cycloaddition to produce pyrrolidine 3-56 in 75% yield as an

undetermined mixture of carbamate rotamers or regio- and stereoisomers. Protection of
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the free secondary amine as a Teoc carbamate and oxidation of the sulfide to the

sulfoxide followed by thermolysis coalesced the mixture of compounds into a single

product, 3-57, in good overall yield. Demethylation of the methylacetal with BCls

followed by PCC oxidation installed the required lactone functionality, and deprotection

of the TBDPS ether and mesylation afforded mesylate 3-58. The synthesis was completed

by TFA deprotection of the Teoc-protected nitrogen and intramolecular ring closure,

facilitated by heat and Hunig’s base, to afford (+)-lapidilectine B. Overall, the synthesis

required 28 steps and provided the natural product in 0.14% yield from commercially

available cyclohexane-1,4-diol.

Scheme 3.10. Cycloaddition and Completion of the Total Synthesis of Lapidilectine B
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3.2  Studies Towards the Synthesis of Grandilodine A

3.2.1 Retrosynthetic Analysis

Our original retrosynthesis of grandilodine A is outlined in Scheme 3.11.

Formation of the azabicyclo[4.2.2]becane system could occur via nucleophilic addition to
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an imine species, creating the last quaternary center. It was believed that this could be
accomplished through an aza-Baylis—Hillman reaction, similar to the procedure
developed by Andrade and coworkers for the synthesis of the Strychnos alkaloids" and
subsequently applied by Andrew and Kwon for the synthesis of (+)-ibophyllidine."* The
central 8-membered ring (3-59), difficult to form due to increased strain from trans-
annular interactions, would rely on RCM, nucleophilic addition, or cross-coupling
chemistry. Formation of the 8-membered ring precursor (3-60) would be achieved
through reductive amination of pyrrolidine fragment 3-62 with oxindole fragment 3-61.
The requisite oxindole (3-61) and pyrrolidine fragments (3-62), each in enantioenriched
form, would arise from an asymmetric-organocatalytic aldol reaction and proline

oxazolidinone-alkylation/homologation respectively.

Scheme 3.11. Retrosynthetic Analysis of Grandilodine A
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3.2.2  Synthesis of the Oxindole Fragment

3.2.2.1 Model Study for Cross-Coupling or RCM Formation of the 8-Membered
Ring

It was deemed prudent to assess the viability of the cross-coupling chemistry
necessary for the 8-membered ring formation prior to exploration with more complex
substrates. There are examples of cross-coupling of both iminotriflates’” and

.. . 16
iminochlorides,

though the reports are relatively few. Test substrate 3-65 was
synthesized through alkylation of commercially available 2-oxindole with methyl iodide
to afford 3,3-dimethyl-2-oxindole (Scheme 3.12). Attempts to form the iminotriflate
through treatment of oxindole 3-65 with triflation sources, such as Tf,0, N-phenyl
triflamide or Comins reagent and a variety of bases all failed to provide the iminotriflate
and thus cross-coupling chemistry though the iminotriflate was abandoned. Iminochloride

3-67 was also synthesized through treatment of oxindole 3-65 with thionyl chloride and

2,6-lutidine; however, subsequent Kumada couplings did not occur.

Scheme 3.12. Model Study for Ring Closure via Cross-coupling Chemistry
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We next explored nucleophilic addition as a means of introducing either the
pyrrolidine portion directly, or to introduce an olefin for subsequent RCM (Scheme 3.13).

Protection of the nitrogen was necessary and was accomplished by introduction of a Boc
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group. It was found that, similar to what has been described by Weinreb and coworkers,'’
nucleophilic addition of vinylmagnesium bromide afforded the desired product (3-69) in
60% yield. With a means of introducing the functionality necessary for 8-membered ring
formation, attention was focused on the synthesis of the oxindole and pyrrolidine

fragments.

Scheme 3.13. Nucleophilic Addition to Oxindole
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3.2.2.2 Quaternary Center Formation via Alkyation

Several routes existed for the formation of the quaternary center present in
oxindole fragment 3-61, two of which were developed by Overman and coworkers
(Scheme 3.14). The first method was an asymmetric Heck reaction of iodoanilide 3-70 to
afford oxindoles in high yield and acceptable enantioselectivity.'® The enantiomeric
purity of the oxindole could be subsequently increased through recrystallization.
Unfortunately, the preparation of the Heck precursor was non-trivial, utilized expensive
reagents, and the enantioselectivity of the process was substrate-dependent. To avoid
these pitfalls, they developed a second route that relied on alkylation with tartrate-derived
electrophile 3-73." Unlike the Heck route, the alkylation substrates were readily
available in few steps and afforded the product in good yield. Notably, the minor
products in this transformation are diastereomers of the desired C,-symmetric product,

allowing for facile isolation of the desired compound in very high ee.
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Scheme 3.14. Overman’s Routes for Synthesis of Quaternary Oxindiole Substrates
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It was determined that alkylation with tartrate-derived bis-triflate 3-73 was the
most promising route, and thus was elected as the first candidate to be explored (Scheme
3.15). The oxindole substrate was prepared by Wolff—Kishner reduction of isatin,
followed by attempted Boc protection of the nitrogen. Unfortunately, a mixture of N-Boc,
O-Boc and C-3-Boc compounds were formed, requiring an alternative approach. To that
end, treatment of 2-oxindole (3-75) with an excess of methyl chloroformate formed enol-
formate 3-76 which underwent O to C acyl transfer mediated by DMAP to affording the
DMAP-enolate salt 3-77. Acidic workup produced the desired oxindole (3-63) as a 3:1
keto to enol mixture. The unoptimized yield of this sequence is poor; however, it afforded
the requisite starting material necessary for alkylation and could likely be optimized to
increase efficiency. Unfortunately, the desired alkylation did not occur, as treatment of
the enolate with bistriflate 3-73 afforded only starting material, even after extended

reaction times at high temperatures.
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Scheme 3.15. Asymmetric Alkylation with Tartarate-Derived Electrophile
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3.2.2.3 Organocatalytic Formation of the Quaternary Center

When the alkylation route failed to produce the desired substrate, it occurred to us
that an asymmetric aldol between an oxindole and formaldehyde would install the
requisite functionality (Scheme 3.16). Fortunately, a recent report describing such a
transformation was disclosed by Yuan and coworkers.*® Many asymmetric
organocatalytic transformations for the synthesis of 3,3-disubstituted oxindoles are
known; however, the number of direct aldol reactions involving formaldehyde are
limited. The report described by Yuan makes use of bifunctional thiourea catalyst 3-79,
paraformaldehyde and an oxindole bearing an N-Boc protecting group. It was
demonstrated that the N-Boc protection was crucial in achieving good enantioselectivity.
As this reaction would install the requisite functionality, the organocatalytic

transformation was explored for inclusion into the total synthesis.
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Scheme 3.16. Organocatalytic Aldol with Thiourea Catalyst 3-79
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To synthesize the requisite oxindole substrate, attention was turned towards older
chemistry (Scheme 3.17). Indole was treated with oxalyl chloride followed by ethanol to
form 3-81, which was subsequently reduced with LiAIH, to afford tryptophol (3-82).*!
Oxidation of the indole ring with DMSO in concentrated hydrochloric acid gave oxindole
3-83* whose primary alcohol was protected as a TBS ether (3-84). As previously
discussed, the very acidic 3-position proved problematic when attempting to Boc protect
the amide nitrogen, forming mixtures of N-, O- and C-bound Boc groups under standard
Boc protection conditions. This phenomenon has been noted by others, and Trost* has
developed an elegant solution whereby attenuation of the electrophilicity of the acylating
reagent allowed for selective installation of the methoxylcarbonyl group. Following the
procedure of Trost, N-methoxycarbonyl protection was readily accomplished using

imidazole carboxylate 3-85, setting the stage for the organocatalytic transformation.



131

Scheme 3.17. Synthesis of the Organocatalytic Aldol Precursor
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Having synthesized the requisite starting material (3-86), the organocatalytic

transformation was explored (Scheme 3.18). Fortunately, the reaction proceeded exactly

as described to afford primary alcohol 3-87 in excellent yield and acceptable

enantioselectivity (86% ee as confirmed by Mosher’s ester analysis). To control the

reactivity of the newly generated primary alcohol, it was protected as a PMB ether (3-88)

under standard conditions. At this stage it we elected to explore the potential for

nucleophilic addition to the carbonyl. As such, oxindole 3-88 was treated with

vinylmagnesium bromide which resulted in N-methoxylcarbonyl removal rather than

installation of a vinyl group.

Scheme 3.18. Organocatalytic Aldol Reaction
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It was clear that the N-methoxylcarbonyl group was not robust enough to allow
for nucleophilic addition, and thus it was removed and replaced with a Boc protecting
group (Scheme 3.19). The addition was found to proceed well to afford the desired
addition product (3-91) in 50% yield as a 1:1.2 mixture of two diastereomers. Ultimately,
the stereochemistry at the newly generated center would be eliminated at a later stage,

rendering the poor selectivity inconsequential and as such, the synthesis was carried

forward.
Scheme 3.19. Nucleophilic Addition to Oxindole
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With a viable coupling route in hand, the oxindole substrate was brought forward
to a suitable point for coupling with an amine fragment (Scheme 3.20). To this end, the
TBS group of compound 3-90 was removed with 10-CSA. Unfortunately, the newly
released alcohol lactonized, resulting in Boc-protected aniline species 3-92. Deprotection
under basic conditions (TBAF) induced similar lactonization, and thus it was necessary to
cleave the TBS group prior to installation of the Boc protecting group. Subsequent
oxidation of the primary alcohol with IBX afforded the requisite aldehyde (3-95) for

reductive amination in good yield over the three steps.
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Scheme 3.20. Preparation of the Oxindole Fragment for Coupling
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3.2.3 Synthesis of the Pyrrolidine Fragment

In contrast to the multiple routes available for synthesis of the oxindole fragment,
the route for the formation of the quaternary center on the pyrrolidine fragment was
easily identified. The most obvious choice for a starting material, if one is looking for an
enantiopure and readily available substance, is proline. In order to alkylate adjacent to the
nitrogen, however, it is necessary to destroy the only chiral center present in the starting
material (3-97), thus causing the product to be formed in a racemic sense (Scheme 3.21).
This problem was addressed by Seebach®® and coworkers as they demonstrated that
condensation of proline with pivaldehyde forms an oxazolidinone (3-99) whose
stereochemistry is dictated by the concave nature of the newly-formed bicyclic ring
system. Enolate formation destroys one of the stereocenters (3-100); however, the
stereochemical information is preserved in the oxazolidinone ring and, upon treatment
with an electrophile, the desired product can be formed with high diastereoselectivity.
Following cleavage of the oxazolidinone ring, pyrrolidines of high enantiomeric purity

can be obtained.
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Scheme 3.21. Asymmetric Alkylation of Proline
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Despite this method’s historic successes, there are multiple drawbacks with which
it is associated. The method relies upon using pivaldehyde as the condensation partner
which is expensive ($535 for 100 g), must be used in large excess (> 7 equiv), and the
condensation requires extended reaction times (5 — 7 days). In addition, the formed
oxazolidinone is extremely moisture sensitive and must be isolated under inert
atmosphere and used immediately. More recently, chloral has been identified as a

: . 8,25
superior alternative.7"

Though chloral is a controlled substance, it is comparably
inexpensive ($55 for 500 g) and readily forms the desired condensation product (3-6),
which is a moisture stable and highly crystalline solid. Additionally, though the auxiliary
is moisture stable and can be purified via column chromatography, as can the alkylation
products, the auxiliary can be readily cleaved through basic hydrolysis. Despite the
superior nature of the chloral-derived auxiliary, it has seen only sparse use in the

literature.”® It was decided that this method would provide the most facile route to an

enantiopure pyrrolidine fragment.
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To this end, (S)-proline was condensed with chloral hydrate to form bicyclic
oxazolidinone 3-6 (Scheme 3.22). Subsequent alkylation with methyl formate allowed for
installation of a formyl group; however, the reaction had to be acidified at —40 °C as the
methoxide byproduct quickly cleaved the auxiliary at temperatures above —40 °C. Wittig
olefination of the aldehyde installed the desired olefin, and removal of the auxiliary by
basic, then acidic conditions afforded alkylated proline fragment 3-105. Protection of the
pyrrolidine nitrogen was necessary,”’ thus a Boc protecting group was installed (3-106).
The ester was then reduced with DIBAL and protected as the TBS ether (3-108). Finally,
efficient removal of the Boc protecting group was achieved with TMSOTTf and 2,6-
lutidine to afford pyrrolidine fragment 3-109 ready for reductive amination with the
oxindole fragment.

Scheme 3.22. Synthesis of Pyrrolidine Fragment
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At this point, the viability of the ester homologation procedure required for
installation of the necessary enone for closure of the azabicyclo[4.2.2]decane system was
explored. Starting from primary alcohol 3-107, oxidation under Parikh—Doering

conditions and homologation with trimethyl phosphonoacetate afforded the required a,p3-
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unsaturated ester (Scheme 3.23). The conjugated double bond of 3-111 would eventually
need to be hydrogenated, possibly in the presence of other olefins, and as such the
reduction was explored. Unfortunately, NaBH,4, LiBH4, and NiBH4 were all incapable of
reducing the enoate. However, treatment of 3-111 with Stryker’s reagent and PDMS
successfully effected the reduction with complete selectively for the conjugated olefin,

affording saturated ester 3-62 in high yield.

Scheme 3.23. Ester Homologation and Reduction
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Following completion of the pyrrolidine fragment, it was deemed prudent to
explore alternative options for closure of the eight-membered ring. Thus, several related
substrates were synthesized, particularly those which could act as nucleophiles (Scheme
3.24). A pyrrolidine fragment with a latent alkyne was synthesized by homologation of
aldehyde 3-103 with PPh; and CBr4. The substrate was carried forward through the same
sequence of reactions found in Scheme 3.22 to afford pyrrolidine 3-116. Alternatively,
dibromoolefin 3-115 was converted to the alkyne prior to Boc deprotection by exposure
to n-BuLi, affording alkynyl-pyrrolidine 3-117. Subsequent hydrostannylation of the
alkyne was performed and, following Boc deprotection, stannyl-pyrrolidine 3-119 was

obtained.



Scheme 3.24. Alternative Pyrrolidine Fragment Synthesis
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3.2.4 Fragment Coupling and Attempted Ring Closure

Pyrrolidine 3-109 and oxindole 3-95 were coupled smoothly via reductive

amination and the product was subsequently N-Boc protected to afford 3-121 in good

yield (Scheme 3.25). Analysis of the crude reaction mixture confirmed the previously

determined enantiomeric purity of the oxindole substrate, as 7% of a separable

diastereomer was observed by '"H NMR. Addition of vinylmagnesium bromide afforded

the desired product 3-122 in 50% yield as a 1:1.3 mixture of diastereomers with the mass

balance being Boc deprotected material (3-120). It was possible to suppress the formation

of the Boc deprotection by using diethyl ether, as opposed to THF, as the reaction

solvent.
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Scheme 3.25. Installation of the Pyrrolidine via Reductive Amination
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With compound 3-122 in hand, formation of the 8-membered ring by RCM was
investigated (Scheme 3.26). Unfortunately, despite attempting multiple different catalysts
and forcing conditions, only starting material was obtained and no RCM product was

detected by NMR.

Scheme 3.26. Attempted RCM for 8-Membered Ring Formation
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Due to the failure of the RCM event, the previously synthesized alternative
pyrrolidine fragments (Scheme 3.24) were investigated. Dibromoolefin 3-116 and

vinylstannane 3-119 were reductively aminated with oxindole 3-95 and subsequently N-
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Boc protected to afford substrates 3-125 and 3-126 (Scheme 3.27). Treatment of
dibromoolefin 3-125 with n-BuLi afforded alkyne 3-127, though in moderate yield.
Unfortunately, alkyne 3-127 would not undergo nucleophilic addition to the oxindole
carbonyl upon treatment with base, most likely due to the inability of the alkyne
nucleophile to approach the carbonyl in the correct geometry. The vinyl stannane 3-126
was transmetallated with n-BuLi; however, once again no nucleophilic addition was

observed and only destannylated product 3-121 was recovered.

Scheme 3.27. Alternative Nucleophilic Addition Attempts
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3.2.5 Revision of the 8-Membered Ring Closure

Due to the difficulties encountered with formation of the 8-membered ring, the
retrosynthetic disconnections were revised (Scheme 3.28). The final ring closure was not

altered; however, the use of an oxindole substrate was eliminated. Instead, it was believed
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that a late-stage alkylation with the Corey—Kim reagent would be capable of installing the
necessary quaternary center at the 3-position.”® It was believed that, though 8-membered
rings are very flexible, the geometry of the indoloazocine would dictate the correct facial
selectivity of the alkylation event. Alternatively, allylation of the 3-position could be
accomplished through direct allylation as shown by Rawal,”’ though lengthy subsequent
transformations would be necessary to afford the ester. The indoloazocine ring system of
3-130 could arise through C-H activation or Heck reaction in an intramolecular fashion,

and the pyrrolidine fragment could be appended to the indole by an Sn2 reaction.

Scheme 3.28. Revised Retrosynthetic Plan
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To this end, tryptophol (3-132) was converted to primary bromide 3-9 with CBry
and PPhs;. Microwave heating of a mixture of bromide 3-9, pyrrolidine 3-109, Nal,
K,CO; and DMF facilitated the Sn2 reaction to afford 3-131. Despite encouraging
literature precedent for the C-H activation/Heck reaction,” the desired product was not
formed and only starting material was obtained. It was believed that the lack of reactivity

may be due to a failure of the C-H activation event, and thus the indole substrate (3-131)
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was exposed to bromination conditions to install an activating group. Unfortunately,
rapid decomposition was observed and thus the route was abandoned.

Scheme 3.29. Attempted Heck Coupling
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With the failure of the Heck route, a Friedel-Crafts reaction was investigated. A
similar route was recently described by Sarpong and coworkers for the synthesis of
related alkaloids (see Section 3.1.2.3)."" Accordingly, pyrrolidine 3-136 was synthesized
in a similar manner as the previously described pyrrolidine fragments (Scheme 3.30).
Pyrrolidine fragment 3-136 was then coupled with indole-3-acetic acid (3-137) and,
following exhaustive reduction with Red-Al, primary alcohol 3-139 was obtained.
Attempts at oxidation of the primary alcohol were met with frustration, as a variety of
oxidation conditions failed to facilitate aldehyde formation. Protection of the indole
nitrogen as a methyl carbamate failed to improve the situation; however, Swern oxidation
conditions were found to afford the desired aldehyde (3-140), albeit in low yield. The

difficulties associated with this oxidation most likely lie with the tertiary amine, as ring-
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expansion chemistry of pyrrolidines to piperidines via an aziridinium can be a facile

31
process.
Scheme 3.30. Synthesis of Friedel-Crafts Precursor
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Though the Swern oxidation occurred in low yield, enough material was available
for further study. Thus, HWE homologation of aldehyde 3-140 afforded enoate 3-141
(Scheme 3.31). The next step was to oxidatively cleave the terminal olefin; however, it
proved exceptionally resilient to oxidation as dihydroxylation with K,OsO4 failed to

deliver the diol under a number of reaction conditions and only starting material was

obtained.
Scheme 3.31. Attempted Olefin Cleavage
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To circumvent the poor yield of the oxidation of the primary alcohol (3-139 to 3-
140) and to effect cleavage of the terminal olefin, studies were conducted on the
pyrrolidine fragment prior to indole installation (Scheme 3.32). It was discovered that
oxidative cleavage of the terminal olefin could be accomplished by ozonolysis. Following
ozonolysis, the aldehyde 3-145 was protected as the dimethylacetal and the ester was
reduced with DIBAL. Oxidation and HWE homologation afforded 3-148. Removal of the
Boc group formed secondary amine 3-149, ready for appendage to the indole fragment.
Unfortunately, it was discovered that amine 3-149 would not undergo amide coupling
with indole-3-acetic acid due to the increased steric bulk associated with installation of
the a,p-unsaturated ester moiety. Hindered amines are known to be problematic when

attempting to form amide bonds.”

Scheme 3.32. Elaboration of the Pyrrolidine Prior to Coupling

1. Boc,0, CH,Cly COMe CO,Me
2. DIBAL, CH,CI Q
N S%M 3 barikh-Doering Boo, \ Ka0s04 NMO  goc
HCI N - - N S ‘N 5
Qj—\’ 4. HWE, 45%, 4 steps W A m/\
OH
3-136 3-142 3-143 HO
Boc, COMe Boc, COMe amberlyst-15 resin Boc, CO,Me
N 03, CH2CI2/MeOH N~ (MeO)3CH N
-78 °C; PPhj3, 95% J MeOH, quant. MeO
3-144 3-145 3-146

HO, CO,Me
Boc

",/

1. Parikh-Doering

| \

DIBAL, CH,Cly {‘j—}/ 2 HWE. 56% 2 ateps B%% Y

_— OMe - N
quant. m/OMe

MeO
3-147 MeO
3-148
COz;Me CO,Me
o]
. AN : . N
2,6-lutidine, TMSOTf N EDC, |ndo|e-/3/—acet|c acid N 3
>  HN—< 77 >
CH,Cl,, 90% erMe ch.cl, A mOMe
MeO N MeO

3-149 H 3150



144

3.2.6 Retrosynthesis dealing with C-2 bond formation prior to C-3

Having encountered difficulties in forming the C-2 attachment, the retrosynthesis
of grandilodine A was once again revisited (Scheme 3.33). As before, the late stage
nucleophilic closure through aza-Baylis—Hillmann chemistry would be investigated and
installation of the quaternary center at the indoline 3-position would be through indole
addition to the Corey—Kim reagent followed by Pummerer rearrangement. Closure of the
indoloazocine ring would originate from an intramolecular reductive amination, Sn2
displacement, or amide coupling (3-151). Accordingly, introduction of the pyrrolidine
portion would be afforded through coupling at the 2-position of indole, rather than the 3

position.

Scheme 3.33. Revised Grandilodine A Retrosynthesis
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Installation of the pyrrolidine fragment at the 2-position of indole was
investigated first through cross-coupling chemistry. The Sonogashira reaction has been
successfully applied for the cross-coupling of 2-haloindoles with complex alkyne

substrates by Fukuyama for the synthesis of aspidophytine® and by Baran for the



145

synthesis of chartelline C.>* Similarly, it was believed that 2-bromoindole 3-154 would
undergo Sonogashira coupling with alkyne 3-155 or 3-117 to afford the desired product.
The requisite 2-bromo and 2-iodoindole substrates 3-154* and 3-157°° were synthesized
according to literature procedures. Unfortunately, the Sonogashira reaction was
unsuccessful as treatment of alkyne 3-155 and indole 3-154 afforded only starting
material and traces of alkyne dimer. Similar results were obtained whether the pyrrolidine
nitrogen was protected (3-117) or not (3-155), as well as when the more reactive 2-

iodoindole 3-157 was used as the cross-coupling partner.

Scheme 3.34. Sonogashira Cross-Coupling for Installation of the Pyrrolidine Fragment
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Alternatively, a tandem Ullman/Sonsogashira reaction was investigated (Scheme
3.35). This tandem reaction has been shown to be an effective method for the synthesis of
2-alkynyl indoles by Lautens.”’ To this end, 2-nitrobenzaldehyde (3-158) was treated
with PPh; and CBry followed by nitro group reduction with SnCl, to afford anilide 3-159.
Under the conditions of Lautens, subjection of anilide 3-159 and alkyne 3-117 to the

reaction conditions resulted only in isolation of starting material, without the observance
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of any cross-coupled product. A control test was performed with 1-hexyne and the
reaction was found to proceed as described, affording the alkynylindole in excellent
yield, indicating that the reaction was substrate specific, rather than suffering from
irreproducibility.

Scheme 3.35. Tandem Ullman/Sonogashira Cross Coupling
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3.2.7 Horner-Wadsworth-Emmons Route

A new strategy was devised, whereby the indole C-2 position would first be
joined to the pyrrolidine fragment through HWE chemistry, followed by ring closure at
the 3-position (See Scheme 3.33). To this end, the 3-position of 2-methyl indole was
thiolated and the nitrogen was protected as the benzenesulfonamide (Scheme 3.36). Next,
the phosphonate was installed via radical bromination and subsequent ZnBr,-catalyzed
Arbuzov reaction. With phosphonate 3-163 in hand, we were delighted to discover that
the HWE reaction worked as planned, as treatment of a mixture of 3-163 and aldehyde 3-
103 with LiHMDS afforded the desired product (3-164) in 83% yield. Unfortunately, as
the scale of the reaction was increased, a significant decrease in yield was observed (83%
at 0.64 mmol scale, 57% at 2.8 mmol scale). Attempts to increase the yield through use of
modified conditions (LiCI/DBU* or Nal/DBU?’) were unsuccessful and resulted in only
decomposition of the aldehyde. Cleavage of the oxazolidinone could be achieved as
previously described through basic, then acidic conditions. Unfortunately, due to time

constraints, the project was suspended.
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Scheme 3.36. HWE Route Towards Grandilodine A
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The current route bears promise, as effective coupling of indole and pyrrolidine
fragments has been achieved. Further study is required to successfully elaborate 3-165
and determine if the route is viable for the total synthesis of grandilodine A.

In a forward-looking scence, the current route being investigated has been
summarized below in Scheme 3.37. The benzenethiol protecting group and the internal
olefin in HWE product 3-165 would be reduced using Ranney nickel and hydrogen to
afford 3-166. Subsequent Michael addition of the secondary amine in 3-166 to phenyl
vinyl sulfoxide followed by Pummerer rearrangement and reduction would afford the
necessary 2-carbon bridge, forming the 8-membered ring in 3-167. A partial reduction of
the ester present in 3-167, followed by HWE homologation would afford 3-168 which,
upon treatment with the Corey—Kim reagent, would yield the necessary quaternary
stereocenter. An aza-Baylis—Hillman reaction would then close on the generated imine,
generating the azabicyclo[2.2.4]decane ring system (3-170). All that would remain would
be functional group manipulations: oxidation of the thioether, Pummerer rearrangement

and further oxidation to afford the methyl ester present in 3-171 and installation of the
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carbamate on the indoline nitrogen using methyl chloroformate, affording grandilodine

A.

Scheme 3.37. Future Work Towards Grandilodine A
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3.3  Summary and Outlook

The grandilodines are structurally and biologically fascinating natural products
that will continue to provide inspiration for chemists to develop new strategies and
methods for their effective formation. Enclosed herein we have described multiple routes
toward the synthesis of the grandilodine A. We have developed an effective procedure for
formation of a variety of pyrrolidine fragments, which may be of use for future synthesis
of the natural product. The most recently explored route bears promise; however, many

synthetic transformations remain to be completed.
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3.4 Experimental

3.4.1 General Experimental Details

All reactions were run under an argon atmosphere. Flasks were oven dried and
cooled in a dessicator prior to use. Solvents and reagents were purified by standard
methods.*® Dichloromethane and toluene were purified by passing the solvent through
activated alumina columns. All other chemicals were of reagent quality and used as
obtained from commercial sources unless otherwise noted. The progress of reactions was
monitored by thin layer chromatography performed on F254 silica gel plates. The plates
were visualized by UV light (254 nm) or by staining with ceric ammonium molybdate,**
or KMnOy. Column chromatography was performed with Silica Flash P60 60 A silica gel
from Silicycle according to the Still method.*

The 'H and >C NMR data were obtained on 400 or 600 MHz spectrometers. All
spectra were obtained in deuterated chloroform and were referenced to the residual
chloroform at & 7.25 ppm for 'H spectra and the center peak of the triplet at § 77.0 for °C
spectra. EI mass spectra were obtained on a Finnigan MAT 8200 spectrometer at an

ionizing voltage of 70 eV.

3.4.2 Experimental Details

2-oxindole (3-64)

Isatin (15 g, 102 mmol, 1 equiv) was added to hydrazine hydrate (60 mL)
©:\>=O and the solution was heated to reflux. After 4 h the reaction mixture was
cooled to room temperature, poured into an ice/water mixture and acidified with 6 M
HCI. After sitting at room temperature for 2 days the resulting brown-orange solids were
collected by vacuum filtration, washed with water, and dried under vacuum to afford 2-
oxindole as a brown-orange solid (8.85 g, 65%). '"H NMR (400 MHz, CDCls) & 8.64 (br.
s., 1 H), 7.16 - 7.25 (m, 2 H), 6.96 - 7.05 (m, 1 H), 6.88 (d, /= 8.2 Hz, 1 H), 3.54 (s, 2
H); °C NMR (101 MHz, CDCl;) & 184.33, 139.87, 136.24, 127.60, 122.53, 122.39,
109.94, 44.70, 24.27 . 'H and "C NMR spectra were in agreement with previously
reported data.*



150

3,3-dimethyl-2-oxindole (3-65)

o To a solution of 2-oxindole (1.5 g, 11.3 mmol, 1 equiv) and LiCl (1.18 g,
©f$‘0 27.9 mmol, 2.47 equiv) in THF (50 mL) at 0 °C was added nBuLi (2.35 M,
10 mL, 23.7 mmol, 2.1 equiv). After 20 min Mel (1.40 mL, 22.5 mmol, 2
equiv) was added and the reaction mixture was allowed to warm to room temperature.
After 16 h the reaction mixture was diluted with 2 saturated NH4Cl and Et,O and the
layers were separated. The aqueous layer was extracted with Et;,O (3 x 20 mL), the
combined organic layers were washed with brine, dried over MgSOQ,, filtered through
celite, and concentrated in vacuo. The residue was then purified by flash column
chromatography (2:1 hexanes/EtOAc) to afford the title compound as a waxy white solid
(830 mg, 46%). R;0.37 (2:1 hexanes/EtOAc); 'H NMR (600 MHz, CDCl3) & 9.74 (br. s.,
1 H), 7.15-7.23 (m, 2 H), 7.04 (t, /=79 Hz, 1 H), 7.00 (d, /= 7.6 Hz, 1 H), 1.43 (s, 6
H); °C NMR (151 MHz, CDCls) & 184.7, 140.0, 136.2, 127.6, 122.4, 122.3, 110.1, 44.7,

24.2; LRMS m/z 161.2 (calcd for C;oH;1NO, 161.0841).

Compound 3-67

& To a solution of oxindole 2-65 (65 mg, 0.5 mmol, 1.0 equiv) and 2,6-
©f>’c' lutidine (93 pL, 0.80 mmol, 1.5 equiv) in CH,Cl, (5 mL) at 0 °C was added
oxalyl chloride (43 pL, 0.5 mmol, 1 equiv). After 15 min the reaction mixture was diluted
with Et,0 and filtered and concentrated in vacuo to afford the iminochloride as a
moisture sensitive yellow oil (90 mg, quant.) that was used without further purification.
'H NMR (400 MHz, CDCl5) 8 8.10 (d, /= 7.8 Hz, 1 H), 7.29 - 7.43 (m, 3 H), 1.53 (s, 6
H.

Compound 3-68

o To a solution of 3,3-dimethyl-2-oxindole (3-65, 559 mg, 3.47 mmol, 1.0
@:0 equiv) in CH,Cl, (10 mL)was added Boc,O (0.957 mL, 4.2 mmol, 1.3
Boc equiv). After 18 h the solvent was removed in vacuo and the residue was
purified by column chromatography to afford compound 3-68 as a waxy white solid (816
mg, 90% ). R0.38 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) & 7.85 (d, J = 8.2

Hz, 1 H), 7.27 - 7.31 (m, 1 H), 7.14 - 7.24 (m, 2 H), 1.66 (s, 9 H), 1.43 (s, 6 H); °C NMR
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(101 MHz, CDCl3) & 179.8, 149.5, 138.3, 134.6, 127.9, 124.5, 122.2, 115.0, 84.2, 44.5,
28.1, 25.3; HRMS m/z 261.1369 (calcd for CisH9NOs, 261.1365).

Compound 3-69

o To a solution of 3-68 (125 mg, 0.47 mmol, 1.0 equiv) in THF (5 mL) was
©:><); added vinyl magnesium bromide (0.72 M in Et,0O, 2 mL, 1.42 mmol, 3.0
Boc equiv). After 30 min the reaction mixture was diluted with 'z saturated

NH4CI and Et,O and the layers were separated. The aqueous layer was extracted with
Et,0 (2 x 10 mL) and the combined organic layers were washed with brine, dried over
MgSOy, filtered through celite, and concentrated in vacuo. The residue was then purified
by flash column chromatography (10:1hexanes/EtOAc) to afford the title compound as a
colorless oil (68 mg, 50%). Ry 0.63 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) &
7.58 (br.s., 1 H), 7.15 - 7.22 (m, 1 H), 7.10 - 7.15 (m, 1 H), 6.98 - 7.06 (m, 1 H), 5.98
(dd, J=10.6, 17.2 Hz, 1 H), 5.40 (dd, J=1.2, 17.2 Hz, 1 H), 5.25 (dd, /= 1.0, 10.7 Hz, 1
H), 1.60 (s, 9 H), 1.30 (s, 3 H), 1.19 (s, 3 H); ’C NMR (101 MHz, CDCl3) & 153.2,

139.2, 138.6, 138.4, 127.6, 123.1, 122.1, 114.5, 114.4, 97.5, 82.6, 47.4, 28.4, 24.4, 23.8;
HRMS m/z 289.1683 (calcd for CsH9NOs3, 289.1678).

Compound 3-63
coMe To a solution of 2-oxindole (6.66 g, 50 mmol, 1.0 equiv) and Et;N (18.2
. o mL, 130 mmol, 3.0 equiv) in THF (100 mL) at 0 °C was added methyl
coMe  chloroformate (9.6 mL, 125 mmol, 2.5 equiv) dropwise. The reaction
mixture was allowed to warm to room temperature and after 30 min the solvent was
removed in vacuo. The residue was dissolved in CH,Cl, (100 mL) and washed with 72
saturated NaHCO; (50 mL), the aqueous layer was extracted with CH,Cl, (50 mL) and
the combined organic layers were dried over MgSO,, filtered through celite and the
solvent was removed in vacuo to afford the N,0-bismethylformate product (3-76, 12.0 g,
96%) that was used without further purification. To the N,O-bismethyl formate (10.88 g,
43.7 mmol, 1.0 equiv) in PhMe (150 mL) was added DMAP (5.33 g, 43.6 mmol, 1.0
equiv). After 30 min CH,ClI, (50 mL) was added, followed by 1 M HCI (50 mL) and the

layers were separated. The aqueous layer was extracted with CH,ClI, (3 x 50 mL) and the
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organic layers were combined, dried over MgSOQsy, filtered through celite and the solvent
was removed in vacuo. The residue was purified by column chromatography (2:1
hexanes/EtOAc) to afford the title compound (1.88 g, 17%) as a waxy blue solid as a
1.2:1 mixture of keto and enol forms. R;0.34 (1:1 hexanes/EtOAc);

Keto form: "H NMR (600 MHz, CDCls) & 7.93 (d, J= 8.2 Hz, 1 H), 7.36 - 7.40 (m, 1 H),
07.19-7.24 (m, 2 H), 4.57 (s, 1 H), 4.02 (s, 3 H), 3.78 (s, 3 H);

Enol form: '"H NMR (600 MHz, CDCl3) 6 8.00 (d, /J=7.6 Hz, 1 H), 7.75 (d,J=7.6 Hz, 1
H), 7.36 - 7.40 (m, 1 H), 7.26 - 7.29 (m, 1 H), 4.10 (s, 3 H), 3.99 (s, 3 H).

Due to the interconverison of the two compounds, °C spectra could not be correlated to
either of the specific compounds.”’C NMR (101 MHz, CDCls) & 168.9, 168.2, 166.4,
160.0, 151.0, 140.1, 129.9, 129.4, 128.1, 124.9, 124.4, 124.2, 124.0, 123.0, 122.0, 119.2,
1154, 115.1, 114.6, 88.0, 54.3, 54.0, 53.2, 52.7, 51.6; HRMS m/z 249.0634 (calcd for
C12H11NOs, 249.0637).

Compound 3-81

SN To a solution of indole (11.7 g, 100 mmol, 1.0 equiv) in Et,O (200 mL)
©:§ at 0 °C was added oxalyl chloride (10.3 mL, 120 mmol, 1.2 equiv)

N dropwise and the reaction was warmed to room temperature. After 1 h
ethanol (19.1 mL, 500 mmol, 5.0 equiv) was added to the reaction mixture. After 16 h the
reaction mixture was diluted with H,O (100 mL) and the solids were isolated by vacuum
filtration. The solids were washed with H,O (50 mL), cold Et,O (50 mL) and then dried
under vacuum to afford the product as a tan to pale pink powder (19.2 g, 88%). 'H NMR
(400 MHz, (CD3),SO) & 12.40 (br. s., 1 H), 8.42 (d, J=3.1 Hz, 1 H), 8.13 - 8.17 (m, 1
H), 7.46 - 7.58 (m, 1 H), 7.15 - 7.32 (m, 2 H), 434 (q, /= 7.0 Hz, 2 H), 1.31 (t, /= 7.0
Hz, 3 H); C NMR (101 MHz, (CD5),SO) & 179.5, 164.0, 138.7, 137.1, 125.9, 124.3,
123.3,121.6, 113.2, 112.8, 62.0, 14.4.
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Compound 3-82

on To a slurry of LiAlHy (2.62 g, 69 mmol, 3.0 equiv) in THF (50 mL) at 0

{ °C was added the glyoxylate (5.0 g, 23 mmol, 1.0 equiv) portionwise.

N Upon completion of the glyoxylate addition, the reaction mixture was
warmed to room temperature for 1 h, then heated to reflux. After 2 h at reflux the reaction
mixture was cooled to 0 °C and diluted with diethyl ether (100 mL) and H,O (2.62 mL)
was added dropwise, followed by 15% aqueous NaOH (2.62 mL), and H,O (7.86 mL).
The reaction mixture was warmed to room temperature and after 15 min the solids were
removed by filtration. After concentration in vacuo the product was obtained as a
colorless oil that slowly solidified on standing (3.52 g, 95%) that was used without
further purification. "H NMR (400 MHz, CDCl;) & 8.28 (br. s., 1 H), 7.63 (d, J= 7.8 Hz,
1 H),7.31-7.37 (m, 1l H), 7.23 (t, J=6.8 Hz, 1 H), 7.13 - 7.19 (m, 1 H), 6.97 (d,J=2.3
Hz, 1 H), 3.89 (t, J= 6.1 Hz, 2 H), 3.02 (t, J = 6.4 Hz, 2 H), 2.18 (br. s., 1 H); °C NMR
(101 MHz, CDCl3) ¢ 136.3, 127.2, 122.6, 121.9, 119.2, 118.6, 111.9, 111.2, 62.4, 28.5.

'H and "*C NMR spectra were in agreement with previously reported data.**

Compound 3-83

oH To a solution of the indole (2.54 g, 15.8 mmol, 1.0 equiv) in DMSO (8
©:C mL) in a room temperature water bath was added conc. HCl (11 mL)
N ° dropwise. After 3 h the dark mixture was poured into an ice/water mixture

(80 mL) and the pH was adjusted to ~7 by addition of a conc. NaOH solution. The
aqueous solution was extracted with EtOAc (2 x 30 mL) and the combined organic layers
were washed with brine (2 x 30 mL), dried over MgSQ,, filtered and concentrated in
vacuo to afford the title compound as a orange semisolid (2.06 g, 74%) that was used
without further purification. 'H NMR (400 MHz, CDCl3) & 8.74 (br. s., 1 H), 7.19 - 7.25
(m, 2 H), 7.03 - 7.08 (m, 1 H), 6.91 (d, J=7.4 Hz, 1 H), 3.91 (q, J=5.1 Hz, 2 H), 3.63
(dd, J=4.9, 8.4 Hz, 1 H), 3.28 (br. s., 1 H), 2.21 - 2.31 (m, 1 H), 2.06 - 2.14 (m, 1 H); °C
NMR (101 MHz, CDCls) o 181.3, 141.2, 129.4, 128.1, 124.0, 122.6, 109.9, 60.8, 44.8,

33.1; 'H and ">C NMR spectra were in agreement with previously reported data.*
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Compound 3-84

To a solution of alcohol 3-83 (16.7 g, 94.4 mmol, 1.0 equiv) and

@:QOTBS imidazole (12.6 g, 188.8 mmol, 2.0 equiv) in CH,Cl, (100 mL) was
i added TBSCI (17.07 g, 113.3 mmol, 1.2 equiv). After complete
consumption of the starting material (as indicated by TLC) H,O (100 mL) was added and
the layers were separated. The aqueous layer was extracted with CH,Cl, (2 x 40 mL) and
the combined organic layers were dried over MgSQys, filtered, and concentrated in vacuo.
The residue was purified by flash column chromatography (3:1 hex/EtOAc) to afford the
title compound as a pale yellow oil (23.6 g, 86%). R;0.30 (2:1 hexanes/EtOAc); 'H NMR
(400 MHz, CDCl3) 6 9.27 (s, 1 H), 7.24 (d, J=7.4 Hz, 1 H), 7.16 - 7.23 (m, 1 H), 6.98 -
7.04 (m, 1 H), 691 (d, J=7.4 Hz, 1 H), 3.74 - 3.87 (m, 2 H), 3.62 (t, /= 6.6 Hz, 1 H),
2.17-2.28 (m, 1 H), 2.10 (dq, /= 6.7, 13.6 Hz, 1 H), 0.86 (s, 9 H), 0.01 (s, 3 H), 0.00 (s,
3 H); >C NMR (101 MHz, CDClL3) & 181.2, 141.7, 129.5, 127.7, 124.3, 122.0, 109.8,

59.7, 42.9, 332, 25.9, 18.2, -5.5, -5.5; LRMS m/z 291.3 (calc’d for CjsHasNO,Si,
291.1655).

Compound 3-86

res To a solution of oxindole 3-84 (2.55 g, 8.75 mmol, 1.0 equiv) in THF
©\/Q (25 mL) at - 20 °C was added LiHMDS (1.0 M in THF, 9.62 mL, 9.62
Sao mmol, 1.1 equiv). After 20 min acyl imidazole 3-85 (1.21 g, 9.62 mmol,
1.1Meec(;uiv) in THF (8 mL) was added dropwise and the reaction mixture was allowed to
warm to 0 °C. After 3 h at 0 °C acetic acid (2.2 mL) in THF (8 mL) was added, the
reaction mixture was diluted with water (15 mL), EtOAc (15 mL) and the layers were
separated. The aqueous layer was extracted with EtOAc (2 x 20 mL) and the combined
organic layers were washed with brine, dried over MgSOQ,, filtered through celite and
concentrated in vacuo. The residue was purified by flash column chromatography (5:1
hex/EtOAc) to afford the title compound as a pale yellow oil (2.00 g, 65%). R, 0.27 (5:1
hex/EtOAc); 'H NMR (400 MHz, CDCls) & 7.94 (d, J = 7.8 Hz, 1 H), 7.29 - 7.35 (td, J =
0.8,7.4Hz, 1 H),7.25(d,J=6.6 Hz, 1 H), 7.15 - 7.21 (td, /= 0.8, 7.4 Hz, 1 H), 4.00 (s,
3 H), 3.67-3.78 (m, 3 H), 2.23 - 2.33 (m, 1 H), 2.13 - 2.23 (m, 1 H), 0.82 (s, 9 H), -0.04
(s, 3 H), -0.07 (s, 2 H); ’C NMR (101 MHz, CDCl3) § 176.0, 151.7, 139.9, 128.1, 127.5,
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124.4, 123.8, 115.1, 59.2, 53.6, 42.8, 33.6, 25.8, 18.2, -5.7, -5.7; HRMS m/z 349.1654
(calc’d for C1sH27NO4S1, 349.1709).

Compound 3-87
To a solution of oxindole 3-86 (1.09 g, 3.1 mmol, 1.0 equiv),

018S  organocatalyst 3-79 (50 mg, 0.155 mmol, 5 mol %) in CH,Cl, (25 mL)
o

N
J=o
MeO

column chromatography (1:1 hex/EtOAc) to afford the title compound as a white foam
(1.11 g, 96%, 86% ee by Mosher’s ester). R, 0.34 (1:1 hex/EtOAc); 'H NMR (400 MHz,
CDCl3) 6799 (d,J=8.2 Hz, 1 H), 7.36 (ddd, /= 1.8, 7.0, 8.4 Hz, 1 H), 7.19 - 7.27 (m, 2
H), 3.97 (s, 3 H), 3.77 - 3.88 (m, 2 H), 3.57 (ddd, J=3.7, 5.2, 10.3 Hz, 1 H), 3.43 (td, J =
3.9,10.4 Hz, 1 H), 2.39 - 2.49 (m, 2 H), 1.95 (dt, J = 3.9, 14.2 Hz, 1 H), 0.75 (s, 9 H), -
0.14 (s, 3 H), -0.17 (s, 3 H); ?C NMR (101 MHz, CDCl3) & 177.4, 151.5, 140.0, 128.7,
128.6, 124.6, 123.2, 115.3, 68.4, 58.9, 53.6, 53.1, 36.0, 25.7, 18.1, -6.0 (x 2); HRMS m/z
380.1891 (calc’d for C9HaoNOsSi+H", 380.1888).

o]
I

; ; W

was added paraformaldehyde (280 mg, 9.3 mmol, 3.0 equiv). After 18 h

the solvent was removed in vacuo and the residue was purified by flash

Compound 3-88

PMB To a solution of oxindole 3-87 (200 mg, 0.527 mmol, 1.0 equiv) and

o)
I oras Paramethoxybenzyl (300 mg, 1.05 mmol, 2.0 equiv) in CH,Cl, (5 mL)
o was added 10°CSA (6.1 mg, 0.026 mmol, 5 mol %). Following complete

MeON)*O consumption of the starting material as indicated by TLC, the reaction
mixture was diluted with CH,Cl, (10 mL) and 2 saturated NaHCO; (5 mL) and the
layers were separated. The aqueous layer was extracted with CH,Cl, (2 x 10 mL) and the
combined organic layers were dried over MgSQOy, filtered through celite and concentrated
in vacuo. The residue was then purified by flash column chromatography (5:1
hex/EtOAc) to afford the title compound as a pale yellow oil (263 mg, 99%). R;0.29 (3:1
hex/EtOAc); 'H NMR (600 MHz, CDCl3) & 7.99 (d, J = 8.2 Hz, 1 H), 7.32 - 7.36 (m, 1
H), 7.15-7.21 (m, 2 H), 7.02 (d, /= 8.8 Hz, 2 H), 6.80 (d, /= 8.8 Hz, 2 H), 4.37 (d, J =
12.3 Hz, 1 H), 4.27 (d, J=11.7 Hz, 1 H), 3.99 (s, 3 H), 3.80 (s, 3 H), 3.61 - 3.67 (m, 2
H), 3.48 (ddd, J = 3.5, 6.0, 9.8 Hz, 1 H), 3.28 (td, /= 4.7, 10.2 Hz, 1 H), 2.28 (ddd, J =
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5.9,10.2, 13.8 Hz, 1 H), 1.98 (dt, J= 4.1, 14.1 Hz, 1 H), 0.72 (s, 9 H), -0.19 (s, 3 H), -
0.22 (s, 3 H); *C NMR (101 MHz,CDCly) § 176.7, 159.0, 151.7, 140.2, 129.8, 129.2,
128.9, 128.2, 124.2, 123.4, 115.1, 113.6, 74.9, 72.9, 59.0, 55.2, 53.5, 52.4, 36.1, 25.7,
18.1, -6.0, -6.1; HRMS m/z 499.2378 (calc’d for C27H3,NOgSi, 499.2390).

Compound 3-89

PMB To a solution of Moc protected oxindole 3-88 (131 mg, 0.262 mmol,

~o
L Nores 1.0 equiv) in MeOH (2 mL) was added NaOMe (25 wt % in MeOH,
o 0.29 mL, 0.29 mmol, 1.1 equiv). After 30 min, the reaction mixture was

" diluted with 2 sat NH4CI (2 mL), EtOAc (5 mL) and the layers were

separated. The aqueous layer was extracted with EtOAc (2 x 5 mL) and the combined
organic layers were washed with brine, dried over MgSQ,, filtered, and concentrated in
vacuo to afford the free N-H oxindole (116 mg, 99%) as a colorless syrup that was used
without further purification. Rr0.26 (3:1 hexanes/EtOAc); 'H NMR (600 MHz, CDCl;) &
8.75 (br. s., 1 H), 7.20 - 7.24 (m, 2 H), 7.07 (d, /= 8.8 Hz, 2 H), 7.03 (t, /= 7.0 Hz, 1 H),
691 (d, J=7.6 Hz, 1 H), 6.78 - 6.83 (m, 2 H), 440 (d, J=11.7 Hz, 1 H), 433 (d, J =
11.7 Hz, 1 H), 3.77 (s, 3 H), 3.70 (d, /= 9.4 Hz, 1 H), 3.64 (d, J= 8.8 Hz, 1 H), 3.43 (dd,
J=59,7.0Hz, 2 H), 2.14 - 2.22 (m, 1 H), 2.06 - 2.12 (m, 1 H), 0.78 (s, 9 H), -0.12 (s, 2
H), -0.13 (s, 3 H); °C NMR (151 MHz, CDCls) & 180.6, 159.0, 141.4, 131.1, 130.1,
128.9, 127.8, 124.1, 122.0, 113.6, 109.6, 74.2, 73.0, 59.1, 55.2, 52.6, 35.8, 25.8, 18.1, -
5.7, -5.8; HRMS m/z 441.2331 (calc’d for C,5sH35NO4S1, 441.2335).

Compound 3-90
To a solution of oxindole 3-89 (53 mg, 0.120 mmol, 1.0 equiv) in THF ()
3 mL) at -78 °C was added LiHMDS (0.91 M, 198 pL, 0.18 mmol, 1.5
© equiv). After 30 min Boc,O (55 pL, 0.24 mmol, 2.0 equiv) and the

PMB., oTBS

w—0O

N

Boc reaction mixture was allowed to warm to room temperature. After 1 h at

room temperature the reaction mixture was diluted with a 2 saturated NH4Cl solution (3
mL) and EtOAc (5 mL). The layers were separated and the aqueous layer was extracted
with EtOAc (2 x 5 mL) and the organic layers were combined, washed with brine, dried

over MgSQy, filtered through celite and concentrated in vacuo. The residue was purified
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by column chromatography (5:1 hexanes/EtOAc) to afford the title compound as a
colorless oil (45 mg, 90%). R,0.18 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl;-d)
6 8.08 (d, /J=8.2 Hz, 1 H), 7.51 (td, J = 1.6, 7.8 Hz, 1 H), 7.38 - 7.43 (m, 1 H), 7.32 -
7.38 (m, 1 H), 7.23 - 7.28 (m, 2 H), 6.99 - 7.04 (m, 2 H), 4.58 (d, /= 12.1 Hz, 1 H), 4.49
(d, /J=12.1 Hz, 1 H), 3.99 (s, 3 H), 3.79 - 3.86 (m, 2 H), 3.68 (ddd, J = 3.5, 6.2, 10.3 Hz,
1 H), 3.50 (td, J=4.9, 10.1 Hz, 1 H), 2.47 (ddd, J=6.1, 9.8, 13.9 Hz, 1 H), 2.22 (dt, J =
4.2,13.8 Hz, 1 H), 1.84 (s, 9 H), 0.93 (s, 9 H), 0.02 (s, 3 H), 0.00 (s, 3 H); °C NMR (101
MHz, CDCls) 6 176.8, 159.0, 149.4, 140.4, 130.0, 129.2, 128.9, 128.0, 123.7, 123.6,
114.9, 113.6, 83.6, 75.0, 72.9, 59.0, 55.2, 52.3, 35.9, 28.1, 25.8, 18.2, -5.9, -5.9.

Compound 3-91
PMB. otes 10 a solution of oxindole 3-90 (45 mg, 0.083 mmol, 1.0 equiv) in THF (3

on mL) at -78 °C was added vinyl magnesium bromide (0.72 M solution in

—

N Et,0, 0.35 mL, 0.25 mmol, 3.0 equiv) and, after 15 min, the reaction

wee mixture was allowed to warm to room temperature. After 2 h at room
temperature the reaction mixture was diluted with 2 saturated NH4Cl (3 mL) and Et,O (5
mL) and the layers were separated. The aqueous layer was extracted with Et;O (2 x 5
mL) and the combined organic layers were washed with brine, dried over MgSQy, filtered
through celite and the solvent was removed in vacuo. The residue was purified by column
chromatography (7:1 hexanes/EtOAc) to afford the product as a pale yellow oil (18 mg,

50%) as an inseparable mixture of two diastereomers. Ry 0.46 (6:1 hexanes/EtOAc); See

spectra for '"H NMR and C NMR; LRMS m/z 569 (calc’d for C3,H47NOgSi, 569.3173).

Compound 3-92
PMB. To a solution of 3-90 (50 mg, 0.092 mmol, 1.0 equiv) in EtOH (1.5 mL)
l’o, \ was added 10°CSA. After 1 h the reaction mixture was diluted with 2
CQH?\ saturated NaHCO;3; (2 mL) and CH,Cl, (5 mL) and the layers were
Boc separated. The aqueous layer was extracted with CH,Cl, (2 x 5 mL) and the
organic layers were combined and dried over MgSO,, filtered through celite and
concentrated in vacuo. The residue was purified by flash column chromatography (2:1

hexanes/EtOAc) to afford the title compound as a sticky syrup (39 mg, quant.); R, 0.52
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(1:2 hexanes/EtOAc); "H NMR (600 MHz, CDCls) & 8.23 (br. s., 1 H), 7.73 (d, J= 7.6
Hz, 1 H), 7.28 - 7.35 (m, 2 H), 7.24 (d, J = 8.8 Hz, 2 H), 7.10 (t, J = 7.6 Hz, 1 H), 6.87 -
6.93 (m, 2 H), 4.49 - 4.57 (m, 2 H), 4.35 (td, /= 4.7, 8.5 Hz, 1 H), 4.08 - 4.16 (m, 1 H),
3.88 - 3.96 (m, 2 H), 3.82 (s, 3 H), 2.85 (ddd, J=4.1, 7.0, 13.5 Hz, 1 H), 2.60 (dt, J=8.2,
12.9 Hz, 1 H), 1.48 (s, 9 H); °C NMR (101 MHz, CDCl3) & 178.6, 159.5, 153.8, 136.6,
129.6, 128.9, 128.8, 127.5, 126.6, 124.9, 113.9, 80.0, 74.7, 73.6, 66.5, 55.2, 52.3, 33.3,
28.4, 28.2; HRMS m/z 427.1990 (calc’d for Co4Hy0NOg, 427.1995).

Compound 3-93

PMB. oi To a solution of free N-H oxindole 3-89 (2.018 g, 4.57 mmol, 1.0 equiv)
Ig in EtOH (10 mL) was added 10CSA (106 mg, 0.457 mmol, 10 mol %).
N ©  After 1 h the reaction mixture was diluted with CH,Cl, (20 mL) and a Y4
’ saturated solution of NaHCO; (5 mL) and the layers were separated. The
aqueous layer was extracted with CH,Cl, (2 x 10 mL) and the combined organic layers
were dried over MgSQOy, filtered through celite and concentrated in vacuo. The residue
was purified by flash column chromatography (100% EtOAc) to afford the title
compound as a sticky syrup (1.49 g, quant.); R,0.35 (100% EtOAc); 'H NMR (600 MHz,
CDCl3) 6 7.21 - 7.26 (m, 2 H), 7.08 - 7.12 (m, 2 H), 7.03 - 7.08 (m, 1 H), 6.90 (d, /= 7.6
Hz, 1 H), 6.79 - 6.86 (m, 2 H), 4.42 (d,J=12.3 Hz, 1 H), 4.35(d,J=11.7 Hz, 1 H), 3.79
(s,3H),3.73 (d,J=8.8 Hz, 1 H), 3.65 (d, /= 8.8 Hz, 1 H), 3.61 (br. s., 1 H), 3.49 (br. s.,
1 H), 2.17 - 2.23 (m, 1 H), 2.10 (dt, J = 5.9, 14.1 Hz, 1 H), 1.58 - 1.67 (m, 1 H); °C
NMR (101 MHz, CDCls) 6 180.9, 159.1, 140.8, 131.3, 129.8, 129.0, 128.2, 124.2, 122.4,
113.7, 109.8, 73.5, 73.1, 59.0, 55.2, 52.6, 36.1; HRMS m/z 327.1474 (calc’d for

Ci9H21NOy, 327.1471).

Compound 3-94
PMB.. To a solution of alcohol 3-93 (423 mg, 1.3 mmol, 1.0 equiv) in EtOAc
'o,,;c“o (10 mL) was added IBX (1.09 g, 3.9 mmol, 3.0 equiv) and the resulting
N

reaction mixture was heated to reflux for 3 h. The reaction mixture was
H

then cooled to 0 °C, filtered, and the solids were rinsed with cold EtOAc

(10 mL). The filtrates were combined and concentrated in vacuo to afford the aldehyde as
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an orange gum (423 mg, quant.) that was used without further purification. Ry 0.35 (1:2
hexanes/EtOAc); '"H NMR (400 MHz, CDCl;) & 9.55 (d, J = 0.8 Hz, 1 H), 8.11 (s, 1 H),
7.20 - 7.27 (m, 2 H), 7.08 - 7.14 (m, 2 H), 6.98 - 7.05 (m, 1 H), 6.91 (d, /= 7.4 Hz, 1 H),
6.80 - 6.87 (m, 2 H), 4.33 - 4.46 (m, 2 H), 3.79 (s, 3 H), 3.70 (d, J= 8.6 Hz, 1 H), 3.53 (d,
J=9.0 Hz, 1 H), 3.17 (dd, J = 18.0, 1.6 Hz, 1 H), 2.9 (dd, J = 18.0, 0.8 Hz, 1 H); "°C
NMR (101 MHz, CDCl3) 6 198.4, 178.8, 159.2, 140.8, 130.5, 129.6, 129.1, 128.5, 124.1,
122.5,113.7,109.8, 73.3, 73.2, 55.2, 50.4, 46.8; LRMS m/z 326.2 (calc’d for Ci19H 9NO4,
325.1314).

Compound 3-6

O

ocCs A mixture of L-(-) S-proline (11.52 g, 100 mmol, 1.0 equiv), chloral
° » N hydrate (19.84 g, 120 mmol, 1.2 equiv) and 4 A molecular sieves in
acetonitrile (200 mL) was heated to 90 °C. After 2.5 h the mixture was
cooled to room temperature, filtered through a celite pad and the celite pad was rinsed
with CH,Cl, (100 mL). The solution was concentrated in vacuo and the residue was taken
up in diethyl ether (125 mL) and filtered through a celite pad. The solution was
concentrated in vacuo until solids began to form, at which point diethyl ether was added
until the solids remained in solution at 40 °C. The orange solution was cooled to room
temperature, then 0 °C to fully precipitate the product. The crystals were collected by
vacuum filtration, washed with cold diethyl ether, and dried under vacuum to afford the
title compound (15.15 g, 60%) as pale orange crystals. 'H NMR (400 MHz, CDCl;) &
5.17 (s, 1 H), 4.12 (dd, J= 4.7, 8.6 Hz, 1 H), 3.43 (ddd, J=5.9, 7.8, 10.9 Hz, 1 H), 3.13
(dt,J=509,11.2 Hz, 1 H), 2.18 - 2.29 (m, 1 H), 2.07 - 2.16 (m, 1 H), 1.89 - 1.99 (m, 1
H), 1.69 - 1.81 (m, 1 H); >C NMR (101 MHz, CDCl3) & 175.4, 103.6, 62.4, 57.9, 41.8,
29.9,25.3. '"H and ">C NMR spectra were in agreement with previously reported data.*®

Compound 3-103

O\l\\\CCb To a freshly prepared solution of LDA (15 mmol, 1.5 equiv) in THF (50
(0]

OaN mL) at -78 °C was added oxazolidine 3-6 (2.55 g, 10 mmol, 1.0 equiv) as a

OHC

solid. After 30 min at -78 °C methyl formate (2.45 mL, 40 mmol, 4.0 equiv)

was added over 5 min and after 20 min the reaction mixture was warmed to -40 °C. After
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30 min at -40 °C a ' saturated solution of NH4CI (30 mL) was quickly added and the
reaction mixture was warmed to room temperature. The aqueous layer was extracted with
Et;,0O (3 x 30 mL), the combined organic layers were washed with brine, dried over
MgSO, filtered through celite, and concentrated in vacuo. The residue was then purified
by flash column chromatography (6:1 to 3:1 hex/EtOAc) to afford the title compound as a
waxy white solid (1.90 g, 70%). Ry 0.24 (4:1 hexanes/EtOAc); 'H NMR (400 MHz,
CDCls) 6 9.60 (s, 1 H), 5.20 (s, 1 H), 3.54 (ddd, /= 6.3, 7.8, 11.3 Hz, 1 H), 3.34 (dt, J =
6.0, 11.5 Hz, 1 H), 2.26 - 2.43 (m, 2 H), 1.92 - 2.02 (m, 1 H), 1.79 - 1.92 (m, 1 H); °C
NMR (101 MHz, CDCls) § 193.5, 169.3, 102.3, 99.9, 78.1, 58.9, 33.9, 25.4. 'H and "°C

NMR spectra were in agreement with previously reported data.*’

Compound 3-104

owCk To a solution of fBuOK (247 mg, 2.2 mmol, 1.2 equiv) in THF (15 mL)
R \'l“ was added Ph;PMel (890 mg, 2.2 mmol, 1.2 equiv). After 30 min the bright
yellow mixture was cooled to -78 °C and aldehyde 3-103 (500 mg, 1.83

i

mmol, 1.0 equiv) was added as a solid. After 30 min the reaction mixture was slowly
warmed to 0 °C and, after 1 h, was filtered through a SiO»/celite bilayer pad, rinsed with
Et,O (50 mL) and the filtrate was concentrated in vacuo. The residue was purified by
flash column chromatography (5:1 hex/EtOAc) to afford the title compound as a pale
yellow to orange oil (379 mg, 76%). Ry 0.59 (4:1 hexanes/EtOAc); 'H NMR (400 MHz,
CDCl) 6 6.00 (dd, J=10.4, 17.0 Hz, 1 H), 5.51 (dd, J= 1.2, 16.8 Hz, 1 H), 5.22 (dd, J =
1.2, 10.6 Hz, 1 H), 5.07 (s, 1 H), 3.46 (dt, /= 6.4, 11.0 Hz, 1 H), 3.19 (dt, /= 6.3, 11.2
Hz, 1 H), 2.17 (dt,J= 7.8, 12.5 Hz, 1 H), 1.97 - 2.07 (m, 1 H), 1.88 - 1.97 (m, 1 H), 1.80
- 1.88 (m, 1 H); >C NMR (101 MHz, CDCl3) § 174.0, 135.7, 116.1, 102.6, 73.5, 58.3,
41.8, 38.3, 24.8. '"H and ">C NMR spectra were in agreement with previously reported

data.*’

Compound 3-106

o A solution of NaOMe in MeOH (25 wt %, 2 mL, 8.8 mmol, 0.5 equiv) was

Mee N added dropwise to a solution of oxazolidinone 3-104 (4.173 g, 15.4 mmol,

1.0 equiv) in MeOH (40 mL) at room temperature. After 30 min and
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complete consumption of the starting material by TLC (R, 0.48, 5:1 hexanes/EtOAc) the
solution was cooled to 0 °C and acetyl chloride (22 mL, 308 mmol, 20 equiv) was added
dropwise. The solution was heated to reflux until only baseline material was observed by
TLC (1:1 hexanes/EtOAc) at which time the solution was cooled to room temperature
and the solvent was removed in vacuo. The residue was diluted with anhydrous CH,Cl,
(50 mL) and iPr,NEt (8.06 mL, 46.2 mmol, 3 equiv) and Boc,O (10.6 mL, 46.2 mmol, 3
equiv) were added sequentially. After 16 h the volatiles were removed in vacuo and the
residue was purified by flash column chromatography (3:1 hexanes/EtOAc) to afford the
title compound as a colorless oil (1.44 g, 76%) as a 2.4:1 mixture of two rotamers. Ry
0.32 (3:1 hexanes/EtOAc).

Major Rotamer: H NMR (400 MHz, CDCls) 6 6.31 (dd, J=10.6, 17.2 Hz, 1 H), 5.15 (dd,
J=10.6, 0.8, 1H), 5.03 (dd, /= 0.8, 17.2, 1 H), 3.73 (s, 3 H), 3.62 - 3.68 (m, 1 H), 3.52 -
3.60 (m, 1 H), 2.12 - 2.25 (m, 1 H), 1.95 - 2.03 (m, 1 H), 1.76 - 1.92 (m, 2 H), 1.35 (s, 9
H); °C NMR (101 MHz, CDCls) & 173.7, 153.4, 137.1, 113.0, 79.9, 69.3, 52.2, 47.8,
39.1, 28.1,21.8.

Minor Rotamer: H NMR (400 MHz, CDCls) 6 6.33 (dd, J=10.6, 17.2 Hz, 1 H), 5.16 (dd,
J=10.6, 0.8, 1 H), 5.05(dd, /=0.8,17.2, 1 H), 3.74 (s, 3H), 3.62 - 3.68 (m, 1 H), 3.52 -
3.60 (m, 1 H), 2.12 - 2.25 (m, 1 H), 1.95 - 2.03 (m, 1 H), 1.76 - 1.92 (m, 2 H), 1.44 (s, 9
H); “C NMR (101 MHz, CDCLs) & 173.5, 153.5, 136.3, 113.1, 79.7, 69.4, 52.4, 48.0,
37.9,28.4,22.7.

HRMS m/z 255.1471 (calcd for C13H21NOy, 255.1471).

Compound 3-107
OH A solution of DIBAL (1.0 M in hexanes, 3.43 mL, 3.43 mmol, 2.5 equiv) was
/}m iy added to a solution of ester 3-106 (350 mg, 1.37 mmol, 1.0 equiv) in CH,Cl,
(10 mL) and, after 1 h, 1 M HCI (5 mL) was added. The reaction mixture was
diluted with H,O (10 mL) and the layers were separated. The aqueous layer was extracted
with CH,Cl, (3 x 10 mL) and the combined organic layers were dried over MgSOQOy,
filtered through celite and concentrated in vacuo to afford the product as a colorless oil

(300 mg, 96%) that was used without further purification. R, 0.33 (1:1 hexanes/EtOAc);
'H NMR (400 MHz, CDCl;) & 5.88 (dd, J=10.6, 17.2 Hz, 1 H), 5.51 (dd, J = 1.6, 10.6
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Hz, 1 H), 5.22 (d,J=10.6 Hz, 1 H), 4.97 (d, J= 17.2 Hz, 1 H), 3.77 - 3.84 (m, 1 H), 3.68
-3.74 (m, 1 H), 3.52 - 3.61 (m, 1 H), 3.33 - 3.43 (m, 1 H), 1.61 - 1.84 (m, 4 H), 1.47 (s, 9
H); *C NMR (101 MHz, CDCLy) § 156.0, 138.0, 114.0, 80.2, 70.1, 68.9, 49.0, 36.1, 28.4,
20.7; HRMS m/z 228.1608 (caled for C1,Hy NOs+H', 228.1594).

Compound 3-108

oes  To a solution of alcohol 3-107 (1.86 g, 8.19 mmol, 1.0 equiv) and imidazole
/i“ g (1.115 g, 16.38 mmol, 2.0 equiv) in CH,Cl, (50 mL) was added TBSCI (1.48 g,
9.82 mmol, 1.2 equiv). After complete consumption of the starting material as
indicated by TLC, the reaction mixture was diluted with CH,Cl, (20 mL) and a
saturated NaHCO; solution (20 mL) and the layers were separated. The aqueous layer
was extracted with CH,Cl, (3 x 10 mL) and the combined organic layers were dried over
MgSQO,, filtered and concentrated in vacuo. The residue was then purified by flash
column chromatography (10:1 hexanes/EtOAc) to afford the product as a colorless oil
(2.66 g, 95%) as a mixture of greater than two rotamers. R, 0.52 (5:1 hexanes/EtOAc); 'H
NMR (400 MHz, CDCls) 6 5.46 - 5.70 (m, 1 H), 4.53 - 4.76 (m, 2 H), 3.77 (d, J = 9.4 Hz,
1 H),3.47 (d,J=9.4 Hz, 1 H), 3.25-3.37 (m, 1 H), 3.19 - 3.25 (m, 1 H), 3.10 - 3.17 (m,
1 H),2.88-3.05 (m, 1 H), 1.78 - 1.88 (m, 1 H), 1.23 - 1.47 (m, 3 H), 1.04 (d, J= 5.9 Hz,
9 H), 0.47 - 0.54 (m, 9 H), -0.29 (s, 1 H), -0.37 - -0.32 (m, 5 H); *C NMR (101 MHz,
CDCls) 6 154.3, 153.4, 140.1, 139.4, 112.7, 112.4, 79.3, 78.6, 68.1, 67.4, 66.2, 64.9, 49.2,
49.0, 37.0, 35.3, 28.5, 28.5, 25.8, 25.7, 21.7, 21.2, 18.1, 18.1, -3.6, -5.4, -5.5, -5.6; HRMS

m/z 341.2386 (calcd for C;sH35sNO;Si, 341.2386).

Compound 3-109
otes To a solution of protected alcohol 3-108 (1.544 g, 4.5 mmol, 1.0 equiv) and 2,6-
/}m N lutidine (2.63 mL, 22.5 mmol, 5.0 equiv) in CH,Cl, (15 mL) at 0 °C was added
TMSOTT (3.27 mL, 18.1 mmol, 4.0 equiv). Following complete consumption of
the starting material by TLC, a 'z saturated solution of NH4CI (5 mL) was added. Once
gas evolution had ceased, a !4 saturated NaHCO; solution (10 mL) was added and the
layers were separated. The aqueous layer was extracted with CH,Cl, (3 x 15 mL) and the

combined organic layers were dried over MgSQ,, filtered through celite, and
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concentrated in vacuo. Residual 2,6-lutidine was removed under vacuum to afford the
free secondary amine as a pale brown oil (0.911 g, 84%) that was used without further
purification. 'H NMR (600 MHz, CDCl;) & 5.83 (dd, J=10.8, 17.3 Hz, 1 H), 5.20 (d, J
=17.6 Hz, 1 H), 5.07 (d, /= 10.5 Hz, 1 H), 3.47 (s, 2 H), 2.99 (d, /= 7.0 Hz, 1 H), 2.84 -
2.95 (m, 1 H), 2.18 (br. s., 1 H), 1.75 (br. d, /= 6.4 Hz, 2 H), 1.57 - 1.70 (m, 1 H), 1.26
(br. s., 1 H), 0.89 (s, 9 H), 0.05 (s, 6 H); °C NMR (101 MHz, CDCl3) & 142.7, 113.0,
67.5,67.4,46.1,32.3,25.9, 25.6, 18.3, -5.5; HRMS m/z 241.1859 (calcd for C;3H,7;NOS;,
241.1862).

Compound 3-111

MeO,G, To a solution of alcohol 3-107 (300 mg, 1.32 mmol, 1.0 equiv),
< Ree  diisopropylethylamine (1.61 mL, 9.24 mmol, 7.0 equiv), and DMSO (468
/} pL, 6.60 mmol, 5.0 equiv) in CH,Cl, (10 mL) at 0 °C was added

SO;epyridine complex (632 mg, 3.97 mmol, 3.0 equiv) as a solid. After complete
consumption of the starting material as indicated by TLC (2 h) the reaction mixture was
diluted with CH,Cl, (10 mL) and a ': saturated NaHCOj; solution (10 mL). The layers
were separated and the aqueous layer was extracted with CH,Cl, (3 x 10 mL). The
combined organic layers were dried over MgSQy, filtered, and concentrated in vacuo to
afford the product as a pale yellow oil (276 mg, 93%) that was used without further
purification. To a solution of trimethyl phosphonoacetate (314 pL, 2.18 mmol, 1.5 equiv)
in THF (10 mL) at 0 °C was added nBuLi (2.35 M, 0.86 mL, 2.03 mmol, 1.4 equiv).
After 10 min at 0 °C the above synthesized aldehyde 3-110 (326 mg, 1.45 mmol, 1.0
equiv) in THF (5 mL) was added and the reaction was warmed to room temperature.
After 16 h the reaction mixture was diluted with a 2 saturated solution of NH4CI (10 mL)
and Et,0 (10 mL) and the layers were separated. The aqueous layer was extracted with
Et;0 (2 x 15 mL) and the combined organic layers were washed with brine, dried over
MgSOQy,, filtered through celite and concentrated in vacuo. The residue was then purified
by flash column chromatography (4:1 hexanes/EtOAc) to afford the product as a pale
yellow oil (330 mg, 81%) as a 1.8 to 1 mixture of rotamers. Ry0.56(5:1 hexanes/EtOAc).

Major Rotamer: "H NMR (400 MHz, CDCl;) 6 7.06 (d, J=16.0 Hz, 1 H), 5.95 (dd, J =
10.7, 17.4 Hz, 1 H), 5.79 (dd, J = 15.6 Hz, 1 H), 5.14 - 5.25 (m, 1 H), 5.01 - 5.14 (m, 1
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H), 3.75 (s, 3 H), 3.42 - 3.60 (m, 2 H), 1.88 - 2.03 (m, 2 H), 1.74 - 1.86 (m, 2 H), 1.36 (s,
9 H); °C NMR (101 MHz, CDCl3) § 167.0, 153.9, 151.8, 138.9, 119.0, 114.1, 80.1, 66.8,
51.6,47.8,39.9, 28.3, 21.5.

Minor Rotamer: 'H NMR (400 MHz, CDCl3) & 7.13 (d, J = 16.0 Hz, 1 H), 6.08 (dd, J =
10.7, 17.4 Hz, 1 H), 5.80 (d, J = 15.6 Hz, 1 H), 5.14 - 5.25 (m, 1 H), 5.01 - 5.14 (m, 1
H), 3.72 (s, 3 H), 3.42 - 3.60 (m, 2 H), 1.88 - 2.03 (m, 2 H), 1.74 - 1.86 (m, 2 H), 1.45 (s,
9 H); *C NMR (101 MHz, CDCls) & 167.0, 153.9, 150.8, 138.7, 119.3, 114.1, 79.5, 67.1,
51.6,47.9, 38.9, 28.5, 22.2.

HRMS m/z 282.1693 (calcd for CsH,3NO4+H, 282.1705).

Compound 3-62
MeO,C To a solution of a,f unsaturated ester 3-111 (20 mg, 0.071 mmol, 1.0 equiv)
Boc and poly(methylhydrogensiloxane) (60 pL, 1.065 mmol, 15 equiv) in THF
/f‘“ (2 mL) at 0 ° C was added a solution of Stryker’s reagent (7 mg, 0.004
mmol, 5 mol %) in THF (1 mL) and the reaction mixture was warmed to room
temperature. After 18 h the reaction mixture the septum and argon balloon was removed
and H,O (5 mL) was added. After 30 min the reaction mixture was filtered through celite,
diluted with EtOAc (5 mL), and the layers were separated. The aqueous layer was
extracted with Et,0O (2 x 10 mL) and the combined organic layers were washed with
brine, dried over MgSQOy, filtered through celite and concentrated in vacuo. The residue
was then purified by flash column chromatography (4:1 hexanes/EtOAc) to afford the
product as a pale yellow oil (18.5 mg, 93%) as a 1.4:1 mixture of two rotamers. Ry 0.36
(3:1 hexanes/EtOAc).
Major Rotamer: "H NMR (400 MHz, CDCl3) 6 5.84 (dd, /= 10.6, 17.2 Hz, 1 H), 5.02 (d,
J=109 Hz, 1 H), 494 (d, J=17.2 Hz, 1 H), 3.68 (s, 3 H), 3.63 - 3.66 (m, 1 H), 3.25 -
3.39 (m, 1 H), 2.32 -2.46 (m, 1 H), 2.16 - 2.32 (m, 2 H), 1.97 - 2.06 (m, 1 H), 1.78 - 1.97
(m, 2 H), 1.64 - 1.78 (m, 2 H), 1.44 (s, 9 H); C NMR (101 MHz, CDCl3) & 174.1, 141.7,
111.7,79.7,65.7,48.7, 37.3, 32.1, 31.4, 29.0, 28.4, 20.8.
Minor Rotamer: '"H NMR (400 MHz, CDCl;) 6 5.98 (dd, J=10.6, 17.2 Hz, 1 H), 5.06 (d,
J=109 Hz, 1 H),4.96 (d,J=17.2 Hz, 1 H), 3.66 (s, 3 H), 3. 49 - 3.56 (m, 1 H), 3.25 -
3.39 (m, 1 H), 2.32 - 2.46 (m, 1 H), 2.16 - 2.32 (m, 3 H), 1.78 - 1.97 (m, 2 H), 1.64 - 1.78
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(m, 2 H), 1.44 (s, 9 H); >C NMR (101 MHz, CDCl3) § 174.1, 140.7, 112.0, 79.7, 66.2,
65.7,51.6,36.0,32.1,31.4,29.4, 28.5, 21 4.
HRMS m/z 283.1775 (caled for CysHasNO,, 283.1784).

Compound 3-112
o_scck  Toasolution of PPh; (6.86 g, 26.2 mmol, 4 equiv) in CH,Cl, (40 mL) at 0
°C was added CBry4 (4.34 g, 13.08 mmol, 2 equiv) portion-wise. After 30

O
i
BrzCI min a solution of aldehyde 3-103 (1.782 g, 6.54 mmol, 1.0 equiv) in

CH,Cl; (10 mL) was added slowly and the reaction mixture was allowed to warm to
room temperature. After 1 h the reaction mixture was diluted with CH,Cl, (50 mL) and
water (50 mL) and the layers were separated. The aqueous layer was extracted with
CH,CI; (2 x 50 mL) and the combined organic layers were dried over MgSQ,, filtered
through celite, and concentrated in vacuo. The resulting oil was purified by flash column
chromatography (9:1 hexanes/EtOAc) to afford the title compound as a brown oil (2.65 g,
95%). Rr0.46 (2:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) & 6.90 (s, 1 H), 5.14 (s,
1 H), 3.64 (ddd, J=6.1, 8.6, 11.5 Hz, 1 H), 3.25 (ddd, J = 4.5, 6.6, 11.5 Hz, 1 H), 2.35 -
2.44 (m, 1 H), 2.22 - 2.33 (m, 1 H), 1.99 - 2.09 (m, 1 H), 1.70 - 1.83 (m, 1 H); °C NMR
(101 MHz, CDCls) 6 173.3, 135.9, 103.1, 99.9, 90.5, 74.2, 59.0, 39.0, 25.5; HRMS m/z
425.8055 (calcd for CoHgBr,CI;NOy+H", 425.8066).

Compound 3-113

veo,c B A solution of NaOMe in MeOH (25 wt %, 1 mL, 4.4 mmol, 1.0 equiv) was

//\“\I:N) added dropwise to a solution of oxazolidinone 3-112 (1.9 g, 4.4 mmol, 1.0
o equiv) in MeOH (20 mL) at room temperature. After 30 min and complete
consumption of the starting material by TLC (Ry 0.30, 3:1 hexanes/EtOAc) the solution
was cooled to 0 °C and acetyl chloride (6.97 mL, 88.7 mmol, 20 equiv) was added
dropwise. The solution was heated to reflux until only baseline material was observed by
TLC (1:1 hexanes/EtOAc) at which time the solution was cooled to room temperature
and the solvent was removed in vacuo. The residue was diluted with anhydrous CH,Cl,

(50 mL) and iPr,NEt (2.30 mL, 13.2 mmol, 3 equiv) and Boc,0 (2.60 mL, 13.2 mmol, 3

equiv) were added sequentially. After 16 h the volatiles were removed in vacuo and the
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residue was purified by flash column chromatography (7:1 hexanes/EtOAc) to afford the
title compound as a colorless oil (1.56 g, 86%) as a 3:1 mixture of two rotamers. Ry 0.32
(3:1 hexanes/EtOAc).

Major Rotamer: 'H NMR (400 MHz, CDCls) & 7.38 (s, 1 H), 3.76 (s, 3 H), 3.71 - 3.76
(m, 1 H), 3.51 -3.65 (m, 1 H), 2.29 - 2.40 (m, 1 H), 2.18 - 2.26 (m, 1 H), 1.93 - 2.02 (m,
2 H), 1.40 (s, 9 H); °C NMR (101 MHz, CDCl3) & 172.9, 152.6, 137.2, 87.4, 80.4, 69.6,
52.9,47.8,39.2,28.2,23.1.

Minor Rotamer: '"H NMR (400 MHz, CDCls) & 7.34 (s, 1 H), 3.77 (s, 3 H), 3.71 - 3.76
(m, 1 H), 3.51 - 3.65 (m, 1 H), 2.29 - 2.40 (m, 1 H), 2.18 - 2.26 (m, 1 H), 1.93 - 2.02 (m,
2 H), 1.46 (s, 9 H); *C NMR (101 MHz, CDCl3) & 172.9, 152.6, 136.6, 87.3, 80.1, 69.7,
52.9,48.0, 38.2, 28.3, 23.8.

HRMS m/z 411.9753 (caled for C13H oBr,NO4+H', 411.9759).

Compound 3-114

" o A solution of DIBAL (1.0 M in hexanes, 7.1 mL, 7.1 mmol, 3.5 equiv) was

//\~“ N added to a solution of ester 3-113 (869 mg, 2.03 mmol, 1.0 equiv) in CH,Cl,
orec (15 mL) and, after 1 h, the reaction mixture was diluted with Et,O (30 mL).
Water (0.28 mL) was added dropwise, followed by a 10% NaOH,q) solution (0.28 mL)
followed by additional water (0.7 mL). MgSO4 was added and the reaction mixture was
filtered through celite and the solvent was removed in vacuo to afford the title compound
as a colorless oil as a 2.7:1 mixture of two rotamers that was used without further
purification (704 mg, 90%). R0.33 (1:1 hexanes/EtOAc).
Major Rotamer: 'H NMR (400 MHz, CDCls) 6 6.79 (s, 1 H), 5.19 (dd, /= 2.0, 9.4 Hz, 1
H), 3.65 - 3.83 (m, 2 H), 3.49 - 3.62 (m, 1 H), 3.36 - 3.46 (m, 1 H), 2.78 (br. s, 1 H), 2.08
-2.17 (m, 1 H), 1.72 - 1.95 (m, 3 H), 1.46 (s, 9 H); >C NMR (101 MHz, CDCl3) & 155.6,
138.7, 87.4, 80.7, 69.8, 66.1, 49.0, 36.2, 28.4, 22.5.
Minor Rotamer: '"H NMR (400 MHz, CDCl3) 6 6.86 (s, 1 H), 5.19 (dd, J=2.0,9.4 Hz, 1
H), 3.65-3.83 (m, 2 H), 3.49 - 3.62 (m, 1 H), 3.36 - 3.46 (m, 1 H), 2.78 (br. s, 1 H), 2.18
=226 (m, 1 H), 1.72 - 1.95 (m, 3 H), 1.49 (s, 9 H); °C NMR (101 MHz, CDCl3) § 153.2,
139.4, 87.7, 80.3, 69.8, 67.6, 48.5, 35.2, 28.4, 22.2.
HRMS m/z 383.9816 (calcd for C1,H oBr,NOs+H", 383.9810).
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Compound 3-115
OTBS To a solution of alcohol 3-114 (704 mg, 1.83 mmol, 1.0 equiv) and

Boc
1

//\~" " imidazole (276 mg, 4.06 mmol, 2.2 equiv) in CH,Cl, (5 mL) was added
orec TBSCI (367 mg, 2.44 mmol, 1.3 equiv). After complete consumption of the
starting material as indicated by TLC, the reaction mixture was diluted with CH,Cl, (5
mL) and a 2 saturated NaHCOj; solution (10 mL) and the layers were separated. The
aqueous layer was extracted with CH,Cl, (2 x 10 mL) and the combined organic layers
were dried over MgSOQ,, filtered and concentrated in vacuo. The residue was then
purified by flash column chromatography (10:1 hexanes/EtOAc) to afford the product as
a colorless oil (784 mg, 86%) as a 2:1 mixture of two rotamers.

Major Rotamer: 'H NMR (600 MHz, CDCls) § 6.79 (s, 1 H), 3.71 - 3.75 (m, 1 H), 3.49 -
3.57 (m, 2 H), 3.48 (d, J=8.8 Hz, 1 H), 3.40 - 3.46 (m, 1 H), 2.24 - 2.30 (m, 1 H), 2.06 -
2.18 (m, 1 H), 1.83 - 1.91 (m, 2 H), 1.47 (s, 0 H), 0.89 (s, 9 H), 0.06 (s, 3 H), 0.05 (s, 3
H); *C NMR (101 MHz, CDCl3) & 169.8, 153.2, 139.8, 87.2, 79.7, 67.4, 65.2, 48.4, 34.8,
28.5,25.8,22.0,18.2,-5.4, -5.5.

Minor Rotamer: '"H NMR (600 MHz, CDCl;) & 6.83 (s, 1 H), 3.77 - 3.81 (m, 2 H), 3.49 -
3.52 (m, 2 H), 3.40 - 3.46 (m, 1 H), 2.24 - 2.30 (m, 1 H), 2.06 - 2.18 (m, 1 H), 1.83 - 1.91
(m, 1 H), 1.78 - 1.83 (m, 1 H), 1.44 (s, 9 H), 0.87 (s, 9 H), 0.04 (s, 3 H), 0.03 (s, 3 H); °C
NMR (101 MHz, CDCls) 6 169.8, 152.8, 139.2, 86.3, 79.1, 68.2, 64.3, 48.6, 34.6, 28.5,
25.8,22.9,18.1,-5.4,-5.5.

HRMS m/z 398.0140 (calcd for C13H,sBr,NOSi+H", 398.0140)

Compound 3-116
otBs  To a solution of protected alcohol 3-115 (210 mg, 0.42 mmol, 1.0 equiv) and
P N 2,6-lutidine (243 pL, 2.1 mmol, 5.0 equiv) in CH,Cl, (4 mL) at 0 °C was
BrC added TMSOTf (304 pL, 1.68 mmol, 4.0 equiv). Following complete
consumption of the starting material by TLC, a 4 saturated solution of NH4Cl (5 mL)
was added. Once gas evolution had ceased, a 4 saturated NaHCOj3 solution (10 mL) was

added and the layers were separated. The aqueous layer was extracted with CH,Cl, (3 x

10 mL) and the combined organic layers were dried over MgSOy, filtered through celite,
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and concentrated in vacuo. Residual 2,6-lutidine was removed under vacuum to afford
the free secondary amine as a pale brown oil (130 mg, 77%) that was used without
further purification. "H NMR (599 MHz, CDCls) & 6.76 (s, 1 H), 3.63 - 3.65 (m, 2 H),
2.95-3.00 (m, 1 H), 2.89 - 2.95 (m, 1 H), 2.19 (br. s., 1 H), 1.96 - 2.03 (m, 1 H), 1.86 -
1.93 (m, 1 H), 1.79 - 1.86 (m, 1 H), 1.69 - 1.79 (m, 1 H), 0.87 - 0.95 (m, 10 H), 0.04 -
0.11 (m, 6 H); HRMS m/z 398.0140 (calcd for C;3H,5Br,NOSi+H", 398.0140).

Compound 3-117

ores . Toa solution of dibromoolefin 3-115 (2.34 g, 4.69 mmol, 1.0 equiv) in THF
(50 mL) at -78 °C was added nBuLi (1.88 M in hexanes, 5.5 mL, 10.3 mmol,
2.2 equiv). After 15 min a % saturated solution of NH4Cl (20 mL) was added
and the reaction mixture was warmed to room temperature. The reaction mixture was
diluted with Et;0 (20 mL) and the layers were separated. The aqueous layer was
extracted with Et;0O (2 x 20 mL) and the organic layers were combined, washed with
brine, dried over MgSQy, filtered through celite and the solvent was removed in vacuo.
The residue was purified by column chromatography (10:1 hexanes/EtOAc) to afford the
title compound as a colorless oil (1.31 g, 82%) as a 1.1:1 mixture of two rotamers. Ry
0.43 (10:1 hexanes/EtOAc).

Major Rotamer: 'H NMR (400 MHz, CDCl3) 8 3.95 (d, J=9.4 Hz, 1 H) 3.73 (d, J=9.8
Hz, 1 H), 3.58 - 3.69 (m, 1 H), 3.23 - 3.38 (m, 1 H), 2.35 - 2.45 (m, 1 H), 2.27 (s, 1 H),
2.04 -2.20 (m, 1 H), 1.80 - 1.92 (m, 2 H), 1.49 (s, 9 H), 0.88 (br. s., 9 H), 0.02 - 0.08 (m,
6 H); °C NMR (101 MHz, CDCl;) & 153.9, 85.3, 80.0, 70.4, 66.4, 60.5, 48.3, 38.7, 28.5,
25.8,22.5,18.2,-5.4,-5.5.

Minor Rotamer: '"H NMR (400 MHz, CDCls) & 4.32 (d, J=9.8 Hz, 1 H), 3.65 (d, J=9.8
Hz, 1 H) 3.49 - 3.58 (m, 1 H), 3.23 - 3.38 (m, 1 H), 2.35 - 2.45 (m, 1 H), 2.33 (s, 1 H),
2.04 -2.20 (m, 1 H), 1.80 - 1.92 (m, 2 H), 1.46 (s, 9 H), 0.88 (br. s., 9 H), 0.02 - 0.08 (m,
6 H); °C NMR (101 MHz, CDCls) & 153.0, 84.7, 79.2, 70.7, 65.0, 60.7, 48.6, 37.5, 28.5,
25.8,23.1,18.2,-5.3,-5.4.
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Compound 3-118

OTBSIBOC To a a solution of alkyne 3-117 (177 mg, 0.52 mmol, 1.0 equiv) and

~ "\ Pd(PPh;); (30 mg, 0.026 mmol, 5 mol %) in THF (3 mL) was added
Busan/ nBusSnH (154 pL, 0.57 mmol, 1.1 equiv). After 40 min the solvent was
removed in vacuo and the residue was purified by column chromatography (20:1
hexanes/EtOAc) to afford the title compound as a colorless oil (187 mg, 58%) as a 2.2:1
mixture of two rotamers. R,0.66 (10:1 hexanes/EtOAc).
Major Rotamer: '"H NMR (400 MHz, CDCls) & 6.04 (d, J = 19.3 Hz, 1 H), 5.87 (d, 19.3
Hz, 1 H),3.84 (d,/=9.4 Hz, 1 H), 3.76 (d, J=9.4 Hz, 1 H), 3.63 (td, J=3.7, 7.1 Hz, 1
H), 3.34 - 3.42 (m, 1 H), 2.20 (ddd, J = 6.8, 10.3, 12.2 Hz, 1 H), 1.78 - 1.86 (m, 1 H),
1.69 - 1.78 (m, 1 H), 1.59 - 1.68 (m, 1 H), 1.46 - 1.54 (m, 6 H), 1.42 (s, 9 H), 1.25 - 1.37
(m, 6 H), 0.93 - 0.99 (m, 6 H), 0.90 (s, 9 H), 0.84 - 0.89 (m, 9 H), 0.05 (s, 3 H), 0.05 (s, 3
H); >C NMR (101 MHz, CDCl3) & 154.4, 149.2, 124.4, 79.1, 69.6, 66.5, 49.2, 37.2, 30.6,
29.1,28.5,27.5,27.3,25.8,21.1,13.7, 10.0, 9.4, -5.4, -5.5.
Minor Rotamer: '"H NMR (400 MHz, CDCls)  6.09 (d, J = 19.3 Hz, 1 H), 5.87 (d, J =
19.3 Hz, 1 H), 4.17 (d, /= 9.8 Hz, 1 H), 3.68 (d, /= 9.8 Hz, 1 H), 3.50 - 3.57 (m, 1 H),
3.27-3.33 (m, 1 H), 2.20 (ddd, J = 6.8, 10.3, 12.2 Hz, 1 H), 1.78 - 1.86 (m, 1 H), 1.69 -
1.78 (m, 1 H), 1.59 - 1.68 (m, 1 H), 1.46 - 1.54 (m, 6 H), 1.44 (s, 9 H), 1.25 - 1.37 (m, 6
H), 0.93 - 0.99 (m, 6 H), 0.92 (s, 9 H), 0.84 - 0.89 (m, 9 H), 0.04 (s, 3 H), 0.03 (s, 3 H);
3C NMR (101 MHz, CDCls) & 154.4, 148.3, 124.7, 78.3, 70.3, 65.1, 49.2, 35.2, 30.6,
29.1,28.5,27.5,27.2,25.8,21.7,13.7, 10.0, 9.5, -5.4, -5.5.

Compound 3-120
To a solution of aldehyde 3-95 (423 mg, 1.3 mmol, 1.0 equiv) in

/
PMB. N 4 CH)Cl, (5 mL) was added amine 3-109 (314 mg, 1.3 mmol, 1.0

0
: I</ TBSO equiv). After 10 min NaBH(OAc); (551 mg, 2.6 mmol, 2.0 equiv) was

N © added in one portion. After 2 h the reaction mixture was diluted with

Y saturated NaHCO; (5 mL) and CH,Cl, (5 mL) and the layers were separated. The
aqueous layer was extracted with CH,Cl, (2 x 5 mL) and the combined organic layers

were dried over MgSQys, filtered through celite and concentrated in vacuo to afford the

title compound as a pale brown oil (716 mg, 99%) that was used without further
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purification. Ry 0.46 (1:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) & 8.19 (s, 1 H),
7.17 - 7.24 (m, 2 H), 7.04 - 7.09 (m, 2 H), 6.99 - 7.04 (m, 1 H), 6.87 (d, J= 7.8 Hz, 1 H),
6.78 - 6.82 (m, 2 H), 5.36 (dd, J=10.9, 17.6 Hz, 1 H), 4.88 (dd, J = 1.6, 18.0 Hz, 1 H),
4.82 (dd, J= 1.6, 10.9 Hz, 1 H), 4.39 (d, J = 12.1 Hz, 1 H), 4.31 (d, J = 12.1 Hz, 1 H),
3.78 (s, 3 H), 3.60 - 3.66 (m, 2 H), 3.33 - 3.40 (m, 2 H), 2.88 - 2.96 (m, 1 H), 2.60 - 2.68
(m, 1 H), 2.36 - 2.45 (m, 1 H), 2.15 - 2.24 (m, 1 H), 2.07 - 2.14 (m, 1 H), 1.98 - 2.07 (m,
1 H), 1.77 - 1.86 (m, 1 H), 1.57 - 1.74 (m, 3 H), 0.80 (s, 9 H), -0.07 (s, 3 H), -0.10 (s, 3
H); °C NMR (101 MHz, CDCl3) & 180.1, 159.0, 141.4, 141.0, 131.3, 130.1, 128.9,
127.7, 123.9, 122.1, 113.6, 113.2, 109.5, 74.5, 72.9, 67.3, 66.1, 55.2, 53.2, 51.6, 43.9,
34.5, 32.7, 25.8, 21.8, 18.0, -5.7; HRMS m/z 551.3327 (caled for CiHyeN,O4Si+H,
551.3305).

Compound 3-121

y To a solution of oxindole 3-120 (716 mg, 1.3 mmol, 1.0 equiv) in

PMB\i TNBSO CH,Cl, (10 mL) was added Boc,O (448 uL, 1.95 mmol, 1.3 equiv) and
©f< DMAP (16 mg, 0.13 mmol, 10 mol %) sequentially. After 16 h the

NBOCO reaction mixture was concentrated in vacuo and residue was purified
by flash column chromatography (5:1 hex/EtOAc) to afford the title compound as a pale
yellow oil (814 g, 99%). Ry 0.26 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) &
7.85(d,J=8.2Hz, 1H),7.30 (td, J=1.8, 7.7 Hz, 1 H), 7.10 - 7.19 (m, 2 H), 7.02 - 7.07
(m, 2 H), 6.78 - 6.83 (m, 2 H), 4.90 (dd, J = 10.9, 17.6 Hz, 1 H), 4.66 (dd, J = 1.6, 17.6
Hz, 1 H), 4.57 (dd, J=1.6, 109 Hz, 1 H), 437 (d, /= 12.1 Hz, 1 H), 4.27 (d, J=12.1
Hz, 1 H), 3.79 (s, 3 H), 3.57 (s, 2 H), 3.28 - 3.41 (m, 2 H), 2.99 - 3.06 (m, 1 H), 2.42 (q, J
=7.8 Hz, 1 H), 2.34 (dd, J= 6.1, 11.9 Hz, 1 H), 2.15 - 2.28 (m, 2 H), 1.92 - 2.00 (m, 1
H), 1.75 - 1.85 (m, 1 H), 1.65 - 1.74 (m, 2 H), 1.64 (s, 9 H), 1.49 - 1.59 (m, 1 H), 0.81 (s,
9 H), -0.06 (s, 3 H), -0.07 (s, 3 H); *C NMR (101 MHz, CDCl3) & 175.9, 159.0, 149.5,
141.4, 141.0, 130.1, 129.4, 128.9, 127.8, 123.7, 123.5, 115.1, 113.6, 112.6, 83.3, 75.5,
72.9, 67.0, 64.7, 55.2, 52.7, 50.4, 43.6, 33.9, 32.5, 28.1, 25.8, 21.8, 18.0, -5.7; HRMS m/z
651.3853 (calcd for C37Hs4N,O4Si+H", 651.3825).
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Compound 3-123

PMB. To a solution of oxindole 3-121 (538 mg, 0.827 mmol, 1.0
©\L€\ N@ equiv) in Et;O (10 mL) was added vinyl magnesium bromide

N 3‘ //\“ oes (1.0 M in Et;O, 1.65 mL, 1.65 mmol, 2.0 equiv). After 30 min

5oe the reaction mixture was diluted with %2 saturated NH4Cl (10
mL) and Et,O (10 mL) and the layers were separated. The aqueous layer was extracted
with Et;0 (2 x 10 mL) and the organic layers were combined, weashed with brine, dried
over MgSO,, filtered through celite and concentrated in vacuo. The residue was purified
by column chromatography (3:1 hexanes/EtOAc to 100% EtOAc) to afford the title
compound as a pale yellow oil (414 mg, 74%) as a 1.2:1 mixture of two diastereomers. Ry
0.23 (3:1 hexanes/EtOAc).
Isolated pure diastereomer (for diastereomeric mixture, see 'H spectrum).
'H NMR (400 MHz, CDCls) & 7.56 (br. s., 1 H), 7.17 - 7.26 (m, 2 H), 7.11 - 7.17 (m, 2
H), 6.96 - 7.03 (m, 1 H), 6.80 - 6.85 (m, 2 H), 5.94 (dd, /= 10.4, 17.0 Hz, 1 H), 5.77 (dd,
J=109,17.6 Hz, 1 H), 543 (d,/J=17.2Hz, 1 H),5.25(d,J=11.3 Hz, 1 H), 5.11 (dd, J
=1.6, 17.6 Hz, 1 H), 5.07 (dd, J= 1.6, 10.9 Hz, 1 H), 4.27 - 4.38 (m, 2 H), 3.87 (d, J =
9.4 Hz, 1 H), 3.76 - 3.82 (m, 1 H), 3.80 (s, 3 H), 3.50 - 3.59 (m, 2 H), 3.48 (d, J=9.8
Hz, 1 H), 2.83 - 2.91 (m, 1 H), 2.75 - 2.83 (m, 1 H), 2.51 - 2.67 (m, 2 H), 2.16 - 2.27 (m,
1 H), 1.87 - 1.98 (m, 1 H), 1.72 - 1.81 (m, 3 H), 1.64 - 1.72 (m, 1 H), 1.58 (s, 9 H), 0.89
(s, 9 H), 0.02 - 0.09 (m, 6 H); >*C NMR (101 MHz, CDCl3) & 158.8, 141.1, 136.7, 133.9,
130.8, 128.8, 127.8, 125.4, 122.6, 115.3, 114.2, 113.6, 113.5, 98.1, 82.6, 72.9, 70.1, 67.9,
66.6, 55.2, 53.1, 52.1, 43.6, 34.6, 30.7, 28.5, 25.9, 21.8, 18.2, -5.5, -5.6; HRMS m/z
679.4147 (calcd for C3oHssN,OSi+H", 679.4142).

Compound 3-125
e To a solution of aldehyde 3-95 (170 mg, 0.52 mmol, 1.0 equiv) in

PMB‘? N CHCl; (5 mL) was added amine 3-116 (201 mg, 0.504 mmol, 1.0
@C P50 equiv). After 10 min NaBH(OAc); (221 mg, 1.05 mmol, 2.0 equiv)
O
N

L was added in one portion. After 2 h the reaction mixture was diluted
oC

with 2 saturated NaHCO; (5 mL) and CH,Cl, (5 mL) and the layers were separated. The

aqueous layer was extracted with CH,Cl, (2 x 5 mL) and the combined organic layers
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were dried over MgSQy, filtered through celite and concentrated in vacuo to a pale brown
oil. CH,ClI, (5 mL), Boc,O (179 pL, 0.78 mmol, 1.5 equiv), and DMAP (6 mg, 0.05
mmol, 0.1 equiv) were added and, after 16 h the solvent was removed in vacuo and the
reside was purified by column chromatography (5:1 hexanes/EtOAc) to afford the title
compound as a light yellow oil (300 mg, 71%). R;0.46 (5:1 hexanes/EtOAc) ; 'H NMR
(400 MHz, CDCl3) 8 7.92 (d, J= 7.8 Hz, 1 H), 7.30 - 7.38 (m, 1 H), 7.14 - 7.24 (m, 2 H),
7.06 (d, J = 8.6 Hz, 2 H), 6.78 - 6.87 (m, 2 H), 5.48 (s, 1 H), 4.25 - 4.40 (m, 2 H), 3.75 -
3.82 (m, 3 H), 3.57 (s, 2 H), 3.47 - 3.56 (m, 2 H), 3.07 (td, J = 2.1, 8.1 Hz, 1 H), 2.33 -
2.48 (m, 2 H), 2.19 - 2.33 (m, 2 H), 1.88 - 2.04 (m, 3 H), 1.66 (s, 9 H), 0.79 (s, 9 H), -
0.05 (s, 3 H), -0.06 (s, 3 H); ?C NMR (101 MHz, CDCl3) & 175.9, 159.0, 149.1, 143.0,
140.4, 130.0, 128.9, 128.9, 128.8, 123.9, 123.4, 115.8, 113.6, 85.9, 83.5, 75.5, 73.0, 69.9,
63.3, 55.2, 52.5,49.3, 44.4, 33.4, 32.0, 28.1, 25.7, 21.8, 17.9, -5.7; HRMS m/z 807.2080
(calcd for C37H5,BraN,OgSi+H”, 807.2040).

Compound 3-127
q To a solution of dibromoolefin 3-125 (42 mg, 0.052 mmol, 1.0

Cli A "?TBS equiv) in THF (5 mL) at -78 °C was added nBuLi (2.45 M in
©fg hexanes, 43 uL, 0.104 mmol, 2.0 equiv). After 30 min the reaction
N\BOC mixture was diluted with '4 saturated NH4Cl1 (5 mL) and Et,O (10

mL) warmed to room temperature. The layers were separated and the aqueous layer was
extracted with Et;O (2 x 10 mL) and the organic layers were combined, washed with
brine, dried over MgSQ,, filtered through celite and concentrated in vacuo. The reside
was purified by column chromatography (5:1 hexanes/EtOAc) to afford the title
compound as a light yellow oil (10 mg, 30%). R;0.36 (4:1 hexanes/EtOAc) ; 'H NMR
(400 MHz, CDCls) 6 7.84 (d, J=8.2 Hz, 1 H), 7.29 - 7.32 (m, 1 H), 7.20 - 7.23 (m, 1 H),
7.11 -7.17 (m, 1 H), 7.02 - 7.07 (m, 2 H), 6.78 - 6.83 (m, 2 H), 4.38 (d, J=12.1 Hz, 1
H),4.28 (d,/=12.1 Hz, 1 H), 3.79 (s, 3 H), 3.64 (s, 2 H), 3.42 (d, /= 10.2 Hz, 1 H), 3.35
(d,/=9.8 Hz, 1 H), 2.68 (td, J=4.5, 8.5 Hz, 1 H), 2.47 - 2.55 (m, 1 H), 2.40 - 2.47 (m, 1
H), 2.13 - 2.29 (m, 2 H), 2.03 (s, 1 H), 1.93 - 2.01 (m, 1 H), 1.86 - 1.93 (m, 1 H), 1.79 -
1.86 (m, 1 H), 1.68 - 1.77 (m, 1 H), 1.65 (m, 9 H), 0.84 (s, 9 H), -0.01 (s, 3 H), -0.02 (s, 3
H); °C NMR (101 MHz, CDCl3) & 176.7, 159.0, 149.4, 140.5, 130.0, 129.7, 128.9,
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128.0, 123.9, 123.3, 115.0, 113.6, 84.0, 83.6, 75.1, 72.9, 72.3, 67.8, 64.3, 55.2, 53.1, 51.8,
45.2, 36.2, 33.6, 29.7, 28.2, 25.9, 25.7, 21.0, 18.2, -5.4; HRMS m/z 649.3684 (calcd for
C37Hs5:N,06Si+H ", 649.3595).

Compound 3-126

N To a solution of aldehyde 3-95 (85 mg, 0.26 mmol, 1.0 equiv) in

L @ CH,Cl, (5 mL) was added amine 3-119 (138 mg, 0.26 mmol, 1.0
©jg\/\\\ otes equiv). After 10 min NaBH(OAc); (110 mg, 0.52 mmol, 2.0

o¢ Buasn equiv) was added in one portion. After 2 h the reaction mixture
was diluted with % saturated NaHCO; (5 mL) and CH,Cl, (5 mL) and the layers were
separated. The aqueous layer was extracted with CH,Cl, (2 x 5 mL) and the combined
organic layers were dried over MgSOQy, filtered through celite and concentrated in vacuo
to a pale brown oil. CH,Cl, (5 mL), Boc,O (90 uL, 0.39 mmol, 1.5 equiv), and DMAP (5
mg, 0.04 mmol, 0.15 equiv) were added and, after 16 h the solvent was removed in vacuo
and the reside was purified by column chromatography (5:1 hexanes/EtOAc) to afford the
title compound as a light yellow oil (100 mg, 41%). Ry 0.30 (5:1 hexanes/EtOAc); 'H
NMR (599 MHz, CDCl3) 6 7.84 (d, J=8.2 Hz, 1 H), 7.27 - 7.31 (m, 1 H), 7.19 (d, J =
6.5 Hz, 1 H), 7.10 - 7.14 (m, 1 H), 7.01 (d, J = 8.8 Hz, 2 H), 6.78 (d, J = 8.8 Hz, 2 H),
5.80(d, /=194 Hz | H),5.62 (d,/J=19.4 Hz, 1 H), 4.35 (d, J=12.3 Hz, 1 H), 4.25 (d,
J=123 Hz, 1 H), 3.79 - 3.82 (m, 1 H), 3.76 - 3.79 (m, 3 H), 3.58 - 3.67 (m, 3 H), 3.42
(d,/=10.0 Hz, 1 H), 3.36 (d,J=10.0 Hz, 1 H), 2.73 (d, /= 8.8 Hz, 1 H), 2.57 - 2.62 (m,
1 H), 2.30 - 2.36 (m, 1 H), 2.22 - 2.30 (m, 1 H), 2.05 - 2.12 (m, 1 H), 1.91 - 2.00 (m, 1
H), 1.72 - 1.79 (m, 1 H), 1.60 - 1.63 (m, 2 H), 1.62 (s, 9 H), 1.39 - 1.50 (m, 6 H), 1.27
(dq, J=17.4,14.9 Hz, 6 H), 0.87 (t, /= 7.6 Hz, 9 H), 0.80 - 0.82 (m, 5 H) 0.79 (s, 9 H), -
0.05 (s, 3 H), -0.08 (s, 3 H); HRMS m/z 941.4839 (caled for C4oHgoN,OcSiSn+H",
941.4886).
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Compound 3-9

. Toa solution of tryptophol (3-132, 200 mg, 1.24 mmol, 1.0 equiv) and
©f\g\ Ph;P (655 mg, 2.5 mmol, 2 equiv) in CH,Cl, (5§ mL) was added CBry4 (824
H mg, 2.5 mmol, 2 equiv). After 1 h the reaction mixture was diluted with
water (10 mL) and the layers were separated. The aqueous layer was extracted with
CH,CI; (2 x 10 mL) and the combined organic layers were dried over MgSQ,, filtered
through celite and concentrated in vacuo. The residue was purified by column
chromatography to afford the title compound as a pale yellow oil (193 mg, 70%). R, 0.57
(2:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCls) & 8.04 (br. s., 1 H), 7.61 (d, J= 7.8
Hz, 1 H), 7.40 (d, /= 8.2 Hz, 1 H), 7.23 (t, J= 7.0 Hz, 1 H), 7.16 (t, J= 7.4 Hz, 1 H),
7.11 (d, J=2.3 Hz, 1 H), 3.66 (t, J = 7.6 Hz, 2 H), 3.36 (t, J = 7.8 Hz, 2 H); °C NMR
(101 MHz, CDCls) & 136.1, 126.9, 122.2, 122.2, 119.6, 118.5, 113.6, 111.3, 32.8, 29.3;

'H and ">C NMR spectra were in agreement with previously reported data.*®

Compound 3-131
q/ A mixture of indole 3-9 (50 mg, 0.22 mmol, 1.5 equiv), amine X3-
N\ ss 109 (36 mg, 0.15 mmol, 1.0 equiv), K»CO; (207 mg, 1.5 mmol, 5.0
©r\c equiv) and Nal (45 mg, 0.3 mmol, 0.5 equiv) in DMF (1 mL) was
N heated to 150 °C in a microwave reaction. After 3 h the reaction
mixture was cooled to 0 °C and diluted with H,O (5 mL) and EtOAc (5 mL) and the
layers were separated. The aqueous layer was extracted with EtOAc (3 x 10 mL) and the
combined organic layers were washed with brine, dried over MgSQ,, filtered through
celite, and concentrated in vacuo. The residue was purified by column chromatography
(1:1 hexanes/EtOAc) to afford the title compound as a pale yellow oil (53 mg, 46%). Ry
0.33 (1:1 hexanes/EtOAc); "H NMR (400 MHz, CDCls) & 7.97 (br. s., 1 H), 7.62 (d, J =
7.8 Hz, 1 H), 7.36 (d, /J=8.2 Hz, 1 H), 7.20 (t, J=7.6 Hz, 1 H), 7.12 (t, J= 7.4 Hz, 1 H),
7.04 (d,J=2.3 Hz, 1 H), 5.87 (dd, J=10.9, 18.0 Hz, 1 H), 5.08 - 5.19 (m, 2 H), 3.61 (s,
2 H), 3.03 - 3.10 (m, 2 H), 2.85 - 3.00 (m, 4 H), 1.96 - 2.05 (m, 1 H), 1.76 - 1.92 (m, 3
H), 0.83 - 0.93 (m, 9 H), 0.02 - 0.06 (m, 6 H); °C NMR (101 MHz, CDCl3) & 140.8,

136.2,127.6,121.8, 121.3, 119.1, 119.0, 115.1, 113.7, 111.0, 67.7, 66.6, 52.3, 50.3, 34.5,
26.0,25.9,21.9, 18.2, -5.5; HRMS m/z 384.2609 (calcd for C,3H36N,0OS1, 384.2597).
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Compound 3-135
occi; To a freshly prepared solution of LDA (81.6 mmol, 1.5 equiv) in THF
(100 mL) at -78 °C was added oxazolidine 3-6 (13.9 g, 54 mmol, 1.0
equiv) as a solid. After 30 min at -78 °C allyl bromide (8.41 mL, 97.2

o]
(6]

al N

mmol, 1.8 equiv) was added over 5 min and after 20 min the reaction mixture was
warmed to -40 °C. After 30 min at -40 °C a ! saturated solution of NH4Cl (40 mL) was
quickly added and the reaction mixture was warmed to room temperature. The aqueous
layer was extracted with CHCl; (3 x 100 mL), the combined organic layers were dried
over MgSQ,, filtered through celite, and concentrated in vacuo to afford the title
compound that was used without further purification (14.5 g, 94%). R, 0.50 (3:1
hexanes/EtOAc); '"H NMR (400 MHz, CDCl;) & 5.85 - 5.96 (m, 1 H), 5.21 (s, 1 H), 5.15 -
5.20 (m, 1 H), 4.99 (s, 1 H), 3.13 - 3.26 (m, 2 H), 2.52 - 2.68 (m, 2 H), 2.11 - 2.19 (m, 1
H), 1.98 - 2.09 (m, 1 H), 1.82 - 1.95 (m, 1 H), 1.58 - 1.73 (m, 1 H); >*C NMR (101 MHz,
CDCls) 176.2, 131.9, 119.9, 102.3, 100.4, 71.3, 58.3, 41.5, 35.2, 25.2. 'H and °C NMR

spectra were in agreement with previously reported data.*®®

Compound 3-136

wae o To a solution of allylated oxazolidinone 3-135 (13.9 g, 48.8 mmol, 1.0

(}/\ equiv) in MeOH (100 mL) at 0 °C was added sodium metal (600 mg, 26
mmol, 0.53 equiv). After 30 min AcCl (67 mL, 947 mmol, 19 equiv) was added dropwise
and the reaction mixture was heated to reflux. After complete consumption of the
intermediate formate (Ry 0.29, 2:1 EtOAc/hexanes) the reaction mixture was cooled to
room temperature and the solvent was removed in vacuo. The residue was purified by
column chromatography (20:1 to 10:1 CH,Cl,/MeOH) to afford the title compound (7.2

g, 72%). 'H and *C NMR spectra were in agreement with previously reported data.*®®

Compound 3-138

0 To a solution of indole-3-acetic acid (964 mg, 5.5 mmol, 1.1

N equiv) in CH,Cl, (25 mL) was added EDCI (1.05 g, 5.5 mmol, 1.0
N\ «T\-’—
N

equiv). After 5 min amine hydrochloride 3-136 (1.0g, 5.0 mmol,
1.0 equiv) was added, followed by Hunig’s base (2.6 mmol, 15 mmol, 3.0 equiv). After
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16 h at room temperature the reaction mixture was diluted with 1 M HCI (10 mL) and
CH,ClI; (10 mL) and the layers were separated. The aqueous layer was extracted with
CH,Cl; (3 x 10 mL) and the organic layers were combined, dried over MgSQy, filtered
through celite, and concentrated in vacuo to afford the title compound as a pale brown oil
(1.36 g, 83%) that was used without further purification. R,0.25 (1:1 hexanes/EtOAc); 'H
NMR (400 MHz, CDCls) & 8.46 (br. s., 1 H), 7.59 (d, /= 7.8 Hz, 1 H), 7.34 (d, J = 8.2
Hz, 1 H), 7.15 - 7.22 (m, 1 H), 7.08 - 7.15 (m, 2 H), 5.59 - 5.73 (m, 1 H), 5.01 - 5.12 (m,
2 H),3.77 (s,2 H), 3.71 - 3.77 (m, 2 H), 3.68 (s, 3 H), 3.49 (dt, /= 7.2,9.9 Hz, 1 H), 3.21
(dd, J=6.6, 14.1 Hz, 1 H), 2.67 (dd, J = 8.0, 14.3 Hz, 1 H), 2.00 - 2.13 (m, 2 H), 1.83 -
2.00 (m, 2 H); °C NMR (101 MHz, CDCls) & 174.4, 169.9, 136.1, 133.4, 127.3, 122.9,
121.9, 119.3, 119.0, 118.5, 111.2, 108.5, 68.2, 52.3, 49.1, 37.8, 35.1, 32.8, 23.8; HRMS
m/z 326.1636 (calcd for C;9H22N,03, 326.1630).

Compound 3-139
HO. To a solution of 3-138 (1.36 g, 4.17 mmol, 1.0 equiv) in THF (20
N

CKCW mL) at 0 °C was added RED-AI (65 wt% in PhMe, 8.9 mL, 29.2
N
H

n/

mmol, 7.0 equiv) dropwise. After 2 h, the reaction mixture was
heated to reflux. After 16 h the reaction mixture was cooled to room temperature and
excess RED-Al was quenched by slowly pouring the reaction mixture into a vigorously
stirred 2 saturated solution of Rochelle’s salt (50 mL). After 2 h the layers were
separated and the aqueous layer was extracted with EtOAc (3 x 30 mL). The organic
layers were combined, washed with brine, dried over MgSQy, filtered and concentrated in
vacuo to afford the title compound as a colorless syrup (0.84 g, 70%) that was used
without further purification. R,0.27 (1:2 hexanes/EtOAc, 5% Et;N); 'H NMR (400 MHz,
CDCls) 6 8.19 (br. s., 1 H), 7.61 (d,J=7.8 Hz, 1 H), 7.37 (d, /= 7.8 Hz, 1 H), 7.21 (td, J
=1.4,75Hz, 1 H),7.11 -7.17 (m, 1 H), 7.04 (d, /= 2.0 Hz, 1 H), 5.62 - 5.75 (m, 1 H),
5.07 - 5.11 (m, 1 H), 5.06 (s, 1 H), 3.46 - 3.57 (m, 1 H), 3.39 (d, /= 10.9 Hz, 1 H), 3.28
(d, /=109 Hz, 1 H),2.94 -3.12 (m, 3 H), 2.74 - 2.83 (m, 1 H), 2.69 (d, /= 8.2 Hz, 1 H),
2.14 - 2.23 (m, 1 H), 2.05 - 2.14 (m, 1 H), 1.76 - 1.92 (m, 4 H); °C NMR (101 MHz,
CDCls) 6 136.3, 133.5, 127.3, 122.0, 121.8, 119.4, 118.6, 118.5, 113.7, 111.3, 67.6, 63.6,
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51.7, 48.9, 36.2, 31.4, 24.9, 22.0; HRMS m/z 285.1972 (caled for CisHN,O+H",
285.1961).

Compound 3-140

o To a solution of oxalyl chloride (61 p:, 0.71 mmol. 1.2 equiv) in
@CQN]}:Q; CH,Cl, (5 mL) at -78 °C was added DMSO (101 pL, 1.42 mmol,
N 2.4 equiv) dropwise. After 30 min alcohol 3-139 (168 mg, 0.59
mmol, 1.0 equiv) in CH,Cl;, (2 mL) was added and, after 1 h, Et;N (411 pL, 2.95 mmol, 5
equiv) was added. After 15 min at -78 °C the reaction mixture was allowed to warm to 0
°C. After 30 min at 0 °C the reaction mixture was diluted with %2 saturated NaHCO; (5
mL) and CH,Cl, (5 mL) and the layers were separated. The aqueous layer was extracted
with CH,Cl, (2 x 5SmL), the organic layers were combined, dried over MgSQ,, filtered
through celite and concentrated in vacuo. The residue was purified by flash column
chromatography (3:1 hexanes/EtOAc, 5 % Et;N) to afford the title compound as an
impure pale yellow oil (42 mg, 25%) that was used immediately in the next step. R,0.33
(2:1 hexanes/EtOAc, 5 % Et;N); "H NMR (599 MHz, CDCl3) & 9.34 (s, 1 H), 7.98 (br. s.,
1 H), 7.58 (d, /J=7.6 Hz, 1 H), 7.36 (d, /= 8.2 Hz, 1 H), 7.20 (t, /= 7.6 Hz, 1 H), 7.10 -
7.15 (m, 1 H), 7.01 (d, J=2.3 Hz, 1 H), 5.73 - 5.82 (m, 1 H), 5.04 - 5.13 (m, 2 H), 3.20 -
3.27 (m, 1 H), 2.87 - 3.05 (m, 6 H), 2.47 (dd, J= 7.0, 14.1 Hz, 1 H), 2.24 (dd, J = 7.6,

14.1 Hz, 1 H), 1.89 - 1.99 (m, 4 H), 1.83 - 1.89 (m, 1 H).

Compound 3-141

coMe  To a mixture of NaH (60 % in mineral oil, 63 mg, 1.6 mmol, 2.5

\5 equiv) in THF (10 mL) was added trimethyl phosphonoacetate
©f\g\§Nj—\’ (135 pL, 0.94 mmol, 1.5 equiv). After 15 min a solution of
i aldehyde 3-140 (176 mg, 0.625 mmol, 1.0 equiv) in THF (5 mL)

was added and after 2 h the reaction mixture was diluted with /2 saturated NH4CI (2 mL)
and, after 10 min, the reaction mixture was diluted with '% saturated NaHCO; (10 mL)
and EtOAc (10 mL) and the layers were separated. The aqueous layer was extracted with

EtOAc (3 x 10 mL) and the combined organic layers were washed with brine, dried over

MgSOs, filtered through celite, and concentrated in vacuo. The residue was purified by
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column chromatography (2:1 hexanes/EtOAc, 5% Et;N) to afford the title compound as a
pale yellow oil (211 mg, quant.). R 0.26 (2:1 hexanes/EtOAc, 5% Et;:N); 'H NMR (400
MHz, CDCls) 6 7.95 (br. s., 1 H), 7.59 (d, J = 7.8 Hz, 1 H), 7.37 (d, J = 7.8 Hz, 1 H),
7.17-7.22 (m, 1 H), 7.09 - 7.15 (m, 1 H), 7.03 (d, /= 2.3 Hz, 1 H), 6.95 (d, /= 16.0 Hz,
1 H), 5.85(d, J=16.0 Hz, 1 H), 5.73 - 5.82 (m, 1 H), 5.08 - 5.12 (m, 1 H), 5.06 (s, 1 H),
3.72 (s, 3 H), 3.16 (ddd, J=5.5, 7.5, 9.3 Hz, 1 H), 2.81 - 2.98 (m, 4 H), 2.60 - 2.74 (m, 1
H), 2.38 (dd, J= 7.4, 14.0 Hz, 1 H), 2.29 (dd, J= 6.8, 13.8 Hz, 1 H), 1.81 - 1.98 (m, 3 H),
1.72 - 1.81 (m, 1 H); *C NMR (101 MHz, CDCl) & 167.1, 151.4, 136.2, 134.4, 127.5,
121.9, 121.4, 119.6, 119.2, 118.8, 117.8, 114.6, 111.1, 66.1, 51.5, 51.0, 49.6, 39.0, 34.8,
25.8,21.2,21.1; HRMS m/z 338.1986 (calcd for C;;H26N>07, 338.1994).

Compound 3-142

come To asolution of amine hydrochloride 3-136 (1.44 g, 7.0 mmol, 1.0 equiv)

Boc, \$ in CH,Cl; (20 mL) was added DMAP (10 mg), iPr,NEt (2.4 mL, 14 mmol,
U\’ 2.0 equiv) and Boc,O (1.77 mL, 7.7 mmol, 1.1 equiv) sequentially. After
16 h the solvent was removed in vacuo and the residue was purified by column
chromatography (5:1 hexanes/EtOAc) to afford Boc protected amine (1.44 g, 77%). To
the above prepared amine (108 mg, 0.40 mmol, 1.0 equiv) in CH,Cl, (3 mL) was added
DIBAL (1.0 M in hexanes, 1.0 mL, 1.0 mmol, 2.5 equiv) dropwise. After 30 min the
reaction mixture was poured into a Y4 saturated solution of Rochelle’s salt (10 mL). The
mixture was diluted with CH,Cl, (10 mL) and the layers were separated. The aqueous
layer was extracted with CH,Cl, (2 x 10 mL) and the organic layers were combined,
drived over MgSOQys, filtered through celite and concentrated in vacuo to afford an alcohol
(97 mg, quant.) that was used without further purification. To a solution of the above
prepared alcohol (97 mg, 0.40 mmol, 1.0 equiv), diisopropylethylamine (660 pL, 2.8
mmol, 7.0 equiv), and DMSO (142 pL, 2.0 mmol, 5.0 equiv) in CH,CI, (5 mL) at 0 °C
was added SOjepyridine complex (191 mg, 1.2 mmol, 3.0 equiv) as a solid. After
complete consumption of the starting material as indicated by TLC the reaction mixture
was diluted with CH,Cl, (10 mL) and a '2 saturated NaHCO; solution (10 mL). The
layers were separated and the aqueous layer was extracted with CH,Cl, (3 x 10 mL). The

combined organic layers were dried over MgSQy, filtered, and concentrated in vacuo to
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afford the product as a pale yellow oil that was used without further purification. To a
slurry of NaH (60% in mineral oil, 24 mg, 06 mmol, 1.5 equiv) in THF (5 mL) at 0 °C
was added trimethyl phosphonoacetate (64 uL, 0.44 mmol, 1.1 equiv). After 10 min at 0
°C the above synthesized aldehyde in THF (5 mL) was added and the reaction was
warmed to room temperature. After 16 h the reaction mixture was diluted with a 2
saturated solution of NH4CI (10 mL) and Et;O (10 mL) and the layers were separated.
The aqueous layer was extracted with Et;O (2 x 10 mL) and the combined organic layers
were washed with brine, dried over MgSQy, filtered through celite and concentrated in
vacuo. The residue was then purified by flash column chromatography (5:1
hexanes/EtOAc) to afford the product as a pale yellow oil (70 mg, 59% over 2 steps) as a
1.3 to 1 mixture of two rotamers. R;0.30 (5:1 hexanes/EtOAc).

Major Rotamer: 'H NMR (400 MHz, CDCl3) & 6.96 (d, J = 15.6 Hz, 1 H), 5.63 - 5.80
(m, 2 H), 5.10 - 5.20 (m, 2 H), 3.74 (s, 3 H), 3.61 - 3.69 (m, 1 H), 3.23 - 3.38 (m, 1 H),
2.83 (dd, J= 6.3, 13.7 Hz, 1 H), 2.44 (dd, J = 8.2, 13.7 Hz, 1 H), 1.99 - 2.15 (m, 1 H),
1.78 - 1.86 (m, 1 H), 1.62 - 1.78 (m, 2 H), 1.42 (s, 9 H); >C NMR (101 MHz, CDCls) &
167.1, 153.8, 152.2, 132.8, 119.3, 118.2, 80.0, 64.9, 51.6, 48.7, 41.1, 37.7, 28.4, 21.1.
Minor Rotamer: '"H NMR (400 MHz, CDCl;) & 7.00 (d, J = 15.6 Hz, 1 H), 5.63 - 5.80
(m, 2 H), 5.10 - 5.20 (m, 2 H), 3.71 (s, 3 H), 3.54 (ddd, /= 3.1, 7.5, 10.5 Hz, 1 H), 3.23 -
3.38 (m, 1 H), 3.00 (dd, J = 6.3, 13.7 Hz, 1 H), 2.53 (dd, J = 8.2, 13.7 Hz, 1 H), 1.99 -
2.15 (m, 1 H), 1.78 - 1.86 (m, 1 H), 1.62 - 1.78 (m, 2 H), 1.44 (s, 9 H); >C NMR (101
MHz, CDCl3) & 167.1, 153.2, 151.3, 133.0, 119.3, 118.4, 79.2, 65.7, 51.5, 48.8, 40.0,
36.4,28.5,21.5.

Compound 3-145
Boc,  CoMe A solution of alkene 3-144 (1.35 g, 5.0 mmol, 1.0 equiv) in CH,Cl,/MeOH
QNj’\CHo (1:1, 100 mL) at -78 °C was degassed with O, for 5 min, then O3 was
bubbled through the reaction mixture. Once a blue-grey color was observed O, was
bubbled through the reaction mixture for 15 min then PhsP (2.32 g, 8.5 mmol, 1.5 equiv)
was added and the reaction mixture was allowed to warm to room temperature. Once the
reaction mixture obtained room temperature the solvent was removed in vacuo and the

residue was purified by column chromatography (2:1 hexanes/EtOAc) to afford the title
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compound as a colorless oil (1.29 g, 95%) as a 1:1 mixture of two rotamers. R, 0.43 (1:1
hexanes/EtOAc).

Rotamer 1: '"H NMR (400 MHz, CDCl3) § 9.79 - 9.84 (m, 1 H), 3.75 (s, 3 H), 3.67 (dt, J
=17.0, 10.6 Hz, 1 H), 3.41 - 3.53 (m, 1 H), 3.07 (dd, J= 3.1, 15.2 Hz, 1 H) 2.99 (dd, 3.1,
11.7 Hz, 1 H), 2.21 - 2.33 (m, 1 H), 2.16 (td, /= 6.8, 13.6 Hz, 1 H), 1.98 (dt, J=6.5, 17.4
Hz, 1 H), 1.81 - 1.92 (m, 1 H), 1.42 (s, 9 H); °C NMR (101 MHz, CDCl;) & 200.1,
174.0, 154.2, 81.0, 66.2, 52.5, 48.6, 38.1, 28.3, 23.2.

Rotamer 2: "H NMR (400 MHz, CDCls) & 9.79 - 9.84 (m, 1 H), 3.74 (sz, 3 H), 3.57 (dt, J
=7.0,10.6 Hz, 1 H), 3.41 - 3.53 (m, 1 H), 2.99 (dd, 3.1, 11.7 Hz, 1 H), 2.77 (dd, J = 1.6,
15.2 Hz, 1 H), 2.21 -2.33 (m, 1 H), 2.16 (td, /= 6.8, 13.6 Hz, 1 H), 1.98 (dt, J= 6.5, 17.4
Hz, 1 H), 1.81 - 1.92 (m, 1 H), 1.41 (s, 9 H); °C NMR (101 MHz, CDCls) & 199.8,
173.7, 153.0, 80.3, 65.7,49.2,47.9, 37.1, 28.2, 22.6.

HRMS m/z 271.1413 (calcd for C3H21NOs, 271.1420).

Compound 3-146
Boc,  COMe To a solution of aldehyde 3-145 (1.4 g, 5.0 mmol, 1.0 equiv) and
mOMe trimethyl orthoformate (1.7 mL, 15.0 mmol, 3.0 equiv) in MeOH (15
e mL) was added amberlyst acidic resin (28 mg, 2 wt %). After 16 h at
room temperature the reaction mixture was filtered through celite, the celite pad was
washed with MeOH and the combined filtrates were concentrated in vacuo to afford the
title compound as a colorless oil (1.59 g, quant.) as a 2:1 mixture of two rotamers that
was used without further purification. R,0.38 (2:1 hexanes/EtOAc).
Major Rotamer: 'H NMR (400 MHz, CDCls) 6 4.40 (dd, J = 3.9, 6.6 Hz, 1 H), 3.70 -
3.75 (m, 1 H), 3.69 (s, 3 H), 3.35 - 3.43 (m, 1 H), 3.32 (s, 3 H), 3.29 (s, 3 H), 2.35 - 2.46
(m, 2 H), 2.17 - 2.25 (m, 1 H), 1.96 - 2.07 (m, 1 H), 1.75 - 1.94 (m, 2 H), 1.39 (s, 9 H);
BC NMR (101 MHz, CDCl3) & 175.2, 153.6, 102.6, 80.2, 65.7, 53.5, 52.6, 52.1, 48.3,
37.4,36.3,28.2,22.5.
Minor Rotamer: '"H NMR (400 MHz, CDCl3) 6 4.45 (dd, J=3.5, 6.6 Hz, 1 H), 1 3.68 (s,
3 H),3.53-3.60 (m, 1 H), 3.35-3.43 (m, 1 H), 3.32 (s, 3 H), 3.28 (s, 3 H), 2.50 (dd, J =
3.5,145Hz, 1 H), 2.25-2.33 (m, 1 H), 2.17 - 2.25 (m, 1 H), 1.96 - 2.07 (m, 1 H), 1.75 -
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1.94 (m, 2 H), 1.43 (s, 9 H); °C NMR (101 MHz, CDCl;) & 174.8, 154.1, 102.9, 79.5,
66.1,53.9, 52.5, 52.1, 48.3, 36.9, 36.3, 28.3, 23.1.
HRMS m/z 316.1767 (calcd for C15sH,sNOg-H, 316.1760).

Compound 3-147

Ho To a solution of ester 3-146 (1.59 g, 5.0 mmol, 1.0 equiv) in CH,Cl, (25
Boc \
Ej—»’w mL) was added DIBAL (1.0 M in hexanes, 12.5 mL, 12.5 mmol, 2.5
e
MeO equiv) dropwise. After 30 min at room temperature the reaction mixture

was slowly poured into a '2 saturated solution of Rochelle’s salt (100 mL). After 1 h the
mixture was diluted with CH2CI2 (25 mL) and the layers were seperatted. The aqueous
layer was extracted with Ch2CI2 (2 x 50 mL) and the organic layers were combined,
drived over MgSO4, filtered through celite, and concentrated in vacuo to afford the title
compound as a colorless oil (1.45 g, quant.) as a 10:1 mixture of two rotamers that was
used without further purification. Ry 0.33 (1:1 hexanes/EtOAc); 'H NMR (400 MHz,
CDCls) 6 5.48 (dd, J=2.0,9.8 Hz, 1 H), 4.58 (dd, J=4.1, 6.8 Hz, 1 H), 3.56 - 3.74 (m, 2
H), 3.37 - 3.47 (m, 1 H), 3.35 (s, 3 H), 3.33 (s, 3 H), 2.21 - 2.30 (m, 1 H), 2.13 - 2.21 (m,
1 H), 2.03 (dd, /= 6.6, 14.5 Hz, 1 H), 1.67 - 1.87 (m, 3 H), 1.46 - 1.52 (m, 1 H), 1.44 (s,
9 H); °C NMR (101 MHz, CDCls) & 156.0, 102.8, 80.1, 69.4, 65.8, 53.4, 53.3, 48.5,
35.0, 34.4, 28.4, 21.8; HRMS m/z 290.1960 (calcd for C14H»NOs+H", 290.1962).

Compound 3-148

CO,Me To a solution of alcohol 3-147 (173 mg, 0.60 mmol, 1.0 equiv), iPr,NEt,

B°°|N \= (729 pL, 4.18 mmol, 7 equiv) and DMSO (211 pL, 3.0 mmol, 5.0 equiv)
%OME in CH,Cl, (6 mL) was added pyridinesSO3; complex (286 mg, 1.8 mmol,
3.0 equiv). After 30 min the reaction mixture was diluted with a > saturated solution of
NaHCO; (5 mL) and CH,Cl, (10 mL) and the layers were separated. The aqueous layer
was extracted with CH,Cl, (2 x 5 mL) and the organic layers were combined, dried over
MgSOQ,, filtered through celite and the solvent was removed in vacuo. The residue was
dissolved in EtOAc (20 mL) and washed with water (2 x 10 mL), brine, dried over
MgSOs, filtered through celite and the solvent was removed in vacuo to afford the

aldehyde that was used without further purification. To a mixture of NaH (60 % in
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mineral oil, 36 mg, 0.9 mmol, 1.5 equiv) in THF (5 mL) was added trimethyl
phosphonoacetate (95 pL, 0.66 mmol, 1.1 equiv). After 15 min a solution of the above
prepared aldehyde (172 mg, 0.6 mmol, 1.0 equiv) in THF (5 mL) was added and after 2 h
the reaction mixture was diluted with % saturated NH4Cl (2 mL) and, after 10 min, the
reaction mixture was diluted with %2 saturated NaHCO; (10 mL) and EtOAc (10 mL) and
the layers were separated. The aqueous layer was extracted with EtOAc (3 x 10 mL) and
the combined organic layers were washed with brine, dried over MgSQy, filtered through
celite, and concentrated in vacuo. The residue was purified by column chromatography
(2:1 hexanes/EtOAc) to afford the title compound as a pale yellow oil (211 mg, 58% over
2 steps) as a mixture of two rotamers. R;0.28 (2:1 hexanes/EtOAc).

Rotamer 1: '"H NMR (400 MHz, CDCl3) 6 6.95 (d, J=16.0 Hz, 1 H), 5.69 (d, J = 15.6
Hz, 1 H), 4.34 - 4.44 (m, 1 H), 3.73 (s, 3 H), 3.61 - 3.68 (m, 1 H), 3.32 - 3.41 (m, 1 H),
3.24-3.32 (m, 6 H), 2.31 -2.41 (m, 1 H), 2.20 - 2.31 (m, 1 H), 2.12 - 2.20 (m, 1 H), 1.78
- 1.88 (s, 1 H), 1.61 - 1.78 (m, 2 H), 1.41 (m, 9 H); ?C NMR (101 MHz, CDCl3) § 167.0,
153.8, 152.2,117.8, 102.2, 80.2, 63.7, 53.3, 52.6, 51.6, 48.4, 39.0, 37.8, 28.3, 21.1.
Rotamer 2: '"H NMR (400 MHz, CDCl;) § 9 7.02 (d, J = 16.0 Hz, 1 H), 5.69 (d, J = 15.6
Hz, 1 H), 4.34 - 4.44 (m, 1 H), 3.70 (s, 3 H), 3.50 - 3.55 (m, 1 H), 3.32 - 3.41 (m, 1 H),
3.24-3.32 (m, 6 H), 2.31 -2.41 (m, 1 H), 2.20 - 2.31 (m, 2 H), 1.78 - 1.88 (m, 1 H), 1.61
- 1.78 (m, 2 H), 1.44 (s, 9 H); >*C NMR (101 MHz, CDCl3) & 167.0, 153.2, 151.3, 118.1,
102.7,79.3, 64.2, 53.3, 52.9, 51.5, 48.4, 38.3, 37.0, 28.4, 21.6.

HRMS m/z 343.1991 (caled for C17H29NOg, 313.1995).

Compound 3-149

COMe To a solution of protected amine 3-148 (200 mg, 0.58 mmol, 1.0 equiv)
N \: and 2,6-lutidine (337 pL, 2.91 mmol, 5.0 equiv) in CH,Cl; (4 mL) at 0 °C
%om was added TMSOTT (421 pL, 2.32 mmol, 4.0 equiv). Following complete

consumption of the starting material by TLC, a '% saturated solution of NH4CI (5 mL)
was added. Once gas evolution had ceased, a /2 saturated NaHCOj3 solution (10 mL) was
added and the layers were separated. The aqueous layer was extracted with CH,Cl, (3 x
10 mL) and the combined organic layers were dried over MgSQy, filtered through celite,

and concentrated in vacuo. Residual 2,6-lutidine was removed under vacuum to afford
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the free secondary amine as a pale brown oil (128 mg, 90%) that was used without
further purification as a 2.3:1 mixture of two rotamers.

Major Rotamer: "H NMR (400 MHz, CDCl3) 6 6.76 (d, J = 15.2 Hz, 1 H), 5.88 (d, J =
15.6 Hz, 1 H), 4.99 (dd, J = 3.1, 10.2 Hz, 1 H), 3.76 (s, 3 H), 3.55 - 3.73 (m, 3 H), 3.54
(s, 3 H),2.52 (s, 1 H),2.43 (dd, J=3.1, 13.3 Hz, 1 H), 2.08 - 2.15 (m, 1 H), 1.87 - 1.98
(m, 2 H), 1.77 - 1.83 (m, 3 H); >C NMR (101 MHz, CDCl;) & 166.0, 148.6, 122.8, 100.3,
62.8,57.0,51.9, 46.7, 38.5, 38.0, 20.8.

Minor Rotamer: '"H NMR (400 MHz, CDCls) & 6.83 (d, J = 15.6 Hz, 1 H), 6.76 (d, J =
15.2 Hz, 1 H), 5.88 (d, J=15.6 Hz, 1 H), 5.75 (d, J= 15.2 Hz, 1 H), 5.20 (dd, J= 1.0, 3.7
Hz, 1 H), 3.74 (s, 3 H), 3.55-3.73 (m, 3 H), 3.40 (s, 3 H), 2.52 (s, 1 H), 2.48 (d, /= 12.9
Hz, 1 H), 2.08 - 2.15 (m, 1 H), 1.87 - 1.98 (m, 2 H), 1.77 - 1.83 (m, 3 H); C NMR (101
MHz, CDCls) 6 166.0, 150.7, 120.1, 100.2, 62.8, 56.4, 51.9, 47.3, 39.4, 37.6, 20.0.

Compound 3-166

@%03,2 To a solution of 2-nitrobenzaldehyde (3-158, 1.17 g, 7.7 mmol, 1.0 equiv)

NO2 and CBry (3.8 g, 11.6 mmol, 1.5 equiv) in CH,CI, (100 mL) at 0 °C was
added PPh; (6.10 g, 23.2 mmol, 3.0 equiv) and the reaction mixture was allowed to warm
to room temperature. After 30 min the reaction mixture was filtered through a SiO»/celite
bilayer pad and the pad was rinsed with CH,Cl, (100 mL). The filtrates were combined
and the solvent was removed in vacuo. The residue was purified by column
chromatography (2:1 hexanes/EtOAc) to afford the title compound as a yellow solid
(2.10 g, 89%). R, 0.58 (2:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCls) d 8.14 (dd, J =
1.4,8.4Hz, 1 H),7.79 (s, 1 H), 7.66 - 7.72 (m, 1 H), 7.59 - 7.64 (m, 1 H), 7.53 - 7.59 (m,
1 H); °C NMR (101 MHz, CDCl3) & 146.7, 134.0, 133.5, 131.6, 131.4, 129.4, 124.8,

93.2. 'H and *C NMR spectra were in agreement with previously reported data.*

Compound 3-159
@(QCB” To solution of dibromide 3-166 (306 mg, 1.0 mmol, 1.0 equiv) in EtOH (5
NH mL) was added SnCl,*2H,0 (903 mg, 4.0 mmol, 4.0 equiv) and the reaction
mixture was heated to reflux. After 2 h the reaction mixture was cooled to room

temperature and the solvent was removed in vacuo. The residue was diluted with H,O (10
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mL) and EtOAc (10 mL) and the layers were separated. The aqueous layer was extracted
with EtOAc (2 x 10 mL) and the organic layers were combined, washed with brine, dried
over MgSOQy,, filtered through celite and the solvent was removed in vacuo. The residue
was purified by column chromatography (3:1 hexanes/EtOAc) to afford the title
compound as a orange oil (190 mg, 69%). R, 0.58 (3:1 hexanes/EtOAc); 'H NMR (400
MHz, CDCl3) 6 7.34 (s, 1 H), 7.30 (d, /= 7.4 Hz, 1 H), 7.14 - 7.21 (m, 1 H), 6.76 - 6.83
(m, 1 H), 6.67 - 6.75 (m, 1 H), 3.71 (br. s., 3 H); °C NMR (101 MHz, CDCl3) & 143.6,
134.0, 129.7, 129.2, 121.7, 118.4, 115.7, 92.8. 'H and *C NMR spectra were in

agreement with previously reported data.*’

Compound 3-167

spn Lo a solution of 2-methylindole (5.25 g, 40 mmol, 2.0 equiv),
m phenyldisulfide (4.36 g, 20 mmol, 1.0 equiv) and DMSO (4.25 mL, 60

I mmol, 3.0 equiv) in methyl carbonate (40 mL) at 40 °C open to atmosphere
was added and I, (254 mg, 5 mol %). After 4 hours at 40 °C the reaction mixture was
cooled to room temperature and diluted with CH,Cl, (50 mL) and water (50 mL). The
layers were separated and the aqueous layer was extracted with CH,Cl, (2 x 25 mL). The
organic layers were combined, dried over MgSQ,, filtered through celite and
concentrated in vacuo. The residue was purified by flash column chromatography (4:1
hexanes/EtOAc) to afford the title compound as a pale pink solid (8.2 g, 86%). Ry 0.28
(4:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCls) & 8.17 (br. s., 1 H), 7.58 (d, J = 7.8
Hz, 1 H), 7.35 (d, J=7.8 Hz, 1 H), 7.11 - 7.26 (m, 4 H), 7.02 - 7.11 (m, 3 H), 2.51 (s, 3
H); °C NMR (101 MHz, CDCl3) & 141.1, 139.3, 135.4, 130.2, 128.6, 125.4, 124.5,
122.1, 120.6, 118.9, 110.6, 99.2, 12.1; 'H and "*C NMR spectra were in agreement with

previously reported data.”

Compound 3-161
SPh To a solution of 3-167 (3.0 g, 12.5 mmol, 1.0 equiv) in DMF (50 mL) at 0
N °C was added NaH (60% in mineral oil, 602 mg, 15 mmol, 1.2 equiv) and
N

so,,h  the reaction mixture was warmed to room temperature. After 1h the

reaction mixture was cooled to 0 °C and phenylsulfonyl chloride (1.76 mL, 13.75 mmol,
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1.1 equiv) was added dropwise. After 2 h the reaction mixture was added to a 1 M HCI
solution (50 mL) and diluted with EtOAc (100 mL). The aqueous layer was removed and
the organic layer was washed with water (3 x 25 mL), brine, dried over MgSQy, filtered
and concentrated in vacuo. The residue was purified by column chromatography ( 8:1
hexanes/EtOAc) to afford the title compound as an orange syrup (4.07 g, 86%). Ry 0.44
(5:1 hexanes/EtOAc); '"H NMR (599 MHz, CDCl;) & 8.25 (d, J = 8.8 Hz, 1 H), 7.78 -
7.83 (m, 2 H), 7.55 - 7.59 (m, 1 H), 7.41 - 7.48 (m, 3 H), 7.30 - 7.36 (m, 1 H), 7.20 - 7.24
(m, 1 H), 7.12 (t,J= 7.6 Hz, 2 H), 7.05 (t, /= 7.3 Hz, 1 H), 6.90 - 6.94 (m, 2 H), 2.74 (s,
3 H); °C NMR (101 MHz, CDCl3) & 138.7, 135.7, 134.0, 129.4, 129.0, 129.0, 128.9,
127.5, 126.4, 126.1, 125.2, 125.0, 124.1, 119.6, 119.2, 114.5, 29.7; 'H and *C NMR

spectra were in agreement with previously reported data.”*

Compound 3-162
SPh To a solution of 3-161 (573 mg, 1.46 mmol, 1.0 equiv) and NBS (259 mg,

m 1.46 mmol, 1.0 equiv) in CCls (10 mL) was added benzoyl peroxide (20

N B
\SOZPhr mg, 0.07 mmol, 5 mol %) and the mixture was heated to 90 °C. After 8§ h

the reaction mixture was cooled to room temperature and filtered through a SiO,/celite
bilayer pad and the pad was rinsed flushed with EtOAc/hexanes (50 mL). The filtrate was
concentrated in vacuo to afford the title compound (690 mg, 91%) that was used without
further purification. Rr0.36 (5:1 hexanes/EtOAc); 'H NMR (400 MHz, CDCl3) & 8.15 (d,
J=282Hz, 1H),7.96-8.02 (m, 2 H), 7.60 (t, /J=7.4 Hz, 1 H), 7.48 (t,J= 7.8 Hz, 3 H),
7.35-7.45 (m, 3 H), 7.20 - 7.25 (m, 1 H), 7.13 - 7.20 (m, 3 H), 7.06 - 7.11 (m, 2 H), 5.29
(s, 2 H); C NMR (101 MHz, CDCl3) § 140.2, 134.9, 134.3, 129.8, 129.3, 129.3, 129.0,
127.5, 127.0, 126.6, 126.1, 126.1, 124.5, 120.7, 115.7, 115.0, 29.7; 'H and °C NMR

spectra were in agreement with previously reported data.’’

Compound 3-163
SPh 0 To a solution of bromide 3-162 (290 mg, 0.614 mmol, 1.0 equiv) and
A P\Sf\’,l"e"e P(OMe); (87 puL, 0.74 mmol, 1.2 equiv) in CH,Cl, (5 mL) was added
N

50,Ph ZnBr; (27 mg, 0.12 mmol, 20 mol %). After 18 h the reaction mixture
was diluted with CH,Cl, (10 mL) and 1 M HCI (10 mL), the layers were separated and
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the aqueous layer was extracted with CH,Cl, (2 x 10 mL). The organic layers were
combined, dried over MgSQy, filtered through celite, concentrated in vacuo and purified
by column chromatography (4:1 hexanes/EtOAc to 100% EtOAc) to afford the title
compound as a colorless syrup (230 mg, 75%). Ry 0.49 (100% EtOAc); 'H NMR (400
MHz, CDCl3) 6 8.12 (d, /= 8.6 Hz, 1 H), 7.76 (d, /= 7.4 Hz, 2 H), 7.51 - 7.56 (m, 1 H),
7.46 (d,J="7.8 Hz, 1 H), 7.39 - 7.44 (m, 2 H), 7.27 - 7.32 (m, 1 H), 7.20 - 7.26 (m, 1 H),
6.83 (d, J=13.5Hz, 1 H), 3.79 (d, J=22.3 Hz, 2 H), 3.77 (d, J= 10.9 Hz, 8 H); °C NMR
(101 MHz, CDCl3) 6 138.5, 137.0, 133.8, 130.7, 130.7, 129.5, 129.2, 126.3, 124.6, 123.9,
120.7, 115.0, 112.8, 112.7, 53.1 (d, J= 6.1 Hz, 1 C), 25.3 (d, J = 142.6 Hz, 1 C); LRMS
m/z 487.1 (calcd for Co3H2oNOsPS,, 271.1420

Compound 3-164
0eCCl:s  To a mixture of phosphonate 3-163 (1.38 g, 2.83 mmol, 1.0

o
a ;%;N) equiv) and aldehyde 3-103 (926 mg, 3.40 mmol, 1.0 equiv) at 0
A\
N °C in THF (20 mL) was added LiHMDS (1.0 M in THF, 3.40 mL,

S02Ph 340 mmol, 1.1 equiv) dropwise. After 30 min the reaction

mixture was diluted with Y4 saturated NH4Cl (10 mL) and Et,O (20 mL) and the layers
were separated. The aqueous layer was extracted with Et,O (2 x 20 mL) and the organic
layers were combined, washed with brine, dried over MgSOs, filtered through celite and
concentrated in vacuo. The residue was purified by column chromatography (3:1
hexanes/EtOAc) to afford the title compound as a bright yellow solid (1.02 g, 57%). R,
0.25 (5;1 hexanes/EtOAc); 'H NMR (599 MHz, CDCls) & 8.23 (d, J= 8.2 Hz, 1 H), 7.68
(d,J=7.6 Hz, 1 H), 7.53 (t,J=17.6 Hz, 1 H), 7.36 - 7.41 (m, 2 H), 7.31 - 7.36 (m, 1 H),
7.23 (d, J=15.3 Hz, 1 H), 7.17 - 7.20 (m, 1 H), 7.06 - 7.10 (m, 1 H), 7.02 - 7.06 (m, 1
H), 6.83 (d, J=7.0 Hz, 1 H), 6.39 (d, J=15.3 Hz, 1 H), 5.12 (s, 1 H), 3.57 - 3.63 (m, 1
H), 3.23 (dt,J=6.9, 10.9 Hz, 1 H), 2.18 - 2.25 (m, 1 H), 2.14 (dt, /= 5.9, 12.2 Hz, 1 H),
2.04 - 2.11 (m, 1 H), 1.91 (dq, J = 6.1, 12.1 Hz, 1 H); >C NMR (101 MHz, CDCl3) &
173.3, 140.5, 137.9, 136.4, 136.3, 136.2, 134.0, 131.4, 129.2, 128.9, 126.5, 125.9, 125.5,
124.5,120.4, 119.7, 115.2, 112.8, 103.6, 102.5, 100.2, 73.6, 58.3, 38.6, 25.0; HRMS m/z
632.0162 (calcd for Cy9H,3CI3N205S,, 632.0165.
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Compound 3-165
phs MeO:C, K To a solution of oxazolidinone 3-164 (300 mg, 0.47 mmol, 1.0
A\ /“‘ equiv) in MeOH/MeOAc (1:1, 5 mL) was added sodium metal (12
Nsozph mg, 0.5 mmol, 1.0 equiv). After 30 min AcCl (780 pL, 9.0 mmol, 19
equiv) was added dropwise and the reaction mixture was heated to reflux. Following
disappearance of the intermediate N-formate by TLC, the reaction mixture was cooled to
room temperature and the solvent was removed in vacuo. The residue was purified by
column chromatography (2:1 hexanes/EtOAc to 100% EtOAc) to afford the title
compound as a white solid (54 mg, 50%) .R;0.39 (100% EtOAc); 'H NMR (400 MHz,
CDCls) 6 8.27 (d, J=8.2 Hz, 1 H), 7.69 - 7.78 (m, 2 H), 7.48 - 7.56 (m, 1 H), 7.30 - 7.41
(m, 4 H), 7.14 - 7.22 (m, 2 H), 7.01 - 7.14 (m, 3 H), 6.84 - 6.91 (m, 2 H), 6.36 (d, J =
15.6 Hz, 1 H), 3.72 (s, 3 H), 3.09 - 3.15 (m, 2 H), 2.21 - 2.31 (m, 1 H), 1.93 - 2.03 (m, 1
H), 1.71 - 1.91 (m, 2 H); °C NMR (101 MHz, CDCl3) & 174.9, 141.2, 140.8, 138.1,
136.5, 136.4, 133.9, 129.0, 128.8, 126.9, 126.6, 125.7, 125.4, 124.4, 120.3, 118.1, 115.3,
111.8, 89.8, 70.7, 52.7, 46.4, 36.8, 24.7; HRMS m/z 518.1324 (calcd for C,3H26N204S,,
518.1334).
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Chapter 4.  Conclusions

Presented herein has been the culmination of a number of projects which
disclosed the development of novel strategies and methodologies, and progress towards
the natural product grandilodine A. These projects, though disparate in nature, are all
encompassed within the broad field that is synthetic organic chemistry.

I have demonstrated that siloles may engage productively in Diels—Alder
chemistry with exceptionally high levels of stereocontrol. These silanorbornene adducts
have been shown to be valuable substrates as oxidative cleavage of the bridging silicon
atom reveals a complex cyclohexene-1,4-diol. This complex core is found in numerous
natural products, including the eudesmanolides; however, further studies were not
conducted as we deemed the 5-step protocol for the synthesis of the silole to be
excessively lengthy. Despite its shortcomings, the disclosed study represents the first
systematic investigation of the Diels—Alder chemistry of siloles in the 85 year history of
this venerable reaction.

Following the termination of the silole project, I turned my attention towards
exploration of the cycloaddition chemistry of donor-acceptor strained ring systems. I,
along with coworkers, was able to show that alkoxy-activated cyclobutane dicarboxylates
could successfully undergo annulation events with two and three atom dipoles to form a
variety of unique bicyclic hetereocycles. Currently, there are no known natural products
which bear these cis-fused acetal systems but the striking molecular architecture these
compounds posses may lead to their application as novel scaffolds for biological studies.
We have also conducted preliminary studies towards functionalization of the

cycloadducts and are optimistic that they may become valuable synthons in the near
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future. These newly developed methods greatly expand the current paradigm of
herteroatom-activated strained ring systems, demonstrating that exceptional levels of
regio- and stereo-control can be obtained during a variety of annulation events.

Upon the completion of the cycloaddition projects, I directed efforts towards the
total synthesis of the recently disclosed natural product grandilodine A. The methods
which I had developed in the earlier chapters were not tenable for the synthesis of an
alkaloid of this nature, and thus alternative chemistry was explored. Multiple routes
towards the total synthesis of grandilodine A were examined, yet I was continually
stymied by unanticipated intricacies that revealed themselves through my studies. Despite
the incomplete nature of the work, many lessons were learned that may assist in a

successful synthesis in the future.
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Appendix 1 — NMR Spectral Data for Chapter 1
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'H and ">C NMR of compound 1-19
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'H and ">C NMR of compound 1-70
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'H and ">C NMR of compound 1-34
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'H and ">C NMR of compound 1-20
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'H and "*C NMR of compound 1-21
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'H and ">C NMR of compound 1-35

S8999YSRI-CBING 8 EELE 8
e A A A A A A - 1] X" Wi ud ~
=
Ph:SI/j
HO = gl el ~ St
|
|
| il
|
| |
|
l \‘ i
’I
Ine |
UL | o
W NN, W J A
e ) e R - O - i,
A L L L L L L L L L L L L L L LR L L R L LR n s e e

9.0 85 8.0 75 7.0 65 6.0 55 50 45 40 35 30 25 20 15 10 0.5 0 05
Chemical Shift (ppm)

150.10

Pthu/j
=

HO

r
B
>

200 180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)



201

'H and ">C NMR of compound 1-36
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'H and ">C NMR of compound 1-37
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'H and ">C NMR of compound 1-38
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'H and ">C NMR of compound 1-39
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'H and *C NMR of compound 1-41
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'H and "*C NMR of compound 1-42
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'H and ">C NMR of compound 1-43

207

Chemical Shift (ppm)

ZRBERISR 3288
Ll ol ol -
ths.G( s i i
|
|
| = JAJ_L‘—J—
397593 e
T T T T T T T T T T T T T T T T T T T
2.0 85 8.0 7.5 7.0 6.5 6.0 55 5.0 45 4.0 35 3.0 25 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)
3c298 e g
EEELE % s
Sh S [
i
|
1
1
[ ot LI R SL IR SRS S S R LR CLL PR R LTS | IR LI 5 AN BRI | s e R L SR A B B LE 73 | LELEL I B2 B S L0 B R e LB LB |
200 180 160 140 120 100 80 60 40 20 0



208

'H and °C NMR of compound 1-44
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'H and ">C NMR of compound 1-45

r.59
7.57
7.56
7.42
7.41
7.40
7.39
7.38
5.92
2.08
70
77
74
57
55
42

OH

1.00
LN LN L a L L N L LR L LNy e L L LR e S AR e e
8.0 8.5 8.0 7.5 7.0 6.5 8.0 5.5 5.0 45 4.0 3.5 3.0 25 20 1.5 1.0 0.5 0
Chemical Shift (ppm)
= 2¢F 95 B 2 22 =
OH 8 a3 88 § i gF ¢
I ] N -1 1

200 180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)



210

'H and ">C NMR of compound 1-46
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'H and ">C NMR of compound 1-47
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'H and ">C NMR of compound 1-48a
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'H and ">C NMR of compound 1-48b
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'H and ">C NMR of compound 1-68b
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'H and "*C NMR of compound 1-68¢
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'H and ">C NMR of compound 1-68d
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Appendix 2 — NMR Spectra Data for Chapter 2
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'H, *C NMR, and 1D nOe of compound 2-65a
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'H, *C NMR, and 1D nOe of compound 2-65C

BRIV YRE FRRRE22ERRLRYY YOYSIRRR2 NS RERHES
P P B P W A A AA AT NN NN NN = = = = - oo
e ] e B S S BT

| g8 8k 3 8 8 3RS B =N 59
ES 22 ab g E G cob 8 58 2o
1/ i1 e | I e e “
]
[ 1
I ]
T T T T T T T T T T T T T T T T T T T T T T T 1
200 180 180 140 120 100 80 &0 40 20 (1]



244

540 .-——

L f'_ gy SO
ol
hy by
o o
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
9.0 85 80 75 70 65 6.0 55 5.0 45 40 35 30 25 20 15 10 05

Chemical Shift (ppm)

'H, ®C NMR, and 1D nOe of compound 2-65e

2= 85 58 HERRECCREARIYSERISSISHELC B HERYHER
@® o o~ - CA AT ALOOOOOOONNNNNNNNNNN o= o= ooco
~ | L] L B T B
|
1 1
- -
187 194
= [~
T ikl il i | Uil T
9.0 85 80 75 70 65 60




245

o
o
05°EL [ E
[ W —— 1%
ES
Z¥ e -
BE A -—— - E
B — P— Ea
£Fl .u.lL.. Eo
L "l o~
.
WES ——
Wwie — e |M
wm J
Sl — _— E
- =]
Y. — s @
8 E o
Lol
EOE
o
E S
TTOL — - f
]
o+
r rs03f o
— 4803F w
WTL — . E
1EBEL — - — ey — E
w
ES
w
5571 — E
wivl -
Ew
w
Eo
~
0ROl o
0L — 3
E R
~
E O
@
]
-
IO
@




246

'H, C NMR, and 1D nOe of compound 2-65g
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'H, *C NMR, and 1D nOe of compound 2-65i
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'H, *C NMR, and 1D nOe of compound 2-65m
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'H, *C NMR, and 1D nOe of compound 2-650
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'H, *C NMR, and 1D nOe of compound 2-65q
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'H, *C NMR, and 1D nOe of compound 2-66b
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'H, *C NMR, and 1D nOe of compound 2-67b
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'H and ">C NMR of compound 2-81a, diastereomeric mixture
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'H, *C NMR, and 2D nOe of compound 2-81b, cis diastereomer
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'H, C NMR, and 2D nOe of compound 2-81c, cis diastereomer
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'H, *C NMR, and 2D nOe of compound 2-81d, cis diastereomer
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'H, *C NMR, and 2D nOe of compound 2-81f, cis diasteromer
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'H, C NMR, and 2D nOe of compound 2-81e, trans diastereomer
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'H and "*C NMR of compound 2-89¢
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'H, *C and 1 D nOe NMR of compound 2-89d
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'H, *C, 1D nOe NMR of compound 2-89g
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Appendix 3 — NMR Spectral Data for Chapter 3
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'H and ">C NMR of compound 3-68
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'H and ">C NMR of compound 3-69
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'H and ">C NMR of compound 3-63
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'H and ">C NMR of compound 3-81
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'H and ">C NMR of compound 3-82
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'H and ">C NMR of compound 3-83
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'H and ">C NMR of compound 3-84
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'H and ">C NMR of compound 3-86
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'H and ">C NMR of compound 3-87
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'H and ">C NMR of compound 3-88
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'H and ">C NMR of compound 3-89

i

ares

I

Pmb.

S5~
- Bl 55—

S0 es—
e

BU—
zv

T
4

SOE0I—
L

:

Chemical Shift (ppm)

LB 1T,
Ob¥Th—
B8 LT~
[0
= b 3—&.
eOLELd

T

6C I¥ri—

roesI—

—
rODRL—

Pmb.

oTes




318

'H and ">C NMR of compound 3-90
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'H and ">C NMR of compound 3-91
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'H and ">C NMR of compound 3-92
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'H and ">C NMR of compound 3-93
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'H and ">C NMR of compound 3-94
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'H and "*C NMR of compound 3-106
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'H and "*C NMR of compound 3-107
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'H and "*C NMR of compound 3-108
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'H and "*C NMR of compound 3-109
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'H and "*C NMR of compound 3-111
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'H and ">C NMR of compound 3-62
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'H and "*C NMR of compound 3-112
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'H and "*C NMR of compound 3-114
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'H and "*C NMR of compound 3-115
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'H and "*C NMR of compound 3-117
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'H and "*C NMR of compound 3-120
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'H and "*C NMR of compound 3-121

L L
1

Chemical Shift (ppm)

W—

[
aLiz—
LR~
viE—
oz
osTE—

806~
N

OV~
66 G

BTU—
IS 6L—

LSTH
onn:V
BOGH
L¥EZ)
EL%Z)
E0LZ1~

hoom—
unmﬂ—w
LODER

L60w
L —t—w

Loeri—

BEESI—

SESL—




337

Lhel—
01 T—
ws—
Fid. o
L1
&Sve—

80T
1z
1

rgras

[
WBTL—

05 %—

FRRSI—

'H and "*C NMR of compound 3-122

3
- L‘ 3

-

-y

I,‘QOTBS

OH

O

Pmb.,

o
L)




338

H of the diastereomeric mixture of compound 3-122
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'H and "*C NMR of compound 3-125
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'H and "*C NMR of compound 3-127
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'H and "*C NMR of compound 3-131
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'H and "*C NMR of compound 3-138
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'H and "*C NMR of compound 3-139
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'H and "*C NMR of compound 3-141
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'H and "*C NMR of compound 3-142
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'H and "*C NMR of compound 3-145
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'H and "*C NMR of compound 3-146
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'H and "*C NMR of compound 3-147
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'H and "*C NMR of compound 3-148
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'H and "*C NMR of compound 3-149
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'H and "*C NMR of compound 3-163
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'H and "*C NMR of compound 3-164
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'H and "*C NMR of compound 3-165
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