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Abstract

This thesis investigates eigenvalue techniques for the location of roots of poly-

nomials expressed in the Lagrange basis. Polynomial approximations to func-

tions arise in almost all areas of computational mathematics, since polynomial

expressions can be manipulated in ways that the original function cannot.

Polynomials are most often expressed in the monomial basis; however, in many

applications polynomials are constructed by interpolating data at a series of

points. The roots of such polynomial interpolants can be found by computing

the eigenvalues of a generalized companion matrix pair constructed directly

from the values of the interpolant. This affords the opportunity to work with

polynomials expressed directly in the interpolation basis in which they were

posed, avoiding the often ill-conditioned transformation between bases.

Working within this framework, this thesis demonstrates that computing

the roots of polynomials via these companion matrices is numerically stable,

and the matrices involved can be reduced in such a way as to significantly

lower the number of operations required to obtain the roots.

Through examination of these various techniques, this thesis offers insight

into the speed, stability, and accuracy of rootfinding algorithms for polynomi-

als expressed in alternative bases.

Keywords: polynomial interpolation, Lagrange interpolation, barycentric

formula, generalized companion matrices, polynomial roots, eigenvalue prob-

lem, stability, backward error, semiseparable matrices, nonlinear eigenvalue

problem
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Chapter 1

Introduction

1.1 Motivation

Solving univariate polynomial equations is an essential part of numerical anal-

ysis, and for a great many other areas in mathematics. It is well known that

the accuracy of computing the roots of univariate polynomials is strongly af-

fected by the basis in which the polynomial is originally expressed. Yet, most

classical polynomial rootfinders require that polynomials be converted to the

monomial basis first, before calling the rootfinder. Significant exceptions to

this approach include the rootfinder used in the software package Chebfun

[26] which is based upon the Chebyshev Colleague matrix [14, 22]; the al-

gorithm proposed by Day and Romero [10] for orthogonal polynomial bases;

and the Bernstein-Bézier package of Farouki and Rajan [12]. Conversion to

another basis cannot be expected to improve the numerical conditioning of

the polynomial, and indeed such conversion usually makes it much worse—

exponentially worse, in the degree [15]. Therefore, conversion between bases

should be avoided.

In this thesis, we explore the computation of the roots of polynomials via

eigenvalue methods. Instead of solving the polynomial equation directly, we

linearize the polynomial, which is to say the polynomial is transformed into a

generalized eigenvalue problem whose eigenvalues are exactly the roots of the

polynomial. For example, in the monomial basis, the roots of a polynomial
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may be computed via the Frobenius companion matrix constructed from the

polynomial coefficients. Working in the barycentric Lagrange basis has signifi-

cant accuracy advantages [4, 9]. According to Higham [17], the first form of the

barycentric interpolation formula is backward stable, and the second barycen-

tric form is forward stable for any set of nodes with a small Lebesgue constant.

The particular linearization we investigate is the generalized companion ma-

trix pair first proposed by Corless [6], constructed from the coefficients of the

polynomial in the Lagrange basis.

Forming the linearization of a polynomial has the effect of squaring the

number of values involved: the generalized eigenvalue problem involves O(n2)

entries. Furthermore, the complexity of computing the eigenvalues (via the

QZ algorithm) is an O(n3) process. As pointed out by Moler [21], many

people are willing to pay the O(n3) cost of this approach simply because of its

convenience. Here we give a proof of the stability, and lower the cost.

In the literature to date, this particular linearization has been used in

practice before any rigorous analysis of its stability has been conducted. Ac-

cordingly, one of the primary objectives of this thesis is to examine the stability

properties of this linearization. Most studies investigating the stability prop-

erties of computing roots of polynomials via linearization consider only the

monomial basis. The advantages of using the Lagrange basis for computations

are significant, and thus there is a need to address the corresponding stability

properties of rootfinding via linearization for the Lagrange basis.

To discuss the stability properties we first introduce the notion of condition

numbers and backward errors, further details can be found in [8]. Consider

the situation where we wish to compute the value of a function y = f(x)

for some given x. Lets say we have an algorithm that computes a solution ŷ

approximating y. We ask the question: for what input data have we actually

solved our problem? Or in other words for what perturbation δx is ŷ =

f(x + δx) satisfied? The backward error is then just the smallest |δx| for

which the equation ŷ = f(x + δx) is satisfied. The forward error is measured

by the difference between the approximate solution and the true solution of

the problem, that is, |ŷ − y|. The backward and forward errors are related

2



through the condition number, in general we have the relationship

Forward error ≤ Condition number× Backward error . (1.1)

Thus, an algorithm is called backward stable if the backward error is small,

because the backward error and condition number provide a bound on the

forward error. If the problem which we are solving is well-conditioned, and

the small backward error is small, then the forward error will also be small.

Furthermore, we are motivated by applications that give rise to polynomial

eigenvalue problems, or matrix polynomials. We find significant discussion of

the quadratic eigenvalue problem (QEP) in [24], a problem which has received

much attention in recent years because of the vast variety of application areas

that give rise to QEPs, including dynamical analysis of mechanical systems,

acoustics, and linear stability of flows in fluid mechanics, to name a few. Sim-

ilarly, higher order polynomial eigenvalue problems also arise in a number of

application areas. It is not entirely clear that the monomial basis is the best

basis for expressing matrix polynomials, and the Lagrange basis may yet prove

to be superior for formulating and solving high-order matrix polynomials.

Born out of the need to produce accurate and stable numerical methods

for solving the polynomial eigenvalue problem, this thesis addresses the mat-

ter of the numerical stability of computing eigenpairs of matrix polynomials

expressed in the Lagrange basis. We demonstrate the conditions under which

eigenpairs, computed via linearization of matrix polynomials, are numerically

stable. We also show, through numerical examples, that by applying block-

wise balancing to the linearization we are able to compute eigenpairs with

small backward errors, and give computable and intelligible upper bounds for

the backward errors.

One might ask why not just use Newton’s method to compute the roots?

The answer to this is that we wish to compute all of the roots, not just a

selection. The eigenvalue techniques discussed in this thesis are robust and

convenient for just this task. Therefore, we start there and modify the them

for efficiency, instead of creating a special-purpose method.

3



1.2 Outline

Chapter 2 investigates the structured reduction of the linearization of scalar

polynomials expressed in the Lagrange basis. The linearization we investigate

has only O(n) nonzero entries, and is a low-rank perturbation of a diagonal

matrix. It is our goal to retain some sort of structure of the linearization during

the solution process. Normally the eigenvalue problem is reduced first to upper

Hessenberg form to reduce the complexity of carrying out QZ iterations. For

real interpolation nodes, the Hessenberg form also has low-rank structure,

being a rank one perturbation of a symmetric tridiagonal matrix. Thus, we

should be able to transform the original linearization to another low-rank

formulation. We show that such a transformation may be achieved in only

O(n2) operations, by applying structured methods. Furthermore, once we have

reduced the matrix to tridiagonal plus rank one form, there exist a variety of

O(n2) methods to apply the QR algorithm to the matrix. Hence, we could

obtain an O(n2) algorithm for locating all n roots of the original polynomial.

In Chapter 3, we investigate the stability of computing roots of polynomi-

als via linearization. In the monomial basis, the conditions under which the

Frobenius companion matrix produces accurate and stable roots of the poly-

nomial has been established in [11]. For the Lagrange basis, the corresponding

analysis is lacking, and filling this gap in the literature is one of the contribu-

tions that this thesis offers. We obtain bounds on the backward error that are

easily computable and intelligible. Through a range of numerical experiments,

we illustrate that the backward error is small, and that the bound is often only

around one order of magnitude larger than the actual backward error. We also

develop a balancing strategy for the linearization, to improve the accuracy of

the computed eigenvalues.

In Chapter 4, we investigate the stability of computing eigenvalues and

eigenvectors of matrix polynomials expressed in the Lagrange basis via lin-

earization. We establish the conditions under which the linearization pro-

duces eigenpairs with small backward errors, and provide computable bounds

for the backward errors. With the aid of a block-wise balancing strategy,
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similar to that for the scalar case, we are able to compute eigenpairs with

excellent backward errors for a range of numerical examples, and our bounds

are approximately one order of magnitude larger.

In sum, this thesis offers new algorithms for the structured reduction of

linearizations of polynomials in the Lagrange basis, and undertakes the nec-

essary analysis to establish the numerical stability of computing roots and

eigenvalues of polynomials and matrix polynomials.

1.3 A Brief Literature Review

The literature on polynomial rootfinding is vast, and we do not aim to be

exhaustive. Much of literature on solving polynomial equations can be found

in the electronic bibliographies authored by McNamee [18, 19]. Also the book

[20] by the same author contains an extensive overview of methods for solving

univariate polynomials. Various matrix methods for solving univariate poly-

nomial equations have been proposed. Much of the framework for working in

the Lagrange basis has been described in [1, 6]. The necessary extensions to

matrix polynomials can be found in [2, 7]. Both of these references provide a

good grounding for what has been done so far in the Lagrange basis, as well

as the book [8] which has many discussions about alternative bases, as well

as significant discussion on backward error. Other matrix approaches have

been proposed in the Lagrange basis, these may be found in [5] and the refer-

ences therein. For the Chebyshev basis the appropriate results can be found

in [14, 22]. For matrix methods for other orthogonal polynomial bases, many

results may be found in [10].

For a good introduction to barycentric Lagrange interpolation, we point to

the landmark paper by Berrut and Trefethen [4]. We also point out Trefethen’s

book on approximation theory [25] as a good introduction to polynomial in-

terpolation. There have been a number of recent papers discussing the various

properties of the barycentric Lagrange formulation. For a good overview, we

suggest [3, 17, 27].

For matrix polynomials, a good introduction can be found in [13], and for

5



many backward stability results (in the Monomial basis), we refer to [16, 23].
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Chapter 2

Fast Reduction of Generalized
Companion Matrix Pairs for
Barycentric Lagrange
Interpolants1

2.1 Introduction

For a polynomial p(z) expressed in the monomial basis, it is well known that

one can find the roots of p(z) by computing the eigenvalues of a certain com-

panion matrix constructed from its coefficients. For polynomials expressed in

other bases (such as the Chebyshev basis, the Lagrange basis, or other or-

thogonal polynomial bases), generalizations of the companion matrix exist,

constructed from the appropriate coefficients; see for example [4, 5, 10, 21].

In this article we consider polynomial interpolants in the Lagrange basis,

expressed in barycentric form. Berrut and Trefethen [2] present a comprehen-

sive review of such polynomial interpolants.

Given a set of n + 1 distinct interpolation nodes {x0, . . . , xn}, with corre-

1A version of this chapter has been submitted to the SIAM Journal of Matrix Analysis
and Application for publication.
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sponding values {f0, . . . , fn}, the barycentric weights wj are defined by

wj =
n∏
k=0
k 6=j

(xj − xk)−1, 0 ≤ j ≤ n . (2.1)

The unique polynomial of degree less than or equal to n interpolating the data

fj at xj is

p(z) =
n∏
i=0

(z − xi)
n∑
j=0

wj
(z − xj)

fj . (2.2)

Equation (2.2) is known as the “first form of the barycentric interpolation

formula” [20] or the “modified Lagrange formula” [12]. The “second (true)

form of the barycentric formula” [20] is

p(z) =

n∑
j=0

wj
(z − xj)

fj

n∑
j=0

wj
(z − xj)

, (2.3)

which is constructed by dividing Equation (2.2) by the interpolant of the con-

stant function 1 at the same nodes, and by cancelling the factor
∏n

i=0 (z − xi).
As was first shown in [4], the roots of the interpolating polynomial p(z),

as defined by (2.2), are exactly the generalized eigenvalues of the matrix pair

(A,B) =

([
0 −fT

w D

]
,

[
0

I

])
, (2.4)

where w =
[
w0 · · · wn

]T
, fT =

[
f0 · · · fn

]
, and

D =


x0

. . .

xn

 . (2.5)

This can be shown by applying Schur’s determinant formula: if z 6= xi for all
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i, 0 ≤ i ≤ n, then

det (zB−A) = det

[
0 fT

−w zI−D

]
(2.6)

= det (zI−D) det
(
0 + fT (zI−D)−1 w

)
(2.7)

=
n∏
i=0

(z − xi)
n∑
j=0

wjfj
(z − xj)

= p(z) , (2.8)

and then by continuity at z = xi we have det (zB−A) = p(z). Thus, the

eigenvalues of the matrix pair (A,B) are exactly the roots of p(z). Further-

more, computing the roots of polynomial interpolants via the eigenvalues of

the matrix pair (A,B) is numerically stable, as shown in Chapter 3 and in

[14].

Remark 1. While the degree of the polynomial interpolant p(z) is less than or

equal to n, the dimensions of the matrices A and B are n+ 2 by n+ 2. This

formulation gives rise to two spurious infinite eigenvalues. We will show how

to deflate these infinite eigenvalues in §2.3.3.

The second form of the barycentric interpolation formula has a remarkable

feature [1]: the interpolating property is satisfied independently of the choice

of weights wj, as long as they are all nonzero. Let us define some arbitrary

nonzero weights uj, we may write a rational interpolant as a quotient of poly-

nomials interpolating the values ukfk/wk and uk/wk at the nodes xk, where

the wk’s are the weights given in (2.1). The rational function is then given by

r(z) =

n∏
i=0

(z − xi)
n∑
j=0

wj
(z − xj)

(
ujfj
wj

)
n∏
i=0

(z − xi)
n∑
j=0

wj
(z − xj)

(
uj
wj

) , (2.9)
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or

r(z) =

n∑
j=0

uj
(z − xj)

fj

n∑
j=0

uj
(z − xj)

, (2.10)

which is exactly the second barycentric formula for the weights uk. The choice

of weights (2.1) forces the second form of the barycentric interpolation formula

to be a polynomial, but for other choices of weights it is a rational function.

For example, for interpolation nodes on the real line, if we let the barycentric

weights be equal to wi = (−1)i for all i, 0 ≤ i ≤ n (as suggested by Berrut [1]),

we obtain a rational interpolant guaranteed to have no poles in R. The eigen-

values of (A,B) give the roots of the numerator of the rational interpolant,

and letting fj = 1 for all j, 0 ≤ j ≤ n, we may also compute the poles.

Through numerical experimentation we found that for real interpolation

nodes, the initial reduction of (A,B) to Hessenberg-triangular form seemed

always to reduce A to a symmetric tridiagonal plus rank-one matrix, and left

B unchanged. We will now show that this is always the case.

Theorem 1. For real interpolation nodes xj, arbitrary barycentric weights wj,

and arbitrary values fj, there exists a unitary matrix Q such that the matrix

pair (Q∗AQ,Q∗BQ) = (T + e1c
T ,B) is in Hessenberg-triangular form, and

T is a symmetric tridiagonal matrix.

Proof. Theorem 3.3.1 of [29, p.138] states that there exists a unitary matrix Q

whose first column is equal to e1 such that H = Q∗AQ is upper Hessenberg.

Partition Q as

Q =

[
1

Q1

]
, (2.11)

Explicitly, H is

H = Q∗AQ =

[
0 −fTQ1

Q∗1w Q∗1DQ1

]
. (2.12)

The interpolation nodes x0, . . . , xn are all real. Thus, T1 = Q∗1DQ1 is symmet-

ric and upper Hessenberg, and therefore symmetric tridiagonal. Furthermore,
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since H is upper Hessenberg then Q∗1w = t0e1. Let

T =

[
0 t0e

T
1

t0e1 T1

]
, (2.13)

and

cT =
[

0 −t0eT1 − fTQ1

]
. (2.14)

Then we can rewrite (2.12) as

Q∗AQ = T + e1c
T . (2.15)

Multiplying B on the left by Q∗, and on the right by Q, yields

Q∗BQ =

[
1

Q∗1

][
0

I

][
1

Q1

]
=

[
0

Q∗1Q1

]
= B . (2.16)

Thus, (Q∗AQ,Q∗BQ) = (T + e1c
T ,B) is in Hessenberg-triangular form.

2.2 Fast Reduction to Hessenberg form

2.2.1 Lanczos Based Reduction

We have shown that the matrix pair (A,B) can be reduced to the matrix pair

(T + e1c
T ,B) via unitary similarity transformations. However, the cost of the

standard reduction algorithm using Givens rotations to reduce the matrix pair

(A,B) to Hessenberg-triangular form is about 5n3 floating point operations [9].

This reduction also introduces nonzero entries, on the order of machine preci-

sion (and polynomial in the size of the matrix), to the upper triangular part

of B, which could in turn lead to errors being propagated later on in the QZ

iterations.

We will now show how the reduction might be performed in O(n2) oper-

ations, by making use of the structure of the input matrix A. We wish to
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construct a unitary matrix Q of the form in Equation (2.11) such that

Q∗AQ = T + e1c
T . (2.17)

To determine such a matrix Q, partition Q1 as

Q1 =

 q0 q1 · · · qn

 . (2.18)

The first column of (2.17) requires that Q∗1w = t0e1, and hence we may

immediately identify that

q0 =
w

t0
. (2.19)

The matrix Q1 is unitary, so we require that t0 = ‖w‖2. Let

T1 =



d0 t1

t1 d1
. . .

. . . . . . tn−1

tn−1 dn−1 tn

tn dn


, (2.20)

then form DQ1 = Q1T1:[
Dq0 Dq1 · · · Dqn

]
=[

d0q0 + t1q1 t1q0 + d1q1 + t2q2 · · · tnqn−1 + dnqn

]
, (2.21)

the first column of which gives the equation

Dq0 = d0q0 + t1q1 . (2.22)

Multiplying on the left by q∗0 and using the orthogonality of q0 and q1 identifies

d0 = q∗0Dq0 . (2.23)
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The vector q1 is then given by

q1 =
1

t1
(D− d0I) q0 , (2.24)

and has unit length, which requires that t1 = ‖ (D− d0I) q0‖2. The ith column

of Equation (2.21) for 1 ≤ i ≤ n− 1 is

Dqi = tiqi−1 + diqi + ti+1qi+1 . (2.25)

Multiplying on the left by q∗i and using the orthogonality of the qi’s identifies

di = q∗iDqi . (2.26)

The vector qi+1 is given by

qi+1 =
1

ti+1

((D− diI) qi − tiqi−1) , (2.27)

and has unit length, which requires that ti+1 = ‖ (D− diI) qi − tiqi−1‖2. The

last column of (2.21) is

Dqn = tnqn + dnqn . (2.28)

Multiplying on the left by q∗n finally identifies

dn = q∗nDqn . (2.29)

Algorithm 1 in the appendix shows the reduction explicitly. The total cost of

the algorithm is approximately 9n2 floating point operations, which is a con-

siderable reduction in cost compared with the standard Hessenberg-triangular

reduction algorithm, or even compared to reducing A to Hessenberg form via

elementary reflectors (the cost of which is still O(n3)).

Remark 2. Algorithm 1 is equivalent to the symmetric Lanczos process ap-

plied to the matrix D with starting vector w. The reduction process gener-

ates an orthonormal basis q0, · · · ,qn for the Krylov subspace Kn+1(D,w) =

span {w,Dw, · · · ,Dnw}. One of the potential difficulties which can arise
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when applying the symmetric Lanczos process [29, p. 372], and hence also

when applying the reduction algorithm which we have described, is that in

floating point arithmetic the orthogonality of the vectors qi is gradually lost.

The remedy for this is to reorthogonalize the vector qi+1 against q0, . . . ,qi

at each step. This reorthogonalization increases the operation count to O(n3)

which defeats the purpose of using this reduction algorithm in the first place.

We will now prove some facts about the vectors q0, . . . ,qn that are pro-

duced by Algorithm 1.

Lemma 1. The set of vectors {w,Dw, . . . ,Dkw} are linearly independent for

all k, 0 ≤ k ≤ n, as long as all of the nodes xi are distinct and no wi is zero.

Proof. Form the matrix V =
[

w Dw · · · Dnw
]
, which can be written

as

V =


w0 w0x0 · · · w0x

n
0

w1 w1x1 · · · w1x
n
1

...
...

. . .
...

wn wnxn · · · wnx
n
n

 =


w0

. . .

wn




1 x0 · · · xn0
...

...
. . .

...

1 xn · · · xnn

 .

(2.30)

The determinant of V is

det V =
n∏
i=0

wi
∏

0≤j<k≤n

(xk − xj) , (2.31)

which is nonzero as long as no wi is equal to zero, and the xi’s are distinct.

Thus, the set of vectors {w,Dw, . . . ,Dnw} are linearly independent, and

consequently the subsets {w,Dw, . . . ,Dkw}, for all k, 0 ≤ k ≤ n, are all also

linearly independent.

Theorem 2. Suppose w, Dw, . . . ,Dnw are linearly independent, and the vec-

tors q0, · · · ,qn are generated by Algorithm 1. Then

1. The vectors q0, · · · ,qj span the Krylov subspace Kj+1(D,w), that is

span{q0, · · · ,qj} = Kj+1(D,w) 0 ≤ j ≤ n . (2.32)
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2. The subdiagonal elements of T are all strictly positive, and hence T is

properly upper Hessenberg.

Proof. Lemma 1 showed that w,Dw, . . . ,Dnw are linearly independent. The

vectors q0, . . . ,qn are generated by the symmetric Lanczos process, which is

a special case of the Arnoldi process. The result follows from Theorem 6.3.9

of [28, p. 436].

2.2.2 Givens Rotation Based Reduction

Since the reduction process described in §2.2.1 has the potential for losing

orthogonality of the transformation matrix Q1 [29, p. 373], we investigate

other reduction algorithms that take advantage of the structure of A.

The standard Hessenberg reduction routines in Lapack and Matlab

( GEHRD and hess, respectively) use a sequence of elementary reflectors to

reduce the matrix. The first elementary reflector in this sequence annihilates

the lower n entries of the first column of A. This elementary reflector will also

fill in most of the zero elements in the trailing submatrix, which must then be

annihilated to reduce the matrix to Hessenberg form.

When we do annihilate elements in the first column of A, the diagonal

structure of the trailing submatrix will be disturbed. If we are to have any

hope of lowering the operation count, then we will need to ensure that the

trailing submatrix retains its symmetric tridiagonal structure.

To achieve this goal, it is clear that we should apply Givens rotations,

annihilating entries of the first column of A one by one, and then returning

the trailing submatrix to tridiagonal form.

Let Gk be a Givens rotation matrix and Ai = G∗i · · ·G∗1AG1 · · ·Gi be the

matrix resulting from applying a sequence of i Givens rotations to the matrix

A. The first Givens rotation in the reduction G1 should act on the (n+1, n+2)
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plane to annihilate the (n+ 2, 1) element of A, yielding

A1 = G∗1AG1 =



0 f0 · · · fn−2 × ×
w0 x0
...

. . .

wn−2 xn−2

× × ×
0 × ×


. (2.33)

The × symbol specifies where elements of the matrix have been modified under

this transformation. After this first Givens rotation, the matrix is still in the

form we desire (the trailing 2 by 2 matrix is symmetric tridiagonal), so we push

on. The next Givens rotation G2 will act on the (n, n+ 1) plane to annihilate

the (n+ 1, 1) element of A1, resulting in the matrix

A2 = G∗2G
∗
1AG1G2 =



0 f0 · · · fn−3 × × ×
w0 x0
...

. . .

wn−3 xn−3

× × × ×
0 × × ×
0 × × ×


. (2.34)

Note again that the trailing 3× 3 submatrix will be symmetric. Since we are

aiming to reduce the matrix to a symmetric tridiagonal plus rank-one matrix,

we should now apply a Givens rotation acting on the (n + 1, n + 2) plane to

eliminate the (n + 2, n) element of A2. This transformation does not disturb

any of the zeros that we have just created in the first column. The resulting
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matrix is

A3 =



0 f0 · · · fn−3 × × ×
w0 x0
...

. . .

wn−3 xn−3

× × ×
0 × × ×
0 × ×


. (2.35)

We can now continue to reduce the first column of A3 by applying a Givens

rotation G4, acting on the (n−1, n) plane. This annihilates the (n, 1) element

of A3. The resulting matrix is now

A4 =



0 f0 · · · fn−4 × × × ×
w0 x0
...

. . .

wn−4 xn−4

× × × ×
0 × × ×
0 × × × ×
0 × ×


. (2.36)

Applying another Givens rotation acting on the (n, n+ 1) plane to annihilate

the (n+ 1, n− 1) element yields

A5 =



0 f0 · · · fn−4 × × × ×
w0 x0
...

. . .

wn−4 xn−4

× × ×
0 × × × ×
0 × × ×
0 × × ×


. (2.37)
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We must now apply another Givens rotation acting on the (n+1, n+2) plane in

order to annihilate the (n+2, n) element of A5, reducing the trailing submatrix

to symmetric tridiagonal form:

A6 =



0 f0 · · · fn−4 × × × ×
w0 x0
...

. . .

wn−4 xn−4

× × ×
0 × × ×
0 × × ×
0 × ×


. (2.38)

It should now be evident what will happen in the rest of the reduction: when

we annihilate an element of the first column of Ai, a bulge will be introduced

into the top of the trailing submatrix. This bulge can then be chased out of

the matrix without modifying any elements of the first column. We alternate

between annihilating elements of the first column and chasing bulges out of

the matrix until the matrix has been reduced to symmetric tridiagonal plus

rank-one:

An(n+1)
2

=



0 × × × · · · × ×
× × ×
× × ×

× × . . .
. . . . . . ×

× × ×
× ×


. (2.39)

The cost of this reduction requires n(n + 1)/2 Givens rotations to reduce

the matrix to tridiagonal form, which ordinarily would lead to an O(n3) al-

gorithm for the reduction. However, because of the structure of the trailing

submatrix, we need only modify 9 elements of the matrix when annihilating

an element of the first column, and 8 elements when chasing the bulge out of
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the matrix. Hence, the total cost of the reduction is still O(n2), giving a con-

siderable reduction in cost compared to the standard reduction via elementary

Householder transformations.

Remark 3. When performing the reduction algorithm described in this sec-

tion, we need never actually form the full matrix. The whole algorithm can be

implemented by modifying only 4 vectors: w, f , the diagonal elements d, and

the subdiagonal elements t. This is shown in Algorithm 2 in the appendix.

Lemma 2. The reduction algorithm described in this section results in es-

sentially the same matrix as Algorithm 1 proposed in §2.2.1. That is, there

exists a unitary diagonal matrix D̂ such that QL = QGD̂ and HL = D̂−1HGD̂,

where QL and HL are the unitary matrix and Hessenberg matrix resulting from

Algorithm 1, and QG and HG are the unitary matrix and Hessenberg matrix

resulting from the Givens reduction described in this section.

Proof. Theorem 5.7.24 of [28, p. 382] shows that such a D̂ exists, as the first

columns of QL and QG are both equal to e1. This same theorem also proves

that HG is also properly upper Hessenberg.

2.3 Corollaries, Implications, and Discussion

2.3.1 Complex Nodes

The reduction processes proposed in §2.2.1 and §2.2.2 both require that the

interpolation nodes xk are real. In many applications, this restriction should

not present a significant burden. However, since we would like these methods

to be as general as possible, we will now discuss the changes that need to be

made to the algorithms to extend them to complex interpolation nodes.

For complex interpolation nodes, we cannot find a unitary matrix Q1 and

a symmetric tridiagonal matrix T1 such that DQ1 = Q1T1 (we would require

D = D∗). Thus, we will have to relax the conditions on the transformation

matrix Q1 if we are to find a structured Hessenberg matrix in this case. If
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we specify that Q be complex orthogonal (that is, QTQ = I) instead of uni-

tary, the matrix A can still be reduced to a tridiagonal plus rank-one matrix

QTAQ = T + e1c
T ; however, now T is a complex symmetric tridiagonal

matrix. This use of non-unitary similarity transformations preserves the spec-

trum. However, the condition number of the transformed matrix may become

larger, and hence the accuracy of the computed eigenvalues may be worse.

This is the price that we will have to pay in order to reduce A to a structured

form.

In light of this, the reduction algorithm presented in §2.2.1 was equivalent

to the symmetric Lanczos process. Thus, for complex interpolation nodes

the reduction transforms to the complex symmetric Lanczos process; see, for

example, [8].

To convert the reduction algorithm presented in §2.2.2 to work for com-

plex interpolation nodes, we need to apply complex orthogonal Givens-like

matrices [16] in place of the unitary Givens rotations to retain the complex

symmetric structure of the trailing submatrix when annihilating elements of

the matrix.

2.3.2 Zero Leading Coefficients in the Monomial Basis

Throughout this chapter, we have not specified that the leading coefficients

(in the monomial basis) of the polynomial interpolant p(z) are nonzero. If the

exact degree of p(z) is n−m, then the matrix pair (A,B) will havem+2 infinite

eigenvalues in total. In this section, we will give some tools to determine if the

leading coefficients are indeed zero (or if they are very small).

For notational convenience the term [zn](p(z)) means the coefficient of zn

of the polynomial p(z), as described in [11]. Thus, if p(z) has degree n, then

[zn](p(z)) is the leading coefficient of p(z) in the monomial basis. Throughout

this thesis, unless otherwise specified, the term leading coefficient refers to the

leading coefficient with respect to the monomial basis.

If the first m leading coefficients (in the monomial basis) of p(z) are all

zero, then we may reconstruct the same unique polynomial interpolant by
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removing up to m of the interpolation nodes. Furthermore, when we remove an

interpolation node xk, the barycentric weights do not have to be recomputed:

we may simply update the existing barycentric formula by multiplying each

weight w` by (x` − xk), and dividing the formula by (z − xk). If we remove a

set of j interpolation nodes {xk|k ∈ Kj}, where Kj = {k1, · · · , kj} is a set of

unique integers, then we may restate the barycentric interpolation formula as

p(z) =
n∏
i=0
i/∈Kj

(z − xi)
n∑
`=0
`/∈Kj

∏
k∈Kj

(x` − xk)
w`f`

(z − x`)

 , (2.40)

for all j, 0 ≤ j ≤ m− 1.

We will now state a theorem which gives a useful formula for the first

nonzero leading coefficient in the monomial basis of the polynomial interpolant

p(z).

Theorem 3. If the leading coefficients [zn−j] (p(z)) = 0 for all j, 0 ≤ j ≤ m−
1, then [zn−m] (p(z)) = fTDmw. That is, if the first m leading coefficients (in

the monomial basis) of p(z) are all zero, then the (m+ 1)th leading coefficient

is fTDmw.

Proof. We use induction on m. The barycentric formula (2.2) can be written

as

p(z) =
n∑
`=0

 n∏
k=0
k 6=`

(z − xk)

w`f` , (2.41)

whose leading coefficient is

[zn](p(z)) =
n∑
`=0

w`f` = fTw . (2.42)
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The next leading coefficient is given by

[zn−1](p(z)) = −
n∑
`=0

w`f`

n∑
k=0
k 6=`

xk (2.43)

= −
n∑
`=0

w`f`

(
−x` +

n∑
k=0

xk

)
(2.44)

=
n∑
`=0

w`f`x` −

(
n∑
j=0

wjfj

)
n∑
k=0

xk (2.45)

= fTDw − fTw
n∑
k=0

xk . (2.46)

Thus, if the leading coefficient [zn](p(z)) = 0 = fTw, then [zn−1](p(z)) =

fTDw, which will serve as our basis of induction.

Now assume that the theorem is true for all m with 1 ≤ m ≤M−1. Thus,

if [zn−j](p(z)) = 0 for all j, 0 ≤ j ≤M−1, then [zn−M ](p(z)) = fTDMw. Now

suppose that additionally [zn−M ](p(z)) = 0. The (M +2)nd leading coefficient

of p(z) can be obtained from (2.40):

[
zn−(M+1)

]
(p(z)) =

n∑
`=0

qm+1(x`)w`f` (2.47)

= fT qm+1(D)w , (2.48)

where qj(z) is the monic polynomial

qj(z) =
∏
k∈Kj

(z − xk) . (2.49)

Expanding qM+1(D) in the monomial basis yields

qM+1(D) = DM+1 + bMDM + · · ·+ b0I , (2.50)

where all of the coefficients bj are expressions in terms of xk for k ∈ KM+1.

Substituting this expansion into (2.48) and expanding the resulting expression,
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we obtain

[
zn−(M+1)

]
(p(z)) = fTDM+1w + bM fTDMw + · · ·+ b0f

Tw . (2.51)

From the induction hypothesis, all of the terms fTDjw = 0 for all j, 0 ≤ j ≤
M , and hence (2.51) reduces to

[
zn−(M+1)

]
(p(z)) = fTDM+1w . (2.52)

Thus, we have proved that, if [zn−j] (p(z)) = 0 for all j, 0 ≤ j ≤ m − 1,

then the first (and only the first) nonzero leading coefficient is [zn−m] (p(z)) =

fTDmw.

We will now show how Theorem 3 can be applied to the reduction algorithm

proposed in §2.2.1, so that we may determine some more information about

the vector c1 produced from the reduction algorithm.

Corollary 1. For the reduction process described in §2.2.1, if [zn−j] (p(z)) = 0

for all j, 0 ≤ j ≤ m−1, then c0 = −‖w‖ and ck = 0 for all k, 1 ≤ k ≤ m−1.

Proof. If [zn−j] (p(z)) = 0 for all j, 0 ≤ j ≤ m − 1, then Theorem 3 implies

that

fTDjw = 0 (2.53)

for all j, 0 ≤ j ≤ m− 1. The first m columns of cT1 are[
c0 · · · cm−1

]
= −fT

[
q0 · · · qm−1

]
− ‖w‖2eT1 . (2.54)

Theorem 2 established that the vectors q0, . . . ,qm−1 span the Krylov subspace

Km(D,w) = span{w,Dw, . . . ,Dm−1w}, and the conditions (2.53) imply that

the vector f is contained in the orthogonal complement Km(D,w)⊥. Thus,

(2.54) reduces to [
c0 c1 · · · cm−1

]
= −‖w‖eT1 , (2.55)

and hence c0 = −‖w‖ and ck = 0 for all k, 1 ≤ k ≤ m− 1.
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2.3.3 Deflation of Infinite Eigenvalues

The matrices in the pair (A,B) have dimension (n + 2) × (n + 2), whereas

the degree of the polynomial p(z) is only n; this formulation necessarily gives

rise to two spurious infinite eigenvalues. If the characteristic polynomial of

a matrix pair is not identically zero (indicating that the pair is singular, see,

for example, [13]), infinite eigenvalues can be deflated from a matrix pair by

transforming the pair to the form

(
Â, B̂

)
=

([
R∞ ×

Hf

]
,

[
J∞ ×

Tf

])
, (2.56)

where R∞ and J∞ are both upper triangular. R∞ is nonsingular, and J∞

has only zero entries on the diagonal. Hf is upper Hessenberg, and Tf is

upper triangular with nonzero diagonal entries. The matrix pair (Â, B̂) is no

longer properly upper Hessenberg-triangular, so we may split the eigenvalue

problem into two parts: the infinite eigenvalues are the eigenvalues of the pair

(R∞,J∞), while the finite eigenvalues are the eigenvalues of the pair (Hf ,Tf ).

For the matrix pair (A,B), the dimensions of the matrices R∞ and J∞ will

be m+ 2, where m is the number of zero leading coefficients of the interpolant

p(z). Reduction of the matrix pair to the form (Â, B̂) is usually carried out

by first reducing (A,B) to Hessenberg-triangular form, and then applying QZ

iterations to force the subdiagonal elements to zero.

For the reduced matrix pair (H,B) obtained from either of the reduction

algorithms proposed in §2.2.1 and §2.2.2, the reduction to the form (Â, B̂) can

be achieved by applying m+ 2 Givens rotations to the left of the matrix pair

(H,B). Furthermore, the matrix Tf in (2.56) is a diagonal matrix. Thus, we

may easily convert the generalized eigenvalue problem for the finite eigenvalues

into a standard eigenvalue problem, provided that Tf is well conditioned.

Using either of the reduction algorithms described in §2.2.1 or §2.2.2, we

can reduce the matrix pair (A,B) to the pair

(H,B) = (T + e1c
T ,B) , (2.57)
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where T is a symmetric tridiagonal matrix. We then partition H as 0 t0 + c0 cT2

t0 d0 t1e1

0 t1e1 T2

 , (2.58)

where T2 is the trailing n by n submatrix of T and cT2 is the vector of the last

n elements of cT . To annihilate the (2, 1) entry of H we apply a permutation

matrix G1 which swaps the first two rows. Applying G∗1 to the left of H and

B yields the equivalent pair

(G∗1H,G∗1B) =


 t0 d0 t1e1

0 t0 + c0 cT2

t1e1 T2

 ,
 0 1

0

I


 . (2.59)

Now that G∗1H is no longer properly upper Hessenberg and G∗1B is still upper

triangular, we may deflate one of the infinite eigenvalues since the (1, 1) ele-

ment of G∗1B is zero (indicating an infinite eigenvalue). Thus, we can delete

the first row and column of each of these matrices, and operate on the matrix

pair

(H1,B1) =

([
t0 + c0 cT2

t1e1 T2

]
,

[
0

I

])
. (2.60)

Remark 4. If the first m leading coefficients of p(z) are zero, Corollary 1

implies that t0 + c0 = 0 and ck = 0 for all k, 1 ≤ k ≤ m − 1. Thus, we can

apply a series of permutation matrices, swapping the first two rows and then

deflating an infinite eigenvalue from the matrix pair by deleting the first row

and column, until we obtain the matrix pair (Hm,Bm), where

Hm =



cm cm+1 cm+2 · · · cn

tm+1 dm+1 tm+2

tm+2 dm+2
. . .

. . . . . . tn

tn dn


, Bm =

[
0

I

]
. (2.61)
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Assuming that t0 + c0 6= 0 (or cm 6= 0 in light of Remark 4), we can

annihilate the (2, 1) element of H1, by applying a unitary Givens rotation G2

that acts on the first two rows of H1, where

G∗2 =

 h g

−g h

I

 , (2.62)

and where h and g are suitably chosen to annihilate the (2, 1) element of H1.

Applying G∗2 to the left of H1 yields

G∗2H1 =



h(t0 + c0) + gt1 hc1 + gd1 hc2 + gt2 hc3 · · · hcn

0 −gc1 + hd1 −gc2 + ht2 −gc3 · · · −gcn
t2 d2 t3

t3 d3
. . .

. . . . . . tn

tn dn


,

(2.63)

and applying G∗2 to the left of B1 yields

G∗2B1 =

 0 g

h

I

 . (2.64)

Since G∗2H1 is no longer properly upper Hessenberg and G∗2B1 is upper tri-

angular with the (1, 1) element being zero we may deflate the second spurious

infinite eigenvalue by deleting the first row and column of these matrices. This
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yields the matrix pair (H2,B2), where

H2 =



−gc1 + hd1 −gc2 + ht2 −gc3 · · · −gcn
t2 d2 t3

t3 d3
. . .

. . . . . . tn

tn dn


, (2.65)

and

B2 =

[
h

I

]
. (2.66)

As long as h is nonzero (which it will be, since t0 + c0 6= 0), we can convert

this generalized eigenvalue problem into a standard eigenvalue problem by

multiplying on the left by B−12 . Furthermore, if we define β = −g/h, then the

standard eigenvalue problem is

Hs = T2 + βe1c
T
2 . (2.67)

Remark 5. The question arises: what should we do if h is very small but

nonzero? This would be the case if the leading coefficient of the interpolating

polynomial is very close to zero. One possible answer would be to work directly

with the generalized eigenvalue problem (H2,B2) and regard the accuracy of

the resulting (very large) eigenvalue as being dubious. Another option would

be to monitor the size of t0 + c0 or cj, and explicitly set these values to zero,

resulting in the deflation of an infinite eigenvalue.

Remark 6. Here we are concerned primarily with the initial reduction of

the matrix pair (A,B) to a standard eigenvalue problem with tridiagonal plus

rank-one form. Fast algorithms do exist to perform the QR algorithm on such

structured matrices, as shown in [3, 25, 26], and we believe that these methods

should be very competitive once the matrix pair is reduced.
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2.3.4 Connection to the Chebyshev Colleague Matrix

For polynomials expressed by their values at Chebyshev points of the second

kind (xi = cos (jπ/n), 0 ≤ j ≤ n), one can solve the rootfinding problem by

first converting the polynomial to a Chebyshev series. This can be done via

the discrete cosine transform or the fast Fourier transform [22, 23]. The roots

of the polynomial expressed as a finite Chebyshev series

p(z) =
n∑
k=0

akTk(z) (2.68)

can be found by computing the eigenvalues of the colleague matrix, discovered

independently by Specht [21] and by Good [10]. The colleague matrix is a

tridiagonal plus rank-one matrix C = T + e1c
T , where the tridiagonal part T

arises from the recurrence relation defining the Chebyshev polynomials. The

coefficients of the Chebyshev expansion appear in the rank-one part of C.

There are many different forms in which the colleague matrix can be stated,

and here we present one form with symmetric tridiagonal part:

C =



0 1
2

1
2

. . . . . .

. . . 0 1
2

1
2

0 1√
2

1√
2

0


− 1

2an
e1

[
an−1 · · · a1

√
2a0

]
. (2.69)

The basic idea to show that the eigenvalues of the Colleague matrix (2.69)

30



are the roots of (2.68) is to multiply C on the left by the vector

v =


Tn−1(z)

...

T1(z)
1√
2
T0(z)

 , (2.70)

and utilize the three term recurrence relation for Chebyshev polynomials. The

first row of Cv = zv is satisfied exactly when p(z) = 0, and the others are

satisfied by the three term recurrence relation.

In §2.2.1, §2.2.2, and §2.3.3, we were able to construct two nonsingular

matrices U and V such that

(UAV,UBV) =

([
R∞ ×

Hs

]
,

[
J∞ ×

I

])
, (2.71)

where the pair (R∞,J∞) is upper triangular, and contains the m + 2 infinite

eigenvalues of the pair (A,B). The eigenvalues of the upper Hessenberg matrix

Hs are the finite eigenvalues of the pair (A,B), and hence are both the roots

of p(z) and the eigenvalues of C. Thus, there exists two nonsingular matrices

Û and V̂ such that

(
ÛAV̂, ÛBV̂

)
=

([
R∞ ×

C

]
,

[
J∞ ×

I

])
. (2.72)

For Chebyshev points of the second kind, the barycentric weights w` are

defined by [19, 30]

w` =
2n−1

n
(−1)`δ` , δ` =

1/2 if ` = 0 or ` = n

1 otherwise
. (2.73)

Owing to their magnitude for large n, there is the risk of overflow in floating-

point computations, so usually [2, 12, 30] the weights are multiplied by n/2n−1

31



to give

ŵ` = (−1)`δ` . (2.74)

This rescaling is possible because, for the second form of the barycentric in-

terpolation formula (2.3), w` appears in both the numerator and denominator

so this factor cancels. For the companion matrix pair (A,B), rescaling the

barycentric weights w` does not change the eigenvalues. This is because the

(1, 1) element of matrix B is zero, so we may rescale the first row or column

of A independently.

We would ideally like to find a nonsingular diagonal matrix S such that

when we reduce the matrix pair (S−1AS,S−1BS) to the form (2.71), and

deflate the infinite eigenvalues, we have exactly Hs = C.

We begin again with the matrix pair (A,B), where

A =

[
0 −fT

ŵ D

]
, B =

[
0

I

]
, (2.75)

and the vector of scaled barycentric weights is ŵ =
[
ŵ0 · · · ŵn

]
.

We then define the matrix S1 = diag
([√

n/
√

2,
√
n,
√
n, · · · ,

√
n,
√
n/
√

2
])

,

for which ‖S−11 ŵ‖2 = 1. Define

S =

[
1

S1

]
(2.76)

and form

Â = S−1AS . (2.77)

Note also that S−1BS = B. Applying either of the reduction algorithms

described in §2.2.1 and in §2.2.2 to Â produces a symmetric tridiagonal plus
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rank-one matrix with tridiagonal part

T =



0 1

1 0 1√
2

1√
2

0 1
2

1
2

. . . . . .

. . . 0 1
2

1
2

0 1√
2

1√
2

0



. (2.78)

After deflating the spurious infinite eigenvalues and reducing the generalized

eigenvalue problem to a standard one, we obtain exactly the Chebyshev col-

league matrix Hs = C.

2.3.5 Balancing

It is standard practice to balance a matrix before reducing it to Hessenberg

form and computing its eigenvalues. For the standard eigenvalue problem,

balancing is the default option in Matlab’s eig routine, and also in Lapack’s

GEEV routine. The balancing strategy used in these routines, as outlined in

[17, 18], aims to improve the norm of the input matrix by applying diagonal

similarity transformations, where the diagonal elements are restricted to exact

powers of the radix employed.

For a generalized eigenvalue problem, similar algorithms exist to balance

the matrix pair (A,B); full details of the algorithms can be found in [27] and

in [15]. Both of these algorithms determine two diagonal matrices DL and DR

such that the condition number of the eigenvalues of the equivalent matrix

pair (DLADR,DLBDR) is improved. However, the algorithms described in

§2.2.1 and §2.2.2 rely upon the fact that Q∗BQ = B. So we must have

DLBDR = B, requiring that DL = D−1R except in the first diagonal entry,
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which can be arbitrary. Hence, we may balance the matrix pair (A,B) by

applying standard balancing to the matrix A.

We are also in a unique situation in that the first row and column of A

can be scaled independently without modifying B, since the (1, 1) element is

zero. For example, before finding a diagonal scaling transformation to balance

the matrix A, we could scale the first row and column to have unit norm;

this will avoid difficulties where the first row and column have very different

magnitudes.

2.4 Numerical Experiments

In this section, we will investigate the accuracy and stability of the two reduc-

tion algorithms proposed in §2.2.1 and §2.2.2, as well as that of the deflation

procedure proposed in §2.3.3. Furthermore, we will investigate the application

of Theorem 3 and Corollary 1 numerically.

We also compare the algorithms presented here to the algorithm described

in [6]. That algorithm reduces a quasiseparable matrix to Hessenberg form in

O(n2) operations.

2.4.1 Chebyshev Polynomials of the First Kind

We will first give an example for which the Hessenberg reduction of the matrix

pair (A,B) is known. We interpolate Chebyshev polynomials of the first kind

Tn(z) at the roots of Tn+1(z). At these nodes, the reduced matrix Q∗AQ =

T + e1c
T has tridiagonal part T with entries di = 0, 0 ≤ i ≤ n, and

ti =


‖w‖2 if i = 0

1/
√

2 if i = n

1/2 otherwise

. (2.79)

Furthermore, if we interpolate the Chebyshev polynomial Tn(z) at these nodes,

we will be able to symmetrize the matrix A by scaling the first column. The
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Hessenberg reduction of A will then produce a symmetric tridiagonal matrix,

and we will be able to directly test the accuracy of the reduction processes.

The interpolation nodes are taken to be Chebyshev nodes of the first kind,

that is, the roots of Tn+1(z), which are given by

xj = cos
(2j + 1)π

2n+ 2
, 0 ≤ j ≤ n . (2.80)

At these nodes, Tn(z) takes on the values

fj = (−1)j sin
(2j + 1)π

2n+ 2
, 0 ≤ j ≤ n , (2.81)

and the barycentric weights are

wj =
2n

(n+ 1)
(−1)j sin

(2j + 1)π

2n+ 2
, 0 ≤ j ≤ n . (2.82)

Because wj = 2n/(n + 1)fj, we are able to symmetrize A by scaling the

barycentric weights so that w = −f . Thus, the matrix pair

(A,B) =

([
0 −fT

−f D

]
,

[
0

I

])
(2.83)

has eigenvalues which are exactly the roots of Tn(z), and will reduce to a

symmetric tridiagonal matrix. The characteristic polynomial of the scaled

pair (A,B) is now

det (zB−A) = −(n+ 1)

2n
Tn(z) . (2.84)

For each n ranging from 1 to 100, we measured the accuracy of reducing the

matrix pair to Hessenberg form by computing the maximum error in the com-

puted subdiagonal entries and the exact subdiagonal entries given in (2.79).

Figure 2.1 reports the maximum error for each value of n. We also measured

the maximum forward error in the computed eigenvalues, as shown in Fig-

ure 2.2. Four reduction algorithms are compared: the standard Hessenberg-
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triangular reduction, the Lanczos type reduction of §2.2.1, the Givens type

reduction of §2.2.2, and the quasiseparable matrix algorithm proposed in [6].
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Figure 2.1: Distribution of maximum error in the subdiagonal entries of T.

The standard reduction algorithm is not able to make use of the symmetry

of A. This leads to rounding errors propagating into the upper triangular

part of B. The error in the computed subdiagonal elements of the Hessenberg

matrix and the maximum forward error are the worst of the four algorithms.

The Lanczos type reduction is the most accurate, which was somewhat

surprising given that the transformation matrix could lose orthogonality. It

seems that for this particular set of nodes, the method is fairly well behaved.

Orthogonality of the transformation matrix is lost at a linear rate, that is

‖Q∗Q−I‖2 ∝ n. For n = 100 we have ‖Q∗Q−I‖2 ≈ 10−14. We do not expect

this to be the case for arbitrary sets of nodes. However, it is surprising that

even for equispaced nodes, orthogonality appears to be lost at the same rate.

The Givens type reduction performs approximately halfway in between the
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Figure 2.2: Maximum forward error in the computed roots from each of the
four reduction processes.

standard reduction and the Lanczos type reduction. We also compared the

Givens type reduction with Lapack’s DSYTRD, which uses elementary reflectors

to decompose the matrix and is also able to take advantage of the symmetry of

the matrix. The errors in the computed subdiagonal entries are comparable for

both reduction methods. However, DSYTRD uses O(n3) operations to perform

the reduction.

The quasiseparable matrix algorithm of [6] produced subdiagonal elements

of around the same accuracy as the standard reduction. The computed eigen-

values were more accurate than the standard reduction, but were about half

an order of magnitude larger, on average, than those of either the Givens type

or Lanczos type reductions. We should note however, the algorithm can be

applied to a much more general class of matrices than the one considered here.
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2.4.2 Scaled Wilkinson Polynomial

Here we investigate the accuracy of computing the roots of a poorly condi-

tioned polynomial, investigated by Wilkinson in [31]. We modify Wilkinson’s

polynomial to have roots equispaced in the interval [0, 1]: the polynomial we

investigate is defined by

p(z) =
20∏
`=1

(
z − `

21

)
. (2.85)

We sampled the polynomial at a range of interpolation nodes: equispaced

nodes, Chebyshev nodes, and Legendre nodes. We choose 21 nodes of each

distribution in the interval [1/(2n), 1−1/(2n)]. We applied diagonal balancing

to the matrix A, equalizing the row and column norms, and then scaled the

first row and column to have unit norm. We reduced the matrix pair using the

standard, Lanczos type, Givens type, and quasiseparable matrix reductions,

and then deflated the spurious infinite eigenvalues to obtain the matrices HS,

HL, HG, and HQ, respectively. Table 2.1 shows the maximum error between

the true roots of p(z) and the computed eigenvalues of HS, HL, HG, and

HQ. We see that equispaced points are well suited for this particular problem,

as they interlace the roots and hence the Hessenberg reduction will give a

tridiagonal matrix which is symmetric except for the first two off-diagonal

entries. For all three of the node distributions, both the Givens type and the

quasiseparable matrix reductions are only a small factor more or less accurate

than the standard reduction.

The accuracy of the Lanczos type reduction shows some degradation, and

this is due to a slight loss of numerical orthogonality of the vectors q0, . . . ,qn

produced in the reduction process. This loss of orthogonality is due to the

initial balancing performed on the matrix. If balancing is not used, the trans-

formation matrix does not lose orthogonality. However, the computed eigen-

values are roughly one to two orders of magnitude less accurate than those

computed from the balanced matrix. By computing ‖Q∗LQL − I‖2, as shown

in Table 2.2, we see that the vectors produced by the reduction algorithm do
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not give a numerically orthogonal transformation matrix QL. Thus, we would

not recommend the use of such an algorithm for arbitrary node distributions

and weights.

Table 2.1: Maximum error in computed eigenvalues for Wilkinson’s polyno-
mial, sampled at different node distributions.

Point distribution Standard Lanczos Givens Quasi

Chebyshev 3.29× 10−14 2.37× 10−12 2.43× 10−14 6.25× 10−14

Equispaced 1.78× 10−15 5.65× 10−13 2.33× 10−15 1.33× 10−15

Legendre 1.67× 10−14 3.13× 10−12 1.05× 10−14 1.13× 10−14

Table 2.2: Measure of loss of orthogonality of vectors q0, . . . ,qn produced from
the Lanczos type reduction process of §2.2.1.

Point distribution ‖Q∗LQL − I‖2
Chebyshev 3.37× 10−12

Equispaced 1.96× 10−11

Legendre 2.75× 10−12

Both the standard reduction algorithm and the Givens type reduction algo-

rithm produce numerically orthogonal transformation matrices. This explains

the increased accuracy of both of these methods over the Lanczos type reduc-

tion algorithm.

2.4.3 Polynomials with Zero Leading Coefficients in the

Monomial Basis

We will now investigate the numerical application of Theorem 3 to detect when

the leading coefficients (in the monomial basis) of the interpolant are zero. If
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the first m leading coefficients are all equal to zero, then the values

fTDkw , 0 ≤ k ≤ m− 1 (2.86)

will all be equal to zero, and the first nonzero leading coefficient will be equal

to fTDmw. For these experiments, no scaling is used for either the values or

the barycentric weights.

First we give a very simple example: we will interpolate the polynomial

f(z) = z2 + 4z + 1 (2.87)

at 7 Chebyshev points of the second kind. Chebyshev points are convenient

for this example, but other points could be used, and produce similar results.

Because the first 4 leading coefficients of the interpolant are zero, by Theorem

3 we may compute the first 5 leading coefficients using fTDkw for 0 ≤ k ≤ 4,

as shown in Table 2.3. The first four leading coefficients are all very close

to machine epsilon (εM ≈ 2.2 × 10−16), all being less than 32 times larger

than machine epsilon. The first nonzero leading coefficient, which should be

equal to 1, differs from 1 by less than 16 times machine epsilon. This example

Table 2.3: Leading coefficients of the degree six interpolant to (2.87).

fTw fTDw fTD2w fTD3w fTD4w

3.55× 10−15 3.55× 10−15 1.78× 10−15 7.11× 10−15 1.00

illustrates that for small problems, and polynomials with leading coefficients

which are not close to zero, we can accurately determine the first nonzero

leading coefficient.

However, in applications such as the Matlab package Chebfun [24], poly-

nomial interpolants are constructed to approximate functions accurate to ma-

chine precision. To monitor the accuracy of the interpolant, the Chebyshev

expansion coefficients are computed from the values of the interpolant via the

fast Fourier transform, and once the magnitude of these coefficients falls below

a certain tolerance, the approximation is deemed to be accurate enough. In
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this case, detecting the first nonzero leading coefficient of the interpolant using

Theorem 3 may be very difficult, since the magnitude of the nonzero leading

coefficient will necessarily be small.

We contrive the following example to illustrate just this point. Define the

polynomial

f(z) = 10−12T9(z) + 10−10T8(z) + 10−8T7(z) + 10−6T6(z) + 10−4T5(z)

+ 10−2T4(z) + T3(z) + 3T2(z)− 2T1(z)− T0(z) , (2.88)

where Tk(z) is the kth Chebyshev polynomial of the first kind. We then sam-

pled this polynomial at 12 Chebyshev points of the second kind, and computed

fTDkw for 0 ≤ k ≤ 2 as shown in Table 2.4. The leading coefficients in the

monomial basis which should be zero are not very accurate, although in this

case the difference between the exact leading coefficient in the monomial ba-

sis 2.56× 10−10 and the computed leading coefficient is approximately 10−13.

However, using this technique to determine the first nonzero leading coefficient

may be unsuitable for applications where it is known that the first leading co-

efficient is very small. We should note here that although Theorem 3 may

Table 2.4: Leading coefficients of the degree 11 interpolant to (2.88).

fTw fTDw fTD2w

−4.83× 10−13 −4.83× 10−13 2.56× 10−10

not give numerically useful results, Corollary 1 may be better suited to nu-

merically determining the first nonzero leading coefficient of an interpolant.

The downside is that we then obtain an O(n2) algorithm, instead of an O(kn)

one from forming fTDkw. For the previous example, we reduce the matrix A

using the Givens type reduction algorithm, and look at the first three elements

of the output vector c1. The first coefficient c0 should be −‖w‖, and agrees

well with this value numerically. The second coefficient c1 is indeed very small,

as we would hope. The value of the first nonzero leading coefficient will now

not be expressed in the monomial basis, or the Chebyshev basis, but rather in
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Table 2.5: Elements of c1 produced by the Givens type reduction process.

c0 + ‖w‖ c1 c2

−5.68× 10−14 1.55× 10−15 −2.46× 10−12

an orthogonal polynomial basis defined by the three term recurrence relation

derived from the tridiagonal part T of the reduced matrix. However, one could

determine that this is indeed a nonzero value.

What we have illustrated through these examples is that if the first nonzero

leading coefficient of the interpolant is very much different from zero, then

computing it through the formula fTDmw will be fairly effective. However,

if the first nonzero leading coefficient is close to zero, then this formula may

be inaccurate, and one should instead use the coefficients c1 produced by one

of the reduction algorithms of §2.2.1 or §2.2.2 to determine the first nonzero

leading coefficient.

2.4.4 Barycentric Rational Interpolation

An example of severe loss of orthogonality of the vectors q0, . . . ,qn produced

by the Lanczos type reduction of §2.2.1 occurs for barycentric rational inter-

polants described by Floater and Hormann [7]. In the simplest case, which

was previously discovered by Berrut [1], for an arbitrary set of nodes one can

prescribe the barycentric weights wj to be

wj = (−1)j, 0 ≤ j ≤ n . (2.89)

As discussed in §2.1, the second form of the barycentric formula (2.3) inter-

polates the values fj, as long as the weights wj are not zero. The choice of

weights (2.89) guarantees that the rational interpolant does not have poles

in R. The second barycentric formula is the quotient of two polynomials ex-

pressed in the first form of the barycentric formula. Thus, we can compute

the roots and poles of the rational interpolant by forming two matrix pairs:

one for the roots, from the barycentric weights wj and the values fj, and one
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for the poles, from the barycentric weights wj and the values fj = 1.

As an example, let us interpolate the function

f(z) =
1

(1 + 25z2)
− 1

2
(2.90)

at equispaced points on the interval [−1, 1], using the weights given in (2.89).

We construct the two matrix pairs corresponding to the numerator and de-

nominator polynomials of the rational interpolant. We then reduce them to

tridiagonal plus rank-one form using the Givens type reduction of §2.2.2, and

deflate the two spurious infinite eigenvalues. The roots and poles of the ratio-

nal interpolant are shown in Figure 2.3. Interestingly, at the extremities of the

interval, the roots and poles of the interpolant become very close, indicating

that there are common factors of the numerator and denominator polynomi-

als. Table 2.6 shows the interpolation error and the error between the two real
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Figure 2.3: Roots (+) and poles (◦) of the rational interpolant.

roots of f(z) and the root approximations generated from the eigenvalue com-

putation for two choices of n. There is good agreement between the computed

roots and the roots of the original function, especially considering the size of

the interpolation error.

Next, we decompose the matrix pair (A,B) using the Lanczos type re-

duction of §2.2.1. Figure 2.4 illustrates the degradation in the orthogonality
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Table 2.6: Accuracy of interpolant and eigenvalue computation.

n max
x∈[−1,1]

|f(x)− p(x)| Error in root approximation

56 1.05× 10−3 4.05× 10−4

156 3.86× 10−4 1.49× 10−4
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Figure 2.4: Error in orthogonality of vectors q0, . . . ,qn: max
0≤i≤k−1

|q∗iqk|.

of the vector qk against q0, . . .qk−1 produced by the reduction process. For

both values of n, there is a fairly rapid degradation of the orthogonality after

only a small number of steps. By the time the algorithm has produced qn, all

orthogonality of the vectors has been lost. The transformation matrix QL is

formed using only the barycentric weights and the interpolation nodes. Thus,

for this particular choice of nodes and weights, the Lanczos type algorithm is

not suitable, and the Givens type reduction should be used instead.

2.5 Concluding Remarks

In this chapter, we have described two algorithms to reduce the matrix pair

(A,B) to Hessenberg-triangular form, and to deflate at least two spurious

infinite eigenvalues from the matrix pair so that it can be converted to a

standard eigenvalue problem. The matrix pair is reduced in such a way that
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the resulting standard eigenvalue problem has tridiagonal plus rank-one form.

In addition to reducing the number of entries in the matrix being filled in, both

reduction algorithms lower the cost of the Hessenberg-triangular reduction

from O(n3) to O(n2). By numerical experimentation, we have shown that

for particular choices of interpolation node distributions, the algorithms are

accurate, despite the above-mentioned limitations of the Lanczos reduction

algorithm.
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Chapter 3

Stability of Rootfinding for
Barycentric Lagrange
Interpolants1

3.1 Introduction

This chapter establishes the numerical stability of rootfinding via the eigen-

values of a generalized companion matrix pair, for polynomials expressed in a

Lagrange basis. This process is related to Lagrange interpolants expressed in

barycentric form, as described by Berrut and Trefethen [5]. These representa-

tions are interesting in part because they are often so very well conditioned [8].

It has been shown in [1, 6, 7] that the roots of polynomials expressed in this

basis can be found via the eigenvalues of a generalized companion matrix pair.

We have previously suggested that computing the roots of interpolants in this

manner is numerically stable [15]. However, apart from our own brief discus-

sion in that paper, no in-depth analysis of the stability of this approach has

been published to date, and hence we perform such an investigation here.

As seems to be the case for many different generalized companion matri-

ces, the matrix pair discussed here came into use well before it was rigor-

ously shown to be numerically stable. For the monomial basis, Edelman and

Murakami [10] demonstrated the backward stability of the Frobenius com-

1A version of this chapter has been submitted to Numerical Algorithms for publication.
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panion matrix, which forms the basis of Matlab’s roots command. This

was experimentally and algorithmically discussed by Toh and Trefethen [21],

and by Moler [18]. Similarly, for polynomials expressed as Chebyshev expan-

sions [13, 20] and other orthogonal bases [9], use preceded analysis.

The interpolating polynomials we are investigating are defined as follows:

given a set of n+1 distinct nodes {x0, · · · , xn}, define the nodal polynomial `(z)

by

`(z) =
n∏
i=0

(z − xi) , (3.1)

and define the barycentric weights wj by

wj =
∏
k 6=j

(xj − xk)−1 , 0 ≤ j ≤ n . (3.2)

The unique polynomial p(z) of degree less than or equal to n interpolating a

set of values {f0, · · · , fn} at the nodes {x0, . . . , xn} is given by the first form

of the barycentric interpolation formula [5]

p(z) = `(z)
n∑
j=0

wjfj
(z − xj)

. (3.3)

A generalized companion matrix pair for this interpolant can be written as

(A,B) =

([
0 −fT

w D

]
,

[
0

I

])
, (3.4)

where wT =
[
w0 · · · wn

]
, fT =

[
f0 · · · fn

]
, and

D =


x0

. . .

xn

 . (3.5)

It was shown in [7], using the Schur complement, that (independent of the
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ordering of the nodes)

det (zB−A) = det (zI−D)(fT (zI−D)−1w) = p(z) . (3.6)

Thus, the generalized eigenvalues of (A,B) are exactly the roots of the poly-

nomial interpolant p(z). We may also write the determinant as

det (zB−A) = fTadj(zI−D)w . (3.7)

Notice that the Lagrange basis polynomials are `k(z) = `(z)wk/(z − xk), and

hence (3.7) is mathematically equal to the usual Lagrange form of the inter-

polating polynomial.

3.2 Numerical Stability of (A,B)

In [10, 14, 16] we find significant discussion of the backward error of companion

matrix pairs and other linearizations. These works consider only the monomial

basis, and it turns out to be worthwhile to reformulate the analysis for the

Lagrange basis.

The deepest part of their works is an explanation of why generic matrix

perturbations of A (and B) are equivalent (up to first order) to a much more

restricted class of perturbations of the n (+1) values of the polynomial coef-

ficients. The reason, as deduced by Arnol’d [3] and refined by others, is that

perturbations tangent to the set {TCT−1 : det T 6= 0} (the set of matrices

similar to a companion matrix C) do not matter, to first order. The other

(normal) direction can be accounted for by small changes in the polynomial

coefficients.

The same is true in this case (it is just a different basis) but the computa-

tions are remarkably simpler, and the bound we obtain is often smaller.

We first observe that the “coefficients” of the polynomial p(z) in the La-

grange basis are in fact the “values” fj at distinct nodes xj. Thus, a good

backward stability result would be something like:

The computed generalized eigenvalues of (A,B) are the exact roots of a
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polynomial p̃(z) which satisfies

p̃(xi) = fi + κiε+O(ε2) , (3.8)

where κi is a moderate constant. Now, the computed eigenvalues are the

exact eigenvalues of a slightly perturbed pair (A + ∆A,B + ∆B), where the

perturbations ∆A and ∆B satisfy ‖(∆A,∆B)‖F ≤ σ(n)εM‖(A,B)‖F , σ(n)

being a slowly growing function of n, and εM is the machine precision, this

will give us a natural ε to take.

One complication is that the degree of the interpolating polynomial p(z)

is at most n, whereas the degree of the characteristic polynomial of a slightly

perturbed pair (A + ∆A,B + ∆B) could be up to n+ 2. In exact arithmetic,

we have [zn+2](det (zB−A)) = 0, and [zn+1](det (zB−A)) = 0. Hence, the

formulation (A,B) introduces two spurious infinite eigenvalues to the prob-

lem. The perturbations ∆A and ∆B could, in principle, cause the two spu-

rious infinite eigenvalues to become very large finite eigenvalues. However,

this complication can be avoided if we ensure that the (1, 1) elements of the

perturbations ∆A and ∆B are both equal to zero, as we show in the following

lemma.

Lemma 3. If the (1, 1) elements of the perturbation matrices ∆A and ∆B

are both equal to zero, then the degree of det (z(B + ∆B)− (A + ∆A)) is at

most n.

Proof. The known backward error result [2, §4.11.1.1] guarantees the existence

of ∆A and ∆B such that all computed eigenvalues are the exact eigenvalues of

(A+∆A,B+∆B). If it so happened that perturbations to the (1, 1) elements

of the pair ∆A11 and ∆B11 were both identically zero, then via (3.7) we may

write the determinant of z(B + ∆B)− (A + ∆A) as

det

[
0 (f + ∆f)T

−(w + ∆w) z(I + ∆B22)− (D + ∆A22)

]
=

(f + ∆f)Tadj(z(I + ∆B22)− (D + ∆A22))(w + ∆w) . (3.9)

51



The degree in z of each minor of z(I + ∆B22) − (D + ∆A22) (each be-

ing determinants of n × n matrices) is at most n. Hence, the degree of

det (z(B + ∆B)− (A + ∆A)) is at most n.

As shown in §2.3.3, the two infinite eigenvalues can be deflated exactly from

the matrix. In that section, only real interpolation nodes were considered, but

the result is easily extended to arbitrary interpolation nodes, as we now show.

Lemma 4. The two spurious infinite eigenvalues can be deflated exactly from

the matrix pair (A,B) using unitary equivalence transformations.

Proof. There exists a unitary matrix Q with Qe1 = e1 such that Q∗AQ = H

is an upper Hessenberg matrix (see, for example, Theorem 3.3.1 in [24, p.

138]). Hence, Q = diag(1,Q1), and Q∗BQ = B. The invariance of B under

this similarity transformation ensures that the two spurious infinite eigenvalues

can be deflated from the top left hand corner of the matrix pair. Applying

this similarity transformation to A yields

Q∗AQ =

[
0 −fTQ1

Q∗1w Q∗1DQ1

]
=

[
0 −fTQ1

h2,1e1 Ĥ1

]
, (3.10)

where Ĥ1 is upper Hessenberg.

The two spurious infinite eigenvalues can be deflated exactly from the ma-

trix by applying two Givens rotations to the left of the pair Q∗(A,B)Q. The

first of which (say G1), swaps the first two rows of the pair. This introduces

another zero on the diagonal of B, which remains upper triangular. The matrix

G1Q
∗AQ is still upper Hessenberg, but is no longer properly upper Hessen-

berg. Thus, we may deflate the first spurious infinite eigenvalue by deleting

the first row and column of these matrices, yielding the pair (H1,B1).

The (1, 1) element of H1 is given by ĥ1,1 = −fTQ1e1, and since Q∗1w =

h2,1e1, the first column of Q1 is proportional to w, so that ĥ1,1 = −fTw/h2,1.

From the barycentric formula (3.3), the leading coefficient of p(z) is fTw, and

thus we have two cases to treat.
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If fTw is zero, we can apply a Givens rotation, G2, swapping the first

two rows of the pair (H1,B1), and then deflate the second spurious infinite

eigenvalue by deleting the first row and column of G2(H1,B1). (In fact, we

may continue this process until a nonzero (1, 1) element of the deflated pencil

is encountered, which will deflate any other infinite eigenvalues that might be

present.)

If fTw 6= 0 (or the (k, k) element is nonzero), we can apply a Givens

rotation, G2, to the left of the pair (H1,B1), annihilating the (2, 1) element

of H1, which will now no longer be properly upper Hessenberg. This rotation

does not disturb the upper triangular structure of B1. Thus, we may deflate

the second spurious infinite eigenvalue by deleting the first row and column of

the pair G2(H1,B1), yielding the pair (H2,B2).

Remark 7. In other words, because the (1, 1) elements of A and B are both

zero, G1 must swap the first two rows of the pair (A,B), introducing a sec-

ond zero on the diagonal of B. This ensures that the two spurious infinite

eigenvalues are deflated exactly from the pair.

Remark 8. Once we have deflated the two spurious infinite eigenvalues, the

generalized eigenvalue problem (H2,B2) may be converted to a standard eigen-

value problem (provided that B2 is well-conditioned) by multiplying on the left

by B−12 .

Remark 9. If the first m leading coefficients of p(z) are all zero, then a se-

quence of Givens rotations (swapping the first two rows of the pencil and delet-

ing the first row and column) will deflate the m additional infinite eigenvalues,

as shown in §2.3.3.

The previous two lemmas constrain the structure of the perturbations ∆A

and ∆B. If we convert the generalized eigenvalue problem to a standard one,

we might as well eliminate the perturbation ∆B altogether. However, if we

keep the perturbations ∆B, then our results will also apply to algorithms

which allow perturbations in B, and hence we keep them for this work.
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Lemma 5. Suppose that the computed generalized eigenvalues of (A,B), the

set {λ1, . . . , λn,∞,∞}, are the exact eigenvalues of the matrix pair

(A + ∆A,B + ∆B) , (3.11)

where the perturbations satisfy ‖(∆A,∆B)‖F ≤ σ(n)εM‖(A,B)‖F (as guar-

anteed by Lapack [2, §4.11.1.1]), and εM is the machine precision. Take

ε = σ(n)εM‖(A,B)‖F , and define (∆A,∆B) = ε(E,F), where ‖(E,F)‖F ≤ 1.

The computed generalized eigenvalues λj are the exact roots of a polynomial

p̃(z) of degree at most n, satisfying

p̃(xi) = fi + κiε+O(ε2) , (3.12)

where κi = tr (adj(xiB−A)(xiF− E)).

Proof. The algorithms for the computing the generalized eigenvalues of a non-

symmetric matrix pair are normwise backward stable [2, §4.11.1.1]. The

computed eigenvalues are the exact eigenvalues of a perturbed matrix pair

(A + ∆A,B + ∆B), where the perturbations satisfy

‖(∆A,∆B)‖F ≤ σ(n)εM‖(A,B)‖F , (3.13)

where εM is the machine precision. Define the polynomial p̃(z) to be the

characteristic polynomial of the perturbed pair (A + ∆A,B + ∆B), that is,

p̃(z) = det (z(B + ∆B)− (A + ∆A)) . (3.14)

Recall that for square matrices

d

dε
det (A(ε)) = tr

(
adj(A(ε))

dA(ε)

dε

)
(3.15)

(see, for example, [12]).

Define ε = σ(n)εM‖(A,B)‖F and (∆A,∆B) = ε(E,F). Then expand
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p̃(xi) about ε = 0:

p̃(xi) = det (xiB−A + ε(xiF− E))

= det (xiB−A) + tr(adj(xiB−A + 0(xiF− E))(xiF− E)) · ε+O(ε2)

= fi + tr (adj(xiB−A)(xiF− E)) · ε+O(ε2) . (3.16)

Thus, κi = tr (adj(xiB−A)(xiF− E)).

The κi’s in Lemma 5 are essentially the ratio of the backward error in the

coefficients of the polynomial p(z) to the backward error of the generalized

eigenvalue problem. Since we may compute the backward error of the gener-

alized eigenvalue problem easily, then obtaining a bound on the κi’s allows us

to compute useful information about the structured backward errors induced

in the coefficients of the polynomial. The following theorem obtains such a

useful bound.

Theorem 4. The κi’s in Lemma 5 satisfy

|κi| ≤ (|xi|+ 1)‖adj(xiB−A)‖F , (3.17)

and

‖adj(xiB−A)‖F =∣∣∣∣∣∣∣∣
n∏
j=0
j 6=i

(xi − xj)

∣∣∣∣∣∣∣∣
√√√√√√√|fi|2 + |wi|2 +

n∑
j=0
j 6=i

(|fiwi|2 + |fjwi|2 + |fiwj|2)
|xi − xj|2

+

∣∣∣∣∣∣∣∣
n∑
j=0
j 6=i

wjfj
xi − xj

∣∣∣∣∣∣∣∣
2

.

(3.18)

Proof. For all X ∈ Cn×m, Y ∈ Cm×n we have |tr(XY)| ≤ ‖X‖F‖Y‖F (this is

just the Cauchy-Schwartz inequality, see [24, p. 50]). Applying this to κi, we

obtain

|κi| ≤ (|xi|‖F‖F + ‖E‖F )‖adj(xiB−A)‖F , (3.19)
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and since ‖E‖F ≤ 1 and ‖F‖F ≤ 1, this reduces to

|κi| ≤ (|xi|+ 1)‖adj(xiB−A)‖F . (3.20)

To derive the explicit bound (3.18) we must first determine adj(xiB−A). If xi

is not an eigenvalue of (A,B), this turns out to be remarkably simple:

adj(xiB−A) =
n∏
j=0
j 6=i

(xi − xj)

 0 −fieTi

wiei

(
fiI− eif

T
)

(xiI−D)†
(
wiI−weTi

)
 ,

(3.21)

where (xiI−D)† is the Moore-Penrose pseudoinverse given by

(xiI−D)† =



1
(xi−x0)

. . .
1

(xi−xi−1)

0
1

(xi−xi+1)

. . .
1

(xi−xn)


. (3.22)

Notice that the trailing submatrix
(
fiI− eif

T
)

(xiI−D)†
(
wiI−weTi

)
is zero

except for the diagonal entries and the ith row and column, that is, adj(xiB−A)

has the following structure:

0

×


. (3.23)

56



To show that (3.21) is indeed the adjugate of (xiB − A), we follow [11]:

assuming that (xiB−A) is nonsingular,

adj(xiB−A) =

[
det (xiI−D) −fTadj(xiI−D)

adj(xiI−D)w adj(xiI−D)− adj(xiI−D−wfT )

]
.

(3.24)

The matrix (xiI − D) is singular, the left and right null spaces are spanned

by ei, and computing the (i, i) minor of (xiI−D) yields

adj(xiI−D) =
n∏
j=0
j 6=i

(xi − xj)eieTi . (3.25)

It is shown in [11] that

adj(xiI−D)− adj(xiI−D−wfT ) =
n∏
j=0
j 6=i

(xi − xj)
(
fiI− eif

T
)

(xiI−D)†
(
wiI−weTi

)
, (3.26)

and this completes the construction of the adjugate. Taking the Frobenius

norm of (3.21), we obtain

‖adj(xiB−A)‖2F =∣∣∣∣∣∣∣∣
n∏
j=0
j 6=i

(xi − xj)

∣∣∣∣∣∣∣∣
2

(|fi|2 + |wi|2 + |fiwi|2‖(xiI−D)†‖2F + |wi|2‖fT (xiI−D)†‖2F

+ |fi|2‖(xiI−D)†w‖2F + |fT (xiI−D)†w|2) . (3.27)
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Then, using the pseudoinverse (3.22), we arrive at

‖adj(xiB−A)‖F =∣∣∣∣∣∣∣∣
n∏
j=0
j 6=i

(xi − xj)

∣∣∣∣∣∣∣∣
√√√√√√√|fi|2 + |wi|2 + n∑

j=0
j 6=i

(|fiwi|2 + |fjwi|2 + |fiwj |2)
|xi − xj |2

+

∣∣∣∣∣∣∣∣
n∑
j=0
j 6=i

wjfj
xi − xj

∣∣∣∣∣∣∣∣
2

.

(3.28)

Notice that in the bound (3.18), the factor in front of the square root is

exactly 1/|wi|. We choose not to simplify this term, because we will be able

to use the same bound if we scale or balance the matrix. Taking this factor

into account, we see that κi is proportional to max
j
|fj|, to max

j
|wj|/|wi|, and

to max
i

1/|wi|, and inversely proportional to min
i 6=j
|xi − xj|. Thus, we expect to

encounter difficulties when the barycentric weights vary greatly. Equispaced

points, for example, have barycentric weights which vary by exponentially large

factors. Chebyshev points, on the other hand, have barycentric weights which

differ only by a factor of two. However, they have an asymptotic density of

(1−x2)−1/2, and thus for nodes near the boundary of the interval, the distance

xi − xj can become O(n−2); this is usually not significant.

Remark 10. The κi are proportional to ‖f‖, but ε is proportional to ‖(A,B)‖F ,

which at first sight also varies as ‖f‖ and so it appears that κi ∝ ‖f‖2. This is

not so, because we may scale A so that ‖(A,B)‖F = O(‖D‖F ). We will now

discuss this scaling issue, together with the matter of balancing.

Remark 11. As pointed out by Berrut in [4], the second form of the barycen-

tric formula can represent rational interpolants. The interpolation property

holds as long as the barycentric weights are nonzero. We can compute the

roots and poles of rational interpolants via the companion matrix pair for the

numerator and denominator of the rational interpolant. Thus, we may also

compute the backward error bound for the roots and poles.
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3.3 Scaling and Balancing (A,B)

Before solving a standard or generalized eigenvalue problem, it is recommended

that the input matrix be balanced first. The purpose of balancing is to improve

the conditioning of the eigenvalues. For the standard eigenvalue problem, this

is achieved by applying a diagonal similarity transformation to the matrix to

bring it closer to a normal matrix. This balancing is discussed by Parlett

and Reinsch [19] where they describe an iterative scheme to balance the ma-

trix where the scaling factors are a power of the radix. For the generalized

eigenvalue problem, two different strategies have been proposed to balance the

matrix. The first, described by Ward [23], produces diagonal scaling matrices

which bring the magnitude of each of the elements of the matrix pair is as close

to unity as possible. The second, described by Lemonnier and Van Dooren

[17], produces diagonal scaling matrices which aim to bring the matrix pair

closer to a normal pair.

The pair (A,B) is, in a sense, close to a standard eigenvalue problem.

Furthermore, B is already a normal matrix. To bring the pair closer to a

normal matrix, we need only to balance A in the standard sense. Balancing

A amounts to solving the optimization problem

inf
S
‖S−1AS‖F , (3.29)

where S = diag
[
s−1 s0 · · · sn

]
is real diagonal matrix with positive en-

tries. It is easy to see that the minimum is attained when s−1 = 1, and

sj =


√
|wj|/|fj| if fj 6= 0

1 otherwise
, 0 ≤ j ≤ n . (3.30)

The balanced matrix then satisfies

‖eTi (S−1AS)‖2 = ‖(S−1AS)ei‖2, 1 ≤ i ≤ n+ 2 . (3.31)

The (1, 1) elements of A and B are both zero. Hence, we may scale the
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first row and the first column of A independently. This is equivalent to scaling

the polynomial, that is, pα(z) = p(z)/α, for which we have the choice of

absorbing the scaling factor α into either f , or w, or both. This also holds

for the balanced matrix, and thus we may also arbitrarily scale the first row

and column of S−1AS independently. For example, we could scale the first

row and column to have unit norm; this has the effect of reducing the norm

‖(A,B)‖F in the error bound even further.

3.4 Numerical Examples

We consider here a number of examples which illustrate the backward error

bound described in Theorem 4. In that theorem, we defined ε = σ(n)εM‖(A,B)‖,
but did not specify anything about the function σ(n). In the following exper-

iments, we choose σ(n) =
√
n. This seems to be a good experimental fit, but

we admit that we have no theoretical reason for choosing this.

In these experiments, we first balance A using the optimal diagonal bal-

ancing matrix S described in (3.30), that is, we form S−1AS. We then scale

the first row and column of S−1AS to have unit norm, that is, we apply two

matrices S` and Sr defined by

S` =

[
s`

I

]
, Sr =

[
sr

I

]
, (3.32)

to the left and right of S−1AS, yielding the balanced and scaled matrix

Â = S−1` S−1ASS−1r . (3.33)

The characteristic polynomial of zB − Â no longer takes on the value fi

at xi. Instead, it takes on the value

p̃(xi) = det (xiB− Â) =
fi
s`sr

, (3.34)

where s` and sr are the factors used in (3.32) to scale the first row and column
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of S−1AS. Since we compute the eigenvalues of the pair (Â,B), we need to

multiply the error bound by s`sr, and furthermore, to make it a relative error

bound, we divide by the norm of the original values f . Thus, the relative

backward error is
|s`srp̃(xi)− fi|

‖f‖2
, (3.35)

where

p̃(z) =
n∏
i=1

(z − λi) , (3.36)

is constructed from the computed eigenvalues {λi, . . . , λn}. The relative back-

ward error bound is now

s`sr|κ̂i|
√
nεM‖(Â,B)‖F
‖f‖2

, (3.37)

where the κ̂i’s are computed from the entries of the balanced and scaled matrix

Â defined in (3.33).

3.4.1 Test problems from Edelman and Murakami

In this section we provide a comparison of our bound to the test problems given

in [10] (who take the examples from [21]). We make a slight modification to

those polynomials, so that we may interpolate them at the 21st roots of unity.

This amounts to transforming the polynomials so that the roots are inside the

unit circle (or nearby). The polynomials which we investigate are:

1. The scaled Wilkinson polynomial: p(z) =
20∏
i=1

(z − i/21),

2. the monic polynomial with zeros equally spaced in the interval [−2.1, 1.9],

3. p(z) =
20∑
k=0

zk

k!
,

4. the Bernoulli polynomial of degree 20, with its argument scaled by 3 so

that the roots are within the unit circle, i.e. B20(3x),
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5. p(z) =
20∑
k=0

zk,

6. the monic polynomial with zeros 2−20, 2−20,2−19,. . . ,2−1,

7. the Chebyshev polynomial of degree 20,

8. the monic polynomial with zeros equally spaced on a sin curve, viz.,

(2π/19(k + 0.5) + i sin (2π/19(k + 0.5)))/4, k = −10,−9,−8, . . . , 9.

For each of these polynomials, we compute the roots via the scaled and bal-

anced pair (Â,B) (using Â from (3.33)), and compute the relative backward

error (3.35), the relative error bound (3.37). Table 3.1 shows the results of

these computations. The information is organized into three columns for each

polynomial. The first column is the logarithm (base 10) of the observed rela-

tive backward error for each coefficient fi. The second column is the logarithm

(base 10) predicted relative backward error. The third column is the pessimism

index [10], which is the logarithm (base 10) of the ratio of the observed relative

backward error to the predicted relative backward error. The pessimism index

gives us an indication of how many orders of magnitude larger the backward

error is than the actual backward error. Thus, a pessimism index close to zero

means that the bound describes the backward error very well.

For all of the test polynomials the observed backward error is close to

machine precision. The bound on the error is approximately one to two orders

of magnitude greater than the observed error. Furthermore, when the bound

is more pessimistic, the observed backward error is much less than the machine

precision.

62



Table 3.1: Relative backward error in coefficients (log base 10) for eight dif-

ferent degree-20 polynomials.
(1) (2) (3) (4) (5) (6) (7) (8)

−24 −19 −5 −17 −16 −2 −15 −13 −2 −18 −15 −2 −15 −13 −2 −16 −14 −2 −20 −17 −3 −16 −14 −1

−23 −18 −5 −16 −15 −1 −15 −13 −2 −17 −15 −2 −∞ −13 −∞ −15 −14 −2 −18 −15 −3 −16 −15 −1

−20 −17 −3 −15 −14 −1 −15 −13 −2 −17 −15 −2 −∞ −14 −∞ −15 −14 −2 −16 −14 −2 −16 −14 −2

−19 −16 −3 −14 −14 −0 −15 −13 −2 −16 −14 −2 −∞ −14 −∞ −15 −14 −2 −16 −14 −2 −15 −14 −1

−17 −15 −2 −14 −13 −0 −15 −13 −2 −15 −14 −2 −∞ −14 −∞ −15 −14 −2 −15 −13 −2 −15 −14 −2

−16 −15 −1 −13 −13 −0 −15 −13 −2 −15 −13 −1 −∞ −14 −∞ −15 −13 −2 −15 −13 −2 −15 −13 −1

−15 −14 −1 −14 −13 −0 −16 −14 −2 −15 −13 −1 −∞ −14 −∞ −15 −13 −2 −16 −13 −3 −14 −13 −1

−15 −14 −1 −14 −14 −0 −16 −14 −2 −15 −13 −2 −∞ −14 −∞ −15 −13 −2 −15 −13 −2 −14 −13 −1

−14 −13 −1 −15 −14 −1 −15 −14 −2 −15 −13 −2 −∞ −14 −∞ −15 −13 −1 −16 −14 −2 −15 −13 −1

−14 −13 −1 −16 −15 −1 −16 −14 −2 −15 −13 −2 −∞ −14 −∞ −15 −13 −2 −17 −15 −2 −15 −14 −1

−14 −13 −1 −17 −15 −2 −16 −14 −2 −15 −13 −2 −∞ −14 −∞ −15 −13 −2 −19 −16 −3 −16 −14 −1

−14 −13 −1 −17 −15 −2 −16 −14 −2 −15 −13 −2 −∞ −14 −∞ −15 −13 −2 −18 −16 −2 −16 −15 −1

−14 −13 −1 −16 −15 −1 −16 −14 −2 −15 −13 −2 −∞ −14 −∞ −15 −13 −2 −17 −15 −2 −16 −14 −2

−14 −13 −1 −15 −14 −1 −15 −14 −2 −15 −13 −2 −∞ −14 −∞ −15 −13 −2 −16 −14 −2 −16 −14 −2

−15 −14 −1 −14 −14 −0 −15 −14 −2 −15 −13 −2 −∞ −14 −∞ −15 −13 −2 −15 −13 −1 −15 −14 −2

−15 −14 −1 −14 −13 −0 −16 −14 −2 −15 −13 −2 −∞ −14 −∞ −16 −13 −3 −15 −13 −2 −15 −13 −1

−16 −15 −1 −13 −13 −0 −16 −13 −2 −15 −13 −1 −∞ −14 −∞ −16 −13 −2 −15 −13 −2 −15 −13 −1

−17 −15 −2 −14 −13 −0 −15 −13 −2 −15 −14 −2 −∞ −14 −∞ −15 −14 −2 −16 −13 −2 −15 −13 −2

−18 −16 −2 −14 −14 −0 −15 −13 −2 −16 −14 −1 −∞ −14 −∞ −16 −14 −2 −15 −14 −2 −15 −13 −2

−20 −17 −3 −15 −14 −1 −15 −13 −2 −17 −15 −2 −∞ −14 −∞ −15 −14 −2 −16 −14 −2 −16 −14 −2

−22 −18 −3 −16 −15 −1 −15 −13 −2 −17 −15 −2 −∞ −13 −∞ −16 −14 −2 −17 −15 −2 −16 −14 −2

For each of the polynomials, we also present the maximum relative back-

ward error, and the associated bound, shown in Table 3.2. We see that the

maximum error is only a small multiple of machine precision, and also that

the bound is not very pessimistic (approximately an order of magnitude).

Table 3.2: Maximum observed backward error and bound.
Polynomial Error Bound Pessimism index

1 1.99× 10−14 7.80× 10−14 −0.6

2 4.12× 10−14 6.06× 10−14 −0.2

3 9.96× 10−16 6.51× 10−14 −1.8

4 2.39× 10−15 4.50× 10−14 −1.3

5 6.97× 10−16 8.78× 10−14 −2.1

6 1.98× 10−15 6.08× 10−14 −1.5

7 1.74× 10−15 6.53× 10−14 −1.6

8 4.36× 10−15 6.91× 10−14 −1.2

We should note that if we interpolate the original polynomials given [10]

on this set of nodes, the condition number for evaluation is very large. This
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is the reason why the polynomials were modified so that the roots were closer

to the interpolation nodes.

3.4.2 Chebyshev Polynomials of the First Kind

Our next experiment will test the bound for a particularly well-conditioned

family of polynomials: Chebyshev polynomials of the first kind Tn(x) interpo-

lated at their extreme points. At the Chebyshev points of the first kind

xj = cos (jπ/n), 0 ≤ j ≤ n , (3.38)

the Chebyshev polynomial of degree n, Tn(x), takes on the values

fj = Tn(xj) = (−1)j, 0 ≤ j ≤ n . (3.39)

The barycentric weights are given by

wj =
2n−1

n
(−1)j , 1 ≤ j ≤ n− 1 (3.40)

and half of these values when j = 0 and j = n.

For each polynomial Tn(x), we compute the roots via the balanced and

scaled pair (Â,B) (using Â from (3.33)), then compute the relative backward

error (3.35), and the bound (3.37) for n ranging from 1 to 256.

Figure 3.1 shows the maximum relative error and the associated error

bound, as well as the associated pessimism index. The maximum relative

error grows like O(n2.5), and we see that the bound is only pessimistic by

approximately one order of magnitude. The figure on the left shows the asso-

ciated pessimism index for the maximum error bound. Agreement is excellent,

the bound is typically one order of magnitude greater than the actual error.
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Figure 3.1: Chebyshev polynomials interpolated at their extreme points.

3.4.3 Polynomials taking on random values on a Cheby-

shev grid

In this experiment, we interpolate at Chebyshev nodes of the second kind.

This time however, we interpolate random normally distributed values with

mean zero and standard deviation of 10. We compute the maximum relative

backward error (3.35) and the associated bound (3.37) for each of 100 different

degree n polynomials, then take the mean of these values, for n varying from

1 to 256.

Figure 3.2(a) shows the mean relative backward error and bound as a

function of the degree. Again, we see that the backward error grows like

O(n2.5). The error bound is roughly one order of magnitude larger than the

backward error, as illustrated by Figure 3.2(b).

To further illustrate the distribution of the relative backward error and

backward error bound, we repeat the experiment with a fixed degree n = 50.

We take 10000 polynomials taking on random normally distributed values, at

Chebyshev points of the first kind, with mean zero and standard deviation

10. Figures 3.3(a) and 3.3(b) show the distribution of the backward error

as well as the distribution of the bound. This illustrates that on average we

obtain a small backward error. Furthermore, as illustrated in Figure 3.4, the
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Figure 3.2: Polynomials taking on random normally distributed values at
Chebyshev nodes of the first kind.

error bound is on average only one to two orders of magnitude larger than the

observed backward error.
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Figure 3.3: Backward error and bound for 10000 degree 50 polynomials taking
on random normally distributed values at Chebyshev points of the first kind.
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Figure 3.4: Pessimism index for 10000 degree 50 polynomials taking on random
normally distributed values at Chebyshev points of the first kind.

3.4.4 Wilkinson polynomial

We investigate the effectiveness of balancing the companion matrix for the

scaled Wilkinson polynomial

p(z) =
20∏
k=0

(z − k/21) . (3.41)

We interpolate p(z) at 21 equispaced points xk = (k+1/2)/21, 0 ≤ k ≤ 20.

Then compute the eigenvalues for three different pairs: unscaled, scaled, and

balanced.

As discussed by Berrut and Trefethen [5], to improve the stability of com-

puting the barycentric weights (3.2), each difference xi − xj in (3.2) should

first be multiplied by C−1, where C = (b− a)/4 is the capacity of the interval

[a, b] [22, p. 92]. In this case the capacity is C = 1/4, and thus multiplying

each factor xi − xj by C−1 has the effect of rescaling the weights by a factor

of C20, that is ŵj = wj/4
20.

For the unscaled pair, we use the scaled weights ŵj and the original function
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values. For the scaled pair, we scale the weights and values so they have unit

2−norm. For the balanced pair, we balance the weights and values via (3.30),

then scale the first row and column to have unit 2−norm.

From these three pairs, we compute the maximum relative backward error

(3.35), the associated error bound (3.35), and the forward error in the com-

puted roots. The results are shown in Table 3.3. The unscaled pair performs

poorly, this may be partly explained by the difference in the norms of the

first row and column (‖f‖2 ≈ 1.6 × 10−9 and ‖ŵ‖2 ≈ 14.6). Once we nor-

malize the first row and column, the errors reduce significantly. Balancing the

pair produces the greatest reduction in the error, the relative forward error is

approximately 35 times machine precision.

Table 3.3: Wilkinson polynomial interpolated at equispaced points.

Backward error Error bound Forward error

Unscaled 8.65× 10−7 1.09× 10−5 1.69× 10−3

Scaled 4.07× 10−14 7.08× 10−9 1.06× 10−12

Balanced 9.81× 10−14 3.69× 10−13 2.66× 10−15

The relative error bound also predicts the backward error quite well for the

unscaled pair, and the balanced pair. However, for the scaled pair, the bound

overestimates the backward error by about 5 orders of magnitude. Between

the scaled and balanced pairs, we see a reduction in the forward error of three

orders of magnitude. Hence, balancing the pair reduces the condition number

significantly.

We should also point out that the roots of p(z) interlace the points xk, and

thus are quite well suited for computing the roots. We repeated the analysis

using Chebyshev points of the first kind on the interval [0, 1], the results of

which are shown in Table 3.4.
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Table 3.4: Wilkinson polynomial interpolated at Chebyshev points.

Backward error Error bound Forward error

Unscaled 5.93× 10−10 7.63× 10−7 2.29× 10−8

Scaled 8.48× 10−14 3.00× 10−12 3.79× 10−11

Balanced 9.88× 10−14 2.50× 10−12 5.03× 10−12

We do not see much of a difference in the backward error between the

scaled and balanced pairs, but the forward error has been reduced by an order

of magnitude.

3.4.5 Wilkinson filter example

In [25], we find a polynomial rootfinding problem that is interesting to attack

using Lagrange interpolation. The discussion there begins “As a second ex-

ample, we give a polynomial expression which arose in filter design. The zeros

were required of the function p(z) defined by”

p(z) =
7∏
i=1

(
z2 + Aiz +Bi

)
− k

6∏
i=1

(z + Ci)
2 , (3.42)

with the data values as given below:

A =



2.008402247

1.974225110

1.872661356

1.714140938

1.583160527

1.512571776

1.485030592


B =



1.008426206

0.9749050168

0.8791058345

0.7375810928

0.6279419845

0.5722302977

0.5513324340


C =



0

0.7015884551

0.6711668301

0.5892018711

1.084755941

1.032359024


and k = 1.380 × 10−8. When expanded into the monomial basis centred at

0, Wilkinson claims that this polynomial is very ill-conditioned: “The explicit

polynomial p(z) is so ill-conditioned that the double-precision Bairstow pro-
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gramme gave only 2 correct figures in several of the factors and the use of

the treble-precision section was essential.” He later observes that if p(z) is

expanded into the shifted monomial basis centred at z = −0.85, it’s not so

badly conditioned.

We interpolate p(z) at the roots of

7∏
i=1

(
z2 + Aiz +Bi

)
, (3.43)

and at one extra point: the mean of the roots of (3.43), giving 15 interpolation

nodes in total. We compute the eigenvalues using the balanced and scaled pair

(Â,B) (using Â from (3.33)). The relative backward error (3.35), backward

error bound (3.37), and pessimism index are shown in Table 3.5. We see that

again, for this problem the backward error is excellent, and the bound agrees

within an order of magnitude of the actual error.

Table 3.5: Backward error and bound for Wilkinson’s filter example.
Backward Error Error bound Pessimism index

f0 2.55× 10−14 3.39× 10−13 −1.12
f1 8.76× 10−16 1.39× 10−14 −1.20
f2 2.36× 10−16 1.39× 10−14 −1.77
f3 2.73× 10−15 5.41× 10−14 −1.30
f4 1.59× 10−15 5.41× 10−14 −1.53
f5 1.69× 10−14 2.37× 10−13 −1.15
f6 1.66× 10−14 2.37× 10−13 −1.15
f7 5.91× 10−14 9.26× 10−13 −1.20
f8 6.50× 10−14 9.26× 10−13 −1.15
f9 4.07× 10−14 1.26× 10−12 −1.49
f10 1.26× 10−13 1.26× 10−12 −1.00
f11 3.98× 10−14 5.09× 10−13 −1.11
f12 2.26× 10−14 5.09× 10−13 −1.35
f13 1.64× 10−14 1.32× 10−13 −0.90
f14 2.12× 10−14 1.32× 10−13 −0.79
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3.5 Concluding Remarks

In this chapter, we have shown that computing the roots of interpolants via

the eigenvalues of a companion matrix pair (A,B) is normwise backward sta-

ble. We have proposed a bound on the backward error, which is typically

only an order of magnitude larger than the actual error. Through a number

of numerical experiments, we have shown that the roots of the interpolating

polynomial can be found accurately and in a stable manner. The first-order

analysis presented here suggests that the forward error of the roots of polyno-

mials computed by this method will usually be small, because the condition

number of polynomial evaluation and rootfinding is usually small in these

bases.
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Chapter 4

Backward Stability of
Polynomial Eigenvalue
Problems Expressed in the
Lagrange Basis1

4.1 Introduction

The standard approach to solving the polynomial eigenvalue problem is to

linearize, which is to say the problem is transformed into an equivalent larger

order generalized eigenproblem. For the monomial basis, much work has been

done to show the conditions under which linearizations produce small back-

ward errors. In this work, we extend these results to the Lagrange basis. We

show that computing the eigensystem of a certain linearization of a matrix

polynomial expressed in barycentric Lagrange form is numerically stable, and

give a bound for the backward errors. We also show how the linearization may

be block balanced, so as to produce eigenvalues and eigenvectors with small

backward error.

For an arbitrary basis {φ0(z), · · · , φn(z)} spanning Pn, the space of poly-

nomials in z of degree at most n, and m ×m matrices Ck, we may define a

1A version of this chapter has been submitted to Linear Algebra and its Applications for
publication.
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matrix polynomial P(z) by

P(z) =
n∑
j=0

Cjφj(z) . (4.1)

A pair (λ,x) is called a right eigenpair of the matrix polynomial P(z) if

P(λ)x = 0 , (4.2)

and, analogously, a left eigenpair (λ,y∗) satisfies

y∗P(λ) = 0∗ . (4.3)

In this work, we shall assume that the matrix polynomial is regular, that is,

det P(z) is not identically zero.

Matrix polynomials are usually expressed in the monomial basis [9, 12, 16],

that is,

P(z) = znAn + zn−1An−1 + · · ·+ A0 . (4.4)

However, there has been growing interest in matrix polynomials expressed in

other bases [1, 6, 17], either due to the construction of the matrix polynomials

themselves, or in order to take advantage of the properties of the polynomial

basis.

In this work, we consider matrix polynomials expressed in barycentric La-

grange form [2]. In the scalar case (m = 1), the unique polynomial of degree

less than or equal to n, interpolating a set of n + 1 values {f0, . . . , fn} at the

set of nodes {x0, . . . , xn}, can be written as

p(z) = `(z)
n∑
j=0

wjfj
z − xj

, (4.5)

where the nodal polynomial `(z) is defined by

`(z) =
n∏
i=0

(z − xi) , (4.6)
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and the barycentric weights wj are defined by

wj =
∏
k 6=j

(xj − xk)−1 , 0 ≤ j ≤ n . (4.7)

It is immediately clear that we may also interpolate a set of matrix values

{F0, . . . ,Fn} at the nodes {x0, . . . , xn} and construct the unique matrix poly-

nomial interpolant

P(z) = `(z)
n∑
j=0

wjFj

z − xj
. (4.8)

It is desirable to use the barycentric formulation because it has been shown (in

the scalar case) that evaluation is numerically stable [11]. The matrix polyno-

mial interpolant is made up of scalar interpolants of the entries of the matrix

polynomial. Thus, it follows that the evaluation of the matrix polynomial via

the formula (4.8) is also numerically stable.

As demonstrated in [4], the eigenvalues of P(z) can be found via the eigen-

values of a generalized companion matrix pair, defined by

(A,B) =

([
0 −FT

W D

]
,

[
0

I

])
, (4.9)

where FT =
[

F0 . . . Fn

]
, W =

[
w0 · · · wn

]T
⊗ Im,

D =


x0

. . .

xn

⊗ Im , (4.10)

and ⊗ denotes the Kronecker product (see, for example, [18, p. 65]).

Remark 12. The formulation (A,B) introduces 2m spurious infinite eigen-

values. We will show in §4.3 that these spurious infinite eigenvalues can be

deflated exactly from the pair. Hence, they do not affect the accuracy of the

finite (or infinite) eigenvalues.
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4.2 Numerical Stability of Eigenvalues Found

Through Linearization

For a set of weights αk ≥ 0, not all equal to zero, define the absolute condition

number for evaluation of a polynomial [5, 7]:

B(z) =
n∑
j=0

αj|φj(z)| . (4.11)

Then define

∆P(λ) =
n∑
j=0

∆Cjφj(λ) , (4.12)

where the ∆Cj’s are small perturbations of the coefficient matrices Cj.

The normwise backward error of a finite approximate right eigenpair (λ,x)

of a matrix polynomial P(z), expressed in an arbitrary basis, is defined by

ηP (λ,x) = min{ε : (P(λ)+∆P(λ))x = 0, ‖∆Cj‖2 ≤ εαj, 0 ≤ j ≤ n} . (4.13)

This is a trivial generalization of the definition for the monomial basis [10].

Similarly, for a left eigenpair (λ,y∗) the backward error is defined by

ηP (λ,y∗) = min{ε : y∗(P(λ) + ∆P(λ)) = 0∗, ‖∆Cj‖2 ≤ εαj, 0 ≤ j ≤ n} .
(4.14)

The αj’s determine how the perturbations ∆Cj to the coefficients Cj are

measured: setting αj = 1 results in absolute perturbations, whereas αj =

‖Cj‖2 results in relative perturbations to the coefficients.

For the monomial basis, Tisseur [15] obtained explicit expressions for the

backward errors of approximate left and right eigenpairs (λ,y∗) and (λ,x),

respectively, of P(z) given by

ηP (λ,x) =
‖P(λ)x‖2
BM(λ)‖x‖2

, (4.15)
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and

ηP (λ,y∗) =
‖y∗P(λ)‖2
BM(λ)‖y‖2

, (4.16)

where

BM(z) =
n∑
j=0

‖Aj‖2|z|j . (4.17)

The Lagrange basis elements are

φk(z) = `(z)
wj

z − xj
, (4.18)

and thus the equivalent result in the Lagrange basis has BL(z) instead of

BM(z) where

BL(z) =
n∑
j=0

‖Fj‖2
|`(z)wj|
|z − xj|

. (4.19)

Hence, in the Lagrange basis, the backward errors of an approximate left

and right eigenpairs (λ,x) and (λ,y∗), respectively, are given by

ηP (λ,x) =
‖P(λ)x‖2
BL(λ)‖x‖2

, (4.20)

and

ηP (λ,y∗) =
‖y∗P(λ)‖2
BL(λ)‖y‖2

. (4.21)

Now, for an approximate right eigenpair (λ, z) of the linearization (A,B),

the backward error is given by

η(A,B)(λ, z) =
‖(λB−A)z‖2

(|λ|‖B‖2 + ‖A‖2) ‖z‖2
. (4.22)

We aim to bound the backward error of P(z) by the backward error of

the linearization (A,B), and thus we need to relate the eigenvectors of (A,B)

to those of P(z). As it so happens, one may recover the eigenvector of P(z)

directly from an eigenvector of (A,B), as we demonstrate in the following

lemma.
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Lemma 6. For an eigenvalue λ 6= xi, 0 ≤ i ≤ n, of the pair (A,B), the

corresponding left and right eigenvectors (w∗ and z, respectively) are given by

z =


x
w0

λ−x0 x
...

wn

λ−xn x

 , (4.23)

and

w∗ =
[

y∗ −y∗ F0

λ−x0 · · · −y∗ Fn

λ−xn

]
, (4.24)

where y∗ and x are the left and right eigenvectors of P(λ).

Proof. Let (λ,w∗) and (λ, z) be the left and right eigenpairs of (A,B), respec-

tively. Partition z and w conformably with the blocks of A:

z =


z−1

z0

...

zn

 , w =


w−1

w0

...

wn

 . (4.25)

The right eigenpair (λ, z) satisfies (λB−A)z = 0, or
0 F0 · · · Fn

−w0Im (λ− x0)Im
...

. . .

−wnIm (λ− xn)Im




z−1

z0

...

zn

 = 0 . (4.26)

Thus, we have
n∑
j=0

Fjzj = 0 , (4.27)

and

(λ− xj)zj = wjz−1 , 0 ≤ j ≤ n . (4.28)

Solving the relations (4.28) for zj (assuming that λ 6= xj), and substituting
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them into (4.27) yields (
n∑
j=0

wjFj

λ− xj

)
z−1 = 0 . (4.29)

This is equal to `(λ)−1P(λ)z−1 = 0, so long as λ is not an interpolation node.

Thus, if (λ, z) is an eigenpair of (A,B), where λ 6= xi for all i, 0 ≤ i ≤
n, then (λ, z−1) is an eigenpair of P(z). The left eigenpair (λ,w∗) satisfies

w∗(λB−A) = 0∗, which yields the relations

−
n∑
j=0

wjw
∗
j = 0∗ (4.30)

and

(λ− xj)w∗j = −w∗−1Fj, 0 ≤ j ≤ n , (4.31)

which together yield

w∗−1

(
n∑
j=0

wjFj

λ− xj

)
= 0∗ . (4.32)

Thus, if (λ,w∗) is a left eigenpair of (A,B), then (λ,w∗−1) is a left eigenpair

of P(z).

Remark 13. If xi were an eigenvalue of (A,B), then (4.28) gives z−1 = 0.

Since the nodes xj are distinct, we have zj = 0 for j 6= i, 0 ≤ j ≤ n. We

are left with one equation: Fizi = 0, or P(xi)zi = 0. Similarly, for the left

eigenvector of (A,B), we obtain w∗iP(xi) = 0∗.

Theorem 5. We may bound the backward error of an approximate right eigen-

pair (λ,x) of P(z) by

ηP (λ,x) ≤ |λ|‖B‖2 + ‖A‖2
BL(λ)

· ‖G(λ)‖2‖z‖2
‖x‖2

· η(A,B)(λ, z) , (4.33)

where η(A,B)(λ, z) is the backward error of an approximate right eigenpair (λ, z)
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of (A,B), and

G(λ) = `(λ)
[

Im − F0

λ−x0 · · · −
Fn

λ−xn

]
. (4.34)

Similarly, we may bound the backward error of an approximate left eigenpair

(λ,y∗) of P(z) by

ηP (λ,y∗) ≤ |λ|‖B‖2 + ‖A‖2
BL(λ)

· ‖H(λ)‖2‖w‖2
‖y‖2

· η(A,B)(λ,w
∗) , (4.35)

where

H(λ) = `(λ)


Im
w0

λ−x0 Im
...

wn

λ−xn Im

 . (4.36)

Proof. Following Higham [10], we aim to find an m ×mn matrix polynomial

G(λ), such that

G(λ)(λB−A) = gT ⊗P(λ) (4.37)

for some nonzero g ∈ Cn. A simple calculation shows that

G(λ) = `(λ)
[

Im − F0

λ−x0 · · · −
Fn

λ−xn

]
, (4.38)

and g = e1. We have

G(λ)(λB−A)z = (gT ⊗P(λ))z = P(λ)(gT ⊗ Im)z = P(λ)x , (4.39)

and thus we may recover the right eigenvector of P(z) from the first m rows of

the right eigenvector z of (A,B). Similarly, for the left eigenvectors, we aim

to find an nm×m matrix polynomial H(λ), such that

(λB−A)H(λ) = h⊗P(λ) . (4.40)

81



It is easy to show that the matrix polynomial H(λ) is given by

H(λ) = `(λ)


Im
w0

λ−x0 Im
...

wn

λ−xn Im

 , (4.41)

and h = e1. We have

w∗(λB−A)H(λ) = w∗(h⊗P(λ)) = w∗(h⊗ Im)P(λ) = y∗P(λ) , (4.42)

so we may recover the left eigenvector of P(z) from the first m columns of w∗.

Now, for a right eigenpair (λ, z) of (A,B), we may combine (4.15), (4.22),

and (4.39) to obtain the bound

ηP (λ,x) =
‖G(λ)(λB−A)z‖2

BL(λ)‖x‖2
≤ ‖G(λ)‖2‖(λB−A)z‖2

BL(λ)‖x‖2

≤ |λ|‖B‖2 + ‖A‖2
BL(λ)

· ‖G(λ)‖2‖z‖2
‖x‖2

· η(A,B)(λ, z) . (4.43)

A similar combination of (4.16), (4.22), and (4.42) yields the bound

ηP (λ,y∗) ≤ |λ|‖B‖2 + ‖A‖2
BL(λ)

· ‖H(λ)‖2‖w‖2
‖y‖2

· η(A,B)(λ,w
∗) . (4.44)

Theorem 6. We may bound the ratio of the backward error of an approximate

right eigenpair (λ,x) of P(z) to the backward error of an approximate right

eigenpair (λ, z) of (A,B) by

ηP (λ,x)

η(A,B)(λ, z)
≤
√
m(|λ|+ 1) max (1, ‖A‖2)

(
|`(λ)|

minj ‖Fj‖2
+

√
m

mink |wk|

)
· ‖z‖2
‖x‖2

.

(4.45)
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Similarly, for an approximate left eigenpair,

ηP (λ,y∗)

η(A,B)(λ,w∗)
≤ (|λ|+ 1) max (1, ‖A‖2)

(|`(λ)|+ 1)

minj ‖Fj‖2
· ‖w‖2
‖y‖2

. (4.46)

Proof. For an approximate right eigenpair (λ, z) of (A,B), we may bound

BL(λ) from below by

BL(λ) = |`(λ)|
n∑
j=0

‖Fj‖2|wj|
|λ− xj|

≥ min
k
‖Fk‖2

n∑
j=0

|`j(λ)| ≥ min
k
‖Fk‖2 , (4.47)

where the `j(λ) are the Lagrange polynomials. We obtain a bound on G(λ),

as follows:

‖G(λ)‖2 ≤
√
m‖G(λ)‖∞ ≤

√
m|`(λ)|

(
1 +

n∑
j=0

‖Fj‖∞
|λ− xj|

)

≤
√
m|`(λ)|

(
1 +
√
m

n∑
j=0

‖Fj‖2
|λ− xj|

)

≤
√
m

(
|`(λ)|+

√
m

BL(λ)

mink |wk|

)
, (4.48)

and dividing this by BL(λ), we obtain the bound

‖G(λ)‖2
BL(z)

≤
√
m

(
|`(λ)|

minj ‖Fj‖2
+

√
m

mink |wk|

)
. (4.49)

The bound (4.45) simply follows by rearranging (4.33).

For an approximate left eigenpair, we may bound the ‖H(λ)‖2 as follows:

‖H(λ)‖2 ≤
√
m‖H(λ)‖1 =

√
m|`(λ)|

(
1 +

n∑
j=0

|wj|
|λ− xj|

)

≤
√
m

(
|`(λ)|+ BL(λ)

minj ‖Fj‖2

)
. (4.50)
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Dividing by BL(λ), we obtain the bound

‖H(λ)‖2
BL(λ)

≤ |`(λ)|+ 1

minj ‖Fj‖2
. (4.51)

Remark 14. The bound derived in the last theorem is quite crude. However,

it does point out the primary drivers in the backward error bound. The term

‖A‖2 contains terms involving the barycentric weights |wj|, the nodes |xi|, and

the norms of the values ‖Fk‖2. Hence, we see that the ratios of the barycentric

weights matter, as does the magnitude of the coefficients. The other factor

which arises is the distance of the eigenvalue λ to the set of interpolation

nodes (the |`(λ)| term will be very large). Thus, we can expect to obtain good

backward error if the interpolation nodes are near to the eigenvalues.

Remark 15. As we will show in §4.4, we may block-wise balance the ma-

trix A to bring the pair (A,B) closer to a normal pair. Experimentally,

we have observed that with the balancing matrices proposed in §4.4, the ra-

tio ‖G(λ)‖2/BL(λ) seems always to be less than one. However, we have no

proof of this.

4.3 Deflation of Spurious Infinite Eigenvalues

As we noted in the introduction, the formulation (A,B) introduces 2m spu-

rious infinite eigenvalues. In this section, we show how these may be deflated

exactly from the pair by reducing the pair to m-Hessenberg form via block-

wise Givens rotations. The reduction to m-Hessenberg form is essentially the

same as for the scalar case (m = 1) described in Chapter 2, except that the

Givens rotations on the right must be applied block-wise to FT .

We can write the matrix as

A =

[
0 0T

ŵ D̂

]
⊗ Im + e1 ⊗

[
0 −FT

]
, (4.52)
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where ŵ =
[
w0 · · · wn

]T
, and D̂ = diag

[
x0 · · · xn

]
. There exists a

unitary matrix Q1, such that[
0 0T

h0e1 H1

]
=

[
1

Q∗1

][
0 0T

ŵ D̂

][
1

Q1

]
, (4.53)

and H1 is upper Hessenberg. Then define

Q =

[
Im

Q1 ⊗ Im

]
, (4.54)

and form

Q∗AQ =

[
0 0T

h0e1 H1

]
⊗ Im + e1 ⊗

[
0 −FT (Q1 ⊗ Im)

]
, (4.55)

which is now an m-Hessenberg matrix. The product FT (Q1 ⊗ Im) may be

computed quite efficiently; for example, if Q1 is constructed as a product of

Givens rotations, we may apply them block-wise to FT . In fact, doing so will

also retain the structure of the coefficients of the matrix polynomial. Applying

Q to B yields Q∗BQ = B.

We may now begin to deflate the 2m spurious infinite eigenvalues from the

pair (Q∗AQ,B) by applying block-wise Givens rotations to the pair. Because

the leading m×m submatrix of Q∗AQ is zero, we may annihilate the m×m
diagonal block h0Im below it by applying the permutation matrix

P =

 0 Im

Im 0

Imn

 (4.56)

to the pair. This introduces a nilpotent Jordan block to the leading 2m× 2m

submatrix of B:

PB =

 0 Im

0

Inm

 . (4.57)
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The pair PQ∗(A,B)Q is no longer unreduced, and we may deflate the first set

of m spurious infinite eigenvalues from the pair by deleting the first m rows

and columns of the transformed pair. The deflated pair is now

(H2,B2) =

([
−FT (Q1 ⊗ Im)

Ĥ1 ⊗ Im

]
,

[
0

Inm

])
, (4.58)

where Ĥ1 is the matrix containing the last n rows of H1. Now, let F̂ =

−FT (Q1 ⊗ Im), partition F̂ as

F̂ =
[

F̂0 · · · F̂n

]
, (4.59)

and let

U0Σ0V
∗
0 = F̂0 (4.60)

be the singular value decomposition of F̂0. Define the block diagonal matrices

U and V by

U =


U0

V0

. . .

V0

 , V =


V0

V0

. . .

V0

 , (4.61)

and form U∗(H2,B2)V, which yields

U∗H2V =



Σ0 U∗0F̂1V0 · · · · · · U∗0F̂nV0

h1,0Im h1,1Im · · · · · · h1,nIm

h2,1Im
. . . h2,nIm
. . . . . .

...

hn,n−1Im hn,nIm


, (4.62)

and U∗B2V = B2. We may deflate the second set of m spurious infinite

eigenvalues from the pair U∗(H2,B2)V by applying a set of m Givens rotations

to the first 2m rows, annihilating the block h1,0Im. This can be formulated as
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a block-wise transformation: we construct diagonal m×m matrices C and S,

with C2 + S2 = Im, such that[
C S

−S C

][
Σ0

h1,0Im

]
=

[
R

0

]
. (4.63)

Applying this transformation to the first 2m rows of B2 does not disturb the

m zeros on the diagonal, nor the upper triangular structure. We do, however,

introduce a block equal to C on the diagonal. If the leading coefficient of

P(z) is nonsingular, then C will also be nonsingular. We may convert the

generalized eigenvalue problem to a standard one by multiplying the second

set of m rows by C−1.

After applying the second block Givens rotation matrix, we may deflate the

second set of m infinite eigenvalues by deleting the first m rows and columns

of the pair. This yields the pair (H3,B3), where

H3 =


h1,1C− SU∗0F̂1V0 · · · · · · h1,nC− SU∗0F̂nV0

h2,1Im · · · · · · h2,nIm
. . .

...

hn,n−1Im hn,nIm

 , (4.64)

and

B3 =

[
C

I(n−1)m

]
. (4.65)

If the leading coefficient of P(z) is nonsingular, then we may simply convert

the generalized eigenvalue problem to a standard one by multiplying on the

left by B−13 .

Remark 16. If some of the singular values of F̂0 are zero, this indicates that

the leading coefficient of the matrix polynomial P(z) is singular, and hence the

pair (A,B) has other non-spurious infinite eigenvalues in addition to the 2m

spurious ones.

Remark 17. If one or more of the singular values of F̂0 are zero, then the cor-

responding Givens rotations used to annihilate the h1,0Im block must permute
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the corresponding rows. Thus, another zero will have been introduced on the

diagonal of B3. If we were to order the singular values of F̂0 from smallest to

largest, the zeros corresponding to non-spurious infinite eigenvalues would ap-

pear at the top left corner of the matrix, and we could deflate those eigenvalues

by deleting the first row and column of the matrix pair.

4.4 Block Scaling and Balancing

In this section, we discuss the issue of balancing the matrix pair (A,B) to

improve the accuracy of the computed eigenvalues. In the scalar case, it was

proposed in §3.3 that the matrix pair could be balanced by applying diagonal

similarity transformations to the matrix A in order to bring the pair closer to

a normal pair. The optimal diagonal matrix that achieves this is

Ds =


1 √

|w0|/|f0|
. . . √

|wn|/|fn|

 , (4.66)

where the fj’s are the values of the polynomial at the nodes xj. In the matrix

polynomial case, we have much more freedom in the transformations that are

used. At the very least, we may apply a block diagonal similarity transforma-

tion (D−1s ⊗ Im)A(Ds ⊗ Im) to the matrix, where

Ds =


1 √

|w0|/‖F0‖2
. . . √

|wn|/‖Fn‖2

 . (4.67)

This transformation equalizes the row and column norms of the matrix pair.

Additionally, because the leading m × m submatrix of B is zero, we may

arbitrarily scale the first m rows and columns.

It is not entirely clear what transformations would be best to use on the
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matrix. For example, we could equalize all of the rows and columns of the

matrix A, rather than the proposed block-wise balancing. However, it not clear

that this would lead to optimal results, and perhaps retaining the structure of

the matrix is, in some sense, desirable. In this work, we restrict the balancing

to the proposed block-wise balancing, and pursue a more rigorous theory of

balancing in the future.

4.5 Numerical Examples

In this section, we illustrate the backward error of computing eigenpairs of P(z)

via the linearization (A,B) through some examples taken from the collection

NLEVP [3]. For these examples, we do not know the true eigenvalues or

eigenvectors a priori, but we are able to compare them approximately to the

results of other computations in the literature.

In all of the following examples, the matrix polynomials are sampled at a

set of n + 1 interpolation nodes, where n is the degree of the matrix polyno-

mial. The matrix pair (A,B) is constructed from the samples and computed

barycentric weights, and then the pair is balanced using the block-wise bal-

ancing proposed in §4.4.

The eigenpairs of (A,B) are computed via the QZ algorithm in Matlab,

using the function qz. We then compute the backward errors for the left and

right eigenpairs of P(z) using expressions (4.21) and (4.20), as well as the

upper bounds for the backward error given in (4.33) and in (4.35).

Furthermore, we compute the pessimism index of the error bounds, that

is, the log (base 10) of the ratios of the backward errors ηP (λ,x) and ηP (λ,y∗)

to the backward error bounds in (4.33) and in (4.35), respectively.

4.5.1 Butterfly

Our first example is a 64×64 quartic matrix polynomial with T-even structure,

proposed in [14]. The spectrum has a butterfly shape. In the monomial basis,
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the matrix polynomial is

P(z) = z4A4 + z3A3 + z2A2 + zA1 + A0 , (4.68)

where A4, A2, and A0 are real symmetric matrices. The matrices A3 and A1

are real skew-symmetric.

We sample the matrix polynomial at 5 Chebyshev points of the second

kind, on the interval [−1, 1]. The computed eigenvalues are shown in Figure

4.1. These show good visual agreement to the eigenvalues computed in [14].

The distribution of the backward errors ηP (λ,y∗) and ηP (λ,x) are shown in
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Figure 4.1: Butterfly example, eigenvalue distribution.

Figure 4.2. The backward errors are excellent, being only a modest multiple

of the unit roundoff u = 2−53 ≈ 1.1× 10−16.
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Figure 4.2: Butterfly example, backward error distributions.

The distribution of the pessimism index is shown in Figure 4.3. For the

left eigenpair, the bound exceeds the actual backward error by about 0.6 of

an order of magnitude, and for the right eigenpair, a little over one order of

magnitude.
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Figure 4.3: Butterfly example, pessimism index distributions.
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4.5.2 Speaker Enclosure

Our second example is taken from [3]. The matrix polynomial is the quadratic

P(z) = z2M+ zC+K, with M,C,K ∈ C107×107, arising from a finite element

model of a speaker enclosure. There is a large variation in the norms of the

monomial basis coefficients: ‖M‖2 = 1, ‖C‖2 = 5.7×10−2, and ‖K‖2 = 1×107.

We interpolate the matrix polynomial at the nodes {−i, 0, i}. At these

nodes ‖Fj‖2 ≈ 1 × 107, and so we have already, in a sense, equalized the

norms of the coefficients through interpolation. The eigenvalues are shown in

Figure 4.4, all of which are purely imaginary. Other choices of interpolations

nodes may not give such clean results.
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Figure 4.4: Speaker enclosure example, eigenvalue distribution.

Figure 4.5 shows the backward error of the computed eigenpairs of the

matrix polynomial. The backward error is truly excellent, being well below the

machine precision. We do not show the pessimism index for this problem. The

bound overestimates the backward error by at least two orders of magnitude,

and thus the backward error is not adequately described by the bound. This

may be due to additional structure that the QZ algorithm is able to take

advantage of. However, we are not sure exactly what this structure is.
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Figure 4.5: Speaker enclosure example, backward error distributions.

4.5.3 Damped Mass Spring System

Our third example is taken from [10], and also described in [15]. The matrix

polynomial is a 100× 100 quadratic polynomial P(z) = z2M + zC + K, where

M = I, C is tridiagonal with super- and subdiagonal elements all equal to −64

and diagonal elements equal to 128, 192, 192, . . . , 192, 128, and K is tridiagonal

with super- and subdiagonal elements all equal to −1 and diagonal elements

equal to 2, 3, 3, . . . , 3, 2.

The matrix polynomial describes a connected damped mass-spring system.

All of the eigenvalues are real and negative, 50 of which range from −320 to

−64, and the remaining 50 are all approximately equal to −1.56× 10−2.

We interpolate P(z) at the nodes {−320,−150, 0}. The eigenvalues of

P(z) are all real, and hence we plot the real part against the index of the

eigenvalue, as shown in Figure 4.6. The backward error and pessimism index

for the computed eigenpairs are shown in Figures 4.7 and 4.8. We see that,

again, the backward errors are very small. Owing to the differing magnitudes

of the cluster of eigenvalues near −1.56 × 10−2 and the rest of the spectrum,

we see a bimodal distribution of the backward errors, and additionally in the

pessimism index. Figure 4.8 illustrates the excellent agreement between the

bound and the backward error. For the left eigenpair, the pessimism index of
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Figure 4.6: Damped mass spring system, eigenvalue distribution.

the eigenvalues near −1.56× 10−2 is close to half an order of magnitude.
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Figure 4.7: Damped mass spring system, backward error distributions.
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Figure 4.8: Damped mass spring system, pessimism index distributions.

4.5.4 Damped Gyroscopic system

For our final example, we examine the damped gyroscopic system proposed

in [13]. The matrix polynomial is constructed as follows: let N denote the

10× 10 nilpotent matrix having ones on the subdiagonal and zeros elsewhere,

and define M̂ = (4I10 + N + NT )/6, Ĝ = N−NT , and K̂ = N + NT − 2I10.

Then define the matrices M, G, and K, using the Kronecker product ⊗, by

M = I10 ⊗ M̂ + 1.3M̂⊗ I10 ,

G = 1.35I10 ⊗ Ĝ + 1.1Ĝ⊗ I10 ,

K = I10 ⊗ K̂ + 1.2K̂⊗ I10 ,

and the damping matrix by D = tridiag{−0.1, 0.2,−0.1}. The quadratic

matrix polynomial we examine is then defined by

P(z) = z2M + z(G + D) + K .

We interpolate P(z) at the nodes {−1.8, 0, 1.8}. In addition to the eigen-

values of P(z), we also computed the weighted ε-pseudospectrum (see [13]),

shown together with the eigenvalues in Figure 4.9. The dotted line represents
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where the condition numbers for the Lagrange basis and the monomial basis

are equal. Within the dotted line, the condition number of the Lagrange basis

is somewhat smaller than that of the monomial basis, and hence we can expect

to compute more accurate eigenvalues there.
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Figure 4.9: Damped gyroscopic system, distributions of eigenvalues and pseu-

dospectra. The dotted line represents the level curve where BM(z) = BL(z).

The ε-pseudospectrum in this example gives us an idea of what the condi-

tioning of the problem is like. The outer boundary tells us that if we perturb

the coefficients of P(z) by up to 0.03 in norm, all of the eigenvalues will be con-

tained within the boundary. As we decrease the size of the perturbations, we

see that the boundaries get tighter around the computed eigenvalues. In this

case, we require fairly large perturbations before the pseudospectral bound-

aries move a great distance from the eigenvalues, and thus the problem is fairly

well conditioned.

Furthermore, because we are able to choose the locations of the nodes,
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we are able to ensure that eigenvalues of interest are computed accurately by

placing nodes near to the eigenvalues. If nothing is known about the spectrum

of P(z) then we may initially compute the eigenvalues using, for example,

Chebyshev nodes on [−1, 1]. Then interpolate P(z) using some of the com-

puted eigenvalues as nodes. This kind of iterative algorithm has been used

successfully in the scalar case [8], and we expect to obtain similar results in

the matrix polynomial case. For the monomial basis, we have no such flexibil-

ity.

Figures 4.10 and 4.11 show the distributions of the backward error and the

pessimism index for the computed eigenpairs. Again, we see that the backward

errors are small, and the bound agrees well with the backward error.
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Figure 4.10: Damped gyroscopic system, backward error distributions.
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Figure 4.11: Damped gyroscopic system, pessimism index distributions.

4.6 Concluding Remarks

In this chapter, we have derived bounds for the backward error of the eigenval-

ues of matrix polynomials expressed in the Lagrange basis, computed via the

eigenvalues of a generalized companion matrix pair. The backward error will

be small, provided that the ratios of the barycentric weights, the norms of the

coefficients in the Lagrange basis, and the interpolation nodes are all not too

large. We have described a block-wise balancing scheme for the linearization

that improves the accuracy of the computed eigenvalues. Numerical experi-

ments show that we obtain small backward errors of the computed eigenvalues.
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Chapter 5

Concluding Remarks

In this work, we have been motivated by the fact that computations in the

Lagrange basis are often better conditioned than those in the monomial basis.

Conversion between polynomial bases is often ill-conditioned, and this moti-

vates us to work entirely in the Lagrange basis, that is, directly with the values

of a polynomial interpolant.

In the second chapter, we introduced two fast algorithms which reduce

the linearization of a polynomial to a rank one perturbation of a symmetric

tridiagonal matrix. This reduction process can be carried out in O(n2) op-

erations, significantly lowering the cost compared to the standard reduction

algorithms. The proposed reduction processes also lower the storage require-

ments to O(n), rather than the O(n2) required for the standard reduction, and

thus bring us closer to an algorithm requiring only O(n) storage, and O(n2)

cost for computing all of the roots of polynomials.

Since the Lagrange basis is not a degree graded basis, the question of

determining the degree of the polynomial was also addressed. If some of the

leading coefficients of the interpolating polynomial are zero, then the degree of

the polynomial may be determined through simple expressions requiring only

O(mn) complexity. Furthermore, if the leading coefficients are zero, then the

linearization will have extra infinite eigenvalues in addition to the two spurious

ones introduced by the linearization. We have shown that these, too, may be

deflated easily from the linearization.

Through numerical experimentation, we tested the accuracy of the reduc-
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tion processes. The proposed reduction processes produce accurate Hessenberg

matrices, and outperform both the standard reduction process, and the qua-

siseparable algorithm proposed in [1].

In the third and fourth chapters, we discussed the issue of numerical sta-

bility of computing the roots of polynomials and the eigenvalues of matrix

polynomials through linearization. We established that the roots computed

in this manner are normwise backward stable. Additionally, the balancing

strategy proposed ensures that the roots are computed with small backward

errors. We formulated upper bounds for the backward errors. For a range of

examples, the computations produced roots and eigenvalues with small back-

ward errors, and the bounds were only a small factor larger than the backward

errors.

The linearization introduces two spurious infinite eigenvalues to the formu-

lation, and we showed how these eigenvalues could be deflated exactly from

the matrix pair, without affecting the accuracy of the finite (or infinite) eigen-

values. This same procedure was also extended to the matrix polynomial case,

where the formulation introduces 2m spurious infinite eigenvalues. These in-

finite eigenvalues may also be deflated exactly, and (if the transformation is

well conditioned) the generalized eigenvalue problem transformed to a stan-

dard eigenvalue problem.

5.1 Future work

As was shown in Chapter 4, the strategy for balancing the linearization pro-

duced eigenvalues of matrix polynomials with small backward errors. We be-

lieve that there is more work to be done to obtain an optimal balancing strategy

similar to that proposed in [3]. It is my intention to investigate the problem

of balancing more thoroughly in the near future.

Another consideration worth noting is the matter of the influence of the

geometry of the interpolation nodes on the accuracy of the computed eigen-

values. As shown in the pseudospectral plot in Figure 4.9 and the discussion

thereafter, we may adapt the interpolation nodes to ensure that the eigen-
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values nearby are computed with small backward errors. If prior knowledge

of the spectrum is known, this can be utilized to good effect. If not, we may

iteratively compute the eigenvalues, adjusting the location of the interpolation

nodes to ensure accurate computation of the eigenvalues near to the nodes.

The barycentric form can be extended to Hermite interpolational bases, and

linearizations of these polynomials exist. Some work has been done already to

extend the work presented here to these bases [2], and we believe that even

more elegant expressions than the one presented in that extended abstract may

be formed. Unfortunately it appears that the fast reduction techniques do not

extend to the linearization of Hermite interpolants, further work is necessary

to determine what structure might be retained in a reduction process.

Another natural extension of this work is to multivariate polynomial rootfind-

ing. For example, the software package Chebfun [4] has recently been ex-

tended to two dimensions, and there is a need for accurate and stable rootfind-

ing methods within this framework. Of course, much work is left to be done

to generalize the work presented here to higher dimensions.

For matrix polynomials with structured coefficients, the linearization does

not preserve the structure of the coefficients. The deflation process proposed

in §4.3 may afford some insight into how structure might be preserved in the

solution process. In that deflation process, block wise operations were used,

and these operations maintain the structure of the original coefficients. It

may be possible to maintain some structure in the coefficients by using block

operations in the subsequent QZ (or QR) iterations. The extent to which this

may or may not be possible is a matter for future investigation.

Another future direction of research is to combine the fast reduction tech-

niques proposed in Chapter 2 with the fast QR algorithms for tridiagonal plus

rank one matrices proposed in [5]. Hence, we would obtain an O(n2) algorithm

for computing all of the roots of scalar polynomials.

It may also be worthwhile investigating more efficient computation of pseu-

dospectra for matrix polynomials, combining the structured reduction of the

linearization to obtain a structure which might be more amenable to grid

computations.
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Appendix A

Algorithms for Fast Reduction
to Hessenberg form

Algorithm 1 Reduction of A to symmetric tridiagonal plus rank-one form.
q0 ← w
t0 ← ‖q0‖2
q0 ← q0/t0
d0 ← q∗0Dq0

q1 ← (D− d0I) q0

t1 ← ‖q1‖2
q1 ← q1/t1
for i = 1 to n− 1 do
di ← q∗iDqi
qi+1 ← (D− diI) qi − tiqi−1
ti+1 ← ‖qi+1‖2
qi+1 ← qi+1/ti+1

end for
dn ← q∗nDqn
cT ←

[
0 −fTQ1 − t0eT1

]
return t, d, c
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Algorithm 2 Reduction of A via Givens rotations.
t← 0(n−1)×1
for i = n to 1 do

Compute Givens rotation such that[
wi−1
wi

]
←
[

c s
−s c

]∗ [
wi−1
wi

]
=

[
r
0

]

Update remainder of matrix:

[
fi−1 fi

]
←
[
fi−1 fi

] [ c s
−s c

]
[
xi−1 ti
ti xi

]
←
[

c s
−s c

]∗ [
xi−1 0

0 xi

] [
c s
−s c

]
if i < n then
b← s · ti−1
ti+1 ← c · ti+1

for j = i to n− 1 do
Compute Givens rotation such that:[

tj
0

]
←
[

c s
−s c

]∗ [
tj
b

]
=

[
r
0

]

Update remainder of matrix:

[
fj fj+1

]
←
[
fj fj+1

] [ c s
−s c

]
[

xj tj+1

tj+1 xj+1

]
←
[

c s
−s c

]∗ [
xj tj+1

tj+1 xj+1

] [
c s
−s c

]
if j < n− 1 then
b← s · tj+2

tj+2 ← c · tj+2

end if
end for

end if
end for
c =

[
0 fT

]
d =

[
0 x

]
return t, d, c
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