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Abstract 

Vocal performance in birds, measured as the ability to rapidly produce broadband trills, has 

been proposed to reflect male quality. However, little is known about whether performance is 

consistent across a male’s song repertoire, or whether better performers also have larger 

repertoires. I quantified vocal performance in 21 male song sparrows (Melospiza melodia). 

Performance varied among and within males, but was significantly repeatable when 

considering multiple exemplars of the same trill type within an individual’s repertoire. This 

suggests that within-individual variation in performance reflects trill types varying in 

complexity and performance difficulty. Performance was positively and significantly 

correlated to song repertoire size, but not with male age, bill or body size. While repeatability 

of performance between multiple exemplars of the same trill suggests vocal performance 

could potentially be a reliable signal in birds with multi-song repertoires, performance 

appears to overlap with song repertoire size in the information conveyed.  

Keywords: vocal performance, vocal deviation, birdsong, song sparrow, Melospiza 
melodia, bill size, song repertoire, motor performance 
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1 Introduction 

1.1 Animal Communication  

Animals have evolved a wide diversity of ways to communicate information from 

signaler to receiver. Communication involves the transfer of information by a signal, 

defined as any display or change in behaviour by a signaler that results in a response from 

another individual (the receiver), and subsequent improvement of the signaler’s fitness 

(Smith and Harper 1995). Signals are generally selected to be as detectable, 

discriminable, and memorable as possible to receivers and may involve visual, tactile, 

olfactory and/or acoustic components (Guilford and Dawkins 1991). Communication, 

and thus signaling, occurs in a wide variety of contexts including offspring begging to 

solicit parental care as in American robins (Turdus migratorius; Smith and Montgomerie 

1991), male sand fiddler crabs (Uca pugilator) waving their claws to deter rivals (Pope 

2000), aposematic displays by poison frogs (family Dendrobatidae) to deter predators 

(Summers and Clough 2001), and the chemical signaling of queens used in kin 

recognition of honey bees (Apis mellifera capensis; Moritz and Crewe 1988). This 

diversity of contexts and modalities therefore provides multiple opportunities for 

selection to act.  

 Sexually selected signals are arguably the best-studied examples of animal 

communication, due to widespread interest in how animals choose and compete for 

mates. They are also incredibly diverse in form and content (e.g. structural displays such 

as the tails of male red-collared widowbirds (Euplectes ardens; Pryke and Andersson 

2005); carotenoid-based plumage colour of male house finches (Haemorhous mexicanus; 
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Hill 1991), and the courtship pheromones used by male arctiid moths (Utetheisa ornatrix; 

Kelly et al. 2012)). Signals may be favoured through intrasexual selection, as when an 

individual (usually male) signals to communicate its fighting ability, condition, and/or 

aggressive intent to same-sex rivals (Gil and Gahr 2002, Searcy and Nowicki 2005, 

Catchpole and Slater 2008). For example, in many species of northern swordtail fish 

(genus Xiphophorus), males produce a dynamic display of vertical bars of pigment, 

which is known to communicate aggression and willingness to fight (Moretz and Morris 

2006). Alternatively, signals may be favoured by intersexual selection, that is, in the 

context of mate choice. Because the sex that invests more in parental effort (usually 

females) is a limiting resource for the lower-investing sex (usually males), the lower-

investing sex frequently evolves ornaments or displays to attract the higher-investing sex 

(Trivers 1972, Hurd and Enquist 2005, Searcy and Nowicki 2005). For example, male 

túngara frogs (Physalaemus pustulosus) use a whine-chuck call to attract females (Baugh 

and Ryan 2010). Finally, some signals are used in both intra- and inter-sexual contexts. In 

many songbird species (suborder Passeri), for example, male song functions in both a 

territorial and mate attraction capacity (Catchpole and Slater 2008). Regardless of the 

context in which a signal is favoured, it must ultimately provide useful information to the 

receiver in order to be maintained.  

 Signal theory predicts that receivers should only attend to signals that are honest 

(Searcy and Nowicki 2005). In the context of sexual selection, an honest signal is one 

that reliably indicates some aspect of the signaler’s quality or environment such that a 

prospective mate or a potential rival is able to extract usable information from it 

(Nowicki and Searcy 2005). How signal honesty is maintained is of particular interest in 
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the context of sexual selection, as selection on signalers is expected to favour signal 

exaggeration. That is, males that ‘cheat’ by exaggerating their quality to potential mates 

and/or rivals should achieve a fitness advantage (Smith and Harper 1995). For example, 

male fiddler crabs (Uca annulipes) that have lost their big claw appear to successfully 

“bluff” potential rivals and attract mates by regenerating large but energetically cheap 

and structurally weak replacement claws (Backwell et al. 2000). Therefore in order for 

signals to be reliable and consistent indicators of quality, some mechanism must exist by 

which they remain honest.  

 One resolution to the problem of signal honesty is provided by the handicap 

principle, which posits that in order to be honest, signaling must be costly to the signaler 

(Zahavi 1975). Displaying a sexually selected signal associated with a reduction in 

survival (the handicap) can be viewed as having passed a type of test, because only high-

quality individuals can incur the costs and still survive (Zahavi 1975). Refinements of 

this idea suggest that costly signals may be condition-dependent rather than all-or-none, 

such that the degree to which a costly trait is expressed depends on (and thus reveals) the 

quality or current condition of the signaler (Iwasa et al. 1991). For example, in male field 

crickets (Gryllus campestris) increasing food availability results in improved body 

condition, and an associated increase in call frequency (Holzer et al. 2003). An increase 

in food availability provides sufficient energy to overcome the cost of frequent calling, 

and it is this cost by which the honesty of the signal is maintained.    

1.2 Performance as an Honest Signal 

  Recent attention has focused on motor performance as an honest signal, which 

includes displays of both vigour (the ability to perform physically demanding acts for an 
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extended period of time) and skill (the ability to perform fine motor tasks well; Byers et 

al. 2010). In male bobolinks (Dolichonyx oryzivoru), for example, extended flying bouts 

require considerable vigour and the length of such bouts predicts both male condition and 

subsequent fledging success (Mather and Robertson 1992). Skill may also be salient to 

many sexually selected displays as the motor actions required to produce or perform the 

displays are often more intricate than those required for other daily tasks. Sexually 

selected displays requiring vigour and/or skill may also approach an upper limit of 

performance constrained by physiology, anatomy or developmental stability due to the 

need to coordinate multiple systems (e.g. musculoskeletal and nervous systems). For 

these reasons, signals displaying motor performance ability have been proposed as 

excellent candidates for honest signals, because motor performance cannot be faked 

(Byers et al. 2010). 

1.2.1 Maximal versus Typical Performance  

 Despite the difficulty in faking motor performance, variation may still exist at a 

within-individual level as many displays are not performed at a maximal level at all 

times. Therefore motor performance can be measured as either typical performance (e.g. 

the average of multiple observations), or maximal performance (e.g. the best of multiple 

observations). Podos et al. (2009) suggest that maximal performance merits special 

investigation as for many traits individuals will only perform at maximal levels in 

specific contexts, such as the need to avoid a predator. Much research on maximal 

performance has focused on locomotion in lizards (Irschick and Garland 2001). For 

example, in an observational study of the lizard Anolis lineatopus, individuals typically 

moved at only 10 – 20% of their maximum speed during undisturbed motion, at 70% of 
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maximum speed during feeding, and at 90% of maximum speed during predator evasion 

(Irschick 2003). This demonstrates that animals may not approach maximal performance 

levels frequently. Moreover, individual lizards overlapped considerably in typical 

performance (e.g. similar undisturbed walking speeds), with variation between 

individuals only being exposed at maximal levels (Irschick and Garland 2001, Irschick et 

al. 2008). Although maximal performance may be expressed only occasionally, it is more 

likely than typical performance to reflect variation in physiology and morphology, and to 

be the direct target of selection (Irschick et al. 2008). In other words, non-maximal 

(typical) performance may be only weakly related to quality, because considerable 

variation in performance may occur within individuals. Maximum performance may thus 

be particularly important to assess in signals for which performance varies substantially 

at the within-individual level. Specifically, where repeatability of performance (defined 

as the proportion of variance in a trait or signal that occurs among rather than within 

individuals; Lessells and Boag 1987) is low, receivers may attend primarily to maximal 

performance to assess among-individual variation in quality.  

1.3 Complex Signals  

 While performance may provide receivers information through displays of vigour 

or skill, signals may also encompass more than one sensory modality, or otherwise have 

multiple features to which receivers can attend. For example, nestling common magpies 

(Pica pica) signal nutritional need through postural changes combined with vocalizations 

(Redondo and Castro 1992), and male satin bowerbirds (Ptilonorhynchus violaceus) 

combine vocal mimicry and postural displays to attract females (Doucet and 

Montgomerie 2003). Complex or multi-component signals may reflect either of two 



6 

 

situations (Møller and Pomiankowski 1993, Johnstone 1996). First, the various 

components may encode similar (redundant) information about the signaler, potentially 

enhancing the receiver’s overall ability to assess quality or condition. This is referred to 

as the ‘backup signal’ hypothesis (Johnstone 1996). Alternatively, each signal component 

may encode distinct information concerning the signaler’s condition. This is referred to 

as the ‘multiple messages’ hypothesis (Johnstone 1996). Different signal components 

may also overlap partially but not completely in the information they convey 

(MacDougall-Shackleton et al. 2009a). In each case, however, each component 

communicates some aspect of the signalers quality or condition to the receiver.  

1.3.1 Birdsong as a Complex Signal  

 The learned song of oscine songbirds comprises several components to which 

receivers of both sexes may attend. These include song output (e.g. the number of songs 

produced per unit time), local song structure (e.g. the degree to which songs are shared 

with other members of the population), song complexity (e.g. the number of distinct song 

types in an individual’s repertoire), and vocal performance (the ability to produce 

physically challenging song; Searcy and Nowicki 2005). The relative importance of these 

components and the degree to which each is implicated in intra- and/or inter-sexual 

selection, is expected to vary between species (Gil and Gahr 2002). For example, in song 

sparrows (Melospiza melodia), females choose mates based in part on song complexity 

(Reid et al. 2004), whereas in northern mockingbirds (Mimus polyglottis) song 

complexity is implicated primarily in male-male competition for territories (Howard 

1974), while in swamp sparrows (Melospiza georgiana) song complexity is very low and 

sexual selection acts primarily on other aspects of song (Ballentine et al. 2004). 
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Therefore while song complexity may be of more importance in some species, it is still 

but one of multiple aspects of song that may be attended to by receivers. 

1.3.2 Song Complexity  

 Of the components of birdsong reviewed above, song complexity has received the 

most study (Searcy and Nowicki 2005). Many species of songbird are age-limited 

learners, such that vocal learning is restricted to a sensitive period during the first few 

months of life (Marler and Peters 1987). In age-limited learners, including song sparrows, 

song complexity remains fixed throughout adulthood (Nordby et al. 2002). Female 

preference for large repertoires has been shown in many species including song sparrows 

(Searcy 1984, Reid et al. 2004), European starlings (Sturnus vulgaris; Mountjoy and 

Lemon 1996), and great tits (Parus major; Baker et al. 1986); although see Byers and 

Kroodsma (2009). This widespread preference by female songbirds for males with large 

song repertoires, suggests that by attending to song complexity females gain information 

regarding the quality of the singer. Indeed, in European starlings male song complexity is 

positively correlated with age and body condition (Mountjoy and Lemon 1996). 

Similarly, in an island population of song sparrows male song complexity is positively 

related to paternal care (Reid et al. 2005a) as well as individual genetic diversity and cell-

mediated immune function (Reid et al. 2005b). This suggests females may obtain both 

direct and indirect benefits from choosing males with large song repertoires. 

 Whereas it is easy to envision how singing at high rates of output is likely to be 

more costly than singing at lower rates (e.g. more energetically demanding and less 

foraging time), the costs associated with song learning (e.g. why learning a repertoire of 

ten song types is more costly than a repertoire of five song types) are less immediately 
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apparent. The developmental stress hypothesis (Nowicki et al. 1998, 2002) posits that the 

honesty of song complexity is maintained by the costs of developing neural structures 

associated with song learning during early life. Supporting this, in a recent study of song 

sparrows, song repertoire size, syllable repertoire size and song learning accuracy were 

all affected by experimentally-induced early-life stress in the form of food restriction and 

corticosterone treatment (Schmidt et al. 2013b). Similarly, experimental studies of both 

European starlings and zebra finches (Taeniopygia guttata) have found that early-life 

stress in the form of food restriction results in reduced adult song complexity (Buchanan 

et al. 2003, Spencer et al. 2003). Thus by attending to song complexity, females may gain 

information about the degree to which the singer avoided or withstood early-life stressors 

such as disease, parasitism or food limitation (Nowicki et al. 1998, 2002). Such 

information may in turn confer direct (material) and/or indirect (genetic) benefits to the 

mates of complex singers.  

1.3.3 Vocal Performance  

 A more recently examined component of song to which receivers may attend is 

vocal performance (Podos 1997, Searcy and Nowicki 2005, Catchpole and Slater 2008). 

Because motor performance in general has been identified as an honest (un-fakeable) 

signal (Byers et al. 2010), it follows that due to the complex mechanism required to 

produce songs, individual singers will likely vary in their ability to perform physically 

challenging aspects of song. Many different measures have been used to quantify vocal 

performance, including song amplitude (Forstmeier et al. 2002), use of ‘special’ syllables 

characterized by rapid frequency modulation (Vallet and Kreutzer 1995), rate of syllable 

production (Vallet et al. 1998), ‘sound density’ or the ratio of syllables to inter-syllabic 
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intervals (Leadbeater et al. 2005, Holveck and Riebel 2007, Cardoso et al. 2007, 2009), 

and ‘predicted amplitude’ or the amplitude of particularly challenging song types 

(Cardoso et al. 2007, 2009). Therefore while each (of the above) methods differ in the 

characteristic of song measured, they all consider the ability of a bird to perform 

physically challenging aspects of song. Research on vocal performance of birds has 

proven fruitful because of the complex nature of this behavior and its many physically 

challenging components. 

The most frequently used measure of vocal performance, however, is ‘vocal 

deviation’ (Podos 2001). This approach examines the trilled components of a bird’s song 

(Figure 1) and plots frequency bandwidth (the difference between the maximum and 

minimum frequencies in the trill) as a function of trill rate (the number of repetitions of a 

trilled syllable per unit time). For each song, the orthogonal deviation from an upper 

performance boundary established for the species or study population is then determined. 

Thus, a song with low vocal deviation reflects superior vocal performance (Podos 2001). 

Vocal deviation is relatively straightforward to measure even under field conditions, and 

has the advantage of being widely applicable because repeated, frequency-modulated 

trills occur in the songs of many songbird species (Podos 1997). Finally, the 

biomechanics governing the inherent trade-off between trill rate and frequency bandwidth 

are relatively well understood (Podos 1997).  

The intricacies of birdsong and the complex motor skill it requires make vocal 

performance an excellent candidate for an honest signal (Nowicki and Searcy 2005, 

Byers et al. 2010). Birdsong is inherently difficult to produce, because of the physicality 

and physiology involved (Nowicki et al. 1992, Suthers 2004, Byers et al. 2010). Sound  
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Figure 1 – An annotated spectrogram of an exemplar song sparrow song. A note is 
defined as an unbroken trace on the spectrogram, a syllable consists of one or more notes 
that always occur together in the same order, and a trill consists of a syllable repeated 
several times.  
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production occurs in the syrinx, which is located at the base of the trachea; the syrinx is 

particularly well developed in true (oscine) songbirds (Catchpole and Slater 2008). Each 

side of the syrinx can operate independently, such that there are two potential sites at 

which sound can originate (Suthers 2004). The sounds mix upon entering the trachea, and 

the vocal tract moves in coordination to filter out sounds and modify the final song 

(Nowicki 1987, Riede et al. 2006). By stretching or compressing its neck, a singing bird 

can dynamically alter the length of its vocal tract (Suthers 2004). Finally, the bill is 

another important modulator of sounds and frequency. Bill movements affect song 

frequencies such that opening the bill produces a high frequency and closing the bill 

produces a low frequency (Westneat et al. 1993, Hoese et al. 2000). Therefore rapidly 

modulating the frequency of sound produced requires that the bill be opened and closed 

as quickly as possible. This requirement limits the speed with which frequency can be 

modulated, based on the distance the bill is required to travel. It is this morphological 

constraint that makes it difficult for songbirds to produce broadband trills at a rapid rate, 

and is the basis of trill performance as an honest signal (Podos 1997).  

 Variation in the speed with which individuals can maneuver this mechanism leads 

to variation in frequency bandwidth and trill rate, and thus to variation in vocal deviation 

and vocal performance. Plotting the relationship between frequency bandwidth and trill 

rate generally yields a triangular distribution, with the majority of trills occupying the 

lower left-hand corner and none in the upper right-hand corner of the distribution above 

the upper performance limit (Figure 2; Podos 1997, Ballentine et al. 2004). This 

relationship has been found in a variety of bird species including multiple species of 

neotropical woodcreepers (Subfamily: Dendrocolaptinae; Derryberry et al. 2012), yellow  
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Figure 2 - Theoretical diagram of the distribution of songs in acoustic space. The dashed 
line represents the estimated vocal performance limit established by an upper bound 
regression. Theory suggests that individual songs will be found in the shaded area, as 
songs above the performance limit are deemed too physically challenging. The four 
points represent theoretical trill examples. Squares represent low performance songs with 
a large deviation from the estimated performance limit, while circles represent high 
performance songs with a small deviation. Adapted from Ballentine et al.(2004). 
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warblers (Satophaga petechia; Beebee 2004), Darwin’s small tree finch (Camarhynchus 

parvulus; Christensen et al. 2006), Darwin’s medium ground finch (Geospiza fortis; 

Huber and Podos 2006), red-winged blackbirds (Agelaius phoeniceus; Cramer and Price 

2007), banded wrens (Thryothrosu pleurostictus; Illes et al. 2006, Vehrencamp et al. 

2013), house wrens (Troglodytes aedon; Cramer 2013), dark-eyed junco (Junco hyemalis; 

Cardoso et al. 2007, 2009, 2012), much of the Emberizid family (Podos 1997) including 

swamp sparrows (Melospiza georgiana; Ballentine et al. 2004) and Lincoln’s sparrows 

(Melospiza lincolnii; Caro et al. 2010), as well as one non-passerine, brown skuas 

(Catharacta antarctica lonnbergi; Janicke et al. 2008). Thus while the song structure of 

each species may differ, the trilled components of their song still share the characteristic 

trade-off between frequency bandwidth and trill rate used to measure vocal deviation.  

1.3.3.1 Bill Morphology as a Constraint on Vocal Performance  

 Due to the intimate relationship between bill movement and sound production, 

several studies have examined the relationship between bill morphology and vocal 

performance. In Lincoln’s sparrows, vocal deviation increases with increasing bill length 

(Sockman 2009) and in swamp sparrows, multiple species of neotropical woodcreepers 

(Subfamily: Dendrocolaptinae) and multiple species of Darwin’s finches, vocal deviation 

increases with bill length, width and depth (Podos 2001, Ballentine 2006, Huber and 

Podos 2006, Derryberry et al. 2012), suggesting that larger bills impede the movements 

required to produce rapid broadband trills. Thus, some of the among-individual variation 

in vocal performance may reflect morphological constraints imposed by bill size, in so far 

as long or deep bills cannot open and close as rapidly as smaller bills (Podos 2001).  
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1.3.3.2 Vocal Performance as an Indicator of Quality  

 In light of claims that signals relying on motor performance should be particularly 

honest (Byers et al. 2010), a growing number of studies have investigated the relationship 

between vocal performance and various aspects of male quality and/or reproductive 

success. While recent studies of dark-eyed juncos (Cardoso et al. 2012) and banded 

wrens (Cramer 2013) have found no relationship between vocal deviation and measures 

of male quality (including body condition, age, and parasite load), other studies have 

found associations between vocal deviation and male quality or reproductive success. For 

example, female swamp sparrows perform more copulation solicitation displays in 

response to low-deviation than to high-deviation songs (Ballentine et al. 2004), indicating 

a preference for songs of superior vocal performance. Moreover, male swamp sparrows 

with better vocal performance (low vocal deviation) tend to be older and heavier (and 

thus presumably of better quality) than their high-deviation counterparts (Ballentine 

2009). The discrepancy between studies may reflect differences in vocal complexity. 

Whereas swamp sparrow song is very simple, consisting only of rapid repeated trill 

syllables with a single song type per male (Ballentine et al. 2004), both dark-eyed juncos 

and banded wrens have relatively complex repertoires (Cardoso et al. 2007, Cramer 

2013). Therefore, vocal performance may be a less reliable indicator of male quality in 

species with relatively complex song repertoires than in species with simple song 

(Cardoso et al. 2012).  

 Little is known about whether vocal performance is an honest indicator of quality 

in birds with complex vocal repertoires. To the extent that some song types are inherently 

more challenging than others to perform well (Figure 3), species with large repertoires  
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Figure 3 - Examples of two hypothetical trills with identical frequency bandwidth and 
trill rate, but which differ in performance difficulty. Trill A would be easier to perform as 
the ending frequency of the first note and starting frequency of the second note are 
matched, thus not requiring a reconfiguration of the syrinx and vocal tract between notes. 
Trill B would be more difficult to perform as the mismatch between the ending frequency 
of the first note and starting frequency of the second note would require significant vocal 
maneuvering. Adapted from Podos et al. (2009).  
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may thus have a concomitantly large within-individual component of variation in 

performance. Thus receivers may not be able to easily assess among-individual variation 

in vocal performance, because much variation is introduced by differences in song types 

among and within the repertoires of individual singers. Indeed, Cardoso et al. (2009) 

found that several aspects of song performance in dark-eyed juncos (e.g. proportion of 

sound, residual intervals, predicted amplitude) showed more variation within males than 

between males. Related to this, Logue and Forstmeier (2008) suggest that large song 

repertoires may allow singers to disguise poor vocal performance. That is, when 

countersinging the same song type with a better-performing rival, poor performers may 

switch to a new and unshared song type such that the ability of receivers to directly 

compare vocal performance is compromised. If so, receivers may be limited in their 

ability to assess male quality by attending to vocal performance in species with complex 

vocal repertoires.  

1.4 Objectives and Hypotheses 

Song sparrows provide an excellent opportunity to examine the signal value of 

vocal performance in a species with complex song repertoires. Male song sparrows learn 

to sing during early life (Marler and Peters 1987), and have repertoires of between 5 – 13 

song types (Pfaff et al. 2007). Previous studies, including several done on my study 

population, have shown that song complexity in this species is influenced by conditions 

experienced during early development (Schmidt et al. 2013b) and is positively associated 

with phenotypic traits including body condition, physiological condition, immunological 

competence, and stress responsiveness (Pfaff et al. 2007, Schmidt et al. 2012, 2013a, 

2013b). Song complexity has also been shown to correlate with other aspects of song, 
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specifically local song structure and song output, suggesting that multiple aspects of song 

may encode redundant information regarding the quality of the signaler (MacDougall-

Shackleton et al. 2009a). Finally, although the vast majority of research on song in this 

species has focused on song complexity rather than vocal performance, performance is 

readily measurable because song sparrow song consists of trilled as well as untrilled 

syllables (Figure 1). 

In this thesis my first objective was to characterize the repeatability (defined as 

the fraction of variation that is due to differences between individuals; Lessells and Boag 

1987) of vocal performance in song sparrows. I hypothesized that because each 

individual’s repertoire contains multiple song and trill types, within-individual variation 

in vocal performance should be substantial and thus repeatability should be low. I also 

sought to determine whether average or maximal vocal performance better characterizes 

the expected trade-off between frequency bandwidth and trill rate. Given that the 

consistency in vocal performance within individuals is expected to be low, I predicted 

that the trade-off between frequency bandwidth and trill rate should be more apparent 

when using maximum vocal rather than average performance.  

 The second major objective of my thesis was to determine how vocal performance 

is related to age, body size, and bill size. Previous empirical work on swamp sparrows 

found that vocal performance was higher in older and larger-bodied males, and that 

individual males tended to improve vocal performance between their first and second 

breeding seasons (Ballentine 2009). From this, I predicted that vocal performance should 

similarly be related to age in song sparrows, such that older males should also be better 

performers. Moreover, based on principles of biomechanics (Westneat et al. 1993, Hoese 
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et al. 2000) and previous empirical work on multiple species (Podos 2001, Huber and 

Podos 2006, Ballentine 2006, Sockman 2009), I hypothesized that vocal performance 

would be constrained by bill size and predicted that males with larger bills should have 

lower vocal performance.  

My final objective was to examine the relationship between song complexity and 

vocal performance. No causal relationship is expected between song complexity and 

vocal performance, nor are these aspects of song likely to be correlated through shared 

developmental timing: song complexity is established during neural development in the 

first few months of life whereas vocal performance is believed not to be established until 

the sensorimotor phase later in the first year (Podos et al. 2009). However, carryover 

effects of stress or condition from one life history stage to the next (e.g. Norris et al. 

2004) may result in a positive relationship between these components of song despite 

their being established at different times of development. Indeed, Podos et al. (2009) 

suggest that birds recovering from early life stress may be unable to establish and 

maintain a baseline level of vocal performance later in life. Consistent with the idea of 

carryover effects, song complexity has been shown to correlate with song output in song 

sparrows despite the different developmental timescales over which these aspects of song 

develop (MacDougall-Shackleton et al. 2009a). Thus, I predicted that vocal performance 

and song complexity should be positively related such that males with more complex 

song repertoires should also have higher vocal performance.  
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2 Materials and Methods 

2.1 General Field Methods  

I carried out field work at the Bracken property near Newboro, Ontario, Canada 

(44o 38.6’ N, 76o 19.0’ W) owned by the Queen’s University Biological Station. All 

measurements and recordings were conducted on a long-term study population of 

approximately 35 – 40 breeding pairs of free-living, colour-banded, song sparrows 

(Melospiza melodia). The study population is migratory, but adults show high levels of 

breeding philopatry upon returning to the site each spring, generally returning to the same 

breeding territory as the previous year (MacDougall-Shackleton et al. 2009a).  

 Birds were captured in mist-nets or seed-baited Potter traps, measured, and their 

repertoires recorded between April 9th and June 2nd, 2012. Newly captured individuals 

were fitted with a numbered Canadian Wildlife Service band, as well as a unique 

combination of coloured leg bands for visual identification. Males were identified by the 

presence of a cloacal protuberance, then tarsus length, unflattened wing length, and mass 

were measured for each male. Tarsus length and unflattened wing length were measured 

to the nearest 0.1 mm using dial calipers, and mass was measured to the nearest 0.2 g 

using a spring-loaded scale. These morphological measurements were made either by 

myself or one of two other members of the field crew. I did not assess inter-observer 

measurement error for these morphological measurements, but in general, these three 

measurements are generally consistent between observers (0.54 to 6.40% measurement 

error; Lougheed et al. 1991).  
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In addition to measuring body size, I measured six aspects of bill size in an effort 

to fully characterize the size of both the upper and lower bill. Similar to body size 

measurements, bill size measurements were made to the nearest 0.1 mm using dial 

calipers. However, to eliminate inter-observer measurement error, I conducted all bill 

measurements myself. These measurements are summarized in Figure 4. Upper bill 

length was measured from above as the horizontal length of the exposed culmen of the 

upper mandible (Figure 4A – L1 to L3), and lower bill length was measured as the length 

from base to tip of the exposed portion of the lower mandible (Figure 4A – L6 to L4). 

Upper bill depth was measured from the side as the depth of the upper mandible at the 

position of the nares (Figure 4A – L2 to L7), and lower bill depth was measured from the 

side as the depth of the lower mandible at the position of the nares (i.e. directly below the 

landmark for upper bill depth; Figure 4A – L7 to L5). Upper bill width was measured as 

the width of the upper mandible at the position of the nares (nostrils; Figure 4B – 

landmarks L8 to L10). Lower bill width was measured as the width of the lower mandible 

at the position of the nares (i.e. directly below the landmark for upper bill width; Figure 

4B – L9 to L11).  

To assess the extent of within-observer measurement error for bill measurements, 

I re-measured the bills of five males that were captured twice. These re-measurements 

were done blind to the original measured values. For each of the six measured aspects of 

bill size, the first and second measurements were positively correlated (Pearson’s r 

ranging from 0.36 to 0.87) but not significantly so (p ranging from 0.13 to 0.90), however 

the lack of statistical significance may reflect low statistical power as only five 

individuals were measured twice. Lower bill length was the most consistent across 
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Figure 4 – A schematic diagram illustrating the three bill measures (length, width and 
depth) taken from each of the upper and lower bill of all males. A shows a side-view of a 
representative song sparrow bill, while B shows a front-view. Upper length was measured 
from landmarks L1 to L3. Lower length was measured from L6 to L4. Upper depth was 
measured from L2 to L7. Lower depth was measured from L7 to L5. Upper width was 
measured from L8 to L10 across the top mandible. Lower width was measured from L9 
to L11 across the lower mandible.  
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multiple measurements (Pearson’s r = 0.87, p = 0.13), and was therefore the only 

measurement used as an estimate of bill size in further analyses. This parallels other 

studies, which have similarly used bill length as on estimate of overall bill size (Sockman 

2009). 

I determined the age of each male using banding records dating back to 2002. Some 

males had been banded as nestlings in previous years and their ages were known with 

certainty. Others (“adult recruits”) were first captured and banded as adults in 2012 or 

previous years; these adult recruits are assumed to have been yearlings when they were 

first captured. This is warranted because adult recruits tend to have shorter wings 

(characteristic of yearlings) than birds known to be two years or older; because each 

spring we capture and band all breeding adults in our study area; and because of the short 

distance (<75 m) in which banded birds move territories each year (Lapierre et al. 2011). 

Thus I am confident that adult recruits were indeed one year of age upon first capture and 

therefore that the age data are accurate. 

2.2 Recording Methods  

I recorded the full song repertoires of 21 breeding male song sparrows, between 

April 10th and May 12th, 2012, within the first five hours of sunrise (approximately 06:00 

– 11:00). While some of these males had had their repertoires recorded in previous years, 

performance is a dynamic trait (see Byers et al. 2010) and therefore I considered only 

repertoires recorded in 2012 in order to examine current performance. Performance is 

also context-dependent (see Podos et al. 2009) so I did not use conspecific song playback 

to elicit singing, as this apparent territorial challenge might have artificially elevated 

motivation and thus vocal performance. Instead I recorded only spontaneous bouts of 



23 

 

song, although because males frequently engage in countersinging, some of my 

recordings likely reflect song produced in the context of a naturally-occurring territorial 

challenge. Otherwise, my methods for recording full song repertoires followed those 

previously established for this study population (Pfaff et al. 2007). Specifically, I 

considered an individual’s repertoire to be recorded in full once 300 or more consecutive 

songs or 450 non-consecutive songs had been recorded.  

 I recorded songs directly to the memory disk of a Marantz Professional PMD 671 

solid-state recorder using a Telinga Twin Science Pro parabolic microphone (Uppsala, 

Sweden). Songs were digitized and spectrograms were created using Raven Pro sound 

analysis software (v.1.4; Bioacoustics Research Program, Cornell Lab of Ornithology, 

Ithaca, NY, U.S.A.). For all song analyses, I created Hann-type spectrograms with a -3 

dB bandwidth filter at 248 Hz in order to filter out background noise. I removed 

additional background noise below 1000 Hz and above 10 000 Hz using a frequency pass 

filter in Raven Pro, as song sparrow song does not exceed these frequency extremes.  

2.3 Song Analysis Methods  

2.3.1 Song Repertoire Size  

 I determined the song repertoire size for each male through visual inspection and 

sorting of spectrograms into distinct song types. Song sparrows sing with eventual 

variety, repeating one song type multiple times before switching to a new song type. I did 

not count slight variations in song (e.g. the addition or omission of a single syllable) as a 

new song type. Consistent with previous studies on this species and other populations of 

song sparrows, song repertoire size for males ranged from 5-12 song types. 
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2.3.2 Vocal Performance and Vocal Deviation  

 To estimate vocal performance, I measured vocal deviation, defined as the ability 

to produce trilled elements that approach the upper performance boundary defined by the 

trade-off between frequency bandwidth and trill rate (Podos 1997). I began by 

categorizing the individual trill types (e.g. trills consisting of unique syllables) in each 

male’s repertoire based on visual examination of spectrograms. A given trill type can be 

common to multiple song types in an individual’s repertoire; males in my study had 5-9 

unique trill types (mean ± standard deviation = 7.10 ± 1.14) in their repertoire. Next, 

following methods outlined by Podos (2001), for each trill type in each bird’s repertoire, I 

selected ten exemplars of the bird producing that trill type. This yielded a total 50 – 90 

exemplars per bird, depending on the number of trill types in its repertoire. Exemplars 

were chosen based on order of appearance in the recording (i.e. the first ten examples of a 

particular trill type in a recorded repertoire were used when possible), as well the 

recording quality and signal to noise ratio of each exemplar (i.e. exemplars with 

excessive background noise or unusually low amplitude were skipped and the next 

acceptable exemplar was used instead).  

 From each sampled exemplar, I measured trill rate in Hz from the spectrogram as 

the number of times the trilled syllable (consisting of one or more note traces on the 

spectrogram; Figure 1) was repeated, divided by the duration (in seconds) of the entire 

trill. Also from each sampled exemplar, I measured frequency bandwidth from the 

spectrogram as the difference in Hz between the maximum and minimum frequencies at 

90 percent signal energy. This 90 percent criterion was used to compensate for variation 

in amplitude among recordings and among exemplars.  
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 From these measurements, I calculated the upper vocal performance boundary for 

the population following methods described by Podos (2001) and Blackburn (1992). Trill 

exemplars were binned into 3 Hz bins based on trill rate (7 bins total; 0-3 Hz, 3-6 Hz, 6-9 

Hz, 9-12 Hz, 12-15 Hz, 15-18 Hz, and 18-21 Hz), and the trill exemplar with the largest 

frequency bandwidth was selected from each bin. I then ran a simple least-squares 

regression through the resultant subset of seven points. This regression line represents the 

estimated vocal upper performance boundary for this population. While the choice of bin 

size is arbitrary, Blackburn (1992) argues that between 6-15 bins is ideal, as this is the 

region where the estimates of slope are largely independent of sample size and number of 

bins. Increasing the number of bins beyond this range results in a statistically powerful 

regression, but is less accurate in reflecting the upper performance boundary (Blackburn 

1992). My use of seven 3 Hz bins is comparable to previous studies in other songbirds, 

which have used 10 bins varying in size from 1-5 Hz, depending on observed variation in 

trill rates (Podos 1997, Ballentine et al. 2004). The combination of bin number and size 

in this study should thus provide an accurate estimate of the upper performance boundary 

while remaining fairly robust to small sample size and thus permitting statistical 

significance testing. 

 After generating the upper performance regression as described above, I 

calculated the average trill rate and frequency bandwidth across all ten sampled 

exemplars of each trill type for each individual bird. Thus, each bird was represented by 

5-9 (depending on the number of trill types in its repertoire) values of trill rate and 

frequency bandwidth, and these average values for each trill type in each individual’s 

repertoire were added to the frequency bandwidth – trill rate distribution. I then 
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calculated the orthogonal distance from each of these points to the upper boundary 

regression, resulting in 5-9 values of trill deviation per individual (again depending on 

number of trill types in the repertoire). From these values, I calculated the average vocal 

deviation for each male as the mean of these orthogonal distances across all of its trill 

types.  

 To measure each individual’s maximum vocal performance (that is, its minimum 

vocal deviation), I used similar methods as described above except that the vocal 

deviation score for each individual was not the average value of all trill types. Instead, I 

plotted all trill exemplars sampled (50-90 per male) onto the frequency bandwidth – trill 

rate distribution, and the single exemplar with the lowest distance to the upper 

performance boundary was used as that individual’s minimum vocal deviation. This 

approach minimizes the effect of sub-maximal performance and the within-individual 

variation in performance seen across multiple trill exemplars (Podos et al. 2009). 

2.4 Repeatability of Vocal Performance  

To determine whether individuals differ consistently in vocal performance as 

assessed by vocal deviation, I calculated repeatability (defined as the intraclass 

correlation coefficient, or the proportion of variation resulting from among-individual 

rather than within-individual variance components) of vocal deviation. I conducted one-

way ANOVAs in JMP (v.10; SAS, Cary, NC, U.S.A.) to determine among- and within-

individual variance components and then used these to calculate repeatability following 

Lessells and Boag (1987). Because I was particularly interested in the degree to which 

variation in trill type difficulty within an individual’s repertoire contributes to within-

individual variation in vocal deviation, I calculated four separate estimates of 
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repeatability. Specifically, I calculated repeatability of vocal performance based on (1) all 

trills in a male’s repertoire; (2) all simple trills in a male’s repertoire; (3) a single, 

randomly chosen, simple trill type from each male’s repertoire; and (4) a single, 

randomly chosen, complex trill type from each male’s repertoire. If within-individual 

variation in vocal deviation is due in part to variation in trill type difficulty, the first two 

estimates of repeatability (which include variation resulting from trill types within an 

individual’s repertoire varying in difficulty) should be lower than the last two, which 

exclude this component of variation.  

To supplement the repeatability analysis and more directly investigate the main 

source of among- and within-individual variation in vocal performance, I conducted a 

nested ANOVA. Maximum vocal performance (minimum vocal deviation) was the 

response variable, with bird identity and trill type nested within bird identity as the 

explanatory variables. If most variation in vocal deviation is attributable to differences 

among individuals (i.e. some birds are consistently better performers than others), we 

should find a significant effect of bird identity on vocal deviation. In contrast, if most 

variation in vocal deviation is attributable to differences among trill types within the 

repertoires of individuals (i.e. some trills are harder to perform well than others), we 

should find a significant effect of trill type nested within bird identity on vocal deviation. 

Finally, a finding of no main effect of either bird identity or trill type nested within bird 

identity would indicate that vocal performance varies substantially within individuals 

even over multiple renditions of the same trill type. Such a pattern might suggest that 

vocal performance is not very stable and presumably not informative to receivers. 
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2.5 Simple versus Complex Trills  

I observed substantial variation among trill types in the number of notes 

(continuous traces on a spectrogram) that comprised the trill syllable (Figure 5). Because 

this variation might affect the difficulty of rapidly repeating a particular trilled syllable 

(i.e. syllables composed of many notes cannot be repeated as quickly as those composed 

of a single note), I classified trill types by the number of notes comprising the trilled 

syllable. ‘Simple’ trills were those consisting of two or fewer notes in the trilled syllable, 

and ‘complex’ trills were those consisting of three or more notes in the trilled syllable 

(Figure 5).  

 To compare vocal performance as measured from all trill types versus the subset 

of trill types defined as ‘simple’, I used average frequency bandwidth and trill rate values 

for each trill type in each bird’s repertoire (as described above) to calculate average vocal 

deviation using two different distributions. The first distribution included all trill types 

(simple and complex) and the second consisted of simple trills only. I then characterized 

the upper performance boundary lines separately for each graph as described above, in 

order to determine whether the frequency bandwidth-trill rate trade-off is equally 

apparent regardless of whether all trill types or only simple trills are considered. 

2.6 Data Analysis  

 All statistical analyses were two-tailed and were completed in JMP (v.10; SAS, 

Cary, NC, U.S.A.).  
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Figure 5 – Spectrograms of trills from song sparrows, illustrating an example of a simple 
trill (A) and a complex trill (B). Trill A is comprised of syllables containing two notes 
and is therefore classified as a simple trill. Trill B is comprised of syllables containing 
four notes and is therefore classified as a complex trill. The syllable in trill A is repeated 
a total of five times; that in trill B is repeated a total of three times. 
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2.6.1 Vocal Performance as a Function of Age, Bill size and Body size 

 To examine how maximum vocal performance (measured as minimum vocal 

deviation) varies with age, bill and body size, I used a standard least-squares general 

linear model regression. Age, bill size and body size were used as predictors of maximum 

vocal performance. Age was included as a categorical predictor with males being 

classified as either ‘second year’ (i.e. one year old) or ‘after second year’. Bill size was 

measured as the lower bill length (see section 2.1) and was a continuous predictor.  Mass 

was used as a proxy for body size following the methods of Ballentine (2009) and was 

also a continuous predictor. Interaction terms were included in the initial model, but were 

not significant and subsequently removed from the final model.  

To determine whether maximum vocal performance varies with song repertoire 

size, I used a Pearson’s product-moment correlation between song repertoire size and 

minimum vocal deviation. Repertoire size was not included as a predictor in the GLM 

described above because no causal relationship was expected between repertoire size and 

vocal performance. One apparent statistical outlier was removed from the correlation, as 

both its leverage and Cook’s distance values exceeded criteria for removal (observed and 

threshold leverage values were 0.29 and 0.19 respectively; observed and threshold 

Cook’s distances were 1.22 and 1 respectively). Notably, the single individual removed 

from the correlation was the oldest bird in the population (age 7, compared to a mean age 

of 1.62 years for the remaining males in my study). 
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3 Results 

3.1 Repeatability of Vocal Performance  

 To test the degree to which vocal performance shows consistent among-individual 

variation, I calculated the repeatability of: (1) all trills in a male’s repertoire; (2) all 

simple trills in a male’s repertoire; (3) a single, randomly chosen, simple trill type from 

each male’s repertoire; and (4) a single, randomly chosen, complex trill type from each 

male’s repertoire. Males showed low repeatability of vocal performance for all trills and 

for only simple trills. Indeed, repeatability of vocal deviation across all trill types within 

an individual’s repertoire was low and not significantly different from zero (F20,128 = 0.98, 

repeatability = -0.003, p = 0.49; Table 1). Similarly, repeatability of vocal performance 

across the subset of simple trill types within an individual’s repertoire was also low and 

not significantly different from zero (F20,46 = 0.63, repeatability = -0.13, p = 0.87; Table 

2). This low repeatability of vocal performance for all trills and for only simple trills 

suggests considerable variation in performance within individuals.  

In contrast, males showed high repeatability of vocal performance across multiple 

examples of the same trill type. The repeatability of vocal performance across ten 

exemplars of one randomly selected trill type per individual was high and significantly 

greater than zero for both simple trill types (F20,189 = 185.12, repeatability = 0.95, p 

<0.0001; Table 3) and complex trill types (F20,189 = 29.41, repeatability = 0.74, p <0.0001; 

Table 4). Together, these findings suggest that within-individual variation in performance 

is largely due to performance differences among trills within an individual’s repertoire 

(trill types differ in their inherent difficulty) rather than to variation in performance 

across multiple renditions of the same trill type. 
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 Maximum vocal performance also differed between males and the variation 

within males was explained by differences in performance between trill types. I used a 

nested ANOVA to more directly assess the main source of variation in vocal deviation, 

with minimum vocal deviation as the response variable, and bird identity and trill type 

nested within bird identity as the explanatory variables. Bird identity explained a 

significant proportion of variation in minimum vocal deviation (F20,130 = 43.28, p 

<0.0001, Table 5), suggesting that males differ in maximum vocal performance. 

Moreover, trill type nested within bird identity also explained a significant proportion of 

variation in minimum vocal deviation (F20,130 = 43.85, p <0.0001, Table 5), suggesting 

that the majority of within-individual variation in performance arises due to differences 

among trill types in inherent difficulty. These findings parallel the results of the 

repeatability analyses, which also suggested that the majority of variation within 

individuals was due to variation in performance between trill types.  

3.2 Average versus Maximum Vocal Performance  

 Maximum vocal performance better addresses the trade-off between frequency 

and bandwidth and trill rate in song sparrows. Indeed, when maximum and average vocal 

performance were calculated for each individual, the upper boundary regression 

calculated from measures of maximum vocal performance was more steeply negative 

than that calculated from measures of average vocal performance, and only the 

maximum-performance-derived upper boundary regression was statistically significant 

(maximum performance: slope= -154.12, SE = 47.21, r2
6=0.68, p=0.02; average 

performance: slope = -131.76, SE = 62.74, r2
6=0.47, p=0.09). This suggests that 

maximum vocal performance better addresses the trade-off between frequency bandwidth 
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and trill rate in song sparrow song than does average performance, and thus my 

subsequent analyses focus on maximum performance. 

3.3 Complex versus Simple Trill Performance  

 Simple trills tended to have lower vocal deviation and thus higher performance 

when compared to complex trills. When plotting the frequency bandwidth and trill rate of 

all trill types (simple and complex), the majority of the points were located in the lower-

left corner of the plot (Figure 6A). By contrast, plotting only the subset of simple trills 

yielded a triangular distribution (Figure 6B) characteristic of a trade-off between 

frequency bandwidth and trill rate (Podos 1997). Supporting this, the regression of 

frequency bandwidth as a function of trill rate used to characterize the upper performance 

boundary for complex and simple trills combined was not statistically significant (r2
6 = 

0.47, p = 0.09), but the upper performance boundary regression for simple trills alone was 

statistically significant (r2
6 = 0.85, p = 0.003). Moreover, the upper performance 

boundary regression for simple trills alone was more steeply negative than that for simple 

and complex trills combined (slopes of -291.47 and -131.76, respectively). Vocal 

performance was higher (i.e. vocal deviation was lower) for simple than for complex 

trills, as assessed by orthogonal deviation from the upper boundary regression of complex 

and simple trills combined (two-sample t-test, t147 = -5.62, p < 0.0001). 

3.4 Vocal Performance as a Function of Age, Bill Size and Body Size  

I used a multiple regression to examine the effects of age (yearling versus older), 

bill size and body size on maximum vocal performance (i.e. minimum vocal deviation). 
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Contrary to my original predictions, vocal performance did not vary with age, bill size or 

body size (Table 6).  

3.5 Vocal Performance and Song Complexity 

Vocal performance and song complexity were negatively related in this 

population of song sparrows. Indeed, after removing one outlying data point 

(corresponding to the oldest bird in the population; see section 2.6.3), the negative 

relationship between minimum vocal deviation and song repertoire size was significant 

(Figure 7; Pearson’s r19 = -0.44, p = 0.05). That is, males with lower minimum vocal 

deviation (and thus superior maximum vocal performance) also tended to have larger 

song repertoires.  
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Table 1 - Repeatability of vocal performance across all trill types performed by each 

male. N=21 male song sparrows each with 5-9 trill types measured.  

Source of variation df Sum of 

squares 

Mean squares F P 

Among males 20 1262.34 63.12 0.98 0.49 

Within males 128 8231.02 64.30   
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Table 2 - Repeatability of vocal performance across all simple trill types performed by 
each male. N=21 male song sparrows each with 1-6 simple trill types measured. 

Source of variation df Sum of 

squares 

Mean squares F P 

Among males 20 516.68 25.83 0.63 0.87 

Within males 46 1874.74 40.76   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

Table 3 - Repeatability of vocal performance across ten exemplars of one randomly 
chosen simple trill type, from each of 21 male song sparrows. 

Source of variation df Sum of 

squares 

Mean squares F P 

Among males 20 6523.36 326.17 185.12 <0.0001 

Within males 189 333.01 1.76   
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Table 4 - Repeatability of vocal performance across ten exemplars of one randomly 
chosen complex trill type, from each of 21 male song sparrows. 

Source of variation df Sum of 

squares 

Mean squares F P 

Among males 20 10454.93 522.75 29.41 <0.0001 

Within males 189 3359.51 17.78   
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Table 5 – Summary of nested ANOVA with maximum vocal performance 
(measured as minimum vocal deviation) of 21 male song sparrows as the dependent 
variable. 

Source of variation df Sum of 

squares 

F P 

Bird identity 20 12675.36 43.28 <0.0001 

Trill Type [Bird identity] 130 83476.79 43.85 <0.0001 
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Figure 6 – Maximum frequency bandwidth versus trill rate for complex (open circles; n 
= 149 trill types in the repertoires of 21 male song sparrows) and simple (filled circles; n 
= 67 trill types in the repertoires of 21 male song sparrows) trill types. The solid line 
represents the upper performance boundary, calculated independently for each 
distribution. Distribution A, showing both simple and complex trill types had a non-
significant upper performance boundary (slope = -131.76, r2

6 = 0.47, p = 0.09). 
Distribution B, showing only simple trills, had an upper performance boundary that was 
both steeper than A and significant (slope = -291.47, r2

6 = 0.85, p = 0.003). Distribution 
B also shows the triangular distribution characteristic of performance trade-offs (Podos 
1997). 
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Table 6 – Results of a general linear model with maximum vocal performance 
(measured as minimum vocal deviation) of 21 male song sparrows as the dependent 
variable. 

Predictor df Sum of 

squares 

F  P 

Age 1 0.53 0.07 0.80 

Body Size (Mass) 

Bill Size (Lower length) 

Overall Model  

1 

1 

20 

6.23 

28.62 

167.83 

0.78 

3.59 

1.35 

0.39 

0.08 

0.29 
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Figure 7 - Relationship between song repertoire size and minimum vocal deviation in 20 
male song sparrows. Minimum vocal deviation and song repertoire size show a 
significant negative correlation (Pearson’s r19= -0.44, p = 0.05). 
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4 Discussion 

Despite increasing interest in performance-related sexually selected displays in 

general (Byers et al. 2010), and songbird vocal performance in particular (Podos 1997, 

2001, Ballentine et al. 2004, Ballentine 2006, 2009, Cardoso et al. 2012, Cramer 2013) 

studies of vocal performance have focused on species with simple vocal repertoires (e.g. 

swamp sparrows, Lincoln’s sparrows, Darwin’s finches, yellow warblers). Examining 

vocal performance in a species with more complex song (multiple song types per male) 

requires first evaluating the degree to which this trait varies among versus within 

individuals (e.g. across different song types within a repertoire). Vocal performance, as 

measured by trill vocal deviation, was not repeatable across multiple trill types within 

individuals’ repertoires, but was highly repeatable across multiple exemplars of a single 

trill type per individual. A supplementary analysis also showed that the majority of 

within-individual variance in vocal performance was due to performance differences 

between trill types. Maximum vocal performance (i.e. minimum vocal deviation) better 

characterized the trade-off between frequency bandwidth and trill rate than did average 

vocal performance. Similarly, simple trills better characterized this trade-off than did all 

trill types combined. Maximum vocal performance was not associated with age or body 

size, but was correlated with song repertoire size, such that males with lower minimum 

vocal deviation tended to have more complex song repertoires. Collectively, my results 

suggest that vocal performance varies substantially both within and among individual 

male song sparrows, and that performance in this population does not indicate age or 

body size, nor does it appear constrained by bill size. Instead, if vocal performance 
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conveys any information regarding the quality of the singer, it may be largely redundant 

with that conveyed by song complexity.  

4.1 Repeatability of Performance 

In order for a signal to be of use to a receiver it must be reliable. One aspect of 

reliability identified by Searcy and Nowicki (2005) is consistency, meaning that a reliable 

signal should be repeatable across multiple displays by the same individual. Therefore in 

order for vocal performance to be a meaningful signal from which receivers can extract 

useful information, it should be repeatable across multiple displays of the same trill type, 

and potentially, across multiple trill types within an individual’s repertoire. My results 

provide some support for consistent individual differences among song sparrows in vocal 

performance. When comparing performance across multiple exemplars of a single, 

randomly chosen, trill type per individual, vocal performance was significantly repeatable 

(Table 3, 4). That is, a male who sings a particular trill type once with low vocal 

deviation tends to show similar low vocal deviation upon subsequent repetitions of the 

same trill type. Ballentine et al. (2004) similarly calculated repeatability and found 

consistent differences among male swamp sparrows in how well they performed the same 

song type. In conjunction with these findings, the high repeatability of vocal performance 

across multiple trill exemplars in an individuals repertoire, suggests that vocal 

performance is a good candidate for a reliable signal.  

By considering only one trill type per individual, the analysis described above 

(Tables 3, 4) effectively removes the within-individual component of variation associated 

with variation in inherent difficulty among song (trill) types within an individual’s 

repertoire. To assess the extent to which variation in difficulty among trill types 
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contributes to observed variation in vocal performance, I also calculated repeatability of 

vocal deviation across all trill types (Table 1) or all simple trill types (Table 2) in an 

individual’s repertoire. As a complementary analysis I conducted a nested ANOVA with 

trill type nested within bird identity. When calculated in this way, repeatability of vocal 

deviation among trill types was low and not significantly different from zero whether 

considering all the simple trills, or all trill types, in an individual’s repertoire (Table 1, 2). 

Similarly, the nested ANOVA suggested that the majority of within-individual variance 

in vocal performance was due to differences in performance between trill types. These 

findings, combined with the high repeatability of performance across a single trill type 

per individual (Table 3, 4) suggest that vocal performance varies among trill types. This 

pattern, and the observation that complex trill types generally showed higher deviation 

from the upper performance boundary than did simple trill types (Figure 6A) supports the 

idea presented by Podos et al. (2009) that some trill types are more challenging than 

others to perform well (Figure 3).  

Variation in performance difficulty may also limit receivers’ ability to directly 

compare vocal performance across two or more singers, especially when each is 

producing a different trill type. Indeed, Logue and Forstmeier (2008) note that song 

repertoires may constrain receivers’ ability to compare vocal performance across 

individuals. They suggest that multi-song repertoires may have evolved through selection 

pressure on males to conceal poor vocal performance. Thus, if male A has better vocal 

performance than neighbouring male B, but B’s repertoire contains song types not shared 

with A, receivers may be unable to directly compare performance, especially if B 

preferentially uses unshared song types when countersinging with A (Logue and 
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Forstmeier 2008). It is in this way that complex repertoires may have therefore evolved to 

provide reproductive advantages to singers with poor vocal performance. 

4.2 Average versus Maximum Performance 

Relative to average performance, maximum performance has been proposed to 

better reflect among-individual variation in quality, physiology or morphology, especially 

when performance varies substantially at the within-individual level (Irschick et al. 2008; 

Podos et al. 2009). In my study, low repeatability of vocal performance among trill types 

in an individual’s repertoire and the difference in vocal deviation between complex and 

simple trills suggest that maximum vocal performance (minimum vocal deviation) may 

indeed more reliably reflect differences among individuals in quality and performance 

ability than average performance. Supporting this, plotting maximum vocal performance 

yielded a significantly negative slope of the upper boundary regression representing the 

performance limit, whereas plotting average vocal performance did not. This suggests 

that maximum performance better addresses the trade-off between frequency bandwidth 

and trill rate in this species. 

4.3 Complex versus Simple Trill Performance 

The low repeatability of vocal performance among trill types in an individual’s 

repertoire, combined with high repeatability of performance across multiple renditions of 

a single trill type, suggests that some trills are easier to perform than others. One 

characteristic that likely affects the level of difficulty associated with a particular trill is 

the inherent complexity of the trill syllable. That is, for a given frequency bandwidth, it 

may be harder to quickly repeat syllables consisting of more notes than to quickly repeat 
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syllables consisting of fewer notes, because producing more notes per unit time requires 

faster movement of the bill, vocal tract and syrinx (Podos 1997). Consistent with this, 

vocal deviation was greater on average for complex trills (containing three or more notes) 

than for simple trills (containing two or fewer notes; Figure 6A). This suggests that 

simple trills with fewer note elements are in fact easier to perform than complex trills.  

Indeed, my results suggest that when using the vocal deviation approach to 

measure vocal performance in species with multiple trill types varying in complexity, the 

complexity of the trill syllable must be taken into consideration. In song sparrows, the 

trade-off between bandwidth and trill rate is more clearly apparent when considering 

simple trill types only than when considering all trill types (Figure 6). This is likely 

because when all trill types are considered, variation in inherent complexity (e.g. number 

of notes) introduces substantial variation in the difficulty of performance, which my 

measure of vocal deviation did not account for.  

4.4 Vocal Performance as a Function of Age, Bill Size and Body Size 

Contrary to my original predictions, maximum vocal performance did not vary 

with age, bill size or body size (Table 6). This finding suggests that although vocal 

performance varies significantly among (as well as within) individuals, this variation 

does not reflect phenotypic quality as assessed by age or body size in song sparrows, nor 

does bill size appear to constrain vocal performance.  Indeed it appears vocal 

performance may in fact decline in later life, as the oldest male in my study population, 

with a known age of 7, had the poorest vocal performance of all birds measured. By 

contrast, male age is related to vocal performance in swamp sparrows, which are 

congeners of song sparrows. Specifically, in swamp sparrows older males tend to be 
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better performers (Ballentine 2009). However, studies on other species have also failed to 

detect a relationship between age and vocal deviation (dusky warblers Phylloscopus 

fuscatus, Forstmeier et al. 2002; dark-eyed junco, Cardoso et al. 2012; house wren, 

Cramer 2013). In house wrens, although male age did not predict vocal deviation it did 

predict song consistency, another aspect of vocal performance. Specifically, older males 

were better able to repeat a given song type consistently (Cramer 2013). Thus while 

swamp sparrows showed a relationship between age and vocal performance, it is not 

expected that all species should show a similar trend as song structure is unique to each 

species. Similarly, I cannot exclude the possibility that song consistency or some other 

unmeasured aspect of vocal performance varies with age in song sparrows, and may be 

used by females to assess the age of potential mates.  

 Also contrary to my original prediction was the finding of no relationship between 

maximum vocal performance and body size, suggesting that body size does not influence 

vocal performance in song sparrows. This may be explained by the way in which body 

size influences the mechanics of bird song. Indeed, in an across-species analysis Ryan 

and Brenowitz (1985) showed that for a number bird species (including non-

Passeriformes and both oscine and sub-oscine Passeriformes) larger males tend to have 

larger syrinxes and therefore produce songs with lower fundamental frequencies. 

However, measures of vocal deviation rely on the magnitude of the change in frequency 

(frequency bandwidth) and the speed of this change (trill rate), not on fundamental 

frequency. Thus even if a small-bodied individual produces a higher fundamental 

frequency than a larger individual, he may still be able to modulate that frequency to 

achieve similar vocal performance (as measured by vocal deviation). Indeed, while body 
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size is positively associated with vocal performance in some species (Darwin’s finches, 

Podos 2001; swamp sparrows, Ballentine 2009), several studies on other species have 

found no relationship (yellow warbler, Beebee 2004; Darwin’s small tree finch, 

Christensen et al. 2006; dark-eyed junco, Cardoso et al. 2012; house wren, Cramer 2013). 

Additionally, one of the studies reporting a relationship between body size and vocal 

performance pooled multiple populations of Darwin’s finches, varying substantially in 

body size (Podos 2001). Therefore a lack of variation in body size in my study population 

of song sparrows may have inhibited my ability to detect an effect of size on 

performance. I also cannot exclude the possibility that vocal deviation is influenced by, 

and thus advertises, other aspects of phenotype or quality that were not measured in my 

study (e.g. physiological condition, hormone profiles or health status). However, similar 

to the situation with dark-eyed juncos (Cardoso et al. 2012), vocal performance does not 

appear to signal body size in this study population of song sparrows.  

Perhaps most surprisingly, and in contrast to my prediction that large-billed birds 

would have poorer vocal performance, I found no relationship between bill size and vocal 

performance. This lack of relationship suggests that vocal performance may not be 

constrained by bill size in my study population, in contrast to previous empirical work in 

other species (Podos 2001, Ballentine 2006, Huber and Podos 2006, Derryberry et al. 

2012). However, the studies that found a relationship between vocal deviation and bill 

size examined this relationship between species (Podos 2001, Derryberry et al. 2012), 

between geographically distinct populations of the same species (Ballentine 2006), or a 

single population with known divergence in bill size (Huber and Podos 2006). Thus, in 

each of these studies bill size varied substantially due to well-characterized differences in 
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feeding ecology among species of Darwin’s finch (Podos 2001), among populations of 

swamp sparrows (Ballentine 2006), or among individuals within a population of 

Darwin’s finches (Geospiza fortis, Huber and Podos 2006). Conversely, studies 

conducted within a single population have generally failed to find any relationship 

between bill size and vocal deviation (Ballentine et al. 2004, Beebee 2004, Christensen et 

al. 2006) except where considerable within-population divergence in bill size and feeding 

ecology was already established (Huber and Podos 2006). Thus, although species and 

population differences in feeding ecology and bill size may well generate species and 

population differences in vocal performance, this variation may not be biologically 

significant at the within-population level at which courtship and territorial interactions 

generally occur. Geographically, song sparrows are widely distributed over North 

America, with over 30 morphologically and ecologically distinct subspecies (Zink and 

Dittman 1993), thus the relationship between bill size and vocal performance may be 

more apparent at the among-population than the within-population level.  

4.5 Vocal Performance and Song Complexity 

 Males with superior vocal performance tended to have larger song repertoires 

(Figure 7). The one exception to this trend was the male removed from the regression.  

This male was also the oldest male in the population, with the largest song repertoire size 

(12 song types) and the poorest vocal performance of all males measured. There are at 

least two potential explanations for this relationship. First, repertoire size may confound 

estimates of maximum vocal performance, because birds with more trill types in their 

repertoires have more “opportunities” to sing at least one high-performance rendition 

(Cardoso et al. 2012). However, this seems unlikely because although song repertoire 
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size was correlated with vocal deviation, the number of trill types in an individual’s 

repertoire was not (Pearson’s r20 = -0.39, p = 0.09). Moreover, a captive-rearing 

experiment conducted on birds from the same study population revealed a significant 

positive relationship between paternal repertoire size and offspring vocal performance, 

despite offspring being removed from their parents at three days of age (Schmidt et al. 

2013b). This cross-generation association provides further support that the relationship I 

observed between performance and repertoire size is real rather than an artifact.  

A second potential explanation for the relationship between vocal performance 

and song complexity is that each of these aspects of song may be influenced by condition 

during early life. That is, vocal performance and song repertoire size may be 

developmentally correlated (Spencer and MacDougall-Shackleton 2011) if both are 

established over similar developmental periods and if both are sensitive to variation in 

early-life conditions (Nowicki et al. 1998, 2002). Although vocal performance is thought 

to develop during the sensorimotor phase of song learning (Podos et al. 2009), somewhat 

later than the sensory phase in which song repertoire size is established (Marler and 

Peters 1987), condition during one phase may well carry over to the next (Norris et al. 

2004, Podos et al. 2009). Therefore, variation among males in their ability to withstand 

developmental stress may also contribute to the observed positive relationship between 

song complexity and vocal performance.  

Female song sparrows prefer males with larger repertoires and male repertoire 

size has been linked to several aspects of phenotypic quality in this species (Searcy 1984, 

Nowicki et al. 1998; Reid et al. 2005a, 2005b; MacDougall-Shackleton et al. 2009b; 

Schmidt et al. 2012). Therefore, the relationship I observed between song complexity and 
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vocal performance might suggest that vocal performance also conveys some aspect of the 

singer’s quality or condition. If so, the signal content of vocal performance seems likely 

to be redundant with that provided by song complexity, supporting the ‘backup signal’ 

hypothesis of multiple signals encoding similar information (Johnstone 1996).  It is also 

possible that vocal performance may better reflect an individual’s current condition than 

song repertoire size, and could explain why the oldest male measured had both the largest 

song repertoire, and poorest vocal performance. However, it does not follow that song 

complexity and vocal performance are equally useful to receivers or that receivers rely 

equally on both aspects of song when assessing a singer. Instead, repertoire size seems 

likely to be a more efficient and honest signal of quality due to its established relationship 

to early-life stress (Schmidt et al. 2013b). Selection favouring complex vocal repertoires 

in this species may have contributed to reducing the utility of vocal performance as a 

signal. This is because even though vocal performance may not be “fakeable”, poor 

performance can still be concealed by switching to song types that are not shared with 

neighbouring males, thus preventing receivers from directly comparing vocal 

performance (Logue and Forstmeier 2008), or by preferentially using the less difficult 

trill types within one’s repertoire. Therefore although vocal performance may indeed be 

associated with some aspect of quality not measured here, repertoire size may be more 

readily assessed. 

An alternative possibility is that vocal deviation does not reflect quality in this 

and other species with complex vocal repertoires (Cardoso et al. 2012). Byers et al. 

(2010) suggest that measures of motor performance should reliably signal quality if they 

are close to performance boundaries, but it is possible that the complexity of song 
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sparrow song constrains the maximum achievable trill rate and frequency bandwidth and 

thus reduces signaling value (Cardoso et al. 2012). Additionally, the importance of 

accurate vocal copying during song learning may also constrain rapid frequency 

modulation. That is, vocal deviation may be limited not just by the singer’s own motor 

performance ability, but also by that of conspecific tutors from whom his trill types were 

copied. Accurately copying a slow-paced or shallow-bandwidth model trill will result in a 

low estimate of vocal performance regardless of the singer’s true motor performance 

capabilities.  

4.6 Conclusions  

Most previous studies of vocal deviation as a measure of vocal performance have 

focused on species with simple trilled song (Podos 2001, Ballentine et al. 2004, Beebee 

2004, Illes et al. 2006, Caro et al. 2010, Cramer 2013). I compared the utility of 

measuring average versus maximum performance, and simple trills versus all trill types, 

when applying the vocal deviation approach to species with complex multi-song 

repertoires. I also characterized the proportion of variation occurring within individuals 

(both within and across trill types in an individual’s repertoire) and among individuals. 

Although I found significant differences in maximum performance among individuals, I 

also noted substantial within-individual variation associated with different trill types that 

may constrain the ability of receivers to directly compare vocal performance among 

males. 

Having identified the most appropriate way to measure vocal performance in song 

sparrows, I examined the degree to which performance reflects other aspects of 

individual phenotype. Contrary to my original predictions, and empirical findings from 
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species with simple repertoires, maximum vocal performance did not vary with age, body 

size, or bill size. However, high-performance singers also tended to have larger song 

repertoires. The signal content of vocal performance may thus be similar to that of song 

complexity, but it remains to be determined whether receivers can or do attend to 

variation among singers in their vocal performance. 
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Appendix 

Appendix A - Letter of approval for animal use protocol 

 
AUP Number: 2008-054-05  

PI Name: MacDougall-Shackleton, Elizabeth  

AUP Title: Mating Signals, Gene Flow, And Disease Resistance In Songbirds    

Approval Date: 05/11/2012 

Official Notice of Animal Use Subcommittee (AUS) Approval: Your new 
Animal Use Protocol (AUP) entitled "Mating Signals, Gene Flow, And Disease 
Resistance In Songbirds  " has been APPROVED by the Animal Use 
Subcommittee of the University Council on Animal Care. This approval, although 
valid for four years, and is subject to annual Protocol Renewal.2008-054-05::5 

1. This AUP number must be indicated when ordering animals for this project. 
2. Animals for other projects may not be ordered under this AUP number. 
3. Purchases of animals other than through this system must be cleared through 

the ACVS office. Health certificates will be required. 
 

The holder of this Animal Use Protocol is responsible to ensure that all 
associated safety components (biosafety, radiation safety, general laboratory 
safety) comply with institutional safety standards and have received all necessary 
approvals. Please consult directly with your institutional safety officers. 

Submitted by: Copeman, Laura  on behalf of the Animal Use 
Subcommittee University Council on Animal Care 
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