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Abstract:  The recent trend of switching from single software product development to 

lines of software products in the software industry has made the software product line 

concept viable and widely accepted methodology in the future. Some of the potential 

benefits of this approach include cost reduction, improvement in quality and a decrease 

in product development time. Many organizations that deal in wide areas of operation, 

from consumer electronics, telecommunications, and avionics to information technology, 

are using software product lines practice because it deals with effective utilization of 

software assets and provides numerous benefits. Software product line engineering is 

an inter-disciplinary concept. It spans over the dimensions of business, architecture, 

process and organization. The business dimension of software product lines deals with 

managing a strong coordination between product line engineering and the business 

aspects of product line. Software product line architecture is regarded as one of the 

crucial piece of entity in software product lines. All the resulting products share this 

common architecture. The organizational theories, behavior and management play 

critical role in the process of institutionalization of software product line engineering in 

an organization. The objective of this chapter is to discuss the state of the art of 

software product line engineering from the perspectives of business, architecture, 



organizational management and software engineering process. This work also 

highlights and discusses the future research directions in this area thus providing an 

opportunity to researchers and practitioners to better understand the future trends and 

requirements.  

 

1.1 Introduction 
 

In today’s digitized economy, organizations endeavor, to the best of their abilities, to 

capture a major portion of the market share to be profitable. Software organizations are 

also continuously innovating and improving business operations such as technology, 

administration, and product development process. Their major concern is the effective 

use of software assets, thus reducing considerably the development time and cost of 

software products to capture market segments. For many organizations that deal in 

wide areas of operation, from consumer electronics, telecommunications, and avionics 

to information technology, the future of software development is in software product 

lines. Software product lines are promising, with the potential to substantially increase 

the productivity of the software development process and emerging as an attractive 

phenomenon within organizations that deal with the software development. Software 

product lines involve assembling products from existing core assets, and then growing 

those core assets continuously as the production proceeds.  

 

The software industry has shown a growing interest in the concept of software product 

line. One of the major concerns of software development organizations is the effective 

utilization of software assets, thus reducing considerably the development time and cost 

of software products. Many organizations that deal in wide areas of operation, from 

consumer electronics, telecommunications, and avionics to information technology, are 

using software product lines practice because it deals with effective utilization of 

software assets. Clements et al. [1] report that software product line engineering is a 

growing software engineering sub-discipline, and many organizations including Philips, 

Hewlett-Packard, Nokia, Raytheon, and Cummins are using it to achieve extraordinary 



gains in productivity, time to market, and product quality. Clements 2] defines the term 

software product line as a set of software-intensive systems sharing a common, 

managed set of features that satisfy the specific needs of a particular market segment 

or mission, and are developed from a common set of core assets in a prescribed way.  

Some other terminologies for “software product line” that have been widely used in 

Europe are “product families,” “product population,” and “system families”. 

 

The concept of a software product line is a comprehensive model for an organization 

building applications based on common architectures and other core assets [3]. 

Clements [2] defines the term “software product line” as a set of software-intensive 

systems sharing a common managed set of features that satisfy the specific needs of a 

particular market segment or mission and that are developed from a common set of 

core assets in a prescribed way. The Software Engineering Institute (SEI) proposes the 

Product Line Technical Probe (PLTP) [4], which is aimed at discovering an 

organization’s ability to adopt and succeed with the software product line approach. The 

framework is divided into three essential activities: product development, core asset 

development, and management. van der Linden [5] pointed out that in 1995 the 

Architectural Reasoning for Embedded Systems (ARES) project began in Europe to 

provide architectural support for developing product families. In the overview of another 

European project, Engineering Software Architecture, Processes and Platforms for 

System-Families (ESAPS) [6], a system family is defined as a group of systems sharing 

a common, managed set of features that satisfy core needs of a scoped domain. The 

main objectives of system families are to reduce development efforts and to handle the 

impact of growing system complexity. Ommering [7] introduced another term called 

“product population”, which is a collection of related systems based on similar 

technology but with many differences among them.   

 

Northrop [8] stresses that fielding a product line involves core asset development and 

product development using core assets under the aegis of technical as well as 

organizational management.  The essential activities of the software product line 

process are core asset development, product development, and management. All the 



three activities are linked and are highly iterative in nature. The link among the activities 

establishes a communication path among them to provide feedback. There is no fixed 

order of execution of these activities. They can be performed in any order and they give 

feedback to other activities for their execution.  The feedback received at each activity is 

used to accommodate changes and modify the process. The software product line 

process can be described in terms of four simple concepts. The four simple concepts 

that interact with each other are: software assets, a decision model for products, a 

production mechanism process, and output products that result from software product 

line activity. Krueger [9] states that software asset inputs are a collection of software 

assets that can be configured and assembled in different ways to create all of the 

products in a product line. The decision model for products elaborates the requirements 

of the products within a product line. Production mechanism and process defines the 

procedures for assembling and configuring products from existing software assets. 

Software products are the collection of all products that can be produced from the 

product line. Associated processes are performed with those basic four concepts for the 

establishment of a software product line. 

 

Core assets in a software product line may include architecture, reusable software 

components, domain models, requirement statements, documentation, schedules, 

budgets, test plans, test cases, process descriptions, modeling diagrams, and other 

relevant items used for product development. There is no specific definition for core 

asset inclusion, except that it is an entity used for development purposes. The goal of 

core asset development is to establish the production capability of developing products 

[2]. The major inputs to the core asset development activity are: product constraints, 

styles, patterns, frameworks, production constraints, production strategy, and the 

inventory of pre-existing assets. The outputs of core assets development are software 

product line scope, core assets and the production plan. Software product line scope 

describes the characteristics of the products developed. The production plan gives an 

in-depth picture how products will be developed from core assets. Core assets are 

those entities that may be used in the product development. The collection of core 

assets is termed as core asset repository and the initial state of the core asset 



repository depends upon the type of approach being used to adopt software product line 

approach within an organization. 

 

In product development activity, products are physically developed from the core 

assets, based on the production plan, in order to satisfy the requirements of the 

software product line. The essential inputs of product development activity are 

requirements, product line scope, core assets and the production plan. Requirements 

describe the purpose of the product line along with functionalities and characteristics of 

the products developed. Product line scope describes qualification criteria for a product 

to be included or excluded from software product line based on functional and non-

functional characteristics.  The production plan describes a strategy to use the core 

assets to assemble products. A product line can produce any number of products 

depending upon the scope and requirements of the software product line. The product 

development activity iteratively communicates with core asset activity and adds new 

core assets as products are produced and software product line progresses. 

 

Management plays a vital role in successfully institutionalising the software product line 

within an organization, because it provides and coordinates the required infrastructure. 

Management activity involves essential processes carried out at technical and 

organizational levels to support the software product line process. It ensures that 

necessary resources must be available and well coordinated. The objective of 

“Technical Management” is to oversee the core asset and product development 

activities by ensuring that the groups who build core assets and the groups who build 

products are engaged in the required activities, and are following the processes defined 

for the product line [4]. Technical management plays a critical role in decision-making 

about the scope of software product line based on requirements. It handles the 

associated processes of software development. Northrop [8] summarized the 

responsibilities of organizational management, which are: structuring an organization, 

resource management and scheduling, cost control and communication. Organizational 



management deals in providing a funding model for the software product line in order to 

handle cost constraints associated with the project. It ensures a viable and accurate 

communication and operational path between essential activities of software product 

line development because the overall process is highly iterative in nature. The 

fundamental goal of the organizational management is to establish an adoption plan, 

which completely describes a strategy to achieve the goals of software product line 

within an organization. The major responsibility of the management is to ensure proper 

training of the people to become familiar with the software product line concepts and 

principles. Management deals with external interfaces for smooth and successful 

product line and performs market analysis for internal and external factors to determine 

the success factor of software product line. Management performs organizational and 

technical risk analysis and continues tracking critical risk throughout the software 

product line development. 

 

van der Linden [16] reports that the term “product family” or “system family” is used in 

Europe whereas in the United States the term “software product line” is commonly used. 

As Europeans were working on product family engineering, researchers in the United 

States founded the SEI’s product line initiative, the major reason for this being that until 

1996 the United States and European communities in this field worked independently. 

The objective of the software product line is to address the specific needs of a given 

business. Krueger [9] considers that the objective of a software product line is to reduce 

the overall engineering effort required to produce a collection of similar systems by 

capitalizing on the commonality among the systems and by formally managing the 

variation among the systems. A software product line gives an excellent opportunity to 

establish a production facility for software products based on a common architecture. To 

capture various market segments, it provides a means for the reuse of assets, thus 

reducing development time and the cost of software products. The software product line 

increases the quality and reliability of successive products, thereby gaining the 

confidence of customers. According to van der Linden [16], whenever an organization 

wants to establish product family development it must keep a number of things under 

consideration.  In Europe, the acronym BAPO [16], is very popular for defining the 



process components associated with software product lines. BAPO is considered critical 

in its consideration of how products resulting from software product lines make a profit. 

Software engineering, business, management and organizational sciences provide 

foundations for the concept of software product line engineering, and thus, it has 

become an inter-disciplinary concept. 

 

1.2 Businesss of Software Product line Engineering 

 

Today, all businesses are experiencing greater competition, and customers’ 

expectations continuously increase as technology advances at an unprecedented rate 

of growth. The rapid and continual changes common to the present business 

environment not only affect business itself but also have a profound impact on 

production. Software is perhaps the most crucial piece of a business entity in this 

modern marketplace, where important decisions need to be made immediately. 

Organizations that fail to respond appropriately do not survive longer. The keys to 

success are in continuously monitoring customers and the competitors and in making 

improvement plans based on observations and measurements. Business is perhaps the 

most crucial factor in a software product line, mainly due to the necessities of long-term 

strategic planning, initial investment, longer payback period and retaining the market 

presence.  Business is perhaps the most crucial dimension in the software product 

family process, mainly due to the necessities of long-term strategic planning, initial 

investment, longer payback period, and retention of the market presence. 

 

The “Business” in BAPO is considered critical because it deals with the way the 

products resulting from software product lines make profits. Bayer et al [10] at 

Fraunhofer Institute of Experimental Software Engineering (IESE) develop a 

methodology called PuLSE (Product Line Software Engineering) for the purpose of 

enabling the conception and deployment of software product lines within a large variety 

of enterprise contexts. PuLSE-Eco is a part of PuLSE methodology, deals with defining 

the scope of software product lines in terms of business factors. Pulse-Eco identifies 



various activities, which directly address the business needs of software product lines 

such as: system information, stakeholder information, business objectives and benefit 

analysis. van der Linden et al. [11] identify some main factors in evaluating the business 

dimension of software product line such as:  identity, vision, objectives and strategic 

planning. They classified the business maturity of software product line into five levels in 

the ascending order: reactive, awareness, extrapolate, proactive and strategic. 

Clements and Northrop [4] highlight customer interface management, market analysis, 

funding, and business case engineering as important activities from the perspectives of 

managing the business of software product line.  Kang et al. [12] present a marketing 

plan for software product lines that includes market analysis and marketing strategy. 

The market analysis covers need analysis, user profiling, business opportunity, time to 

market and product pricing. The marketing strategy discusses product delivery 

methods. Toft et al. [13] propose “Owen molecule model” consisting of three dimensions 

of social, technology and business. The business dimension deals with setting up 

business goals and analyzing commercial environment. Fritsch and Hahn [14] introduce 

Product Line Potential Analysis (PLPA), which aims at examining the product line 

potential of a business unit through discussions with managers of the business unit 

because in their opinion they know the market requirements, product information and 

business goals of the organization. Schmid and Verlage [15] discuss the successful 

case study of setting up software product line at Market Maker and highlights market 

and competitors analysis, vision of potential market segment, and products as 

significantly important activities. Ebert and Smouts [16] weight marketing as one of the 

major external success factors of product line approach and further concluded that 

forecasting, ways to influence market, strong coordination between marketing and 

engineering activities, are required for gaining benefits from product line approach. 

 

Strategic plans are the focus of an organization’s endeavors to accomplish the desired 

level of achievement in a particular area. Strategic planning starts with elaborating 

strategic objectives. Niemelä [17] highlighted eight different strategies for adopting 

software product lines in an organization: minimizing risk, extending market share, 

maximizing end-user satisfaction, balancing cost and potential, balancing cost, 



customer satisfaction and potential, and maximizing potential. Niemelä [17] further 

concluded that a company has to evaluate the current status of their business, 

architecture, process, and organizational issues before making a decision about 

choosing one strategy out of those in order to achieve desired benefits. The software 

product line process needs resources, which must be delegated in strategic plans. 

Strategic planning must clearly outline what is to be developed from the software 

product line in order to gain competitive advantages and capture market segments to 

achieve strategic targets. Strategic plans are required to maintain organizational wide 

efforts to identify and exploit attractive long-range business opportunities by having the 

software product line in practice. The benefits of being the first in the market have long 

been recognized in the business sector; pioneers often gain a sustainable competitive 

advantage over followers, because, initially, they are the only solution-providers in a 

particular market segment. Thus, they usually capture a bigger portion of the market 

because they were first. It becomes very difficult for successors to gain a share of the 

market segment, especially in the case of software, where migration to other software is 

relatively uncommon. The timing for technology-based products entering the market is 

even more critical for the profitability and competitive position of an organization. The 

right product at the right time has a high potential of success. Order of market entry is 

perceived as a crucial business decision, with a long-lasting and profound impact on the 

performance of an organization in capturing and retaining the market. Appropriate 

timing to launch a software product into the market is even more essential for software 

development organizations.  Timing is essential in launching a new product from the 

software product line in order to capture major shares of the market. The order of entry 

to the market depicts the delivery schedule for the software product family and provides 

guidelines to developers about development schedules. 

 
 

Organizations consider brand name a crucial catalyst of business success. A brand is 

regarded as both a promise of quality to customers and a point of comparison with other 

products or services. Bennett [18] defined brand as a name, term, sign, symbol, design, 

or any combination of these concepts that is used to identify the goods and services of 

a seller. Brand name products generally have high potential for increasing an 



organization’s business. Branded product serve, as an interface between customers 

and the organization, and loyalty to a brand is a kind of word-of-mouth advertisement 

from customers. Brand name strategy has also been successfully adopted in software 

development. Many successful brands in software, such as Windows®, AutoCAD®, and 

MATLAB®, successfully retain a significant number of customers, thus capturing a major 

portion of the market segment. But currently there is gab between software product line 

engineering and brand name strategy; many different products not originating from one 

software product line can be plugged under one marketed product line. Windows® is a 

working example of this scenario. Despite this fact there are successful cases that are 

using brand name strategy in software product lines concept. The product line of 

Symbian operating system for mobile phones is an example of this scenario. Long 

range of products under this brand name is currently successfully installed in the 

handsets of Nokia, Sony Ericsson, Samsung and Panasonic etc. Jaasksi [19] presented 

the case study of developing software product line of mobile browsers under the brand 

name of “Nokia Mobile Browser” at Nokia is also an example of current use of brand 

name strategy in software product lines. The concept of market orientation provides an 

advantage over competitors by identifying what customers’ want, and then offering 

products that are different and superior to those offered by competitors. Market 

orientation deals with the acquisition, sharing, interpretation, and use of information 

about customers and competitors, both of which have a significant impact on the 

performance of the business. Birk et al. [20] defines market orientation in context of 

software product lines as whether the organization targets a specific market segment 

without a specific customer in mind or addresses individual customer projects. The 

software product line deals with developing a considerable number of products to 

capture various market segments, thus providing justification for a product line. Market 

orientation provides imperative information about the concerns and requirements of 

customers, which needs to be accommodated in the successive products from a 

product line. Pulse-Eco [21] illustrates various activities associated with market 

orientation for successful adoption of software product lines concept in an organization. 

It considers collecting and analyzing stakeholders’ information is helpful in defining the 

product line scope. 



Business success is highly dependent on the extent to which customers are satisfied 

with an organization’s product and services, as well as how they win the loyalty of 

customers by improving their relationships management. Relationships management 

plays a significant role in successful software product line development. Excellent 

working relationships with customers allow the developers to improve the performance 

and functionalities of successive products from the product line by better understanding 

the customers’ requirements and learning about market trends from the end users. The 

software product line can play a significant role in the business vision because it tends 

to produce long-term benefits to the organization. A clear statement about business 

vision will guide practitioners of the software product line to establish a production 

facility in order to meet the future goals of the organization. By including the software 

product line in the business vision, an organization can stream line its business 

operations in order to capitalize on its market audience for profitable venture. Wijnstra 

[22] concluded that a complete business roadmap is needed to describe what is 

expected from the software product lines in the years to come and how it will fit in the 

plan for the release of new products. The key to a successful business in today’s 

competitive environment is innovation. Organizations are continuously adopting 

innovations in major areas of business operations, such as technology, administration, 

and production processes. . Organizations with designs on capturing a major share of 

the market, in order to increase business, spend heavily on research and development. 

Business objectives influence research and development efforts because the order of a 

product’s entry into the market can make a significant difference in achieving strategic 

goals. Thus, research and development in technology, administration, processes, and 

product produce enduring results. The software product line is a relatively new concept, 

and a lot of research and development in process definition and development 

methodology is in progress. The research is occurring at various levels of industry and 

academia to improve the process and product development activity of the software 

product line for the successful industrialization of this valuable concept. Organizations 

are trying to institutionalize this concept in innovative ways to make the most effective 

use of it. Böckle [23] highlighted some measures of innovation management in software 

product line organizations, which include a planned innovation process, clear roles and 



responsibilities definition for innovation management structure. Böckle [7] further 

stressed that the evolution of the product portfolio, platform, variability model, and 

reference architecture shall be planned with further innovations in mind. 

 

The business of software product line engineering has a profound impact on the long 

term planning and vision of the organization in the market place. The significance of the 

business factor in product line engineering requires a better understanding of various 

non-software development factors which originates from business theory. This makes 

software product line engineering multi-disciplinary paradigm which needs contributions 

from many experts in different areas of knowledge and expertise.  Although business 

has always been highlighted as one of the critical success factors in product line 

engineering but has given least attention by product line engineering community to 

streamline the concept and integrate with software development efforts. Some of the 

leading areas of core research in software product line engineering and business 

factors are as follows: 

 

 Development of a business case and methodology to evaluate the significance in 

terms of cost and benefits for an organization. 

 An organizational wide economic model for developing and managing software 

product line engineering, emphasizing return on investment. 

 A methodology to develop production plan for the resulting products and allocation 

of resources. 

 The issues of translating the business requirements into product line requirements 

which involves from non-technical (business group) to technical (architecture group).  

 The role and impact of strategic planning of the organization in developing and 

managing software product line. How organization can achieve its strategic goals 

using the product line approach. 

 Decision planning and implementation in allocating and committing resources to 

achieve the long-range business goals. 

 Marketing plans to identify and exploit attractive long-range business opportunities. 

 How market orientation provides imperative information about the concerns and 



requirements of customers, which need to be accommodated in successive products 

from a product line.  

 Customer orientation enables an organization to develop customer-centered 

products. How this information assists in the domain- and application-engineering 

activities of the software product line development to capture market segments. 

 Evaluation of appropriate timing to launch a software product into the market from 

product line in order to maximize the profit. 

 The role of business vision in managing and developing software product line. 

 Knowledge management of customers, marketing and competitors. 

  Methodology to evaluate the business performance of the organization dealing with 

software product line engineering. 

 Methodology to evaluate the practice of various key business factors in organization. 

 

 

1.3 Institutionalization of Software Product Line Engineering 

 

The “Organization” in BAPO is considered critical because it deals with the way the 

organization responds, adopts and institutionalizes this concept. Institutionalization is 

the process by which a significantly new structure or practice is incorporated into a 

system of existing structures and practices [24]. Clements and Northrop [15] elaborate 

the institutionalization of software product line in an organization from the perspectives 

of product development and core assets development. Institutionalizing a software 

product line from the aspects of product development process anticipate the product 

development as a routine and predictable activity in an organization to achieve the 

product line goals of the organization. Clements and Northrop [4] emphasis that 

institutionalizing a software product line from the perspectives of managing and 

developing a core assets repository for software product line involves improving the 

processes that are associated with building, maintaining, and evolving the core assets 

and making those processes a part of standard organizational practice. In short 

institutionalization of software product lines refers to the wide acceptance of the concept 

in the roots of the organization. It involves integrating or improving the processes within 



organization that are associated with a product line infrastructure, and introducing those 

processes as a part of organizational character. The whole institutionalization process 

involves an organizational level culture and strong commitments in acquiring 

knowledge, skills and motivations to effectively initiate, launch and manage software 

product lines. Institutionalization of software product lines require that the concept has 

been entrenched at all levels of the organization, and it is supported with a necessary 

infrastructure of organizational wide guidelines, required training, and required 

resources.  

 

Successfully institutionalization of software product line in an organization has a 

profound impact on the product development behavior of the organization. It changes 

the mindset of the organization from single system development to a family of software 

products. The organizational theory focuses on the design and structures of the 

organization dealing in software product line. The organizational behavior aims at 

understanding the behavior, attitude and performance of the people. Software product 

line requires enriching this concept within the roots of the overall organizational 

behavior. Organizational management plays a vital role in successfully institutionalizing 

software product line within an organization because it provides and coordinates the 

infrastructure required. Initiating and launching a software product line within an 

organization to gain benefits out of this approach is not sufficient. The alignment of 

organizational theory, organizational management, and organizational behavior are 

required in the process of institutionalization of software product line in an organization. 

Thus, organizational factors play a key role in institutionalizing software product lines 

within an organization. Software product line is an inter-disciplinary concept, which has 

its roots in software engineering, business, management and organizational sciences. 

The organization in the business of software product line has to deal with multiple 

organizational factors in addition to their efforts in software development in order to 

institutionalize software product line, which in turn has the potential to achieve 

maximum benefits out of this approach.  

 



The organizational dimension is perhaps the least addressed area in software product 

line research due to relatively a new concept in software engineering paradigms. Much 

of the efforts have been spent on process, architecture and business aspects of the 

product line. Some scenarios of organizational structure for software product line are 

presented. The researchers generally highlight that domain-engineering unit and 

several application-engineering units are required from organizational structure 

standpoint. Bosch [25] presents four organizational models for software product lines: 

development department, business units, domain engineering units, and hierarchical 

domain engineering units. Bosch [25] also points out a number of factors that influence 

the organizational model such as geographical distribution, project management 

maturity, organizational culture and the type of systems. Macala et al. [26] report that 

software product line demands careful strategic planning, a mature development 

process, and the ability to overcome organizational resistance. Dikel et al. [27] share 

their experiences about initiating and maintaining software product lines at Nortel and 

discuss organizational, management and staffing issues grouped into a set of six 

organizational principles which they believe are critical in the long-term success of a 

software product line. Jacobsen et al. [28] focus on roles and responsibilities of 

personals within organizations dealing with software product lines. Mannion [429] 

elaborates that the management issues, organizational structure, culture and learning in 

context of successfully adopting the concept of software product line engineering needs 

close attention. Koh and Kim [30] concludes that all members of an organization 

experience and share their own success stories under existing processes and 

organizational structure in order to successfully adopt software product line approach. 

Clements and Northrop [4] discuss organizational issues of software product line and 

identified four functional groups, i.e. the architecture group, the component-engineering 

group, the product line support group and the product development group. The 

organizational dimension of software product lines deal with the way the organization is 

able to deal with complex relationships and many responsibilities [5]. Toft et al. [31] 

propose “Owen molecule model” consisting of three dimensions of organizational, 

technology and business. The organizational dimension of Owen molecule model deals 

with teams hierarchy, individual roles, operational models, individual interaction and 



communication etc. Introducing software product line practice to an organization 

significantly impacts the entire organization by fundamentally changing development 

practices, organizational structures, and task assignments [32]. Bayer et al. [33] at 

Fraunhofer Institute of Experimental Software Engineering (IESE) develop a 

methodology called PuLSE (Product Line Software Engineering) for the purpose of 

enabling the conception and deployment of software product lines within a large variety 

of enterprise contexts. PuLSE-BC is a technical component of PuLSE methodology and 

it deals with the ways to baseline organization and customized the PuLSE methodology 

to the specific needs of the organization. One of the support components of PuLSE is 

organization issue, which provide guidelines to set up and maintain the right 

organization structure for developing and managing product lines. According to Birk et 

al. [32] introducing product line development to an organization can fundamentally 

change the development practices, organizational structures, and task assignments. 

These changes can in turn impact team collaboration and work satisfaction. Verlage 

and Kiesgen [34] report the case study of successful adoption of software product line 

and conclude that organizational structure and change management are significantly 

important areas of concern. 

 

Organizational culture refers to the working environment in an organization. Some of the 

key process activities of software product line engineering, including domain 

engineering, software product line requirements engineering, commonality and 

variability management and business case engineering etc., require a lot of team effort, 

group discussion and innovation. The studies in organizational culture highlight two 

types of cultures: closed and open. In closed organizational cultures, the decisions are 

made at the higher levels and are directly dictated to the lower levels without 

considering the views and observations of most employees.  In contrast, open 

organizational cultures make decisions on the basis of discussions and employee 

involvement.  Software product line engineering requires a culture of openness, where 

employees have the chance to participate in discussions and have the power to express 

their views. For example, variability management is one of the critical process elements 

that require an active involvement from various parts of the organization, such as the 



business unit and the development unit, to specify areas for expansion in the product 

line architecture and introducing product specific functionalities.  An organizational 

culture that supports teamwork, sharing of experiences, innovation and learning has 

relatively greater potential institutionalizing software product line engineering. 

Particularly, an organization with a culture that supports the reusability of software 

assets is more likely to succeed in moving from single product development to a 

systematic line of products.  

 

Organizational commitment concerns the willingness of individuals and groups to 

achieve the long term strategic objectives of an organization. The payback period of 

software product line engineering is relatively longer than the single product 

development approach. Consequently, this transitional period requires a strong 

commitment from individuals, groups and management to adopt the software product 

line engineering concept and to exercise patience with its development process. The 

organizational policies such as business vision and strategic planning must highlight the 

concept of software product line engineering as a priority in order to reflect the 

organizational commitments. Furthermore, these policies must be well communicated to 

the employees so that they understand the significance of this approach in achieving 

the organizational goals. As well, the success of any long-term strategy in an 

organization necessitates the commitment of its employees. The management has to 

create a positive working environment in order to increase the level of employee 

commitment. Such an environment can be achieved through   well-defined job 

placement, promotion strategy, appreciation and reward system, job security and 

competitive compensation.  

 

An organization is the planned coordination of activities of a number of people for the 

achievement of some common, explicit purpose or goal, through a division of labor and 

function, and through a hierarchy of authority and responsibility [35]. Organizational 

theories provide guidelines for developing organizational structures in order to 

accomplish the goals of a company. Wilson and Rosenfeld [36] define organizational 

structure as the established pattern of relationships between the parts of an 



organization, outlining communication as well as control and authority. According to 

Gordon [37] organizational structure refers to the delineation of jobs and reporting 

relationships in an organization and coordinates the work behavior of employees in 

accomplishing the organization’s goals. The structure of an organization is generally not 

a static phenomenon, since organizations tend to change their structures under the 

circumstances of changing goals or technologies.  

 

The rapid and continual changes common to the present technological environment 

necessitate that organizations adopt changes through a well defined change 

management plan. Beckhard and Harris [38] consider organizational change as a 

movement from the present state of the organization to some future or target state. 

Furthermore, Todd [39] defines change management as a structured and systematic 

approach, which provides a conceptual framework that encompasses strategy, politics, 

people and process. Cao et al. [40] observe that organizational change shows the 

diversity of an organization, and it also illustrates the integration of technical and human 

activities that have interrelated functions in the organization. The successful 

implementation of any process methodology ultimately depends on how people 

perceive that change. A certain degree of resistance is quite normal when a new 

technology is introduced to an organization. However, this resistance will disappear if 

people understand that the change is positive and is in their best interest as well as that 

of the organization. Effective change management therefore depends partly on how the 

strategy is communicated to the people responsible for the implementation.  

 

When people interact with each other, the potential for conflict is present. This potential 

exists in different areas, as it could be either personal or task related. Walls and 

Callister [41] maintain that conflict is a process in which one party perceives that its 

interests are being opposed or negatively affected by another party. Conflict 

management consists of diagnostic processes, interpersonal styles, negotiating 

strategies, and other interventions that are designed to avoid unnecessary conflict and 

to reduce or resolve excessive conflict [42]. Hellriegel et al. [43] introduce four basic 

forms of conflicts in an organization: goal, cognitive, affective, and procedural. 



Moreover, Jehn [44] distinguishes between two kinds of intra-group conflict: task conflict 

and relationship conflict. Task conflict is a perception of disagreement among group 

members or individuals regarding the content of their decisions. It involves differences 

in viewpoints, ideas and opinions, whereas relationship conflict is a perception of 

interpersonal incompatibility and includes annoyance and animosity among individuals 

[45].  
 
 

In the software product line engineering, organizational learning can be classified into 

two domains: external and internal. External learning involves necessary knowledge 

about customers, competitors, external environments and market segments. This 

knowledge is necessary in order to effectively utilize the product line by exploiting 

product characteristics. The domain engineering, the product line requirements and the 

business case engineering, etc. require that the organization has established 

procedures and a means to acquire external learning. Overall, this type of learning 

helps an organization to capture a major market share. Internal learning, on the other 

hand, requires acquiring, transferring and sharing a software product line methodology, 

ideas for process improvement and an understanding of the cross functional 

requirements of product lines in individuals, groups and the organization. Learning is a 

continuous process, especially for organizations that attempt to institutionalize software 

product lines. In particular, learning from experience and mistakes further facilitates 

improvement in the software product line engineering process. 

 

One of the major concerns of software development organizations is the effective 

utilization of software assets, which has the potential to considerably reduce the time 

and cost of developing software products. Software is perhaps the most crucial piece of 

business entity in this modern marketplace, where important decisions need to be made 

immediately. The studies in organizational behavior help in understanding how people, 

as individuals and groups, deal with managing and developing product line engineering 

in an organization. The relatively longer payback period of software product line 

engineering requires a consistency in organizational behavior in order to achieve the 



strategic objectives of the organization. Establishing a software product line requires 

setting up the internal structure of the organization and other supporting mechanisms, 

such as coordination and communication. The concept of a software product line entails 

a structure of overlapping processes rather than fixed and static ones. The theoretical 

foundations of this concept divide the overall engineering process into two broad areas, 

application and domain engineering, and involve a stronger coordination and 

communication between them. The identification and mapping of the roles to the 

engineering processes requires interpretation and action from management. Verlage 

and Kiesgen [46] present a case study documenting the successful implementation of 

software product lines in their organization. As a result, they report that the roles and 

mapping of the roles to the processes are not fixed; rather, they are interchangeable, or 

more precisely, dynamic. The organizations that have well defined structures 

incorporating clearly identified roles of individuals, in addition to strong coordination and 

communication, are more likely to institutionalize a software product line in comparison 

to the organizations with structures not supporting coordination and communication. 

The process of evolving from single product development to a line of products is a 

significant change in an organization. During this procedure, almost every software 

development activity needs to be changed. For example, in the case of requirements 

engineering, an organization has to deal with product specific requirements engineering 

as well as product line specific requirements engineering. The product specific 

requirements engineering   involves identifying the variability among products, whereas 

product line requirements engineering entails detecting the commonality among 

products. Furthermore, there is need to introduce trade off analysis for commonality and 

variability management. Introducing a new practice such as a product line is relatively 

difficult in the existing setup of an organization, especially if it is not being introduced 

with a proper change management plan. Even the best strategy is bound to fail if there 

is a consistent resistance to innovation and new technology from within the 

organization. Organizations that communicate the importance of this change via clear 

guidelines and the establishment of a road map for their employees are more 

successful in institutionalizing software product lines.  

 



Although organization has always been highlighted as one of the critical dimension in 

product line engineering but has given least attention by product line engineering 

community to streamline the concept and integrate with software development efforts. 

Some of the leading areas of core research in software product line engineering and 

organization dimension are as follows: 

 

 Conflict management planning to resolve and handle conflict in an organization 

dealing with product line approach. 

 The organizational structure needs to be explored in order to provide a suitable 

structure which defines specific roles and responsibilities of object. Many 

traditional organizational structures have been studied for the application in 

product line environment but they need to be enhanced to accommodate the 

product line concept. 

 Organizational learning procedures and guidelines to adopt product line 

approach and switching from traditional product development for single system to 

line of products. 

 A study to develop strategies to incorporate and monitor the organizational 

communication process. 

 Change management plans and implementation procedures. 

 Effective utilization of core assets and their management. 

 Developing plans to start and maintain an infrastructure for product line 

development. 

 Knowledge management in organization for effective use and dissemination of 

knowledge across the boundaries of the organization. 

 Human resource management across organization to provide necessary 

resources for product line infrastructure. 

 Inter group trust management to enhance the productivity of the product line 

process. 

 A methodology to assess the organizational dimension of software product line 

process and to define improvement plans. 

 



 
1.4 Software Product Line Architecture 

Software architecture has been a key area of concern in software industry due to its 

profound impact on the productivity and quality of software products.  This is even more 

crucial in case of software product line, because it deals with the development of a line 

of products sharing common architecture and having controlled variability. Software 

architecture has a history of evolution and over a decade the software industry is 

observing and reporting refinements and advancements. Now the trends in software 

architecture for single product development have turned into software product line 

architecture for line of resulting products. 

Software architecture is the structure of the components of a program or system, their 

interrelationships, and the principles and guidelines governing their design and 

evolution [47]. Software architecture has a long history of evolution and in this modern 

age this transformation leads towards software product line architecture, where the 

concern is not a single product development rather the focus is on multiple product 

development by sharing the same architecture.  Pronk [48] defines software product line 

architecture as an ultimate reuse in which the same software in reused for an entire 

class of products with only minimal variations to support the diversity of individual 

product family members. According to Jazayeri et al. [49] software product line 

architecture defines the concepts, structure, and texture necessary to achieve variation 

in features of variant products while achieving maximum sharing parts in the 

implementation. Mika and Tommi [50] further elaborate that software product line 

architecture can be produced in three different ways: from the scratch, from existing 

product group, or from a single existing product. Software product-line architecture is a 

powerful way to control the risks and take advantage of the opportunities of complex 

customer requirements, business constraints, and technology, but its success depends 

on more than technical excellence [51]. The software product line architecture captures 

the central design of all products and allows for the expression of variability and 

commonalities of the product instances, the products are instantiated by configuring the 

architecture and customizing components in an asset library [52]. The “Architecture” in 

BAPO is considered critical because it deals with the technical means to build an 



architecture that is aimed to share by a number of products from the same family. Van 

der Linden et al.  [11] identify some main factors in evaluating the architecture 

dimension of software product line such as: software product family architecture, 

product quality, reuse levels and software variability management and classify the 

architecture maturity of software product line into five levels in the ascending order: 

independent product development, standardized infrastructure, software platform, 

variant products and self-configurable products. Birk et al. [53] conclude that explicit 

documentation of the software product line architecture, platform features, and generic 

interfaces is important for the product teams to understand the reusable assets. 

 

The methodologies developed for software product line development either in general or 

specific to particular application domain consider domain engineering as an integral 

activity of the overall product line process and has profound impact on building the 

architecture for the product line. Bayer et al. [54] at Fraunhofer Institute of Experimental 

Software Engineering (IESE) develop a methodology called PuLSE (Product Line 

Software Engineering) for the purpose of enabling the conception and deployment of 

software product lines within a large variety of enterprise contexts. PuLSE-DSSA is a 

part of PuLSE methodology, which deals with developing the reference architecture for 

software product line. Knauber et al. [55] further elaborate that the basic idea of PuLSE-

DSSA is to incrementally develop reference architecture guided by generic scenarios 

that are applied in decreasing order of architectural significance. Researchers at 

Philips have developed Component-Oriented Platform Architecting (CoPAM) [56] 

method for the software product lines of electronics products. CoPAM assumes a strong 

correlation among facts, stakeholder expectations, any existing architecture and the 

institutions about possible architects in developing software product line architecture. 

Weiss and Lai [57] discuss the development of Family-Oriented Abstraction 

Specification and Translation (FAST) method for software product line process and 

successful use at Lucent Technologies. FAST method covers a full software product 

line engineering process with specific activities and targeted artifacts. It divides the 

overall process of software product line into three major steps of domain qualification, 

domain engineering and application engineering. Researchers at IESE developed 



another methodology called KobrA [58], which defines software product line engineering 

process with activities and artifacts. The process of software product line engineering is 

divided into framework engineering and application engineering with their sub steps. 

These steps cover the implementation, releasing, inspection and testing aspects of 

product line engineering process. Kang et al. [59] propose a Feature Oriented Reuse 

Method (FORM), which is an extension to the Feature-Oriented Domain Analysis 

(FODA) method to cover the aspects of software product lines. FORM provides a 

methodology to use feature models in developing domain architectures and 

components reusability. Researchers at the VTT technical research centre of Finland 

have developed Quality-driven Architecture Design and Quality Analysis (QADA) 

method for developing and evaluating software architectures with emphasis on product 

line architecture. Matinlassi [60] has reported the comparison of software product line 

architecture design methods including CoPAM, FAST, FORM, KobrA and QADA, and 

concluded that these methods do not seem to compete with each other, because each 

of them has a special goal or ideology.  

 

The concepts of commonality and variability management inherently belong to domain 

engineering are gaining popularity over time due to extensive involvement in software 

product line concept.  According to Coplien et al. [61] commonality and variability 

analysis gives software engineers a systematic way of thinking about and identifying the 

product family they are creating. Commonality management deals with the way features 

and characteristics that are common across the products belong to same product line 

whereas variability management is other way round. Variability management handles 

the way the variable features and characteristics are managed in different products of 

the a product line. Software product line requires systematic approaches to handling 

commonality and variability and the core of successful software product line 

management largely relies on effective commonality and variability management. Kang 

et al. [62] discuss the use of feature models to manage commonality and variability in 

software product line. Lam [63] presents variability templates and variability hierarchy 

based variability management process. Thompson and Heimdah [64] propose a set 

based approach to structure commonalities and variability in software product lines. Kim 



and Park [65] describe the goal and scenario driven approach for managing 

commonality and variability on software product line. Ommering [66] observes that the 

commonalities are embodied in an overall architecture of software product line, while 

the differences result in specifying variation points and by filling those variation points, 

individual products can be derived. Other researchers [67] [68] [69] have stressed that 

the software architecture for a product family must address the variability and 

commonality of the entire set of products.  

 

Requirements modeling have always been a key architecture concern in software 

devolvement, because it provides a better understanding of the requirements of the 

architecture and allows visualizing the interconnection of various sub-units. Since the 

popularity of object oriented design, Unified Modeling Language (UML) has become an 

industry standard, many researchers have attempted to introduce UML in visual 

modeling of software product line architecture by presenting enhancement in the current 

state. Birk et al. [70] stress that the organization dealing with software product line 

architecture should describe the architecture using well-established notations such as 

UML and the architecture description should cover all relevant architectural views and 

use clearly defined semantics. Gomma and Shin [71] describe a multiple-view meta-

modeling approach for software product lines using the UML notation, which defines the 

different aspects of a software product line such as: the use case model, static model, 

collaboration model, state chart model, and feature model. Zuo et al. [72] present the 

use of problem frames for product line engineering modeling and requirements analysis 

and demonstrate some additional notation to support the requirements management 

and variability issues in product line problem frames. Dobrica and Niemelä [73] discuss 

how UML standard concepts can be extended to address the challenges of variability 

management in software product line architecture and introduce some extensions in 

UML standard specification for the explicit representation of variations and their 

locations in software product line architectures, this work is based on previously 

mentioned QADA methodology. Eriksson et al.  [74] describe a product line use case 

modeling approach named PLUSS (Product Line Use case modeling for Systems and 

Software engineering) and conclude that PLUSS performs better than modeling 



according to the styles and guidelines specified by the Rational Unified Process (RUP) 

in the current industrial context.  

 

Software architecture evaluation techniques are generally divided into two groups: 

qualitative evaluation and quantitative evaluation. Qualitative techniques include 

scenarios, questionnaires, checklists etc. Quantitative techniques cover simulations, 

prototypes, experiments, mathematical models, etc. Etxeberria and Sagardui [75] 

highlight the issues that can arise when evaluating product line architecture versus 

evaluating single system architecture, including classifications of relevant attributes in 

product line architecture evaluation, new evaluation techniques. Graaf et al [76] present 

a scenario based software product line evaluation technique, which provides guidelines 

to adapt scenario-based assessment to software product line context. Using the 

qualitative technique of software architecture evaluation Hoek et al [77] put forward 

service utilization metrics to assess the quality attribute of software product line 

architecture. Zhang et al [78] study the impact of variants on quality attributes using a 

Bayesian Belief Network (BBN) and design a methodology applicable to software 

product line architecture evaluation. Lange and Kang [79] propose a product-line 

architecture prototyping approach using network technique to assess issues related to 

software product line architecture evaluation. Gannod and Lutz [80] define an approach 

to evaluating the quality and functional requirements of software product line 

architecture. Niemelä et al. [81] discuss the basic issues of product family architecture 

development and present evaluation model of software product family in industrial 

setting. 

 

Domain engineering has a pivotal role in the process of software product line. The 

inception phase of software product line starts with conducting a comprehensive domain 

engineering in defining and narrowing down the scope of product line, which identifies 

the characteristics of the product line and the products that comprise the product line. 

The product line engineering envisages the domain engineering into set of three 

activities: domain analysis, domain design and domain implementation. Domain 

analysis concentrates on understanding the domain and providing a foundation to 



domain design, which is an early sketch of the architecture of product line. Domain 

analysis not only defines the boundaries of the software product line scope but also 

helps in performing the commonality and variability analysis for the product line. Domain 

implementation further helps in developing the core architecture of software product line 

by specifying components and their inter-connections. The activities of domain 

engineering invariably helps in carrying out commonality and variability analysis. The 

domain engineering helps in defining the common and variable parts of the software 

product line requirements, thus explicitly identifying the commonality and variability of 

the envision products. The software product line requires a strong coordination among 

domain engineering and application engineering. The domain engineering helps in 

establishing an infrastructure for software product line and the application engineering 

uses the infrastructure and develops products using core assets. 

 

Requirements modeling provide us with the facility to model the requirements 

graphically so that requirements can easily be understood by various stakeholders 

Requirements modeling helps in understanding the requirements of the products and in 

further elaborating the functionalities and tradeoffs. Software product line needs to 

elaborate the requirements at two levels: product line level and individual product level. 

The product line level requirements envisage the commonality among products whereas 

individual product level requirements represent the variability. Modeling requirements in 

the context of software product line architecture helps in identifying and specifying the 

extension points called variation points. It decomposes and specifies the architecture 

into set of features with their dependency. Requirements models translate the 

requirements of the targeted market segment and specify the implementation views of 

the business case. Much of the work on requirements modeling for software product line 

has concentrated on establishing an extension in the current available modeling 

techniques like UML and feature diagrams.  

 

Product requirements in software product line are composed of a constant and a 

variable part. The constant part comes from product line requirements and deals with 

features common to all the products belonging to a family. The variable part represents 



those functionalities that can be changed to differentiate one product from another. This 

causes the significance of commonality and variability management in software product 

line. Commonality among products of a software product line is an essential and integral 

characteristic of product line approach that paves a way to maximize reusability. The 

products share the common architecture and they are developed out of common core 

assets. The commonality management takes much if its’ input from domain engineering 

and those inputs are further elaborated and clearly specified using requirements 

modeling approaches. The extent of commonality among products is a design decision 

based on business case engineering and targeted market segment.  In order to 

maximize the reusability of software assets, it is generally recommended to have as 

much commonality as possible.  

 

Variability among products of a software product line is necessary because it makes 

them a separate business entity. The products from a software product line may vary 

from each other’s in quality, reliability, functionality, performance and so on, but as they 

share a common architecture so the variation should not be that much high so that they 

become out from the scope of a single product line. Those variations must be handled 

systematically to accommodate changes in various versions of the product. The 

objective of variability management is to identify, specify and document variability 

among products in the applications of product line. Software product line architecture 

represents variability by specifying the variation points, which can be exploited at 

application engineering level by accommodating the design decisions based on the 

business case. The variability in products usually results from internal and external 

factors. The internal factors have their roots in refining the architecture whereas external 

factors accommodate the market and customers expectations. The introduction of 

variable features in a product from a software product line is a strategic decision based 

on market segment. The introduction of variable features in the successive products out 

of product line also provides a justification for setting up a product line in the 

organization as well because it helps in attracting new customer and retaining the 

current one. Fitting the components into the product without tailoring it is the easiest 

task, but some time we need to make certain changes in the component to meet the 



requirements for a particular product. Every component present in the core assets must 

clearly define the variability mechanism to be used in order to tailor them for reuse. The 

significance of commonality and variability management in software product line 

architecture and the overall performance of the software product line require tool 

support, which needs the attention of researchers. 

 

Software artifacts management play significant role in the process of development, 

maintenance and reuse of software. Software product line architecture is one of the 

critical artifacts of software product line approach, and all the resulting products share 

this common architecture. The architectural artifacts provide in-depth knowledge about 

various views, levels of abstractions, variation points, components identification, 

component behavior and their inter-connection. It has been a general trend in software 

industry to represent and document architecture using notations and languages such as 

Architecture Description Language (ADL). Software product lines currently lack an 

architecture description language to represent the software product line architecture in 

large. These documentations such as domain analysis, domain design, domain testing, 

requirements modeling provides inputs to software product line architecture. The 

configuration management issues of software product line artifacts are imperative in 

software product lines as it deals with a number of resulted products with different 

versions and releases as well as several number of core assets with different versions. 

The concept of configuration management currently used in software industry deals with 

a single project, or more precisely with a single product, and on the opposite software 

product line deals with a set of products. Therefore a multi dimensional approach of 

configuration management should be adopted to cope up with the issue. Configuration 

management of software product line is a research area where not much work has been 

done and requires an immediate attention of researchers. 

 

 Quality is a major issue for family of products. Like a single product, software 

quality is fundamental to a family of products’ success. Core and product 

architectures of family of products are expected to help achieve the required 

quality attributes. However, one of the key challenges in designing software 



architectures for core and individual products with respect to the desired level of 

different quality attributes is that the quality attributes have been found very hard 

to define, describe and understand. This aspect has very strong subjective 

interpretation. That is why it is vital to systematically elicit and precisely define 

quality aspects of a family of products in order to help design appropriate 

architectures. There are a number of classifications of quality attributes. McCall 

listed a number of classifications of quality attributes developed by software 

engineering researchers including himself [82]. A later classification of software 

quality is provided in [83]. However, none of them has been proven sufficient to 

define, specify, and model different levels of quality attributes required in different 

products of a family. There is a vital need for developing appropriate approaches 

to eliciting, specifying, and modeling quality attributes to be supported by 

software architectures of a family of products.  

 

 Designing and evaluating software architectures of a family of systems involves 

complex and knowledge intensive tasks. The complexity lies in the fact that 

tradeoffs need to be made to satisfy current and future requirements of a 

potentially large set of stakeholders, who may have competing vested interests in 

architectural decisions. The knowledge required to make suitable architectural 

choices is broad, complex, and evolving, and can be beyond the capabilities of 

any single architect [84]. Due to the recognition of the importance and far 

reaching influence of the architectural decisions, several approaches have been 

developed to support architecting processes. Examples are the Generic Model 

for architecture design [85], Attribute-driven design [86], Architecture Tradeoff 

Analysis Method (ATAM) [87], 4+1 views [88], Rationale Unified Process (RUP) 

[89] and architecture-based development [90]) While these approaches help to 

manage complexity by using systematic approaches to reason about various 

design decisions, they provide very little guidance or support to capture and 

maintain the details on which design decisions are based, along with 

explanations of the use of certain types of design constructs (such as patterns, 

styles, or tactics). Such information represents architecture knowledge, which 



can be valuable throughout the software development lifecycle [91]. We assert 

that the lack of a systematic approach to capturing and sharing architectural 

knowledge may preclude organizations from growing their architecture capability 

and reusing architectural assets. Moreover, the knowledge concerning the 

domain analysis, architectural patterns used, design alternatives evaluated and 

design decisions made is implicitly embedded in the architecture and/or becomes 

tacit knowledge of the architect [92]. Hence, one of the key challenges in 

successfully development and evolving software architectures is the provision of 

suitable infrastructure for capturing, maintaining, and sharing architectural 

knowledge and rationale underpinning key architectural design decisions. 

 

 Apart from the challenge of devising optimal architectural solutions, specifying 

the architecture and interfaces of component-based family of systems is a 

difficult task, which poses several kinds of challenges. Fro example, industries 

heavily dependent upon on the component-based software engineering, like 

automotive, Usually OEMs (Original Equipments Manufacturers) have to provide 

an overall architecture of the automotive systems in its cars and distribute these 

to potential suppliers of systems and components who do the implementation. 

The AUTOSAR standard is a move to establish an open standard for automotive 

embedded electronic architecture. AUTOSAR tries to achieve modularity, 

scalability transferability and reusability of functions. However, even if the 

architecture and components are specified using AUTOSAR, there is still no 

checking of conformance or conformance validation. We assert that there is a 

need for specific methods and tools to validate that those implementations 

actually conform to the specifications and that the combination of the various 

implementations conforms to the OEMs’ specifications.  

 

 Architecture and interface specification is another big challenge in software 

product line engineering in general and software product line engineering for 

automotive systems in particular. There is general lack of suitable and reliable 

methods to accurately and sufficiently provide interface specifications. This is 



also one of the key research challenges in the context of increasing trend of 

global software development.    
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