
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

2009

Software Product Line Engineering: Future
Research Directions
Luiz Fernando Capretz
University of Western Ontario, lcapretz@uwo.ca

Faheem Ahmed
Thompson River University, fahmed@tru.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

Citation of this paper:
Capretz, Luiz Fernando and Ahmed, Faheem, "Software Product Line Engineering: Future Research Directions" (2009). Electrical and
Computer Engineering Publications. 10.
https://ir.lib.uwo.ca/electricalpub/10

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/10?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

Software Product Line Engineering: The Future
Research Directions

Faheem Ahmed1, Luiz Fernando Capretz2, Muhammad Ali Babar3

1College of Information Technology, P.O. Box 17551, United Arab Emirates University,

Al Ain, United Arab Emirates

2Department of Electrical & Computer Engineering, Faculty of Engineering, University of
Western Ontario, London, Ont., Canada N6A 5B9

3Lero, University of Limerick, Ireland

1f.ahmed@uaeu.ac.ae, 2lcapretz@eng.uwo.ca, 3malibaba@lero.ie

Abstract: The recent trend of switching from single software product development to

lines of software products in the software industry has made the software product line

concept viable and widely accepted methodology in the future. Some of the potential

benefits of this approach include cost reduction, improvement in quality and a decrease

in product development time. Many organizations that deal in wide areas of operation,

from consumer electronics, telecommunications, and avionics to information technology,

are using software product lines practice because it deals with effective utilization of

software assets and provides numerous benefits. Software product line engineering is

an inter-disciplinary concept. It spans over the dimensions of business, architecture,

process and organization. The business dimension of software product lines deals with

managing a strong coordination between product line engineering and the business

aspects of product line. Software product line architecture is regarded as one of the

crucial piece of entity in software product lines. All the resulting products share this

common architecture. The organizational theories, behavior and management play

critical role in the process of institutionalization of software product line engineering in

an organization. The objective of this chapter is to discuss the state of the art of

software product line engineering from the perspectives of business, architecture,

organizational management and software engineering process. This work also

highlights and discusses the future research directions in this area thus providing an

opportunity to researchers and practitioners to better understand the future trends and

requirements.

1.1 Introduction

In today’s digitized economy, organizations endeavor, to the best of their abilities, to

capture a major portion of the market share to be profitable. Software organizations are

also continuously innovating and improving business operations such as technology,

administration, and product development process. Their major concern is the effective

use of software assets, thus reducing considerably the development time and cost of

software products to capture market segments. For many organizations that deal in

wide areas of operation, from consumer electronics, telecommunications, and avionics

to information technology, the future of software development is in software product

lines. Software product lines are promising, with the potential to substantially increase

the productivity of the software development process and emerging as an attractive

phenomenon within organizations that deal with the software development. Software

product lines involve assembling products from existing core assets, and then growing

those core assets continuously as the production proceeds.

The software industry has shown a growing interest in the concept of software product

line. One of the major concerns of software development organizations is the effective

utilization of software assets, thus reducing considerably the development time and cost

of software products. Many organizations that deal in wide areas of operation, from

consumer electronics, telecommunications, and avionics to information technology, are

using software product lines practice because it deals with effective utilization of

software assets. Clements et al. [1] report that software product line engineering is a

growing software engineering sub-discipline, and many organizations including Philips,

Hewlett-Packard, Nokia, Raytheon, and Cummins are using it to achieve extraordinary

gains in productivity, time to market, and product quality. Clements 2] defines the term

software product line as a set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment

or mission, and are developed from a common set of core assets in a prescribed way.

Some other terminologies for “software product line” that have been widely used in

Europe are “product families,” “product population,” and “system families”.

The concept of a software product line is a comprehensive model for an organization

building applications based on common architectures and other core assets [3].

Clements [2] defines the term “software product line” as a set of software-intensive

systems sharing a common managed set of features that satisfy the specific needs of a

particular market segment or mission and that are developed from a common set of

core assets in a prescribed way. The Software Engineering Institute (SEI) proposes the

Product Line Technical Probe (PLTP) [4], which is aimed at discovering an

organization’s ability to adopt and succeed with the software product line approach. The

framework is divided into three essential activities: product development, core asset

development, and management. van der Linden [5] pointed out that in 1995 the

Architectural Reasoning for Embedded Systems (ARES) project began in Europe to

provide architectural support for developing product families. In the overview of another

European project, Engineering Software Architecture, Processes and Platforms for

System-Families (ESAPS) [6], a system family is defined as a group of systems sharing

a common, managed set of features that satisfy core needs of a scoped domain. The

main objectives of system families are to reduce development efforts and to handle the

impact of growing system complexity. Ommering [7] introduced another term called

“product population”, which is a collection of related systems based on similar

technology but with many differences among them.

Northrop [8] stresses that fielding a product line involves core asset development and

product development using core assets under the aegis of technical as well as

organizational management. The essential activities of the software product line

process are core asset development, product development, and management. All the

three activities are linked and are highly iterative in nature. The link among the activities

establishes a communication path among them to provide feedback. There is no fixed

order of execution of these activities. They can be performed in any order and they give

feedback to other activities for their execution. The feedback received at each activity is

used to accommodate changes and modify the process. The software product line

process can be described in terms of four simple concepts. The four simple concepts

that interact with each other are: software assets, a decision model for products, a

production mechanism process, and output products that result from software product

line activity. Krueger [9] states that software asset inputs are a collection of software

assets that can be configured and assembled in different ways to create all of the

products in a product line. The decision model for products elaborates the requirements

of the products within a product line. Production mechanism and process defines the

procedures for assembling and configuring products from existing software assets.

Software products are the collection of all products that can be produced from the

product line. Associated processes are performed with those basic four concepts for the

establishment of a software product line.

Core assets in a software product line may include architecture, reusable software

components, domain models, requirement statements, documentation, schedules,

budgets, test plans, test cases, process descriptions, modeling diagrams, and other

relevant items used for product development. There is no specific definition for core

asset inclusion, except that it is an entity used for development purposes. The goal of

core asset development is to establish the production capability of developing products

[2]. The major inputs to the core asset development activity are: product constraints,

styles, patterns, frameworks, production constraints, production strategy, and the

inventory of pre-existing assets. The outputs of core assets development are software

product line scope, core assets and the production plan. Software product line scope

describes the characteristics of the products developed. The production plan gives an

in-depth picture how products will be developed from core assets. Core assets are

those entities that may be used in the product development. The collection of core

assets is termed as core asset repository and the initial state of the core asset

repository depends upon the type of approach being used to adopt software product line

approach within an organization.

In product development activity, products are physically developed from the core

assets, based on the production plan, in order to satisfy the requirements of the

software product line. The essential inputs of product development activity are

requirements, product line scope, core assets and the production plan. Requirements

describe the purpose of the product line along with functionalities and characteristics of

the products developed. Product line scope describes qualification criteria for a product

to be included or excluded from software product line based on functional and non-

functional characteristics. The production plan describes a strategy to use the core

assets to assemble products. A product line can produce any number of products

depending upon the scope and requirements of the software product line. The product

development activity iteratively communicates with core asset activity and adds new

core assets as products are produced and software product line progresses.

Management plays a vital role in successfully institutionalising the software product line

within an organization, because it provides and coordinates the required infrastructure.

Management activity involves essential processes carried out at technical and

organizational levels to support the software product line process. It ensures that

necessary resources must be available and well coordinated. The objective of

“Technical Management” is to oversee the core asset and product development

activities by ensuring that the groups who build core assets and the groups who build

products are engaged in the required activities, and are following the processes defined

for the product line [4]. Technical management plays a critical role in decision-making

about the scope of software product line based on requirements. It handles the

associated processes of software development. Northrop [8] summarized the

responsibilities of organizational management, which are: structuring an organization,

resource management and scheduling, cost control and communication. Organizational

management deals in providing a funding model for the software product line in order to

handle cost constraints associated with the project. It ensures a viable and accurate

communication and operational path between essential activities of software product

line development because the overall process is highly iterative in nature. The

fundamental goal of the organizational management is to establish an adoption plan,

which completely describes a strategy to achieve the goals of software product line

within an organization. The major responsibility of the management is to ensure proper

training of the people to become familiar with the software product line concepts and

principles. Management deals with external interfaces for smooth and successful

product line and performs market analysis for internal and external factors to determine

the success factor of software product line. Management performs organizational and

technical risk analysis and continues tracking critical risk throughout the software

product line development.

van der Linden [16] reports that the term “product family” or “system family” is used in

Europe whereas in the United States the term “software product line” is commonly used.

As Europeans were working on product family engineering, researchers in the United

States founded the SEI’s product line initiative, the major reason for this being that until

1996 the United States and European communities in this field worked independently.

The objective of the software product line is to address the specific needs of a given

business. Krueger [9] considers that the objective of a software product line is to reduce

the overall engineering effort required to produce a collection of similar systems by

capitalizing on the commonality among the systems and by formally managing the

variation among the systems. A software product line gives an excellent opportunity to

establish a production facility for software products based on a common architecture. To

capture various market segments, it provides a means for the reuse of assets, thus

reducing development time and the cost of software products. The software product line

increases the quality and reliability of successive products, thereby gaining the

confidence of customers. According to van der Linden [16], whenever an organization

wants to establish product family development it must keep a number of things under

consideration. In Europe, the acronym BAPO [16], is very popular for defining the

process components associated with software product lines. BAPO is considered critical

in its consideration of how products resulting from software product lines make a profit.

Software engineering, business, management and organizational sciences provide

foundations for the concept of software product line engineering, and thus, it has

become an inter-disciplinary concept.

1.2 Businesss of Software Product line Engineering

Today, all businesses are experiencing greater competition, and customers’

expectations continuously increase as technology advances at an unprecedented rate

of growth. The rapid and continual changes common to the present business

environment not only affect business itself but also have a profound impact on

production. Software is perhaps the most crucial piece of a business entity in this

modern marketplace, where important decisions need to be made immediately.

Organizations that fail to respond appropriately do not survive longer. The keys to

success are in continuously monitoring customers and the competitors and in making

improvement plans based on observations and measurements. Business is perhaps the

most crucial factor in a software product line, mainly due to the necessities of long-term

strategic planning, initial investment, longer payback period and retaining the market

presence. Business is perhaps the most crucial dimension in the software product

family process, mainly due to the necessities of long-term strategic planning, initial

investment, longer payback period, and retention of the market presence.

The “Business” in BAPO is considered critical because it deals with the way the

products resulting from software product lines make profits. Bayer et al [10] at

Fraunhofer Institute of Experimental Software Engineering (IESE) develop a

methodology called PuLSE (Product Line Software Engineering) for the purpose of

enabling the conception and deployment of software product lines within a large variety

of enterprise contexts. PuLSE-Eco is a part of PuLSE methodology, deals with defining

the scope of software product lines in terms of business factors. Pulse-Eco identifies

various activities, which directly address the business needs of software product lines

such as: system information, stakeholder information, business objectives and benefit

analysis. van der Linden et al. [11] identify some main factors in evaluating the business

dimension of software product line such as: identity, vision, objectives and strategic

planning. They classified the business maturity of software product line into five levels in

the ascending order: reactive, awareness, extrapolate, proactive and strategic.

Clements and Northrop [4] highlight customer interface management, market analysis,

funding, and business case engineering as important activities from the perspectives of

managing the business of software product line. Kang et al. [12] present a marketing

plan for software product lines that includes market analysis and marketing strategy.

The market analysis covers need analysis, user profiling, business opportunity, time to

market and product pricing. The marketing strategy discusses product delivery

methods. Toft et al. [13] propose “Owen molecule model” consisting of three dimensions

of social, technology and business. The business dimension deals with setting up

business goals and analyzing commercial environment. Fritsch and Hahn [14] introduce

Product Line Potential Analysis (PLPA), which aims at examining the product line

potential of a business unit through discussions with managers of the business unit

because in their opinion they know the market requirements, product information and

business goals of the organization. Schmid and Verlage [15] discuss the successful

case study of setting up software product line at Market Maker and highlights market

and competitors analysis, vision of potential market segment, and products as

significantly important activities. Ebert and Smouts [16] weight marketing as one of the

major external success factors of product line approach and further concluded that

forecasting, ways to influence market, strong coordination between marketing and

engineering activities, are required for gaining benefits from product line approach.

Strategic plans are the focus of an organization’s endeavors to accomplish the desired

level of achievement in a particular area. Strategic planning starts with elaborating

strategic objectives. Niemelä [17] highlighted eight different strategies for adopting

software product lines in an organization: minimizing risk, extending market share,

maximizing end-user satisfaction, balancing cost and potential, balancing cost,

customer satisfaction and potential, and maximizing potential. Niemelä [17] further

concluded that a company has to evaluate the current status of their business,

architecture, process, and organizational issues before making a decision about

choosing one strategy out of those in order to achieve desired benefits. The software

product line process needs resources, which must be delegated in strategic plans.

Strategic planning must clearly outline what is to be developed from the software

product line in order to gain competitive advantages and capture market segments to

achieve strategic targets. Strategic plans are required to maintain organizational wide

efforts to identify and exploit attractive long-range business opportunities by having the

software product line in practice. The benefits of being the first in the market have long

been recognized in the business sector; pioneers often gain a sustainable competitive

advantage over followers, because, initially, they are the only solution-providers in a

particular market segment. Thus, they usually capture a bigger portion of the market

because they were first. It becomes very difficult for successors to gain a share of the

market segment, especially in the case of software, where migration to other software is

relatively uncommon. The timing for technology-based products entering the market is

even more critical for the profitability and competitive position of an organization. The

right product at the right time has a high potential of success. Order of market entry is

perceived as a crucial business decision, with a long-lasting and profound impact on the

performance of an organization in capturing and retaining the market. Appropriate

timing to launch a software product into the market is even more essential for software

development organizations. Timing is essential in launching a new product from the

software product line in order to capture major shares of the market. The order of entry

to the market depicts the delivery schedule for the software product family and provides

guidelines to developers about development schedules.

Organizations consider brand name a crucial catalyst of business success. A brand is

regarded as both a promise of quality to customers and a point of comparison with other

products or services. Bennett [18] defined brand as a name, term, sign, symbol, design,

or any combination of these concepts that is used to identify the goods and services of

a seller. Brand name products generally have high potential for increasing an

organization’s business. Branded product serve, as an interface between customers

and the organization, and loyalty to a brand is a kind of word-of-mouth advertisement

from customers. Brand name strategy has also been successfully adopted in software

development. Many successful brands in software, such as Windows®, AutoCAD®, and

MATLAB®, successfully retain a significant number of customers, thus capturing a major

portion of the market segment. But currently there is gab between software product line

engineering and brand name strategy; many different products not originating from one

software product line can be plugged under one marketed product line. Windows® is a

working example of this scenario. Despite this fact there are successful cases that are

using brand name strategy in software product lines concept. The product line of

Symbian operating system for mobile phones is an example of this scenario. Long

range of products under this brand name is currently successfully installed in the

handsets of Nokia, Sony Ericsson, Samsung and Panasonic etc. Jaasksi [19] presented

the case study of developing software product line of mobile browsers under the brand

name of “Nokia Mobile Browser” at Nokia is also an example of current use of brand

name strategy in software product lines. The concept of market orientation provides an

advantage over competitors by identifying what customers’ want, and then offering

products that are different and superior to those offered by competitors. Market

orientation deals with the acquisition, sharing, interpretation, and use of information

about customers and competitors, both of which have a significant impact on the

performance of the business. Birk et al. [20] defines market orientation in context of

software product lines as whether the organization targets a specific market segment

without a specific customer in mind or addresses individual customer projects. The

software product line deals with developing a considerable number of products to

capture various market segments, thus providing justification for a product line. Market

orientation provides imperative information about the concerns and requirements of

customers, which needs to be accommodated in the successive products from a

product line. Pulse-Eco [21] illustrates various activities associated with market

orientation for successful adoption of software product lines concept in an organization.

It considers collecting and analyzing stakeholders’ information is helpful in defining the

product line scope.

Business success is highly dependent on the extent to which customers are satisfied

with an organization’s product and services, as well as how they win the loyalty of

customers by improving their relationships management. Relationships management

plays a significant role in successful software product line development. Excellent

working relationships with customers allow the developers to improve the performance

and functionalities of successive products from the product line by better understanding

the customers’ requirements and learning about market trends from the end users. The

software product line can play a significant role in the business vision because it tends

to produce long-term benefits to the organization. A clear statement about business

vision will guide practitioners of the software product line to establish a production

facility in order to meet the future goals of the organization. By including the software

product line in the business vision, an organization can stream line its business

operations in order to capitalize on its market audience for profitable venture. Wijnstra

[22] concluded that a complete business roadmap is needed to describe what is

expected from the software product lines in the years to come and how it will fit in the

plan for the release of new products. The key to a successful business in today’s

competitive environment is innovation. Organizations are continuously adopting

innovations in major areas of business operations, such as technology, administration,

and production processes. . Organizations with designs on capturing a major share of

the market, in order to increase business, spend heavily on research and development.

Business objectives influence research and development efforts because the order of a

product’s entry into the market can make a significant difference in achieving strategic

goals. Thus, research and development in technology, administration, processes, and

product produce enduring results. The software product line is a relatively new concept,

and a lot of research and development in process definition and development

methodology is in progress. The research is occurring at various levels of industry and

academia to improve the process and product development activity of the software

product line for the successful industrialization of this valuable concept. Organizations

are trying to institutionalize this concept in innovative ways to make the most effective

use of it. Böckle [23] highlighted some measures of innovation management in software

product line organizations, which include a planned innovation process, clear roles and

responsibilities definition for innovation management structure. Böckle [7] further

stressed that the evolution of the product portfolio, platform, variability model, and

reference architecture shall be planned with further innovations in mind.

The business of software product line engineering has a profound impact on the long

term planning and vision of the organization in the market place. The significance of the

business factor in product line engineering requires a better understanding of various

non-software development factors which originates from business theory. This makes

software product line engineering multi-disciplinary paradigm which needs contributions

from many experts in different areas of knowledge and expertise. Although business

has always been highlighted as one of the critical success factors in product line

engineering but has given least attention by product line engineering community to

streamline the concept and integrate with software development efforts. Some of the

leading areas of core research in software product line engineering and business

factors are as follows:

 Development of a business case and methodology to evaluate the significance in

terms of cost and benefits for an organization.

 An organizational wide economic model for developing and managing software

product line engineering, emphasizing return on investment.

 A methodology to develop production plan for the resulting products and allocation

of resources.

 The issues of translating the business requirements into product line requirements

which involves from non-technical (business group) to technical (architecture group).

 The role and impact of strategic planning of the organization in developing and

managing software product line. How organization can achieve its strategic goals

using the product line approach.

 Decision planning and implementation in allocating and committing resources to

achieve the long-range business goals.

 Marketing plans to identify and exploit attractive long-range business opportunities.

 How market orientation provides imperative information about the concerns and

requirements of customers, which need to be accommodated in successive products

from a product line.

 Customer orientation enables an organization to develop customer-centered

products. How this information assists in the domain- and application-engineering

activities of the software product line development to capture market segments.

 Evaluation of appropriate timing to launch a software product into the market from

product line in order to maximize the profit.

 The role of business vision in managing and developing software product line.

 Knowledge management of customers, marketing and competitors.

 Methodology to evaluate the business performance of the organization dealing with

software product line engineering.

 Methodology to evaluate the practice of various key business factors in organization.

1.3 Institutionalization of Software Product Line Engineering

The “Organization” in BAPO is considered critical because it deals with the way the

organization responds, adopts and institutionalizes this concept. Institutionalization is

the process by which a significantly new structure or practice is incorporated into a

system of existing structures and practices [24]. Clements and Northrop [15] elaborate

the institutionalization of software product line in an organization from the perspectives

of product development and core assets development. Institutionalizing a software

product line from the aspects of product development process anticipate the product

development as a routine and predictable activity in an organization to achieve the

product line goals of the organization. Clements and Northrop [4] emphasis that

institutionalizing a software product line from the perspectives of managing and

developing a core assets repository for software product line involves improving the

processes that are associated with building, maintaining, and evolving the core assets

and making those processes a part of standard organizational practice. In short

institutionalization of software product lines refers to the wide acceptance of the concept

in the roots of the organization. It involves integrating or improving the processes within

organization that are associated with a product line infrastructure, and introducing those

processes as a part of organizational character. The whole institutionalization process

involves an organizational level culture and strong commitments in acquiring

knowledge, skills and motivations to effectively initiate, launch and manage software

product lines. Institutionalization of software product lines require that the concept has

been entrenched at all levels of the organization, and it is supported with a necessary

infrastructure of organizational wide guidelines, required training, and required

resources.

Successfully institutionalization of software product line in an organization has a

profound impact on the product development behavior of the organization. It changes

the mindset of the organization from single system development to a family of software

products. The organizational theory focuses on the design and structures of the

organization dealing in software product line. The organizational behavior aims at

understanding the behavior, attitude and performance of the people. Software product

line requires enriching this concept within the roots of the overall organizational

behavior. Organizational management plays a vital role in successfully institutionalizing

software product line within an organization because it provides and coordinates the

infrastructure required. Initiating and launching a software product line within an

organization to gain benefits out of this approach is not sufficient. The alignment of

organizational theory, organizational management, and organizational behavior are

required in the process of institutionalization of software product line in an organization.

Thus, organizational factors play a key role in institutionalizing software product lines

within an organization. Software product line is an inter-disciplinary concept, which has

its roots in software engineering, business, management and organizational sciences.

The organization in the business of software product line has to deal with multiple

organizational factors in addition to their efforts in software development in order to

institutionalize software product line, which in turn has the potential to achieve

maximum benefits out of this approach.

The organizational dimension is perhaps the least addressed area in software product

line research due to relatively a new concept in software engineering paradigms. Much

of the efforts have been spent on process, architecture and business aspects of the

product line. Some scenarios of organizational structure for software product line are

presented. The researchers generally highlight that domain-engineering unit and

several application-engineering units are required from organizational structure

standpoint. Bosch [25] presents four organizational models for software product lines:

development department, business units, domain engineering units, and hierarchical

domain engineering units. Bosch [25] also points out a number of factors that influence

the organizational model such as geographical distribution, project management

maturity, organizational culture and the type of systems. Macala et al. [26] report that

software product line demands careful strategic planning, a mature development

process, and the ability to overcome organizational resistance. Dikel et al. [27] share

their experiences about initiating and maintaining software product lines at Nortel and

discuss organizational, management and staffing issues grouped into a set of six

organizational principles which they believe are critical in the long-term success of a

software product line. Jacobsen et al. [28] focus on roles and responsibilities of

personals within organizations dealing with software product lines. Mannion [429]

elaborates that the management issues, organizational structure, culture and learning in

context of successfully adopting the concept of software product line engineering needs

close attention. Koh and Kim [30] concludes that all members of an organization

experience and share their own success stories under existing processes and

organizational structure in order to successfully adopt software product line approach.

Clements and Northrop [4] discuss organizational issues of software product line and

identified four functional groups, i.e. the architecture group, the component-engineering

group, the product line support group and the product development group. The

organizational dimension of software product lines deal with the way the organization is

able to deal with complex relationships and many responsibilities [5]. Toft et al. [31]

propose “Owen molecule model” consisting of three dimensions of organizational,

technology and business. The organizational dimension of Owen molecule model deals

with teams hierarchy, individual roles, operational models, individual interaction and

communication etc. Introducing software product line practice to an organization

significantly impacts the entire organization by fundamentally changing development

practices, organizational structures, and task assignments [32]. Bayer et al. [33] at

Fraunhofer Institute of Experimental Software Engineering (IESE) develop a

methodology called PuLSE (Product Line Software Engineering) for the purpose of

enabling the conception and deployment of software product lines within a large variety

of enterprise contexts. PuLSE-BC is a technical component of PuLSE methodology and

it deals with the ways to baseline organization and customized the PuLSE methodology

to the specific needs of the organization. One of the support components of PuLSE is

organization issue, which provide guidelines to set up and maintain the right

organization structure for developing and managing product lines. According to Birk et

al. [32] introducing product line development to an organization can fundamentally

change the development practices, organizational structures, and task assignments.

These changes can in turn impact team collaboration and work satisfaction. Verlage

and Kiesgen [34] report the case study of successful adoption of software product line

and conclude that organizational structure and change management are significantly

important areas of concern.

Organizational culture refers to the working environment in an organization. Some of the

key process activities of software product line engineering, including domain

engineering, software product line requirements engineering, commonality and

variability management and business case engineering etc., require a lot of team effort,

group discussion and innovation. The studies in organizational culture highlight two

types of cultures: closed and open. In closed organizational cultures, the decisions are

made at the higher levels and are directly dictated to the lower levels without

considering the views and observations of most employees. In contrast, open

organizational cultures make decisions on the basis of discussions and employee

involvement. Software product line engineering requires a culture of openness, where

employees have the chance to participate in discussions and have the power to express

their views. For example, variability management is one of the critical process elements

that require an active involvement from various parts of the organization, such as the

business unit and the development unit, to specify areas for expansion in the product

line architecture and introducing product specific functionalities. An organizational

culture that supports teamwork, sharing of experiences, innovation and learning has

relatively greater potential institutionalizing software product line engineering.

Particularly, an organization with a culture that supports the reusability of software

assets is more likely to succeed in moving from single product development to a

systematic line of products.

Organizational commitment concerns the willingness of individuals and groups to

achieve the long term strategic objectives of an organization. The payback period of

software product line engineering is relatively longer than the single product

development approach. Consequently, this transitional period requires a strong

commitment from individuals, groups and management to adopt the software product

line engineering concept and to exercise patience with its development process. The

organizational policies such as business vision and strategic planning must highlight the

concept of software product line engineering as a priority in order to reflect the

organizational commitments. Furthermore, these policies must be well communicated to

the employees so that they understand the significance of this approach in achieving

the organizational goals. As well, the success of any long-term strategy in an

organization necessitates the commitment of its employees. The management has to

create a positive working environment in order to increase the level of employee

commitment. Such an environment can be achieved through well-defined job

placement, promotion strategy, appreciation and reward system, job security and

competitive compensation.

An organization is the planned coordination of activities of a number of people for the

achievement of some common, explicit purpose or goal, through a division of labor and

function, and through a hierarchy of authority and responsibility [35]. Organizational

theories provide guidelines for developing organizational structures in order to

accomplish the goals of a company. Wilson and Rosenfeld [36] define organizational

structure as the established pattern of relationships between the parts of an

organization, outlining communication as well as control and authority. According to

Gordon [37] organizational structure refers to the delineation of jobs and reporting

relationships in an organization and coordinates the work behavior of employees in

accomplishing the organization’s goals. The structure of an organization is generally not

a static phenomenon, since organizations tend to change their structures under the

circumstances of changing goals or technologies.

The rapid and continual changes common to the present technological environment

necessitate that organizations adopt changes through a well defined change

management plan. Beckhard and Harris [38] consider organizational change as a

movement from the present state of the organization to some future or target state.

Furthermore, Todd [39] defines change management as a structured and systematic

approach, which provides a conceptual framework that encompasses strategy, politics,

people and process. Cao et al. [40] observe that organizational change shows the

diversity of an organization, and it also illustrates the integration of technical and human

activities that have interrelated functions in the organization. The successful

implementation of any process methodology ultimately depends on how people

perceive that change. A certain degree of resistance is quite normal when a new

technology is introduced to an organization. However, this resistance will disappear if

people understand that the change is positive and is in their best interest as well as that

of the organization. Effective change management therefore depends partly on how the

strategy is communicated to the people responsible for the implementation.

When people interact with each other, the potential for conflict is present. This potential

exists in different areas, as it could be either personal or task related. Walls and

Callister [41] maintain that conflict is a process in which one party perceives that its

interests are being opposed or negatively affected by another party. Conflict

management consists of diagnostic processes, interpersonal styles, negotiating

strategies, and other interventions that are designed to avoid unnecessary conflict and

to reduce or resolve excessive conflict [42]. Hellriegel et al. [43] introduce four basic

forms of conflicts in an organization: goal, cognitive, affective, and procedural.

Moreover, Jehn [44] distinguishes between two kinds of intra-group conflict: task conflict

and relationship conflict. Task conflict is a perception of disagreement among group

members or individuals regarding the content of their decisions. It involves differences

in viewpoints, ideas and opinions, whereas relationship conflict is a perception of

interpersonal incompatibility and includes annoyance and animosity among individuals

[45].

In the software product line engineering, organizational learning can be classified into

two domains: external and internal. External learning involves necessary knowledge

about customers, competitors, external environments and market segments. This

knowledge is necessary in order to effectively utilize the product line by exploiting

product characteristics. The domain engineering, the product line requirements and the

business case engineering, etc. require that the organization has established

procedures and a means to acquire external learning. Overall, this type of learning

helps an organization to capture a major market share. Internal learning, on the other

hand, requires acquiring, transferring and sharing a software product line methodology,

ideas for process improvement and an understanding of the cross functional

requirements of product lines in individuals, groups and the organization. Learning is a

continuous process, especially for organizations that attempt to institutionalize software

product lines. In particular, learning from experience and mistakes further facilitates

improvement in the software product line engineering process.

One of the major concerns of software development organizations is the effective

utilization of software assets, which has the potential to considerably reduce the time

and cost of developing software products. Software is perhaps the most crucial piece of

business entity in this modern marketplace, where important decisions need to be made

immediately. The studies in organizational behavior help in understanding how people,

as individuals and groups, deal with managing and developing product line engineering

in an organization. The relatively longer payback period of software product line

engineering requires a consistency in organizational behavior in order to achieve the

strategic objectives of the organization. Establishing a software product line requires

setting up the internal structure of the organization and other supporting mechanisms,

such as coordination and communication. The concept of a software product line entails

a structure of overlapping processes rather than fixed and static ones. The theoretical

foundations of this concept divide the overall engineering process into two broad areas,

application and domain engineering, and involve a stronger coordination and

communication between them. The identification and mapping of the roles to the

engineering processes requires interpretation and action from management. Verlage

and Kiesgen [46] present a case study documenting the successful implementation of

software product lines in their organization. As a result, they report that the roles and

mapping of the roles to the processes are not fixed; rather, they are interchangeable, or

more precisely, dynamic. The organizations that have well defined structures

incorporating clearly identified roles of individuals, in addition to strong coordination and

communication, are more likely to institutionalize a software product line in comparison

to the organizations with structures not supporting coordination and communication.

The process of evolving from single product development to a line of products is a

significant change in an organization. During this procedure, almost every software

development activity needs to be changed. For example, in the case of requirements

engineering, an organization has to deal with product specific requirements engineering

as well as product line specific requirements engineering. The product specific

requirements engineering involves identifying the variability among products, whereas

product line requirements engineering entails detecting the commonality among

products. Furthermore, there is need to introduce trade off analysis for commonality and

variability management. Introducing a new practice such as a product line is relatively

difficult in the existing setup of an organization, especially if it is not being introduced

with a proper change management plan. Even the best strategy is bound to fail if there

is a consistent resistance to innovation and new technology from within the

organization. Organizations that communicate the importance of this change via clear

guidelines and the establishment of a road map for their employees are more

successful in institutionalizing software product lines.

Although organization has always been highlighted as one of the critical dimension in

product line engineering but has given least attention by product line engineering

community to streamline the concept and integrate with software development efforts.

Some of the leading areas of core research in software product line engineering and

organization dimension are as follows:

 Conflict management planning to resolve and handle conflict in an organization

dealing with product line approach.

 The organizational structure needs to be explored in order to provide a suitable

structure which defines specific roles and responsibilities of object. Many

traditional organizational structures have been studied for the application in

product line environment but they need to be enhanced to accommodate the

product line concept.

 Organizational learning procedures and guidelines to adopt product line

approach and switching from traditional product development for single system to

line of products.

 A study to develop strategies to incorporate and monitor the organizational

communication process.

 Change management plans and implementation procedures.

 Effective utilization of core assets and their management.

 Developing plans to start and maintain an infrastructure for product line

development.

 Knowledge management in organization for effective use and dissemination of

knowledge across the boundaries of the organization.

 Human resource management across organization to provide necessary

resources for product line infrastructure.

 Inter group trust management to enhance the productivity of the product line

process.

 A methodology to assess the organizational dimension of software product line

process and to define improvement plans.

1.4 Software Product Line Architecture

Software architecture has been a key area of concern in software industry due to its

profound impact on the productivity and quality of software products. This is even more

crucial in case of software product line, because it deals with the development of a line

of products sharing common architecture and having controlled variability. Software

architecture has a history of evolution and over a decade the software industry is

observing and reporting refinements and advancements. Now the trends in software

architecture for single product development have turned into software product line

architecture for line of resulting products.

Software architecture is the structure of the components of a program or system, their

interrelationships, and the principles and guidelines governing their design and

evolution [47]. Software architecture has a long history of evolution and in this modern

age this transformation leads towards software product line architecture, where the

concern is not a single product development rather the focus is on multiple product

development by sharing the same architecture. Pronk [48] defines software product line

architecture as an ultimate reuse in which the same software in reused for an entire

class of products with only minimal variations to support the diversity of individual

product family members. According to Jazayeri et al. [49] software product line

architecture defines the concepts, structure, and texture necessary to achieve variation

in features of variant products while achieving maximum sharing parts in the

implementation. Mika and Tommi [50] further elaborate that software product line

architecture can be produced in three different ways: from the scratch, from existing

product group, or from a single existing product. Software product-line architecture is a

powerful way to control the risks and take advantage of the opportunities of complex

customer requirements, business constraints, and technology, but its success depends

on more than technical excellence [51]. The software product line architecture captures

the central design of all products and allows for the expression of variability and

commonalities of the product instances, the products are instantiated by configuring the

architecture and customizing components in an asset library [52]. The “Architecture” in

BAPO is considered critical because it deals with the technical means to build an

architecture that is aimed to share by a number of products from the same family. Van

der Linden et al. [11] identify some main factors in evaluating the architecture

dimension of software product line such as: software product family architecture,

product quality, reuse levels and software variability management and classify the

architecture maturity of software product line into five levels in the ascending order:

independent product development, standardized infrastructure, software platform,

variant products and self-configurable products. Birk et al. [53] conclude that explicit

documentation of the software product line architecture, platform features, and generic

interfaces is important for the product teams to understand the reusable assets.

The methodologies developed for software product line development either in general or

specific to particular application domain consider domain engineering as an integral

activity of the overall product line process and has profound impact on building the

architecture for the product line. Bayer et al. [54] at Fraunhofer Institute of Experimental

Software Engineering (IESE) develop a methodology called PuLSE (Product Line

Software Engineering) for the purpose of enabling the conception and deployment of

software product lines within a large variety of enterprise contexts. PuLSE-DSSA is a

part of PuLSE methodology, which deals with developing the reference architecture for

software product line. Knauber et al. [55] further elaborate that the basic idea of PuLSE-

DSSA is to incrementally develop reference architecture guided by generic scenarios

that are applied in decreasing order of architectural significance. Researchers at

Philips have developed Component-Oriented Platform Architecting (CoPAM) [56]

method for the software product lines of electronics products. CoPAM assumes a strong

correlation among facts, stakeholder expectations, any existing architecture and the

institutions about possible architects in developing software product line architecture.

Weiss and Lai [57] discuss the development of Family-Oriented Abstraction

Specification and Translation (FAST) method for software product line process and

successful use at Lucent Technologies. FAST method covers a full software product

line engineering process with specific activities and targeted artifacts. It divides the

overall process of software product line into three major steps of domain qualification,

domain engineering and application engineering. Researchers at IESE developed

another methodology called KobrA [58], which defines software product line engineering

process with activities and artifacts. The process of software product line engineering is

divided into framework engineering and application engineering with their sub steps.

These steps cover the implementation, releasing, inspection and testing aspects of

product line engineering process. Kang et al. [59] propose a Feature Oriented Reuse

Method (FORM), which is an extension to the Feature-Oriented Domain Analysis

(FODA) method to cover the aspects of software product lines. FORM provides a

methodology to use feature models in developing domain architectures and

components reusability. Researchers at the VTT technical research centre of Finland

have developed Quality-driven Architecture Design and Quality Analysis (QADA)

method for developing and evaluating software architectures with emphasis on product

line architecture. Matinlassi [60] has reported the comparison of software product line

architecture design methods including CoPAM, FAST, FORM, KobrA and QADA, and

concluded that these methods do not seem to compete with each other, because each

of them has a special goal or ideology.

The concepts of commonality and variability management inherently belong to domain

engineering are gaining popularity over time due to extensive involvement in software

product line concept. According to Coplien et al. [61] commonality and variability

analysis gives software engineers a systematic way of thinking about and identifying the

product family they are creating. Commonality management deals with the way features

and characteristics that are common across the products belong to same product line

whereas variability management is other way round. Variability management handles

the way the variable features and characteristics are managed in different products of

the a product line. Software product line requires systematic approaches to handling

commonality and variability and the core of successful software product line

management largely relies on effective commonality and variability management. Kang

et al. [62] discuss the use of feature models to manage commonality and variability in

software product line. Lam [63] presents variability templates and variability hierarchy

based variability management process. Thompson and Heimdah [64] propose a set

based approach to structure commonalities and variability in software product lines. Kim

and Park [65] describe the goal and scenario driven approach for managing

commonality and variability on software product line. Ommering [66] observes that the

commonalities are embodied in an overall architecture of software product line, while

the differences result in specifying variation points and by filling those variation points,

individual products can be derived. Other researchers [67] [68] [69] have stressed that

the software architecture for a product family must address the variability and

commonality of the entire set of products.

Requirements modeling have always been a key architecture concern in software

devolvement, because it provides a better understanding of the requirements of the

architecture and allows visualizing the interconnection of various sub-units. Since the

popularity of object oriented design, Unified Modeling Language (UML) has become an

industry standard, many researchers have attempted to introduce UML in visual

modeling of software product line architecture by presenting enhancement in the current

state. Birk et al. [70] stress that the organization dealing with software product line

architecture should describe the architecture using well-established notations such as

UML and the architecture description should cover all relevant architectural views and

use clearly defined semantics. Gomma and Shin [71] describe a multiple-view meta-

modeling approach for software product lines using the UML notation, which defines the

different aspects of a software product line such as: the use case model, static model,

collaboration model, state chart model, and feature model. Zuo et al. [72] present the

use of problem frames for product line engineering modeling and requirements analysis

and demonstrate some additional notation to support the requirements management

and variability issues in product line problem frames. Dobrica and Niemelä [73] discuss

how UML standard concepts can be extended to address the challenges of variability

management in software product line architecture and introduce some extensions in

UML standard specification for the explicit representation of variations and their

locations in software product line architectures, this work is based on previously

mentioned QADA methodology. Eriksson et al. [74] describe a product line use case

modeling approach named PLUSS (Product Line Use case modeling for Systems and

Software engineering) and conclude that PLUSS performs better than modeling

according to the styles and guidelines specified by the Rational Unified Process (RUP)

in the current industrial context.

Software architecture evaluation techniques are generally divided into two groups:

qualitative evaluation and quantitative evaluation. Qualitative techniques include

scenarios, questionnaires, checklists etc. Quantitative techniques cover simulations,

prototypes, experiments, mathematical models, etc. Etxeberria and Sagardui [75]

highlight the issues that can arise when evaluating product line architecture versus

evaluating single system architecture, including classifications of relevant attributes in

product line architecture evaluation, new evaluation techniques. Graaf et al [76] present

a scenario based software product line evaluation technique, which provides guidelines

to adapt scenario-based assessment to software product line context. Using the

qualitative technique of software architecture evaluation Hoek et al [77] put forward

service utilization metrics to assess the quality attribute of software product line

architecture. Zhang et al [78] study the impact of variants on quality attributes using a

Bayesian Belief Network (BBN) and design a methodology applicable to software

product line architecture evaluation. Lange and Kang [79] propose a product-line

architecture prototyping approach using network technique to assess issues related to

software product line architecture evaluation. Gannod and Lutz [80] define an approach

to evaluating the quality and functional requirements of software product line

architecture. Niemelä et al. [81] discuss the basic issues of product family architecture

development and present evaluation model of software product family in industrial

setting.

Domain engineering has a pivotal role in the process of software product line. The

inception phase of software product line starts with conducting a comprehensive domain

engineering in defining and narrowing down the scope of product line, which identifies

the characteristics of the product line and the products that comprise the product line.

The product line engineering envisages the domain engineering into set of three

activities: domain analysis, domain design and domain implementation. Domain

analysis concentrates on understanding the domain and providing a foundation to

domain design, which is an early sketch of the architecture of product line. Domain

analysis not only defines the boundaries of the software product line scope but also

helps in performing the commonality and variability analysis for the product line. Domain

implementation further helps in developing the core architecture of software product line

by specifying components and their inter-connections. The activities of domain

engineering invariably helps in carrying out commonality and variability analysis. The

domain engineering helps in defining the common and variable parts of the software

product line requirements, thus explicitly identifying the commonality and variability of

the envision products. The software product line requires a strong coordination among

domain engineering and application engineering. The domain engineering helps in

establishing an infrastructure for software product line and the application engineering

uses the infrastructure and develops products using core assets.

Requirements modeling provide us with the facility to model the requirements

graphically so that requirements can easily be understood by various stakeholders

Requirements modeling helps in understanding the requirements of the products and in

further elaborating the functionalities and tradeoffs. Software product line needs to

elaborate the requirements at two levels: product line level and individual product level.

The product line level requirements envisage the commonality among products whereas

individual product level requirements represent the variability. Modeling requirements in

the context of software product line architecture helps in identifying and specifying the

extension points called variation points. It decomposes and specifies the architecture

into set of features with their dependency. Requirements models translate the

requirements of the targeted market segment and specify the implementation views of

the business case. Much of the work on requirements modeling for software product line

has concentrated on establishing an extension in the current available modeling

techniques like UML and feature diagrams.

Product requirements in software product line are composed of a constant and a

variable part. The constant part comes from product line requirements and deals with

features common to all the products belonging to a family. The variable part represents

those functionalities that can be changed to differentiate one product from another. This

causes the significance of commonality and variability management in software product

line. Commonality among products of a software product line is an essential and integral

characteristic of product line approach that paves a way to maximize reusability. The

products share the common architecture and they are developed out of common core

assets. The commonality management takes much if its’ input from domain engineering

and those inputs are further elaborated and clearly specified using requirements

modeling approaches. The extent of commonality among products is a design decision

based on business case engineering and targeted market segment. In order to

maximize the reusability of software assets, it is generally recommended to have as

much commonality as possible.

Variability among products of a software product line is necessary because it makes

them a separate business entity. The products from a software product line may vary

from each other’s in quality, reliability, functionality, performance and so on, but as they

share a common architecture so the variation should not be that much high so that they

become out from the scope of a single product line. Those variations must be handled

systematically to accommodate changes in various versions of the product. The

objective of variability management is to identify, specify and document variability

among products in the applications of product line. Software product line architecture

represents variability by specifying the variation points, which can be exploited at

application engineering level by accommodating the design decisions based on the

business case. The variability in products usually results from internal and external

factors. The internal factors have their roots in refining the architecture whereas external

factors accommodate the market and customers expectations. The introduction of

variable features in a product from a software product line is a strategic decision based

on market segment. The introduction of variable features in the successive products out

of product line also provides a justification for setting up a product line in the

organization as well because it helps in attracting new customer and retaining the

current one. Fitting the components into the product without tailoring it is the easiest

task, but some time we need to make certain changes in the component to meet the

requirements for a particular product. Every component present in the core assets must

clearly define the variability mechanism to be used in order to tailor them for reuse. The

significance of commonality and variability management in software product line

architecture and the overall performance of the software product line require tool

support, which needs the attention of researchers.

Software artifacts management play significant role in the process of development,

maintenance and reuse of software. Software product line architecture is one of the

critical artifacts of software product line approach, and all the resulting products share

this common architecture. The architectural artifacts provide in-depth knowledge about

various views, levels of abstractions, variation points, components identification,

component behavior and their inter-connection. It has been a general trend in software

industry to represent and document architecture using notations and languages such as

Architecture Description Language (ADL). Software product lines currently lack an

architecture description language to represent the software product line architecture in

large. These documentations such as domain analysis, domain design, domain testing,

requirements modeling provides inputs to software product line architecture. The

configuration management issues of software product line artifacts are imperative in

software product lines as it deals with a number of resulted products with different

versions and releases as well as several number of core assets with different versions.

The concept of configuration management currently used in software industry deals with

a single project, or more precisely with a single product, and on the opposite software

product line deals with a set of products. Therefore a multi dimensional approach of

configuration management should be adopted to cope up with the issue. Configuration

management of software product line is a research area where not much work has been

done and requires an immediate attention of researchers.

 Quality is a major issue for family of products. Like a single product, software

quality is fundamental to a family of products’ success. Core and product

architectures of family of products are expected to help achieve the required

quality attributes. However, one of the key challenges in designing software

architectures for core and individual products with respect to the desired level of

different quality attributes is that the quality attributes have been found very hard

to define, describe and understand. This aspect has very strong subjective

interpretation. That is why it is vital to systematically elicit and precisely define

quality aspects of a family of products in order to help design appropriate

architectures. There are a number of classifications of quality attributes. McCall

listed a number of classifications of quality attributes developed by software

engineering researchers including himself [82]. A later classification of software

quality is provided in [83]. However, none of them has been proven sufficient to

define, specify, and model different levels of quality attributes required in different

products of a family. There is a vital need for developing appropriate approaches

to eliciting, specifying, and modeling quality attributes to be supported by

software architectures of a family of products.

 Designing and evaluating software architectures of a family of systems involves

complex and knowledge intensive tasks. The complexity lies in the fact that

tradeoffs need to be made to satisfy current and future requirements of a

potentially large set of stakeholders, who may have competing vested interests in

architectural decisions. The knowledge required to make suitable architectural

choices is broad, complex, and evolving, and can be beyond the capabilities of

any single architect [84]. Due to the recognition of the importance and far

reaching influence of the architectural decisions, several approaches have been

developed to support architecting processes. Examples are the Generic Model

for architecture design [85], Attribute-driven design [86], Architecture Tradeoff

Analysis Method (ATAM) [87], 4+1 views [88], Rationale Unified Process (RUP)

[89] and architecture-based development [90]) While these approaches help to

manage complexity by using systematic approaches to reason about various

design decisions, they provide very little guidance or support to capture and

maintain the details on which design decisions are based, along with

explanations of the use of certain types of design constructs (such as patterns,

styles, or tactics). Such information represents architecture knowledge, which

can be valuable throughout the software development lifecycle [91]. We assert

that the lack of a systematic approach to capturing and sharing architectural

knowledge may preclude organizations from growing their architecture capability

and reusing architectural assets. Moreover, the knowledge concerning the

domain analysis, architectural patterns used, design alternatives evaluated and

design decisions made is implicitly embedded in the architecture and/or becomes

tacit knowledge of the architect [92]. Hence, one of the key challenges in

successfully development and evolving software architectures is the provision of

suitable infrastructure for capturing, maintaining, and sharing architectural

knowledge and rationale underpinning key architectural design decisions.

 Apart from the challenge of devising optimal architectural solutions, specifying

the architecture and interfaces of component-based family of systems is a

difficult task, which poses several kinds of challenges. Fro example, industries

heavily dependent upon on the component-based software engineering, like

automotive, Usually OEMs (Original Equipments Manufacturers) have to provide

an overall architecture of the automotive systems in its cars and distribute these

to potential suppliers of systems and components who do the implementation.

The AUTOSAR standard is a move to establish an open standard for automotive

embedded electronic architecture. AUTOSAR tries to achieve modularity,

scalability transferability and reusability of functions. However, even if the

architecture and components are specified using AUTOSAR, there is still no

checking of conformance or conformance validation. We assert that there is a

need for specific methods and tools to validate that those implementations

actually conform to the specifications and that the combination of the various

implementations conforms to the OEMs’ specifications.

 Architecture and interface specification is another big challenge in software

product line engineering in general and software product line engineering for

automotive systems in particular. There is general lack of suitable and reliable

methods to accurately and sufficiently provide interface specifications. This is

also one of the key research challenges in the context of increasing trend of

global software development.

List of References

[1] Clements, P.C., Jones, L.G., Northrop, L.M. and McGregor, J.D.: Project Management in a
Software Product Line Organization. IEEE Software 22 (5) 54-62 (2005)

[2] Clements, P.C.: On the Importance of Product Line Scope, Proceedings of the 4th International
Workshop on Software Product Family Engineering 69-77 (2001)

[3] T. Wappler, Remember the basics: key success factors for launching and institutionalizing a

software product line, in: Proceedings of the 1st Software Product Line Conference, 2000, pp. 73-

84.

[4] P.C. Clements, L.M. Northrop, Software product lines practices and pattern, Addison Wesley,

2002.

[5] F. van der Linden, Software product families in Europe: The Esaps & Café projects, IEEE

Software 19 (4) (2002) 41-49.

[6] ESAPS Project (1996) available from: http://www.esi.es/en/Projects/esaps/overview.html

[7] R.V. Ommering, Beyond product families: building a product population, in: Proceedings of the
Conference on Software Architectures for Product Families, 2000, pp.187-198.

[8] L.M Northrop, SEI’s software product line tenets, IEEE Software 19 (4) (2002) 32-40.

 [9] C.W. Krueger (2004) Basic software product line concepts, Available from:

http://www.softwareproductlines.com/introduction/concepts.html

[10] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, J.M. DeBaud,
PuLSE: a methodology to develop software product lines, in: Proceedings of the 5th ACM
SIGSOFT Symposium on Software Reusability, 1999, pp. 122-131.

[11] F. van der Linden J. Bosch, E., Kamsties, K. Känsälä, H. Obbink, Software product family

evaluation, in: Proceedings of the 3rd International Conference on Software Product Lines,
2004, pp. 110-129.

[12] K.C. Kang, P. Donohoe, E. Koh, J. Lee, K. Lee, Using a marketing and product plan as a key

driver for product line asset development, in: Proceedings of the 2nd International Conference on
Software Product Lines, 2002, pp.366-382.

[13] P. Toft, D. Coleman, J. Ohta, A cooperative model for cross-divisional product development for a

software product line, in: Proceedings of the 1st International Conference on Software Product
Lines, 2000, pp. 111-132.

[14] C. Fritsch, R. Hahn, Product line potential analysis, in: Proceedings of the 3rd International

Conference on Software Product Lines, 2004, pp. 228-237.

[15] K. Schmid, M. Verlage, The economic impact of product line adoption and evolution, IEEE

Software 9(4) (2002) 50-57.

[16] C. Ebert, M. Smouts, Tricks and traps of initiating a product line concept in existing products, in:

Proceedings of the 25th International Conference on Software Engineering, 2003, pp. 520-525.

[17] E. Niemelä, Strategies of product family architecture development, in: Proceedings of the 9th
International Conference on Software Product Lines, 2005, pp. 186-197.

[18] P.D. Bennett, Dictionary of marketing terms, American Marketing Association, 1988.

[19] A. Jaaksi, Developing mobile browsers in a product line, IEEE Software 19(4) (2002) 73-80.

[20] G. H Birk, John, I. Schmid, K. von der Massen T., Muller K., Product line engineering, the state of
the practice, IEEE Software 20(6) (2003) 52-60.

[21] P. Knauber, D. Muthig, K. Schmid, T. Wide, Applying product line concepts in small and medium-

sized companies, IEEE Software 17(5) (2000) 88-95.

[22] J.G. Wijnstra, Critical factors for a successful platform-based product family approach, in:

Proceedings of the 2nd International Conference on Software Product Lines, 2002, pp. 68-89.

[23] G. Böckle, Innovation management for product line engineering organizations, in: Proceedings of

the 9th International Conference on Software Product Lines, 2005, pp. 124-134.

[24] W. R. Scott, Institutions and organizations, Sage Publications, CA, 1995.

[25] J. Bosch, Software product lines: organizational alternatives, in: Proceedings of the 23rd

International Conference on Software Engineering, 2001, pp. 91-100.

[26] R.R.. Macala, L.D. Jr. Stuckey and D.C. Gross, Managing domain-specific, product-line

development, IEEE Software 13 (3) (1996) 57-67.

[27] D. Dikel, D. Kane, S. Ornburn, W. Loftus and J. Wilson, Applying software product-line

architecture, IEEE Computer 30 (8) (1997) 49-55.

[28] I. Jacobsen, M. Griss and P. Jonsson, Software reuse - architecture, process and organization for

business success, Addison Wesley, 1997.

[29] M. Mannion, Organizing for software product line engineering, in: Proceedings of the 10th

International Workshop on Software Technology and Engineering Practice, 2002, pp. 55 –61.

[30] E. Koh and S. Kim, Issues on adopting software product line, in: Proceedings of the 11th Asia-

Pacific Conference on Software Engineering, 2004, pp. 589.

[31] P. Toft, D. Coleman and J. Ohta, A cooperative model for cross-divisional product development

for a software product line, in: Proceedings of the 1st International Conference on Software
Product Lines, 2000, pp. 111-132.

[32] G. H Birk, I. John, K. Schmid, T. von der Massen and K. Muller, Product line engineering, the

state of the practice, IEEE Software 20 (6) (2003) 52-60.

[33] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen and J.M. DeBaud,
PuLSE: a methodology to develop software product lines, in: Proceedings of the 5th ACM
SIGSOFT Symposium on Software Reusability, 1999, pp. 122-131.

[34] M. Verlage and T. Kiesgen, Five years of product line engineering in a small company, in:

Proceedings of the 27th International Conference on Software Engineering, 2005, pp. 534 – 543.

[35] E. H. Schein, Organizational psychology, Prentice Hall, 1988.

[36] D.C. Wilson and R.H. Rosenfeld, Managing organizations, McGraw-Hill, 1990.

[37] J.R. Gordon, Organizational Behavior: A diagnostic approach, Prentice Hall, New Jersey, 2002.

[38] R. Beckhard, and R.T. Harris, Organizational transitions: managing complex change, Addison-

Wesley, 1987.

[39] A. Todd, Managing radical change, Long Range Planning 32 (2) (1999) 237-44.

[40] G. Cao, S. Clarke, and B. Lehaney, A systematic view of organizational change and TQM, The

TQM Magazine 12 (3) (2000) 186-93.

[41] J.A. Walls and R.R. Callister, Conflict and its management, Journal of Management 21 (3) (1995)

515-558.

[42] J. Kottler, Beyond blame: A new way of resolving conflicts in relationships, Jossey-Bass, San
Francisco, 1994.

[43] D. Hellriegel, J.W. Jr. Slocum, R.W. Woodman and N.S. Bruning, Organizational behavior, ITP

Nelson, Canada, 1998.

[44] K.A. Jehn, A multi-method examination of the benefits and detriments of intra-group conflict,

Administrative Science Quarterly 40 (1995) 256-82.

[45] F. J. Medina, L. Munduate, M.A. Dorado and I. Martínez, Types of intra-group conflict and

affective reactions, Journal of Managerial Psychology 20 (3/4) (2005) 219-230.

[46] M. Verlage and T. Kiesgen, Five years of product line engineering in a small company, in:

Proceedings of the 27th International Conference on Software Engineering, 2005, pp. 534 – 543.

[47] D. Garlan and D. Perry, Introduction to the special issue on software architecture, IEEE

Transactions on Software Engineering 21(4) (1995), pp. 269-274.

[48] B.J. Pronk, An interface-based platform approach, in: Proceedings of the 1st Software Product

Lines Conference, 2000, pp. 331-352.

[49] M. Jazayeri, A. Ran, and F. van der Linden, Software architecture for product families: principles

and practice, Addison Wesley, 2000.

[50] K. Mika, M. Tommi, Assessing systems adaptability to a product family, Journal of Systems
Architecture 50 (2004) 383-392.

[51] D. Dikel, D. Kane, S. Ornburn, W. Loftus and J. Wilson, Applying software product-line
architecture, IEEE Computer 30 (8) (1997) 49-55.

[52] M. Verlage and T. Kiesgen, Five years of product line engineering in a small company, in:

Proceedings of the 27th International Conference on Software Engineering, 2005, pp. 534-543.

[53] G. H Birk, I. John, K. Schmid, T. von der Massen and K. Muller, Product line engineering, the

state of the practice, IEEE Software 20 (6) (2003) 52-60.

[54] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Wide and J.M. DeBaud,
PuLSE: a methodology to develop software product lines, in: Proceedings of the 5th ACM
SIGSOFT Symposium on Software Reusability, 1999, pp. 122-131.

[55] P. Knauber, D. Muthig, K. Schmid and T. Wide, Applying product line concepts in small and

medium-sized companies, IEEE Software 17(5) (2000) 88-95.

[56] P. America, H. Obbink, R. van Ommering and F. van der Linden COPA: a component-oriented

platform architecting method family for product family engineering, in: Proceedings of the 1st
Software Product Line Engineering Conference, 2000, pp. 167-180.

[57] D.M. Weiss and C.T.R. Lai, Software product line engineering: a family based software

development process, Addison Wesley, 1999.

[58] C. Atkinson, J. Bayer, and D. Muthig, Component-based product line development. The KobrA

approach, Proceedings of the 1st Software Product Lines Conference, 2000, pp. 289-309.

[59] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, FORM: a feature-oriented reuse method

with domain specific reference architectures, Annals of Software Engineering, 5 (1998) 143-168.

[60] M. Matinlassi, Comparison of software product line architecture design methods: COPA, FAST,

FORM, KobrA and QADA, in: Proceedings of the 26th International Conference on Software
Engineering, 2004, pp.127-136.

[61] J. Coplien, D. Hoffman, D. Weiss, Commonality and variability in software engineering, IEEE

Software 15 (6) (1998) 37-45.

[62] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, FORM: a feature-oriented reuse method
with domain specific reference architectures, Annals of Software Engineering, 5 (1998) 143-168.

[63] W. Lam, Creating reusable architectures: an experience report, ACM Software Engineering Notes
22(4) (1997) 39-43.

[64] J.M. Thompson and M. P.E. Heimdahl, Structuring product family requirements for n-dimensional

and hierarchical product lines, Requirements Engineering Journal 8(1) (2003) 42-54.

[65] M. Kim and S. Park, Goal and scenario driven product line development, in: Proceedings of the

11th Asia-Pacific Conference on Software Engineering, 2004, pp. 584 –585.

[66] R. van Ommering, Software reuse in product populations, IEEE Transactions on Software

Engineering 31(7) (2005) 537-550.

[67] P. Knauber, D. Muthig, K. Schmid and T. Wide, Applying product line concepts in small and

medium-sized companies, IEEE Software 17(5) (2000) 88-95.

[68] R.R. Macala, L.D. Jr. Stuckey and D.C. Gross, Managing domain-specific, product-line

development, IEEE Software 13 (3) (1996) 57-67.

[69] D.M. Weiss and C.T.R. Lai, Software product line engineering: a family based software
development process, Addison Wesley, 1999.

[70] G. H Birk, I. John, K. Schmid, T. von der Massen and K. Muller, Product line engineering, the

state of the practice, IEEE Software 20 (6) (2003) 52-60.

[71] H. Gomma, M.E. Shin, Multiple-view meta modeling of software product lines, in: Proceedings of

the 8th IEEE International Conference on Engineering of Complex Computer Systems, 2002, pp.
238-246.

[72] H. Zuo, M. Mannion, D. Sellier, and R. Foley, An extension of problem frame notation for software

product lines, in: Proceedings of the 12th Asia Pacific Conference on Software Engineering, 2005,
pp. 499-505.

[73] L. Dobrica, E. Niemelä, UML notation extensions for product line architectures modeling, in:

Proceedings of the 5th Australasian Workshop on Software and System Architectures, 2004, pp.
44 -51.

[74] M. Eriksson, J. Börstler and K. Borg, The PLUSS approach - domain modeling with features, use

cases and use case realizations, in: Proceedings of the 9th International Conference on
Software Product Lines, 2005, pp. 33-44.

[75] L. Etxeberria and G. Sagardui, Product line architecture: new issues for evaluation, in:

Proceedings of the 9th International Conference on Software Product Lines, 2005, 174-185.

[76] B. Graaf, H. Van Kijk,A. Van Deursen, Evaluating an embedded software reference architecture –

industrial experience report, in: Proceedings of the 9th European Conference on Software
Maintenance and Reengineering, 2005, pp 354-363.

[77] A. van der Hoek, E. Dincel and N. Medvidovic, Using service utilization metrics to assess the

structure of product line architectures, in: Proceedings of the 9th International Software Metrics
Symposium, 2003, pp. 298-308.

[78] H. Zhang, S. Jarzabek, and B. Yang, Quality prediction and assessment for product lines, in:

Proceedings of the 15th International Conference on Advanced Information Systems
Engineering, 2003, pp. 681-695.

[79] F. De Lange, J. Kang, Architecture true prototyping of product lines, in: Proceedings of the 5th

International Workshop on Software Product Family Engineering, 2004, pp. 445-453.

[80] G.C. Gannod, R.R. Lutz, An approach to architectural analysis of product lines, in: Proceedings of

the 22nd International Conference on Software Engineering, 2000, pp.548-557.

[81] E. Niemelä, M. Matinlassi, A. Taulavuori, Practical evaluation of software product family
architectures, in: Proceedings of the 3rd International Conference on Software Product Lines,
2004, pp. 130-145.

[82] J.A. McCall, Quality Factors, in Encyclopedia of Software Engineering, J.J. Marciniak, Editor.

1994, John Wiley: New York, U.S.A. pp. 958-971.

[83] ISO/IEC, Information technology - Software product quality: Quality model. ISO/IEC FDIS 9126-

1:2000(E)

[84] M. Ali-Babar and I. Gorton, A Tool for Managing Software Architecture Knowledge, Proceedings
of the 2nd Workshop on SHAring and Reusing architectural knowledge - Architecture, rationale,
and Design Intent (SHARK/ADI 2007), Collocated with ICSE 2007., 2007.

[85] C. Hofmeister, et al., A General Model of Software Architecture Design Derived from Five
Industrial Approaches, 5th Working IEEE/IFIP Conference on Software Architecture (WICSA 05),
Pittsburgh, PA, USA, 2005.

[86] L. Bass, M. Klein, and F. Bachmann, Quality Attribute Design Primitives and the Attribute Driven
Design Method, Proceedings of the 4th International Workshop on Product Family Engineering,
2001.

[87] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures: Methods and Case
Studies. 2002: Addison-Wesley.

[88] P. Kruchten, The 4+1 View Model of architecture, Software, IEEE, 1995. 12(6): pp. 42-50.

[89] P. Kruchten, The Rational Unified Process: An Introduction. 2nd ed. 2000: Addison-Wesley.

[90] L. Bass and R. Kazman, Architecture-Based Development, Tech Report CMU/SEI-99-TR-007,
Software Engineering Institute (SEI), Carnegie Mellon University, Pittsburgh, USA, 1999.

[91] M. Ali-Babar, I. Gorton, and B. Kitchenham, A Framework for Supporting Architecture Knowledge
and Rationale Management, in Rationale Management in Software Engineering, A.H. Dutoit, et
al., Editors. 2006, Springer. pp. 237-254.

[92] M. Ali-Babar, I. Gorton, and R. Jeffery, Capturing and Using Software Architecture Knowledge for
Architecture-Based Software Development, 5th International Conference on Quality Software,
2005.

	Western University
	Scholarship@Western
	2009

	Software Product Line Engineering: Future Research Directions
	Luiz Fernando Capretz
	Faheem Ahmed
	Citation of this paper:

	Microsoft Word - Faheem-ChapterNova.doc

