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Abstract 

Mangrove forests are important ecosystems and play a key role in maintaining the 

equilibrium in coastal lagoons and estuaries. However, in recent years, there has been a 

considerable loss of mangrove extension due to anthropogenic activities. Recent studies 

suggest that multiple in situ and remote sensing approaches must be carried out to understand 

the dynamics in these complex ecosystems. Therefore, the objective for this PhD dissertation 

is to develop multiple techniques for monitoring the seasonal biophysical and biochemical 

conditions of the mangrove forests. Particular objectives will include: i. Test the feasibility of 

using a Chlorophyll Content Index from a CCM-200 unit as an estimator of the variation of 

leaf pigments (chlorophyll-a, chlorophyll-b) content for a range of mangrove species. ii. 

Assess changes in chlorophyll-a, leaf area, leaf length, and Leaf Area Index between the dry 

and rainy seasons in a variety of mangrove classes. iii. Assess the seasonal importance of in 

situ hyperspectral measurements (e.g. 450-1000 nm) for chlorophyll-a determination in a 

variety of mangrove species. And finally, iv. Determine whether an object-based image 

analysis approach can provide an accurate classification of mangroves from spaceborne 

Synthetic Aperture Radar data. The results from these studies could provide reliable 

information regarding seasonal ecological assessments of mangrove forests using in situ and 

remote sensing methods. 

Keywords: mangrove, pigments, hyperspectral, SAR, Mexico. 
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Chapter 1  

1 Mangroves 

Mangroves are wetland plants represented by a variety of tree species that grow 

along protected intertidal coastlines where deposition and transport of sediment are 

common. The principal adaptations of mangroves, which make these plants unique 

among tree species, consist of a well-developed tolerance to both salt water and low 

oxygen levels in sediments (Saenger, 2002). These adaptations make mangrove trees 

capable of survival and growth along tropical and sub-tropical coasts where 

environmental conditions limit the distribution of other terrestrial plants. 

Mangrove forests are considered among the most important coastal habitats 

maintaining an ecological balance between the terrestrial and oceanic fluxes (Blasco et al. 

1996), as well as providing local economic support for coastal communities (Walters et 

al. 2008). Important characteristics of mangroves include high forest productivity (Raven 

et al. 1992), organic carbon dynamics (Komiyama et al. 2008), nutrient cycling (Feller et 

al. 1999), coastal protection (Saenger 2002), , macro-faunal interactions (Cannicci et al. 

2008), litter fall decomposition (Kristensen et al. 2008), and providing habitat for a 

variety of terrestrial and marine fauna (Nagelkerken et al. 2008) including endangered 

and migratory bird species (Lacerda 2002). 

Despite its ecological importance, there has been a considerable loss of mangrove 

areas in recent years due to urbanization (Polidoro et al. 2010) (Fig. 1.1 a), 

transformations through aquaculture ponds (Seto and Fragkias 2007) (Fig. 1.1 b), 

hydrological obstructions (Kamali and Hashim 2011) (Fig. 1.1c), soil hypersalinity (Fig. 

1.1 d), deforestation (Walters et al. 2008), and climate change (Gilman et al. 2008). 
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Figure 1.1: Mangrove zones loss examples due to expansion of urban areas in 

Conakry, Guinea (a), transformation through aquaculture in southern Thailand (b), 

hydrological obstructions such as “tapos” in Agua Brava, Mexico (c), and soil 

hypersalinity in Teacapan, Mexico (d). Source: GoogleEarth images (a, b) 

 

1.1 Mangrove species classification 

Mangroves describe an ecological group of 36 species of halophytic trees 

belonging to eight different families distributed worldwide (Tomlinson 1986). However, 

the most common species belong to just three families including the Combretaceae (white 

mangrove Laguncularia sp) (Fig. 1.2 a), the Rhizophoraceae (red mangrove Rhizophora 

sp) (Fig. 1.2 c), and the Avicenniaceae (black mangrove Avicennia sp) (Fig. 1.2 e) 

(Spalding et al. 2010). It is important to note that the common names for these three 
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families are recognized worldwide and are represented by the color of the trunk or the 

color beneath the tree bark (Fig. 1.2 b, 1.2 d, 1.2 f). 

 

Figure 1.2: White mangrove Laguncularia sp (a, b), red mangrove Rhizophora sp (c, 

d), and black mangrove Avicennia sp (e, f) 

Each mangrove family has developed several morphological adaptations for 

tropical and sub-tropical environments in order to grow where soil salinity and 

evaporation rates are high. The black mangroves possess pneumatophores in the base of 

the tree, which allow the acquisition of oxygen by the roots in anoxic soil (Fig. 1.3 a). 

Moreover, black mangrove leaves contain several secretion glands, which helps in the  

expulsion of salt (Fig. 1.3 b). The white mangrove possesses two small glands near the 
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base of each leaf that exclude salt (Fig. 1.3 c). White mangroves are also known for 

presenting an advanced vegetative reproduction process, allowing the generation of new 

plants when the main tree is physically disturbed (Fig. 1.3 d). The red mangroves are 

easily distinguishable through their unique aerial roots (Fig. 1.3 e), which allow the plant 

to be suspended over the water. The red mangroves also possess viviparous seeds (Fig. 

1.3 f), which are able to float and produce a new plant relatively faster than the 

germination process of other species of threes. 

 

Figure 1.3: Black mangrove pneumatophores and salt glands within the leaves (a, b 

respectively). White mangrove salt glands (c) and root systems allowing growing 

after physical damage (d). Red mangrove aerial roots (e) and a viviparous seed (f) 
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1.2 Physiognomic classification and mangrove zonation 

In relatively undisturbed mangrove forest areas where suitable substrate is 

available, single-species zonation is common parallel to the coastline. The causes of 

species zonation depend on many aspects. However, the frequency of tidal inundation, 

soil salinity, and the topographic slope are the three major physical factors controlling 

mangrove species zonation in tropical and sub-tropical latitudes.  

Each mangrove species has a particular salt tolerance range depending on 

morphological adaptations. For example, some species are quite intolerant to hypersaline 

conditions (e.g. Rhizophora sp and Laguncularia sp) whereas others persist through long 

drought periods and constant levels of high soil salt (Avicennia sp). Consequently, red 

mangrove is usually located along the main channels where tidal mixing is strong, while 

the black mangrove more inland, where hypersaline conditions are the norm (Fig. 1.4). 

It is important to note that when a mangrove species is out of its normal zone, its 

primary production is low in comparison with that of the species characteristic of the 

zone (Saenger 2002). As a consequence, environmental stress is a key indicator of the 

ecological response of each mangrove family. However, in large environments where flat 

topographic slopes are present (e.g. 1 cm/km); the separation among mangrove species is 

not evident. Consequently, Lugo and Snedaker (1974) included a physiognomic 

classification into five major mangrove communities (fringe, riverine, overwash, basin, 

and dwarf forest) according to total biomass, tree height, and fresh water availability. 

Fringe mangrove forests occur on protected shorelines along the main inundation 

channels where elevation is higher than mean high tide (white mangrove Fig. 1.5 a; red 

mangrove Fig. 1.5 c; and black mangrove Fig. 1.5 e). Riverine mangrove forest consists 

of floodplain areas along river and creek drainages. Overwash forest is located on low 

islands in shallow coastal lagoons where incoming tidal velocities are high enough to 

wash over the trees. Basin forest is located in inland areas along drainage depressions 

with minimum tidal influence (white mangrove Fig. 1.5 b; red mangrove Fig. 1.5 d; and 

black mangrove Fig. 1.5 f). Dwarf mangroves consist of dense trees with no more than 2 

m in height. 
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Figure 1.4: Typical mangrove zonation in a costal lagoon. Red mangrove 

(Rhizophora sp), white mangrove (Laguncularia sp), and black mangrove (Avicennia 

sp). (Source: photo taken by Francisco Flores Verdugo, 2009) 

 

1.3 Mangrove worldwide distribution 

Tropical mangrove forests are best developed around the Equator where annual 

rainfall is more than 200 cm. Tropical rainfall patterns along with strong tidal mixing 

generate maximum soil salinity concentration of 15 ‰ within tropical mangrove forests 

(Spalding et al. 2010Fig. 1.6). Tropical mangrove physical characteristics include a 

considerable higher trunk height within the riverine and fringe classes in all three species 

compared to the basin classes (Fig. 1.6). Freshwater wetlands are located more inland as 

well as the presence of saltpan areas especially during the short dry season, followed by 

rainforest vegetation even further inland. 
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Figure 1.5: Fringe white mangrove class (a), fringe red mangrove (c), and fringe 

black mangrove (e). White mangrove basin class (b), red basin mangrove (d), and 

black basin mangrove (f) 

 

Sub-tropical mangrove forests are located at arid areas along the Tropic of Cancer 

in the northern hemisphere and the Tropic of Capricorn in the southern hemisphere. 

Annual precipitation rates in sub-tropical coasts are less than 50 cm and environmental 

conditions present more stressful situations due to an increase in solar radiation and soil 

salinity in these regions (Fig. 1.7). Mangrove distribution in the sub-tropics is under 

environmental conditions where freshwater availability is seasonal, affecting the 
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physiological development of trees through an increase or decrease of ground salinity 

(Field 1995). As a consequence, there could be a seasonal decrease in mangrove net 

primary productivity (Saenger 2002) and growth (Raven et al. 1992). The sub-tropical 

mangrove fringe class is lower in height (3-10 m) compared to the same tropical 

mangrove species in a fringe community (>25 m). Sub-tropical basin classes are 

characterized by extensive dense bushes with a height less than 2 m, particularly within 

the black mangrove species. Moreover, saltpans are located inland where soil salinity is 

high and only small halophytes can survive. 

Worldwide, the highest global diversity of mangroves is in Africa and Asia where 

the taxon attains their maximum development. However, just three true major species and 

one mangrove associate species are present in the Pacific and Atlantic coast of the 

Americas (Spalding et al. 2010). These species are: red mangrove Rhizophora mangle, 

white mangrove Laguncularia racemosa, black mangrove Avicennia germinans, and the 

mangrove associate, bottom wood Conocarpus erectus. However, there are reports of 

minor populations of Rhizophora harrisonii, Rhizophora racemosa, Avicennia bicolor, 

and Avicennia schaueriana in the eastern coast of Brazil (Spalding et al. 2010). 

 

1.4 Mangrove pigments 

Environmental stressors are common in mangrove forest areas where increased 

solar radiation and ground salinity concentrations affect the metabolism and growth of 

the plants. As a consequence, the link between mangrove biophysical responses to 

environmental stressors has been a major topic for many ecologists in recent decades. In 

fact, many works in mangrove ecology have concluded that the concentration of pigment 

content in mangrove leaves can be associated with environmental stressors such as water 

availability (Lacerda 2002), soil salinity (Steinke et al. 1993), temperature, and sunlight 

(Saenger 2002). 
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Figure 1.6: Typical tropical mangrove zonation 

 

Figure 1.7: Typical sub-tropical mangrove zonation 
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Chlorophyll-a (Chla) and chlorophyll-b (Chlb) are the two most important 

pigments used in the photosynthesis process during the conversion of light energy into 

chemical energy (Blackburn 2007). Chla absorbs most of the energy from wavelengths of 

blue and red light while Chlb captures light at a slightly different wavelength (Eichhorn 

et al 2005). Moreover, the total chlorophyll (i.e., Chla+Chlb) extends the absorption 

spectrum range and can be related to physiological stress since there is an inverse 

relationship between the concentration of chlorophylls and plant health (Peñuelas and 

Fillela 1998). As a consequence, mangrove growth and health status can be indicative of 

pigment level changes (Raven et al. 1992) and can provide reliable information regarding 

the relationships between plants and their environment.  

Traditional leaf pigment content determination uses organic solvents extraction 

coupled by spectrophotometric absorbance quantification (Wellburn 1994). Such 

absorbance is transformed to leaf pigment content by using published algorithms (Hendry 

and Price 1993; Andrew et al. 2002; Richardson et al. 2002). Unfortunately, the 

traditional method is relatively expensive, time consuming, and most importantly, a 

destructive process. Consequently, many non-destructive optical alternatives have been 

developed as new approaches for leaf pigment content estimation using the absorbance of 

the intact leaf in the field and in the laboratory (Gamon and Surfus 1999). Such optical 

methods include the Chlorophyll Content Meter (CCM-200) (Fig. 1.8 a) and 

hyperspectral sensing devices (Fig. 1.8 c) that could assess the potential chlorophyll 

pigment content from different species of mangrove leaves (Fig. 1.8 b) by using specific 

wavelengths with maximum sensitivity to leaf pigments (Goncalves et al. 2008). 
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Figure 1.8: Optical CCM-200 (a), optical assessment samples of mangrove leaves 

(b), ASD FieldSpec HandHeld device with plantprobe (c) 

 

1.5 Mangrove hyperspectral data assessment 

Portable hyperspectral spectrometers (e.g. ASD FieldSpec HandHeld device) 

essentially allow the application of remote sensing technology at leaf level, by 

continuously recording reflectance at many closely-spaced wavelengths (every 1 nm) 

across the visible and near infrared spectrum (e.g. 450-1000). Figure 1.9 depicts a typical 

vegetation reflectance curve showing a minimum reflectance in the blue and red bands, 

with relatively higher reflectance in the green band, and maximum reflectance in the 
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near-infrared region. The abrupt change in slope at the transition between green and near-

infrared bands is known as the “red-edge”, and is of key importance for accurate pigment 

content determination (Horler et al. 1983; Vogelman et al. 1993; Filella and Peñuelas 

1994). Hyperspectral remote sensing data at leaf level have indicated that there are 

specific combinations of wavebands (i.e. Vegetation Indices) from the electromagnetic 

spectrum that can be used to non-destructively quantify leaf pigments, and consequently, 

primary productivity models at leaf and canopy level. There are many vegetation indices 

(VI) in the literature that employ hyperspectral data for the accurate quantification of 

pigment content, moisture, and stress. Most of the traditional VI use only reflectance data 

from the red and the near-infrared portions of the electromagnetic spectrum, whereas 

only a few VI utilize information from the red-edge and the green channels. 

 

Figure 1.9: Typical hyperspectral vegetation reflectance curve (450-1000 nm) 

Currently, hyperspectral data at leaf level is one of the most important tools used 

for the accurate classification of mangrove species under environmental conditions in 

terms of tree health and stress. Moreover, in situ hyperspectral assessment at leaf level is 

the first step for the spaceborne or airborne multispectral or hyperspectral imagery for 

canopy assessment especially at pixel-level.  
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1.6 Remote Sensing of mangrove areas 

Given the alarming loss of mangrove areas and the logistical difficulties of 

working in mangrove forests, there has been a substantial research-based application of 

remote sensing methodologies in monitoring mangrove conditions using biophysical 

variables (e.g. Green et al. 1997; Kovacs et al. 2005; Kovacs et al. 2009; Kovacs et al. 

2010; Heumann 2011). There are several available optical spaceborne sensors for 

mangrove ecology assessments (e.g., Landsat TM, Quickbird, Spot, IKONOS, 

Worldview). However, most of the traditional sensors present very broad spatial 

resolution (≈30 m per pixel) such as Landsat TM, which makes it difficult to assess 

mangrove forests especially in non-healthy environments where sparsely vegetated areas 

are common.  Another problem with these sensors is the very broad spectral resolution 

(i.e. multispectral imagery), which allows the reflected information of just 3 to 8 different 

bands including the blue, green, red, and near-infrared wavelengths.  

Regarding mangrove forests mapping, Kovacs et al (2005) using information 

from IKONOS sensors and in situ LAI, were able to accurately create a classification 

image of a degraded mangrove forests of the Mexican Pacific. The high spatial resolution 

of multispectral IKONOS (4 m per pixel) and the link between IKONOS multispectral 

imagery with in situ LAI were key in the classification of mangrove areas at species 

level. However, as remote sensing technology advanced, new generations of 

hyperspectral spaceborne sensors (e.g. Hyperion) have become available, that measure 

energy in narrower and more numerous bands than multispectral sensors. These 

hyperspectral sensors have more continuous spectral bands and are more sensitive to 

subtle variations in reflected energy. As a consequence, hyperspectral sensors could 

improve the ecological assessment of mangrove biophysical variables over large areas of 

forests using more information compared to traditional multispectral data. 

There are many advantages of using hyperspectral optical imagery for mangrove 

forest assessments. However, persistent cloud cover areas in the tropics are a major 

problem limiting optimal optical remotely sensed data. Consequently, the use of 

Synthetic Aperture Radar (SAR) could be an alternative to traditional optical imagery on 

tropical mangrove forests. Unaltered by cloud-cover, SAR imagery has become a useful 
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tool for the analysis of large areas of mangrove cover using single polarization (e.g. HH, 

HV, VV) and dual polarization modes (e.g. HH+HV, HH+VV). Although SAR data is 

extremely important for tropical latitudes, the coarse spatial resolution limits to some 

extent the usage of this imagery data for mangrove forest assessment. For example, 

IKONOS multispectral imagery visible (Fig. 1.10 a) and false color near-infrared, red, 

green (Fig. 1.10 b) present higher spatial resolution compared to ALOS L-band HH (Fig. 

1.10 c), and the HH+HV (Fig. 1.10 d). As such, the lower spatial resolution limits the 

effectiveness by which this type of SAR data can be used to assess mangroves. 

Consequently, works on mangrove canopy using spaceborne SAR data are of key 

importance to investigate the degree to which the SAR data can assess mangrove 

biophysical responses per species and overall mangrove forest health conditions.  

Traditional pixel-based classification has been used for monitoring mangrove 

zones (Green et al. 1998; Manson et al. 2001; Kovacs et al. 2005; 2009, 2010). However, 

the development of new techniques such as object-based image analysis (OBIA) needs to 

be demonstrated for detailed characterization of mangrove forests using SAR data 

(Heumann 2011). OBIA is a relatively recent technology where textural information is 

used in addition to spectral information for classifying data (Blaschke and Hay 2001). It 

is particularly useful for the identification of homogeneous groups of pixels, which have 

similar spectral characteristics. As a result, OBIA could include a variety of conditions 

such as spectral/spatial information, texture, context, and shape for each object (Herold 

and Scepan 2002), and could increase the accuracy of SAR data classification of 

mangrove areas. 
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Figure 1.10: Examples of IKONOS visible (a), false color IKONOS 4, 3, 2 (b), ALOS 

L-band HH (c), and ALOS L-band HH+HV (d) over mangrove areas in Guinea, 

West Africa using data from the fifth chapter of this thesis 

 

1.7 Objectives 

In this thesis, multiple and new approaches are developed to assess mangrove 

biophysical variables using in situ and remote sensing techniques. Results from my 

investigation will provide reliable information regarding mangrove biophysical 

approaches for optimal ecological assessments, as well as basis for future research 
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including active and passive remote sensing assessments. It is important to note that 

previous studies have focused only on very broad biophysical relationships excluding 

details within each of the mangrove species and conditions of health. 

This thesis presents four objectives related to ecological assessments of mangrove 

forests using in situ and remote sensing data. The first objective consists of a seasonal 

assessment of leaf Chla content in three species of mangrove from the sub-tropics using 

chemical analysis for the pigment extraction. The second and third objectives assess the 

feasibility of using a pocket portable instrument (CCM-200) and hyperspectral data for 

the accurate estimation of seasonal leaf pigments using data from objective 1. The fourth 

objective evaluates the viability of using OBIA for classification of mangrove species at 

canopy level using radar data.  

 

1.8 Study areas 

The second to the fourth chapters of this thesis were developed using data from a 

sub-tropical mangrove forest of the Mexican Pacific, while the fifth chapter used data 

from the tropical western coast of Guinea (Fig. 1.11). The aforementioned two separate 

study sites were selected based on the premise that the first three objectives required a 

sub-tropical mangrove system with a prominent dry season, whereas the last objective 

required an area of full-developed mangrove forest with no other type of terrestrial 

vegetation. Moreover, there were no available spaceborne SAR data for the study area in 

Mexico during the field work campaigns. However, the methodology developed for the 

OBIA classification of the available SAR data in Guinea could be used for future 

applications of biophysical links between seasonality and OBIA classification. 
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Figure 1.11: Sub-tropical mangrove system within the Urias channel, Mexico (a), 

and tropical mangrove system within the Yelitono and Mabala Islands, Guinea (b) 
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1.9 Structure of thesis 

After this introductory chapter, Chapters 2 to 5 in this thesis are written in a 

manuscript format for journal publications. Finally, a discussion and suggestions for 

future research are provided in the concluding Chapter 6.  

Chapter 2 investigates the seasonal variability of leaf biophysical variables such 

as Chla, leaf length, and Leaf Area Index within the three common species of mangrove 

in the sub-tropics of Mexico. 

Chapter 3 assesses the utility of a portable CCM-200 absorbance unit for optimal 

estimation of mangrove leaf pigments (Chla, Chlb, and total Chl). The seasonal 

variability is also evaluated to determine in which period the estimation of leaf pigments 

is most favorable for all the three major mangrove species under conditions of stress and 

non-stress. The linear equations between the pigments and the Chlorophyll Content Index 

(CCI) from the CCM-200 are tested to determine if there are significant differences 

between the seasons within the same mangrove classes. 

Chapter 4 explores the seasonal influence in leaf Chla estimation using in-situ 

hyperspectral sensing data. A series of vegetation indices were used from the 

hyperspectral electromagnetic spectrum regarding Chla estimation during the dry and 

rainy seasons. 

Chapter 5 analyzes the SAR satellite imagery for optimal assessment of mangrove 

forests using an object-based classification technique. The single (HH) and dual (HH + 

HV) polarized scenes from the ALOS PALSAR L-band were selected for this Chapter. 

The use of SAR filters and a rule-based decision tree process were employed to analyze 

both sets of data. 
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Chapter 2  

2 Seasonal changes in leaf chlorophyll a content and 
morphology in a sub-tropical mangrove of the Mexican 
Pacific.1 

2.1 Introduction 

Leaf chemical properties are the principal determinants of plant physiology and of 

highly active biochemical processes such as photosynthesis (Evain et al. 2004). Among 

the most common variations that interact with plant photosynthesis are diurnal changes of 

incident irradiance, ambient temperature, and humidity (Schulze & Caldwell 1994). 

Additionally, seasonal changes in the availability of water and nutrients (Gilman et al. 

2008) affect the effectiveness of pigments in light capture and utilization (Evain et al. 

2004). Amongst the various leaf pigments, chlorophyll-a (Chla) is a key compound 

responsible for photosynthesis, physiology, and other biological functions in plants. 

Consequently, changes in Chla can indicate plant growth (Raven et al. 1992) or 

disturbances from stressors (Blackburn 2007). 

The aforementioned disturbances are commonplace in high, locally stressed 

canopies such as mangrove forests. These forested wetlands are predominantly intertidal 

and occur worldwide in the sub-tropics and tropics (Nagelkerken et al. 2008) along 

sheltered and shallow water coastlines (Hogarth 1999) where high irradiation is the norm 

(Evain et al. 2004) and natural and anthropogenic disturbances are common. The 

importance of ecological field surveys of these systems may have implications in 

developing fast and accurate assessments regarding the state of these highly productive 

forested habitats for future conservation measures. Mangroves are an essential resource 

for a variety of local activities (Walters et al. 2008), provide for a variety of macrofaunal 

                                                 
1
 A version of this chapter has been published: Flores-de-Santiago F., Kovacs JM., Flores-Verdugo F. 

(2012). Seasonal changes in leaf chlorophyll a content and morphology in a sub-tropical mangrove forest of 
the Mexican Pacific. Marine Ecology Progress Series. 444, 57-68.(http://dx.doi.org/10.3354/meps09474). 
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interactions (Cannicci et al. 2008), are highly productive (Komiyama et al. 2008), and 

provide habitat for a variety of terrestrial and marine fauna (Nagelkerken et al. 2008). 

For mangroves, the concentrations of leaf pigments can be associated with 

environmental factors such as ambient temperature/sunlight (Saenger 2002), water 

availability (Lacerda 2002), and salinity (Steinke et al. 1993). Thus, in a sub-tropical 

mangrove forest where fresh water availability is seasonal, precipitation patterns could 

affect the physiological development of the mangrove trees, resulting in an increase or 

decrease of ground salinity (Field 1995). As a consequence, in sub-tropical regions there 

could be a seasonal decrease in net primary productivity (Saenger 2002) and growth 

(Raven et al. 1992). As well, a seasonal increase in the availability of sulfate in water 

may occur, which could increase anaerobic decomposition (Saintilan & Wilton 2001, 

Rogers et al.2005) and thus potentially alter the competition between mangrove species 

(Lacerda 2002) resulting in decreasing diversity within mangrove areas (Duke et al. 

1998). In anthropogenically stressed mangroves, these conditions (e.g. hypersalinity) may 

be exasperated, resulting in large-scale mangrove loss or degradation as shown in a 

mangrove forest just south of the Urias system (Kovacs et al. 2005). 

Each species of mangrove has a particular range of tolerance to environmental 

factors such as water salinity. For example, some species are relatively intolerant to 

hypersaline conditions (e.g. Rhizophora mangle), whereas others are quite capable of 

tolerating high salinities of over 60 ‰ (e.g. Avicennia germinans) (Moroyoqui-Rojo & 

Flores-Verdugo 2005). These differences among the species could be assessed using leaf 

biophysical variables such as leaf area index (LAI), leaf area, leaf length, and Chla 

content. LAI is defined as the one-sided green leaf area per unit ground surface area 

(m2/m2) using the differences between direct PAR from the top of the canopy and PAR 

from below the canopy (Decagon Devices Inc, 2013). Specifically, seasonal differences 

in LAI and Chla content could be related to organic carbon dynamics such as litter fall 

decomposition rates (Flores-Verdugo et al. 1987, Kristensen et al. 2008), nutrient cycling 

characteristics (Feller et al.1999), and mangrove paleoecological reconstructions (Ellison 

2008). The variability of inter-species leaf morphology (e.g. leaf area, leaf length) could 

be associated with faunal retention rates (Cannicci et al. 2008), mangrove ecosystem 
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seasonal dynamics (Berger et al. 2008), and differences in canopy ecological habitat for 

faunal species (Nagelkerken et al.2008). Moreover, all of these data could be valuable in 

describing and predicting seasonal patterns of forest productivity (Raven et al. 1992). 

Yet another potentially important characteristic to consider is seasonal change in 

the vertical distribution of pigments within the mangrove canopy. Such potential 

variability could depend on many factors, including acclimation to light penetration 

(Saenger 2002), characteristics of each species (Raven et al. 1992), and the environment 

itself (Ciganda et al. 2009). Moreover, it could provide key information regarding our 

understanding of the role that mangrove species play in response to a variety of factors, 

including climate change. The main objective of this investigation was to compare the 

leaf biophysical parameters (Chla content, leaf area, and leaf length) between the rainy 

and dry seasons in a degraded mangrove forest of the Mexican Pacific. This would also 

include assessing whether any seasonal differences can occur in the upper and lower 

canopies. These data can be of utmost importance when trying to establish effective 

monitoring programs of mangrove forest productivity. In particular, these data can be 

used to determine the optimal times to map estimated mangrove biomass from remotely 

sensed data. This is extremely important given that the spectral vegetation indices used in 

such operations are directly dependent on the leaf canopy structure and leaf Chla content. 

2.2 Materials and Procedures 

Data were collected along the south end of the Urias mangrove system (Fig. 2.1) 

during 2 seasons, the dry season of May 2010 (mean precipitation of 0.1 mm) and at the 

end of the rainy season in October 2010 (mean precipitation of 190 mm; INEGI 2010). 

According to the federal government (INEGI 2010), the historical metrological data 

(1986 to 2010) indicates that the 2010 dry and rainy seasons were normal in regards to 

precipitation and ambient temperature. The driest and rainiest years were 1994 and 2000, 

respectively. 

The Urias system is a shallow, saline; vertically mixed body of water of 

approximately 18 km2which is located in the coastal plain of the southeastern Gulf of 

California (23° 10’ N, 106° 20’ W). Previous authors have indicated that during the dry 
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season, this estuary becomes fully inversed (Alvarez 1977, Agraz-Hernández 1999, 

Moroyoqui-Rojo 2005). In other words, the salinity increases monotonically from the 

mouth to the head. It has also been suggested that the removal of water by the mangrove 

trees (Hogarth1999) and the high estuarine evaporation rates (Ridd & Stieglitz 2002) may 

combine to raise the soil salinity during the dry season, resulting in areas characterized by 

a hypersaline state which are common in this system. The fringe mangroves, which 

consist of healthy trees, receive ample water from the adjacent river at high tide during 

the rainy season. The basin mangrove communities, consisting primarily of dwarf trees 

and/or trees in poor condition, receive runoff water from the mainland, decreasing soil 

salinity during this season. Healthy mangrove trees located along the fringe are exposed 

to frequent full strength tidal influence (up to 1.5 m; Hogarth 1999), while the basin 

mangrove trees are located more inland exposed to infrequent tidal inundation (Saenger 

2002). 

The surface of the substrate in the mangrove is generally smooth with a few small 

channels and depressions, with a relatively gentle overall slope extending towards the 

open water of the main tidal channel (Moroyoqui-Rojo 2005). The lagoon is partly 

bordered by a mangrove forest ecosystem, which is best developed along the edge and 

supports 3 dominant species: red mangrove Rhizophora mangle, black mangrove 

Avicennia germinans, and white mangrove Laguncularia racemosa. 

Based on height and distance to water, the mangroves in this arid sub-tropical 

region differ considerably from their wet tropical counterparts in 2 major ways. First, 

river discharge into the wetlands is highly seasonal, with very large flows in the wet 

season followed by several months of negligible discharge. Second, large areas of 

mangrove and saltpan often infringe on this coastal type lagoon. As a result, many of 

these arid coastal lagoons become hypersaline for much of the year. Similar to the 

mangrove system just south of this region, anthropogenic changes, particularly related to 

hydrological modifications (e.g. roads, aquaculture diversion) have resulted in a degraded 

system with prominent areas now consisting of dwarf and poor condition stands of each 

species (Kovacs et al. 2008, 2009). Consequently, 6 classes of mangrove have been 

identified for this system: dwarf and poor condition red, black, and white mangrove and 
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healthy red, black, and white mangrove. Although the descriptions of these classes are 

qualitative, their classification has been done quantitatively utilizing standard image-

processing methods based on their unique spectral properties as identified from remotely 

sensed digital data (Kovacs et al. 2008, Zhang et al. 2012). 

 

Figure 2.1: Data collection sites at the south end of the Urias mangrove system 

LAI is defined as the 1-sided leaf area per ground surface area (Wilhelm et al. 

2000) found in the near infrared spectrum of the canopy reflectance properties. With 

regards to the LAI measurements, an AccuPAR LP-80 (Decagon Devices) ceptometer 

was used to quantify in situ LAI for every species of mangrove in this system. The device 

measures the incoming photosynthetically active radiation (PAR) through 80 sensors 
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incorporated along the linear probe. I quantified LAI based on 1 above and the average of 

8 readings below canopy using the following equation from the AccuPAR LP-80 manual 

(Decagon Devices Inc. 2013): 

��� � ��1 � 	
�� � � 1� �����1 � 0.47��                                                                                    �1� 

Where fb is beam fraction. (A) is determined by the instrument based upon the leaf 

distribution and the canopy leaf absorption qualities. For this sampling it was assumed to 

be 0.9. Tau (τ) is the ratio of PAR measured below the canopy to PAR above the canopy, 

and the extinction coefficient (K) is determined automatically by the LP-80 using the 

latitude, longitude, and the minutes of the day to calculate the zenith angle (θ): 

� � 12����                                                                                                                      �2� 

The beam fraction (fb) depends on the high and low limits of the potential PAR and the 

zenith angle with the following set of equations: 

 � !�"2550������                                                                                                                     �3� 

fb1=48.57+r(-59.024+r(24.835))       (4) 

fb=1.395+r(-14.47+r(fb1)) 

A stratified random sampling method was employed to make sure each mangrove 

class within the system was analyzed. For each class, I sampled 15 sites in a longitudinal 

pattern taking approximately 8 LAI readings per site. A post-processing GPS was used to 

ensure that seasonal readings could be collected for each site. As with the LAI sites, I 

selected 3 mangrove trees from each class for the pigment analysis. For each tree, 10 

leaves were taken from the top of the canopy (i.e. upper canopy) and 10 leaves from the 

lower canopy using an extendable pole with a cutter. In order to select just the mature 

leaves, each of the samples was chosen between the third and fifth leaves from the tip. A 
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sub-meter GPS location was recorded so that the same leaf collection site could be used 

for both seasons. 

Once cut, each leaf was stored in a plastic bag within a small cooler at 4°C for 

transportation to the laboratory. The leaf area and length were analyzed using an LI-

3000C Portable Area Meter device. Due to the difference in leaf morphology between the 

mangrove species, I normalized Chla per unit area (mg m−2) using the dimensions of the 

diameter of a copper cylinder. Specifically, one leaf circle (1.25 cm in diameter) from 

each leaf of each sample was cut out with the cylinder. Care was taken to avoid the 

circles that included main leaf veins. Plant material for each sample was then dissolved 

with 100 ml of 80% acetone. A spectrophotometric assay was then conducted to extract 

information of peak absorption at 646 and 663 nm (Lichtenthaler & Wellburn 1983). 

I used a Q-Q plot to test the normality of error of estimates for all data (i.e. LAI, 

Chla, leaf area, leaf length). This test is based on an ordered plot of residual errors of an 

equation against normal quantile sq( j). In this test, if the data lie in proximity to a 

straight line, then I cannot reject the null hypothesis of normality. To measure the 

straightness of the Q-Q plot, I used the correlation coefficient of the Q-Q plot, which is 

defined as follows: 

 % � ∑ �'(�'))))*(+	 ��,(�,))))�
-∑ �'( � '.�
*(+	 -∑ �,( � ,)�
*(+	

                                                                             �5� 

Where (x) is the theoretical quantile, (q) is the sample quantile, (j) are the points of paired 

quantiles, and (n ) is the total observation number. Consequently, at the 5% significance 

level (α= 0.05) and n = 60, I used the critical value of 0.98 (Johnson & Wichern 1992). 

Differences in Chla content, leaf area, leaf length, and LAI were tested using 

Minitab® and Origin® software. When the data were not normally distributed, each of 

the 3 parameters was tested using non-parametrical statistics (Mann-Whitney U-test). 

However, averages and standard deviations are provided though not analyzed for 

comparison between the mangrove classes. The tests were used to examine for 

differences between the upper and lower canopies for both seasons. 
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2.3 Results 

Of all comparisons for normality, most rQ values were below the critical value; 

therefore, I used non-parametric tests. Significant differences in Chla content (p<0.05, 

n=30) were found between seasons for the upper and lower canopies of the white poor, 

red poor, and black dwarf classes (Table 2.1). Among these differences, it is clear that all 

3 species experienced an increase in leaf Chla content during the rainy season (Fig. 2.2). 

By contrast, for healthy mangroves of all 3 species, no significant differences in Chla 

content were observed between seasons (p=0.05, n=30) in the upper leaves (Table 2.1). 

With the exception of the ‘white healthy’ class, which had higher Chla content during the 

dry season (Fig. 2.2), a lack of seasonal differences was also observed for the lower 

canopy leaves of the healthy mangroves. 

Table 2.1: Laguncularia racemosa, Rhizophora mangle, and Avicennia germinans 

Mann-Whitney U-test median values for chlorophyll a (Chla), leaf area, and leaf 

length between seasons (n=30). LR: L. racemosa, RM: R. mangle, AG: A. germinans. 

*Significant U values P=0.05 

Species and 
class 

Chla (mg m-2) Leaf area (cm2) Leaf length (cm) 
May Oct U May Oct U May Oct U 

Upper          
LR poor 20.9 26.6 15* No data No data 
LR healthy 31.6 30.9 536 14.7 18.2 301* 6 10 48* 
RM poor 24.9 33.3 117* 34.7 29.0 541 9.6 12.3 94 
RM healthy 43.2 42.6 418 48.1 50.6 420 11.3 14.6 90* 
AG dwarf 24.7 36.2 15* 10.9 10.4 503 99.5 9.7 430 
AG healthy 32.0 36.7 341 20.2 24.0 306* 13.0 13 479 
          
Lower          
LR poor 23.5 26.5 160* 19.1 19.2 424 6.7 9.2 65* 
LR healthy 33.4 27.0 809* 14.3 15.5 371 6.2 9.6 41* 
RM poor 31.3 39.9 194* 27.9 25.8 406 8.4 12.5 42* 
RM healthy 36.7 37.8 376 49.1 46.9 529 15.5 15.4 500 
AG dwarf 32.1 36.7 225* 13.1 10.2 583* 8.8 9.1 454 
AG healthy 32.2 33.2 354 29.6 29.0 514 13.5 12.3 543 

With regards to the leaf area and leaf length, no data were recorded for the white 

poor upper leaves during October due to data loss (corrupt file). Most of the classes 

showed no significant seasonal differences (p=0.05, n=30) in leaf area. In the case of 

white and black healthy upper leaves (Table 2.1), a significant increase in leaf area was 



30 

 

recorded during the rainy season (Fig. 2.3). Moreover, the length of the leaves in the 

upper canopy increased significantly (p=0.05, n=30) for white healthy, red poor, and red 

healthy mangroves during the rainy season (Table 2.1, Fig. 2.4). No significant 

differences (p=0.05, n=30) were found in the lower canopies of black healthy, black 

dwarf, and red healthy (Table 2.1). With regards to LAI, no significant difference 

(p=0.05, n=15) was observed between the seasons for the white poor, red poor, red 

healthy, black dwarf, and black healthy mangrove classes (Table 2.2). However, a 

significant difference (p=0.05, n=15) was found in the white healthy mangrove with an 

increase in LAI occurring during the rainy season (Fig. 2.5). 

Table 2.2: Laguncularia racemosa, Rhizophora mangle, and Avicennia germinans. 

Mann-Whitney U-test for the leaf area index (LAI) between seasons (n = 15). 

*Significant U values P=0.05 

Class Median LAI U 

 May October  
L. racemosa    

Poor 1.4 1.2 106 
Healthy 2.5 3.6 28* 

R. mangle    
Poor 2.1 2.4 68 

Healthy 5.7 5.1 151 
A. germinans    

Dwarf 1.5 1.5 95 
Healthy 3.6 2.9 137 

During the dry season, Chla content showed no significant difference (p=0.05, 

n=30) between upper and lower canopy leaves for the white healthy and the black healthy 

mangroves (Table 2.3). The white poor, red poor, and black dwarf classes showed a 

higher Chla content within the lower leaves when compared to the red healthy, which 

presented higher Chla content in the upper leaves (Table 2.3). With regards to leaf area, 

the white healthy, red healthy, and black dwarf mangroves did not show any significant 

differences (p=0.05, n=30). The red poor mangroves did have significantly higher leaf 

area in the upper leaves. In contrast, the white poor and black healthy showed an increase 

in leaf area in the lower leaves. The length of leaves showed no significant difference 

(p=0.05, n=30) in the white healthy, black dwarf, and black healthy classes. The white 
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poor and the red healthy did have significantly higher leaf lengths in the lower leaves, 

whereas the red poor had significantly higher leaf lengths in the upper canopy.  

 

Figure 2.2: Laguncularia racemosa, Rhizophora mangle, and Avicennia germinans. 

Upper and lower canopy leaf chlorophyll-a (Chla) content by season. Each box plot 

depicts the mean (small square), the minimum and maximum sample, the lower 

quartile (25%), the median (50%), the upper quartile (75%), and the lowest and 
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highest sample with 1.5 interquartile ranges of the lower and upper quartile (*). 

Also, mean is shown at the top of each box plot 

 

Figure 2.3: Laguncularia racemosa, Rhizophora mangle, and Avicennia germinans. 

Upper and lower canopy leaf area (cm
2
) by season. Each box plot depicts the mean 

(small square), the minimum and maximum sample, the lower quartile (25%), the 

median (50%), the upper quartile (75%), and the lowest and highest sample with 1.5 
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interquartile ranges of the lower and upper quartile (*). Also, mean is shown at the 

top of each box plot 

 

Figure 2.4: Laguncularia racemosa, Rhizophora mangle, and Avicennia germinans. 

Upper and lower canopy leaf length (cm) by season. Each box plot depicts the mean 

(small square), the minimum and maximum sample, the lower quartile (25%), the 

median (50%), the upper quartile (75%), and the lowest and highest sample with 1.5 
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interquartile ranges of the lower and upper quartile (*). Also, mean is shown at the 

top of each box plot 

 

Figure 2.5: Laguncularia racemosa, Rhizophora mangle, and Avicennia germinans. 

Upper and lower Leaf Area Index (LAI) by season. Each box plot depicts the mean 

(small square), the minimum and maximum sample, the lower quartile (25%), the 

median (50%), the upper quartile (75%), and the lowest and highest sample with 1.5 
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interquartile ranges of the lower and upper quartile (*). Also, mean is shown at the 

top of each box plot 

Table 2.3: Laguncularia racemosa, Rhizophora mangle, and Avicennia germinans. 

Mann-Whitney U-test for chlorophyll-a (Chla), leaf area, and leaf length between 

the upper and lower canopy in both seasons (n=30). LR: L. racemosa, RM: R. 

mangle, AG: A. germinans *Significant U P=0.05 

Species and 
class 

Chla (mg m-2) Leaf area (cm2) Leaf length (cm) 
Upper Lower U Upper Lower U Upper Lower U 

May          
LR poor 20.9 23.5 142* 15.6 19.1 291* 5.9 6.7 269* 
LR healthy 31.6 33.4 338 14.7 14.3 449 6 6.2 463 
RM poor 24.9 31.3 110* 34.7 27.9 658* 9.6 8.4 661* 
RM healthy 43.2 36.7 697* 48.1 49.1 425 11.3 15.5 68* 
AG dwarf 24.7 32.1 154* 10.9 13.1 357 9.5 8.8 551 
AG healthy 32.0 32.2 485 20.2 29.6 91* 13.0 13.5 368 
          
October          
LR poor 26.6 26.5 419 No data No data 
LR healthy 30.9 27.0 723* 18.2 15.5 536 10 9.6 482 
RM poor 33.3 37.5 266* 29.0 25.8 581 12.3 12.5 440 
RM healthy 52.3 41.6 676* 50.6 46.9 523 14.6 15.4 451 
AG dwarf 36.2 36.7 453 10.4 10.2 454 9.7 9.1 594* 
AG healthy 36.7 33.2 518 24.0 29.0 346 13 12.3 455 

With regards to the rainy season (Table 2.3), the Chla content showed no 

significant difference (p=0.05, n=30) between the lower and upper leaves in the white 

poor, black dwarf, and black healthy mangroves. The white healthy and the red healthy 

classes presented higher Chla content in the upper leaves, and the red poor showed higher 

content in the lower leaves. No significant differences in leaf area were found among all 

6 classes. Regarding leaf length, no significant differences were found with the exception 

of the black dwarf, which had significantly larger leaves in the upper canopy during this 

season. 

2.4 Discussion and conclusions 

Where seasonal gradients are involved, the pattern of Chla content and leaf 

morphology can be used to express the ecological changes of species as key indicators of 

the physiological stage, productivity, and stress of a mangrove forest. In this 
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investigation, I determined that variability in Chla can occur amongst various mangrove 

classes found within a degraded forest of the sub-tropics. Specifically, in this study area, 

the Chla content of all three mangrove species in poor condition showed seasonal 

dependence, unlike those that were healthy. As previously described by Kovacs et al. 

(2011), the fringe mangrove of this region of Mexico is typically healthy, whereas basin 

mangrove is more often found in a poor/dwarf condition. The leaf morphology patterns 

observed in this study agree with Tomlinson (1986), in that I found bigger leaves in the 

healthy classes, in particular red and black mangrove, while black dwarf and white poor 

showed the lowest leaf area and length (Figs. 3 and 4). This is suggestive of a direct 

relationship between the leaf morphology and the physical state of the trees. 

It has been noted that different light and shade requirements in adults of 

Laguncularia racemosa are indicative of a shade-intolerant response (Smith 1992, 

McKee 1995), suggesting a pattern in which leaves from the lower canopy and under 

thicker cover receive less light during the rainy season. As seen with the increase in LAI 

during the rainy season in healthy stands, this could decrease Chla content in the lower 

leaves and therefore result in more stress because of the low irradiances as depicted in 

Fig. 2.2. By contrast, the apparent lack of change in the Chla content in healthy leaves 

from the upper canopy suggests that the aforementioned shade-intolerant pattern from the 

lower canopy is present in this type of healthy forest. However, the higher leaf area and 

leaf length during the rainy season may indicate that at the top of the canopy, the Chla 

content has no apparent dependence on the morphology of the leaves. 

Regarding the white mangrove in poor condition, the shade-intolerant pattern 

(Smith 1992, McKee 1995) was not observed, as there was no change in LAI. Moreover, 

the higher Chla content and leaf length during the rainy season indicate that this poor-

condition forest is distinctly seasonal in its development. Tomlinson (1986) indicated that 

for this species, branching occurs during the rainy season, with an extended period of 

inactivity during the dry season, suggesting that at high irradiances and lack of fresh 

water, the vegetative survival and competitiveness of Laguncularia racemosa could 

depend on an efficient display of foliage and the ability to respond to environmental 

changes and stress. 
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Regarding the red poor condition, the increases in Chla content and leaf length 

during the rainy season in both upper and lower canopies suggest that this type of forest 

greatly depends on fresh water availability and shade as previously reported by 

Farnsworth & Ellison (1996). In contrast, the lack of seasonal change within the healthy 

forest in LAI and leaf morphology suggests moderate sun-shade flexibility. Ellison & 

Farnsworth (1993) reported that Rhizophora mangle is capable of adapting to different 

light levels, including gaps within the canopy. It was noted in the field that the majority 

of healthy R. mangle were found in a continuous stand along the main channel where no 

other species of mangrove could constrain the availability of light. The lack of observed 

seasonal change in LAI, Chla, and leaf area in this study would suggest an adaptation of 

fringe R. mangle to constant tidal flushing. 

In this study, a high Chla content was found in the upper leaves of healthy red 

mangrove during the rainy season. Lugo et al. (1975) indicated that the non-shaded 

leaves (i.e. upper canopy) of this species might show a net photosynthetic rate twice as 

high as that of the shaded leaves (lower canopy). Regardless of canopy composition, it 

has been reported that Rhizophora mangle trees can assume a shade-tolerant (Farnsworth 

& Ellison1996) and shade-intolerant (Snedaker 1995) pattern. In this study, the red 

mangrove in poor condition could be indicative of a shade-tolerant pattern, with higher 

content of Chla in the lower canopy. By contrast, the healthy red mangrove in this study 

would indicate a more shade-intolerant trend, with higher Chla content in the upper 

canopy where the availability of light is higher as compared to the shaded leaves in the 

lower canopy. 

The patterns of the black dwarf mangrove suggest a distinctive seasonal pattern 

similar to the red mangrove in poor condition, with the only difference being no 

significant seasonal change in LAI. The low Chla content during the dry season could be 

the result of increasing soil temperature and decreasing humidity (Sherman et al. 2000), 

as these trees are typically close or adjacent to drier uplands (i.e. saltpan). Ball & 

Critchley (1982) reported that shaded leaves of Avicennia germinans can have a higher 

Chla content during the dry season, suggesting a more intolerant pattern to light 
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availability (Feller et al. 2007), and thus revealing a high vulnerability to photoinhibition 

(Cheeseman 1994). 

Within healthy black mangrove forest, Gratani (1997) suggested that the major 

acclimation of leaves in a lower canopy with low irradiance is the development of thinner 

leaves. In my study, I did not measure leaf thickness. However, the apparent lack of 

change in leaf morphology may suggest that healthy Avicennia germinans is well adapted 

to shaded conditions as mentioned by Attiwill & Clough (1980). In the present study, the 

lack of change in LAI and Chla for the shaded leaves may suggest that this forest does 

not present significant seasonal changes. 

Monitoring the seasonal development of mangrove species and conditions along a 

mixed environment is important for future research, particularly when dealing with 

studies that examine remotely sensed data, carbon allocation, or biomass. The observed 

differences between seasons for some of the species and conditions examined would 

indicate a clear pattern that this study site is dependent primarily on fresh water 

availability. Given the large geographic extent and inaccessibility of this type of sub-

tropical canopy, remote-sensing image acquisitions are commonly used to monitor and 

map mangroves. In particular, for degraded systems, remotely sensed imagery is often 

used to monitor parameters directly related to the LAI and/or chlorophyll content. For 

example, many estimates of biomass or LAI from remote sensing platforms are 

dependent on standard vegetation indices (e.g. the normalized difference vegetation 

index), which are calculated from spectral reflectance directly related to the canopy 

thickness and leaf Chla content (Jensen 2005). Consequently, knowing the seasonal 

changes in these parameters would allow remote sensing specialists to identify the 

optimal time to acquire imagery for accurate biomass or LAI mapping and monitoring. 

Moreover, collecting these data on an annual basis could be beneficial for monitoring 

potential impacts on these particular ecosystems resulting from abnormal years of 

precipitation and/or temperature. 
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Chapter 3  

3 Assessing the utility of a portable pocket instrument for 
estimating seasonal mangrove leaf chlorophyll content.2 

3.1 Introduction 

Both chlorophyll-a (Chla) and chlorophyll-b (Chlb) are considered two of the 

most important leaf pigments, as they are accountable for the majority of the conversion 

of light energy into stored chemical energy within plants (Blackburn 2007). Chla is 

essential in the energy phase of photosynthesis whereas Chlb captures light at a slightly 

different wavelength (Eichhorn et al. 2005). Moreover, the pigment content variation in 

total chlorophyll (i.e., Chla+Chlb) between and within species is important for several 

reasons. First, the amount of solar radiation absorbed by a leaf depends on the foliar 

concentrations of photosynthetic pigments, and therefore low concentrations of 

chlorophylls can directly limit photosynthetic activity and hence primary production 

(Fillela et al. 1995). Second, pigmentation can be directly related to physiological stress 

because concentrations of chlorophylls tend to decrease under stress and during 

senescence (Peñuelas and Fillela 1998). Consequently, quantifying these proportions can 

provide important information regarding the relationships between plants and their 

environment. 

Traditionally, chemical methodologies for pigment contents are determined using 

extraction in an organic solvent, which is followed by the spectrophotometric 

determination of absorbance by the extracted pigment solution (Wellburn 1994). The 

actual conversion of the absorbance values to concentration of pigments are then 

determined using empirical model equations (Hendry and Price 1993, Richardson et al. 

2002). Unfortunately, the chemical method of pigment extraction is a destructive process 

                                                 
2
 A version of this chapter has been published: Flores-de-Santiago F., Kovacs JM., Flores-Verdugo F. 

(2013). Assessing the utility of a portable pocket instrument for estimating seasonal mangrove leaf 
chlorophyll content. Bulletin of Marine Science. 89(2), 621-633. 
(http://dx.doi.org/10.5343/bms.2012.1032). 
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that can be relatively expensive and, most importantly, time consuming. A recent 

alternative to this strategy is the use of non-destructive optical methods for measurement 

and estimation of leaf pigment contents (Meroni et al. 2009). Optical methods generally 

yield a chlorophyll index value that expresses, or can potentially be converted to, relative 

chlorophyll pigment concentration (Goncalves et al. 2008). 

The Opti-Sciences CCM-200 Chlorophyll Content Meter is marketed as an 

instrument that is pocket portable, inexpensive, rapid and easy to use, and provides fast, 

accurate chlorophyll index readings on the intact leaves of plants, particularly for crops. 

The CCM-200 avoids the need for grinding or destructive chlorophyll assays (Opti-

Sciences 2002), does not require hazardous compounds or specially trained personnel, 

and the data acquired can be rapidly downloaded for a posteriori computer-based 

analysis (Cate and Perkins 2003). Moreover, the CCM-200 could be useful for improving 

health assessments such as plant stress andleaf senescence (Biber 2007). The CCM-200 

operates by differential absorption of light at two wavelengths, one in the near infrared 

(931 nm), and one through the peak absorbance of chlorophyll (653 nm). Using 

calibrated light emitting diodes and receptors, this unit calculates the Chlorophyll Content 

Index (CCI), which is defined as the ratio of transmission at 931 nm to 653 nm through a 

leaf sample (Opti-Sciences 2002). 

Under conditions of stress (e.g., salinity, drought, high irradiance, and high 

temperature) plants are often exposed to more radiant energy than is needed for 

photosynthesis and this places severe limits on plant growth (Ehrenfeld 1990). The 

mechanisms for disposing of excess energy are limited, manifesting changes within the 

photosystem as a function of pigments and heat dissipation (Neumann et al. 2008). 

Mangrove ecosystems are particularly sensitive to periodic, short-term flooding due to 

coastal tide dynamics (Young et al. 1995) which makes them particularly sensitive to 

slight modifications in the environment, whether anthropogenic or naturally induced, 

which can result in considerable stress. For example, Flores-de-Santiago et al. (2012) 

reported that in a sub-tropical mangrove forest where fresh water availability is extremely 

seasonal, precipitation patterns affect the leaf Chla content variation resulting in an 

increase in leaf Chla content during the rainy season in poor/dwarf stands of 
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Laguncularia racemosa, Rhizophora mangle, and Avicennia germinans. Consequently, 

monitoring such stress using a rapid and relatively inexpensive instrument for estimating 

pigment variation could be extremely useful when trying to assess ecological impacts.  

Given the alarming reports of recent mangrove loss (Valiela et al. 2001, Duke et 

al. 2007, Polidoro et al. 2010) and the importance of these forests for local communities 

(Walters et al. 2008), organic carbon dynamics (Kristensen et al. 2008), climate change 

(Gilman et al. 2008), fauna interactions (Nagelkerken et al. 2008), and primary 

productivity (Komiyama et al. 2008), a cost-efficient, user friendly, and rapid technique 

for monitoring pigments could be extremely useful for resource management and 

scientists studying and/or monitoring mangroves. Consequently, the purpose of this 

investigation is to determine the feasibility of using CCI, the unit of measure of the 

CCM-200 portable Chlorophyll Content Meter, as an accurate estimator of the seasonal 

variation of leaf chlorophyll contents, Chla, Chlb, and total chlorophyll (TChl) for a wide 

range of species under various conditions in a mangrove forest representing a degraded 

state.  

3.2 Materials and Methods 

The study was conducted within the Urias estuary, which is positioned on an 

alluvial plain that extends along the Pacific coast within the Mexican state of Sinaloa 

(23° 10’ N and 106° 20’ W). Located in a tropical sub-humid zone, this system comprises 

of 800 ha that includes tidal channels, seasonal flood plains and a substantial mangrove 

community (Flores-Verdugo et al. 1987). The mean annual air temperature ranges from 

24 to 26 °C and the annual total precipitation, which occurs primarily in the summer, 

ranges between 800 to 1000 mm (INEGI 2010). The system supports three dominant 

species of mangrove: red mangrove (R. mangle), black mangrove (A. germinans), and 

white mangrove (L. racemosa) (Flores-de-Santiago et al. 2012). Moreover, based on 

biophysical characteristics and species (Kovacs et al. 2011), this mangrove community 

can be classified according to three classes: healthy and dwarf black mangrove, healthy 

and poor condition red mangrove, and healthy and poor condition white mangrove. The 

poor condition and dwarf mangroves (i.e. stressed) are located mostly inland and in small 

channels with little tidal influence whereas most of the healthy mangroves are located 



45 

 

along the main channels where daily tidal flushing is common. Recent hydrological 

modifications, including diversions for aquaculture ponds and new road constructions, 

may have resulted in this degraded state.  This situation is similar to what is occurring in 

another mangrove system just south of this area (Kovacs et al. 2005, Kovacs et al. 2008, 

Kovacs et al. 2009). 

In this study the fieldwork was conducted along the south end of the Urías 

channel at the end of the dry (May) and the end of the rainy (October) seasons in 2010. I 

selected three representative trees for each mangrove species along the system. From 

each tree, 10 random leaves were selected for the CCM-200 readings and pigment 

chemical analysis assessment. Following Biber (2007), I clipped one leaf between the 3rd 

to 5th leaves from the tip of each apical branch so that only mature leaves were collected. 

A total of 30 samples from each class of mangrove were collected. For each sample four 

measurements were taken from the central portion of the leaf with a hand held 

Chlorophyll Content Meter CCM-200 (Opti-Sciences, Tyngsboro, Massachusetts, USA) 

while avoiding the midrib. This instrument has a 0.71 cm2 measurement area, and 

calculates a Chlorophyll Content Index (CCI) based on transmittance measurements at 

653 and 931 nm. The claimed accuracy of the CCM-200 is ± 1.0 CCI units and this 

instrument has the advantage of being able to measure CCI directly from the leaves in the 

field (Opti-Sciences 2002). Following the CCM-200 measurements, all leaves were 

immediately placed in plastic bags and stored in a cooler at around 4 ºC prior to 

transportation to the laboratory for chemical pigment content assessment. 

With regards to the actual chlorophyll composition, one 1.25 cm2 leaf circle 

sample was cut out of each leaf using a circular metal pipe, again taking care to avoid the 

midrib. This leaf material was then crushed and dissolved in 100 ml of acetone at 80%. 

Each sample for the pigment assessment was filtered through a GF/C Whatman of 47mm 

pore size. The absorbance was measured at the Chla and Chlb peaks (around 646 and 663 

nm) using a JascoV-530UV-VIS spectrophotometer (Jasco Inc., Great Dunmow, UK). 

Chla and Chlb were then calculated according to the Lichtenthaler and Wellburn (1983) 

equations. TChl was calculated from the sum of Chla and Chlb. The six classes of 

mangrove were separated according to the two distinct seasons (dry and rainy). For each 
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season, I used the coefficient of determination (R2) and analysis of variance F-test 

(ANOVA) as a first approach in order to examine the linear association between pigment 

chemical analysis (Chla, Chlb, and TChl) and the corresponding CCI readings. 

Differences in the regression lines by class between the dry and rainy seasons were tested 

using an analysis of covariance F-test (ANCOVA). The ANCOVA tests were also used 

to examine differences between the regression lines from the poor/dwarf and healthy 

classes for all species. 

3.3 Results 

Figure 3.1 depicts the R2 and F-test ANOVA observed values for each of the 

linear regressions (n=30/class). The Chla regression models presented significant F and 

higher R2 values (Fig. 3.1) when plotted with poor/dwarf stands during the dry season 

(Fig. 3.1 a, c, e). In contrast, healthy stands recorded higher R2 and F-observed values 

during the rainy season even though for both seasons the slopes were lower than for the 

stressed plants (Fig. 3.1 b, d, f). However, all three stressed classes (poor/dwarf) 

presented higher overall R2 when compared to the healthy trees (Fig. 3.1). Although the 

Chla regression models showed no apparent differences in the slopes between the dry and 

rainy seasons for some classes, there were significant differences calculated (p=0.05) 

between the slopes according to the ANCOVA F-test results for all classes except the A. 

germinans healthy condition (Table 3.1). L. racemosa healthy condition recorded the 

lowest R2 of 0.36 during the dry season (Fig. 3.1 f). In addition, no significant difference 

(p<0.05) was only found in R. mangle between the poor and healthy stands during the dry 

season (Table 3.2).  

Although the Chla regression models showed strong linear associations with the 

CCI, the Chlb were found to be less well correlated, having both lower R2 and F-

observed values (Fig. 3.2). Chlb samples did not fit well to the linear models with the 

exception of the A. germinans dwarf class during the dry season with a R2 of 0.80 (Fig. 

3.2 a). Interestingly, R. mangle and L. racemosa healthy classes (Fig. 3.2 7d and f) had 

the lowest R2 and F-observed values for both seasons. A. germinans dwarf and healthy, 

as well as R. mangle poor conditions were the only classes that did not record differences 

between the regression lines of Chlb during both seasons (Table 3.3). Moreover, R. 
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mangle rainy was the only class that did not present significant differences between the 

regression lines of the poor and healthy stands (Table 3.4). 

 With regards to TChl, the linear models showed a similar pattern to those of the 

Chla with slightly lower R2 values for all six classes during both seasons (Fig. 3.3). The 

ANCOVA analysis between the dry and rainy season linear equations showed significant 

differences for all six mangrove classes (Table 3.5).  Moreover, the ANCOVA analysis 

between the poor/dwarf and healthy classes showed no differences in the linear 

regressions in the R. mangle during both the dry and rainy seasons (Table 3.6). 

 

 

Table 3.1: Analysis of covariance F-test (ANCOVA) of Chlorophyll-a (Chla) and 

CCM-200 readings between the regression lines from the dry and rainy season. LR: 

L. racemosa, RM: R. mangle, AG: A. germinans. * Significant F-observed values at 

p=0.05 

Species and class Source of variation df MS F 

LR poor Adjusted means 1 261.7 40.9* 
 Error 57 6.4  
LR healthy Adjusted means 1 1161.6 118.5* 
 Error 57 9.8  
RM poor Adjusted means 1 296 18.3* 
 Error 57 16.2  
RM healthy Adjusted means 1 397.1 28.4* 
 Error 57 14  
AG dwarf Adjusted means 1 424.7 82* 
 Error 57 5.2  
AG healthy Adjusted means 1 52.6 3.7 
 Error 57 14.3  
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Table 3.2: Analysis of covariance F-test (ANCOVA) of Chlorophyll Content Index 

(CCI) and corresponding Chlorophyll-a (Chla) between the regression lines from 

the poor/dwarf and healthy conditions. LR: L. racemosa, RM: R. mangle, AG: A. 

germinans. * Significant F-observed values at p=0.05 

 

Species and class Source of variation df MS F 

LR dry Adjusted means 1 566.7 23.9* 
 Error 57 23.7  
RM dry Adjusted means 1 9.6 0.4 
 Error 57 22.6  
AG dry Adjusted means 1 1307 137.6* 
 Error 57 9.5  
LR rainy Adjusted means 1 53.7 21.5* 
 Error 57 2.5  
RM rainy Adjusted means 1 96.7 9.9* 
 Error 57 9.8  
AG rainy Adjusted means 1 428.7 43.3* 
 Error 57 9.9  
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Figure 3.1: Seasonal scatter plots and fitted linear regression lines of Chlorophyll 

Content Index (CCI) using a CCM-200 instrument against the chlorophyll-a (Chla) 

derived from chemical analysis (n=30). Each graph depicts the linear equation with 

95% confidence 
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Figure 3.2: Seasonal scatter plots and fitted linear regression lines of Chlorophyll 

Content Index (CCI) using a CCM-200 instrument against the chlorophyll-b (Chlb) 

derived from chemical analysis (n=30). Each graph depicts the linear equation with 

95% confidence 
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Figure 3.3: Seasonal scatter plots and fitted linear regression lines of Chlorophyll 

Content Index (CCI) using a CCM-200 instrument against the total chlorophyll 

(TChl) derived from chemical analysis (n=30). Each graph depicts the linear 

equation with 95% confidence 
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Table 3.3: Analysis of covariance F-test (ANCOVA) of Chlorophyll-b (Chlb) and 

CCM-200 readings between the regression lines from the dry and rainy season. LR: 

L. racemosa, RM: R. mangle, AG: A. germinans. * Significant F-observed values at 

p=0.05 

Species and class Source of variation df MS F 

LR poor Adjusted means 1 40 20* 
 Error 57 2  
LR healthy Adjusted means 1 159.3 37* 
 Error 57 4.3  
RM poor Adjusted means 1 2.4 0.5 
 Error 57 5.1  
RM healthy Adjusted means 1 62.7 21.6* 
 Error 57 2.9  
AG dwarf Adjusted means 1 0.01 0.009 
 Error 57 1.1  
AG healthy Adjusted means 1 8.4 2.6 
 Error 57 3.2  

 

Table 3.4: Analysis of covariance F-test (ANCOVA) of Chlorophyll Content Index 

(CCI) and corresponding Chlorophyll-b (Chlb) between the regression lines from 

the poor/dwarf and healthy conditions. LR: L. racemosa, RM: R. mangle, AG: A. 

germinans. * Significant F-observed values at p=0.05 

 

Species and class Source of variation df MS F 

LR dry Adjusted means 1 31.4 6.2* 
 Error 57 5.1  
RM dry Adjusted means 1 47.3 9.9* 
 Error 57 4.8  
AG dry Adjusted means 1 44.4 31.7* 
 Error 57 1.4  
LR rainy Adjusted means 1 19.8 12.4* 
 Error 57 1.6  
RM rainy Adjusted means 1 7.1 1 
 Error 57 6.8  
AG rainy Adjusted means 1 75.3 26.9* 
 Error 57 2.8  
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Table 3.5: Analysis of covariance F-test (ANCOVA) of total chlorophyll (TChl) and 

CCM-200 readings between the regression lines from the dry and rainy season. LR: 

L. racemosa, RM: R. mangle, AG: A. germinans. * Significant F-observed values at 

p=0.05 

Species and class Source of variation df MS F 

LR poor Adjusted means 1 424.6 33.4* 
 Error 57 12.7  
LR healthy Adjusted means 1 2232 101.5* 
 Error 57 22  
RM poor Adjusted means 1 235 8.3* 
 Error 57 28.3  
RM healthy Adjusted means 1 776.1 34.3* 
 Error 57 22.6  
AG dwarf Adjusted means 1 515.7 53.2* 
 Error 57 9.7  
AG healthy Adjusted means 1 113.8 4.9* 
 Error 57 23.1  

 

Table 3.6: Analysis of covariance F-test (ANCOVA) of Chlorophyll Content Index 

(CCI) and corresponding total chlorophyll (TChl) between the regression lines from 

the poor/dwarf and healthy conditions. LR: L. racemosa, RM: R. mangle, AG: A. 

germinans. * Significant F-observed values at p=0.05 

 

Species and class Source of variation df MS F 

LR dry Adjusted means 1 1026.7 24.4* 
 Error 57 42  
RM dry Adjusted means 1 24.3 0.6 
 Error 57 41.2  
AG dry Adjusted means 1 1950 121.9* 
 Error 57 16  
LR rainy Adjusted means 1 129.7 19.1* 
 Error 57 6.8  
RM rainy Adjusted means 1 60.1 2.4 
 Error 57 25.5  
AG rainy Adjusted means 1 842.9 49.5* 
 Error 57 17  
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3.4 Discussion 

Portable CCM-200 instruments have been used in the estimation of leaf 

chlorophyll concentrations in tropical forests (e.g., Goncalves et al. 2008), but not many 

other types of environments (Cate and Perkins 2003, Biber 2007) including subtropical 

mangrove forests. For this investigation, it is evident that there was a moderate to strong 

linear relationship between the CCI and the pigments especially with Chla and TChl. 

Such strong linear co-variability has been previously reported by Andrew et al (2002) and 

Ghasemi et al (2011). In my study, the coefficient of determination between the CCI and 

the pigments present different amounts of variability between the two seasons and within 

the six classes. It had been noted previously that there is a seasonal variation in leaf Chla 

content in this particular subtropical mangrove forest (Flores-de-Santiago et al. 2012), as 

a consequence there should be differences between the seasons in the estimation of 

pigments using the CCM-200.  

The results from this investigation provide strong evidence that the CCI, recorded 

by the CCM-200 device, can be used for pigment content estimation of Chla and TChl. In 

particular, CCI values were most strongly correlated with Chla as determined by the 

absorbance of extracted pigments. With regards to Chla contents, my values were much 

lower (0.001-0.005 mg/cm2), compared to those reported by Andrew et al. (2002) (0.000-

0.040 mg/cm2). The strong linear association between the CCI and the Chla was 

previously reported by Andrew et al. (2002), especially in the lower Chla values. Andrew 

et al. (2002) showed that Chla contents higher than 0.020 mg/cm2 starting to present 

heteroskedasticity (i.e. and increase in the variability along the fitted regression line), 

increasing the error in predicting Chla from the regression equation. Therefore, the low 

Chla content presented in this sub-tropical mangrove leaves make the CCM-200 an ideal 

instrument for Chla estimation.  

Several factors may have influenced the cases where low relationships were 

observed in this study (e.g., Chlb). Among them, an important source of error with the 

CCM-200 may be the wavelengths used. The simple ratio calculation used to derive the 

CCI (% transmittance at 931 nm divided by the % transmittance at 653 nm) can be 

influenced by leaf optical properties. For example, the attenuation of light in the 931 nm 
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infrared wavelength is assumed to correct for the leaf structural characteristics that may 

cause variability in the 653 nm region (Markwell et al. 1995). However, the wavelength 

used in the CCI ratio at 653 nm is located between the two maximum absorbance peeks 

of both Chla (662 nm) and Chlb (642 nm). Typically in this specific region of the 

spectrum (653 nm) the Chla absorbance curve for vegetation starts to increase, while the 

Chlb curve decrease. Therefore, the wavelength used in the CCI ratio at 653 nm may 

result in a higher variability for estimation of either chlorophyll molecule, compared to 

more targeted wavelength used to determine either Chla or Chlb alone. 

Another problem could be attributed to leaf thickness and/or leaf dryness as a 

result of excessive environmental salinity levels. Moreover, the seasonal pigment 

variation, especially in the poor classes, could possibly influence the variability of the 

samples and thus the optical properties of the leaves (Flores-de-Santiago et al. 2012).  

Previous studies have shown (Sobrado 1999, Macfarlane and Burchett 2001, Naidoo 

2006) that forests of Avicennia species are known to be very sensitive to stress factors 

such as excess salinity and high heavy metal content. For this lagoon, a previous study 

did show high heavy metal content (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the 

substrate (Marmolejo et al. 1990). Moreover, given that the majority of the A. germinans 

leaves, particularly the dwarf ones, are quite narrow and small and that the CCM-200 

window is quite large (0.90 cm diameter), higher variability in measurements may be 

expected for this species compared to the other two mangroves (Biber 2007). Yet another 

potential factor influencing variability and thus the relationships between pigments and 

CCI is shaded leaves (Richardson et al. 2002). In particular, R. mangle contains a dense 

canopy which often contains thick leaves with a dense package of chlorophyll. This 

thickness in all the healthy mangrove classes may prevent enough of the LED light at 653 

nm to be properly transmitted through the leaf (Biber 2007). Specifically, R. mangle have 

a thick non-assimilatory cell layer over the photosynthetic cell (Koizumi et al. 1998). 

This layer may reflect more of the light than what would be absorbed by Chlb in the red 

mangrove, which could have resulted in the observed weaker estimation. 

In this study, the weakest predictors were observed when examining Chlb content. 

Fortunately, the quantification of Chla and TChl is more useful when trying to examine 
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photosynthetic performance and why previous investigators (e.g., Biber 2007) have 

focused on these pigments for crops and terrestrial forests. The R2 values are higher for 

Chla than for Chlb, which could be explained by the fact that Chla concentrations per unit 

mass are typically double those of Chlb, and that the absorption feature in the red 

wavelengths of the former tends to obscure that of the latter (Blackburn 1998). The lower 

R2 and F-observed values for the TChl compared to Chla are attributed to the poor 

estimation of Chlb in all six classes. 

Although the coefficients of determination for the estimation of Chlb in some 

classes were highly variable, the relative high R2 between the CCI and Chla contents 

suggests that the handheld CCM-200 can be used to predict Chla and TChl for a 

subtropical mangrove forest with an R2as high as 0.92 depending on the species and the 

season. Despite the aforementioned limitations, the CCM-200 has the potential to enable 

a fast, convenient, and non-destructive way of determining pigment content, making it a 

useful instrument when evaluating biophysical parameters for mangrove inventories. 

Moreover, the relative cheap cost of this device and ease of use makes it an ideal tool in 

countries where other tradition techniques are economically prohibitive. However, it is 

recommended that local regression equations must be developed especially in the tropics 

where the same mangrove species are under different environmental conditions. Given 

that this investigation examined the feasibility of the CCM-200 for chlorophyll 

estimation based on the most common species of mangrove found in the Americas, future 

considerations could include developing similar models for other mangrove species that 

dominate in other regions of the tropics and sub-tropics. Finally, it must be noted that a 

previous study has shown (Andrew, 2002) that measurements from the CCM-200 are 

similar to those collected using a rival commercially available instrument the SPAD-502. 

The CCM-200 differs most from the SPAD-502 in regards to the leaf area sampling size 

and cost of the instrument.  The sampling area of the CCM-200 is ten times larger and the 

cost of the instrument approximately a third of that of the SPAD-502. 
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Chapter 4  

4 The influence of seasonality in estimating mangrove leaf 
chlorophyll a content from hyperspectral data.3 

4.1 Introduction 

Mangrove forests have a wide geographical distribution in the tropics and sub-

tropics, and have a vital role in maintaining the equilibrium of coastal lagoons and 

estuaries (Blasco et al. 1996) as well as providing an important renewable resource for 

local peoples (Walters et al. 2008). The importance of the mangrove ecosystem can be 

related to a variety of unique factors including litter fall decomposition rates (Flores-

Verdugo et al. 1987; Kristensen et al. 2008), nutrient cycling characteristics (Feller et al. 

1999), faunal retention rates (Cannicci et al. 2008), faunal interactions (Nagelkerken et al. 

2008), climate change (Gilman et al. 2008), and forest productivity (Raven et al. 1992; 

Komiyama et al. 2008). Despite their ecological importance there has been a significant 

loss of mangrove forests globally in recent years (Valiela et al. 2001; Duke et al. 2007; 

Polidoro et al. 2010). 

Leaf chlorophyll content is an important bio-indicator of plant physiological state 

because it plays key roles in photosynthesis (Lichtenthaler 1998). Consequently, the 

estimation of chlorophyll contents (e.g. chlorophyll-a) could provide critical information 

in assessing mangrove forest condition (e.g. degraded) at regional and global scales as 

well as for modeling ecosystem productivity. Given their high spatial coverage and the 

logistical difficulties of working in mangrove forests, there has been a long history of 

applying remote sensing in monitoring mangrove condition using biophysical variables 

such as Leaf Area Index (Blasco et al. 1998; Kovacs et al. 2005, 2009, 2010). In remote 

sensing the use of high spectral resolution data collected from ground base hyperspectral 

                                                 
3
 A version of this chapter has been published: Flores-de-Santiago F., Kovacs JM., Flores-Verdugo F. 

(2013). The influence of seasonality in estimating mangrove leaf chlorophyll a content from hyperspectral 
data. Wetlands, Ecology and Management 21(3), 193-207 (http://dx.doi.org/10.1007/s11273-013-9290-
x). 
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sensors can be useful for determining whether certain coarser spectral resolution data 

collected from airborne or space-borne remotely sensed devices can be useful for such 

endeavors including mangroves (Kamaruzaman and Kasawani, 2007). 

Despite the increased use of remote sensing vegetation indices (VI) for mangrove 

forest assessments no research has been done in comparing the use of hyperspectral data 

collected during contrasting seasons. In a recent study of sub-tropical mangroves in 

Mexico, Flores-de-Santiago et al. (2012) found significant seasonal changes in mangrove 

leaf chlorophyll-a (Chla) content. Specifically, they found an increase of leaf Chla 

content during the rainy season for dwarf and poor stands of Rhizophora mangle, 

Avicennia germinans, and Laguncularia racemosa. Consequently, such leaf Chla 

seasonality may play a pivotal role in remote sensing VI assessments and thus impact 

ecological modeling, primary productivity, and carbon balance studies of mangroves that 

are based primarily on remote sensing data from one season. 

Previous hyperspectral remote sensing studies have indicated that there are 

specific combinations of wavebands (i.e. VI), collected within the electromagnetic 

spectrum, that can be used to non-destructively quantify leaf chlorophyll content. 

According to Carter (1998) and Vogelmann et al. (1993), the most important region of 

the spectrum is the red-edge position (670–780 nm) where abrupt change in vegetation 

reflectance between the red and near-infrared regions occurs. This pattern results from 

the combined effects of strong chlorophyll absorption in the red region and high leaf 

reflectance in the near-infrared region (Horler et al. 1983). The shape and position of the 

red-edge are highly influenced by fluctuations of Chla content and leaf biophysical 

structure (Filella and Peñuelas 1994). As a consequence, an increase in the amount of leaf 

Chla generally causes a shift in the red-edge position to longer wavelengths due to an 

expansion in the red zone (Gitelson et al. 1996). Conversely, a decrease in leaf Chla 

content, most commonly associated with stress periods or senescence, have been linked 

to a shift towards shorter wavelengths in this red-edge position (Rock et al. 1988). 

Some of the most commonly used VI in remote sensing (e.g., NDVI, SR) are 

based primarily on the contrast between the red and the near-infrared regions of the 
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electromagnetic spectrum. Such broadband indices (>10 nm) have limitations and are 

only effective in distinguishing broad differences in vegetation conditions (e.g. 

greenness, Leaf Area Index,  Cho et al. 2006). Alternatively, an increasing number of 

narrow waveband (<10 nm) hyperspectral sensors have been designed to quantify more 

specific factors such as chlorophyll cover using more refined red-edge wavebands (Carter 

and Miller 1994; Gitelson and Merzlyak 1997). VI derived from these narrow bands 

could provide a more sensitive assessment of mangrove canopy biochemical properties 

such as Chla estimations. 

Zhang et al. (2012) recently conducted a comprehensive study regarding the 

relationships between pigment contents and hyperspectral responses (350-2500 nm) in a 

mangrove forest of the sub-tropics for classifying mangrove forest condition. This study 

was based solely on data collected from the dry season. Therefore, the main focus of my 

study is to determine whether such relationships, and to what degree, persist during the 

rainy season when Chla leaf content may increase as the result of more favorable 

environmental conditions. In addition, I will determine the most appropriate VI to use 

based on a more limited range of spectral data (450-1000 nm), which is typical of the 

more affordable commercially available spectroradiometers. 

4.2 Materials and Methods 

The Urías system is a small coastal lagoon (8 km2) located on an alluvial plain 

within the state of Sinaloa, Mexico (23° 10’ N and 106° 20’ W). The system supports 

three true-mangrove species for the East Pacific region: red mangrove (Rhizophora 

mangle), black mangrove (Avicennia germinans), and white mangrove (Laguncularia 

racemosa) (Moroyoqui-Rojo 2005). Due to differences in seasonal leaf Chla content in 

this mangrove system (Flores-de-Santiago et al. 2012), the hyperspectral fieldwork was 

conducted along the south end of the Urías system during the dry (May) and rainy 

(October) seasons of 2010. For each season, I selected 30 random leaves located through 

the canopy from each of the six classes of mangrove identified for this system: 

stressed/dwarf black, red, and white mangrove, and healthy red, black, and white 

mangrove. It is important to note that a minimum leaf sample size of 22 (α=0.05) was 

determined for the hyperspectral analysis of the data collected using traditional stratified 
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sample size method (Sokal and Rohlf 1994). Regarding leaf mangrove collection during 

the field campaigns, I followed leaf collection procedures described in detail by Biber 

(2007), Flores-de-Santiago et al. (2012, 2013), and Zhang et al. (2012). Specifically, the 

3rd to the 5th leaves from the tip were clipped in order to maintain a sample of just mature 

leaves. Once cut, all samples were stored in a plastic bag within a small cooler at 4 ºC for 

transportation to the laboratory. Although the descriptions of these mangrove classes of 

this region of México are qualitative, their classification scheme has been recently 

validated qualitatively using statistical methods based on in situ biophysical parameter 

data (Kovacs et al. 2011) and using standard image-processing methods based on spectral 

properties (Zhang et al. 2012). 

For each season, leaf hyperspectral reflectance was measured using a FieldSpec 

HandHeld device (ASD Inc.). The HandHeld unit has a spectral range of 325-1075 nm 

with a spectral resolution of 1.0 nm. Additionally, the FieldSpec HandHeld device was 

equipped with a plant probe unit. Both devices were attached to one another using an 

optic fiber. Reflectance values below 450 nm and above 1000 nm were deleted due to 

noise inherent to the device. Based on the literature, I selected 35 VI specifically 

designed to detect leaf pigments and vegetation stress within my limited spectral range 

(Table 4.1). Leaf Chla content was measured using the same leaf samples from the 

hyperspectral analysis. Due to the difference in leaf morphology between the mangrove 

species (i.e. length, wide), I normalized leaf Chla per unit area (mg/m2) using the 

dimensions of the diameter from a copper cylinder. Specifically, a 1.25 cm diameter leaf 

circle was taken from each sample using the cutting cylinder. Care was taken to avoid 

collecting the circles from the main leaf veins. The plant material was then dissolved with 

100 ml of 80% acetone and a spectrophotometric assay was then conducted to extract 

information of peak absorption at 646 and 663 nm (Lichtenthaler and Wellburn 1983). 
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Table 4.1: Vegetation indices selected for this study 

Index acronym Algorithm References 
B_N1 "/00/"220 Buschmann and Nagel (1993) 
C_1 "342/"350 Carter (1994) 
G_M1 "520/"220 Gitelson and Merzlyak(1996) 
GNDVI �"/0	 � "220�/�"/0	 6 "220� Daughtry et al(2000) 
LCI �"/20 � "5	0�/�"/20 � "3/0� Datt(1999) 
L_G_L1 "770/"340 Lichtenthaler et al(1996) 
L_G_L2 "520/"500 Lichtenthaler et al(1996) 
MCARI 8�"500 � "350� � 0.2�"500 � "220�9�"500/"350� Daughtry et al(2000) 
MCARI1 1.282.5�"/00 � "350� � 1.3�"/00 � "220�9 Haboudane et al(2004) 
MCARI2 1.582.5�"/00 � "350� � 1.3�"/00 � "220�9

-�2"/00 6 1�
 � :6"/00 � 5<"350= � 0.5 
Haboudane et al (2004) 

MCARI/OSAVI 8�"520 � "502� � 0.2�"520 � "220�9�"520/"502���	>0.	3��?@ABC?@BA��?@AB>?@BA>0.	3� �  
Wu et al(2008) 

MSAVI 12 �2"/00 6 1� <�2"/00 6 1�
 � 8�"/00 � "350�E 
Qi et al(1994) 

mSR705 �"520 � "772�/�"502 6 "772� Sims and Gamon(2002) 
MSR �"520 "502F � � 1

-�"520 "502F 6 1� 

Wu et al(2008) 

MTVI1 1.281.2�"/00 � "220� � 2.5�"350 � "220�9 Haboudane et al(2004) 
MTVI2 1.581.2�"/00 � "220� � 2.5�"350 � "220�9

-�2"/00 6 1�
 � :6"/00 � 5<"350= � 0.5 
Haboudane et al(2004) 

ND705 �"520 � "502�/�"520 6 "502� Sims and Gamon(2002) 
NDI �"/00 � "570�/�"/00 6 "570� Müller et al(2008) 
NDVI �"/00 � "350�/�"/00 6 "350� Rouse et al(1973) 
 
NPCI 

 �"3/0 � "7G0�/�"3/0 6 "7G0� 
Peñuelas et al(1994) 

OSAVI �1 6 0.16��"/00 � "350��"/00 6 "350 6 0.16�  
Rondeaux et al(1996) 

PRI �"2G	 � "250�/�"2G	 6 "250� Gamon et al(1992) 
PSRI  �"3/0 � "200�/"520 Merzlyak et al (1999) 
PSSRa "/00/"3/0 Blackburn(1998) 
RARSa "352/"500 Chapelle and Kim(1992) 
RDVI �"/00 � "350�/<�"/00 6 "350� Rougean and Breon(1995) 

REIP "500 6 40 H0.5�"350 6 "5/0� � "500"570 � "500 I 
Horler (1983) 

SAVI �"5/0 � "350��1 6 ���"5/0 6 "350 6 ��  
Huete (1988) 

SIPI �"/00 � "772�/�"/00 6 "3/0� Peñuelas and Inque (1999) 
SR "/00/"350 Jordan(1969) 
TCARI 3 J�"500 � "350� � 0.2�"500 � "220� K"500"350LM 

Haboudane et al(2002) 
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TCARI/OSAVI 3 ��"520 � "502� � 0.2�"520 � "220� �?@AB?@BA����	>0.	3��?@ABC?@BA��?@AB>?@BA>0.	3� �  

Wu et al(2008) 

TVI 0.58120�"520 � "220� � 200�"350 � "220�9 Broge and Leblanc (2001) 
Vog1 "570/"5
0 Vogelmann et al(1993) 
Z_T1 "520/"5	0 Zarco-Tejada et al(2001) 

 
Rxxx refers to leaf reflectance at wavelength xxx in nanometers. 

The hyperspectral data collected from the three species of mangrove was 

aggregated into one single data set per season, knowing that the red mangrove typically 

presents the highest leaf Chla content, followed by the black mangrove, and then the 

white mangrove in this environment (Flores-de-Santiago et al. 2012; Zhang et al. 2012). 

The 35 VI from Table 4.1 were chosen to represent most of the traditional and recently 

developed Chla and leaf biophysical estimators derived from hyperspectral reflectance. 

Using the aforementioned 35 algorithms from the VI and the Chla content from each 

sample, a matrix was created as follows: 

N	 �
OPP
PQ �R�STU V�	WU V�
WU�R�STX V�	WX V�
WX

Y… V�G2WUV�G2WX[             [          [ \ [�R�STU]B V�	WU]B V�
WU]B Y V�G2WU]B _̂__̀ 

Where Chlasi is the Chla content from sample i, and VI1-35 are the vegetation indices from 

each sample created from Table 4.1 algorithms. It is important to note that M1 is an 

example using data from the dry season, however I use a similar matrix for the rainy 

season data. 

I applied a Principal Component Analysis (PCA) to define the optimal co-

variability between the leaf Chla content and these VI, and treated each season (dry and 

rainy) as two independent sets for the PCA analysis. Consequently, PCA involves the 

creation of eigenvectors from M2, resulting in a new matrix as follows: 

N
 � a �0	 �	/	 �G3
�0
 �	/
 �G3G Y… �3GG2�3GG3[      [      [ \ [�	/0 �G3	 �27
 Y �32	7
b 
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where bi are the eigenvectors for each data from the original matrix. The eigenvector 

created from the PCA approach involves condensing information contained in the 

original variables into a smaller set of dimensions (i.e. components). The process is 

accomplished by creating linear combinations of the original variables, which are 

oriented in directions that best describe the maximum variation among the individual 

sampling (McGarigal et al. 2000). In other words, for each season I treated each VI and 

the Chla content as separate variables in order to find the component into which the 

variables were grouped. I tested 36 components (n=36 variables) using eigenanalysis 

from the M1 and M2 data into 36 sets of new polynomiums: 

cd
dde
ddd
f gh	 � ij �0	�R�Sk

	/0
k+	 l 6 ij �0
V�	m

	/0
k+	 l 6 Y 6 ij �	/0V�G2m

	/0
k+	 l

gh
 � ij �	/	�R�Sk
	/0
k+	 l 6 ij �	/
V�	m

	/0
k+	 l 6 Y 6 ij �G30V�G2m

	/0
k+	 l

[                                    [                                                                     [
ghG3 � ij �3GG2�R�Sk

	/0
k+	 l 6 ij �3GG3V�	m

	/0
k+	 l 6 Y 6 ij �32	7V�G2m

	/0
k+	 l

n 

where pci represents the eigenvalues, Chla and VI1-35are the original data from M2, k 

represents each sample from 1-360, and bi are the eigenvectors from M2.  

Following the Latent Root Criterion, components (pci) which recorded an 

eigenvalue greater than 1.0 were considered significant (Cliff 1988). The 35 VI and the 

Chla content were then clustered according to the correlation matrix as follows: 

NG �
OPP
PPQ
�R�SopU �R�SopXV�	opU V�	opXV�
opU V�
opX

YY �R�SopqrV�	opqrV�
opqr[        [ \ [V�G2opU V�G2opX Y V�G2opqr _̂__
_̀
 

Where Chlapci and VI1-35pci are the results from the correlation matrix between the 

components (pci) and the original M1 data (Tables 4.2 and 4.3). The Chla content and 

each VI from M3 were then grouped with the component having the highest correlation 



67 

 

coefficient. Consequently, for each season I identified the component in which select VI 

and the Chla content had the highest correlation. 

Once the two new sets of VI were selected from the PCA for both the dry and 

rainy seasons, I used regression analysis between the Chla content and those significant 

VI. Following a bootstrapping technique (Uraibi et al. 2009), I estimated Chla content 

from the equations. In the bootstrapping technique one-thirds of the random data were 

used for model calibration (i.e. linear equations between Chla and VIs) and the remaining 

two-third for validation. For each selected index I used the standard error of estimate 

(SE) and the T-test statistics for validation. 

The T-test statistic in linear regression is equal to the slope divided by its standard 

error. The null hypothesis for this test states that the slope is equal to zero. If this is true, 

then there is no linear relationship between the measured and estimated leaf Chla 

contents. For 180 samples per season at the 5% significant level (α=0.05) the critical T-

value is 1.97 (two-tailed). If the T-value from the calculated-estimated leaf Chla content 

is lower than 1.97, then no significant linear association between the variables is 

recorded. Moreover, the larger the calculated significant T-value, the better the linear 

association between the measured and the estimated leaf Chla content. 
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Table 4.2: Pearson correlation matrix of Chla and VI versus significant components 

and its eigenanalysis during the dry season 

 PC1 PC2 PC3 PC4 
Variable     

Chla +0.18* +0.07 -0.10 -0.03 
B_N1 +0.19 +0.09 +0.06 -0.23 
C_1 -0.20* -0.02 +0.07 -0.06 

G_M1 +0.19* +0.09 +0.06 -0.22 
GNDVI +0.20* +0.04 +0.05 -0.11 

LCI +0.17 +0.00 -0.26 -0.14 
L_G_L1 +0.17 +0.07 -0.17 +0.19 
L_G_L2 +0.20* +0.08 +0.01 -0.14 
MCARI -0.17* -0.14 +0.15 -0.09 

MCARI1 -0.06 -0.29 -0.20 -0.09 
MCARI2 +0.04 -0.33 -0.02 +0.03 

MCARI/OSAVI -0.18* -0.12 +0.16 -0.09 
MSAVI +0.17 -0.19 +0.04 -0.03 
mSR705 +0.11 -0.16 +0.32 -0.08 
MSR +0.20* +0.06 +0.00 -0.09 

MTVI1 -0.06 -0.29 -0.20 -0.09 
MTVI2 +0.04 -0.33 -0.02 +0.03 
ND705 +0.21* +0.01 -0.02 +0.04 
NDI -0.01 -0.14 -0.39 -0.36 

NDVI +0.15 -0.13 +0.18 +0.12 
NPCI -0.17 -0.04 +0.16 -0.22 

OSAVI +0.13 -0.25 -0.11 -0.14 
PRI -0.10 +0.03 -0.35 +0.11 

PSRI -0.11 +0.16 +0.09 -0.53 
PSSRa +0.20* +0.04 +0.08 -0.13 
RARSa +0.11 +0.21 -0.26 -0.08 
RDVI +0.15 -0.24 -0.05 -0.07 
REIP +0.19* +0.02 -0.15 +0.12 
SAVI +0.15 -0.23 -0.02 -0.05 
SIPI -0.17 +0.12 +0.05 -0.39 
SR +0.18 -0.08 +0.19 -0.04 

TCARI -0.19* -0.13 +0.05 -0.05 
TCARI/OSAVI -0.20* -0.10 +0.06 -0.06 

TVI -0.04 -0.31 -0.18 -0.08 
Vog1 +0.20* +0.08 -0.06 -0.10 
Z_T1 +0.20* +0.08 -0.02 -0.14 

Eigenvalue 23.01 8.73 4.19 1.36 
Proportion 0.59 0.22 0.11 0.4 
Cumulative 0.59 0.81 0.92 0.96 

Matrix was generated by principal component analysis. 
*Significant correlated with PC1 
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Table 4.3: Pearson correlation matrix of Chla and VI versus significant components 

and its eigenanalysis during the rainy season 

 PC1 PC2 PC3 PC4 
Variable     

Chla +0.25* +0.01 +0.16 -0.06 
B_N1 +0.00 -0.01 +0.00 -0.07 
C_1 -0.20* +0.00 +0.10 +0.03 

G_M1 +0.20* -0.01 +0.01 -0.07 
GNDVI +0.21* -0.02 -0.03 -0.05 

LCI +0.15 -0.08 -0.30 -0.03 
L_G_L1 +0.18 +0.04 -0.07 +0.33 
L_G_L2 +0.20* -0.01 -0.03 -0.05 
MCARI -0.18* -0.11 +0.16 -0.03 

MCARI1 -0.14 -0.23 -0.16 +0.00 
MCARI2 -0.12 -0.29 +0.02 +0.01 

MCARI/OSAVI -0.18* -0.10 +0.17 -0.03 
MSAVI +0.11 -0.29 +0.04 -0.03 
mSR705 +0.12 -0.17 +0.28 -0.20 
MSR +0.21* -0.01 -0.04 -0.04 

MTVI1 -0.14 -0.23 -0.16 +0.00 
MTVI2 -0.12 -0.29 +0.02 +0.01 
ND705 +0.21* -0.01 -0.05 -0.02 
NDI -0.03 -0.21 -0.36 -0.02 

NDVI +0.14 -0.16 +0.25 -0.03 
NPCI -0.10 -0.01 +0.00 -0.62 

OSAVI +0.03 -0.31 -0.18 -0.03 
PRI -0.07 +0.00 -0.07 -0.09 

PSRI +0.10 +0.12 +0.01 -0.46 
PSSRa +0.20* -0.05 +0.12 -0.09 
RARSa +0.15 +0.14 -0.27 +0.01 
RDVI +0.05 -0.32 -0.13 -0.03 
REIP +0.19* +0.01 -0.14 +0.07 
SAVI +0.07 -0.32 -0.10 -0.03 
SIPI -0.14 +0.14 -0.12 -0.44 
SR +0.16 -0.13 +0.24 -0.05 

TCARI -0.20* -0.06 +0.02 +0.02 
TCARI/OSAVI -0.21* -0.04 +0.04 +0.02 

TVI -0.12 -0.26 -0.15 -0.03 
Vog1 +0.20* +0.00 -0.13 -0.07 
Z_T1 +0.20* -0.01 -0.07 -0.05 

Eigenvalue 22.55 8.26 4.51 1.51 
Proportion 0.59 0.21 0.12 0.04 
Cumulative 0.59 0.79 0.91 0.94 

Matrix was generated by principal component analysis. 
*Significant correlated with PC1 
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4.3 Results 

The eigenvalues derived from both the Pearson’s correlation matrices obtained 

through PCA showed that only the first four principal components were significant 

(Tables 4.2 and 4.3). Moreover, leaf Chla content had the highest correlation in the first 

component for both the dry and rainy seasons. Consequently, only those VI that also 

show their highest correlation in the first component can be grouped with Chla. From the 

35 VI, only 14 were well correlated with PC1 during both seasons. These 14 VI were 

C_1, G_M1, GNDVI, L_G_L2, MCARI, MCARI/OSAVI, MSR, Nd705, PSSRa, REIP, 

TCARI, TCARI/OSAVI, Vog1, and Z_T1. The two traditional VIs, NDVI and SR, were 

weakly correlated with leaf Chla content (NDVI R2=0.59, SR=0.59 dry season, NDVI 

R2=0.20, SR=0.28 rainy season). 

Seasonal differences between the equations, based on leaf Chla content with the 

VI, were clearly evident. Overall, the coefficients of determinations (R2) were higher 

during the dry season (Table4.4). Among the 14 VIs equations, six VIs (Vog1, C_1, 

MSR, ND705, Z_T1, and L_G_L2) also showed higher R2 (> 0.76) values for the dry 

season. The leaf Chla estimations for the dry season also presented higher T-observed 

values and lower SEs (Fig. 4.1) when compared to those calculated from the rainy season 

data (Fig. 4.2). During the dry season some of the VI that include the 550 nm waveband 

(e.g., MCARI, MCAR/OSAVI, and TCARI) showed T-observed values as high as those 

VI that used only wavelengths from the red-edge region such as the Vog1 and the MSR. 

Although the T-observed values were lower, a similar pattern was found for the rainy 

season. 
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4.4: Regression analysis of leaf Chla content and hyperspectral VI 

Season Vegetation Indices F-observed Regression equation Coefficient of 
determination (R2) 

     
 Vog1 166* Chla = -34 + 42.7 X 0.80 
 C_1 157* Chla = 61.8 - 72 X 0.79 
 MSR 159* Chla = 6.27 + 28.5 X 0.79 
 ND705 154* Chla = -6.04 +71.4 X 0.78 
 Z_T1 146* Chla = -1.07 + 12.3 X 0.77 

Dry L_G_L2 138* Chla = 4.24 + 7.36 X 0.76 
 TCARI/OSAVI 119* Chla = 53.5 – 80.4 X 0.74 
 REIP 108* Chla = -24.5 + 2.89 X 0.72 
 GNDVI 106* Chla = -26.2 + 94.4 X 0.71 
 TCARI 99* Chla = 53.9 - 110 X 0.70 
 PSSRa 87* Chla = 9.66 + 2.66 X 0.67 
 G_M1 75* Chla = 5.55 + 5.99 X 0.63 
 MCARI/OSAVI 74* Chla = 46.7 – 80.2 X 0.63 
 MCARI 65* Chla = 46.7 - 107 X 0.60 
     
     
 REIP 117* Chla = -16.8 + 3.05 X 0.73 
 MCARI/OSAVI 98* Chla = 47.3 – 31.8 X 0.70 
 Vog1 93* Chla = -46 + 55.9 X 0.68 
 MCARI 88* Chla = 47.1 – 40.6 X 0.67 
 C_1 83* Chla = 73.2 – 86.1 X 0.66 

Rainy Z_T1 54* Chla = -2.51 + 16.2 X 0.56 
 ND705 53* Chla= -4.13 + 78.9 X 0.55 
 TCARI/OSAVI 47* Chla = 53.2 – 57.6 X 0.52 
 MSR 43* Chla = 10.5 + 32.7 X 0.50 
 TCARI 41* Chla = 52.6 – 72.9 X 0.49 
 GNDVI 40* Chla = -15.4 + 76.4 X 0.48 
 L_G_L2 38* Chla = 6.95 + 8.98 X 0.47 
 G_M1 24* Chla = 15.7 + 3.6 X 0.36 
 PSSRa 10* Chla = 21 + 1.09 X 0.18 

X denotes the corresponding vegetation index. 
*Significant F-observed values at p<0.05. 
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Figure 4.1: Predicted Chla content during the dry season (May), based on the 

regression equations from Table 4.4. T-observed values (T), standard error of 

estimate (SE). Data plotted along a 1:1 line 
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Figure 4.2: Predicted Chla content during the rainy season (October), based on teh 

regression equations from Table 4.4. T-observed value (T), standard error of 

estimate (SE). Data plotted along a 1:1 line 
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Among the 14 VIs that were significant estimators for leaf Chla content only the 

G_M1 and the PSSRa showed poor estimations of leaf Chla content for both seasons. The 

Vog1 had the highest recorded R2 and T-observed values for the dry season (R2=0.8 and 

T=28) which is consistent with the study conducted in 2009 by Zhang et al. (2012). With 

regards to the rainy season, the REIP showed the highest R2 (0.73), followed by the 

MCARI/OSAVI (0.70) and then the Vog1 (0.68). 

4.4 Discussion 

With the aim to understand which of the published VIs would be associated with 

Chla content during the dry and rainy seasons I believe that the multivariate statistical 

analysis that I employed does provide a more than adequate means for examining ability 

of a given VI to predict Chla content in mangrove leaves. An important observation in 

this study was the a priory multivariate PCA utilized on both seasons datasets for 

analyzing multiple co-variability between VI and the Chla content. As a result, the PCA 

process simplifies an a posteriori linear analysis between just those VI that have better 

co-variability and the leaf Chla content. 

For this investigation, it is evident that the accuracy in estimating mangrove leaf 

Chla content does vary between the two seasons even when considering the same VI for 

the same trees. Specifically, these results would indicate that remote sensing estimations 

of Chla are most accurate when carried out during the dry season for these sub-tropical 

mangrove forests. It is plausible that higher moisture content in the mangrove leaves 

during the rainy season and the increase in leaf Chla content (Flores-de-Santiago et al. 

2012) could be influencing the ability of the VI to predict leaf Chla content. 

Consequently, for separating the condition of stressed mangrove forests hyperspectral 

measurements should ideally be taken in the dry season. 

With regards to the study conducted in the dry season by Zhang et al (2012), I 

obtained similar results for the optimal VI with a PCA process and a more limited 

hyperspectral data range. In my study I used 450-1000 nm as compared to 350-2500 nm 

from Zhang et al (2012). Although I could not use some of the VI that required 

wavelengths from 1000-2500 nm, the ASD HandHeld unit used in my study showed to 
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be as useful for leaf mangrove hyperspectral estimations of leaf Chla content. Moreover, 

while the current study demonstrates that hyperspectral estimation of leaf Chla content on 

mangrove forest greatly depends on the season, I am  unsure as to how well these 

algorithms will perform at the canopy level. Consequently, it is suggested that further 

studies be extended to include the canopy spectra. 

In regards to the VI themselves, a common observation in this study was the 

variation observed in regards to the predicting abilities of the many VI used for mangrove 

leaf Chla estimation. Although the equations for each of the 14 VI that successfully 

predict leaf Chla content were very different, the selection of wavebands used in such 

algorithms was limited. For example, the G_M1, L_G_l2, MCARI/OSABI, MSR, ND705, 

TCARI/OSAVI, and Z_T1 included just the 550, 700, 705, 710, and 750 nm. The C_1, 

GNDVI, MCARI, PSSRa, REIP, and TCARI included 670 or 800 nm, and finally the 

Vog1 was based on the 720 and740 nm wavebands. 

It is important to note that the VI which had its absorption center wavebands 

between 670-780 nm (the red-edge position) had the highest R2 and T-observed values. In 

contrast, VI that included just the 680 nm region and above 780 nm such as the LCI, 

NPCI, PSRI, PSSRa, and the SIPI appear to quickly saturate at low Chla levels (Wu et al. 

2008) and therefore become insensitive to high Chla content. The aforementioned pattern 

has been described by Wang and Souza (2009) for the same three mangrove species but 

within tropical Panama. They found that stress sensitivity was greater for wavelengths at 

605, 695, 710, and 760 nm where absorption by Chla is relatively weak. At these 

wavelengths, even a slight drop in leaf Chla content caused by adverse environmental 

factors results in a large increase in leaf reflectance. 

With the exception of the PSSRa, these VI were not significant with Chla content. 

The PSSRa has been previously shown to have an extremely strong relationship with the 

concentration per unit area of Chla(Blackburn 1998). However, for this sub-tropical 

mangrove forest the low T-observed values calculated (15 in dry season, 8 in rainy 

season) would suggest a poor estimation of leaf Chla content as compared to other VI. 

Additionally, Blackburn (1999) found that the PSSRa remains sensitive to Chla over a 
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wide range of concentrations in deciduous trees but in my study heteroscedasticity was 

evident as scatter about the regression model increased with pigment content. 

Consequently, the use of the PSSRa in estimating mangrove leaf Chla content decreases 

during the rainy season when an increase in leaf Chla content occurs for this type of 

forest. 

In the case of the traditional and most widely used VI for vegetation assessment, 

namely the NDVI and the SR, I found a consistently poor ability to predict mangrove leaf 

Chla for both the dry and rainy seasons. This could be explained by the fact that the 

NDVI and SR are based on the contrast between the maximum absorption in the red due 

to chlorophyll pigments and the maximum reflection in the infrared caused by leaf 

cellular structure (Jordan1969). Therefore, improved indices such as the G_M1, L_G_l2, 

MCARI/OSABI, MSR, ND705, TCARI/OSAVI, and Z_T1 have been developed in order 

to linearize their relationships with vegetation biophysical variables. The good results 

from the aforementioned VI can be explained by the integration in their equation of ratios 

that have maximum sensitivity and are highly correlated to leaf Chla content (R500, R700, 

and R750) (Gitelson and Merzlyak 1996; Haboudane et al. 2004). It has been reported that 

VI that integrate reflectance ratios around R500, R700, and R750 may reduce the effect of 

disturbances such as the non-photosynthetic material (Wu et al. 2008), and are relatively 

less insensitive to leaf biophysical factors and structure variations (Sims and Gamon 

2002). In addition, such wavebands can estimate Chla content at canopy and leaf level by 

tracking subtle changes of pigment content variations (Zarco-Tejada et al.2001). 

However, for this type of mangrove environment, the ND705 was found to be a poorer 

estimator of Chla content as compared to MCARI/OSAVI, TCARI/OSAVI, or MSR 

which also only used the 700 and 750 nm from the red-edge region. The addition of the 

wavelength at 550 nm (e.g., MCARI/OSAVI, TCARI/OSAVI) has also been found to be 

extremely useful in pigment content determination (Wu et al. 2008). The reasons for this 

could be explained by the similarity of the R550 with the red-edge wavelengths (Horler et 

al. 1983). Furthermore, the R550 relies on its location between two wide bands of strong 

pigment absorption. However, the results from my study suggest that the combination of 

the R550 with the red-edge wavelengths was not as important for mangrove leaf Chla 

determination. 
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I have shown that VI that include the R500, R700, and R750 wavelengths correlates 

reasonably well with the Chla content in mangrove leaves. However, it is important to 

note that wavelengths (R670 or R800) included in the C_1, GNDVI, MCARI, PSSRa, REIP, 

and TCARI resulted in a lower, but still significant correlation with Chla content. Thus, 

such potential in estimating Chla content could be explained by the fact that Chla plays a 

major role in light absorption in the range of 530-570 nm (Gitelson et al. 1996) as well as 

at longer wavelengths (e.g., 800 nm Gitelson and Merzlyak 1997). Moreover, in a 

previous study by Wang and Souza (2009) the near-infrared region (780-810 nm) was 

also considered the most important waveband for discriminating these three mangrove 

species. However, in my study the link between pigment content and the near infrared 

reflectance was not of key importance for the accurate estimation of Chla. It has been 

suggested by Daughtry et al. (2000) that the MCARI holds a great potential for pigments 

and LAI estimations even though this index does not include a near-infrared wavelength 

in its equation. Hence, spectral vegetation indices that combine reflectance of near-

infrared and other visible bands (e.g., MCARI) are responsible to leaf chlorophyll content 

(Daughtry et al. 2000). It was not unexpected that the MCARI developed good 

estimations of Chla content in mangrove leaves, mainly because this index was designed 

to measure the chlorophyll influence in the red and red-edge regions (Daughtry et al. 

2000). In the case of the RDVI, this index resulted in poor leaf Chla estimation that could 

be explained by the fact that RDVI presents weak linearity and high variability with 

chlorophyll saturation (Haboudane et al. 2004). In contrast the MTVI and MCARI, 

developed by Haboudane et al (2004), were designed to be less sensitive to chlorophyll 

content variations for precision agriculture. In my study MTVI1, MCARI1, MTVI2, and 

MCARI2 were not good predictors of Chla content. Only the TCARI index, developed by 

Haboudane et al (2002), was found to be a good estimator for this mangrove forest. 

Moreover, Broge and Leblanc (2001) reported that the SAVI and the MSAVI can be used 

to be good indicators of greenness measure and relative insensitivity to low chlorophyll 

effects. However, in this study both were not found to be suitable for leaf Chla 

estimation. 
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According to Zhang et al. (2012), TCARI and Vogelmann’s Index (Vog1 in this 

study) both with green and red-edge wavebands in their equations, recorded the highest 

potential for predicting Chla content in several species and conditions of mangrove 

leaves. Even though Vog1 did not present the highest R2 for the rainy season, the R2 

difference between the Vog1 and the two VIs that presented the highest R2 (REIP and 

MCARI/OSAVI) was only of 0.05 and 0.02 respectively (Table 4.4). Consequently, this 

would support the notion that the Vog1 (R740/R720) is the optimal VI for mangrove leaf 

Chla estimation for sub-tropical environment. Finally, it is important to note that in order 

to produce maps of mangrove cover, VI are initially required at the leaf level using 

hyperspectral data and empirical-derived relationships. Following this leaf-level, the 

scale can shift up to the canopy-level and eventually towards multispectral imagery. 

Therefore, there is the continued need to assess the predictive capability of VI across a 

range of mangrove species and, as shown in this study with seasons, across a variety of 

environmental conditions. 

The results of this investigation indicate that for sub-tropical mangroves of the 

Pacific coast of Mexico the accuracy of and selection of hyperspectral vegetation indices 

in estimating leaf Chla content can vary according to the season in which the data are 

collected. For this particular mangrove system it was found that the dry season was more 

ideal for estimating leaf Chla content. Moreover, it is suggested that the use of PCA 

which combines leaf hyperspectral properties with the leaf Chla content can allow 

scientists to more readily identify the influence of seasonality on the Chla content 

estimations from the most commonly employed hyperspectral vegetation indices. It is 

suggested that the results may also be useful for future analysis of interactions between 

hyperspectral data with mangrove canopy cover. By up-scaling the hyperspectral 

properties of mangrove leaves, the results from this study could be used to analyze the 

abilities of other remote sensing sensors for mapping of mangroves across a variety of 

environmental conditions. 
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Chapter 5  

5 An object-oriented classification method for mapping 
mangroves in Guinea, West Africa, using multipolarized 
ALOS PALSAR L-band data.4 

5.1 Introduction 

To date, many studies have been conducted to examine the use of remotely sensed 

data from spaceborne platforms for monitoring mangrove forests. However just a few 

have assessed the use of these data for estimating and spatially predicting quantitative 

measurements (e.g. Green et al. 1997, Kovacs et al. 2004, Kovacs et al. 2005, Heumann 

2011). In the past, several authors have published positive correlation between in situ 

biophysical properties (e.g. LAI) and pixel-based remotely estimated vegetation indices 

derived from optical satellite imagery (e.g. Ramsey and Jensen 1996, Green et al. 1998, 

Kovacs et al. 2010). They suggest that highly accurate estimated composite maps of 

biophysical properties can be created from these sensors. 

Although there are many advantages of using optical imagery for mapping 

mangrove forests a major limitation is the availability of cloud-free scenes. In many 

tropical and subtropical zones, the presence of persistent cloud cover is the norm and thus 

the availability of useful optical data is limited. Hence, the use of Synthetic Aperture 

Radar (SAR) could be an alternative to traditional optical data. Unaffected by cloud 

cover, SAR imagery can provide distinctive information on surface areas based on the 

interaction between active energy and the variability of geometric properties and the 

dielectric constant of ground features (Ulaby et al. 1986). Due to the commonly persistent 

flooded ground and moderately flat terrain of mangrove forests, the backscatter 

mechanism is enhanced within making it an ideal forest canopy for SAR assessments 

                                                 
4
 A version of this chapter has been published: Flores-de-Santiago F., Kovacs JM., Lafrance P. (2013). An 

object-oriented classification method for mapping mangroves in Guinea, West Africa, using multipolarized 
ALOS PALSAR L-band data. International Journal of Remote Sensing. 34(2): 563-586. 
(http://dx.doi.org/10.1080/01431161.2012.715773). 
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(Hess et al. 1990). One example is provided by Kovacs et al. (2006), in which they 

showed that spaceborne SAR, specifically fine beam co-polarized HH RADARSAT-1 

data, can be used for extracting biophysical parameter data from mangrove forests with 

some degree of accuracy. In this investigation, Kovacs et al. (2006) were able to discern 

dead wetland stands from healthy ones due to a significant relationship between LAI and 

the corresponding RADARSAT-1 fine beam backscatter coefficients. Using coarser 

spatial resolution but multipolarized ENVISAT C band data, Kovacs et al. (2008a) also 

showed the importance of multipolarized data for accurate monitoring of these forests. 

An important addition to the earth observation systems available for mangrove 

assessment is the Japan Aerospace Exploration Agency’s (JAXA) Advanced Land 

Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) 

(Rosenqvist et al. 2000). In contrast to shorter wavelengths (e.g. X-band, C-band), L-

band can penetrate to greater depth in high biomass canopies and thus the backscatter is 

less likely to saturate in these conditions (Mougin et al. 1999). One of the advantages of 

the ALOS PALSAR over its predecessors is the dual rather than single polarization data 

that can be acquired. To date L-band SAR data has shown to be useful for mapping 

mangrove extent and zonation as a function of structural differences between species and 

growth stages in Australia, New Guiana, and Malaysia (Lucas et al. 2007). It has been 

suggested that the inclusion of L-band HV data will provide increased opportunities for 

differentiating between mangroves zones, including different species, growth stages or 

biomass levels (Lucas et al. 2006). Despite these many advantages, little research has 

been conducted using ALOS PALSAR data over large mangrove areas (Heumann 2011). 

Moreover, there is little information regarding the potential to use these data for other 

classification methods, particularly object-based classification. 

While traditional pixel-based classification have been used for extracting and 

monitoring mangrove zones (Green et al. 1998, Manson et al. 2001, Kovacs et al. 2005, 

Kovacs et al. 2009, Kovacs et al. 2010), the development of new techniques such as 

object-based classification, need to be demonstrated for detailed characterization of 

mangrove forests (Heumann 2011). Object-based classification is a relative recent 

technology where textural information is used in addition to spectral information for 
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classifying data (Blaschke and Hay 2001). It is particularly useful for extracting the 

image-object relation rather than single pixels, which involves the identification of 

homogenous groups of pixels called objects which have similar spectral and/or spatial 

characteristics. As a result, objects (i.e. segments) are created by using different ratios of 

color-shape, and smoothness-compactness. These newly created objects have additional 

spectral information as compared to single pixels including mean values, median values, 

minimum and maximum, and variance per band (Hay and Castilla 2008). In addition, the 

object-based classification could include a variety of conditions such as spectral/spatial 

information for each object, texture, context, and shape (Herold and Scepan 2002). 

 The main purpose of this investigation was to determine the level of accuracy 

which could be achieved using an OBIA approach to L-band ALOS PALSAR single 

(HH) and dual (HH+HV) polarized data for classifying different species and conditions 

of mangrove typical of the west African coast. As a secondary objective, I also attempted 

to identify the ideal SAR filter for use in this OBIA classification procedure.  

5.2 Methods 

Guinea possesses a relatively extensive freshwater system with 1161 rivers and 

drainage basins, ranging in size from five to 99 168 km2 (NOAA 2011). The annual 

rainfall for this region often exceeds two meters, but a distinct dry season extends from 

December to May (Courtin et al. 2010). In lower-Guinea (Prefectue du Forecariah), the 

flood plains and tidal areas result in an elaborate estuarine system supporting extensive 

mangrove forests which are central to the local economy (Kasisi 2002). For this study I 

focused on the islands of Mabala and Yélitono located at the lower end of the Forecariah, 

Tana, and Melacore rivers in the southern coastal zone of Guinea, West Africa (Fig. 5.1). 

The two islands have a terrestrial area of approximately 134.6 km2, and the coast is 

influenced by semidiurnal tides with a range of up to three meters (NOAA 2011). 

According to Courtin et al. (2010) the local population is represented primarily by the 

autochthonous Soussou ethnic group, who are located in small and dispersed settlements 

and whose main activities are agricultural, fishing, and freshwater collection.   



 

According to the FAO (2007) and Kovacs et al. (2010), there are six mangrove 

species that can be found in the southern coast of Guinea: the red mangroves (

mangle, R. racemosa, R. harisonii

mangrove (Laguncularia racemosa

Figure 5.1: Location of the mangrove islands of Guinea, Western Africa

According to the FAO (2007) and Kovacs et al. (2010), there are six mangrove 

species that can be found in the southern coast of Guinea: the red mangroves (

mangle, R. racemosa, R. harisonii), the black mangrove (Avicennia germinans

Laguncularia racemosa), and the button wood (Conocarpus erectus
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According to the FAO (2007) and Kovacs et al. (2010), there are six mangrove 

species that can be found in the southern coast of Guinea: the red mangroves (Rhizophora 

Avicennia germinans), the white 

Conocarpus erectus). 

 

: Location of the mangrove islands of Guinea, Western Africa 
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Kovacs et al. (2010) reported that white and button wood mangroves were rarely 

found and that no uniform stands were encountered in this area. Consequently the 

mangrove classification that they assessed corresponds to: tall red mangrove (Rhizophora 

racemosa), medium red mangrove (R. racemosa), dwarf red mangrove (R. mangle and R. 

harisonii), and black mangrove (Avicennia germinans). 

Given the persistent cloud cover on this tropical zone, two scenes of ALOS 

PALSAR L-band data were collected for this region: a single polarized (HH) 6.25 m 

pixel spacing scene dated February 2007, and a dual polarized (HH+HV) 12.5 m pixel 

spacing scene dated October 2007 (Table 5.1). Both SAR data were spatially corrected by 

registration to a previously geometrically corrected high spatial resolution scene (Kovacs 

et al. 2010). In total 20 ground control points were used resulting in an overall root mean 

square error of 0.68 for the HH and 0.47 for the dual polarized images. 

Table 5.1: SAR data collected from the ALOS-PALSAR space-borne sensor 

Sensor ALOS-PALSAR Fine 
Mode 

ALOS-PALSAR Fine 
Mode 

Date of Acquisition 
Time of Acquisition 

2007-10-14 
23:35:07 

2007-02-21 
23:35:37 

Radiometric 
Resolution 

16-bit 16-bit 

Pixel Spacing 12.5 m 6.25 m 
Polarization HH+HV HH 
Frequency (L-band) 1270 MHz 1270 MHz 

The mangrove classification from Kovacs et al. (2010) included four classes that 

were mapped using a combination of optical data from IKONOS-2, QuickBird, and 

Airborne (Leica-ADS40) remotely sensed data. However, in this study it was not possible 

to separate three of the four mangrove classes as there was no difference in the 

backscatter decibel values between the tall and medium red mangrove which are the same 

species (R. racemosa). The medium red mangrove forms the transition zone between the 

tall red mangrove and the dwarf red mangrove, the later represented by R. mangle and R. 

harisonii.  Consequently, for this investigation the classes examined were tall red 

mangrove (Rhizophora racemosa), dwarf red mangrove (R. mangle and R. harisonii), and 

black mangrove (Avicennia germinans) as shown on figure 5.2. The difference in the 
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decibels from the mangrove classes was assessed by extracting backscatter information 

from 63 training sites (Fig. 5.1) on both the single (HH) and dual (HH+HV) polarized 

scenes. These training sites were selected based on a field campaign carried out from 

March 13th until April 6th 2008. The sub-meter GPS locations of each of the 63 training 

sites were found in both the single and the dual polarized scenes and the extraction of the 

mean values from the decibel were recorded for each of the three mangrove classes.  

 

Figure 5.2:Characterized representation of the land cover classes examined for the 

classification: (a) Saltpan, (b) Tall Red Mangrove, (c) Dwarf Red Mangrove, (d) 

Black Mangrove) 
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The resulting minimum random point number was 557.  However, for the 

accuracy assessment used a value of 598. The first level of classification was performed 

with three aggregated broad classes (saltpan, mangrove, and water/shallow ponds). A 

second level of classification was also examined which including the subdivision of the 

general mangrove class into three new classes: black mangrove, dwarf red mangrove, and 

tall red mangrove, resulting in a total of five classes. 

The accuracy for both classifications was assessed in detail using error matrices 

and their associated statistics: overall accuracy, class producer accuracy, class user 

accuracy, and the kappa statistic (Jensen 2005). For the single and dual polarization 

accuracy assessments, 598 ground truth validation points, selected in a stratified random 

sample, were used. All points were verified using a high resolution optical airborne false 

color composite image (NIR, R, G), collected at a 0.5 m spatial resolution, and from the 

classification maps of Kovacs et al. (2010).  In addition, numerous photos and video, 

taken during the field campaign, were used as reference. The producer and user accuracy 

were examined for individual class assessments when the overall accuracy was similar 

amongst the scales at level-1 and level-2 classifications. 

All processing of the object-based segmentation and classification was completed 

using Definiens Professional Earth 7.0 (formerly eCognition) software (Definiens AG, 

Munich, Germany). Using the multiresolution segmentation process it is possible to 

create objects using information about the spatial relations existing between the SAR 

pixels, and analyzing the spectral reflection depending on the ratios between shape 

(compactness and smoothness) and color (spectral information) all of which can be 

weighted by the user (Laliberte et al. 2004). There is little knowledge about object-based 

classification on mangrove forests. However, the flooded terrain and different mangrove 

classes used made it possible to assess the shape and color criteria based on a relatively 

simple routine for both scenes (Figs.5.3 and 5.4). 

I used several trial and error procedures to first understand how the segmentation 

process could be affected by changes in the shape and color relationship. Following the 

trial and error nature of this test, the shape/color ratio was kept at the “best” visual 
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interpretation from the SAR image. The next step consisted of altering only the 

smoothness/compactness ratios from the optimal shape/color relation in order to assess 

which parameter settings best captures the objects of interest (Figs. 5.3 and 5.4). 

Once the optimal shape/color and compactness/smoothness ratios were selected to 

represent the “optimal” image objects conditions, the scale parameter was tested. The key 

parameter in multiresolution segmentation is a unitless variable of scale that is related to 

the image’s pixel size (Dingle and King 2011). In principle, there are unlimited choices 

of scale parameter during the multiresolution segmentation stage. The final decision of 

the scale parameter is, however, often made by an interpreter based on the visual 

inspection of the image, rather than quantitative criteria (Wang et al. 2004a). In this 

study, I used several series of scales for the single (HH) polarized (Fig.5.3), and the dual 

(HH+HV) polarized data (Fig.5.4).  The first hierarchical level of classification (i.e. 

level-1) corresponded to three land cover classes (saltpan, mangrove, and water/shallow 

ponds). To date, the scale parameter selection for this type of segmentation has been done 

mostly by trial and error (e.g. error assessment). In this study after each classification at 

the level-1 I used the 598 random reference points to identify the optimal scale. 

During the classification at level-1, the first rule-base consisted of a separation 

between water/shallow ponds from land using training data generated by the mean 

backscatter values from the representative objects. The second rule-base included a 

separation between saltpan and mangrove from the previous land class area using specific 

mangrove and saltpan site locations from the field work.  This resulted in a relatively 

easy classification process between the three classes in part due to the clear separation in 

the decibels from the water, saltpan, and mangrove forests within the single (HH) 

polarized scene (Fig.5.3). For the dual (HH+HV) polarized scene, I used a series of steps 

in which the first rule was the application of the decision tree from the HH data for the 

three general classes (Fig.5.3) which was then followed by the additional rules for the HV 

data (Fig.5.4). 

 

 



92 

 

 

Figure 5.3: Flowchart for the HH L=band ALOS PALSAR data 
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Figure 5.4: Flowchart for the HH+HV L-band ALOS PALSAR data 
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Once the optimal multiresolution scale at level-1 was selected, I proceeded to 

create the second level of classification (level-2), which corresponded to the three more 

refined mangrove classes (tall red, dwarf red, and black mangrove). In this cycle, I 

merged the objects from the previous mangrove class, and a second multiresolution 

segmentation was performed only within the mangrove class from level-1. A similar 

process from level-1 was employed in level-2 where several values for the objects’ scales 

were tested in order to evaluate their impact on the classification accuracy. From the 598 

random points from level-1, I subdivided the mangrove points into three mangrove 

classes in order to obtain five new aggregated random points for the accuracy 

assessments. Classification was conducted first on the single HH polarized image using 

only the rule-base of backscatter information for each object depicted on figure 5.3. The 

HH+HV data classification was followed using the rule-based calculations from the HH 

data with additional information from the HV band (Fig.5.4). A decision rule based 

classifier (Jensen 2005, Lillesand et al. 2008) was then applied to both images using the 

classification hierarchy for both segmented scenes.  

Once the optimal scale was selected from level-2, I tested if the accuracy from the 

level-1 and level-2 classification object scenes could be improved by analyzing several 

filters and filter sizes. Many adaptive filters have been developed specifically for speckle 

reduction. Specifically, I tested the best known and the most commonly used digital 

speckle filters, which remove high frequency noise while preserving high frequency 

features (i.e. edges). Specifically, I examined the Lee Speckle Filter (FLE) (Lopes et al. 

1990), the Enhanced Lee Speckle Filter (FELEE) modified by Lopes et al. (1990), the 

Kuan Speckle Filter (FKUAN) (Kuan et al. 1985) and the Frost Adaptive Filter 

(FFROST) (Frost et al. 1982) for both the single and dual polarized scenes. 

The FKUAN filter is based on a Minimum Mean Square Error (MMSE) criterion 

(Gagnon and Jouan 1997). The MMSE is applied to the multiplicative model, and then a 

signal-dependent additive noise model is applied under the form of a linear filter (Shi and 

Fung 1994). Therefore the FKUAN filter is optimal when both the scene and the detected 

intensities are Gaussian distributed.  The FLE filter is a particular case of the FKUAN 

filter when the multiplicative model is first approximated by a linear model (Shi and 
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Fung 1994) and then the MMSE criterion is applied to this linear model. The FELEE 

filter, modified by Lopes et al. (1990), introduces a hyperbolic function in the 

multiplicative model and thus could satisfy the requirement that the more heterogeneous 

the area is, the less it has to be smoothed.  The FFROST filter differs from the FLE and 

the FKUAN filters in that the scene backscatter is estimated by converting the observed 

image into an exponential impulse response (Gagnon and Jouan 1997). The resulting 

filter response is obtained by minimizing the mean square error between the observed 

image and the multiplicative model (Shi and Fung 1994).  

5.3 Results and discussion 

Table 5.2 presents a summary of the accuracy statistics from the object-based 

classification for both SAR scenes at the level-1 segmentation. Accuracy assessments 

were not performed for the shape/color of 0.9/0.1 and the shape/color of 0.5/0.5 ratios 

due to obvious poor object scene multiresolution segmentation (Figs.5.5 b, 5.5 c, and 5.6 

b, 5.6 c). For the single and the dual polarized scenes, the shape/color 0.1/0.9 ratio 

showed a better visually object segmentation (Figs. 5.5 d, and 5.6 d), with overall 

accuracies of 86.7 % and 91.0 % respectively (Table 5.2). It is clearly evident that color 

does play a key role in the objects’ formation for this type of environment. As previously 

reported by Thiel et al. (2008), SAR scenes over forested areas are strongly affected by 

the color (i.e. tone) of the image rather than the shape in which bright objects typically 

represent forested areas and dark tones represents non forested objects. Moreover, clear-

cuts or young forest stands typically possess a middle grey tone. In addition, according to 

the Definiens’s manual (2008), in images with high variability such as SAR scenes the 

color criterion minimizes the standard deviation of the pixel values within the image 

objects, and thus the multiresolution segmentation stage is improved. 

There was little observed difference between the accuracy assessments from the 

smoothness and compactness ratios as this relationship typically depends on the weight 

from the shape criterion (e.g. Lewinski and Zaremski 2004) and, for this investigation, 

the color parameter had the higher influence. Based on the aforementioned results and the 

highest accuracy assessment from the relationships (Table 5.2), I then selected a 

shape/color ratio of 0.1/0.9 with a compactness/smoothness ratio of 0.1/0.9 (Fig.5.5 f) as 
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the optimal relationship for the single polarized multiresolution segmentation. For the 

dual polarized scene, I found an optimal relationship in both the shape/color and the 

compactness/smoothness ratio of 0.1/0.9 (Fig. 5.6 e). 

 

Table 5.2: Single (HH), and dual (HH+HV) polarization modes accuracy assessment 

at level 1 (saltpan, mangrove, water), using a combination of shape/color and 

compactness/smoothness multiresolution segmentation approach 

 Shape Color Compactness Smoothness No. 
objects 

Overall 
accuracy (%) 

level 1 
 
 
HH 
Scale 
100 

0.9 0.1 0.5 0.5 447  
0.5 0.5 0.5 0.5 316  
0.1 0.9 0.5 0.5 152 86.7 
0.1 0.9 0.1 0.9 133 87.5 
0.1 0.9 0.9 0.1 183 88.7 

 
 
HH+HV 
Scale 20 

      
0.9 0.1 0.5 0.5 2369  
0.5 0.5 0.5 0.5 1660  
0.1 0.9 0.5 0.5 766 91.0 
0.1 0.9 0.1 0.9 696 92.3 
0.1 0.9 0.9 0.1 929 91.0 

As expected there was an inverse relationship between the number of objects and 

the scale parameter for both images (Figs. 5.7 a, 5.7 b). For both SAR data, the overall 

accuracy increases up to a scale of approximately 50 beyond which it decreased. For the 

single (HH) data, the optimal scale was 40 with an overall accuracy of 91.1 %.  With an 

average object area of 130 ha for this level, the objects often merged several mangrove 

species. Moreover, bigger objects often separated large areas of saltpan and water. 

According to Table 5.3, using this scale results in a classification where the mangrove 

and water classes have higher producer and user accuracies than the saltpan class and 

where most of the error is due to mangrove misclassified as saltpan. From Fig. 5.7 c, it is 

also apparent that this misclassification only increases with an increased scale.  
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Table 5.3: The error matrix for the single pol (HH) data at level-1 using a 

multiresolution segmentation scale of 40 

Class Reference data 
 Saltpan Mangrove Water User’s accuracy 

(%) 
Saltpan 65 8 6 82.3 
Mangrove 29 308 5 90.1 
Water 1 4 172 97.2 
Producer’s accuracy (%) 68.4 96.3 94  
Overall accuracy (%) 91.1    
Overall Kappa statistic (%) 0.84    

For the dual (HH+HV) data, I found the optimal scale at a level of 20 which 

produced an overall accuracy of 92.3 % (Table 5.4) and an average object area of 130 ha. 

With regards to increasing scale and overall accuracy, a similar pattern to HH was found 

(Fig. 5.7). However, the overall accuracy of the dual polarized was consistently higher. 

Consequently, it is apparent that even with a coarser spatial resolution and higher average 

object area, the addition of the HV helps to improve the classification of the mangrove at 

this level. Lucas et al. (2007) had also suggested that L-band HV data could be used as a 

reliable source for delineating different mangrove zones in Australia and Malaysia based 

on the species stage. The producer and user accuracies for the three classes were higher 

when compared to the single polarized data. There was little difference in the user 

accuracy with an increase in scale (Fig. 5.7 f). However, the saltpan class once again 

indicated the lowest producer accuracy (81.1 %) with the misclassification of mangrove 

(Table 5.4). The misclassification of mangrove as saltpan may have resulted from sparse 

mangrove stands where little backscatter occurs (i.e. dark tones) in contrast to healthy 

mangrove ones with higher backscatter (i.e. lighter grey tones, Kovacs et al. (2006, 

2008b)). 



 

Figure 5.5: Multiresolution segmentation objects. HH L

(a). Objects for: (b) shape=0.9, compactness

(d) shape=0.1, compactness=0.5

compactness=0.9 

 

: Multiresolution segmentation objects. HH L-band ALOS PALSAR

. Objects for: (b) shape=0.9, compactness=0.5; (c) shape=0.5, compactness=0.5; 

(d) shape=0.1, compactness=0.5; (e) shape=0.1, compactness=0.1; (f) shape=0.1, 
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band ALOS PALSAR data 

0.5; (c) shape=0.5, compactness=0.5; 

(e) shape=0.1, compactness=0.1; (f) shape=0.1, 



 

Figure 5.6: Multiresolution segmentation objects. HH+HV L

data (a). Objects for: (b) shape=0.9, compactness=0.5; (c) shape=0

compactness=0.5; (d) shape=0.1, compactness=0.5; (e) shape=0.1, compactness=0.1; 

(f) shape=0.1, compactness=0.9

 

: Multiresolution segmentation objects. HH+HV L-band ALOS PALSAR

. Objects for: (b) shape=0.9, compactness=0.5; (c) shape=0.5, 

compactness=0.5; (d) shape=0.1, compactness=0.5; (e) shape=0.1, compactness=0.1; 

(f) shape=0.1, compactness=0.9 
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band ALOS PALSAR 

.5, 

compactness=0.5; (d) shape=0.1, compactness=0.5; (e) shape=0.1, compactness=0.1; 



 

Figure 5.7: Accuracy assessment for the HH and HH+HV L

scales at level 1 

 

 

 

: Accuracy assessment for the HH and HH+HV L-band using different 
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Table 5.4 The error matrix for the dual pol (HH + HV) data at level-1 using a 

multiresolution segmentation scale of 20 

Class Reference data 
 Saltpan Mangrove Water User’s 

accuracy (%) 
Saltpan 77 12 1 85.6 
Mangrove 18 301 7 92.3 
Water 0 7 174 96.1 
Producer’s accuracy (%) 81.1 94.1 95.6  
Overall accuracy (%) 92.3    
Overall Kappa statistic (%) 0.87    

 

The highest overall accuracy for the single polarized data was found at a scale of 

15 (Fig. 5.8). However, I selected an optimal scale of 10 because the producer accuracy 

of the black mangrove decreases at a scale of 15. Unlike the level-1 classification, the 

overall accuracy of the optimal scale for the single polarized was quite poor at 57.4 % 

with an average object area of 15 ha. The object size for this scale separates patches of 

forest within the species. In particular, the producer accuracy for black mangrove and 

dwarf red mangrove were very low and the user accuracy for tall red mangrove as well 

(Table 5.5). For the HH data, it was evident that at higher scales many of the small black 

mangrove areas were incorporated into larger areas of adjacent dwarf red and tall red 

mangroves. As the segmentation becomes coarser, each object will tend to incorporate a 

wider range of image brightness values (Kim et al. 2008). Therefore, a general trend of 

increasing average variance of the objects is expected with coarse scale (i.e. decreasing 

number of objects) and each segment will tend to include more pixels from high similar 

class such as black mangrove into less similar classes like dwarf red and tall red 

mangrove. 
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Table 5.5: The error matrix for the single pol (HH) data at level-2 using a 

multiresolution segmentation scale of 10 within the mangrove area 

Class Reference data 
 Saltpan Black  Dwarf red 

mangrove 
Tall red 

mangrove 
Water User’s 

accuracy 
Saltpan 45 1 3 3 1 84.9 
Black mangrove 3 35 16 5 0 59.3 
Dwarf red mangrove 4 37 43 12 1 44.3 
Tall red mangrove 22 46 75 41 2 22.0 
Water 19 2 1 2 179 88.2 
Producer’s accuracy 48.4 28.9 31.2 65.1 97.8  
Overall accuracy (%) 57.4      
Overall Kappa 0.46      

 

For the dual polarized I chose an optimal scale of five with an average object area 

of 1.5 ha (Fig. 5.8 b). The object area for this scale was much lower compared with the 

HH data. The user and producer accuracies from the saltpan and water remained constant 

with an increase in the scale thus suggesting that most of the discrepancy was due in part 

to the three mangrove classes. According to table 5.6, it is apparent that the 

misclassification occurs amongst the various mangrove classes. Poor levels of accuracy, 

both producer and users, were found for all three mangrove classes. The poorest 

classification was observed for the red mangrove with a producer accuracy for the dwarf 

variant on only 32 % and a user’s accuracy for the tall variant of 20 %. This source of 

classification errors could be explained by the omission of fringe mangrove (i.e. tall red 

mangrove) that are less than the pixel size from the coarse dual polarized scene, resulting 

in mixed classes (Manson et al. 2001). As an example, Souza-Filho and Paradella (2003) 

were not able to perform a difference between mangroves based exclusively on pixel 

RADARSAT backscatter. 



 

Figure 5.8: Accuracy assessment for the HH and HH+HV L

scales at level 2 

 

 

: Accuracy assessment for the HH and HH+HV L-band using different 
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Table 5.6: The error matrix for the dual pol (HH+HV) data at level-2 using a 

multiresolution segmentation scale of 5 within the mangrove area 

Class Reference data 
 Saltpan Black 

mangrove 
Dwarf red 
mangrove 

Tall red 
mangrove 

Water User’s 
accuracy 

Saltpan 78 3 4 2 1 88.6 
Black 
mangrove 

4 51 30 6 2 54.8 

Dwarf red 
mangrove 

2 35 43 20 4 41.4 

Tall red 
mangrove 

10 31 60 27 5 20.3 

Water 0 0 0 0 180 100 
Producer’s 
accuracy 

83 42.5 31.4 49.1 93.8  

Overall 
accuracy 

63.4      

Overall Kappa 0.54      

 

According to tables 5.5 and 5.6 the overall accuracies improve within the HH+HV 

data. However it is important to mention that the major contribution in the overall 

accuracy between both data was a better classification of saltpan (48.4 % to 83 % 

producer’s accuracy, and 84.9 % to 88.6 % user’s accuracy) as well as water (97.8 % to 

93.8 % producer’s accuracy, and 88.2 % to 100 % user’s accuracy). The producers and 

users accuracies for the mangrove forest decreased slightly from the HH to the HH+HV 

data in particular with the black (59.3 % to 54.8 % user’s accuracy) and the dwarf red 

mangrove (44.3 % to 41.4 %). 

According to figure 5.9, the various SAR filters applied to the single polarized 

scene at a segmentation scale of 20 at level-1 did not improve the overall accuracy. The 

same outcome, although worse, was found at the level-2 classification at a segmentation 

scale of 10 (Fig. 5.9 c). Moreover, it was deemed that none of the filters, at any size, 

could be used to improve the classification of the mangroves. 

 



 

Figure 5.9: Accuracy assessment using different SAR filters from the optimal HH 

and HH+HV multiresolution scale at levels 1

c = HH level 2; d = HH+HV level 2

 

When the filters were applied to the

increase in accuracy was observed at the 3x3 size for both levels of classification. 

Beyond this filter size, the filters actually decreased the classification accuracies. A 

comparison of the error matrices of all t

and after filtering also reveals very little change in the patterns of producer and user 

accuracies (Tables 5.5, 5.6, 5.7, 5.8

 

 

: Accuracy assessment using different SAR filters from the optimal HH 

and HH+HV multiresolution scale at levels 1-2. a = HH level 1; b = HH+HV level 1; 

c = HH level 2; d = HH+HV level 2 

When the filters were applied to the dual polarized data, only a very slight 

increase in accuracy was observed at the 3x3 size for both levels of classification. 

Beyond this filter size, the filters actually decreased the classification accuracies. A 

comparison of the error matrices of all the single and dual polarized approaches before 

and after filtering also reveals very little change in the patterns of producer and user 

5.5, 5.6, 5.7, 5.8). 
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: Accuracy assessment using different SAR filters from the optimal HH 

2. a = HH level 1; b = HH+HV level 1; 

dual polarized data, only a very slight 

increase in accuracy was observed at the 3x3 size for both levels of classification. 

Beyond this filter size, the filters actually decreased the classification accuracies. A 

he single and dual polarized approaches before 

and after filtering also reveals very little change in the patterns of producer and user 
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Table 5.7: The error matrix for the dual pol (HH+HV) data at level-1 using a Lee 

3x3 filter with a multiresolution segmentation scale of 20 

Class Reference data 
 Saltpan Mangrove Water User’s accuracy 

(%) 
Saltpan 77 12 5 81.9 
Mangrove 18 303 1 94.1 
Water 0 5 177 97.3 
Producer’s accuracy (%) 81.1 94.7 96.7  
Overall accuracy (%) 93.1    
Overall Kappa statistic (%) 0.88    

 

Table 5.8: The error matrix for the dual pol (HH+HV) data at level-2 using a Lee 

3x3 filter with a multiresolution segmentation scale of 5 

Class Reference data 
 Saltpan Black 

mangrove 
Dwarf red 
mangrove 

Tall red 
mangrove 

Water User’s 
accuracy 

Saltpan 77 2 5 3 7 81.9 
Black mangrove 5 43 11 6 1 65.2 
Dwarf red 
mangrove 

2 45 57 13 2 47.9 

Tall red 
mangrove 

10 30 62 32 3 23.4 

Water 0 0 2 1 179 98.4 
Producer’s 
accuracy  

81.9 35.8 41.6 58.2 93.2  

Overall accuracy 64.9      
Overall Kappa 0.55      

 

For the single polarized data at a segmentation scale of 40, a shape and color ratio 

of 0.1/0.9, and a compactness/smoothness ratio of 0.9/0.1, the number of objects 

classified is 895. For the dual polarized data at a segmentation scale of 20, a shape and 

color ratio of 0.1/0.9, compactness and smoothness ratio of 0.1/0.9 and using a Lee filter 

of 3x3 the number of objects is 695. The main difference between the single and dual 

polarized scenes is misclassification between the saltpan and water classes as observed in 

the north east corner of the eastern island and the north western area (Fig. 5.10). It is 
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evident that the inclusion of the HV in the multiresolution segmentation from the dual 

polarized data improves the classification of saltpan. 

The number of objects in the optimal scale parameters is higher on the dual 

polarized scene as compared to the single polarized data (Fig. 5.10) increasing the 

definition of the mangrove classes on the dual polarized. The results show that the 

incorporation of the rule-based classifications within the HH band, and a second level 

decision-tree based on the HV data, improves the separation of classes with each level of 

classification. For example, as reported by Krause et al. (2004) using optical data, lower-

level objects could represent individual trees (e.g. sparse dwarf red and black mangrove), 

mid-level objects could represent a group of tree crowns of the same species and age (e.g. 

tall red mangrove), and high-level objects could represent a mangrove forest patch, such 

as the level-1 classification in this study. 

The results from my best classification, dual polarized at 64.9 %, would indicate a 

relatively comparable approach to optical mangrove endeavors. For example, Kovacs et 

al. (2010) reported an overall accuracy of 78 % with four mangrove species/conditions 

and four non-mangrove features, using IKONOS, Quickbird and airborne multispectral 

data for this particular mangrove forest. Another study using only mangrove classes (i.e. 

no other land cover/use) reported an overall classification accuracy of nearly 75 % using 

Quickbird or IKONOS data (Wang et al. 2004b).  More recently, Neukermans et al. 

(2008) report an overall accuracy of 72 % with four mangrove species using Quickbird 

multispectral imagery and a fuzzy classification scheme.  

Within the object-based classification stage, black mangrove objects were located 

more in-land as reported by Kovacs et al. (2010). Tall red mangroves were located along 

the channels in fringe zones while dwarf red mangrove in the transition zones between 

tall red and black mangrove. Some of the misclassification between the tall and the dwarf 

red mangrove objects could be due to the later being found in close proximity to saltpans 

and with limited leaf coverage. In these sparsely, dispersed canopies, the radar signal may 

not be attenuated by a thick canopy and thus double-bounce may prevail resulting in an 
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enhanced backscatter which may be similar to the healthy tall red mangrove canopies 

(Kovacs et al. 2006, Kovacs et al. 2008a, Kovacs et al. 2008b). 

For comparative sake, a series of photos and optical imagery were used to identify 

key patterns in the classification procedure. For example, figure 5.11 a shows a fringe 

black mangrove area close to the saltpan, followed by tall red mangrove in the distance. 

This pattern describes the zonation of the mangrove common to this study area. Black 

mangrove (A. germinans), is known to tolerate extremely high salinity levels and thus 

commonly associated with saltpans at some distance from the tidal channel’s influence 

(Bertrand 1999, Wilkie and Fortuna 2003). In figure 5.11 b, taken in the middle of the 

channel, it is possible to differentiate the tall red mangrove on the right side from the 

dwarf red mangrove on the left. This particular pattern was common along the channels 

and may result from the geomorphological characteristics of the system. The mixing 

regime of these frequently flushed sites may change depending on the tide and the slope 

of the adjacent banks (Bertrand 1999, Anthony 2004). As a consequence, one side of the 

tidal channel is at higher elevation with little tidal flushing (dwarf areas) as compared to 

the tall red mangrove that developed well in low sloped high tidal influenced areas 

(Kovacs et al. 2010). Figure 5.11 c shows a fringe of dwarf red mangrove along the 

saltpan with tall red mangrove in the distance. These red dwarf mangroves are typically 

found in relatively higher soil salinities. Figure 5.11 d again shows a sharp zonation 

pattern. In this case, black mangrove is at a higher elevation near the saltpan with the tall 

healthy red mangrove adjacent at a lower elevation. 
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Figure 5.10: Object-based classification of L-band ALOS PALSAR. HH level 1 

segmentation scale of 40 (a); HH level 2 segmentation scale of 10 (b); HH+HV level 1 

segmentation scale of 20 using a 3x3 Lee filter (c); HH+HV level 2 segmentation 

scale of 5 using a 3x3 Lee filter. Black rectangles represent locations for figure 5.11 



 

 

Figure 5.11: Examples of mangrove species mapping using a HH+HV ALOS 

PALSAR data object-based classification with a 3x3 Lee filter. From left to right: 

enhanced false color IKONOS composite (NIR, R, G); original ALOS HH+HV data; 

Object-oriented classification; Field photograph

 

: Examples of mangrove species mapping using a HH+HV ALOS 

based classification with a 3x3 Lee filter. From left to right: 

enhanced false color IKONOS composite (NIR, R, G); original ALOS HH+HV data; 

oriented classification; Field photograph 
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: Examples of mangrove species mapping using a HH+HV ALOS 

based classification with a 3x3 Lee filter. From left to right: 

enhanced false color IKONOS composite (NIR, R, G); original ALOS HH+HV data; 
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5.4 Conclusions 

The results of this investigation indicate that a multiresolution segmentation and 

object-based classification approach to ALOS PALSAR L-band SAR data can be used to 

provide an accurate assessment of mangrove forests. Both the single polarized (HH) and 

dual polarized (HH+HV) data were shown to be useful in separating mangrove from non-

mangrove areas using a rule-based process. At this level, the overall accuracy 

assessments for the single and dual polarized scenes were quite high at 91.1% and 92.3%, 

respectively. At the second level of classification, the overall accuracy was highest for 

the HH+HV data but major problems remained in separating the three mangrove classes. 

The accuracy assessments for the three mangrove classes were much lower with the 

highest overall accuracy being 64.9% for a 3x3 Lee filter applied to the dual polarized 

scene at a multiresolution scale of 5 and a shape/color ratio of 0.1/0.9.  Depending on the 

mangrove species present, their zonation pattern, and the surrounding land use, it is 

suggested that including relations to object features such as shape area or object length 

may improve classification using these SAR data.  For example, in other regions of the 

world where the primary agriculture activity adjacent to the mangroves may be coconut 

plantations, rather than rice patties as in Guinea, considerable confusion may occur in 

regards to the amount of backscatter relative to the surrounding mangroves. In such 

cases, object asymmetry, for example, may help separate the mangrove trees from the 

coconut trees.  As for the type of mangrove forests examined, it is suggested that the 

results of this study would be most applicable to estuarine mangrove forests of western 

Africa and the Americas where similar species (e.g. A. germinans, R. mangle, R. 

racemosa, R. harisonii) and a similar low number of mangrove species can be found. 
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Chapter 6  

6 Discussion and Conclusions 

6.1 Summary and general discussion 

Mangrove forests provide direct and indirect ecological support for many 

terrestrial and aquatic species in the tropics and sub-tropics (Cannicci et al. 2008). They 

are considered one of the most important ecosystems for carbon balance, input of 

nutrients to the ocean, and as a support for fisheries and local communities (Komiyama et 

al. 2008; Nagelkerken et al. 2008; Walters et al. 2008). Despite their major ecologic and 

economic importance, it is recognized that mangrove forests are under considerable 

degradation because of hydrological changes and anthropogenic impacts (Polidoro et al. 

2010). Due to the alarming worldwide loss of mangrove areas, biophysical information at 

leaf and canopy level is critically needed for monitoring environmental changes. Results 

from my investigation provide key elements and methodology for future research 

including seasonal environmental assessment, carbon balance models, primary 

productivity estimation, and remote sensing assessments over inaccessible large areas 

using hyperspectral and SAR data.  

Many authors have studied large areas of mangrove forests, however only a few 

used in situ biophysical variables and non-optical data, such as SAR, for monitoring 

species of mangrove under conditions of stress. Furthermore, prior to this study no 

research has been conducted on assessing seasonal variability on leaf pigment content 

using absorbance and reflectance devices over different species of mangrove. Temporal 

variability regarding leaf pigment content was assessed using information from the end of 

the dry season, and the end of the rainy season in a sub-tropical mangrove forest of the 

Pacific coast of Mexico. Despite the fact that mangroves are considered an evergreen 

forest with a constant litter fall rate throughout the year (Arreola-Lizárraga et al. 2004), 

results from my investigation indicate that the lack of fresh water availability and the 

increase of soil salinity during the dry season affected leaf pigment content and 

hyperspectral reflectance. 
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Chapter 2 assessed the seasonality of leaf Chla content within three major 

mangrove species of the Americas. Results showed a marked seasonality among the 

poor/dwarf mangrove classes, presenting a significant increase in leaf Chla during the 

rainy season in all three species. It is important to mention that the poor/dwarf classes 

were located away from the main channel with no apparent tidal circulation and were 

close to the drier saltpan area. On the contrary, the healthy stands located along the fringe 

of the main tidal channel did not present change in Chla content between the dry and 

rainy seasons. These results from Chapter 2 have particular importance in monitoring 

seasonal development of mangrove species and conditions in a mixed sub-tropical 

environment. The observed differences between the seasons would indicate a clear 

pattern that basin mangroves from the sub-tropics of Mexico depend primarily on fresh 

water availability. Consequently, knowing the seasonal changes in pigments would allow 

future remote sensing studies to identify the optimal time to acquire imagery for accurate 

biomass or LAI mapping and monitoring. 

There has been recent interest in using quick and relatively non-expensive devices 

to monitor leaf pigments in the field (Biber 2007). Absorbance instruments such as the 

CCM-200 measure the beam of light that pass through the leaf in a close chamber (Opti-

Sciences 2002). On the other hand, reflectance devices such as the ASD field Handheld 

spectrometer measure the reflected energy from the leaf in many consecutive 

wavelengths. Results from Chapters 3 and 4 showed a significant linear association 

between the CCI from the CCM-200, and the 14 vegetation indices from the ASD field 

HandHeld unit for the accurate estimation of Chla in mangrove leaves. Although both 

units are reliable for Chla quantification, differences between the two units are evident in 

the field. The CCM-200 is much easier to use and carry, while the ASD FieldSpec 

HandHeld unit requires external batteries, a fiber optic wire to attach the plant probe unit, 

and in some cases a laptop computer, making data acquisition extremely difficult in any 

mangrove environment. However, the information provided by the CCM-200 could not 

be used at canopy level. On the contrary, the hyperspectral data from the ASD 

spectrometer could be applied to airborne or spaceborne hyperspectral sensors in 

mangrove ecology. The principal objective of Chapter 4 was to use hyperspectral data 

from the ASD FieldSpec HandHeld spectrometer to assess the estimation accuracy of 
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Chla during two seasons (dry and rainy).  Results from this chapter are of utmost 

importance for future remote sensing applications such as mapping of mangrove areas 

using seasonal information from spaceborne or airborne optical sensors in large areas of 

mangrove forests. 

Multi-polarized SAR data are becoming more available for tropical areas where 

the persistent cloud cover is a major problem for optical data (Heumann 2011). However, 

most current SAR satellite sensors do not provide full polarized data. One alternative to 

improve the analysis of SAR data consists of processing the single and dual polarized sets 

of data using OBIA. However, little research has been conducted on mangrove forest 

classification using both sets of polarized images. A single (HH) and a dual (HH+HV) 

polarized imagery from the spaceborne ALOS PALSAR L-band data were acquired for 

the same area of Guinea, Africa in order to assess the most optimal set of data for 

mangrove classification at species level using OBIA. A detailed decision rule-based 

procedure was developed in Chapter 5 to incorporate OBIA to the SAR imagery over 

mangrove areas. In this study, color/shape ratios, scale parameters, and SAR filters were 

analyzed on the backscatter data and used in the object-based classification. 

In Chapter 5, the determination of the optimal scale parameter during the 

segmentation process was a major problem for both sets of SAR data.  However, the 

proposed processing procedure in Chapter 5 was based on multiple tests using the overall 

accuracy for each scale and the number of objects produced by the segmentation process. 

The results showed that it is possible to select an optimal scale for each level of 

segmentation based on a quantified category rather than a subjective scale randomly 

chosen by the researcher. Another problem presented in this study was the different 

spatial resolution scenes between the single (HH) and the dual (HH+HV) polarized 

imagery. The scales varied from image to image depending on the number of objects 

created by the segmentation process. The single polarized imagery with higher spatial 

resolution (6.25 m) was more difficult and less accurate (57%) compared to the dual 

polarized date when objects were separated from mangrove classes at level 2. The dual 

polarized scene with coarse spatial resolution (12.5 m) presented a more detailed object 

segmentation and accuracy at the same level 2 (65%) compared with the single polarized 
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scene. The results showed that the classification accuracies between the single and dual 

polarized scenes varied considerably. Moreover, the use of SAR filters did not improve 

the overall accuracy of the SAR classification. However, overall accuracies from the 

OBIA classification at level 1 (mangrove and non-mangrove) were high for both SAR 

scenes with 92% and 93% for the single and dual polarized scenes respectively. 

Consequently, the L-band from the single and dual polarized ALOS PALSAR sensor and 

the object-based classification provided a reliable assessment of mangrove and non-

mangrove classification on nearly permanent cloudy region of the tropics.  

It is important to note that this is the first study regarding mangrove classification 

using SAR data and OBIA. However, every mangrove environments depends on species 

composition and local environmental factors. As a consequence, the methodology applied 

in this study could be used in other tropical and sub-tropical latitudes, however 

calibration for the rule based classification have to be consider depending on the local 

mangrove species and classification scheme.  

6.2 Conclusion 

This thesis has developed and evaluated a number of useful techniques with the 

objective of improve ecological assessments of mangrove forests from the tropics and 

sub-tropics. Using multiple in situ approaches based on multivariate statistics analysis, 

the overall assessment of seasonal mangrove forests pigments and biophysical variables 

were possible for sub-tropical environments. Although the results from the SAR 

classification were not performed for the same sub-tropical area, OBIA showed potential 

application for mangrove forests mapping for study areas where optical data are not 

available. In general, this research demonstrated the successful application of optical in 

situ data for future mapping of mangrove areas using hyperspectral spaceborne sensors. 

However, OBIA classification using SAR data over mangrove areas is still largely 

affected by the spatial resolution and object backscatter variability.  

The seasonal analysis of leaf pigments in this thesis showed that Chla content 

variability in sub-tropical basin mangroves depends on the fresh water availability during 

the rainy season. On the contrary, fringe red and black mangroves were not affected by 
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seasonality in leaf Chla content. However, the estimation of leaf pigments using CCI and 

hyperspectral spectrometer varied considerably between the seasons. As a result, rapid 

devices such as the CCM-200 unit could be used for Chla content estimation in sub-

tropical mangroves. However, Chlb was not possible to estimate in most of the mangrove 

classes. The preprocessing PCA method for a large number of VI during the 

hyperspectral estimation of seasonal Chla content proved to be of utmost importance for 

the accurate and fast separation of those VI that presented a significant co-variability with 

Chla. Interestingly, the VI that presented the optimal mangrove leaf Chla estimation for 

sub-tropical environment was the Vogelmann Index (R740/R720) during the dry season 

Mapping mangrove areas of the tropics of Guinea using SAR data at species level were 

not as high as expected using an OBIA process. However, the separation of mangrove 

and non-mangrove areas was quite high using the HH (92%) and HH+HV (93%) data. 

Although results from the ALOS L-band classification of mangrove areas at level 2 

presented low accuracies, this thesis is the first to provide a detailed method for decision 

rule-based classification of mangrove forests using information from SAR data.  

6.3 Future directions 

Based on the results of this thesis it is suggested that frequent on-going data 

acquisitions of both biophysical and biochemical variables are necessary for effective 

ecological assessments and monitoring of mangroves. Future research could include a 

more detailed assessment of the inter-annual variability of mangrove leaf Chla content in 

tropical and sub-tropical environments.  The results from such a study could help in 

determining whether the rainy season alone affects the observed increase in leaf Chla 

content over an entire year. Although the CCM-200 unit was shown to be a good 

predictor of mangrove Chla content, the feasibility of using such unit in other mangrove 

areas of the tropics and sub-tropics remains unanswered.  Consequently, it is suggested 

that the unit be assessed for other species of mangrove that are more common to other 

regions of the world.  

The results from the Chla content estimation using close-range hyperspectral data 

could also be tested at the canopy level using information derived from airborne or 

spaceborne data (e.g. Hyperion). However, the results from this chapter of my thesis were 
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based on a pooled sample of mangrove hyperspectral data. As a consequence, the inter-

species hyperspectral variability may also be worth investigating in order to determine to 

which degree each mangrove species and condition (fringe/basin) can affect the Chla 

content estimations. Moreover, future assessments of the inter-species hyperspectral 

signature separability would be of utmost importance for ascertaining the optimal bands 

for future mapping of mangrove areas at species level from airborne or spaceborne 

hyperspectral data.  

Finally, it is suggested that the SAR classification of mangrove areas should be 

examined using information derived from the grey-level co-occurrence matrix (GLCM) 

When possible, higher spatial resolution data from SAR sensors such as RADARSAT-2 

or the yet to be launched ALOS-2 could be an option for improving the biophysical 

estimation and mapping of mangrove areas using an OBIA classification. 
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Appendices 

Appendix A: List of abbreviations 

ANCOVA  Analysis of co-variance 
ANOVA  Analysis of variance 
CCI   Chlorophyll Content Index 
CCM   Chlorophyll Content Meter 
Chla   Chlorophyll-a 
Chlb   Chlorophyll-b 
FELEE  Enhanced Lee Speckle Filter 
FFROST  Frost Adaptive Filter 
FKUAN  Kuan Speckle Filter 
FLE   Lee Speckle Filter 
GNDVI  Green normalized difference vegetation index 
LAI   Leaf Area Index 
LCI   Leaf chlorophyll index 
MCARI  Modified chlorophyll absorption ratio index 
MMSE   Minimum Mean Square Error 
MSR   Modified simple ratio 
NDI   Normalized vegetation index 
NDVI   Normalized difference vegetation index 
NPCI   Normalized pigment chlorophyll ratio index 
OBIA   Object-based Image Analysis 
OSAVI  Optimized soil-adjusted vegetation index 
PAR   Photosynthetically Active Radiation 
PCA   Principal Component Analysis 
PRI   Photochemical reflectance index 
PSRI   Plant senescence reflectance index 
PSSRa   Pigment specific simple ratio 
RARSa  Ratio analysis of reflectance spectra 
RDVI   Renormalized difference vegetation index 
REIP   Red-edge inflection point 
SAR   Synthetic Aperture Radar 
SAVI   Soil adjusted vegetation index 
SE   Standard Error 
SIPI   Structural independent pigment index 
SR   Simple ratio 
TCARI  Transformed chlorophyll absorption ratio index 
TChl   Total chlorophyll 
TVI   Triangular vegetation index 
VI   Vegetation Indices 
Vog1   Vogelmann’s Index 
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