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ABSTRACT 

 

Chronic diseases such as type 2 diabetes and the Metabolic Syndrome create enormous 

burdens on society. Epidemiological studies now strongly implicate intrauterine growth 

restriction (IUGR) for increasing the risk of developing chronic diseases later on in life. 

However, the molecular mechanisms underlying how IUGR leads to the increased 

susceptibility to these metabolic diseases in adulthood is not well understood. The Liver-

X-Receptor (LXR) is a nuclear receptor involved in cholesterol, glucose, and lipid 

metabolism. LXR acts to decrease gluconeogenesis through repression of glucose-6-

phosphatase(G6Pase), phosphoenolpyruvate carboxykinase(PEPCK), and 11β-

hydroxysteroid dehydrogenase type-1(11β-HSD1). Using a well-characterized model of 

maternal protein restriction in rats, this study attempts to elucidate the role of LXR in the 

long-term programming of impaired glucose homeostasis. It was discovered that altered 

expression of LXR during the gestational and neonatal period predisposes the fetus to 

impaired glucose tolerance in adult life through LXR-mediated activation of the 

gluconeogenic genes G6Pase, PEPCK, and 11β-HSD1. 
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Chapter One: Introduction - Literature Review 

 

 

 

 

 

 

Excerpts of this chapter have been previously published: T. Vo & D.B. Hardy. Molecular 

mechanisms underlying the fetal programming of adult disease. Journal of Cell 

Communication and Signaling. (6)3: 139-53, 2012. 
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Introduction and Literature Review 

1.1 Chronic Diseases and the Metabolic Syndrome 

Chronic, non-communicable diseases create a vast burden on society, both 

socially and economically. Non-communicable diseases rather than infectious diseases 

are now the leading causes of death worldwide. For instance, in the United States, 

cardiovascular disease is the number one cause of death, responsible for almost 30% of 

all deaths in the country1,2. Other chronic illnesses include hypertension, hyperlipidemia, 

impaired glucose tolerance, and obesity, which, in combination, encompass the metabolic 

syndrome3. The metabolic syndrome is defined by the following criteria: abdominal 

obesity, dyslipidemia, hypertension, insulin resistance and/or glucose intolerance, a 

proinflammatory state, and a prothrombotic state4. More specifically, the metabolic 

syndrome is characterized by the following parameters: abdominal circumference ≥102 

cm in men and ≥88cm in women; triglycerides ≥ 1.7mM in men and women; fasting 

glucose ≥ 5.6mM in men and women; HDL cholesterol ≤ 1.1mM in men and ≤ 1.3mM in 

women; and blood pressure ≥130/85mmHg in men and women5. Along with obesity, the 

metabolic syndrome greatly increases the risk of developing further diseases such as type 

2 diabetes and cardiovascular disease6. To put a number on these figures, more than one 

in three Americans is obese7, while in Canada, more than one in four Canadians is obese8. 

The extensive development of these chronic diseases is not only a problem in North 

America, but worldwide as well2,9-12. The increasing prevalence of the metabolic 

syndrome and obesity is becoming apparent even in the developing world, where under 

nutrition used to be of great concern13-15. Undoubtedly, the growing incidence of these 
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chronic diseases is a worldwide phenomenon that needs to be addressed. Yet, the burden 

of these diseases is extremely complex in nature and the solutions are no less complex.  

Although the prevalence of these chronic and non-communicable diseases puts 

tremendous strain on the health care system and society, intervention with diet or drugs 

can play a significant role to reduce their incidence. For example, a meta-analysis 

prospective study, using data from 58 clinical trials as well as nine cohort studies, 

indicates that in patients with vascular disease, a 1.8 mM reduction in LDL cholesterol by 

statins resulted in a 17 % reduction in stroke and a 60% reduction in the risk of ischemic 

heart disease16. Current treatment of type 2 diabetes and the metabolic syndrome include 

improvements in lifestyle through healthy dieting and increasing exercise, along with the 

use of pharmaceuticals (e.g. metformin or glucagon-like peptide-1 (GLP-1) analogues). 

Unfortunately, these treatments are not efficacious for all individuals. For example, in 

some patients statin treatment can lead to rhabdomyolysis and hepatitis-associated liver 

failure16. As well, some patients of non-communicable diseases, such as type 2 diabetes, 

may become dependent on pharmaceuticals for their entire life and have to live with 

common side effects of the drugs (e.g. gastrointestinal discomfort, heartburn, and 

nausea), which can lead to a decreased quality of life17. Recent studies on the treatment of 

type 2 diabetes indicate that while there were improvements in risk factor control and 

lifestyle, nearly half of diabetic individuals did not reach their goals for control of their 

disease18. Thus, research is now focusing on strategies for disease prevention, in addition 

to the current interventions, to decrease the devastating burden of the non-communicable 

disease pandemic. 
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1.2 Low Birth Weight and Intrauterine Growth Restriction 

The prevalence of low birth weight babies (defined as ≤2500 g or 5.5lbs) 

worldwide is estimated to be 15.5 %, and that number is greatly underestimated19. As a 

general indicator of public health, it is imperative that we study the etiology and 

outcomes of the individuals that develop as low birth weight babies. Low birth weight 

babies are often referred to as being “small for gestational age” (SGA) and are 

traditionally defined as being born with a birth weight ≤ 10th percentile20. Evidence 

strongly suggests that SGA infants are susceptible to higher rates of mortality and 

morbidity21-23. Several definitions have arisen to classify whether an infant should be 

constituted as SGA or not. The classic definition of an SGA infant was that its weight 

was in the lowest 10th percentile for gestational age20. However, this definition does not 

take into account constitutional factors such as ethnicity, infant sex, or parity. Thus, 

optimized and specific growth curves generated for infants and fetuses of different sex, 

ethnicity, and other factors have been adopted to better classify SGA infants24-26.  

SGA infants are often a result of intrauterine growth restriction (IUGR). IUGR 

infants are defined as infants who do not fully reach their growth potential due to genetic 

and/or environmental factors27. It is postulated that approximately one third of these 

IUGR infants arise due to genetic factors, while two thirds are a result of environmental 

influence27. IUGR can also be classified into two categories, symmetric and asymmetric. 

Symmetric IUGR occurs when the entire fetus’ growth is stunted in a proportional 

manner. Asymmetric IUGR occurs when the fetus’ growth is stunted in a disproportional 

manner, such that vital organs (e.g. the brain and heart) receive the most nutrients and 

energy at the expense of other organs (e.g. liver). The redistribution of blood flow from 
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the peripheral organs to the brain is also known as the “brain sparing effect”28. The 

asymmetric growth stunted fetus usually displays a normal head circumference with a 

reduced abdominal circumference. These fetuses usually arise from cases of placental 

insufficiency IUGR29 and are at a higher risk of developing neonatal complications (e.g. 

respiratory distress, sepsis, and intraventricular hemorrhage) than their symmetric IUGR 

counterparts30. 

IUGR can arise from a variety of factors including, infection31,32, chronic 

maternal hypoxia33-35, maternal malnutrition36,37, maternal body composition and 

gestational weight gain/loss38,39, glucocorticoid exposure40, and placental dysfunction41 

(Figure 1.1). Interestingly, the spacing of pregnancies may also influence the 

development and growth of fetuses42,43, with decreased spacing between pregnancies 

correlating to subsequent lower birth weights. It should be noted that while any single 

one of these factors may influence fetal growth and development, these factors might also 

be compounded to impair fetal growth and development even further.  

 

1.3 Developmental Origins of Health and Disease 

The developmental origins of health and disease first stemmed from the “Barker 

Hypothesis” (or “Thrifty Phenotype Hypothesis”). The Barker Hypothesis suggests that 

impaired growth of the fetus during gestation strongly correlates to the development of 

chronic disease in later life44,45. One of the first pieces of evidence linking fetal life and 

chronic disease was a study done by Barker and Osmond (1986) where a strong positive 

correlation was found between the prevalence of ischemic heart disease and the 
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prevalence of neonatal and post neonatal mortality in populations throughout England 

and Wales46. Subsequent studies by Barker and colleagues found evidence that infants 

with the lowest birth weights possessed the highest blood pressures in adulthood and 

were the most likely to die from ischemic heart disease47,48.  Further evidence also 

emerged that demonstrated links between low birth weight and impaired glucose 

tolerance at age 5049 and an even stronger connection was found between low birth 

weight babies and the development of the metabolic syndrome50. Additional 

epidemiological studies have also demonstrated strong correlation between low birth 

weight infants and the development of impaired glucose tolerance and type 2 diabetes, 

cardiovascular disease, and hypertension51-57. Altogether, these studies provide 

considerable evidence that a relationship exists between prenatal growth and 

development and the development of chronic disease in later life. 

It is postulated by the Barker Hypothesis that the fetus is physiologically 

“programmed” in utero to adapt to its environment58-60. In cases of maternal nutritional 

deficiency or placental insufficiency, the fetus must program itself for a poor nutritional 

postnatal environment.  However, this adaptation becomes maladaptive when the infant is 

exposed to a dissimilar postnatal environment. An example is an environment of 

nutritional surplus. Evidence of this is supported by two studies of two different 

populations during World War II. First, a study examining the glucose tolerance of 

individuals born during the Dutch hunger winter (in World War II) found that these 

individuals had lower birth weights and impaired glucose tolerance compared to those 

born a year before or after the famine52. However, another study that examined the 

glucose tolerance of individuals from the Leningrad siege famine (also in World War II) 
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found no differences in glucose tolerance between infants born during the famine and the 

infants born outside of the siege (unexposed to the famine)61. A major difference between 

these two populations was that the Dutch hunger winter siege had lasted less than 6 

months, while the Leningrad siege had lasted 28 months. Thus, infants from the Dutch 

hunger winter siege would have received a higher nutrient intake earlier than those 

infants from the Leningrad siege, who would have continued on a low nutrient diet for 

longer postnatally62. It is believed that the Dutch hunger winter infants experienced a 

mismatch in environment and “catch-up” growth, leading to the programmed glucose 

intolerance in adulthood, while the Leningrad infants did not experience the mismatch in 

environment until much later62. Thus, it is a mismatch in the prenatal and postnatal 

environment and the accompanying maladaptation during a critical time point that is 

strongly related to the development of chronic disease in later life.  

Lastly, the concept of accelerated “catch-up” growth also appears to play a factor 

in the development of chronic disease and reduced lifespan63. Catch-up growth generally 

occurs when the development of a growth restricted organism is accelerated to 

compensate for its impaired growth in early life. While this compensation helps the 

organism grow in its early stages, this growth trajectory appears to exacerbate the 

programming of disease and decreased longevity in later life63. For instance an early 

study done by Crowther et al. (1998) found that low birth weight in addition to rapid 

childhood weight gain was closely associated with the development of impaired glucose 

tolerance64. Similarly, a study by Forsén and colleagues (1999) found that individuals at 

greatest risk for coronary heart disease were those who were born with low birth weights 

and experienced accelerated catch-up growth65. A subsequent study by Eriksson et al. 
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(2001) found similar results in males only66, while Fewtrell et al. (2000) found that 

increased plasma insulin concentrations were associated with accelerated growth patterns 

during childhood67. Additionally, the development of childhood obesity is also strongly 

related to accelerated weight gain during the first 4 months of childhood, regardless of 

birth weight68. Finally, a study in which preterm infants (usually born low birth weight) 

were given a fortified formula diet after birth (accelerated growth) displayed higher 

markers of insulin resistance during adolescence than those given a lower nutrition 

donated breast milk diet69. Taken together, these human studies provide strong evidence 

for the role of accelerated postnatal growth in contributing to the development of adult 

chronic diseases, especially in cases of prenatal growth restriction.  

Thus, it appears that there are two critical periods for the programming and 

development of chronic diseases in adulthood – the prenatal period and the neonatal 

period. The first few weeks of life appear to be especially sensitive to the effects of 

nutrition and catch-up growth69. This makes sense because the neonatal period is a period 

of tremendous growth and development70,71. Yet, the mechanisms behind how insults that 

occur during these critical time periods lead to the programming of adult disease are still 

under investigation. Consequently, many animal models of intrauterine growth restriction 

and fetal programming have been developed to study the physiology and 

pathophysiology of the developmental origins of health and disease.  
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1.4 Animal Models of IUGR 

A variety of animal models have been developed to study the developmental 

origins of adult diseases and fetal programming. Experiments of IUGR in animal models 

provide further evidence to support the hypothesis that impaired growth in utero via 

various maternal deficiencies leads to impairment of glucose, cholesterol, and triglyceride 

metabolism in adulthood72-75. In addition, these animal models provide avenues to 

elucidate the mechanisms behind the fetal programming of adult diseases. In utero 

deficiencies that can lead to impaired growth in humans and animals include hypoxia76, 

deficiencies in essential vitamins and minerals77, diminished protein75, total caloric 

restriction78, excess glucocorticoids79,80, and placental dysfunction41 (Figure 1.1). 

Although the correlation between impaired fetal growth and the risk for developing 

chronic disease in adulthood is undoubtedly strong, the mechanisms behind these 

programming effects are only beginning to be elucidated. A few proposed mechanisms 

underlying the fetal programming of adult disease include altered epigenetic and 

transcriptional regulation, altered nuclear receptor activities, increased oxidative stress, 

and increased endoplasmic reticulum stress resulting in protein misfolding81. Studies 

have only begun to scratch the surface in understanding the molecular events responsible 

for the altered physiology and pathophysiology of these chronic diseases. 

 

1.4.1 Maternal Protein Restriction 

 Maternal protein restriction (MPR) in animals, and especially rodents, is a well-

established model of IUGR that is used to study the developmental origins of health and 
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disease. Due to the fact that placental insufficiency during pregnancy leads to protein and 

amino acid deficiencies in the developing fetus82, the MPR model of IUGR shares many 

similarities with placental insufficiency-related IUGR83. In general, the model employs a 

protein-restricted diet (5-8% protein content) to mothers during the gestation and the 

weaning periods, which is up to three weeks after birth in rats. After the weaning period 

(or in some cases, after birth), the offspring are given a diet restored in protein (generally 

15-20% protein content). Studies from our own laboratory have found that MPR 

offspring exhibit a 15% lower fetal to placenta weight ratio and a 40% decreased fetal 

liver to body weight ratio at embryonic day 1975. Notably, the MPR model does not alter 

the sex ratio of the offspring, litter size, or food intake in the offspring75,84. 

The first few studies of maternal protein restriction in rats found that the offspring 

were born low birth weight and displayed impaired pancreas development85. Further 

studies by the same group and others found impaired pancreas function and development 

and impaired glucose tolerance in later life72,84. Petrik et al. (1999) in particular found 

changes in β-cell replication, increased β-cell apoptosis, and decreased insulin growth 

factor-2 (IGF-2) expression in the pancreas. Hales and colleagues (1996) also found 

impaired glucose tolerance in MPR offspring (at a much later age) as well as predicting 

two different mechanisms for differences seen between the glucose intolerance in males 

versus females86. They postulate that males develop insulin resistance, while females 

develop glucose intolerance due to a lack of insulin. More recent studies by Chamson-

Reig and colleagues (2009) have also found impaired glucose tolerance in MPR offspring 

occurring in a sexually dimorphic manner87.  
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In addition to the pancreas, Burns and colleagues (1997) demonstrated impaired 

liver development and function in addition to hepatic structural changes in the offspring 

of MPR rats88. Another study found increased hepatic glycogen storage in young MPR 

rats89. Furthermore, studies from our lab recently demonstrated that MPR leads to 

epigenetic-mediated repression at the Cyp7a1 promoter, an essential enzyme responsible 

for cholesterol conversion into bile acids, ultimately resulting in elevated cholesterol in 

adulthood75. Other organs that appear to be affected by MPR long-term include the 

heart90,91 and kidneys92,93. 

The MPR model in rodents can also be used to examine the effect of IUGR and 

catch-up growth. It has been previously demonstrated in our laboratory that in a model of 

MPR where protein is restored at an earlier time point (i.e. immediately after birth rather 

than after the weaning period), the offspring exhibit rapid catch-up growth, such that by 

postnatal day 21 the body weight and liver to body weight ratios between the low protein 

offspring and control offspring are unchanged75. This was apparent in both males and 

females and persisted well into early adulthood at postnatal day 130, where the body 

weights and liver to body weight ratios of the catch-up growth animals did not differ 

from the control animals. In contrast, MPR offspring that continued to receive a low 

protein diet after birth until the end of the weaning period, exhibited decreased body 

weights at postnatal day 130, suggesting that they never catch up in body weight75. 

However, in these animals, the liver to body weight ratio at postnatal day 130 was 

unchanged, suggesting that the liver eventually did catch up in growth in the offspring 

restored on a control diet after weaning. This was true for both males and females75.  
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Offspring longevity also appears to be affected in catch-up growth models of 

MPR. In MPR offspring, when protein was restored earlier, the offspring displayed a 

significantly shortened lifespan, suggesting the possibility that accelerated catch-up 

growth may be quite detrimental to growth restricted offspring86,94. One proposed 

mechanism contributing to the decreased lifespan in these accelerated catch-up growth 

offspring is impaired mitochondrial function and increased oxidative stress in the 

kidneys92,93. Other possible mechanisms include altered insulin signaling and sensitivity 

and abrogated reactive oxygen species (ROS) handling in early life95,96. In the reverse 

situation, when the offspring were not protein restricted during gestation and were given 

a low protein diet after birth, they exhibited a longer lifespan86. Ozanne & Hales (2004) 

found similar results in terms of offspring longevity97. Interestingly, they also found that 

the “reverse protein” experimental group (normal protein during gestation and a low 

protein diet during weaning) was protected against the lifespan shortening effects of an 

obesogenic diet97. 

 

 

 

 

 

 

 

 



 

Figure 1.1: Factors That May Contribute to Low Birth Weight and The 

Developmental Origins of Health and Disease

several insults) generally leads to intrauterine growth restriction and low birth weight. 
This predisposes the infant to a higher risk of developing chronic disease in adulthood. 
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Figure 1.1: Factors That May Contribute to Low Birth Weight and The 

Developmental Origins of Health and Disease. A maternal insult (or a combination of 
generally leads to intrauterine growth restriction and low birth weight. 

This predisposes the infant to a higher risk of developing chronic disease in adulthood. 
The effect of rapid postnatal catch-up growth has been demonstrated to exacerbate the 
effects of programmed chronic disease. 

13 

Figure 1.1: Factors That May Contribute to Low Birth Weight and The 

(or a combination of 
generally leads to intrauterine growth restriction and low birth weight. 

This predisposes the infant to a higher risk of developing chronic disease in adulthood. 
demonstrated to exacerbate the 



14 

 

1.5 The Liver 

The liver is known for its plethora of functions in the body. It is involved in many 

complex processes including detoxification, red blood cell decomposition, glycogen 

storage, bile production, drug metabolism, and energy metabolism. With regards to 

energy metabolism, the liver is mainly responsible for carbohydrate and lipid 

metabolism98. Through coordinated regulation of carbohydrate and lipid metabolism, the 

liver contributes an essential role in the regulation of blood glucose levels. During the 

fasted state the liver maintains a steady supply of glucose to the body via hepatic 

gluconeogenesis. In the post-prandial state, the liver increases hepatic glucose uptake to 

stimulate glycogen production and increase lipogenesis. Perturbations in the regulation of 

hepatic carbohydrate and lipid metabolism leads to the development of many metabolic-

related diseases such as type 2 diabetes99. 

 

1.5.1 Hepatic Gluconeogenesis 

 Two processes determine total hepatic glucose output: glycogenolysis, the 

breakdown of glycogen, and gluconeogenesis, the de novo production of glucose from 

non-carbohydrates (e.g. amino acids, pyruvate, lactate, and glycerol)98. Gluconeogenesis 

is influenced hormonally and by the body’s nutritional state. The rate of gluconeogenesis 

is generally determined by the activities of phosphoenolpyruvate carboxykinase 

(PEPCK), G6Pase (glucose-6-phosphatase), and fructose-1,6-bisphosphatase (FBPase)98. 

For example, in the diabetic and fasted states, the activity of G6Pase is increased100. 

G6Pase is responsible for the enzymatic conversion of glucose-6-phosphate to glucose, 
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the last step of gluconeogenesis. PEPCK is the rate-limiting enzyme that converts 

oxaloacetate into phosphoenolpyruvate, committing oxaloacetate to gluconeogenesis.  

Gluconeogenesis is mainly controlled by the actions of hormones such insulin, 

glucagon, and glucocorticoids. Insulin transcriptionally suppresses the expression of the 

gluconeogenic genes, PEPCK, G6Pase, and FBPase101. In contrast, glucocorticoids and 

glucagon stimulate gluconeogenesis. Insulin signaling appears to be essential in the 

control of hepatic glucose handling, as loss of insulin signaling in the liver leads to severe 

insulin resistance, hyperinsulinemia, impaired glucose intolerance, and an increase in the 

expression of G6Pase, and PEPCK in mice102. Regulation of hepatic gluconeogenesis is 

briefly summarized in Figure 1.2. 

G6Pase is regulated through several pathways. Generally, the insulin-mediated 

suppression of G6Pase involves suppression of the forkhead transcription factor 

(FKHR/FOXO1) by protein kinase B-α (also known as Akt)103. FKHR transcriptionally 

activates G6Pase by binding to one of two insulin response units on the G6Pase 

promoter104. Insulin signaling causes phosphorylation of FKHR, which then leads to the 

expulsion of FKHR from the nucleus and eventual degradation in the cytosol105. 

Phosphoinositide 3-kinase (PI 3-kinase) also appears to be partly involved in insulin-

mediated G6Pase suppression106. G6Pase expression can also be suppressed by the 

mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase 

1/2 (ERK 1/2) –mediated pathway, induced by the phorbol ester PMA107. Furthermore, 

G6Pase expression is downregulated by tumour necrosis factor-α (TNFα) through 

activation of necrosis factor κB (NFκB), although not through direct binding of the 
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G6Pase promoter108. Lastly, G6Pase expression has also been demonstrated to be 

repressed by the liver X receptor (LXR)109,110.  

In contrast, G6Pase expression is induced by glucocorticoids. Administration of 

dexamethasone has been shown to increase G6Pase expression and putative 

glucocorticoid response elements (GRE) have been identified on the G6Pase promoter111. 

Furthermore, the accessory protein hepatic nuclear factor (HNF) appears to be required 

for glucocorticoid-mediated stimulation of G6Pase (and PEPCK)112. Moreover, there are 

cAMP response elements on the G6Pase promoter that are responsive to cAMP 

Responsive Element Binding Protein (CREBP) binding113. 

 PEPCK is transcriptionally regulated in a similar fashion to G6Pase. The main 

suppressor of PEPCK transcription and activation is insulin114. Insulin mediates its 

gluconeogenic suppressive effects through several downstream pathways. One pathway, 

similar to G6Pase regulation, is through the activation of PI 3-kinase113. Furthermore, 

inhibition of FKHR/FOXO1 appears to play a role in the insulin-mediated repression of 

PEPCK, though through a different mechanism than G6Pase115. The transcription factor 

sterol regulatory element binding protein-1 (SREBP-1) also plays a role in the 

suppression of PEPCK expression116. However, SREBP-1-mediated suppression is likely 

to be another intermediate in the insulin-mediated suppression of gluconeogenic genes117. 

Further studies have found that insulin activity stimulates hepatic SREBP-1 expression, 

which then binds to sterol regulatory elements (SRE) on the PEPCK promoter. This 

mechanism represses PEPCK expression by blocking the binding of the stimulatory 

transcription factor SP-1118. Another proposed mechanism for SREBP-1-mediated 

repression of PEPCK is through interference with the peroxisome proliferator-activated 
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receptor coactivator-1 (PGC-1) and hepatic nuclear factor-4 (HNF-4) activation pathway 

of PEPCK119. Like G6Pase, PEPCK is also under transcriptional repression by 

LXR109,110.  

PEPCK is stimulated by glucagon, cyclic-AMP (cAMP) and transcription factors 

such as the glucocorticoid receptor (GR)113. Evidence also suggests that FKHR is 

involved in the transcriptional activation of PEPCK, although through an indirect and 

different pathway than G6Pase115,120. PGC-1 has also been found to be a key co-activator 

in the induction of PEPCK and G6Pase by binding to and co-activating FKHR121. PGC-1 

co-activation of HNF-4 and GR is also required for cAMP- and glucocorticoid- mediated 

activation of PEPCK and G6Pase122. Furthermore, PGC-1 interacts with CREBP to 

activate gluconeogenesis through PEPCK and G6Pase123. 

Aberrant overexpression of the gluconeogenic genes, G6Pase and PEPCK, has 

been found to produce glucose intolerance124,125. Rodent models of diabetes include the 

overexpression of G6Pase126,127. In fact, it is believed that while PEPCK is the rate-

limiting step of gluconeogenesis in the normal state, G6Pase may be the rate-limiting step 

of gluconeogenesis in the diabetic state128. Constant overexpression of G6Pase would 

then lead to chronic increased hepatic glucose output and decreased hepatic glycogen 

storage. It is interesting to note that overexpression of G6Pase does not necessarily lead 

to increases in resting glucose levels but it does lead to elevated glucose levels during 

oral glucose tolerance tests125. Yet, in a mouse model of PEPCK overexpression, basal 

hepatic glucose production was increased but glucose tolerance was not affected during a 

hyperinsulinemic-euglycemic clamp experiment129. Furthermore, these PEPCK-

overexpressing mice demonstrated increased expression of both G6Pase and PEPCK 
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along with insulin resistance specific only to insulin-mediated G6Pase and PEPCK 

signaling (insulin-mediated signaling of GLUT2 and glucokinase were not affected)129. 

These findings highlight the fact that while expression of G6Pase and PEPCK are 

coordinated and tightly regulated through similar pathways, they also demonstrate the 

ability to exert vastly different effects due to the many pathways involved in their 

individual expression. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1.2: A Brief Overview of the Regulation of Hepatic Gluconeogenesis.
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1.5.2 Hepatic Lipogenesis 

 The liver plays a critical role in the maintenance of triglyceride levels in the body. 

The overall level of fatty acids and triglycerides in the body is dependent on the balance 

between lipogenesis and lipolysis. The two main sites of lipogenesis are the liver and 

adipose tissue130. Together, these two tissues are responsible for the coordinated 

regulation of fatty acids and triglycerides in the body. In addition, hepatic lipogenesis is 

also tightly associated with the regulation of hepatic carbohydrate metabolism. For 

instance, one of the major functions of hepatic glycolysis is to provide carbon atoms (in 

the form of acetyl-CoA) for de novo lipogenesis98.  

Lipogenesis is highly dependent on nutritional status. For instance, carbohydrate 

intake is a major stimulator of hepatic and adipocyte lipogenesis. An increase in 

carbohydrate intake leads to an insulin spike and insulin is one of the most potent 

stimulators of lipogenesis130. Hyperinsulinemia in rats has been found to increase the 

long-term expression and activity of hepatic lipogenic genes such as fatty acid synthase 

(FAS) and acetyl-CoA carboxylase (ACC)131. Furthermore, it appears that insulin-

mediated lipogenesis requires the induction of the transcription factor sterol regulatory 

element binding protein-1, specifically the 1c isoform (SREBP-1c)132. To further link 

carbohydrate and lipid metabolism, Foretz and colleagues (1999) also found that SREBP-

1c was required for the insulin-mediated activation of glucokinase and lipogenic genes133. 

It is believed that the insulin-mediated induction of SREBP-1 is facilitated through the PI 

3-kinase pathway134.  
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Transcriptional regulation of hepatic lipogenesis is largely mediated by SREBP-

1c, the “master lipid regulator” and an isoform of the SREBP family of proteins135. Many 

of the genes involved in fatty acid synthesis possess SRE or EBOX-motifs on their 

promoters, essential sites for SREBP-1 binding98,134,136. For instance, the promoters of 

FAS and ACC possess binding sites for SREBP-1137,138. Furthermore, mice lacking 

SREBP-1 expression display a severe impairment of lipogenic gene expression135. The 

generation of fatty acids is an essential prerequisite for the generation of triglycerides. 

The rate-limiting step of long-chain fatty acid synthesis is mediated by ACC through 

catalyzing the conversion of acetyl-CoA to malonyl-CoA139. The enzyme FAS is then 

responsible for the repeated addition of malonyl-CoA subunits to acetyl-CoA through 

condensation reactions. After seven cycles, FAS forms its primary product, palmitate (or 

palmitic acid), a saturated 16-carbon fatty acid140. Stearoyl-CoA desaturase-1 (SCD-1) is 

a rate-limiting enzyme for the formation of monounsaturated and polyunsaturated fatty 

acids. It is responsible for adding a cis-orientation double bond to carbons 9 and 10 on a 

variety of acyl-CoAs but prefers palmitoyl- and stearoyl-CoA, which form palmitoleoyl- 

and oleoyl-CoA, respectively141. The resulting monounsaturated fatty acids formed by 

SCD-1 go on to form essential substrates for the production of other unsaturated fatty 

acids, triglycerides, phospholipids, and cholesterol esters141. Rodent studies have strongly 

suggested the overexpression and hyperactivity of these lipogenic genes in the 

development of hypertriglyceridemia and obesity due to their essential role in the 

formation of triglycerides through increased fatty acid production142-145. Hepatic 

lipogenesis is briefly summarized in Figure 1.3. 
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 While carbohydrate intake stimulates the induction of lipogenesis, the presence of 

polyunsaturated fatty acids leads to suppression of lipogenesis. This process appears to be 

mediated through both transcriptional and post-transcriptional mechanisms146-148. 

Lipogenic genes are also suppressed by the presence of polyunsaturated fatty acids 

through decreases in SREBP-1 expression149. Interestingly, the presence of saturated or 

monounsaturated fatty acids do not appear to affect hepatic lipogenesis149. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1.3: A Brief Overview of Hepatic Lipogenesis. 
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1.5.3 Hepatic Cholesterol Regulation 

 In addition to its role in glucose and lipid homeostasis, the liver plays a vital role 

in the regulation of cholesterol metabolism and transport. Maintenance of proper 

cholesterol levels is vital to the functioning of an organism. Cholesterol is an essential 

component of the cell membrane and is the precursor to bile acids, steroids, and 

vitamins150. Three processes, de novo cholesterol synthesis, cholesterol catabolism, and 

cholesterol absorption, mediate cholesterol regulation. The two main sources of 

cholesterol in the body come from dietary sources and de novo cholesterol synthesis. 

Although virtually every cell in the body can synthesize cholesterol, the principle site of 

de novo cholesterol synthesis is the liver150. Since cholesterol can be synthesized de novo 

in the body it is not considered an essential nutrient.  

The transcriptional regulation of cholesterol synthesis is principally mediated 

through the actions of the transcription factor SREBP-1151. When the cell detects low 

level of sterols, SREBP-1 is cleaved from the endoplasmic reticulum and translocates to 

the nucleus where it activates transcription of essentially all genes involved in the 

synthesis of cholesterol from acetyl-CoA. These genes include, 3-hydroxy-3-

methylglutaryl-coenzyme A (HMG-CoA) synthase, HMG-CoA reductase, farnesyl 

pyrophosphate (FPP) synthase, 7-dehydrocholesterol reductase, squalene synthase, and 

lanosterol 14 α-demethylase152,153.  

The regulation of sterol (including cholesterol) absorption in the body is another 

essential point of regulation in cholesterol homeostasis, although much of the process is 

still not very well understood. A majority of the cholesterol ingested into the body is not 
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readily absorbed since it is a relatively inefficient process150. Evidence for the importance 

of cholesterol and sterol absorption regulation comes from studies of sitosterolemia, a 

rare autosomal recessive genetic disorder in which there is a mutation in ATP-binding 

cassette sub-family G member 5 (ABCG5) and/or ABCG8 genes. They encode the 

proteins sterolin-1 and sterolin-2, respectively, and are both expressed exclusively in the 

liver and intestines where they increase the intake and excretion of sterols154. Patients 

with sitosterolemia exhibit elevated circulating cholesterol, and premature 

atherosclerosis. Further evidence for the role of these transporters in sterol regulation 

comes from a study where human ABCG5 and ABCG8 were overexpressed in mice, 

leading to decreased intestinal cholesterol absorption and increased secretion of biliary 

sterols155. Moreover, evidence also suggests that the ATP-binding cassette transporter 

ABCA1 may also play a role in the excretion of dietary cholesterol, in addition to its role 

in “reverse cholesterol transport” (the process of transporting cholesterol from the 

periphery to the liver via the formation of high density lipoproteins)156. These 

transporters, ABCA1, ABCG5, and ABCG8 are principally regulated by a group of 

nuclear receptors known as the liver X receptors157-159. 

Lastly, cholesterol can be eliminated in the body through bile acid synthesis, a 

process that occurs solely in the liver150. Bile acid synthesis occurs through two 

pathways, the classic pathway and the alternate pathway160. Although several enzymes 

exist in the bile acid synthesis pathways (e.g. cholesterol 7α-hydroxylase (Cyp7a1), 25-

hydroxycholesterol 7α-hydroxylase (Cyp7b1), sterol 27-hydroxylase (Cyp27), and sterol 

12α-hydroxylase (Cyp8b)), Cyp7a1 is the most studied and is the rate-limiting enzyme in 

the production of bile acids from cholesterol through the classic pathway161. Cyp7a1 is 
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responsible for the enzymatic conversion of cholesterol to form 7α-hydroxycholesterol. 

Activity of Cyp7a1 is controlled by the ratio of cholesterol to bile acids in the liver and is 

sensitive to the changing concentrations of oxysterols (derivatives of cholesterol) and 

cholesterol162. Increasing oxysterol concentrations mediate increased Cyp7a1 

transcription through LXR, while transcriptional repression is indirectly mediated 

through the bile acid receptor known as the farnesoid X receptor (FXR)162. Other nuclear 

receptors involved in Cyp7a1 transcriptional regulation include the promiscuous nuclear 

receptor known as the retinoid X receptor (RXR), involved in heterodimer formation with 

LXR, the liver receptor homologue-1 (LRH-1), responsible for basal Cyp7a1 induction, 

and the small heterodimer partner (SHP), responsible for antagonizing the actions of 

LRH-1, and ultimately decreasing Cyp7a1 expression162. 

 

1.5.4 Transcriptional Regulation of Hepatic Gene Expression: The Liver X Receptor 

The LXRs (LXRα and LXRβ), part of the 1H subfamily of nuclear receptors, are 

ligand-activated transcription factors. They have long been implicated in the homeostasis 

of cholesterol and fatty acids163,164. Although both LXRs share similar homology (~78%), 

they are expressed in different tissues and are differentially regulated in terms of nuclear 

and cytosolic trafficking150,165. Furthermore, studies have also found that both isoforms 

may be involved in different pathways in the regulation of cholesterol and 

triglycerides166. LXR transcriptionally regulates its downstream target genes by 

heterodimerizing with the retinoid X receptor (RXR) and binding to the LXR Element 

(LXRE) on the promoters of these genes. The LXRE consists of a direct repeat gene 

sequence containing the Direct Repeat-4 (DR-4) motif AGGTCA_4n_AGGTCA, where 
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‘4n’ represents a random nucleotide sequence167. When LXR and RXR are bound to each 

other, they can be activated by ligands for either partner168. LXRα is mainly expressed in 

the liver, adipose tissue, spleen, and lungs168,169, while LXRβ is expressed 

ubiquitously170.  

Known endogenous ligands for LXR include the oxysterols, which are essentially 

derivatives of cholesterol. These oxysterols include 24(S),25-epoxycholesterol and 24(S)-

hydroxycholesterol164. In general, most oxysterols have similar affinities for both LXR 

isoforms with the exception of 6α-hydroxy bile acids, which have a higher affinity for 

LXRα171. In addition to the endogenous oxysterol ligands for LXR, the non-steroidal 

agonists GW3965 and T0901317 are potent activators of LXR172,173. Natural antagonists 

for LXR include constituents of mevalonate metabolism (e.g. geranylgeraniol and 

geranylgeranyl pyrophosphate), 5α,6α-epoxycholesterol-3-sulfate (ECHS), and 7-

ketocholesterol-3-sulfate174-176. Studies have shown that LXR also possesses the ability to 

autoregulate itself177-179. These studies have demonstrated that there are LXREs present 

on the LXR promoter itself and that both endogenous and synthetic ligands for LXR can 

induce transcription of LXR. However, it appears that this mechanism of autoregulation 

is found largely in the human LXR gene, and more specifically in macrophages. 

Interestingly, peroxisome proliferator-activated receptor (PPAR) response elements 

(PPRE) have also been found on the LXR promoter indicating that ligands for PPAR (e.g. 

PPARγ) can also induce the transcription of LXR177,180.  

 Owing to its activation by oxysterols and its presence in the liver and 

macrophages, LXR has principally been implicated in regulating genes involved in the 

metabolism and transport of cholesterol157,164,181 (Figure 1.2). LXR was first found to 
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enhance expression of cholesterol 7α-hydroxylase, also known as Cyp7a1164. Cyp7a1 is 

responsible for the enzymatic conversion of cholesterol to 7α-hydroxycholesterol, the 

rate-limiting step in the classic conversion of cholesterol to bile acids. In addition to the 

role of LXR in upregulating the conversion of cholesterol to bile acids, it is also involved 

in the transport and excretion of cholesterol158,159. LXR has also been demonstrated to 

increase the transcription of the “half ATP-binding cassette transporters” G5 and G8 

(ABCG5 and ABCG8)158,159, responsible for the excretion of cholesterol and other sterols 

from the liver and intestines. Furthermore, LXR also increases the transcription of ATP-

binding cassette transporter A1 (ABCA1), which is also responsible for cellular 

cholesterol efflux to the protein, apolipoprotein A-1 (Apo-A1), an important step in 

reverse cholesterol transport157,180,182. Overall, the role of LXR in the transcriptional 

regulation of cholesterol metabolism and transport is one of great importance and is 

essential to maintaining adequate levels of cholesterol. Studies have demonstrated that 

LXRα-/- deficient mice display the complete inability to accommodate increased 

cholesterol loads183.  

In addition to its involvement in cholesterol metabolism and transport, LXR has 

also been implicated in the regulation of enzymes involved in fatty acid synthesis (Figure 

1.4). The main target of LXR in the transcriptional regulation of fatty acid metabolism is 

sterol regulatory element binding protein-1c, SREBP-1c184-186. SREBP-1c, also known as 

the “master lipid regulator”, is responsible for transcriptionally inducing many of the 

essential hepatic lipogenic genes (Figure 1.4). These genes include fatty acid synthase 

(FAS), stearoyl-CoA desaturase-1 (SCD-1), and acetyl-CoA carboxylase (ACC) among 

others137,187,188. Out of these genes, SCD-1 appears to be one of the main mediators in 
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LXR-mediated hepatic triglyceride accumulation145. Chu et al. (2006) demonstrated that 

SCD-1 deficient mice were protected against LXR-mediated lipogenic effects and even 

exhibited increased plasma HDL145. However, in addition to being regulated by SREBP-

1c, these genes (FAS, ACC, SCD-1) are also directly regulated by LXR, as they all 

possess functional LXREs in addition to functional SREs145,189,190. This is exemplified in 

mice lacking LXR, which exhibit decreased production of hepatic fatty acids184. Thus, the 

control of hepatic lipogenesis is under coordinated and complementary transcriptional 

regulation between both SREBP-1 and LXR. For instance, LXR has also been 

demonstrated to act as an intermediary for insulin-mediated SREBP-1c activation191. 

Tobin et al. (2002) found that the insulin-mediated regulatory effect on SREBP-1c was 

completely eliminated in LXR deficient mice191. This study was further supported by 

Chen et al. (2004), which demonstrated impaired activation of SREBP-1c when the 

LXREs on the promoter of SREBP-1c were disrupted192. Interestingly, lipogenic effects 

mediated by LXR appear to be primarily mediated by the LXRα isoform166,193. Studies 

done by Lund et al (2006) and Quinet et al (2006), both demonstrated that selective 

pharmacological activation of LXRβ could induce the cholesterol-related effects of LXR 

but not the lipogenic effects.  

Recently, it has been found that LXR may also act as a glucose sensor by binding 

directly to glucose and influencing the expression of genes involved in glucose 

homeostasis194 (Figure 1.4). Mitro et al. (2007) found that in addition to the known 

oxysterols, glucose (D-glucose and D-glucose-6-phosphate) is also very likely to be an 

endogenous ligand for LXR at physiological concentrations comparable to those of the 

oxysterols194. One of the earliest pieces of evidence demonstrating LXR involvement in 
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glucose homeostasis first stemmed from Stulnig et al. (2002), in which a genome-wide 

gene expression analysis was performed in wild-type and LXR knockout mice given an 

LXR agonist109. The study found decreases in the expression of several genes involved in 

hepatic gluconeogenesis including glucose-6-phosphatase (G6Pase), 

phosphoenolpyruvate carboxykinase (PEPCK), and fructose-1,6-biphosphatase (FBPase-

1) in wild-type mice but not LXR deficient mice. Following the Stulnig et al. (2002) 

study, multiple studies were done where pharmacological administration of LXR agonists 

in diabetic phenotype mice led to the stabilization of blood glucose levels and improved 

insulin sensitivity110,195,196. Administration of LXR agonists in non-diabetic mice did not 

appear to affect the blood glucose levels110. However, administration of LXR agonists in 

obese phenotype mice led to stabilization of blood glucose levels and increased insulin 

sensitivity197. These studies proposed LXR-mediated suppression of hepatic 

gluconeogenesis (reduced PEPCK and G6Pase activity) as a possible mechanism for the 

normalization of blood glucose levels in the diabetic mice. It was also suggested that 11β-

hydroxysteroid dehydrogenase 1 (11β-HSD1) and the glucocorticoid receptor (GR) might 

be essential in facilitating the decreased hepatic gluconeogenesis associated with LXR 

activation196. Since LXR has been found to repress 11β-HSD1 expression, a key enzyme 

in the conversion of inactive corticosteroids to active corticosteroids198, the effects of 

decreased glucocorticoid production may also contribute to the observed decrease in 

hepatic gluconeogenesis. As seen with the LXR-mediated lipogenic effects, it appears 

that LXR-mediated effects on glucose metabolism are primarily mediated by the LXRα 

isoform199. On the molecular level, it is still unclear how LXR suppresses hepatic 
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gluconeogenesis, but there is likely interplay between the transcription factors LXR, 

SREBP-1, and GR. 

Finally, LXR has been demonstrated to influence the peripheral uptake of 

glucose, chiefly in peripheral adipose tissue, through the GLUT4 receptor195,197,199. 

Additionally, GLUT1 expression also appears to be induced by increased LXR 

activation200. Studies examining the promoter of GLUT4 and its expression in response to 

LXR agonists have found functional LXREs and direct interactions between LXR and the 

GLUT4 promoter195,201. Interestingly, the role of LXR in adipose tissue seems to contrast 

that of its role in the liver, suggesting that LXR metabolic effects are tissue specific. Ross 

et al. (2002) suggest that in adipose tissue, LXR mediates the uptake of glucose and 

increases lipolysis and glycogen synthesis200. This contrasts the role of LXR in the liver, 

which is to increase hepatic lipogenesis. Furthermore, while GLUT4 is also expressed in 

muscles, it appears that activation of LXR does not influence the regulation of GLUT4 in 

muscle cells195,199. However, there is some disagreement here as Dalen et al. (2003) have 

found that pharmacological activation of LXR does indeed lead to an increase in GLUT4 

mRNA in muscle cells. Conflicting evidence also comes from Kase et al. in 2005, where 

administration of an LXR agonist to human myotubes increased GLUT4 and GLUT1 

mRNA202. 

Due to the role of LXR in increasing peripheral glucose uptake through the GLUT 

receptors and limiting hepatic glucose production through inhibition of the hepatic 

gluconeogenic genes (G6Pase and PEPCK), LXR agonists have been considered as a 

therapeutic agent in the treatment of diabetes110,195. However, due to the lipogenic 
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properties of LXR agonists203, more investigation is required before the therapeutic 

benefits of LXR can be truly considered.  

The role of LXR in regulating glucose, lipid, and cholesterol metabolism is 

summarized in Figure 1.4. 

 

 

 

 

 

 

 



 

 

 

Figure 1.4: The Role of the Liver X Receptor in Regulating Glucose, Cholesterol 

and Lipid Homeostasis. In general, LXR acts to decrease the level of glucose in the 
blood through two mechanisms. The first is through increasing peripheral glucose upta
in the body (through induction of the GLUT receptors). The second 
through the suppression of glucose production (
G6Pase and PEPCK) and suppression of glucocorticoid production (
11β-HSD1). LXR also decreases cholesterol in the body through the induction of various 
cholesterol metabolism genes: Cyp7a1 (responsible for conversion of cholesterol into bile 
acids) and ABCA1, ABCG5, and ABCG8 (responsible for cholesterol 
LXR is involved in the induction of genes involved in the production of fatty acids and 
ultimately triglycerides. These genes include FAS, ACC, SCD
regulator” SREBP-1. 
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1.6 Transcriptional Regulation of Hepatic Gene Expression: The Role of Epigenetics 

The development of many complex and chronic diseases cannot be simply 

explained with genomic heritability alone204. Epigenetics has emerged as an important 

mechanism in adjusting the expression patterns of genes in a site and tissue specific 

manner as an adaptive response to insults during the developmental period. Epigenetic 

mechanisms essentially influence the long-term expression of a gene by altering the 

ability of the transcriptional machinery to interact with the chromatin environment. 

Moreover, they influence heritable changes in phenotype without altering the genetic 

sequence of an organism. Epigenetic changes can be both transient and persist for long 

periods of time205,206. Mechanisms of epigenetic action include direct DNA methylation, 

post-translational histone modifications, and more recently discovered microRNA- 

mediated repression and activation. 

 

1.6.1 Post-Translational Histone Modifications 

In the eukaryote nucleus, genomic DNA is combined with numerous different 

proteins, including histones, to form chromatin. One purpose of chromatin, among many, 

is to regulate gene expression. The most basic unit of chromatin is the “nucleosome”, a 

length of DNA that is 146 base pairs long and surrounds eight core histones (a pair of 

each of the histones H2A, H2B, H3, and H4)207. Each core nucleosome contains two 

functional domains: a “histone-fold” motif for histone-histone and histone-DNA 

interaction within the nucleosome and a histone tail composed of a terminal –NH2 group 

and –COOH group208. Nucleosomes are linked together by “linker DNA”, which also 
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interacts with histone H1. At the lowest level of organization, genomic DNA surrounds 

the nucleosome to form a structure resembling “beads on a string”. As chromatin 

condenses into higher order structures, it becomes more complex in nature due to the 

countless interactions between the genomic DNA, histones, and a vast array of proteins 

associated with the histones. Furthermore, condensed chromatin is less accessible, more 

stable, and is generally considered transcriptionally inactive. With that being said, even 

today, the precise structure of higher order condensed chromatin is still in question.  

In general, there are two main forms of chromatin. Euchromatin, the least dense 

form of chromatin, is said to be more transcriptionally active as its open structure allows 

easier accessibility for transcriptional machinery and protein interaction. Euchromatin is 

generally associated with increased histone acetylation profiles, a hallmark of chromatin 

opening. The more condensed form of chromatin is known as heterochromatin209,210. 

Unlike euchromatin, heterochromatin is less accessible by transcriptional machinery and 

generally considered transcriptionally inactive. Heterochromatin is generally associated 

with a decreased histone acetylation profile and an increased histone methylation profile, 

which is representative of more stable and inaccessible chromatin. 

A major epigenetic mechanism involves influencing the chromatin environment 

through a number of post-translational modifications on the histone tails (-NH2 domain 

on the histone), including methylation, acetylation, phosphorylation, ubiquitination and 

ADP-ribosylation of histones211,212. Histone tail modifications such as phosphorylation 

and acetylation are more transient, while methylation is considered more stable in 

nature213,214. The combinatorial and unique nature of these covalent modifications reveal 

a “histone code”, which may serve critical as an adaptive regulatory mechanism that can 
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also influence gene expression in a tissue- and gene-specific manner at times of insult 

during development. Furthermore, these histone modifications occur and are maintained 

by a diverse range of histone modifying enzymes including families of histone acetylases 

and methyltransferases215, whose levels may also be altered as a result of a developmental 

insult. It is important to realize that the different prenatal insults that lead to IUGR 

offspring seem to have both common and distinct adaptive responses initiated via 

epigenetic mechanisms. Therefore IUGR offspring derived from different insults may 

differ or be similar due to global, tissue, or site-directed epigenetic modifications. 

 

1.6.2 Histone Acetylation and Increased Gene Activity 

The first evidence of histone acetylation as a mechanism for transcriptional 

activation came from a studies done by Allfrey and colleagues216,217. Later studies went 

on to support the notion that histone acetylation was strongly correlated with active genes 

and increased transcriptional activity218,219. Additional studies then found increased 

interaction between transcription factors and chromatin sites where the histones were 

highly acetylated, further indicating that sites of increased acetylation facilitated 

transcription, likely through increased accessibility for transcriptional machinery (e.g. co-

activators, signaling proteins, and RNA polymerase II)220,221.  

There are several hypotheses that may explain why acetylation of histone tails on 

the nucleosome would lead to increased transcription222. The first hypothesis, as 

mentioned earlier, is based on the belief that acetylation of lysine residues on the histone 

tail leads to the neutralization of the positive charges at these tails and subsequently less 
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interaction between the histone tails and DNA. This decreased interaction would then 

lead to increased accessibility for the transcriptional machinery to bind DNA and 

facilitate increased transcriptional activity. The second hypothesis is that the acetylation 

of lysine residues on the histones (and occasionally non-histones) surrounding the gene in 

a site-specific pattern acts as a signal for corresponding transcriptional machinery. For 

instance, co-activators or co-repressors of a transcription factor may recognize specific 

acetylation patterns for different histones and facilitate or repress transcription. The third 

hypothesis does not involve acetylation of the histone tail itself but acetylation of non-

histone proteins that may associate with the core histones and/or transcriptional 

machinery and facilitate transcription. It should be noted that these hypotheses are not 

mutually exclusive and are very likely acting in concert222. 

The two main families of enzymes responsible for the acetylation and 

deacetylation of histone tails are the histone acetyltransferases (HAT) and histone 

deacetylases (HDAC), respectively (Figure 1.5). The steady-state acetylation profile of 

histones depends on the balance between the activities of HATs and HDACs. 

Interestingly, prior to the discovery of these HATs and HDACs, many of these proteins 

were already known to be functionally involved in transcriptional regulation223. Studies 

found that HATs were generally associated with co-activators, while HDACs were 

associated with generally co-repressors, lending further evidence to the permissive 

actions of histone acetylation and the repressive actions of histone deacetylation223,224. 

HATs, and more specifically, A-type HATs (or HAT-A) are responsible for transferring 

acetyl groups from acetyl-CoA to specific lysine groups on histone tails224. Common sites 

for histone acetylation are lysine residues 9, 14, 18, and 23 on histone H3225,226. HDACs 
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are part of a superfamily and are composed of several different classes, which are 

involved in different cellular processes. HDACs are responsible for the removal of acetyl 

groups from lysine residues on histones (and non-histones), leading to hypoacetylated 

chromatin227. Hypoacetylated chromatin is generally more condensed due to increased 

interaction between the positively charged lysine residues and the negatively charged 

genomic DNA. This decreases the accessibility of transcriptional machinery. To add to 

the already complex nature of histone modifications and transcriptional activation, 

studies have also demonstrated that HDAC activity may also be required for 

transcriptional activation of certain genes228. The opposite has also been found, where 

histone acetylation was required for transcriptional silencing229. Thus, transcriptional 

regulation on the chromatin and histone level requires a delicate balance between 

different acetylation patterns. It should also be noted that some transcription factors 

themselves appear to possess histone acetyltransferase activity222. Finally, though histone 

acetylation is characterized as a highly dynamic and transient histone modification, 

evidence suggests there are also cases where acetylation persists for longer periods of 

time (e.g. mitosis)230. 

 

1.6.3 Histone Methylation and Altered Gene Activity 

 While histone hyperacetylation is strongly linked to increased chromatin 

accessibility and increased transcriptional activity, histone hypermethylation is generally 

associated with decreased transcriptional activity. Unlike the well-studied effects of 

histone acetylation, histone methylation is a relatively new field of study. Chen et al. 
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(1999) did one of the first studies linking histone methylation with transcription, whereby 

they found a strong connection between transcriptional co-activators, methyltransferase 

activity on histone H3, and levels of transcription231. Intriguingly, this first piece of 

evidence linked methylation with increased transcription rather than decreased 

transcription. A further study done by Rea et al. (2000) suggested that methylation of 

histone H3 on lysine 9 was associated with the formation of heterochromatin, 

discouraging the recruitment of transcriptional activators232. Unlike histone acetylation, 

lysine residues can be mono-, di-, and tri- methylated. Furthermore, while enzymes have 

been found to be able to reverse mono- and di- methylation, trimethylation appears to be 

generally irreversible233. This suggests histone trimethylation as a very stable histone 

modification. 

 The main family of enzymes involved in the methylation of histones is the histone 

methyltransferase (HMT) group (Figure 1.5). HMTs catalyze the transfer of methyl 

groups from the methyl donor S-Adenosyl methionine (SAM) to lysine residues or 

arginine residues on histones233. HMTs are commonly known to add methyl groups to 

lysine residues 4, 9, 27, and 36 on histone H3, and lysine residue 20 on histone H4233. 

The specific methylation of lysine residue 9 on histone H3 has been established as a 

recognition site for heterochromatin protein 1 (HP1), a protein involved in 

heterochromatin formation and stabilization as well as gene silencing234,235. HP1 

recognition and recruitment has not been observed for other lysine residues, such as 

lysine 4 on histone H3236. In addition to methylation of lysine 9 on histone H3, 

methylation of histone H3 lysine residue 27 has also been found to be involved in gene 

silencing237, although through a different mechanism. Methylation of lysine 27 on histone 
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H3 was found to facilitate transcriptional repression through recruitment of Polycomb 

group protein complexes237.  

In contrast to methylation of lysine residues 9 and 27, methylation of residue 4 on 

histone H3 has been found to be involved with increased gene transcription238,239. 

Bernstein and colleagues (2002) postulate that methylation of histone H3 lysine 4 

facilitates transcription by protecting the lysine group from deacetylation238. 

Interestingly, Santos-Rosa et al. (2002) found that trimethylation of histone H3 lysine 4 

was purely associated with increased gene transcription, while dimethylation of histone 

H3 lysine 4 was associated with both gene activation and repression239. Furthermore, 

studies have demonstrated that hypermethylation of histone H3 lysine 4 may act as a 

marker or placeholder for genes that were recently transcribed240,241. Given the stable 

nature of histone methylation compared to the other post-translational modifications (e.g. 

acetylation, phosphorylation, ubiquitination), it is the most likely candidate to act as a 

memory marker for transcriptional activity and other vital processes related to the 

genome.  

 Recently, the discovery of histone demethylases has provided much insight into 

the regulation of histone methylation profiles242,243 (Figure 1.5). Prior to the discovery of 

these histone demethylases, it was postulated that methyl groups were removed through 

complete histone replacement and methylation profiles were modified through histone 

turnover233,244. The first lysine specific demethylase to be discovered was lysine-specific 

demethylase 1 (LSD1), which was found to specifically demethylate mono- or di- methyl 

groups from only histone H3 lysine 4242. Further studies identified another group of 

histone demethylases. Histone demethylase JmjC domain-containing histone demethylase 
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1 (JHDM1) was found to be responsible for the demethylation of mono- and di- methyl 

groups on histone H3 lysine 36245, while JHDM2 was found to demethylate mono- and 

di- methyl groups on histone H3 lysine 9246. Further studies uncovered the JMJD2 

subfamily consisting of JMJD2A, JMJD2B, JMJD2C, and JMJD2D247. All members of 

the JMJD2 subfamily have been found to demethylate trimethyl groups on histone H3 

lysine 9248-251. JMJD2A and JMJD2C activity appear to favour the formation of a 

dimethyl group, while JMJD2D activity favours the formation of a single methyl group. 

Taken together, it is highly likely that the delicate balance of gene transcription and 

repression relies on the complex interplay between HATs, HDACs, HMTs, and histone 

deacetylases (Figure 1.5). 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 1.5: Post-Translational Histone Modifications Involved in Chromatin 

Remodeling. Histone demethylases and histone acetyl 
chromatin to “open” it up and provide access for transcriptional machinery. In contrast, 
histone methyl transferases (HMT)
such that it is in a “closed” state, decreasing the likeli
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1.7 Tissue Plasticity: Reversing the in utero Origins of Adult Disease 

The development of many organs occurs both prenatally and postnatally. For 

example, in the liver, development consists of embryonic cell specification, budding, and 

differentiation252. Until birth, the liver has major hematopoietic function253, but by mid-

gestation in rodents, the liver bud is formed containing bipotential progenitor cells that 

differentiate into either hepatocytes or ductal cells254. In the last three days of gestation in 

the rat, liver mass triples due to a high rate of fetal hepatocyte proliferation255, followed 

by a transition of fetal to adult rat hepatocytes in the first week of postnatal life256. Given 

that during this neonatal period there is a high rate of replication, neogenesis and 

apoptosis255 leading to extensive liver remodeling, this period represents a critical 

window for therapy designed to improve hepatic growth and function long-term. For 

example, it has been demonstrated in IUGR rat offspring derived from uterine artery 

ligated dams, that neonatal administration of Exendin-4™, a glucagon-like peptide 1 

(GLP-1) analogue, prevents the development of diabetes due to the restoration of the 

transcription factor pancreatic and duodenal homeobox 1 (Pdx-1), and ultimately cell 

function257. Moreover, Exendin-4™ treatment during this neonatal period also prevented 

the development of hepatic oxidative stress and insulin resistance258. This indicates quite 

remarkably that neonatal intervention in rats can influence both pancreatic and liver 

development long-term, and possibly reverse adverse events encountered during 

gestation. Therefore the goal of future studies is to understand how we can exploit this 

plasticity in organ development to correct the short- and long-term abnormalities 

resulting from an adverse in utero environment. Given that the rat liver develops at a very 

similar timeframe compared to the human liver252, further insights into the reversibility of 



44 

 

fetal programming effects on liver development offers promise in human IUGR 

pregnancies.  

Our recent studies indicate that restoration of maternal protein intake during 

lactation can rescue liver growth and prevent the development of hypercholesterolemia 

long-term in the offspring of protein-restricted dams75. However the underlying 

epigenetic and transcriptional mechanisms are unknown. While LXR agonists have been 

demonstrated to activate acetylation of LXR-target promoters and lower LDL cholesterol 

in atherosclerosis-prone adult mice190, their use in neonatal life is limited259. Given 

Cyp7a1 expression is enhanced by histone hyperacetylation260, it is conceivable that LXR 

agonist administration in vivo could boost the expression of LXR target genes, via 

increases in both LXR binding and histone acetylation surrounding the LXRE sites. 

Preliminary evidence from our laboratory suggests that 3-week-old MPR offspring 

treated with an LXR agonist (GW3965) from postnatal day 5 to 15 display decreased 

circulating cholesterol to HDL ratios compared to vehicle treated MPR offspring261. 

These offspring also displayed increased hepatic expression of Cyp7a1, concomitant with 

increased recruitment of RNA polymerase II and acetylation of histone H3 (lysine 9,14) 

surrounding the Cyp7a1 promoter by 3 weeks of age261. Additionally, studies of MPR in 

embryonic day 19.5 mice have demonstrated that LXR expression is decreased in MPR 

offspring during the neonatal period262. Given the fact that LXR agonists exert 

antidiabetic effects when administered in rodents110,195, it is possible that administration 

of an LXR agonist during the neonatal period may rescue the long-term repression of 

LXR and prevent the development of programmed impaired glucose tolerance in later 

adulthood86,87. 
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While the effects of neonatal LXR agonist administration on glucose and 

cholesterol homeostasis still need to be assessed long-term, preliminary data suggest that 

LXR and other nuclear receptor agonists may play a promising role in reversing the long-

term adverse effects of impaired fetal development. However, caution must still be taken 

since LXR agonist administration does lead to the elevated expression of hepatic 

lipogenic genes203. 

 

1.8 Rationale, Hypothesis, and Objectives 

1.8.1 Rationale and Hypothesis: IUGR is now closely linked to the increased risk of 

developing chronic disease in later life44,45. A mismatch in environment, as proposed by 

the Barker Hypothesis, is responsible for the programming of these diseases58-60. 

Moreover, the concept of catch-up growth appears to exacerbate the risks of developing 

chronic diseases62,69. Yet, the molecular mechanisms underlying the programming of 

impaired glucose homeostasis, an essential symptom of the metabolic syndrome, remain 

elusive. Given the role of LXR in modulating the metabolism of glucose, lipids, and 

cholesterol, it is an attractive candidate to study in order to elucidate the molecular 

mechanisms behind the programming of diseases such as the metabolic syndrome. 

Evidence from our laboratory and others suggests that LXR expression and activity may 

be repressed in rodent models of IUGR, especially maternal protein restriction75,261,262. 

Further considering the role of LXR agonists in exerting antidiabetic effects in 

rodents110,195, there is strong evidence that LXR may be involved in the programming of 

impaired glucose metabolism. Using MPR in the rat as a model of growth restriction, I 
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hypothesize that MPR does indeed lead to impaired glucose homeostasis in the 

offspring and that impairment of glucose homeostasis is at least partly mediated 

through altered actions of LXR. 

 

1.8.2 Objectives: 

The first objective of the study is to determine the effects of MPR on impairing glucose 

homeostasis in offspring by examining glucose tolerance of offspring in adulthood. 

The second objective is to determine the role of LXR in the programming of impaired 

glucose homeostasis by examining: A) expression profiles of LXR and LXR-target genes 

involved gluconeogenesis (e.g. G6Pase, PEPCK, and 11β-HSD1); B) the active and 

repressive roles of LXR on a transcriptional level and; C) the long-term effect of 

administration of an LXR agonist (GW3965) during neonatal life, a period of 

developmental plasticity. 
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2.1 Introduction 

 Epidemiological evidence suggests that adverse events in utero (e.g. placental 

insufficiency-induced intrauterine growth restriction (PI-IUGR)) can permanently alter 

physiological processes leading to hypertension and type II diabetes1-5. Previous animal 

models of maternal protein restriction have consistently linked asymmetric IUGR6 with 

symptoms of type II diabetes long-term in the offspring. For example, Petrik et al. (1999) 

demonstrated a low protein diet during pregnancy and weaning induced a decrease in 

birth weight and disrupted pancreatic β-cell proliferation in the adult offspring7. Other 

studies have found altered glucagon-stimulated and insulin-stimulated hepatic glucose 

output as well as reduced glucokinase expression and structural modifications in the 

livers of low protein offspring8,9. In addition, Chamson-Reig et al. (2009) have 

demonstrated that low protein offspring have impaired glucose tolerance as early as 130 

days of age in rat offspring10. Thus, the evidence strongly suggests that maternal low 

protein mediated IUGR in the rat predisposes the offspring to impaired glucose tolerance 

and a type 2 diabetes-like phenotype. However, the molecular mechanisms underlying 

these low protein induced alterations in the output of hepatic glucose are not completely 

understood.    

 The liver X receptor (LXR) is a transcription factor belonging to the 1H 

subfamily of nuclear receptors. LXR exists as two isoforms: LXRα and LXRβ. LXRα is 

mainly expressed in the liver, adipose tissue, macrophages, and intestines11,12, while 

LXRβ is ubiquitously expressed13. Endogenous ligands for LXR are mainly derivatives 

of cholesterol (i.e., oxysterols)14,15. Consequently, LXR has principally been implicated 

in regulating genes involved in the metabolism and transport of cholesterol14,16 and in 
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enhancing the expression of lipogenic enzymes17. Recent studies have also demonstrated 

that LXR can silence genes involved in glucose production including 

phosphoenolpyruvate kinase (PEPCK) and glucose-6-phosphatase (G6Pase), both critical 

enzymes involved in the gluconeogenic pathway18-20. In addition, LXR has also been 

found to indirectly suppress hepatic glucose production through inhibition of the enzyme 

11β-hydroxysteroid dehydrogenase-1 (11β-HSD1)18. 11β-HSD1 reduces inactive 

corticosteroids to their active form (e.g. 11-dehydrocorticosterone to corticosterone in the 

rodent). Since active corticosteroids are responsible for increased glucose production, 

LXR-mediated inhibition of 11β-HSD1 would indirectly decrease glucose production. 

Moreover, LXR has been implicated in the regulation of the glucocorticoid receptor 

(GR), further encompassing its activity in the regulation of glucocorticoids and glucose 

homeostasis21. 

Previous studies from our own laboratory have found that maternal protein 

restriction (MPR) leads to decreases in the expression of the LXR-target gene, Cyp7a1, 

the critical enzyme involved with cholesterol catabolism. The decrease in Cyp7a1 led to 

hypercholesterolemia in male offspring by 4 months22. This was found to be due, in part, 

to repressive changes in histone modifications at the LXRE site of the Cyp7a1 promoter. 

Other studies in mice have demonstrated that MPR leads to hypermethylation of the 

LXRα promoter in association with decreased LXRα mRNA in the liver tissue of 

embryonic day 19.5 fetuses, however the effect on post-translational histone 

modifications surrounding LXRα remain elusive23. While we and others have 

demonstrated that MPR can lead to long-term epigenetic alterations of LXR-target genes 
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involved with cholesterol and lipid homeostasis, it is not known if LXR-target genes 

impairing hepatic gluconeogenesis are altered.  

 The aims of the current study were to examine whether maternal protein 

restriction alters LXRα-mediated gluconeogenesis in the liver. Given the role of LXRα in 

lipid, glucose and cholesterol homeostasis, it is an attractive candidate in elucidating the 

molecular mechanisms underlying IUGR-related fetal programming. We hypothesized 

that decreased maternal protein availability during gestation would impair hepatic 

gluconeogenesis in the adult offspring through decreases in LXRα and aberrant activity 

of its target genes (G6Pase, PEPCK, 11β-HSD1). Using a well-established model of 

maternal protein restriction in rat pregnancy, we assessed the effects of a low protein diet 

in gestation on long-term glucose handling, LXRα activity and the expression of hepatic 

LXR-target genes involved in gluconeogenesis.  In the control group, dams were fed a 

20% protein diet throughout life. Low protein dams received an 8% protein diet until 

birth of the offspring, followed by a 20% protein diet during the weaning period (until 

postnatal day 21). We decided to examine the effects of restoring protein immediately 

after birth as opposed to waiting until after the weaning period because we have already 

demonstrated earlier restoration of protein promotes accelerated catch-up growth22. 

Moreover, postnatal accelerated growth of IUGR offspring has been demonstrated to 

exacerbate the effects of IUGR-related programming and reduce the lifespans of these 

offspring24-26.            
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2.2 Materials and Methods 

 

2.2.1 Animal Experiments and Dietary Regime 

All procedures were performed in accordance with the guidelines set by the 

Canadian Council of Animal Care and upon approval of the Animal Care Committee of 

the University of Western Ontario. Male and female Wistar rats at breeding age (250 g) 

were purchased from Charles River (La Salle, St-Constant, Quebec, Canada) and were 

allowed to acclimatize to their new environment for two weeks. Rats were housed at 

room temperature on a 12-12 hour light-dark cycle. Females were housed in separate 

cages and were cohabitated with a male for mating upon entering pro-estrous. Conception 

was confirmed by presence of sperm in the vaginal smear the following day. 

Dams and offspring received isocaloric diets (Bio-Serv, Frenchtown, NJ, USA) 

varying in protein composition, depending on their experimental group. Briefly, the 

control offspring and dams received 20% protein throughout life. Protein restricted dams 

received low protein chow (8%) throughout gestation and then restored on a 20% protein 

chow immediately after birth (herein termed ‘LP’). All diets and water were administered 

ad-libitum. Previous studies by our laboratory have demonstrated that the food intake 

between both offspring groups is practically identical22.  The experimental model is 

exemplified in Figure 2.1. 

At embryonic day 19, a subset of dams (3 control dams; 4 LP dams) was 

sacrificed and livers from the fetuses were extracted. The livers were flash frozen for 

further molecular analysis. The other subset of dams (4 control dams; 4 LP dams) 
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delivered spontaneously. All litters with greater than 10 pups were arbitrarily culled 

down to 9-10 pups to ensure a consistent litter size per dam. 

 After the intraperitoneal glucose tolerance tests at postnatal day 120-125, all 

offspring were sacrificed using a lethal dose (50mg/kg) of Euthanyl forte pentobarbital 

sodium (Bimeda-MTC, Cambridge, ON, Canada) at postnatal day 130. This age was 

chosen because previous studies have demonstrated that in other models of protein 

restriction, impaired glucose tolerance was not observed earlier than 4 months10. 

Following sacrifice, liver and blood were immediately extracted and flash frozen at -80oC 

for molecular analysis. We did not examine the female offspring in this study to prevent 

confounding factors related to their estrous cycle and hormone profile. More importantly, 

the maternal low protein model has been demonstrated to exhibit early life programming 

effects in a sexually dimorphic manner, which was not the focus of this 

investigation10,22,27. For molecular analysis, one to two male pups from each of four 

separate dams were arbitrarily chosen. All available male pups were used for the 

intraperitoneal glucose tolerance tests.  

 

 

 

 

 

 

 

 



 

 

 

Figure 2.1: Experimental Paradigm of the Maternal Protein Restricted Model

Briefly, control (C) dams and offspring received a control (20%) diet throughout life, 
while low protein (LP) dams received a low protein (8%) diet throughout gestation. At 
birth, the LP dams were immediately placed on a control diet to restore protein
promote accelerated growth in the offspring
at the end of the weaning period
 

 

 

 

 

Figure 2.1: Experimental Paradigm of the Maternal Protein Restricted Model

Briefly, control (C) dams and offspring received a control (20%) diet throughout life, 
while low protein (LP) dams received a low protein (8%) diet throughout gestation. At 

dams were immediately placed on a control diet to restore protein
promote accelerated growth in the offspring. Offspring of LP dams received a control diet 
at the end of the weaning period (postnatal day 21). 
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Figure 2.1: Experimental Paradigm of the Maternal Protein Restricted Model. 
Briefly, control (C) dams and offspring received a control (20%) diet throughout life, 
while low protein (LP) dams received a low protein (8%) diet throughout gestation. At 

dams were immediately placed on a control diet to restore protein and 
. Offspring of LP dams received a control diet 
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2.2.2 Glucose Tolerance Tests 

 At postnatal day 120-125, male offspring were subject to an intraperitoneal 

glucose tolerance test (IPGTT). Prior to the IPGTT, the animals were fasted overnight for 

14-16 hours. Animals were awake throughout the experiment. Blood glucose 

measurements were obtained using a Bayer Breeze® 2 Blood Glucose Meter (Bayer, New 

York, USA). Fasted blood glucose levels were obtained prior to the glucose injection. 

Animals then received 2g/kg of glucose via injection into the intraperitoneal cavity. 

Blood glucose was sampled at the tail vein at t= 0, 5, 10, 15, 30, 60, and 120 minutes. 

Area under the curve of each animal was calculated using GraphPad Prism software.  

IPGTT were performed on 6 control males and 10 LP males. 

 

2.2.3 Quantitative Real Time PCR (qRT-PCR) for Gene Expression Analysis 

 Total RNA was extracted from the medial lobe of offspring livers at embryonic 

day 19 and postnatal day 130 as previously described, using the one-step TRIzol 

(Invitrogen, Carlsbad, CA, USA) method22. Total RNA was subsequently treated with 

deoxyribonuclease to eliminate contaminating DNA. 4µg of total RNA was then reverse 

transcribed to cDNA using random primers and Superscript II RNase H-reverse 

transcriptase (Invitrogen, Carlsbad, CA, USA). Taqman
® probes and sequences for the 

genes of interest (11β-HSD1, G6Pase, LXRα, PEPCK, β-Actin) and Taqman
® Universal 

Master Mix were obtained from Invitrogen. Quantitative analysis of mRNA expression 

was measured using the Bio-Rad CFX384 Real Time System. The cycling conditions 

were as follows: polymerase activation (95oC for 10 minutes) followed by 40 cycles of 

denaturing (95oC for 15 seconds) and annealing (60oC for one minute). The cycle 
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threshold was set where the exponential increase in amplification was equivalent between 

all samples. Relative fold changes were calculated using the comparative cycle times (Ct) 

method with β-actin as the reference gene. ∆Ct values for each probe set were 

standardized to the experimental samples with the lowest transcript abundance (highest 

Ct value). The relative abundance of each primer set compared with calibrator was 

determined by the formula, 2∆∆Ct, where ∆∆Ct was the standardized Ct value. 

 

2.2.4 Tissue Protein Extraction and Western Immunoblotting 

 Tissue protein was extracted from the medial lobe of snap frozen offspring livers 

using a lysis buffer solution (pH 7.4, Tris-HCl 50mM, NP-40 1%, Sodium-deoxycholate 

0.25%, NaCl 150mM, EDTA 1mM, NaF 50mM, Na3VO4 1mM 1mM, β-

Glycerophosphate 25mM). Prior to tissue homogenization, a mini protease inhibitor 

tablet was added to the lysis buffer.  

Firstly, a small chunk of snap frozen liver was added to 600µl of RIPA buffer. 

The tissue was then homogenized with the IKA T10 Basic S1 Dispersing Tool (IKA 

Works Inc, Wilmington, NC) for 10-15 seconds at speed 6. After letting the homogenized 

tissue sit on ice for 5 minutes, the tissue was then sonicated. Following sonication, the 

tissue was rotated at 4oC for 5 minutes and then centrifuged for 15 minutes at 300g and 

4oC. The supernatant was retained for further centrifugation at 20,000g for 20 minutes at 

4oC. The final supernatant was retained for protein quantification and western 

immunoblotting. 

Equal concentrations of total protein were normalized using a colorimetric BCA 

Protein Assay (Pierce Corp., Madison, WI, USA). Proteins were then fractionated in 17-
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well gradient polyacrylamide gels (Invitrogen, Carlsbad, CA, USA) and transferred onto 

PVDF membrane (Millipore, Etobicoke, Ontario, Canada). Amido black staining and 

Coomassie brilliant blue staining confirmed sufficient transfer of proteins onto the 

membrane. 

Immunoblots were probed using LXRα (Liver X Receptor (1:1000; cat# sc-

13068)), PEPCK (1:2000; cat# sc-32879), G6Pase-α (1:1000; cat# sc-25840), PI3-kinase 

p85α (Z-8) (1:1000; cat# sc-423) and 11β-HSD1 (1:800; cat# sc-20175) all from Santa 

Cruz Biotechnology (Santa Cruz, California).  In addition, p-Akt1 (Serine 473) (1:1000; 

cat# ab66138), p-Akt1 (Threonine 308) (1:500; cat #4796) and Akt1 (1:125; cat# ab6076) 

antibodies used to assess hepatic insulin sensitivity, were purchased from Abcam Inc, 

Cambridge, Massachusetts. In addition, we also assessed insulin sensitivity by using 

antibodies against p-IRS-1 (Serine 302) (1:500; cat# 2384), p-IRS-1 (Serine 1101) 

(1:500; cat# 2385), and IRS-1 (1:500; cat# 2382) all purchased from Cell Signaling, 

Danvers, Massachusetts Monoclonal HRP conjugated β-Actin (1:50,000; cat#A3854, 

Sigma-Aldrich, Oakville, Ontario, Canada) diluted in 5% milk-TBS-Tween-20(0.1%) 

buffer and HRP conjugated donkey anti-rabbit IgG (1:10,000, cat# 711-035-152, Jackson 

ImmunoResearch Laboratories, West Grove, PA, USA) diluted in 5% milk-TBS-Tween-

20(0.1%) buffer were used as the secondary antibodies. Finally, immunostained bands 

were then visualized using an enhanced chemiluminescence detection system (Thermo 

Scientific, Waltham, MA, USA). 
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2.2.5 Chromatin Immunoprecipitation (ChIP) 

Chromatin was extracted from the medial lobe of offspring livers as previously 

described22. Briefly, a small piece of snap frozen liver was homogenized and incubated 

with 1% formaldehyde for 10 minutes at room temperature to cross-link proteins and 

DNA. Crosslinking was terminated by the addition of glycine (0.125M, final 

concentration). The liver tissue was washed once with cold PBS and placed in 500 µl of 

SDS lysis buffer (Millipore, Etobicoke, Ontario, Canada) with a protease inhibitor 

cocktail (Roche, Mississauga, Ontario, Canada). The lysates were sonicated on ice to 

produce sheared, soluble chromatin. The lysates were diluted ten times with the addition 

of ChIP dilution buffer (Millipore, Etobicoke, Ontario, Canada) and aliquoted to 400 µl 

amounts. Each of the aliquots was precleared with protein A/G Plus agarose beads (40 µl, 

Millipore, Etobicoke, Ontario, Canada) at 4°C for 30 minutes. The samples were 

centrifuged at 20,000g to pellet the beads, and the supernatant containing the sheared 

chromatin was placed in new tubes. The aliquots were incubated with 4 µg of antibodies 

against RNA Polyermase II (cat #05-623B, Millipore, Canada), trimethylated histone H3 

lysine 4 [K4] (cat #ab1012, Abcam, Canada), acetylated histone H3 lysine 9,14 [K9,14] 

(cat #05-399, Millipore, Canada), trimethylated histone H3 lysine 9 [K9] (cat# 07-442, 

Millipore, Canada), and ChIP-grade LXRα (cat# sc-13068x, Santa Cruz Biotechnology, 

Santa Cruz, California) at 4°C overnight. Two aliquots were reserved as ‘controls’ – one 

incubated without antibody and the other with non-immune IgG (Millipore, Etobicoke, 

Ontario, Canada). Protein A/G Plus agarose beads (60 µl) were added to each tube, the 

mixtures incubated for 1 h at 4°C and the immune complexes collected by centrifugation. 

The beads containing the immunoprecipitated complexes were washed sequentially for 5 
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minutes in wash buffer I (20 mM Tris-HCl, pH 8.1, 2 mM EDTA, 0.1% SDS, 1% Triton 

X-100, 150 mM NaCl), wash buffer II (same as I, except containing 500 mM NaCl), 

wash buffer III (10 mM Tris-HCl, pH 8.1, 1 mM EDTA, 1% NP-40, 1% deoxycholate, 

0.25 M LiCl), and in 2 × TE buffer. The beads were eluted with 250 µl elution buffer (1% 

SDS, 0.1mM NaHCO3 + 20 µg salmon sperm DNA (Sigma-Aldrich, Oakville, Ontario, 

Canada)) at room temperature. This was repeated once and eluates were then combined. 

Crosslinking of the immunoprecipitated chromatin complexes and ‘input controls’ (10% 

of the total soluble chromatin) was reversed by heating the samples at 65°C for 4 h. 

Proteinase K (15 µg, Invitrogen, Carlsbad, CA, USA) was added to each sample in buffer 

(50 mM Tris-HCl, pH 8.5, 1% SDS, 10 mM EDTA) and incubated for 1 h at 45°C. The 

DNA was purified by phenol-chloroform extraction and precipitated in EtOH overnight 

at 20°C. Samples and ‘input controls’ were diluted in 10-100 µl TE buffer just prior to 

qRT-PCR.  

Putative LXR binding sites (threshold of 0.7) on the promoters of G6Pase and 

11β-HSD1 were determined using the MatInspector software (Genomatix, Munich, 

Germany).  The MatInspector software was used to match the LXR consensus binding 

site (AGGTCA_DR-4_AGGTCA)12 with putative transcription factor binding sequences 

based on algorithms as described by Cartharius et al.
28. Quantitative real-time PCR was 

employed using forward (5’-GGTCACTGCATGATCACAGG-3’) and reverse (5’-

CCTTGGAATCCAGAATGCTC-3’) primers that amplify a -35 bp to +92 bp region 

encompassing the rat G6Pase LXRE site (+22 bp to +46 bp), and forward (5’-

TTCGCCAAACTCTGACCTCT-3’) and reverse (5’-ACAGGTTTGGCCTGGAT-GT-

3’) primers that amplify a -115 bp to -7 bp region encompassing the rat 11β-HSD1 LXRE 
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site (-114 bp to -90 bp) (PE Applied Biosystems, Boston, MA, USA).  The LXRα (Gene: 

NR1H3) transcriptional start site (TSS) was found using the Ensembl Genome Browser 

(http://www.ensembl.org). Forward (5’- GGCTTCACTGGTTGATCCAT-3’) and reverse 

(5’-AGGGGGTTGATTCTTGAGGT-3’) primers were designed to amplify the -135 bp 

to +144 bp region surrounding the +1 bp TSS of LXRα. Recent evidence indicates that 

there is epigenetic regulation in the CG-rich regions of the LXRα promoter around the 

TSS in another rodent model of maternal protein restriction23. Thus, primers around the 

promoter were used to examine the binding of RNA polymerase II, acetylation of histone 

H3 [K9,14], methylation of histone H3 [K4], and trimethylation of histone H3 [K9] at the 

TSS of LXRα.  

The aforementioned constructed ChIP primers were then used in conjunction with 

Sso-Fast EvaGreen Supermix (Bio-Rad, Mississauga, Ontario, Canada) to perform qRT-

PCR. Similar to the gene expression assays, the relative abundance of the 

immunoprecipitated chromatin compared to input chromatin was determined using the 

2∆∆Ct method.  

 

2.2.6 Statistical Analysis 

 All data is represented as a mean of an arbitrary value ± Standard Error of the 

Mean (SEM). Glucose tolerance tests, areas under the curve, quantitative real-time PCR 

(including ChIP), and quantified western immunoblot bands were analyzed using the 

unpaired Student’s t-test. All data with a p-value less than 0.05 were considered 

statistically significant. 
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2.3 Results 

 

2.3.1 Maternal protein restriction with earlier protein restoration after birth leads 

to liver and body weight catch up growth by 3 weeks of age 

 

As previously reported, at embryonic day 19, the LP animals exhibited significantly 

decreased fetal to placental weight ratios compared to the control animals (Control: 

5.67±0.30; LP: 4.87±0.18; p<0.05), indicating growth restriction22. Furthermore, liver 

weight to body weight ratios were decreased in the LP animals (Control: 0.091±0.004; 

LP: 0.056±0.006; p<0.05), indicating hepatic growth restriction at embryonic day 19. 

However, by 3 weeks of age, the LP male offspring caught up to the control offspring in 

terms of body weight (Control: 50.30±1.15g; LP: 48.00±2.17g)22. Similarly, there were 

no significant differences in the liver weight to body weight ratios between the LP 

animals and control animals at 3 weeks of age (Control: 0.0391±0.001; LP: 

0.0360±0.001)22, indicating recovered liver growth. At 4 months of age, these patterns 

continued and there were no differences in body weight (Control: 565.50±8.21g; LP: 

579.00±18.74g) or liver weight to body weight ratios (Control: 0.0314±0.001; LP: 

0.0306±0.001) between the control and LP offspring22. There were 10-14 offspring per 

experimental group.  
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2.3.2 Maternal protein restriction leads to impaired glucose tolerance at 4 months of 

age in male offspring 

 

At 4 months of age, all of the male offspring underwent an IPGTT to assess fasted 

glucose tolerance after an administered glucose load. Resting levels of glucose were not 

significantly different between control and LP animals. After administration of the 

glucose (2g/kg), measured blood glucose levels were significantly elevated (p<0.05) in 

LP animals at the 10-, 15-, 30-, and 60-minute time points (Figure 2.2A). Blood glucose 

levels in the LP animals returned to the same levels as the control animals by the 120-

minute time point. At the end of the experiment, both control and LP animals had similar 

blood glucose levels. The area under the curve for the LP animals was increased by 

32.8% (p<0.05) compared to the control animals (Figure 2.2B) further indicating 

impaired glucose tolerance at 4 months of age. Although we did not perform insulin 

tolerance tests, hepatic insulin sensitivity was assessed through western immunoblot 

detection of phosphorylated-Akt1 (S473 and T308), the p85 subunit of phosphoinositide 

3-kinase (p85), and phosphorylated IRS-1 (S302 and S1101), all markers of insulin 

sensitivity29,30. Protein expression of these proteins was unchanged between control and 

LP animals, suggesting no difference in insulin sensitivity between the experimental 

groups at 4 months of age (Figure 2.3). 
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2.3.3 The steady-state levels of hepatic LXRα mRNA are decreased, concomitant 

with an increase in G6Pase and 11β-HSD1 mRNA in LP animals by 4 months of age 

 

Given the LP animals exhibited glucose intolerance at 4 months of age, we subsequently 

investigated the expression of hepatic LXRα and its target genes involved in 

gluconeogenesis. To determine differences in the in vivo hepatic mRNA levels of LXRα, 

G6Pase, 11β-HSD1, and PEPCK at 4 months of age in the male offspring, qRT-PCR was 

employed with Taqman
® probes for each gene. LXRα mRNA was significantly decreased 

by 45% (p<0.05) in the LP offspring, while PEPCK mRNA was unchanged between 

groups (Figure 2.4). Hepatic G6Pase and 11β-HSD1 mRNA were significantly increased 

(p<0.05, 1.6 fold) in the LP offspring (Figure 2.4).  

 

2.3.4 The levels of hepatic LXRα protein are decreased, concomitant with an 

increase in G6Pase, 11β-HSD1 and GR protein levels in LP animals by 4 months of 

age 

 

To assess the effect of a maternal low protein diet on the protein levels of LXRα and 

LXR-target genes in 4-month-old offspring, we performed western immunoblotting to 

determine if there would be similar trends to what was observed in the steady-state 

mRNA levels. At 4 months of age, LXRα protein expression was decreased by 40% 

(p<0.05), while both G6Pase and 11β-HSD1 protein levels were increased (p<0.05, 1.5 

and 1.6 fold, respectively) in the LP animals compared to the control animals (Figure 

2.5).  PEPCK protein expression was not different between the two groups. We also 
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investigated the protein expression of GR since we saw increases in the expression of 

11β-HSD1. GR protein expression increased in LP offspring compared to control 

offspring (p<0.05, 1.3 fold). 

 

2.3.5 LXRα binding to the LXRE on the promoters of G6Pase and 11β-HSD1 is 

decreased by 4 months of age in the LP offspring 

 

To investigate whether the changes in the expression of G6Pase and 11β-HSD1 between 

the control and LP offspring were due to the decreased binding of LXRα to the promoters 

of G6Pase and 11β-HSD1, we employed ChIP to immunoprecipitate LXRα. After using 

MatInspector (Genomatix, Munich, Germany) to find putative LXREs on the promoters 

of G6Pase and 11β-HSD1, qRT-PCR was employed to examine LXRα binding at these 

putative LXRE sites. By 4 months of age, the LP animals exhibited a marked decrease in 

the binding of LXRα to the promoter of 11β-HSD1 (45% decrease) and G6Pase (50% 

decrease) compared to the control animals (p<0.05) (Figure 2.6). The non-specific 

binding of immunoglobulin G (IgG) was tested and found to be minimal (Ct value > 34, 

data not shown). 

 

2.3.6 Acetylation of lysine residues 9 and 14 on histone H3 is decreased surrounding 

the transcriptional start site of LXRα in LP offspring by 4 months of age 

 

We further employed ChIP to examine the epigenetic regulation of LXRα at its TSS. By 

immunoprecipitating chromatin with antibodies specific to RNA polymerase II, 
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trimethylated histone H3 [K9], acetylated histone H3 [K9,14], and trimethylated histone 

H3 [K4] we were able to examine the transcriptional and epigenetic regulation of LXRα 

in our model of maternal protein restriction. Using primers specific to the -144 to +134 

region of the LXRα gene promoter and qRT-PCR, we found a significant 45% reduction 

(p<0.05) in the acetylation of histone H3 [K9,14], a hallmark of chromatin silencing, near 

the TSS of LXRα (Figure 5C). While not significant, we also found a decreasing trend in 

the recruitment of RNA polymerase II binding and histone H3 trimethylation [K4] at the 

same site (Figures 2.7A and 2.7B). Again, the non-specific binding of IgG was tested and 

found to be minimal (Ct value > 34, data not shown). These results, in combination, 

support the notion that LXRα is transcriptionally and epigenetically silenced long-term in 

our maternal protein restriction model of IUGR. 

 

2.3.7 The steady-state levels of hepatic LXRα mRNA are unchanged between 

control and LP offspring concomitant with a decrease in G6Pase and 11β-HSD1 

mRNA in LP animals at embryonic day 19 

 

To assess the direct effects of the LP diet on LXRα and LXR-target gene expression 

during gestation and prior to birth, we analyzed the livers of fetuses sacrificed at 

embryonic day 19. Quantitative real-time PCR was employed with Taqman
® probes for 

LXRα, G6Pase and 11β-HSD1 (PEPCK could not be detected in our embryonic liver 

tissue). At embryonic day 19, there were no differences in LXRα mRNA expression 

between the control and LP animals. However, both G6Pase and 11β-HSD1 mRNA 
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expression was decreased in LP offspring compared to control offspring (p<0.05) (Figure 

2.8).  

  



 

 

 

Figure 2.2: A) Intraperitoneal glucose tolerance tests (2g/kg) administered to fasted male 
offspring at 4 months of age. Control and LP animals were analyzed together at each time 
point (t=0, 5, 10, 15, 30, 60, 120 minutes) using the 
under the curve of Control and LP animals. Area under the curve was calculated using 
GraphPad Prism software. (Control n=6, LP n=10). Results are expressed as the mean 
standard error (SEM). * = Statistically significant (p<0.05).
 

 

 

 

 

 

 

 

 

Intraperitoneal glucose tolerance tests (2g/kg) administered to fasted male 
offspring at 4 months of age. Control and LP animals were analyzed together at each time 
point (t=0, 5, 10, 15, 30, 60, 120 minutes) using the Student’s unpaired t-
under the curve of Control and LP animals. Area under the curve was calculated using 

software. (Control n=6, LP n=10). Results are expressed as the mean 
standard error (SEM). * = Statistically significant (p<0.05). 
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Figure 2.3: The effect of maternal low protein during gestation on the 
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Figure 2.4: The effect of LP on 
mRNA, C) G6Pase mRNA, and 
months of age. Data were quantified from qRT
Data are represented as arbitrary values and were analyzed using the 
test. Results are expressed as the mean 
significant. n=4-6 per experimental group.
 

 

 

 

 

 

The effect of LP on in vivo hepatic levels of A) LXRα mRNA, 
) G6Pase mRNA, and D) 11β-HSD1 mRNA in control and LP offspring at 4 

months of age. Data were quantified from qRT-PCR (Taqman
®) and the ∆∆

Data are represented as arbitrary values and were analyzed using the Student’s

test. Results are expressed as the mean + standard error (SEM). * = Statistically 
6 per experimental group. 
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Figure 2.5: The effect of LP on the 
B) PEPCK protein (62 kDa), 
kDa) and E) GR protein (90-
were obtained from western immunoblotting experiments. Immunoblots were quantified 
using densitometry and normalized to 
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Figure 2.6: The effect of LP on the 
A) G6Pase (+22 bp to +46 bp) and 
offspring at 4 months of age. Putative LXRE sites were determined using
MatInspector software from 
antibodies specific to LXRα
EvaGreen) with primers specific to the proposed LXRE sites. The relative amount of 
immunoprecipitated genomic DNA was normalized to total genomic DNA. Data are 
represented as arbitrary values using the 
+ standard error (SEM). * = Statistically significant. n=4
 

 

 

 

 

The effect of LP on the in vivo hepatic binding of LXRα to the promoters of 
bp) and B) 11β-HSD1 (-114 bp to -90 bp) in control and LP 

offspring at 4 months of age. Putative LXRE sites were determined using
software from Genomatix. Livers were immunoprecipitatied with 

α. Quantification was performed using qRT-PCR (
with primers specific to the proposed LXRE sites. The relative amount of 

immunoprecipitated genomic DNA was normalized to total genomic DNA. Data are 
represented as arbitrary values using the ∆∆Ct method. Results are expressed as the mean 

standard error (SEM). * = Statistically significant. n=4-6 per experimental group.
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Figure 2.7: The effect of LP on the 
the LXRα transcriptional start site (
RNA Polymerase II to the 
Acetylation of histone H3 lysine 9 and 14 and 
Primers were designed based on sequencing from 
immunoprecipitated with antibodies specific to RNA polymerase II, trimethyled histone 
H3 [K4], acetylated histone H3 [K9, 14], and trimethylated histone H3 [K9]. 
Quantification was performed us
specific to the proposed LXR element sites. The relative amount of immunoprecipitated 
genomic DNA was normalized to total genomic DNA. Data are represented as arbitrary 
values using the ∆∆Ct method. Results are 
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The effect of LP on the in vivo transcriptional and epigenetic regulation of 
transcriptional start site (-135 bp to +144 bp) at 4 months of age. A)

RNA Polymerase II to the LXRα TSS, B) Trimethylation of histone H3 lysine 4, 
Acetylation of histone H3 lysine 9 and 14 and D) Trimethylation of histone H3 lysine 9. 

rs were designed based on sequencing from Ensembl. Livers were 
immunoprecipitated with antibodies specific to RNA polymerase II, trimethyled histone 
H3 [K4], acetylated histone H3 [K9, 14], and trimethylated histone H3 [K9]. 
Quantification was performed using qRT-PCR (Sso-Fast EvaGreen) with primers 
specific to the proposed LXR element sites. The relative amount of immunoprecipitated 
genomic DNA was normalized to total genomic DNA. Data are represented as arbitrary 

Ct method. Results are expressed as the mean + standard error 
(SEM). * = Statistically significant. n=4-6. 
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standard error 



 

 

 

Figure 2.8: The effect of LP on 
mRNA, C) 11β-HSD1 mRNA in control and LP offspring at embryonic day 19. Data 
were quantified from qRT-PCR (
as arbitrary values and were analyzed using the 
expressed as the mean + standard error (SEM). * = Statistically significant. n=4
experimental group. 
 

 

 

 

 

The effect of LP on in vivo hepatic levels of A) LXRα mRNA, 
HSD1 mRNA in control and LP offspring at embryonic day 19. Data 

PCR (Taqman
®) and the ∆∆Ct method. Data are represented 

as arbitrary values and were analyzed using the Student’s unpaired t-test. Results are 
standard error (SEM). * = Statistically significant. n=4

93 

 mRNA, B) G6Pase 
HSD1 mRNA in control and LP offspring at embryonic day 19. Data 

Ct method. Data are represented 
test. Results are 

standard error (SEM). * = Statistically significant. n=4-9 per 
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2.4 Discussion 

 

Our current study demonstrates that male offspring of LP dams exhibit increased 

expression of hepatic gluconeogenic genes due to aberrant expression of hepatic LXRα. 

This is of great interest considering previous studies have indicated that maternal protein 

restriction leads to glucose dysregulation8-10. We present evidence for the first time that 

suppressed expression of LXRα may mediate the enhanced transcription of the 

gluconeogenic genes G6Pase and 11β-HSD1 due to its decreased binding on these 

promoters, ultimately removing its ability to suppress hepatic gluconeogenesis18,19,31,32.  

Given placental insufficiency in humans can produce protein deficiency in the 

fetus33, this LP model shares features in common with PI-IUGR34. Previous studies done 

in our lab with the same cohort of animals have already demonstrated that LP offspring 

exhibit a 15% lower fetal to placental weight ratio and a 40% decreased fetal liver to 

body weight ratio at embryonic day 1922. While switching the low protein offspring to a 

control diet at weaning led to glucose intolerance10, little is known about how catch-up 

growth due to early restoration of protein22 influences their hepatic glucose handling by 

adulthood. In our LP model, after switching to a control (20% protein) diet at birth, the 

animals exhibited full catch-up growth by 3 weeks of age22. Moreover, by 4 months, 

these offspring exhibited impaired glucose tolerance with no evidence of hepatic insulin 

insensitivity. Given that glucose intolerance precedes insulin resistance, it is likely that 

these MPR offspring will develop insulin resistance at a later time point. Interestingly, 

the impaired glucose tolerance was similar, not worse, to low protein offspring at 4 
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months whereby their diet was switched to 20% at weaning10. Collectively, both studies 

further support of the main tenets of the Thrifty Phenotype hypothesis35. 

We previously found that LXRα expression and binding could be influenced by 

maternal diet by 3 weeks of age in the offspring22, but the expression of LXRα at 4 

months was unknown. In this study we demonstrated that in LP offspring, hepatic LXRα 

mRNA and protein was decreased at 4 months of age compared to control offspring. 

Interestingly, even though LXR expression was decreased in our LP animals, previous 

plasma analyses indicate no differences in the levels of circulating cholesterol and 

triglycerides in the same cohort of animals22. Given aberrant LXRα expression and 

activity can alter the expression of genes involved in hepatic gluconeogenesis (e.g. 

PEPCK, G6Pase, and 11β-HSD1)18-20,32, we next examined whether the expression of 

these LXR-target genes was altered in LP offspring. At 4 months, we found increases in 

the steady-state mRNA and protein levels of G6Pase in LP male rats. This is of great 

interest considering that this LXR-target gene is responsible for the final catalytic step of 

gluconeogenesis, the conversion of glucose-6-phosphate to glucose. Moreover, 

overproduction of G6Pase does not necessarily lead to increases in fasting glucose levels, 

but it does lead to an enhanced glucose response (e.g. a greater area under the curve 

during glucose tolerance tests), both of which we also observed36. To directly implicate 

whether alterations in LXRα expression influenced the binding of LXRα to the promoter 

of G6Pase, we then employed chromatin immunoprecipitation to examine the in vivo 

binding of LXRα to its a putative LXRE on the promoter of G6Pase. At 4 months of age, 

we observed a decrease in the binding of LXRα to the LXRE site (+22 to +46) of the 

G6Pase promoter. These data suggests that the increase of G6Pase expression seen in 
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protein restricted offspring is at least partly due to the decreased binding of LXRα to the 

putative G6Pase promoter. Overexpression of PEPCK has also been demonstrated to 

impair glucose tolerance and lead to non-insulin-dependent diabetes37, however we did 

not find any significant alterations in PEPCK mRNA or protein. This is in contrast to 

other studies whereby hepatic PEPCK activity increased in 3-week-old and 11-month-old 

offspring fed a low protein diet during gestation38, and low protein offspring fed a high 

sucrose diet (500 g/kg) postpartum39. The difference in the former study may be due to 

the fact that the offspring were cross-fostered to dams not subjected to a low protein diet, 

potentially leading to even greater catch-up growth.  

Dysregulation of glucocorticoids may also play a role in impairing glucose 

homeostasis in our LP model. Our study demonstrated an increase in 11β-HSD1 mRNA 

along with elevated 11β-HSD1 protein levels in the LP offspring. In addition, we found 

increases in protein expression of the glucocorticoid receptor, GR. Interestingly, while 

previous nutrient restriction models have demonstrated no change in 11β-HSD1 

expression in the adipose tissue of adult rat offspring40, its expression in the liver was not 

examined. Similar to G6Pase, we proposed that a decrease in LXRα expression and 

binding would lead to the loss of inhibitory action on the 11β-HSD1 promoter and a 

subsequent increase in 11β-HSD1 gene expression. Our ChIP experiments confirmed our 

speculation by demonstrating a decrease in LXRα binding to the putative LXRE (-114 to 

-90) on 11β-HSD1. With increased expression of 11β-HSD1, it is conceivable that there 

would be enhanced conversion of inactive glucocorticoids to active glucocorticoids. 

Furthermore, the increased expression of GR also indicates induction of glucocorticoid 

activity. Previous reports have found GR response elements on the promoter of 
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G6Pase
41,42, suggesting dual regulation of the G6Pase promoter by GR and LXR. As 

well, LXR induction has been demonstrated to inhibit GR expression21. Since 

glucocorticoids have stimulatory effects on the expression of gluconeogenic genes such 

G6Pase and PEPCK41,43,44, the sustained overproduction of glucocorticoids would lead to 

an augmented glucose response, as observed in the IPGTT. Collectively, it is likely that 

the overproduction of G6Pase may not only occur due to the direct actions of LXRα, but 

also indirectly through enhanced 11β-HSD1 and GR expression. 

 Previous studies strongly suggest the role of epigenetics in mediating the effects 

of fetal programming long-term into adulthood39,45-48. By 4 months of age, we 

demonstrated that LP males exhibited significantly decreased acetylation of histone H3 

[K9,14] associated with trends of decreased RNA polymerase II recruitment and 

decreased methylation of histone H3 [K4] surrounding the promoter of LXRα. 

Considering acetylation of histone H3 [K9,14] and methylation of histone H3 [K4] are 

both known to hallmarks of chromatin opening49-51, our findings suggest that the LXRα 

TSS is silenced through epigenetic mechanisms by adulthood. These findings are 

congruent with the decreased levels of LXRα mRNA and protein expression observed. 

Additionally, we previously demonstrated that MPR leads to long-term decreases in 

histone H3 acetylation [K9,14] surrounding the promoter of the LXR-target gene 

Cyp7a1, resulting in hypercholesterolemia in these offspring22. To address whether the 

low protein diet itself directly alters hepatic LXRα and LXR-target genes in vivo, we 

measured their fetal expression (embryonic day 19) during the low protein insult. 

Interestingly, the low protein diet impaired these hepatic genes involved in 

gluconeogenesis without changes to LXRα expression. This suggests that the augmented 
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expression of LXRα, G6Pase and 11β-HSD1 observed in adulthood is more likely due to 

the indirect actions of the low protein diet, namely, a protein mismatch in postnatal life 

associated with rapid catch-up growth.  

In view of the fact that LXRα suppresses glucose production, it may be a suitable 

target as a therapeutic intervention to prevent glucose intolerance. Animal studies have 

widely demonstrated that administration of LXR agonists (i.e. GW3965, T0901317) lead 

to improved glucose tolerance19,32. Given that during the newborn period in the rat there 

is a high rate of replication, neogenesis and apoptosis leading to extensive liver 

remodeling52, this period represents a critical, but opportune window for therapy 

designed to improve hepatic growth and function long-term. For example, it has been 

demonstrated in IUGR rats derived from uterine artery ligated dams, that neonatal 

administration of Exendin-4™ (a GLP-1 analog) prevented the development of hepatic 

oxidative stress and insulin resistance53. Therefore it is plausible that LXRα agonists, 

administered in neonatal life, a period of liver plasticity, may prevent glucose intolerance 

long-term through activation of hepatic LXRα.  While LXR agonists appear promising, 

the negative effects of LXRα activation must also be considered given it can activate 

lipogenesis through increased expression of fatty acid synthase (FAS), acetyl-CoA 

carboxylase (ACC) and the master lipid regulator, sterol regulatory element binding 

protein-1c (SREBP-1c)54.  

In summary, our study demonstrates for the first time the role of LXRα in 

mediating the transcriptional regulation of hepatic gluconeogenic genes in our rat LP 

model. In these offspring, decreased expression of hepatic LXRα reduced the 

transcriptional inhibition of hepatic G6Pase and 11β-HSD1. This increased expression of 
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G6Pase and 11β-HSD1 in LP offspring would contribute, in part, to the aberrant glucose 

handling observed in these animals.  Given the role of hepatic LXRα in reducing glucose 

production, it serves as a possible therapeutic target of intervention due to its antidiabetic 

properties. Further studies will be necessary to find a suitable balance between 

antidiabetic and lipogenic actions of LXRα before it could be considered as an ideal 

candidate for preventing glucose intolerance in IUGR offspring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

2.5 References 

1. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-
dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to 
reduced fetal growth. Diabetologia 1993;36:62-7. 

2. Nilsson PM, Ostergren PO, Nyberg P, Soderstrom M, Allebeck P. Low birth weight is 
associated with elevated systolic blood pressure in adolescence: a prospective study of a 
birth cohort of 149378 Swedish boys. J Hypertens 1997;15:1627-31. 

3. Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C. Insulin resistance early in 
adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab 
2000;85:1401-6. 

4. Huxley R, Owen CG, Whincup PH, et al. Is birth weight a risk factor for ischemic 
heart disease in later life? Am J Clin Nutr 2007;85:1244-50. 

5. Levitt NS, Lambert EV, Woods D, Hales CN, Andrew R, Seckl JR. Impaired glucose 
tolerance and elevated blood pressure in low birth weight, nonobese, young south african 
adults: early programming of cortisol axis. J Clin Endocrinol Metab 2000;85:4611-8. 

6. Desai M,  Hales CN. Role of fetal and infant growth in programming metabolism in 
later life. Biol Rev Camb Philos Soc 1997;72:329-48. 

7. Petrik J, Reusens B, Arany E, et al. A low protein diet alters the balance of islet cell 
replication and apoptosis in the fetal and neonatal rat and is associated with a reduced 
pancreatic expression of insulin-like growth factor-II. Endocrinology 1999;140:4861-73. 

8. Ozanne SE, Smith GD, Tikerpae J, Hales CN. Altered regulation of hepatic glucose 
output in the male offspring of protein-malnourished rat dams. Am J Physiol 
1996;270:E559-64. 

9. Burns SP, Desai M, Cohen RD, et al. Gluconeogenesis, glucose handling, and 
structural changes in livers of the adult offspring of rats partially deprived of protein 
during pregnancy and lactation. J Clin Invest 1997;100:1768-74. 

10. Chamson-Reig A, Thyssen SM, Hill DJ, Arany E. Exposure of the pregnant rat to low 
protein diet causes impaired glucose homeostasis in the young adult offspring by 
different mechanisms in males and females. Exp Biol Med (Maywood) 2009;234:1425-
36. 

11. Apfel R, Benbrook D, Lernhardt E, Ortiz MA, Salbert G, Pfahl M. A novel orphan 
receptor specific for a subset of thyroid hormone-responsive elements and its interaction 
with the retinoid/thyroid hormone receptor subfamily. Mol Cell Biol 1994;14:7025-3. 



101 

 

12. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a 
nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 
1995;9:1033-45. 

13. Song C, Kokontis JM, Hiipakka RA, Liao S. Ubiquitous receptor: a receptor that 
modulates gene activation by retinoic acid and thyroid hormone receptors. Proc Natl 
Acad Sci U S A 1994;91:10809-13. 

14. Lehmann JM, Kliewer SA, Moore LB, et al. Activation of the nuclear receptor LXR 
by oxysterols defines a new hormone response pathway. J Biol Chem 1997;272:3137-40. 

15. Song C,  Liao S. Cholestenoic acid is a naturally occurring ligand for liver X receptor 
alpha. Endocrinology 2000;141:4180-4. 

16. Venkateswaran A, Laffitte BA, Joseph SB, et al. Control of cellular cholesterol efflux 
by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A 2000;97:12097-
102. 

17. Repa JJ, Liang G, Ou J, et al. Regulation of mouse sterol regulatory element-binding 
protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 
2000;14:2819-30. 

18. Stulnig TM, Oppermann U, Steffensen KR, Schuster GU, Gustafsson JA. Liver X 
receptors downregulate 11beta-hydroxysteroid dehydrogenase type 1 expression and 
activity. Diabetes 2002;51:2426-33. 

19. Cao G, Liang Y, Broderick CL, et al. Antidiabetic action of a liver x receptor agonist 
mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 2003;278:1131-6. 

20. Stulnig TM, Steffensen KR, Gao H, et al. Novel roles of liver X receptors exposed by 
gene expression profiling in liver and adipose tissue. Mol Pharmacol 2002;62:1299-305. 

21. Liu Y, Yan C, Wang Y, et al. Liver X receptor agonist T0901317 inhibition of 
glucocorticoid receptor expression in hepatocytes may contribute to the amelioration of 
diabetic syndrome in db/db mice. Endocrinology 2006;147:5061-8. 

22. Sohi G, Marchand K, Revesz A, Arany E, Hardy DB. Maternal protein restriction 
elevates cholesterol in adult rat offspring due to repressive changes in histone 
modifications at the cholesterol 7alpha-hydroxylase promoter. Mol Endocrinol 
2011;25:785-98. 

23. van Straten EM, Bloks VW, Huijkman NC, et al. The liver X-receptor gene promoter 
is hypermethylated in a mouse model of prenatal protein restriction. Am J Physiol Regul 
Integr Comp Physiol 2010;298:R275-82. 



102 

 

24. Tarry-Adkins JL, Martin-Gronert MS, Fernandez-Twinn DS, et al. Poor maternal 
nutrition followed by accelerated postnatal growth leads to alterations in DNA damage 
and repair, oxidative and nitrosative stress, and oxidative defense capacity in rat heart. 
FASEB J 2012;. 

25. Ozanne SE,  Hales CN. Lifespan: catch-up growth and obesity in male mice. Nature 
2004;427:411-2. 

26. Chen JH, Martin-Gronert MS, Tarry-Adkins J, Ozanne SE. Maternal protein 
restriction affects postnatal growth and the expression of key proteins involved in 
lifespan regulation in mice. PLoS One 2009;4:e4950. 

27. Guan H, Arany E, van Beek JP, et al. Adipose tissue gene expression profiling reveals 
distinct molecular pathways that define visceral adiposity in offspring of maternal 
protein-restricted rats. Am J Physiol Endocrinol Metab 2005;288:E663-73. 

28. Cartharius K, Frech K, Grote K, et al. MatInspector and beyond: promoter analysis 
based on transcription factor binding sites. Bioinformatics 2005;21:2933-42. 

29. Valverde AM,  Gonzalez-Rodriguez A. IRS2 and PTP1B: Two opposite modulators 
of hepatic insulin signalling. Arch Physiol Biochem 2011;117:105-1. 

30. Guo S, Copps KD, Dong X, et al. The Irs1 branch of the insulin signaling cascade 
plays a dominant role in hepatic nutrient homeostasis. Mol Cell Biol 2009;29:5070-83. 

31. Mitro N, Mak PA, Vargas L, et al. The nuclear receptor LXR is a glucose sensor. 
Nature 2007;445:219-23. 

32. Laffitte BA, Chao LC, Li J, et al. Activation of liver X receptor improves glucose 
tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. 
Proc Natl Acad Sci U S A 2003;100:5419-24. 

33. Crosby WM. Studies in fetal malnutrition. Am J Dis Child 1991;145:871-6. 

34. Ross MG,  Beall MH. Adult sequelae of intrauterine growth restriction. Semin 
Perinatol 2008;32:213-8. 

35. Hales CN,  Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty 
phenotype hypothesis. Diabetologia 1992;35:595-601. 

36. Trinh KY, O'Doherty RM, Anderson P, Lange AJ, Newgard CB. Perturbation of fuel 
homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in 
liver of normal rats. J Biol Chem 1998;273:31615-20. 



103 

 

37. Valera A, Pujol A, Pelegrin M, Bosch F. Transgenic mice overexpressing 
phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. 
Proc Natl Acad Sci U S A 1994;91:9151-4. 

38. Desai M, Crowther NJ, Ozanne SE, Lucas A, Hales CN. Adult glucose and lipid 
metabolism may be programmed during fetal life. Biochem Soc Trans 1995;23:331-5. 

39. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. 
Dietary protein restriction of pregnant rats in the F0 generation induces altered 
methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 
generations. Br J Nutr 2007;97:435-9. 

40. Dutriez-Casteloot I, Breton C, Coupe B, et al. Tissue-specific programming 
expression of glucocorticoid receptors and 11 beta-HSDs by maternal perinatal 
undernutrition in the HPA axis of adult male rats. Horm Metab Res 2008;40:257-61. 

41. Lin B, Morris DW, Chou JY. Hepatocyte nuclear factor 1alpha is an accessory factor 
required for activation of glucose-6-phosphatase gene transcription by glucocorticoids. 
DNA Cell Biol 1998;17:967-74. 

42. Vander Kooi BT, Onuma H, Oeser JK, et al. The glucose-6-phosphatase catalytic 
subunit gene promoter contains both positive and negative glucocorticoid response 
elements. Mol Endocrinol 2005;19:3001-22. 

43. Lange AJ, Argaud D, el-Maghrabi MR, Pan W, Maitra SR, Pilkis SJ. Isolation of a 
cDNA for the catalytic subunit of rat liver glucose-6-phosphatase: regulation of gene 
expression in FAO hepatoma cells by insulin, dexamethasone and cAMP. Biochem 
Biophys Res Commun 1994;201:302-9. 

44. Sasaki K, Cripe TP, Koch SR, et al. Multihormonal regulation of 
phosphoenolpyruvate carboxykinase gene transcription. The dominant role of insulin. J 
Biol Chem 1984;259:15242-51. 

45. Rees WD, Hay SM, Brown DS, Antipatis C, Palmer RM. Maternal protein deficiency 
causes hypermethylation of DNA in the livers of rat fetuses. J Nutr 2000;130:1821-6. 

46. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein 
restriction of pregnant rats induces and folic acid supplementation prevents epigenetic 
modification of hepatic gene expression in the offspring. J Nutr 2005;135:1382-6. 

47. van Straten EM, Bloks VW, Huijkman NC, et al. The liver X-receptor gene promoter 
is hypermethylated in a mouse model of prenatal protein restriction. Am J Physiol Regul 
Integr Comp Physiol 2010;298:R275-82. 



104 

 

48. Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes 
following intrauterine growth retardation in rats is associated with progressive epigenetic 
silencing of Pdx1. J Clin Invest 2008;118:2316-24. 

49. Jenuwein T,  Allis CD. Translating the histone code. Science 2001;293:1074-80. 

50. Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at 
K4 of histone H3. Nature 2002;419:407-11. 

51. Yan C,  Boyd DD. Histone H3 acetylation and H3 K4 methylation define distinct 
chromatin regions permissive for transgene expression. Mol Cell Biol 2006;26:6357-71. 

52. Cascio S,  Zaret KS. Hepatocyte differentiation initiates during endodermal-
mesenchymal interactions prior to liver formation. Development 1991;113:217-25. 

53. Raab EL, Vuguin PM, Stoffers DA, Simmons RA. Neonatal exendin-4 treatment 
reduces oxidative stress and prevents hepatic insulin resistance in intrauterine growth-
retarded rats. Am J Physiol Regul Integr Comp Physiol 2009;297:R1785-94. 

54. Steffensen KR,  Gustafsson JA. Putative metabolic effects of the liver X receptor 
(LXR). Diabetes 2004;53 Suppl 1:S36-42. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



105 

 

 

 

 

 

 

 

 

Chapter Three: 

Administration of the Liver X Receptor Agonist GW3965 During the Neonatal 

Period Leads to Impaired Glucose Tolerance in Non-Maternal Protein Restricted 

Adult Male Rats 

 

 

 

 

 

 

 

 

 

 

 

 



106 

 

3.1 Introduction 

 Epidemiological studies have indicated a strong connection between impaired 

development and growth in utero and the risk of developing chronic diseases1,2. Low 

birth weight infants are often a result of intrauterine growth restriction (IUGR). The 

“Thrifty Phenotype Hypothesis” postulates that during gestation the fetus programs itself 

for short-term survival in utero, and that these adaptations become maladaptive in 

postnatal life due to a mismatch in the environments3,4. These maladaptive changes may 

have detrimental effects on the individual in later life by increasing their risk of 

developing cardiovascular disease, hypertension, obesity, and type 2 diabetes5-9.  

 The maternal protein restriction (MPR) model of IUGR is a well-studied model 

for examining the developmental origins of health and disease. Typically, in models of 

MPR the mother is given a low protein diet (5-8%) during the gestation period (and often 

the weaning period). Previous studies have demonstrated that MPR leads to impaired 

glucose homeostasis, impaired pancreatic development and function and altered hepatic 

function in the offspring10-14. Other studies have also found detrimental effects in the 

kidneys and heart, in addition to changes in the longevity of MPR offspring15-18. Studies 

from our own lab have found elevated cholesterol in MPR offspring due to altered 

epigenetic regulation of the Cyp7a1 gene19. More recently, our lab has uncovered that 

MPR during gestation (and not weaning) leads to suppressed Liver X Receptor (LXR) 

expression, facilitating the transcriptional induction of glucose-6-phosphatase (G6Pase) 

and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in male MPR offspring. These 

findings implicate LXR as a key factor in mediating the detrimental programming effects 

of IUGR20. 
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 LXR is a nuclear receptor that exists as two isoforms: LXRα and LXRβ. LXRα is 

generally found in the liver, intestines, adipose tissue and macrophages21,22, while LXRβ 

is expressed ubiquitously23. LXR was first implicated in the regulation of cholesterol 

metabolism since its endogenous ligands were mainly derivatives of cholesterol24,25. 

Furthermore, LXR has been connected to lipid metabolism by stimulating the expression 

of many lipogenic genes including sterol regulatory element binding protein-1 (SREBP-

1), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and stearoyl-CoA 

desaturase-1 (SCD-1)26-30. More recently, LXR has been found to be able to bind glucose 

and act as a glucose sensor31. In addition, LXR has demonstrated the ability to 

downregulate genes involved in the gluconeogenic pathway such as phosphoenolpyruvate 

carboxykinase (PEPCK) and glucose-6-phosphatase32,33. Finally, LXR has been 

associated with glucocorticoid regulation through repression of 11β-HSD1, an essential 

enzyme involved in the conversion of inactive glucocorticoids to their active form.  

 Studies have been exploring the possibility of intervening during the neonatal 

period to reverse the programming observed in IUGR offspring. Certain organs like the 

liver and pancreas continue to develop even after birth and display great plasticity, 

especially in rodents34,35. Given that there is still a great deal of hepatic and pancreatic 

neogenesis, differentiation, replication, and apoptosis during the early neonatal period, it 

represents a critical time point for possible intervention34,36. For instance, in an elegant 

study done by Stoffers and colleagues (2006), administration of the glucagon-like 

peptide-1 (GLP-1) analogue Exendin-4™ during the neonatal period completely 

prevented the development of diabetes in uterine artery ligated IUGR rats37. They 

postulate that this change is mediated through restoration of the pancreatic and duodenal 
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homeobox 1 protein (Pdx-1), an essential transcription factor required for pancreatic 

development and β-cell maturation37,38. Further studies done by the Raab and colleagues 

(2009) found that administration of Exendin-4™ during the neonatal period prevented 

hepatic insulin resistance and reduced hepatic oxidative stress39. Thus, these studies 

demonstrate how a short-term intervention during the neonatal period can permanently 

alter organ function in adult life.  

 Given that LXR has been demonstrated to improve glucose tolerance33,40 and our 

lab has previously implicated reduced LXR expression in partly mediating the effects of 

impaired glucose homeostasis and overexpression of gluconeogenic genes in MPR male 

adult rat offspring20, we attempt in this study to prevent the development of impaired 

glucose homeostasis in later life (4 months of age) by administering the LXR agonist 

GW3965 during the early neonatal period. In this experimental paradigm, where the MPR 

dams receive the low protein diet during both gestation and weaning (herein termed the 

“LP2” experimental group), no changes in glucose homeostasis were found between 

control and MPR diet offspring. However, in the control diet offspring, administration of 

the LXR agonist during the neonatal period led to impaired glucose homeostasis. This 

impaired glucose homeostasis was accompanied by increased gluconeogenic gene 

expression (G6Pase, PEPCK) and increased lipogenic gene expression (SCD-1). 

Furthermore these offspring displayed signs of hyperinsulinemia and 

hypertriglyceridemia in addition to the observed hyperglycemia, which all encompass 

features of the metabolic syndrome41.  
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3.2 Materials and Methods 

 

3.2.1 Animal Experiments and Dietary Regime 

All procedures were performed in accordance with the guidelines set by the 

Canadian Council of Animal Care and upon approval of the Animal Care Committee of 

the University of Western Ontario. Male and virgin female Wistar rats at breeding age 

(250 g) were purchased from Charles River (La Salle, St-Constant, Quebec, Canada) and 

were allowed to acclimatize to their new environment for two weeks. Rats were housed at 

room temperature on a 12-12 hour light-dark cycle. Females were housed in separate 

cages and were cohabitated with a male for mating upon entering pro-estrous. Conception 

was confirmed under a microscope by presence of sperm in the vaginal smear the 

following day. 

Dams and offspring received isocaloric diets (Bio-Serv, Frenchtown, NJ, USA) 

varying in protein composition, depending on their experimental group. The “control” 

offspring and dams (C-V and C-GW) received 20% protein throughout life, while 

“protein restricted” dams (LP2-V and LP2-GW) received low protein chow (8%) 

throughout gestation and then restored on a 20% protein chow after the weaning period 

(21 days after birth) (Figure 3.1). All offspring were allowed to feed on the control diet 

ad-libitum after the weaning period. 

Beginning at postnatal day 5, pups received daily intraperitoneal injections of 

25mg/kg of the LXR agonist GW3965 (LP-GW and C-GW) or equal volume of the 

vehicle DMSO (LP2-V and C-V). The pups received daily injections of the LXR agonist 

or vehicle until postnatal day 15 (Figure 3.1). In our initial experiments, where the LP2-
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pups received 50mg/kg of the LXR agonist, a subset of pups (4 LP2-V pups and 6 LP2-

GW pups) was sacrificed at postnatal day 21 and livers from the pups were extracted. The 

livers were flash frozen for further molecular analysis. All further litters with greater than 

10 pups were arbitrarily culled down to 9-10 pups to ensure a consistent litter size per 

dam. In total, there were two dams for each experimental group (8 dams total) with 9-10 

pups per litter. 

 After intraperitoneal glucose tolerance tests at postnatal day 120-125, all offspring 

were sacrificed using a lethal dose (50mg/kg) of Euthanyl forte pentobarbital sodium 

(Bimeda-MTC, Cambridge, ON, Canada) at postnatal day 130. This age was chosen 

because previous studies have demonstrated that in other models of protein restriction, 

impaired glucose tolerance was not observed earlier than 4 months42. Following sacrifice, 

liver and blood were immediately extracted and flash frozen at -80oC for molecular 

analysis. We did not examine the female offspring in this study to prevent confounding 

factors related to their estrous cycle and hormone profile. More importantly, the maternal 

low protein model has been demonstrated to exhibit early life programming effects in a 

sexually dimorphic manner, which was not the focus of this investigation19,42,43. For 

molecular analysis, at least one to two male pups from each of two separate dams were 

arbitrarily chosen.  All available male pups were used for the intraperitoneal glucose 

tolerance tests.  
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3.2.2 Glucose Tolerance Tests 

 At postnatal day 120-125, male offspring were subject to an intraperitoneal 

glucose tolerance test (IPGTT) as previously described20. Prior to the IPGTT, the animals 

were fasted overnight for 14-16 hours. Animals were awake throughout the experiment. 

Blood glucose measurements were obtained using a Bayer Breeze® 2 Blood Glucose 

Meter (Bayer, New York, USA). Fasted blood glucose levels were obtained prior to the 

glucose injection. Animals then received 2g/kg of glucose via injection into the 

intraperitoneal cavity. Blood glucose was sampled at the tail vein at t= 0, 5, 10, 15, 30, 

60, and 120 minutes. Area under the curve for each animal was calculated using 

GraphPad Prism software.  IPGTTs were performed on 5 LP2-V, 7 LP2-GW, 4 C-V, 

and 8 C-GW male rats.  

 

3.2.3 Plasma Assays for Fasted Resting Blood Triglyceride and Insulin Levels 

 At 4 months of age, blood was collected from sacrificed animals and transferred 

to tubes containing EDTA. The blood was then centrifuged and plasma was collected and 

stored at -20oC until analysis. At time of analysis, samples were thawed and triglyceride 

levels were measured using the Cobas® Trig/GB colorimetric enzymatic kit (Roche 

Diagnostics, Laval, Canada). Insulin levels were measured using the ALPCO™ Insulin 

(Rat) ELISA kit (ALPCO Diagnostics, Salem, New Hampshire, USA). The 

manufacturer’s instructions were followed for both kits.   
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3.2.4 Tissue Protein Extraction and Western Immunoblotting 

 Protein extraction and western immunoblotting protocols have been previously 

described19,20. 

Tissue protein was extracted from the medial lobe of snap frozen offspring livers 

using a lysis buffer solution (pH 7.4, Tris-HCl 50mM, NP-40 1%, Sodium-deoxycholate 

0.25%, NaCl 150mM, EDTA 1mM, NaF 50mM, Na3VO4 1mM 1mM, β-

Glycerophosphate 25mM). Prior to tissue homogenization, a mini protease inhibitor 

tablet was added to the lysis buffer.  

Firstly, a small chunk of snap frozen liver was added to 600µl of RIPA buffer. 

The tissue was then homogenized with the IKA T10 Basic S1 Dispersing Tool (IKA 

Works Inc, Wilmington, NC) for 10-15 seconds at speed 6. After letting the homogenized 

tissue sit on ice for 5 minutes, the tissue was then sonicated. Following sonication, the 

tissue was rotated at 4oC for 5 minutes and then centrifuged for 15 minutes at 300g and 

4oC. The supernatant was retained for further centrifugation at 20,000g for 20 minutes at 

4oC. The final supernatant was retained for protein quantification and western 

immunoblotting. 

Equal concentrations of total protein were normalized using a colorimetric BCA 

Protein Assay (Pierce Corp., Madison, WI, USA). Proteins were then fractionated in 12-

well gradient polyacrylamide gels (Invitrogen, Carlsbad, CA, USA) and transferred onto 

PVDF membrane (Millipore, Etobicoke, Ontario, Canada). Amido black staining and 

Coomassie brilliant blue staining confirmed sufficient transfer of proteins onto the 

membrane. 
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Immunoblots were probed using LXRα (Liver X Receptor (1:1000; cat# sc-

13068)), PEPCK (1:2000; cat# sc-32879), G6Pase-α (1:1000; cat# sc-25840), 11β-HSD1 

(1:800; cat# sc-20175), and SREBP-1c (1:1000; cat# sc-366) all from Santa Cruz 

Biotechnology (Santa Cruz, California). In addition, FAS (1:1000; cat# 3180S) and ACC 

(1:1000; cat# 3662S) antibodies were obtained from Cell Signaling (Danvers, 

Massachusetts) and SCD-1 (1:1000; cat# Ab-19862) antibodies were obtained from 

Abcam Inc., Massachusetts. Monoclonal HRP conjugated β-Actin (1:50,000; cat#A3854, 

Sigma-Aldrich, Oakville, Ontario, Canada) diluted in 5% milk-TBS-Tween-20 (0.1%) 

buffer and HRP conjugated donkey anti-rabbit or donkey anti-mouse IgG (1:10,000, cat# 

711-035-152 and 715-035-150, respectively, Jackson ImmunoResearch Laboratories, 

West Grove, PA, USA) diluted in 5% milk-TBS-Tween-20(0.1%) buffer were used as the 

secondary antibodies. Finally, immunostained bands were then visualized using an 

enhanced chemiluminescence detection system (Thermo Scientific, Waltham, MA, 

USA). 

 

3.2.5 Statistical Analysis 

 All data are represented as a mean of an arbitrary value ± Standard Error of the 

Mean (SEM), unless indicated as raw values. Glucose tolerance tests, areas under the 

curve and metabolic data were analyzed using a one-way ANOVA followed by Tukey’s 

post-hoc test. Quantified western immunoblot bands were analyzed using the unpaired 

Student’s t-test. All data with a p-value less than 0.05 were considered statistically 

significant. 
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3.3 Results 

 

3.3.1 Neonatal Administration of the LXR Agonist GW3965 Leads to Altered 

Hepatic Expression of 11β-HSD1 and SREBP-1c at Postnatal Day 21 in MPR Male 

Rat Offspring 

 

 Initially, we used a small cohort of pups to determine whether neonatal 

administration of GW3965 would lead to changes that would persist beyond the 

administration period (postnatal days 5-15). Thus, we culled 4 LP2-V pups and 6 LP2-

GW pups at postnatal day 21, one week after the administration period, and examined the 

expression of LXR-target genes via western immunoblotting. There were no changes in 

protein expression of LXR, G6Pase, or PEPCK at this time point in these animals 

(Figures 3.2 A,B&D). At postnatal day 21, even after the administration of GW3965 had 

halted, we found a significant reduction in the protein expression of 11β-HSD1, which is 

negatively regulated by LXR (p<0.05) (Figure 3.2C). In addition, we also found a 

significant increase in the protein expression of SREBP-1c, a protein that is positively 

regulated by LXR (p<0.05) (Figure 3.2E). Thus, given that there were expression changes 

in certain LXR target genes even after the administration of the LXR agonist GW3965 

was halted, we were encouraged to continue another cohort of animals that included a 

“control” diet group (C-V and C-GW).  
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3.3.2 Neonatal Administration of the LXR Agonist GW3965 Does not Alter Whole 

Body Weight or Wet Liver Weights at 4 Months of Age 

  

At postnatal day 130, the animals were sacrificed and weighed. After the whole 

body weights were weighed, the liver was extracted and weighed. The C-GW males were 

significantly heavier than LP2-V animals at 4 months of age (p<0.05) (Figure 3.3A). 

There were no differences in weight between any other groups. However, there appeared 

to be a trend where the control diet offspring were heavier than low protein diet offspring. 

For wet liver weights, LP-V liver weights were significantly less than both C-V and C-

GW experimental groups (p<0.05) (Figure 3.3B). LP-GW liver weights were also 

significantly less than C-GW liver weights (p<0.05). Again, there appeared to be a trend 

where the control diet animals exhibited increased liver weights compared to low protein 

animals. 

 

3.3.3 Neonatal Administration of the LXR Agonist GW3965 Leads to Impaired 

Glucose Homeostasis in Control Male Offspring 

  

Intraperitoneal glucose tolerance tests were administered to the offspring at 

postnatal days 120-125 to assess whole body glucose handling in response to a glucose 

load. At the 60-minute time point the C-GW animals displayed significant hyperglycemia 

versus all of the other groups (p<0.05) (Figure 3.4A). At the 120-minute time point the 

C-GW animals displayed significant hyperglycemia only against the LP2-V experimental 

group (p<0.05).  
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The areas under the curve of each animal were determined using GraphPad 

Prism software and then statistically analyzed as a gross assessment of glucose 

tolerance. The areas under the curve for C-GW offspring were significantly increased 

compared to all other groups (p<0.05) (Figure 3.4B). This suggests that the C-GW 

offspring were glucose intolerant compared to the rest of the experimental groups. 

 

3.3.4 Neonatal Administration of the LXR Agonist GW3965 Leads to Fasting 

Hyperglycemia, Hyperinsulinemia and Hypertriglyceridemia in Non-MPR (C-GW) 

Male Offspring 

  

In the control diet animals, administration of GW3965 led to significant elevation 

of fasting blood glucose levels (as assessed prior to the IPGTT) (Figure 3.5A). Fasted 

insulin levels in the C-GW experimental group were significantly elevated compared to 

both LP2-V and LP2-GW experimental groups (p<0.05) (Figure 3.5B). Only C-GW 

fasted triglycerides were significantly elevated compared to LP2-V and LP2-GW animals 

(p<0.05) (Figure 3.5C). 

 Given the results observed in our plasma analyses and glucose tolerance tests, we 

decided to exclusively pursue the molecular mechanisms underlying the detrimental 

effects of neonatal GW3965 administration in control diet (20% protein diet) animals 

only. There was a strong rationale to examine these animals since they displayed signs of 

impaired glucose tolerance (Figures 3.4A&B), fasted hyperglycemia (Figure 3.5A), 

hyperinsulinemia (Figure 3.5B), and phypertriglyceridemia (Figure 3.5C) – all of which 

encompass symptoms of the metabolic syndrome41.  
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3.3.5 Neonatal Administration of the LXR Agonist GW3965 Leads to Increased 

Protein Expression of Gluconeogenic Genes in Non-MPR Male Offspring at 4 

Months of Age 

  

To assess whether the impaired glucose tolerance observed in C-GW animals was 

due to the increased expression of gluconeogenic genes, we employed western 

immunoblotting with antibodies specific to G6Pase and PEPCK, both LXR-target genes. 

We also examined the expression of 11β-HSD1 to observe whether these changes in 

circulating glucose were indirectly related to alterations in bioactive glucocorticoid 

production. At 4 months of age, neonatal administration of GW3965 in non-MPR (C-

GW) rats led to significantly increased expression of the gluconeogenic genes, PEPCK 

and G6Pase (p<0.05) (Figures 3.6B&C). In addition, there was a significant increase in 

the expression of 11β-HSD1 (p<0.05), indicating the possibility of increased 

glucocorticoid conversion (Figure 3.6D). Interestingly, there were no changes in LXR 

expression between C-V and C-GW animals (Figure 3.6A).  

 

3.3.6 Neonatal Administration of the LXR Agonist GW3965 Leads to Increased 

Protein Expression of the Lipogenic Gene SCD-1 in Non-MPR Male Offspring at 4 

Months of Age 

 

Given C-GW animals exhibited increased circulating triglycerides (Figure 3.5C) 

we next decided to examine the protein expression of genes involved in hepatic de novo 

lipogenesis. We measured the expression of SREBP-1, FAS, ACC, and SCD-1 using 



119 

 

western immunoblotting. At 4 months of age, we found significantly elevated protein 

expression of SCD-1 in C-GW animals compared to C-V animals (p<0.05) (Figure 3.7D). 

There were no significant differences in any of the other hepatic lipogenic genes (Figures 

3.7 A-C).  

 

 

 

 

 



 

Figure 3.2: The effect of neonatal GW3965 administration (50mg/kg) on the 
hepatic levels of A) LXRα protein (50 kDa), B) PEPCK protein (62 kDa), C) G6Pase 
protein (36 kDa), D) 11β-HSD1 
LP2-V and LP2-GW male offspring at 21 days of age. Data were obtained from 
immunoblotting experiments. Immu
normalized to β-actin (42 kDa) protein expression. 
unpaired Student’s t-test. Data are represented as arbitrary values. Results are expressed 
as the mean + standard error (SEM). * = Statistically significant from LP2
experimental group. 
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GW male offspring at 21 days of age. Data were obtained from 
immunoblotting experiments. Immunoblots were quantified using densitometry and 
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Data are represented as arbitrary values. Results are expressed 

standard error (SEM). * = Statistically significant from LP2-
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Figure 3.3: The effect of neonatal GW3965 administration (25mg/kg) on A) body weight 
and B) liver weight in LP2-V, LP2
age. Data are represented in grams (g). 
followed by Tukey’s post-hoc test.
(SEM). * = Statistically significant. n=5
 

 

 

 

 

 

 

 

 

 

The effect of neonatal GW3965 administration (25mg/kg) on A) body weight 
V, LP2-GW, C-V, and C-GW male offspring at 4 m

age. Data are represented in grams (g). Data were analyzed using the one-way ANOVA 
hoc test. Results are expressed as the mean + standard error 

(SEM). * = Statistically significant. n=5-9 per experimental group. 
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Figure 3.4: A) Intraperitoneal glucose tolerance tests (2g/kg) administered to fasted male 
offspring at 4 months of age. LP2
together at each time point (t=0, 5, 10, 15, 30, 60, 120 minutes) using the one
ANOVA followed by Tukey’s post
GW, C-V, and C-GW animals. Area under the curve was calculated using 
Prism software and analyzed using the one
test. n=4-8 per experimental group. Results are expressed as the mean 
(SEM). * = Statistically significant (
significant (C-GW versus LP2
 

 

 

 

 

 

 

A) Intraperitoneal glucose tolerance tests (2g/kg) administered to fasted male 
offspring at 4 months of age. LP2-V, LP2-GW, C-V, and C-GW animals were analyzed 
together at each time point (t=0, 5, 10, 15, 30, 60, 120 minutes) using the one
ANOVA followed by Tukey’s post-hoc test. B) Area under the curve of LP2

GW animals. Area under the curve was calculated using 
software and analyzed using the one-way ANOVA followed by Tukey’s post

er experimental group. Results are expressed as the mean + standard error 
(SEM). * = Statistically significant (C-GW versus all groups; p<0.05). + = Statistically 

GW versus LP2-V; p<0.05). 
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Figure 3.5: The effect of neonatal GW3965 administration (25mg/kg) on A) fasted 
resting glucose, B) fasted resting insulin, and C) fasted resting triglyceride levels in LP2
V, LP2-GW, C-V, and C-GW male offspring at 4 months of age. Fasted resting glucose 
was obtained prior to the glucose tolerance test. Fasted resting insulin and fasted resting 
triglyceride levels were obtained from the procedures described in the methods section. 
Data are represented as raw values. 
followed by Tukey’s post-hoc test.
as the mean + standard error (SEM). * = Statistically significant (p<0.05).
 

The effect of neonatal GW3965 administration (25mg/kg) on A) fasted 
resting glucose, B) fasted resting insulin, and C) fasted resting triglyceride levels in LP2

GW male offspring at 4 months of age. Fasted resting glucose 
prior to the glucose tolerance test. Fasted resting insulin and fasted resting 

triglyceride levels were obtained from the procedures described in the methods section. 
Data are represented as raw values. Data were analyzed using the one-way ANOVA 

hoc test. n=4-8 per experimental group. Results are expressed 
standard error (SEM). * = Statistically significant (p<0.05). 

123 

The effect of neonatal GW3965 administration (25mg/kg) on A) fasted 
resting glucose, B) fasted resting insulin, and C) fasted resting triglyceride levels in LP2-

GW male offspring at 4 months of age. Fasted resting glucose 
prior to the glucose tolerance test. Fasted resting insulin and fasted resting 

triglyceride levels were obtained from the procedures described in the methods section. 
way ANOVA 

8 per experimental group. Results are expressed 



 

 

 

 

Figure 3.6: The effect of neonatal GW3965 administration (25mg/kg) on the 
hepatic levels of A) LXRα protein (50 kDa), B) PEPCK protein (62 kDa), C) G6Pase 
protein (36 kDa), and D) 11β
at 4 months of age. Data were obtained from 
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protein expression. Data are represented as arbitrary values.
unpaired Student’s t-test. Results are expressed as the mean 
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Figure 3.7: The effect of neonatal GW3965 administration (25mg/kg) on the 
hepatic levels of A) ACC protein (265 kDa), B) FAS protein (273 kDa), C) SREBP
protein (68 kDa), and D) SCD
months of age. Data were obtained from w
Immunoblots were quantified using densitometry and normalized to 
protein expression. Data are represented as arbitrary values. 
unpaired Student’s t-test. Results are expressed as the mean 
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The effect of neonatal GW3965 administration (25mg/kg) on the 
hepatic levels of A) ACC protein (265 kDa), B) FAS protein (273 kDa), C) SREBP
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3.4 Discussion 

 
 Our study demonstrates for the first time that administration of the Liver X 

Receptor agonist GW3965 during the rat neonatal period has permanent and profound 

effects on the expression of hepatic gluconeogenic and lipogenic genes in adult life. From 

our results, it appears that activation of LXR activity in neonatal life in non-MPR 

offspring leads to the generation of a phenotype very similar to the metabolic syndrome: 

impaired glucose tolerance, hyperinsulinemia, hypertriglyceridemia, increased 

gluconeogenic gene expression, and increased lipogenic gene expression.  

 Our initial hypothesis and prediction was that administration of GW3965 during 

the neonatal period would rescue the maternal protein restricted animals from developing 

impaired glucose homeostasis. However, this was not the case, as we did not observe 

impaired glucose tolerance in our “LP2” MPR model. Given that the male offspring of 

MPR dams did not exhibit impaired glucose tolerance at our time of measurement (4 

months), we were not able to assess whether or not administration of GW3965 would 

rescue the impaired glucose tolerance phenotype. Although the literature has previously 

found impaired glucose tolerance in the offspring of MPR, studies have also found that 

male rats at 4 months of age do not yet exhibit the impaired glucose tolerance 

phenotype11,42. It is likely the time point that we chose for the study was too early and our 

animals had not yet developed an impaired glucose homeostasis phenotype. For instance, 

Hales and colleagues (1996) found that their MPR rats did not exhibit impaired glucose 

tolerance at 3 months, but developed worsened glucose tolerance at 15 months of age11. 

Chamson-Reig and colleagues (2009) also did not find impaired glucose tolerance in 

male offspring at 130 days of age but they did find signs of insulin resistance42. Females, 
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however, did develop impaired glucose tolerance at 130 days of age42. Recent studies in 

our lab did find impaired glucose tolerance at 130 days of age in MPR male rat offspring, 

however the offspring in that study had the normal protein diet restored earlier 

(immediately after birth in the aforementioned study versus after weaning in this study)20. 

Thus, a variety of factors may have played a role in why our MPR animals did not 

develop impaired glucose homeostasis. 

 Interestingly, there were permanent implications when the control diet animals 

received neonatal administration of GW3965. When the control diet animals received 

GW3965 during the neonatal period (C-GW), they developed impaired glucose tolerance, 

fasted hyperglycemia, as well as patterns of hyperinsulinemia and hypertriglyceridemia. 

In addition, these changes were reflected in the increased protein expression levels of 

various hepatic gluconeogenic genes (G6Pase, PEPCK) and lipogenic (SCD-1) genes. 

Moreover, enhanced protein expression of 11β-HSD1 was found in C-GW animals 

compared to C-V animals, suggesting an increase in the production of glucocorticoids, 

which would then indirectly lead to increased gluconeogenesis.  

 A permanent increase in the expression of G6Pase and PEPCK, two essential 

enzymes in the regulation of hepatic glucose production could very well lead to impaired 

glucose tolerance44,45. Furthermore, the liver is a principle source for insulin clearance46-

48. Given that the gluconeogenic genes G6Pase and PEPCK are overexpressed in our C-

GW animals and that they display patterns of hyperinsulinemia, hepatic insulin resistance 

may be a major contributor to the impaired glucose phenotype in these animals. To 

further support this, previous studies in liver-specific insulin receptor knockout mice have 

demonstrated hepatic insulin resistance to be a major contributor of impaired hepatic 
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function and glucose intolerance49. Additionally, the study by Michael and colleagues 

(2000) also found severe hyperinsulinemia in their liver-specific insulin receptor 

knockout mice49. Hyperinsulinemia is strongly associated with impaired glucose 

tolerance as well as obesity and hypertension50. In addition, chronic hyperinsulinemia is a 

great risk factor for the development of impaired glucose tolerance, insulin resistance, 

and ultimately diseases such as type 2 diabetes and the metabolic syndrome51. 

 The increased expression of G6Pase and PEPCK may also be attributed to 

increased protein expression of 11β-HSD1. Considering that 11β-HSD1 is responsible for 

the conversion of inactive glucocorticoids to active glucocorticoids, long-term increases 

in this enzyme may lead to chronic elevation of glucocorticoids in the body. 

Glucocorticoids play a major role in the induction of G6Pase and PEPCK52-54, thus the 

elevation of 11β-HSD1 protein expression may play a role in the impaired glucose 

homeostasis and fasted hyperglycemia seen in the C-GW experimental group.  

In addition to impaired glucose homeostasis, neonatal exposure to GW3965 in 

non-MPR male offspring led to the increase in circulating triglycerides. Furthermore, 

there was a significant increase in the protein expression of SCD-1. However, no 

increases in other lipogenic genes were observed. While FAS and ACC are responsible 

for the de novo synthesis of long chain fatty acids, SCD-1 is vital for the production of 

unsaturated fatty acids and ultimately triglycerides in addition to other essential lipids55. 

Elevated SCD-1 activity has been implicated in the development of many chronic 

diseases including diabetes and obesity56-59. In contrast, studies in SCD-1 knockout mice 

demonstrate that these mice exhibit reduced adiposity, increased sensitivity to insulin and 

are resistant to weight gain60. These mice SCD-1 knockout mice also displayed increased 
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expression of genes related to lipid oxidation and a reduction in the expression of 

lipogenic genes60. Furthermore, another study was able to prevent diet-induced obesity 

and improve postprandial glucose and insulin levels in high-fat diet mice through 

administration of antisense oligonucleotide inhibitors of SCD-161. Lastly, studies have 

also demonstrated the involvement of SCD-1 in insulin signaling and carbohydrate intake 

induced adiposity, implicating its possible role in glucose homeostasis62,63. Thus, the 

increase in SCD-1 expression seen in male C-GW offspring is likely to play a factor in 

the possible hypertriglyceridemia and impaired glucose homeostasis seen in these 

animals. 

Of particular interest is that all of the genes that changed in our model are 

transcriptionally regulated by LXR. Yet, LXR expression was unchanged at all time 

points examined. This necessitates a mechanism that allows the temporary neonatal 

administration of GW3965 to continue into adulthood. An ideal candidate for such a 

change would be some sort of epigenetic change such as DNA methylation or a post-

translational modification like histone acetylation/methylation. For instance, in addition 

to the study done by Stoffers and colleagues (2006), where neonatal administration of 

Exendin-4™ prevented the development of diabetes in IUGR rats37, it was subsequently 

discovered by Pinney and colleagues (2011) that this change was effected through an 

epigenetic mechanism64. More specifically, they found that neonatal administration of 

Exendin-4™ permanently restored histone H3 acetylation, decreased histone H3 lysine 9 

dimethylation, and restored histone H3 lysine 4 trimethylation, all signs of chromatin 

opening, on the Pdx-1 promoter in adult IUGR animals64. Furthermore, neonatal 

administration of Exendin-4™ prevented direct DNA methylation around the Pdx-1 
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promoter in adult IUGR rats, another sign of permissive transcriptional status. Thus, it is 

highly probable that the changes mediated by our neonatal administration of GW3965 in 

non-MPR rats (C-GW experimental group) are a result of long lasting epigenetic changes 

that manifest themselves in adulthood. 

Another possible mechanism that may mediate the long-term effects of neonatal 

GW3965 administration is through “endoplasmic reticulum (ER) stress” and the 

subsequent accumulation of misfolded of proteins. Previous studies have implicated the 

role of ER stress and impaired protein synthesis and folding in the development of 

chronic disease65,66. Additionally, ER stress has also been linked to insulin resistance and 

diabetes67-69. More recently, LXR has been linked with both ER stress and insulin 

resistance70. In the study done by Jwa et al. (2012), administration of piperine, an LXR 

antagonist, led to the amelioration of ER stress and improved insulin resistance in mice 

fed a high fat diet70. The authors postulate that the link between LXR, ER stress, and 

insulin resistance may involve the role of LXR in inducing the lipogenic genes and 

subsequent lipid accumulation. Studies from our own laboratory have also implicated 

insulin resistance with attenuated protein synthesis in a similar model of MPR used in 

this study71. However, the role of LXR in relation to these changes was not investigated. 

These findings are significant as there are several cases in which induction of 

LXR may occur during pregnancy. One example is gestational diabetes, which is reported 

to occur in 2-25% of pregnancies in the US and is on the rise72-74. Considering that 

glucose itself has been found to be a direct agonist for LXR31, elevated glucose exposure 

to the fetus during pregnancy may act to induce LXR activation. A common consequence 

of gestational diabetes is that the infants go on to develop impaired glucose tolerance 
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later on in life75. The Pima Indian population exemplifies this phenomenon, where 

approximately 45% of individuals born to gestational diabetic mothers develop type 2 

diabetes76,77. Currently, the mechanism behind why this happens is poorly understood. 

One possible reason for why this occurs is due to an increased glucose load to the fetus 

and development of hyperinsulinemia in the fetus/neonate. As a consequence, many 

infants born to diabetic mothers develop hypoglycemia immediately after birth due to the 

elevated circulating levels of insulin during pregnancy78. Insulin is a potent stimulator of 

LXR and LXR is also an essential mediator of insulin downstream transcriptional 

regulation79,80. Thus, in addition to elevated glucose activation of LXR, prolonged 

hyperinsulinemia during the prenatal and neonatal period also may contribute to 

increased activation of LXR and a phenotype similar to the model used in this study. 

Moreover, gestational diabetes has been found to alter cholesterol transport in the 

placenta, which may affect oxysterol (endogenous LXR activators) concentrations in both 

the mother and the fetus81. Thus, our model of neonatal LXR exposure may very well 

mimic the molecular mechanisms underlying gestational diabetes and how it programs 

the development of impaired glucose tolerance in later life in the offspring. 

In summary, we have produced a phenotype characteristic of the metabolic 

syndrome in non-maternal protein restricted male offspring through neonatal 

administration of the LXR agonist GW3965. Likely through an epigenetic mechanism, 

these changes induced during the neonatal period are permanent and result in a phenotype 

that includes impaired glucose tolerance, fasted hyperglycemia, fasted hyperinsulinemia, 

hypertriglyceridemia, and increased expression of gluconeogenic and lipogenic genes. 

Understanding the role of LXR induction during the neonatal period may help uncover 
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novel roles of LXR and other transcription factors underlying the mechanisms involved 

in the early life programming of chronic disease. For example, exposure to a diet high in 

sugar and cholesterol (natural agonists for LXR) during the neonatal period may pose 

considerable risk for a developing infant, regardless of birth weight and/or growth 

restriction due to the possible induction of LXR and subsequent programmed effects. 
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Discussion 

 

4.1 Summary  

It is now widely recognized that the intrauterine environment may play a role in 

the development of chronic, non-communicable diseases in later adult life. Intrauterine 

growth restriction (IUGR) occurs in many complicated and high-risk pregnancies. The 

evidence strongly suggests that IUGR and the birth of a low birth weight infant increases 

the risk of developing obesity, heart disease, hypertension, and diabetes1-5. The “Barker 

Hypothesis” or “Thrifty Phenotype Hypothesis” postulates that the development of these 

chronic diseases is a result of a programming mechanism that occurs during the 

developmental period6,7. In addition, other complications in pregnancy such as gestational 

diabetes mellitus and maternal obesity may also lead to placental complications and 

increase the risk of developing chronic disease in the offspring8-10. Given the widespread 

prevalence of non-communicable chronic diseases, it is imperative to understand the 

mechanisms underlying how the programming of adult chronic disease occurs during the 

developmental period. Yet, the molecular mechanisms behind how these programming 

changes occur are still largely unknown. While a few mechanisms have been postulated 

(e.g. epigenetic mechanisms, nuclear receptor signaling, oxidative stress, endoplasmic 

reticulum stress, etc.), there is still much to be discovered11.  

Due to its role in glucose12,13, lipid13, and cholesterol homeostasis14, the Liver X 

Receptor (LXR) presents itself as an attractive candidate for mediating some of the 

effects seen in the fetal programming of adult diseases such as type 2 diabetes, 

hypertension, atherosclerosis, and obesity. Overall the present studies provide strong 
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evidence for the involvement of the LXR in the programming of adult chronic disease.  

Based on the work presented in this thesis and others15,16 we strongly believe that LXR is 

implicated in the programming of adult disease, and more specifically, impaired glucose 

tolerance, in our model of maternal protein restriction. We also strongly believe that the 

permanent actions of LXR are both transcriptional and epigenetic in nature.  

In the first study (Chapter 2) we hypothesized that maternal protein restriction and 

the early restoration of protein (at birth) would lead to impaired glucose homeostasis. We 

further hypothesized that the impaired glucose homeostasis would at least be partly 

mediated through alterations in expression of LXR and its downstream target genes 

involved in gluconeogenesis. The study presents evidence for the epigenetic 

downregulation of LXR expression in a model of maternal protein restriction with early 

protein restoration. This repression then leads to altered transcriptional regulation of LXR 

downstream target genes involved directly (G6Pase) and indirectly (11β-HSD1) in the 

induction of gluconeogenesis. The increased hepatic production of glucose then results in 

the observed impaired glucose tolerance observed at postnatal day 130 (Figure 4.1).  

 Given MPR leads to decreases in LXR expression, accompanied by impaired 

glucose tolerance, we sought to investigate whether neonatal intervention with the LXR 

agonist GW3965 would rescue the IUGR phenotype seen in our previous studies15,17. We 

hypothesized that administration of GW3965 during the neonatal period would prevent 

adverse outcomes and prevent the programming of chronic disease in adulthood. The 

study did not support our hypothesis and the results were unanticipated. Surprisingly, 

neonatal administration of GW3965 led to impaired glucose tolerance and fasted 

hyperglycemia in the young adult males of the control diet offspring even though LXR 
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agonists have consistently been demonstrated to have antidiabetic effects18,19. Instead, the 

study presents evidence that neonatal overexposure to an LXR agonist may in fact be 

detrimental, as it appears to induce a metabolic syndrome-like phenotype in adulthood: 

fasted hyperglycemia, impaired glucose homeostasis, fasted hyperinsulinemia, 

hypertriglyceridemia, and increased expression of gluconeogenic and lipogenic genes. 

Many questions in this model remain unanswered. For example, is epigenetic regulation 

occurring at the promoter regions of LXR, G6Pase, and 11β-HSD1, parallel to the low 

protein model (seen in Chapter 2)? Besides LXR, what are other nuclear receptors (e.g. 

GR, ER, PPAR) and signaling pathways (e.g. insulin signaling pathways, cAMP 

signaling pathways) are involved in the programing of the resulting phenotype? Why is 

LXR exhibiting the opposite of its antidiabetic effects when administered in early life 

versus later life (antidiabetic effects)? Investigation of these questions would provide 

much insight on the mechanisms involved in the early life programming of adult disease. 

 Together, these two studies provide strong evidence for the involvement of LXR 

in the programming of adult disease. In both models, MPR and neonatal overexposure to 

an LXR agonist, there is altered LXR expression leading to a long lasting phenotype in 

adulthood. In addition, both models demonstrated similar phenotypes and gene 

expression profiles, suggesting a conserved mechanism with regards to LXR expression 

and activity.  

 

4.2 Limitations and Improvements 

 No study is without its limitations and the present study is no exception. Firstly, 

we decided only to examine males in both of the studies presented. This was to prevent 
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confounding variables associated with either sex, namely differences attributed to female 

estrous cycling, and differing hormone profiles in either sex. Previous studies have also 

demonstrated exacerbated effects of developmental programming in males20. Although it 

was our decision was to investigate only the male-specific effects of our models, by 

neglecting investigation of the females we leave an entire half of the study open to 

question. Other studies have investigated the differences between the sexes and have 

found different mechanisms of programming between males and females20-22. For 

instance, Chamson-Reig and colleagues (2009) found that both males and females display 

altered glucose metabolism, however males were insulin resistant, while females were 

insulin deficient21. Thus, investigation of females would have provided much insight into 

the mechanisms behind fetal programming and how each sex responds to each insult 

differently. 

 Secondly, our evaluation of hepatic gluconeogenesis was limited by the fact that 

we only explored the expression profiles of the genes involved in gluconeogenesis (e.g. 

G6Pase, PEPCK). While this provides a good measure of gluconeogenesis, it does not 

necessarily imply increased activity of these enzymes. We did attempt to do an in vivo 

measure of hepatic gluconeogenic activity through a pyruvate challenge test as described 

by Yao et al. (2006)23 and Meyer zu Schwabedissen et al. (2011)24. However, due to 

limited experience with the technique and the animals not responding well to the 

pyruvate challenge and other complications, we were not confident in the results obtained 

from the experiment. Another option to measure activity would have been to do hepatic 

microsomal extractions and colorimetric measurements of the enzyme products over time 

as previously described25-28. In addition, we speculate that an increase in glucocorticoid 
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synthesis may have contributed to the observed increase in gluconeogenic genes since 

there were increases in 11β-HSD1 and GR expression. However, we did not measure the 

levels of hepatic or circulating glucocorticoids. Unfortunately, this was due to the lack of 

plasma samples at the time of experimentation. Again, measurement of 11β-HSD1 

enzyme activity would also help solidify the present findings. These considerations will 

be taken into account for future cohorts and experiments. 

 Our assessment of insulin resistance may also have been improved. Although we 

did assess protein expression levels for markers of insulin sensitivity in the liver to give 

us a specific evaluation of hepatic insulin resistance, a few other experiments may have 

been done to fully assess insulin resistance. Firstly, a whole body insulin tolerance test 

(or even better, a hyperinsulinemic euglycemic clamp experiment) could be employed, 

although this would not give a direct measure of hepatic insulin utilization. Secondly, 

other markers of insulin resistance could be measured, such as interactions between 

insulin signaling molecules and receptors through protein complex immunoprecipitation 

experiments (Co-IP)29. 

 In the second study (Chapter 3), the main issue was choosing the inappropriate 

maternal protein restriction model with respect to glucose tolerance. We decided on 

restoring the protein in our MPR rats after weaning instead of immediately after birth for 

two reasons. The first reason was based on results obtained previously in our lab by Sohi 

and colleagues15 whereby MPR offspring restored on a control protein diet after the 

weaning period displayed elevated circulating and hepatic cholesterol and altered 

epigenetic regulation of the Cyp7a1 gene in adulthood, implicating that this model was 

consistent in inducing a chronic disease programmed phenotype. Studies by Chamson-
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Reig et al. (2009) have also demonstrated long-term effects in the offspring employing a 

similar model of MPR21. The second reason was based on promising results from our 

initial pilot study, whereby we used the post-weaning protein restoration model and 

found that there was a significant difference between the LP2-V and LP2-GW animals at 

postnatal day 21 in the protein expression of 11β-HSD1 and SREBP-1 (Figure 3.2). 

Although no changes were found in the protein expression of LXR, G6Pase, or PEPCK, 

this still provided encouragement to continue the study because there were significant 

changes in the expression of some LXR-target genes even one week after administration 

of the LXR agonist discontinued. Thus, we continued the study with a second cohort of 

animals taken to postnatal day 130 as presented in Chapter 3. At postnatal day 130, we 

did not observe an impaired glucose tolerance phenotype in the MPR animals. Thus, 

there was no “rescue” or “prevention” of the phenotype. In hindsight, we would have 

chosen the MPR model more similar to the one in Chapter 2, in which the offspring were 

restored on a regular protein diet immediately after birth and displayed consistent 

impaired glucose homeostasis at postnatal day 13017.   

 Finally, considerations must be taken into account with respect to the animals 

themselves. Caution must be taken when interpreting the current data in the context of 

what happens in the human on a physiological and pathophysiological basis. In terms of 

development, it appears that both the rat and human experience similar patterns of 

postnatal development for the liver and pancreas, although the rat does go through a 

higher degree of liver remodeling and maturation during the first 28 days after birth30. 

However, the human liver does not reach full maturation until approximately 5 years after 

birth, suggesting a similar pattern of postnatal development. Another consideration 
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pertinent to the presented studies is that human and rat hepatocytes have been 

demonstrated to respond to the LXR agonist GW3965 quite differently through gene 

expression profile experiments31. For instance, LXR agonists repressed the expression of 

GLUT2, glucokinase (GCK), and pyruvate kinase (PKLR), in human hepatocytes but not 

rat hepatocytes31. Moreover, LXR-mediated transcriptional activation of Cyp7a1 appears 

to only occur in rats but not humans or other mammals32. Thus, it is possible that the 

effects seen in our experiments in neonatal rats may not necessarily mimic the effects 

proposed in humans. Lastly, all experiments were performed in the fasted state. There is a 

significant difference in metabolic gene expression profiles in the fasted and non-fasted 

state33. Considering how important nutritional status is in the regulation of hepatic 

gluconeogenesis and lipogenesis34,35 it is important to take into account the nutritional 

status of the animal in the assessment of its metabolic status. Although the fasted state 

allows us to examine the metabolic profiles of the animals without confounding variables 

(e.g. variable food and water intake), we are curious to see what differences may occur in 

the non-fasted state. 

 

4.3 A New Hypothesis 

 Although we found strong evidence to support our hypothesis in the first study 

(Chapter 2), the hypothesis in the second study (Chapter 3) must be reconsidered. Given 

that neonatal administration did not lead to the rescue of an impaired glucose tolerance 

phenotype, a new hypothesis must be proposed to address the current findings and/or a 

new experiment must be conducted to re-examine the hypothesis. In the case of the latter, 

we would redesign the study such that we use a maternal protein restriction model that 
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consistently produces a glucose intolerance phenotype. If we were to redesign the study 

to examine the possibility of a phenotype rescue, it would likely be the MPR model used 

in our Chapter 2 study whereby the MPR offspring were restored protein in their diet at 

an earlier time point (immediately after birth). However, we can examine a modified 

hypothesis because we did find an altered phenotype in the control diet animals given the 

LXR agonist. This suggested hypothesis, which aims to cover both Chapters 2 and 3, 

would be as follows: We hypothesize that alterations in LXR expression during the 

neonatal period through various intrauterine insults leads to the long-term 

programming of impaired glucose homeostasis and ultimately the development of 

diseases such as type 2 diabetes and the metabolic syndrome. 

  

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4.1: A Working Hypothesis for

Glucose Tolerance in a Model of Maternal Protein Restriction

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: A Working Hypothesis for the Role of LXR in Mediating Impaired 

Glucose Tolerance in a Model of Maternal Protein Restriction.  
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4.4 Future Directions 

 Though we have begun to characterize the role of LXR in mediating the 

programming effects of adult disease, the issue remains quite complex and there is still 

much to be investigated. As previously mentioned, our model neglects the question of 

what happens in the female offspring of MPR animals and females administered 

GW3965 during the neonatal period. Although we do have preliminary evidence that the 

females do experience impaired glucose tolerance, it is to a much lesser degree than the 

males. This is supported by other studies, whereby males are more susceptible to the 

effects of fetal programming and display exacerbated phenotypes compared to females20. 

The mechanisms underlying these sexually dimorphic observations are still in question. 

Furthermore, it would be worthwhile to investigate more time points in the study for 

several reasons. Firstly, investigation of early time points may reveal critical time points 

at which the programming is occurring. A longitudinal study similar to the one employed 

in the Chamson-Reig et al. study (2009) would reveal when specific changes in 

metabolism occur. For instance by examining both the postnatal day 85 time point and 

the postnatal day 130 time point, Chamson-Reig and colleagues (2009) were able to find 

that impaired glucose tolerance did not occur until at least early adulthood (postnatal day 

130)21.   

 In contrast, it would be of great interest to investigate the current models at later 

time points. Our current time point for sacrifice occurs at postnatal day 130, which is still 

a young age for the rat. The development of many chronic diseases occurs later on in life, 

once the effects of aging are compounded with early life insults. For instance, in the 

Hales et al. study (1996), the effects of MPR in the offspring were not observed at 3 
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months of age, however they occurred at 15 months of age36. It is quite possible that the 

animals in our model have not had the chance to develop other pathologies such as 

obesity, hypertension, atherosclerosis, and heart disease. Future studies may include the 

6, 12, and 15-month time point to observe the progression of the metabolic syndrome and 

cardiovascular disease. A longitudinal study might also be possible, given the proper 

funding and resources. Of interest is also the fact that MPR animals have demonstrated 

decreased longevity, especially in models of accelerated catch-up growth36-38. Although 

some mechanisms have been postulated (e.g. oxidative stress, altered insulin signaling, 

impaired mitochondrial function)39-42, it is still unclear whether the decreased lifespan is a 

result of the development of chronic disease or if the decreased lifespan is itself 

programmed in early life.  

Another area of relevance is the possibility of examining a “double hit” model. In 

this model, an insult during pregnancy is utilized to induce IUGR (insults may include 

maternal protein restriction, total maternal nutrient restriction, uterine artery ligation and 

hypoxia) and then a second insult is compounded to the intrauterine insult in postnatal 

life. A common postnatal insult is through the feeding of a high fat or “western diet” that 

usually generates an obese phenotype43. Double hit models are of great interest because 

they are especially relevant in today’s society given the increasing prevalence of the 

consumption of high sugar and high fat “western diets”. This is especially important as 

the population begins to develop chronic diseases at a younger age due to poor lifestyle 

choices in diet and lack of exercise44,45. 

The second study (Chapter 3) is still largely incomplete, and additional 

experiments are required to expand on the current findings. Firstly, quantitative real-time 
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PCR experiments are required to investigate whether steady-state levels of mRNA are 

increased in our genes of interest (LXR, G6Pase, PEPCK, 11β-HSD1, SCD-1, ACC, 

FAS, SREBP-1). Although the long-term expression of LXR was not altered by neonatal 

GW3965 treatment, it is still conceivable that LXR activity itself is enhanced long-term. 

Thus, chromatin immunoprecipitation should be employed to investigate this possibility 

by measuring the binding of LXR to its target promoters. In addition, post-translational 

and epigenetic mechanisms need to be further explored to help explain the long lasting 

effects of neonatal LXR agonist treatment. For example, administration of the LXR 

agonist T0901317 in chick embryo hepatocytes has been demonstrated to increase 

activity of the LXR/RXR heterodimer in addition to increasing the acetylation of histone 

H3, lysine 4 around the LXRE of the ACC gene promoter (a downstream target of LXR 

activation)46. Hence, the agonists themselves may be responsible for mediating epigenetic 

changes. Histone modifications are likely key mechanisms that may be involved in the 

altered expression of our genes of interest. Investigation of acetylated histone H3 lysine 

9, trimethylated histone H3 lysine 27, trimethylated histone H3 lysine 4, and binding of 

RNA polymerase at the promoters of our genes of interest may provide a better 

understanding of the transcriptional regulation occurring at these gene promoters. 

Furthermore, the examination of direct DNA methylation through bisulfite sequencing 

experiments may provide further clues on epigenetic regulation.  

 

4.5 Conclusion 

It is clear from the results of the present study that the Liver X Receptor is 

emerging as a key factor in mediating the early life programming of adult chronic 
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diseases. In both studies, we found that alterations in LXR expression or activation either 

short-term during the neonatal period or long-term in adulthood led to detrimental effects 

in adulthood. Whether these changes are due to LXR directly or due to cross talk with 

other nuclear receptors and transcription factors is presently unknown. However, it is 

clear that LXR is involved and it is directly influencing the transcription of various genes 

involved in hepatic gluconeogenesis. From both studies, these genes appear to be critical 

points of regulation, whereby aberration in expression can lead to phenotype changes: 

G6Pase, PEPCK, 11β-HSD1, SCD-1 and possibly GR. 

Studies from other groups as well as from colleagues in our lab and have also 

demonstrated the involvement of LXR in the programming of adult disease. Sohi et al. 

(2011)15 have previously demonstrated elevated LXR expression concomitant with 

increased LXR binding to the Cyp7a1 gene in young MPR rats, while Ma et al. (2013, 

unpublished data) has demonstrated elevated LXR expression in adult male offspring of 

pregnant rats exposed to moderate doses of nicotine (as seen in moderate smokers). 

Moreover, van Straten and colleagues (2012) have demonstrated altered levels of LXR in 

embryonic day 19.5 MPR offspring as well47. These studies further cement the role of 

LXR in the programming of adult disease. 

While we provide evidence for the involvement of LXR in the programming of 

chronic disease in IUGR animals, there are many other transcription factors and 

mechanisms that may contribute to the programming of adult disease. These transcription 

factors include other nuclear receptors such as the peroxisome proliferator-activated 

receptors (PPAR), glucocorticoid receptor (GR), and estrogen receptor (ER)17. In 

addition, other mechanisms of action may include elevated oxidative stress and 
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endoplasmic reticulum stress and altered epigenetic profiles17. It should be noted that it is 

likely a combination of all of these factors and mechanisms that contribute to the 

programming of adult disease. Similarly, there is a high likelihood of cross talk between 

LXR and the other nuclear receptors, transcription factors, and co-activators/co-

repressors. For instance, studies have demonstrated possible cross talk between LXR and 

GR based on the existence of putative GR binding sites on the LXR promoter48. 

Furthermore, GR may require LXR to induce its effects and LXR induction has been 

demonstrated to suppress GR-mediated actions49,50. Thus, the mediators of the 

developmental programming of adult disease are extremely complex and multifactorial in 

nature. 

Finally, and most importantly, once we discover these mechanisms and collect the 

data, what becomes the next task? The pivotal task ahead is learning how to translate 

these data and prevent the development of these chronic diseases, which are now 

devastating health care systems around the world.  Intervention at early and critical time 

points in development to prevent adverse outcomes is key. As research continues, more 

interventional approaches are being employed in animal models. A few examples 

include: administration of key transcription factor and nuclear receptor agonists (such as 

Exendin-4™)51, administration of antioxidants such as tempol, resveratrol, vitamin C 

(ascorbic acid)52-54, and folic acid supplementation55,56. Clearly, there are many avenues 

to take for the intervention of programmed adult diseases, further adding to the 

complexity of how these mechanisms work and how they can be reversed57. It is 

imperative that we come to understand not only the molecular mechanisms behind the 



155 

 

fetal programming of chronic adult diseases but also how we can use this understanding 

to prevent further development of these diseases.  
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