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Abstract 

Acoustic monitoring is a powerful technique for learning about the ecology of bats, but 

understanding sources of variation in the data collected is important for unbiased 

interpretation. The objectives of this dissertation were to investigate sources of variation 

in acoustic monitoring and make recommendations for acoustic survey design and 

analysis. I addressed this goal in three ways: i) variation resulting from differences in bat 

detectors, ii) methods for objective identification of peak activity, and iii) the use of 

stationary transects to address within-site spatial variation. 

First, I compared variation of detection of echolocation calls among commonly available 

bat detectors and found significant differences in distance and angle of detection. 

Consequently, this source of variation should be taken into account when comparing 

datasets obtained with different systems. Furthermore, choice of detector should be taken 

into account when designing new studies. 

Second, I investigated two statistical methods for identifying peaks in activity, percentile 

thresholds and space-time scan statistic (SaTScan). Acoustic monitoring provides a 

relative measure of activity levels and is rarely evaluated based on objective criteria, so 

describing bat activity as “high” or “low” is useful only in context of the studies in 

question. Percentile thresholds allow for peaks to be identified relative to a larger 

distribution of activity levels. SaTScan identifies peaks in space and time that are 

significantly higher than the background expectation of the dataset. Both methods are 

valuable tools for replicable and objective identification of peak activity that can be 

applied at various temporal and spatial scales. 
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Third, I examine how within-site spatial variation can impact estimates of bat activity. I 

used a stationary transect of bat detectors to i) assess variation in patterns of activity at 

each detector, ii) test whether spatial or temporal factors were more important for 

explaining variation in activity, iii) explore what sampling effort in space and time is 

required for species-specific activity levels. The picture of activity differs significantly 

within a site depending on detector placement so it is important to use multiple detectors 

simultaneously to collect accurate estimates of activity. 

Keywords 

Bats, activity levels, echolocation, spatio-temporal variation, acoustic transect, passive 

acoustic monitoring, bat detectors, peak activity, percentile thresholds, SaTScan. 
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Chapter 1  

1 Introduction 

1.1 Conservation and ecological sampling 

Preserving biodiversity is a fundamental goal of conservation, but many challenges 

remain, particularly because of a lack of information about most species. Insufficient 

knowledge about distribution and natural history are major hurdles because wildlife 

management and monitoring are basic requirements for the conservation of species. We 

have to know what is present to conserve it, but collecting realistic data on organisms can 

be challenging to researchers and conservation efforts. Rare, elusive, and cryptic species 

can be difficult to sample and while the presence of a species can be confirmed, its 

absence can only be inferred with a degree of probability (Kéry 2002). Field studies of 

organisms may be hampered by our limited ability to observe them and/or access their 

habitats. However, some of these obstacles have been resolved, at least in part, by 

technological advances (e.g., radio telemetry; Cagnacci et al. 2010), but at the same time 

these techniques may create new challenges to consider. 

Ecological studies use many approaches at different spatial and temporal scales to address 

questions relating to species distribution and abundance. Sampling can provide an 

estimate rather than an exact measure of what is in the environment, and this is further 

limited by the trade-off between sampling effort and accuracy of the data obtained. Effort 

is limited by factors such as time, money, manpower, and habitat accessibility, while 

accuracy will depend on the sampling effort actually invested. It is important to recognize 

that balancing the trade-off between effort and accuracy comes from understanding of the 
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focal organism and complexity of the study system (Loehle 2004). Spatial and temporal 

complexity will impact the study scale, but in the end, there is no single scale that is 

appropriate for all ecological studies (Levin 1992). 

The ability to address sources of bias will impact data accuracy and play a role in 

determining investment in sampling effort. Bias can arise from poor practical techniques 

or non-representative sampling (Sutherland 2006) related to the type of sampling method 

employed (e.g., visual, capture, acoustic). Poor technique, such as missed direct 

observations of individuals, can obviously impact the quality of data. Non-representative 

sampling can cause bias, for example if it is assumed that a single sampling technique 

will detect all individuals in a population or species in a community equally. Taking into 

account that variation in the probability of detection may differ among habitats, seasons, 

species, age or sex of individuals within a species, as well as the sampling techniques 

deployed, is essential to minimizing the chances of collecting biased data.  

For example, visually conspicuous species are often overrepresented, so one must use 

sampling methods that account for those that cannot simply be seen when walking a 

transect (e.g., birds and bats in mist-nets, traps or fogging for insects). However, these 

specialized capture techniques are invasive, as well as time and labor intensive. Acoustic 

methods provide an efficient, non-intrusive way to study species that use auditory signals, 

although these record disproportionately more species with high-intensity calls and 

provide no data on actual population sizes (Flaquer et al. 2007). Consequently, to 

minimize bias, many researchers stress the importance of using multiple sampling 

techniques simultaneously (Kalko et al. 1996, O’Farrell and Gannon 1999, Duffy et al. 

2000, Milne et al. 2004).  
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Many organisms produce auditory signals, produced intentionally for communication or 

orientation or unintentionally as a byproduct of activities such as feeding or movement, 

which researchers can use to document ecology and behavior. Conspicuous auditory 

signals are one means of detecting some otherwise cryptic organisms and bioacoustics 

research is an integral part of conservation plans for many animals (Baptista and Gaunt 

1997). 

1.2 Acoustic monitoring 

Acoustic monitoring is fundamental for the study of many organisms traditionally 

sampled by visual or capture techniques. Songs or calls can be highly reliable taxonomic 

features, especially for anurans (Taylor et al. 1996), bats (Fenton and Bell 1981), birds 

(Parker 1991, Somervuo et al. 2006), cetaceans (Oswald et al. 2003), and insects (Riede 

1998, Chesmore and Ohya 2004). Acoustic sampling is an important tool for wildlife 

management and conservation because it can estimate diversity and relative abundances. 

Detection of species that can easily be heard but are not easily seen is the true power of 

acoustic monitoring. For example, high flying bats, such as Lasiurus cinereus and 

Eurderma maculata, are rarely included in capture inventories, but are readily detectable 

in acoustic surveys (O’Farrell and Gannon 1999). Acoustic surveys can provide more 

accurate estimates of diversity than capture techniques (Dawson and Efford 2009) and 

thus provide the opportunity to learn about organisms from the community to the 

individual level.  
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1.2.1 Species identification 

Identification of organisms to species based on their acoustic signals allows researchers to 

quickly survey the biodiversity of regions (Riede 1998), leading to more accurate species 

counts and occupancy estimates (Brandes 2008). Birds are perhaps the best known group 

where species identification with acoustic signals provides the most effective sampling 

approach (Parker 1991, Riede 1993). For example, Parker (1991) recorded the 

vocalizations of 85% of the 287 bird species present in the Bolivian Amazon in seven 

days, compared with 54 days when using captures. The North American Breeding Bird 

Survey (BBS) heavily relies on acoustic identification and has provided a wealth of 

information on bird populations and relative abundances, which is used in several 

conservation efforts (Sauer et al. 2003). Standardized protocols incorporating acoustic 

monitoring, such as the BBS, have provided a powerful tool for management and 

conservation at various geographic scales. 

1.2.2 Environmental quality 

Bioindicators are species or communities sensitive to identified environmental stressors 

or disturbances that may be used to assess the quality of the environment and/or record 

changes over time (Jones et al. 2009). Indicators of environmental change, such as shifts 

in community structure and species diversity, should be included in conservation plans 

(Lim and Engstrom 2001). Species that can be monitored acoustically are invaluable 

indicators of habitat quality because of less invasive sampling methods. Birds and 

invertebrates are most commonly used as bioindicators (e.g., Browder et al. 2002, 

Mankin et al. 2010). For example, acoustic studies of orthopteran communities have been 
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useful indicators of eutrophication (Fischer et al. 1997) and bats are good indicators of 

habitat quality (Wickramasinghe et al. 2003, Kalcounis-Rueppell et al. 2007). 

1.2.3 Individuals and population structure 

Sounds can be used to evaluate fine scale information about communities, including 

structure of populations and identification of individuals. The low-frequency 

vocalizations of elephants can vary with group size, composition, and reproductive status, 

so recordings could provide valuable information on abundance and population structure, 

especially when they live in densely forested areas (Payne et al. 2003). Similarly, blue 

whale songs can be divided into regional types which can be used to characterize 

population structure (McDonald et al. 2006). Bird dialects can also play an important role 

in conservation, from obtaining demographic information (Laiolo and Tella 2008) to 

impacting translocation efforts (e.g., Bradley 2012). Some animals can be identified to the 

individual-level based on their acoustic signals (e.g., fallow deer, Reby et al. 1998; Stellar 

sea lions, Campbell et al. 2002; African wild dog, Hartwig 2005), which can be used for 

identification in place of physical marks (i.e., tags and bands; Laiolo 2010), providing 

important information for population monitoring. A paucity of data on individual 

variation currently precludes identification to the individual level in animals such as 

insects, anurans, and bats (Obrist 1995, Chesmore 2001).  

1.2.4 Technology: advancements and limitations 

No matter the focal organism of an acoustic study, technological achievements strongly 

influence the feasibility of using acoustic techniques. Advances in technology and 

software have allowed researchers to overcome difficulties with data collection and 

storage, making it possible to monitor previously inaccessible habitats and develop a 
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better “picture” of biodiversity. Acoustic studies are not without drawbacks. Analysis of 

acoustic data can be extremely slow when done manually, requiring highly trained 

personnel (Chesmore 2004) and limited by the availability of an accurate reference library 

(Riede 1998). Manual identification of species relies on expert knowledge, which is 

inherently subjective. Possibly the greatest drawback is the inability to count individuals 

using acoustic methods (Brandes 2008), as activity does not equal abundance (Hayes 

2000). It is not possible to determine whether sounds are coming from one or multiple 

individuals moving past a microphone, so acoustic data can only provide a relative index 

of activity levels (Hayes 2000). Interpretation of acoustic data often relies on descriptive 

terminology, such as “higher” or “lower,” limiting the accuracy of conclusions. There is 

no framework or guideline on how to interpret specific activity levels beyond relative 

differences in activity from one sample to the next (Kunz et al. 2007b). 

1.2.5 High frequency sounds 

While many sounds recorded during acoustic monitoring are audible to humans, others 

are not. Toothed whales (Odontoceti; e.g., dolphins) and bats (Chiroptera) are two taxa 

that use echolocation for communication, foraging, and orientation by emitting pulses of 

high frequency sound and gathering information based on the returning echoes. Signals 

produced by odontocetes travel through water at a speed about four times faster than if 

produced in air. Dolphins are able to detect small targets from a few meters (Kastelein et 

al. 1999) to over a hundred meters away (Au 1993). Most dolphins emit a combination of 

whistles and clicks that do not change in duration or shape. The central frequency 

depends on the intensity of the signal, ranging from 30-60 kHz (low intensity) to ~100 

kHz (high intensity, Au 1993). Bat echolocation has a much slower rate of information 
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transfer than odontocetes because their signals move through air. Bat calls are much more 

diverse in structure than odontocete signals, varying in duration, from 0.3 to 300 ms; in 

frequency, from 12 to >200 kHz; and in shape, ranging from broadband to constant 

frequency (Neuweiler 1989). Detecting both dolphin and bat echolocation calls requires a 

researcher to rely on technology capable of detecting high frequency sounds. Bats provide 

additional challenges as they are small, nocturnal animals that cannot be sampled visually 

and capture success is limited to low flying species. 

1.3 Monitoring bats 

Our knowledge of bats and their natural history largely arises from the research of Lazaro 

Spallanzani in 1794, who provided the first evidence that bats use sounds for orientation 

and obstacle avoidance. While Spallanzani’s methods of blinding and deafening bats were 

crude, he provided the basis for what Griffin (1944) later coined as “echolocation.” 

Griffin (1958) was the first to use a “sonic amplifier” to investigate ultrasonic sounds. 

This detector was able to show pulse repetition rates, but the next development in 

detectors showed that these pulses were actually frequency-modulated calls (Griffin 

2004). In 1951, when Griffin first made recordings in the field, bat detectors were still 

barely portable, very expensive, and extremely fragile. Griffin required the use of a 

station wagon to transport all the necessary equipment. Visual outputs from an 

oscilloscope were recorded by a video camera and audio output from a portable AM radio 

(Griffin 2004). Improvements, which led to the first “true” bat detector, allowed for a 

portable instrument that produced an audio signal of the ultrasonic pulses (Griffin 2004).  

Specialized microphones convert high frequency sounds to electric signals, which are 

then recorded and transformed for storage, playback, and analysis. Bat detectors can be 
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heterodyne or broadband. Heterodyne detectors allow users to tune in to a specific, 

narrow range of frequencies. The heterodyne detector converts high frequency sounds to 

the audible range in real time. The narrow frequency range is limiting, but it provides a 

quick method to listen for bat presence. Heterodyne detectors provide no information on 

call structure and require extensive training for species identification in the field. More 

complete bat survey efforts require broadband sampling because the calls of species in a 

single community can cover a wide range of frequencies.  

The maximum recorded frequency can be no more than half the sampling rate. Originally 

storage devices were not fast enough to record echolocation calls at a high enough 

sampling rate, so signals had to be brought down to a frequency range that could be 

analyzed. Frequency division and time expansion methods allow broadband recording 

and transformation of high frequencies for users to listen to at the audible frequency range 

(Parsons and Obrist 2004). Frequency division decreases an incoming signal frequency 

(kHz) to bring it into the audible range by dividing the frequency by a preset value. A 

drawback is that all amplitude information is lost from the recorded call and only a single 

harmonic is analyzed. Time expansion plays signals back at a slower speed by recording a 

broadband signal and playing it back with the call duration increased and frequencies 

decreased (Pettersson 2004). Slowed signals are able to be processed at a lower sampling 

rate, while preserving all call information. The system records and stores a signal, then 

plays it back, but during playback, the system cannot also be recording, limiting recording 

for only part of the available time (Parsons and Obrist 2004).While time expansion 

systems make high quality recordings, including the amplitude and spectral component 

information, the drawback is they are not capable of sampling continuously.  
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Until the 1980s, technology was the bottleneck to addressing many questions in acoustic 

monitoring. Field research of bats flourished once more portable detectors became 

available, and it was determined that bat species could be identified by their echolocation 

calls (Ahlén 1981, Fenton and Bell 1981). Recordings were originally made on analogue 

tape recorders, but by the mid-1980s they could be stored digitally. Once sound cards 

were capable of higher sampling rates, high frequency signals could be recorded directly 

without transformations. 

1.3.1 Acoustic monitoring today 

Today, devices primarily use one of two methods to analyze digitally recorded calls: zero-

crossing and Fourier analyses. Zero-crossing analysis, used to analyze frequency division 

signals, is advantageous because it is simple and fast with low digital storage 

requirements. However, it suffers from the same limitations as frequency division: loss of 

amplitude information and analysis of a single harmonic. Fourier analysis, or spectral 

analysis, is the more common method of analysis for detectors, used for time expansion 

and untransformed, real-time signals. It generates two outputs: power spectrum and 

spectrogram, giving information on amplitude, frequency, and time aspects of 

echolocation calls. Fourier analysis calculates frequency information by averaging blocks 

of data across the call. Using more blocks of data increases the accuracy of frequency 

information, but decreases time resolution because of an inverse relationship between 

frequency and time (Parsons et al. 2000). Very little information is lost during spectral 

analysis and it is relatively insensitive to background noise, but analysis can be 

computationally demanding (Parsons et al. 2000, Parsons and Szewczak 2009). 
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An ongoing debate persists regarding the value of the two analysis methods. In practice, 

the quick, simplistic method of zero-crossing analysis detects fewer echolocation calls 

than the information-rich spectral analysis. Echolocation call features (i.e., lowest 

frequency and duration) and sensitivity also differ between the two types of analysis 

(Fenton 2000, Fenton et al. 2001). Spectral analysis requires more data storage and 

battery life than zero-crossing analysis. Full-spectrum devices allow analysis of an entire 

echolocation call, including harmonics and amplitude information; because bats probably 

use the entire call they produce, including harmonics, it is important to understand and 

include the entire call during analysis (Griffin 2004).  

There is now a wide variety of commercially available, inexpensive, portable bat 

detectors, which allow extensive study of bats through acoustic monitoring; more than 

500 studies have been published since 2011. Digital technology and miniaturization of 

electronic components have made many field studies possible, and new computer 

software is making analysis of recorded signals even more efficient (Parsons and Obrist 

2004). Large quantities of data are easily collected with acoustic methods, but processing 

and analysis of these immense datasets are still problematic. Analysis is moving towards 

full automation based on statistical models and computer programming techniques, but 

has not been commercialized in a robust enough manner to be adopted for standardized 

protocols. 

1.4 Variation in acoustic monitoring 

There are three levels of variation that can complicate acoustic data interpretation. First, 

variation is created by the movement of sounds through air. Second, the degree of 

variation detected can be affected by the equipment used. Lastly, there is variation with 
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respect to the animals themselves, from echolocation behavior to community-level 

activity patterns. No matter what the focus of the study, it is vital to recognize all of the 

possible sources of variation in a dataset. 

1.4.1 Variation from attenuation 

The movement of sound through air is affected by several factors. All sounds transmitted 

through air are subject to spreading loss, where sound waves spread out as they move 

away from the source and thus lose intensity with distance (independent of frequency, 

Griffin 1971). Atmospheric attenuation occurs when sounds are absorbed by atmospheric 

moisture which can be affected by the frequency at which the sounds are emitted, as well 

as humidity, and temperature. Higher frequency sounds have shorter wavelengths, 

resulting in greater attenuation (Griffin 1971, Lawrence and Simmons 1982), but yield 

more details to bats about their targets (Griffin 1958, Simmons and Stein 1980). The 

frequencies dominated in calls of many species (20-60 kHz) suggest a balance between 

call range due to attenuation and detection resolution (Fenton et al. 1998). Species with 

higher-frequency components in their calls will have a lower effective range of 

echolocation due to attenuation and thus may be more difficult to detect with detectors. 

1.4.2 Variation from equipment 

The variation resulting from the use of different equipment is controllable but often 

underappreciated, and must be accounted for when developing standardized protocols. 

This is especially true for acoustic bat detectors, as not all systems have the same 

sensitivity (Forbes and Newhook 1990, Waters and Walsh 1994, Fenton 2000, Fenton et 

al. 2001) or hear the same signals in the same way. There are differences between brands 

(Forbes and Newhook 1990, Waters and Walsh 1994) and even between individual 



12 

 

detectors of the same model (Larson and Hayes 2000). Differences between time 

expansion and zero-crossing analysis detectors can be as high as 19 dB in sensitivity, 

resulting in zero-crossing systems missing quite a high proportion of bat activity, even for 

species with relatively high-intensity calls because the detection distance of the detector 

will be shorter for less sensitive microphones (Fenton et al. 2001).  

1.4.3 Variation from bats 

An individual may vary the structure of their echolocation calls in response to habitat 

structure (Kalko and Schnitzler 1993, Broders et al. 2004), insect noise (Gillam and 

McCracken 2007), and other bats (Obrist 1995). We are only beginning to appreciate 

individual variation (Masters et al. 1995, Betts 1998, Fenton et al. 2004), and it seems 

unlikely that one could identify individuals from echolocation calls in the field as 

variation in response to ecological conditions overwhelms the amount of variation at the 

individual level. 

Bat activity and community structure are variable in both space and time. Numerous 

extrinsic factors affect temporal activity patterns of bats, including insect abundance 

(Hayes 1997, Lee and McCracken 2002), air temperature (Kunz 1973, Lacki 1984, 

Negraeff and Brigham 1995, Hayes 1997), rainfall (Fenton et al. 1977, Parsons et al. 

2003), relative humidity (Lacki 1984, Adam et al. 1994), and wind
 
(Adam et al. 1994). 

Activity levels can vary annually (Milne 2006), seasonally (Russ et al. 2003, Milne et al. 

2005, Johnson et al. 2011), among nights (Hayes and Adam 1996, Krusic et al. 1996, 

Hayes 1997, Broders 2003), and within nights (Maier 1992, Krusic et al. 1996, Hayes 

1997, Milne 2006). Activity also varies at both large and small spatial scales. Patchiness 

in activity can be driven by congregations of bats at special locations at specific times of 
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the year. Some locations attract high numbers of bats, such as bodies of water, where 

insects are abundant. Maternity colonies, roosting, hibernation, and migration sites are all 

locations where bats congregate in greater densities and present higher activity levels. 

While variation among habitats has received the most attention (e.g., Krusic et al. 1996, 

Vaughan et al. 1997, Sherwin et al. 2000, Loeb and O’Keefe 2006), spatial variation 

within a site due to habitat heterogeneity is also an important source of variation that must 

be considered during surveys (Hayes 2000). Multiple bat detectors recording within a site 

can be important for reliable estimates of activity levels (Britzke 2003, Fischer et al. 

2009). Flying bats move through three dimensional space and the vertical stratification of 

bat activity can vary with species and habitat structural complexity (Kalcounis et al. 

1999, Hayes and Gruver 2000). Few studies have attempted to sample into the canopy 

because of the logistical limitations of sampling at greater heights (Kalko and Handley 

2001, Lim and Engstrom 2001).  

1.5 Bat conservation 

Bats are an important group of mammals, serving vital ecological roles as nocturnal insect 

predators, pollinators, seed dispersers, and have been recognized as significant natural 

resources in recent years (Gannon et al. 2003). Management agencies now recognize the 

need for practical research of bats (Barclay and Brigham 1996) and that the ecosystem 

services provided by bats are being quantified (Boyles et al. 2011, Kunz et al. 2011). 

Boyles et al. (2011) estimate that the United States agricultural industry receives $22.9 

billion in ecosystem services annually from insectivorous bats as predators of many crop 

and forest pests.  
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1.5.1 Bats as bioindicators 

Changes in community structure and species diversity may serve as indicators of 

environmental change and should be included in conservation plans
 
(Lim and Engstrom 

2001). Bats have been identified as good candidates as bioindicators because of the ability 

of researchers to monitor trends in populations, occupancy by bats of high trophic levels, 

and widespread distribution of bat taxa (Jones et al. 2009). For example, bats are 

ecological indicators of ecosystem disturbance (Fenton et al. 1992, Medellín et al. 2000), 

habitat quality (Kalcounis-Rueppell et al. 2007), and have been included as one of the 

United Kingdom’s Biodiversity Indicators (Bat Conservation Trust 2011). Research 

conducted with bat detectors informs our understanding of bat ecology and behavior and 

is frequently used to guide important wildlife management decisions (U.S. Fish and 

Wildlife Service 2012). 

1.5.2 Current threats to bats 

Over 1200 species of bats have been described (Simmons 2005) and 172 species are 

threatened (i.e., vulnerable, endangered, or critically endangered) while five are now 

extinct (IUCN 2012). Bat populations are being impacted around the world, from habitat 

destruction to climate change (Jones et al. 2009), but two current threats facing bats today 

are wind-energy developments and white-nose syndrome (WNS). Wind turbines are 

responsible for the death of countless bats, especially for migratory species (Kunz et al. 

2007a), due to direct collision with turbine blades (Horn et al. 2008, Rollins et al. 2012) 

or pulmonary barotrauma as a result of the rapid drops in air-pressure near moving 

turbine blades (Baerwald et al. 2008). Wind energy development is increasing around the 

world, as are efforts to find viable mitigation options. There is a growing demand for 
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surveys at wind energy developments to assess potential risks to bats using both acoustic 

and capture methods, but these efforts are currently not guided by any standardized 

survey design (Kunz et al. 2007a,b). 

White-nose syndrome is causing severe declines of bat populations in eastern North 

America, with many colonies decreasing by 99% within two years of infection (Frick et 

al. 2010). This fungal infection is caused by a cold-adapted fungus, Geomyces 

destructans, resulting in increased arousals during hibernation, leading to dehydration and 

depleted fat reserves (Cryan et al. 2010, Frick et al. 2010). Since being identified in upper 

New York State in 2006, it has spread rapidly, directly by bats as well as by 

anthropogenic activity (Frick et al. 2010) through the persistence on equipment, clothing, 

and shoes. Acoustic monitoring is an effective way to document population declines 

without the risk of transmission of WNS with traditional capture methods (Brooks 2011, 

Dzal et al. 2011, Ford et al. 2011). 

Given the importance of bats as bioindicators and worldwide decline in populations a 

global monitoring program with standardized methodologies is needed (Jones et al. 2009, 

Stahlschmidt and Brühl 2012). Lack of standardized protocols hinders the establishment 

of clear guidelines for surveys and effective regulation of assessment efforts by 

government, such as for wind energy developments. There are long-term monitoring 

efforts with standardized protocols in the United Kingdom (Walsh et al. 2001), which 

include acoustic surveys consisting of 1 km walking transects with frequency division 

detectors. New York State has implemented a standardized driving transect protocol to 

monitor bat populations post-WNS, which is now being adopted by other regions 
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although there is little research into the effectiveness of moving transects for sampling bat 

communities (Russ et al. 2003, Stahlschmidt and Brühl 2012). 

1.5.3 Standardized protocols 

Standardization of survey protocols is an important step to make applied research 

applicable to management and government policies, as the transition of scientific research 

to environmental policy decisions is often challenging. Policy based on scientific research 

is crucial for concerted efforts addressing increased conservation needs. Lack of 

standardization makes it virtually impossible to compare results, making standardized 

experimental approaches a necessity (Hayes 1997). Techniques to make monitoring more 

efficient and accurate will greatly benefit science and conservation efforts. Bats are 

critical to ecosystem function and the need for large-scale, standardized monitoring 

efforts is greater than ever before in the wake of threats, such as WNS and wind energy 

developments. Eventually, standardized protocols based on research will outline methods, 

from detector model, detector deployment, species identification, to statistical methods 

for evaluating data. 

Some research has investigated variation affecting bat monitoring surveys and made 

recommendations for future surveys (Hayes 1997, Fischer et al. 2009, Skalak et al. 2012), 

but not enough studies have been published to provide a basis for standardized methods. 

Sources of variation — atmospheric attenuation,  bat detectors, and  bats — must be 

considered to collect unbiased acoustic data (Hayes 2000). While atmospheric attenuation 

cannot be controlled, variation from detectors and bats should be. Any standardized 

protocol must address and account for these sources of variation. In this dissertation my 

goal is to investigate these two sources of variation and propose methods for replicable, 
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objective evaluation of bat activity levels. It was my objective to address these specific 

questions related to the acoustic monitoring of bats: i) how does detector choice impact 

acoustic monitoring results?, ii) what is peak bat activity and how is it identified?, iii) 

how does detector placement impact the design and interpretation of acoustic monitoring 

studies? 

1.6 Dissertation structure 

Each chapter in my dissertation was prepared for independent publication. Chapter 2 has 

been published, Chapters 3 and 4 are in review for publication, and Chapter 5 is pending 

submission for publication. The four chapters are united by a common theme of 

investigating sources of variation in acoustic bat surveys in order to make 

recommendations for standardized sampling protocols. Below is a brief outline of each 

chapter. 

In Chapter 2 (Do you hear what I hear? Implications of detector selection for passive 

acoustic monitoring of bats), I examined how several brands of bat detectors provide 

different depictions of the same dataset. The purpose was to quantify variation in 

detection performance among several commercially available bat detector systems and 

investigate if this is an important source of variation in acoustic monitoring methods. 

With an unprecedented variety of detectors available, it is crucial for researchers and 

management officials to understand differences in the performance of each of the 

detectors, both while selecting detectors to use and interpreting results from studies using 

different detector brands. I conducted a two-part study using five passive bat detectors: 

first, a controlled experiment with synthetic calls recorded at fixed frequencies, distances, 

and angles; and second, a field experiment recording free-flying bats.  
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In Chapter 3 (How high is high? Using percentile thresholds to identify peak bat activity), 

I address the question, “What is peak activity and how is it identified?” and illustrate a 

method for classifying activity levels and investigate how patterns and peaks of activity 

vary among sites. Describing bat activity as “high” or “low” is useful only in context and 

is rarely evaluated based on objective criteria. I recorded acoustic bat activity at three 

sites, spanning a range of situations. I calculated species-specific thresholds of activity 

levels at six (25
th

 - 99
th

) percentiles derived from a larger distribution of activity levels 

among all sites. I used these percentile thresholds to identify important sites for each 

species based on where I found high activity, defined by objective criteria. It is important 

to have clear definitions of “high” activity, especially when making conservation and 

management decisions.  

In Chapter 4 (Identifying peaks in bat activity: a new application of the space-time scan 

statistic), I address the same question as in Chapter 3, but present an alternate solution to 

the problem of identifying peak bat activity. I propose a new application for the space-

time scan statistic (SaTScan) as an objective statistical technique for identifying peak 

periods of bat activity and compared it to the use of percentile thresholds, at three scales: 

within nights, among nights at a site, and among sites. I then experimentally tested 

SaTScan by analyzing species-specific activity at three sites. SaTScan has the potential to 

be a valuable tool for quickly identifying activity peaks with an objective, replicable, and 

statistically-sound method that can be applied at many temporal and spatial scales.  

In Chapter 5 (Value in variation? Stationary acoustic transects to account for spatial 

variation in bat activity), I examine how horizontal and vertical variation within a site can 

impact estimates of bat activity. I measured bat activity with linear, stationary transects of 
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bat detectors at four sites in Ontario. I assessed variation in patterns and levels of bat 

activity at each detector with percentile thresholds and SaTScan. I also tested whether 

spatial or temporal factors were more important for explaining variation in activity. 

Lastly, I explored what sampling effort is required for species-specific activity levels at 

each site. 

In Chapter 6, I conclude my dissertation with a summary of how addressing variation in 

acoustic bat surveys is necessary for accurate estimates of activity and make 

recommendations for sampling protocols. Finally, I highlight future directions for the 

study of bat ecology with the intention of better conservation and management. 
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Chapter 2  

2 Do you hear what I hear? Implications of detector 
selection for acoustic monitoring of bats1 

2.1 Introduction 

Echolocation provides a window through which the behavior and ecology of bats can be 

evaluated.  Specifically, calls used by echolocating bats can be conspicuous to bat 

detectors, permitting biologists to distinguish among species by their calls and to identify 

foraging activity.  Bat detectors, instruments sensitive to the acoustic frequencies 

dominating bat calls, have been extensively used in a range of bat studies, from those 

investigating echolocation behavior, to others documenting patterns of distribution and 

activity levels.  By 2012, the variety of commercially available bat detectors offered a 

spectrum of features at a range of prices (e.g., weatherproofing, temperature sensors, 

storage options; Table 2.1) but key features, such as microphone quality, sampling rate, 

and recording technology will determine the ability to detect bats. Many published 

articles have used data from bat detectors to address questions about the echolocation 

behavior of bats, as well as their patterns of activity and habitat use (e.g., Gillam 2007, 

Collins and Jones 2009, Müller et al. 2012).  

                                                 

1
 A version of this chapter has been published and is presented here with permission from 

John Wiley and Sons. 

Citation: Adams, A. M., M. K. Jantzen, R. M. Hamilton, and M. B. Fenton. 2012. Do you 

hear what I hear? Implications of detector selection for acoustic monitoring of bats. 

Methods in Ecology and Evolution 3:992–998. 
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Table 2.1. A comparison of the features associated with commercially available ultrasonic bat detector systems. 

System and 

manufacturer feature 

AnaBat SD2 

Titley Electronics 

Avisoft UltraSoundGate 

116 w CM16/CMPA 

Avisoft Bioacoustics 

Batcorder 2.0 

ecoObs 

Batlogger 

Elekon AG 

Song Meter SM2BAT  

192 kHz Wildlife Acoustics 

Recording technology Zero-crossing 16-bit, full-spectrum 16-bit, full-

spectrum 

16-bit, full-spectrum 16-bit, full-spectrum 

Sampling rate N/A 500 kHz 500 kHz 312.5 kHz 192 kHz 

(384 kHz available) 

Sound file type AnaBat .wav .raw .wav & .xml .wav & .wac 

Storage type Compact Flash (CF) External through computer SDHC SDHC SDHC x 4 

Storage capacity 128 GB unlimited 16 GB 32 GB 128 GB 

Battery 4 AA batteries Runs off computer NiMH 6V 

2700mA, 

rechargeable 

LIB 3.7V 4600mAh, 

rechargeable 

4 D batteries 

Microphone type Condenser Condenser Electret Electret Electret 

Omnidirectional 

microphone? 

No No Yes Yes Yes 

Recording schedule? Yes, through CF 

Reader 

Yes, through Avisoft-

RECORDER software 

Yes Yes Yes 

Post-process tools AnaLook Avisoft-SASLab Pro None BatExplore Batch noise scrubber, zero-cross 

converter, Wac2Wav converter 

Channels 1 1 1 1 2 

Weatherproof 

enclosure? 

No No Yes with StrongBox Yes 

Weatherproof 

microphone? 

No No No No Yes 

GPS? Can connect 

externally 

No No Yes optional 

Temperature sensor? Internal temperature No No External 

temperature 

Internal and external 

Price (USD) $2,200† $5999* $3,273*ǂ $2,035*ǂ $999* 

Pricing from company *website or †manufacturer. ǂPrice converted to USD.
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Acoustic sampling is a common, powerful technique for monitoring the activity of 

echolocating bats. Bat detectors are widely used by researchers, including those working 

for government agencies, environmental consulting firms, and academics. Behavioral, 

presence/absence, and relative abundance data are commonly collected with these 

devices. The results of research relying on bat detectors inform our understanding of bat 

ecology and behavior and are frequently used to guide important wildlife management 

decisions (U.S. Fish and Wildlife Service 2012). Acoustic monitoring is non-intrusive 

and capable of recording large quantities of data. However, the specific combination of 

hardware may affect the quality, precision, and quantity of data collected. 

Variation in microphone sensitivity and detection algorithms can produce data sets that 

differ among detectors. Both Downes (1982) and Fenton (2000) noted significant 

differences in detection sensitivity among brands of narrowband and broadband acoustic 

detectors. This variation has the potential to affect acoustic monitoring studies and their 

conclusions; whether the focus is curiosity-driven research or environmental assessments 

where low bat activity is assumed to equal low numbers of bats and therefore low risk 

(U.S. Fish and Wildlife Service 2012). 

The acoustic nature of bats is highly variable (e.g., frequency, intensity, etc.) which can 

influence detectability by even the ‘best’ detectors. Bats using low-intensity echolocation 

calls dominated by higher frequencies are less detectable than those using high-intensity 

calls dominated by lower frequencies. Higher-frequency sounds attenuate more quickly 

and will be detected less frequently than higher intensity, lower-frequency calls 

(Lawrence and Simmons 1982), resulting in under-representation of these species in 
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acoustic surveys (Murray et al. 2009). Detection bias will be further compounded by the 

sensitivity and frequency response of the bat detector. Different systems vary in their 

performance over the range of biologically relevant frequencies. If the microphone has 

lower sensitivity to high frequencies, the bias caused by atmospheric attenuation will be 

further exaggerated. The consequences of detection bias will depend on the community 

being studied; the frequencies of bat calls range from ~8 kHz to > 200 kHz, and this 

range varies with a given bat community.  Researchers must consider the community in 

question when choosing the most appropriate bat-detecting system for their research 

(Limpens and McCracken 2004).  

Microphones with lower sensitivity will detect bats at shorter distances relative to more 

sensitive microphones. Detectors with shorter detection ranges will sample a smaller 

airspace and thus have a lower probability of detecting any bats present. Also, not all 

detectors are equal in their directionality and the orientation of the detector in relation to 

the bat affects detection (Britzke et al. 2010). When all other factors are equal, detectors 

with omnidirectional microphones will have a better chance of detecting a bat, compared 

to more directional microphones. However, a less directional microphone will be less 

sensitive, giving it a smaller detection range (Limpens and McCracken 2004). The 

smaller the microphone, the more omnidirectional it will be. 

Three levels of variation can confound data acquired with bat detectors.  First is the 

variation associated with the movement of sound through air.  Second is that intrinsic to 

the instruments. Third is variation in echolocation behavior and call design among bats.  

Whether the focus of a study is echolocation behavior or documenting patterns of habitat 

use, it is important to distinguish between factors two and three. We presented synthetic 
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acoustic signals and echolocation calls of free-flying bats in the wild to compare 

ultrasonic call detection by five commercially available bat detectors. Our goal was to 

provide data about relative bat detector performance and bat echolocation behavior. 

With an increasing number of commercially available bat detectors, it is important to 

address variation in the technologies. A fundamental factor of any methodology is 

addressing the capabilities and limitations of the equipment being used. It is vital to be 

aware of the differences that may result from the use of different equipment even when 

the same sampling method is employed. To date, no study has examined the differences 

in the detection efficacy among direct high-speed bat detector models. 

2.2 Methods 

We simultaneously deployed five direct high-speed bat detectors for recording both 

synthetic playback and free-flying bats: AnaBat SD2 (Titley Scientific, Ballina, NSW, 

Australia), Avisoft UltraSoundGate 116 CM16/CMPA (Avisoft Bioacoustics, Berlin, 

Germany), Batcorder 2.0 (ecoObs, Nuremberg, Germany), Batlogger (Elekon AG, 

Luzern, Switzerland), and Song Meter SM2BAT (Wildlife Acoustics, Inc, Concord, 

MA). There are a several other commercially available detectors that we were unable to 

include in this study, for example D500X and D1000X (Pettersson Elektronik) and 

AR125 (Binary Acoustic Technology). During all trials, microphones were within 10 cm 

of each other, on a parallel plane. Microphone order and position were rearranged 

randomly for each trial to change microphone position, but maintain consistent 

microphone spacing. We avoided variation by recording with only one detector of each 

model and recording with all detectors at the same time. 
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2.2.1 Optimizing detector recording settings 

We used playback of synthetic signals to optimize detection settings for each system. Our 

synthetic signal file was 1478 ms in duration, and consisted of 20, 57 ms long, constant 

frequency (CF) signals, five signals at each of four frequencies: 25, 55, 85, and 115 kHz. 

For playback, we used a laptop running Avisoft RECORDER-NiDAQmx software 

connected to an ultrasonic playback interface with an integrated D/A power amplifier 

(UltraSoundGate Player 116). The interface was connected to an UltraSoundGate 

Dynamic Speaker ScanSpeak (hardware and software: Avisoft Bioacoustics, Berlin, 

Germany), which we did not calibrate. When possible, we recorded with all combinations 

of setting configurations for each detector. When combinations were prohibitively large 

(>100) we recorded in intervals spanning the full range of configurations. For each 

configuration, we played synthetic signals 5 m from each device. We analyzed each 

recording visually to find the optimum settings for recording conditions. In cases where 

multiple configurations were equal, we chose the settings closest to the default settings 

for the detector. These settings were used for the remainder of our experiments (Table 

2.2).
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Table 2.2. Detector settings used in this study. 

AnaBat SD2 

 

Avisoft UltraSoundGate 116 Batcorder 2.0 Batlogger Song Meter SM2BAT 

Gain: 7 

Data Div - 16 

Gain: 7 

Trigger: permanent 

(continuous) 

Sampling rate: 500 kHz 

Format: 16 bit 

Buffer: 0.050 

No. Buffers: 4 

Critical frequency: 14 kHz 

Threshold: -36 dB 

Post trigger: 800 ms 

Quality: 40 

Crest 

minCrest: 5 

minRMS: 2 

minPeak: 5 

HighPass: 6 

Sampling rate: 192 kHz 

Compression: WAC0 

Gain: 36 dB 

Dig HPF: fs/16 

Dig LPF: Off 

Trigger Level: 15 SNR 

Trigger Win Right: 1 s 

Div Ratio: 16 

See each respective detector manual (available online) for the setting description.
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2.2.2 Synthetic call playback 

We played the synthetic CF signals three times at 5 m intervals (5 – 40 m) and three 

angles (0°, 45°, 90°) in an open field. This resulted in 15 calls of each frequency played 

at each distance and angle (24 combinations). We used the automated detection feature 

(Table 2.3) of callViewer (v. 18,  Skowronski and Fenton 2008), to count the number of 

calls detected by each system and manually inspected each recording to ensure that there 

were no false positives. CallViewer is a custom echolocation sound analysis program 

written with MATLAB software (The MathWorks, Natick, Massachusetts). Because 

AnaBat file formats are not compatible with callViewer software, we visually inspected 

these recordings in AnaLook (v. 3.8, Titley Electronics, Ballina, Australia). We used 

general linear models to analyze the number of signals detected (considering each 

frequency separately) with angle, detector, distance and all two-way interactions. To 

compare among detectors we generated pair-wise comparisons of the estimated marginal 

means, controlling for the effect of distance and angle. We used a similar approach to 

compare the effect among the three angles. We estimated the detection range by 

modeling the probability of detection of each signal frequency at each angle by all 

detectors with a logistic regression in PASW18 (SPSS Inc., Chicago, IL). From the fitted 

logistic regression we determined the distance corresponding to a detection probability of 

0.50 as our estimate of detection range (i.e., beyond this distance there is less than a 50% 

chance that the signal would be detected). 
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Table 2.3. Automated detection parameter settings used for call analysis in callViewer. 

Parameter Setting 

Minimum link length 10 

Window length (ms) 0.3 

Frame rate (fps) 10000 

Chunk size (sec) 1 

Minimum energy (dB) 14 

Echo filter threshold (dB) 10 

UPPER cutoff freq. (kHz) Inf 

LOWER cutoff freq. (kHz) 15 

Window type Blackman 

Delta size (+/- frames) 1 
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2.2.3 Recording free-flying bats  

Free-flying bats produce complex, frequency-modulated calls that vary in intensity in 

contrast to the simple, constant-frequency signals we used for the synthetic playback 

experiment. To introduce the variability that is present in natural settings we recorded 

free-flying bats. We deployed the detectors for two hours per night on three separate 

nights in a suburban area in London, Ontario, Canada. The Avisoft system detected more 

bat echolocation calls than any of the other detectors so we used the data from it as a 

baseline. We chose 26 easily identifiable passes (minimum seven consecutive calls), from 

hoary bats (Lasiurus cinereus), and counted the number of calls in each pass. We 

manually counted all calls recorded regardless of call quality or completeness. We used 

callViewer to analyze the full spectrum system calls and AnaLook to analyze calls from 

AnaBat. We calculated the proportion of calls detected per pass relative to Avisoft, 

arcsine-square root transformed the data, and compared detector performance with 

ANOVA and Tukey’s post hoc test in PASW18 after finding no effect of recording night. 

2.3 Results 

2.3.1 Synthetic call playback 

Overall, Avisoft detected the most signals (1067 signals, 25% of all signals presented), 

and AnaBat detected the fewest (240 signals, 5% of all presented). Avisoft was the only 

system that detected the 115 kHz signal and only at 5 m (Fig. 2.1A). AnaBat did not 

detect CF signals at 85 kHz and 115 kHz (Fig. 2.1E). The other detectors only recorded 

85 kHz signals at 5 m, except Avisoft which recorded these signals at 10 m (Fig. 2.1). All 
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systems detected the 55 kHz signals, but detection range varied from 7 m to 16 m at 0° 

(Fig. 2.2). Song Meter did not detect 115 kHz signals because the frequency is outside of 

this model’s detection capabilities. A model with a higher sampling frequency is 

available and would likely have detected higher frequency signals. 

The number of signals detected at 25 kHz varied significantly among detectors (F4,348 = 

21.32, p < 0.001; Fig. 2.3), except Batcorder and Song Meter. AnaBat recorded the 

fewest 25 kHz CF signals. There were also differences among detectors in the number of 

55 kHz signals detected (F4,346 = 22.74, p < 0.001; Fig. 2.3); Avisoft recorded more than 

Song Meter and AnaBat, while Batcorder recorded more than AnaBat. Batlogger 

recorded significantly more signals than any other detector for at 25 kHz and 55 kHz. 

There was a significant interaction between detector and distance for both 25 kHz and 55 

kHz signals (F4,348 = 9.42, p < 0.001; F4,346 = 13.63, p < 0.001; Fig. 2.1). For 25 kHz, 

Batcorder and Song Meter detections reflected a greater rate of attenuation with distance 

than AnaBat, Avisoft, and Batlogger. For 55 kHz, AnaBat had the greatest rate of 

attenuation with distance and Batlogger had the lowest (Fig. 2.1).  

Overall, there was an effect of angle for both 25 kHz and 55 kHz signals (F2,348=24.92, 

p<0.001; F2,346=21.06, p<0.001; Fig. 2.1); the number of signals detected declined as the 

angle increased. The effect of angle was the same among all detectors (p > 0.05). There 

was no interaction between angle and distance for 25 kHz signals (p > 0.05), but there 

was an interaction for 55 kHz signals (F2,346 = 12.62, p < 0.001).  For 55 kHz signals, 

there was no difference between 0° and 45°, but these two angles had a greater rate of 

decline in number of signals over distance than 90°. 
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Figure 2.1. Mean number of calls detected by each bat detector system at four 

frequencies at each distance and angle during the synthetic playback experiment. There 

were 15 calls played for each frequency/distance/angle combination. 
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Figure 2.2. Distance of 50% probability of detection calculated with a logistic regression 

for each frequency at 0° by each bat detector system during the synthetic playback 

experiment. Patterns were similar for all detectors at 45° and 90°, but with lower overall 

probability of detection. 
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Figure 2.3. Performance varied among detectors with a strong effect of frequency. Call 

detection (arcsine square root transformed number of calls) ± SE by call frequency 

evaluated at a distance of 22.5 m. Detectors with the same letter superscript were not 

significantly different from each other within each frequency. 
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2.3.2 Recording free-flying bats 

Batlogger recorded significantly more hoary bat echolocation calls (relative to Avisoft) 

than any other system (F3, 100 = 45.26, p < 0.001; Fig. 2.4), while AnaBat, Batcorder, and 

Song Meter did not differ significantly from each other. Only AnaBat and Batcorder 

failed to detect all 26 passes; both of these systems did not record any calls from two 

passes. One of the 26 passes included a feeding buzz that was recorded by all of the 

detectors. Avisoft, Batcorder, Batlogger, and Song Meter recorded more calls (23 – 25 

calls) in the feeding buzz than AnaBat (11 calls). 
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Figure 2.4. Mean number of calls ± SE per pass relative to Avisoft for each bat detector 

from recordings of free-flying Lasiurus cinereus on three nights. Batlogger detected more 

calls than any of the other systems (detectors with the same letter superscript were not 

significantly different from each other). 
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2.4 Discussion 

Our results demonstrate that there is significant variation in detection efficacy among 

commercially available bat detectors. The differences in the detection abilities of these 

microphones, particularly in relation to differing frequency sensitivity, illustrate the 

hazards of comparing data collected by different detecting systems.  Our results show that 

detection of different frequencies varied among detector systems and was affected by the 

distance and angle of the signal from the detector. Avisoft and Batlogger detected more 

of the highest frequency signals we tested than the other detectors, but as expected, these 

signals were detected at much shorter ranges. Detection distance for the 55 kHz synthetic 

signals (detected by all systems) is particularly relevant because this frequency is in the 

range of most species of bats that occur in temperate regions. In Hawaii, where only one 

species of bat occurs (L. cinereus semotus), any of the systems we used would suffice, 

although each would provide quite a different view of bat activity. In Newfoundland, 

where two species occur (Myotis lucifugus, M. septentrionalis) any of the systems we 

tested would suffice for M. lucifugus (echolocation call frequency of most energy ~40 

kHz, maximum frequency ~81 kHz), but only some would accurately document activity 

by M. septentrionalis, which uses calls dominated by higher frequencies (frequency of 

most energy ~60 kHz, maximum frequency ~126 kHz; (Faure et al. 1993, Ratcliffe and 

Dawson 2003). In Newfoundland, some systems would be better than others. In other 

parts of the world, some bat species use echolocation calls dominated by frequencies >85 

kHz. For these bat communities, the detection distance of the 85 kHz synthetic signals in 

our study is important to consider. Monitoring the activity of vespertilionid bats in the 
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subfamilies Kerivoulinae and Murininae would be difficult with any of the systems we 

tested because these species produce high frequency (80 ‒ 200 kHz), frequency-

modulated sweeps. 

Variation in detection distance among detectors has important practical implications.  For 

many studies, it is particularly important to understand the volume of airspace being 

sampled, such as when interpreting the results of pre-construction acoustic surveys 

conducted at potential wind energy facility sites where high bat mortality is a concern 

(Kunz et al. 2007). On modern wind turbines, the lower edge of the blade swept area is 

~20 m above-ground (Barclay et al. 2007). Our data demonstrate detection ranges of 7 – 

16 m, and therefore, none of the ground-based microphone systems we tested can detect 

bats flying in the area swept by the blades of wind turbines. Even a detector placed on the 

nacelle of a turbine (in the center of the blade swept area) would sample no more than 

one-third of the area swept by 50 m long blades (Kunz et al. 2007).  

When we focus on detection of echolocation calls from free-flying bats, bat detectors fell 

into one of two performance groups. AnaBat, Batcorder, and Song Meter did not differ 

significantly in the number of hoary bat echolocation calls detected. These bats produce 

high intensity echolocation calls with a minimum frequency which is typically ~17 kHz 

(Obrist 1995). The minimum frequency of hoary bat calls is lower than the lowest 

frequency of our synthetic calls. Consequently, our free-flying bat results represent a 

best-case scenario; we used only high intensity, low-frequency calls and our sampling 

method, counting all calls regardless of quality, presented the most optimistic view of 

activity. In reality, many species are much less detectable and the quality of many 

recorded calls is too poor to be identified to species or counted as a bat call. Using 
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automated detection algorithms with recording quality standards will provide more 

objective call counts when measuring activity. If we had looked at passes from any of the 

Ontario Myotis species (calls with a minimum frequency range of ~34 - 40 kHz; Thomas 

et al. 1987), it is likely that the results from our free-flying passes would have mirrored 

the results from our synthetic call trials.  

Among the detectors we tested, AnaBat is unique in that it is the only detector to use 

zero-crossing analysis which may (Corben and Fellers 2001) or may not (Fenton 2000) 

provide an adequate picture of bat activity. Our data contributes to this discussion, 

demonstrating that AnaBat is capable of performing similarly to a full-spectrum detector 

(Fig. 2.4), but in most cases it detects fewer calls (Fig. 2.3). Therefore, we emphasize the 

importance of considering the research questions and local bat fauna. While our results 

from the synthetic-call trials agree that full-spectrum detectors are more sensitive, our 

free-flying bat trial showed that there are circumstances where the differences are not 

substantial. Ultimately, the specific hypotheses and objectives of a study will dictate the 

suitability of various detectors (Limpens and McCracken 2004). No one recording system 

is ideal for all situations and thus it is the responsibility of the researcher (and the reader) 

to consider how the performance of the recording system will impact the results and 

conclusions of the study. 

It is important to note that regardless of recording system, all microphones detect only a 

subset of the calls present in the environment (e.g. in our playback experiment the best 

system detected only 25% of the calls we played). However, our findings show that some 

subsets are significantly larger than others. This discrepancy is essential to remember 

when attempting to compare datasets collected with different detecting systems. Even 
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when comparing multiple detectors of the same model, the microphones must be 

calibrated to ensure comparable performance (Larson and Hayes 2000). With an 

increasing number of threats to bat populations (e.g., wind turbines, white-nose 

syndrome) there may be a drive to develop more rigorous monitoring programs with 

standardized protocols for bat surveys. Our results highlight the importance of 

considering the specific detector used, and the variation that may arise from different 

microphones. 

As technology continues to evolve, the number of commercially available detectors will 

increase. As with the current proliferation in detectors on the market, many brands will 

persist (e.g., AnaBat, Avisoft) and new brands will emerge (e.g., Batlogger). In such a 

specialized market there will probably be few dramatic changes in the technology; we 

would expect to see increases in microphone sensitivity, battery life, and storage 

capacity, along with continued software upgrades to improve detection algorithms. With 

a high diversity of detectors, each with a wide range of settings and technical capabilities, 

it is now necessary to report not only the type of detector used, but also the settings 

chosen (e.g., Table 2.2) and as many hardware details as possible. The extent that 

detector-specific settings have on performance and accuracy between detectors of the 

same brand remains to be seen. Finally, it comes to the issue of comparability of results; 

different detectors will give different results, which must be taken into account. 

Whether the bat-detecting system you are using hears the same signals as the one I am 

using depends upon the echolocation calls. There are numerous factors that contribute to 

variation in datasets from acoustic monitoring; our results demonstrate that the detector 

plays a role in this variation. Ultimately, it is crucial that differences in detector 
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performance be considered when designing studies and comparing results from different 

detectors, whether among models included in our study, other extant models, or those yet 

to be invented. No detector is ideal for all research questions and methods, and 

conversely, not all detectors are appropriate for a given question or methodology. 
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Chapter 3  

3 How high is high? Using percentile thresholds to 
identify peak bat activity2 

3.1 Introduction 

Researchers passively monitor bats by eavesdropping on their echolocation calls (Hooper 

1966), providing insight into many aspects of ecology and behavior (e.g., Fenton 2003, 

Neuweiler 1989). Determining the timing and location of peak activity levels is important 

for an understanding of ecology and behavior, and has management implications. 

Activity levels of bats can vary dramatically temporally with increased activity during 

certain life history events or at ecologically relevant sites, such as riparian foraging areas 

(e.g., Rautenbach et al. 1996, Hayes 1997), maternity colonies (e.g., Murray and Kurta 

2004), migration stopover sites (e.g., Barclay 1984, Dzal et al. 2009), or pre-hibernation 

swarming sites (Parsons et al. 2003). Conversely, areas used for commuting or dispersed 

foraging are likely to have lower activity levels. 

There is no reliable way to convert the number of echolocation calls or passes recorded 

into the number of bats present, so acoustic monitoring only provides relative indications 

of low or high bat activity. However, these classifications are subjective and there is no 

framework or guideline with respect to interpreting activity levels, beyond activity in one 

sample being relatively higher than another (Kunz et al. 2007b). Previously, several 

                                                 

2
 A version of this chapter is in review. 

Citation: Adams. A. M., L. P. McGuire, L. A. Hooton, and M. B. Fenton. How high is 

high? Using percentile thresholds to identify peak bat activity. Acta Chiropterologica: in 

review. 
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methods have been used to identify peaks of activity, including visual identification with 

activity plots (Hayes 1997), choosing an arbitrary level of activity as ‘high’ (Broders 

2003, Brooks and Ford 2005), or calculating the number of calls that are above a certain 

threshold (Gorresen et al. 2009, Hamilton 2012). Since acoustic monitoring provides a 

relative indication of bat activity it is important to define objective criteria for making 

comparisons among sites or time periods. 

Our goal was to determine a method for objectively identifying peak bat activity with the 

purpose of examining the use of percentile thresholds for this task. Percentile thresholds 

have been used to identify high occupancy sites and make inferences about habitat 

attributes (Gorresen et al. 2009). Percentiles are simply 100 regular intervals in any 

cumulative distribution with the median at the 50
th

 percentile where half of all 

observations fall below this threshold. Percentile thresholds are not affected when data 

differs in dispersion pattern, and are less susceptible to outliers than traditional statistics, 

such as analysis of variance (Sokal and Rohlf 1981). When applied to acoustic bat 

activity, the 99
th

 percentile represents the most infrequent activity levels, with the greatest 

number of calls, where these periods of high activity only occur 1% of the time (e.g., Fig. 

1). Ecological data are often overdispersed (O’Hara and Kotze 2010), with many 

observations with few calls and few with many calls, which violates key assumptions of 

common statistical methods. To illustrate the use of percentile thresholds, we used 

acoustic recordings from several sites in Canada. The aims of this paper are: (1) explore 

the suitability of percentile thresholds for identifying peak bat activity within- and 

among-nights and (2) compare the use of percentile thresholds to traditional statistical 

procedures.  
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3.2 Methods 

3.2.1 Study areas 

Data were recorded at (i) Long Point, Ontario, a 35 km long peninsula extending from the 

north shore of Lake Erie, for six nights during both spring (June 2008) and autumn 

migration (August/September 2008); (ii) an abandoned mine near Renfrew, Ontario for 

five nights during both spring (May/June 2008) and autumn swarming (August 2008); 

and (iii) along the Battle Creek in Cypress Hills Interprovincial Park, Saskatchewan for 

five nights during summer (July 2009). 

We considered three species in our analysis, Lasiurus borealis, L. cinereus, and Myotis 

lucifugus. Given the migratory nature of L. borealis and L. cinereus we predicted that we 

would observe high activity in autumn at Long Point as it is an important site for bats 

during migratory periods (Dzal et al. 2009, McGuire et al. 2012). Cypress Hills is a 

forested region where all three species occur (Willis and Brigham 2003, 2005), although 

L. borealis is rare (Willis and Brigham 2003) and we expected this site to be the least 

important to L. borealis. Myotis lucifugus is known to swarm and hibernate at Renfrew 

(Fenton 1969), therefore we expected to observe high activity only during the autumn 

swarming period.  

3.2.2 Acoustic monitoring and analysis 

We recorded continuously from dusk until dawn at all locations, on nights with no rain, 

using externally polarized condenser microphones (Avisoft CM16/CMPA) connected to 

an Avisoft UltraSoundGate 416-200 or UltraSoundGate 116 (Avisoft Bioacoustics, 
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Berlin, Germany) at 8 bit with a 250 kHz sampling rate, and gain at seven. The system 

was operated with Avisoft Recorder USG software. 

We identified echolocation calls in all files using the automated detection feature in 

callViewer (v. 18; Skowronski 2008), a custom sound analysis program written with 

MATLAB software (The MathWorks, Natick, Massachusetts). We filtered the data to 

eliminate noise and weak or fragmented calls, only including detections with duration 

0.99 – 30 ms and minimum frequency (Fmin) 15 - 60 kHz. The filter parameters were 

selected based on conservative estimates of the echolocation call structure of the bat 

species present at our recording sites. We identified calls to species using quadratic 

discriminant function analysis (DFA, Appendix A), which compared our unidentified 

data to a training dataset that included seven species: Eptesicus fuscus, Lasionycteris 

noctivagans, L. borealis, L. cinereus, M. lucifugus, M. septentrionalis, and Perimyotis 

subflavus. All species were weighted equally in the classification analysis. Classification 

of each call was based on 11 call parameters extracted by the automated detection feature 

of callViewer (Skowronski and Fenton 2008). Cross-validation indicated the species 

classification accuracy was greater than 88% for the three species included in our 

analysis (Table A1). To further improve classification accuracy, and because DFA does 

not assign calls to an “unknown” category, we applied a post-hoc, species-specific filter 

to remove any data that were above or below typical durations and minimum frequencies 

for each species (Table A2).  

3.2.3 Statistical analysis 

The sampling unit in our analyses was the number of calls of a given species recorded 

each hour. We also summed the calls per hour, of the seven species post-DFA and 
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filtering, for total number of calls per hour for all species combined. We calculated 

percentile thresholds of activity for L. borealis, L. cinereus, M. lucifugus, and all species 

combined based on the distribution of the number of calls per hour for all nights 

regardless of site. We considered six thresholds, the 25
th

, 50
th

 (median), 70
th

, 90
th

, 95
th

, 

and 99
th

 percentiles, for each species and all species combined. Passive acoustic 

monitoring often includes many time periods with no echolocation calls recorded, 

resulting in issues of zero-inflation in statistical analysis (McCullagh and Nelder 1989); 

to avoid these issues, we excluded time periods when no bats were recorded, thus framing 

our analysis in terms of ranking activity given the presence of bats. We recognize that 

zero calls per hour is informative about activity levels at a site and differs from non-data, 

but since thresholds are used as a measure of how high activity is it is not necessary to 

have a descriptor when they are not present. The absence of echolocation calls in acoustic 

recordings is unambiguous and therefore, does not need to be included in the definition of 

relative activity level thresholds. By creating a large dataset of recordings from a wide 

range of ecological situations we created a null distribution to generate percentile 

thresholds. We then compared results from a particular site to the percentile thresholds of 

the larger distribution. We counted the number of nights with at least one hour above 

each percentile threshold. We also calculated differences in number of calls per hour, 

including time periods with zero activity, among sites with Kruskal-Wallis (α = 0.05) 

using kruskal.test in R (v. 2.13.1; R Development Core Team 2011) and a pair-wise post-

hoc test (kruskalmc in pgirmess package in R; Giraudoux 2011) because data were 

positively skewed, where many hours contained few echolocation calls. 
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We used the previously calculated percentile thresholds to evaluate patterns of within-

night activity, when peaks occurred and the degree of variation within a night, 

specifically for L. borealis at Long Point and M. lucifugus at Renfrew. We identified 

when activity was over the median to see if peaks occurred at dusk (first hour of the 

night), in the middle of the night, or at dawn (within one hour of sunrise), looking for 

patterns of unimodal, bimodal, constant, or irregular activity. To measure the degree of 

variation of activity levels within-nights, we calculated the proportion of the night with 

activity above or below the median, where constant activity would always be above or 

below the median. 

3.3 Results 

3.3.1 Among sites 

We recorded for a total of 258 hours and for all seven species combined, after excluding 

samples when no calls were detected, the resulting samples size was 219 hours. Half of 

the time which contained fewer than 265 calls per hour (50
th

 percentile), while the top 

10% of activity ranged from 4504 to 28358 calls per hour (above the 90
th

 percentile, 

Table 3.1, Fig. 3.1). All sites had activity levels above the 50th percentile, but Renfrew 

was the only site to have activity above the 90
th

 percentile threshold and even exceeded 

the 99
th

 percentile threshold (Table 3.2A) during the swarming period, when activity was 

significantly higher than all other sites (H4 = 32.01, p < 0.001; Table. 3.2A). 
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Table 3.1. Number of calls per hour at each percentile threshold for each species of bat 

and all species combined for a distribution of activity from three sites in Canada. Half of 

the activity falls below the 50
th

 percentile (median) and 10% of activity is above the 90
th

 

percentile threshold. 

 Number of calls at percentile threshold 

 25
th

  50
th

  70
th

  90
th

  95
th

  99
th

  

Species combined 100 265 493 4504 10616 19510 

Lasiurus borealis 7 15 31 66 81 158 

L. cinereus 20 63 115 266 396 534 

Myotis lucifugus 25 88 314 5818 11865 19404 
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Figure 3.1. Frequency of activity levels for all bat species combined at three sites in 

Canada. Dashed, vertical lines are thresholds of the number of calls per hour based on the 

50
th

, 70
th

, 90
th

, 95
th

, and 99
th

 percentiles of the distribution. Activity over the 50
th

 

percentile threshold (median) is considered high activity because half of all detections 

had fewer than 265 calls per hour. 
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Lasiurus borealis was detected in 109 hours of recording, and half of the time these were 

brief passes with less than seven calls per hour (Table 3.1). Activity exceeded the 90
th

 

percentile at Long Point and Renfrew (swarming), while Long Point (migration) was the 

only site with activity levels that exceeded the 99
th

 percentile threshold (Table 3.2B). 

Nightly activity was not significantly different among sites (H4 = 45.85, p = <0.001, 

Table 3.2B).  

Lasiurus cinereus was detected during 147 hours of recording. Long Point was the only 

site with activity above the 70
th

 percentile threshold (Table 3.2C). Nightly activity varied 

among sites (H4 = 149.78, p < 0.001) and was significantly higher at Long Point 

(migration) than Renfrew and Cypress Hills (Table 3.2C). 

Myotis lucifugus was detected during 177 hours of recording. Activity was above the 

median at all sites, but only above the 90
th

 percentile threshold at Renfrew (swarming). 

Activity was significantly higher at Renfrew (swarming; H4 = 75.02, p < 0.001; Table. 

3.2D).
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Table 3.2. Summary of bat activity, for A) all species combined, B) Lasiurus borealis, C) L. cinereus, and D) Myotis lucifugus, at 

three sites in Canada in 2008 and 2009. Activity over the 50
th

 percentile threshold was considered high and the relative importance of a 

site was based on the threshold activity exceeded. 

A) All species combined   
Number of nights with at least one 

hour above percentile threshold 

Site 
No. 

nights 

Mean calls per 

hour ± SD 

Peak time of 

night (hour after 

sunset) ± SD 

25
th

 50
th

 70
th

  90
th

  95
th

  99
th

  

Cypress Hills 5 231.2 ± 309.9 b 1.6 ± 0.5 3 3 3 0 0 0 

Long Point spring 6 277.2 ± 224.7 b 3.6 ± 1.8 6 6 4 0 0 0 

Long Point migration 6 246.1 ± 237.5 b 2.8 ± 1.9 6 4 3 0 0 0 

Renfrew spring 5 484.3 ± 1019.3 b 3.6 ± 0.5 5 4 2 1 0 0 

Renfrew swarming 5 5503.5 ± 6910.9 a 4.0 ± 0 5 5 5 5 4 2 

 

B) Lasiurus borealis    
Number of nights with at least one 

hour above percentile threshold 

Site 
No. 

nights 

Mean calls per 

hour ± SD 

Peak time of 

night (hour after 

sunset) ± SD 
25

th
  50

th
  70

th
  90

th
 95

th
 99

th
 

Cypress Hills 5 4.6 ± 12.6 b 2.8 ± 1.3 4 3 3 0 0 0 

Long Point spring 6 9.7 ± 17.0 b 4.5 ± 1.9 6 6 4 1 0 0 

Long Point migration 6 25.4 ± 39.9 a 4.0 ± 3.0 6 6 5 3 3 1 

Renfrew spring 5 6.3 ± 12.8 b 3.2 ± 0.8 6 4 2 0 0 0 

Renfrew swarming 5 5.2 ± 18.7 b 9.5 ± 1.0 4 4 1 1 1 0 
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C) L. cinereus    
Number of nights with at least one 

hour above percentile threshold 

Site 
No. 

nights 

Mean calls per 

hour ± SD 

Peak time of 

night (hour after 

sunset) ± SD 

25
th

 50
th

 70
th

  90
th

  95
th

  99
th

  

Cypress Hills 5 45.5 ± 59.5 b 2.2 ± 1.1 5 3 2 0 0 0 

Long Point spring 6 149.6 ± 148.3 a 3.3 ± 1.9 6 6 6 5 4 0 

Long Point migration 6 78.0 ± 111.3 ab 3.5 ± 2.3 6 5 5 2 1 1 

Renfrew spring 5 0.4 ± 1.5 c -- 0 0 0 0 0 0 

Renfrew swarming 5 0.2 ± 0.2 c -- 0 0 0 0 0 0 

 

D) Myotis lucifugus 
   Number of nights with at least one 

hour above percentile threshold 

Site 
No. 

nights 

Mean calls per 

hour ± SD 

Peak time of 

night (hour after 

sunset) ± SD 

25
th

 50
th

 70
th

  90
th

  95
th

  99
th

  

Cypress Hills 5 139.5 ± 239.3 b 1.6 ± 0.5 5 3 3 0 0 0 

Long Point spring 6 7.5 ± 19.9 c 4.7 ± 1.9 3 1 0 0 0 0 

Long Point migration 6 87.8 ± 109.5 b 5.7 ± 3.4 6 4 2 0 0 0 

Renfrew spring 5 424.4 ± 1007.7 b 3.6 ± 0.5 5 5 3 0 0 0 

Renfrew swarming 5 5409.4 ± 6826.4 a 4.0 ± 0 5 5 5 5 4 1 

 Note: Means in second column followed by the same letter are not significantly different (p<0.05) according to Kruskal-Wallis pair-

wise post-hoc test. 
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3.3.2 Within nights 

Lasiurus borealis within-night activity at Long Point was less variable during spring than 

during autumn migration, with the majority of activity below the median (75 ± 11% 

below median, Fig. 3.2A) and bimodal peaks above the median during spring. During 

migration, activity fluctuated more above and below the median (53 ± 31% below 

median) and peaks of activity, above the median, were consistently in the middle of the 

night and at dawn (Fig. 3.2B). 

Myotis lucifugus had activity above the 50
th

 percentile four hours after sunset on every 

night during swarming at Renfrew (Table 3.2D) and the majority of activity was above 

the median (74 ± 18% above median), all in the middle of the night lasting until dawn 

(Fig. 3.2D). During spring, activity fluctuated more (38 ± 33% above median), with 

unimodal peaks of activity in the middle of the night (Fig. 3.2C).
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Figure 3.2. Comparison of species-specific, within-night bat activity patterns between 

seasons at sites in Ontario, Canada, highlighting the periods when activity is above 

certain thresholds for two species. Mean hourly activity for Lasiurus borealis at Long 

Point during A) spring (n = 6 nights) and B) autumn migration (n = 6) and Myotis 

lucifugus activity at Renfrew during C) spring (n = 5) and D) swarming (n = 5). Solid 

lines are rolling averages (20 increments across each night) of the mean nightly activity 

among all nights at a site ± SD (dashed red); horizontal dashed lines (grey) are percentile 

thresholds; vertical dashed lines (light grey) are sunrise and sunset. 
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3.4  Discussion  

Percentile thresholds allowed for objective identification of peak activity levels at sites, 

while taking into account among-site and within-night variation of activity. Any activity 

above the median could be considered ‘high’ activity since it is higher than the majority 

of activity levels among all sampling units (Sokal and Rohlf 1981). All thresholds above 

the median are simply establishing ‘how high’ activity is. One way to interpret this scale 

is to identify sites based on the highest percentile threshold activity levels exceeded. For 

example, during swarming at Renfrew M. lucifugus had activity levels regularly 

exceeding the 95
th

 percentile, while no other site exceeded the 70
th

 percentile (Table 

3.2D). It could be interpreted that sites with activity levels exceeding the highest 

percentile thresholds are important sites to bats. An international program identifies 

important bird areas based on criteria: significant numbers of threatened, range-restricted, 

migratory, or congregatory species. By the same logic, sites with activity over the highest 

thresholds could be defined as important areas for bats, with the assumption that high 

acoustic activity links to high abundance. 

Examining overall bat activity, data for all species combined, Long Point does not appear 

to be a particularly important site. However when evaluating at the species-level it is 

apparent that Long Point is very important to migratory species, L. borealis and L. 

cinereus, especially during migration (Table 3.2B). Activity for all species combined 

(Tables 3.1,3.2A) was most influenced by M. lucifugus because of the nature of its 

echolocation, having shorter call duration and pulse interval (Miller 2001), resulting in 

more calls per individual. Because species differ in detectability and frequency of their 
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echolocation calls it is important to conduct species-specific analyses or use activity 

indices for more accurate comparisons among species (Miller 2001). 

Traditional statistical methods, such as Kruskal-Wallis, do not go to a level of detail 

necessary for further identification of degrees of activity levels. Kruskal-Wallis results 

showed that sites with activity exceeding the 95
th

 percentile had significantly higher 

activity, but did not provide as much information about differences of importance among 

sites, such as the magnitude of species-specific activity at each site. Percentile thresholds 

allowed us to evaluate skewed distributions and draw conclusions objectively, while 

looking at a finer scale. 

Using percentile thresholds to define high activity is a replicable method of describing 

within-night activity patterns, including important times of night and degree of variation, 

which allows for interpretation of how a site is used by bats and its potential significance 

to them. From an applied perspective, it is crucial for mitigation and management 

decisions that methods be clearly defined when identifying times and locations with high 

or low activity. While a bimodal distribution of activity is typical of many insectivorous 

bat species, with a peak at dusk during initial foraging and a smaller peak at dawn (Kunz 

1973, Hayes 1997), it is important to specify how these peaks in activity are identified. 

Percentile thresholds are a method to not only identify these peaks, but also describe the 

magnitude of activity levels relative to a larger dataset. 

Environmental assessment surveys represent one area where using acoustic recordings to 

monitor bat activity is of particular importance. With increasing development of wind 

energy facilities and associated bat mortality (Kunz et al. 2007a), there is a growing 
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demand for environmental consultants to conduct pre- and/or post-construction acoustic 

surveys of local bat communities. There is an impetus for increasing knowledge and data 

about variation in activity levels, which could lead to viable mitigation options. Most pre- 

and post-construction surveys are not guided by a standardized survey design (Kunz et al. 

2007a).  Consequently, it is difficult to compare among acoustic monitoring surveys 

conducted by different groups at different times in different locations. The principle 

behind conducting pre-construction surveys is to assess potential risks of wind turbines to 

bats in an area (Kunz et al. 2007b). Essentially, environmental consulting agencies make 

recommendations based on the activity levels at a site, aiming to not erect turbines in 

areas of high bat activity. The lack of an agreed upon definition of ‘high’ bat activity and 

a lack of standardization in survey methodology make this a futile expectation. 

Assessment recommendations are typically made by comparing site activity levels to 

sites in a region. Unless these comparisons are made based on clearly defined thresholds 

they run the risk of being subjective, leading to unsubstantiated conclusions. 

The practice of establishing a definition of ‘high’ activity for a given site (e.g., Broders 

2003) is worthwhile, but one must clearly define which criteria are being used to measure 

peak activity relative to a baseline. It is a difficult practice to remove subjectivity when 

making decisions based on relative data, such as activity levels from acoustic recordings. 

Communicating the relative activity level based on percentile thresholds is an objective 

method and allows us to move away from subjective practices.  

We have demonstrated the concept of applying percentile thresholds for identifying sites 

important for bats at a relatively small scale. Our analysis is effective because our dataset 

included a wide range of activity levels. However, percentile thresholds depend entirely 
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on the dataset, and underlying distribution of activity levels they are based on. If 

generating percentile thresholds for a species is based on a limited range of activity 

levels, such as M. lucifugus from Renfrew during swarming, no other site would be 

considered to have ‘high’ activity. Increasing the number of sampling points contributing 

to the overall distribution of activity levels increases the power of this analysis. The next 

step is to move towards a null distribution to generate percentile thresholds. Our ability to 

place a given survey in the broader context will continue to improve as the database 

increases to include more natural variation (i.e., seasonal, annual, geographic, 

meteorological). Such an endeavor is far too extensive for any one group to undertake, 

but through collaboration and technological advancements, it is possible that such a 

database could be realized. Creating a public repository of acoustic datasets in order to 

evaluate activity of a species in the context of its entire range would allow us to 

standardize terms such as ‘high’ activity in an objective manner. 
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Chapter 4  

4 Identifying peaks in bat activity: a new application of the 
space-time scan statistic3 

4.1 Introduction 

An important first step in identifying peak bat activity is establishing the range of local 

variation in activity as this may vary temporally within or among nights, as well as 

seasonally or annually. Such scales of variability are the result of numerous factors, 

including insect abundance
 
(Taylor and O’Neill 1988, Hayes 1997, Lee and McCracken 

2002), air temperature (Kunz 1973, Lacki 1984, Negraeff and Brigham 1995, Hayes 

1997), rainfall (Fenton et al. 1977, Parsons et al. 2003), relative humidity (Lacki 1984, 

Adam et al. 1994), wind (Adam et al. 1994), and species-specific life history factors such 

as reproductive timing (e.g., Maier 1992, Johnson et al. 2011) or seasonal movements 

(e.g., Barclay 1984, Parsons et al. 2003). By understanding patterns and variation in 

activity we can better understand the behavior of bats. 

Understanding bat activity patterns and identifying periods of peak activity at various 

time scales, within-night to annual patterns can be important for basic research, 

monitoring or management. Acoustic monitoring of echolocation calls is a commonly 

used method of measuring bat activity. Although there is no demonstrated quantitative 

relationship between the numbers of calls and number of bats, the data indicate relative 

                                                 

3
 A version of this chapter is in review. 

Citation: Adams. A. M. and M. B. Fenton. Identifying peaks in bat activity: a new 

application of the space-time scan statistic. Journal of Applied Ecology: in review. 
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levels of bat activity. However, there is no currently no definition of high activity or 

objective means of identifying periods of high activity. 

Activity patterns may permit inference on how bats use a site. For example, activity at a 

roost may produce two clear peaks of activity corresponding to emergence and return at 

dusk and dawn (Kunz 1973, Hayes 1997), while monitoring the same site when young 

are nursing may show a unimodal peak of activity while females are pregnant (Maier 

1992). At a swarming site, when bats congregate in August and September for pre-

hibernation mating, activity may peak several hours after sunset reflecting the times of 

arrival of bats that have travelled long distances to the site (Fenton 1969). Migration 

stopover sites could have nightly unimodal peaks of activity at dawn during migratory 

periods as species arrive at sites along migration routes (McGuire et al. 2012). 

Previously, peaks in activity have been identified visually with activity plots (Hayes 

1997), with selection of an arbitrary level of activity as ‘high’ (Broders 2003, Brooks and 

Ford 2005), or by the number of calls above percentile thresholds (Adams et al. 

submitted, Gorresen et al. 2009). Percentile thresholds identify peak acoustic bat activity 

(Adams et al. submitted) by comparing when activity exceeds thresholds based on a 

larger distribution of activity from a range of sites, placing activity levels in a larger 

context. 

We propose the use of the space-time scan statistic (SaTScan) as an analytical tool for 

identifying spatial and temporal peaks of bat activity. SaTScan was originally developed 

for monitoring the spread of disease by detecting localized clusters of infection in space 

and time where the number of cases differed significantly from the background 

expectation (Kulldorff 1997). However, it has also been applied to other fields (see 
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Kulldorff 1994 for a partial bibliography), including ecology (e.g., Coulston and Riitters 

2003, Rubin and MacFarlane 2008, Vadrevu 2008, Tuia et al. 2008). 

Autocorrelation is a general statistical property of variables observed along geographic 

space and time-series (Koenig 1999). Spatial and temporal autocorrelation present a 

statistical problem because the data violate the assumption of independence inherent in 

most standard statistical procedures (e.g., ANOVA; Legendre 1993). As space or time 

intervals decrease, the dependence between successive observations usually increases 

(Legendre 1993, Koenig 1999). Autocorrelation can be problematic, for studies using 

radio telemetry (Rooney et al. 1998, Dray et al. 2010) or those examining macro-scale 

patterns of species diversity (Legendre 1993, Diniz-Filho et al. 2003), because it inflates 

Type I errors and could bias environmental factors with higher spatial autocorrelation 

(Lennon 2000). Only a few studies have accounted for autocorrelation in spatial or 

temporal datasets of bat activity (Audet and Fenton 1988, Gorresen and Willig 2004, 

Loeb and O’Keefe 2006, Stevens et al. 2007, Hein et al. 2009). Autocorrelation may be 

less of a concern because bats are highly mobile and able to fly substantial distances in 

short periods of time (Henry et al. 2002), but the potential for violation of independence 

in temporal and spatial datasets remains because much of their behavior keeps them in a 

restricted area for an extended period of time. Even if autocorrelation is less likely with 

bat data, a technique that removes this concern would make one more confident in 

conclusions drawn. SaTScan controls for spatial and temporal trends, whether 

autocorrelated or not, by adjusting for purely spatial and purely temporal variation 

(Kulldorff 2004). 
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Our goal was to examine the validity of SaTScan as a method for identifying peaks in bat 

activity, by comparing it with the percentile threshold approach. We also applied 

SaTScan to assess temporal patterns of activity of five species of bats at three sites. 

4.2 Methods 

4.2.1 Study areas 

We recorded bat echolocation calls in 2008 at three sites in Ontario, Canada that were at 

least 131 km apart, on clear nights in both spring and fall: i) Long Point, an important 

location for bats during migratory periods (Adams et al. submitted, Dzal et al. 2009, 

McGuire et al. 2012), on six nights during both spring (June, Site 1a) and fall migration 

(August/September, Site 1b); ii) along the shore of Lake Opinicon at the Queen’s 

University Biological Station (QUBS), where bats forage and roost (Barclay 1982, Arh 

2009), for five nights during both spring (May/June, Site 2a) and summer (August, Site 

2b); iii) an abandoned mine near Renfrew, an important swarming site and hibernaculum 

(Fenton 1969, 1970) housing up to 30,000 bats during the winter, for five nights during 

both spring (May/June, Site 3a) and fall swarming (August, Site 3b). 

4.2.2 Acoustic sampling 

Each night we recorded continuously from dusk until dawn using an Avisoft 

UltraSoundGate System (Avisoft Bioacoustics, Berlin, Germany) at 8 bit with a sampling 

rate of 250 kHz, trigger set to continuous recording, and gain at seven. Externally 

polarized condenser microphones (Avisoft CM16/CMPA) connected to an Avisoft 

UltraSoundGate 416-200 were operated with Avisoft Recorder USG software. 
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All acoustic data were analyzed using callViewer (v. 18, Skowronski 2008), a custom 

echolocation sound analysis program written with MATLAB software (The MathWorks, 

Natick, Massachusetts), using the automated detection feature to identify echolocation 

calls in acoustic recordings. We filtered and identified the calls to species using 

discriminant function analysis (DFA, following Adams et al. submitted, Appendix A) for 

seven species in Ontario, Eptesicus fuscus, Lasionycteris noctivagans, Lasiurus borealis, 

L. cinereus, Myotis lucifugus, M. septentrionalis, and Perimyotis subflavus. 

4.2.3 Statistical analysis 

We summed the calls per minute, post-DFA and filtering, for all species combined 

(overall activity for all seven species). We also calculated nightly activity as number of 

calls per minute for each of five species (E. fuscus, L. borealis, L. cinereus, M. lucifugus, 

and P. subflavus). We used two methods to identify peak bat activity, SaTScan and 

percentile thresholds. 

We used SaTScan software (v. 9.1.1, Kulldorff et al. 2005, freeware available online), to 

detect peaks in activity at two levels at each site, within- and among-nights. SaTScan can 

identify high or low clusters, where event occurrence is significantly more likely within 

the cluster than outside the cluster (α = 0.01). In the case of acoustic bat activity, 

SaTScan would identify a cluster of high activity in space and/or time where the null 

hypothesis is that activity levels are always constant everywhere. Significance of a 

potential high cluster is determined based on a likelihood ratio λ = L/L0, where L is the 

max likelihood and L0 is the max likelihood constrained to a true null hypothesis. Higher 

λ means greater support for the alternate hypothesis that activity is greater inside the 
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cluster than outside. Monte Carlo hypothesis testing assigns the degree of significance of 

each cluster by determining the probability of obtaining a value that is at least as high as 

the observed value from randomized data (Kulldorff et al. 2005). Purely temporal scan 

statistic analysis moves a scanning window over each possible time point across an entire 

time frame. The window size ranges from the size of a single time point (e.g., one minute 

in this study) up to a user-defined maximum cluster size (MCS), which limits the 

maximum size of the cluster to a percentage of the total sampling period, most commonly 

the window size includes no more than half the total time period (MCS of 50%, Kulldorff 

1997). We ran SaTScan five times for each analysis, specifying the temporal MCS at 1, 

5, 10, 30, and 50%.  A high MCS gives more power but low specificity in describing the 

boundaries of clusters (Rubin and MacFarlane 2008). The ability to search for peaks with 

various MCS helps give a better measure of the strength of a peak because a high MCS 

considers both large and small clusters, while a low MCS only considers small clusters. 

To apply this method to both space and time simultaneously SaTScan uses cylinders 

rather than one-dimensional windows. The base of the scanning window represents space 

and the height represents time, with both the width and the height varying up to the limits 

of the MCS. 

The scan statistic can use different probability models depending on the nature of the 

data. We applied both purely temporal and spatial-temporal analysis to analyze bat 

activity. Purely temporal analysis, for within-site analyses, used the discrete Poisson 

model (Kulldorff 1997), while spatial-temporal analysis, for among-site analysis, used 

the space-time permutation model (Kulldorff et al. 2005). We used the retrospective 

analysis option because we had data with a fixed geographic region and fixed temporal 
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study period. For both models, we input case files including the number of calls per 

minute (count data), minute after sunset (MAS), and site location. For the space-time 

permutation model we also included a coordinates file with the latitude and longitude of 

each site location. We specified a one-tailed analysis to look for clusters with 

unexpectedly high numbers of calls and used 999 Monte Carlo replications. The analysis 

output included the “most likely cluster,” which described the locations and time frame(s) 

that were significantly higher than the background expectation with the observed and 

expected number of cases and p-value. We also used multivariate SaTScan, which allows 

for multiple datasets to be searched simultaneously for clusters (Kulldorff et al. 2007), 

with each night within a site/season as a separate dataset to detect the peak time period 

among all nights for a single site/season. 

We calculated threshold values at five percentile thresholds (50
th

, 70
th

, 90
th

, 95
th

, and 99
th

 

percentiles, following Adams et al. submitted) based on the distribution of number of 

calls per minute for all nights, at all sites, for all species combined, excluding all minutes 

with no activity from the distribution. We compared peaks identified by percentile 

thresholds and SaTScan by calculating the proportion of minutes above the 50
th

 

percentile threshold (median) that was included in each SaTScan high cluster time period. 

We also compared among-night activity between the two methods. With SaTScan, we 

identified peak nights with spatial-temporal analysis of mean calls per minute for each 

night and compared it to which nights had at least 60 minutes of activity above each 

percentile threshold. 

To demonstrate application of SaTScan we used multivariate SaTScan to identify peaks 

in species-specific activity. Peak time frames for each species at each site/season were 
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defined by the lowest MCS that included the most nights. When all nights were not 

included in the peak time frame we reran multivariate analysis, only including the nights 

that were not included in the result of the previous analysis. We compared the peak time 

frames among sites and seasons for each species and among species within each 

site/season. We excluded species at sites/seasons with fewer than two nights of activity. 

Comparisons of peak time frames among sites and seasons were considered different 

when there was no overlap in MAS. 

4.3 Results 

4.3.1 SaTScan description and comparison to percentile 

thresholds 

SaTScan defined time frames that differed in length depending on the MCS (e.g. Fig. 

4.1A). The high cluster time frame for a MCS of 50% ranged from 2 – 282 minutes, 

while a MCS of 1% ranged from 1 – 6 minutes. When there was a strong, singular peak 

of activity the time frame could be the same, regardless of MCS. Sometimes, the peak 

time frame did not include the maximum minute of activity, but the maximum five 

minutes of activity was always included in the peak time frame. Multivariate SaTScan 

identified peaks for multiple nights within a site and season (e.g. Fig. 4.1B – F). A MCS 

of 50% and 30% identified peak time frames that included all nights at Site 1 and Site 3, 

but when the MCS was reduced some nights were no longer included. Temporal variation 

in activity was high at Site 2, so multivariate SaTScan was not able to identify a time 

frame that worked for all nights at the site/season.
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Figure 4.1. Nightly activity of bats for all nights at Renfrew during swarming (Site 3b) in 2008 with calls for all species combined. 

Highlighted time frames are SaTScan high cluster time frames defined by A) various maximum cluster sizes (MCS) within a single 

night and B-F) MCS of 30% with multivariate scan.
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The number of calls per minute, for all species combined, at each percentile threshold 

levels were: 29 at the 50
th

, 70 at the 70
th

, 256 at the 90
th

, 366 at the 95
th

, and 592 at the 

99
th

 percentile, respectively. SaTScan and percentile thresholds differed in the number of 

minutes of peak activity identified (Fig. 4.2A). Percentile thresholds identified any 

minutes with activity over the threshold levels, while SaTScan identified a single time 

period that included activity that was higher than expected. SaTScan peaks were most 

similar to percentile thresholds at Site 3, where there was a clear, unimodal peak of 

activity. SaTScan was less similar to percentile thresholds at Sites 1 and 2 because 

activity was more evenly spread throughout the night. SaTScan with a MCS of 50% and 

multivariate SaTScan with a MCS of 30% included the majority of minutes above the 

50
th

 percentile at Sites 1 and 3 (Fig. 4.2A) and the majority of the total nightly activity at 

Sites 2 and 3 (Fig. 4.2B). The maximum minute of activity for a night was included in the 

SaTScan time frame on 67% of the nights at Site 1, all nights at Site 2, and 90% of the 

nights at Site 3. 

Peak nights differed between percentile thresholds and SaTScan (Fig. 4.3). Sites 2a and 

3b were the most important to bats based on percentile thresholds because they both had 

nights that exceeded the 90
th

 and 95
th

 percentile thresholds. SaTScan would identify Site 

1a as an important site even though only one night had 60 minutes of activity over the 

50
th

 percentile threshold. SaTScan peak nights more closely reflect within-site peaks, 

rather than comparisons among sites. Peaks based on percentile thresholds do not 

consider space, by adding in the spatial component with SaTScan, sites that are farther 

apart are weighted differently. 
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Figure 4.2. Proportion of overall bat activity in SaTScan high cluster time frames at various maximum cluster sizes (MCS) similar to 

A) total minutes over the 50
th

 percentile threshold, and B) total nightly activity for three sites in Ontario, Canada during spring (a) and 

late summer (b) in 2008 with calls for all species combined. 
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Figure 4.3. Comparison of nights of peak bat activity (mean calls per minute ±SD) identified by SaTScan spatial-temporal analysis 

(grey bars) and with at least 60 minutes of activity over the five percentile thresholds (*50
th

 percentile, **70
th

 percentile, ***90
th

 

percentile, ****95
th

 percentile), for all species combined at three sites in Ontario, Canada during spring (a) and late summer (b) in 

2008. Note different y-axes. 
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4.3.2 Species-specific activity 

We found no indication of temporal partitioning among species that was consistent 

among all sites and seasons (Fig.4.4). Lasiurus cinereus always had the earliest peaks of 

activity in the night at sites where it was present. All species had overlapping peaks of 

activity at Sites 2 and 3a. The majority of peak activity occurred within the first five 

hours of the night for all species at all sites, except L. borealis at Site 3b (Fig. 4.4). Peaks 

of activity at Site 1a were very inconsistent, with different timing of peaks among nights 

for most species (Fig. 4.4G,S,Y). Lasiurus borealis activity patterns differed between Site 

1a and 1b with timing of peak activity being more consistent at Site 1b (Fig.4.4H). The 

majority of M. lucifugus peaks of activity were two to four hours after sunset and was 

most consistent at Site 3b, being the only case when all nights were included at all MCS 

(50 – 1%). 
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Figure 4.4. Mean species-specific bat activity at three sites in Ontario, Canada during spring (a) and late summer (b) for 2008. Shaded 

time frames are peaks identified by multivariate SaTScan. Note different y-axes. EPFU – Eptesicus fuscus, LABO – Lasiurus borealis, 

LACI – L. cinereus, MYLU – Myotis lucifugus, PESU – Perimyotis subflavus. 
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4.4 Discussion 

SaTScan precisely identified peaks of activity, but cannot identify every individual 

minute of high activity within a night. There are two main advantages of SaTScan. First, 

multivariate SaTScan identifies peaks that occur among all datasets. Identifying common 

peaks within each site/season can be extremely valuable for recognizing important time 

periods for bat activity, whether to focus sampling efforts or comparing species-specific 

temporal patterns. Second, the true strength of SaTScan is the ability to simultaneously 

account for both spatial and temporal patterns and it works with data at any spatial and 

temporal scales. We analyzed our data by minute because it allowed SaTScan to define 

more specific peak time periods, but any time scale is possible. Our analysis was at a 

fairly large spatial scale with coarse resolution, but this method has the potential to be 

more useful at a much smaller spatial scale without concerns of autocorrelation during 

analysis. 

SaTScan and percentile thresholds both identify peak activity objectively, but do so in 

different ways making it difficult to compare results. SatScan identifies a single cluster of 

peak activity, while percentile thresholds identify any time frame with activity above a 

defined threshold. Using multiple percentile thresholds provides a measure of the 

magnitude of activity at a site and can be useful for identifying important sites (Adams et 

al. submitted), while SaTScan is best at identifying peak time periods, especially among 

multiple nights. We recommend using the two methods in combination to have a more 

complete picture of activity levels and activity patterns at a site. Percentile thresholds will 

be better for identifying important sites, while SaTScan will identify peaks in activity 
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among nights. For example, Site 3b is the most important to bats because the majority of 

nights had overall activity that exceeded the 90
th

 percentile threshold (Fig. 4.3), while it 

also stood apart from the rest of the sites with peak of activity, identified by SaTScan, 

three to four hours after sunset. In contrast, Sites 1, 2, and 3a had few to no nights with 

activity above the 90
th

 percentile and peak activity starting one to two hours after sunset. 

We identified peaks in activity with SaTScan that were comparable to findings in other 

studies. For example, peaks in foraging activity were consistent with foraging patterns 

reported by temperate species at other sites (Kunz 1973), however, at our sites in Ontario 

M. lucifugus did not have peaks of activity immediately after sunset as observed in Nova 

Scotia (Broders et al. 2003) potentially due to timing of insect prey (Rautenbach et al. 

1996) or proximity of roosting habitat. The consistency of peaks among nights with 

SaTScan can potentially indicate bats’ use of a site, for example peak activity was most 

consistent during migration (Site 1b) and swarming (Site 3b) and more variable among 

nights during foraging (Sites 1a and 2). 

A limitation is that SaTScan will not identify peaks of activity when activity is 

consistently high or low throughout a night, but using percentile thresholds in 

combination with SaTScan would identify when this is the case. SaTScan is also not able 

to detect multiple temporal peaks, if there are bimodal peaks only one will be identified. 

Foraging sites are most commonly observed with bimodal activity, with a peak at dusk 

when bats forage on crepuscular insects and another peak at dawn when returning to their 

day roost (Kunz 1974, Rydell 1993, Kunz et al. 1995, Hayes 1997). It is possible to 

recognize bimodal patterns of activity with SaTScan by running multiple analyses, each 

time excluding the peak time period and searching for a secondary peak. For example, it 
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was possible to identify a secondary peak of L. borealis activity just before dawn at Site 

1b after excluding the primary peak at dusk (Fig. 4.4H). We did not detect secondary 

peaks of activity for all species combined at Sites 1 or 3, rather just extensions of the 

primary peak time period.  

SaTScan is a valuable tool to quickly identify peaks with an objective, replicable, and 

statistically sound method that can be applied at various temporal and spatial scales. As 

bat detector technologies improve, allowing all night recordings over long periods of time 

at many locations, it is more difficult to analyze the vast amounts of data. SaTScan 

identifies when and where bats are most active, which has applications for basic and 

applied research, such as comparing peaks in activity among habitat types, commercial 

developments (e.g., wind energy), or years (e.g., meta-analysis of annual fluctuations pre- 

and post- white-nose syndrome). 
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Chapter 5  

5 Value in variation? Stationary acoustic transects to 
account for spatial variation in bat activity 

5.1 Introduction 

Variation is a challenge to anyone studying ecology. The ability to identify and account 

for different sources of variation at a particular location can impact the conclusions 

drawn from the data. This is true whether asking questions about habitat associations or 

making recommendations for environmental policy. Frequently, high variation in bat 

activity has been reported (e.g., Hayes and Adam 1996, Milne et al. 2009). It is important 

to account for variation to maximize the chances of obtaining unbiased measures of bat 

activity (Hayes 1997, 2000) and to detect specific species (Broders 2003, Skalak et al. 

2012). Acoustic surveys are common practice for studying bat ecology (Britzke et al. 

2013) and a key assumption is that activity levels recorded from a single bat detector 

reflect a broader set of locations and times (Hayes 2000). To capture acoustic activity that 

accurately describes local activity levels, it is essential to account for variation from 

detectors used (Adams et al. 2012), temporal variability within and among nights (Milne 

et al. 2005, Skalak et al. 2012), and spatial variation within sites (Hayes 2000, Fischer et 

al. 2009). Both field work and analysis of acoustic data are labor intensive, resulting in a 

trade-off between sampling effort and collecting sufficient data so as to accurately 

describe bat activity at a site. A compromise can be made by measuring and 

understanding activity variability present at a site (Fischer et al. 2009). Where should we 

draw the line when making the trade-off between effort and accuracy? 
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Decisions on sampling effort are typically based on limitations in funding and personnel, 

but at ultimately impacted by the research question being asked. The number of sampling 

nights necessary to accurately estimate levels of bat activity at a site differs among 

locations. Hayes (1997) recommended six to eight nights of sampling to obtain accurate 

estimates of overall activity at sites in Oregon, USA, while Broders (2003) found that 

14+ nights of sampling were required for accurate estimates of Myotis lucifugus activity 

at sites in New Brunswick, Canada. Identification of species-specific activity may play a 

role in these different recommendations of sampling effort (Broders 2003).  

The validity of the assumption that extrapolation of recording activity from a single 

detection point reflects activity for an entire site/habitat has received little attention 

(Hayes 2000, Britzke et al. 2013), considering that a single detector has a limited range of 

5 m to 40 m for high frequencies (Adams et al. 2012). To account for horizontal spatial 

variation, multiple detectors can be deployed within a site (Krusic et al. 1996b, Gannon 

et al. 2003, Duchamp et al. 2006, Fischer et al. 2009), or a single detector can be moved 

to a new location within the site each night (Fischer et al. 2009). Vertical spatial variation 

can be addressed with multiple detectors deployed at various heights (Hayes and Gruver 

2000, Reynolds 2006, Fischer et al. 2009, Staton and Poulton 2012a). The use of multiple 

detectors simultaneously can increase the probability of detecting different species of bats 

at large (Skalak et al. 2012) and small (Duchamp et al. 2006) spatial scales, but there is 

little evidence of how multiple detectors within a site impact estimates of activity levels 

(Fischer et al. 2009). 

It is also important to accurately detect patterns of activity to increase understanding of 

bat ecology and behavior. Nightly activity patterns vary by species (Kunz 1973, Broders 
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et al. 2003, Milne et al. 2005, Skalak et al. 2012) and with extrinsic factors, such as 

temperature (e.g., Hayes 1997) and insect abundance (e.g., Ciechanowski et al. 2007). 

Temporal and spatial partitioning may underlie resource partitioning among species of 

bats with similar ecology and morphology (Kunz 1973, Nicholls and Racey 2006, Adams 

and Thibault 2006) and could be another reason for variation in spatio-temporal activity 

patterns. If patterns of activity differ spatially within a site, then the placement of 

detectors could impact depictions of activity patterns. 

Our goal was to quantify small-scale spatio-temporal variation in bat activity as 

determined by monitoring echolocation calls and to demonstrate the effect on acoustic 

sampling design and interpretation. We did this by addressing three objectives: i) testing 

whether space, including detection height, or time, explained more of the variation in bat 

activity to prioritize sampling efforts; ii) assessing within-site spatio-temporal variation in 

activity among species and how detector location impacted depictions of activity at each 

site; and iii) investigating how many nights and detectors were necessary to have accurate 

estimates of mean nightly activity and how this varied by species. We expected that 

estimates of activity would be more accurate with more detectors within a site. We also 

expected that activity levels and patterns would vary along a linear, stationary acoustic 

transect and would require multiple sampling points within a site to accurately assess bat 

activity. We predicted that species would partition resources in space and time and that 

species-specific peaks of activity would exhibit little or no overlap in time and space. 
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5.2 Methods 

5.2.1 Study areas 

We recorded bat echolocation calls at four sites in Ontario, Canada: first, at Long Point 

for a total of 12 nights (June, August, September 2008), which is an important site for 

bats during migratory periods (Dzal et al. 2009, McGuire et al. 2012); second, at the 

Queen’s University Biological Station (QUBS), for 11 nights (May, June, August 2008), 

a site where bats forage and roost nearby (Barclay 1982, Arh 2009); third, at an 

abandoned mine near Renfrew for 12 nights in 2008 (May, June, August) and 15 

consecutive nights in 2010 (August), which is an important swarming site and 

hibernaculum (Fenton 1969, 1970) housing up to 30,000 bats during the winter; lastly, 

along the shore of a lake 500 m from the abandoned mine at Renfrew for 12 nights (May, 

June, August 2008). Throughout the summer we rotated from site to site, recording for 

three clear, consecutive nights before moving to the next site. 

5.2.2 Acoustic sampling 

We recorded continuously from dusk until dawn with batcorders 1.0 (ecoObs, 

Nuremberg, Germany). Batcorders have a sampling rate of 500 kHz and 16 bit sampling 

resolution and were set at a critical frequency of 14 kHz (i.e., a trigger event prompted 

recordings of sound in the frequency range of 14 - 250 kHz). Recordings were activated 

at a low detector sensitivity threshold of -36 dB (1.6% of the microphone’s maximum 

amplitude) to increase the recording range of the detectors, similar to increasing gain on 

other detectors. Batcorders have a pre-trigger of 50 ms and we adjusted the post-trigger to 

800 ms, which is the interval between successive detected sounds written into the same 

file, the higher value maximizes the number of below-threshold calls recorded. We set 
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quality to 40, an intermediate value where higher values of the quality detection 

algorithm are less conservative, to allow for recognition of sounds that are less like 

echolocation calls. Recordings were saved to an HCSD card in .RAW format and then 

converted to .WAV with a custom conversion program created with MATLAB software 

(The MathWorks, Natick, Massachusetts) for future analysis. 

We placed detectors along a linear transect 40 m apart, corresponding to the minimum 

sampling distance without overlap (Stahlschmidt and Brühl 2012). All four sites were 

forested, but ranged in levels of canopy cover throughout the site (Table 5.1). Transect 

lines within each site were chosen so detector locations ranged in amount of canopy 

cover. Detectors were oriented upward at a 45° angle, facing the area with the greatest 

opening. In 2008, we set out three sets of paired detectors with one low detector at 1.5 m 

above ground level and one high detector at 4 m in an 80 m transect. One high detector 

malfunctioned for half of the field season and was not included in the majority of the 

analysis. In 2010, five detectors were 1.5 m high in a 160 m transect. We measured 

canopy cover with a densitometer at each detector location. Each night we recorded 

temperatures at every detector with iButton Thermochron temperature data loggers 

(Maximum Integrated, San Jose, California) and wind speed and relative humidity with a 

Kestrel 4000 (Nielsen-Kellerman, Boothwyn, Pennsylvania) at a single sampling location 

in the site.  
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Table 5.1. Percent canopy cover at each of the detector locations within A) each of the 

four sites in Ontario, Canada in 2008 and B) Renfrew mine in 2010. 

A) Detector locations 

Sites A B C 

Long Point 20% 37% 5% 

QUBS 36% 57% 43% 

Renfrew lake 38% 30% 68% 

Renfrew mine 75% 69% 39% 

 

B) Detector locations 

Site A B C D E 

Renfrew mine 30% 75% 67% 39% 70% 
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We analyzed acoustic data using callViewer (v. 18, Skowronski 2008), a custom 

echolocation sound analysis program written with MATLAB. We used the automated 

detection feature of callViewer to identify echolocation calls in acoustic recordings. We 

then filtered and identified our data to species using quadratic discriminant function 

analysis (DFA) in R (v. 2.13.1, R Development Core Team 2011, following Adams et al. 

submitted, Appendix A) for seven species in Ontario: Eptesicus fuscus, Lasionycteris 

noctivagans, Lasiurus borealis, L. cinereus, Myotis lucifugus, M. septentrionalis, and 

Perimyotis subflavus. Classification accuracy from cross-validation was high (Table 5.2), 

but to further improve classification accuracy and because DFA is not capable of 

assigning calls to an “unknown” category, we applied a post hoc, species-specific filter to 

remove any data that were above or below specific durations and minimum frequencies 

for each species (Table 5.2). 
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Table 5.2. Classification accuracy for species identification of echolocation calls for bats 

in Ontario, Canada with quadratic discriminate function analysis (DFA) using cross-

validation. Post-DFA filter settings removed echolocation calls identified to species, but 

outside of the species-specific ranges of duration and minimum frequencies (Fmin) to 

further improve classification accuracy. 

Species  DFA classification 

accuracy 

Post-DFA filter 

Duration Fmin 

Eptesicus fuscus 78 % 3 – 12 ms 20 – 30 kHz 

Lasionycteris noctivagans 94 % 4 – 12 ms 21 – 30 kHz 

Lasiurus borealis 88 % 5 – 17 ms 29 – 43 kHz 

L. cinereus 90 % 8 – 30 ms 15 – 29 kHz 

Myotis lucifugus 90 % 3 – 8 ms 30 – 43 kHz 

M. septentrionalis 82 % 1 – 3.5 ms 25 – 60 kHz 

Perimyotis subflavus 93 % 5 – 15 ms 36 – 46 kHz 
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5.2.3 Statistical methods 

We totaled the number of calls per minute after sunset (MAS), hour after sunset (HAS), 

and per night for each detector per species. We also summed the calls per MAS, HAS, 

and night for all seven species, post-DFA and filtering, for activity of all species 

combined. There were five parts to our analysis: (i) Kruskal-Wallis non-parametric test 

for overall differences in activity among detectors, (ii) generalized linear mixed models 

(GLMM) to partition variance components among random effects, (iii) percentile 

thresholds for magnitude of activity, (iv) space-time scan statistic (SaTScan) for 

identifying peaks of activity, and (v) sub-sampling to test the effect of sampling effort on 

estimates of activity. To test the overall significant differences in activity levels (mean 

calls per hour) among detectors within a site, we used Kruskal-Wallis rank sum test and a 

pair-wise post-hoc test (kruskalmc in pgirmess package in R; Giraudoux 2011). 

5.2.4 Generalized linear mixed models 

To test the relative contribution of spatial and temporal variation with non-normal data 

including random effects, we used a GLMM fit by the Laplace approximation and a 

Poisson distribution (glmer in lme4 package in R; Bolker et al. 2009, Bates et al. 2011). 

Acoustic data were not transformed to normality because transformations of count data 

can increase bias that is negligible when using an appropriate model, such as the Poisson 

distribution (O’Hara and Kotze 2010). We analyzed total calls per night (nightly activity) 

for each species at each site and detector. Random effects were site (2008 only), detector 

nested in site, and night nested in site. Fixed effects were canopy cover and detector 

height (2008 only), each detector-level effects. Like many ecological studies with count 

data, our dataset was overdispersed (Richards 2008), with greater variability than 
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expected (variance/mean > 1). We used additive overdispersion to account for 

overdispersion in our model by including an individual-level random effect, adding a 

random intercept with one level per observation that captures overdispersion (Elston et 

al. 2001, Browne et al. 2005). Residual variation was not included because Poisson 

GLMM only has one parameter, with a known mean-variance relationship, so there is no 

estimate for residual variation (Sokal and Rohlf 1981), but the individual-level effect is 

the variation not explained by other random effects. First we compared models with and 

without fixed effects; the difference in variance between the models provided an estimate 

of detector-level variance for the fixed effect (Elston et al. 2001). We then continued 

model selection by dropping random effects with non-significant variance estimates and 

model comparison with likelihood ratio tests and Akaike’s Information Criterion (AIC). 

We calculated the proportion of variation explained by each factor in the full model in 

order to test if space or time explains the most variation in activity levels.  

5.2.5 Percentile thresholds 

To detect peaks and patterns in activity among detectors within nights, we used two 

methods: percentile thresholds (Adams et al. submitted) and SaTScan (Adams and 

Fenton submitted). We calculated percentile thresholds (50
th

 and 90
th

 percentiles) of 

activity for each species with a larger distribution of activity from 14,898 detector hours, 

after excluding hours without activity. We created this larger distribution using data from 

our four Ontario sites in 2008 and 2010, four sites in Saskatchewan, Canada in 2009, and 

one site near the Hudson River in New York, USA in 2009. When the number of calls per 

hour is greater than the 50
th

 percentile threshold, we consider activity to be “high” since it 

is above the majority of the hourly activity for a species from the larger distribution. 
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Activity over the 90
th

 percentile threshold was considered “very high” activity. We then 

identified the number of hours above each threshold for each species on every night at all 

detectors and sites in Ontario.  

5.2.6 SaTScan 

We identified peaks in activity with SaTScan software package (v. 9.1.1, Kulldorff et al. 

2005,  following Adams and Fenton submitted), which can identify clusters of activity in 

space and time that are significantly different from the background expectation. We 

specified a one-tailed analysis to look for clusters with unexpectedly high numbers of 

calls with the space-time permutation model (Kulldorff et al. 2005). We used 

retrospective analysis, specified spatial and temporal maximum cluster sizes (MCS) at 

50%, and used 999 Monte Carlo replications. We input case files consisting of the 

number of calls per minute, MAS, and detector location within the site. The coordinates 

file included the Cartesian coordinates (x, y, z) of each detector location. The analysis 

output included the “most likely cluster” and “secondary clusters” which described the 

locations (detectors) and time frame(s) when activity was significantly higher than the 

background expectation with the observed and expected number of cases and p-value. 

We analyzed activity for each species individually. We used multivariate SaTScan 

(Kulldorff et al. 2007) with case files for each night at a site as separate datasets. For 

2008, we ran multivariate SaTScan twice for each site, for the first six nights (spring) and 

the last six nights (summer). Since multivariate SaTScan is limited to 12 datasets, we ran 

the 15 consecutive nights from 2010 in two batches, the first 12 nights and again with 

nights four to 15. We then compared locations and timing of peak activity that occurred 

on the majority of nights among all species with Gantt charts. 
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5.2.7 Sub-sampling for estimates of activity 

To determine the effect of number of nights and amount of space sampled on estimates of 

activity levels, we randomly sampled subsets of nights to compare the mean activity level 

of the subsets to a grand mean of the total sample (following Hayes 1997). We sampled 

two to ten night subsets 100 times for each species and all species combined for each 

detector individually. We created a loop to run sample without replacement 100 times in 

R for each subset of nights. We calculated the mean nightly activity for each subset and 

compared it to the grand mean of the full dataset of all 15 nights at each detector in 2010. 

We determined the proportion of subsamples within 10-50% of the mean of the grand 

mean. We then expanded the analysis for the full model to include mean activity of five 

detectors over all nights (2008 = 12 nights, 2010 = 15 nights). We sampled one to five 

detector subsets for each two to ten night subset 100 times and determined the proportion 

of subsamples within 30% of the grand mean. We based recommendations on how many 

nights had at least 80% of the subsamples within 30% of the grand mean (following 

Hayes 1997). 

5.3 Results 

5.3.1 Differences among detectors 

Every species was present at all sites, but species-specific activity levels varied 

dramatically among and within sites. Overall activity, for all species combined, was 

significantly different among detectors within each site, except Renfrew mine in 2008 

(Long Point H4 = 182.49, p < 0.001; QUBS H4 = 45.46, p < 0.001; Renfrew lake H4 = 

96.66, p < 0.001; Renfrew mine 2010 H4 = 45.08, p < 0.001). The majority of species-

specific activity was significantly different among detectors within each site, except L. 
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noctivagans, and M. septentrionalis at QUBS and Renfrew lake (Table B1). Overall, 

estimates of activity levels at a site differed substantially depending on detector 

placement (Fig. 5.1, B1).
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Figure 5.1. Mean calls per hour ± SD for each species of bat at five detectors at Long Point, Ontario (n = 12 nights). Note different y-

axes. Detectors of the same letter were paired at the same location and first detectors in the transect (A1/A2) had intermediate 

openness at the site (20% canopy cover), B1/B2 were the most enclosed (37% canopy cover), and C1 was the most open (5% canopy 

cover). Detector number denotes height: 1 was low (1.5 m above ground) and 2 was high (4 m). Means, within each species, with the 

same lowercase letter are not significantly different (p > 0.05) according to a Kruskal-Wallis multiple comparison post hoc test. 
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5.3.2 Generalized linear mixed models: variance partitioning of 
random effects 

The proportion of variance explained by each random effect differed among species in 

2008 (Fig. 5.2). Detector position and night-to-night differences significantly explained 

of activity levels for every species (p < 0.05), but site was not significant for all species 

(Fig. 5.2, Table B2). Spatial components had the greatest association with variation in 

activity levels for L. noctivagans, L. borealis, and M. lucifugus. Detector height was only 

significant for explaining variation in L. noctivagans activity (p = 0.0251, Table B2) with 

activity levels higher at higher detectors. Canopy cover explained a significant amount of 

variation for all species (p < 0.05, Table B2) with activity increasing as canopy cover 

decreased, but M. septentrionalis was more active with increased canopy cover. Canopy 

cover had the greatest impact on L. borealis, with 27% of the variation attributable to 

detector location due to the effects of canopy cover.  

During 2010, the majority of within-site variation was associated with the individual-

level effect, except for M. septentrionalis where the majority of variation was explained 

by differences among detector locations. The two species with the least activity at the site 

in 2010, E. fuscus and L. noctivagans, had the most variation associated with the 

individual-level effect. Between detector location and night-to-night differences, spatial 

effects contributed more to variation in activity for L. borealis, L. cinereus, and M. 

septentrionalis. Spatial and temporal effects equally contributed to variation in activity 

for M. lucifugus and P. subflavus. Canopy cover was a significant factor for L. borealis 

and L. cinereus, explaining 37% and 21% of the detector-level effects, with activity 

increasing as canopy cover decreased. 
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Figure 5.2. Proportion of variance explained by spatial (detector, site) and temporal 

(night) random effects for seven species of bats at four sites in Ontario, Canada. Within-

site variation (detector location) is an important component in explaining variation in 

activity levels of all species combined. The importance of within-site, among-site, and 

night-to-night effects differs by species. 



120 

 

5.3.3 Percentile thresholds: magnitude of activity 

The number of nights that each species had high activity, above the 50
th

 and 90
th

 

percentile thresholds (Table 5.3), differed among all detectors at all sites (Table 5.4,B3). 

The “picture” of activity differed depending on detector placement. For example, at 

Renfrew mine in 2010 both Myotis species had high activity on the majority of the nights 

at all detectors. However, if only detector C were present, it would not be evident that M. 

lucifugus and L. borealis had very high activity at the site (Table 5.4). If not all detectors 

were present at the site in 2010 then the magnitude of activity for each species would not 

be evident. It was not necessary to have detectors at both heights in 2008 because the 

number of nights with high activity between paired detectors (1.5 and 4 m) was always 

the same or within one to two nights, except at QUBS (L. noctivagans, L. cinereus, and 

M. septentrionalis) and Long Point (L. noctivagans) where there was higher activity on 

more nights at one of the high detectors (Table B3).  
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Table 5.3. Number of bat echolocation calls per hour at the 50
th

 and 90
th

 percentile 

thresholds for each species and all species combined for a distribution of activity at eight 

sites in Canada and New York. Activity above the 50
th

 percentile (median) is considered 

high and activity above the 90
th

 percentile threshold is very high. 

Species 

Number of calls per hour at 

percentile thresholds 

50
th

  90
th

 

Species combined 218 2793 

Eptesicus fuscus 35 308 

Lasionycteris noctivagans 6 32 

Lasiurus borealis 20 166 

L. cinereus 31 327 

Myotis lucifugus 87 1426 

M. septentrionalis 42 960 

Perimyotis subflavus 21 140 
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Table 5.4. Number of nights when at least one hour of bat activity was above the 50
th

 and 

90
th

 percentile thresholds at each detector (A-E) over 15 nights at an abandoned mine 

near Renfrew, Ontario in 2010. 

 50
th

 percentile 

Detectors 

 90
th

 percentile 

Detectors 

Species A B C D E  A B C D E 

Species combined 10 15 15 15 13  7 14 5 5 2 

Eptesicus fuscus 1 1  2   1     

Lasionycteris noctivagans 4 1  1   1 1  1  

Lasiurus borealis 9 5  15 8   1  13  

L. cinereus 2 1  7 1     1  

Myotis lucifugus 10 15 15 15 14  6 7  7 2 

M. septentrionalis 10 15 15 13 15  4 14 10  1 

Perimyotis subflavus 3 4  10 3  1 1  1  
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5.3.4 SaTScan: peaks of activity in space and time 

Peaks of activity, detected by SaTScan, differed among detector locations, even between 

paired detectors at two heights, at all sites (Fig. 5.3,B1). Although activity patterns 

varied, we were unable to detect evidence of spatial partitioning among species, every 

species had overlapping activity on at least one detector at each site. All species had 

peaks of activity at every detector during at least one season, except E. fuscus that never 

had peaks of activity at detectors B1/B2 Long Point (Fig. 5.3A) or detector C1 at QUBS 

(Fig. B1.2). There was some degree of temporal partitioning among species within sites, 

for example Myotis lucifugus and M. septentrionalis did not have overlapping activity 

peaks at any detector at Long Point (Fig. 5.3A); neither did L. noctivagans, L. borealis, 

and P. subflavus (Fig. 5.3A). At Renfrew 2010 only three species had significant peaks of 

activity on the majority of nights and timing of peaks overlapped among all three species 

(Fig. 5.3B). Lasionycteris noctivagans and L. borealis peaks of activity rarely overlapped 

temporally in 2008 (Fig. B1).
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Figure 5.3. Peak periods of bat activity along linear, stationary transects within two sites: A) during late summer (migration) at Long 

Point, Ontario in 2008 and B) during swarming (August) at an abandoned mine near Renfrew, Ontario in 2010. Species-specific 

activity patterns vary among detectors. Detectors at Long Point were paired at two heights, low (1.5 m; A1, B1, and C1) and high (4 m; 

A2 and B2). All detectors at Renfrew were at 1.5 m. There is no evidence of spatial partitioning, but temporal partitioning (no time 

overlap of peak activity) is evident between several species, such as L. noctivagans and L. borealis. EPFU – Eptesicus fuscus, LANO – 

Lasionycteris noctivagans, LABO – Lasiurus borealis, LACI – L. cinereus, MYLU – Myotis lucifugus, MYSE – M. septentrionalis, 

PESU – Perimyotis subflavus.
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5.3.5 Sub-sampling for estimates of activity 

As the number of nights increased so did the probability of obtaining mean estimates of 

activity more similar to the grand mean (Table 5.5,5.6). When sampling with one detector 

and species identification was not taken into account, it required three to nine nights to 

have at least 80% of the subsamples within 30% of the grand mean in 2010 (Table 5.5). 

When we accounted for species, the number of nights increased; the most active species, 

M. lucifugus and M. septentrionalis, required fewer nights of sampling than any of the 

other species at the site (Table 5.5). When the grand mean included multiple detectors 

within a site, we required at least four detectors recording for a minimum of four nights to 

have accurate estimates of overall activity across a site (Table 5.6A,B). We required 

sampling for at least five nights with five detectors for the most active species within a 

season (Table 5.6B). Even within a season it was not possible for a single detector 

moving locations for fifteen nights to be within 30% of the grand mean. Fewer nights 

were required when all nights in the grand mean were during a single season (Table 

5.6B), as opposed to during multiple periods in the year (Table 5.6A). 
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Table 5.5. Mean ± SD number of nights required to have at least 80% of random samples 

with mean nightly bat activity within 10-50% of the grand mean of the entire dataset 

(total calls per night for one detector over 15 nights) for six detectors at a mine near 

Renfrew, Ontario, Canada in 2010. Data were randomly sampled 100 times to include 

nightly activity for one detector for two to ten night sample periods. Empty cells are when 

more than ten nights of sampling were required for all detectors. 

Species 
Percent deviation from grand mean 

≤10% ≤20% ≤30% ≤40% ≤50% 

Species combined  8.4 ± 3.4 5.6 ± 3.4 4.3 ± 1.7 3.0 ± 1.4 

Eptesicus fuscus     9.2 ± 1.8 

Lasionycteris noctivagans     8.8 ± 4.7 

Lasiurus borealis   8.4 ± 4.2 6.8 ± 4.1 5.6 ± 3.8 

L. cinereus    10.6 ± 1.7 8.0 ± 2.5 

Myotis lucifugus   6.8 ± 3.7 5.8 ± 4.0 4.4 ± 2.9 

M. septentrionalis   7.6 ± 3.6 5.6 ± 3.7 4.4 ± 3.8 

Perimyotis subflavus   10.5 ± 2.1 8.5 ± 1.5 7.4 ± 1.8 
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Table 5.6. Number of nights required to have at least 80% of random samples with mean 

nightly bat activity within 30% of the grand mean of the entire dataset at A) four sites in 

Ontario, Canada in 2008 (five detectors over 12 nights) and B) one site in 2010 (five 

detectors over 15 nights). Data were randomly sampled 100 times to include nightly 

activity for one to five detectors for two to ten night sample periods for each site. Empty 

cells are when more than ten nights of sampling were required for all sites. 

A)  

Species 

Number of detectors in subsample 

1 2 3 4 5 

Species combined  10.5 ± 3 10.3 ± 3.5 9.8 ± 4.5 7.3 ± 4.0 

Eptesicus fuscus    11.0 ± 2.0 9.5 ± 3.3 

Lasionycteris noctivagans   11.3 ± 1.5 9.8 ± 2.6 8.5 ± 4.1 

Lasiurus borealis    10.5 ± 3.0 8.8 ± 3.0 

L. cinereus   11.2 ± 2.0 8.8 ± 3.8 9.8 ± 4.5 

Myotis lucifugus     10.3 ± 3.5 

M. septentrionalis   10.3 ± 3.5 8.5 ± 4.1 7.8 ± 5.1 

Perimyotis subflavus     11.0 ± 1.7 

 

B)  

Species 

Number of detectors in subsample 

1 2 3 4 5 

Species combined    4 3 

E. fuscus      

L. noctivagans      

L. borealis     4 

L. cinereus      

M. lucifugus    9 5 

M. septentrionalis     5 

P. subflavus     9 
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5.4 Discussion 

Patterns of bat activity vary within a habitat in response to a variety of biotic (e.g., prey 

abundance) and abiotic factors (e.g., habitat structure). Our results demonstrate 

significantly different depictions of bat activity depending on where a detector was placed 

within a site, even when relatively close together (40 m), including differences in number 

of calls, magnitude of activity, and temporal patterns of activity. While there was some 

effect of detector height and canopy cover on activity levels, these factors did not explain 

the majority of the variation from detector location. Differences in where peaks of activity 

occurred among detectors indicate that it is important to place multiple detectors 

throughout a site in order to capture spatial variation in activity. 

Our results differed from those in other regions, suggesting that the relative importance of 

sources of variation can vary considerably regionally. Variation among sites was less 

important in our study than in Australia (e.g., Fischer et al. 2009), accounting for only 

13% of variation on average. Within-site heterogeneity was most important at our sites, 

accounting for two-thirds of variation in activity levels, while it was not as significant in 

other studies (Krusic et al. 1996b, Fischer et al. 2009). It is clear that experimental design 

will impact what we see in snap-shots of bat activity at a site. The goal is to have the most 

accurate estimate of activity, while the extent of variation determines where effort needs 

to be focused to increase accuracy. When interested in overall activity levels, it is most 

important to sample for fewer nights and more locations within a site, but the number of 

nights sampled must increase when estimating species-specific activity. 

Detectors placed at greater heights did not help to account for variation in activity levels, 

except for one species. It is possible that the small difference in heights (2.5 m) and low 
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vertical vegetation structure was not biologically meaningful or high enough to reveal a 

difference. However, detectors with a small difference in height have shown disparity of 

activity levels (Fischer et al. 2009), although these differences could be attributed to 

slightly different detector locations within the site. There is value in sampling at heights 

greater than 1.5 m (e.g., Krusic et al. 1996, Reynolds 2006), but our study suggests this is 

only worthwhile if detectors are at heights greater than 4 m. While we saw differences 

between detector heights in timing of activity peaks (e.g., Fig. 5.3) and the number of 

nights with activity above various percentile thresholds, we suggest a better use of 

multiple detectors would be to sample at more points throughout the site to account for 

horizontal heterogeneity in similar regions.  

The only evidence of temporal partitioning was between L. noctivagans and L. borealis, 

which corresponds to findings by Kunz (1973) in Iowa, most likely driven by preferences 

for different insect prey. It is possible that this finding is an artifact of relatively low 

activity levels of L. noctivagans at the majority of our sites, but warrants further 

investigation into these species’ activity patterns. Sampling for the entire night is a 

requirement for any study interested in activity levels (Hayes 1997, Skalak et al. 2012). 

While many studies detect a peak of activity in the first two hours after sunset (e.g., Kunz 

1973, Hayes 1997, Broders et al. 2003), only L. cinereus regularly had peaks of activity 

in this period during our study. Where and when peaks in species-specific activity 

occurred differed enough among detectors to suggest that sampling at a single point or for 

a portion of the night would give only a partial picture of bat activity at a given site. 

Greater sampling effort, in both space and time, will always lead to more accurate 

estimates of activity levels. When sampling with a single detector, regardless of species, 
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our findings agreed with those of Hayes (1997), which recommended sampling for no less 

than six nights. It appears we had greater variation among detectors within a site (Table 

5.5) than Hayes (1997) did among sites and years. Once species-specific estimates of 

activity for a site include multiple sampling points within a site, it is not possible to have 

accurate estimates of activity with a single detector. Species with relatively high activity 

levels require fewer nights of sampling; the number of nights sampled at a site would 

need to be either based on a particular species of interest or on the least active species at 

the site. Acoustically rare species, with lower detection probabilities, have higher 

variation in activity levels, more time with no activity, requiring more nights to simply 

detect these species (Skalak et al. 2012). Using one detector and moving it to a different 

location each night, while an option at a large spatial scale (Skalak et al. 2012), is not as 

desirable at a small scale. We required fewer nights when recording with multiple 

detectors simultaneously within a site. Blocked sampling designs are more efficient than 

completely randomized designs for comparisons among sites, requiring fewer nights of 

sampling (Hayes 1997), which was also the case for sampling within sites. 

There is growing concern of inadequate accounts of variation in acoustic studies (Hayes 

2000, Sherwin et al. 2000, Gannon et al. 2003, Skalak et al. 2012). Considering our 

results, the use of multiple detectors within a site should be standard practice for all 

acoustic surveys (Duchamp et al. 2006, Fischer et al. 2009, Stahlschmidt and Brühl 

2012). Our findings caution extrapolation of results from a single detector to estimate 

activity of a site. The importance of among- and within-site variation differs among 

regions and it may be possible to use fewer detectors with less structural complexity at a 

site (Britzke 2003). If using fewer detectors it would be worthwhile conducting a 
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preliminary field season to see where important sources of variation are in order to focus 

sampling efforts more efficiently in future seasons. If experimental designs do not 

adequately account for within-site variation, activity estimates will be biased. 
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6 Conclusion 

The main goal of this dissertation was to investigate sources of variation in acoustic 

monitoring of bat activity and how this impacts acoustic survey design. I addressed this 

goal in three ways: i) variation from bat detectors, ii) methods for objective identification 

of peaks of activity, and iii) the use of stationary, linear transects to address within-site 

spatial and temporal variation. While several studies have examined variation in acoustic 

monitoring of bats and made recommendations for future surveys (Hayes 1997, 2000, 

Fischer et al. 2009, Skalak et al. 2012), more are needed to understand sources of 

variation and improve methods to develop standardized sampling protocols. Combining 

the results of this research, I have provided insight into how sources of variation and 

methods of data analysis can impact interpretation of acoustic data of bat activity. 

Detailed discussions of specific experimental results are presented in the pertinent 

chapters. Here, I summarize the cumulative findings of my dissertation and make 

recommendations for future acoustic bat surveys. Finally, I conclude with a description of 

challenges and gaps in our knowledge challenges to our greater understanding of bat 

activity, and suggestions for future research directions. 

6.1 Contribution to acoustic studies of bats 

An integral component of conducting effective acoustic surveys is accounting for sources 

of variation, an essential step to collecting unbiased data (Hayes 2000), while using 

objective methods to analyze that data. This information is necessary for effective 

sampling design, data analysis, and interpretation of results. I have contributed to this 

field in three ways: 
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6.1.1 Variation from detectors 

Many factors can increase variation in an acoustic dataset, one of which is the detector 

used (Adams et al. 2012/Chapter 2). I found that detector performance varied among 

systems, differing in sensitivity and directionality, and is an important source of variation 

in acoustic monitoring methods that must be accounted for when creating sampling 

protocols and comparing datasets. The value of these results is not simply as a 

comparison of different detectors, but as a demonstration of how different technologies 

can give different results; an issue that needs to be considered when designing and 

evaluating any studies using these technologies. 

6.1.2 Objective methods for detecting peaks in bat activity 

A limitation of acoustic monitoring is the relative nature of data interpretation. 

Previously, conclusions have been based on subjective assessments about the relative 

importance of sites or species-specific activity patterns. I proposed two methods for 

objectively identifying peaks in bat activity at various scales: percentile thresholds 

(Chapter 3) and SaTScan (Chapter 4). Using percentile thresholds to assess acoustic data 

permits an unbiased measure of the importance of a site and is a replicable method of 

describing within-night activity patterns. The strength of this method is evaluating 

activity levels at several thresholds based on a larger distribution of activity among sites. 

SaTScan is a valuable tool for quickly identifying peaks with an objective, replicable, and 

statistically-sound method that can be applied at various temporal and spatial scales. 

Using these two methods in combination permits a thorough investigation of activity 
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levels and patterns at a site, from the magnitude of species-specific activity to comparison 

of timing of peaks among species or sites. 

6.1.3 Variation within sites 

Bat activity can vary temporally (e.g, Hayes 1997, Milne et al. 2005), but within-site 

spatial variation has been too often overlooked (Britzke 2003, Fischer et al. 2009). I 

found that within site factors are very important for understanding variation in bat 

activity, being as or more important than differences among sites (Chapter 5). The high 

degree of variation within sites can affect sampling design, including necessary sampling 

effort, and requires the use of multiple detectors recording simultaneously within a site. 

Detector placement within a site dramatically impacts the depictions of activity, in turn 

impacting estimates of levels and patterns of activity. An a priori understanding of the 

survey effort necessary should ensure statistically powerful sampling designs, clearer data 

interpretation, and more successful management and conservation actions. 

6.2 Recommendations for future acoustic surveys 

To use acoustic monitoring to address ecological questions, it is important to know how 

sources of variation affect data collection and thus the data itself. While there is no simple 

formula for what constitutes an ideal survey effort, it is clear that additional effort will 

result in more precise estimates of activity. Accuracy increases with the number of nights 

sampled and detectors deployed. It is important to first clearly define the research 

question and decide on the best study design to test the predictions. If the aim of a study 

is to determine overall activity levels at a site then a site in Ontario would require 
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sampling for at least four nights with four detectors within a season, but would require an 

increased sampling effort when evaluating species-specific activity. It is difficult to 

extrapolate from my results because the degree of habitat heterogeneity differs among 

sites. I recommend using preliminary studies to determine the number of detectors and 

nights necessary to obtain an accurate estimate of activity before establishing a long-term 

monitoring program. I echo the recommendations of other authors (Hayes 1997, Skalak et 

al. 2012) that monitoring should be done continuously through the night. Ideally, 

sampling should occur for as long as possible; this is relatively easy with passive 

methods, but long-term datasets can be inhibiting in terms of analysis. 

It is important to use a single brand of detector for a monitoring program and to report 

detector settings in publications to ensure comparable results among locations and years 

(Adams et al. 2012/Chapter 2). Detectors should be calibrated to reduce variation among 

detectors of the same brand and among sampling periods (Larson and Hayes 2000). 

Passive detection systems with an automatic trigger are best for developing standardized 

sampling protocols because they remove biased sampling methods and require little effort 

for deployment (Stahlschmidt and Brühl 2012). Choice of bat detector will depend on the 

research question being asked and potentially be influenced by budgetary constraints. 

Study location and focal species will determine which detectors are appropriate based on 

their frequency response. Wildlife Acoustics’ SongMeter SM2BAT has two different 

models that differ in sampling rate and the lower sampling rate model would not be 

adequate to record all species present in the Neotropics. Full-spectrum detectors are a 

better choice for the majority of research questions since they are more sensitive, with 

greater detection ranges (Adams et al. 2012/Chapter 2), and collect more information than 
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frequency division systems, leading to more accurate species identification (Fenton 

2000). If asking questions about echolocation behavior then a more sensitive and 

calibrated microphone will be important. Research questions about activity levels at a 

particular site will require decisions on a trade-off between the more expensive detector 

(i.e., Avisoft, Batlogger) that detects calls in a larger volume of airspace at a given 

location or a less expensive option (i.e., SongMeter). Also involved in the decision is the 

importance of simultaneously monitoring multiple locations within a site. Sampling area 

heterogeneity and access to multiple detectors will impact this decision. 

Successful application of acoustic monitoring to detect within-site variation requires the 

use of multiple detectors simultaneously (Chapter 5). Understanding structural 

heterogeneity at a site can determine the number of detectors necessary to capture vertical 

and horizontal variation in bat activity. A reasonable survey effort will depend on the 

objectives of a particular study. While my recommendations are for surveys sampling 

patterns and levels of activity, they are relatively in line with surveys for species richness. 

Recording continuously for the entire night together with increased sampling effort for 

more nights at more locations will increase chances of detecting rare species (Skalak et 

al. 2012). 

Finally, it is necessary to use objective analytic methods for acoustic data because of the 

already inherent relative nature of the data. Use of programs, such as SaTScan, makes 

analysis consistent and replicable. It is necessary to measure activity levels relative to a 

large distribution, which is closer to the ground truth of what is present in nature. The 

next step is to create a public repository of acoustic datasets to evaluate activity of a 

species in the context of its entire range, allowing standardization of terms such as “high 
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activity.” Standardization makes it possible to review methods used for environmental 

assessments and creation of protocols for unified monitoring programs among regions. 

6.3 Future research directions 

It is clear from my results (Chapter 5) and those of Fischer et al. (2009) that activity from 

a single location does not reflect all locations within a site. My specific findings about 

within-site variation are unlikely to be directly applicable to other regions because of 

varying habitat heterogeneity. Vertical spatial partitioning is evident in many habitats 

(Hecker and Brigham 1999, Kalcounis et al. 1999, Hayes and Gruver 2000), but it has not 

been established what acoustic sampling effort is necessary to detect these patterns. 

Sampling vertical distributions is limited by the logistics of raising detectors to greater 

heights; most successful is opportunistic placement on manmade structures, such as 

towers and poles (Kalcounis et al. 1999, Hamilton 2012) and wind turbines (Reynolds 

2006), or attaching them to trees (Staton and Poulton 2012b). Further research into 

patterns of vertical and horizontal spatial variation among habitats is necessary, especially 

with respect to how habitat structure and differences in insect distributions play roles in 

determining bat activity. Ideally, future research will provide insights into how 

transferable findings regarding sampling effort are to other regions with the goal of 

establishing what measures are necessary to determine sampling efforts in new regions 

without extensive preliminary study.  

Most bat surveys in temperate areas primarily use acoustic methods because of the 

detectability of the echolocation calls of most insectivorous species, allowing 

development of standardized protocols based on acoustic monitoring in these regions. 
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However, acoustic monitoring is not a “silver-bullet” for sampling all bat communities; 

capture methods are required to sample whispering bats with low intensity echolocation 

calls and those that do not echolocate at all (Griffin 1958, Fenton 2003). Creating 

standardized sampling protocols for regions with greater species diversity, such as the 

tropics, will require an understanding of factors influencing capture success (Kalko and 

Handley 2001) and how recommendations for acoustic sampling effort would differ. 

A major limitation to conservation and management efforts is knowledge of where 

important sites are for bats. Research into the detectability of special sites, such as roosts, 

hibernacula, swarming sites, and migration stopover sites, would be extremely valuable. 

Understanding horizontal spatial variation will play a role, with how patterns of activity 

drop off as bats move away from these special sites and the proximity to a special site 

required to detect levels of activity high enough to be notable. 

Walking and driving transects are methods used increasingly for standardized bat surveys. 

The UK’s National Bat Monitoring Program uses volunteers with detectors walking 1 km 

transects to sample bats and has been successful at detecting population trends over time 

(Walsh et al. 2001). At least 17 states (Herzog and Britzke 2009) and one province use 

driving transects to sample bat activity levels post-white-nose syndrome (WNS, Britzke 

and Herzog). Efforts to collect long-term datasets in a standardized and comparable 

fashion are laudable, but there is little scientific literature to support the use of this 

method. Russ et al. (2003) describe the use of a driving transect and discuss its validity, 

but make no effort to compare the method, and this is likely what most driving surveys 

protocols are based on. Stahlschmidt and Brühl (2012) have been the only researchers to 

compare moving transects to stationary detectors, finding that walking transects fail to 
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represent the heterogeneous bat activity patterns and stationary detectors have the greatest 

potential for standardized surveys. There is an urgent need for research into the feasibility 

of moving transect surveys. 

While much research is focused on how to survey at wind energy developments to 

determine which sites will be high-risk for bats (Reynolds 2006, Arnett et al. 2011, 

Korner-Nievergelt et al. 2011), there is still little information available to guide policy 

and permit critical evaluation of wind energy development proposals and environmental 

assessment reports. Percentile thresholds (Chapter 3) are the first proposed method for 

objectively comparing the importance of a site to a species of bat, but we need continued 

development and research into how environmental recommendations, with the potential 

to impact survival of numerous bats species, are determined. 

6.4 Concluding remarks 

Acoustic monitoring studies have a number of inherent limitations and assumptions, but 

the use of bat detectors can be a very powerful tool for insights into the ecology and 

behavior of bats. Design of any study includes trade-offs between research objectives and 

logistics. As acoustic monitoring is increasingly used for large-scale management and 

conservation efforts in response to growing threats to bat populations, the need for 

research to support standardized protocols is also rising. The results of my dissertation 

have provided an increased understanding of how variation plays a role in sampling bat 

activity. I hope that the information presented here will provide a platform for continued 

research into objective methods and standardized protocols of studying bats in order to 

streamline bat conservation efforts of this ecologically important group of mammals.  
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Appendices 

Appendix A: Discriminant function analysis for species 
identification 

 

Passive acoustic monitoring makes it easy to collect large amounts of data; the challenge 

is analyzing all of it. Identification of echolocation calls to species is a daunting task 

when done manually, but automated methods make processing many recordings quick 

and efficient. Automated methods are more consistent and predictable, and can be more 

accurate than manual analysis (Jennings et al. 2008). A common technique for automated 

identification of bat calls is discriminant function analysis (DFA), it is not only a classic 

statistical technique, available in all statistical software packages, but is also very 

effective for classifying echolocation calls to species. DFA has outperformed other classic 

statistical methods (cluster analysis) and nonconventional methods (classification and 

regression trees, and neural networks) with higher classification accuracy of identifying 

calls to species (Preatoni et al. 2005). 

I developed a DFA for the seven species of bats in Ontario, Canada to analyze my data 

(Chapters 3, 4, 5). The reference dataset of search-phase calls from recordings of free-

flying bats recorded outside of known roosts or at foraging sites where species and 

individual bats were identified unambiguously (assembled by Lauren Hooton, MSc). No 

reference recordings came from hand-released individuals. The reference dataset included 

calls for seven species of bats in Ontario (Table A1). An eighth species (Myotis leibii) is 

found in Ontario, but was not included in the DFA due to the relative rarity of the species, 
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lack of verified recording for the reference dataset, and difficulty differentiating calls 

from the much more common M. lucifugus. The training dataset for the DFA included 

one, randomly selected call per individual in order to avoid pseudoreplication (Mundry 

and Sommer 2007). I had unequal sample sizes among species (Table A1), but this is not 

a problem for DFA. Because of unequal covariance I used quadratic DFA (Vaughan et al. 

1997b, Parsons and Jones 2000). 

The DFA included 11 predictor variables (call parameters), minimum frequency (Fmin), 

maximum frequency (Fmax), duration, frequency of most energy (FME), 10
th

 percentile 

of energy (F10), 60
th

 percentile of energy (F60), 90
th

 percentile of energy (F90), median 

frequency slope (dFmedian), median energy slope (dEmedian), median frequency 

smoothness (sFmedian), and median energy smoothness (sEmedian). All call parameters 

were automatically extracted by the automated detection feature in callViewer (v. 18; 

Skowronski 2008). CallViewer is a custom echolocation sound analysis program written 

with MATLAB software (The MathWorks, Natick, Massachusetts). The automated 

detection parameters were the default settings, except minimum link length was set at 10, 

minimum energy was set at 14 dB, echo filter threshold was set at 10 dB, and lower 

frequency cutoff was set to 14 kHz. I chose call parameters to maximize classification 

accuracy with backwards, stepwise selection, starting with all 21 variables extracted by 

callViewer and removing them one at a time. The DFA should have fewer predictor 

variables than the smallest sample size; following the 1/3 rule I reduced down to 11 

variables. Classification accuracy with leave-one-out cross-validation was high (Table 

A1), even between Eptesicus fuscus and Lasionycteris noctivagans, which cannot be 

discriminated with manual analysis (Betts 1998). 
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Table A1. Species-specific details for discriminant function analysis (DFA) to identify 

unclassified bat echolocation calls to species. The sample size per species was the number 

of echolocation calls per species included in the reference database (training data) for 

DFA. Each call was from a different individual. Classification accuracy of the DFA with 

leave-one-out cross-validation is the percent correct identifications of the training data. 

Species 
Sample 

size 

Classification 

accuracy (%) 

Eptesicus fuscus 50 78 

Lasionycteris noctivagans 50 94 

Lasiurus borealis 58 88 

L. cinereus 52 90 

Myotis lucifugus 50 90 

M. septentrionalis 33 94 

Perimyotis subflavus 42 93 
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Before identification of unidentified recordings with DFA, I filtered all acoustic data to 

eliminate noise and weak or fragmented calls, only including detections with duration 

0.99 – 30 ms and Fmin 15 - 60 kHz. The filter parameters were selected based on 

conservative estimates of the echolocation call structure of the species of bats present in 

Ontario. The DFA compared our unidentified data to the training dataset and identified 

each call to species. To further improve classification accuracy, and because DFA does 

not assign calls to an “unknown” category, I applied a post-hoc, species-specific filter to 

remove any data that were above or below typical durations and minimum frequencies for 

each species (Table A2). 

DFA and filters were performed in R (v. 2.13.1, R Development Core Team 2011).
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Table A2. Post-discriminant function analysis filter to increase classification accuracy of 

automated identification of bat echolocation calls. The filter removed identified calls that 

were outside the species-specific ranges of call duration and minimum frequency. 

Species Duration (ms) 
Minimum 

frequency (kHz) 

Eptesicus fuscus 3 – 12  20 – 30 

Lasionycteris noctivagans 4 - 12 21 - 30 

Lasiurus borealis 5 - 17 29 – 43 

L. cinereus 8 - 30 15 – 29 

Myotis lucifugus 3 - 8 30 – 43 

M. septentrionalis 1 – 3.3 25 - 60 

Perimyotis subflavus 5 - 15 36 - 46 
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Figure B1. Peak periods of bat activity along linear, stationary transects within four sites in Ontario, Canada in 2008:1) spring at Long 

Point, 2a) spring at QUBS, 2b) late summer at QUBS, 3a) spring at Renfrew lake, 3b) late summer at Renfrew lake, 4a) spring at 

Renfrew mine, and 4b) late summer (swarming) at Renfrew mine. Detectors were paired at two heights, low (1.5 m; A1, B1, and C1) 

and high (4 m; A2 and B2). 



163 

 

Table B1. Comparison of mean hourly bat activity among detectors for each species 

within sites in Ontario, Canada in 2008: A) Long Point, B) QUBS, C) Renfrew lake, D) 

Renfrew mine, and E) Renfrew mine in 2010 (df = 4). Significant Kruskal-Wallis tests 

indicate that activity was significantly different among detectors within a site. 

A) Long Point   

Species H statistic p-value 

E. fuscus 130.94 < 0.001 

L. noctivagans 104.21 < 0.001 

L. borealis 252.66 < 0.001 

L. cinereus 182.01 < 0.001 

M. lucifugus 133.94 < 0.001 

M. septentrionalis 146.94 < 0.001 

P. subflavus 202.91 < 0.001 

 

B) QUBS   

Species H statistic p-value 

E. fuscus 58.45 < 0.001 

L. noctivagans 8.11 0.09 

L. borealis 64.53 < 0.001 

L. cinereus 36.80 < 0.001 

M. lucifugus 34.41 < 0.001 

M. septentrionalis 3.34 0.50 

P. subflavus 42.23 < 0.001 

 

C) Renfrew lake   

Species H statistic p-value 

E. fuscus 48.40 < 0.001 

L. noctivagans 7.51 0.11 

L. borealis 172.92 < 0.001 

L. cinereus 19.55 0.001 

M. lucifugus 118.41 < 0.001 

M. septentrionalis 3.98 0.41 

P. subflavus 54.54 < 0.001 

 

D) Renfrew mine   

Species H statistic p-value 

E. fuscus 29.77 < 0.001 

L. noctivagans 37.11 < 0.001 

L. borealis 80.88 < 0.001 

L. cinereus 33.76 < 0.001 

M. lucifugus 18.34 0.001 

M. septentrionalis 34.56 < 0.001 

P. subflavus 11.64 0.02 
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E) Renfrew mine 2010   

Species H statistic p-value 

E. fuscus 14.93 0.005 

L. noctivagans 24.16 < 0.001 

L. borealis 239.68 < 0.001 

L. cinereus 50.69 < 0.001 

M. lucifugus 47.14 < 0.001 

M. septentrionalis 157.46 < 0.001 

P. subflavus 40.95 < 0.001 
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Table B2. Final models of species-specific hourly bat activity (activity) among detectors and four sites in Ontario, Canada in 2008. 

Generalized linear mixed models (GLMM) included random and fixed effects. Random effects were detector location nested in site 

(detector), night nested in site (night), and sites (site). Fixed effects were percent canopy cover (canopy) and detector height (height), 

both at the detector-level. Models were selected by likelihood ratio tests and AIC. Parameter estimates, standard error, and p-values are 

included for significant fixed effects in the models. 

Species GLMM model Fixed effect 

explanatory 

variable 

Parameter 

Estimate 

Standard 

error 

p-value 

Species combined activity ~ (1|detector) + (1|night) Intercept 8.183 0.379 < 0.001 

E. fuscus activity ~ canopy + (1|detector) + (1|night) Intercept 7.291 0.831 < 0.001 

  canopy -7.534 1.728 < 0.001 

L. noctivagans 

activity ~ canopy + height + (1|detector) + (1|night) + 

(1|site) 

Intercept 2.152 1.128 0.056 

  canopy -6.950 2.047 < 0.001 

  height 1.385 0.591 0.019 

L. borealis activity ~ canopy + (1|detector) + (1|night) + (1|site) Intercept 7.880 1.312 < 0.001 

  canopy -11.628 2.276 < 0.001 

L. cinereus activity ~ canopy + (1|detector) + (1|night) Intercept 7.915 0.620 < 0.001 

  canopy -8.441 1.299 < 0.001 

M. lucifugus activity ~ canopy + (1|detector) + (1|night) + (1|site) Intercept 7.662 1.13 < 0.001 

  canopy -4.921 1.764 0.005 

M. septentrionalis activity ~ canopy + (1|detector) + (1|night) + (1|site) Intercept 0.819 2.449  0.014 

  canopy 6.417 1.490 < 0.001 

P. subflavus activity ~ canopy + (1|detector) + (1|night) Intercept 4.503 1.051 < 0.001 

  canopy -7.703 2.248 < 0.001 
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Table B3. Number of nights when bat activity was over the 50
th

 and 90
th

 percentile 

thresholds at each detector at four sites in Ontario, Canada in 2010: A) Long Point, B) 

QUBS, C) Renfrew lake, D) Renfrew mine. Detectors were paired at two heights, low 

(1.5 m; A1, B1, C1) and high (4 m; A2, B2). 

A) Long Point 50
th

 percentile 

Detectors 

 90
th

 percentile 

Detectors 

Species A1 A2 B1 B2 C1  A1 A2 B1 B2 C1 

Species combined 12 12 11 9 12  7 7   1 

E. fuscus 12 12 10 11 12  11 10 2 3 6 

L. noctivagans 8 9 5 4 5  2 2    

L. borealis 12 12 8 10 12  11 11 1 1 10 

L. cinereus 10 11   10  3 3    

M. lucifugus 12 12 1 1 7  4 6   1 

M. septentrionalis 12 12 6 7 7  2 10   3 

P. subflavus 1  10 12        

 

B) QUBS 50
th

 percentile 

Detectors 

 90
th

 percentile 

Detectors 

Species A1 A2 B1 B2 C1  A1 A2 B1 B2 C1 

Species combined 3 7 4 4 8   2    

E. fuscus 1 1 2 3 9   1   4 

L. noctivagans 5 7 4 5 3   2    

L. borealis 5 9  1 10      5 

L. cinereus 6 8   5  3 5   1 

M. lucifugus 2 7 1 3 6      1 

M. septentrionalis  2  1        

P. subflavus 3 6 6 7 1       

 

C) Renfrew lake 50
th

 percentile 

Detectors 

 90
th

 percentile 

Detectors 

Species A1 A2 B1 B2 C1  A1 A2 B1 B2 C1 

Species combined 11 11 8 8   2 3    

E. fuscus 11 11 6 7   7 5 1 1  

L. noctivagans 11 11 5 7   3 3    

L. borealis 8 9 7 8 2   1    

L. cinereus 11 11  3   4 3    

M. lucifugus 7 8     3 2    

M. septentrionalis 4 6 3 4 1       

P. subflavus 7 7 9 9 5       
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D) Renfrew mine 50
th

 percentile 

Detectors 

 90
th

 percentile 

Detectors 

Species A1 A2 B1 B2 C1  A1 A2 B1 B2 C1 

Species combined 4 6 10 11 10  1 2 6 5 6 

E. fuscus 3 4 3 1 7   3    

L. noctivagans 4 6 9 10 10   1 5 4 6 

L. borealis 1 3 1 1 7   1   1 

L. cinereus  2  1 11   1   7 

M. lucifugus  2 1  5   2    

M. septentrionalis  1  1        

P. subflavus 5 6 11 12 9  4 3 6 6  
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