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Abstract 

Piezoelectric beam- and plate-based nanostructures hold a promise for device 

applications in the nanoelectromechanical systems (NEMS) due to their superior 

mechanical and electromechanical coupling properties. “Small is different”, 

nanostructured piezoelectric materials exhibit size-dependent properties, which are 

different from their bulk counterparts. For predicting the unique physical and mechanical 

properties of these novel nanostructures, continuum mechanics modeling has been 

regarded as an efficient tool. However, the conventional continuum models fail to capture 

the size effects of nanostructures and thus are not directly applicable at the nanoscale. 

Therefore, it is necessary to develop modified continuum models for piezoelectric 

nanostructures by incorporating the size effects and investigate the size-dependent 

properties of piezoelectric nanostructures based on the developed models.  

Nanoscale structures are characterized by a high surface to volume ratio. The atoms 

in the surface layers of a structure are exposed to a different environment compared to 

those in the bulk of the structure. Thus, surface has a considerable influence on the 

physical and mechanical behaviors of nanoscale structures and is believed to be 

responsible for their size-dependent properties. In addition, for nanostructured 

piezoelectric materials, the strain gradient induced flexoelectricity could be significant 

and contribute to their size-dependent properties. In this thesis, the influence of the 

surface effects and flexoelectric effect on the mechanical and electrical properties of 

piezoelectric nanostructures is investigated through modified continuum models. Firstly, 

based on a surface piezoelectricity model and the generalized Young-Laplace equations, 

modified continuum models with surface effects are developed to investigate the bending, 

vibration, buckling behaviors and electromechanical properties of piezoelectric 

nanobeams and nanoplates with different boundary conditions. Next, by accounting for 

the flexoelectric effect through the extended linear theory of piezoelectricity and 

conventional beam models, the static and dynamic responses of piezoelectric nanobeams 

are presented. It is demonstrated from this study that the size effects prominently 

influence the mechanical behaviors and the electroelastic responses of piezoelectric 

nanostructures.  
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This research carries out a theoretical methodology to predict the static bending, 

electroelastic field distribution, resonant frequencies of vibration and critical electric 

potential for the mechanical buckling of piezoelectric nanostructures with different 

structure geometries, loading conditions and boundary conditions, which is expected to 

provide a fundamental understanding on the electromechanical coupling behavior of 

piezoelectric structures at the nanoscale. It is helpful for understanding the size-

dependent properties of nanostructured piezoelectric materials and performance 

improvement of the beam- and plate-based electronic devices in NEMS. 
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Chapter 1  

1 Introduction 

1.1 Piezoelectricity 

The earliest knowledge of electric effects goes back to ancient Greece, where it was 

found that rubbing fur on amber caused an attraction between the two. Owing to this 

reason, the modern word “electricity” derives from the Greek word “elektron” for amber. 

In later centuries, as people learn more about electricity, special prefixes have been added 

before the word “electricity” to distinguish various manifestations of electricity, e.g. 

“piezo-”, which means “to press”. Piezoelectricity was first discovered by Pierre and 

Jacques Curie brothers (1880), who found that by compressing certain crystals, electric 

charges were produced. The charges are proportional to the pressure and disappear when 

the pressure is withdrawn. This phenomenon is known as the direct piezoelectric effect. 

The converse piezoelectric effect is the deformation of piezoelectric crystal under an 

applied electric field, which was predicted by Lippmann (1881) based on thermodynamic 

principles. The converse piezoelectric effect was later verified by the Curies at the end of 

1881. There are many materials which naturally have piezoelectricity, such as tourmaline, 

Rochelle salt, topaz, quartz, cane sugar, etc. However, the weakness of the 

electromechanical coupling effect in these natural materials strongly limits the 

application of piezoelectricity in the early days. The today‟s widespread application of 

the piezoelectric effect attributes to the introduction of artificial piezoelectric ceramics in 

the 1950‟s, including lead zirconate titanate (PZT), barium titanate (BaTiO3), lead 

titanate (PbTiO3), etc. Piezoelectric ceramics consists of a large number of small 

crystallites. Below Curie temperature, the electric dipoles near each other in the 

piezoelectric crystals tend to be aligned in regions called domains. The domains are 

usually randomly oriented, resulting in zero overall polarization or piezoelectric effect in 

the crystals. However, these crystals can acquire piezoelectricity under a strong electric 

field at a temperature slightly below the Curie point. Under the process, domains with 

different polarization directions are reoriented towards the direction of the applied 

electric field.  A permanent polarization can be still aligned in the crystal after the process. 

This process, called poling, is an important manufacturing process and induces 
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piezoelectricity as well as material anisotropy. Due to the piezoelectric effects, 

piezoelectric materials have been widely used in the electronic devices such as sensors, 

actuators and transducers in research and industry. 

1.2 Nanostructured piezoelectric materials and their size-
dependent properties 

Since the piezoelectric effect results from the relative displacements of atoms within 

crystals, devices based on piezoelectric materials can be made, in principle, to operate on 

atomic scales (Nguyen et al., 2013). With the development of nanotechnology and 

synthesis techniques, a collection of nanostructured piezoelectric materials has been 

successfully synthesized, including one-dimensional gallium nitride (GaN) nanowires 

and nanorods (Huang et al., 2002), BaTiO3 nanowires (Spanier et al., 2006), zinc oxide 

(ZnO) nanowires, nanotubes, nanobelts, nanorods and nanorings (Wang, 2007), calcium 

sulfide (CaS) nanowires (Lin et al., 2008), aluminum nitride (AlN) nanowires (Yazdi et 

al., 2009), PZT nanofibers (Chen et al., 2010), etc. and two-dimensional BaTiO3 

nanofilms (Park et al., 2010), PZT nanoribbons (Qi et al., 2010), PZT nanofilms 

(Yamano et al., 2012), etc. The distinct mechanical and electromechanical coupling 

properties of these advanced materials make them attractive for a wide range of device 

applications in nanoelectromechanical systems (NEMS). One example that has received 

the most attention is nanogenerator based on piezoelectric nanowires with the first 

prototype being invented by Wang and Song (2006). In this device, piezoelectricity was 

employed to convert mechanical energy into electrical energy. Recently, nanogenerators 

have been fabricated by employing two-dimensional nanostructured piezoelectric 

materials including BaTiO3 nanofilms, PZT nanoribbons and nanofilms to achieve high 

energy conversion efficiency (Park et al., 2010; Qi et al., 2010; Feng et al., 2011).  Other 

applications of nanostructured piezoelectric materials include piezoelectric nanowire 

lasers (Johnson et al., 2002), resonators (Bai et al., 2003), field-effect transistors (Wang 

et al., 2006), diodes (He et al., 2007), sensors (Zhou et al., 2008) and strain-controlled 

logic gates (Wu et al., 2010). However, these fascinating devices are at the early research 

stage and still years away from commercially available due to the issues of reliability and 

optimal performance, which need to be further addressed. Therefore, it is of great 
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importance to conduct fundamental characterization of these advanced materials and 

qualitatively investigate their mechanical and electromechanical properties.  

Different experimental techniques and computational tools have been developed to 

investigate the mechanical and electrical properties of nanostructured piezoelectric 

materials. Through these approaches, researchers have found that the materials at the 

nanoscale exhibit properties different from their bulk counterparts, i.e. size-dependent 

properties. For example, the Young‟s modulus of ZnO was experimentally observed to 

increase dramatically with decreasing diameters below 120 nm by the electric-field-

induced resonance method (Chen et al., 2006). The elastic moduli of other nanostructured 

piezoelectric materials such as GaN nanowires, PZT nanofibers, CdS nanowires were 

also found to be size dependent in experiments (Nam et al., 2006; Xu et al., 2006; Gao et 

al., 2010). The fracture strain of ZnO wires was observed to vary from 5% to 15% with 

the decrease of diameters from 500 nm to 200 nm by performing experiments (Desai and 

Haque, 2006), while their ultimate tensile strength could be up to 40 times of the bulk one 

according to the controlled lateral force atomic force microscopy (AFM) measurement 

(Wen et al., 2008). Piezoelectric sensitive scanning force microscopy in the contact mode 

revealed a steep increase of the piezoelectric response of PZT films below lateral sizes of 

200 nm (Bühlmann et al., 2002). From the piezoresponse force microscopy, the effective 

piezoelectric coefficient d33 of a ZnO nanobelt was measured and found to be frequency 

dependent and much larger than its bulk counterpart (Zhao et al., 2004). An experimental 

approach has been presented to measure the three independent piezoelectric coefficients 

of GaN nanowires (d13, d33 and d15) employing scanning probe microscopy (Minary-

Jolandan et al., 2012). Experimental results demonstrated that the GaN nanowires exhibit 

strong piezoelectricity in three-dimensions, with up to six times of their bulk counterpart. 

In parallel to the above mentioned experimental work, atomistic simulations have also 

played a key role in predicting the size-dependent mechanical and electrical properties of 

nanostructured piezoelectric materials. For example, molecular dynamics simulations 

were performed to characterize the response of ZnO nanobelts with their ultimate tensile 

strength and Young‟s modulus being obtained as functions of size and growth orientation 

(Kulkarni et al., 2005). The elastic moduli of GaN nanowires for three major growth 

orientations were identified to be size dependent at small sizes by a computational-
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experimental investigation (Bernal et al., 2011). By employing a shell-based molecular 

dynamics approach, the elastic modulus of BaTiO3 nanowires was observed to differ 

dramatically from the bulk BaTiO3 (Zhang et al., 2011). In addition, the piezoelectric 

coefficients of ZnO, GaN nanowires and ZnO nanobelt were also found to be size-

dependent by using first-principle density functional theory (Xiang et al., 2006; Agrawal 

and Espinosa, 2011) and molecular dynamics approach (Momeni et al., 2012), 

respectively. 

From the above mentioned studies, it has been clearly demonstrated that both 

experimental approaches and atomistic simulations provide unambiguous evidences of 

the size-dependent properties of nanostructured piezoelectric materials. However, 

experiments at the nanoscale are very difficult to control and they are not sufficient to 

provide a mechanistic explanation for a measured material property. Moreover, although 

atomistic simulation can be very accurate when employed to study a nanostructure by 

dealing with a cluster of atoms, this approach is largely limited by computation 

capabilities at both length and time scales considering the large number of atoms in a 

typical structure. Alternatively, many researchers have resorted to the continuum 

mechanics modeling to investigate the properties of nanostructures due to their superior 

computational efficiency and robustness. Nevertheless, the conventional continuum 

models ignore the variation of interatomic quantities and fail to capture the size effects of 

nanostructures. Therefore, modified continuum models incorporating the small scale 

features must be developed to overcome this limitation. Several modified continuum 

models have been developed to characterize the mechanical and physical properties of 

nanostructured materials, such as the non-local elasticity model, surface elasticity model 

and multiscale continuum model, which provide simulation results in good agreement 

with those from atomistic simulations, but more computational efficient and versatile. It 

is therefore has been claimed by Yakobson and Smalley (1997) that “the laws of 

continuum mechanics are amazing robust and allow one to treat even intrinsically 

discrete objects only a few atoms in diameter”. A literature review on the investigation of 

size-dependent properties of nanostructured materials based on the continuum mechanics 

approaches will be provided later in Section 1.4. 
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1.3 Brief introduction of surface effects in solids and 
flexoelectricity phenomenon 

Since the atoms at and near a free surface or an interface experience a different local 

environment in comparison to those in the bulk of a material due to reduced coordination, 

the equilibrium position and the energy associated with the atoms at and near a surface or 

an interface are generally different from those of the atoms in the bulk (Streitz et al., 

1994).  Therefore, the creation of a surface leads to excess free energy in a solid, i.e. the 

surface free energy, and the surface stress can be determined from the surface energy. 

The concepts and physics of surface energy and surface stress of solids were introduced 

by Gibbs (1906). In the Gibbs idealization, both the surface energy and surface stress are 

quantities in a continuum sense and they are ascribed to a “mathematical surface” with a 

zero thickness. As the influence of a surface on the physical properties of the atoms near 

it generally extends to a few atomic layers, there quite likely exists a transition interphase. 

This idealization is widely adopted, and the effect of the surface is therefore generally 

neglected in classical continuum mechanics theories (Wang et al., 2011). However, such 

an effect can no longer be neglected in nanostructures, in which the surface area to 

volume ratio is exceptional large at such a small scale. As a result, the surface effects 

could play a significant role in the size-dependent properties of nanostructures (including 

piezoelectric nanostructures).  

Flexoelectricity refers to a spontaneous electric polarization in dielectrics induced by 

a non-uniform strain (or strain gradient) field. In contrast to piezoelectricity, which is 

restricted to certain crystals with noncentrosymmetry, flexoelectric effect can emerge 

even in centrosymmetric crystals. This phenomenon is explained by the non-uniform 

displacement of ions in the crystal under a strain gradient, which disrupts the inversion 

symmetry and leads to the formation of a net polarization in the crystal. Therefore, the 

piezoelectricity is induced by uniform strains while flexoelectricity results from non-

homogeneous strain or strain gradient. The phenomenon of flexoelectricity was first 

predicted by Mashkevich and Tolpygo (1957) that electrostatic potential; could arise 

from non-homogeneous deformations of lattice in crystals such as silicon. The concept of 

flexoelectricity was introduced by Kogan in the 1960s (Kogan, 1964). However, the 

flexoelectricity has not received as much attention as piezoelectricity at the macroscopic 
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scale due to the mechanical restrictions on forming large stain gradients. Besides the 

magnitude of strain gradient, the strength of flexoelectricity also depends on the 

numerical value of the flexoelectric coefficient. Ma and Cross carried out a series of 

experimental work (2001a; b; 2002; 2003; 2006) and have observed strong flexoelectric 

effect in certain piezoelectric materials due to their large flexoelectric coefficient. These 

pioneer works have stimulated the recent scientific interests in investigating the 

phenomenon of flexoelectricity. 

Flexoelectricity is a size-dependent effect, which becomes more significant at 

nanometer scale due to the increasing strain gradient. Numerous studies indicate that 

flexoelectric effect plays an important role in the physical characteristics of ferroelectric 

thin films and other nanostructures, such as the dielectric constant (Catalan et al., 2004), 

the critical phase transition temperature (Eliseev et al., 2009), the polarization hysteresis 

curves (Lee et al., 2011) and the critical thickness of thin films below which the 

switchable spontaneous polarization vanishes (Zhou et al., 2012). Since electric 

polarization can be induced by flexoelectricity even in non-piezoelectric materials, 

flexoelectricity can be exploited to produce “piezoelectric materials” by using non-

piezoelectric constituent materials (Fousek et al., 1999). It has also been shown that the 

physical properties of ferroelectric epitaxial thin films such as domain configurations and 

hysteresis curves can be tuned by means of the flexoelectric effect (Lee et al., 2011). 

Furthermore, the flexoelectric effect can be used as a dynamic tool for polarization 

control and may enable data storage applications in which memory bits are written 

mechanically and read electrically (Lu et al., 2012). Moreover, the electromechanical 

coupling of piezoelectric nanostructures may be enhanced by the flexoelectric effect 

(Majdoub et al., 2008). Therefore, in addition to surface effects, the flexoelectric effect is 

also expected to be responsible for the size-dependent properties of nanostructured 

piezoelectric materials. 

1.4 Literature review 

Extensive theoretical studies have been devoted to investigate various problems with 

the consideration of surface effects, such as the elastic, bending and vibration properties 

of nanostructured elements, elastostatic solutions of nanoinhomogeneity problems, elastic 
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field around crack tip and effective properties of heterogeneous media (Wang et al., 

2011). In addition, there is a surge of scientific interest in qualitatively studying the 

flexoelectric effect on the nanostructured dielectric materials. In this literature review, 

attention will be focused on the continuum modeling of one-dimensional 

nanowires/nanobeams and two-dimensional thin film, nanoplates with the surface effects 

and theoretical works on the flexoelectric effect, respectively. 

1.4.1 Continuum modeling of nanostructures with surface effects 

Gurtin and Murdoch (1975) proposed a theoretical framework based on continuum 

mechanics accounting the surface effects. In the surface elasticity model they proposed, 

the surface is regarded as a thin layer with negligible thickness adhered to the underlying 

bulk material without slipping. The surface properties and constitutive relations for the 

surface are different from those of the bulk and equilibrium of the surface is governed by 

the generalized Young-Laplace equations. It should be mentioned that the material 

properties of surface can be determined from experiments or atomistic simulations. This 

surface elasticity model has been served as a basis for many studies to investigate the 

mechanical properties of nanostructured materials. Miller and Shenoy (2000) investigated 

the size-dependent elastic properties of Al and Si nanowires and nanoplates taking into 

account the surface stress effect. The size dependence of torsional rigidity of nanosized 

bars has been found by the continuum analysis with the surface stress effect; the results 

were in good agreement with those from atomistic simulations (Shenoy, 2002). 

Dingreville et al. (2005) developed a framework to incorporate the surface energy into 

the continuum theory of mechanics and demonstrated that the overall elastic behavior of 

structural elements (such as particles, wires, films) were size-dependent. Guo and Zhao 

(2007a) studied the elastic bending properties of nanobeams based on a three-

dimensional crystal model. Zhu (2008) investigated the influence of surface effects on the 

bending stiffness and hence the natural frequency of a coaxial core-shell nanowire. He 

and Lilley (2008a; b) studied the influence of surface effects on the static bending 

behavior and bending resonant frequencies of nanowires with different boundary 

conditions by incorporating the generalized Young-Laplace equation into the Euler-

Bernoulli beam theory. Based on the surface elasticity model, Wang et al. (2008) 
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investigated the twisting deformation of nanowires due to anisotropic surface stresses and 

pointed out that the surface stresses might be responsible for the formation of some 

micro-/nanohelics. Wang and Feng (2009a; b) investigated the effects of both surface 

elasticity and residual surface tension on the buckling behaviors of nanowires based on 

Euler-Bernoulli and Timoshenko beam models, respectively. Zheng et al. (2010) 

investigated the size-dependent elastic property of nanowires induced by the surface 

effects using a core-shell model. Assadi and Farshi (2010) investigated the size-

dependent vibration of curved nanobeams and rings including surface energies. 

Two-dimensional nanostructures have also been widely studied with the 

consideration of the surface effects. He et al. (2004) studied the size-dependent 

mechanical response of a film with an arbitrary geometry and boundary conditions based 

on the surface elasticity model. Lim and He (2004), and Lu et al. (2006) conducted large-

deflection analysis on the static and dynamic responses of nanoscale thin elastic films 

with the consideration of the surface effects. Guo and Zhao (2005; 2007b) presented a 

three dimensional continuum model to investigate the size-dependent elastic moduli of 

nanofilms with surface relaxation and surface energy effects. Huang (2008) proposed a 

modified continuum model of elastic films by incorporating surface effects into the 

conventional nonlinear von Karman plate theory. Wang and Zhao (2009) investigated the 

size-dependent self-buckling and bending behavior of nanoplates with surface effects. 

Zhu et al. (2009) studied the effects of surface and initial stresses on the bending stiffness 

of tri-layer plates and nanofilms. Lu et al. (2009) presented a study on nanoscale 

functionally graded films considering the surface effects, where the surface layers of the 

film were modeled by the continuum theory of surface elasticity. Assadi and Farshi (2011) 

conducted a size-dependent stability analysis of circular ultrathin films in elastic medium 

with the consideration of surface energies. 

For piezoelectric nanomaterials, based on the surface elasticity model, Wang and 

Feng (2010) analyzed the influence of the residual stress and surface elasticity on the 

vibration and buckling behaviors of piezoelectric nanowires using the Euler-Bernoulli 

beam model. As an extension of the surface elasticity model, Huang and Yu (2006) 

proposed a surface piezoelectricity model by assuming that the surface energy density 

depended on the electric field at the surface in addition to the in-plane strains. They 



9 

 

 

 

studied a piezoelectric nanoring under an applied potential and showed that the surface 

piezoelectricity played an important role in the electromechanical behavior of 

piezoelectric nanostructures and the effect of surface piezoelectricity might be employed 

to improve some performances of nanostructures. However, the continuum modeling of 

surface effects including surface piezoelectricity on the mechanical and 

electromechanical coupling properties of nanostructured piezoelectric materials is far 

from complete. Therefore, it is necessary to conduct a systematic investigation to gain a 

fundamental understanding of how the surface effects influence the mechanical and 

physical properties of these structures.  

1.4.2 Theoretical investigation on the flexoelectric effect 

The theoretical studies on the influence of the flexoelectric effect on the mechanical 

and physical properties of nanostructured dielectrics are much fewer in comparison with 

those on the influence of surface effects on the properties of nanostructures. Tagantsev 

(1986, 1991) presented a phenomenological study on the flexoelectricity and found that 

the flexoelectric coefficient scaled with the dielectric susceptibility of the material. 

Maranganti et al. (2006) developed a complete mathematical framework for the 

flexoelectricity and solved the general embedded mismatched inclusion problems with 

explicit results for the inclusions spherical and cylindrical shapes. Based on this 

framework, Sharma et al. (2007) quantitatively demonstrated the possibility of designing 

“piezoelectric nanocomposites” without using piezoelectric materials. Majdoub et al. 

(2008) found a remarkable enhancement in piezoelectricity of piezoelectric 

nanostructures due to the flexoelectricity. Eliseev et al. (2009) investigated the 

renormalization in properties of ferroelectric nanostructures and elucidated the size-

effects in such structures using Landau-Ginzburg-Devonshire phenomenological 

approach. Shen and Hu (2010) developed a more complete theoretical frame work for 

nanosized dielectrics with the consideration of the surface effects, flexoelectricity and 

electrostatic force. Sharma et al. (2010) presented closed-form analytical expressions for 

the flexoelectric response of various thin film and superlattice configurations under 

mechanical stress. They found that the interplay between thin film thickness, symmetry 

and flexoelectricity allowed the possibility of creating manufacturable piezoelectric thin 
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film superlattices without using piezoelectric materials. Yurkov (2011) pointed out that in 

the presence of the flexoelectric effect, the elastic boundary conditions were not 

coincident with the conventional ones. Liu et al. (2012) studied the effect of the 

flexoelectricity on the electrostatic potential in a bent piezoelectric nanowire and found 

that the flexoelectricity could explain the discrepancy between the results from classical 

piezoelectricity predictions and experimental measurements. However, the continuum 

modeling of the flexoelectric effect on the physical properties of piezoelectric 

nanostructures is still limited. Therefore, it is necessary to further explore the 

flexoelectricity on the mechanical and physical properties of these novel structures based 

on the modified continuum mechanics approaches. 

1.5 Objectives 

From the above introduction and literature review, it has demonstrated that 

understanding the size-dependent properties of piezoelectric nanostructures is essential 

for the design and applications of electronic devices in NEMS. The continuum mechanics 

approaches with the incorporation of the small scale features are successful in predicting 

the size-dependent properties of the nanostructured materials due to their simplicity and 

computation efficiency. However, these approaches were mostly developed to investigate 

the properties of elastic nanostructures, while investigation on the properties of 

piezoelectric nanostructures is very limited. Therefore, the main objective of this thesis is 

to provide a comprehensive theoretical study on the size-dependent properties of 

piezoelectric nanobeams and nanoplates based on the modified continuum mechanics 

modeling. Attention will be focused on: 

(1) Proposing modified continuum models for piezoelectric nanostructures with the 

consideration of the size effects; 

(2) Studying the size-dependent electroelastic responses of piezoelectric nanobeams 

and nanoplates with the size effects; 

(3) Studying the surface effects on the bending, vibration and buckling behaviors of 

piezoelectric nanobeams with different boundary conditions; 
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(4) Studying the surface effects on the bending, vibration and buckling behaviors of 

piezoelectric nanoplates with different boundary conditions; 

(5) Investigating the influence of the flexoelectric effect on the bending and 

vibration of piezoelectric nanobeams. 

1.6 Thesis structure 

A general introduction and literature review are presented in Chapter 1 while 

detailed introductions on each specific topic are presented in later chapters. Chapter 2 

investigates the problem of a cantilevered piezoelectric nanobeam with surface effects, 

simulation results are provided to show the surface effects on the electromechanical 

coupling properties and static bending behavior of the piezoelectric nanobeams. Chapter 

3 studies the vibration and buckling behavior of piezoelectric nanobeams with different 

boundary conditions. Results are presented to show how the surface effects, applied 

electrical load, applied axial strain and boundary conditions influence the vibration 

behavior of the piezoelectric nanobeams. The critical electric potential for the mechanical 

buckling of the piezoelectric nanobeam is analytically obtained and surface effects on this 

physical quantity are shown in the simulation results. Chapter 4 provides a study on the 

electromechanical responses of a curved piezoelectric nanobeam with surface effects. 

The explicit solutions for the electroelastic fields of a curved cantilever beam under both 

mechanical and electrical loads are obtained. Results are presented to show how the 

surface effects influence the displacement, stress and electric displacement fields of the 

curved beam. Chapter 5 presents a study on the size-dependent electroelastic responses of 

a simply-supported piezoelectric plate with nanoscale thickness. The size-dependent 

behaviors of the out-plane deflection, in-plane deformation, electric field, critical 

buckling load and critical electric potential for the mechanical buckling of the 

piezoelectric nanoplate under electromechanical loads are investigated. The vibration and 

buckling behaviors of simply supported and clamped-clamped piezoelectric nanoplates 

are presented in Chapter 6 and Chapter 7, respectively. In Chapter 6, analytical solutions 

for the piezoelectric nanoplate with surface effects under both traction free and clamped 

in-plane constraints are obtained. The transverse vibration of the plate is investigated 

under different applied electric potential, plate geometries, mode numbers and in-plane 
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conditions. Moreover, the critical electric potential for the plate is also examined under 

different length to thickness ratios. In Chapter 7, Ritz solutions are obtained and 

simulation results are presented to show the surface effects on the resonant frequency and 

critical electric potential of a piezoelectric nanoplate with clamped boundary conditions. 

Chapter 8 provides an investigation of the flexoelectric effect on the mechanical and 

electrical properties of piezoelectric nanobeams with different boundary conditions based 

on Euler-Bernoulli beam theory. The influence of the flexoelectricity on the static 

bending, axial relaxation strain, resultant axial forces and electric polarization will be 

presented. In Chapter 9, modified Timoshenko beam theory is developed with the 

consideration of the flexoelectricity. The static and dynamic behaviors of a simply 

supported piezoelectric nanobeam under distributed mechanical load are investigated 

based on the developed model. Finally, Chapter 10 concludes this thesis and some 

recommendations for the future work on the modeling of size-dependent properties of 

nanostructured piezoelectric materials are provided. 
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Chapter 2  

2 Surface effects on the electromechanical coupling and 
bending behaviors of piezoelectric nanowires1 

2.1 Introduction 

Piezoelectric nanostructures hold tremendous potential for device applications, such as 

piezoelectric nanogenerators, mechanical-electrical triggers, sensors and nanoresonators 

(Song et al., 2006; Wang et al., 2006; Wang et al., 2007a; Lin et al., 2008; Zhou et al., 

2008). Unlike their bulk counterparts, piezoelectric nanomaterials are observed to exhibit 

size-dependent properties when their dimensions approach to microns and nanometers. 

For example, the elastic and fracture properties of ZnO piezoelectric nanowires were 

found to vary with their cross-sectional dimensions according to the experimental 

measurements (Chen et al., 2006; Desai et al., 2007; Agrawal et al., 2008). In addition to 

the experimental work, size-dependent elastic properties of piezoelectric nanostructures 

were also reported using atomistic simulation (Kulkarni et al., 2005; Agrawal et al., 2009; 

Hu et al., 2009). The piezoelectric properties of ZnO nanobelts have also been explored 

by Zhao et al. (2004). They used piezoresponse force microscopy to measure the 

effective piezoelectric coefficient d33 of a ZnO nanobelt and found that d33 of the ZnO 

nanobelt was frequency dependent and much larger than their bulk counterpart. First 

principal energy theory was used to study the dielectric properties of nanoscale slabs in 

Ramprasad et al.‟s work (2005), and their results indicated that the dielectric constant is 

dependent on the slab thickness. To achieve reliable and optimal performance of these 

nanostructures in the potential device applications, it is essential to find the underlying 

reason for the size-dependent properties of piezoelectric nanomaterials. Thus, the 

mechanical and electrical responses of the piezoelectric nanostructures can be properly 

characterized.  

                                                 

1
A version of this chapter has been published.  

 

Yan, Z. and Jiang, L. Y., J. Phys. D: Appl. Phys. 44, 075404, (2011). 
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For elastic nanostructures, it has been widely accepted that surface is largely 

responsible for the size-dependent mechanical properties of these materials due to the 

dramatic increasing ratio of surface area to volume at nanoscale. Recently, surface effects 

on the mechanical properties of elastic materials have been extensively studied by 

researchers. In addition to atomic studies (Makeev et al., 2006; Zhang et al., 2008; Rudd 

et al., 2008), researchers have accounted for the surface effects in continuum modeling 

by using the linear surface elastic theory developed by Gurtin and Murdoch (1975). 

Under a reasonable assumption, a surface can be regarded as a thin layer with negligible 

thickness t adhered to the bulk without slipping (Cammarata, 1994; Miller and Shenoy, 

2000). The constitutive and equilibrium equations for the surface layer are different from 

those in the bulk of the solid. Following this surface-layer-based model, the surface 

effects on the bending, vibrational and buckling behaviors of nanowires were predicted 

by one-dimensional beam theory via the Young-Laplace equation (Wang and Feng, 2007; 

He and Lilley, 2008; Wang and Feng, 2009; Jiang and Yan, 2010). Through these studies 

and many others, it has been indicated that “the laws of continuum mechanics are 

amazing robust and allow one to treat even intrinsically discrete objects only a few atoms 

in diameter” (Yakobson, 1997). Therefore, it is natural to resort to continuum theory for 

modeling the electromechanical behavior of piezoelectric nanostructures due to the 

efficiency of such an approach. 

It is worth to mention that Michalski et al. (2005) were the first to develop a 

continuum theory for the piezoelectric response of one-dimensional nanotubes and 

nanowires. However, their results failed to interpret the size-dependent properties of such 

materials. To investigate the underlying reason for the size-dependent properties of 

piezoelectric nanobeams, Sharma and his coworkers (Majdoub et al., 2008a; b) adopted 

the strain gradient induced flexoelectricity in the Euler-Bernoulli beam model to study 

the electromechanical coupling of piezoelectric nanobelts. Their results showed the 

enhanced size-dependent piezoelectricity in piezoelectric nanostructures. Inspired by the 

surface-layer-based model, it is natural to believe that surface effects may also play an 

important role in the electromechanical behavior of piezoelectric nanostructures. As 

argued earlier by Tagantsev (1986), surface piezoelectricity for piezoelectric materials 

may become important at small sizes. Therefore, it is essential to incorporate electric 
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field dependent surface effects when investigating the electromechanical coupling 

behavior of the nanoscale piezoelectric structures. Considering the surface 

piezoelectricity, Huang and Yu (2006) did pioneering work to study the 

electromechanical behavior of a piezoelectric ring. A considerable effect of surface 

piezoelectricity on the stress and electric fields was observed when the ring size scaled 

down to nanometers. As an extension of his previous work (Chen, 2007), Chen (2008) 

considered the macroscopic behavior of two-phase fibrous piezoelectric composites and 

found size-dependent electroelastic properties in the presence of surface effects. 

Since most piezoelectric nanodevices are beam based, it is necessary to investigate 

the electromechanical properties as well as the bending behavior of piezoelectric 

nanobeams. Therefore, it is the objective of the current work to study the surface effects 

on the electromechanical coupling and static bending of piezoelectric nanowires using a 

conventional Euler-Bernoulli beam model. Following the similar surface-layer-based 

model in studying the surface effects on the mechanical properties of elastic materials, 

explicit expressions of electromechanical coupling (EMC) coefficient and effective 

bending rigidity accounting for surface effects are derived. It is indicated that the EMC 

coefficient is size-dependent and can be enhanced significantly with the scaling down of 

nanowire size. In addition, the surface effects on the stiffness and the electroelastic fields 

of the bending piezoelectric beam are also revealed. 

2.2 Formulation of the problem 

We adopt the foundation for the continuum modeling of elastic nanostructures 

considering the surface effects with using a surface-layer-based model, i.e. a 

nanostructure=bulk+surface. As proposed by Huang and Yu (2006), the constitutive 

equations for the surface are expressed as: 

s 0 s s ,k kc e E                                                                                               (2.1) 

s 0 s s ,i i i ij jD D e E                                                                                              (2.2) 

with 
sc , 

s

ke and 
s

ij being the surface elastic, surface piezoelectric and surface 
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dielectric tensors. 0

  and 0

iD can be termed as residual surface stress and surface 

electric displacement without applied strain and electric field. 

The constitutive relations in the bulk are the same as traditional piezoelectric 

materials, which are written in the form, 

 ,ij ijkl kl ijk kc e E                                                                                                            (2.3) 

,i kli kl ij jD e E                                                                                                              (2.4) 

with ijklc , ijke and ij being the bulk elastic, bulk piezoelectric and bulk dielectric tensors. 

 

Figure 2.1: (a) Schematic of a piezoelectric cantilever beam with surface effects and (b) free-body 

diagram of an incremental beam element. 

2.2.1 Static bending of a piezoelectric nanobeam 

The problem envisaged is a cantilever piezoelectric beam subjected to a concentrated 

load F at the free end as shown in Fig. 2.1(a). A Cartesian coordinate system is used to 

describe the problem, where z-axis is the neutral axis of the beam, and y is the poling 

direction of the piezoelectric materials. L, h and b represent the length, thickness and 

width of the beam, respectively. Assuming beam thickness is much less than the radius of 

curvature induced by the mechanical load, then the axial strain xx  at any point in the 

beam can be defined as 
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,
( )

xx

y

R x
                                                                (2.5) 

where R(x) is the radius of curvature. 

The electric field is assumed to exist only in y direction, therefore, the constitutive 

relation of the one-dimensional piezoelectric beam in the bulk can be written as 

11 31 ,xx xx yc e E                                                                                                        (2.6) 

31 33y xx yD e E   .                                                   (2.7) 

Similarly, the constitutive equations for the surface layer of the beam are 

s 0 s s

11 31 ,xx xx xx yc e E                                                (2.8) 

s 0

x xD D .                                                                    (2.9) 

According to the generalized Young-Laplace equation derived by Chen et al. 

(2006b), the surface effects are represented by the traction jumps on the beam surfaces, 

i.e. 

s s

c

;  xx xx
x yT T

x R

 
 


,                                                   (2.10) 

where Rc is the radius of curvature defined positively when the unit normal of surface is 

pointed towards the center of curvature. Therefore, Rc =R(x) for the upper surface layer 

and c ( )R R x   for the lower surface layer. Under the open circuit condition where the 

electric displacement Dy=0 on the beam surfaces, we have 

s
0 s 31 31

11

33 2 ( )

( )

xx

u

y

e e h
c

R x
T

R x




   
     

    ,                       (2.11) 

s
0 s 31 31

11

33 2 ( )

( )

xx

l

y

e e h
c

R x
T

R x




   
    

      ,                           (2.12) 

as the traction jumps along y direction for the upper and lower surfaces of the rectangle 
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beam, while Ty=0 for the side surfaces. It should also be mentioned that the electric 

displacement jump across surfaces is zero. 

To derive the governing equation for the piezoelectric beam considering surface 

effects, we follow the same procedure in Liu and Rajapakse‟s work (2010) for an elastic 

nanobeam. We take an incremental beam element of length x  and draw the free body 

diagram as shown in Fig. 2.1(b), in which Tx and Ty are tractions induced by the existence 

of the surfaces, M and Q are bending moment and shear force, respectively. It should be 

mentioned that we only draw Tx and Ty on the upper surface of the element; however, 

they exist on the circumferential surfaces of the beam. The equilibrium equations of the 

element can be expressed as, 

d
d 0

d
x

s

M
T y s Q

x
    ,                                         (2.13) 

d
d 0

d
y

s

Q
T s

x
  ,                                                        (2.14) 

where s is the perimeter of the beam cross section. Differentiating Eq. (2.13) with respect 

to x and using Eq. (2.14) result in 

2

2

d d
d d 0

d d
x y

s s

M
T y s T s

x x
    ,                                     (2.15) 

where dxx
A

M y A  , with A and xx  being the beam cross-sectional area and the axial 

stress. 

Assuming the deflection of the beam in the y direction is v(x), for a beam with small 

deformation, the curvature is approximated by the second derivative of the beam 

deflection, i.e. 2 21/ ( ) d ( ) / dR x v x x . Substituting Eq. (2.10) into Eq. (2.15) and using Eqs. 

(2.5), (2.8), (2.11) and (2.12), the governing equation for a piezoelectric beam including 

the surface effects is derived as 

4 2
0

eff 4 2

d d
( ) =2

d d
xx

v v
EI b

x x
 ,                                            (2.16) 
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where (EI)eff is the effective bending rigidity of the piezoelectric beam, which can be 

expressed as 

2 s
3 s 3 231 31 31

eff 11 11

33 33

1 1 1
( ) =

12 6 2

e e e
EI c bh c h bh

 

    
       

    
.  (2.17) 

It is noted that  0 2 2( ) 2 d / dxxq x b v x  at the right hand side of Eq. (2.16) is induced by 

the residual surface stress and can be regarded as a distributed load acting normal to the 

beam axis. When the surface piezoelectricity and the electromechanical coupling are not 

considered, Eq. (2.17) recovers to the effective bending rigidity of an elastic nanobeam 

with surface effects (He and Lilley, 2008). 

For the cantilever beam considered here, the corresponding boundary conditions are 

 
0

d ( )
0 0; 0,

d x

v x
v

x 

                                             (2.18) 

   0; .M L Q L F                                                (2.19) 

Based on boundary conditions (2.18) and (2.19), Eq. (2.16) can be solved. Then the 

deflection of the piezoelectric beam can be obtained as 

00
( ) ( e e e e ) (e e ),

44

x x
L L

xxxx

FL Fx
v x

bb

 
 

   

 

  
 

          (2.20) 

with  0 2

eff
=2 /xxbL EI  . Corresponding, the other electroelastic fields in the beam can 

also be determined. 

2.2.2 Derivation of EMC coefficient 

The EMC coefficient is a measurement of the effectiveness of the electromechanical 

coupling and has been used as an important parameter for piezoelectric energy harvesting 

(Beeby et al., 2006; Anton and Sodano, 2007; Majdoub et al., 2008). It can be defined as 

the square root of the ratio of electrical energy stored in the volume of a piezoelectric 

body to the total mechanical energy supplied to the body (or vice versa) and can be 

obtained by measuring variations of the energy stored in the electromechanical structure 



25 

 

 

 

with changing electric boundary conditions (Trindade and Benjeddou, 2009). The total 

internal energy can be expressed as 

s1 1
= d d ,

2 2
xx xx xx xx

V
U V   


                                  (2.21) 

V and   represent the volume and the surface area of the beam, respectively. 

(i) Open circuit condition. In this case, electric displacement is Dy=0. From the 

constitutive Eqs. (2.6) and (2.8) for both bulk and surface, the total internal energy stored 

Uoc in the piezoelectric body can be expressed as 

2 2
2 s2 2

2 s 231 31 31
11 112 20 0

33 33

1 d ( ) 1 d ( )
= ( ) d d + ( ) d d ,

2 d 2 d

L L

oc
A s

e e ev x v x
U c y A x c y s x

x x 

   
    

   
             (2.22) 

which can then be reduced to 

2
2 s 2

3 s 2 331 31 31
11 11 20

33 33

1 1 1 1 d ( )
= d

2 12 2 6 d

L

oc

e e e v x
U c bh c bh h x

x 

       
          

       
 .                  (2.23) 

(ii) Short circuit condition. In this case, electric field Ey=0. Following the same procedure 

for open circuit condition, the total internal energy of the piezoelectric body can be 

calculated as 

2
2

3 2 3

11 11 20

1 1 1 1 d ( )
= d

2 12 2 6 d

L
s

sc

v x
U c bh c bh h x

x

   
     

    
 .                                         (2.24) 

Under the same nonuniform strain xx condition (Trindade and Benjeddou, 2009), 

the square of EMC coefficient can then be determined as 

2 s
2 31 31 31
eff 2 s s

11 33 31 11 33 31 31

(2 6 )

( ) ( )(2 6 )

oc sc

oc

U U e bh e e h b

U c e bh c e e h b


 

  
 

   
.                                        (2.25) 

It is evident that the EMC coefficient is size-dependent when considering the surface 

effects. If the surface effects are ignored, the above equation is reduced to the EMC 

coefficient of bulk piezoelectric materials as  2 2 2

0 31 31 11 33/e e c   . 



26 

 

 

 

2.3 Results and discussion 

For case study, PZT-5H is chosen as the piezoelectric material and the bulk material 

properties are 11 126 GPac  , -2

31 6.5 C me   , 8 1 1

33 1.3 10  C V  m     . The surface 

properties can be obtained by atomistic calculations. For example, Miller and Shenoy 

(2000) calculated the free surface properties of aluminum based on the embedded-atom 

method for some crystallographic direction. Usually, the surface elasticity could be on the 

order of -11 10 N m  (Miller and Shenoy, 2000; Lachut and Sader, 2007; He and Lilley, 

2008; Ru, 2009). However, due to the lack of such work on piezoelectric materials, it is 

difficult to choose the appropriate surface piezoelectric and dielectric constants. 

Following Huang and Yu‟s work (2006), we choose s -1

11 7.56 N mc   and 

s 8 -1

31 3 10  C me     as a reasonable approximation for these surface material properties 

based on some previous work. 

To investigate how the surface effects influence the electromechanical coupling of 

piezoelectric materials, the variation of EMC coefficient eff  normalized by the classical 

EMC coefficient 0  for the bulk material with the beam thickness h is plotted in Fig. 2.2. 

The width of the beam is assumed as b=0.5h. It is observed in this figure that the EMC 

coefficient is size-dependent and surface effects become more prominent with a decrease 

in beam thickness. A high apparent piezoelectric response is seen at smaller sizes, for 

example, at h=12 nm, the EMC coefficient is almost doubled compared with the EMC 

coefficient of the bulk materials. Since this EMC coefficient is an important measurement 

of the effectiveness of the electromechanical coupling, which governs the electricity 

generation of piezoelectric generators in energy harvesting, the giant increase in EMC 

coefficient at the nanoscale due to the surface effects is expected to be helpful for the 

performance improvement of piezoelectric nanogenerators. 

With the consideration of surface effects, the bending rigidity of the piezoelectric 

beam is changed accordingly as shown in Eq. (2.17). Therefore, it will be interesting to 

investigate the surface effects on the compliance or the stiffness of the piezoelectric 

bending beam. As an example, the material constants are the same as those in Fig. 2.2 

and the geometric parameters of the beam are taken as h=20 nm, b=0.5h and L=500 nm. 
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Figure 2.2: The variation of the normalized EMC coefficient with the beam thickness h. 

 

Figure 2.3: Deflection of the piezoelectric cantilever beam along the longitudinal axis. 

The deflections along the beam longitudinal axis are plotted in Fig. 2.3 and compared to 

see the surface effects. From this figure, we found a similar phenomenon which was 

observed for an elastic nanobeam (He and Lilley, 2008), i.e. a positive residual surface 
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Figure 2.4: The variation of the normalized stiffness K with L/h. 

 

Figure 2.5: The normalized electric field distribution along the longitudinal axis. 

stress 0 0xx   softens the cantilever beam while a negative residual stress 0 0xx   stiffens 

the cantilever beam compared with the bulk beam without surface effects. It is also 
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observed in this figure that without considering the surface residual stress 0 0xx  , the 

combined effect of surface elasticity and surface piezoelectricity is to stiffen the beam as 

evidenced by the bending curve for the beam with surface effects ( 0 0xx  ) being below 

that for the classical beam. Here we also study the nanobeam contact stiffness k defined 

by Jing et al. (2006), i.e. the ratio of the applied force F to the induced deflection v at the 

same point sustaining the applied force. For nanobeams with thickness h=20 nm and 

h=80 nm and varying length-to-thickness ration L/h, Fig. 2.4 plots the variation of 

normalized stiffness K=k/k0 with k0=F/v0 representing the stiffness of a conventional 

beam without surface effects. It is found that stiffness has a significant dependence on the 

beam thickness: smaller beams appear softer or stiffer due to the surface effects. It is also 

observed from this figure that surface effects are more significant for the slender beams 

with larger length-to-thickness ratio (L/h). It is concluded from these two figures that 

surface effects have a significant influence on the static bending behavior of piezoelectric 

nanobeam. 

 

Figure 2.6: The variation of the normalized electric field distribution with h. 

To show the influence of surface effects upon the electric field, Fig. 2.5 displays the 

variation of electric field along the beam longitudinal axis, where the electric field E is 
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normalized by E0 for the classical beam without surface effects. It is found in this figure 

that surface effects on the electric field are prominent at the fixed end, and the residual 

surface stress has no effect at the free end. This phenomenon is attributed to the zero 

curvature at the free end of the beam; therefore, the residual surface stress has no effect 

on the electroelastic fields of the beam as shown in Eq. (2.16). The variation of this 

normalized electric field with the beam thickness is plotted in Fig. 2.6. It is found in this 

figure that when the beam thickness h is small, the electric field deviates more from their 

conventional bulk counterpart, and approaches it with the increase in beam thickness. 

2.4 Conclusions 

Based on the Euler-Bernoulli beam theory and the generalized Young-Laplace equation, 

we have investigated the combined surface effects of residual surface stress, surface 

elasticity and surface piezoelectricity on electromechanical coupling and bending 

behaviors of a cantilever piezoelectric nanobeam. Explicit solutions for elastic bending 

are obtained to assess surface effects on the stiffness of nanobeams. It is found that 

surface effects play a significant role in the electroelastic fields of piezoelectric 

nanobeams. It is observed that the influence of surface effects upon the beam stiffness is 

more prominent for slender beams. The significant enhancement of electromechanical 

coupling coefficient due to surface effects has also been observed with the decrease in the 

nanobeam thickness, which implies that surface effects may be employed for 

performance improvement of nanostructured piezoelectric materials in the potential 

applications as nanogenerators. The obtained results are envisaged to benefit 

understanding of the size-dependent electromechanical properties of nanostructured 

piezoelectric materials and are very helpful for the design of piezoelectric beam-based 

nanogenerators. 
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Chapter 3  

3 The vibrational and buckling behaviors of piezoelectric 
nanobeams with surface effects2 

3.1 Introduction 

Recently, one-dimensional piezoelectric nanostructures, such as nanowires (NWs) or 

nanobelts, have been attracting a great deal of interest from research communities due to 

their potential applications as nanoresonators (Bai et al., 2003; Tanner et al., 2007), field 

effect transistors (Wang et al., 2006; Fei et al., 2009), diodes (He et al., 2007), chemical 

sensors (Wang et al., 2004) and nanogenerators (Wang and Song, 2006; Su et al., 2007). 

Determination of the mechanical and physical properties of piezoelectric nanostructures 

is a critical issue in the design process of these nanodevices. For example, in their 

applications as nanoresonators (Bai et al., 2003; Chen et al., 2006; Huang et al., 2006), 

the vibrational behavior of piezoelectric nanostructures needs to be accurately predicted. 

Although many efforts have been devoted to the study of the properties of 

macroscopic piezoelectric materials, there are much fewer studies investigating the 

properties of nanoscale piezoelectric materials with electromechanical coupling. Gao and 

Wang (2007) applied the perturbation theory to quantitatively predict the piezoelectric 

potential distribution in a nanowire by applying a lateral force at its tip. By means of the 

first piezoelectric effect approximation, the piezoelectric potential generated in a bent 

ZnO nanorod was derived using the continuum modeling approach (Shao et al., 2010). 

Sun et al. (2010) numerically estimated the potential, the output power and the energy 

conversion efficiency of three different piezoelectric nanostructures by applying both 

static and dynamic loads. In these studies, all the material property coefficients of 

nanoscale piezoelectric materials were considered constants and the same as their bulk 

counterparts. However, existing work indicated that the material properties of 

                                                 

2
A version of this chapter has been published. It should be noted that the influence of the axial boundary 

constraint of the piezoelectric nanobeams is ignored in this study. To consider the axial boundary constraint, 

a supplementary work is provided in Appendix A.  

 

Yan, Z. and Jiang, L.Y., Nanotechnology 22, 245703, (2011). 
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piezoelectric nanostructures were size-dependent. The Young‟s modulus of piezoelectric 

NWs was observed to increase with the decrease of the nanowire diameter at the 

nanoscale (Chen et al., 2006; Stan et al., 2007; Agrawal et al., 2008). In Zhao et al.‟s 

work (2004), the effective piezoelectric coefficient of the ZnO nanowire was found to be 

frequency-dependent and was much larger than that of the bulk material. By conducting a 

molecular dynamics study, size effects were also found to influence the piezoelectric 

coefficient of the 3BaTiO  nanowire (Zhang et al., 2010). From the first-principles 

calculations, it was also demonstrated that piezoelectric nanomaterials have larger 

piezoelectric constants than their bulk counterparts (Xiang et al., 2006; Li et al., 2007). 

These studies provide direct evidence of the size dependence of material properties for 

nanoscale piezoelectric materials. Such size-dependent properties of piezoelectric 

nanomaterials are believed to be attributed to both the strain-gradient-induced 

flexoelectricity (Majdoub et al., 2008a; b) and surface effects (Tagantsev, 1986). In 

addition to the surface elasticity and residual surface stress as in elastic materials, the 

surface effects of piezoelectric materials also include surface piezoelectricity. 

The surface effects on the size-dependent elastic properties of nanomaterials have 

been well investigated. Among these existing studies, continuum mechanics approaches 

based on the linear surface elasticity theory proposed by Gurtin and Murdoch (1975) 

have been widely adopted to model the influence of surface effects on the properties of 

nanostructures. Under a reasonable assumption, a surface can be regarded as a thin layer 

with negligible thickness t adhered to the bulk without slipping (Cammarata, 1994; Miller 

and Shenoy, 2000). The constitutive and equilibrium equations for the surface layer are 

different from those in the bulk of the solid. Following this surface elasticity model, He 

and Lilley (He and Lilley, 2008a; b) investigated the influence of surface effects on the 

elastic behavior of static bending and the resonant frequencies of NWs with different 

boundary conditions. The vibrational and buckling behaviors of elastic NWs were also 

predicted by considering surface effects in Wang and Feng‟s work (2007; 2009a; b). 

However, the work on continuum modeling of piezoelectric nanostructures considering 

surface effects is very limited. Wang and Feng (2010) investigated the effect of surface 

stress on the vibration and buckling of piezoelectric nanowires using the surface elasticity 

model by ignoring the surface piezoelectricity effect. It should be mentioned that the 
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physical origin of the surface effects is that atoms at the free surface are exposed to a 

different environment compared to the atoms in the bulk of a material (Cammarata, 1994). 

Consequently, the surface atom will be in a higher energy state than the atom in the bulk 

due to the missing of its neighboring atoms, i.e. the source of surface energy. Since 

nanostructures have high specific surface area, the surface energy becomes a significant 

part of the total elastic energy. In the surface elasticity model, the surface energy density 

depends on the in-plane strain at the surface. For piezoelectric nanostructures, it is natural 

to believe that the surface energy density may also depend on the electric field at the 

surface, which inspired the extension of the surface elasticity model to the surface 

piezoelectricity model proposed by Huang and Yu (2006). Similar to the surface 

elasticity model, constitutive relations for the surface and the bulk of the piezoelectric 

nanomaterial are different. In their work, the mechanical and electrical responses of a 

piezoelectric ring were studied using this developed surface piezoelectricity model. The 

results indicated that the electroelastic fields of a piezoelectric nanostructure were 

significantly influenced by the surface effects, which were more prominent at a few 

nanometers. The surface effects on the electromechanical coupling and static bending of 

piezoelectric NWs were studied in our recent work (Yan and Jiang, 2010). It was found 

that the electromechanical coupling coefficient could be dramatically increased due to the 

surface effects. 

Since most nanodevices with piezoelectric nanowires or nanobelts as fundamental 

elements are beam-based, it is necessary to investigate the vibrational and buckling 

behaviors of piezoelectric nanobeams. However, it appears that the influence of the 

surface effects on such behaviors of piezoelectric nanobeams has not been investigated 

thus far. Hence, the objective of the current work is to study the combined surface effects 

and electromechanical coupling on the vibration and buckling of piezoelectric nanobeams 

using the conventional Euler-Bernoulli beam model. By using the surface piezoelectricity 

model (Huang and Yu, 2006), the surface effects on the resonant frequencies and the 

critical electrical buckling load will be revealed. This work is expected to predict the 

mechanical and electrical responses of piezoelectric nanostructures more accurately and 

provide a guideline for the design and applications of the piezoelectric-nanobeam-based 

devices. 
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3.2 Problem formulation and solution 

The case study in the current work will be conducted on a piezoelectric nanobeam with a 

rectangular cross section. Fig. 3.1(a) shows an example of a piezoelectric cantilever 

nanobeam with L, b and h denoting its length, width and thickness, respectively. The 

bending displacement along the z-direction is w. Based on the Euler-Bernoulli beam 

theory; the axial strain x  at any point in the beam can be defined as 

 2

0 2

,
,x

w x t
z

x
 


 


                                                  (3.1) 

with 0  being the applied axial strain. The electric field is assumed to exist only in the z 

direction, and can be determined by the electric potential Φ as 

.zE
z


 


                                                               (3.2) 

 

Figure 3.1: (a) Schematic of a piezoelectric nanobeam with surface effects and (b) free-body diagram 

of an incremental beam element. 

For the surface piezoelectricity model, the constitutive equations of the surface are 

different from those of the bulk. If the poling direction for the piezoelectric medium is 

assumed to be along the z-direction, the constitutive equations for the surface of the one-

dimensional beam can be obtained based on Huang and Yu‟s work (2006) 
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s 0 s s

11 31 ,x x x zc e E                                                     (3.3) 

s 0 ,x xD D                                                                    (3.4) 

where s

x  and s

xD  are axial surface stress and surface electric displacement; 0

x and 0

xD  

are residual surface stress and residual surface electric displacement without applied 

strain and electric field; and s

11c  and s

31e  are surface elastic and surface piezoelectric 

constants. The constitutive relations in the bulk are the same as conventional 

piezoelectric materials, i.e. 

11 31 ,x x zc e E                                                          (3.5) 

31 33 ,z x zD e E                                                                                      (3.6) 

where x is axial stress, zD is electric displacement, and 11c , 31e and 33 are elastic, 

piezoelectric and dielectric constants for the bulk medium, respectively. 

According to the surface elasticity model, distributed traction results from the 

surface stress and acts on the nanobeam in bending. The traction jumps can be described 

by the generalized Young-Laplace equations derived by Chen et al. (2006), i.e. 

s s

c

; ,x x
x zT T

x R

 
 


                                        (3.7) 

where cR  is the radius of curvature, defined as positive when the unit normal of the 

surface is pointed towards the center of curvature. It is noted that zT  only exists on the 

top and bottom surfaces of the beam, but not on the left and right surfaces. In addition, it 

should be mentioned that the electric displacement jump across surfaces is zero.  

To derive the governing equation for the piezoelectric nanobeam with surface 

effects, we follow the same procedure for an elastic nanobeam (Liu and Rajapakse, 2010). 

The forces acting on a beam element of length dx are shown in Fig. 3.1(b), where 

 , /w x t x     is the rotation angle of the beam cross section; P is the axial normal 

force including the induced forces by the applied axial strain 0  and the applied electrical 

load; Q is the shear force and M is the bending moment. xT  and zT  are induced by the 
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surface effects and exist on the circumferential surfaces of the bulk beam. The governing 

equations for the beam element according to bending can be written as 

 
 2

2

,
d = ,z

S

w x tQ
T S A

x t



 
                                   (3.8) 

 ,
d 0,x

S

w x t M
P Q T z S

x x

 
   

                                    (3.9) 

where S and A are the perimeter and the area of the beam cross section, ρ is the mass 

density, dx
A

P A   and zdx
A

M A  . Differentiating Eq. (3.9) with respect to x and 

using Eq. (3.8) results in 

   2 22

2 2 2

, ,
d d .x z

S S
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P T z S T S A

x x x t


  
    

        (3.10) 

In the absence of free electric charges, Gauss's law requires that 

0.zD

z





                                                                       (3.11) 

Substituting Eq. (3.6) into Eq. (3.11) and using Eqs. (3.1) and (3.2), the electric potential 

distribution can be determined based on the electrical boundary conditions 

 / 2 0h    and  / 2h V  , i.e. 

 2 2
231
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33
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w x te h V V
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  
                     (3.12) 

Then the axial stresses for the surface and the bulk in Eqs. (3.3) and (3.5) can be 

determined as 

 2s
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Applying equations (3.13) and (3.14), the governing equation (3.10) for the piezoelectric 

nanobeam with surface effects is rewritten as 
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where  
eff

EI and 
effP  are the effective bending rigidity and the effective axial load of the 

piezoelectric nanobeam, respectively. They are expressed as 
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It should be mentioned that the current formulation is conducted for a piezoelectric 

nanobeam with rectangular cross section. However, such a formulation procedure is 

also applicable to the piezoelectric nanobeam with circular cross section, such as a 

nanowire. The corresponding effective bending rigidity and effective axial load for the 

nanobeam with circular cross section are 

 
2 s4 3

s31 31 31
11 11eff

33 33
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where D is the diameter of the nanowire. It is indicated in Eqs. (3.16)-(3.19) that the 

surface effects, including the residual surface stress, the surface elasticity and the 

surface piezoelectricity, may significantly influence the vibration and buckling behaviors 

of the piezoelectric nanobeam.  

The resonant frequencies for beams with different boundary conditions, for example, 

simply supported (S-S), cantilever (C-F) and clamped-clamped (C-C) piezoelectric 

nanobeams, can be determined from the following characteristic equations 

   2sin 0 S-S ,s L                                                                                               (3.20) 

           4 4 2 2 2 2

1 2 1 2 2 1 1 2 1 2 1 2sinh sin 2 cosh cos 0 C-F ,s s s s s s s L s L s s s L s L        (3.21) 
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where 

 

 

1

22 2

eff eff eff

1

eff

4

2

P P A EI
s

EI

   
 
 
 

,                                                                            (3.23) 
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with ω being the angular resonant frequencies.  

Since the applied electric potential may induce a compressive axial force due to the 

electromechanical coupling, the determination of the critical electric potential for 

buckling is essential. According to the buckling theory (Timoshenko and Gere, 1961), 

a piezoelectric nanobeam buckles under the following condition 

 
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
                                                 (3.25) 

where K is the effective-length factor which depends on the end conditions of the beam. 

For example, K = 1 for the S-S beam, K = 0.5 for the C-C beam and K = 2 for the C-F 

beam, respectively. Accounting for the surface effects, the critical electric potential 

corresponding to the buckling of the piezoelectric nanobeam is then determined as 
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 

   (3.26) 

These equations derived above depict the dependence of the resonant frequencies 

and the critical electric potential for buckling on the surface effect parameters as well as 

the boundary conditions. It may be noted that, if surface effects are excluded in the 

analysis, these equations reduce to those for the conventional piezoelectric beams. 
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3.3 Results and discussion 

To qualitatively understand the mechanical and electrical responses of a piezoelectric 

nanobeam, we choose one kind of lead zirconate titanate material, PZT-5H, for the case 

study and their bulk material property constants are 11 126 GPac  , 2

31 6.5 C me   , 

8 -1 1

33 1.3 10  C V  m    and 3 37.5 10  kg m   . The formulations in section 3.2 

suggest that the behaviors of piezoelectric nanobeams significantly depend on their 

surface properties, which could be determined by experiments or atomistic simulations 

(Miller and Shenoy, 2000; He and Lilley, 2008a). Following Huang and Yu‟s work 

(2006), the surface elastic and surface piezoelectric constants are chosen as 

s -1

11 7.56 N mc  and s 8 1

31 3 10  C me     as a reasonable approximation. In addition, the 

typical residual surface stress is of the order of 0.1 1 1N m (Miller and Shenoy, 2000; 

Lachut and Sader, 2007; He and Lilley, 2008a). In this work, 0 11.0 N mx
  is taken for 

the simulation when the residual surface stress is considered and the beam width b is 

assumed to be equal to the beam thickness h.  

Firstly, the influence of surface effects on the resonant frequencies of the 

piezoelectric nanobeam is studied. The normalized first-mode resonant frequency 0

1 1/    

against the beam thickness for a simply supported (S-S) nanobeam under different 

electrical loads V is plotted in Fig. 3.2, where 0

1  is calculated from the classical beam 

theory without considering the surface effects and the applied voltage. The length to 

thickness ratio of the nanobeam is fixed at L/h=20 and no initial axial strain 

exists  0 0  . It is observed from this figure that the surface effects obviously influence 

the resonant frequency of the piezoelectric nanobeam. Within some range of applied 

voltage, the surface effects become more dominant with the decrease of the beam 

thickness. However, with the increase of the applied positive voltage, V=0.2 V 

for example, it is observed that the resonant frequency drops down with the decrease of 

the beam thickness, which indicates a possible mechanical buckling of the piezoelectric 
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Figure 3.2: Variation of the normalized frequency with the beam thickness for a nanobeam with 

simply supported (S-S) boundary condition. 

 

Figure 3.3: Normalized frequency versus beam thickness for a nanobeam with different boundary 

conditions. 

nanobeam with a sufficiently large positive voltage or a sufficiently small beam thickness. 

This phenomenon is due to the fact that a compressive axial load is induced by an applied 
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voltage in the positive direction as indicted in Eq. (3.17) and will be discussed later. 

Moreover, it is also observed from this figure that the electromechanical coupling of 

piezoelectric materials can be explored for frequency tuning of nanobeams, as shown by 

the variation of the natural frequencies with the applied voltages. 

Fig. 3.3 displays the effect of boundary conditions on the first mode resonant 

frequency 
1  for a piezoelectric nanobeam with the same geometric dimensions as the 

beam studied in Fig. 3.2. In this figure, the resonant frequency is normalized by
1

V , 

which is calculated for the beam without considering the surface effects but with the 

applied voltage 0.1 VV   . It is observed that the influence of surface effects on the 

resonant frequencies depends on the beam size and the boundary conditions. The 

resonant frequencies calculated for both simply supported (S-S) and clamped-clamped 

(C-C) nanobeams are higher than those calculated without the surface effects, while an 

opposite trend occurs for the cantilever (C-F) nanobeam. It is concluded from this figure 

that the influence of the surface effects on the resonant frequencies of the piezoelectric 

nanobeam is more pronounced for a simply supported beam. A similar phenomenon has 

also been observed for elastic nanowires (He and Lilley, 2008b). It will also be 

interesting to study the effect of surface elasticity, residual surface stress and surface 

piezoelectricity on the resonant frequencies separately. For a simply supported (S-S) 

nanobeam as studied in Fig. 3.3, Fig. 3.4 plots the variation of the normalized first mode 

resonant frequency with the beam thickness considering the surface elasticity 

 0 s s

31 110, 0, 0x e c    , the residual surface stress  0 s s

31 110, 0, 0x e c     and the 

surface piezoelectricity  0 s s

31 110, 0, 0x e c    , respectively. It is found that the effect of 

the residual surface stress and the surface piezoelectricity on the resonant frequencies is 

more prominent than the surface elasticity effect within the considered values of surface 

property constants in the current case study. However, such an effect of surface 

piezoelectricity was ignored in Wang and Feng‟s work (2010). To see the axial load 

effect, Fig. 3.5 depicts the variation of the resonant frequency with the beam thickness h 

(L/h = 20) for an S-S nanobeam subjected to different initial axial strain 0 . The applied 

electrical load is 0.1 VV   . As expected, the resonant frequency decreases with the 
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compressive axial strain since this applied load softens the beam, while it increases with 

the tensile axial strain due to the stiffening effect.  

 

Figure 3.4: Normalized frequency versus beam thickness for a simply supported (S-S) nanobeam 

considering surface elasticity, residual surface stress and surface piezoelectricity separately. 

 

Figure 3.5: Variation of the resonant frequency with the beam thickness for a simply supported (S-S) 

nanobeam considering axial load effect. 
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Figure 3.6: Variation of the normalized critical electric potential with the beam thickness for a 

cantilever (C-F) nanobeam. 

The buckling of piezoelectric nanobeams is also an interesting issue for engineering 

applications. Without an applied axial load ( 0 0  ), the applied electrical load V which 

generates axial stress due to the piezoelectricity may cause the buckling of the 

nanobeams. Since the surface effects also contribute to the effective axial load acting on 

the nanobeam, as discussed in section 3.2, they may have a significant influence on this 

buckling behavior. For a piezoelectric cantilever nanobeam, the normalized critical 

electric potential for buckling 0

cr cr/V V , versus beam thickness h is plotted in Fig. 3.6, 

where 0

crV  is the critical electric potential for the buckling of the beam without surface 

effects. It is observed in this figure that the influence of the surface effects on the critical 

electric potential becomes more pronounced with the decrease of nanobeam size h. 

Similar to Fig. 3.4, the surface elasticity effect on the critical electric potential for 

buckling is relatively small compared to the effects of the residual surface stress and the 

surface piezoelectricity. However, the effects of the residual surface stress and the surface 

piezoelectricity on the buckling electric potential are opposite, i.e. the residual surface 

stress increases the critical electric potential, while the surface piezoelectricity decreases 

it. The results obtained from the current work indicate the significance of considering 
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surface piezoelectricity in predicting the vibration and buckling behaviors of piezoelectric 

nanostructures in addition to the elastic surface effects of nanomaterials. 

3.4 Conclusions 

Based on the surface piezoelectricity model and the generalized Young-Laplace 

equations, the influence of surface effects including residual surface stress, surface 

elasticity and surface piezoelectricity on the vibration and buckling behaviors of 

piezoelectric nanobeams has been studied using an Euler-Bernoulli beam model. The 

resonant frequencies and the critical electric potential for buckling of piezoelectric 

nanobeams with different boundary conditions have been derived. The results indicate 

that the surface effects, the boundary conditions, the applied electrical load and axial 

strain influence the mechanical behaviors of the piezoelectric nanobeams significantly. It 

is found that the influence of the residual surface stress and the surface piezoelectricity on 

the resonant frequencies and the critical electric potential for buckling is more prominent 

than the surface elasticity. It is also observed that the resonant frequencies can be tuned 

by adjusting the applied electrical load. The present study is expected to provide 

guidelines for the design and applications of piezoelectric-nanobeam-based devices. 
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Chapter 4  

4 Electromechanical response of a curved piezoelectric 
nanobeam with the consideration of surface effects3 

4.1 Introduction 

Due to their coupled piezoelectric and semiconductive properties, piezoelectric 

nanostructured materials are considered as ideal candidates for constructing nanodevices, 

such as chemical and biological nanosensors (Wang et al., 2004), nanoresonators (Bai et 

al., 2003; Tanner et al., 2007) and nanogenerators (Wang and Song, 2006; Su et al., 

2007). In recent years, various one-dimensional piezoelectric nanostructures have been 

successfully synthesized, including nanowires, nanobelts, nanosprings and nanorings 

(Wang, 2009). This wide range of novel structures of piezoelectric nanomaterials enables 

the design of more complicated and fascinating devices in nanoelectromechanical 

systems (NEMS). To fulfill the potential applications of those advanced nanodevices, it is 

necessary to qualitatively understand the electromechanical coupling of the piezoelectric 

nanostructured materials and predict their responses to external loadings. 

Unlike their bulk counterparts, existing experiments and atomistic simulations have 

found that the elastic and piezoelectric coefficients of piezoelectric nanomaterials vary 

with their structure dimensions (Zhao et al., 2004; Chen et al., 2006; Stan et al., 2007; 

Agrawal et al., 2008; Zhang et al., 2010). Understanding this size-dependent property is 

essential for the performance prediction and the design of piezoelectric nanodevices. Due 

to the extreme difficulties in conducting experiments on nanoscale materials and 

computing expensiveness of atomic studies, it is natural to pursue the analysis of 

piezoelectric nanomaterials by continuum models. When the characteristic sizes of these 

piezoelectric structures shrink to nanometers, new physics may emerge and the theories 

typically applied to macroscale materials do not immediately translate to the nanoscale 

structures. For example, conventional continuum models ignore the variation of 

                                                 

3
A version of this chapter has been published. 

 

Yan, Z. and Jiang, L.Y., J. Phys. D: Appl. Phys. 44, 365301, (2011). 
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interatomic quantities and thus fail to capture the size effects of materials at the nanoscale. 

Therefore, modified continuum models are required to incorporate the size effects into 

the conventional continuum mechanics framework. One proposed modified continuum 

theory studying the nanoscale materials is the Eringen‟s nonlocal theory of elasticity 

(Eringen, 2002), in which the stress at a specific point is related to the strains of the entire 

domain mathematically formulated by integral equation. Using this theory, the size 

effects are captured by the nonlocal parameters of the kernel function in the integration. 

This nonlocal theory has been applied to study the nanostructured materials, such as 

nanobeam (Lu et al., 2006), nanorod (Aydogdu, 2009), nanoring (Wang and Duan, 2008) 

and nanoplate (Duan and Wang, 2007) in the literature. Due to the inherently large 

surface area-to-volume ratio that is exhibited by typical nanoscale structures, surface 

effects may play a crucial role in the behavior of piezoelectric nanomaterials. These 

surface effects have been incorporated into the continuum modeling of nanostructures 

using the linear surface elastic theory developed by Gurtin and Murdoch (1975) and the 

generalized Young-Laplace equations (Cammarata, 1994; Miller and Shenoy, 2000; Chen 

et al., 2006). Such a surface-layer-based model has been widely adopted to investigate 

the bending (Miller and Shenoy, 2000; He and Lilley, 2008a), vibration (Wang and Feng, 

2007; He and Lilley, 2008b) and buckling (Wang et al., 2007) behaviors of 

nanostructures. In these studies, the surface effects are found to be responsible for the 

size-dependent behaviors of nanostructures and the simulation results have been validated 

by atomistic studies and experiments (Miller and Shenoy, 2000; He and Lilley, 2008a; b). 

The size-dependent elastic properties of nanomaterials have been well studied by 

modified continuum theories as mentioned above. However, the investigation on the 

properties of piezoelectric nanostructures using continuum modeling approaches is still 

limited. It is worth mentioning that Michalski et al. (2005) were the first to develop a 

continuum theory to predict the piezoelectric responses of nanotubes and nanowires. 

While their results failed to interpret the size-dependent properties of these nanoscale 

materials. As discussed earlier by Tagantsev (1986), the strain gradient induced 

flexoelectricity as well as surface effects may play a substantial role in the size-dependent 

electromechanical coupling of piezoelectric nanomaterials. The flexoelectric effects have 

been studied by Sharma‟s group (Majdoub et al., 2008a; b) and their results suggested a 



52 

 

 

 

significant enhancement of electromechanical coupling of piezoelectric nanostructures 

due to the nonuniform strain gradient developed in a nanoscale bending beam. Huang and 

Yu (2006) were the first to incorporate the surface effects in the continuum modeling to 

study the electromechanical behavior of a piezoelectric ring. In their work, the surface 

effects include the surface elasticity, residual surface stress and surface piezoelectricity. 

A considerable influence of surface piezoelectricity on the stress and electric fields was 

observed when the ring size scaled down to nanometers. Wang and Feng (2010) 

investigated the vibration and buckling behaviors of piezoelectric nanowires using the 

elastic surface-layer-based model by ignoring the surface piezoelectricity effect. Recently, 

we studied the influence of surface effects on the electromechanical coupling and static 

bending of piezoelectric nanobeam (Yan and Jiang, 2011) by considering the combined 

effects of surface elasticity, residual surface stress and surface piezoelectricity. It was 

found that the effect of surface piezoelectricity on the size-dependent properties was 

significant compared with the effects of residual surface stress and surface elasticity. 

Since curved structures, such as arch or ring like piezoelectric structures, are 

common shapes in practical applications, it will be very interesting to study the 

electromechanical responses of curved piezoelectric nanobeams. The free vibrations of 

elastic nanorings or curved nanobeams have been studied using nonlocal theory (Wang 

and Duan, 2008) and surface elasticity theory (Assadi et al., 2011), in which the size 

effects were clearly identified. However, it appears that the influence of surface effects 

on the electromechanical behavior of curved piezoelectric nanobeams has not been 

investigated thus far. Hence, the objective of this work is to study the surface effects on 

the electroelastic responses of a curved piezoelectric nanobeam under external stimulus. 

The surface effects are accounted by applying a surface-layer-based model. Based on the 

conventional Euler-Bernoulli curved beam theory, explicit expressions of the 

electroelastic fields of the curved piezoelectric nanobeam will be derived to show the 

influence of the surface effects. This work is expected to provide useful guidelines for the 

design of NEMS devices based on curved piezoelectric nanobeams or nanoring structures. 



53 

 

 

 

4.2 Formulation of the problem 

Various behaviors of elastic nanostructures have been successfully predicted using a 

surface-layer-based model (Miller and Shenoy, 2000; He and Lilley, 2008a; b; Wang and 

Feng, 2007; Wang et al., 2007; Assadi and Farshi, 2011), i.e. a 

nanostructure=bulk+surface. In this study, this model will be further explored to 

investigate the electromechanical behavior of a curved piezoelectric nanobeam. An 

element of this curved beam is shown in Fig. 4.1 with x representing a local coordinate 

axis, which is pointed from the centroidal axis of the curved beam to the center O . It is 

assumed that the curved beam has a radius R, which is much larger than the beam 

thickness h, and the poling direction of the piezoelectric body is along the radial direction. 

ru  and u are the radial and circumferential displacements, respectively. When the 

piezoelectric body is subjected to a voltage V, the flexural and extensional deformations 

of the beam will be induced. According to the curved beam theory and Euler-Bernoulli 

beam assumptions, the tangential strain  in the beam element can be expressed as (Rao, 

2007) 

1 r
r

u ux
u u

R R


 

  

    
      

    
,                    (4.1) 

 

Figure 4.1: Free-body diagram of an incremental element of a curved piezoelectric nanobeam with 

surface effects. 
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and the  total slope of the deflection curve is 

1
.r

uu

R R





 


                                                       (4.2) 

It is assumed that the nonzero electric field exists only along the radial direction. Since 

the piezoelectric structure is very thin, this electric field rE  can be considered as a 

constant (Crawley and Deluis, 1987), i.e. 

.r

V
E

h
                                                                     (4.3) 

In the surface-layer-based model, since the atoms within the surfaces experience a 

different local environment from that experienced by atoms in the bulk, the constitutive 

equations of the surfaces are different from the bulk. From Huang and Yu‟s work (2006), 

the constitutive relations for the surface of this one-dimensional curved piezoelectric 

beam can be expressed as 

s 0 s s

11 31 ,rc e E                                                   (4.4) 

s 0 ,D D                                                                         (4.5) 

where s

  and sD  are the surface stress and surface electric displacement; 0

  and 0D  

are the residual surface stress and surface electric displacement without applied strain 

and electric field; s

11c  and s

31c  are the surface elastic and surface piezoelectric constants. It 

should be mentioned that the surface effects for a piezoelectric medium include the 

surface piezoelectricity in addition to the surface elasticity and residual surface stress, 

which is evidenced by the s

31e  and 0D  in the constitutive equations. 

The constitutive relations in the bulk are the same as conventional piezoelectric 

materials, i.e. 

11 31 ,rc e E                                                          (4.6) 

31 33 ,r rD e E                                                       (4.7) 
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with   and rD  being the bulk stress and the bulk electric displacement, 11c , 31e  and 33   

being the conventional elastic, piezoelectric and dielectric constants.  

According to the generalized Young-Laplace equations derived by Chen et al. 

(2006), the surface effects are represented by the traction jumps T  and 
rT  on the beam 

surfaces as shown in Fig. 4.1. Under the assumption of h R  and small deformation, 

these traction jumps can be expressed as 

s
1

,T
R












                                                                                                                    (4.8) 

s s/ ;  / .
2 2 2 2

r r

h h h h
T r R r R R T r R r R R  
       

                 
       

                    (4.9) 

It is noted that rT  only exists on the top and bottom surfaces of the beam, while the left 

and right surfaces do not contribute such a traction on the beam. In addition, the electric 

displacement jump across surfaces is zero.  

To derive the governing equations for this curved beam, we follow the same 

procedure for an elastic nanobeam with the consideration of surface effects (Liu and 

Rajapakse, 2010). In Fig. 4.1, rT  and  T  are circumferential traction induced by the 

surface effects, P, F and M are the axial force, shear force and bending moment of the 

beam. The governing equations of the curved piezoelectric nanobeam considering surface 

effects are then derived from the equilibrium condition of the curved element, i.e. 

d
d 0,

d
r

s

F
P T sR


                                                   (4.10) 

d
d 0,

d s

P
F T sR


                                             (4.11) 

d
d 0,

d s

M
FR T x sR


                                   (4.12) 

where s is the perimeter of the beam cross-section and the integration in these equations 

accounts for the surface effects. The axial force F and the bending moment M are defined 

in the same way as those of the conventional elastic beam, which are expressed as 
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d

h

h
P b x


   and 

/2

/2
d

h

h
M xb x


  . Then after lengthy manipulation of equations 

(4.10)  (4.12) with the consideration of Eqs. (4.1), (4.3), (4.4), (4.6), (4.8) and (4.9), 

the governing equations in terms of 
ru  and u  can be rewritten as 

 
5 3

5 3

d d d
0,

d d d

r r ru u u
A A C C

  
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in which A, B, C and D are constants defined as 

 
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                               (4.15) 

4.3 Solutions of the problem 

From the governing equations (4.13) and (4.14), the solutions of ru  and u  can be 

expressed as 

1 2 3 4 5sin cos sin cosr

C C
u C C C C C

A A
   

   
          

   
,  (4.16) 

and 
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cos sin
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A A B C A A
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  (4.17) 

in which 1 6C C  are constants and will be determined from boundary conditions.  

For the case without considering surface effects, i.e. all the constants related to 

surface effects are zero, it results in A=C in Eq. (4.15). Correspondingly, the solutions of 

andru u  are expressed as 
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1 2 3 4 5sin cos sin cosru C C C C C          ,  (4.18) 

and 
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  (4.19) 

In order to apply appropriate boundary conditions to the curved piezoelectric 

nanobeam with the consideration of surface effects, it is necessary to determine the 

effective loads on the boundary surfaces. We rewrite Eqs. (4.10)-(4.12) as 

* * *
* * *d d d

0; 0; 0.
d d d

F P M
P F F R

  
        (4.20) 

Thus, the above equations are in the same format as the governing equations for 

conventional curved beams, i.e. Eqs. (4.10)-(4.12) with integrations being zero. *P , *F  

and *M  are defined as the effective axial force, effective shear force and effective 

bending moment, which are derived as 
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It can be seen from Eqs. (4.21)-(4.23) that when the surface effects are excluded, *P , *F  

and *M reduce to the axial force P, shear force F and bending moment M for a 

conventional curved piezoelectric beam, i.e. 

11
31

d
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P u be V

R
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For a cantilever beam, the mechanical boundary conditions are defined as 

(1) Free end (θ = α): 

* * *; ; ,F f P p M m                          (4.27) 

(2) Fixed end (θ = β): 

0; 0; 0,ru u                        (4.28) 

where f, p and m are applied point loads, α and β are measured for the free and fixed ends 

of the beam from the designated horizontal line, as shown in Fig. 4.1. 

Based on these boundary conditions, the constants 1 6C C  in solutions (4.16) and 

(4.17) can be determined. Correspondingly, the electroelastic fields of the curved 

piezoelectric nanobeam are thus obtained, which will be used later to predict the surface 

effects on the electromechanical response of the curved piezoelectric nanobeam. 

4.4 Results and discussion 

In case study, the original configuration of the curved piezoelectric nanobeam is assumed 

to have a constant radius-to-thickness ratio R/h = 15 and the angles at the free end and the 

fixed end are 
2


   and β = 0, respectively. PZT- 5H is chosen as the piezoelectric 

material with bulk material properties 11 126 GPac  , 2

31 6.5 C me   and 

8 1 1

33 1.3 10  C V  m     . The surface properties can be determined by experiments and 

atomistic simulations; however, such quantities are not available for PZT-5H in the open 

literature. In Huang and Yu‟s work (2006), s 1

11 7.56 N mc    and s 8 1

31 3 10  C me      

were chosen for such material as reasonable approximations according to experiments. 

The residual surface stress is taken as 0 11.0 N m
  (Miller and Shenoy, 2000; Lachut 
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and Sader, 2007; He and Lilley, 2008a), which is on the same order as surface elasticity 

constants displayed by atomistic simulations. In this study, these data will be adopted to 

qualitatively understand the electromechanical response of a curved piezoelectric 

nanobeam. As discussed in He and Lilley‟s work (2008a), the surface-layer-based model 

ignores the effects of the edge and corner atoms, which are expected to play an 

important role in the properties of truly small nanostructures but can be only captured by 

the atomistic simulations. Therefore, we only conduct the simulation for the beam with 

the thickness h higher than 10 nm. 

Firstly, we consider the mechanical response of a curved cantilever beam (with 

width to thickness ratio b/h = 3) when it is subjected to an applied electrical load V = 0.1 

V. For the considered range of the piezoelectric beam size, the applied voltage will 

induce an electric field below the poling electric field 
7 11 10  V m  of PZT nanomaterials 

(Xu et al., 2010). Fig. 4.2 shows the radial displacement ru  at the beam free end versus 

the beam thickness h. The result from the conventional beam model without considering 

surface effects is also provided for comparison. It is clearly indicated in this figure that 

the surface effects have a significant influence on this displacement field, and such 

surface effects are more pronounced for the nanobeam with smaller cross-sectional 

dimension h. The separate influence of the surface elasticity  0 s s

31 110,  0,  0e c    , 

the surface piezoelectricity  0 s s

31 110,  0,  0e c    , the residual surface stress 

 0 s s

31 110,  0,  0e c     and the combined influence of the surface elasticity and the 

surface piezoelectricity  0 s s

31 110,  0,  0e c     are also compared in this figure. It is 

seen that the separate effect of s

11c and 0

  on the displacement field of the curved 

piezoelectric nanobeam is much larger than the effect of s

31e  for the considered range of 

the surface parameters. However, the combined effect of the surface piezoelectricity with 

the surface elasticity and the residual surface stress is significant, indicating that the 

surface effects are not the simple summation but the coupling of each individual effect. 

Therefore, it is of great importance to consider the surface piezoelectricity despite its 
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Figure 4.2: Variation of radial displacement ur at the free end of a cantilever beam with beam 

thickness h. 

 

Figure 4.3: Variation of circumferential displacement uθ at the free end of a cantilever beam with 

beam thickness h. 
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small separate effect under some circumstances. For this cantilever nanobeam, the free 

end surface (θ = α) of the beam is free to move in the radial and 

circumferential directions, thus the existence of the residual surface stress will cause the 

relaxation displacement in both the radial and the circumferential directions. Such a 

phenomenon has been discussed by Park and Klein for a flat cantilever nanowire 

(2007), in which the free end of the beam is constrained to move only in the longitudinal 

direction. When only the residual surface stress is considered, a constant radial relaxation 

displacement at the beam free end is observed for the beam with different thickness but 

fixed radius to thickness ratio, which is the difference between curves for 

( 0 s s

31 110,  0,  0e c    ) and for the conventional beam model in this figure. 

Correspondingly, the radial displacement for the current model with the consideration of 

the combined surface effects tends to approach this constant displacement with the 

increasing of the beam thickness h. If this residual surface stress is excluded, it is also 

found in this figure that the displacement for the beam with the consideration of the 

combined surface elasticity and surface piezoelectricity approaches the conventional 

beam result as expected. A similar phenomenon is observed for the circumferential 

displacement at the beam free end as shown in Fig. 4.3. Since the radius-to-thickness 

ratio of the curved beam is fixed, this surface stress driven relaxation for the radial and 

circumferential displacements is constant as shown in these two figures. It is interesting 

to mention that the circumferential displacement u could be either positive or negative, 

depends on the coupled effect of the surface effects with the electromechanical coupling. 

When the surface effects are excluded, the electromechanical coupling (1-3 type 

coupling of piezoelectric materials, i.e. an electrical load in r direction results in a 

mechanical deformation in θ direction) causes the contraction of the curved beam along 

the circumferential direction as shown by the red solid curve in Fig. 4.3. However, once 

the surface effects are considered, the coupled effect with the electromechanical coupling 

could significantly change the profile of the circumferential displacement distribution. 

As demonstrated in this figure that at the beam free end, both surface piezoelectricity and 

residual surface stress induce a negative displacement with respect to the 

electromechanical coupling displacement without surface effects, while the surface 

elasticity induces a positive one. The separate influence of these surface effects varies 
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with the beam thickness. Once the surface elasticity is significantly over dominant the 

coupling of surface piezoelectricity and residual surface stress when thickness h scales  

 

Figure 4.4: Distribution of radial displacement ur along the curved beam with different thickness h. 

 

Figure 4.5: Distribution of circumferential displacement uθ along the curved beam with different 

thickness h. 
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down to a particular value, a positive displacement occurs. Otherwise, the free 

end circumferential displacement is negative. Therefore, the sign of the circumferential 

displacement u  may change with the beam thickness h.  

The displacement field distributions along the circumferential direction are 

displayed in Figs. 4.4 and 4.5 for a curved nanobeam with different thicknesses. The 

influence of surface effects on the displacement field distribution is evidenced by the 

difference between the results from the current model and the conventional one for a 

nanobeam with different sizes. Again such discrepancy is larger for the beam with 

smaller thickness, h = 20 nm for example when the width b is fixed. It is also interesting 

to see how the influence of surface effects on the electroelastic fields of the curved beam 

varies with the beam width. The radial displacement distribution along the curved beam 

with different beam width when the beam thickness is fixed at h=20 nm is plotted in Fig. 

4.6 for this purpose. As expected, the influence of surface effects also depends on the 

beam width (another cross-sectional dimension of the beam). With the decrease in the 

beam width, the influence of the surface effects increases. It should be mentioned that 

the displacement at any particular point of the curved beam is the combined result of the 

geometry of the beam, the location of the point, the electromechanical coupling, the 

surface effects and the applied loads. Therefore, both positive and negative 

circumferential displacement could occur along the beam depending on the above 

mentioned combined effects as shown in Fig. 4.5. As a result, a minimum of the 

circumferential displacement may occur at a particular position of the beam. The 

implication of these results is that the surface effects could significantly change the 

deformation profile of a curved piezoelectric nanobeam when subjected to an electrical 

load, which will definitely influence the operation of such cantilever beams. All these 

results indicate that it is necessary to consider surface effects for the design and 

applications of curved piezoelectric nanobeams, such as curved nanoswitches, the 

displacement control for curved structures using piezoelectric nanoactuators and potential 

surface tension sensors using piezoelectric read-out. The exclusion of surface effects 

using conventional beam models for structures with nanoscale length may lead to 

significant errors in modeling and performance prediction.  
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Figure 4.6: Distribution of radial displacement ur along the curved beam with different beam width b. 

 

Figure 4.7: Variation of hoop stress σθ at the fixed end of a cantilever beam with thickness h. 

For a curved cantilever piezoelectric beam subjected to an electrical load V, there 

will be no stress developed in the beam based on the conventional beam theory. However, 

the existence of surface effects may significantly intervene in the stress field. Fig. 4.7 
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Figure 4.8: Variation of electric displacement Dr at the free end of a cantilever beam with beam 

thickness h under an axial load. 

 

Figure 4.9: Variation of hoop stress σθ at the free end of a cantilever beam with beam thickness h 

under an axial load. 
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plots the variation of the hoop stress   at the central line (x = 0) of the fixed end (θ = β) 

with the beam thickness. It is seen that the surface elasticity has a negligible influence 

on  , while the surface piezoelectricity, especially the residual surface stress influences 

this hoop stress significantly. These surface effects can be ignored with the increasing of 

the beam thickness.  

To show the surface effects on the electroelastic fields of the curved piezoelectric 

beam under a mechanical load, Figs. 4.8 and 4.9 plot the variation of the electric 

displacement rD  and the hoop stress   at the beam free end (θ = α) with the beam 

thickness h. Since the effect of residual surface stress is equivalent to an applied voltage, 

as indicated in Eq. (4.15), we assume 0 0  in the case study to see the electroelastic 

response of the piezoelectric beam to an applied axial load 5 nNp   at the beam free end. 

It is observed in these figures that the influence of the surface piezoelectricity and the 

surface elasticity on the electric displacement and the hoop stress is very significant for 

smaller h. For example, the surface effects disturb the uniform distribution of the electric 

displacement and the hoop stress through the thickness direction as evidenced by the 

discrepancy between the curves for x=h/2, x=0 and x=−h/2. With the increasing of 

h, surface effects are negligible and the distribution of both the electric displacement and 

the hoop stress becomes uniform as predicted by the conventional beam model. 

4.5 Conclusions 

In this work, the influence of surface effects including residual surface stress, surface 

elasticity and surface piezoelectricity on the electromechanical response of a curved 

piezoelectric nanobeam under electrical and mechanical loads has been studied. Based on 

the Euler-Bernoulli curved beam theory, surface effects are incorporated into the 

governing equations through the surface-layer-based model and the generalized Young-

Laplace equations. Explicit expressions for the electroelastic fields have been derived. 

The results show that combined influence of the residual surface stress, surface elasticity 

and surface piezoelectricity on the displacement, stress and electric displacement fields of 

the curved beam is significant. Although some individual influence of the residual 

surface stress, surface elasticity and surface piezoelectricity is small under some 



67 

 

 

 

circumstances, exclusion of such individual influence may lead to significant errors in 

evaluating the electroelastic fields since these effects are coupled. Surface effects are 

more prominent for the beams with smaller cross-sectional dimensions. This work is 

envisaged to be helpful for the design and applications of curved beam based 

piezoelectric nanodevices in NEMS. 
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Chapter 5  

5 Surface effects on the electroelastic responses of a thin 
piezoelectric plate with nanoscale thickness4 

5.1 Introduction 

Piezoelectric nanostructured materials have attracted tremendous attention from the 

research community due to their potential applications as field effect transistors (Wang et 

al., 2006), diodes (He et al., 2007), chemical sensors (Lao et al., 2007), phototronic 

devices (He et al., 2010) and generators (Wang and Song, 2006; Su et al., 2007; Wang et 

al., 2007; Lin et al., 2008; Wang et al., 2010; Xu et al., 2010) in nanoelectromechanical 

systems (NEMS). Recently, researchers have attempted to transfer piezoelectric 

nanoribbons and nanofilms (PZT and 3BaTiO  materials for example) onto flexible 

substrates for the purpose of utilizing the high electromechanical coupling of 

piezoelectric materials in conformable energy harvesting (Park et al., 2010; Qi et al., 

2010; Feng et al., 2011). These attempts allow for the integration of high performance 

energy conversion devices to operate in a stretchable mode and may open up new 

avenues for energy harvesting. To further explore the design and application possibilities 

of piezoelectric nanostructured materials, it is essential to qualitatively understand their 

electromechanical coupling behavior and predict their electroelastic responses to external 

loads.  

Since controlled experiments on materials are extremely difficult at the nanoscale 

and atomistic simulations are restricted by computation capacities, continuum 

modeling has been naturally pursued as an alternative tool. It should be mentioned that 

conventional continuum theories ignoring the variations of interatomic quantities cannot 

capture the atomic features of materials, hence, they fail to predict the size-dependent 

properties of materials when the characteristic size of structures scales down to the 

nanoscale. On the other hand, existing experimental observations (Zhao et al., 2004; 

                                                 

4
A version of this chapter has been published. 

 

Yan, Z. and Jiang, L.Y., J. Phys. D: Appl. Phys. 45, 255401, (2012). 
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Chen et al., 2006; Stan et al., 2007) and atomistic simulations (Agrawal et al., 2008; 

Zhang et al., 2010) have demonstrated that the electromechanical properties of 

piezoelectric materials at the nanoscale are intrinsically size dependent. Therefore, 

capturing the nature of such size dependence is a new challenge in the theoretical 

modeling of piezoelectric nanostructures.  

Modified continuum models with the incorporation of size effects in the 

conventional continuum framework have thus been attempted to interpret the size-

dependent properties of various nanostructures. One such model is based on Eringen‟s 

nonlocal elasticity theory (Eringen, 2002), in which the stress at a material point is 

expressed in terms of strains of all material points in the entire domain by integral 

equation accounting for long ranged atomistic interactions. Using this theory, the size 

effects are introduced into the classical continuum model through the nonlocal influence 

parameter. The size-dependent phenomena at small scale can also be understood by 

resorting to the concept of surface effects. Due to the inherent large surface area-to-

volume ratio exhibited by typical nanostructures, surface effects are believed to 

contribute to their size-dependent properties. These surface effects for elastic 

nanostructured solids have been incorporated into the linear surface elasticity model 

developed by Gurtin and Murdoch (1975), in which the surface is modeled as a thin layer 

with different material properties and constitutive equations from the underlying bulk 

material. The presence of surface effects results in nonclassical boundary conditions on 

the bulk part through the generalized Young-Laplace equations (Cammarata, 1994; 

Miller and Shenoy, 2000). These models have been successfully adopted to study the 

size-dependent mechanical properties of elastic nanobeams, nanorings and nanoplates 

from different perspectives (Lim and He, 2004; Lu et al., 2006a; b; Duan and Wang, 

2007; Wang and Feng, 2007; Wang et al., 2007; He and Lilley, 2008a; b; Wang and 

Duan, 2008; Aydogdu, 2009; Assadi et al., 2010; Assadi and Farshi, 2011). As an 

extension of the surface elasticity model, Huang and Yu (2006) developed a surface 

piezoelectricity model, which incorporates surface piezoelectricity in addition to the 

surface elasticity and residual surface stress, to study the mechanical and electrical 

responses of a piezoelectric ring. It was found that the electroelastic responses of the 

nanoring were size dependent and significantly influenced by the surface effects. The 



72 

 

 

 

static and dynamic analysis of piezoelectric nanobeams were also investigated with 

the surface piezoelectricity model in our previous work (Yan and Jiang, 2011a; b; c). It 

was found that the surface elasticity, residual surface stress and surface piezoelectricity 

influence the electromechanical coupling, bending, vibration and buckling behaviors 

of piezoelectric nanobeams significantly. In parallel to the surface piezoelectricity model, 

Sharma and his co-works (Majdoub et al., 2008a; b) adopted the higher order continuum 

theory (i.e. strain gradient theory) in their work and found that the strain gradient induced 

flexoelectricity also played an important role in the size-dependent electromechanical 

properties of piezoelectric nanobeams. 

For two-dimensional nanostructures such as nanoribbons and nanofilms, modified 

conventional plate theories have been developed by researchers to study their size-

dependent mechanical properties. For example, the nonlocal elastic plate theory has been 

implemented by Murmu and Pradhan (2009) to study the vibration response of single-

layered graphene sheets. Based on the surface elasticity model, Kirchhoff and Mindlin 

plate theories including surface effects have been developed to investigate size-dependent 

static and dynamic behaviors of thin plates with nanoscale thickness (Lim and He, 2004; 

Lu et al., 2006b). This model was also employed to study the buckling delamination of an 

ultra-thin film-substrate system recently (Lu et al., 2011). However, the modeling and 

analysis of piezoelectric plates at the nanoscale have not been reported thus far. Therefore, 

it is the first attempt in this work to investigate the electroelastic responses of a 

piezoelectric nanoplate with the consideration of surface effects. The formulation is based 

on the Kirchhoff plate theory and the surface effects are incorporated into the governing 

differential equations of the thin piezoelectric plates via the surface piezoelectricity 

model and the generalized Young-Laplace equations. Simulation results will be 

demonstrated to show the effects of the surface elasticity, residual surface stress 

and surface piezoelectricity upon the electroelastic responses of the plate. This work is 

expected to provide more accurate predictions on the electromechanical coupling 

behavior of nanoribbon or nanoplate based piezoelectric devices in NEMS. 
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5.2 Formulation of the problem 

The problem envisaged in this work is a rectangular piezoelectric nanoplate with 

thickness h, and in-plane length a and width b. In order to derive the governing 

equations for the plate, a differential element as shown in Fig. 5.1 is considered, in which 

a Cartesian coordinate system oxyz is used to describe the element. The oxy plane 

 

Figure 5.1: Schematic of a differential element of the piezoelectric nanoplate with surface effects. 

coincides with the undeformed midplane of the plate and the upper and lower surfaces of 

the plate are defined by z = h/2 and z =−h/2, respectively. The piezoelectric body is 

poled along the z direction and is subjected to a transversely distributed mechanical load 

q(x, y) and an electric potential V. According to Kirchhoff‟s hypotheses, the 

displacements of the plate can be represented as 
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                                                                              (5.1) 

where  0 ,u x y  and  0 ,v x y  are in-plane displacements of the midplane, and  ,w x y   is 

out-plane displacement of the midplane. It should be mentioned that such in-plane 

displacements of the midplane may be induced by the applied mechanical load, the 
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applied electrical load due to the electromechanical coupling and the residual surface 

stress induced relaxation. As discussed in the literature (Park and Klein, 2007; Zhang et 

al., 2010), without any applied external load, the nanostructured material undergoes an 

in-plane relaxation to fulfill its own equilibrium, resulting in an initial strain. However, 

such relaxation depends on the in-plane constraints of the plate; for example, the ends of 

the plate could be free to move resulting in the relaxation displacement but could be fixed 

without allowing in-plane motion. The effect of the in-plane constraints on the 

electroelastic fields of the plate will be discussed later in this work. Correspondingly, the 

strains can be expressed as 
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  (5.2) 

The electric field is assumed to exist only along the z direction and can be determined 

from the electric potential Φ by 

.zE
z


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
                                                              (5.3) 

For the surface piezoelectricity model adopted in this work, the constitutive 

equations of the surface layer are different from the bulk. The surface stresses s

x , 
s

y   

and 
s

xy , and the surface electric displacements s

xD  and 
s

yD  can be expressed according 

to (Huang and Yu, 2006; Yan and Jiang, 2011a; b) as 
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with s s

11 12,  c c  and s

66c being the surface elastic constants, and s

31e being the surface 

piezoelectric constant.
0 0,  x y   and 0

xy are the residual surface stresses and 0

xD  and 0

yD  

are the residual surface electric displacements. The interior bulk material obeys the same 

constitutive relations as those for the conventional piezoelectric materials. Following the 

assumption (Zhao et al., 2007) that the stress component in the z-direction is 0z  , the 

constitutive relation for the bulk of the piezoelectric plate can be written in the matrix 

notation format, as 
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                                       (5.5) 

where ,  x y   and xy  are the bulk stresses and zD  is the bulk electric displacement; the 

reduced elastic constants 11 12,  c c  , piezoelectric constant 31e  and dielectric constant 33   

are 2

11 11 13 33/c c c c  , 2

12 12 13 33/c c c c  , 31 31 13 33 33/e e c e c   and 2

33 33 33 33/e c   . The 

numerical values of the macroscopic elastic constants 11 12 13 33 66,  ,  ,  ,  c c c c c , piezoelectric 

constants 31 33,  e e  and dielectric constant 33  for PZT-5H are given in the discussion 

section. 

According to the generalized Young-Laplace equations (Chen et al., 2006), the 

existence of surfaces can be represented by the traction jumps ,  x yT T  and zT exerting on 

the bulk of the plate, which can be expressed in terms of the surface stresses as 
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  (5.6) 
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where the superscripts „u‟ and „l‟ denote the upper and lower surfaces of the plate, 

respectively. Note that we only consider 
xT  and yT on both the upper and the lower 

surfaces of the plate due to the small thickness of the plate, which are not sketched in 

detail in Fig. 5.1. It should also be mentioned that in addition to the traction jumps 

induced by the surface stresses, for piezoelectric materials, there will also exist an 

electric displacement jump across the surfaces due to the existence of surface electric 

displacement. However, for the problem investigated in this work, the electric 

displacement jump across the surfaces is zero, which can be derived from the 

generalized Young-Laplace equations (Chen et al., 2006) with the consideration of 

the fourth and fifth equations of Eqs. (5.4). 

For the differential element of the plate composed of the surface and the bulk parts 

as shown in Fig. 5.1, the force and moment equilibrium yields the following equations  
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                                                                           (5.7) 

where ijN  and  , ,iQ i j x y are the axial and shear forces with dimension of force per 

unit length and ijM  is the bending moment with dimension of moment per unit length. 

The axial forces and bending moments are related to stresses by
/2

/2
d

h

ij ij
h

N z


  and 

/2

/2
d

h

ij ij
h

M z z


  , respectively. 

In the absence of free electric charges, the electric displacement should satisfy the 

Gauss's law 
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                                                                                              (5.8) 

In order to determine the electric field distribution, appropriate electrical boundary 

conditions must be prescribed. According to Dorfmann and Ogden‟s work (2005), the 

electrical boundary conditions can be set either for the electric displacement or for the 

electric field. In this study, it is assumed that the upper and lower surfaces of the 

piezoelectric body are fully electroded and an electric voltage V is applied between these 

two electrodes as shown in Fig. 5.1.  For this closed-circuit condition, the electrical 

boundary conditions can be prescribed in terms of the electric potential, i.e. Φ(h/2)=V and 

Φ(−h/2)=0 (Pan et al., 2011). Substituting Eqs. (5.3) and the fourth equation of Eqs. (5.5) 

into Eq. (5.8) and applying the electrical boundary conditions, the electric potential and 

the electric field distribution can be determined as 


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It should be mentioned that the first term in Eq. (5.10) for the electric field is caused by 

the electromechanical coupling, and the surface effects also contribute to it.  

From Eqs. (5.2), (5.4)-(5.7) and (5.10), the governing equations of the piezoelectric 

nanoplate with the surface effects can be derived as 
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  (5.13) 

In order to apply the appropriate mechanical boundary conditions to the nanoplate 

with surface effects, the generalized resultant forces and moments are defined as (Lu et 

al., 2006b) 
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Then equilibrium equations (5.7) can be simplified as 
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  (5.15) 

which are in the same format as the governing equations for a conventional piezoelectric 

plate (Zhao et al., 2007). 

For case study, we will investigate the static bending of a simply supported 

piezoelectric nanoplate with the following mechanical boundary conditions for the out-

plane displacement and the generalized resultant moments, 

*0,  0xxw M  at 
* 0, 0yyw M  at 0,  y y b  . (5.16) 
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The in-plane mechanical boundary conditions can be defined according to different in-

plane constraints, which are listed as the following two cases: 

Case 1: 
* * 0xx xyN N   at 0, ;x x a   * * 0yy xyN N   at 0,y y b   

Traction free conditions are satisfied on the side surfaces of the plate for this case. 

Assuming the residual surface stresses 
0 0 0 0,  0x y xy       and the plate is 

subjected to a uniformly distributed transverse load   0,q x y q , the displacements 

satisfying all the boundary conditions can be derived as 
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  (5.20) 

It is obvious from Eqs. (5.17) and (5.18) that the in-plane displacements are induced by 

the applied electric potential and the residual surface stress. Without the applied electrical 

load V=0, an in-plane relaxation strain develops due to the residual surface stress 0 , i.e. 



80 

 

 

 

   

0

s s
11 12 11 12

2
.

2c c h c c


  

   
                                                                                   (5.21) 

Such a relaxation phenomenon has also been found by Park and Kein (2007) for an 

elastic nanowire using the surface Cauchy-Born model.  

Case 2:    0 0, 0, , 0u x y v x y  . 

In this case, the in-plane displacements are constrained to zero, which are the same 

as assumed by Zhao et al. (2007) for a conventional piezoelectric plate. Under this 

condition, the in-plane displacements are trivial as assumed for a conventional Kirchhoff 

plate theory. Thus the governing equation (5.13) can be simplified as 
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  (5.22) 

Adopting the same assumptions for the residual surface stresses as case 1, the analytical 

solution for the above differential governing equation according to a uniformly 

distributed transverse load   0,q x y q   can be obtained as 

 
1 1

, sin sin ,mn

m n

m x n y
w x y A

a b

  

 

   
    

   
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with 

 0

2

16
, 1,  3,  5... ,mn

q
A m n

mn Y
                         (5.24) 

and 
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  (5.25) 

It should be mentioned that this in-plane displacement constraint has been widely adopted 

in studying the surface effects of nanobeams (Wang and Feng, 2007; Wang et al., 2007; 

He and Lilley, 2008a; b). Correspondingly, the residual surface stress induced 

displacement relaxation has not been observed in these studies. In this work, the 

electroelastic responses of the piezoelectric nanoplate to the applied electromechanical 

loads will be discussed according to these two types of the in-plane constraints. 

Due to the inherent electromechanical coupling of piezoelectric materials, the 

applied electrical load may generate in-plane forces under certain boundary conditions. 

For case 2 discussed above, the in-plane loads due to the applied electric potential V can 

be obtained as 

* 0 s * 0 s
31 3131 312 ;  2xx x yy y

V V
N e V e N e V e

h h
 
   

        
   

  .                                    (5.26) 

These forces may be compressive depending on the magnitude and the direction of the 

applied electric field, in addition, the existence of the surface effects also contributes to 

these in-plane loads. These compressive forces may induce the mechanical buckling of 

the piezoelectric nanoplate. Therefore, it is necessary to consider the buckling behavior of 

the piezoelectric nanoplate with surface effects. 

For simplicity, we only consider the cylindrical buckling of an infinitely wide (in y 

direction) piezoelectric plate with finite length l in the x direction under a compressive 

force N at x = 0 and x = l. In this case, all the electroelastic fields depend on the x 

coordinate only. Without considering the transverse load, i.e. q(x,y) = 0, the 

equilibrium equations (5.15) can be rewritten as 
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For the simply supported boundary conditions, i.e. at x = 0 and x = l, 

* *;  0;  0,xx xxN N w M                                  (5.28) 

with N being a compressive force applied to the bulk, a nontrivial solution of Eq. (5.27) 

can be expressed as 
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in which n is a positive integer. Substituting Eq. (5.29) into Eq. (5.27), the critical 

buckling load can be obtained as, 
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It is obvious that this critical buckling load depends on the electromechanical coupling 

and the surface effects of the piezoelectric plate. 

When the displacement of the piezoelectric plate is constrained along the x direction, 

i.e. 
0 0u   , the electromechanical coupling induced compressive force may also cause 

the mechanical buckling of the plate as discussed before. In this case, the critical electric 

potential for the buckling can be derived as 

0

cr
cr s

31
31

2
.

2

N
V

e
e

h

 



                                                 (5.31) 

From all these equations derived above, it is indicated that the electroealstic 

responses of the piezoelectric nanoplate depend on the surface effects which will be 

illustrated in the following section. It should be noted that if surface effects are excluded 

in the analysis, these equations will reduce to those for the conventional piezoelectric 

plates. 
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5.3 Results and discussion 

In case study, PZT-5H is chosen as the example material, with the macroscopic material 

properties being 11 126 GPac  , 12 55 GPac  , 13 53 GPac  , 33 117 GPac  , 

2

31 6.5 C me   , 2

33 23.3 C me  and 8 1 1

33 1.3 10  C V  m     . It should be 

mentioned exact values of the surface parameters can be obtained from detailed atomistic 

calculations or experiments. However, such quantities for PZT-5H are not completely 

available in the literature. In this work, we adopt the surface elasticity as s 1

11 7.56 N mc   

and the surface piezoelectricity as s 8 1

31 3.0 10  C me     , which are the same as given in 

Huang and Yu‟s work (2006). The residual surface stress is taken as 0 11.0 N m  , s

12c  

is assumed as s s

12 12 11 11/c c c c  and s

66c  is obtained from  s s s

66 11 12 / 2c c c  . 

Firstly, we will focus on investigating the static bending of a piezoelectric nanoplate 

with surface effects. The maximum deflection of the plate under external loads occurs in 

the middle of the plate (x = a/2, y = b/2) as indicated in Eqs. (5.17). For a simply 

supported piezoelectric plate with a = b = 30h and its in-plane constraints being set as 

described in case 1 of the previous section, when it is subjected to a mechanical load q0 

only, the dimensionless maximum deflection  max 11 0/w c q h  with the variation of the 

plate thickness h is plotted in Fig 5.2. It is obvious that this dimensionless deflection is 

independent of the absolute size of the plate when the surface effects are excluded. 

However, the existence of the surface effects leads to the size-dependent bending 

response of the plate. It is observed in this figure that the maximum deflection decreases 

with the decrease of the nanoplate thickness. With the increase in the plate thickness h, 

the influence of the surface effects diminishes and the predicted deflection from the 

current model tends to approach a constant as predicted by the conventional Kirchhoff 

plate model without the consideration of the surface effects. The separate influence of the 

surface elasticity and the surface piezoelectricity is also compared in Fig. 5.2. Within 

the considered range of the surface parameters in this work, the surface elasticity has a 

relatively smaller effect on the static bending in comparison to the surface 

piezoelectricity. Similar observation for the out-plane displacement of the piezoelectric 

nanoplate with the in-plane constraints described by case 2 in the previous section has 
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Figure 5.2: Variation of the dimensionless maximum deflection with plate thickness h (a = b = 30h). 

 

Figure 5.3: Influence of in-plane constraints on the out-plane deflection of the nanoplate. 

also been obtained. It should be mentioned that when the in-plane constraint is set for the 

traction (case 1), the residual surface stress 
0  induces the in-plane displacement 

relaxation, but has no effect on the out-plane deflection of the plate. However, when the 
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in-plane displacement is controlled without allowing for the displacement relaxation 

(case 2), the residual surface stress has a significant effect on the out-plane deflection as 

shown by the big discrepancy between the results predicted for two types of in-plane 

constraints in Fig. 5.3. These results indicate the significance of considering in-plane 

constraints for accurately modeling the physical properties of nanostructured materials. 

For a plate with the in-plane constraints defined in case 2, when it is subjected to 

both a mechanical load 0q  and an electrical load V, the variation of the normalized 

deflection 0

max max/w w  in the middle of the plate (x = a/2, y = b/2) with the plate thickness 

h is shown in Fig. 5.4 for the plate with different in-plane dimensions. 0

maxw  is the 

deflection at the same point of the plate induced by the same electrical and mechanical 

loads without considering the surface effects. In order to avoid the mechanical buckling 

due to the applied voltage, negative voltage is applied to show this effect. Under this 

situation, the generalized effective axial forces 
*

xxN  and *

yyN  due to the applied V are 

tensile as indicated in Eqs. (5.26), therefore, no mechanical buckling of the plate will 

occur. From this figure, it is observed that the influence of the surface effects on the 

bending of the plate depends on the applied electrical load, i.e. in general, the influence 

of the surface effects decreases with the increase in the applied electrical voltage 

amplitude. However, such dependence of the surface effects upon the electrical load 

varies with the in-plane dimensions of the plate. For example, when the length and the 

width are set as a = b = 50h for a square plate, the influence of the applied voltage is 

very obvious when the plate thickness h is small. When the plate in-plane dimensions 

decrease, a = b = 30h for example, such influence of the applied voltage becomes less. It 

is also indicated in this figure that with the increase of the plate in-plane dimensions, 

i.e. a and b increase, the influence of the surface effects on the electroelastic responses is 

enhanced. Therefore, the surface effects are more prominent for the plate with larger 

aspect ratio. With the increase in the plate thickness, surface effects will eventually 

disappear as indicated by all the curves tending to approach unity. 

When the in-plane constraints are set for the traction as discussed in case 1 in the 

previous section, the applied voltage in the z direction will induce the in-plane strain ε in 

both the x and y directions due to the 1-3 electromechanical coupling of the piezoelectric 
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Figure 5.4: Variation of the normalized maximum deflection 
0

max max/w w  with plate thickness h. 

 

Figure 5.5: Variation of the in-plane strain with plate thickness h (V = 0.1 V). 

materials. It is obvious from Eq. (5.18) that εh is a constant without the consideration of 

the surface effects. Therefore, the surface effects are represented by the size-dependence 

of this parameter εh as depicted in Fig. 5.5, in which the influence of the surface elasticity, 
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the residual surface stress and the surface piezoelectricity are studied separately for the 

plate. It is found that the surface elasticity has a negligible influence on the in-plane strain, 

while the influence of the surface piezoelectricity is prominent. Due to the in-plane 

displacement relaxation, the residual surface stress induces a constant εh as shown in Eq. 

(5.18) without considering the other surface effects. Thus, this relaxation significantly 

influences the electromechanical coupling of the piezoelectric nanoplate as shown by the 

big discrepancy between the two straight lines in this figure. It should be noted that this 

relaxation is independent of the plate in-plane dimensions a and b, which could be clearly 

observed from Eq. (5.18). Such a relaxation phenomenon has been observed and 

discussed by Park and Klein (2007) for an elastic nanowire using atomistic simulation. 

As indicated by Eq. (5.10), the surface effects may significantly influence the electric 

field distribution due to the electromechanical coupling, i.e. the first term in Eq. (5.10), 


   2 2

31

2 2
33

, ,
c

w x y w x ye
E z

x y

  
  

  


. When the plate is subjected to a mechanical load 0q , 

Fig. 5.6 plots the 0/cE q  along the plate thickness z direction in the middle line of the 

plate (x = a/2 and y = b/2). It is observed in this figure that this electromechanical 

coupling induced electric field distributes linearly along the thickness direction, and is 

significantly influenced by the surface effects when the plate thickness is relatively small. 

For example 1

0/ 2.97 VmNcE q   at / 0.5z h   , decreasing 8.3% compared with 

1

0/ 3.24 VmNcE q    from the conventional plate model when h = 20 nm. When the 

plate thickness increases to h = 100 nm, surface effects are reduced as expected, 

1

0/ 3.19 VmNcE q    at / 0.5z h   , decreasing 1.5% compared with the results from 

the conventional plate model. 

The mechanical buckling of the piezoelectric plate is also an important issue for 

consideration. The cylindrical buckling of the piezoelectric nanoplate (l = 30h) with 

the surface effects is investigated when it is subjected to an in-plane compressive force 

along the x direction. Similar to the results obtained in Fig. 5.2, the dimensionless 

critical buckling load  cr 11/N hc  from Eq. (5.30) is independent of the thickness of the 

nanoplate without the consideration of surface effects, as shown in Fig. 5.7. The separate 
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Figure 5.6: Variation of the electric field induced by the electromechanical coupling along the plate 

thickness z direction (a = b = 30h). 

 

Figure 5.7: Variation of the dimensionless critical cylindrical buckling load with plate thickness h (l = 

30h). 
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Figure 5.8: Variation of the normalized critical electric potential for cylindrical buckling with plate 

thickness h (l = 30h). 

influence of the surface elasticity and the surface piezoelectricity upon this critical 

compressive load is studied. It is found in this figure that the surface piezoelectricity has 

more prominent effect in comparison with the surface elasticity, which means the 

necessity of using this surface piezoelectricity model in predicting the electroelastic 

responses of the piezoelectric plate, which has been ignored in the existing literature 

(Wang and Feng, 2010). It is also observed that the surface effects increase the 

critical buckling load significantly when h is small and this influence decreases with the 

increase in the nanoplate thickness. As discussed in the previous section, the applied 

electrical load may generate compressive force and induce the mechanical buckling when 

the in-plane displacements are constrained to zero. Fig. 5.8 depicts the normalized critical 

electric potential 0

cr cr/V V   for buckling with the variation of the plate thickness h ( 0

crV  is 

the critical electric potential for buckling without the consideration of the surface effects). 

It is obvious that the influence of the surface effects on the critical electric potential for 

buckling is prominent when the plate thickness is small. For example, when the plate 

thickness h = 10 nm, the critical electric potential for buckling is more than 2.2 times the 

critical electric potential without considering the surface effects. The separate influence 
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of the surface elasticity, residual surface stress and surface piezoelectricity is also 

compared in Fig. 5.8. It is found that the surface elasticity and the residual surface stress 

increase this critical electric potential for buckling while the surface piezoelectricity 

decreases it. These results indicate the importance of considering surface effects in 

predicting the buckling behavior of piezoelectric plates at the nanoscale.  

5.4 Conclusions 

The size-dependent electroelastic responses of a piezoelectric plate with the nanoscale 

thickness have been theoretically and qualitatively investigated in this work. Based on 

the Kirchhoff plate theory, the surface effects including the surface elasticity, residual 

surface stress and surface piezoelectricity are incorporated into the differential governing 

equations and the boundary conditions via the surface piezoelectricity model and the 

generalized Young-Laplace equations. Simulation results are provided to show the 

surface effects upon the static bending and buckling behaviors of a simply 

supported piezoelectric nanoplate with different in-plane constraints. It is found that the 

out-plane deflection, the in-plane deformation, the electric field, the critical buckling load 

and the critical electric potential for mechanical buckling of the piezoelectric nanoplate 

under electromechanical loads are size dependent and such size dependence attributes to 

the surface effects. The influence of the surface effects on the electromechanical coupling 

of the piezoelectric plate is very significant when the plate thickness scales down to 

nanometers. With the increase of the plate thickness, such influence on the electroelastic 

responses of the plate diminishes and the predicted electromechanical behavior of the 

piezoelectric nanoplate approaches that for the conventional piezoelectric plate as 

expected. This work with more accurate modeling methodology for piezoelectric 

nanostructures is expected to provide helpful guidelines for the design and application 

of nanoplate based piezoelectric devices in NEMS. 
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Chapter 6  

6 Vibration and buckling analysis of a piezoelectric 
nanoplate considering surface effects and in-plane 
constraints5 

6.1 Introduction 

Since the first prototyping of a nanogenerator by means of piezoelectric nanowire arrays 

(Wang and Song, 2006), piezoelectric nanostructured materials have attracted 

tremendous interests in the research community for potential applications of various 

devices in the nanotechnology, such as nanosensors, nanoresonators, nanogenerators and 

nanotransistors (Lao et al., 2007; Su et al., 2007; Tanner et al., 2007; Fei et al., 2009). 

Most recently, piezoelectric thin films or nanoribbons (lead zirconate titanate (PZT) and 

BaTiO3) have been successfully transferred onto flexible substrates for stretchable energy 

harvesting, which suggest new possible applications of piezoelectric nanomaterials (Park 

et al., 2010; Feng et al., 2011; Qi et al., 2011). Among these novel nanodevices, 

nanoscale piezoelectric beam or plate structures are the key components. Therefore, 

understanding the mechanical and physical behaviors of piezoelectric nanostructures with 

these configurations is essential for their design and applications. 

“Small is different”, the mechanical properties of piezoelectric nanostructures can 

differ markedly from their macroscopic counterparts. Owing to the increasing aspect ratio 

of surface area to volume at the nanoscale, it is believed that size dependence of the 

mechanical properties and piezoelectricity due to the surface effects will arise. Existing 

experiments and atomistic simulations have confirmed that the elastic and piezoelectric 

coefficients of piezoelectric nanostructures vary with their dimensions (Zhao et al., 2004; 

Chen et al., 2006a; Zhang and Huang, 2006; Stan et al., 2007; Agrawal et al., 2008; 

Zhang et al., 2010a). Owing to the extreme difficulty in conducting experiments and 

computational expensiveness of atomistic studies, modified continuum theories 

                                                 

5
A version of this chapter has been published. 

 

Yan, Z. and Jiang, L.Y., Proc. R. Soc. A 468, 3458-3475, (2012). 
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incorporating the surface effects have been naturally pursued as alternative and effective 

tools in mechanical and physical property characterization of nanostructured materials. 

For elastic nanostructures, the size-dependent properties have been well studied 

using modified continuum theories based on the well-known surface elasticity model 

developed by Gurtin and Murdoch (1975). In addition to the studies on the static and 

dynamic behaviors of nanobeams (Wang and Feng, 2007; 2009; He and Lilley, 2008a; b; 

Liu and Rajapakse, 2010), this surface elasticity model has also been adopted for 

modeling the elastic nanoplates. For example, Lim and He (2004) investigated surface 

effects on the large deflection of an ultra-thin film using the von Karman plate theory. Lu 

et al. (2006) used modified Kirchhoff and Mindlin plate models to characterize the 

bending, vibration and buckling behaviors of nanoscale plates with surface effects. The 

transverse vibration of a rectangular nanoplate was investigated by Assadi et al. (2010) 

considering the influence of surface properties and temperature. The free vibration of a 

circular nanoplate, including the surface effects, was also investigated using a modified 

laminated plate theory (Assadi and Farshi, 2010). However, the investigation on the size-

dependent properties of piezoelectric nanostructures using continuum modeling 

approaches is still very limited, especially for piezoelectric nanoplates (PNPs). The 

surface elasticity model was used by Wang and Feng (2010) to study the vibration and 

buckling of a piezoelectric nanobeam, while the surface piezoelectricity was ignored. As 

an extension of the surface elasticity model, Huang and Yu (2006) carried out pioneering 

work in proposing a surface piezoelectricity model to study the effect of piezoelectric 

surface layers on the static deformation of a piezoelectric nanoring. This surface 

piezoelectricity model has been further applied in our previous work (Yan and Jiang, 

2011a; b; c) to study the surface effects on the static electroelastic responses and 

vibration behavior of flat and curved piezoelectric nanobeams. Li et al. (2011) studied 

surface effects on the wrinkling of a piezoelectric nanofilm on a compliant substrate by 

modeling the film structure as a von Karman beam. Recently, a comprehensive model has 

been developed for dielectric nanomaterials by Shen and Hu (2010) with the 

consideration of surface effects, flexoelectricity and electrostatic forces. It should be 

mentioned that another type of modified continuum model has also been explored by 

researchers to investigate the size effects. For example, the vibration of piezoelectric 



96 

 

 

 

nanobeams was investigated recently either based on a linear or a von Karman strain-

displacement relation (Ke and Wang, 2012; Ke et al., 2012). They discussed the 

influence of the non-local parameter, temperature change and external electric voltage on 

the thermo-electro-mechanical vibration characteristics of the piezoelectric nanobeams. 

These studies have demonstrated the significance of considering size effects in studying 

the mechanical and physical properties of piezoelectric nanostructures. 

To the authors‟ best knowledge, the influence of the surface effects on the 

vibrational behavior of PNPs has not been studied thus far. This work, therefore, will 

carry out an investigation for this purpose. Owing to the intrinsic electromechanical 

coupling of piezoelectric materials and the existence of surface stresses in surface layers, 

either in-plane forces or in-plane displacements may develop in the PNP depending on 

the in-plane constraints prescribed. It should be mentioned that such in-plane relaxation 

strains of elastic nanowires owing to the surface stresses have been discussed in literature 

by using atomistic or atomistic-based theories (Park and Klein, 2007; Zhang et al., 2010b; 

Park, 2012). In addition, by considering a relaxation process before bending deformation, 

Song et al. (2011) studied the mechanical behavior of nanowires by using a continuum 

model. The results in these studies suggest that accounting for axial strain relaxation may 

be necessary to improve the accuracy and predictive capability of analytical surface 

elastic theories. However, this surface-stress-induced relaxation phenomenon has not 

been accounted in the previous investigations of the nanoplates with surface effects (Lim 

and He, 2004; Lu et al., 2006; Assadi and Farshi, 2010; Assadi et al., 2010), owing to 

their particular prescribed in-plane boundary conditions. Therefore, different in-plane 

constraints will be defined in this work in order to catch all the possible phenomena 

induced by the surface effects. As a result, distinct vibration behavior and in-plane 

motions of the PNPs will be observed under different in-plane boundary conditions. 

6.2 Formulation 

The vibration analysis of a rectangular PNP with length a, width b and thickness h as 

illustrated in Fig. 6.1a is conducted in the current work. A Cartesian coordinate system (x, 

y, z) is used to describe the plate with z along the plate thickness direction and the x-y 

plane sitting on the midplane of the undeformed plate. The piezoelectric body is poled 
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along the z-direction and subjected to an electric potential V between the upper and lower 

surfaces of the plate. For a piezoelectric nanobeam subjected to an electric potential 

across its thickness (Wang and Feng, 2010), the authors argued that the electric field 

component in the length direction is negligible compared with that in the thickness 

direction according to the available numerical simulation results (Gao and Wang, 2007). 

Therefore, for a thin piezoelectric plate with large in-plane dimension to thickness ratio, 

it is reasonable to neglect the in-plane electric field components when the plate is 

subjected to an electric potential across its thickness, which has been adopted by Zhao et 

al. (2007). Therefore, in this work, the electric field is assumed to exist only along the z-

direction and can be expressed in terms of the electric potential Φ 

,zE
z


 


                                                                                                                      (6.1) 

The electric boundary conditions are prescribed as Φ(h/2)=V and Φ(−h/2)=0 according to 

Fig. 6.1a. 

 

Figure 6.1: (a) A piezoelectric nanoplate with both bulk and surface parts. (b) Schematic of a 

differential element of the piezoelectric nanoplate. 
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To account for the surface effects, a surface piezoelectricity model (Huang and Yu, 

2006; Yan and Jiang 2011a; b) is adopted here. According to this model, the PNP is 

considered as being composed of a bulk part and the upper and lower surface layers with 

negligible thickness. For the bulk part, the material obeys the same constitutive relations 

as the conventional piezoelectric materials. With the plane stress assumption that the 

stress component in the z-direction is negligible (Zhao et al., 2007), the linear constitutive 

equations for the bulk part are written as 

11 12 31
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31 31 33
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                                      (6.2) 

where 
11c , 12c  and 66c  are bulk elastic constants; 31e  and 33  are bulk piezoelectric and 

dielectric constants, respectively. 

For the surface layers, the constitutive equations are different from those of the bulk, 

which can be expressed according to the surface piezoelectricity model (Huang and Yu, 

2006) 
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where  s , ,x y     and  s ,D x y   are surface stresses and surface electric 

displacements; s

11c , s

12c , s

66c  are surface elastic constants; s

31e  is the surface 

piezoelectric constant;  0 , ,x y     and  0 ,D x y    are residual surface stress 

and residual surface electric displacement without applied strain and electric field. 

The existence of the surface stresses of the PNP induces traction jumps exerted on 

the bulk of the plate, which has been commonly adopted in the surface elasticity model 

and surface piezoelectric model for nanostructures with a variety of configurations 
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(Huang and Yu, 2006; Lu et al., 2006; Wang and Feng, 2007; 2009; He and Lilley 2008a; 

b; Yan and Jiang 2011a; b; c; Li et al., 2011). According to the generalized Young-

Laplace equations (Chen et al., 2006b), these traction jumps xT , yT  and zT  with the 

consideration of the plate deformation can be expressed as 

ss
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                     (6.4) 

where the superscripts „u‟ and „l‟ represent the upper and lower surfaces of the plate. 

In order to make a vibration analysis for the PNP, a Kirchhoff plate model is used 

for modeling purposes. According to Kirchhoff‟s hypotheses, the displacements of the 

plate can be expressed as 

0

0
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                    (6.5) 

where w(x, y, t) is the transverse displacement;  0 , ,u x y t  and  0 , ,v x y t are the in-plane 

displacements of the midplane describing the membrane deformations. For an elastic bulk 

plate, these in-plane displacements are assumed as zero, according to conventional 

Kirchhoff plate theory. However, they may not be zero for the PNP, for example, the 

applied electrical load induces the in-plane displacements of the midplane owing to the 

electromechanical coupling. In addition, the existence of surface stresses may also cause 

the in-plane relaxation displacements, as discussed in the literature (Park and Klein, 2007; 

Zhang et al., 2010b; Park 2012), i.e. for a PNP that is allowed to have free in-plane 

movement, when it is at equilibrium after relaxation without any applied external loads, 
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the bulk part usually presents initial in-plane deformations owing to the residual 

surface stresses. According to the displacement fields of equation (6.5), the in-plane 

strain fields can be obtained from 

0 2 0 2 0 0 2
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                (6.6) 

For a differential element of the plate composed of the surface layers and the bulk 

part as shown in Fig. 6.1b, the motion equations are derived as 
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where N  and Q  are axial and shear forces with dimension of force per unit length, 

and M  is bending moment with dimension of moment per unit length. The axial forces 

and bending moments are related to stresses by
/2

/2
d

h

h
N z 


   and 

/2

/2
zd

h

h
M z 


  , 

respectively. ρ is the mass density of the material. The transverse load zq  in the third 

equation is induced by the in-plane loads N and the traction jumps, which can be 

derived as 
2 2 2 2 2/ 2 / /z xx xy yyq N w x N w x y N w y          , with the consideration of 

the first two equations of Eqs. (6.7).  

In the absence of free electric charges, the electric displacement should satisfy the 

Gauss‟s law 

0.
yx z

DD D
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                                                (6.8) 
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Under the assumption that the electric field exists only in the z-direction, andx yD D  are 

equal to zero and
zD  is given in Eqs. (6.2). Solving the above equation with the applied 

electric boundary conditions results in the electric potential and electric field 
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After the manipulation of the last three equations of (6.7) with the consideration of 

zq  defined earlier, the motion equation of the PNP for the transverse vibration can be 

derived as 
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where
*N  and *M  are the generalized resultant forces and moments with the 

consideration of surface effects, which are defined by Lu et al. (2006) 
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It is obvious that without considering the surface effects, i.e.
*N N   and 

*M M  , 

the motion equation (6.10) is reduced to that for a conventional Kirchhoff plate (Reddy, 

2007). 

For case study, the vibrational behavior of a simply supported PNP is investigated 

with boundary conditions described by the out-plane displacement and the generalized 

resultant moments 

*0, 0xxw M   at 0,  x x a  ;
*0,  0yyw M   at 0, y y b  .                    (6.12) 

In addition to these boundary conditions, the in-plane boundary conditions for the PNP 

must also be prescribed in order to solve the motion equation (6.10). 

These in-plane boundary conditions depend on the in-plane constraints, which are listed 

as the following two cases: 
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1. * * 0xx xyN N   at 0,x x a  ; * * 0yy xyN N   at 0,  y y b  . 

This is a traction-free boundary condition on all the edges of the PNP. Assuming 

0 0 0

x y     and 0 0xy  , then equation (6.10) is rewritten in terms of the transverse 

displacement  w as 

 
4 4 4 2 3 2 2 2

11 12 664 4 2 2 2 2 2 2
2 2 0,

12

w w w w h w w
D D D h

x y x y t t x y




         
         

          
  (6.13) 
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It should be mentioned that with these in-plane constraints, in-plane strains will be 

induced owing to the inherent electromechanical coupling of piezoelectric materials and 

the surface effects, which are derived from the first two equations of Eqs. (6.7) as 
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It is obvious that without the applied electrical load (i.e. V =0), the residual surface stress 

will still induce a relaxation strain for elastic nanomaterials, i.e. 

   0 s s

relax 11 12 11 122 / 2c c h c c       
 

 . However, this relaxation was not considered in 

the previous studies on the elastic nanoplate (Lim and He, 2004; Lu et al., 2006; Assadi 

and Farshi, 2010; Assadi et al., 2010) using modified continuum mechanics models, 

while atomistic or atomistic-based studies have confirmed and discussed this 

phenomenon (Park  and Klein, 2007; Zhang et al., 2010b; Park 2012). 

2.    0 0, , 0u x y v x y   
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This can be realized by clamping the edges of the PNP without in-plane movement. In 

this case, the in-plane displacements are assumed to be trivial compared with the 

transverse deflection as defined by conventional Kirchhoff plate theory. It should be 

noted that this boundary condition was adopted by Zhao et al. (2007) when conducting 

the electro-elastic analysis of a conventional piezoelectric plate. The equation governing 

the transverse vibration of the PNP is then simplified as 
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We can see that under this condition, the electric potential and residual surface-stress-

induced axial force  0 s

31 312 /P e V h e V    will influence the transverse vibration of 

the PNP. Once this force becomes compressive, it may cause the mechanical buckling of 

the plate, as observed for the piezoelectric nanobeams in literature (Wang and Feng, 2010; 

Yan and Jiang, 2011b). 

According to the boundary conditions of Eq. (6.12), the harmonic solution of Eqs. 

(6.13) and (6.16) can be expressed as 

1 1

sin sin ei t

mn

m n

m x n y
w W

a b

  

 

 ,                                 (6.17) 

where mnW  is a constant representing the mode shape amplitude, m and n are the half 

wave numbers, and ω is the resonant frequency. 

Substituting Eq. (6.17) into Eqs. (6.13) and (6.16), respectively, the square of the 

resonant frequency can be obtained for case 1 as 

  
    

  

4 4 4 4 4 4 2 2 4 2 2
2 11 12 661

3 2 2 2 2 2 2

/ / 2 2 /
,

/12 / /
mn

D m a n b D D m n a b

h h m a n b

  


   

  


 
  (6.18) 

and for case 2 as 
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2
2

3 2 2 2 2 2 2

4 4 4 4 2 2 4 2 2 2 2
0 s

11 12 66 31 314 4 2 2 2 2

1

/12 / /

2 2 2 .

mn
h h m a n b

m n m n V m n
D D D e e V

a b a b h a b


   

    



 

       
             

       

                                                                                                                                       (6.19) 

The mechanical buckling of the PNP is also an interesting phenomenon that requires 

further investigation. By letting 
 2

0mn   in Eq. (6.19), the electric voltage mnV  

corresponding to the buckling of the PNP with clamped in-plane constraints can be 

obtained in terms of (m, n) as 

   

 
  

4 4 4 4 4 4 2 2 4 2 2

11 12 66

0 2 2 2 2 2 2

s 2 2 2 2 2 2

31 31

/ / 2 2 /

2 / /
.

2 / / /
mn

D m a n b D D m n a b

m a n b
V

e h e m a n b

  

  

 

    
 

 


 
  (6.20) 

The lowest value of mnV  and associated (m, n) represents the critical electric voltage for 

buckling and the buckling mode, respectively. 

6.3 Results and discussion 

The formulation developed based on the modified plate theory will be employed to 

conduct the simulation of the vibrational behavior of a simply supported PNP with 

different in-plane constraints described in section 6.2. PZT-5H is selected as an example 

material with macroscopic material constants 11 102 GPac  , 12 31 GPac  , 

66 35.5 GPac  , 2

31 17.05 C me    and 8 1 1

33 1.76 10  C V  m     for the bulk part. For 

the surface layers, the material constants which can be determined from atomic 

calculations (Dai et al., 2011) or experiments are not completely available in the 

literature for PZT-5H owing to the lack of such work. The estimated values of the surface 

material constants in the literature (Huang and Yu, 2006; Yan and Jiang 2011a; b) are 

taken as s 1

11 7.56 N mc  , s 8 1

31 3 10  C me     , s 1

12 3.3 N mc  and s 1

66 2.13 N mc  . In 

addition, the residual surface stress 0  is assumed as 11.0 N m . As suggested by Yao et 

al. (2009), an aspect ratio of the plate between 1/80 and 1/5 is adopted for a Kirchhoff 

plate. In the current analysis, the plate aspect ratio is set within such a range.  
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Figure 6.2: Separate surface effect on the free vibration of the PNP with different in-plane constraints 

(a=b=20h). 

 

Figure 6.3: Normalized resonant frequency versus plate thickness for the PNP with different in-plane 

constraints (a=b=20h). 
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Firstly, we consider the separate influence of the surface elasticity, residual surface 

stress and surface piezoelectricity upon the vibrational behavior of the PNP. The 

normalized mode (1, 1) resonant frequency 
0

11 11/   for the free vibration of a square 

PNP (a =b =20h) with the variation of the plate thickness h is shown in Fig. 6.2, in which 

0

11  is the resonant frequency without considering the surface effects. Without the applied 

electrical load, both surface elasticity and surface piezoelectricity have the same effect on 

the resonant frequency of the PNP with different in-plane constraints for case 1 and case 

2, as indicated in Eqs. (6.18) and (6.19). However, the residual surface stress has no 

effect on the transverse vibration of the PNP with case 1 in-plane constraints, while it will 

induce in-plane relaxation, as shown in Eq. (6.15). For the PNP with case 2 in-plane 

constraints, it is observed in this figure that the residual surface stress has the most 

significant influence within the considered values of the surface material constants. It is 

also found in this figure that the surface piezoelectricity has a more prominent effect 

compared with the surface elasticity, which means the necessity of using this surface 

piezoelectricity model in the vibration analysis of the piezoelectric nanoplates. The 

individual influence of these surface effects is more significant for the thinner plate, and 

will eventually become negligible with the increase in the plate thickness.  

Fig. 6.3 plots the normalized resonant frequency 
0/mn mn    of a square PNP (a =b 

=20h) against the plate thickness h when it is subjected to an electric voltage V, in which 

0

mn  is the resonant frequency for the PNP without considering surface effects and the 

applied electric voltage. For the PNP with different in-plane constraints as described by 

case 1 and case 2 in section 6.2, the surface effects are found to be more pronounced for 

the PNP with a smaller thickness, while they diminish with increasing plate thickness, as 

expected. It is also demonstrated in this figure that the in-plane constraints have a 

significant effect on the vibrational behavior of the PNP, i.e. the influence of the surface 

effects on the resonant frequency of the PNP does not change with variation of the 

applied electrical load and the mode numbers (m, n) for the PNP with in-plane traction-

free condition (case 1), while it is significantly altered by these factors for the PNP with 

in-plane clamped constraints (case 2). For example, the discrepancy between the curves 

for the PNP under the same electrical load for different mode numbers (m, n) indicates 
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that the contribution of the surface effects to the resonant frequency of the PNP varies 

with the vibration modes. It should be mentioned that the applied electric potential 

induces the in-plane strain, as shown in Eq. (6.15) for the PNP with in-plane traction-free 

conditions. This figure also reveals how the applied electrical load influences the 

vibrational behavior of the PNP with clamped in-plane constraints. As observed, for a 

lower vibration mode (m =n =1 for example), the influence of the surface effects is 

significantly affected by the applied electrical load, which is similar to the results 

obtained for a piezoelectric nanobeam (Yan and Jiang, 2011b). However, for a higher 

vibration mode (e.g. m =n =5), the electrical load will not influence the surface effects 

contribution that much. Such variation of the resonant frequency of the PNP with the 

applied electric voltage at lower modes proposes a possible avenue for frequency tuning 

of the PNP-based nanodevices by applying electrical load, which may either stiffen or 

soften the PNP, depending on the direction and amplitude of the electric potential. For 

example, for mode (1, 1), the PNP with thickness 10 nm is stiffened with V =−0.2 V and 

its resonant frequency is increased by approximately 60 per cent, while it is softened with 

V =0.2 V and its resonant frequency is decreased by approximately 20 per cent. With a 

sufficient large electric voltage (e.g. V =0.2 V), the drop down of the resonant frequency 

of the PNP with the thickness h in this figure indicates a possible mechanical buckling of 

the PNP, which will be discussed later. The results in this figure conclude that the in-

plane constraints must be prescribed for the transverse vibration of the PNP; otherwise 

may lead substantial errors in prediction and characterization of the dynamic performance 

of the nanoplate. 

The variation of the surface effects on the mode (1, 1) resonant frequency of the 

PNP with its thickness is demonstrated in Fig. 6.4 for the PNP with different aspect ratios. 

The surface effects on the resonant frequency of the PNP do not change with aspect ratio 

of the PNP when the in-plane constraints are described by case 1. However, for the PNP 

with clamped in-plane constraints (case 2), with a given value of b/a, the normalized 

resonant frequency increases when the aspect ratio a/h increases (i.e. the PNP becomes 

thinner). For a fixed value of a/h, the resonant frequency increases with the increase in 

aspect ratio b/a (i.e. the PNP has a larger surface area). Therefore, it is concluded that the 

surface effects on the resonant frequency of the PNP are more prominent for the thinner 
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Figure 6.4: Normalized resonant frequency versus plate thickness for the PNP with different aspect 

ratios (V=0 V). 

 

Figure 6.5: Normalized resonant frequency versus aspect ratio a/h of the PNP (a=b). 

plate with larger surface area. The variation of the normalized resonant frequency      

0

11 11/   with aspect ratio a/h is plotted in Fig. 6.5 for a square PNP (a =b). The straight 
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lines in this figure indicate the surface effects on the resonant frequency of the PNP with 

case 1 in-plane conditions are independent of a/h. However, the normalized resonant 

frequency is significantly influenced by a/h for case 2 in-plane conditions. For example, 

for the PNP under the same electrical load, the resonant frequency increases with an 

increase in a/h owing to the larger surface effects. Moreover, the resonant frequency will 

be further increased by the applied electric potential, as indicated by the difference 

between the curves for V =−0.2 V and V =0 V. It is also seen that for both in-plane 

constraints of the PNP, the surface effects are more significant when the plate thickness h 

gets smaller. 

As mentioned earlier, the normalized resonant frequency does not vary with the 

mode numbers for the PNP with case 1 in-plane constraints. Therefore, we only plot 

 0/mn mn m n    for a square PNP (a =b =20h) with case 2 in-plane constraints in Fig. 

6.6. As expected, the surface effects are more significant for the PNP with smaller 

thickness h. It is observed that the 0/mn mn   is larger in lower modes, while it tends to 

approach a constant value as the mode number increases. This indicates that the surface 

effects are more prominent in the lower vibration modes while such effects will not 

change much for higher mode vibration, which is similar to the results obtained for the 

vibration of an elastic nanoplate with the consideration of surface effects (Assadi et al., 

2010). It is also observed in this figure that the influence of the applied electric potential 

on the resonant frequency of the PNP decreases with an increase in the mode number and 

becomes negligible when the mode number becomes sufficient large, for example m =n 

=8. Therefore, the resonant frequency tuning concept by applying an electrical load for 

the PNP is applicable only for the lower vibration modes. 

As discussed in section 6.2, for the PNP with case 2 in-plane constraints, the 

applied electric potential may induce a compressive force. When the compressive force 

reaches the critical value, it may cause mechanical buckling of the plate, which is also an 

interesting topic that needs further discussion. Fig. 6.7 plots the variation of the 

normalized critical electric voltage 0

cr cr/V V   for buckling ( 0

crV is the calculated critical 

electric voltage without the surface effects) with the plate thickness h. Similar to the 

observations in the previous figures, the surface effects are more prominent with a 
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Figure 6.6: Variation of normalized resonant frequency with mode number for PNP with clamped in-

plane constraints. 

 

Figure 6.7: Separate surface effect on the buckling of the PNP (a=b=20h). 

decrease in the plate thickness h. It is also found that both the surface elasticity and the 

residual surface stress increase this critical electric voltage, while the surface 
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piezoelectricity decreases it. In comparison, the residual surface stress and surface 

piezoelectricity have more effects on this critical electrical load for buckling than the 

surface elasticity, which again indicates the necessity of considering the surface 

piezoelectricity model for the piezoelectric nanostructures. Owing to the opposite effect 

of the surface piezoelectricity on the critical electrical buckling load to the other two 

separate surface effects, it is natural to believe that the combined surface effects on the 

critical electric voltage may vanish under some conditions. Fig. 6.8 plots the variation of 

the normalized critical electric voltage 0

cr cr/V V  against the aspect ratio a/h for a square 

PNP (a =b) with different thickness. This figure clearly demonstrates how the combined 

surface effects influence the critical electric voltage for the buckling of the PNP with the 

change of plate size. It is interesting to note that the combined surface effects decrease 

the critical electric voltage when a/h is small, while increase it when a/h becomes larger. 

Therefore, a transition point exists within the considered range of the surface material 

constants, i.e. regardless of the value of the plate thickness h, the influence of the surface 

effects on the critical electrical load for buckling vanishes at this transition point  /
t

a h . 

Obviously  /
t

a h  depends on the in-plane aspect ratio b/a of the PNP. In particular, for 

a square PNP,  /
t

a h is derived as 

 
   s 2 s s s s

31 11 12 66 31 33 31 11 12 66 31 31 33

0

31

2 2 / 3 2 2 /
/

12t

e c c c e e c c c e e
a h

e

 



       
  . (6.21) 

For a positive residual surface stress ( 0 >0 ), the surface effects decrease the critical 

electric voltage when  / < /
t

a h a h , while they increase it when  / > /
t

a h a h . However, 

if the residual surface stress 0 0  , the surface effects always decrease the critical 

electric voltage for buckling. 

From the simulation results in this work, it can be concluded that the transverse 

vibration behavior of PNPs is substantially influenced by the in-plane boundary 

conditions. It should also be noted that although the applied electric potential and the 

residual surface stress have no effect on the transverse vibration of the PNPs with case 1 
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in-plane constraints, they will significantly influence the in-plane mechanical behavior of 

the PNPs, such as the in-plane relaxation as indicated in Eq. (6.15). 

 

Figure 6.8: Variation of the normalized critical electric voltage for buckling with the aspect ratio a/h 

of the PNP (a=b). 

6.4 Conclusions 

A modified Kirchhoff plate model is developed to investigate the surface effects on the 

vibration and buckling behavior of a simply supported PNP under different in-plane 

constraints. The surface effects are accounted by employing a surface piezoelectricity 

model and generalized Young-Laplace equations. Surface effects are found more 

prominent for the plate with smaller thickness, while they decrease with increasing plate 

thickness. Simulation results show that the surface effects on the vibrational behavior of 

the PNP depend on the in-plane constraints. For the PNP with traction-free in-plane 

conditions, the residual surface stress and the applied electric potential have no effect on 

the transverse vibration of the PNP, while they induce an in-plane relaxation of the PNP. 

In addition, the influence of the surface effects on the resonant frequency of the PNP does 

not change with mode number and plate aspect ratio. However, the applied electric 

potential, mode number and plate aspect ratio significantly influence the surface effects 
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on the vibrational behavior of the PNP with clamped in-plane conditions. It is also 

concluded that for the PNP with clamped in-plane constraints, its resonant frequencies for 

lower vibration modes can be tuned by applying an electrical load. The possible 

mechanical buckling when the PNP is subject to an electrical load and the surface effects 

on the buckling behavior has also been studied. The influence of the surface effects is 

sensitive to the plate thickness and aspect ratio. It is found that a transition point at which 

surface effects vanish for all plate thickness may exist under certain conditions owing to 

the combined effects of the surface elasticity, residual surface stress and surface 

piezoelectricity. This work is expected to be helpful for understanding the size-dependent 

properties of piezoelectric nanostructured materials and provide guidelines for the design 

and applications of piezoelectric nanoplate-based device in the nanotechnology. 
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Chapter 7  

7 Surface effects on the vibration and buckling of 
piezoelectric nanoplates6 

7.1 Introduction 

The enhanced piezoelectricity and unique coupling between piezoelectric and 

semiconducting properties of piezoelectric nanomaterials make them attractive for 

applications as sensors, resonators, generators and transistors in the nano-electro-

mechanical systems (NEMS) (Wang et al., 2006a; b; Lao et al., 2007; Tanner et al., 2007; 

Qi et al., 2010; Feng et al., 2011). To better understand the underlying mechanisms and 

improve the performances of these advanced devices, some fundamental issues must be 

clearly addressed, for example, the vibration and buckling behaviors of piezoelectric 

nanostructures. 

Different from their macroscopic counterparts, nanomaterials exhibit size-dependent 

mechanical and physical properties due to the large surface area to volume ratio. For 

example, experimental investigations and atomistic simulations have demonstrated that 

the elastic constants or the piezoelectric coefficients of some piezoelectric nanomaterials 

increase dramatically with the decrease of the material size to the nanoscale (Zhao et al., 

2004; Kulkarni et al., 2005; Chen et al., 2006a; Stan et al., 2007). In literature, modified 

continuum mechanics theories have also been adopted as alternative and cost-effective 

tools to study the surface effects on the size-dependent properties of elastic 

nanostructures with various configurations (Lu et al., 2006; Wang et al., 2007; He and 

Lilley, 2008a; b; Assadi et al., 2010) based on the surface elasticity model developed by 

Gurtin and Murdoch (1975). However, this surface elasticity model is not sufficient in 

predicting the size-dependent properties of piezoelectric nanomaterials since it neglects 

surface piezoelectricity effect, which is unique for piezoelectric materials. As pointed out 

by Tagantsev (1986), the effect of surface piezoelectricity may become significant with 

                                                 

6
A version of this chapter has been published. 

 

Yan, Z. and Jiang, L.Y., EPL 99, 27007, (2012). 



117 

 

 

 

the miniaturization of piezoelectric materials into a nanoscale size. Therefore, it is 

essential to incorporating the effect of the surface piezoelectricity to investigate the 

electroelastic properties of piezoelectric nanomaterials. As an extension of the surface 

elasticity model, a surface piezoelectricity model with the consideration of the surface 

piezoelectricity as well as the residual surface stress and surface elasticity, was first 

proposed by Huang and Yu (2006) to study the electroelastic responses of a piezoelectric 

nanoring. Based on this model, the surface effects on the bending, vibration and buckling 

behaviors of piezoelectric nanobeams have been recently investigated in our previous 

work (Yan and Jiang, 2011a; b). It is found that the influence of the surface 

piezoelectricity on the static and dynamic behaviors of the piezoelectric nanobeams is 

significant. Li et al. (2011) studied the surface effects on the wrinkling of a piezoelectric 

nanofilm on a compliant substrate. Their results showed that the wavelength and 

amplitude of the wrinkling were significantly affected by the surface parameters for the 

films with nanoscale thickness. However, the investigation of the surface effects on two-

dimensional piezoelectric nanostructures is very limited. In order to enrich the studies on 

the plate-like piezoelectric nanostructures, the present work aims to develop a modified 

piezoelectric plate model based on the classical Kirchhoff plate theory and the surface 

piezoelectric model to study the surface effects on the vibration and buckling behaviors 

of a piezoelectric nanoplate (PNP). Simulation results will show how the influence of the 

surface effects on the resonant frequency and the critical buckling potential changes with 

the PNP thickness and aspect ratio. In addition, the possibility of frequency tuning via 

applied electric potentials will also be investigated. 

7.2 Modified plate model and formulation 

The problem considered is a rectangular PNP with thickness h, in-plane length a and 

width b, as illustrated in Fig 7.1. A Cartesian coordinate (x1, x2, x3) is used to describe the 

plate with x1 and x2 axes and the origin at the midplane of the undeformed plate, and x3- 

axis in the thickness direction. The PNP is poled along x3 direction and is subjected to an 

electric voltage V. Following Kirchhoff's hypotheses, the displacements at any point of 

the plate are expressed as 
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


  


       (7.1) 

where 0u  are the in-plane displacements of the midplane and w is the transverse 

displacement. Such midplane displacements describing the membrane deformations may 

be induced by the in-plane applied mechanical load, the applied electrical load due to the 

electromechanical coupling or the residual surface stress induced relaxation (Park et al., 

2007; Zhang et al., 2010a). The usual convention of summation over repeated indices is 

used here, e.g. Greek indices run from 1 to 2. Accordingly, the in-plane strains for the 

Kirchhoff plate can be written as 

00 2

3

1
+

2

uu w
x

x x x x




   


  

       

.                           (7.2) 

The electric field E is assumed to exist only along the x3 direction and can be expressed 

in terms of the electric potential   as 

3

3

E
x


 


.                                                                 (7.3) 

 

Figure 7.1: Schematic plot of a PNP with upper and lower surfaces. 

Following the surface piezoelectricity model, the plate itself is composed of a bulk 

part with the upper and lower surface layers with negligible thickness. The constitutive 

equations for the surface layers of the PNP are different from the bulk, which are given as 

s 0 s s s 0 s s

3 3σ ;  ,c e E D D e E                                                                   (7.4) 
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where sσ  and sD  are surface stresses and surface electric displacements; sc , s

3e  and 

s

  are elastic, piezoelectric and dielectric constants for the surfaces; 0

  and 0D  are 

residual surface stresses and residual surface electric displacements. Following the 

assumption (Zhao et al., 2007) that the stress component in x3-direction is negligible, the 

in-plane stresses σ  and electric displacement 3D  for the bulk can be expressed as 

3 3 3 3 33 3σ ;  c e E D e E           ,   (7.5) 

with c , 3e  and 33 being the bulk elastic, piezoelectric and dielectric constants for 

the plane stress problem. 

According to the generalized Young-Laplace equations, the existence of surface can 

be represented by the traction jumps Ti exerting on the bulk of the plate, which are 

s 2 2
u s l s

3 3;  ;  
w w

T T T
x x x x x



  

    


 

  
   

    
, (7.6) 

The superscripts “u” and “l” denote the upper and lower surfaces of the plate, 

respectively. It should be noted that the electric displacement jump across the surfaces is 

zero. 

In the absence of free electric charges, the electric displacement should satisfy the 

Gauss's law 

3

3

0
D

x





.                                                                  (7.7) 

Applying the electric boundary conditions ( / 2)h V   and ( / 2) 0h   , the electric 

potential and the electric field distribution can be determined. 

For the transverse vibration of the PNP, the motion equation is derived as 

2 * 2 2
* 3

2

1
0

12

M w w
N hw h

x x x x x





    

 
  

   
    


 , (7.8) 

where   is the mass density, 
*N , 

*M  are the generalized resultant forces and 

moments for the PNP with the consideration of surface effects, i.e. 
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  
 ,                              (7.9) 

with N  and M  being the axial forces and bending moments in the bulk of the plate 

defined as 

/2 /2

3 3 3
/2 /2

d ;  d
h h

h h
N x M x x    

 
    .                 (7.10) 

It should be noted that the subscripts in the material constants as shown in Eqs. (7.4) 

and (7.5) can be relabeled in the contracted notation due to the symmetry of stress and 

strain tensors following 11 1 ; 22 2 ; 33 3 ; 23 4 ; 13 5 ; 12 6 . In the 

following formulation and discussion, the material constants in the contracted notation, 

i.e. s s s

11 12 66 11 12 66 31, , , , , ,c c c c c c e and s

31e will be used. After the manipulation of the equations 

above, the transverse motion equation of the PNP with surface effects can be derived in 

terms of 1 2( , , )w x x t  as 
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  (7.11) 

with 
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Obviously, the in-plane constraints for the PNP must be prescribed first to solve Eq. 

(7.11). For a clamped-clamped plate with four edges being fully restrained, it is 

reasonable to set the displacements 0

1 2( , )u x x  as zero, which was adopted by Zhao et al. 

(2007) for a conventional piezoelectric plate. Moreover, the residual surface stress are 

assumed as 0 0 0

11 22     and 0

12 0  . The harmonic solution of Eq. (7.11) takes 

1 2 1 2( , , ) ( , )ei tw x x t W x x  ,                                       (7.13) 

where   is the resonant frequency and 1 2( , )W x x represents the vibration mode.  

Substituting Eq. (7.13) into Eq. (7.11) results in 
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  (7.14) 

with  0 s

31 312 /f e V h e V    being the biaxial force induced by the applied electrical 

load and residual surface stress. Such a force may cause the buckling of the PNPs. 

In order to do the vibration and buckling analysis, the Ritz method (Reddy, 2007) is 

adopted to get the approximate solutions. The weak form of the variational statement of 

Eq. (7.14) is written as 
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  (7.15) 

According to the Ritz method, the transverse deflection of the PNP can be approximated 

by 
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where ijc  are the unknown constants, and  1iX x and  2jY x  are the coordinate functions 

satisfying the boundary conditions. For the clamped-clamped PNP, W should satisfy W=0 

and 
1/ 0W x    at x1=0 and x1=a; W=0 and 2/ 0W x    at x2=0 and x2=b. Accordingly, 

 1iX x  and  2jY x  are chosen as (Reddy, 2007) 
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Substituting Eq. (7.16) into Eq. (7.15), we have 

     2 0R B c  ,                                              (7.18) 
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and 
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Then, the resonant frequency   of the PNP can be obtained by solving the characteristic 

equations of Eq. (7.18). 

Due to the inherent electromechanical coupling of piezoelectric materials, the 

applied electrical load generates in-plane forces when the in-plane displacements of the 

plate are constrained, which may cause the mechanical buckling of the PNP once the 

resulting forces become compressive. Moreover, the surface stresses may also contribute 

to these in-plane forces, as shown in Eq. (7.9). Therefore, it will be interesting to 

investigate the buckling behavior of the PNP with surface effects. The equation 
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governing the buckling behaviors of PNPs can be determined by letting 0  in Eq. 

(7.14). Similarly, substituting Eq. (7.16) into Eq. (7.15) with 0   results in 

  ' ' 0R f B c        ,                                           (7.21) 

with 

22 2 2
'

( )( ) 11 2 2 2 20 0
1 1 2 2

2 2 2 2

12 66 1 22 2 2 2

2 1 1 2 1 2 1 2

=

         4 d d ,

b a ji k l
ij kl j l i k

j jk i l i k l
i l j k

YX X Y
R D Y Y X X

x x x x

Y YX X Y X X Y
D X Y Y X D x x

x x x x x x x x

    
        

        
              

 
  (7.22) 

and 
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After determining f from the characteristic solutions of Eq. (7.21), the critical electric 

potential for buckling is calculated as 

0

cr s

31 31

2

2 /

f
V

e e h





.                                                      (7.24) 

7.3 Results and discussion 

To qualitatively show the surface effects on the vibration and buckling behaviors of the 

PNP, PZT-5H is chosen as an example material for case study. Its macroscopic material 

constants are taken as 11 102 GPac  , 12 31 GPac  , 2

31 17.05 C me   and 

8 1 1

33 1.76 10  C V  m     . Since the surface material constants are not completely 

available due to the lack of atomic calculations and experiments, the values adopted in 

Huang and Yu‟s work (2006) are used in the current work, i.e. s 1

11 7.56 N mc  , 

s 8 1

31 3.0 10  C me     . In addition, the other surface material constants are taken as 

0 11.0 N m  , s 1

12 3.3 Nmc   and s -1

66 2.13 N mc  . 

For a PNP (a=b=20h) subjected to 0.1V    V, Fig. 7.2 shows the normalized first 

mode resonant frequency versus the plate thickness, where V  is the resonant frequency 
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Figure 7.2: Variation of normalized resonant frequency with plate thickness (a = b=20h, V = −0.1 V). 

 

Figure 7.3: Normalized resonant frequency vs. plate thickness for different plate aspect ratios (V = 

−0.1 V). 

of the PNP without the surface effects. With the considered values of the surface material 

constants, it is found that the separate influence of the surface piezoelectricity is obvious 
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the largest in comparison with the residual surface stress and the surface elasticity for the 

PNP with small thickness, for example, h<30 nm. This observation indicates the 

importance of using the surface piezoelectricity model to investigate the mechanical 

property of piezoelectric nanostructures. With the increase of the plate thickness h, the 

influence of the surface effects diminishes and this normalized resonant frequency 

tending to approach 1. As reported in He and Lilley‟s work (He and Lilley, 2008a), the 

residual surface stress may range from a negative value to a positive one. The combined 

surface effects with setting 0 0   N/m and 0 1.0    N/m are also provided in this 

figure for comparison with 0 1.0   N/m. The obvious discrepancy among these curves 

indicates that this surface piezoelectricity model is sensitive to the values of these surface 

material constants. Fig. 7.3 plots the normalized resonant frequency against the plate 

thickness for the PNP with different in-plane aspect ratio, b/a=0.25, 0.5 and 1.0 for 

example. It is observed that the influence of the surface effects on the normalized 

resonant frequency increases as b/a increases for a given a/h. When the in-plane aspect 

ratio b/a is fixed, the influence of the surface effects also increases with the aspect ratio 

a/h. These results indicate that the surface effects are more prominent for PNPs with 

smaller thickness and larger in-plane area. 

Fig. 7.4 depicts the variation of 0/   against h with 0  being calculated without 

considering the surface effects and the applied electric potential. It is seen that the 

influence of the surface effects is significantly affected by the applied electrical load, 

which is similar to that observed for a simply-supported piezoelectric nanobeam (Yan 

and Jiang, 2011b). The variation of the resonant frequency with the applied electrical 

load suggests possible frequency tuning of PNPs by the applied electric potentials. Such 

frequency tuning concept is expected to provide guidelines for the design and 

applications of PNPs as resonators. It is interesting to note that with the increase of the 

electric potential or the decrease of the plate thickness, the resonant frequency may drop 

down. This phenomenon indicates a possible mechanical buckling of the PNP caused by 

the combined electrical load and the surface effects, which is an important issue needs to 

be addressed in order to keep the mechanical integrity of the structures. Fig. 7.5 shows 

the normalized critical electric potential 0

cr cr/V V  for buckling ( 0

crV  is calculated without 
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Figure 7.4: Normalized resonant frequency vs. plate thickness for different applied electric potentials 

(a= b=20h). 

 

Figure 7.5: Variation of normalized critical electric potential for buckling with plate thickness (a = 

b=20h). 
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Figure 7.6: Normalized critical electric potential vs. plate thickness for different plate aspect ratios. 

 

Figure 7.7: Normalized critical electric potential vs. plate thickness considering residual surface stress 

and surface piezoelectricity separately (a/h=30). 

surface effects) versus the plate thickness h. Similar to the trend observed in Fig. 7.2, the 

surface effects on 0

cr cr/V V  are more prominent for smaller h. Although the combined 
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surface effects are not significant, the separate influence of the surface piezoelectricity 

and the residual surface stress is obvious when h is small, for example, h<30 nm. It is the 

competition between these two surface effects that ends up with a smaller combined 

effect. Again this result suggests the importance of incorporating the surface 

piezoelectricity into the plate model to study the mechanical behavior of the PNP, 

otherwise may lead some misleading predictions. The influence of the surface effects on 

the critical electric potential of the PNP with different aspect ratios is displayed in Fig. 

7.6. It is found that the influence of the surface effects is significantly affected by the 

aspect ratio. When a/h=20, the surface effects decrease the critical electric potential of 

the PNP for b/a=0.25, 0.5 and 1.0. However, such a trend is changed for a PNP with 

larger surface area, a/h=30 and b/a=1.0 for example. This phenomenon could be 

explained by studying the individual surface effect as presented in Fig. 7.7. Since the 

influence of the surface elasticity is much smaller than that of the residual surface stress 

and surface piezoelectricity, we just ignore the surface elasticity here. From Fig. 7.7, it is 

found that the residual surface stress always increases the critical electric potential, and 

such effect is further enhanced with the increase of the in-plane aspect ratio b/a. However, 

the surface piezoelectricity always decreases the critical electric potential and its 

influence is independent of the aspect ratio b/a. Therefore, the residual surface stress 

becomes dominant with the increase of b/a and a/h, resulting the trend change for the 

combined surface effects on the critical electric potential observed in Fig. 7.6. 

7.4 Conclusions 

In summary, a modified plate model is developed based on the classical Kirchhoff plate 

theory and the surface piezoelectricity model to investigate the surface effects on the 

vibration and buckling of the PNPs. Simulation results show that the surface 

piezoelectricity has a significant effect on the resonant frequency and critical electric 

potential for buckling, indicating the importance of using the surface piezoelectricity 

model in predicting the mechanical behavior of the PNPs. The surface effects on the 

resonant frequency of the PNPs are found more prominent for the PNPs with smaller 

thickness and larger in-plane aspect ratio, while the influence of the surface 

piezoelectricity on the critical electric potential for buckling is independent of such aspect 
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ratio. This study also suggests the possible frequency tuning of PNPs via applied electric 

potentials. The fundamental investigations on the mechanical behavior of PNPs carried 

out in this work might be helpful for the design and applications of PNP-based 

nanodevices. 
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Chapter 8  

8 Flexoelectric effect on the electroelastic responses of 
bending piezoelectric nanobeams7 

8.1 Introduction 

The conventional electromechanical coupling between the electric polarization and the 

uniform strain is unique for noncentrosymmetric crystals, such as piezoelectric materials 

(Cady, 1946). However, the presence of a strain gradient or a nonuniform strain field can 

locally break the inversion symmetry and induce an electric polarization even in 

crystalline centrosymmetric dielectrics (Maranganti et al., 2006). This spontaneous 

electric polarization induced by strain gradient is referred as flexoelectricity, which is 

proportional to both the flexoelectric coefficient and the magnitude of the strain gradient. 

In general, flexoelectricity is expected to be rather weak compared with piezoelectricity. 

However, this effect may become prominent at the nanoscale since the strain gradient is 

inversely proportional to the feature scale of the structures (Majdoub et al., 2008). Thus, 

it is necessary to consider the flexoelectric effect in studying the electromechanical 

coupling of dielectrics at the nanoscale. 

Recently, flexoelectricity has stimulated a surge of scientific interests and research 

activities. Particular application of flexoelectricity was focused on the possibility of 

creating piezoelectric nanomaterials without using piezoelectric materials (Sharma et al., 

2007; 2010), in which a nonzero net polarization was induced in the nonpiezoelectric 

dielectric materials due to the flexoelectric effect. In literature, it was found that the 

flexoelectric effect played a crucial role in the physical characteristics of ferroelectrics, 

such as the dielectric constants (Catalan et al., 2004), the polarization hysteresis curves 

(Lee et al., 2011), the critical thickness of thin films below which the switchable 

spontaneous polarization vanishes (Zhou et al., 2012), and the critical phase transition 

temperature of nanowires and thin pills (Eliseev et al., 2009). A series of experiments 

                                                 

7
A version of this chapter has been published. 

 

Yan, Z. and Jiang, L. Y., J. Appl. Phys. 113, 194102, (2013). 
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have been carried out by Ma and Cross (2001a; b; 2005; 2006) to measure the 

flexoelectric coefficients μijkl of some dielectrics. It was reported in their work that 

remarkably large flexoelectric coefficients were found for ferroelectrics with high 

dielectric permittivity. In contrast, the flexoelectric constants were estimated to be several 

orders of magnitude smaller than the aforementioned measurements from atomistic 

simulations (Maranganti and Sharma, 2009; Hong et al., 2010). Controversy on this issue 

has recently been interpreted in Ponomareva et al.‟s work (2012) by the fact that the 

flexoelectric coefficients are temperature dependent. Some efforts have also been devoted 

to establishing theoretical frameworks for dielectrics with the consideration of 

flexoelectricity to quantitatively understand the underlying physics of electromechanical 

coupling of dielectrics at the nanoscale. For example, Maranganti et al. (2006) presented 

a mathematical framework with the flexoelectricity based on the extended linear theory 

for centrosymmetric dielectrics. Hu and Shen (Hu and Shen, 2010; Shen and Hu, 2010) 

developed the governing equations of dielectrics with the consideration of the 

flexoelectric effect by a variational principle. These existing studies provided 

fundamental physical and mathematical basis for incorporating the flexoelectric effect in 

nanoscale dielectrics and intrigued further investigations on this topic. 

One-dimensional piezoelectric nanostructures, such as nanowires or nanobelts which 

can be mathematically classified as beams, are fundamental building blocks for the 

design of nanodevices in nanoelectromechanical systems (NEMS). Therefore, it is 

essential to predict their electromechanical coupling with the consideration of the 

nanoscale structure features. “Small is different”, these piezoelectric nanobeams may 

exhibit different performance from their bulk counterparts, i.e. size-dependent properties. 

It is commonly believed that such size effects are attributed to the surface effects and the 

flexoelectricity for nanoscale piezoelectric materials (Tagantsev, 1986). With the 

consideration of the surface effects, a surface piezoelectricity model (Huang and Yu, 

2006) was applied to study the size-dependent static bending and dynamic behavior of 

piezoelectric nanowires (Yan and Jiang, 2011a; b). It should be mentioned that there are 

very limited studies on the size-dependent properties of piezoelectric nanostructures 

induced by the flexoelectricity. Until recently, an analytical solution was obtained for the 

piezoelectric potential generated in a cantilever ZnO nanowire with the consideration of 
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the flexoelectricity due to a nonuniform bending strain (Liu et al., 2012). However, the 

flexoelectric effect on the electroelastic responses of piezoelectric nanobeams with 

different boundary conditions has not been reported thus far. Therefore, the objective of 

the current work is to investigate the influence of the flexoelectricity on the bending of 

piezoelectric nanobeams with different boundary conditions by using an Euler-Bernoulli 

beam model. Simulation results will be demonstrated to show how the flexoelectricity 

varies with the beam size and its influence on the electroelastic responses of the beams. 

8.2 Modeling and formulation for piezoelectric beam with 
the consideration of flexoelectricity 

In dealing with the problem of piezoelectric nanobeams with the consideration of the 

flexoelectricity, our mathematical modeling is based on the extended linear theory of 

piezoelectricity, in which the strain gradient is incorporated. The general expression for 

the internal energy density function U can be written as (Hu and Shen, 2010) 

, , , ,

1 1 1

2 2 2
kl k l ijkl ij kl ijk ij k ijkl i jk l ijklm ij k lm ijklmn i jk l mnU a P P c d P f u P r u g u u         ,  (8.1) 

where iP  are the components for the polarization vector, while iu are the components for 

the displacement vector. kla , ijklc  and ijkd  are the elements for the reciprocal dielectric 

susceptibility, elastic coefficient and piezoelectric coefficient tensors, respectively. These 

material constant tensors are exactly the same as those in the linear piezoelectricity 

theory. ijklf  are the elements in the polarization and strain gradient coupling tensor, i.e. 

the flexocoupling coefficient tensor (Eliseev et al., 2009). ijklmr  and ijklmng  are the 

elements for the strain and strain gradient coupling and strain gradient and strain gradient 

coupling tensors, respectively. The strain is defined as 

 , ,

1
.

2
ij i j j iu u                                                                 (8.2) 

For simplicity, the couplings between the strain and the strain gradient, and the 

strain gradient and the strain gradient are ignored in the current work as in Majdoub et 

al.‟s work (2008), i.e. both ijklmr  and ijklmng  are assumed as zero. In their work, such an 
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assumption in predicting the electromechanical coupling of piezoelectric nanobeams was 

validated through molecular dynamics. The constitutive equations can be expressed as 

,

,

; ; ij ijkl kl ijk k ijm ijmk k i ij j jki jk jkli j kl

ij i jm i

U U U
c d P f P E a P d f u

u P
   



  
        
  

.     (8.3) 

where ij and
iE are the traditional stresses and the electric field, respectively. ijm is 

defined as the higher order stress or the moment stress (Majdoub et al., 2008; Hu and 

Shen, 2010), which is induced by the flexoelectric effect while does not exist in the 

classical theory of piezoelectricity. 

 

Figure 8.1: Schematic of piezoelectric nanobeams with various boundary conditions (a) cantilever (b) 

clamped-clamped (c) simply supported. 

It is worth mentioning that unlike the elastic coefficient tensor, the flexocoupling 

coefficient tensor is asymmetric and its elements ijklf are related to the flexoelectric 

coefficient tensor elements ijkl by  ijkl lm ijkm ikjm jkimf a       (Sharma et al., 2010). 

These two tensors have the same number of independent coefficients for a given material 

symmetry group. Le Quang and He (2011) have solved the fundamental problem of 

determining the number and types of all possible rotational symmetries for flexoelectric 

tensors. More recently, the non-zero and independent flexoelectric coefficients in a 

matrix form have been given in Shu et al.‟s work (2011). In the current work, 
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the tetragonal barium titanate (point group 4 mm) is taken as the example material with 

the nonzero flexoelectric coefficients in the matrix form being given in Shu et al.‟s work 

(2011), from which the nonzero ijklf  in the matrix form are obtained accordingly. 

In this paper, attention is focused on the static bending behavior of a piezoelectric 

nanobeam of length L, thickness h and width b with different boundary conditions, as 

shown in Fig. 8.1. A Cartesian coordinate system (x, y, z) is used to describe the beam 

with the x-axis being the centroidal axis of the undeformed beam, and the z-axis being 

along the thickness direction. The piezoelectric body is polarized along the z-axis. A 

constant electric potential ∆V is applied between the upper surface z = h/2 and the lower 

surface z = -h/2 of the beam, and a constant concentrated load F is applied at the free end 

x = L of the cantilever (C-F) beam and at the midpoint x = L/2 of the clamped-clamped 

(C-C) and the simply supported (S-S) beams. If the transverse displacement of the 

bending beam is denoted as w(x), the axial displacement at any point of the 

piezoelectric beam can be expressed under the Euler beam hypotheses as 

   
 

0

d
,

d

w x
u x z u x z

x
  ,                              (8.4) 

where  0u x is the axial displacement along the centroidal axis of the beam, which may 

be induced by the applied mechanical load, the applied electrical load due to the 

electromechanical coupling or the flexoelectric effect. The only non-zero strain for the 

beam is obtained from Eq. (8.2) as
2

0

2

d d

d d
x

u w
z

x x
   . Note that h L is assumed for the 

Euler beam and the axial displacement is small compared to the transverse displacement 

for a bending beam; the strain gradient
2 3

0
, 2 3

d d

d d
x x

u w
z

x x
    can be neglected in 

comparison with 
2

, 2

d

d
x z

w

x
   . Thus we only consider the flexoelectricity induced by the 

strain gradient ,x z in the following analysis. 

The electric field is assumed to exist only in the beam thickness direction as justified 

in Wang and Feng‟s work (2010), in which the authors stated that for a 
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piezoelectric nanobeam under an electric potential across its thickness, the electric field 

component in the length direction was negligible compared with that in the thickness 

direction based on the existing numerical simulation results (Gao and Wang, 2007). 

In the formulation, the following matrix notations are introduced for convenience, i.e. 

11 1111c c , 31 311d d and 13 1133f f . From the third equation of Eqs. (8.3) and Eq. (8.4), 

the electric field in z direction can be written as 

2 2

0
33 31 132 2

d d d
,

d d d
z z

u w w
E a P d z f

x x x

 
    

 
               (8.5) 

in which the extra term 
2

13 2

d

d

w
f

x
  different from the linear piezoelectricity theory 

attributes to the flexoelectric effect. 

In the absence of free body charges, the Gauss‟s law is satisfied as 

2

0 2
0,zP

z z

 



 


                                                                                                           (8.6) 

where 12

0 8.85 10  F/m   is the permittivity of the vacuum or air. Φ is the electric 

potential and is related to the electric field by /zE z   . With the consideration of 

the electric boundary conditions  / 2h V   and  / 2 0h   , the polarization and 

the electric field from Eqs. (8.5) and (8.6) can be determined in terms of 0u and w as 

2 2 2

31 0 13 31

2 2 2

33 33

0 31

0 33 0 3333

dd d d
; 

d d d1 1 d
z z

d u f dw w Vd

a a

w V
P z E z

x a x a x a h x h

 



    






 
.  (8.7) 

By substituting the first equation of Eqs. (8.7) into the first equation of Eqs. (8.3), 

the axial stress x  can be obtained as 

2 2 2 2

31 0 31 31 13 31
11 11 2 2

33 33 33 33

0

0

d d d
.

d 1 d d
x

d u d d f dw w V
c c z

a x a x a x a h


    
        

   




  (8.8) 

It is seen from the above equation that an axial force 

2 2
/2

31 0 31 13 31
11 2/2

33 33 33

d d
d

d d

h

x x
h

d u d f dw V
T b z bh c

a x a x a h




   
      

  
  is developed in the beam, 
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which originates from the strain, and the electromechanical couplings induced by the 

strain gradient and the applied electrical load. Obviously, for a C-F beam without any 

applied mechanical loads in the axial direction, this force is 0 due to the traction free 

condition, resulting in a relaxation strain
2

0 31
0 132 2

33 11 31

d d

d d

u d w V
f

x a c d x h


 
    

  
. 

However, for a C-C or an S-S beam with the axial displacement being restricted (
0 0u  ), 

this resultant force becomes
2

31 13 31

2

33 33

d

d
x

d f dw V
F bh

a x a h

 
  

 
, which is expected to 

influence the bending behaviors of the C-C and S-S beams. It should be mentioned that if 

this axial force becomes compressive and sufficient large, for example, when a large 

positive electric potential (∆V > 0) is applied, mechanical buckling may occur. 

The energy method is used to obtain the governing equations of the bending 

piezoelectric nanobeams with the consideration of the flexoelectricity. From Eqs. (8.1) 

and (8.3), the internal energy density function is given as  ,

1

2
x x xxz x z z zU E P       

with 0 31 31

0 33

2

13 0
13 2

3333 33

dd

d1 d
xxz

f uw Vd d

a
f z

a x x aa h


   
     

   




 (Hu and Shen, 2010). The 

electric enthalpy density H is defined as 0 , , ,

1

2
z z z zH PU      . In the entire volume 

Ω of the piezoelectric beam, the variational principle takes (Hu and Shen, 2010) 

d 0,H W 


                                                                                                          (8.9) 

which gives the governing equations of the bending piezoelectric beams. For the C-C and 

S-S beams, the work done by the resultant axial force is  
2

0

1
d / d d

2

L

xW F w x x    (Rao, 

2007). While for the C-F beam, the relaxation strain as discussed before must be 

considered. Therefore, the governing equations are derived as 

   
2 33 4

* *0 0

2 3 4 3

d dd d
0; 0

d d d d

u uw w
EA C EI C

x x x x
       (C-F),                       (8.10) 

and 
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 
4 2

*

4 2

d d
0

d d

w w
EI D

x x
     (C-C, S-S),                   (8.11) 

where 31 13

33

d f
C bh

a
  and 31

33

d
D Vb

a
  .  

2
* 31

11

33

d
EA c bh

a

 
  
 

is the effective axial 

rigidity and  
2 23

0 31 13
11

0 3 3

*

3 31 12

d fbh
c bh

a
E

a
I

 
  









 is the effective bending rigidity. 

Obviously, the bending rigidity is affected by the flexoelectricity through the extra term 

2

13

33

f
bh

a
 , resulting in a smaller value as compared to the conventional piezoelectric beam. 

The flexocoupling coefficient can be determined from the first principles calculation 

(Ponomareva et al., 2012). According to Refs. (Eliseev et al., 2009; Ponomareva et al., 

2012; Chen and Soh, 2012), the typical value of the flexocoupling tensor elements range 

from 1 V to 10 V, thus the value of 
2

13

33

f

a
 falls in the range of 8 610 10   SI units, which is 

comparable to
2 2

0 31
11

0 33 1 12

d h
c

a

 
 

 




when the beam thickness scales down to nanometers. 

Therefore, the flexoelectric effect cannot be neglected at the nanoscale but the condition 

 
*

0EI   must be valid for the stability of the system without considering the higher 

gradient term (e.g. strain gradient and strain gradient coupling term , ,

1

2
ijklmn i jk l mng u u ). In 

fact,  
*

0EI   can only be reached when the beam thickness h is below 5.39 nm with the 

considered material properties for barium titanate. At this truly small scale, one needs to 

resort to atomistic simulations for the accurate predictions of the properties of structures 

in order to capture the edge effects (He and Lilley, 2008), which is out of the scope of the 

current work. In addition, surface effects have been demonstrated to increase the bending 

rigidity of the piezoelectric structures prominently at the nanoscale (Yan and Jiang, 

2011a; b; Li et al., 2011), which are also ignored in the current work. 

With the consideration of the applied concentrated force F, the boundary conditions 

can be deduced from Eq. (8.9) for the beams with different boundary constraints. For a C-
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F beam, the transverse displacement and slope at the free end x=0 are zeros, 

i.e.
d

0
d

w
w

x
  . The moment and force equilibrium at x = L gives 

   
22 3

* *0 13 0

2 3 2

33

d dd d
0; 0

d d d d

u f uw w
EI C Vb EI C F

x x a x x
        .                     (8.12) 

The boundary condition for a C-C beam is the same as that for a C-F beam at x = 0. In 

addition, 
d

0
d

w

x
  at x=L/2 due to the symmetry and the force equilibrium at x=L/2 results 

in 

 
3

*

3

d d
0

d d 2

w w F
EI D

x x
    .                                               (8.13) 

For an S-S beam, the displacement w = 0 at x = 0. The slope and force equilibrium at x = 

L/2 are the same as the C-C beam. The moment equilibrium condition at x = 0 is given by 

 
22

* 13

2

33

d d
0,

d 2 d

fw C w
EI Vb

x a x

 
    

 
                (8.14) 

in which the term

2
d

2 d

C w

x

 
 
 

can be neglected under the infinitesimal deformation 

assumption. It should also be noted that the term 13

33

f
Vb

a
  in the first equation of Eq. 

(8.12) and Eq. (8.14) represents the nonhomogeneity of the boundary conditions for the 

C-F and S-S beams caused by the flexoelectricity, which results in a relaxation moment. 

It should be mentioned that this relaxation moment depends on the applied electric 

potential and becomes zero for the beam without applied electrical load. 

Solving the governing equations (8.10) and (8.11) with the consideration of the 

beam boundary conditions as stated above, the explicit expressions of the transverse 

deflections for the C-F (0 ≤ x ≤ L), C-C (0 ≤ x ≤ L/2) and S-S (0 ≤ x ≤ L/2) beams are 

derived as 
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where 
 

31
1 *

33

d Vb
s

a EI


   and 

 
31

2 *

33

d Vb
s

a EI


 . Substituting these displacement fields into 

Eqs. (8.7) and (8.8), the corresponding polarization, electric field and stress developed in 

the beams with different boundary conditions can be derived.  
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The analytical solutions obtained in the current work clearly show the dependence of 

the electroelastic fields of the beams on the flexoelectricity. If the flexoelectric effect is 

excluded in the formulation, these equations can be reduced to the electroelastic fields of 

the conventional piezoelectric beams based on the linear piezoelectricity theory. 

8.3 Results and discussion 

In this section, the electroelastic responses of a piezoelectric nanobeam loaded with a 

concentrated force F = 1 nN and an electric potential ∆V under different boundary 

constraints are investigated to see the flexoelectric effect. The geometry of the beam is 

set as L = 20 h and b = h. 3BaTiO is taken as the example material with its material 

properties being given in Giannakopoulos and Suresh‟s work (1999). For a narrow beam 

(b < 5h), the material properties under the plane stress condition are calculated as 

11  = 131 GPac , 8 1

31 1.87 10  V md    and 8 1

33 0.79 10  V m Ca   . In addition, 

13  5 Vf  is adopted in the simulation according to Refs. (Eliseev et al., 2009; 

Ponomareva et al., 2012; Chen and Soh, 2012). 

Firstly, the flexoelectric effect on the elastic fields of the bending beams is 

investigated. As discussed in the previous section, the effective bending rigidity  
*

EI  of 

the beam with the consideration of the flexoelectricity is smaller than the bending rigidity 

of the conventional piezoelectric beam, resulting in a softer bending behavior of the 

nanobeam under pure mechanical loading, i.e. a larger transverse displacement is induced 

in the applied mechanical load direction. This softer bending behavior is always 

demonstrated by the C-C beam regardless of the electrical load. However, the bending 

behavior of the C-F and S-S beams is also affected by the applied electric potential as 

indicated by Eqs. (8.15) and (8.17). Example calculations of the transverse displacement 

along the beam longitudinal axis from Eqs. (8.15)-(8.17) for the beams with different 

boundary conditions are plotted in Fig. 8.2, in which the arbitrary unit (Arb. unit) is 

adopted to represent the displacement profile. The beam thickness is taken as h = 20 nm 

and the applied electrical load is ∆V = −0.1 V. It is shown from this figure that the C-F 

beam exhibits a stiffer elastic behavior while the C-C and S-S beams exhibit a softer 

elastic behavior than the corresponding conventional beams under this electrical loading 
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condition. The stiffer or softer behavior is attributed to the flexoelectricity, which may 

result in a non-homogeneous boundary condition for the beam in addition to modifying 

the effective bending rigidity. For the C-F and S-S beams subjected to such a negative 

electric potential, the non-homogeneous boundary condition effect is equivalent to adding 

a positive moment 13 11

2

11 33 31

f c Vb

c a d





 at the free end x = L of the C-F beam and 13

33

f Vb

a


  at the 

two ends x = 0 and x = L of the S-S beam, respectively. Such a relaxation moment 

induces a displacement in the opposite direction of the applied mechanical load for the C-

F beam while in the same direction as the applied mechanical load for the S-S beam. 

Therefore, the effect of the flexoelectricity induced non-homogeneous boundary 

condition to the bending behavior of the C-F beam is opposite to that of the effective 

bending rigidity, but more dominant when the beam is under such a large negative 

electric potential, leading to an overall stiffer elastic behavior of the C-F beam as 

compared to a conventional one. However, for an S-S beam, both of these two 

effects soften the beam. Thus, a much softer behavior is observed for the S-S beam with 

larger discrepancy between the displacements predicted from the current model and the 

conventional one without the flexoelectric effect. If a positive electric potential (∆V > 0) 

is applied to the C-F and the S-S beams, the effect of the flexoelectricity induced non-

homogeneous boundary condition is equivalent to applying a negative relaxation moment. 

Therefore, the overall effect of the flexoelectricity may cause a stiffer elastic behavior for 

the S-S beam while a softer elastic behavior for the C-F beam if the applied electric 

potential is sufficiently large. However, it should be mentioned that a large positive 

electric potential may cause the mechanical buckling of the S-S beam as discussed in the 

previous section, which must be avoided to keep the stability of the beam system. It is 

thus concluded that the flexoelectric effect on the bending behavior of the beam is 

sensitive to the beam boundary conditions and the applied electrical load, i.e. the 

flexoelectricity always softens the bending of a C-C piezoelectric nanobeam, while may 

soften or stiffen the bending of the C-F and S-S piezoelectric nanobeams depending on 

the applied electric potential. 

The flexoelectric effect on the beam elastic behavior can also be revealed by the 

contact stiffness k, which is defined as the ratio of the applied force to the induced 
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Figure 8.2: Transverse displacement along beam longitudinal direction with different boundary 

conditions (a) cantilever (b) clamped-clamped (c) simply supported ( 0.1 VV   ). 

 

Figure 8.3: Variation of normalized contact stiffness with beam thickness for beams with different 

boundary conditions ( 0.1 VV   ). 
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displacement at the same point sustaining this force (Jing et al., 2006). Under the same 

loading condition as that in Fig. 8.2, the variation of the normalized contact stiffness 

0/k k with the beam thickness h is plotted in Fig. 8.3 with 0k  being the contact stiffness 

for a conventional beam. It is observed that the normalized contact stiffness increases 

with the scale up of the beam thickness for the beams with different boundary conditions. 

When the beam thickness is sufficiently large, 
0/k k  approaches a constant. For a C-

C beam, 0 /k k  approaches unit due to the diminishing of the flexoelectric effect. However, 

for the C-F and S-S beams, the flexoelectricity induced relaxation moment prescribes a 

remanent contact stiffness for the beams, resulting in 0/ 1.9k k   and 0/ 0.34k k   for the 

C-F and S-S beams under such a loading condition. The stiffer bending behavior for the 

C-F beam and the softer elastic behavior for the S-S beam due to the combined effects of 

the flexoelectricity and the applied electrical load are consistent with the results in Fig. 

8.2. Similarly, the flexoelectric effect on the contact stiffness will vary with the 

applied electric potential. For example, without the applied electrical load (∆V = 0), no 

relaxation moment develops for the C-F and the S-S beams, therefore, the 

normalized contact stiffness goes to unit for all these three kinds of beams with 

sufficiently large thickness.  

It is obvious from the above discussion that for the bending piezoelectric nanobeams 

under a concentrated load, a residual deflection or contact stiffness exists for cantilevered 

and simply supported beams due to the strain gradient induced non-homogeneous 

boundary conditions, or namely non-local effects as stated in some literatures (Lim and 

Wang, 2007), which introduce a discontinuous jump at beam boundaries in a similar way 

as a concentrated load does. Under a pure electrical load, the residual quantities decay 

with the increase of the structural size. However, under both electrical and concentrated 

mechanical loads, these residual quantities depend on the flexocoupling coefficient, 

electrical load to mechanical load ratio V/F, location x and beam aspect ratio L/h while 

always become negligible for sufficient large aspect ratio L/h. Therefore, the predicted 

deflection and contact stiffness from the current model may not recover to the classical 

predictions when the structural size is beyond nanometer scale under certain 

circumstances (e.g. L/h is not sufficient large), as shown in Figs. 8.2 and 8.3. As is well 
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known that strain gradient theories can describe size effects in small scale problem; they 

also have important consequences in problems with concentrated sources. For example, 

significant difference between the solutions of the higher-order strain gradient model and 

classical model was revealed for a cantilevered nanobeam under a tip point load, 

particularly at the vicinity of the beam clamped end (Lim and Wang, 2007). A similar 

phenomenon was also observed by employing the polarization gradient theory (Yang et 

al., 2004), in which the potential field of a polarized ceramic due to a line charge source 

from polarization gradient theory was found to differ significantly from the classical 

solution near the source point. However, the merit of the current model lies in its 

capability of qualitatively predicting the trend of size-dependent bending properties of 

piezoelectric beams when their sizes scale down to nanometers. Moreover, the scaling 

effects of the relaxation strain, resultant force and polarization field of the piezoelectric 

beams under different boundary conditions could be efficiently predicted through the 

modeling with the flexoelectricity since the effects of classical terms in strain or electric 

fields are more dominant than the strain gradient induced extra terms in these quantities 

with the increase of the structural size, which will be demonstrated in later results and 

discussion.  

Due to the inherent electromechanical coupling of piezoelectric materials, the 

applied electric potential in the beam polarization direction induces an axial strain along 

the beam centroidal axis under the free axial load condition. This relaxation strain is also 

influenced by the flexoelectricity, as indicated from the calculation in the previous 

Section, i.e. 
2

31
0 132 2

33 11 31

d

d

d w V
f

a c d x h


 
   

  
 for a C-F beam. The variation of this axial 

relaxation strain with the beam thickness h at both the beam free and fixed ends of a C-F 

beam under different electrical loads is plotted in Fig. 8.4, in which the relaxation strain 

without the consideration of the flexoelectric effect is also provided for comparison. In 

the absence of the flexoelectricity, 
 

31
0 2

33 11 31

d V

a c d h






 

is independent of the beam 

longitudinal position x. However, this relaxation strain varies along the longitudinal 

position x when the flexoelectricity is considered since it depends on the changing strain  
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Figure 8.4: Variation of relaxation strain with beam thickness for a cantilever beam with different 

electrical loads (a) 0.1 VV    (b) 0.1 VV  . 

gradient of the bending beam  2 2d / dw x due to the mechanical load F. When a 

negative electric potential is applied, for example, ∆V = −0.1 V, the relaxation strain is 
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negative and its absolute value at the beam fixed end (x = 0) first increases with h, then 

decreases with h as shown in Fig. 8.4(a). However, at the C-F beam free end (x = L), this 

negative relaxation strain always decreases with the increase of the beam thickness. It is 

observed from Fig. 8.4(b) that this strain becomes positive and decreases monotonously 

with the beam thickness h for both ends of the C-F beam when a positive voltage is 

applied, ∆V = 0.1 V for example. The results in Fig. 8.4(a) and 8.4(b) demonstrate that 

the flexoelectric effect on the mechanical deformation is more pronounced for the C-F 

beam fixed end due to the higher strain gradient at this position. Moreover, the 

flexoelectric effect is observed to be more significant when the beam thickness h is small, 

and such an effect diminishes with the increase of h as indicated by the fact that the 

relaxation strain approaches to the result without the consideration of the flexoelectricity 

when h is sufficiently large. For a C-C beam and an S-S beam, the axial displacement is 

restricted while a nonzero axial force is developed in the beam as discussed before. 

Without considering the flexoelectricity, the resultant axial force 0

  31 33 /xF d Vb a    is a 

constant along the longitudinal axis of the beam and independent of the boundary 

conditions. In order to see the flexoelectric effect upon the developed axial force, Fig. 8.5 

plots the normalized axial force 0

   /x xF F  versus the beam thickness h for both the C-C and 

S-S beams. Due to the symmetric deformation of the beams, this normalized force is 

plotted for both the end and the middle points of the beam. To avoid the mechanical 

buckling of the piezoelectric beam, a negative electric potential ∆V = −0.1 V is applied. 

Similar to the relaxation strain observed in Fig. 8.4, this resultant axial force varies 

along the longitudinal axis of the beam. It is observed in this figure that the flexoelectric 

effect upon this axial force is more significant for the beams with smaller thickness. With 

the increase of the beam thickness h, the flexoelectric effect diminishes as expected. It is 

also found in this figure that the influence of the flexoelectricity upon the resultant axial 

force is sensitive to the beam boundary conditions. For the S-S beam, the flexoelectricity 

increases the resultant axial force along the whole length of the beam. However, for the 

C-C beam, the influence of the flexoelectricity has different trends for the material points 

along the beam length. For example, under the current loading condition, the 

flexoelectricity decreases the resultant axial force at the end of the beam (x = 0), while it 
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increases the axial force at the middle point (x = L/2) of the beam as compared to the 

results without the consideration of the flexoelectricity. 

 

Figure 8.5: Variation of normalized axial force with beam thickness for both clamped-clamped and 

simply supported beams ( 0.1 VV   ). 

The flexoelectric effect on the electrical field of the piezoelectric beam, such as the 

polarization, is also presented in the current work. Within the considered range of the 

beam thickness h and the material properties, the numerical value of
 

0 31

0 33

  
2 1

d h

a 




 is 

4 310 10   times of 13 33/f a . Therefore, the polarization contributed by the first term in 

the first equation Eq. (8.7) can be neglected and the polarization of the bending 

piezoelectric nanobeam can be regarded as uniformly distributed across the beam 

thickness. However, the polarization varies along the longitudinal axis of the nanobeam 

since the strain gradient effect is substantial and depends on the longitudinal position x. 

In Fig. 8.6, the polarization is plotted against the beam thickness h for a C-F beam under 

different electrical loads. The results for the cases with and without the consideration of 

the flexoelectricity are compared. Stronger dependence of the polarization on the 

flexoelectricity is observed for the beam with smaller thickness under both positive and 



149 

 

 

 

 

 

Figure 8.6: Variation of polarization with beam thickness for a cantilever beam under different 

electrical loads (a) 0.1 VV    (b) 0.1 VV  . 
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Figure 8.7: Variation of normalized polarization with beam thickness for both clamped-clamped and 

simply supported beams ( 0.1 VV   ). 

negative applied electric potentials, while such dependence reduces with the increase of 

the beam thickness. As shown in Fig. 8.6(a), when a negative electric potential is applied, 

for example, V = −0.1 V, the polarization first increases then decreases with the increase 

of h at the beam fixed end (x = 0), while the flexoelectricity always increases the 

polarization of the beam at its free end (x = L). When a positive electric potential V = 0.1 

V is applied, the variation trends of the polarization with the beam thickness h at both 

fixed end (x = 0) and the free end (x = L) are the same, i.e. the magnitude of zP  decreases 

with the increase of the beam thickness h as shown in Fig. 8.6(b). The influence of the 

flexoelectricity on the polarization in the C-C and S-S piezoelectric nanobeams under V = 

−0.1 V is also studied by plotting the normalized polarization 0

 /z zP P  in Fig. 8.7, in which 

0

zP  is the polarization in the beam without the consideration of the flexoelectric effect. 

Similarly, the flexoelectric effect on the polarization is more significant for the 

piezoelectric beams with smaller thickness, and such an effect is sensitive to the beam 

boundary conditions. It is worth mentioning that without the applied electric potential, the 

conventional electromechanical coupling effect (or the piezoelectric effect) induces a 



151 

 

 

 

polarization in the piezoelectric beams due to the bending deformation, which is 

negligible at the nanoscale. However, a much stronger polarization will present in these 

beams with different boundary conditions due to the flexoelectricity. 

8.4 Conclusions 

This work aims to provide a fundamental understanding on the flexoelectric effect upon 

the electroelastic responses of bending piezoelectric beams under different boundary 

conditions. A theoretical model based on the extended linear theory of piezoelectricity 

and the Euler-Bernoulli beam assumptions is developed for this purpose. Simulation 

results have demonstrated that the flexoelectricity has more significant effect on the 

electroelastic fields of the piezoelectric beams with smaller thickness and decays quickly 

with the increase of beam size. The results also indicate that for a cantilever beam, a 

relaxation strain is induced from the conventional electromechanical coupling and the 

flexoelectricity, which also result in the development of a resultant axial force in 

the clamped-clamped and simply supported beams. It is also observed in the current work 

that the flexoelectric effect on the electroelastic fields of the piezoelectric nanobeams is 

sensitive to the beam boundary conditions and the applied electric potential. The model 

developed here can be claimed as helpful for predicting a qualitative trend of the 

flexoelectric effect on the physical properties of piezoelectric nanostructures, suggesting 

that it is possible to use the flexoelectricity to modify the performance of piezoelectric 

nanobeam-based devices in NEMS. However, there are still some other factors that may 

exert influence on the properties of piezoelectric nanostructures, e.g. the higher order 

strain and strain gradient and strain gradient and strain gradient coupling effects, 

polarization gradient effect and surface effects. Such effects have not been taken into 

account in this study, which is the limitation of the current model. The development of a 

more comprehensive theoretical framework with the consideration of all these factors 

should be a further concentration of the future work. 
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Chapter 9  

9 Size-dependent bending and vibration behavior of 
piezoelectric nanobeams aroused by flexoelectricity8 

9.1 Introduction 

The past decade has witnessed the successful development of nanoscale field effect 

transistors, piezoelectric-gated diodes, mechanical sensors, resonators and energy 

harvesters for meeting the demand of high precision and wireless NEMS devices (Wang, 

2007). In these devices, the electromechanical coupling of dielectrics (including 

piezoelectric materials) plays a key role in their performance, particularly piezoelectricity, 

which refers to the generation of electric charges in response to a uniform strain. 

Recently, flexoelectricity, a spontaneous electric polarization generated in dielectric 

crystals due to a nonuniform strain or a strain gradient, has stimulated a surge of 

scientific interests and is believed to contribute to the electromechanical coupling of 

dielectrics under certain conditions. Since strain gradient is closely linked with the 

feature scale of structures, materials tend to exhibit stronger flexoelectricity when their 

structural size scales down to nanometer (Majdoub et al., 2008; Ma, 2008; 2010). Thus, it 

is necessary to explore the influence of flexoelectricity on the size-dependent mechanical 

and physical properties of nanostructured dielectric materials. 

In literature, the flexoelectric effect was found to play an important role in 

explaining some unusual physical properties in ferroelectric thin films such as the 

reduction of dielectric constant (Catalan et al., 2004; 2005), polarization instability (Chu 

et al., 2004), shift in phase transition temperature (Eliseev et al., 2009) and asymmetry of 

hysteresis curves (Tagantsev and Gerra, 2006). Flexoelectric effect was also responsible 

for the non-switchable dead layer formed at the interface between the thin film and the 

contact electrode, resulting in a decrease in stored charge in the thin film capacitors 

(Tagantsev and Gerra, 2006; Majdoub et al., 2009). Due to the flexoelectric effect, 

electric polarization can be induced even in a non-piezoelectric dielectric material. 

                                                 

8
A version of this chapter has been submitted to J. Phys. D: Appl. Phys. 
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Therefore, flexoelectricity in principle can be exploited to produce piezoelectric 

composites from non-piezoelectric constituents (Fousek et al., 1999; Sharma et al., 2007; 

2010), which could be realized by either tailoring non-piezoelectric structure into a 

tapered pyramidal shape (Zhu et al., 2006) or designing it in the flexure mode (Chu et al., 

2009) to obtain a non-homogeneous strain gradient. Investigation also showed that the 

physical properties of ferroelectric epitaxial thin films, such as domain configurations and 

hysteresis curves, could be tuned by means of the flexoelectric effect (Lee et al., 2011). 

Furthermore, flexoelectricity could be employed as a dynamic tool for polarization 

control and might enable data-storage application in which memory bits are written 

mechanically and read electrically (Lu et al., 2012). 

For dealing with the practical device applications of piezoelectric nanostructures, it 

is necessary to establish theoretical frameworks to understand the fundamental physics of 

these materials at the nanoscale. The conventional electromechanical coupling has been 

well interpreted by the linear piezoelectricity theory developed by Toupin (1956). 

Mindlin (1969) extended this linear theory by incorporating the polarization gradient 

effect in a later work. Maranganti et al. (2006) developed a variation principle for 

dielectrics including both the strain gradient and polarization gradient effects. Recently, 

with the consideration of the flexoelectricity, electroelastic force and surface effects, a 

comprehensive theoretical framework for nanoscale dielectrics has been established (Hu 

and Shen, 2010; Shen and Hu, 2010). Owing to these pioneer works, the 

electromechanical coupling behavior of piezoelectric nanomaterials can be characterized 

and interpreted to some extend. For example, the flexoelectric effect was found to 

enhance the electromechanical coupling coefficient of piezoelectric nanowires by 

employing a modified Euler-Bernoulli model (Majdoub et al., 2008). The flexoelectricity 

was also incorporated in calculating the piezoelectric potential distribution in ZnO 

nanowire, and the predictions were in good agreement with experimental data (Liu et al., 

2012). In our previous work, based on the Euler-Bernoulli beam theory, the size-

dependent electroelastic reponses of a piezoelectric nanobeam were predicted with the 

consideration of the flexoelectricity (Yan and Jiang, 2013). However, understanding of 

the flexoelectric effect on the electromechanical coupling of nanostructured piezoelectric 

materials is still far from complete. To the authors‟ best knowledge, all the existing 
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continuum modeling on the size-dependent properties of one-dimensional piezoelectric 

nanostructures aroused by the flexoelectricity was based on the Euler-Bernoulli beam 

theory. As another effective mathematical model, the Timoshenko beam theory accounts 

for the effects of shear deformation and rotary inertia for vibrating beams, thus it is 

expected to be more accurate, particulary for beams with low length-to-thickness aspect 

ratio. To complement the theoretical modeling on the piezoelectric nanobeams, a 

comprehensive model based on the extended linear theory of piezoelectricity and 

Timoshenko beam theory will be developed in the current work to investigate the static 

bending and free vibration of a simply supported piezoelectric nanobeam with the 

consideration of the flexoelectricity. Simulations will be conducted to show how the 

flexoelectricity varies with the beam size and its influence on the static and dynamic 

behaviors of the beam. Since beam model mathematically represents fundamental 

building blocks in NEMS devices, such as nanowires and nanobelts, this work is 

expected to be beneficial for the design and applications of one-dimensional piezoelectric 

structure-based nanodevices. 

9.2 Formulation of the problem 

The problem envisaged in the current work is a simply supported piezoelectric nanobeam 

with length L, width b and thickness h under an electric potential V and a distributed 

transverse load q, as shown in Fig. 9.1. A Cartesian coordinate system (oxz) is applied to 

describe the beam position with the x-axis being along the beam centroidal axis. The 

poling direction of the piezoelectric material coincides with the z-axis. To conduct the 

bending analysis of the piezoelectric nanobeam with the flexoelectricity, Timoshenko 

beam theory is adopted with the displacement field being defined as (Rao, 2007) 

   , ; , ,u z x t w w x t                                    (9.1) 

where t is the time, u and w are the displacement components along the x and z directions 

for an arbitrary point in the beam, respectively. ϕ is the rotation angle of the beam cross 

section due to pure bending. In particular, ϕ = ∂w/∂x for an Euler-Bernoulli beam. 

Accordingly, the strains can be derived as 
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x xz

w
S z S

x x




  
     

  
                           (9.2) 

The electric field is assumed to exist only in the z direction, which is expressed in 

terms of the electric potential as 

.zE
z


 


                                                               (9.3) 

To account for the flexoelectric effect, the extended linear theory of piezoelectricity 

incorporating the strain gradient and the electric polarization coupling is employed in the 

current study. Neglecting the effect of higher order terms (fifth order tensors and higher), 

the general expression for the internal energy density function U can be written as 

(Majdoub et al., 2008; Hu and Shen, 2010) 

1 1
+ : : + : + : ,

2 2
U      P a P S c S S d P P f u                  (9.4) 

where P and u are the polarization and displacement vectors; S is the strain tensor; a, c 

and d are the reciprocal dielectric susceptibility, elastic coefficient and piezoelectric 

coefficient tensors, respectively; f is the fourth order polarization and strain gradient 

coupling tensor, i.e. the flexocoupling coefficient tensor (Eliseev et al., 2009). 

 

Figure 9.1: Schematic of a simply supported piezoelectric nanobeam subjecting to a distributed 

mechanical load q and an electrical load V. 

The constitutive equations can thus be expressed as 

= : + ; ; = + : + : ,
U U U  

       
  

T c S d P T f P E a P d S f u
S u P

                         (9.5) 
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where T and E are the stress tensor and the electric field vector, respectively. T  was 

defined as the higher order stress or the moment stress tensor (Majdoub et al., 2008; Hu 

and Shen, 2010), which is induced by the flexoelectric effect. From the above equations, 

the constitutive relations for the one-dimensional Timoshenko piezoelectric nanobeam 

are derived as 

11 31

44

13

33 31 13 ,

;

;

;

,

x x z

zx

xxz z

z z x x z

T c S d P

w
T kc

x

T f P

E a P d S f S



  


        


   

                                       (9.6) 

where k is the shear correction factor and is taken as 5/6 for a rectangular cross section 

(Abbasion et al., 2009). In order to obtain the analytical solutions of the problem, the 

piezoelectric effect contributed by 15d is neglected although nonzero shear strain exists 

(Wang, 2013). In addition, only the strain gradient along the beam thickness direction, i.e. 

, /x zS x    is considered, while the strain gradients along the beam length direction 

,x xS and ,zx xS  are neglected for simplicity. 

In the absence of free electric charges, the Gauss‟s law requires 

2

0 2
0,zP

z z


 
  

 
                                                   (9.7) 

where 12 1 1

0 8.85 10  C V  m      is the permittivity of the vacuum or air. Considering 

Eq. (9.3), the third equation of Eqs. (9.6) and Eq. (9.7), and the electric boundary 

conditions Φ(−h/2) = 0 and Φ(h/2) = V, the electric polarization and electric field are 

determined as 

0 31 13 31

0 33 33 33 0 33

;
1 1

z z

d f dV V
P z E z

a x a x a h a x h

   

 

  
     

    
.                         (9.8) 

Substituting the first equation of Eqs. (9.8) into the first two equations of Eqs. (9.6), the 

expressions of the stresses and the higher order stresses can be obtained in terms of ϕ and 

w accordingly. 
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In this study, Hamilton‟s principle is adopted to derive the governing equations and 

boundary conditions of the piezoelectric nanobeam with the consideration of the 

flexoelectric effect, which follows 

 2

1

d d 0
t

t
H K W t


                                     (9.9) 

where Ω is the entire volume occupied by the piezoelectric beam. 

0 , , ,

1

2
z z z zH U P      is the electric enthalpy density. From Eqs. (9.5), Eq. (9.4) is 

reduced to ,

1 1 1

2 2 2
xxzx x xz xz x z z zU T S T S T S E P     for the one-dimensional piezoelectric 

beam. 

2 2

0

1
  d

2

L w
K A I x

t t


 

   
   

  
  

      
  is the kinetic energy, in which ρ is the mass 

density, A = bh and 31
 

12
I bh  are the area and second moment of area of the rectangle 

beam, respectively. The work done by external loads is defined as 

 
0

2

0

1
  d / d

2

L L

xW qw x F w x x      with 13
31

33 33

 d  x x

A

f V
F T A d A

a x a h


  



 
 
 

 . For 

simplicity, we ignore the length change of the beam induced by the shear deformation, 

then /w x  in the second term of W is approximated by  in the derivation of the 

governing equations. It should be mentioned that the axial force Fx originates from the 

inherent electromechanical coupling of piezoelectric materials (d31) and the flexoelectric 

effect (f13). When the flexoelectric effect is excluded, Fx is a constant. Applying the 

variational principle of Eq. (9.9), the following governing equations are obtained in terms 

of the beam transverse displacement w and rotation angle ϕ as 

 
2 2

* 31
442 2

33

0,
d Vbw

EI kAc I
x x a t

 
  

   
       

   
  (9.10) 

2 2

44 2 2
,

w w
kAc A q

x x t




   
     

   
                       (9.11) 
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with the effective bending rigidity  
2 2

* 0 31 13
11

0 33 331

d f
EI c I A

a a





 
   

 
. Obviously, the 

flexoelectricity reduces the bending rigidity of the beam as compared with the 

conventional one. The associated boundary conditions for the simply supported 

piezoelectric beam at x = 0 and x = L are expressed as 

0w   and  
* 213 31 13

33 33

1
0,

2

f d f
EI bV A

x a a





  


 (9.12) 

in which the term 231 13

33

1

2

d f
A

a
  is ignored under the infinitesimal deformation assumption. 

It is noted that the flexoelectric effect not only modifies the bending rigidity but also 

causes a non-homogeneous boundary condition for the beam, as shown in Eq. (9.12). 

A. Static bending of a piezoelectric nanobeam 

For static bending of a piezoelectric nanobeam, the governing equations are 

simplified from Eqs. (9.10) and (9.11) as 

 
2

* 31
442

33

d d
0

d d

d Vbw
EI kAc

x x a


 

 
      

 
,     (9.13) 

2

44 2

d d

d d

w
kAc q

x x

 
    

 
.                                         (9.14) 

Combining Eq. (9.13) and (9.14), we have 

 
3

* 31

3

33

d d

d d

d Vb
EI q

x a x

 
  .                                       (9.15) 

The general solution of Eq. (9.15) can be expressed as 

 

 
 

33
1 2 3
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3 2

1 2 3*

e e ; 0
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                (9.16) 
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with
 
31

*

33

d Vb

a EI
   . Integrating Eq. (9.13) with the consideration of Eq. (9.16), the 

expression for w is obtained as 
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  (9.17) 

with 1 4C C  and 1 4D D  being determined from the boundary conditions Eq. (9.12) as 
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     (9.18) 

and 

   

3

1 2 3 4* *
; 0; ; 0.

4 24

qL qL
D D D D

EI EI
       (9.19) 

Thus the completed electroelastic fields of the Timoshenko piezoelectric beam with 

the flexoelectric effect are determined. When the terms associated with the shear 

coefficient k are set as zeros, the corresponding solution reduces to that for an Euler-

Bernoulli piezoelectric beam with the flexoelectricity. Moreover, the solution is further 

reduced to that for a classical Euler-Bernoulli piezoelectric beam when the flexoelectric 

effect is excluded. 

B. Free vibration of a piezoelectric nanobeam 

Combining Eq. (9.10) and Eq. (9.11), the governing equation for the free transverse 

vibration of a piezoelectric nanobeam can be written in terms of w as 
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(9.20) 

The harmonic solution of Eq. (9.20) for the simply supported beam takes the format of 

 
1

, sin cos ,n n

n

n x
w x t C t

L








                                 (9.21) 

where Cn is a constant, n is the mode number, and ωn is the resonant frequency of the n-th 

mode. Substitution of Eq. (9.21) into Eq. (9.20) gives the characteristics equation for 

determining the beam resonant frequency, i.e. 
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*4 231 31
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(9.22) 

Eq. (9.22) is a quadratic equation in 2

n  and gives two values of ωn for any mode number 

n. The smaller value of ωn corresponds to the bending deformation mode, while the larger 

one corresponds to the shear deformation mode. In the following case study, we will 

show how the flexoelectricity influences the first resonant frequency of the bending 

deformation mode of the piezoelectric nanobeam. 

9.3 Results and discussion 

In this work, the influence of the flexoelectric effect on the static and dynamic responses 

of a simply supported piezoelectric nanobeam is investigated. For case study, BaTiO3 is 

taken as the example material with its material properties being given in Giannakopoulos 

and Suresh‟s work (1999). Under the plane stress condition, the elastic, piezoelectric and 

dielectric constants of BaTiO3 are calculated as 11 131 GPac  , 44 42.9 GPac  , 

8 -1

31 1.87 10  V md    and 8 -1

33 0.79 10  V m Ca   , respectively. The mass density is 

3 -36.02 10  kg m   . The flexocoupling coefficient of BaTiO3 is not available in the 

open literatures due to the lack of experimental work and atomistic simulations, but 

should fall into the range of 1-10 V (Tagantsev and Yurkov, 2012). In the current 
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simulations, the flexocoupling coefficient takes 13 5 Vf   following the following works 

(Eliseev et al., 2009; Tagantsev and Yurkov, 2012; Chen and Soh, 2012; Ponomareva et 

al., 2012). In the presented results and the corresponding discussion, symbols EB, TB, 

CEB and CTB are used to represent Euler beam, Timoshenko beam, classical Euler beam, 

and classical Timoshenko beam, respectively. 

To demonstrate the flexoelectric effect on the static bending of the piezoelectric 

nanobeam, the transverse deflection of a simply supported beam with geometries b = h = 

10 nm, L = 50 nm is plotted in Fig. 9.2 under the same mechanical load q = 0.2 nN/nm 

but different electrical loads V = 0.1 V and V = −0.1 V, respectively. The predictions 

based on the current modified Timoshenko and Euler theories with the consideration of 

the flexoelectricity are provided in this figure to compare with the results from the 

classical beam models. Obviously, the flexoelectric effect is significant for the bending of 

the beam as evidenced by the large discrepancies between the results of the current 

models and the classical models. Moreover, the flexoelectric effect is sensitive to the 

applied electrical load. In particular, when the applied electrical load is positive (V = 0.1 

V), flexoelectricity increases the beam deflections for both TB and EB in comparison to 

CTB and CEB, as shown in Fig. 9.2(a); when the applied electrical load is negative and 

sufficient large, for example, V = -0.1 V as shown in Fig. 9.2(b), it is observed that the 

direction of the deflection can even be reversed due to the flexoelectric effect. This 

phenomenon can be interpreted by the nonhomogeneous boundary conditions induced by 

the flexoelectricity as shown in Eq. (9.12), i.e. the equivalent relaxation moment 

13 33/f bV a  at the beam ends x = 0 and x = L, which does not exist in classical beam 

theories. It is indicated from Eqs. (9.17) and (9.18) that the deflection of the beams 

depends on both the mechanical load q and the equivalent moment 13 33/f bV a . Under q 

= 0.2 nN/nm, a positive deflection is produced for the Timoshenko and Euler beams. In 

addition, a positive electrical load V is equivalent to a negative relaxation moment at the 

beam ends, which induces a deflection in the same direction as that of the applied 

mechanical load; while a negative electrical load V is equivalent to a positive moment at 

the beam ends, resulting in a deflection in the opposite direction as that of the applied 

mechanical load. Therefore, the overall deflection of the beam depends on the combined 
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Figure 9.2: Deflections of the beams under distributed load (a) V=0.1 V and (b) V=-0.1 V. 

effects of the mechanical load and the equivalent relaxation moment induced by the 

flexoelectricity, for example, the flexoelectricity may even change the mechanical 

deflection direction under certain conditions. This phenomenon indicates that the 

flexoelectricity can be used to control the displacement profile of a piezoelectric 

nanobeam at the nanoscale, which is useful for the design of piezoelectric nanobeam-

based actuators. 
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Figure 9.3: Variation of the normalized beam deflection with the beam thickness. 

 

Figure 9.4: Variation of the normalized beam deflection with the beam length to thickness ratio when 

V=-0.1 V. 
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Fig. 9.3 shows the variation of the normalized beam deflection 0/ Vw w at the midpoint 

(x = L/2) of the beam with the beam thickness for both Timoshenko and Euler beam 

models. 0

Vw  is the deflection for an Euler-Bernoulli beam without considering the 

flexoelectric effect. The beam is subjected to the same mechanical load as that in Fig. 9.2 

and different electrical loads. The geometry of the beam is set as b = h, L = 5h. It is 

obvious from this figure that the flexoelectric effect leads to the size-dependent bending 

behavior of the piezoelectric nanobeam. With the increase of the beam thickness, the 

flexoelectric effect decreases with the beam deflection approaching to the classical result. 

It is also observed from this figure that the flexoelectric effect on the mechanical 

deflection of the beam depends on the applied electrical load prominently, for example, 

the deflection direction could be reversed by the flexoelectricity when the applied 

negative electrical load is sufficient large, which is consistent with the observations in Fig. 

9.2. In order to see the shear deformation effect, Fig. 9.4 plots the normalized deflection 

0/ Vw w against the beam length to thickness aspect ratio (L/h) for the beam with b = h 

when subjected to q = 0.2 nN/nm and V = -0.1 V. It is indicated from this figure that the 

shear deformation has significant effect on both beams with and without the flexoelectric 

effect when the length-to-thickness ratio L/h is small, as evidenced by the discrepancy 

between the results from the Timoshenko and Euler-Bernoulli beam models. With the 

increase of L/h, the predictions from the Timoshenko beam models tend to approach the 

results from the Euler-Bernoulli beam model as expected. It is also seen that the shear 

deformation effect increases the beam deflection as indicated by the deflection values of 

the CTB higher than 1; while the flexoelectric effect decreases the beam deflection and 

becomes more prominent for the beam with smaller beam thickness h. Therefore, the 

shear deformation effect on the beam deflection may be compromised with the 

consideration of the flexoelectricity. For example, when the beam thickness h=100 nm, 

the result from the Timoshenko beam model with the consideration of the flexoelectricity 

(curve TB) is close to that from the classical Euler-Bernoulli beam due to the combined 

effects of the shear deformation and the flexoelectricity. Once again, the large 

discrepancy between the results from the modified beam models with the consideration of 

the flexoelectricity and the classical beam models for piezoelectric nanobeams with 
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smaller thickness indicates the necessity of incorporating the flexoelectricity in predicting 

their size-dependent bending properties. 

 

 

Figure 9.5: Variation of the normalized resonant frequency with the beam thickness for beams with 

different length to thickness ratios (a) L/h=10 and (b) L/h=20. 
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To investigate how the flexoelectricity influences the vibration behavior of the 

piezoelectric nanobeams, the normalized resonant frequencies from both Timoshenko and 

Euler-Bernoulli beam predictions are plotted against the beam thickness in Fig. 9.5. 0 is 

the resonant frequency of an Euler-Bernoulli beam without considering the flexoelectric 

effect and the applied electrical load. It is found that the resonant frequency of the 

Timoshenko model is always lower than that from the Euler-Bernoulli prediction. In 

addition, the flexoelectricity decreases the beam resonant frequency and such 

flexoelectric effect on the vibration behavior of the piezoelectric nanobeam is more 

pronounced for the beam with smaller thickness. The discrepancy between the curves for 

different electrical loads indicates that it is possible to tune the frequency of piezoelectric 

nanobeams by adjusting the applied electrical load, which has also been also been 

discussed in the works (Wang and Feng, 2010; Yan and Jiang, 2011). By comparing Figs. 

9.5(a) and (b), it is observed that the variation of the resonant frequency with the applied 

electrical load is more significant for slender beams with larger length to thickness ratio 

(L/h=20 for example), which means that the frequency tuning for piezoelectric 

nanobeams with electrical load is more efficient for slender beams. Such frequency 

tuning concept is expected to provide helpful guidelines for the design and application of 

piezoelectric nanowires/belts as nanoresonators.  

9.4 Conclusions 

In this work, Timoshenko beam model with the consideration of the flexoelectric effect is 

adopted to investigate the static bending and free vibration of piezoelectric nanobeams. 

By employing the extended linear theory of piezoelectricity and Hamilton‟s principle, the 

explicit expressions for the deflection and the resonant frequency of a simply supported 

piezoelectric nanobeam are obtained. The results show that due to the flexoelectricity 

induced nonhomogeneous boundary conditions, the flexoelectric effect on the static 

bending behavior of the piezoelectric nanobeams is prominent and depends on the 

applied electrical load considerably. The shear deformation is also found to effectively 

influence the deflection of piezoelectric nanobeams at small length to thickness ratio. The 

vibration analysis of the piezoelectric nanobeam indicates that the flexoelectricity, the 

rotary inertia and shear deformation tend to reduce the resonant frequency of the beams. 
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In addition, the variation of the resonant frequency with the applied electric potential 

suggests that frequency tuning of piezoelectric nanobeams can be achieved by adjusting 

the applied electrical load. This work provides a methodology to predict the mechanical 

properties of piezoelectric nanobeams with a wider range of beam length to thickness 

ratios. It should be mentioned that the surface effects and the polarization gradient effect 

are not taken into account in the current study, which will be our future work 

concentration. 
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Chapter 10  

10 Conclusions and future work 

10.1 Conclusions 

Different from conventional bulk piezoelectric structures, piezoelectric nanostructures 

show size-dependent mechanical and electromechanical coupling properties, which 

cannot be captured by conventional continuum mechanics models. In addition, the 

coupling of electromechanical coupling of piezoelectric materials and size effects at the 

nanoscale complicates the theoretical analysis of such novel structures. In this work, 

within the continuum mechanics framework, the size-dependent bending, vibration and 

buckling behaviors of piezoelectric straight and curved nanobeams, and piezoelectric 

nanoplates have been firstly predicted by modified beam or plate continuum models 

accounting for size effects. The contributions of the current work include: 

(1) This work is the first to provide a comprehensive study on the size-dependent 

mechanical and electromechanical coupling properties of different piezoelectric 

nanostructures with surface effects. By applying the surface piezoelectricity model, 

we firstly develop various modified beam and plates models, which are capable of 

predicting the size-dependent properties of piezoelectric nanostructures. These 

models can recover the conventional continuum mechanics models when surface 

effects are neglected; 

(2) By controlling the beam axial constraints or plate in-plane boundary constraints, the 

relaxation phenomenon of nanostructures, which was observed in both experiments 

and atomistic simulations, is captured through the methodologies and models 

presented in the current work. Such a relaxation phenomenon has not been reported 

thus far through continuum mechanics approaches in existing literatures; 

(3) The phenomenon of flexoelectricity observed in ferroelectric materials at the 

nanoscale has attracted significant scientific interest recently. However, there are very 

limited studies on modeling the effect of flexoelectrity on the static and dynamic 

behavior of piezoelectric nanostructures. The current work fills this gap and is the 
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first to develop modified beam models for piezoelectric nanobeams with different 

boundary conditions accounting for flexoelectricity. Based on the developed models, 

the flexoelectricity induced size-dependent mechanical and electrical properties of 

piezoelectric nanobeams can be captured. 

 In addition, significant conclusions drawn from the current work are listed as: 

(1) The electromechanical coupling coefficient of piezoelectric nanobeams may be 

significantly enhanced with the decrease of nanobeam thickness due to surface effects, 

implying the possible performance improvement of piezoelectric nanobeam based 

devices in NEMS; 

(2) The influence of surface effects including residual surface stress, surface elasticity 

and surface piezoelectricity on the bending, vibration and buckling behaviors of 

piezoelectric nanobeams and nanoplates is more prominent with the decrease of beam 

or plate thickness; 

(3) Although some individual influence of the residual surface stress, surface elasticity 

and surface piezoelectricity on the electroelastic fields of curved piezoelectric 

nanobeam is small under some circumstances, the combined influence of these 

surface effects is significant; 

(4) The in-plane boundary conditions influence the surface effects on the static bending 

and vibration behaviors of a simply supported piezoelectric nanoplate prominently. 

(5) A transition length to thickness ratio of a piezoelectric nanoplate is found, at which 

surface effects on the critical electric potential for the mechanical buckling of the 

plate disappear for all plate thickness. 

(6) Flexoelectric effect on the electroelastic fields of the piezoelectric nanobeam is 

sensitive to the beam boundary conditions and the applied electric potential, and such 

an influence is more significant for a beam with smaller thickness and decays quickly 

with the increase of beam size. 
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10.2 Future work 

This work provides a general methodology to study the size-dependent properties of 

piezoelectric nanobeams and nanoplates under different loading conditions. The models 

developed in the work can be claimed as helpful for predicting a qualitative trend of the 

surface effects and the flexoelectric effect on the mechanical and electromechanical 

coupling properties of piezoelectric nanostructures. Based on the results from the current 

study, some other aspects of the size-dependent properties of piezoelectric nanostructures 

are suggested to be further conducted: 

(1) In this study, the surface effects and the flexoelectric effect on the properties of 

piezoelectric nanostructures are investigated separately. For a dielectric material 

(including piezoelectric materials), both effects exist simultaneously. Therefore, 

further investigation on the size-dependent properties of piezoelectric nanostructures 

considering both surface effects and flexoelectric effect is necessary. Due to the 

complexity of the problem induced by the electromechanical coupling of piezoelectric 

materials and the small scale effects, analytical solutions may only be obtained for 

specific piezoelectric nanostructure configurations. Therefore, appropriate numerical 

methods are required to implement the investigations.  

(2) Recently, there is an increasing scientific interest in designing new multifunctional 

devices at the nanoscale. The functionality of such novel devices depends on the 

multi-physics coupling of their structural constituents, e.g. layered composites, which 

exhibit coexistence of at least two material properties, such as elasticity, electricity 

and magnetism. To fulfill the practical requirements, it is important to model these 

advanced materials with size effects and clarify the size effects on their physical 

properties. For the layered structures, in addition to surface effects and flexoelectric 

effect, the interface effects should also be taken into consideration. 

(3) To study the flexoelectric effect on the piezoelectric nanobeams, the strain gradient 

along the beam thickness direction is considered while the one along the beam axial 

direction is ignored. This is a limitation of the current work.  In fact, when the strain 

gradients along both directions are considered, differential governing equations with 

higher-order terms compared to the conventional governing equations will be 
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obtained. Meantime, in addition to the classical boundary conditions, new boundary 

conditions are required to solve the modified governing equations with higher-order 

terms. Therefore, a more accurate model should be developed with the consideration 

of all the strain gradients. Numerical studies may need to be conducted to investigate 

the strain gradient effects on the properties of the piezoelectric nanobeams. 

(4) The current study based on continuum mechanics is not applicable for extremely 

small nanostructures (i.e. h < 10 nm in the current work), in which edge and corner 

effects play an important role in the overall properties of structures. At such an 

extremely small scale, atomistic simulations should be employed to conduct the 

analyses. Therefore, modified continuum mechanics modeling should be combined 

with atomistic studies to investigate the size-dependent properties of piezoelectric 

nanostructures. 

(5) With the development of advanced synthesis techniques, various configurations of 

piezoelectric nanostructures have been successfully synthesized with potential 

applications in the NEMS. It is thus necessary to acquire a fundamental 

understanding of the size-dependent properties of these nanostructured piezoelectric 

materials. However, it is very difficult if it is not impossible to fully conduct 

analytical analysis on these materials with complex structures due to the 

mathematical obstacles. Therefore, numerical methods such as a finite element model 

with the consideration of surface effects and flexoelectricity within the framework of 

classical finite element method should be conducted for the numerical simulation 

purpose. Such a numerical approach incorporating the nanoscale features of 

piezoelectric materials is expected to be more accurate and reliable. 
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Appendix A: Influence of axial boundary constraint on the 
vibration of piezoelectric nanobeams with surface effects 

This appendix has been provided to supplement the work presented in Chapter 3 by 

considering the axial boundary constraint of piezoelectric nanobeams. The schematic of 

the piezoelectric nanobeams is referred to Fig. 3.1. In addition, notations will only be 

given to physical quantities that do not appear in Chapter 3, otherwise, they are the same 

as those defined in Chapter 3. The axial strain is expressed based on the Euler-Bernoulli 

beam theory as 

 
   2
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with  0 ,u x t  being the axial displacement at z=0, which was assumed as zero in Chapter 

3 based on the conventional Euler-Bernoulli model. Such assumption is reasonable for a 

clamped-clamped beam. However, for a cantilevered or a simply supported beam, this 

axial displacement may not be zero depending on the boundary constraints. Following the 

derivation procedure given in Chapter 3, the following governing equations for a general 

case can be obtained as 
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in which     * 2 3 s s 3 2

11 31 33 11 31 31 33( ) / /12 / /6 / 2EI c e bh c e e h bh      is the effective 

bending rigidity of the beam and  * 0 s s

11 0 31 11 0 31/ / 2 / /xN c u x e V h bh c u x e V h b           .  

 The boundary conditions in both the axial and transverse directions are prescribed 

as 
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where    * s 0 s s

11 0 31 11 0 31d d d / / 2 / /x x x
c

P y z c c u x e V h bh c u x e V h b h                 is 

the effective axial force;  
** 2 2/M EI w x   is the effective moment; and 

 
** 3 3 */ /Q EI w x N w x      is the effective shear force. It should be mentioned that 

two different axial boundary conditions may apply for simply-supported piezoelectric 

beam, as shown from Eq. (A.5). The beam is constrained without axial moving under the 

Case 1 boundary condition while traction free is adopted under the Case 2 boundary 

condition. The traction free boundary condition is also adopted for the cantilever beam as 

indicated in Eq. (A.4). Under this condition, a uniform strain 

 0 s s

0 31 31 11 11/ = 2 2 ( ) / / 2 ( )xu x e Vb b h e V b h h c bh c b h                  is induced by 

the applied electrical load and surface effects, which will influence the vibration behavior 

of piezoelectric nanobeams. After applying these boundary conditions, the resonant 

frequencies of the piezoelectric nanobeams can be determined. 

Firstly, the variation of the normalized resonant frequency s 0/  of a simply-

supported piezoelectric nanobeam with beam thickness h under both Case 1 and Case 2 

axial boundary conditions is plotted in Fig. A.1. 0 is the resonant frequency calculated 

without the consideration of surface effects and the applied electrical load. The beam 

geometry is set as b=h and L=10h. It is clearly seen from this figure that the axial 

boundary constraint has a significant influence on the vibration of the piezoelectric 

nanobeam, as evidenced by the dissimilar variation trends. For example, when the axial 

boundary constraint is set as described in Case 1, the combined effects of surfaces and 

electrical load increase the resonant frequency of the piezoelectric nanobeams. When V=-

0.1 V, the influence is the largest ( s 0/   is about 1.2 at h=10 nm). However, under Case 

2 boundary constraint, the resonant frequency can be either enhanced or reduced by the 

surface effects and the applied electrical load. For example, s 0/   is about 1.01 and 

0.95 for a beam with h=10 nm when V=0.1 V and -0.1 V, respectively. It is noted that the 

variation of resonant frequency with the applied electric potential in this figure indicates 
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a possible avenue for frequency tuning of piezoelectric nanobeams. It is also observed 

that the surface effects have more prominent influence on the resonant frequency of a 

beam with smaller thickness. While such surface effects decrease with the increase of 

beam thickness h. Fig. A.2 shows the variation of the normalized resonant frequency of a 

piezoelectric nanobeam against the beam thickness. The beam has the same geometric 

parameters as the one in Fig. A.1 without any applied electrical load. It demonstrates that 

the surface effects on the resonant frequencies of piezoelectric nanobeams are 

significantly influenced by the beam boundary conditions. For the S-S beam with Case 1 

boundary constraint and the C-C beam, surface effects increase the resonant frequencies, 

while the trend is opposite for the S-S beam with Case 2 boundary constraint and the C-F 

beam. Again, surface effects are more significant for the beam with smaller thickness h 

and reduce with the increase of h. From these two figures, it is conduced that the axial 

boundary condition plays a substantial role in the transverse vibration of piezoelectric 

nanobeams with surface effects. Therefore, it is essential to consider the axial boundary 

constraints in predicting the vibration behavior of piezoelectric nanobeams. 

 

Figure A.1: The normalized resonant frequency
s 0/  versus beam thickness h for a simply-

supported piezoelectric nanobeam with surface effects under different axial boundary conditions. 
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Figure A.2: The normalized resonant frequency
s 0/  versus beam thickness h for a piezoelectric 

nanobeam with surface effects under different boundary conditions. 

 

Figure A.3: Axial strain h versus beam thickness h for a piezoelectric nanobeam under different 

applied electrical loads. 
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As mentioned before, the applied electrical load and surface effects will induce an axial 

strain when the axial traction free condition is prescribed for the beam. As shown in Fig. 

A.3, without the consideration of the surface effects, the product of this axial strain with 

the beam thickness is a constant, i.e. 31 11/h e V c   . When V=0 V, no axial strain is 

induced for the beam without considering the surface effects. However, the existence of 

the residual surface stress will still induce a relaxation strain as shown by the curve V=0 

V with surface effects in Fig. A.3. It is also observed in this figure that the surface effects 

lead to the size-dependency of this axial strain. From the above analysis, it is indicated 

that both axial and transverse boundary constraints significantly influence the surface 

effects on the resonant frequencies of piezoelectric nanobeams. And an axial strain 

relaxation is also observed under axial traction free boundary condition for a C-F beam. 

This applied electrical load and surface effects dependent relaxation phenomenon has not 

been observed in Chapter 3. 
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