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ABSTRACT 

 

The peroxisome proliferator-activated receptor (PPAR) δ is a ligand-dependent 

transcription factor that has been implicated in metabolic and inflammatory regulation. 

The molecular and physiological mechanisms by which PPARδ activation regulates 

lipid metabolism, inflammatory signaling and protection from atherosclerosis in states of 

metabolic disturbance such as insulin resistance and dyslipidemia, were investigated in 

a series of in vitro and in vivo studies. In vitro experiments were performed in THP-1 

human macrophages. These studies demonstrated that PPARδ activation inhibits 

atherogenic lipoprotein-induced lipid accumulation and the associated proinflammatory 

responses. Specifically, treatment of macrophages with the synthetic PPARδ agonists 

GW0742 or GW1516 attenuated triglyceride (TG) accumulation and cytokine 

expression induced by very low-density lipoprotein (VLDL). The primary mechanisms 

for these effects were increased fatty acid β-oxidation, decreased lipoprotein lipase 

(LPL) activity, reduced MAPK signaling and improved insulin signaling. With regard to 

cholesteryl ester (CE)-rich low-density lipoprotein (LDL), the PPARδ activators 

stimulated cholesterol efflux via ABCA1 to apoAI, resulting in the inhibition of native and 

modified LDL-induced CE accumulation. In vivo studies were conducted in high fat, 

high cholesterol (HFHC)-fed low-density lipoprotein receptor null (Ldlr-/-) mice. 

Following a 4-week induction phase of HFHC-feeding to stimulate early atherosclerotic 

lesion development, dietary supplementation with GW1516 for a subsequent 8-weeks 

prevented further plaque progression. This prevention was linked to inhibition of 

dyslipidemia, hyperinsulinemia, and glucose and insulin intolerance. Furthermore, 

GW1516 strongly attenuated aortic inflammation, insulin resistance and endoplasmic 

reticulum (ER)-stress, which likely contributed to inhibition of lesion progression.  
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Additional studies in the liver showed that PPARδ activation inhibits hepatic TG 

accumulation induced by HFHC-feeding. To further probe the mechanism for this effect, 

experiments were conducted in primary mouse hepatocytes isolated from wild-type 

(WT) or adenosine monophosphate-activated protein kinase (AMPK) β1-/- mice. These 

studies revealed that PPARδ activation in the liver stimulates fat oxidation due to 

upregulation of the PPARδ-target gene carnitine palmitoyl transferase (Cpt) 1a, which 

occurred independent of AMPK activation. Furthermore, GW1516 inhibited de novo 

lipogenesis, which was partially dependent on AMPK activation. The residual inhibitory 

effect on fatty acid synthesis was associated with correction of selective hepatic insulin 

resistance. 

In summary, these studies provide significant insight and support for PPARδ 

activation as a therapeutic strategy to treat the dysregulation of lipid homeostasis, 

inflammatory signaling, metabolic disease, and their cardiovascular complications. 

Keywords: PPARδ, macrophage foam cells, intervention, inflammation, 

atherosclerosis, insulin resistance, mouse model 
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Chapter 1* 

Thesis topics review 

 

1.1 GENERAL INTRODUCTION 

 Cardiovascular disease (CVD) represents the leading cause of death in the 

industrialized world, and will likely soon achieve this status worldwide (Lloyd-Jones et 

al., 2010). The underlying cause of most cardiovascular events is atherosclerosis, a 

decades-long chronic inflammatory disease of large and medium sized arteries, 

ultimately resulting in the formation of complex lesions known as plaques (Glass and 

Witztum, 2001, Moore and Tabas, 2011). Unstable plaques are prone to rupture, 

resulting in the formation of thrombi that can subsequently induce the acute clinical 

manifestations of myocardial infarction or stroke (Libby et al., 2011). Major risk factors 

for the development of atherosclerosis include age, hypertension, smoking, obesity, 

diabetes and increased plasma concentrations of cholesterol and triglycerides (TG) 

(Libby et al., 2011). Despite the success of pharmacological treatment of many of these 

risk factors, the prevalence of CVD in all groups of Canadians has continued to rise (Lee 

et al., 2009). The class of drugs known as statins effectively lower plasma cholesterol 

levels and CVD (Cannon et al., 2004). However, significant residual risk remains, 

possibly due to the fact that statins do not improve other cardiometabolic risk factors 

such as high plasma TG, obesity and diabetes. Consequently, novel therapeutic 

strategies to alleviate these unmet medical needs are highly sought-after. 

 This thesis focuses on defining the mechanism of action and therapeutic 

potential of peroxisome proliferator-activated receptor (PPAR) δ activation in the 

regulation of lipid metabolism, inflammatory signaling and protection from 
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atherosclerosis in states of metabolic disturbance such as insulin resistance and 

dyslipidemia.  

1.2 DYSLIPIDEMIA AND CARDIOVASCULAR DISEASE 

Cholesterol is an essential precursor in the synthesis of all steroid hormones, bile 

acids and the myelin sheath that surrounds axons (Goldstein and Brown, 2009). 

Furthermore, cholesterol is a major component of all cellular membranes, providing 

barrier functions between microenvironments and modulating membrane fluidity 

(Goldstein and Brown, 2009). Cells acquire cholesterol from a number of sources 

including de novo cholesterol synthesis, as well as uptake of cholesteryl ester (CE)-rich 

apoB100 containing lipoproteins, namely low-density lipoprotein (LDL) in the periphery, 

and CE-rich high-density lipoprotein (HDL) in the liver. 

Since 1913 when Anitschkow and Chalatow first experimentally demonstrated 

the link between plasma cholesterol and atherosclerosis (Chatalow, 1983), clinical 

studies have clearly shown that a 2-fold increase in plasma cholesterol is associated 

with a 6-fold increase in CVD risk (Neaton and Wentworth, 1992). The fact that the 

cholesterol biosynthetic pathway was a regulated process that could be manipulated to 

modulate plasma cholesterol was well established in the 1950s and 1960s, which 

launched the search for cholesterol synthesis inhibitors (Vance and Van den Bosch, 

2000). Three-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase converts 3-hydroxy-

3-methylglutaryl-coenzyme A to mevalonate, the rate-limiting step in the production of 

cholesterol, which subsequently became the major target for the treatment of 

hypercholesterolemia using the class of drugs called statins (Tobert, 2003). Although 

compactin (mevastatin), isolated from Penicillium citrinum, was the first potent inhibitor 

of HMG-CoA reductase reported by Akiro Endo in 1976 (Endo et al., 1976), the first 

statin to be approved for use in the clinical arena was lovastatin, discovered by Alberts 

and colleagues at Merck Research Laboratories (Alberts et al., 1980). Since these early 
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studies, statins have become the standard of care in reducing plasma LDL-cholesterol 

(LDL-C) in a variety of patient populations, yielding primary and secondary prevention 

against CVD (Mills et al., 2008). Despite the overwhelming evidence from large 

randomized controlled trials demonstrating the success of statins in reducing morbidity 

and mortality in high risk CVD patients, about 50-75% of cardiovascular events are not 

prevented with these drugs (Mazzone et al., 2008). In addition to high plasma LDL-C, 

atherogenic dyslipidemia is now characterized by increased plasma TG-rich very low-

density lipoprotein (VLDL) and low plasma HDL, neither of which are appreciably 

affected by statin treatment (Musunuru, 2010). Therefore, additional therapeutic 

strategies are required to complement existing medical therapies in CVD risk 

management. 

Fasting hypertriglyceridemia is strongly associated with elevated rates of 

atherosclerotic CVD, particularly in patients with type 2 diabetes (Talayero and Sacks, 

2011). The extent of atherosclerosis in this patient population is positively correlated with 

plasma concentrations of TG-rich lipoproteins, namely VLDL as well as intermediate 

density lipoprotein (IDL), also known as VLDL-remnants (Reyes-Soffer et al., 2013). 

Importantly, individuals with type 2 diabetes are at significantly higher risk for developing 

CVD, even if LDL-C has been reduced to the therapeutic goal (Talayero and Sacks, 

2011). Since each of VLDL, IDL and LDL harbors one apoB100 molecule, measuring 

total apoB reflects the total number of potentially atherogenic particles in plasma and is 

therefore a stronger predictor of CVD risk than simply measuring LDL-C (Walldius and 

Jungner, 2006). As such, targeting apoB100 specifically represents an attractive 

therapeutic target in the treatment of dyslipidemia. Antisense oligonucleotides (ASO) 

against apoB100 successfully reverse diet-induced dyslipidemia in mice without affecting 

intestinal lipid absorption or accumulation, and without causing hepatic steatosis (Crooke 

et al., 2005, Mullick et al., 2011). Furthermore, apoB100 ASOs profoundly inhibit the 
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development of murine atherosclerosis (Mullick et al., 2011). Preliminary trials in humans 

have shown that apoB100 ASOs are generally well-tolerated, and effectively lower all 

plasma apoB100-containing lipoproteins (Lippi and Favaloro, 2011). Future trials are 

required to determine whether apoB ASOs will reach the clinical arena. Nevertheless, 

reducing plasma apoB100 may confer protection from development of CVD. 

Raising plasma HDL-cholesterol (HDL-C) has been given considerable attention 

as a potential therapeutic strategy based on a substantial body of evidence suggesting 

the cardioprotective capacity of these lipoproteins. HDL is responsible for reverse 

cholesterol transport, the process by which cholesterol is drawn from peripheral tissues, 

and is transported to the liver for biliary excretion (Rader et al., 2009). Furthermore, 

epidemiological evidence reproducibly shows an inverse correlation between plasma 

HDL-C levels and CVD (Nicholls et al., 2012). As a result, this has led to the 

development of the HDL hypothesis: interventions to raise HDL-C will confer reduced 

CVD risk (Rader and Tall, 2012). However, recent human trials have suggested that 

simply raising total HDL-C levels may not be the appropriate goal. Torcetrapib, the first 

generation cholesteryl ester transfer protein (CETP) inhibitor, successfully raised plasma 

HDL-C levels yet cardiovascular events and all cause mortality were significantly higher 

in the treatment arm of the phase III clinical trial (Barter and Rye, 2012). The increased 

mortality in torcetrapib-treated individuals was attributed to off-target effects of the drug 

(Barter and Rye, 2012), prompting further evaluation of CETP inhibition as therapeutic 

approach to treating CVD. The next major phase III clinical trial involving a CETP 

inhibitor (dalcetrapib-OUTCOMES) was conducted by Roche and was halted early due 

to interim analyses demonstrating that the drug was not providing reduced CVD risk, 

despite significantly raising HDL-C (Schwartz et al., 2012). These results suggest that 

the HDL-C hypothesis may require replacement by the „HDL flux hypothesis‟, in which 

interventions to raise HDL reverse cholesterol transport capacity and HDL turnover may 
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confer protection from CVD (Rader and Tall, 2012). Although the application of this 

hypothesis is in its infancy, interventions that increase reverse cholesterol transport and 

not simply bulk HDL-C are in development (Nicholls et al., 2012). 

In summary, therapeutic interventions that lower LDL-C beyond statin 

monotherapy, decrease plasma apoB100 concentrations, decrease plasma triglycerides 

or increase the capacity of HDL to promote reverse cholesterol transport may prove to 

be effective in reducing CVD. 

1.2.1 ATHEROSCLEROSIS 

Atherogenesis begins with the entry and retention of apoB-containing lipoproteins 

within the arterial intima of susceptible regions of large and medium sized arteries 

(Tabas et al., 2007). Subsequent to lipoprotein retention, a series of biological and 

maladaptive immune responses ensue (Tabas et al., 2010). Complex interactions 

between the endothelium, vascular smooth muscle cells and immune cells such as 

macrophages, drive plaque progression through a non-resolving expansion of the 

arterial intima which protrudes into the arterial lumen (Moore and Tabas, 2011). 

Although this protrusion can eventually lead to tissue ischemia, the predominant acute 

clinical events are myocardial infarction or stroke caused by rupture of unstable plaques 

generating thrombi that can occlude local or distal arteries (Libby et al., 2011).  

 An artery consists of three morphologically distinct layers: the intima, media and 

adventitia (Figure 1.1). The intima is the innermost layer, which is defined by an 

endothelial cell monolayer on the luminal side, the internal elastic lamina on peripheral 

side and extracellular matrix collagen and proteoglycans in between (Lusis, 2000). 

Endothelial cells of the intima regulate vascular tone via the production of vasoactive 

mediators (Sudano et al., 2006). The medial layer consists of vascular smooth muscle 

cells that participate in the regulation of vascular tone as well as the synthesis and 

secretion of elastin, collagen and sulfated glycosaminoglycans. The intimal side of the 
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Figure 1.1: Composition of the arterial wall.  

Arteries contain three distinct layers: (1) the intima which which is defined by an 

endothelial cell monolayer on the luminal side that protects the subendothelial intima 

from entry of atherogenic lipoproteins, (2) the media which consists of vascular smooth 

muscle cells that participate in the regulation of vascular tone as well as the synthesis 

and secretion of elastin, collagen and sulfated glycosaminoglycans and (3) the 

adventitia which is comprised of connective tissue with sporadic fibroblasts, smooth 

muscle cells and progenitor cells. 
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arterial media is defined by the internal elastic lamina, while the adventitial side is 

defined by the external elastic lamina (Lusis, 2000). Finally, the adventitia, the outermost 

arterial layer, is comprised of connective tissue with sporadic fibroblasts, smooth muscle 

cells and progenitor cells. 

 Normally the endothelial monolayer provides a protective barrier between the 

arterial lumen and the subendothelial intima (Libby et al., 2011). However, in curvatures 

and bifurcations of the arterial tree, blood flow is disturbed, characterized by retrograde 

and oscillatory shear stress which promotes a proinflammatory endothelial cell 

phenotype (Cybulsky and Jongstra-Bilen, 2010). In turn, these regions of the endothelial 

monolayer exhibit increased adhesiveness and permeability to atherogenic lipoproteins. 

Upon entry into the intima, apoB100 interacts with extracellular matrix 

glycosaminoglycans resulting in lipoprotein trapping which in turn leads to oxidative and 

hydrolytic modification of apoB by secretory phospholipase A2 and secretory 

sphingomyelinase, both of which are produced by macrophages (Moore and Tabas, 

2011). In response to retention and modification of apoB, the proinflammatory phenotype 

of endothelial cells is extended to the upregulation of adhesion molecules such as P-

selectin, intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule 

(VCAM), which collectively promote the endocytosis of monocytes into the 

subendothelial space (Moore and Tabas, 2011).  

Once resident in the intima, monocytes give rise to a heterogeneous population 

of cells that regulate immune responses (Becker et al., 2012). Monocyte-derived 

dendritic cells internalize, process and present antigens (such as lipid or modified apoB 

fragments) to T-cells, potentiating immune cell recruitment (Becker et al., 2012). 

Monocyte-derived macrophages engulf lipoprotein-derived lipids in attempt to clear the 

atherogenic substrate, and are hence considered atheroprotective in early lesions 

(Moore and Tabas, 2011). However, overwhelming accumulation of apoB100-containing 
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lipoproteins in the intima renders macrophage lipid uptake and efflux mechanisms 

dysregulated, which generates lipid-laden macrophage foam cells (Libby et al., 2011). 

The accumulation of foam cells coupled with the inflammatory response contributed by 

both dendritic cells and macrophages defines the unresolving nature of a growing 

atheroma (Libby et al., 2011).  

1.2.2 CHOLESTEROL-RICH MACROPHAGE FOAM CELLS 

 Macrophage cholesterol homeostasis is regulated by uptake, storage and efflux 

(Figure 1.2). The development of CE-rich lipoprotein-induced “macrophage foam cells” - 

a histological term that reflects the microscopic appearance of lipid-laden macrophages - 

is initiated by the ingestion and processing of LDL in both its native and modified forms 

(Libby et al., 2011). Native LDL uptake occurs via the LDL receptor (LDLR), which 

undergoes negative feedback regulation under high intracellular sterol concentrations 

(Goldstein and Brown, 2009). Although this pathway certainly contributes to foam cell 

development (Goldstein and Brown, 2009), the predominant LDL uptake pathway by 

macrophages in lesions is that of modified LDL via the scavenger receptors cluster of 

differentiation (CD) 36 and scavenger receptor A I/II (SRAI/II). Upon entry into the intima, 

LDL particles undergo oxidative modification rendering them high-affinity scavenger 

receptor ligands (Moore and Freeman, 2006). Unlike the native LDLR, scavenger 

receptors do not undergo negative feedback regulation in response to intracellular sterol 

accumulation (Moore and Freeman, 2006). Consequently, macrophage uptake of 

modified LDL particles in lesions can persist indefinitely, and is only limited by substrate 

availability and cell viability.  

Once internalized, lipoprotein derived cholesteryl esters are hydrolyzed in the 

late endosomes to free cholesterol and fatty acids (Maxfield and Tabas, 2005). Through 

mechanisms that are poorly understood, the late endosomal protein Niemann Pick C1 

(NPC1) traffics late endosomal free cholesterol to the endoplasmic reticulum (ER), 



10 
 

 

 

 

 

 

 

 

Figure 1.2: Cholesterol homeostasis in macrophages. 

The LDL receptor (LDLR) mediates the uptake of native LDL particles through receptor-

mediated endocytosis. Modified LDL, namely oxLDL is also taken up via receptor 

mediated endocytosis by the scavenger receptors CD36 and SRAI/II. Upon 

internalization, CE is hydrolyzed in the late endosomes/early lysosomes into free 

cholesterol and transferred to the endoplasmic reticulum for processing. The two major 

pathways for this free cholesterol are: (1) efflux via the cholesterol efflux transporters 

ABCA1 (to apoAI) and ABCG1 (to HDL3), and (2) re-esterification by ACAT into 

cholesteryl ester for storage in cytoplasmic lipid droplets. 
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where acyl-CoA:cholesterol acyltransferase (ACAT) re-esterifies free cholesterol to 

cholesteryl fatty acid esters for storage in cytoplasmic lipid droplets (Brown et al., 1980, 

Ikonen, 2008). Lipid droplet CE is a defining feature of LDL-induced macrophage foam 

cells in atherosclerotic plaques. However, it has been suggested that as lesions 

progress, ACAT activity diminishes (Rong et al., 2013). As proof-of-concept, the ablation 

of macrophage ACAT1 in hypercholesterolemic mouse models of atherosclerosis results 

in increased atherosclerotic lesion area (Accad et al., 2000, Fazio et al., 2001). 

Subsequent studies demonstrated that the increase in atherosclerosis in ACAT-deficient 

settings is due to enrichment of free cholesterol in ER membranes, which initiates the 

ER-stress response and promotes a proinflammatory, apoptosis-susceptible 

macrophage (Li et al., 2005, Seimon et al., 2009). As a result, hyperlipidemia coupled to 

diminishing ACAT activity in advanced plaques contributes to the potentiation of plaque 

progression. Under these circumstances, it is critical that the rate of cholesterol efflux 

maintains intracellular free cholesterol content below inflammatory and cytotoxic levels.  

Normally free cholesterol released from the late endosomal pathway, as well as 

free cholesterol mobilized from cytoplasmic lipid droplets, can traffic to the plasma 

membrane via the Golgi-to-membrane vesicular pathway to become accessible for 

cholesterol efflux out of the cell (Tall et al., 2008). The removal of plasma membrane 

cholesterol from macrophages is the predominant pathway for cholesterol mobilization 

from plaques during atherosclerosis regression (Fisher et al., 2012), and occurs via 

ATP-binding cassette (ABC) A1- and ABCG1-mediated free cholesterol transport to 

apolipoprotein A1 (apoA1) and HDL respectively (Tall et al., 2008). HDL particles are 

also recognized by the scavenger receptor, class B type I (SR-BI) in the periphery as 

well as the liver (Trigatti et al., 2003). Increasing the cholesterol efflux pathway has very 

clear cardioprotective effects (Fisher et al., 2012). Intravenous injection of apoAI into 

hypercholesterolemic rabbits successfully delayed lesion progression, and intravenous 
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infusion of a recombinant form of apoAI induced significant regression of atherosclerosis 

in apoE deficient mice (Miyazaki et al., 1995, Shah et al., 2001). Conversely, as 

predicted, combined deletion of ABCA1 and ABCG1 in macrophages significantly 

increases lesion development in mice (Yvan-Charvet et al., 2007). Interestingly, ABCG1 

deletion alone is atheroprotective due to compensatory upregulation of ABCA1 (Tarling 

et al., 2010). 

In summary, dynamic regulation of cholesterol uptake, storage and efflux 

requires a fine balance in plaque macrophages, and ultimately dictates the fate of 

atherosclerotic lesions. 

1.2.3 INFLAMMATION AND APOPTOSIS IN CHOLESTEROL-RICH FOAM CELLS 

As alluded to in sections 1.1 and 1.2.1, a major characteristic of atherosclerosis 

is chronic low-grade inflammation. Although it has recently been challenged (Spann et 

al., 2012), the generally accepted paradigm is that cholesterol-treated macrophages 

exhibit a proinflammatory phenotype (Moore and Tabas, 2011). Specifically, oxidized 

LDL (oxLDL) has been reported to stimulate proinflammatory cytokine expression 

through CD36 in concert with the pattern recognition toll-like receptors (TLR) (Moore and 

Tabas, 2011). The assembly of CD36-TLR complexes leads to the activation of nuclear 

factor kappa B (Nfκb) signal transduction to simulate expression of inflammatory 

mediators (Stewart et al., 2010). In macrophages isolated from CD36 deficient patients, 

oxLDL fails to stimulate cytokine expression (Janabi et al., 2000), and loss of this 

scavenger receptor protects mice against diet-induced atherosclerosis and aortic 

inflammation (Febbraio et al., 2000, Manning-Tobin et al., 2009). Furthermore, specific 

deletion of TLR4 or TLR6 abrogates oxLDL-induced inflammatory responses in vitro 

(Stewart et al., 2010), while TLR1, TLR2 and TLR6 deletion attenuates atherogenesis in 

a variety of atherosclerosis mouse models (Curtiss et al., 2012, Mullick et al., 2005).  
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In addition to lipoprotein-mediated cell-surface stimulation of inflammatory signal 

transduction, intracellular cholesterol accumulation can also lead to macrophage 

inflammation. In particular, free cholesterol loading stimulates an ER-stress pathway 

known as the unfolded protein response (UPR), which serves as a repair pathway during 

times of ER perturbation (Martinet et al., 2012, Tabas and Ron, 2011). However, 

prolonged ER-stress leads to the induction of a specific branch of the UPR involving 

C/EBP homologous protein (CHOP), which in turn stimulates Nfκb signaling, and 

eventually apoptosis and secondary necrosis. These latter consequences of free 

cholesterol-induced ER-stress are central features of advanced atherosclerotic lesions 

that are vulnerable to rupture (Li et al., 2005, Thorp et al., 2009). Increased ER-stress 

markers have been visualized in plaques isolated from hypercholesterolemic mice (Zhou 

et al., 2005). Furthermore, Chop/apoE double knockout mice background exhibit 

substantially smaller atherosclerotic lesions than Chop+/+;apoE-/- mice (Thorp et al., 

2009). Moreover, the global deletion of Chop reduced plaque macrophage apoptosis 

and necrosis, thus resulting in more stable atherosclerotic lesions (Thorp et al., 2009). 

Subsequently it was shown that macrophage-specific deletion of Chop also reduced 

plaque vulnerability (Tsukano et al., 2010). Importantly, free cholesterol loaded 

macrophages with ER-stress-induced inflammation and apoptosis are significant 

contributors to the accelerated atherosclerosis progression observed in the insulin 

resistant state (Tabas et al., 2010). 

Despite the overwhelming evidence that cholesterol-treated and cholesterol-

loaded macrophages are proinflammatory the data are not consistent across all 

experimental settings. THP-1 human monocytes that are differentiated into 

macrophages and treated with LDL that has been mildly or extensively oxidized 

displayed reduced expression of a panel of proinflammatory cytokines (Qiu et al., 2007). 

In a subsequent study, addition of the TLR2/TLR4 ligand lipopolysaccharide (LPS) 
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stimulated an Nfκb-mediated inflammatory response in primary human monocytes, 

which was completely inhibited by the addition of oxLDL (Kannan et al., 2012). Recently, 

Spann et al. demonstrated that cholesterol loading of mouse peritoneal macrophages 

results in downregulation of cholesterol biosynthesis, which consequently increases 

intracellular concentrations of a very specific oxysterol, desmosterol. Importantly, 

desmosterol is a potent activator of the liver X receptor (LXR), a nuclear hormone 

receptor that is known to mediate anti-inflammatory processes (Spann et al., 2012). 

Collectively, these studies suggest that understanding macrophage inflammatory 

responses in the context of hypercholesterolemia requires further study. This 

controversy will be further elaborated on in Chapter 3 of this thesis. 

1.2.4 TRIGLYCERIDE-RICH MACROPHAGE FOAM CELLS 

The canonical atherogenic lipoprotein is CE-rich LDL. However, elevated plasma 

TG-rich VLDL is now regarded as a significant contributor to the development of 

cardiovascular disease, particularly in the context of insulin resistance and type 2 

diabetes (Talayero and Sacks, 2011). Although a causal relationship between TGs and 

atherosclerosis has been difficult to establish (Goldberg et al., 2011), TG-rich apoB-

containing lipoproteins have been localized in plaques isolated from humans as well as 

animal models of disease (Proctor and Mamo, 1998, Rapp et al., 1994), justifying further 

investigation of the impact of these lipoproteins on macrophage foam cell formation. 

It is well established that VLDL readily stimulates TG accumulation in 

macrophages (Figure 1.3), which is initiated by cell-surface bound lipoprotein lipase 

(LPL) hydrolyzing the TG-rich core of VLDL particles (Bates et al., 1984, Huff et al., 

1991). The liberated fatty acids (FAs) are subsequently taken up by cells either via 

passive diffusion or via protein-mediated uptake by the FA translocase (FAT)/CD36. 

Upon internalization, FA binding proteins transport FAs to the outer mitochondrial 

membrane for activation to fatty acyl-CoAs by acyl-CoA synthetases (Yen et al., 2008). 
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Figure 1.3: VLDL-induced foam cell formation. 

The interaction between VLDL and cell-surface bound lipoprotein lipase (LPL) results in 

the hydrolysis of the VLDL TG-rich core to free fatty acids (FFAs). These FFAs are 

internalized either via passive diffusion or protein-mediated uptake by the fatty acid 

translocase (FAT) CD36. Upon internalization, FFAs are either re-esterified into TG by 

the DGAT enzymes for storage in cytoplasmic lipid droplets, or transported into the 

mitochondria by CPT1α for fatty acid β-oxidation. Excessive fatty acid uptake without 

sufficient β-oxidation results in the development of TG-rich macrophage foam cells. 
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This activation step is a requirement for further FA trafficking within the cell. For 

example, the acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes catalyze the re-

esterification of FAs into triaclyglycerol for storage in cytoplasmic lipid droplets, and use 

activated fatty acyl-CoAs as the acyl donors (Yen et al., 2008). Although the exact 

process by which TG is deposited into lipid droplets is not fully understood, it is believed 

that the DGAT enzymes synthesize TGs mainly at the lipid bilayer of the ER (Walther 

and Farese, 2012). Nevertheless, macrophage exposure to VLDL stimulates foam cell 

formation due to substantial accumulation of cytoplasmic TG. It is therefore important 

that the process of FA β-oxidation maintains TG homeostasis to prevent excessive 

accumulation of lipid-laden macrophages in the arterial intima. Fatty acid oxidation will 

be discussed in detail in section 1.4.4. 

1.2.5 INFLAMMATION IN TRIGLYCERIDE-RICH FOAM CELLS 

 Although TG-rich macrophages are by definition foam cells, the induction of 

inflammatory responses does not occur in response to TG accumulation per se. Rather, 

the stimulation of macrophage inflammation and cytotoxicity is thought to occur as a 

consequence of VLDL-derived free fatty acid (FFA) exposure to cells. Inhibition of LPL 

resulted in complete abrogation of the VLDL-stimulated inflammatory response in mouse 

peritoneal macrophages (Saraswathi and Hasty, 2006). Additionally, peritoneal 

macrophages and bone marrow-derived macrophages isolated from Dgat1 transgenic 

mice fed a high fat diet accumulate a significant amount of TG, but were protected from 

an inflammatory response (Koliwad et al., 2010), which further demonstrates that FFAs 

are responsible for an inflamed macrophage phenotype rather than TGs themselves. A 

number of groups independently suggested that FFAs activate TLR-dependent signaling 

to generate macrophage inflammation and lipotoxicity (Lee et al., 2004a, Shi et al., 

2006). However, this claim has more recently been cast in doubt by other studies 

(Anderson et al., 2012, Erridge and Samani, 2009).  
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 VLDL-derived FAs elicit macrophage inflammatory responses, at least in part due 

to stimulation of MAPK signaling. The MAP kinases extracellular signal-related kinase 

(ERK)1/2 and p38 cooperatively regulate the activated protein (AP)-1 transcription factor 

(Figure 1.4), which is known to participate in the induction of a host of proinflammatory 

cytokines (Eferl and Wagner, 2003). VLDL not only stimulates ERK1/2 activation 

(Saraswathi and Hasty, 2006), but it also potentiates LPS-induced cytokine expression 

(Stollenwerk et al., 2005), attributable to the simultaneous activation of parallel pathways 

by each stimulus. In addition to inducing MAPK signaling, VLDL-derived FAs can also 

promote an insulin-resistant macrophage phenotype, which can potentiate the 

inflammatory response (Su et al., 2009). The impact of macrophage insulin resistance 

on inflammation, apoptosis and atherosclerosis will be further discussed in section 

1.5.3.2 of this thesis. Interestingly, in contrast to free cholesterol-induced macrophage 

inflammation, FFA-induced cytokine expression does not require Nfκb activation (Erridge 

and Samani, 2009).  

 The induction of macrophage foam cell formation and the inflammatory response 

by VLDL, as well as the ability of peroxisome proliferator-activated receptor (PPAR)-δ 

activation to attenuate these effects is the topic of Chapter 2 of this thesis (Bojic et al., 

2012).  

1.2.6 ATHEROSCLEROTIC LESION PROGRESSION 

The stages of atherosclerosis are numerically classified based on histological 

features at each stage of the disease (Stary, 2000). Initial lesions, classified as Type I 

(Stary et al., 1994), are characterized by thickening of the arterial intima due to the 

accumulation of lipoproteins and increased cellularity (Figure 1.5), with development of 

isolated groups of macrophage foam cells. In many cases, Type I lesions can be 

detected during infancy (Stary et al., 1994). As foam cell accumulation persists to the 

point of gross microscopic detection, the lesion becomes classified as Type II, also 
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Figure 1.4: VLDL-induced MAPK signaling in macrophage foam cells.  

VLDL-derived FAs stimulate the phosphorylation of the MAP kinases extracellular signal-

related kinase (ERK)1/2 and p38 via mechanisms that remain to be elucidated. 

Phosphorylated ERK1/2 and p38 cooperatively stimulate the activation of the activated 

protein (AP)-1 transcription factor. Activated AP-1 translocates into the nucleus where it 

binds to AP-1 response elements (AP-1RE) within promoter regions of proinflammatory 

cytokine genes. 
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Figure 1.5: Atherosclerotic Lesion Progression. 

Endothelial dysfunction and build up of arterial lipids and lipoproteins stimulate the 

recruitment of macrophages to the site of vascular insult. Macrophages of the arterial 

intima scavenge lipoprotein-derived lipids, resulting in foam cell formation. Excessive 

macrophage foam cell accumulation results in the development of a lipid core associated 

with proinflammatory immune responses. To stabilize the expanding lipid core, smooth 

muscle cells are stimulated by inflammatory effectors from the lesion to proliferate into 

the plaque and deposit extracellular matrix proteins such as collagen. This results in the 

formation of a fibrous plaque. Consequences of unresolved atherogenesis include 

vessel occlusion, rupture and thrombosis, all of which can induce an acute 

cardiovascular event such as myocardial infarction or stroke.  
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referred to as a fatty streak. At this stage, smooth muscle cells indigenous to the lesion 

location can also take up lipid resulting in a smooth muscle cell-foam cell phenotype 

(Stary et al., 1994). The bridge between Type II lesions and advanced plaques are Type 

III intermediate lesions, for which the major histological feature is microscopically visible 

extracellular pools of lipid, namely cholesterol crystals (Stary et al., 1994). This is most 

likely due to the onset of ER-stress-induced apoptosis of macrophage foam cells as a 

consequence of unresolved inflammation in the plaque, coupled to defective clearance 

of dead cells and debris by phagocytic immune cells (Moore and Tabas, 2011). Despite 

monocyte recruitment persisting at all stages of lesion development in efforts to clear the 

atherogenic substrates and debris (Swirski et al., 2006), the presence of extracellular 

cholesterol crystals and debris disrupts and displaces extracellular matrix within the 

lesion. Consequently, the classification extends to Type IV lesions, or atheromas, which 

are characterized by the presence of a defined lipid core causing severe intimal 

disorganization (Stary et al., 1995). Secondary necrosis is also a major feature of Type 

IV lesions as a result of continued ER-stress-induced apoptosis as discussed in section 

1.2.3. It is important to note that Type I to III lesions are clinically silent, and it is at the 

Type IV lesion stage that blood flow may begin to be significantly disrupted and lead to 

compromised arterial function (Stary, 2000). Intimal and newly recruited medial smooth 

muscle cells increase the presence of fibrotic tissue in the plaque, which consists of 

elastin, collagen, proteoglycans and glycoproteins that forms a fibrous cap as an effort to 

stabilize the necrotic lipid core. The presence of this cap is the prominent new feature 

that defines the progression to Type V lesions (Stary et al., 1995). Despite increased 

fibrous cap formation, local immune cells produce matrix-metalloproteinases that 

degrade the deposited extracellular matrix, which eventually leads to fibrous cap thinning 

(Weber et al., 2008). The resultant lesions are prone to neovascularization, which 

increases leakage, hemorrhage, and rupture (Weber et al., 2008). All of these processes 
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contribute to the contact of plaque debris with the circulation, triggering coagulation and 

thrombus formation, thereby increasing likelihood of arterial occlusion leading to 

myocardial infarction or stroke. Therefore, whether lesion progression, stabilization or 

regression occurs is determined by the complex interactions between the physical and 

environmental factors within the lesion. 

1.3 LIPOPROTEIN METABOLISM 

 Whole body lipid homeostasis is maintained through a balance between 

exogenous uptake and endogenous synthesis of fatty acids and cholesterol, as well as 

the trafficking of these lipids in macromolecular complexes called lipoproteins. 

1.3.1 LIPOPROTEINS 

 All lipoproteins are spherical, soluble lipid carriers comprised of a hydrophobic 

TG and CE rich core encased by a hydrophilic monolayer of phospholipids, free 

cholesterol and apolipoproteins (Hegele, 2009). The classification of lipoproteins is 

based on their density, lipid composition and apolipoprotein association (Table 1.1). In 

addition to providing structural support to lipoprotein complexes, apolipoproteins also 

determine the interaction of lipoproteins with cell surface receptors as well as their rate 

of catabolism.  

The largest lipoproteins are chylomicrons which are formed in the intestine and 

transport dietary TGs on an apoB48 backbone, with trace amounts of dietary cholesterol. 

Very low-density lipoproteins (VLDL), secreted by hepatocytes, carry endogenous TG 

with modest amounts of endogenous as well as exogenous CE on an apoB100-

backbone, and are associated with apoEs and apoCs. The catabolism of VLDL results in 

VLDL-remnant lipoproteins called intermediate density lipoproteins (IDL), which transport 

roughly equal partitions of TG and CE. Further catabolism of IDL followed by a series of 
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modifications and lipid exchanges with various lipoproteins, results in the formation of 

CE-rich LDL particles (Hegele, 2009).  

 Cholesteryl Ester is also transported by HDL, the smallest lipoprotein type. The 

protein backbone of HDL particles is apoAI, which is predominantly secreted from the 

liver and initially lipidated by hepatic ABCA1 (Timmins et al., 2005). This lipidation 

results in the formation of nascent HDL which enters the plasma and undergoes a series 

of enzymatic lipid transfer modifications to form mature HDL (Sorci-Thomas and 

Thomas, 2012). Cholesterol is effluxed to HDL as free cholesterol and is re-esterified 

into the hydrophobic core of the particles by HDL-associated lecithin-cholesterol 

acyltransferase (LCAT). Once HDL becomes CE-enriched, it can be remodeled by 

cholesteryl ester transfer protein (CETP) in plasma which facilitates the movement of CE 

from HDL to VLDL in exchange for TG. In turn, HDL particles become better substrates 

for hepatic lipase (HL). Mature HDL particles serve as carriers of cholesterol from the 

periphery to the liver, where cholesterol is converted to bile acids for subsequent 

excretion (Repa and Mangelsdorf, 2000). 

1.3.2 EXOGENOUS LIPOPROTEIN METABOLISM 

 Absorption of dietary lipids occurs in the jejunal portion of the small intestine. 

Cholesterol is absorbed via protein-mediated uptake by the transporter Niemann-Pick 

C1-like1 (NPC1L1) on the brush-boarder membrane of the intestinal lumen (Huff et al., 

2006), whereas dietary TG requires hydrolysis by pancreatic lipase before it can be 

taken up by soluble passive diffusion. Upon internalization into intestinal enterocytes, 

fatty acids are sequentially re-esterified into TG by the MGAT and DGAT enzymes. It is 

dietary TG, rather than cholesterol, which determines the rate of formation of the 

exogenously derived TG-rich chylomicron particles (Karpe, 2002). The apoB48 

backbone of chylomicrons is derived from editing of full-length APOB mRNA by the apoB 

mRNA editing enzyme (APOBEC1), which deaminates cytidine 6666 of the APOB 
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transcript to a uridine (Rosenberg et al., 2011). This results in a change at position 2153 

of the apoB protein from glutamine to a stop codon, yielding a translated protein that is 

the N-terminal 48% of the 550kDa polypeptide apoB100 chain (Chen et al., 1987). In 

humans, APOBEC1 is expressed exclusively in the intestine, whereas mice express this 

enzyme in both intestine and liver. ApoB48 is cotranslationally lipidated with TG, CE and 

phospholipids by microsomal triglyceride transfer protein (MTP) within the ER of 

intestinal enterocytes prior to secretion into the lymphatic system as a chylomicron 

(Figure 1.6).  

 Chylomicrons, upon entry into the lymphatics and into plasma, become 

associated with apoEs and apoCs, both of which are required for the metabolism of 

chylomicron particles. Specifically, apoCII is required for the activation of TG hydrolysis 

by LPL, an enzyme which is secreted by parenchymal cells of muscle and adipose 

tissue, and is anchored to capillary endothelial cells by heparin sulfate proteoglycans. 

Chylomicron-derived FFAs and glycerols are taken up predominantly by adipose tissue 

and re-esterified into TGs for storage. The resultant chylomicron remnant particles are 

efficiently taken up by the liver through LDLR- and LDL receptor related protein (LRP)-

mediated uptake by recognition of apoE (Blasiole et al., 2007), concluding the 

exogenous lipid metabolism pathway. 

1.3.3 ENDOGENOUS LIPOPROTEIN METABOLISM 

 The endogenous lipoprotein pathway begins with the recycling of TG and 

cholesterol from chylomicron remnants in the liver, intersecting with the hepatic de novo 

synthesis of these lipids. Approximately 80% of circulating cholesterol is produced by the 

body, mostly in hepatocytes, making the liver the primary regulator of whole body 

cholesterol and lipid homeostasis (Hegele, 2009). 

 Synthesis of both cholesterol and TG begins with the formation of acetyl-CoA 

derived from the metabolism of glucose or fatty acids. The 32-step cholesterol 
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Figure 1.6: Endogenous and Exogenous Lipoprotein Metabolism. 

Dietary triglycerides and cholesterol are packaged onto apoB48 within the intestinal 

enterocytes. The resultant chylomicron particles are secreted into the lymphatics, which 

subsequently enter the blood stream. Lipoprotein lipase (LPL) hydrolyzes triglycerides 

(TGs) which allows uptake of free fatty acids (FFAs) into peripheral tissues. The remnant 

cholesteryl ester (CE)-rich particle is taken up by the liver through LDL receptor (LDLR)- 

and LDLR related protein (LRP)-mediated endocytosis. Dietary and newly synthesized 

lipids are packaged onto apoB100, which is secreted by the liver as VLDL. These 

particles also undergo hydrolysis by LPL. The CE-rich VLDL-remnant particles (IDL), 

and IDL modified to LDL particles, can be taken up by the liver or peripheral tissues 

through the LDLR. The reverse cholesterol transport pathway involves the removal of 

cholesterol from peripheral tissues via efflux to HDL. This lipoprotein particle is efficiently 

cleared by SR-BI in the liver, where cholesterol is converted to bile acids for excretion in 

bile. 
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biosynthetic pathway is initiated by the condensation of two acetyl-CoA molecules to 

produce acetoacetyl-CoA, which is the substrate for HMG-CoA-synthase in the formation 

of HMG-CoA. Subsequently, HMG-CoA-reductase, the rate-limiting enzyme in the 

cascade and target of statins, catalyzes the generation of mevalonate, which through a 

series of condensation reactions yields squalene. The cyclization of squalene produces 

lanosterol, which is converted to cholesterol through a further 19-step process with the 

final reaction being the conversion of desmosterol to cholesterol by dehydrocholesterol 

reductase (DHCR) 24.  

 Fatty acid synthesis is initiated by the carboxylation of acetyl-CoA by acetyl-CoA 

carboxylase (ACC) to malonyl-CoA, which is subsequently elongated to palmitic acid by 

fatty acid synthase (FAS). Fatty acids can then be further elongated and/or 

monounsaturated prior to subsequent esterification into TG by the MGAT and DGAT 

enzymes in the ER. 

 The availability of both cholesterol and TG is required for the formation of VLDL 

particles. The apoB100 backbone of VLDL is cotranslationally lipidated by MTP 

exclusively in the liver prior to its secretion into the bloodstream. Within capillary beds of 

target tissues such as adipose and muscle, endothelial cell LPL hydrolyzes the TG-rich 

VLDL core liberating FFAs and glycerol which are taken up via soluble passive diffusion 

or CD36-mediated uptake. Re-esterification into TGs in adipose or fatty acid oxidation in 

muscle ensues. Following LPL-mediated hydrolysis of VLDL particles, VLDL-remnants 

or IDLs are formed, which can be taken up by recognition of apoE by the LDLR or the 

LRP following HL modification (Hu et al., 2008). Alternatively, IDL can become further 

enriched in CE from HDL via CETP, and can be further modified by HL, consequently 

resulting in the formation small sense CE-rich LDL particles. In humans, IDL modification 

leading to LDL formation is the predominant pathway. 
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 The final lipoprotein in the endogenous pathway is CE-rich LDL, which is mainly 

taken up receptor-mediated endocytosis. The LDLR is expressed ubiquitously, 

recognizes apoB100 and mediates the principal mechanism of LDL uptake. It accounts 

for approximately one third of LDL uptake by extrahepatic tissues. However, the liver is 

the primary site of LDLR expression and therefore regulates most of the clearance of 

circulating LDL particles. 

1.4 REGULATION OF FATTY ACID AND CHOLESTEROL METABOLISM 

1.4.1 STEROL REGULATORY ELEMENT BINDING PROTEINS 

 The sterol regulatory element binding proteins (SREBPs) are the master 

transcriptional regulators of lipid homeostasis (Horton et al., 2002). The three isoforms of 

the SREBP family are encoded by two genes; SREBP1, which generates the SREBP-1a 

and SREBP-1c isoforms through the use of different promoters to produce alternate 

forms of exon 1, and SREBP2 (Horton et al., 2002). The three members of the SREBP 

family have distinct but overlapping transcriptional programs. SREBP-1c is expressed 

predominantly in hepatocytes, where it directly activates the expression of genes 

involved in fatty acid synthesis and elongation in response to increases in plasma insulin 

levels. SREBP-1a and SREBP-2 are expressed ubiquitously where they regulate genes 

involved in cholesterol homeostasis in response to intracellular sterol concentrations 

(Shao and Espenshade, 2012). 

 All three SREBPs contain three basic domains: (i) an N-terminal basic helix-loop-

helix (bHLH) leucine zipper DNA binding motif for binding to sterol response elements 

(SREs) within promoter regions of their target genes, (ii) two hydrophobic 

transmembrane domains separated by a short loop that projects into the lumen of the 

ER and (iii) a regulatory C-terminal domain that interacts with the SREBP cleavage 

activating protein (SCAP) (Horton et al., 2002). The SREBPs are synthesized as inactive 

precursors, retained in the ER due to their interaction with SCAP through the MELADL 
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peptide sequence (Sun et al., 2005). Under conditions of high intracellular sterols, SCAP 

also interacts with the insulin induced genes (INSIG) 1/2; ER-anchor proteins that retain 

the SCAP/SREBP complex in the ER. When sterols are depleted, SCAP undergoes a 

conformational change resulting in the dissociation from INSIG, which allows access of 

COPII vesicles containing a Sar-1/Sec23/Sec24 complex to SCAP/SREBP. In turn, the 

SCAP/SREBP complex is trafficked to the Golgi for processing to active transcription 

factors (Sun et al., 2005). Depletion of hepatic SCAP results in the complete absence of 

processing of all three SREBPs, concomitant with normalization of lipogenesis and 

hypertriglyceridemia (Moon et al., 2012), demonstrating a lack of redundancy for SCAP-

mediated SREBP transport to the Golgi. Once the SCAP/SREBP complex reaches the 

Golgi, SREBPs undergo sequential cleavage by the Site 1 and Site 2 proteases (Shao 

and Espenshade, 2012). The Site 1 protease is a serine protease that cleaves the ER-

luminal loop separating the SREBP transmembrane domains. Subsequently, the Site 2 

zinc metalloproteinase releases the N-terminal bHLH leucine zipper fragment, allowing 

for its translocation into the nucleus where it binds to SREs within target gene promoters 

(Figure 1.7) (Shao and Espenshade, 2012). SREBP-1a and SREBP-2 activate 

transcription of genes involved in cholesterol uptake and cholesterol synthesis such as 

LDLR and HMG-CoA reductase, to restore sterol balance (Shao and Espenshade, 

2012). SREBP-1c on the other hand, stimulates the expression of genes involved in fatty 

acid synthesis and elongation, including ACC, FAS and stearoyl-CoA desaturase (SCD) 

(Moon et al., 2012). 

 In addition to SCAP, the INSIGs provide another layer of trafficking regulation to 

the SREBPs, owing to a convergent feedback loop (Goldstein et al., 2006). The two 

INSIG isoforms (INSIG-1 and INSIG-2) are protein products of separate genes and are 

differentially regulated. INSIG-1 transcription is activated by SREBP-1c in a feed forward 

mechanism to regulate the amount of cholesterol being restored. INSIG-2 produces two 
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Figure 1.7: Regulation of the Sterol Regulatory Element Binding Proteins. 

The sterol regulatory element binding proteins (SREBP) reside in the endoplasmic 

reticulum (ER) membrane as inactive precursors. During periods of high intracellular 

sterol, SREBPs interact with SREBP cleavage activating protein (SCAP), which in turn 

interacts with Insig to retain SREBPs within the ER membrane. Upon depletion of 

intracellular sterol, or insulin-mediated degradation of Insig, the dissociation of SCAP 

from Insig results in the trafficking of the SCAP-SREBP complex to the Golgi where 

sequential processing by Site 1 (S1P) and Site 2 proteases (S2P) releases the active 

nuclear SREBP transcription factor. SREBP transcription factors translocate into the 

nucleus and bind to sterol regulatory elements (SREs) within promoter regions of genes 

required for lipogenesis.  
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Adapted from (Shao and Espenshade, 2012). Cell Metab, 16, 414-9. 
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transcripts that encode the same protein, but are differentially regulated. INSIG-2a is a 

liver-specific isoform whereas INSIG-2b is ubiquitously expressed, yet has very low liver 

expression (Goldstein et al., 2006). Evidence that the INSIGs are required for the 

regulation of lipid homeostasis in liver was provided by Engelking and colleagues, when 

they simultaneously disrupted hepatic INSIG-1 and -2 (Engelking et al., 2005). The 

resultant phenotype was profound hepatic steatosis on a chow diet as a result of 

hyperactive SREBP-mediated lipogenesis, demonstrating that the INSIG proteins are 

essential for SREBP feedback regulation (Engelking et al., 2005). 

  The INSIGs are also regulated by plasma insulin, which sets the stage for 

reciprocal regulation during fasting and feeding cycles (Goldstein et al., 2006). As 

mentioned above, SREBP-1c is activated in response to increases in circulating insulin. 

During the fasted state, plasma insulin is low. In turn, SREBP-1c is inactive meaning that 

INSIG-1 expression is low. However, INSIG-2a levels are high, which contributes to 

SREBP-1c retention in the ER during the fasted state. As plasma insulin rises during 

feeding, INSIG-2a is rapidly degraded by Akt-dependent mechanisms allowing for 

SREBP-1c processing and translocation into the nucleus (Yecies et al., 2011). As a 

result, INSIG-1 levels increase owing to convergent feedback regulation, resulting in the 

prevention of SREBP-1c hyperactivity. In mice overexpressing hepatic Insig1, normal 

fasting/re-feeding regulation of INSIG-2 ensues, yet the livers of these animals are 

resistant to acute lipogenesis in the fed state (Engelking et al., 2004). This suggests that 

insulin-mediated suppression of INSIG-2 is required for insulin-induced SREBP-1c 

lipogenesis during feeding. In states of insulin resistance, hyperinsulinemia persists 

during fasting, resulting in the chronic downregulation of INSIG-2, which in part 

contributes to the hyperactivity of SREBP-1c-mediated lipogenesis (Yecies et al., 2011).  
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1.4.2 DE NOVO LIPOGENESIS 

Lipolysis of adipose tissue TG is the major contributor of FAs to VLDL-TG during 

periods of fasting (Zechner et al., 2012), while de novo lipogenesis is a minor contributor 

(Barrows and Parks, 2006). However during feeding, adipose tissue lipolysis is 

suppressed whereas hepatic de novo lipogenesis is simultaneously increased by insulin. 

Consequently, a major contributor to the pool of FAs for VLDL-TG in the fed state is de 

novo lipogenesis. 

 The synthesis of FAs begins with the carboxylation of acetyl-CoA to malonyl-CoA 

by ACC. Subsequently, malonyl-CoA provides two carbon units to FAS for the synthesis 

of 16 and 18 carbon saturated fatty acids. The resultant fatty acids require activation by 

long chain acyl-CoAs synthetase to fatty acyl-CoA before they can become substrates 

for subsequent processing or partitioning (Walther and Farese, 2012). Fatty acyl-CoAs 

are stearoyl CoA-desaturase (SCD) substrates for desaturation and subsequent 

esterification to cholesterol in the production of cholesteryl esters. Additionally, activated 

fatty acids are also used by CPT1α and DGAT for entrance into the mitochondria for 

fatty acid oxidation and for re-esterification of fatty acids into TGs, respectively (Walther 

and Farese, 2012).  

 The generation of TG is the major mechanism for metabolic fuel storage in living 

organisms (Yen et al., 2008). Two convergent pathways contribute to TG production, 

both of which utilize fatty acyl-CoAs as acyl donors. The canonical glycerol phosphate 

pathway occurs in most tissues and begins with the acylation of glycerol-3-phosphate by 

acyl-CoA:glycerol-3-phosphate acyltransferase to yield lysophosphatidic acid. 

Subsequently, lysophosphatidic acid is further acylated and dephosphorylated to 

produce diacylglycerol (DG) (Liu et al., 2012). In the monoacylglycerol pathway, which 

occurs mainly in the intestine, liver and adipose tissue, fatty acyl-CoAs are esterified to 

the 2-position of monoacylglycerol by acyl-CoA:monoglycerol acyltransferase (MGAT) to 
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produce DG (Liu et al., 2012). In the final step of TG synthesis, fatty acyl-CoAs are 

esterified to the 3-position of the resultant DG from either pathway by the DGAT 

enzymes (Liu et al., 2012). Newly synthesized TGs from both pathways are then 

transferred to cytoplasmic lipid droplets for storage via mechanisms that are not 

completely understood (Walther and Farese, 2012), or become incorporated into apoB-

containing lipoproteins via MTP in the liver and intestine for secretion. 

 The esterification of fatty acyl-CoAs onto DG occurs via sequential reactions in 

the ER by the resident DGAT enzymes DGAT1 and DGAT2. Despite having similar 

function, the two DGAT isoforms differ in gene family as well as protein sequence, with 

DGAT1 encoding a polypeptide chain approximately 35% longer than DGAT2 (Liu et al., 

2012). Nevertheless, DGAT1 is ubiquitously expressed but is most abundant in the small 

intestine and adipose tissue and is least abundant in the liver. Gene knockout studies 

revealed that Dgat1-/- mice are resistant to diet-induced dyslipidemia, obesity and insulin 

resistance (Smith et al., 2000), whereas Dgat2-/- mice die soon after birth due to 

lipopenia (Stone et al., 2004). Together these studies suggest that DGAT2 is responsible 

for the majority of TG synthesis required for survival.  

Interestingly, overexpression of Dgat1 specifically in white adipose tissue results 

in protection from diet-induced insulin resistance despite increased adiposity (Chen et 

al., 2002). Furthermore, overexpression of either form of DGAT in the liver results in a 

similar phenomenon. Dgat1 or Dgat2 liver-transgenic mice develop profound hepatic 

steatosis in the complete absence of insulin resistance. In addition, these mice do not 

accumulate any appreciable fat in skeletal muscle or adipose tissue and surprisingly 

display substantially reduced plasma triglycerides (Monetti et al., 2007). As discussed in 

section 1.2.5, macrophages isolated from Dgat1 transgenic mice display significant TG 

accumulation without an overt inflammatory phenotype (Koliwad et al., 2010). 

Collectively these studies suggest that the efficient synthesis of TG by DGAT1 results in 
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the partitioning of fat into cytoplasmic lipid droplets which protects cells from FA 

overload, lipotoxicity and lipoprotein overproduction thus conferring protection from 

metabolic disturbance (Monetti et al., 2007).  

1.4.3 CHOLESTEROL ESTERIFICATION 

 The ACAT enzymes are another group within the superfamily of membrane 

bound acyltransferases. ACAT1 and ACAT2 utilize fatty acyl-CoA donors and 

cholesterol as substrates in the esterification of cholesterol to generate CE for storage in 

cytoplasmic lipid droplets and lipoprotein secretion. The two isoforms are encoded by 

different genes and also differ in their tissue distribution. ACAT1 is ubiquitously 

expressed, whereas ACAT2 is found exclusively in the small intestine and liver. 

Knockout of Acat1 results in normal cholesterol absorption as well as normal intestinal, 

hepatic and plasma lipids due to the compensation of cholesterol esterification by 

ACAT2. The most significant change in Acat1-/- mice compared to their wild-type 

counterparts was virtually undetectable CE in the adrenal cortex and in isolated 

peritoneal macrophages (Meiner et al., 1996). In contrast, Acat2-/- mice cannot 

synthesize CE within the intestine and as a result, have reduced capacity to absorb 

cholesterol from the diet. Additionally, these mice cannot synthesize CE in the liver and 

therefore do not become hypercholesterolemic when fed a high-fat high-cholesterol diet 

(Buhman et al., 2000). 

 The different physiological roles of the ACAT isoforms become more readily 

apparent when examining atherosclerosis. Breeding Acat1-/- mice to either 

atherosclerosis susceptible apoE-/- or Ldlr-/- background does not protect from 

atherosclerosis (Accad et al., 2000). In fact, lesion complexity is exacerbated compared 

to Acat1 WT on either background. In addition, bone marrow transplantation from Acat1-

/- mice to these atherogenesis models also worsens atherosclerosis lesion pathology 

(Fazio et al., 2001). As discussed in section 1.2.2, this is likely due to FC-induced ER-
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stress, apoptosis and secondary necrosis as a result of the inability of macrophages to 

sequester cholesterol as metabolically inert CE. Subsequently, Acat2-/- mice were bred 

to both Ldlr-/- and apoE-/- mice. In contrast to the Acat1-/- crosses, Acat2 deficiency 

protects against atherosclerosis (Lee et al., 2004b, Willner et al., 2003), probably owing 

to the lack of hypercholesterolemia in these animals as outlined above (Buhman et al., 

2000). Finally, tissue-specific targeting of Acat2 attenuates atherogenic dyslipidemia 

(Zhang et al., 2012). Collectively, these studies demonstrate that pharmacological 

inhibition of ACAT2 would likely be beneficial for treatment of atherosclerosis. 

1.4.4 FATTY ACID OXIDATION 

A critical process in maintaining lipid homeostasis and generating ATP is the 

oxidation of fatty acids. In hepatocytes, stimulation of fat oxidation also limits TG 

availability for VLDL assembly and secretion, in turn contributing to reduced plasma TG 

levels. In the muscle and heart, fatty acid oxidation is vital for the generation of ATP 

required for contractility. In macrophages, activation of fat oxidation is crucial to 

maintaining intracellular TG in balance with uptake and storage, which can contribute to 

reduced foam cell formation.  

The rate-limiting step in the oxidation of fatty acids is CPT1-mediated entry into 

the mitochondria (Figure 1.8) (Bonnefont et al., 2004). CPT1 is an outer mitochondrial 

membrane enzyme that uses activated fatty acyl-CoA donors in the production of 

acylcarnitine. Subsequently, acylcarnitine can freely translocate across the outer and 

inner mitochondrial membranes. Upon entry into the mitochondrial matrix, CPT2, which 

is localized on the inner mitochondrial membrane, catalyzes the reformation of fatty acyl-

CoA, and liberates carnitine for subsequent CPT1-mediated reactions (Bonnefont et al., 

2004). Fatty acyl-CoA processing via four enzymatic steps ensues in the mitochondrial 

matrix to generate acetyl-CoA groups that can enter the Kreb‟s cycle to be oxidized for 
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Figure 1.8: The carnitine palmitoyl-transferase system. 

Carnitine palmitoyl-transferase (CPT) 1 is located on the outer mitochondrial membrane, 

and uses activated fatty acyl-CoA donors in the production of acylcarnitine. The 

production of this intermediate allows for fatty acyl-carnitine to freely translocate across 

the outer and inner mitochondrial membranes. Upon entry into the mitochondrial matrix, 

CPT2, which is localized on the inner mitochondrial membrane, catalyzes the 

reformation of fatty acyl-CoA, and liberates carnitine for subsequent CPT1-mediated 

reactions. Fatty acyl-CoA processing via four enzymatic steps ensues in the 

mitochondrial matrix to generate acetyl-CoA groups which enter the Kreb‟s cycle to be 

oxidized for the production of ATP, CO2 and water. 
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the production of ATP, CO2 and water. In most tissues, CPT1α is the predominant 

isoform that regulates fat oxidation. However, a CPT1β isoform also exists, which is 

mainly expressed in the skeletal muscle, adipose tissue and heart (Bonnefont et al., 

2004). 

Regulation of fat oxidation occurs via multiple mechanisms. CPT1 is regulated at 

a transcriptional level by a series of complex transcription factors including PPARγ-

coactivator 1 α (PGC1α), PPARα and PPARδ. Additionally, CPT1 is also allosterically 

regulated by malonyl-CoA (Rasmussen et al., 2002). During periods of feeding, malonyl-

CoA levels are high due to increased flux through the ACC de novo lipogenesis pathway 

as outlined above. Conversely, during periods of fasting, malonyl-CoA levels drop due to 

decreased ACC activity, alleviating the impediment on CPT1-mediated fatty acid 

oxidation (O'Neill et al., 2013). Animal models in which malonyl-CoA levels are 

manipulated can vastly alter metabolic phenotypes. Liver-specific deletion of fatty acid 

synthase results in substantially increased hepatic malonyl-CoA content, reduced 

CPT1α-mediated oxidation and as a result, hepatic steatosis (Chakravarthy et al., 2005). 

On the other hand, hepatic overexpression of malonyl-CoA decarboxylase (which 

degrades malonyl-CoA to acetyl-CoA) resulted in depletion of hepatic malonyl CoA. 

Consequently, fat oxidation was increased, and dyslipidemia and insulin resistance were 

normalized (An et al., 2004). Collectively, these studies highlight the importance of fatty 

acid β-oxidation in whole body lipid homeostasis, and suggest that therapeutic 

interventions to increase fat oxidation may confer protection from metabolic disease. 

1.4.4.1 FATTY ACID OXIDATION – PPAR REGULATION 

 The PPARs are a class of ligand-dependant transcription factors that regulate 

whole body lipid homeostasis (Harmon et al., 2011). Two members of this family, namely 

PPARα and PPAR δ, stimulate transcriptional programs that initiate fat oxidative 

machinery. In the liver, the major PPAR isoform is PPARα, which binds to PPAR 
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response elements (PPREs) within promoters of specific genes as an obligate 

heterodimer with the retinoid X receptor (RXR) (Harmon et al., 2011). This 

heterodimerization and initiation of transcription occurs in response to activation by 

endogenous ligands such as FAs and FA metabolites, or by synthetic ligands such as 

fibrates (Mandard et al., 2004). The canonical PPARα target is acyl-CoA oxidase (ACO), 

which stimulates peroxisomal oxidation of long chain FAs (Mandard et al., 2004). This 

stimulation of hepatic fatty acid oxidation is likely the key component in the ability of 

fibrates, synthetic ligands for PPARα, to effectively lower plasma TG levels. Fibrates are 

the current standard of care in the treatment of hypertriglyceridemia in dyslipidemic 

patients with insulin resistance (Reyes-Soffer et al., 2013). 

In addition to PPARα, the other PPAR isoform that can stimulate fat utilization is 

PPARδ (Wang et al., 2003). In fact, CPT1α is a known PPARδ target gene (Lee et al., 

2006a). The ability of PPARδ activation to regulate fatty acid oxidation and consequently 

prevent macrophage foam cell formation and hepatic steatosis is a significant 

component of the data in chapters 2 and 5 of this thesis. A more detailed discussion of 

PPARδ-regulated processes and functions will be presented in section 1.7. 

1.4.5 AMPK – THE PIVOTAL REGULATOR OF FAT OXIDATION AND LIPOGENESIS 

The adenosine monophosphate-activated protein kinase (AMPK) is an 

evolutionarily conserved serine/threonine kinase that controls cellular and whole body 

energy metabolism (O'Neill et al., 2013). The heterotrimeric protein consists of an α-

catalytic subunit, as well as β- and γ-regulatory subunits both of which are required for 

the catalytic activity of the α-subunit (O'Neill et al., 2013). Hepatocytes isolated from 

mice lacking the β1-subunit display significantly reduced AMPK activitiy (Dzamko et al., 

2010). As an energy-sensing protein kinase, AMPK operates as a fulcrum between 

anabolic and catabolic processes in response to changes in cellular AMP and ATP 

levels (Figure 1.9). During periods of low energy such as fasting, increases in cellular 
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Figure 1.9: Regulation of FA synthesis and oxidation by AMPK activation. 

AMPK operates as a fulcrum between anabolic and catabolic processes in response to 

changes in adenylate charge. During periods of low energy, increased cellular AMP 

binds to the γ-subunit of AMPK, inducing a conformational change in the heterotrimer 

that unmasks α-catalytic subunit to upstream kinases. The two major AMPK-activating 

kinases are liver kinase B1 (LKB1) and calcium/calmodulin-dependent protein kinase 

kinase (CaMKK), both of which phosphorylate AMPK on Thr172 within the α-catalytic 

subunit. LKB is an AMP-sensitive kinase. Activated AMPK stimulates the 

phosphorylation of SREBP-1c which inhibits SREBP-1c processing and reduces 

expression of genes required for fatty acid synthesis. Concomitantly, AMPK 

phosphorylates ACC, which inhibits ACC function thereby inhibiting the production of 

malonyl CoA. This limits substrate availability for fatty acid synthesis. Reduced malonyl-

CoA also results in the derepression of CPT1α, thus increasing fatty acid oxidation.  
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ADP and AMP results in the binding of either of these nucleotides to the γ-subunit of 

AMPK, inducing a conformational change in the heterotrimer that unmasks the activation 

loop of the α-catalytic subunit to upstream kinases (O'Neill et al., 2013). The two major 

AMPK-activating kinases are liver kinase B1 (LKB1) and calcium/calmodulin-dependent 

protein kinase kinase (CaMKK), both of which phosphorylate AMPK on Thr172 within the 

α-catalytic subunit. In addition, ADP and AMP suppress AMPK inactivation by preventing 

the dephosphorylation of phospho-Thr172 by protein phosphatases PP2A and PP2C 

(Oakhill et al., 2011, Sanders et al., 2007). Activated AMPK inhibits anabolic processes 

(such as lipogenesis) and stimulates catabolic processes (such as fatty acid oxidation) to 

simultaneously conserve and produce energy. Once cellular energy has been restored, 

or feeding has occurred thus providing energy excess due to the stimulation glycolysis 

and fatty acid oxidation by dietary glucose and TG, respectively, AMP levels are 

depleted and ATP levels are increased. Accordingly, PP2A and PP2C reduce AMPK 

activity, catabolic processes cease and anabolic processes ensue (O'Neill et al., 2013). 

Amongst the myriad of AMPK targets is ACC, which is thought to be the major 

contributor to the pivotal regulation of lipogenesis and oxidation (O'Neill et al., 2013). 

ACC exists in two isoforms, ACC1 and ACC2, which are phosphorylated by AMPK on 

Ser79 and Ser221, respectively (O'Neill et al., 2013). Phosphorylation of these ACC 

sites by AMPK results in the inactivation of ACC thus reducing malonyl-CoA production. 

In turn, substrate availability for FAS is limited, thereby downregulating lipogenesis to 

conserve energy. Additionally, low malonyl-CoA alleviates allosteric inhibition of CPT1α 

and therefore stimulates fat oxidation. Given the ability of activated AMPK to favorably 

regulate metabolic processes and so collectively reduce cellular fat deposition, 

pharmacological modulators of AMPK represent a promising therapeutic strategy to 

regulate of lipid imbalances observed in cardiometabolic disease (Pinkosky et al., 2013). 
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1.5 INSULIN SIGNALING 

 Insulin is a peptide hormone that is produced, processed and secreted by the β-

cells of the pancreas in response to feeding, and is central to regulating the metabolism 

of carbohydrate, protein and lipids. Insulin responsive tissues such as muscle, adipose 

and liver among others, express plasma membrane bound insulin receptors which 

transduce the insulin signal. Binding of insulin to the extracellular ligand-binding domain 

rapidly stimulates the intrinsic activity of the receptor tyrosine kinase, resulting in 

autophosphorylation of tyrosine residues in the intracellular subunit domains (Kido et al., 

2001). This autophosphorylation event causes the recruitment of insulin receptor 

substrate (IRS) proteins to the cytoplasmic tail of the insulin receptor that serve as 

docking proteins between the membrane-bound receptor and its intracellular effectors. 

One major downstream target of the insulin signal is phosphoinositide 3 (PI3)-kinase, 

which signals the phosphorylation and activation of protein kinase B/Akt (Kido et al., 

2001). Under normal physiology, the downstream consequences of acute insulin-

stimulated Akt activation include suppression of hepatic glucose production and 

promotion of de novo lipogenesis. 

1.5.1 INSULIN-REGULATED HEPATIC GLUCOSE METABOLISM 

 Dietary glucose stimulates the release of insulin from the pancreas, which 

induces a feedback loop to suppress hepatic gluconeogenesis to maintain normal (low) 

blood glucose levels (Brown and Goldstein, 2008). Molecularly, insulin inhibits hepatic 

glucose production by stimulating the phosphorylation of forkhead box O1 (FoxO1) 

through the action of Akt (Figure 1.10). Phosphorylated FoxO1 is excluded from the 

nucleus, which effectively downregulates the transcription of genes involved in 

gluconeogenesis, most prominently glucose 6-phosphatase (G6PC) and 

phosphoenolpyruvate carboxykinase (PEPCK) (Matsumoto et al., 2006). Mice 

overexpressing constitutively active hepatic FoxO1 exhibit hyperglycemia and 
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Figure 1.10: Insulin signaling.  

Insulin signalling via the insulin receptor results in enhanced IRS/PI3K signalling, leading 

to Akt phosphorylation. In turn Akt phosphorylates its downstream effector substrates 

mTORC1 and FoxO1. Akt-induced phosphorylation of mTORC1 renders the protein 

active, resulting in increased SREBP-1c-mediated fatty acid synthesis. In contrast, Akt-

mediated phosphorylation of FoxO1 results in the inhibition of FoxO1 translocation into 

the nucleus. This suppresses PEPCK expression and consequently inhibits 

gluconeogenesis. 
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hyperinsulinemia, whereas RNAi knockdown of FoxO1 reverses these metabolic 

abnormalities (Kamagate et al., 2008). 

1.5.2 INSULIN-REGULATED HEPATIC LIPID METABOLISM 

Another major effect of insulin signaling in the liver is stimulation of de novo 

lipogenesis by activation of SREBP-1c. Mice lacking hepatic insulin receptors have 

severely diminished expression of the SREBPs and their targets (Biddinger et al., 2008), 

suggesting that hepatic insulin signaling is required for the stimulation of lipogenesis in 

the fed state. The molecular basis for insulin-stimulated SREBP activity occurs through 

dual actions of Akt in the insulin signaling cascade. As outlined in section 1.4.1, Akt can 

directly target INSIG2a for degredation via mechanisms that are not completely 

understood, thereby allowing for SREBP processing and translocation into the nucleus 

(Yecies et al., 2011). On the other hand, activated Akt stimulates the phosphorylation of 

the mammalian target of rapamycin complex (mTORC) 1 (Figure 1.10), which is known 

to enhance the transcription of SREBP-1c and its targets (Li et al., 2010, Yecies et al., 

2011). Despite the insulin-mediated increase in hepatic de novo lipogenesis, insulin 

signaling also acutely suppresses hepatic VLDL secretion. The Akt-mediated 

phosphorylation and nuclear exclusion of FoxO1 reduces MTP expression (Kamagate et 

al., 2008), thus inhibiting cotranslational lipidation of apoB100. Additionally, insulin 

activates the MAPKerk pathway, which also regulates MTP expression and reduces lipid 

availability for VLDL secretion (Allister et al., 2005). 

1.5.3 INSULIN RESISTANCE 

 The metabolic syndrome is defined as a cluster of abnormalities including 

increased waist circumference, hypertension, low plasma HDL, high fasting blood 

glucose and high plasma TG, which collectively puts individuals at risk for the 

development of premature cardiovascular disease (Eckel et al., 2010). Insulin resistance 

is considered central to the pathophysiology of the metabolic syndrome and is clinically 
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defined as the inability of insulin to maintain glucose homeostasis (Haas and Biddinger, 

2009). In response to elevated blood glucose levels during fasting in the insulin resistant 

state, the pancreas responds by increasing insulin secretion to compensate for the lack 

of sensitivity in peripheral tissues, thus maintaining glycemic control (Eckel et al., 2010). 

Eventually the pancreas cannot provide sufficient insulin, blood glucose increases, and 

the diabetic state ensues. Therefore, insulin resistance has been causally linked to the 

development of type 2 diabetes (Eckel et al., 2010). 

Although the clinical definition of insulin resistance is useful, it fails to address 

other processes that are a result of insulin resistance. Insulin resistance is most 

prominently manifest in three organs: adipose, muscle and liver (Li et al., 2010). In the 

adipose tissue, failure of insulin to suppress TG lipolysis increases FA release and 

contributes to elevated plasma FFAs as well as the hepatic pool of FA available for TG 

re-synthesis and VLDL assembly and secretion. In muscle, the inability of insulin to 

stimulate glucose transporter (GLUT) 4 translocation to the plasma membrane, reduces 

insulin-mediated glucose uptake and contributes to fasting hyperglycemia. In the liver, 

however, an interesting paradox occurs where the lipogenic SREBP-1c branch of insulin 

signaling remains sensitive, whereas the gluconeogenic FoxO1 branch becomes 

resistant. 

1.5.3.1 INSULIN RESISTANCE IN THE LIVER 

 As alluded to above, hepatic insulin resistance cannot simply be defined as the 

failure of insulin to propagate signal transduction through the insulin receptor. Impaired 

insulin receptor signaling has been observed in a variety of settings (Nyomba et al., 

1990, Nyomba et al., 1991, Ozcan et al., 2004), and likely contributes to insulin 

resistance at certain stages of disease progression. However, in mice with hepatic 

insulin receptor ablation (termed pure insulin resistance), hyperinsulinemia and 

hyperglycemia still develop, yet in the complete absence of hepatic steatosis and 
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hypertriglyceridemia due to reduced SREBP-1c activity (Biddinger et al., 2008). Hence, 

the diabetic triad of hyperinsulinemia, hyperglycemia and hypertriglyceridemia breaks 

down in pure insulin resistance. This resulted in the hypothesis that normal insulin 

signaling must occur in the liver to at least some particular point (Brown and Goldstein, 

2008). After this hypothesized point, the insulin signal should bifurcate to generate 

insulin resistant and insulin sensitive branches of the pathway (termed selective insulin 

resistance) (Figure 1.11). This dual action of insulin is a major contributor to the 

hypertriglyceridemia and hyperglycemia observed in the insulin resistant state. 

Inhibition of PI-3K and Akt kinase activity in primary rat hepatocytes revealed that 

these were common mediators of the gluconeogenic and lipogenic branches of the 

insulin signal (Li et al., 2010). However, mTORC1 inhibition abolished insulin-induced 

SREBP-1c expression, but had no effect on insulin-mediated suppression of PEPCK (Li 

et al., 2010), demonstrating that the bifurcation point of the insulin signal is Akt. Hence, 

fasting hyperinsulinemia during insulin resistance chronically drives de novo lipogenesis, 

but fails to suppress gluconeogenesis due to the inability of Akt to phosphorylate and 

inactive FoxO1. Furthermore, active FoxO1 results in constitutive activation of MTP 

expression, and together with increased lipogenesis contributes to increased apoB100 

secretion (Biddinger et al., 2008, Kamagate et al., 2008). 

The bifurcation of the insulin signaling cascade begs the questions of how and 

why Akt phosphorylates and activates mTORC1 but fails to phosphorylate and inactivate 

FoxO1. Recently, it has been demonstrated that a particular cytosolic calcium sensing 

kinase, calcium-calmodulin dependent kinase II gamma (CaMKIIγ), stimulates the 

phosphorylation of FoxO1 on non-Akt sites, thereby promoting FoxO1 entry into the 

nucleus to stimulate hepatic glucose production (Ozcan et al., 2012). Importantly, activity 

of CaMKIIγ was significantly increased in obese ob/ob mice as well as wild type mice fed 

a high-fat diet for 20-weeks. Adenoviral knockdown of CaMKIIγ in either of these settings 



54 
 

 

 

 

 

Figure 1.11: Selective versus pure insulin resistance.  

Selective hepatic insulin resistance – Under hyperinsulinemic/insulin resistant 

conditions, the elevated plasma insulin results in chronic phosphorylation of the cascade 

to Akt. Paradoxically, the ability of Akt to phosphorylate mTORC1 remains sensitive, 

whereas Akt-mediated phosphorylation of FoxO1 becomes resistant. In turn, mTORC1-

driven SREBP-1c-mediated lipogenesis is significantly increased, whereas FoxO1-

processes remain activated rather than inhibited as in normal insulin signalling. 

Consequently, PEPCK-mediated gluconeogenesis ensues. The combined physiological 

effects of selective hepatic insulin resistance are: hyperinsulinemia, hypertriglyceridemia 

and hyperglycemia (the so-called diabetic triad) as well as hepatic TG accumulation. 

 

Pure hepatic insulin resistance – With liver-specific deletion of the insulin receptor, the 

diabetic triad breaks down. Although these animals develop hyperinsulinemia, the liver 

cannot respond to the plasma insulin. As a result, mTORC1 remains inactive, whereas 

the lack of impediment on FoxO1 renders it chronically active. The physiological 

consequences in this scenario are: hyperinsulinemia and hyperglycemia, with normal 

plasma and hepatic TG. 
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Adapted from Brown and Goldstein, 2008. Cell Metab, 7, 95-96. 
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diminished hepatic gluconeogenic gene expression, decreased fasting glycemia and 

improved insulin sensitivity (Ozcan et al., 2012). Given that ER-stress is known to 

accompany insulin resistance in the liver (Ozcan et al., 2004), and that ER-stress can 

dramatically increase cytosolic calcium levels (Fu et al., 2012), it is plausible that the 

CaMKIIγ-specific phosphorylation of FoxO1 is significantly induced during hepatic insulin 

resistance and prevents insulin-mediated phosphorylation and suppression of FoxO1 

activity. However, this hypothesis has yet to be explored. 

1.5.3.2 INSULIN RESISTANCE IN THE VASCULATURE 

 In addition to promoting atherogenic risk factors, namely dyslipidemia, insulin 

resistance may also drive atherosclerosis directly at the level of the artery wall (Tabas et 

al., 2010). Bone marrow transplantation from insulin receptor knockout mice (Insr-/-) into 

Ldlr-/- recipients substantially increased atherosclerotic lesion formation, specifically due 

to ER-stress induced apoptosis and necrotic core formation (Han et al., 2006). 

Furthermore, crossing Akt1-/- mice onto the apoE-/- background yields profound coronary 

atherosclerosis, attributable to increased inflammation in the vessel wall (Fernandez-

Hernando et al., 2007). In macrophages deficient for the insulin receptor, FC-induced 

ER-stress and apoptosis involves increased nuclear FoxO1 translocation and activity 

(Senokuchi et al., 2008). Consistent with this, FoxO1 is known to stimulate the 

transcription of at least one proatherogenic inflammatory cytokine in macrophages (Su et 

al., 2009), and FoxO1 ablation in vascular endothelial cells attenuates atherosclerosis 

development (Tsuchiya et al., 2012). All of these studies use proof-of-concept genetic 

ablation of insulin signaling strategies and consequently fail to address whether a 

selective insulin resistant phenotype may be occurring in the vessel wall during diet-

induced atherogenesis.  

A recent study demonstrated that macrophages isolated from Insr-/- or ob/ob mice 

displayed a significant reduction in expression and activity of the sarcoplasmic 
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endoplasmic reticulum calcium ATPase, which led to reduced flux of cytoslic calcium 

back into the ER and as a result, increased ER-stress-induced apoptosis (Liang et al., 

2012). This study suggests that a similar mechanism of insulin resistance may occur in 

the liver as well as in the vasculature. Thus, therapeutic agents that correct selective 

hepatic insulin resistance may also alleviate vascular insulin resistance, and reduce 

atherosclerosis through either of these mechanisms. 

1.6 TYPE 2 DIABETES 

 As insulin resistance persists, the pancreas responds by continuously increasing 

insulin secretion in an attempt to maintain glycemic control. However, maintenance of 

blood glucose homeostasis does not occur indefinitely, as pancreatic β-cells cannot 

undergo hyperplasia ad infinitum to keep up with the insulin resistant state of the 

periphery (Prudente et al., 2009). Consequently, the full type 2 diabetic state ensues, 

putting patients at up to four-fold higher risk of developing CVD than non-diabetic 

subjects (Fox et al., 2007, Fox et al., 2004). The proatherogenicity of type 2 diabetes has 

been thought to be multi-factorial, as hyperlipidemia, hyperglycemia, hyperinsulinemia 

and increased oxidative stress and inflammation combine to accelerate atherogenesis 

(Ginsberg, 2000).  

Despite considerable data demonstrating a positive correlation between diabetes 

and development of cardiovascular disease, delineating the relative contribution of each 

process outlined above to cardiovascular risk has proven difficult. Elevated plasma TG 

remains an independent risk factor for CVD development (Musunuru, 2010), and 

residual CVD risk left behind by statin monotherapy is at least 50% (Mazzone et al., 

2008). The ACCORD Lipid trial tested whether LDL-C lowering statin therapy in 

combination with TG-lowering fibrate therapy further reduced CVD risk. There was no 

significant reduction observed in patients receiving combination therapy compared to 

those receiving statin alone (Ginsberg et al., 2010). With respect to hyperglycemia, 
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intensive long-term glucose lowering has not proven successful in reducing 

cardiovascular events (Gerstein et al., 2011). Finally, the conjecture that 

hyperinsulinemia is atherogenic is also controversial, as this would imply that insulin is a 

proatherogenic molecule. If this were the case, then insulin therapy would be a poor 

choice for patients with insulin resistance or type 2 diabetes (Ginsberg, 2000). However, 

results from the United Kingdom Prospective Diabetes Study (UKPDS) demonstrated a 

nearly statistically significant (P=0.052) effect of insulin and sulfonylurea treatment in 

reducing cardiovascular events (Group, 1998), and insulin glargine treatment for 6 years 

had a neutral effect on cardiovascular outcomes (Gerstein et al., 2012). Although 

assessment of long-term CVD prevention with insulin secretogogues such as GLP-1 

analogues and DPP4 inhibitors has not been completed, the data accumulated thus far 

suggests that CVD risk is not worsened and might be reduced, due at least in part to 

TG-lowering (Anagnostis et al., 2011, DeFronzo et al., 2008). Interestingly, the GLP-1 

analogue exenatide reverses FC-induced ER-stress and apoptosis in macrophages 

(Liang et al., 2012). Collectively, these studies suggest that patients with type 2 diabetes 

should be treated to the current standard of care for hyperglycemia and hyperlipidemia, 

until new clinical trials further our understanding of how to manage CVD risk in patients 

with type 2 diabetes.  

1.7 PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS 

 The peroxisome proliferator-activated receptor (PPAR) δ has emerged as an 

important regulator of lipid homeostasis and inflammatory signaling. Recent in vitro, in 

vivo and human clinical studies have highlighted a role for PPARδ activation in 

prevention and treatment of insulin resistance and atherosclerosis. 

1.7.1 PPAR OVERVIEW 

The PPARs are a class of ligand-dependant transcription factors within the 

nuclear receptor superfamily. The three isoforms (PPARα, PPARγ and PPARδ) are 
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encoded by three separate genes, which exhibit overlapping but largely distinct patterns 

of tissue distribution and function (Chawla et al., 1994, Kliewer et al., 1994). PPARs 

follow the basic modular structure common to most nuclear receptors (Harmon et al., 

2011). Six exons encode four distinct domains which regulate PPAR function (Fournier 

et al., 2007). Exon 1 encodes the N-terminal activating function (AF)-1 domain which is a 

ligand-independent modulation domain amenable to post-translational modifications 

(Fournier et al., 2007). Exons 2 and 3 encode the zinc-finger DNA binding domain of 

PPARs, which bind to the PPAR response element (PPRE) direct repeat sequence 

AGGTCAnAGGTCA within promoter regions of PPAR-target genes (Fournier et al., 

2007). The hinge region, which is thought to participate in the nuclear translocation 

signal, is encoded by exon 4 (Fournier et al., 2007). The carboxy-terminal AF-2 domain, 

encoded by exons 5 and 6, contains the ligand binding domain and co-factor 

dimerization domains (Fournier et al., 2007). Additionally, the AF-2 domain includes the 

RXR-heterodimerization interface (Fournier et al., 2007). 

In an unliganded state, the PPAR-RXR heterodimer is bound to the PPRE by co-

repressors such as the nuclear co-repressor (NCoR) or the silencing mediator of retinoid 

and thyroid hormone receptor (SMRT), which are part of the histone deacetylase 

(HDAC) complex. Deacetylated histones keep chromatin tightly wound, thereby 

repressing gene expression. Consequently, in the absence of ligand, PPARs exert active 

repression of their target genes (Harmon et al., 2011). However, the binding of ligand 

induces a PPAR conformational change that results in the dissociation of co-repressor 

complexes from the PPAR-RXR heterodimer. This conformational change in PPARs 

results in a so-called “PPAR LxxLL charge clamp” in the AF-2 domain, which stimulates 

the recruitment of LxxLL-containing co-activator complexes, such as the nuclear co-

activator (NCoA) and the steroid receptor co-activator (SRC). NCoA and SRC are part of 

the histone acetyl transferase (HAT) complex (Harmon et al., 2011), which modifies 
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chromatin structure thereby allowing for gene transcription to ensue (Fournier et al., 

2007). Hence, ligand-dependent activation of PPARs results in active gene transcription.  

In addition to active repression and ligand-dependent activation, regulation of 

PPAR target genes can occur as a result of post-translational modification of the AF-1 

domain. One such example is the phosphorylation of the AF-1 domain of PPARγ by 

cyclin-dependent kinase (CDK) 5 (Choi et al., 2010). Consequently, PPARγ target genes 

are further actively repressed as a result of stronger association of the receptor with co-

repressor complexes which exert greater HDAC activity (Choi et al., 2010). Ligand-

binding in the AF-2 domain of PPARγ inhibits CDK5-mediated phosphorylation of 

PPARγ, which is one mechanism by which thiazoledinediones exert their anti-diabetic 

action (Choi et al., 2010). Additionally, inhibition of CDK5 results in the de-repression of 

PPARγ target genes as a result of this ligand-independent modificiation of the AF-1 

domain (Choi et al., 2011). Although this discovery has led to the search for novel 

approaches of modulating PPAR activity by manipulating the co-regulator complexes 

associated with PPARs, this field is still in its infancy and requires further study. 

PPARs most prominently differ in their ligand binding pockets as well as the 

tissues in which they are expressed. However, these receptors have a large compliment 

of target genes, which can create difficulties in establishing PPAR-specific effects 

(Harmon et al., 2011). Nevertheless, PPARα is predominantly expressed in hepatocytes, 

where activation of this isoform stimulates the catabolism of fatty acids while 

suppressing inflammatory responses (Mandard et al., 2004). Fibrates are synthetic 

ligands for PPARα which are currently used as therapeutic agents in the treatment of 

hypertriglyceridemia. PPARγ is expressed primarily in adipocytes where it functions as 

an essential regulator of adipose tissue inflammation, fat storage and differentiation 

(Barak et al., 1999, Rosen et al., 1999, Tontonoz et al., 1994). In addition, PPARγ 

activation increases expression of adiponectin, an adipokine that enhances insulin 
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sensitivity (Yamauchi et al., 2001). PPARγ is the target of thiazolidinediones, used 

clinically in the treatment of type 2 diabetes. In contrast to the more restricted tissue 

distribution of PPARα and PPARγ, PPARδ is ubiquitously expressed with particularly 

high abundance in muscle tissue and macrophages (Vosper et al., 2001, Wang et al., 

2004). Although PPARδ activation has yet to achieve clinical application, recent 

advancements have reduced the gap between preclinical studies and clinical use. 

1.7.2 PPARδ IN MACROPHAGES 

 Macrophage exposure to VLDL or VLDL-derived fatty acids readily stimulates 

foam cell formation (Whitman et al., 1999), the inflammatory response and ER-stress 

induced apoptosis, independent of lipopolysaccharide (Anderson et al., 2012, 

Saraswathi and Hasty, 2006). Induction of the inflammatory response was independent 

of toll-like receptors 4 or 2 (Anderson et al., 2012). Paradoxically, VLDL-derived fatty 

acids also activate macrophage PPARδ resulting in up-regulation of genes involved in 

fatty acid catabolism, including CPT1α (Chawla et al., 2003, Lee et al., 2006a). Thus, 

from an evolutionary standpoint, PPARδ serves as a fatty acid sensor in cells of the 

vasculature to prevent arterial lipid accumulation under normolipidemic conditions. 

However, in the context of hypertriglyceridemia, if PPARδ-regulated lipid homeostasis 

induced by fatty acids were sufficient to clear the incoming atherogenic substrate, 

atherosclerosis would not ensue. The requirement for potent synthetic agonists of 

PPARδ to reduce VLDL-induced macrophage lipid deposition has not been examined. 

 PPARδ also regulates the macrophage inflammatory response, in part, through 

the repressor protein B-cell lymphoma 6 (BCL-6) (Lee et al., 2003). In the absence of 

ligand, PPARδ is bound to BCL-6, thereby repressing its function. Consequently, 

proinflammatory cytokine expression is elevated. Ligand activation induces a 

conformational change in PPARδ resulting in dissociation of BCL-6 from the PPARδ 

corepressor complex and subsequent transrepression of proinflammatory mediators 
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(Figure 1.12). This phenomenon has also been documented in PPARδ knockout cells 

and cells expressing dominant negative PPARδ, suggesting that defective PPARδ, the 

absence of PPARδ, or ligand-activation of PPARδ render similar anti-inflammatory 

effects, due to the lack of BCL-6 sequestration (Figure 1.12) (Barish et al., 2008, Lee et 

al., 2003, Takata et al., 2008). Thus, in addition to protection from lipid overload, 

activation of PPARδ by fatty acids also serves to protect macrophages from lipotoxic 

proinflammatory responses under normolipidemic conditions. However, as discussed in 

sections 1.2.5 and 1.5.3.2, VLDL and VLDL-derived fatty acids mediate proinflammatory 

cytokine expression through MAPK activation (Anderson et al., 2012, Saraswathi and 

Hasty, 2006), and insulin resistant macrophages display enhanced proinflammatory 

cytokine expression due to dysregulated Akt/forkhead box protein O1 (FoxO1) signaling 

(Su et al., 2009). The impact of PPARδ activation on VLDL-induced macrophage 

inflammatory responses remains to be established.  

 Clinically relevant plaques are prone to rupture and exhibit lipid rich necrotic 

cores as a result of inflammation and ER-stress-induced apoptosis (Moore and Tabas, 

2011). Defective macrophage apoptosis is central to necrotic core formation and is 

therefore a major component of the progression of complex lesions to clinically relevant 

lesions (Tabas, 2010). Phagocytosis of apoptotic cells results in the engulfment of large 

amounts of lipids, including FAs, into the macrophage (Erwig and Henson, 2008), which 

in turn activates PPARδ expression (Mukundan et al., 2009). Bone marrow derived 

macrophages (BMDMs) from Pparδ-/- mice displayed significantly reduced phagocytosis 

of apoptotic cells (Mukundan et al., 2009), concomitant with a significant reduction in the 

expression of opsonins, molecules that regulate enhanced recognition and phagocytosis 

of apoptotic cells (Erwig and Henson, 2008, Lauber et al., 2004). In wild-type BMDMs, 

the PPARδ agonist GW0742 stimulated the expression of opsosnins and enhanced 

clearance of apoptotic cells which was entirely PPARδ-dependent 
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Figure 1.12: Consequences of PPARδ activation and PPARδ deletion: 

PPARδ Activation - PPARδ binding sites within promoter regions of its target genes are 

known as PPAR response elements (PPREs). In an unliganded state, the PPARδ-

retinoid X receptor (RXR) obligate heterodimer is bound to corepressor complexes, 

which inhibits basal transcription of PPARδ target genes. Ligand activation results in a 

conformational change in the receptor leading to dissociation of the corepressor 

complexes and subsequent recruitment of coactivator complexes to the PPARδ-RXR 

heterodimer. As a result, PPARδ-responsive genes are transcriptionally activated. Part 

of the PPARδ corepressor complex is the BCL-6 protein, which acts as an inflammatory 

repressor protein in response to ligand activation of PPARδ. The ligand-induced 

conformational change in PPARδ results in the dissociation of BCL-6 from the PPARδ 

corepressor complex. Subsequently, BCL-6 corepressor complexes are recruited to 

promoter regions of inflammatory cytokine genes, leading to the inhibition of 

proinflammatory mediator expression. 

PPARδ Deletion – Genetic ablation of PPARδ mimics the liganded state of the receptor, 

as the presence PPARδ is required for the corepressor complex to maintain basal target 

gene expression suppressed. Moreover, PPARδ is required for BCL-6 sequestration. 

Hence, when PPARδ is eliminated, cytokine expression is suppressed by BCL-6, and 

PPARδ-target genes are derepressed. 

 

 



64 
 

 

 

 

 

 

 

Adapted from Lee et al., 2003. Science, 302, 453-457. 
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(Mukundan et al., 2009). These studies uniquely demonstrate that PPARδ activation in 

macrophages orchestrates efficient clearance of dying cells by induction of opsonin 

expression and represents a therapeutically relevant mechanism. Collectively, studies in 

cultured macrophages suggest that PPARδ activation may serve as a guardian of the 

vascular insult, and thus impact atherogenesis.  

1.7.3 PPARδ ACTIVATION AND THE PROTECTION FROM DIET-INDUCED 

ATHEROSCLEROSIS 

The in vivo role of PPARδ on atherosclerosis has proven elusive, due, in part, to 

the unique transcriptional regulation of proinflammatory processes (when associated) 

and anti-inflammatory processes (when dissociated) by the PPARδ:BCL-6 complex. Lee 

et al. demonstrated that transplantation of Pparδ-/- bone marrow into Ldlr-/- recipient mice 

resulted in significant atheroprotection (Lee et al., 2003). As discussed above, these 

studies revealed that deletion of Pparδ mimicked the liganded state of the receptor, and 

suggested that ligand-activation may be atheroprotective. However, in subsequent 

studies involving prevention protocols, administration of synthetic PPARδ agonists 

produced conflicting reports. The first two reports PPARδ activation in vivo utilized the 

GW0742 compound, and only showed an effect at megadoses at which this ligand is no 

longer PPARδ-specific (Li et al., 2004) (Graham et al., 2005). A subsequent study 

showed that lower PPARδ-specific doses of GW0742 reduced lesions and aortic 

expression of inflammatory cytokines in the angiotensin II–induced mouse model of 

atherosclerosis (Takata et al., 2008). It is important to note that angiotensin II 

significantly increases PPARδ expression, resulting in increased BCL-6 sequestration 

and enhanced inflammation (Takata et al., 2008). The next generation PPARδ agonist, 

GW1516, at PPARδ-specific doses, prevented atherosclerosis in apoE-/- mice fed a high-

fat diet, concomitant with reduced aortic inflammatory cytokine expression (Barish et al., 
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2008). However, lesion complexity and morphometry were not examined. Nevertheless, 

the prevention protocols used to date have not examined the ability of PPARδ activation 

to attenuate or to induce regression pre-established lesions. Furthermore, insulin 

resistance within arterial macrophages is known to enhance lesion development. The 

impact of PPARδ activation on arterial wall insulin sensitivity remains to be determined.  

1.7.4 PPARδ ACTIVATION IN HEPATOCYTES 

Hyperinsulinemia results in amplified stimulation of mTORC1, which 

consequently drives the master transcriptional regulator of lipogenesis, sterol regulatory 

element binding protein (SREBP)-1c (Haas et al., 2012, Horton et al., 2002, Yecies et 

al., 2011). In turn, SREBP-1c activates the lipogenic transcriptional program, which 

includes genes such as fatty acid synthase (Fasn), acetyl-CoA carboxylase (Acc) and 

stearoyl-CoA desaturase (Scd) (Horton et al., 2002). In db/db mice GW1516 treatment 

increased hepatic expression of Fasn, Acc and Scd2 leading to a modest increase in 

hepatic triglyceride (Lee et al., 2006b). In Ldlr-/- mice, adenoviral PPARδ (adPPARδ) 

gene delivery stimulated the expression of Fasn, Acc1, Acc2, Srebf1c and Pgc1b, and 

increased liver triglyceride content (Liu et al., 2011). In contrast, HepG2 cells treated 

with GW0742 displayed a marked reduction in TG accumulation, due to reduced 

processing of nuclear SREBP-1, which resulted in attenuated expression of Fasn and 

Scd1 (Qin et al., 2008). GW0742 increased expression of insulin-induced gene (Insig)-1, 

an SREBP-1 endoplasmic reticulum (ER) retention protein which contains a PPAR 

response element within its promoter. These results were reproduced in livers of db/db 

mice injected with adPPARδ (Qin et al., 2008). The spectrum of results observed in 

these studies can be explained by different mouse models, diets, selection of drugs 

used, or gene delivery versus drug strategies of increasing PPARδ activity. However, 

that PPARδ activation increases hepatic steatosis is counterintuitive, given the 

overwhelming data demonstrating that PPARδ activation improves whole-body insulin 
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sensitivity and lipid homeostasis, and stimulates fatty acid oxidation in a variety of cell 

types and tissues (Lee et al., 2006b, Tanaka et al., 2003, Wang et al., 2003). Therefore, 

additional studies are required to reconcile the ability of PPARδ activation to regulate 

resistant hepatic steatosis linked to insulin resistance. 

Liver inflammation has been implicated as a major contributor to hepatic insulin 

resistance (Gregor and Hotamisligil, 2011, Hummasti and Hotamisligil, 2010). PPARδ 

activation in HepG2 cells attenuates interleukin (IL)-6-induced inflammation and insulin 

resistance. These effects were mediated via PPARδ inhibition of IL-6-induced signal 

transducer and activator of transcription (STAT)-3, resulting in restoration of normal 

insulin signaling (Serrano-Marco et al., 2011). Importantly, livers of Pparδ-/- mice 

displayed significantly elevated phospho-STAT-3, suggesting that PPARδ regulates 

STAT-3 in vivo, contributing to improved insulin resistance (Serrano-Marco et al., 2011). 

Kupffer cell-specific deletion of Pparδ in mice resulted in impaired hepatic Akt 

phosphorylation coupled with increased hepatic inflammation (Odegaard et al., 2008). 

Together, these studies demonstrate that activation of hepatic PPARδ attenuates 

inflammation and contributes to improved hepatic insulin sensitivity. Further 

experimentation is required to determine whether selective PPARδ agonists reduce 

hepatic inflammation in vivo.  

1.7.5 PPARδ AGONISTS IN HUMANS 

The available in vitro and in vivo data prompted the examination of selective 

PPARδ agonists in human clinical trials for the treatment of metabolic dysregulation, 

including dyslipidemia. In healthy volunteers, GW1516 (2.5 mg or 10 mg/day for 2 

weeks) reduced plasma TG concentrations, enhanced post-prandial TG clearance and 

increased plasma HDL-cholesterol (Sprecher et al., 2007). In moderately obese men, 

GW1516 (10 mg/day for 2 weeks) stimulated moderate weight loss, reduced plasma TG, 

NEFA, total cholesterol and LDL cholesterol. Hepatic fat content was reduced in the 
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GW1516-treated cohort. Fasting plasma insulin and fasting blood glucose levels were 

decreased and insulin sensitivity improved as calculated by the homeostasis model 

assessment of insulin resistance (HOMA-IR). No adverse effects were observed 

(Riserus et al., 2008). Recently, a large multi-dose study of GW1516 (2.5, 5.0 and 10 

mg/day for 12 weeks) in subjects with low HDL-C revealed significant increases in HDL-

C and apo A-I with concomitant reductions in plasma FFA, apoB, VLDL, IDL and large 

LDL particles, all of which demonstrate a transition toward a less atherogenic lipoprotein 

profile (Olson et al., 2012). In dyslipidemic men with central obesity, a recent 

randomized double-blind, crossover trial of 6-week intervention periods with placebo or 

GW1516 (2.5mg/day), lipoprotein kinetic studies provided mechanistic insight into the 

anti-dyslipidemic properties of GW1516 (Ooi et al., 2011). Decreased plasma TG, NEFA, 

apoB-100 and apoB-48 concentrations were observed. GW1516 decreased VLDL apoB 

concentrations due to an enhanced fractional catabolic rate, which was related to a 

significantly lower production rate of apo C-III. GW1516 increased plasma HDL-

cholesterol, concomitant with increased apo A-II production and reduced CETP activity 

(Ooi et al., 2011). 

Recent back-to-back randomized, double-blind, placebo-controlled, parallel 

group studies involving a novel PPARδ agonist (MBX-8025) administered as 

monotherapy or in combination with atorvastatin, examined the ability of PPARδ 

agonists to improve dyslipidemia in overweight patients (Bays et al., 2011, Choi et al., 

2012). In the first study, MBX-8025 alone or in combination with atorvastatin significantly 

reduced plasma concentrations of apoB100 and LDL-cholesterol. However, the 

combination did not significantly reduce either of these parameters beyond that of 

atorvastatin alone. In contrast to atorvastatin monotherapy, MBX-8025 alone or in 

combination with atorvastatin significantly reduced plasma TGs and NEFAs, and 

increased HDL-C (Bays et al., 2011). In addition, MBX-8025 reduced HOMA-IR, the 
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number of patients meeting diagnostic criteria for the metabolic syndrome, VLDL particle 

number, the preponderance of small and very small LDL particles and increased LDL 

peak diameter (Bays et al., 2011, Choi et al., 2012). MBX-8025 was well tolerated, with 

no major adverse effects (Bays et al., 2011, Choi et al., 2012). Collectively, these human 

trials demonstrate that PPARδ agonists exert favourable effects on CVD risk factors that 

are not improved by statin monotherapy. Whether PPARδ agonists reduce the residual 

CVD risk beyond statin treatment requires longer-term outcome and safety studies. 

1.8 MODELS TO BE USED 

1.8.1 CELL CULTURE 

THP-1 cells are a monocytic cell line initially derived from the blood of a one-

year-old boy with acute monocytic leukemia (Tsuchiya et al., 1980). Treatment of THP-1 

monocytes with phorbol esters such as phorbol 12,13-dibutyrate, results in their 

differentiation into macrophage-like cells, which exhibit many characteristics of native, 

mature macrophages (Auwerx, 1991). Although the extent to which differentiated THP-1 

cells mimic vascular wall macrophages is not fully understood, these cells have been 

used extensively as a model to gain insight into macrophage foam cell formation and 

function (Qin, 2012). Treatment of THP-1 cells with a phorbol ester results in the 

upregulation of scavenger receptors (Johnson et al., 2003), which makes THP-1 

macrophages a reasonable model to recapitulate macrophage behavior during 

atherogenesis. One caveat to these cells is that phorbol ester treatment results in the 

downregulation of LDLR expression (Johnson et al., 2003), which results in reduced 

uptake of native LDL compared to modified LDL. However, high doses of LDL (100-

200μg/mL) will stimulate CE uptake and foam cell formation (Banka et al., 1991), which 

still makes THP-1 macrophages a fundamentally good model to study foam cell 

formation in response to native LDL in the context of hypercholesterolemia. In the 

context of hypertriglyceridemia, THP-1 macrophages synthesize and secrete LPL (Qin, 
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2012), and can therefore readily take up VLDL-derived fatty acids resulting in foam cell 

formation. These cells were used extensively for the studies described in Chapters 2 and 

3. 

1.8.2 Ldlr-/- MICE 

Deletion of the Ldlr in C57Bl/6J disrupts normal murine lipoprotein metabolism, 

resulting in elevated plasma cholesterol, particularly in the LDL fraction as a result of 

defective LDL clearance (Ishibashi et al., 1993). Furthermore, these animals develop 

increased cholesterol in both VLDL and IDL when fed a high-fat diet (Getz and Reardon, 

2006). Ldlr-/- mice fed a high-fat, cholesterol containing (HFHC) diet for 12 weeks 

recapitulate many features of the metabolic syndrome such as dyslipidemia, 

hyperinsulinemia, insulin resistance and hepatic steatosis (Assini et al., 2013). 

Furthermore, these animals develop atherosclerotic lesions that are relatively advanced, 

exhibiting significant lipid accumulation, increased macrophage and smooth muscle cell 

infiltration and enhanced collagen deposition (Assini et al., 2013). Ldlr-/- mice were 

extensively used for the studies described in Chapters 4 and 5. 

1.8.3 ANIMAL DIETS 

1.8.3.1 CHOW DIET 

Laboratory chow was used as a control diet which provided a reference for 

metabolic indices altered by feeding the HFHC diet. The chow diet contains complex 

carbohydrates and 14% calories as fat (4% by weight). The caloric value of the chow 

diet is 3.0 kcal/g (Table 1-2). The chow diet was fed ad libitum to mice in studies 

described in Chapters 4 and 5. 
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1.8.3.2 WESTERN DIET WITH ADDED CHOLESTEROL (HFHC DIET) 

The western diet commonly used to induce metabolic abnormalities and 

atherosclerosis is composed of 42% calories as fat (21.2% by weight). Of the total fat, 

saturated fatty acids comprise 58% by weight, monounsaturated fatty acids 36% and 

polyunsaturated fatty acids 5%. This diet contains 0.05% cholesterol (by weight), derived 

from milkfat and lard (Harlan Teklad, TD96125). The addition of 0.15% cholesterol (for a 

total of 0.2%) modifies the western diet to the HFHC diet (Harlan Teklad, TD09268). 

Diets with the same or similar amounts of dietary cholesterol are known to increase 

macrophage inflammation and exacerbate the development of dyslipidemia, insulin 

resistance, hepatic steatosis and atherosclerosis (Subramanian et al., 2011, 

Subramanian et al., 2008). The carbohydrate component is 42.8% of calories (48.7% by 

weight) and is derived from sucrose, while the protein source is casein (15.2% of 

calories, 17.3% by weight). This diet does not contain any cholate. The caloric value of 

the HFHC diet is 4.5 kcal/g (Table 1-2). The HFHC diet was fed ad libitum to mice in 

studies described in Chapters 4 and 5.  

1.9 SCOPE OF THESIS AND HYPOTHESES 

 Dyslipidemia and insulin resistance are major risk factors for the development of 

premature atherosclerosis. Specifically, elevated plasma TG-rich VLDL can readily 

induce macrophage foam cell formation, and insulin resistance is becoming increasingly 

accepted to accelerate foam cell formation. Therapeutic strategies that improve insulin 

sensitivity, the atherogenic lipid profile of the insulin resistant state and have direct 

effects on cells of the vessel wall to reduce macrophage foam cell formation and 

atherosclerosis, remain sparce. Therefore, identification and characterization of the 

novel therapeutic strategies that correct the metabolic consequences of insulin 

resistance are becoming increasingly important. 
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 The studies in this thesis were undertaken to understand the physiological and 

molecular mechanisms involved in the attenuation of macrophage foam cell formation, 

the inflammatory response, atherosclerosis and metabolic dysregulation by activation of 

PPARδ. We first examine the ability of synthetic PPARδ ligands (GW0742 and 

GW501516) to specifically activate PPARδ and attenuate VLDL-induced macrophage 

foam cell formation. We investigated both the lipid lowering and anti-inflammatory 

capabilities of PPARδ-specific activation in this setting, and determined the mechanism 

by which the GW compounds lower macrophage TG accumulation and prevent VLDL-

induced proinflammatory cytokine expression. We next examined the ability of these 

compounds to attenuate CE-rich lipoprotein-induced foam cell formation. To determine if 

our in vitro results translated in vivo, we subsequently determined whether intervention 

to a high-fat high-cholesterol diet with GW501516 was able to either prevent 

progression, or induce regression of pre-established atherosclerotic lesions. Additionally, 

we studied whether GW501516 was capable of correcting pre-established metabolic 

dysregulation, including hepatic steatosis, and sought to define the mechanisms 

involved. Therefore, Chapters 2 to 5 of this thesis address the following hypotheses: 

1. PPARδ-specific activation in macrophages attenuates TG accumulation and 

the inflammatory response, induced by VLDL (Chapter 2). 

2. PPARδ-specific activation in macrophages attenuates CE accumulation and 

the inflammatory response, induced by native and modified forms of LDL 

(Chapter 3). 

3. PPARδ-specific activation in vivo attenuates progression of diet-induced 

atherosclerosis, aortic inflammation and aortic insulin resistance in Ldlr-/- mice 

(Chapter 4). 
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4. Hepatic PPARδ-specific activation attenuates steatosis via increased fatty acid 

oxidation, reduced de novo lipogenesis and improves insulin sensitivity in Ldlr-/- 

mice (Chapter 5). 

 

  



75 
 

 

1.10 REFERENCES 

Accad, M., Smith, S.J., Newland, D.L., Sanan, D.A., King, L.E., Jr., Linton, M.F., Fazio, 
S., and Farese, R.V., Jr. (2000). Massive Xanthomatosis and Altered Composition of 
Atherosclerotic Lesions in Hyperlipidemic Mice Lacking Acyl Coa:Cholesterol 
Acyltransferase 1. J Clin Invest 105, 711-719. 

Alberts, A.W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, 
M., Joshua, H., Harris, E., et al. (1980). Mevinolin: A Highly Potent Competitive Inhibitor 
of Hydroxymethylglutaryl-Coenzyme a Reductase and a Cholesterol-Lowering Agent. 
Proc Natl Acad Sci U S A 77, 3957-3961. 

Allister, E.M., Borradaile, N.M., Edwards, J.Y., and Huff, M.W. (2005). Inhibition of 
Microsomal Triglyceride Transfer Protein Expression and Apolipoprotein B100 Secretion 
by the Citrus Flavonoid Naringenin and by Insulin Involves Activation of the Mitogen-
Activated Protein Kinase Pathway in Hepatocytes. Diabetes 54, 1676-1683. 

An, J., Muoio, D.M., Shiota, M., Fujimoto, Y., Cline, G.W., Shulman, G.I., Koves, T.R., 
Stevens, R., Millington, D., and Newgard, C.B. (2004). Hepatic Expression of Malonyl-
Coa Decarboxylase Reverses Muscle, Liver and Whole-Animal Insulin Resistance. Nat 
Med 10, 268-274. 

Anagnostis, P., Athyros, V.G., Adamidou, F., Panagiotou, A., Kita, M., Karagiannis, A., 
and Mikhailidis, D.P. (2011). Glucagon-Like Peptide-1-Based Therapies and 
Cardiovascular Disease: Looking Beyond Glycaemic Control. Diabetes Obes Metab 13, 
302-312. 

Anderson, E.K., Hill, A.A., and Hasty, A.H. (2012). Stearic Acid Accumulation in 
Macrophages Induces Toll-Like Receptor 4/2-Independent Inflammation Leading to 
Endoplasmic Reticulum Stress-Mediated Apoptosis. Arterioscler Thromb Vasc Biol 32, 
1687-1695. 

Assini, J.M., Mulvihill, E.E., Sutherland, B.G., Telford, D.E., Sawyez, C.G., Felder, S.L., 
Chhoker, S., Edwards, J.Y., Gros, R., and Huff, M.W. (2013). Naringenin Prevents 
Cholesterol-Induced Systemic Inflammation, Metabolic Dysregulation, and 
Atherosclerosis in Ldlr(-)/(-) Mice. J Lipid Res 54, 711-724. 

Auwerx, J. (1991). The Human Leukemia Cell Line, Thp-1: A Multifacetted Model for the 
Study of Monocyte-Macrophage Differentiation. Experientia 47, 22-31. 

Banka, C.L., Black, A.S., Dyer, C.A., and Curtiss, L.K. (1991). Thp-1 Cells Form Foam 
Cells in Response to Coculture with Lipoproteins but Not Platelets. J Lipid Res 32, 35-
43. 

Barak, Y., Nelson, M.C., Ong, E.S., Jones, Y.Z., Ruiz-Lozano, P., Chien, K.R., Koder, 
A., and Evans, R.M. (1999). Ppar Gamma Is Required for Placental, Cardiac, and 
Adipose Tissue Development. Mol Cell 4, 585-595. 



76 
 

 

Barish, G.D., Atkins, A.R., Downes, M., Olson, P., Chong, L.W., Nelson, M., Zou, Y., 
Hwang, H., Kang, H., Curtiss, L., et al. (2008). Ppardelta Regulates Multiple 
Proinflammatory Pathways to Suppress Atherosclerosis. Proc Natl Acad Sci U S A 105, 
4271-4276. 

Barrows, B.R., and Parks, E.J. (2006). Contributions of Different Fatty Acid Sources to 
Very Low-Density Lipoprotein-Triacylglycerol in the Fasted and Fed States. J Clin 
Endocrinol Metab 91, 1446-1452. 

Barter, P.J., and Rye, K.A. (2012). Cholesteryl Ester Transfer Protein Inhibition as a 
Strategy to Reduce Cardiovascular Risk. J Lipid Res 53, 1755-1766. 

Bates, S.R., Murphy, P.L., Feng, Z.C., Kanazawa, T., and Getz, G.S. (1984). Very Low 
Density Lipoproteins Promote Triglyceride Accumulation in Macrophages. 
Arteriosclerosis 4, 103-114. 

Bays, H.E., Schwartz, S., Littlejohn, T., 3rd, Kerzner, B., Krauss, R.M., Karpf, D.B., Choi, 
Y.J., Wang, X., Naim, S., and Roberts, B.K. (2011). Mbx-8025, a Novel Peroxisome 
Proliferator Receptor-Delta Agonist: Lipid and Other Metabolic Effects in Dyslipidemic 
Overweight Patients Treated with and without Atorvastatin. J Clin Endocrinol Metab 96, 
2889-2897. 

Becker, L., Liu, N.C., Averill, M.M., Yuan, W., Pamir, N., Peng, Y., Irwin, A.D., Fu, X., 
Bornfeldt, K.E., and Heinecke, J.W. (2012). Unique Proteomic Signatures Distinguish 
Macrophages and Dendritic Cells. PLoS One 7, e33297. 

Biddinger, S.B., Hernandez-Ono, A., Rask-Madsen, C., Haas, J.T., Aleman, J.O., 
Suzuki, R., Scapa, E.F., Agarwal, C., Carey, M.C., Stephanopoulos, G., et al. (2008). 
Hepatic Insulin Resistance Is Sufficient to Produce Dyslipidemia and Susceptibility to 
Atherosclerosis. Cell Metab 7, 125-134. 

Blasiole, D.A., Davis, R.A., and Attie, A.D. (2007). The Physiological and Molecular 
Regulation of Lipoprotein Assembly and Secretion. Mol Biosyst 3, 608-619. 

Bojic, L.A., Sawyez, C.G., Telford, D.E., Edwards, J.Y., Hegele, R.A., and Huff, M.W. 
(2012). Activation of Peroxisome Proliferator-Activated Receptor Delta Inhibits Human 
Macrophage Foam Cell Formation and the Inflammatory Response Induced by Very 
Low-Density Lipoprotein. Arterioscler Thromb Vasc Biol. 

Bonnefont, J.P., Djouadi, F., Prip-Buus, C., Gobin, S., Munnich, A., and Bastin, J. 
(2004). Carnitine Palmitoyltransferases 1 and 2: Biochemical, Molecular and Medical 
Aspects. Mol Aspects Med 25, 495-520. 

Brown, M.S., and Goldstein, J.L. (2008). Selective Versus Total Insulin Resistance: A 
Pathogenic Paradox. Cell Metab 7, 95-96. 



77 
 

 

Brown, M.S., Ho, Y.K., and Goldstein, J.L. (1980). The Cholesteryl Ester Cycle in 
Macrophage Foam Cells. Continual Hydrolysis and Re-Esterification of Cytoplasmic 
Cholesteryl Esters. J Biol Chem 255, 9344-9352. 

Buhman, K.K., Accad, M., Novak, S., Choi, R.S., Wong, J.S., Hamilton, R.L., Turley, S., 
and Farese, R.V., Jr. (2000). Resistance to Diet-Induced Hypercholesterolemia and 
Gallstone Formation in Acat2-Deficient Mice. Nat Med 6, 1341-1347. 

Cannon, C.P., Braunwald, E., McCabe, C.H., Rader, D.J., Rouleau, J.L., Belder, R., 
Joyal, S.V., Hill, K.A., Pfeffer, M.A., and Skene, A.M. (2004). Intensive Versus Moderate 
Lipid Lowering with Statins after Acute Coronary Syndromes. N Engl J Med 350, 1495-
1504. 

Chakravarthy, M.V., Pan, Z., Zhu, Y., Tordjman, K., Schneider, J.G., Coleman, T., Turk, 
J., and Semenkovich, C.F. (2005). "New" Hepatic Fat Activates Pparalpha to Maintain 
Glucose, Lipid, and Cholesterol Homeostasis. Cell Metab 1, 309-322. 

Chatalow, N.A.a.S. (1983). Classics in Arteriosclerosis Research: On Experimental 
Cholesterin Steatosis and Its Significance in the Origin of Some Pathological Processes 
by N. Anitschkow and S. Chalatow, Translated by Mary Z. Pelias, 1913. Arteriosclerosis 
3, 178-182. 

Chawla, A., Lee, C.H., Barak, Y., He, W., Rosenfeld, J., Liao, D., Han, J., Kang, H., and 
Evans, R.M. (2003). Ppardelta Is a Very Low-Density Lipoprotein Sensor in 
Macrophages. Proc Natl Acad Sci U S A 100, 1268-1273. 

Chawla, A., Schwarz, E.J., Dimaculangan, D.D., and Lazar, M.A. (1994). Peroxisome 
Proliferator-Activated Receptor (Ppar) Gamma: Adipose-Predominant Expression and 
Induction Early in Adipocyte Differentiation. Endocrinology 135, 798-800. 

Chen, H.C., Stone, S.J., Zhou, P., Buhman, K.K., and Farese, R.V., Jr. (2002). 
Dissociation of Obesity and Impaired Glucose Disposal in Mice Overexpressing Acyl 
Coenzyme A:Diacylglycerol Acyltransferase 1 in White Adipose Tissue. Diabetes 51, 
3189-3195. 

Chen, S.H., Habib, G., Yang, C.Y., Gu, Z.W., Lee, B.R., Weng, S.A., Silberman, S.R., 
Cai, S.J., Deslypere, J.P., Rosseneu, M., et al. (1987). Apolipoprotein B-48 Is the 
Product of a Messenger Rna with an Organ-Specific in-Frame Stop Codon. Science 238, 
363-366. 

Choi, J.H., Banks, A.S., Estall, J.L., Kajimura, S., Bostrom, P., Laznik, D., Ruas, J.L., 
Chalmers, M.J., Kamenecka, T.M., Bluher, M., et al. (2010). Anti-Diabetic Drugs Inhibit 
Obesity-Linked Phosphorylation of Ppargamma by Cdk5. Nature 466, 451-456. 

Choi, J.H., Banks, A.S., Kamenecka, T.M., Busby, S.A., Chalmers, M.J., Kumar, N., 
Kuruvilla, D.S., Shin, Y., He, Y., Bruning, J.B., et al. (2011). Antidiabetic Actions of a 



78 
 

 

Non-Agonist Ppargamma Ligand Blocking Cdk5-Mediated Phosphorylation. Nature 477, 
477-481. 

Choi, Y.J., Roberts, B.K., Wang, X., Geaney, J.C., Naim, S., Wojnoonski, K., Karpf, D.B., 
and Krauss, R.M. (2012). Effects of the Ppar-Delta Agonist Mbx-8025 on Atherogenic 
Dyslipidemia. Atherosclerosis 220, 470-476. 

Crooke, R.M., Graham, M.J., Lemonidis, K.M., Whipple, C.P., Koo, S., and Perera, R.J. 
(2005). An Apolipoprotein B Antisense Oligonucleotide Lowers Ldl Cholesterol in 
Hyperlipidemic Mice without Causing Hepatic Steatosis. J Lipid Res 46, 872-884. 

Curtiss, L.K., Black, A.S., Bonnet, D.J., and Tobias, P.S. (2012). Atherosclerosis 
Induced by Endogenous and Exogenous Toll-Like Receptor (Tlr)1 or Tlr6 Agonists. J 
Lipid Res 53, 2126-2132. 

Cybulsky, M.I., and Jongstra-Bilen, J. (2010). Resident Intimal Dendritic Cells and the 
Initiation of Atherosclerosis. Curr Opin Lipidol 21, 397-403. 

DeFronzo, R.A., Okerson, T., Viswanathan, P., Guan, X., Holcombe, J.H., and 
MacConell, L. (2008). Effects of Exenatide Versus Sitagliptin on Postprandial Glucose, 
Insulin and Glucagon Secretion, Gastric Emptying, and Caloric Intake: A Randomized, 
Cross-over Study. Curr Med Res Opin 24, 2943-2952. 

Dzamko, N., van Denderen, B.J., Hevener, A.L., Jorgensen, S.B., Honeyman, J., Galic, 
S., Chen, Z.P., Watt, M.J., Campbell, D.J., Steinberg, G.R., et al. (2010). Ampk Beta1 
Deletion Reduces Appetite, Preventing Obesity and Hepatic Insulin Resistance. J Biol 
Chem 285, 115-122. 

Eckel, R.H., Alberti, K.G., Grundy, S.M., and Zimmet, P.Z. (2010). The Metabolic 
Syndrome. Lancet 375, 181-183. 

Eferl, R., and Wagner, E.F. (2003). Ap-1: A Double-Edged Sword in Tumorigenesis. Nat 
Rev Cancer 3, 859-868. 

Endo, A., Kuroda, M., and Tsujita, Y. (1976). Ml-236a, Ml-236b, and Ml-236c, New 
Inhibitors of Cholesterogenesis Produced by Penicillium Citrinium. J Antibiot (Tokyo) 29, 
1346-1348. 

Engelking, L.J., Kuriyama, H., Hammer, R.E., Horton, J.D., Brown, M.S., Goldstein, J.L., 
and Liang, G. (2004). Overexpression of Insig-1 in the Livers of Transgenic Mice Inhibits 
Srebp Processing and Reduces Insulin-Stimulated Lipogenesis. J Clin Invest 113, 1168-
1175. 

Engelking, L.J., Liang, G., Hammer, R.E., Takaishi, K., Kuriyama, H., Evers, B.M., Li, 
W.P., Horton, J.D., Goldstein, J.L., and Brown, M.S. (2005). Schoenheimer Effect 



79 
 

 

Explained--Feedback Regulation of Cholesterol Synthesis in Mice Mediated by Insig 
Proteins. J Clin Invest 115, 2489-2498. 

Erridge, C., and Samani, N.J. (2009). Saturated Fatty Acids Do Not Directly Stimulate 
Toll-Like Receptor Signaling. Arterioscler Thromb Vasc Biol 29, 1944-1949. 

Erwig, L.P., and Henson, P.M. (2008). Clearance of Apoptotic Cells by Phagocytes. Cell 
Death Differ 15, 243-250. 

Fazio, S., Major, A.S., Swift, L.L., Gleaves, L.A., Accad, M., Linton, M.F., and Farese, 
R.V., Jr. (2001). Increased Atherosclerosis in Ldl Receptor-Null Mice Lacking Acat1 in 
Macrophages. J Clin Invest 107, 163-171. 

Febbraio, M., Podrez, E.A., Smith, J.D., Hajjar, D.P., Hazen, S.L., Hoff, H.F., Sharma, 
K., and Silverstein, R.L. (2000). Targeted Disruption of the Class B Scavenger Receptor 
Cd36 Protects against Atherosclerotic Lesion Development in Mice. J Clin Invest 105, 
1049-1056. 

Fernandez-Hernando, C., Ackah, E., Yu, J., Suarez, Y., Murata, T., Iwakiri, Y., 
Prendergast, J., Miao, R.Q., Birnbaum, M.J., and Sessa, W.C. (2007). Loss of Akt1 
Leads to Severe Atherosclerosis and Occlusive Coronary Artery Disease. Cell Metab 6, 
446-457. 

Fisher, E.A., Feig, J.E., Hewing, B., Hazen, S.L., and Smith, J.D. (2012). High-Density 
Lipoprotein Function, Dysfunction, and Reverse Cholesterol Transport. Arterioscler 
Thromb Vasc Biol 32, 2813-2820. 

Fournier, T., Tsatsaris, V., Handschuh, K., and Evain-Brion, D. (2007). Ppars and the 
Placenta. Placenta 28, 65-76. 

Fox, C.S., Coady, S., Sorlie, P.D., D'Agostino, R.B., Sr., Pencina, M.J., Vasan, R.S., 
Meigs, J.B., Levy, D., and Savage, P.J. (2007). Increasing Cardiovascular Disease 
Burden Due to Diabetes Mellitus: The Framingham Heart Study. Circulation 115, 1544-
1550. 

Fox, C.S., Coady, S., Sorlie, P.D., Levy, D., Meigs, J.B., D'Agostino, R.B., Sr., Wilson, 
P.W., and Savage, P.J. (2004). Trends in Cardiovascular Complications of Diabetes. 
Jama 292, 2495-2499. 

Fu, S., Watkins, S.M., and Hotamisligil, G.S. (2012). The Role of Endoplasmic Reticulum 
in Hepatic Lipid Homeostasis and Stress Signaling. Cell Metab 15, 623-634. 

Gerstein, H.C., Bosch, J., Dagenais, G.R., Diaz, R., Jung, H., Maggioni, A.P., Pogue, J., 
Probstfield, J., Ramachandran, A., Riddle, M.C., et al. (2012). Basal Insulin and 
Cardiovascular and Other Outcomes in Dysglycemia. N Engl J Med 367, 319-328. 



80 
 

 

Gerstein, H.C., Miller, M.E., Genuth, S., Ismail-Beigi, F., Buse, J.B., Goff, D.C., Jr., 
Probstfield, J.L., Cushman, W.C., Ginsberg, H.N., Bigger, J.T., et al. (2011). Long-Term 
Effects of Intensive Glucose Lowering on Cardiovascular Outcomes. N Engl J Med 364, 
818-828. 

Getz, G.S., and Reardon, C.A. (2006). Diet and Murine Atherosclerosis. Arterioscler 
Thromb Vasc Biol 26, 242-249. 

Ginsberg, H.N. (2000). Insulin Resistance and Cardiovascular Disease. J Clin Invest 
106, 453-458. 

Ginsberg, H.N., Elam, M.B., Lovato, L.C., Crouse, J.R., 3rd, Leiter, L.A., Linz, P., 
Friedewald, W.T., Buse, J.B., Gerstein, H.C., Probstfield, J., et al. (2010). Effects of 
Combination Lipid Therapy in Type 2 Diabetes Mellitus. N Engl J Med 362, 1563-1574. 

Glass, C.K., and Witztum, J.L. (2001). Atherosclerosis. The Road Ahead. Cell 104, 503-
516. 

Goldberg, I.J., Eckel, R.H., and McPherson, R. (2011). Triglycerides and Heart Disease: 
Still a Hypothesis? Arterioscler Thromb Vasc Biol 31, 1716-1725. 

Goldstein, J.L., and Brown, M.S. (2009). The Ldl Receptor. Arterioscler Thromb Vasc 
Biol 29, 431-438. 

Goldstein, J.L., DeBose-Boyd, R.A., and Brown, M.S. (2006). Protein Sensors for 
Membrane Sterols. Cell 124, 35-46. 

Graham, T.L., Mookherjee, C., Suckling, K.E., Palmer, C.N., and Patel, L. (2005). The 
Ppardelta Agonist Gw0742x Reduces Atherosclerosis in Ldlr(-/-) Mice. Atherosclerosis 
181, 29-37. 

Gregor, M.F., and Hotamisligil, G.S. (2011). Inflammatory Mechanisms in Obesity. Annu 
Rev Immunol 29, 415-445. 

Group, U. (1998). Intensive Blood-Glucose Control with Sulphonylureas or Insulin 
Compared with Conventional Treatment and Risk of Complications in Patients with Type 
2 Diabetes (Ukpds 33). Uk Prospective Diabetes Study (Ukpds) Group. Lancet 352, 837-
853. 

Haas, J.T., and Biddinger, S.B. (2009). Dissecting the Role of Insulin Resistance in the 
Metabolic Syndrome. Curr Opin Lipidol 20, 206-210. 

Haas, J.T., Miao, J., Chanda, D., Wang, Y., Zhao, E., Haas, M.E., Hirschey, M., 
Vaitheesvaran, B., Farese, R.V., Jr., Kurland, I.J., et al. (2012). Hepatic Insulin Signaling 
Is Required for Obesity-Dependent Expression of Srebp-1c Mrna but Not for Feeding-
Dependent Expression. Cell Metab 15, 873-884. 



81 
 

 

Han, S., Liang, C.P., DeVries-Seimon, T., Ranalletta, M., Welch, C.L., Collins-Fletcher, 
K., Accili, D., Tabas, I., and Tall, A.R. (2006). Macrophage Insulin Receptor Deficiency 
Increases Er Stress-Induced Apoptosis and Necrotic Core Formation in Advanced 
Atherosclerotic Lesions. Cell Metab 3, 257-266. 

Harmon, G.S., Lam, M.T., and Glass, C.K. (2011). Ppars and Lipid Ligands in 
Inflammation and Metabolism. Chem Rev 111, 6321-6340. 

Hegele, R.A. (2009). Plasma Lipoproteins: Genetic Influences and Clinical Implications. 
Nat Rev Genet 10, 109-121. 

Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002). Srebps: Activators of the 
Complete Program of Cholesterol and Fatty Acid Synthesis in the Liver. J Clin Invest 
109, 1125-1131. 

Hu, L., van der Hoogt, C.C., Espirito Santo, S.M., Out, R., Kypreos, K.E., van Vlijmen, 
B.J., Van Berkel, T.J., Romijn, J.A., Havekes, L.M., van Dijk, K.W., et al. (2008). The 
Hepatic Uptake of Vldl in Lrp-Ldlr-/-Vldlr-/- Mice Is Regulated by Lpl Activity and Involves 
Proteoglycans and Sr-Bi. J Lipid Res 49, 1553-1561. 

Huff, M.W., Evans, A.J., Sawyez, C.G., Wolfe, B.M., and Nestel, P.J. (1991). Cholesterol 
Accumulation in J774 Macrophages Induced by Triglyceride-Rich Lipoproteins. 
Comparison of Very Low Density Lipoprotein from Subjects with Type Iii, Iv, and V 
Hyperlipoproteinemias. Arterioscler Thromb 11, 221-233. 

Huff, M.W., Pollex, R.L., and Hegele, R.A. (2006). Npc1l1: Evolution from 
Pharmacological Target to Physiological Sterol Transporter. Arterioscler Thromb Vasc 
Biol 26, 2433-2438. 

Hummasti, S., and Hotamisligil, G.S. (2010). Endoplasmic Reticulum Stress and 
Inflammation in Obesity and Diabetes. Circ Res 107, 579-591. 

Ikonen, E. (2008). Cellular Cholesterol Trafficking and Compartmentalization. Nat Rev 
Mol Cell Biol 9, 125-138. 

Ishibashi, S., Brown, M.S., Goldstein, J.L., Gerard, R.D., Hammer, R.E., and Herz, J. 
(1993). Hypercholesterolemia in Low Density Lipoprotein Receptor Knockout Mice and 
Its Reversal by Adenovirus-Mediated Gene Delivery. J Clin Invest 92, 883-893. 

Janabi, M., Yamashita, S., Hirano, K., Sakai, N., Hiraoka, H., Matsumoto, K., Zhang, Z., 
Nozaki, S., and Matsuzawa, Y. (2000). Oxidized Ldl-Induced Nf-Kappa B Activation and 
Subsequent Expression of Proinflammatory Genes Are Defective in Monocyte-Derived 
Macrophages from Cd36-Deficient Patients. Arterioscler Thromb Vasc Biol 20, 1953-
1960. 



82 
 

 

Johnson, A.C., Yabu, J.M., Hanson, S., Shah, V.O., and Zager, R.A. (2003). 
Experimental Glomerulopathy Alters Renal Cortical Cholesterol, Sr-B1, Abca1, and Hmg 
Coa Reductase Expression. Am J Pathol 162, 283-291. 

Kamagate, A., Qu, S., Perdomo, G., Su, D., Kim, D.H., Slusher, S., Meseck, M., and 
Dong, H.H. (2008). Foxo1 Mediates Insulin-Dependent Regulation of Hepatic Vldl 
Production in Mice. J Clin Invest 118, 2347-2364. 

Kannan, Y., Sundaram, K., Aluganti Narasimhulu, C., Parthasarathy, S., and Wewers, 
M.D. (2012). Oxidatively Modified Low Density Lipoprotein (Ldl) Inhibits Tlr2 and Tlr4 
Cytokine Responses in Human Monocytes but Not in Macrophages. J Biol Chem 287, 
23479-23488. 

Karpe, F. (2002). Postprandial Lipemia--Effect of Lipid-Lowering Drugs. Atheroscler 
Suppl 3, 41-46. 

Kido, Y., Nakae, J., and Accili, D. (2001). Clinical Review 125: The Insulin Receptor and 
Its Cellular Targets. J Clin Endocrinol Metab 86, 972-979. 

Kliewer, S.A., Forman, B.M., Blumberg, B., Ong, E.S., Borgmeyer, U., Mangelsdorf, D.J., 
Umesono, K., and Evans, R.M. (1994). Differential Expression and Activation of a Family 
of Murine Peroxisome Proliferator-Activated Receptors. Proc Natl Acad Sci U S A 91, 
7355-7359. 

Koliwad, S.K., Streeper, R.S., Monetti, M., Cornelissen, I., Chan, L., Terayama, K., 
Naylor, S., Rao, M., Hubbard, B., and Farese, R.V., Jr. (2010). Dgat1-Dependent 
Triacylglycerol Storage by Macrophages Protects Mice from Diet-Induced Insulin 
Resistance and Inflammation. J Clin Invest 120, 756-767. 

Lauber, K., Blumenthal, S.G., Waibel, M., and Wesselborg, S. (2004). Clearance of 
Apoptotic Cells: Getting Rid of the Corpses. Mol Cell 14, 277-287. 

Lee, C.H., Chawla, A., Urbiztondo, N., Liao, D., Boisvert, W.A., Evans, R.M., and 
Curtiss, L.K. (2003). Transcriptional Repression of Atherogenic Inflammation: Modulation 
by Ppardelta. Science 302, 453-457. 

Lee, C.H., Kang, K., Mehl, I.R., Nofsinger, R., Alaynick, W.A., Chong, L.W., Rosenfeld, 
J.M., and Evans, R.M. (2006a). Peroxisome Proliferator-Activated Receptor Delta 
Promotes Very Low-Density Lipoprotein-Derived Fatty Acid Catabolism in the 
Macrophage. Proc Natl Acad Sci U S A 103, 2434-2439. 

Lee, C.H., Olson, P., Hevener, A., Mehl, I., Chong, L.W., Olefsky, J.M., Gonzalez, F.J., 
Ham, J., Kang, H., Peters, J.M., et al. (2006b). Ppardelta Regulates Glucose Metabolism 
and Insulin Sensitivity. Proc Natl Acad Sci U S A 103, 3444-3449. 



83 
 

 

Lee, D.S., Chiu, M., Manuel, D.G., Tu, K., Wang, X., Austin, P.C., Mattern, M.Y., Mitiku, 
T.F., Svenson, L.W., Putnam, W., et al. (2009). Trends in Risk Factors for 
Cardiovascular Disease in Canada: Temporal, Socio-Demographic and Geographic 
Factors. CMAJ 181, E55-66. 

Lee, J.Y., Zhao, L., Youn, H.S., Weatherill, A.R., Tapping, R., Feng, L., Lee, W.H., 
Fitzgerald, K.A., and Hwang, D.H. (2004a). Saturated Fatty Acid Activates but 
Polyunsaturated Fatty Acid Inhibits Toll-Like Receptor 2 Dimerized with Toll-Like 
Receptor 6 or 1. J Biol Chem 279, 16971-16979. 

Lee, R.G., Kelley, K.L., Sawyer, J.K., Farese, R.V., Jr., Parks, J.S., and Rudel, L.L. 
(2004b). Plasma Cholesteryl Esters Provided by Lecithin:Cholesterol Acyltransferase 
and Acyl-Coenzyme A:Cholesterol Acyltransferase 2 Have Opposite Atherosclerotic 
Potential. Circ Res 95, 998-1004. 

Li, A.C., Binder, C.J., Gutierrez, A., Brown, K.K., Plotkin, C.R., Pattison, J.W., Valledor, 
A.F., Davis, R.A., Willson, T.M., Witztum, J.L., et al. (2004). Differential Inhibition of 
Macrophage Foam-Cell Formation and Atherosclerosis in Mice by Pparalpha, 
Beta/Delta, and Gamma. J Clin Invest 114, 1564-1576. 

Li, S., Brown, M.S., and Goldstein, J.L. (2010). Bifurcation of Insulin Signaling Pathway 
in Rat Liver: Mtorc1 Required for Stimulation of Lipogenesis, but Not Inhibition of 
Gluconeogenesis. Proc Natl Acad Sci U S A 107, 3441-3446. 

Li, Y., Schwabe, R.F., DeVries-Seimon, T., Yao, P.M., Gerbod-Giannone, M.C., Tall, 
A.R., Davis, R.J., Flavell, R., Brenner, D.A., and Tabas, I. (2005). Free Cholesterol-
Loaded Macrophages Are an Abundant Source of Tumor Necrosis Factor-Alpha and 
Interleukin-6: Model of Nf-Kappab- and Map Kinase-Dependent Inflammation in 
Advanced Atherosclerosis. J Biol Chem 280, 21763-21772. 

Liang, C.P., Han, S., Li, G., Tabas, I., and Tall, A.R. (2012). Impaired Mek Signaling and 
Serca Expression Promote Er Stress and Apoptosis in Insulin-Resistant Macrophages 
and Are Reversed by Exenatide Treatment. Diabetes 61, 2609-2620. 

Libby, P., Ridker, P.M., and Hansson, G.K. (2011). Progress and Challenges in 
Translating the Biology of Atherosclerosis. Nature 473, 317-325. 

Lippi, G., and Favaloro, E.J. (2011). Antisense Therapy in the Treatment of 
Hypercholesterolemia. Eur J Intern Med 22, 541-546. 

Liu, Q., Siloto, R.M., Lehner, R., Stone, S.J., and Weselake, R.J. (2012). Acyl-
Coa:Diacylglycerol Acyltransferase: Molecular Biology, Biochemistry and Biotechnology. 
Prog Lipid Res 51, 350-377. 



84 
 

 

Liu, S., Hatano, B., Zhao, M., Yen, C.C., Kang, K., Reilly, S.M., Gangl, M.R., Gorgun, C., 
Balschi, J.A., Ntambi, J.M., et al. (2011). Role of Peroxisome Proliferator-Activated 
Receptor {Delta}/{Beta} in Hepatic Metabolic Regulation. J Biol Chem 286, 1237-1247. 

Lloyd-Jones, D., Adams, R.J., Brown, T.M., Carnethon, M., Dai, S., De Simone, G., 
Ferguson, T.B., Ford, E., Furie, K., Gillespie, C., et al. (2010). Executive Summary: 
Heart Disease and Stroke Statistics--2010 Update: A Report from the American Heart 
Association. Circulation 121, 948-954. 

Lusis, A.J. (2000). Atherosclerosis. Nature 407, 233-241. 

Mandard, S., Muller, M., and Kersten, S. (2004). Peroxisome Proliferator-Activated 
Receptor Alpha Target Genes. Cell Mol Life Sci 61, 393-416. 

Manning-Tobin, J.J., Moore, K.J., Seimon, T.A., Bell, S.A., Sharuk, M., Alvarez-Leite, 
J.I., de Winther, M.P., Tabas, I., and Freeman, M.W. (2009). Loss of Sr-a and Cd36 
Activity Reduces Atherosclerotic Lesion Complexity without Abrogating Foam Cell 
Formation in Hyperlipidemic Mice. Arterioscler Thromb Vasc Biol 29, 19-26. 

Martinet, W., Schrijvers, D.M., and De Meyer, G.R. (2012). Molecular and Cellular 
Mechanisms of Macrophage Survival in Atherosclerosis. Basic Res Cardiol 107, 297. 

Matsumoto, M., Han, S., Kitamura, T., and Accili, D. (2006). Dual Role of Transcription 
Factor Foxo1 in Controlling Hepatic Insulin Sensitivity and Lipid Metabolism. J Clin 
Invest 116, 2464-2472. 

Maxfield, F.R., and Tabas, I. (2005). Role of Cholesterol and Lipid Organization in 
Disease. Nature 438, 612-621. 

Mazzone, T., Chait, A., and Plutzky, J. (2008). Cardiovascular Disease Risk in Type 2 
Diabetes Mellitus: Insights from Mechanistic Studies. Lancet 371, 1800-1809. 

Meiner, V.L., Cases, S., Myers, H.M., Sande, E.R., Bellosta, S., Schambelan, M., Pitas, 
R.E., McGuire, J., Herz, J., and Farese, R.V., Jr. (1996). Disruption of the Acyl-
Coa:Cholesterol Acyltransferase Gene in Mice: Evidence Suggesting Multiple 
Cholesterol Esterification Enzymes in Mammals. Proc Natl Acad Sci U S A 93, 14041-
14046. 

Mills, E.J., Rachlis, B., Wu, P., Devereaux, P.J., Arora, P., and Perri, D. (2008). Primary 
Prevention of Cardiovascular Mortality and Events with Statin Treatments: A Network 
Meta-Analysis Involving More Than 65,000 Patients. J Am Coll Cardiol 52, 1769-1781. 

Miyazaki, A., Sakuma, S., Morikawa, W., Takiue, T., Miake, F., Terano, T., Sakai, M., 
Hakamata, H., Sakamoto, Y., Natio, M., et al. (1995). Intravenous Injection of Rabbit 
Apolipoprotein a-I Inhibits the Progression of Atherosclerosis in Cholesterol-Fed Rabbits. 
Arterioscler Thromb Vasc Biol 15, 1882-1888. 



85 
 

 

Monetti, M., Levin, M.C., Watt, M.J., Sajan, M.P., Marmor, S., Hubbard, B.K., Stevens, 
R.D., Bain, J.R., Newgard, C.B., Farese, R.V., Sr., et al. (2007). Dissociation of Hepatic 
Steatosis and Insulin Resistance in Mice Overexpressing Dgat in the Liver. Cell Metab 6, 
69-78. 

Moon, Y.A., Liang, G., Xie, X., Frank-Kamenetsky, M., Fitzgerald, K., Koteliansky, V., 
Brown, M.S., Goldstein, J.L., and Horton, J.D. (2012). The Scap/Srebp Pathway Is 
Essential for Developing Diabetic Fatty Liver and Carbohydrate-Induced 
Hypertriglyceridemia in Animals. Cell Metab 15, 240-246. 

Moore, K.J., and Freeman, M.W. (2006). Scavenger Receptors in Atherosclerosis: 
Beyond Lipid Uptake. Arterioscler Thromb Vasc Biol 26, 1702-1711. 

Moore, K.J., and Tabas, I. (2011). Macrophages in the Pathogenesis of Atherosclerosis. 
Cell 145, 341-355. 

Mukundan, L., Odegaard, J.I., Morel, C.R., Heredia, J.E., Mwangi, J.W., Ricardo-
Gonzalez, R.R., Goh, Y.P., Eagle, A.R., Dunn, S.E., Awakuni, J.U., et al. (2009). Ppar-
Delta Senses and Orchestrates Clearance of Apoptotic Cells to Promote Tolerance. Nat 
Med 15, 1266-1272. 

Mullick, A.E., Fu, W., Graham, M.J., Lee, R.G., Witchell, D., Bell, T.A., Whipple, C.P., 
and Crooke, R.M. (2011). Antisense Oligonucleotide Reduction of Apob-Ameliorated 
Atherosclerosis in Ldl Receptor-Deficient Mice. J Lipid Res 52, 885-896. 

Mullick, A.E., Tobias, P.S., and Curtiss, L.K. (2005). Modulation of Atherosclerosis in 
Mice by Toll-Like Receptor 2. J Clin Invest 115, 3149-3156. 

Musunuru, K. (2010). Atherogenic Dyslipidemia: Cardiovascular Risk and Dietary 
Intervention. Lipids 45, 907-914. 

Neaton, J.D., and Wentworth, D. (1992). Serum Cholesterol, Blood Pressure, Cigarette 
Smoking, and Death from Coronary Heart Disease. Overall Findings and Differences by 
Age for 316,099 White Men. Multiple Risk Factor Intervention Trial Research Group. 
Arch Intern Med 152, 56-64. 

Nicholls, S.J., Gordon, A., Johannson, J., Ballantyne, C.M., Barter, P.J., Brewer, H.B., 
Kastelein, J.J., Wong, N.C., Borgman, M.R., and Nissen, S.E. (2012). Apoa-I Induction 
as a Potential Cardioprotective Strategy: Rationale for the Sustain and Assure Studies. 
Cardiovasc Drugs Ther 26, 181-187. 

Nyomba, B.L., Ossowski, V.M., Bogardus, C., and Mott, D.M. (1990). Insulin-Sensitive 
Tyrosine Kinase: Relationship with in Vivo Insulin Action in Humans. Am J Physiol 258, 
E964-974. 



86 
 

 

Nyomba, B.L., Swinburn, B.A., Ossowski, V.M., Boyce, V.L., Bogardus, C., and Mott, 
D.M. (1991). Insulin-Sensitive Tyrosine Kinase Activity Changes in Parallel with Plasma 
Insulin and Glucose Concentrations in Humans. J Clin Endocrinol Metab 72, 1212-1219. 

O'Neill, H.M., Holloway, G.P., and Steinberg, G.R. (2013). Ampk Regulation of Fatty 
Acid Metabolism and Mitochondrial Biogenesis: Implications for Obesity. Mol Cell 
Endocrinol 366, 135-151. 

Oakhill, J.S., Steel, R., Chen, Z.P., Scott, J.W., Ling, N., Tam, S., and Kemp, B.E. 
(2011). Ampk Is a Direct Adenylate Charge-Regulated Protein Kinase. Science 332, 
1433-1435. 

Odegaard, J.I., Ricardo-Gonzalez, R.R., Red Eagle, A., Vats, D., Morel, C.R., Goforth, 
M.H., Subramanian, V., Mukundan, L., Ferrante, A.W., and Chawla, A. (2008). 
Alternative M2 Activation of Kupffer Cells by Ppardelta Ameliorates Obesity-Induced 
Insulin Resistance. Cell Metab 7, 496-507. 

Olson, E.J., Pearce, G.L., Jones, N.P., and Sprecher, D.L. (2012). Lipid Effects of 
Peroxisome Proliferator-Activated Receptor-Delta Agonist Gw501516 in Subjects with 
Low High-Density Lipoprotein Cholesterol: Characteristics of Metabolic Syndrome. 
Arterioscler Thromb Vasc Biol 32, 2289-2294. 

Ooi, E.M., Watts, G.F., Sprecher, D.L., Chan, D.C., and Barrett, P.H. (2011). Mechanism 
of Action of a Peroxisome Proliferator-Activated Receptor (Ppar)-Delta Agonist on 
Lipoprotein Metabolism in Dyslipidemic Subjects with Central Obesity. J Clin Endocrinol 
Metab 96, E1568-1576. 

Ozcan, L., Wong, C.C., Li, G., Xu, T., Pajvani, U., Park, S.K., Wronska, A., Chen, B.X., 
Marks, A.R., Fukamizu, A., et al. (2012). Calcium Signaling through Camkii Regulates 
Hepatic Glucose Production in Fasting and Obesity. Cell Metab 15, 739-751. 

Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., 
Gorgun, C., Glimcher, L.H., and Hotamisligil, G.S. (2004). Endoplasmic Reticulum 
Stress Links Obesity, Insulin Action, and Type 2 Diabetes. Science 306, 457-461. 

Pinkosky, S.L., Filippov, S., Srivastava, R.A., Hanselman, J.C., Bradshaw, C.D., Hurley, 
T.R., Cramer, C.T., Spahr, M.A., Brant, A.F., Houghton, J.L., et al. (2013). Amp-
Activated Protein Kinase and Atp-Citrate Lyase Are Two Distinct Molecular Targets for 
Etc-1002, a Novel Small Molecule Regulator of Lipid and Carbohydrate Metabolism. J 
Lipid Res 54, 134-151. 

Proctor, S.D., and Mamo, J.C. (1998). Retention of Fluorescent-Labelled Chylomicron 
Remnants within the Intima of the Arterial Wall--Evidence That Plaque Cholesterol May 
Be Derived from Post-Prandial Lipoproteins. Eur J Clin Invest 28, 497-503. 



87 
 

 

Prudente, S., Morini, E., and Trischitta, V. (2009). Insulin Signaling Regulating Genes: 
Effect on T2dm and Cardiovascular Risk. Nat Rev Endocrinol 5, 682-693. 

Qin, X., Xie, X., Fan, Y., Tian, J., Guan, Y., Wang, X., Zhu, Y., and Wang, N. (2008). 
Peroxisome Proliferator-Activated Receptor-Delta Induces Insulin-Induced Gene-1 and 
Suppresses Hepatic Lipogenesis in Obese Diabetic Mice. Hepatology 48, 432-441. 

Qin, Z. (2012). The Use of Thp-1 Cells as a Model for Mimicking the Function and 
Regulation of Monocytes and Macrophages in the Vasculature. Atherosclerosis 221, 2-
11. 

Qiu, G., Ho, A.C., Yu, W., and Hill, J.S. (2007). Suppression of Endothelial or Lipoprotein 
Lipase in Thp-1 Macrophages Attenuates Proinflammatory Cytokine Secretion. J Lipid 
Res 48, 385-394. 

Rader, D.J., Alexander, E.T., Weibel, G.L., Billheimer, J., and Rothblat, G.H. (2009). The 
Role of Reverse Cholesterol Transport in Animals and Humans and Relationship to 
Atherosclerosis. J Lipid Res 50 Suppl, S189-194. 

Rader, D.J., and Tall, A.R. (2012). The Not-So-Simple Hdl Story: Is It Time to Revise the 
Hdl Cholesterol Hypothesis? Nat Med 18, 1344-1346. 

Rapp, J.H., Lespine, A., Hamilton, R.L., Colyvas, N., Chaumeton, A.H., Tweedie-
Hardman, J., Kotite, L., Kunitake, S.T., Havel, R.J., and Kane, J.P. (1994). Triglyceride-
Rich Lipoproteins Isolated by Selected-Affinity Anti-Apolipoprotein B Immunosorption 
from Human Atherosclerotic Plaque. Arterioscler Thromb 14, 1767-1774. 

Rasmussen, B.B., Holmback, U.C., Volpi, E., Morio-Liondore, B., Paddon-Jones, D., and 
Wolfe, R.R. (2002). Malonyl Coenzyme a and the Regulation of Functional Carnitine 
Palmitoyltransferase-1 Activity and Fat Oxidation in Human Skeletal Muscle. J Clin 
Invest 110, 1687-1693. 

Repa, J.J., and Mangelsdorf, D.J. (2000). The Role of Orphan Nuclear Receptors in the 
Regulation of Cholesterol Homeostasis. Annu Rev Cell Dev Biol 16, 459-481. 

Reyes-Soffer, G., Ngai, C.I., Lovato, L., Karmally, W., Ramakrishnan, R., Holleran, S., 
and Ginsberg, H.N. (2013). Effect of Combination Therapy with Fenofibrate and 
Simvastatin on Postprandial Lipemia in the Accord Lipid Trial. Diabetes Care 36, 422-
428. 

Riserus, U., Sprecher, D., Johnson, T., Olson, E., Hirschberg, S., Liu, A., Fang, Z., 
Hegde, P., Richards, D., Sarov-Blat, L., et al. (2008). Activation of Peroxisome 
Proliferator-Activated Receptor (Ppar)Delta Promotes Reversal of Multiple Metabolic 
Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in 
Moderately Obese Men. Diabetes 57, 332-339. 



88 
 

 

Rong, J.X., Blachford, C., Feig, J.E., Bander, I., Mayne, J., Kusunoki, J., Miller, C., 
Davis, M., Wilson, M., Dehn, S., et al. (2013). Acat Inhibition Reduces the Progression of 
Preexisting, Advanced Atherosclerotic Mouse Lesions without Plaque or Systemic 
Toxicity. Arterioscler Thromb Vasc Biol 33, 4-12. 

Rosen, E.D., Sarraf, P., Troy, A.E., Bradwin, G., Moore, K., Milstone, D.S., Spiegelman, 
B.M., and Mortensen, R.M. (1999). Ppar Gamma Is Required for the Differentiation of 
Adipose Tissue in Vivo and in Vitro. Mol Cell 4, 611-617. 

Rosenberg, B.R., Hamilton, C.E., Mwangi, M.M., Dewell, S., and Papavasiliou, F.N. 
(2011). Transcriptome-Wide Sequencing Reveals Numerous Apobec1 Mrna-Editing 
Targets in Transcript 3' Utrs. Nat Struct Mol Biol 18, 230-236. 

Sanders, M.J., Grondin, P.O., Hegarty, B.D., Snowden, M.A., and Carling, D. (2007). 
Investigating the Mechanism for Amp Activation of the Amp-Activated Protein Kinase 
Cascade. Biochem J 403, 139-148. 

Saraswathi, V., and Hasty, A.H. (2006). The Role of Lipolysis in Mediating the 
Proinflammatory Effects of Very Low Density Lipoproteins in Mouse Peritoneal 
Macrophages. J Lipid Res 47, 1406-1415. 

Schwartz, G.G., Olsson, A.G., Abt, M., Ballantyne, C.M., Barter, P.J., Brumm, J., 
Chaitman, B.R., Holme, I.M., Kallend, D., Leiter, L.A., et al. (2012). Effects of Dalcetrapib 
in Patients with a Recent Acute Coronary Syndrome. N Engl J Med 367, 2089-2099. 

Seimon, T.A., Wang, Y., Han, S., Senokuchi, T., Schrijvers, D.M., Kuriakose, G., Tall, 
A.R., and Tabas, I.A. (2009). Macrophage Deficiency of P38alpha Mapk Promotes 
Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions in Mice. J Clin 
Invest 119, 886-898. 

Senokuchi, T., Liang, C.P., Seimon, T.A., Han, S., Matsumoto, M., Banks, A.S., Paik, 
J.H., DePinho, R.A., Accili, D., Tabas, I., et al. (2008). Forkhead Transcription Factors 
(Foxos) Promote Apoptosis of Insulin-Resistant Macrophages During Cholesterol-
Induced Endoplasmic Reticulum Stress. Diabetes 57, 2967-2976. 

Serrano-Marco, L., Barroso, E., El Kochairi, I., Palomer, X., Michalik, L., Wahli, W., and 
Vazquez-Carrera, M. (2011). The Peroxisome Proliferator-Activated Receptor (Ppar) 
Beta/Delta Agonist Gw501516 Inhibits Il-6-Induced Signal Transducer and Activator of 
Transcription 3 (Stat3) Activation and Insulin Resistance in Human Liver Cells. 
Diabetologia 55, 743-751. 

Shah, P.K., Yano, J., Reyes, O., Chyu, K.Y., Kaul, S., Bisgaier, C.L., Drake, S., and 
Cercek, B. (2001). High-Dose Recombinant Apolipoprotein a-I(Milano) Mobilizes Tissue 
Cholesterol and Rapidly Reduces Plaque Lipid and Macrophage Content in 
Apolipoprotein E-Deficient Mice. Potential Implications for Acute Plaque Stabilization. 
Circulation 103, 3047-3050. 



89 
 

 

Shao, W., and Espenshade, P.J. (2012). Expanding Roles for Srebp in Metabolism. Cell 
Metab 16, 414-419. 

Shi, H., Kokoeva, M.V., Inouye, K., Tzameli, I., Yin, H., and Flier, J.S. (2006). Tlr4 Links 
Innate Immunity and Fatty Acid-Induced Insulin Resistance. J Clin Invest 116, 3015-
3025. 

Smith, S.J., Cases, S., Jensen, D.R., Chen, H.C., Sande, E., Tow, B., Sanan, D.A., 
Raber, J., Eckel, R.H., and Farese, R.V., Jr. (2000). Obesity Resistance and Multiple 
Mechanisms of Triglyceride Synthesis in Mice Lacking Dgat. Nat Genet 25, 87-90. 

Sorci-Thomas, M.G., and Thomas, M.J. (2012). High Density Lipoprotein Biogenesis, 
Cholesterol Efflux, and Immune Cell Function. Arterioscler Thromb Vasc Biol 32, 2561-
2565. 

Spann, N.J., Garmire, L.X., McDonald, J.G., Myers, D.S., Milne, S.B., Shibata, N., 
Reichart, D., Fox, J.N., Shaked, I., Heudobler, D., et al. (2012). Regulated Accumulation 
of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses. 
Cell 151, 138-152. 

Sprecher, D.L., Massien, C., Pearce, G., Billin, A.N., Perlstein, I., Willson, T.M., Hassall, 
D.G., Ancellin, N., Patterson, S.D., Lobe, D.C., et al. (2007). Triglyceride:High-Density 
Lipoprotein Cholesterol Effects in Healthy Subjects Administered a Peroxisome 
Proliferator Activated Receptor Delta Agonist. Arterioscler Thromb Vasc Biol 27, 359-
365. 

Stary, H.C. (2000). Natural History and Histological Classification of Atherosclerotic 
Lesions: An Update. Arterioscler Thromb Vasc Biol 20, 1177-1178. 

Stary, H.C., Chandler, A.B., Dinsmore, R.E., Fuster, V., Glagov, S., Insull, W., Jr., 
Rosenfeld, M.E., Schwartz, C.J., Wagner, W.D., and Wissler, R.W. (1995). A Definition 
of Advanced Types of Atherosclerotic Lesions and a Histological Classification of 
Atherosclerosis. A Report from the Committee on Vascular Lesions of the Council on 
Arteriosclerosis, American Heart Association. Circulation 92, 1355-1374. 

Stary, H.C., Chandler, A.B., Glagov, S., Guyton, J.R., Insull, W., Jr., Rosenfeld, M.E., 
Schaffer, S.A., Schwartz, C.J., Wagner, W.D., and Wissler, R.W. (1994). A Definition of 
Initial, Fatty Streak, and Intermediate Lesions of Atherosclerosis. A Report from the 
Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart 
Association. Arterioscler Thromb 14, 840-856. 

Stewart, C.R., Stuart, L.M., Wilkinson, K., van Gils, J.M., Deng, J., Halle, A., Rayner, 
K.J., Boyer, L., Zhong, R., Frazier, W.A., et al. (2010). Cd36 Ligands Promote Sterile 
Inflammation through Assembly of a Toll-Like Receptor 4 and 6 Heterodimer. Nat 
Immunol 11, 155-161. 



90 
 

 

Stollenwerk, M.M., Schiopu, A., Fredrikson, G.N., Dichtl, W., Nilsson, J., and Ares, M.P. 
(2005). Very Low Density Lipoprotein Potentiates Tumor Necrosis Factor-Alpha 
Expression in Macrophages. Atherosclerosis 179, 247-254. 

Stone, S.J., Myers, H.M., Watkins, S.M., Brown, B.E., Feingold, K.R., Elias, P.M., and 
Farese, R.V., Jr. (2004). Lipopenia and Skin Barrier Abnormalities in Dgat2-Deficient 
Mice. J Biol Chem 279, 11767-11776. 

Su, D., Coudriet, G.M., Hyun Kim, D., Lu, Y., Perdomo, G., Qu, S., Slusher, S., Tse, 
H.M., Piganelli, J., Giannoukakis, N., et al. (2009). Foxo1 Links Insulin Resistance to 
Proinflammatory Cytokine Il-1beta Production in Macrophages. Diabetes 58, 2624-2633. 

Subramanian, S., Goodspeed, L., Wang, S., Kim, J., Zeng, L., Ioannou, G.N., Haigh, 
W.G., Yeh, M.M., Kowdley, K.V., O'Brien, K.D., et al. (2011). Dietary Cholesterol 
Exacerbates Hepatic Steatosis and Inflammation in Obese Ldl Receptor-Deficient Mice. 
J Lipid Res 52, 1626-1635. 

Subramanian, S., Han, C.Y., Chiba, T., McMillen, T.S., Wang, S.A., Haw, A., 3rd, Kirk, 
E.A., O'Brien, K.D., and Chait, A. (2008). Dietary Cholesterol Worsens Adipose Tissue 
Macrophage Accumulation and Atherosclerosis in Obese Ldl Receptor-Deficient Mice. 
Arterioscler Thromb Vasc Biol 28, 685-691. 

Sudano, I., Spieker, L.E., Hermann, F., Flammer, A., Corti, R., Noll, G., and Luscher, 
T.F. (2006). Protection of Endothelial Function: Targets for Nutritional and 
Pharmacological Interventions. J Cardiovasc Pharmacol 47 Suppl 2, S136-150; 
discussion S172-136. 

Sun, L.P., Li, L., Goldstein, J.L., and Brown, M.S. (2005). Insig Required for Sterol-
Mediated Inhibition of Scap/Srebp Binding to Copii Proteins in Vitro. J Biol Chem 280, 
26483-26490. 

Swirski, F.K., Pittet, M.J., Kircher, M.F., Aikawa, E., Jaffer, F.A., Libby, P., and 
Weissleder, R. (2006). Monocyte Accumulation in Mouse Atherogenesis Is Progressive 
and Proportional to Extent of Disease. Proc Natl Acad Sci U S A 103, 10340-10345. 

Tabas, I. (2010). The Role of Endoplasmic Reticulum Stress in the Progression of 
Atherosclerosis. Circ Res 107, 839-850. 

Tabas, I., and Ron, D. (2011). Integrating the Mechanisms of Apoptosis Induced by 
Endoplasmic Reticulum Stress. Nat Cell Biol 13, 184-190. 

Tabas, I., Tall, A., and Accili, D. (2010). The Impact of Macrophage Insulin Resistance 
on Advanced Atherosclerotic Plaque Progression. Circ Res 106, 58-67. 



91 
 

 

Tabas, I., Williams, K.J., and Boren, J. (2007). Subendothelial Lipoprotein Retention as 
the Initiating Process in Atherosclerosis: Update and Therapeutic Implications. 
Circulation 116, 1832-1844. 

Takata, Y., Liu, J., Yin, F., Collins, A.R., Lyon, C.J., Lee, C.H., Atkins, A.R., Downes, M., 
Barish, G.D., Evans, R.M., et al. (2008). Ppardelta-Mediated Antiinflammatory 
Mechanisms Inhibit Angiotensin Ii-Accelerated Atherosclerosis. Proc Natl Acad Sci U S 
A 105, 4277-4282. 

Talayero, B.G., and Sacks, F.M. (2011). The Role of Triglycerides in Atherosclerosis. 
Curr Cardiol Rep 13, 544-552. 

Tall, A.R., Yvan-Charvet, L., Terasaka, N., Pagler, T., and Wang, N. (2008). Hdl, Abc 
Transporters, and Cholesterol Efflux: Implications for the Treatment of Atherosclerosis. 
Cell Metab 7, 365-375. 

Tanaka, T., Yamamoto, J., Iwasaki, S., Asaba, H., Hamura, H., Ikeda, Y., Watanabe, M., 
Magoori, K., Ioka, R.X., Tachibana, K., et al. (2003). Activation of Peroxisome 
Proliferator-Activated Receptor Delta Induces Fatty Acid Beta-Oxidation in Skeletal 
Muscle and Attenuates Metabolic Syndrome. Proc Natl Acad Sci U S A 100, 15924-
15929. 

Tarling, E.J., Bojanic, D.D., Tangirala, R.K., Wang, X., Lovgren-Sandblom, A., Lusis, 
A.J., Bjorkhem, I., and Edwards, P.A. (2010). Impaired Development of Atherosclerosis 
in Abcg1-/- Apoe-/- Mice: Identification of Specific Oxysterols That Both Accumulate in 
Abcg1-/- Apoe-/- Tissues and Induce Apoptosis. Arterioscler Thromb Vasc Biol 30, 1174-
1180. 

Thorp, E., Li, G., Seimon, T.A., Kuriakose, G., Ron, D., and Tabas, I. (2009). Reduced 
Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions of Apoe-/- and Ldlr-
/- Mice Lacking Chop. Cell Metab 9, 474-481. 

Timmins, J.M., Lee, J.Y., Boudyguina, E., Kluckman, K.D., Brunham, L.R., Mulya, A., 
Gebre, A.K., Coutinho, J.M., Colvin, P.L., Smith, T.L., et al. (2005). Targeted Inactivation 
of Hepatic Abca1 Causes Profound Hypoalphalipoproteinemia and Kidney 
Hypercatabolism of Apoa-I. J Clin Invest 115, 1333-1342. 

Tobert, J.A. (2003). Lovastatin and Beyond: The History of the Hmg-Coa Reductase 
Inhibitors. Nat Rev Drug Discov 2, 517-526. 

Tontonoz, P., Hu, E., and Spiegelman, B.M. (1994). Stimulation of Adipogenesis in 
Fibroblasts by Ppar Gamma 2, a Lipid-Activated Transcription Factor. Cell 79, 1147-
1156. 



92 
 

 

Trigatti, B.L., Krieger, M., and Rigotti, A. (2003). Influence of the Hdl Receptor Sr-Bi on 
Lipoprotein Metabolism and Atherosclerosis. Arterioscler Thromb Vasc Biol 23, 1732-
1738. 

Tsuchiya, K., Tanaka, J., Shuiqing, Y., Welch, C.L., DePinho, R.A., Tabas, I., Tall, A.R., 
Goldberg, I.J., and Accili, D. (2012). Foxos Integrate Pleiotropic Actions of Insulin in 
Vascular Endothelium to Protect Mice from Atherosclerosis. Cell Metab 15, 372-381. 

Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., and Tada, K. 
(1980). Establishment and Characterization of a Human Acute Monocytic Leukemia Cell 
Line (Thp-1). Int J Cancer 26, 171-176. 

Tsukano, H., Gotoh, T., Endo, M., Miyata, K., Tazume, H., Kadomatsu, T., Yano, M., 
Iwawaki, T., Kohno, K., Araki, K., et al. (2010). The Endoplasmic Reticulum Stress-
C/Ebp Homologous Protein Pathway-Mediated Apoptosis in Macrophages Contributes to 
the Instability of Atherosclerotic Plaques. Arterioscler Thromb Vasc Biol 30, 1925-1932. 

Vance, D.E., and Van den Bosch, H. (2000). Cholesterol in the Year 2000. Biochim 
Biophys Acta 1529, 1-8. 

Vosper, H., Patel, L., Graham, T.L., Khoudoli, G.A., Hill, A., Macphee, C.H., Pinto, I., 
Smith, S.A., Suckling, K.E., Wolf, C.R., et al. (2001). The Peroxisome Proliferator-
Activated Receptor Delta Promotes Lipid Accumulation in Human Macrophages. J Biol 
Chem 276, 44258-44265. 

Walldius, G., and Jungner, I. (2006). The Apob/Apoa-I Ratio: A Strong, New Risk Factor 
for Cardiovascular Disease and a Target for Lipid-Lowering Therapy--a Review of the 
Evidence. J Intern Med 259, 493-519. 

Walther, T.C., and Farese, R.V., Jr. (2012). Lipid Droplets and Cellular Lipid Metabolism. 
Annu Rev Biochem 81, 687-714. 

Wang, Y.X., Lee, C.H., Tiep, S., Yu, R.T., Ham, J., Kang, H., and Evans, R.M. (2003). 
Peroxisome-Proliferator-Activated Receptor Delta Activates Fat Metabolism to Prevent 
Obesity. Cell 113, 159-170. 

Wang, Y.X., Zhang, C.L., Yu, R.T., Cho, H.K., Nelson, M.C., Bayuga-Ocampo, C.R., 
Ham, J., Kang, H., and Evans, R.M. (2004). Regulation of Muscle Fiber Type and 
Running Endurance by Ppardelta. PLoS Biol 2, e294. 

Wasan, K.M., Brocks, D.R., Lee, S.D., Sachs-Barrable, K., and Thornton, S.J. (2008). 
Impact of Lipoproteins on the Biological Activity and Disposition of Hydrophobic Drugs: 
Implications for Drug Discovery. Nat Rev Drug Discov 7, 84-99. 



93 
 

 

Weber, C., Zernecke, A., and Libby, P. (2008). The Multifaceted Contributions of 
Leukocyte Subsets to Atherosclerosis: Lessons from Mouse Models. Nat Rev Immunol 
8, 802-815. 

Whitman, S.C., Argmann, C.A., Sawyez, C.G., Miller, D.B., Hegele, R.A., and Huff, M.W. 
(1999). Uptake of Type Iv Hypertriglyceridemic Vldl by Cultured Macrophages Is 
Enhanced by Interferon-Gamma. J Lipid Res 40, 1017-1028. 

Willner, E.L., Tow, B., Buhman, K.K., Wilson, M., Sanan, D.A., Rudel, L.L., and Farese, 
R.V., Jr. (2003). Deficiency of Acyl Coa:Cholesterol Acyltransferase 2 Prevents 
Atherosclerosis in Apolipoprotein E-Deficient Mice. Proc Natl Acad Sci U S A 100, 1262-
1267. 

Yamauchi, T., Kamon, J., Waki, H., Murakami, K., Motojima, K., Komeda, K., Ide, T., 
Kubota, N., Terauchi, Y., Tobe, K., et al. (2001). The Mechanisms by Which Both 
Heterozygous Peroxisome Proliferator-Activated Receptor Gamma (Ppargamma) 
Deficiency and Ppargamma Agonist Improve Insulin Resistance. J Biol Chem 276, 
41245-41254. 

Yecies, J.L., Zhang, H.H., Menon, S., Liu, S., Yecies, D., Lipovsky, A.I., Gorgun, C., 
Kwiatkowski, D.J., Hotamisligil, G.S., Lee, C.H., et al. (2011). Akt Stimulates Hepatic 
Srebp1c and Lipogenesis through Parallel Mtorc1-Dependent and Independent 
Pathways. Cell Metab 14, 21-32. 

Yen, C.L., Stone, S.J., Koliwad, S., Harris, C., and Farese, R.V., Jr. (2008). Thematic 
Review Series: Glycerolipids. Dgat Enzymes and Triacylglycerol Biosynthesis. J Lipid 
Res 49, 2283-2301. 

Yvan-Charvet, L., Ranalletta, M., Wang, N., Han, S., Terasaka, N., Li, R., Welch, C., and 
Tall, A.R. (2007). Combined Deficiency of Abca1 and Abcg1 Promotes Foam Cell 
Accumulation and Accelerates Atherosclerosis in Mice. J Clin Invest 117, 3900-3908. 

Zechner, R., Zimmermann, R., Eichmann, T.O., Kohlwein, S.D., Haemmerle, G., Lass, 
A., and Madeo, F. (2012). Fat Signals--Lipases and Lipolysis in Lipid Metabolism and 
Signaling. Cell Metab 15, 279-291. 

Zhang, J., Kelley, K.L., Marshall, S.M., Davis, M.A., Wilson, M.D., Sawyer, J.K., Farese, 
R.V., Jr., Brown, J.M., and Rudel, L.L. (2012). Tissue-Specific Knockouts of Acat2 
Reveal That Intestinal Depletion Is Sufficient to Prevent Diet-Induced Cholesterol 
Accumulation in the Liver and Blood. J Lipid Res 53, 1144-1152. 

Zhou, J., Lhotak, S., Hilditch, B.A., and Austin, R.C. (2005). Activation of the Unfolded 
Protein Response Occurs at All Stages of Atherosclerotic Lesion Development in 
Apolipoprotein E-Deficient Mice. Circulation 111, 1814-1821. 
 
 



94 

 

 

*a version of this chapter is published Bojic et al. (2012) ATVB 32(12), 2919-28. 

 

Chapter 2* 
Activation of PPARδ inhibits human macrophage foam cell formation and the 

inflammatory response induced by very low-density lipoprotein 
 
2.1 INTRODUCTION 

Excessive lipid accumulation within macrophages of the arterial intima drives the 

synthesis and secretion of proinflammatory mediators, potentiating atherogenesis 

(Hansson, 2005). Canonically, elevated plasma low density lipoprotein (LDL) is 

considered a major lipoprotein contributing to accelerated atherogenesis. However, 

epidemiological evidence strongly suggests that hypertriglyceridemia also increases the 

risk of premature atherosclerosis, especially in the context of metabolic syndrome and 

type 2 diabetes (Nordestgaard et al., 2007, Reaven, 2005). Plasma triacylglycerol (TG)-

carrying very low density lipoprotein (VLDL) has been localized within atherosclerotic 

lesions from human patients and animal models (Proctor and Mamo, 1998, Rapp et al., 

1994), providing rationale for examining the mechanisms by which these lipoproteins 

induce the development of macrophage foam cells. VLDL readily induces macrophage 

lipid accumulation (Evans et al., 1993, Whitman et al., 1999, Whitman et al., 1998), 

which in turn stimulates the synthesis of cytokines such as IL-1β and MIP-1α 

(Saraswathi and Hasty, 2006, Stollenwerk et al., 2005a, Stollenwerk et al., 2005b). The 

mechanisms regulating these lipid-induced macrophage inflammatory responses have 

not been fully characterized.  

In mouse macrophages, VLDL-induced expression of Mip-1α requires fatty acid 

liberation by lipoprotein lipase (LPL) and is dependent on the activation of ERK1/2 

(Saraswathi and Hasty, 2006). Furthermore, VLDL potentiates LPS-stimulated 

macrophage IL-1β secretion via activation of the transcription factor AP-1 (Stollenwerk et 
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al., 2005a). which is known to be regulated by MAP kinases ERK1/2 and p38 (Eferl and 

Wagner, 2003). The involvement of p38, which is thought to act cooperatively with 

ERK1/2 in AP-1 associated inflammatory responses (Eferl and Wagner, 2003), has not 

been established (Saraswathi and Hasty, 2006). In addition, macrophage insulin 

resistance may potentiate the inflammatory response. Macrophage-specific deletion of 

the insulin receptor in Ldlr-/- mice significantly increased atherosclerosis (Han et al., 

2006), an effect attributed to impaired macrophage Akt/FoxO1 signaling (Han et al., 

2006). Insulin-resistant macrophages with cholesterol-induced ER-stress display 

impaired Akt phosphorylation, increased nuclear FoxO1 activity and enhanced apoptosis 

(Senokuchi et al., 2008). Furthermore, Il-1β is a FoxO1 target gene in macrophages with 

insulin resistance (Su et al., 2009). Collectively, these studies highlight the importance of 

examining the role of AKT/FoxO1 signaling in the VLDL-induced inflammatory response. 

The peroxisome proliferator-activated receptors (PPARs) are important 

regulators of metabolic and inflammatory signaling (Lee et al., 2003b). The three known 

isoforms, namely PPARα, PPARγ and PPARδ, each exhibit distinct tissue distribution 

and PPAR-specific regulation of gene transcription (Lee et al., 2003b). In contrast to 

PPARα and PPARγ, expression of PPARδ is ubiquitous, with high levels in 

macrophages (Vosper et al., 2001), where its biological role is unclear. Macrophage 

PPARδ is activated by VLDL-derived fatty acids (Chawla et al., 2003, Lee et al., 2006), 

and conflicting reports have demonstrated that synthetic ligands promote either lipid 

accumulation (Vosper et al., 2001), or fatty acid catabolism (Chawla et al., 2003, Lee et 

al., 2006). Consequently, the net effect of PPARδ activation on VLDL-induced TG 

accumulation is unknown. The anti-inflammatory properties of PPARδ activation have 

been linked to the liberation of BCL-6 from unliganded PPARδ (Lee et al., 2003a), which 

inhibits expression of AP-1-inducible cytokines by localizing to AP-1 response elements 

and recruiting co-repressors to these promoter regions (Vasanwala et al., 2002). 
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Additionally, in adipocytes and cardiomyocytes, PPARδ agonists inhibit LPS-induced 

NFκB regulated cytokine expression (Ding et al., 2006, Rodriguez-Calvo et al., 2008). 

The mechanism(s) underlying VLDL-induced cytokine expression in macrophages, in the 

absence of LPS, and the impact of PPARδ activation have not been elucidated.  

In the present study, we report that synthetic ligand activation of PPARδ 

attenuates VLDL-stimulated TG accumulation by activating a transcriptional program 

resulting in attenuation of LPL activity, increased fatty acid uptake and enhanced β-

oxidation. VLDL stimulates the expression of proinflammatory cytokines IL-1β, MIP-1α, 

and ICAM-1 via both ERK1/2- and AKT/FoxO1-dependent signaling mechanisms. 

Furthermore, macrophage treatment with synthetic PPARδ ligands inhibits 

proinflammatory cytokine expression, by inhibiting VLDL-stimulated ERK1/2 activation 

and reversing VLDL-mediated inhibition of AKT/FoxO1 phosphorylation. 

2.2 MATERIALS AND METHODS 

2.2.1 LIPOPROTEINS 

Subjects were recruited from the Lipid Clinic at the London Health Sciences 

Center University Campus (London, Ontario, Canada). The University of Western 

Ontario Health Science Standing Committee on Human Research approved the studies 

(IRB reference #15685). VLDL (Sf 20 to 400) was isolated from plasma of type IV 

hyperlipoproteinemic patients by differential ultracentrifugation using a Beckman 70.1 Ti 

rotor (16hr, 40,000 rpm, 12°C) as previously described (Whitman et al., 1998). 

2.2.2 CELL CULTURE 

The human THP-1 macrophage-like cell line was obtained from American Type 

Culture Collection (ATCC, Manassas, VA). For experiments, cells were cultured at 

4.0x106 cells/35-mm plate (Falcon Scientific, BD Biosciences) in RPMI 1640 

supplemented with 10% fetal bovine serum (Sigma), β-mercaptoethanol (5x10-5 mol/L), 

100 units/mL penicillin, and 100 µg/ml streptomycin and differentiated with 300 nmol/L 
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phorbol 12,13-dibutyrate (PDB, Sigma) for 1 week prior to use in experiments as 

described (Argmann et al., 2005, Beyea et al., 2007). PPARδ agonists GW0742 (Sigma) 

and GW501516 (Alexis Biochemicals, Plymouth, PA) were dissolved in dimethyl 

sulfoxide (DMSO, Sigma) and incubated with cells at the indicated concentrations. THP-

1 macrophages were preincubated (24 hr) in the presence or absence of PPARδ 

agonists. Subsequently, cells were incubated with PPARδ agonists in the presence or 

absence of lipoproteins or various inhibitors as indicated. HepG2 cells were obtained 

from ATCC and grown as described previously (Evans et al., 1992). For experiments, 

HepG2 cells were plated in either 100-mm or six-well (35-mm) culture plates (Falcon, 

Mississauga, ON) and maintained in minimal essential medium (MEM) containing 10% 

fetal bovine serum (FBS), but switched to MEM containing 5% human lipoprotein-

deficient serum (LPDS) for experimental incubations.  

2.2.3 LUCIFERASE REPORTER ASSAYS 

Luciferase reporter assays were performed as previously described (Mulvihill et 

al.). Briefly, HepG2 cells were transfected with 0.01µg/mL human PPARα,γ or δ.SG5 

expression vectors and reporter gene plasmids, 0.5µg/mL of pTK-PPRE(x3)-Luc and 

0.05µg/mL of the TK promoter-Renilla luciferase construct, (tk.pRL) (provided by Dr. 

John Capone, McMaster University, Hamilton ON). Cells were incubated for 24 hr with 

DMSO or the appropriate PPAR agonists: PPARα (10nmol/L, GW7647, Sigma); PPARγ 

(3µmol/L, rosiglitazone, Alexis Biochemicals, Cedarlane Laboratories, Burlington, ON), 

or PPARδ (GW0742 and GW501516) at a range of concentrations. Cell lysates were 

prepared and the Luciferase activity (relative light units (RLU)) was measured and 

normalized to Renilla activity, as previously described (Allister et al., 2005, Argmann et 

al., 2005). 
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2.2.4 CELLULAR LIPID MASS 

THP-1 macrophages were preincubated in the presence of PPARδ agonists or 

equal volume of DMSO (not to exceed 0.5% of total medium) for 24 hr in RPMI 1640 

supplemented with 10% fetal bovine serum (FBS) and 300nmol/L PDB. Cells were 

incubated for a further 16 hr with fresh media containing 5% LPDS and compounds in 

the absence or presence of HTG-VLDL (50 μg of lipoprotein total cholesterol (TC)/mL 

medium). Cellular CE, TC, FC, TG, FFA (NEFA) and protein mass were determined 

using enzymatic colorimetric assays for NEFA, TC and FC (Wako Diagnostics, 

Richmond, VA) as well as TG (Boehringer Mannheim, Laval, QC) as previously 

described (Rowe et al., 2003). Cellular CE was determined as the difference between 

TC and FC (Rowe et al., 2003). Cells were lysed in 1mL of 0.1N NaOH, and aliquots 

were used to determine protein concentrations (Beyea et al., 2012). 

2.2.5 ENZYME-LINKED IMMUNOSORBENT ASSAY 

THP-1 macrophages were preincubated in the presence of PPARδ agonists or 

equal volume of DMSO (not to exceed 0.5% of total medium) for 24 hr in RPMI 1640 

supplemented with 10% fetal bovine serum (FBS) and 300nmol/L PDB. Cells were 

incubated for a further 16 hr with fresh media containing 5% LPDS and compounds in 

the absence or presence of hypertriglyceridemic (HTG)-VLDL (50 μg of lipoprotein total 

cholesterol (TC)/mL medium). Media was collected and analyzed for IL-1β secretion via 

enzyme-linked immunosorbent assay (ELISA) using the BD OptEIA human IL-1β ELISA 

kit II (BD Biosciences, Mississauga, ON) as per manufacturer’s protocol. 

2.2.6 QUANTITATIVE REAL-TIME PCR GENE ABUNDANCE ANALYSIS 

THP-1 cells were incubated for 24 hr in RPMI 1640 with 5% LPDS, 300nmol/L 

PDB, in the presence or absence of PPARδ agonists, and subsequently total RNA was 

isolated using TriZol reagent (Invitrogen, Burlington, ON) according to manufacturer’s 

instructions . In experiments examining VLDL-induced inflammatory cytokine expression, 
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cells were preincubated for 24 hr in RPMI 1640 with 10% FBS, 300nmol/L PDB, in the 

presence or absence of PPARδ agonists. Cells were then incubated with fresh 5%-

LPDS media and compounds with or without the CPT-1α inhibitor etomoxir (Sigma, 

50µmol/L for 0.5 hr, followed by a further 16 hr in the absence or presence of HTG-VLDL 

(50μg-TC/mL) prior to TriZol RNA extraction. Abundance of total RNA (2µg) was reverse 

transcribed using the Applied Biosystems High Capacity cDNA reverse transcription kit 

according to the manufacturer’s protocol. Subsequently, cDNA (10ng) was analyzed in 

triplicate by quantitative real time RT-PCR (qRT-PCR) on an ABI Prism (model 7900HT) 

Sequence Detection System (Applied Biosystems, Foster City, CA) according to the 

manufacturer’s instructions and as previously described (Beyea et al., 2007). Primer-

probe sets for each gene were obtained from Applied Biosystems (Carlsbad, CA). 

Abundance of target genes was normalized to GAPDH abundance. 

2.2.7 LPL ACTIVITY, TG SYNTHESIS, FA β-oxidation, AND FA UPTAKE 

LPL activity of THP-1 cells (cell surface and medium) was determined following a 

24 hr incubation in RPMI 1640 with 5% human LPDS and 300nmol/L PDB in the 

presence or absence of selected concentrations of PPARδ agonists, as the release of 

free fatty acids from intralipid (an exogenous lipid source) as previously described 

(Whitman et al., 1999). The synthesis of triacylglycerol was measured in THP-1 cells 

following a preincubation in 5% LPDS-containing medium for 19 hr in the presence or 

absence of selected concentrations of PPARδ agonists. For a subsequent 5 hr 

incubation, 0.08nCi/mL [1-14C]oleic acid (Amersham Biosciences) complexed with fatty 

acid-free bovine serum albumin in a molar ratio of 5.36:1 (Sigma) was added as 

described previously (Evans et al., 1993). Cellular lipid extracts were separated by thin 

layer chromatography (Evans et al., 1993). Fatty acid β-oxidation experiments were 

performed as described previously (Mulvihill et al.). Briefly, THP-1 cells were 

preincubated in the presence or absence of PPARδ agonists in 10% FBS-containing 



100 

medium for 24 hr, followed by the addition of 2.0µCi/mL [3H]-palmitate in 100µmol/L 

palmitate per well for 0.5 hr. The media was removed and 10% trichloroacetic acid was 

added. Unreacted FAs were extracted from the supernatant with n-hexane and the 

remaining counts determined by scintillation counting. Data was determined as nmol 

palmitate oxidized/min/mg cell protein and was corrected for differences in fatty acid 

uptake in the presence of PPARδ agonists. Fatty acid uptake experiments were 

performed as described (Lee et al., 2006). Briefly, THP-1 cells were preincubated in the 

presence or absence of PPARδ agonists in 5% LPDS-containing medium for 24 hr, 

followed by the addition of either [1-14C]oleic acid or [3H]-palmitate (both prepared as 

described above) for 1min. Ice cold stop solution (200µmol/L phloretin in phosphate 

buffered saline) was added directly to the culture medium. Cells were washed five times 

with ice cold stop solution. Cells were lysed in 1mL of 0.1N NaOH, and aliquots were 

used to determine protein concentrations and the amount of unprocessed radiolabelled 

fatty acid. 

2.2.8 IMMUNOBLOT ANALYSIS AND DENSITOMETRY 

Total cell lysates were fractionated into cytosolic and nuclear fractions as 

previously described (Azzout-Marniche et al., 2000). Proteins were separated by SDS-

PAGE, transferred to polyvinylidene difluoride membranes and immunoblotted as 

described previously (Rowe et al., 2003). Cellular cytosolic fractions were probed using 

antibodies against human phospho (p)-FoxO1, pERK1/2, p-p38, pAKT, FoxO1, ERK1/2, 

p38, AKT, β-actin (Cell Signaling, Danvers, MA) and nuclear fractions were probed using 

antibodies against human total-FoxO1 and Lamin A/C (Santa Cruz Biotechnology Inc., 

Santa Cruz, CA). Quantification analysis of the developed films was performed using an 

imaging densitometer (Bio-Rad Quantity One Software). Phospho-proteins from 

cytosolic fractions were normalized to their respective total proteins or β-Actin, whereas 

nuclear fractions were normalized to lamin A/C. Additionally, cytosolic and nuclear 
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fractions were immunoblotted for Lamin A/C and β-Actin, respectively, in order to 

demonstrate complete separation of these fractions. 

2.2.9 STATISTICAL ANALYSIS 

Data are expressed as means +/- standard error of the mean (SEM). The 

Shapiro-Wilk normality test was used to test for parametric distributions in each data set. 

P values for observed differences between treatment and control groups were calculated 

by one-way ANOVA followed by Bonferroni post hoc test or paired student’s t-test where 

indicated. P values for observed pair-wise comparisons were calculated by one-way 

ANOVA followed by Tukey’s post hoc test. Significance thresholds were P values less 

than 0.05. Statistical analyses were performed with SigmaPlot 11.0 software (Systat, Inc, 

San Jose, CA). 

2.3 RESULTS 

2.3.1 PPARδ-SPECIFIC ACTIVATION ATTENUATES VLDL-INDUCED 

MACROPHAGE TRIACYLGLYCEROL ACCUMULATION 

THP-1 cells treated with VLDL demonstrated a dose-dependent increase in TG 

mass achieving a marked 5-fold increase with VLDL at 50 µg/mL (Figure 2.1A-B). Pre-

treatment with PPARδ agonists for 24 hours modestly but significantly reduced VLDL-

induced TG mass by 25-30% (Figure 2.1A-B). VLDL significantly induced intracellular 

FFA mass, which was unchanged by pre-treatment with PPARδ agonists (Figure 2.1C). 

Cellular cholesteryl ester or free cholesterol concentrations were unaffected by VLDL or 

PPARδ agonists (Figure 2.1D), indicating that whole particle VLDL uptake was modest. 

A known PPARδ-specific target gene, adipocyte differentiation-related protein (ADRP) 

(Chawla et al., 2003), was significantly increased by both agonists (Figure 2.1E), 

indicating PPARδ activation. 

High doses of PPAR agonists can activate PPAR isoforms non-selectively 

(Berger et al., 1999, Willson et al., 2000). Therefore, we determined the PPARδ-
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Figure 2.1 PPARδ-specific activation attenuates VLDL-induced triacylglycerol 

mass accumulation.  

THP-1 cells were pre-incubated with PPARδ agonists GW0742 and GW501516 for 24hr, 

followed by a 16hr incubation with or without VLDL (50μg-TC/mL). A,B TG mass (n=5-

7). C, Free fatty acid (FFA) mass (n=3-4). D, Cholesteryl ester (CE) and free cholesterol 

(FC) mass (n=6). E, ADRP mRNA in THP-1 cells following preincubation with PPARδ 

agonists for 24hr, and following a 16hr incubation, with or without VLDL (n=4). Data is 

presented as mean +/- SEM. Different letters indicate significant differences; ANOVA 

with post-hoc Tukey’s test (P<0.05). * indicates significant difference versus DMSO 

control; ANOVA with post hoc Bonferroni’s test (P<0.05) 

. 
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specificity of the concentrations of agonists employed. PPARδ-deletion results in 

derepression of PPARδ target genes (Lee et al., 2006), and transrepression of 

inflammatory cytokine expression, creating an experimental confounder for the present 

studies (Lee et al., 2003a). We therefore assessed agonist-specificity by co-transfecting 

HepG2 cells with luciferase reporter constructs driven by PPAR response elements and 

each PPAR isoform (α, γ, δ). We determined dose-responses for each receptor in cells 

treated with PPARδ agonists (GW0742 and GW501516), and used agonists for PPARα 

(GW7647) and PPARγ (rosiglitazone) as positive controls. GW0742 at 25nmol/L and 

GW501516 at 100nmol/L were concentrations at which these ligands maximally 

activated PPARδ, without activation of either PPARα or PPARγ (Figure 2.2A-D). 

Furthermore, canonical PPARα and PPARγ target genes (ACOX and FABP4, 

respectively) were unaffected by either 25nmol/L GW0742 or 100nmol/L GW501516 

(Figure 2.2E-F). Although unlikely, these agonists may have effects on non-PPAR 

targets. However, with respect to PPARs, these data demonstrate selectivity of the 

agonist concentrations used for PPARδ. 

2.3.2 PPARδ AGONISTS REGULATE LPL ACTIVITY, FATTY ACID UPTAKE AND 

FATTY ACID β-OXIDATION 

We examined whether PPARδ activation attenuated VLDL-induced TG mass by 

regulating lipoprotein hydrolysis, fatty acid uptake or fatty acid esterification. In contrast 

to rosiglitazone, LPL mRNA was unchanged in response to PPARδ agonists, further 

demonstrating PPARδ-specificity (Figure 2.3A and Figure 2.2G). The PPARδ-target 

gene, angiopoietin-like 4 (ANGPTL4) encodes a protein known to potently inhibit LPL 

activity (Sukonina et al., 2006). ANGPTL4 mRNA expression was markedly enhanced by 

both PPARδ agonists in the presence or absence of VLDL, which was associated with a 

50% inhibition of LPL activity (Figure 2.3B,C). The PPARδ ligands significantly increased
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Figure 2.2 GW0742 and GW501516 are PPARδ-specific agonists.  

Human hepatoma (HepG2) cells were co-transfected with plasmids encoding a PPRE-

luciferase construct, a Renilla luciferase construct (transfection control) and vectors 

encoding each individual PPAR isoform as indicated. Cells were incubated with (A) 

PPARα agonist GW7647, (B) PPARγ agonist rosiglitazone or PPARδ agonists (C) 

GW0742 or (D) GW501516 for 24hr. Cell lysates were isolated and luciferase relative 

light units (RLU) were measured (n=2-4). In separate experiments, THP-1 cells were 

incubated with PPAR agonists for 24hr. Total RNA was isolated and (E) ACOX, (F) 

FABP4 and (G) LPL mRNA abundance was measured by qRT-PCR  (n=3-6). Data is 

presented as mean +/- SEM. * indicates significant difference versus DMSO control; 

ANOVA with post hoc Bonferroni test (P<0.05). 
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Figure 2.3 PPARδ activation regulates triglyceride metabolism.  

A, LPL mRNA in THP-1 cells following preincubation with PPARδ agonists for 24hr. 

mRNA abundance of (B) ANGPTL4, (D) CD36 and (G) CPT-1α in THP-1 cells following 

preincubation with PPARδ agonists for 24hr, and following a 16hr incubation, with or 

without VLDL (n=4). C, LPL activity (n=4). Cell surface-bound LPL activity = Total activity 

(heparin) minus secreted activity (without heparin). E,F Fatty acid uptake (n=3). H, β-

oxidation (n=3). Data is presented as mean +/- SEM. Different letters indicate significant 

differences; ANOVA with post-hoc Tukey’s test (P<0.05). *indicates significant difference 

versus DMSO control. In C, # indicates significant difference versus cell bound DMSO 

control; ANOVA with post hoc Bonferroni’s test (P<0.05).  



108 

 

 



109 

 

 

expression of the PPAR-target gene CD36 (Welch et al., 2003) irrespective of lipid load, 

which was correlated with a 25% increase in palmitate uptake, but not oleate uptake 

(Figure 2.3D-F). DGAT1 mRNA, DGAT2 mRNA, and TG synthesis were unaffected by 

PPARδ activation (Figure 2.4). PPARδ ligands significantly upregulated CPT-1α mRNA, 

with or without VLDL, which was associated with a 40% increase in fatty acid oxidation 

(Figure 2.3G,H). Collectively, these results indicate that although PPARδ activation 

modestly increases palmitate uptake, the attenuation of LPL-mediated VLDL TG-

hydrolysis and the enhancement of fatty acid β-oxidation results in a net reduction of 

macrophage triglyceride content. 

2.3.3 PPARδ AGONISTS INHIBIT VLDL- AND FREE FATTY ACID-INDUCED 

CYTOKINE EXPRESSION 

Exposure of mouse macrophages to VLDL stimulates Mip-1α expression, an AP-

1 mediated inflammatory response (Saraswathi and Hasty, 2006). Here, human VLDL 

significantly induced macrophage expression of IL-1β, MIP-1α, and ICAM-1 mRNA. Pre-

treatment with PPARδ ligands significantly inhibited the VLDL-induced expression of all 

three cytokines (Figure 2.5A-C), without affecting basal cytokine expression (Figure 2.6). 

Furthermore, media levels of VLDL-induced IL-1β were significantly decreased by both 

PPARδ agonists (Figure 2.7A). Canonical NFκB-target genes TNFα and IL-6 were 

unaffected by VLDL treatment (Figure 2.7B). Moreover, parthenolide, an inhibitor of 

NFκB signaling, had no effect on VLDL-stimulated expression of IL-1β, MIP-1α and 

ICAM-1, however parthenolide completely inhibited cytokine stimulation by LPS, a 

known NFκB activator (Figure 2.7C). Collectively, these data suggest that VLDL-induced 

macrophage inflammatory responses do not require NFκB activation 

. 
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Figure 2.4 Effect of PPARδ activation on FFA re-esterification mechanisms.  

THP-1 cells were incubated with PPARδ-specific agonists for 24hr. Total RNA was 

isolated and (A) DGAT1 and (B) DGAT2 mRNA was measured by qRT-PCR (n=4). C, 

Following a 19hr incubation with PPARδ agonists at indicated concentrations, THP-1 

cells were incubated for a further 5hr with PPARδ agonists and 1-[14C]oleic acid to 

measure oleate incorporation into cellular triacylglycerol (n=3). Data is presented as 

mean +/- SEM.  
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Figure 2.5 PPARδ agonists attenuate VLDL-stimulated expression of AP-1 

associated inflammatory cytokines.  

THP-1 cells were pre-incubated with PPARδ agonists for 24hr, followed by a 16hr 

incubation with or without VLDL. mRNA abundance for (A) IL-1β, (B) MIP-1α and (C) 

ICAM-1 was measured (n=4). D, THP-1 cells were incubated with PPARδ agonists for 

24hr, followed by an incubation with Etomoxir (ETO 50μmol/L) for 0.5hr and a 

subsequent incubation with or without VLDL for 16hr. mRNA for IL-1β, MIP-1α and 

ICAM-1 mRNA was measured (n=3). Data is presented as mean +/- SEM. Different 

letters indicate significant differences; ANOVA with post-hoc Tukey’s test (P<0.05).  
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Figure 2.6 PPARδ activation does not affect basal cytokine expression in THP-1 

human macrophages  

THP-1 cells were incubated with PPARδ-specific agonists at the indicated 

concentrations for 24hr. Total RNA was isolated and IL-1β, MIP-1α and ICAM-1 mRNA 

was measured by qRT-PCR (n=4). Data is presented as mean +/- SEM (n=4).  
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Figure 2.7 The effect of PPARδ agonists on media IL-1β protein; the effect of VLDL 

on TNFα or IL-6 expression and the VLDL-induced inflammatory response in the 

presence of an inhibitor of NFκB. THP-1 cells were pre-incubated with PPARδ 

agonists for 24hr, followed by a 16hr incubation with or without VLDL (50μg-TC/mL). A, 

Media was collected and analyzed for IL-1β protein levels by enzyme-linked 

immunosorbent assay. In separate experiments, THP-1 cells were incubated with or 

without VLDL (50μg-TC/mL) for 16hr. Total RNA was isolated and (B) TNFα and IL-6 

mRNA were measured by qRT-PCR (n=4). C, THP-1 cells were incubated with IκB 

kinase inhibitor (Parthenolide 10μmol/L) for 0.5hr followed by 16hr incubation with or 

without VLDL or LPS at the indicated concentrations. Total RNA was isolated and IL-1β, 

MIP-1α and ICAM-1 mRNA was measured by qRT-PCR (n=3-4). Data is presented as 

mean +/- SEM. Different letters indicate significant differences; ANOVA with post-hoc 

Tukey’s test (P<0.05).  
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2.3.4 INHIBITION OF VLDL-INDUCED INFLAMMATION BY PPARδ ACTIVATION IS 

INDEPENDENT OF REDUCED CELLULAR TRIGLYCERIDE  

We examined if inhibition of VLDL-induced inflammation by PPARδ agonists was 

a consequence of reduced TG accumulation. Complete inhibition of LPL with 

tetrahydrolipstatin (THL), blocked cellular TG and cytokine expression. However, 

inhibition of TG accumulation with low-dose THL, to the same extent as that achieved by 

PPARδ agonists (~25%), decreased ICAM-1 expression by 30% but did not affect MIP-

1α or IL-1β (Figure 2.8). PPARδ activation normalized VLDL-induced cytokine 

expression, even when β-oxidation was inhibited by etomoxir (Figure 2.5D), a CPT-1α 

inhibitor (Galic et al., 2011). This data suggests that activated PPARδ-induced β-

oxidation only partially accounts for reduced cytokine expression by PPARδ activation.  

Our results are consistent with the concept that VLDL-derived FAs are the 

primary mediators of the inflammatory response (Anderson et al., 2012, Saraswathi and 

Hasty, 2006). Paradoxically, FAs also activate PPARδ (Chawla et al., 2003). To 

reconcile this, macrophages were treated with oleic acid, which resulted in a marked 

induction of TG mass and expression of IL-1β and MIP-1α (Figure 2.9A,B). These effects 

were significantly attenuated by pre-incubation of cells with GW501516 (Figure 2.9A,B), 

suggesting that the known ability of FAs to activate PPARδ (Chawla et al., 2003), is 

insufficient to prevent macrophage TG accumulation and cytokine expression. 

2.3.5 VLDL-STIMULATED EXPRESSION OF INFLAMMATORY CYTOKINES IS 

DEPENDENT ON MAPK ACTIVATION AND REPRESSION OF AKT/FoxO1 

SIGNALING 

VLDL-induced Mip1α expression in mouse macrophages involves activation of 

ERK1/2 (Saraswathi and Hasty, 2006). In THP-1 cells, ERK1/2 phosphorylation 

increased significantly within 0.5hr of VLDL exposure, which returned to baseline by 1hr 
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Figure 2.8 Prevention of VLDL-induced TG accumulation and cytokine expression 

are independent effects of PPARδ activation.  

THP-1 cells were incubated with lipolysis inhibitor (THL) at the indicated concentrations 

for 0.5hr followed by 16hr incubation with or without VLDL (50μg-TC/mL). A, TG mass 

(n=2). B, TG mass (n=4). THP-1 cells were incubated with THL at the indicated 

concentrations for 0.5hr followed by 16hr incubation with or without VLDL (50μg-TC/mL) 

or LPS (0.1ng/mL). Total RNA was isolated and (C) IL-1β, MIP-1α and ICAM-1 mRNA 

was measured by qRT-PCR (n=3). Data is presented as mean +/- SEM. Different letters 

indicate significant differences; ANOVA with post-hoc Tukey’s test (P<0.05).  
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Figure 2.9 Free fatty acids are the primary effectors of the VLDL-induced 

inflammatory response in human macrophages. THP-1 cells were pre-incubated with 

PPARδ agonist GW501516 for 24hr, followed by a 16hr incubation with or without oleic 

acid (OA, 200μmol/L). A, TG accumulation (n=4). B, Total RNA was isolated and IL-1β 

and MIP-1α mRNA was measured by qRT-PCR (n=4). C, In a separate set of 

experiments, THP-1 cells were pre-incubated with the PPARδ agonist at the indicated 

concentration for 24hr, followed by a 0.5hr incubation with or without 200μmol/L OA. 

Cytosolic fractions were isolated and immunoblotted for ERK1/2. Equal loading was 

confirmed by total ERK. Representative immunoblots for phosphorylated and total 

ERK1/2 with quantitation shown (n=4). Data is presented as mean +/- SEM. Different 

letters indicate significant differences; ANOVA with post-hoc Tukey’s test (P<0.05).  
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(Figure 2.10A and Figure 2.9C). Similarly, VLDL stimulated p38 phosphorylation, 

reaching peak phosphorylation by 0.5hr, and remained elevated for ~3hr (Figure 2.10B). 

The MEK1/2 inhibitor, U0126, abrogated VLDL-stimulated expression of all cytokines 

(Figure 2.10C). In contrast, the p38 inhibitor SB203580 stimulated cytokine expression 

under basal conditions, and further increased cytokine expression in VLDL-treated cells 

(Figure 2.10D). Inhibition of p38 resulted in a 5-fold induction in ERK1/2 phosphorylation 

(Figure 2.11A) suggesting that the MAPKerk signal stimulates cytokine expression, 

whereas MAPKp38 represses the actions of MAPKerk. 

The temporal disconnect between VLDL-induced MAPKerk activation/de-

activation (1hr) and elevated cytokine expression (16hr), suggests that other 

macrophage inflammatory signaling pathways are stimulated by VLDL. Given that IL-1β 

is a target of nuclear FoxO1 in macrophages in the context of fatty acid-induced insulin 

resistance (Su et al., 2009), we examined the role of AKT/FoxO1 in VLDL-induced 

inflammation. Exposure of THP-1 cells to VLDL resulted in a time-dependent reduction 

of phospho-AKT levels for up to 6hr (Figure 2.12A). Reduced phospho-AKT was 

correlated with attenuated phospho-FoxO1 and increased nuclear-FoxO1 by 3hr (Figure 

2.12B, C), demonstrating that VLDL inhibits AKT/FoxO1-signaling. As proof-of-concept, 

treatment of macrophages with AKTinhibitor IV mimicked VLDL-treatment, resulting in 

reduced phospho-AKT, reduced phospho-FoxO1 over 6hr (Figure 2.11B) and significant 

elevations in the expression of IL-1β as well as MIP-1α and ICAM-1 over 16hr (Figure 

2.11C). 
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Figure 2.10 MAPK signaling in THP-1 human macrophages in response to VLDL.  

THP-1 cells were incubated for indicated times with or without VLDL. Representative 

immunoblots of phosphorylated (A) ERK1/2 and (B) p38 from cytosolic fractions (n=4). 

C, THP-1 cells were incubated with MEK1/2 inhibitor (U0126 10μmol/L) or its inactive 

form (U0124 10μmol/L) for 0.5hr followed by 16hr incubation with or without VLDL. IL-

1β, MIP-1α and ICAM-1 mRNA was measured by qRT-PCR. D, THP-1 cells were 

incubated with p38 inhibitor (SB203580 10µmol/L) or its inactive isoform (SB202474 

10µmol/L) for 0.5hr followed by a 16hr incubation with or without VLDL. mRNA 

determinations as in (C). Values are mean +/- SEM (n=4). A,B * indicates significant 

difference versus respective DMSO control; ANOVA with post hoc Bonferroni’s test 

(P<0.05). Representative bands are from the same immunoblot, cut from different 

regions. C,D Different letters are significantly different; ANOVA with post-hoc Tukey’s 

test (P<0.05).  
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Figure 2.11 Effects of inhibitors on cell signalling cascades. THP-1 cells were 

incubated with or without p38 inhibitor SB203580 (10μmol/L) for 0.5hr. Cytosolic 

fractions were isolated and immunoblotted for (A) pERK1/2 and p-p38. Equal loading 

was confirmed by total ERK and total p38, respectively (n=3). In a separate experiment, 

THP-1 cells were incubated for indicated times with or without AKT inhibitor (AKTi) IV 

(10μmol/L). Levels of (B) pAKT and pFoxO1 were determined by immunoblotting of 

cytosolic fractions. Quantitation was determined relative to total AKT and β-Actin, 

respectively (n=3). C, THP-1 cells incubated for 16hr with or without AKT activity inhibitor 

(AKT
i
 IV 10µmol/L). mRNA for IL-1β, MIP-1α and ICAM-1 mRNA was measured by qRT-

PCR. Data is presented as mean +/- SEM (n=4). * indicates significant difference versus 

control; t-test (P<0.05). For A-B, relative intensities represent the mean ratio of 

phospho:total protein relative to the respective DMSO control of 3 independent 

experiments. 
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Figure 2.12 VLDL induces human macrophage inflammation via AKT/FoxO1 

signaling.  

THP-1 cells were incubated for indicated times with or without VLDL. Representative 

immunoblots of (A) phosphorylated-AKT and (B) phosphorylated-FoxO1from cytosolic 

fractions. (C) nFoxO1 from nuclear fractions. Equal loading was confirmed by total AKT, 

β-Actin, and Lamin A/C respectively (n=4). The immunoblots for Lamin A/C in (B) and for 

β-Actin in (C) show no detectable bands demonstrating complete separation of cytosolic 

and nuclear fractions, respectively. Data is presented as mean +/- SEM (n=4). * 

indicates significant difference versus control; t-test (P<0.05). Representative bands are 

from the same immunoblot, cut from different regions.  
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2.3.6 VLDL-STIMULATED ACTIVATION OF MAPK SIGNALING AND REPRESSION 

OF AKT/FoxO1 SIGNALING ARE CORRECTED BY PPARδ ACTIVATION  

To determine the mechanism whereby PPARδ activation attenuates VLDL-

induced cytokine expression, we examined the effect of PPARδ agonists on 

macrophage MAPK and AKT/FoxO1 signaling. GW0742 and GW501516 significantly 

attenuated both VLDL-stimulated ERK1/2 and p38 activation (Figure 2.13A, B). 

Furthermore, both PPARδ agonists increased phospho-Akt and phospho-FoxO1 in 

control cells (Figure 2.13C), and reversed the reductions of phospho-Akt and phospho-

FoxO1 in VLDL-treated cells (Figure 2.13D, E). Importantly, GW0742 and GW501516 

prevented the VLDL-induced increase in nuclear FoxO1 (Figure 2.13F). Inhibition of β-

oxidation by etomoxir had no effect on the ability of PPARδ activation to normalize 

VLDL-induced MAPK signaling (Figure 2.14A,B) or restore normal AKT/FoxO1 signaling 

(Figure 2.14C,D). Collectively, these data demonstrate that PPARδ activation inhibits 

VLDL-induced inflammatory cytokine expression by inhibiting MAPK signaling and 

restoring signaling through AKT/FoxO1. Furthermore, the modulation of both signaling 

pathways by PPARδ activation was independent of PPARδ agonist-induced β-oxidation. 
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Figure 2.13 PPARδ activation normalizes VLDL-stimulated inflammatory signaling.  

THP-1 cells were pre-incubated with PPARδ agonists for 24hr, followed by a 0.5hr 

incubation with or without VLDL. Representative immunoblots of phosphorylated (A) 

pERK1/2 and (B) p-p38 from cytosolic fractions (n=5-7). THP-1 cells were incubated for 

6hr with or without PPARδ agonists. Levels of (A) pAKT and pFoxO1 were determined 

by immunoblotting cytosolic fractions. Equal loading was confirmed by total AKT and β-

Actin, respectively (n=2). Relative intensities represent ratio of phospho:total protein 

relative to the respective DMSO control of the representative immunoblot. D-F, THP-1 

cells were pre-incubated with PPARδ agonists for 24hr, followed by 6hr incubation with 

or without VLDL. Representative immunoblots of phosphorylated (C) pAKT and (D) 

pFoxO1 from cytosolic fractions and (E) nFoxO1 from nuclear fractions. Equal loading 

was confirmed by total AKT, β-Actin, and Lamin A/C respectively (n=5-7). Different 

letters indicate significant differences; ANOVA with post-hoc Tukey’s test (P<0.05).   
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Figure 2.14 Inhibition of β-oxidation had no effect on the ability of PPARδ 

activation to correct VLDL-induced inflammatory signalling. THP-1 cells were pre-

incubated with PPARδ agonists for 24hr, followed by a 0.5hr incubation with the CPT-1α 

inhibitor etomoxir (ETO). For a subsequent 0.5hr, cells were incubated with or without 

VLDL. Representative immunoblots of phosphorylated (A) pERK1/2 and (B) p-p38 from 

cytosolic fractions (n=3). C,D, THP-1 cells were pre-incubated with PPARδ agonists for 

24hr, followed by a 0.5hr incubation with ETO. For a subsequent 6hr, cells were 

incubated with or without VLDL. Representative immunoblots of phosphorylated (C) 

pAKT and (D) pFoxO1 from cytosolic fractions (n=3). Data is presented as mean +/- 

SEM. Different letters indicate significant differences; ANOVA with post-hoc Tukey’s test 

(P<0.05).  
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2.4 DISCUSSION 

Patients with insulin resistant syndromes such as type 2 diabetes and metabolic 

syndrome have significant elevations of plasma VLDL, which confers increased risk for 

atherosclerosis (Facchini et al., 2001, Reaven, 2005). Type 2 diabetes, metabolic 

syndrome and atherosclerosis are interwoven by the commonality of chronic low-grade 

inflammation (Dandona et al., 2004, Hotamisligil, 2006). However, the molecular 

processes that link elevated plasma VLDL, atherosclerosis and inflammation require 

further elucidation. In the present study, we demonstrate that human native VLDL 

induces both macrophage TG accumulation and expression of proinflammatory 

cytokines, in the absence of exogenous LPS. Furthermore, we demonstrate that PPARδ 

activation attenuates both of these pathogenic macrophage foam cell processes, and 

define the mechanisms involved. Although VLDL-derived fatty acids are the stimulus for 

cytokine expression, the ability of PPARδ agonists to dampen the inflammatory 

response is independent of agonist-induced LPL inhibition, stimulation of β-oxidation or 

reduction in cellular TG. 

PPARδ is expressed in abundance in macrophages (Vosper et al., 2001), but its 

biological role in lipid homeostasis has been controversial (Chawla et al., 2003, Lee et 

al., 2006, Vosper et al., 2001). In this study, we demonstrate that VLDL-induced TG 

accumulation is significantly decreased by PPARδ activation. Hydrolysis of VLDL-TG by 

macrophage LPL is required for cellular FA uptake and TG resynthesis (Evans et al., 

1993). PPARδ agonists increased ANGPTL4 expression, which was coupled to a 

reduction in LPL activity thereby limiting liberated FAs for macrophage uptake. These 

findings are consistent with recent studies demonstrating that ANGPTL4 is a PPARδ 

target gene, which is expressed in macrophages and irreversibly inactivates LPL by 

converting active LPL-dimers into inactive LPL-monomers (Adhikary et al., , Sukonina et 
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al., 2006). PPARδ activation increased expression of the FA transporter CD36, which 

resulted in a modest increase in FA uptake, albeit from a smaller FA pool. However, we 

confirm that PPARδ agonists upregulate CPT-1α expression (Lee et al., 2006), which 

enhances FA oxidation. Furthermore, we show for the first time, that PPARδ activation 

results in a net depletion of VLDL-induced TG accumulation. These results are 

consistent with the concept that one role for PPARδ activation in macrophages is to 

prevent lipotoxicity by limiting VLDL hydrolysis and enhancing FA catabolism (Chawla et 

al., 2003, Lee et al., 2006), and contradict the notion that PPARδ activation promotes 

lipid accumulation (Vosper et al., 2001). Furthermore, although VLDL-derived FAs 

activate PPARδ (Chawla et al., 2003), potent synthetic agonists of PPARδ are required 

in order to attenuate VLDL-stimulated macrophage foam cell formation, as well as inhibit 

the inflammatory response.  

VLDL markedly stimulates expression of AP-1-inducible inflammatory cytokines, 

which occurs in the absence of NFκB signaling or exogenous LPS. VLDL has been 

demonstrated to induce Mip-1α in murine macrophages via ERK1/2 activation 

(Saraswathi and Hasty, 2006). We extend this response to human THP-1 macrophages 

and to include the induction of IL-1β and ICAM-1. In THP-1 macrophages, both ERK1/2 

and p38 are activated in response to VLDL, and p38 phosphorylation remains elevated 

well beyond that of ERK1/2. Inhibition of p38 stimulated ERK1/2 phosphorylation and 

enhanced cytokine expression. Moreover, the combination of VLDL treatment and p38 

inhibition results in additive stimulation of cytokine expression over either treatment 

alone, suggesting that relieving the p38-induced impediment on ERK1/2 signaling 

enhances cytokine expression. Although in some cells, p38 activation has no effect or 

amplifies ERK1/2 signaling, we and others have reported that in hepatoma cells, insulin-

induced phosphorylation of p38 also acts as a negative regulator of insulin-stimulated 
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ERK1/2 activation (Allister et al., 2005, Keeton et al., 2002). The present study supports 

this paradigm, and demonstrates for the first time, that VLDL-stimulation of macrophage 

cytokine expression through MAPKerk involves p38 acting as a negative regulator of 

ERK1/2 signaling.  

VLDL-treated macrophages displayed attenuated AKT and FoxO1 

phosphorylation which coincided with increased nuclear FoxO1 and increased cytokine 

expression. Although the mechanism by which VLDL attenuates AKT signaling leading 

to activation of FoxO1 has not been defined, it is known that FoxO1 is a direct 

transcriptional activator of Il-1β in mouse macrophages (Su et al., 2009). Several reports 

indicate that lipid-induced macrophage insulin resistance is associated with impaired 

AKT/FoxO1 signaling, increased FoxO1 activity, and thus plays a critical role in 

macrophage inflammation and ER-stress-induced apoptosis (Han et al., 2006, 

Senokuchi et al., 2008, Su et al., 2009). Some studies have suggested that free fatty 

acids induce macrophage inflammation through activation of toll-like receptor (TLR) 

signaling (Nguyen et al., 2007, Shi et al., 2006). However, more recent reports have 

provided contrary evidence (Anderson et al., 2012, Erridge and Samani, 2009). The 

present study is consistent with the concept that VLDL-stimulated macrophage 

inflammatory cytokine expression results from macrophage insulin resistance, rather 

than elicitation of a TLR-NFκB response. This is evidenced by: (i) impaired AKT/FoxO1 

signaling and enhanced MAPK signaling by VLDL treatment, (ii) canonical NFκB target 

genes TNFα and IL-6 being unaffected by VLDL treatment, and (iii) the inability of 

parthenolide, (an inhibitor of NFκB signaling) to block VLDL-stimulated expression of IL-

1β, MIP-1α and ICAM-1.  

It is tempting to hypothesize that VLDL-induced inflammatory responses are 

initially derived from rapid ERK1/2 activation followed by later and sustained AKT 
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signaling. The ERK1/2 signal is rapidly down-regulated by activated p38, whereas the 

AKT signal is possibly mitigated by a self-limiting feedback loop (Fan et al., 2010). 

Furthermore, with time, it is possible that incoming FAs increase the saturated lipid 

content of the ER membrane, thereby inducing an ER-stress response (Borradaile et al., 

2006), and subsequent amplification of nuclear FoxO1 (Ozcan et al., 2004). The exact 

relationship among time-dependent signaling events governing VLDL-stimulated 

inflammatory responses requires further study.  

VLDL-induced expression of inflammatory cytokines was completely normalized 

by both PPARδ agonists, despite a lack of effect on intracellular FFA levels, and even 

under conditions of inhibited β-oxidation. This suggests that stimulation of β-oxidation by 

PPARδ activation is insufficient to explain the anti-inflammatory effects. Additionally, 

VLDL-stimulated phosphorylation of both ERK1/2 and p38 were normalized by PPARδ 

activation, suggesting regulation of a common upstream MAPK factor. This concept is 

consistent with a previous report that GW0742 inhibited angiotensin II-induced 

phosphorylation of ERK1/2 and p38 in mouse macrophages, via upregulation of RGS4 

and RGS5 (Takata et al., 2008). Whether this mechanism applies to the present study 

remains to be determined.  

Macrophages exposed to VLDL in the presence of PPARδ agonists restored 

levels of phospho-AKT, phospho-FoxO1 and nuclear FoxO1 to those observed in 

untreated cells, an effect independent of PPARδ agonist-induced enhanced β-oxidation. 

Although modulation of AKT activity by PPARδ activation has been observed in 

keratinocytes and endothelial cells (Di-Poi et al., 2002, Han et al., 2008), the 

mechanisms underlying this phenomenon remain unclear. Di-Poi et al. demonstrated 

that PPARδ ligand L-165041 induced expression of integrin-like kinase (ILK) and 3-

phosphoinositide-dependent kinase-1 (PDK1), which led to phosphorylation of AKT and 
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FoxO1 (Di-Poi et al., 2002). In contrast, Han et al. reported that GW501516-treated 

endothelial progenitor cells displayed marked elevations in phospho-AKT, without 

increased ILK expression (Han et al., 2008). In our experiments in macrophages, 

PPARδ agonists increased phospho-AKT and phospho-FoxO1, without effecting ILK or 

PDK1 expression (Figure 2.15). This suggests that the anti-inflammatory effect of 

PPARδ activation is, in part, due to direct stimulation of AKT/FoxO1 phosphorylation, 

thereby preventing VLDL from dysregulating this signaling cascade.  

 In summary, VLDL-induced macrophage lipid accumulation and proinflammatory 

cytokine synthesis are attenuated by PPARδ activation, effects which involve ERK1/2- 

and AKT-dependent signaling mechanisms. These combined reductions of lipid 

accumulation and inflammatory cytokine expression by PPARδ ligands reveal a novel 

mechanism for preventing the deleterious consequences of macrophage foam cell 

formation.
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Figure 2.15 Effects of PPARδ agonists on expression of ILK and PDK1. 

THP-1 cells were incubated with PPARδ-specific agonists at the indicated 

concentrations for 24hr. Total RNA was isolated and ILK and PDK1 mRNA was 

measured by qRT-PCR (n=4). Data is presented as mean +/- SEM.  
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Chapter 3 
Activation of PPARδ inhibits human macrophage foam cell formation induced by 

native and modified low-density lipoprotein 
 
3.1 INTRODUCTION 

During atherogenesis, excessive macrophage uptake of lipoproteins drives lipid 

accumulation and the synthesis and secretion of proinflammatory mediators within the 

arterial wall, events that potentiate lesion progression (Libby et al., 2011). An important 

risk factor for the development of atherosclerosis is the elevation of plasma lipoproteins, 

primarily due to their ability to permeate the vessel wall and initiate macrophage foam 

cell formation as well as maladaptive immune responses (Libby et al., 2011, Moore and 

Tabas, 2011). Specifically, increased plasma cholesteryl ester (CE)-rich low-density 

lipoprotein (LDL) is a major foam cell-inducing lipoprotein, and in turn, a significant 

contributor to accelerated atherogenesis (Libby et al., 2011, Moore and Tabas, 2011). 

High plasma LDL is also positively correlated with inflammation linked to atherogenesis 

in both humans and mice (Blake and Ridker, 2003, Getz and Reardon, 2006). Therefore, 

pharmacological inhibition of LDL-induced macrophage foam cell formation and the 

linked inflammatory response(s) represent an attractive therapeutic strategy.  

Cholesterol homeostasis in macrophages is a dynamic process regulated by 

uptake, storage and efflux. The predominant LDL uptake pathway in macrophages of the 

arterial intima is via it’s modified form through the scavenger receptors cluster of 

differentiation (CD) 36 and scavenger receptor A I/II (SRAI/II) (Moore and Freeman, 

2006). Subendothelial retention of LDL leads to the formation of oxLDL (Steinberg, 2009, 

Steinberg and Witztum, 2010), a high-affinity scavenger receptor ligand (Moore and 

Freeman, 2006). Binding of oxLDL to either of these scavenger receptors readily 

induces macrophage cholesterol accumulation (Argmann et al., 2003). Once 

internalized, lipoprotein derived CEs are hydrolyzed in the late endosomes to free 

cholesterol and fatty acids (Maxfield and Tabas, 2005), which are subsequently re-
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esterified in the endoplasmic reticulum (ER) by acyl-CoA:cholesterol acyltransferase 

(ACAT) (Brown et al., 1980, Ikonen, 2008). In macrophages, ACAT1 is the only 

expressed isoform that generates CE for storage in cytoplasmic lipid droplets (Ikonen, 

2008). Collectively, under these circumstances, it is important that cholesterol efflux 

maintains the rate of cholesterol uptake, to prevent accumulation of cholesterol-laden 

foam cells within the arterial intima (Libby et al., 2011). 

In response to massive cholesterol accumulation, macrophage foam cells also 

synthesize and secrete proinflammatory mediators that potentiate lesion progression 

(Tabas, 2010). Although the mechanisms by which cholesterol induces inflammatory 

responses are not fully understood, one proposed stimulus has been the induction of the 

endoplasmic reticulum (ER)-stress pathway (Tabas, 2010). As a consequence of 

excessive lipoprotein-derived cholesterol uptake, free cholesterol (FC) builds up in the 

ER, causing ER-stress (Tabas, 2010). Subsequently, the C/EBP homologous protein 

(CHOP) is induced, which in turn stimulates Nfκb signaling to upregulate the expression 

of tumor necrosis factor (TNF) α and interleukin (IL)-6 (Li et al., 2005). Therefore, 

excessive lipoprotein-derived cholesterol delivered to macrophages must be 

appropriately partitioned, either to storage in cytoplasmic lipid droplets or to cholesterol 

efflux pathways, in order to prevent the deleterious proinflammatory consequences of 

FC accrual in the ER (Rong et al., 2013, Tabas, 2010).  

In addition to the ER-stress pathway, a growing body of evidence suggests that 

cell-surface receptor signaling also plays a role in the stimulation of macrophage 

inflammatory responses. Specifically, a series of studies support the concept that oxLDL 

stimulates proinflammatory cytokine expression through CD36 in concert with the pattern 

recognition toll-like receptors (TLR) (Moore and Tabas, 2011). The assembly of CD36-

TLR complexes leads to the activation of nuclear factor kappa B (Nfκb) signal 

transduction to simulate expression of proinflammatory effector molecules, such as Tnf 
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and interleukin Il6 (Stewart et al., 2010). Addition of lipopolysaccharide (LPS) to cultured 

macrophages significantly enhances oxLDL-induced inflammation (Wiesner et al., 2010). 

In macrophages isolated from CD36 deficient patients, oxLDL fails to stimulate cytokine 

expression (Janabi et al., 2000). In mice, genetic ablation of either CD36 or various 

TLRs is linked to protection from diet-induced atherosclerosis and aortic inflammation 

(Curtiss et al., 2012, Febbraio et al., 2000, Michelsen et al., 2004, Mullick et al., 2005).  

Despite the overwhelming positive evidence for oxLDL-induced inflammatory 

responses, a series of studies have provided contrary evidence (Chung et al., 2000, 

Kannan et al., 2012, Qiu et al., 2007). LPS-induced expression of the proinflammatory 

cytokine IL-12 was significantly reduced in macrophages treated with oxLDL (Chung et 

al., 2000). A subsequent study showed that macrophages treated with oxLDL exhibited 

lower expression of a panel of proinflammatory cytokines that included TNFα and IL-6 

(Qiu et al., 2007). Most recently, oxLDL-treatment of monocytes failed to increase TNFα 

and IL-6 expression, and protected these cells from LPS-induced proinflammatory 

responses (Kannan et al., 2012). Collectively, these studies suggest that our 

understanding of macrophage inflammatory responses in the context of lipoprotein 

uptake, is not well defined.  

The peroxisome proliferator-activated receptors (PPARs) are important 

regulators of metabolic and inflammatory signaling (Harmon et al., 2011, Lee et al., 

2003). There are three known isoforms (PPARα, γ and δ) which exhibit distinct patterns 

of tissue distribution and function (Harmon et al., 2011, Lee et al., 2003). In contrast to 

the predominant expression of PPARα and PPARγ in a cell- or tissue-specific manner 

(Harmon et al., 2011), expression of PPARδ is ubiquitous. However, the expression of 

PPARδ is high in macrophages (Vosper et al., 2001) where its role in cholesterol 

homeostasis remains unclear. Conflicting reports have demonstrated that synthetic 

PPARδ agonists either stimulate cholesterol efflux and reverse cholesterol transport or 
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promote lipid accumulation (Oliver et al., 2001, Vosper et al., 2001, Wallace et al., 2005). 

One study suggested that the PPARδ agonist GW0742 had no effect on cholesterol 

accumulation in mouse peritoneal macrophages isolated from mice fed a high-fat, high 

cholesterol diet supplemented with the compound (Li et al., 2004). Consequently, the net 

effect of PPARδ activation on oxLDL-induced macrophage cholesterol accumulation has 

been difficult to define. With regard to inflammation, in adipocytes and cardiomyocytes, 

PPARδ agonists inhibit LPS-induced Nfκb-mediated inflammatory responses (Ding et al., 

2006, Rodriguez-Calvo et al., 2008). However, the impact of PPARδ activation on the 

mechanisms underlying oxLDL-induced inflammatory responses, in the absence of LPS, 

has not been examined. 

 In the present study, we report that synthetic ligand activation of PPARδ in 

macrophages attenuates LDL- and oxLDL-induced CE accumulation as well as oxLDL-

induced FC accumulation. This was at least in part due to promoting ABCA1-mediated 

cholesterol efflux to apoAI. OxLDL-treated macrophages displayed reduced expression 

of TNFα and IL-6 compared to untreated cells, which was not further affected by PPARδ 

activation. The oxLDL-mediated anti-inflammatory response was associated with 

increased expression of genes known to be regulated by the liver X receptor (LXR) as 

well as by PPARγ and PPARδ.  
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3.2 MATERIALS AND METHODS 

3.2.1 LIPOPROTEINS 

LDL and high-density lipoprotein3 (HDL3) were isolated from plasma of human 

subjects recruited from the Lipid Clinic at the London Health Sciences Centre, University 

Campus (London, Ontario, Canada). This study was approved by the University of 

Western Ontario Institutional Review Board (IRB reference #15685). Lipoproteins were 

separated by differential ultracentrifugation using a Beckman 70.1 Ti rotor (16hr, 40,000 

rpm, 12°C) as previously described (Whitman et al., 1997). LDL was oxidized (oxLDL) 

via the copper sulfate method and the extent of modification was confirmed by 

alterations in electrophoretic mobility (Whitman et al., 1997). 

3.2.2 CELL CULTURE 

Human THP-1 macrophages were obtained from American Type Culture 

Collection (Manassas, VA) and cultured as described previously (Beyea et al., 2007). 

PPARδ agonists GW0742 (Sigma) and GW501516 (Alexis Biochemicals, Plymouth, PA) 

were dissolved in dimethyl sulfoxide (DMSO, Sigma) and incubated with cells at the 

indicated concentrations. These concentrations have been determined to specifically 

activate PPARδ, in the absence of PPARα or PPARγ activation (Chapter 2). THP-1 

macrophages were preincubated (24 hr) the presence or absence of PPARδ agonists. 

Subsequently, cells were incubated with PPARδ agonists in the presence or absence of 

lipoproteins as indicated. The ACAT inhibitors Dup-128 (DuPont Merck Pharmaceutical 

Co.) and CI-1011 (Parke-Davis Pharmaceutical Research) were dissolved in DMSO and 

applied to THP-1 macrophages 0.5 hr prior to lipoprotein additions. Experimental 

concentrations of DMSO did not exceed 0.5% of total medium.  

3.2.3 CELLULAR LIPID MASS 

THP-1 macrophages were preincubated in the presence of PPARδ agonists or 

equal volume of DMSO (not to exceed 0.5% of total medium) for 24 hr in RPMI 1640 
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supplemented with 10% fetal bovine serum (FBS) and 300nmol/L PDB. Cells were 

incubated for a further 16 hr with fresh media containing 5% LPDS and compounds in 

the absence or presence of native or oxidatively modified LDL (150 μg of lipoprotein total 

cholesterol (TC)/mL medium). Cellular TC, FC, TG, and protein mass were determined 

using enzymatic colorimetric assays for TC and FC (Wako Diagnostics, Richmond, VA) 

as well as TG (Boehringer Mannheim, Laval, QC) as previously described (Rowe et al., 

2003). Cellular CE was determined as the difference between TC and FC (Rowe et al., 

2003). 

3.2.4 CHOLESTEROL ESTERIFICATION 

The esterification of cholesterol was measured in THP-1 cells following a 

preincubation in 5% LPDS-containing medium for 19 hr in the presence or absence of 

the indicated concentrations of PPARδ agonists. For a subsequent 5 hr incubation, 

0.08nCi/mL [1-14C]oleic acid (Amersham Biosciences) complexed with fatty acid-free 

bovine serum albumin in a molar ratio of 5.36:1 (Sigma) was added with or without LDL 

or oxLDL as described previously (Beyea et al., 2012). Cellular lipid extracts were 

separated by thin layer chromatography. Cells were lysed in 1mL of 0.1N NaOH, and 

aliquots were used to determine protein concentrations (Beyea et al., 2012). 

3.2.5 CHOLESTEROL EFFLUX 

THP-1 macrophages were incubated with acLDL (5 µg-TC/mL) in medium 

containing 0.2% FAF:BSA and [1α,2α (n)-3H]cholesterol (1 µCi/mL, Amersham 

Biosciences) for 24 hr. Monolayers were then washed with phosphate buffered saline 

(PBS) and incubated in fresh medium with GW0742 or GW1516 at the indicated 

concentrations for 24 hr. Subsequently, macrophages were incubated with fresh 

compound and medium with 0.2% FAF:BSA alone, apoAI (10 µg/mL, Sigma) or HDL3 

(100μg-TC/mL) for a further 16 hr. Cholesterol efflux was expressed as the percentage 

of [3H] counts in the media versus total [3H] cholesterol counts (media plus cell) and 
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normalized to cell protein determined from 0.1N NaOH lysates as described (Argmann et 

al., 2003). 

3.2.6 QUANTITATIVE REAL-TIME PCR mRNA ABUNDANCE ANALYSIS 

THP-1 cells were incubated for 24 hr in RPMI 1640 with 5% LPDS, 300nmol/L 

PDB, in the presence or absence of PPARδ agonists, and subsequently total RNA was 

isolated using TriZol reagent (Invitrogen, Burlington, ON) according to the 

manufacturer’s instructions. In experiments examining oxLDL-induced inflammatory 

cytokine expression, cells were preincubated for 24 hr in RPMI 1640 with 10% FBS, 

300nmol/L PDB, in the presence or absence of PPARδ agonists. Cells were then 

incubated with fresh 5%-LPDS media and compounds for a further 16 hr in the absence 

or presence of oxLDL (150μg-TC/mL) prior to TriZol RNA extraction. Abundance of total 

RNA (2µg) was reverse transcribed using the Applied Biosystems High Capacity cDNA 

reverse transcription kit according to the manufacturer’s protocol. Subsequently, cDNA 

(10ng) was analyzed in triplicate by quantitative real time RT-PCR (qRT-PCR) on an ABI 

Prism (model 7900HT) Sequence Detection System (Applied Biosystems, Foster City, 

CA) according to the manufacturer’s instructions and as previously described (Chapter 

2). Primer-probe sets for each gene (ABCA1, ABCG1, ACAT1, ACOX, ADFP, DHCR24, 

FABP4, FAS, IL-6, MYLIP, SREBP-1c, and TNFα) were obtained from Applied 

Biosystems (Carlsbad, CA). Abundance of target genes, calculated using the standard 

curve method, was normalized to GAPDH abundance. 

3.2.7 IMMUNOBLOT ANALYSIS AND DENSITOMETRY 

Total cell lysates were prepared as previously described (Chapter 2). Proteins 

were separated by SDS-PAGE, transferred to polyvinylidene difluoride membranes and 

immunoblotted as described (Rowe et al., 2003). Cellular cytosolic fractions were probed 

using antibodies against human ABCA1, ABCG1 (Novus Biologicals, Littleton, CO) and 

β-actin (Cell Signaling, Danvers, MA). Quantification analysis of the developed films was 
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performed using an imaging densitometer (Bio-Rad Quantity One Software). ABCA1 and 

ABCG1 from cytosolic fractions were normalized to β-Actin. 

3.2.8 STATISTICAL ANALYSES 

Data are expressed as means +/- standard error of the mean (SEM). The 

Shapiro-Wilk normality test was used to test for parametric distributions in each data set. 

P values for observed differences between treatment and control groups were calculated 

by one-way ANOVA followed by Bonferroni post hoc test. P values for observed pair-

wise comparisons were calculated by one-way ANOVA followed by Tukey’s post hoc 

test. Significance thresholds were P values less than 0.05. Statistical analyses were 

performed with SigmaPlot 11.0 software (Systat, Inc, San Jose, CA). 
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3.3 RESULTS  

3.3.1 PPARδ-SPECIFIC ACTIVATION ATTENUATES NATIVE AND OXIDIZED LDL-

INDUCED MACROPHAGE CHOLESTERYL ESTER ACCUMULATION 

THP-1 cells treated with native LDL (150 µg-TC/mL) displayed a modest but 

significant 1.6-fold increase in CE accumulation (Figure 3.1A). Pre-treatment with 

PPARδ agonists at concentrations known to be PPARδ-specific (Chapter 2) for 24 hours 

almost completely normalized LDL-induced CE mass (Figure 3.1A). Cellular free 

cholesterol (FC) concentrations were unaffected by LDL or PPARδ agonist treatment, 

whereas triglyceride (TG) mass trended towards a reduction in the presence of the 

PPARδ ligands (Figure 3.1B). In contrast to the modest induction of foam cell formation 

by native LDL, oxLDL (150 µg-TC/mL)-treated macrophages exhibited a marked 5-fold 

increase in CE mass, which was significantly attenuated (~40%) by 24 hour pre-

treatment with PPARδ agonists (Figure 3.1C). The 1.8-fold increase in FC accumulation 

induced by oxLDL was reduced (~50%) in the presence of the PPARδ ligands (Figure 

3.1D). Collectively, these results demonstrate that PPARδ activation attenuates CE-rich 

lipoprotein induced macrophage foam cell formation. 

3.3.2 PPARδ AGONISTS ENHANCE CHOLESTEROL UPTAKE GENES AND ABCA1-

MEDIATED CHOLESTEROL EFFLUX TO APOAI, HAVE NO EFFECT ON ABCG1-

MEDIATED EFFLUX to HDL3 AND INHIBIT CHOLESTEROL ESTERIFICATION 

We hypothesized that the observed attenuation of CE mass mediated by the 

PPARδ agonists may be due to reduced lipoprotein uptake. However, PPARδ activation 

enhanced both LDLR (Figure 3.2A) and CD36 mRNA abundance (Chapter 2, Figure 

2.3D), which would be predicted to enhance native and oxidized LDL uptake, 

respectively. We next examined cholesterol esterification, and found that ACAT1 

expression was unchanged in response to the PPARδ ligands (Figure 3.2B). However, 

both PPARδ agonists attenuated basal and lipoprotein-induced  
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Figure 3.1: PPARδ activation attenuates LDL-induced cholesteryl ester mass 

accumulation.  

THP-1 cells were pre-incubated with PPARδ agonists at the indicated concentrations for 

24h, followed by a 16h incubation with or without LDL. A, Total and free cholesterol 

mass were measured via a colorimetric assay. Cholesteryl ester (CE) is calculated as 

the difference between total and free cholesterol. Values are expressed as CE mass +/- 

SEM of duplicate determinations (n=6). B, Free cholesterol and triacylglycerol mass 

were measured via a colorimetric assay. Values are expressed as CE mass +/- SEM 

and FC mass +/- SEM of duplicate determinations (n=6). C, oxLDL-induced CE mass. D, 

oxLDL-induced FC and TG mass. Different letters are significantly different from one 

another. ANOVA with post hoc Tukey’s test (P<0.05).  
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Figure 3.2: Effect of PPARδ activation on uptake and FFA re-esterification into 

cholesteryl ester.  

THP-1 cells were incubated with PPARδ-specific agonists at the indicated 

concentrations for 24h. mRNA was harvested and (A) LDLR and (B) ACAT1 abundance 

was measured by qRT-PCR. Values are expressed as a fold change of DMSO control 

cells normalized to GAPDH +/- SEM of duplicate determinations (n=2-4). In separate 

experiments, following a 19h incubation with PPARδ agonists at indicated 

concentrations, THP-1 cells were incubated for a further 5h with PPARδ agonists and 

(C) 1-[14C]oleic acid, (D) with or without LDL and (E) with or without oxLDL to measure 

oleate incorporation into cellular cholesteryl ester. Values are expressed as a fold 

change of DMSO control cells +/- SEM of duplicate determinations (n=3-4). Different 

letters are significantly different from one another. ANOVA with post hoc Tukey’s test 

(P<0.05).  
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cholesterol esterification, as evidenced by reduced incorporation of 14C-oleic acid into 

CE (Figure 3.2C-E).  

Regarding cholesterol efflux, abundance of ABCA1 mRNA and protein was 

significantly increased in THP-1 cells treated with either PPARδ agonist (Figure 3.3A, B). 

Moreover, cells treated with GW0742 (25nmol/L) displayed a marked 2-fold increase in 

ABCG1 mRNA, and significantly increased ABCG1 protein, effects which were not 

observed with GW501516 (Figure 3.3C, D). Increased ABCA1 mRNA and protein was 

associated with a significant 1.8-fold increase in cholesterol efflux to apoAI (Figure 

3.3E). Although there was a trend towards increased cholesterol efflux to HDL3, this did 

not achieve statistical significance (Figure 3.3C). Collectively these results suggest that 

PPARδ activation stimulates ABCA1- but not ABCG1-mediated cholesterol efflux, which 

likely contributes to a net reduction in macrophage CE content. 

3.3.3 PPARδ ACTIVATION DOES NOT FURTHER AFFECT THE OXLDL-MEDIATED 

REDUCTION IN PROINFLAMMATORY CYTOKINE EXPRESSION 

Exposure of macrophages to oxLDL has been shown to stimulate Nfκb-mediated 

proinflammatory responses (Janabi et al., 2000, Stewart et al., 2010), and macrophages 

loaded with FC are thought to stimulate expression the canonical Nfκb-target genes, 

TNFα and IL-6 (Li et al., 2005). Here, oxLDL-treated macrophages exhibited reduced 

expression of TNFα (-50%) and IL-6 (-30%) (Figure 3.4A, B). Pre-treatment with the 

PPARδ agonists had no further effect on expression of these cytokines (Figure 3.4A, B). 

We reasoned that the observed 1.8-fold increase in macrophage FC content in response 

to oxLDL (Figure 3.1D) was perhaps insufficient to stimulate ER-stress and induce an 

inflammatory response (Li et al., 2005). Treatment of macrophages with ACAT inhibitors 

Dup-128 or CI-1011 in the presence of oxLDL resulted in a further 1.3- and 1.5-fold 

increase in macrophage FC content, respectively (Figure 3.4C). CE mass 
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Figure 3.3: PPARδ activation enhances ABCA1 and ABCG1 mRNA and 

protein,leading to increased cholesterol efflux.  

THP-1 cells were incubated with PPARδ agonists for 24h. Total RNA was analyzed for 

(A) ABCA1 and (C) ABCG1 mRNA by qRT-PCR. Values are expressed as a fold change 

of DMSO control cells normalized to GAPDH +/- SEM of duplicate samples. ANOVA with 

post hoc Bonferroni correction, *P<0.05 versus control (n=4). B,E, ABCA1 and ABCG1 

protein; representative immunoblots of 4 independent experiments shown. D, 

Cholesterol efflux from macrophages was measured following incubation with 

[3H]cholesterol and acetylated LDL (5μg of total cholesterol/mL, 24h) in 0.2% (w/v) fatty 

acid-free bovine serum albumin medium followed by 24h with vehicle or PPARδ agonists 

at the indicated concentrations, and a final 16h incubation with vehicle or PPARδ 

agonists in the presence of FAF:BSA alone or apoAI (10μg/mL) or HDL3 (100μg/mL). 

Cholesterol efflux is expressed as the percentage of [3H]cholesterol in the medium 

relative to total [3H]cholesterol (medium plus cell) normalized to total cell protein and 

plotted as a ratio of apoAI with vehicle alone (mean +/- SEM, n=4). ANOVA with post 

hoc Tukey’s test, different letters are statistically different (P< 0.05). 
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Figure 3.4: PPARδ agonists and ACAT inhibitors do not further affect the oxLDL-

mediated reduction in proinflammatory cytokine expression.  

THP-1 cells were pre-incubated with PPARδ agonists at the indicated concentrations for 

24h, followed by a 16h incubation with or without oxLDL (150µg-TC/mL) for 16h. Total 

RNA was analyzed for the proinflammatory cytokines (A) TNFα and (B) IL-6 by qRT-

PCR and normalized to GAPDH. In a separate set of experiments, THP-1 cells were pre-

incubated with or without ACAT inhibitors at the indicated concentration for 0.5h, 

followed by a 16h incubation with or without oxLDL (150µg-TC/mL) for 16h. C, Free 

cholesterol mass. D, Cholesteryl Ester mass. TNFα (E) and IL-6 (F) mRNA abundance 

normalized to GAPDH. Data is presented as mean +/- SEM of duplicate samples (n=2).
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was significantly reduced by the presence of the ACAT inhibitors (Figure 3.4D). Despite 

the further induction of cellular FC by ACAT inhibition, the suppression of TNFα or IL-6 

expression by oxLDL was unaffected (Figure 3.4E, F). These data suggest that oxLDL 

treatment or FC accumulation in macrophages does not stimulate the inflammatory 

response. 

3.3.4 OXLDL-TREATED MACROPHAGES DISPLAY INCREASED EXPRESSION OF 

LXR, PPARγ AND PPARδ TARGET GENES 

It has recently been reported that peritoneal macrophages isolated from high-fat, 

high cholesterol fed Ldlr-/- mice display significant enrichment of cholesterol, coupled to 

substantially reduced dehydrocholesterol reductase (DHCR) 24 expression (Spann et 

al., 2012). The DHCR24 transcript encodes the enzyme responsible for catalyzing the 

conversion of lanosterol to 24,25-dihydrolanosterol in the Kandutsch-Russel cholesterol 

biosynthetic pathway, as well as the conversion of desmosterol to cholesterol in the 

Bloch pathway (Spann et al., 2012). Accordingly, a significant accumulation of the potent 

LXR-ligand desmosterol was observed in cholesterol-rich peritoneal macrophages. As 

LXR activation is known to negatively regulate the inflammatory response, increased 

desmosterol was associated with a marked reduction in the expression of 

proinflammatory genes (Spann et al., 2012). We hypothesized that this phenomenon 

might reconcile the data observed in Figure 3.4 of the current study. THP-1 cells 

exposed to increasing concentrations of oxLDL exhibited a dose-dependent decrease in 

TNFα and IL-6 expression (Figure 3.5A, B). Reduced cytokine expression was 

associated with a significant decrease in DHCR24 mRNA abundance (Figure 3.5C). 

Moreover, expression of the LXR-target genes ABCA1, ABCG1 and MYLIP was 

substantially enhanced in oxLDL-treated macrophages (Figure 3.5D-F). Macrophages 

abundant in oxysterols, like desmosterol, are known to exhibit reduced processing of 

SREBP-1c, resulting in reduced expression of SREBP-1c target genes (Beyea et al., 
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2007). Here, SREBP-1c and FAS expression were significantly reduced in oxLDL-

treated THP-1 macrophages (Figure 3.5G, H). Taken together these data support the 

notion that cholesterol-loaded macrophages down-regulate DHCR24 expression and 

activity, which results in an anti-inflammatory response mediated partially through LXR 

activation.  

Given that PPARs are known to regulate anti-inflammatory responses (Harmon 

et al., 2011), and that oxLDL-treatment of macrophages can activate PPARγ 

transcriptional activity (Nagy et al., 1998), we examined whether there was any evidence 

of PPAR activation in oxLDL-loaded THP-1 cells. OxLDL had no effect on the PPARα-

specific target gene ACOX (Figure 3.5I). In contrast, macrophage oxLDL-treatment 

significantly increased expression of the PPARγ- and PPARδ-specific target genes 

FABP4 and ADFP, respectively (Figure 3.5J, K). These results suggest that PPARγ and 

PPARδ activation may contribute to part of the oxLDL-mediated anti-inflammatory 

response.
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Figure 3.5: oxLDL dose-dependently reduces proinflammatory cytokine 

expression which is associated with a dose-dependent increase in LXR, PPARγ 

and PPARδ target genes  

THP-1 cells were incubated with oxLDL (25-150µg-TC/mL) for 16h. Total RNA was 

analyzed for the proinflammatory cytokines (A) TNFα and (B) IL-6, for the cholesterol 

biosynthesis regulatory gene (C) DHCR24, the LXR-target genes (D) ABCA1, (E) 

ABCG1 and (F) MYLIP, the SREBP-1c target genes (G) SREBP-1c and (H) FAS and the 

PPARα-, γ-, and δ-specific target genes (I) ACOX (J) FABP4 and (K) ADFP, 

respectively, by qRT-PCR and normalized to GAPDH. Data is presented as mean +/- 

SEM of duplicate samples. Asterisk (*) indicates P<0.05 versus control; ANOVA with 

post hoc Bonferroni test. 
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3.4 DISCUSSION 

High circulating LDL significantly increases the risk for the development of 

atherosclerotic cardiovascular disease (Libby et al., 2011). A strong positive correlation 

exists between high plasma LDL, inflammation and atherosclerosis (Blake and Ridker, 

2003, Getz and Reardon, 2006, Libby et al., 2011). However, the molecular processes of 

atherosclerosis-associated inflammation as a consequence of high plasma LDL require 

further elucidation. Here, we demonstrate that oxLDL induces both CE and FC 

accumulation in THP-1 human macrophages, which are significantly attenuated by 

PPARδ activation. Additionally, we show that in response to oxLDL, proinflammatory 

cytokine expression is decreased, rather than activated, and is not further affected by 

synthetic PPARδ agonists or ACAT inhibitors. The anti-inflammatory response observed 

in oxLDL-treated macrophages was associated with decreased DHCR24 expression, 

and increased expression of LXR-, PPARγ- and PPARδ-target genes. 

PPARδ is expressed in abundance in macrophages (Vosper et al., 2001), but its 

biological role in cholesterol homeostasis has been controversial (Li et al., 2004, Oliver 

et al., 2001, Vosper et al., 2001, Wallace et al., 2005). In this study, we demonstrate that 

oxLDL-induced CE and FC accumulation are significantly decreased by PPARδ 

activation. We confirm that PPARδ activation increases ABCA1 mRNA and protein, 

which enhances cholesterol efflux to apoAI (Ogata et al., 2009, Oliver et al., 2001). 

Furthermore, our results imply that the PPARδ agonist-induced increase in macrophage 

ABCA1 expression is greater than that induced by downregulation of DHCR24 in 

response to oxLDL alone. With regard to ABCG1 activation, the effects of PPARδ have 

not been reported. Although GW0742 enhanced ABCG1 mRNA and protein, 

functionally, this did not enhance cholesterol efflux to HDL3. Nevertheless, both PPARδ 

agonists used in this study reduced LDL- and oxLDL-induced CE and FC accumulation. 

Deletion of Abca1 but not Abcg1 in mice, results in increased atherosclerotic plaque 
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development (Yvan-Charvet et al., 2007). Furthermore, Abcg1-/- mice crossed to an 

apolipoprotein E knockout background are protected from diet-induced atherosclerosis 

(Tarling et al., 2010). These studies suggest that ABCA1, rather than ABCG1, is a 

critical efflux transporter for the regulation of cholesterol homeostasis in hematopoietic 

cells of the arterial intima. The findings reported here, at least with respect to 

macrophages, support this concept. 

Given that oxLDL-uptake is mediated, in part, by CD36, and that PPARδ 

activation is known to increase CD36 expression (Chapter 2, Figure 2.3D) it would be 

predicted the PPARδ ligands would promote oxLDL uptake. Our laboratory has 

previously demonstrated that macrophages treated with PPARγ activators, which also 

activate CD36 expression, increased oxLDL uptake, yet increased ABCA1-mediated 

cholesterol efflux, resulting in a net depletion of CE and FC (Argmann et al., 2003). The 

data reported here suggest that PPARδ activation may promote a similar mechanism of 

macrophage cholesterol homeostasis in response to oxLDL. Furthermore, the results in 

the current study contradict the notion that PPARδ activation has either no effect, or a 

stimulatory effect, on cholesterol accumulation (Li et al., 2004, Vosper et al., 2001).  

Cholesterol esterification under basal and lipoprotein-stimulated conditions was 

attenuated by PPARδ activation. The apparent reduction in ACAT activity is likely a 

secondary effect of the PPARδ agonist’s ability to increase cholesterol efflux, thereby 

preventing cholesterol from reaching the ACAT-accessible pool. Pharmacological and 

genetic manipulations that increase cholesterol efflux pathways are known to reduce 

cholesterol esterification by virtue of shuttling cholesterol away from the ER esterification 

pool, and towards the plasma membrane for efflux (Beyea et al., 2012, Yamauchi et al., 

2004). Although further studies would be required to determine the specific effects of 

PPARδ agonists on cholesterol trafficking in macrophages, our results support the 
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paradigm that increasing cholesterol efflux leads to a secondary reduction in cholesterol 

esterification (Francis and Perry, 1999, Wang et al., 2001).  

Several studies have suggested that oxLDL stimulates macrophage inflammatory 

responses through elicitation of TLR-Nfκb signaling (Curtiss et al., 2012, Febbraio et al., 

2000, Janabi et al., 2000, Michelsen et al., 2004, Mullick et al., 2005, Stewart et al., 

2010). Additionally, ACAT inhibition leading to FC-loading of macrophages is thought to 

activate the ER-stress-Nκb cascade, resulting in the stimulation of TNFα and IL-6 

expression (Li et al., 2005). However, recent reports have provided contrary evidence to 

both of these paradigms (Anderson et al., 2012, Kannan et al., 2012, Qiu et al., 2007). 

oxLDL not only reduces monocyte and macrophage basal expression of TNFα and IL-6, 

but it also inhibits LPS-stimulated expression of both these cytokines (Kannan et al., 

2012, Qiu et al., 2007). Furthermore, lipotoxicity-induced inflammation can occur in the 

absence of ER-stress (Anderson et al., 2012). The findings reported here are in support 

of these latter studies. In our hands, oxLDL-treated macrophages displayed attenuated 

expression of TNFα and IL-6, which was unaffected by treatment with the PPARδ 

agonists. Furthermore, inhibition of ACAT activity to significantly increase FC 

accumulation, did not induce a pro-inflammatory phenotype in oxLDL-treated 

macrophages. Collectively, the present study is consistent with the concept that 

macrophages loaded with cholesterol are anti-inflammatory (Spann et al., 2012, Suzuki 

et al., 2012), rather than proinflammatory, and that PPARδ agonists are incapable of 

further suppression. 

Cholesterol-loaded mouse peritoneal macrophages display significant 

accumulation of desmosterol, a known potent activator of LXR (Spann et al., 2012). It is 

well characterized that activation of LXR is anti-inflammatory, as liganded LXR recruits 

corepressor complexes to promoter regions of proinflammatory genes (Im and Osborne, 

2011). This recruitment event results in protein-protein interactions between Nfκb and 



173 

the LXR-bound corepressors, which prevents Nfκb from stimulating transcription of 

proinflammatory cytokines (Im and Osborne, 2011). PPARγ activation exerts anti-

inflammatory effects through a similar mechanism (Straus and Glass, 2007). Whether 

oxLDL-treatment increases corepressor occupancy of the TNFα and IL-6 promoters in 

THP-1 macrophages remains to be determined. Nevertheless, our studies support the 

concept that desmosterol accumulation within macrophages is associated with 

suppression of pro-inflammatory gene expression (Spann et al., 2012).  

Given that oxLDL stimulated the expression of the PPARδ-specific target gene 

ADFP, it is tempting to hypothesize that PPARδ ligands accumulate in response to 

cholesterol loading. Fatty acids are known to activate PPARδ (Chawla et al., 2003). In 

cholesterol-loaded or desmosterol-treated mouse peritoneal macrophages, Spann et al. 

observed increases in cellular oleic acid in the picomolar range (Spann et al., 2012). In 

the micromolar range, oleic acid induces macrophage inflammatory responses (Chapter 

2). However, picomolar concentrations of oleic acid may be sufficient to activate PPARδ 

but insufficient to stimulate the inflammatory response. The possibility that PPARδ 

activation plays a role in the oxLDL-mediated anti-inflammatory response of 

macrophages requires further study.  

In summary, oxLDL-induced foam cell formation is attenuated by PPARδ 

activation, supporting the use of synthetic PPARδ agonists as a macrophage-targeted 

therapeutic strategy in the treatment of atherosclerosis. Furthermore, our studies 

suggest that macrophages of the arterial intima are not proinflammatory in response to 

cholesterol loading, per se. Rather we support the shift in paradigm that under conditions 

of high plasma LDL, immune cells of the arterial intima, such as dendritic cells (Becker et 

al., 2012), are the inflammatory effectors that secrete extrinsic factors to promote 

proinflammatory macrophage activation (Spann et al., 2012).  
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*a version of this chapter has been submitted 

 

Chapter 4* 
PPARδ agonist GW1516 attenuates diet-induced aortic inflammation, insulin 

resistance and atherosclerosis in Ldlr-/- mice 
 

4.1 INTRODUCTION 

The principal cause of mortality in type 2 diabetic patients is atherosclerosis 

(Grundy et al., 2002, Libby et al., 2009), a chronic inflammatory disease that is the 

primary precursor underlying most cardiovascular events (Tabas et al., 2007). Although 

the molecular and pathophysiological links between type 2 diabetes and atherosclerosis 

are not fully understood, a crucial factor is likely insulin resistance (DeFronzo, 2010, 

Rewers et al., 2004). This is in part due to promotion of multiple independent risk factors 

associated with cardiovascular disease including obesity, hypertension and dyslipidemia 

(DeFronzo, 2010, Ginsberg, 2000). Atherogenic dyslipidemia associated with insulin 

resistance is characterized by increased plasma concentrations of triglyceride (TG)-rich 

very low-density lipoprotein (VLDL) and cholesteryl ester (CE)-rich LDL, both of which 

can permeate a compromised endothelium and initiate atherogenesis (Ginsberg, 2000, 

Tabas et al., 2010). Therapeutic strategies to reduce plasma LDL have proven effective 

in reducing cardiovascular events (Kearney et al., 2008). However, a significant unmet 

medical need persists in cardioprotective therapy, making VLDL-lowering strategies an 

attractive therapeutic target.  

Subendothelial retention of atherogenic lipoproteins leads to a series of 

maladaptive immune responses, culminating in the development of macrophage foam 

cells (Tabas et al., 2010, Tabas et al., 2007). Macrophages of the arterial intima also 

play a critical role in the evolution of fatty streaks towards progression of complex 

lesions. In particular, M1 macrophages secrete inflammatory effector cytokines such as 
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interleukin (IL)-1β and tumor necrosis factor alpha (TNFα), driven predominantly by 

MAPK and NF-κB signaling (Moore and Tabas, 2011, Stollenwerk et al., 2005). 

However, insulin signaling, namely the Akt/forkhead box O1 (FoxO1) pathway, may also 

play an important role in atherogenic inflammation (Tabas et al., 2010). In vitro, Il-1β is a 

FoxO1 target gene in macrophages with fatty acid-induced insulin resistance (Su et al., 

2009). Although not consistent across all experimental models, a growing body of 

evidence suggests that in vivo, arterial insulin resistance directly promotes 

atherosclerosis (Tabas et al., 2010). In fat-fed apolipoprotein E knockout mice (apoE-/-) 

mice, insulin receptor (IR) deletion (Insr-/-) in myeloid cells decreased lesion size 

(Baumgartl et al., 2006). In contrast, global loss of the major insulin signaling mediator 

Akt1 in apoE-/- mice resulted in accelerated coronary artery disease and aortic 

atherosclerosis, concomitant with significant aortic inflammation (Fernandez-Hernando 

et al., 2007). Hematopoetic deletion of the insulin receptor in LDL receptor knockout 

(Ldlr-/-) mice significantly increased atherosclerosis, an effect attributed to impaired 

macrophage Akt signaling (Han et al., 2006). Furthermore, increased areas of apoptotic 

macrophages and necrotic core have been visualized in atherosclerotic lesions from 

patients with type 2 diabetes (Burke et al., 2004). Collectively, these studies highlight 

that arterial insulin resistance and inflammation may amplify atherogenesis.  

Peroxisome proliferator-activated receptors (PPARs) are a class of ligand-

dependant transcription factors involved in regulation of metabolic and inflammatory 

signaling (Wahli and Michalik, 2012). Three isoforms exist (α,γ,δ) which exhibit 

overlapping but distinct patterns of tissue distribution and function (Evans et al., 2004). 

Although PPARδ has been considered the most enigmatic of the PPARs, this receptor 

has emerged as an important regulator of cellular lipid homeostasis and the 

inflammatory response (Barish et al., 2006). In cultured macrophages, PPARδ inhibits 
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both macrophage lipid accumulation and pro-inflammatory cytokine expression in 

response to human VLDL (Chapter 2). Furthermore, TG accumulation was decreased 

via inhibition of extracellular lipolytic activity through angiopoietin-like (ANGPTL) 4-

mediated inhibition of lipoprotein lipase (LPL) and enhanced carnitine 

palmitoyltransferase (CPT) 1α-stimulated fatty acid β-oxidation, whereas attenuated 

cytokine expression was mediated through both inhibition of ERK1/2 and activation of 

Akt/FoxO1 signaling (Chapter 2). In vivo, Lee et al. demonstrated that macrophage 

deletion of Pparδ in Ldlr-/- mice paradoxically suppressed atherogenesis, attributed to the 

suppression of atherogenic inflammation by liberation of the inflammatory repressor 

protein BCL-6, as BCL-6 is normally sequestered by the PPARδ/RXR co-repressor 

complex (Lee et al., 2003). These studies elegantly highlighted that deletion of Pparδ 

mimicked the liganded state of the receptor, suggesting that ligand-activation may be 

atheroprotective. However, the studies that have examined the effects of synthetic 

PPARδ agonists using prevention protocols in mouse models of atherosclerosis have 

produced a spectrum of results (Barish et al., 2008, Graham et al., 2005, Li et al., 2004). 

In the first study, administration of the PPARδ agonist GW0742 to male Ldlr-/- mice on a 

high-fat, high cholesterol diet for 14 weeks had no effect on lesion size (Li et al., 2004). 

In a second study, 16 weeks of treatment with GW0742 reduced lesion development in 

female Ldlr-/- mice (Graham et al., 2005), however, the doses used yielded serum drug 

levels 2-fold higher than the reported EC50 values for murine PPARα and PPARγ (Barish 

et al., 2008), raising the possibility that the atheroprotective effects of GW0742 were not 

PPARδ-specific. In Ldlr-/- mice fed a high-fat diet, low doses of GW0742, prevented the 

development of angiotensin II-accelerated atherosclerosis (Takata et al., 2008). Barish 

et al. reported that a next generation PPARδ agonist (GW1516) at PPARδ-specific 

doses, prevented the development of atherosclerosis in apoE-/- mice fed a high-fat diet, 
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concomitant with reduced aortic inflammatory cytokine expression (Barish et al., 2008). 

Although on balance these studies indicate that PPARδ-specific agonists prevent the 

development of atherosclerosis and arterial inflammation, it is unknown whether PPARδ 

agonists are atheroprotective in an intervention model with pre-established insulin 

resistance. Furthermore, the impact of PPARδ activation on lesion pathology, as well as 

aortic inflammatory signaling cascades, insulin resistance and ER-stress has not been 

examined.  

In the present study we use C57BL/6J Ldlr-/- mice fed a high-fat, cholesterol 

containing (HFHC) diet, a model of diet-induced dyslipidemia and insulin resistance. We 

demonstrate that following an induction phase, intervention with the addition of the 

PPARδ-specific agonist GW1516 to the HFHC diet resulted in regression of metabolic 

dysregulation including reduced plasma lipids, glucose and insulin, and improved 

glucose and insulin tolerance. Intervention with GW1516 inhibited aortic MAPK and NF-

κB signaling, attenuated aortic inflammation, improved indices of aortic insulin signaling, 

reduced aortic ER-stress, and collectively attenuated the progression of pre-established 

atherosclerosis. 
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4.2 MATERIALS AND METHODS 

4.2.1 ANIMALS AND DIETS 

Male Ldlr-/- mice on the C57BL/6 background were obtained from the Jackson 

Laboratory and housed in pairs in standard cages at 23ºC. The animals were cared for in 

accordance with the Canadian Guide for the Care and Use of Laboratory Animals, and 

all experimental procedures were approved by the Animal Care Committee at the 

University of Western Ontario. Mice 10-12 weeks of age were fed ad libitum, a purified 

rodent chow diet (14% of calories from fat, Harlan Teklad TD8604, Madison WI) for 12 

weeks. Another group of mice were fed a high-fat cholesterol-containing western diet 

(HFHC - 42% of calories from fat, 0.2% cholesterol, Harlan Teklad TD09268) for 4 

weeks, followed by segregation of half of these mice to intervention to the HFHC with 

3mg/kg/day GW1516 (Enzo Life Sciences, Ann Arbor, MI) for an additional 8 weeks. In 

previously published reports, this dose administered by oral gavage rendered a plasma 

concentration of GW1516 that was more selective for PPARδ over PPARα or PPARγ by 

>1,000-fold (Barish et al., 2008, Barroso et al., 2011, Narkar et al., 2008). Animals were 

fasted for 4h prior to analyses or sacrifice. For fasting/re-feeding studies, animals were 

either fasted for 16h prior to sacrifice or fasted for 16h followed by 2h of acute re-feeding 

of experimental diets prior to sacrifice (Lu et al., 2012). Blood samples were obtained 

and the heart and aorta were excised as previously described (Covey et al., 2003, 

Mulvihill et al., 2009, Mulvihill et al., 2010). 

4.2.2 PLASMA LIPID, BLOOD GLUCOSE AND PLASMA INSULIN 

DETERMINATIONS  

Plasma TG, total cholesterol (TC), non-esterified fatty acids (NEFA), and blood 

glucose were determined as previously described (Mulvihill et al., 2009). Plasma insulin 

concentrations were determined by ELISA (Alpco Diagnostics, Salem, NH) on EDTA-
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plasma as per manufacturer’s instructions. Fast Performance Liquid Chromatography 

(FPLC) was performed on unfrozen EDTA-plasma using an AKTA purifier and Superose 

6 column (Mulvihill et al., 2009).  

4.2.3 GLUCOSE TOLERANCE AND INSULIN TOLERANCE 

A glucose tolerance test (GTT) was performed following i.p. injection with 15% 

glucose in 0.9% NaCl (1 g/kg of body weight). Blood for glucose measurements 

(Ascensia Elite glucometer, Bayer Healthcare, Toronto, Canada) was taken up to 120 

min post-injection. Insulin tolerance test (ITT) was conducted by i.p. injection with 0.6 

IU/kg Novolin ge Toronto (Novo Nordisk, Cooksville, ON). Blood for glucose 

measurements was obtained up to 60 min post-injection. Insulin sensitivity and glucose 

utilization were calculated based on the area under the curve (AUC). 

4.2.4 TISSUE HISTOLOGY AND IMMUNOHISTOCHEMISTRY 

Histological and morphometric analyses were performed as described previously 

(Mulvihill et al., 2010). Briefly, at sacrifice, hearts were mounted in OCT and frozen. For 

quantitation of lesion area in the aortic sinus, oil red-O-stained sections were measured. 

Frozen serial sections (70-100 per heart, 10μm) of the aortic sinus, initiating at the origin 

of the aortic valves, were prepared using a Leica CM 3050S cryostat. Slides were 

stained with modified Verhoff’s and Masson’s trichrome at the Robarts Research 

Institute Molecular Pathology Core facility. Immunohistochemistry staining for 

macrophages by MOMA-2 (Accurate Chemical and Scientific Corporation #MCA519G, 

Westbury, NY) and smooth muscle α-actin (monoclonal anti-α-smooth muscle actin, 

Clone 1AH, Sigma) was performed. Briefly, slides were fixed in acetone and blocked in 

2% bovine serum albumin. After incubation with primary antibody, a goat biotinylated 

secondary antibody was used. Slides were then incubated in peroxidase blocking 

reagent, followed by incubation with the ABC reagent (ABC Elite Standard Kit, Vector 
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Laboratories, Burlington, ON). Slides were then exposed to the DAB substrate 

(Peroxidase substrate kit, Vector Laboratories) followed by counterstain in hematoxylin 

and mounting in xylene. Photomicrographs were obtained using an Olympus BX50 

microscope and a QImaging Retiga EXi FAST camera. In the aortic sinus, lesion area of 

four serial sections (100μm apart) were quantified using Axiovision computer software. 

Morphometric analysis of plaques in mice from each dietary group was also performed 

on serial sections. The relative area of the atherosclerotic plaque positive for MOMA-2, 

collagen or smooth muscle α-actin staining was determined as the area of positive 

staining divided by the area of the respective plaque. Quantitation was determined using 

Axiovision software. To ensure that a standard region was measured in each mouse, 

lesion analysis began at the origin of the aortic valves.  

4.2.5 IMMUNOBLOTTING AND DENSITOMETRY 

Total cell lysates were isolated from full-length aortae of mice as previously 

described (Beyea et al., 2007, Rowe et al., 2003). Proteins were separated by SDS-

PAGE, transferred to polyvinylidene difluoride membranes and immunoblotted (Rowe et 

al., 2003). Lysates were probed using antibodies against mouse phospho and total Akt, 

FoxO1, ERK1/2, p38, IKKα, and IκBα, as well as GRP78, CHOP, SHP-1 and β-actin 

(Cell Signaling, Danvers, MA). Protein levels were determined by densitometry as 

described (Beyea et al., 2007, Rowe et al., 2003).  

4.2.6 QUANTITATIVE REAL-TIME PCR GENE ABUNDANCE ANALYSIS 

Total RNA was isolated from full-length aortae of mice via standard TRIzol® 

reagent (Life Technologies, Burlington, ON) as per manufacturer’s instructions. Specific 

mRNA abundances (Ccl3, Il1b, Icam1, Tnf, Il6, Ccl2, Arg1, iNos, Ptpn6, Trib3, Adfp, 

Angptl4, Cpt1a, Acox, Lpl, Rgs4, Rgs5, and Gapdh) were measured via quantitative 

real-time PCR (qRT-PCR) using an ABI Prism (7900HT) Sequence Detection System 



186 

 

 

(Applied Biosystems, Foster City, CA) as previously described (Beyea et al., 2012, 

Mulvihill et al., 2009).  

4.2.7 STATISTICAL ANALYSES 

Data are expressed as means +/- SEM. One-way ANOVA followed by the 

Bonferroni test was used to determine significant differences between two groups. One-

way ANOVA followed by pair-wise comparisons by the Tukey’s test was used to 

determine differences between three or more groups. For fasting/re-feeding 

experiments, two-way ANOVA followed by pair-wise comparisons by the Tukey’s test 

was used to determine differences and interactions between diet groups and fasted/re-

fed state. Significance thresholds were P values less than 0.05 and indicated by different 

upper case or lower case letters as well as asterisks as indicated in the figure legends.  
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4.3 RESULTS  

4.3.1 GW1516 IMPROVES HFHC-INDUCED METABOLIC DYSREGULATION IN 

LDLR-/- MICE 

Male C57BL/6 Ldlr-/- mice were administered a Western diet with 0.2% 

cholesterol (HFHC diet) for 4 weeks. The metabolic effects of intervention with the 

PPARδ agonist GW1516 were evaluated following an additional 8 weeks (Figure 4.1A). 

Addition of GW1516 to the HFHC diet significantly attenuated HFHC-induced weight 

gain without affecting caloric intake (Figure 4.2A,B). GW1516 decreased fasting plasma 

cholesterol, TG and NEFAs compared to 4-week baseline levels, whereas the 

dyslipidemia of animals remaining on the HFHC diet alone continued to progress (Figure 

4.1B). FPLC analyses demonstrated that reduced fasting plasma cholesterol in 

GW1516-treated mice, was due to a significant reduction in the VLDL-C fraction and a 

modest but not statistically significant reduction in LDL-C (Figure 4.1C). GW1516 

increased HDL-C by 35% (Figure 4.1C). Furthermore, the GW1516-mediated reduction 

in plasma TG levels was due to a substantial 63% reduction in VLDL-TG (Figure 4.1D). 

GW1516 intervention decreased epididymal fat mass by 11% compared to 4-week 

baseline, and by 35% compared to mice remaining on the HFHC diet alone (Figure 

4.2C) thus contributing to the attenuation in the rate of weight gain. 

GW1516-intervention maintained blood glucose and significantly decreased 

plasma insulin compared to levels in HFHC-fed mice at 4-weeks. Relative to mice 

remaining on the HFHC diet, GW1516 intervention completely prevented the significant 

increase in fasting blood glucose and markedly attenuated the induction of fasting 

hyperinsulinemia (Figure 4.3A,B). In addition, GW1516 intervention improved whole 

body insulin sensitivity, as evidenced by improved glucose and insulin tolerance tests 

(Figure 4.3 C,D). 
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Figure 4.1: GW1516 regresses diet-induced dyslipidemia.  

Ldlr-/- mice were fed standard chow, or a high-fat, high-cholesterol diet (HFHC) for 4 

weeks. For a subsequent 8 weeks, chow-fed mice remained on chow; the HFHC-fed 

mice either remained on HFHC alone or HFHC supplemented with GW501516 

(GW1516) (3mg/kg/day). A, Experimental timeline for all studies performed. B, Plasma 

cholesterol, triglyceride, and non-esterified fatty acid (NEFA) concentrations were 

measured at week 0, 4 and 12 (8-12/group). C and D, Plasma was subjected to FPLC 

analysis at week 12, and cholesterol and triglyceride were measured in the eluted 

fractions (n=3-5/group). Arrows indicate time of GW1516 intervention. Data is presented 

as mean +/- SEM. Different letters indicate significant differences; ANOVA with post-hoc 

Tukey’s test (P<0.05). * indicates significant difference versus HFHC at the end of the 

study; ANOVA with post hoc Bonferroni’s test (P<0.05). 
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Figure 4.2: GW1516-treatment attenuates rate of body weight gain and epididymal 

fat mass. Ldlr-/- mice were fed a standard lab chow, or a high-fat, high-cholesterol diet 

(HFHC) for 4 weeks. For a subsequent 8 weeks, chow-fed mice remained on chow; the 

HFHC-fed mice either remained on HFHC alone or HFHC supplemented with 

GW501516 (GW1516) (3mg/kg/day). A, Body weight. Arrow indicates time of GW1516 

intervention. B, Caloric intake expressed as kcal per gram body weight per day of study. 

C, Epididymal fat mass in grams. Data is presented as mean +/- SEM (n=8-12/group). 

Different letters indicate significant differences; ANOVA with post-hoc Tukey’s test 

(P<0.05). 
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Figure 4.3: GW1516 improves diet-induced dysregulation of metabolic indices.  

Ldlr-/- mice were fed standard chow, or a high-fat, high-cholesterol diet (HFHC) for 4 

weeks. For a subsequent 8 weeks, chow-fed mice remained on chow; the HFHC-fed 

mice either remained on HFHC alone or HFHC supplemented with GW501516 

(GW1516) (3mg/kg/day). A, Fasting blood glucose levels. B, Fasting plasma insulin 

concentrations. C, Intraperitoneal glucose tolerance test at 12 weeks. Inset graph, 

absolute area under the curve (glucose mmol/Lx120min). D, Intraperitoneal insulin 

tolerance test at 12 weeks. Inset graph, absolute AUC (glucose mmol/Lx60min). Data is 

presented as mean +/- SEM (n=8-12/group). Different letters indicate significant 

differences; P<0.05. 
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4.3.2 GW1516 ATTENUATES AORTIC SINUS ATHEROSCLEROSIS AND AORTIC 

INFLAMMATION IN HFHC-FED LDLR-/- MICE 

Examination of aortic sinus atherosclerosis revealed that oil red-O stained lesion 

area of HFHC-fed mice at 4 weeks progressed significantly (~6-fold) over the 

subsequent 8 weeks (Figure 4.4). In contrast, although lesion area continued to 

increase, the area was significantly attenuated in the GW1516-intervention cohort by 

~33% compared to animals remaining on the HFHC diet alone (Figure 4.4). Dietary 

GW1516 influenced lesion composition. As a percent of total area, lesions of HFHC-fed 

animals for either 4- or 12-weeks displayed infiltration of MOMA-2-positive 

macrophages, which was significantly attenuated by intervention with GW1516 (Figure 

4.4). No appreciable smooth muscle cell (SMC) infiltration or collagen deposition was 

observed in lesions of HFHC-fed mice at 4 weeks (Figure 4.4). However, smooth muscle 

α-actin occupied 40% of lesion area in HFHC-mice at 12 weeks, which was similar to 

that of GW1516-intervenion mice. On the other hand, 12 weeks of the HFHC diet 

resulted in collagen deposition comprising 25% of lesion area, which was further 

increased (to 35%) in GW1516 intervention mice, despite no further effect on percent 

lesion SMC content (Figure 4.4). Lipid analyses of full-length aortae from HFHC-fed 

mice at 12 weeks revealed that aortic TG and TC mass increased 1.4-fold and 1.6-fold, 

compared to HFHC-mice at 4 weeks (Figure 4.5A,B). GW1516 supplementation 

decreased aortic TG by 60% compared to the 12-week HFHC-fed cohort, and by 40% 

compared to the 4-week HFHC-fed mice. GW1516 supplementation decreased aortic 

TC by 27% compared to HFHC-mice at 12 weeks, but values remained elevated (30%) 

compared to HFHC-mice at 4 weeks. Collectively, these analyses indicate that 

intervention to the HFHC diet with GW1516, results in the attenuation of lesion 

progression and the development of smaller, more stable atherosclerotic lesions. 
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Figure 4.4: GW1516 attenuates HFHC-induced atherosclerosis.  

A, Representative examples are given for oil red-O and Hematoxylin, MOMA-2, SM α-

actin and Trichrome stained aortic sinus sections. B, Quantitation of Oil-red-O, MOMA-2, 

collagen and SM α-actin stained areas expressed as lesion area or % of lesion area 

(n=6-9/group). SM α-actin and collagen were undetectable in 4-week baseline aortic 

sinus sections. Data is presented as mean +/- SEM. Different letters indicate significant 

differences; ANOVA with post-hoc Tukey’s test (P<0.05). 
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Figure 4.5: GW1516 attenuates lipid accumulation, M1 macrophage markers and 

induces a shift towards M2 macrophage markers in full length aortae.  

A, Triglyceride (TG) and (B) cholesterol (TC) concentrations were determined in aortic 

extracts (n=5-7/group). C, mRNA abundance of the indicated proinflammatory M1 

cytokines and (D) the anti-inflammatory M2 cytokine Arg1 and the Arg1/iNos ratio, 

determined in full length aortae dissected free of fat and connective tissue (n=4-

6/group). Data is presented as mean +/- SEM. Different letters indicate significant 

differences; ANOVA with post-hoc Tukey’s test (P<0.05). 
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To further assess disease progression, we examined a panel of cytokines known to 

modulate atherogenesis. In the full length aorta, following 4 weeks of HFHC feeding, 

only Ccl3 and Icam1 expression were increased compared to chow-fed controls, 

indicative of monocyte recruitment without overt inflammation (Figure 4.5C). However, 

expression of pro-inflammatory M1 cytokines, Ccl3, II1b, Icam1, Tnf, II6, and Ccl2 were 

markedly induced (2-to 25-fold) in the aortae of mice fed the HFHC diet for 12 weeks. In 

contrast, although all cytokines were elevated in GW1516-treated mice compared to 

HFHC-fed mice at baseline (4 weeks), cytokine expression was significantly lower (-25 

to -85%, mean -60%) compared to HFHC-fed mice at 12 weeks (Figure 4.5C). Although 

lesion MOMA-2 stained macrophages decreased ~25% in GW1516-treated mice, the 

greater reduction in cytokine expression suggests that macrophages remaining in 

lesions of the intervention mice were less inflammatory. Furthermore, 12 week HFHC-

feeding significantly increased aortic expression of the M1 marker iNos and suppressed 

aortic expression of the anti-inflammatory M2 marker Arg1, resulting in a greatly 

exacerbated iNos/Arg1 ratio, compared to HFHC-fed mice at 4 weeks (Figure 4.5C,D). 

GW1516 intervention completely reversed this expression pattern. Together, these data 

suggest that although lesion macrophage content is lower (Figure 4.4), there is a shift 

from M1 to M2 cytokine expression in aortae from PPARδ-agonist treated mice. 

We examined the cell signaling cascades known to regulate the macrophage 

inflammatory response (Moore and Tabas, 2011, Stollenwerk et al., 2005). Significant 

activation of MAP kinases ERK1/2 and p38 was observed in full-length aortae of HFHC-

fed mice at 12 weeks, compared to chow-fed controls (Figure 4.6A). In addition, we 

observed a marked induction of NF-κB activation in HFHC-mice at 12 weeks, as 

demonstrated by increased phospho-IKK and phospho-IκBα (Figure 4.6B). In contrast, 

intervention with GW1516 abrogated HFHC-induced activation of both MAPK and NF-κB
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Figure 4.6: GW1516 corrects aberrant MAPK and NF-κB signaling in full-length 

aortae of HFHC-fed mice.  

A, Immunoblots of MAPK signaling markers including pERK1/2 and p-p38 and (B) NF-

κB signaling markers pIKK and IκBα in full length aortae dissected free of fat and 

connective tissue. Representative immunoblots of aortic lysates from two mice from 

each treatment group with quantitations of 4-6 mice/group are shown. Data is presented 

as mean +/- SEM. Different letters indicate significant differences; ANOVA with post-hoc 

Tukey’s test (P<0.05). Representative bands are from the same immunoblot, cut from 

different regions due to loading of multiple replicate lanes.  
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(Figure 4.6A,B). These results suggest that PPARδ activation diminishes aortic 

inflammation, in part, by attenuating diet-induced inflammatory signaling. 

4.3.3 GW1516-INTERVENTION CORRECTS DIET-INDUCED AORTIC INSULIN 

SIGNALING AND ER-STRESS, AND EXERTS PPARδ-SPECIFIC VESSEL WALL 

EFFECTS 

Genetic manipulations resulting in impaired insulin signaling in hematopoetic 

cells exacerbate atherosclerosis, due in part to increased aortic inflammation and ER-

stress (Fernandez-Hernando et al., 2007, Han et al., 2006, Tabas et al., 2010). Given 

the pro-inflammatory phenotype of aortae isolated from insulin-resistant HFHC-fed mice, 

we hypothesized that this was mediated in part by impaired aortic insulin signaling. To 

test this, we examined aortic phospho-Akt and phospho-FoxO1 in fasted and acutely re-

fed mice at the end of the 8-week intervention phase. Compared to chow-fed mice, Akt 

and FoxO1 phosphorylation was higher in the aortae excised from fasted HFHC-fed 

mice, and not further increased in response to re-feeding (Figure 4.7A). In contrast, 

GW1516-intervention restored the fasting-to-feeding dynamic regulation of Akt and 

FoxO1 phosphorylation to chow-fed controls (Figure 4.7A). The Src homology 2 domain-

containing phosphatase (SHP)-1 is a protein tyrosine phosphatase (PTP) primarily 

expressed by hematopoetic cells, and is a known negative regulator of hepatic insulin 

signaling (Dubois et al., 2006). We observed that aortae excised from HFHC-fed mice at 

12 weeks were significantly enriched for the SHP-1 transcript (Ptpn6) and SHP-1 

protein, 5- and 30-fold, respectively, both of which were strongly attenuated by 

intervention with GW1516 (Figure 4.7B,C).  

Coupled to dysregulated aortic insulin signaling was a significant increase in ER-

stress markers GRP78 and CHOP (Figure 4.7D). The known CHOP-target gene and 

negative regulator of insulin signaling, Trib3 (Du et al., 2003), was elevated in aortae of



203 

 

 

 

 

 

 

Figure 4.7: GW1516 corrects aberrant insulin signaling, the UPR and ER-stress in 

aortae of HFHC-fed mice.  

Western blotting or qRT-PCR were performed on full length aortae dissected free of fat 

and connective tissue. A, Immunoblots of insulin signaling proteins phosphorylated (p) 

AKT and pFoxO1 in aortae excised from mice fasted for 16h (designated F) and fasted 

for 16h followed by a 2h re-feeding period (designated RF) (n=6-8/group). B, mRNA 

abundance of negative regulator of insulin signaling Ptpn6 (n=4-6/group).  C, 

Immunoblots of SHP-1 (the protein product of Ptpn6) (n=4-6/group). D, ER-stress 

markers GRP78 and CHOP (n=4-6/group). E, mRNA abundance of negative regulator of 

insulin signaling Trib3 (n=4-6/group). Data is presented as mean +/- SEM. 

Representative immunoblots with quantitations shown. For A, different upper case 

letters indicate statistical significance among fasted animals, different lower case letters 

indicate statistical significance among re-fed animals, and asterisk (*) indicates statistical 

significance between fasted and re-fed within the same diet (P<0.05); two-way ANOVA 

with post-hoc Tukey’s test (P<0.05). For B-E different letters indicate significant 

differences; one-way ANOVA with post-hoc Tukey’s test (P<0.05). Representative bands 

are from the same immunoblot, cut from different regions due to loading of multiple 

replicate lanes. 
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HFHC-fed 12 week mice (Figure 4.7E). GW1516 intervention attenuated GRP78, CHOP 

and Trib3 to levels observed in 12-week chow-fed controls (Figure 4.7D,E).  

To determine whether GW1516 exerted effects directly at the level of the aorta, 

we examined aortic expression of known PPARδ target genes. Expression of Adfp, 

Angptl4 and Cpt1a was significantly increased in aortae of GW1516-treated mice 

compared to HFHC-fed mice or chow-fed controls at 12 weeks (Figure 4.8A). Expression 

of the PPARα- and PPARγ-specific target genes (Acox and Lpl, respectively) were 

unaffected by GW1516-treatment (Figure 4.8B). Similar results were observed in liver 

(Chapter 5, Figure 5.1). These results suggest that GW1516 exerts a direct effect on the 

arterial wall, which likely contributes to the attenuation of inflammation, insulin 

resistance, ER-stress and diet-induced lesion progression. These results further indicate 

that with respect to PPARs, the aortic effects of GW1516 are PPARδ-specific. 
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Figure 4.8: GW1516 activates aortic PPARδ but not PPARα or PPARγ.  

A, mRNA abundance of PPARδ-target genes Adfp, Angtpl4 and Cpt1a and B, PPARα- 

and PPARγ-target genes Acox and Lpl, respectively in full length aortae dissected free 

of fat and connective tissue (n=4-6/group). Data is presented as mean +/- SEM. Different 

letters indicate significant differences; ANOVA with post-hoc Tukey’s test (P<0.05).  
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4.4 DISCUSSION 

Risk of atherosclerotic cardiovascular disease is elevated up to 4-fold in adults 

with type 2 diabetes (Fox et al., 2007, Fox et al., 2004). Despite this, therapeutic 

strategies to alleviate atherosclerosis associated with insulin resistant syndromes have 

remained sparse. Reports have speculated that PPARδ agonists may confer 

atheroprotection in settings of insulin resistance (Coll et al., 2010). The present study is 

the first to demonstrate that intervention with a synthetic PPARδ agonist in the context of 

diet-induced dyslipidemia and insulin resistance attenuates progression of early stage 

lesions to more complex lesions. Furthermore, we show that in HFHC-fed mice, the 

inflammatory response and insulin signaling within the aorta are impaired, which are 

completely reversed by PPARδ activation. 

Atherogenic dyslipidemia in the setting of insulin resistance is characterized by 

elevated plasma VLDL and LDL, concomitant with reduced plasma HDL (Ginsberg, 

2000, Grundy, 2004). Statins are the current standard of therapy and effectively lower 

plasma LDL concentrations, reducing the relative risk of cardiovascular disease by ~30% 

(Bays et al., 2011, Kearney et al., 2008). However, statins do not fully correct other 

features of atherosclerosis risk, namely elevated plasma VLDL, decreased HDL, insulin 

resistance, and body fat composition, resulting in a substantial unmet therapeutic need 

(Sattar et al., 2010). The present study demonstrates that intervention with a synthetic 

PPARδ agonist to a HFHC diet corrects previously established metabolic disturbances. 

Although plasma LDL was modestly reduced, our results suggest that PPARδ activation 

primarily targets plasma VLDL and HDL. This is consistent with recent human studies 

demonstrating that synthetic PPARδ agonists correct mixed dyslipidemia in patients with 

the metabolic syndrome (Bays et al., 2011, Ooi et al., 2011). The present study 
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contributes to the plausibility of PPARδ agonists as therapeutic agents for metabolic 

dysregulation associated with insulin resistance.  

We recently demonstrated in cultured macrophages that PPARδ activation 

attenuates VLDL-induced triglyceride accumulation and pro-inflammatory cytokine 

expression (Chapter 2). We extend these in vitro findings, demonstrating that 

intervention with GW1516-treatment induces regression of aortic TG content associated 

with significant induction of the PPARδ-target genes Angptl4 and Cpt1a. These results 

suggest that GW1516 may stimulate aortic fatty acid β-oxidation and inhibit aortic 

lipoprotein lipase activity, thus contributing to reduced atherogenesis. We provide 

evidence that inflammatory cells within the aortae of HFHC-fed animals were polarized 

to the classically activated pro-inflammatory M1 phenotype (Goerdt et al., 1999, Mills et 

al., 2000). Furthermore, intervention with GW1516 resulted in polarization towards the 

anti-inflammatory M2 state (Gordon, 2003), consistent with reports demonstrating that 

alternative M2 activation of adipose tissue macrophages and hepatic Kupffer cells is, in 

part, mediated by PPARδ (Kang et al., 2008, Odegaard et al., 2008). M2 macrophages 

are thought to contribute to tissue remodelling and repair (Gordon, 2003), and are 

increased in lesions undergoing regression (Feig et al., 2011). Although GW1516 did not 

induce regression of early lesions, the M2 phenotype was associated with significant 

slowing of lesion progression. Longer-term studies would be required to assess whether 

PPARδ agonists can induce regression of more complex lesions. Nevertheless, the 

present study demonstrates the ability of PPARδ activation to alleviate aortic lipid 

accumulation and inflammation, thus contributing to attenuated lesion development. 

That GW1516 increased lesion collagen deposition without altering lesion SMC 

content is possibly due to PPARδ activation having a direct effect on plaque SMCs, 

enhancing their capacity to synthesize and deposit extracellular matrix. This hypothesis 



210 

 

 

is consistent with a report that PPARδ activation in cultured vascular (v) SMCs inhibits 

IL-1β-induced matrix metalloproteinase (MMP)-2 and MMP-9 expression (Kim et al., 

2010). Although reduced lipid deposition in VSMCs restores their capacity to synthesize 

extracellular matrix (Beyea et al., 2012, Frontini et al., 2009), the ability of PPARδ 

agonists to improve VSMC function in response to a lipid load requires further study.  

The MAPK and NF-κB signaling pathways are critical regulators of inflammatory 

cytokine expression (Moore and Tabas, 2011, Stollenwerk et al., 2005). In the aortae of 

HFHC-fed animals, we observed marked activation of both of these cascades. 

Intervention with GW1516 almost completely normalized both MAPK and NF-κB 

activation. In cardiac myocytes, the PPARδ agonist GW0742 has been shown to 

attenuate lipopolysaccharide–induced NF-κB activation through increased IκB 

expression, thereby inhibiting nuclear translocation of NF-κB (Ding et al., 2006). We did 

not observe any appreciable changes in total aortic IκB protein. Thus, the mechanism by 

which PPARδ inhibits NF-κB activation in the context of aortic inflammation remains to 

be determined. With respect to MAPK activation, GW0742 inhibited angiotensin II-

induced phosphorylation of ERK1/2 and p38 in mouse macrophages, via upregulation of 

Rgs4 and Rgs5 (Takata et al., 2008). Consistent with this report, we observed a 

significant upregulation of both Rgs4 and Rgs5 in aortae of GW1516-treated animals 

compared to aortae from HFHC-fed mice (Figure 4.9). Taken together, these results 

suggest that PPARδ activation in the aorta attenuates inflammatory signaling, leading to 

the attenuation of aortic inflammatory cytokine expression. 

Impaired insulin signaling in the vasculature has recently emerged as a major 

contributor to lesion progression (Tabas et al., 2010). Ldlr-/- mice receiving Insr-/- bone 

marrow developed larger more complex lesions, attributed to enhanced ER-stress and 

apoptosis-induced necrotic core formation (Han et al., 2006). Insulin-resistant
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Figure 4.9: GW1516 stimulates aortic expression of regulators of G-protein 

coupled receptor signaling Rgs4 and Rgs5. Ldlr-/- mice were fed a standard lab 

chow, or a high-fat, high-cholesterol diet (HFHC) for 4 weeks. For a subsequent 8 

weeks, chow-fed mice remained on chow; the HFHC-fed mice either remained on HFHC 

alone or HFHC supplemented with GW501516 (GW1516) (3mg/kg/day). Mice were 

fasted for 4h prior to sacrifice. Analyses were performed on samples of full length aortae 

dissected free of fat and connective tissue. The indicated cytokines were measured by 

qRT-PCR. Target genes were normalized to Gapdh. Expression relative to chow 

depicted for each cytokine as mean +/- SEM (n=4-6/group). Different letters indicate 

significant differences; ANOVA with post-hoc Tukey’s test (P<0.05).  

 



212 

 

 

 

 

 

 

 

 

 

 

 

 



213 

 

 

macrophages with cholesterol-induced ER-stress display impaired Akt phosphorylation, 

increased nuclear FoxO1 activity and enhanced apoptosis (Senokuchi et al., 2008). In 

addition to macrophages, aberrant insulin signaling in vascular endothelial cells can also 

play a role in atherogenesis, as deletion of three Foxo isoforms in these cells resulted in 

atheroprotection, attributed in part to an anti-inflammatory effect (Tsuchiya et al., 2012). 

Although these proof-of-concept gene-deletion models highlight the significance of 

vascular insulin signaling in atherogenesis, these studies do not identify whether insulin 

signaling becomes dysregulated during lesion development (Bornfeldt and Tabas, 2011). 

Here we demonstrate that mice with diet-induced atherosclerosis exhibit impaired aortic 

insulin signaling, as evidenced by the loss of dynamic fasting-to-feeding regulation of 

both Akt and FoxO1 phosphorylation, coupled to a marked induction of negative 

regulators of insulin signaling, SHP-1 and Trib3 (Du et al., 2003, Dubois et al., 2006). 

Our data suggests that the loss of insulin regulation of both Akt and FoxO1 results in 

FoxO1 target genes such as Il1b (Su et al., 2009), to be chronically transcribed, rather 

than dynamically regulated during states of fasting and re-feeding. We propose that this 

mechanism contributes to the accumulation of pro-inflammatory mediators in the vessel 

wall, inducing a state of chronic low-grade inflammation. Moreover, this impairment of 

aortic insulin signaling is correlated with significant elevations in ER-stress markers 

CHOP and GRP78. We further demonstrate that activation of PPARδ restores dynamic 

insulin signaling responses within the aorta and attenuates ER-stress. It is important to 

note that the presence of arterial insulin resistance did not impair the ability of GW1516 

to attenuate pre-established lesion progression. Thus, although difficult to quantify, it 

remains possible that improved insulin signaling within GW1516-treated aortae 

contributes to protection from lesion progression. 
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In this study, a major factor in the attenuation of lesion development by 

intervention with GW1516 is reduction of plasma lipids, particularly VLDL/IDL, thereby 

reducing the atherogenic stimulus. However, the data presented here clearly 

demonstrate that in the aorta, GW1516 stimulates PPARδ-specific target genes, which 

are known to improve macrophage lipid homeostasis and attenuate the inflammatory 

response. Although these effects likely contribute to the observed reduction in 

atherosclerosis, further studies are required to elucidate the extent to which improved 

metabolic parameters, as compared to direct vessel wall effects contribute to PPARδ-

mediated atheroprotection. Nevertheless, the current study provides strong evidence 

that intervention to a HFHC diet with a PPARδ agonist delays the HFHC diet-induced 

progression of early lesions. It will be important to determine if intervention by PPARδ 

activation improves the pathology of more advanced lesions and whether extended 

treatment is able to achieve regression. We conclude that PPARδ activation remains a 

viable therapeutic target for atherosclerosis prevention and treatment. 
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*a version of this chapter has been submitted 

 

Chapter 5* 
PPARδ-specific activation in liver attenuates triglyceride accumulation via 

enhanced fatty acid oxidation, reduced fatty acid synthesis and improved insulin 
sensitivity 

 
5.1 INTRODUCTION 

The prevalence of the metabolic syndrome has reached an epidemic proportion 

which has significantly increased the incidence of type 2 diabetes and atherosclerotic 

cardiovascular disease (Eckel et al., 2010). It represents a constellation of metabolic 

abnormalities that include obesity, hypertension, glucose intolerance and a dyslipidemia 

characterized by low plasma high-density lipoprotein (HDL) and high plasma very low-

density lipoprotein (VLDL) (Eckel et al., 2010). Insulin resistance can explain most, if not 

all of the metabolic syndrome and is defined as the inability of the hormone to maintain 

blood glucose homeostasis (Eckel et al., 2010, Haas and Biddinger, 2009). During 

insulin resistance hepatic lipogenesis persists which promotes hepatic steatosis, 

dyslipidemia and consequently cardiovascular disease risk (DeFronzo, 2010). Despite 

the prevalence of insulin resistant conditions and their significant morbidity and mortality, 

few therapeutic strategies exist that effectively correct these metabolic disorders. 

Hepatic steatosis, defined as excessive lipid accumulation in the liver, is a major 

clinical manifestation of insulin resistance observed in greater than 40% of patients with 

type 2 diabetes (Farese et al., 2012, Williamson et al., 2011). Although a causal 

relationship between hepatic steatosis and insulin resistance has been difficult to define 

(Farese et al., 2012), inflammation and endoplasmic reticulum (ER)-stress have been 

implicated as contributing factors to dysregulated hepatic insulin signaling (Hummasti 

and Hotamisligil, 2010, Ozcan et al., 2004). As a consequence, hyperinsulinemia-

mediated lipogenesis ensues which contributes to ectopic lipid deposition (Brown and 



222 

 

Goldstein, 2008). At a molecular level, insulin binding to its cognate receptor leads to 

receptor-mediated tyrosine phosphorylation of IRS-1 and/or IRS-2, which in turn 

activates PI3-K to simulate the phosphorylation and activation of Akt (Kido et al., 2001). 

Normally, the downstream consequences of insulin-stimulated Akt activation include 

suppression of hepatic gluconeogenesis due to phosphorylation and inactivation of 

forkhead box (Fox) O1, and promotion of de novo lipogenesis due to phosphorylation 

and activation of the mammalian target of rapamycin complex (mTORC1) (Li et al., 

2010). However, in the insulin resistant liver, Akt loses its ability to effectively inactivate 

FoxO1, but paradoxically maintains its ability to activate mTORC1 (Li et al., 2010). 

Consequently, mTORC1-driven transcription of the master regulator of lipogenesis, 

sterol regulatory element binding protein (SREBP)-1c, remains chronically active. In 

addition, insulin increases the amount of proteolytically processed active SREBP-1c 

through mechanisms that remain poorly understood (Yecies et al., 2011). Coupled to 

hyperinsulinemia, these actions of insulin during hepatic insulin resistance lead to 

continuous activation of genes required for fatty acid synthesis, thus contributing to 

excessive hepatic lipid accumulation.  

In addition to unregulated lipogenesis, decreased fatty acid oxidation often 

contributes to exacerbation of lipid content in the insulin resistant liver (Assini et al., 

2013, Mulvihill et al., 2009, Mulvihill et al., 2011). The adenosine monophosphate-

activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase 

that controls cellular and whole body energy metabolism (Dzamko and Steinberg, 2009, 

Fullerton et al., 2013). Specifically, hepatic AMPK is a pivotal regulator of fat oxidation 

and lipogenesis, primarily via direct phosphorylation and inhibition of acetyl-CoA 

carboxylase (ACC) (Fullerton et al., 2013, Kemp et al., 2003). Biochemically, this 

reduces malonyl CoA levels in the liver which (1) depletes fatty acid synthase (FAS) of 

substrate in the lipogenic pathway and (2) results in the de-repression of CPT1α in the 
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fatty acid oxidation pathway (Carlson and Kim, 1973, Saggerson, 2008). Thus, activation 

of AMPK represents a potential mechanism for the attenuation of hepatic steatosis. 

Peroxisome proliferator-activated receptors (PPARα, γ and δ) are a class of 

ligand-dependent transcription factors involved in regulation of glucose and lipid 

homeostasis (Evans et al., 2004). In contrast to PPARα and PPARγ, synthetic agonists 

for PPARδ have yet to reach the clinical arena, despite a number of studies having 

highlighted a potential role for this receptor in the treatment of metabolic disease (Reilly 

and Lee, 2008). In mice, genetic manipulations of Pparδ as well as prevention 

experiments involving administration of PPARδ agonists have revealed that activation of 

this receptor attenuates dyslipidemia and hyperglycemia, improves whole-body insulin 

sensitivity and prevents diet-induced obesity (Lee et al., 2006, Tanaka et al., 2003, 

Wang et al., 2003).  

With respect to PPARδ and hepatic lipid metabolism in mice, there are seemingly 

conflicting and controversial reports. Supplementation of mice with the PPARδ agonist 

GW1516 attenuated diet-induced hepatic steatosis; however the 2-fold increase in 

hepatic Acox expression suggested a PPARα-dependent effect (Nagasawa et al., 2006). 

Tanaka et al. reported that increased expression of genes involved in hepatic fat 

oxidation resulted in reduced hepatic TG in high-fat fed mice treated with GW1516 

(Tanaka et al., 2003). In db/db mice injected with adenoviral PPARδ (adPPARδ), liver 

TG content was reduced as a result of decreased SREBP-1c-mediated lipogenesis (Qin 

et al., 2008). Despite reports suggesting reduced hepatic steatosis, studies also 

demonstrated that PPARδ activation exerts either no effect (Barroso et al., 2011), or 

induction of liver TG accumulation (Lee et al., 2006, Liu et al., 2011). In db/db mice, 

GW1516-treatment resulted in accrual of hepatic TG as a result of direct transcriptional 

activation of ACCβ, and in turn, enhanced fatty acid synthesis (Lee et al., 2006). 

adPPARδ gene delivery to Ldlr-/- increased hepatic de novo lipogenesis and hepatic TG 
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(Liu et al., 2011). Of significance, none of these studies actually measured hepatic fatty 

acid oxidation. 

That PPARδ activation increases hepatic steatosis is counterintuitive since 

PPARδ agonists are known to improve whole-body insulin sensitivity and lipid 

homeostasis, and stimulate Cpt1a-mediated fatty acid oxidation in a variety of cell types 

and tissues (Lee et al., 2006, Tanaka et al., 2003, Wang et al., 2003). Furthermore, in 

muscle, GW1516 stimulated fatty acid oxidation, in part, through increased AMPK 

activity (Kramer et al., 2007, Kramer et al., 2005). Additionally, in a model of hepatic 

steatosis, GW1516 prevented the diet induced inactivation of hepatic AMPK (Barroso et 

al., 2011). This suggests that AMPK activation by PPARδ agonists has the ability to 

regulate hepatic β-oxidation and/or fatty acid synthesis. 

The objective of this study was to determine whether intervention to a high-fat, 

cholesterol containing diet (HFHC) with a selective PPARδ agonist can reverse hepatic 

steatosis. We demonstrate that GW1516 inhibited hepatic lipid deposition, a result of 

attenuated lipogenesis and increased fatty acid oxidation. Decreased fatty acid synthesis 

was due to GW1516-mediated correction of selective hepatic insulin resistance. We 

discovered that AMPK activation was required for the PPARδ-mediated attenuation of de 

novo lipogenesis, but was not required for PPARδ-mediated induction of fatty acid 

oxidation. The reduced liver TG content was coupled to attenuated hepatic inflammation 

and ER-stress. 
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5.2 MATERIALS AND METHODS 

5.2.1 ANIMALS AND DIETS 

Male Ldlr-/- mice on the C57BL/6 background were obtained from the Jackson 

Laboratory and housed in pairs in standard cages at 23ºC. The animals were cared for in 

accordance with the Canadian Guide for the Care and Use of Laboratory Animals, and 

all experimental procedures were approved by the Animal Care Committee at the 

University of Western Ontario. Mice 10-12 weeks of age (n=16) were fed ad libitum, a 

purified rodent chow diet (14% of calories from fat, Harlan Teklad TD8604, Madison WI) 

for 12 weeks. Another group of mice (10-12 weeks of age, n=48) were fed a high-fat 

cholesterol-containing western diet (HFHC - 42% of calories from fat, 0.2% cholesterol, 

Harlan Teklad TD09268) for 4 weeks. For the subsequent 8 weeks, half of these mice 

(n=24) remained on the HFHC diet, whereas the other half (n=24) were fed the HFHC 

diet supplemented with 3mg/kg/day GW1516 (Enzo Life Sciences, Ann Arbor, MI). In 

previously published reports, this dose administered by oral gavage produced plasma 

concentrations of GW1516 (106nmol/L) that was >1,000-fold more selective for PPARδ, 

compared to PPARα or PPARγ (Barish et al., 2008, Barroso et al., 2011, Narkar et al., 

2008). Animals were fasted for 4h prior to analyses or sacrifice. For fasting/re-feeding 

studies, animals were either fasted for 16h prior to sacrifice or fasted for 16h followed by 

a 2h acute re-feeding period of the experimental diets prior to sacrifice (Lu et al., 2012). 

Blood samples were obtained as previously described (Mulvihill et al., 2009, Mulvihill et 

al., 2010).  

5.2.2 ACTIVATION OF AMPK IN VIVO  

Activation of AMPK in vivo was assessed following intraperitoneal injection of 

GW1516 or A-769662. Analysis of respiratory exchange ratio (RER) was performed 

using the Oxymax Columbus Instruments Comprehensive Lab Animal Monitoring 

System (CLAMS) (Columbus Instruments, Columbus, OH); mice were acclimatized to 
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the system for 24hr prior to data collection. Animals were fasted overnight (15:00-07:00) 

to synchronize RER to ~0.7, followed by a period of free access to food (experimental 

diets) and water at 07:00 for 2hrs to re-synchronize RER to ~1. At 09:00, chow was 

removed and mice were injected with vehicle (5% dimethyl sulfoxide in phosphate-

buffered saline), 3mg/kg GW1516 or 30mg/kg A-769662 (SelleckBio, Houston, TX), a 

synthetic activator of AMPK (Cool et al., 2006). Metabolic measurements were collected 

until 15:30. Carbohydrate (4.58*VCO2-3.23*VO2) and fat (1.70*VO2 - 1.69*VCO2) 

utilization were calculated as previously described (Hawley et al., 2012). Analyses of in 

vivo phosphorylation of AMPK and ACC were performed in liver samples isolated at 

sacrifice by freeze-clamp method 90min after injection of the respective treatment and 

stored at -80°C until analysis as described (Hawley et al., 2012). 

5.2.3 ENERGY EXPENDITURE 

In the induction/intervention studies, analyses of energy expenditure (EE) and 

(RER) was performed using the Oxymax Columbus Instruments CLAMS; mice were 

acclimatized to the system for 24hr prior to a 24hr data collection period.  

5.2.4 PRIMARY MOUSE HEPATOCYTE ISOLATION, LIPOGENESIS AND FATTY 

ACID OXIDATION 

Primary mouse hepatocytes were isolated from WT or AMPKβ1-/- C57Bl/6J mice 

by the collagenase perfusion method as described (Dzamko et al., 2010). Experiments 

were performed the day following hepatocyte isolation. For mRNA expression analyses 

hepatocytes were incubated with either vehicle, GW1516 or A-769662 (at the indicated 

concentrations) for 6hrs prior to lysis in TRIzol® reagent. For lipogenesis and fatty acid 

oxidation experiments, cells were washed with PBS and incubated in serum-free 

Medium 199 for 3hrs. Lipogenesis was assessed by incubating cells with serum-free 

Medium 199 containing [1-14C]acetate (0.5 μCi/ml) (Amersham Biosciences) and 0.5 

mM unlabeled sodium acetate. After a 4hr incubation, cells were washed twice with PBS 
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and harvested by scraping cells into PBS. Lipids were extracted using the Bligh and 

Dyer method as described (Steinberg et al., 2006, Watt et al., 2006). For fatty acid 

oxidation, cells were incubated for 4hrs with serum-free Medium 199 containing [1-

14C]palmitic acid (0.5 μCi/ml) (Amersham Biosciences) and 0.5 mM unlabeled palmitate. 

Fatty acid oxidation was determined by measuring labelled CO2 and acid-soluble 

metabolites as described (Chen et al., 2005). 

5.2.5 PLASMA, BLOOD AND TISSUE ANALYSES 

Plasma insulin concentrations were determined by ELISA (Alpco Diagnostics, 

Salem, NH) in EDTA-plasma as per manufacturer’s instructions as described previously 

(Mulvihill et al., 2011). Blood glucose was determined using an Ascensia Elite 

glucometer (Bayer Healthcare, Toronto, Canada) (Mulvihill et al., 2011). Liver lipids were 

extracted from 100mg of tissue using the method of Folch et al. and quantitated as 

described previously (Assini et al., 2013, Folch et al., 1957). Fatty acid synthesis was 

measured following intraperitoneal injection of [1-14C]acetic acid as described (Mulvihill 

et al., 2009). Hepatic fatty acid oxidation was determined in tissue homogenates of fresh 

liver by conversion of [3H]palmitate to 3H2O (Mulvihill et al., 2009).  

5.2.6 IMMUNOBLOTTING AND DENSITOMETRY 

Total cell lysates were isolated from livers or primary mouse hepatocytes of mice 

as previously described (Beyea et al., 2007, Rowe et al., 2003). Proteins were separated 

by SDS-PAGE, transferred to polyvinylidene difluoride membranes and immunoblotted 

(Rowe et al., 2003). Lysates were probed using antibodies against mouse phospho and 

total Akt, FoxO1, mTORC1, AMPK and ACC as well as GRP78, CHOP and β-actin (Cell 

Signaling, Danvers, MA). Quantitation of protein was determined by densitometry as 

described (Beyea et al., 2007, Rowe et al., 2003).  
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5.2.7 QUANTITATIVE REAL-TIME PCR GENE ABUNDANCE ANALYSIS 

Total RNA was isolated from livers or primary mouse hepatocytes via TRIzol® 

reagent (Life Technologies, Burlington, ON) as per manufacturer’s instructions. Specific 

mRNA abundances (Pgc1a, Ppara, Acox, Cpt1a, Adfp, Srebpf1c, Fasn, Pck1, Tnf, 

Icam1, Il1b, Ccl2, Ccl3, iNos, Arg1 and Gapdh) were measured via quantitative real-time 

PCR (qRT-PCR) using an ABI Prism (7900HT) Sequence Detection System (Applied 

Biosystems, Foster City, CA) as previously described (Beyea et al., 2012, Mulvihill et al., 

2009). mRNA abundances were calculated using the standard curve method  

5.2.8 STATISTICAL ANALYSES 

Data are expressed as means +/- SEM. One-way ANOVA followed by the 

Bonferroni test was used to determine significant differences between two groups. One-

way ANOVA followed by pair-wise comparisons by the Tukey’s test was used to 

determine differences between three or more groups. For fasting/re-feeding experiments 

and experiments involving WT or AMPKβ1-/- primary mouse hepatocytes, two-way 

ANOVA followed by pair-wise comparisons by the Tukey’s test was used to determine 

statistically significant differences and interactions. Significance thresholds were P 

values less than 0.05 and marked by different upper case or lower case letters as well 

as asterisks as indicated in the figure legends.  
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5.3 RESULTS 

5.3.1 GW1516-TREATMENT ATTENUATES HEPATIC TG ACCUMULATION, IN 

PART, BY STIMULATING FATTY ACCY β-OXIDATION  

To examine the role of PPARδ activation in hepatic lipid metabolism, male 

C57BL/6 Ldlr-/- mice were administered a HFHC diet for 4 weeks to induce hepatic 

steatosis. Subsequently, mice were fed the HFHC diet supplemented with either vehicle 

or GW1516 (3mg/kg/day) for an additional 8 weeks. In mice fed the HFHC diet, 

prominent hepatic steatosis developed at the end of the 4-weeks, as evidenced by 

significantly increased TC, CE and TG (Figure 5.1A). These lipids continued to increase 

over the subsequent 8 weeks on the HFHC diet. In contrast the addition of GW1516 to 

HFHC diet for 8 weeks decreased hepatic lipids by 30-50% demonstrating a significant 

slowing of steatosis progression (Figure 5.1A).  

We reasoned that GW1516 attenuates liver TG accumulation via increased fatty 

acid (FA) β-oxidation and/or reduced fatty acid synthesis. With respect to FA oxidation, 

Pgc1a expression was suppressed in livers of mice fed the HFHC-diet for 12 weeks (-

20% compared to chow-fed mice), which was not further affected by GW1516-treatment 

(Figure 5.1B). Furthermore, at 12 weeks, the expression of Ppara and the PPARα-target 

gene Acox were unaffected by any diet (Figure 5.1C,D). In contrast, Cpt1a mRNA 

abundance was significantly enhanced (35%) in livers isolated from GW1516-treated 

animals, which was associated with a 50% increase in FA oxidation as compared to 

HFHC-fed animals (Figure 5.1E,F). We next examined the expression of the PPARδ-

specific target gene Adfp to determine whether hepatic PPARδ was activated in 

response to GW1516-treatmend. Indeed, expression of Adfp was significantly increased 

(2-fold) in liver from GW1516-treated animals (Figure 5.1G). Collectively, these results 

suggest that GW1516 attenueates liver TG accumulation partly due to increased hepatic 
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Figure 5.1: GW1516 attenuates diet-induced hepatic steatosis, in part, via 

increased fatty acid oxidation.  

Ldlr-/- mice were fed a high-fat, cholesterol-containing diet (HFHC) for 4 weeks. For a 

subsequent 8 weeks, mice remained on HFHC alone or supplemented with GW50516 

(GW1516) (3mg/kg/day) (n=12/group). A, Hepatic triglyceride (TG), total cholesterol (TC) 

and cholesteryl ester (CE) mass. Abundance of hepatic Pgc1a (B) Ppara (C) Acox (D) 

Cpt1a (E) and Adfp (G) was measured via qRT-PCR and normalized to Gapdh. F, 

Hepatic fatty acid β-oxidation was determined as conversion of [3H]palmitate to 3H20. 

Energy expenditure (H) and respiratory exchange ratio (I) (RER=VO2/VCO2) were 

measured by indirect calorimetry (CLAMS system) during a 24hr period. Measurements 

were collected every 10 min. Mean of each parameter during the 24hr period shown. 

Data is presented as mean +/- SEM. Different letters indicate significant differences; 

ANOVA with post-hoc Tukey’s test (P<0.05). Asterisk (*) indicates significant different 

between two groups; student’s paired t-test (P<0.05)  
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FA β-oxidation, which does not involve the activation of PGC1α or PPARα.  

To further investigate the increase in hepatic FA oxidation by GW1516-treatment, 

we assessed energy balance in an animal metabolic monitoring system. Total energy 

expenditure (EE) was significantly higher (16%) in mice receiving GW1516 compared to 

mice remaining on the HFHC diet alone (Figure 5.1H). As there was no significant 

difference in caloric intake between the diet groups (Chapter 4, Figure 4.2B) increased 

energy expenditure likely contributed to the significant 30% attenuation of body weight 

gain observed in Chapter 4 (Figure 4.2A). Nevertheless, the respiratory exchange ratio 

(RER) profiles, which reflect the relative utilization of carbohydrate (RER~1) versus fat 

(RER~0.7), were similar between the HFHC-fed and GW1516-intervention groups 

(Figure 5.1I). Given the significant increase in total EE in GW1516-treated mice, the lack 

of difference in RER profiles suggests that both carbohydrate and fat utilization are 

increased by PPARδ activation. 

5.3.2 AMPK ACTIVATION IS NOT REQUIRED FOR THE GW1516-MEDIATED 

INCREASE IN FAT OXIDATION 

AMPK is a cellular energy sensor that regulates fat oxidation, in part, through 

phosphorylation of its downstream substrate ACC (O'Neill et al., 2012). Given that 

PPARδ activation stimulated hepatic FA oxidation in vivo, we hypothesized that AMPK 

activation may be involved. To evaluate the ability of GW1516 to directly stimulate acute 

hepatic AMPK activation in vivo, we employed a fasting, feeding, injection and re-fasting 

protocol (Hawley et al., 2012). In livers isolated 90min after the injection of GW1516, we 

observed a significant 2-fold increase in phosphorylation of AMPK and ACC (Figure 

5.2A). Mice were also injected with the potent synthetic AMPK activator A-769662 (Cool 

et al., 2006), which increased AMPK and ACC phosphorylation ~2.5-fold (Figure 5.2A).  
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Figure 5.2: GW1516 increases AMPK and ACC phosphorylation, which is not 

required for fatty acid oxidation. 

Eight to ten week-old Ldlr-/- mice fed a standard laboratory chow were fasted overnight, 

fed at 0700 for 2hrs and re-fasted at 0900. Intraperitoneal injection of vehicle, GW1516 

(3mg/kg) or A-769662 (30mg/kg) (n=6/group) occurred at the beginning of the re-fasting 

period at 0900. A, Immunoblots of AMPK and ACC in freeze-clamped liver lysates 90-

min post-injection. Representative immunoblots with quantitations shown. B-F, Primary 

hepatocytes isolated from WT and β1-/- mice. Cells were incubated for 1hr with or without 

GW1516 or A-769662 and lysates were immunoblotted for phosphorylated (p)AMPK and 

pACC (B). Representative immunoblots with quantitations are shown. C, Isolated 

hepatocytes were treated with 0.5mM palmitate (0.5μCi/mL [14C]palmitate) for 4hrs with 

or without GW1516 or A-769662 prior to determination of fatty acid oxidation. In isolated 

hepatocytes treated with or without GW1516 or A-769662 for 6hrs, mRNA abundances 

of Cpt1a (D), Adfp (E) and Acox (F) were measured by qRT-PCR and normalized to 

Gapdh. Data is presented as mean +/- SEM (n=3-4 from at least 3 independent 

experiments). In (A) asterisk (*) indicates significant difference between vehicle and 

treatment; student’s paired t-test (P<0.05). In (B) # and † indicate significant difference 

versus WT control; two-way ANOVA with post-hoc Bonferroni’s test (P<0.05). In (C-F) 

different upper case letters indicate statistical significance among treatments in WT 

hepatocytes, different lower case letters indicate statistical significance among 

treatments in β1-/- hepatocytes, and an asterisk (*) indicates statistical significance 

between WT and β1-/- within the same treatment group (P<0.05); two-way ANOVA with 

post-hoc Tukey’s test (P<0.05).  
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To investigate the requirement of AMPK in the GW1516-mediated stimulation of 

FA oxidation, we isolated primary mouse hepatocytes from wild type (WT) or AMPKβ1-/- 

mice (referred to as β1-/- mice). Deletion of the β1 subunit of AMPK results in 90% loss of 

hepatic AMPK activity (Dzamko et al., 2010). As depicted in Figure 5.2B, both GW1516 

and A-769662 increased phosphorylation of AMPK and ACC in isolated WT primary 

mouse hepatocytes but not β1-/- hepatocytes. Furthermore, GW1516 and A-769662 

stimulated a modest but significant 30% increase in FA oxidation in isolated WT 

hepatocytes (Figure 5.2C). The effect of A-769662 was lost in β1-/- hepatocytes, 

consistent with an AMPK-dependent effect (Hawley et al., 2012). However, in β1-/- 

hepatocytes GW1516 stimulated fat oxidation to the same extent as in WT cells (Figure 

5.2C). To reconcile this, we examined Cpt1a expression in WT and β1-/- hepatocytes and 

found that GW1516-treatment significantly enhanced Cpt1a expression (~2-fold) 

irrespective of genotype (Figure 5.2D). A-769662 treatment had no effect on Cpt1a 

mRNA abundance in WT or β1-/- hepatocytes (Figure 5.2D). The PPARδ-specific target 

gene Adfp was increased 2-fold in isolated hepatocytes from either genotype, whereas 

the PPARα-specific target Acox was unaffected by genotype or treatment (Figure 

5.2E,F). Taken together, these results provide evidence that the ability of GW1516 to 

increase FA oxidation does not require AMPK activation. Rather, GW1516 stimulates 

Cpt1a, an effect that does not require AMPK. Furthermore, the selected concentration of 

GW1516 does not activate PPARα. 

To evaluate whether increased hepatic FA oxidation would be reflected in a more 

rapid switch to fat utilization, we examined RER profiles in the fasting, acute feeding, 

injection and re-fasting protocol outlined above. Consistent with a faster switch to post-

prandial fat utilization, A-769662-injected mice exhibited more rapid depression of RER 

at 5 and 6 hours post-injection (Figure 5.3A). Accordingly, the calculated oxidation of 

carbohydrate was significantly decreased (~30%) during this period, whereas oxidation 
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Figure 5.3: GW1516 activates hepatic AMPK in vivo, yet stimulates carbohydrate 

utilization.  

Eight to ten week-old Ldlr-/- mice fed a standard laboratory chow were fasted overnight, 

fed at 0700 for 2hrs and re-fasted at 0900. Intraperitoneal injection of vehicle, GW1516 

(3mg/kg) or A-769662 (30mg/kg) (n=6/group) occurred at the beginning of the re-fasting 

period at 0900. A, Respiratory exchange ratio (RER) measured during a fasting, feeding, 

injection and re-fasting protocol with A-769662. B-C, Carbohydrate and fatty acid 

utilization, respectively, calculated from data shown in (A). D, Respiratory exchange ratio 

(RER) measured during a fasting, feeding, injection with GW1516 and re-fasting 

protocol. E-F, Carbohydrate and fatty acid utilization, respectively, calculated from data 

shown in (C). Data is presented as mean +/- SEM. * indicates significant difference 

versus vehicle; student’s paired t-test (P<0.05).  
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of fat was markedly increased by 2.5-fold (Figure 5.3B,C). On the other hand, injection of 

GW1516 resulted in a slower depression of RER (Figure 5.3D), which is consistent with 

enhanced post-prandial carbohydrate utilization (Figure 5.3E). In contrast to the mutual 

inhibition of substrate utilization observed in A-769662-injected mice, GW1516-injection 

did not supress post-prandial fat utilization (Figure 5.3F). Collectively, these data 

suggest that the ability of PPARδ activation by GW1516 to increase total body glucose 

oxidation is greater than its ability to increase liver FA oxidation. 

5.3.3 GW1516-TREATMENT ATTENUATES DE NOVO LIPOGENESIS, IN PART, VIA 

ACTIVATION OF AMPK AS WELL AS CORRECTION OF SELECTIVE HEPATIC 

INSULIN RESISTANCE 

In addition to regulating FA oxidation, AMPK is a critical regulator of de novo 

lipogenesis (Dzamko et al., 2010). We thus hypothesized that PPARδ activation inhibits 

FA synthesis via activation of AMPK. When incubated with WT hepatocytes, GW1516 

significantly inhibited de novo lipogenesis by ~30% (Figure 5.4A). This effect was 

strongly attenuated in β1-/- hepatocytes, in which the suppression was only 11% and not 

statistically significant (Figure 5.4A). Consistent with an AMPK-specific effect, the 80% 

reduction in lipogenesis by A-769662 in WT hepatocytes was lost in β1-/- hepatocytes 

(Figure 5.4A). Both compounds increased expression of Insig1 (Figure 5.4B), a known 

negative regulator of SREBP-1c (Qin et al., 2008). The induction of Insig1 by GW1516 

and A-769662 may have contributed to the residual 10% reduction in lipogenesis 

observed in β1-/- hepatocytes. Nevertheless, in primary mouse hepatocytes GW1516 

inhibits de novo lipogenesis, in part, through activation of AMPK. 

During selective hepatic insulin resistance, hyperinsulinemia drives mTORC1 

activation, resulting in enhanced SREBP-1c-mediated lipogenesis (Brown and Goldstein, 

2008). Thus, another possible mechanism for reduced hepatic steatosis in GW1516-

treated mice is correction of the mTORC1 branch of insulin signaling. 
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Figure 5.4: GW1516 inhibits hepatic fatty acid synthesis as a consequence of 

AMPK activation and correction of selective hepatic insulin resistance. 

A, Primary mouse hepatocytes isolated from WT and β1-/- mice were incubated with 

0.5mM sodium acetate (0.5μCi/mL 14C-acetate) for 4hrs with or without GW1516 or A-

769662 prior to determination of lipogenesis (n=3-4 from at least 3 independent 

experiments). In isolated hepatocytes treated with or without GW1516 or A-769662 for 

6hrs abundance of Insig1 (B) was measured by qRT-PCR and normalized to Gapdh. C, 

Plasma insulin at the end of the induction and intervention phases in Ldlr-/- mice fasted 

overnight (designated F) and fasted overnight followed by a 2hr re-feeding period 

(designated RF). D, Immunoblots of insulin signaling proteins phosphorylated (p) AKT 

and pmTOR in liver lysates from F and RF mice. Representative immunoblots with 

quantitations shown. mRNA abundance of Srebf1c (E) and Fasn (F) in liver lysates 

isolated from animals fasted for 4hrs (n=6-8/group). G, Synthesis of fatty acid in liver 

obtained 60 min post injection (i.p.) with [14C]acetic acid (n=6-8/group). Data is 

presented as mean +/- SEM. In (A) different upper case letters indicate statistical 

significance among WT treatments, different lower case letters indicate statistical 

significance among β1-/- treatments, and asterisk (*) indicates statistical significance 

between WT and β1-/- within the same treatment group (P<0.05); two-way ANOVA with 

post-hoc Tukey’s test (P<0.05). In (C,D) different upper case letters indicate statistical 

significance among fasted animals, different lower case letters indicate statistical 

significance among re-fed animals, and asterisk (*) indicates statistical significance 

between fasted and re-fed within the same diet (P<0.05); two-way ANOVA with post-hoc 

Tukey’s test (P<0.05). In (E-G) different letters indicate significant differences; one-way 

ANOVA with post-hoc Tukey’s test (P<0.05).  
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In contrast to chow-fed animals, HFHC-feeding resulted in continued progression of 

fasting hyperinsulinemia (Figure 5.4C). Fasting hyperinsulinemia in the HFHC-fed 

animals was strongly attenuated by intervention with GW1516 to the HFHC diet (Figure 

5.4C). Fasting hyperinsulinemia in the HFHC-fed animals was associated with increased 

phosphorylation of hepatic Akt and mTORC1 compared to chow-fed animals (Figure 

5.4D). In contrast, GW1516-intervention restored fasting phospho-Akt (partially) and 

phospho-mTORC1 (completely) to levels observed in chow-fed controls (Figure 5.4D). In 

all three diet groups, re-feeding elicited enhanced phosphorylation of Akt and mTORC1 

(Figure 5.4D). This is consistent with increased sensitivity in the lipogenic mTORC1 

branch of the insulin signaling cascade in HFHC-fed mice and its normalization following 

GW1516 treatment (Brown and Goldstein, 2008).  

Compared to chow-fed controls, the fasting hyperinsulinemia and increased 

phospho-mTORC1 observed in HFHC-fed mice at 12 weeks was associated with 

increased expression of Srebpf1c and Fasn (Figure 5.4E,F), as well as markedly 

enhanced fasting FA synthesis (Figure 5.4G). In contrast, the GW1516-intervention 

cohort exhibited significant attenuation of Srebf1c and Fasn expression (Figure 5.4E,F), 

which was coupled to a complete inhibition of the HFHC-induced progression of FA 

synthesis from 4- to 12-weeks of feeding (Figure 5.4G). Together with results in primary 

mouse hepatocytes, these data suggest that PPARδ activation inhibits hepatic 

lipogenesis through activation of AMPK as well as correction of selective hepatic insulin 

resistance, both of which contribute to the attenuation of ectopic liver TG accrual. 

5.3.4 PPARδ ACTIVATION RESTORES DYNAMIC REGULATION OF HEPATIC 

FoxO1 WHICH SLOWS THE DEVELOPMENT OF OF HYPERGLYCEMIA 

Given that PPARδ plays a role in hepatic insulin sensitivity (Lee et al., 2006), we 

hypothesized that this was perhaps a result of correcting the bifurcation in the insulin 

signaling cascade induced by the HFHC diet. At 12 weeks, livers isolated from HFHC-
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fed mice lost the ability to suppress Pck1 expression and stimulate FoxO1 

phosphorylation in the fasting-to-feeding transition (Figure 5.5A,B). This is consistent 

with previous hyperinsulinemic euglycemic clamp studies in which the liver of Ldlr-/- 

mice fed a high fat diet were insulin resistant (Mulvihill et al., 2011). In contrast, animals 

receiving the GW1516-intervention retained the ability to dynamically regulate fasting/re-

feeding Pck1 expression and FoxO1 phosphorylation, similar to that observed in chow-

fed mice (Figure 5.5A,B). We examined fasting blood glucose levels and found a 

significant 1.5-fold increase in fasting hyperglycemia in mice fed the HFHC for 12 weeks, 

which was partially attenuated by GW1516-intervention (Figure 5.5C). These data 

suggest that PPARδ activation corrects the gluconeogenic branch of insulin signaling 

during selective hepatic insulin resistance, which prevents exacerbation of diet-induced 

dysglycemia. 

5.3.5 GW1516 INHIBITS HEPATIC INFLAMMATION AND INDUCTION OF ER 

STRESS 

Inflammation is a prominent feature of hepatic insulin resistance and steatosis 

(Hummasti and Hotamisligil, 2010). Given that GW1516-intervention attenuated hepatic 

steatosis and corrected selective hepatic insulin resistance, we postulated that this 

would be associated with reduced hepatic inflammation. As shown in Figure 5.6A, 

expression of the proinflammatory M1 cytokines Tnf, Icam1, Il1b, Ccl2, Ccl3 and iNos 

were markedly induced (2-to 15-fold) in livers of mice fed the HFHC diet at 12 weeks.. In 

contrast, these cytokines were significantly attenuated (-50- to -65%) in livers excised 

from the GW1516-intervetion group (Figure 5.6A). Furthermore, HFHC-feeding strongly 

suppressed hepatic expression of the M2 anti-inflammatory marker Arg1, resulting in 

greatly exacerbated iNos/Arg1 ratio compared to chow-fed control mice (Figure 5.6B). 

GW1516 intervention completely prevented this expression pattern (Figure 5.6B). 

Together these data suggest that PPARδ activation promotes an anti-inflammatory
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Figure 5.5: GW1516 corrects the gluconeogenic branch of insulin signalling 

during selective hepatic insulin resistance which improves fasting hyperglycemia.  

A, mRNA abundance of Pck1 in liver lysates isolated from fasted (F) and re-fed (RF) 

animals (n=6-8/group). B, Immunoblots of insulin signaling protein pFoxO1 in liver 

lysates from F and RF mice (n=6-8/group). Representative immunoblots with 

quantitations shown. C, Blood glucose levels in F and RF mice (n=6-8/group). Data is 

presented as mean +/- SEM. Different upper case letters indicate statistical significance 

among fasted animals, different lower case letters indicate statistical significance among 

re-fed animals, and asterisk (*) indicates statistical significance between fasted and re-

fed within the same diet (P<0.05); two-way ANOVA with post-hoc Tukey’s test (P<0.05). 
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Figure 5.6: GW1516 attenuates hepatic inflammation and ER-stress.  

Ldlr-/- mice were fed a high-fat, cholesterol-containing diet (HFHC) for 4 weeks. For a 

subsequent 8 weeks, mice remained on HFHC alone or supplemented with GW50516 

(GW1516) (3mg/kg/day) (n=12/group). A,B Hepatic abundance of cytokines was 

determined at 12 weeks by qRT-PCR, and expression was normalized to Gapdh +/- 

SEM (n=8-12/group). C, Immunoblots of GRP78 and CHOP in liver lysates at 12 weeks. 

Representative immunoblots with quantitations shown. Data is presented as mean +/- 

SEM (8-12/group). Different letters indicate significant differences; one-way ANOVA with 

post-hoc Tukey’s test (P<0.05). 
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M2 cytokine milieu in the liver. 

 Inflammation is commonly interwoven with ER-stress in the development of 

hepatic insulin resistance (Hummasti and Hotamisligil, 2010, Van Beek et al., 2012). 

Accordingly, HFHC-feeding significantly increased hepatic GRP78 (Figure 5.6C), a 

marker of the unfolded protein response (UPR), which is the precursor to the ER-stress 

response (Kaplowitz et al., 2007). GW1516-intervention completely normalized the diet-

induced increase in GRP78 (Figure 5.6C). However, CHOP, the effector of the ER-

stress response was unaffected by any diet (Figure 5.6C) suggesting that although the 

UPR has been initiated, the ER-stress response has not. Nevertheless, PPARδ 

activation attenuates this diet-induced hepatic pathology 
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5.4 DISCUSSION 

In the current study, we evaluated the ability of intervention to a HFHC diet with a 

PPARδ agonist to attenuate the progression of hepatic steatosis. We show that 

GW1516-intervention inhibits the progression of diet-induced liver TG accumulation. 

Mechanistically, attenuation of hepatic steatosis was a result of reduced FA synthesis 

and increased FA oxidation. The loss of hepatic AMPK activity did not mitigate the ability 

of PPARδ activation to induce FA oxidation, whereas loss of AMPK partially prevented 

PPARδ agonist-mediated inhibition of lipogenesis. Selective hepatic insulin resistance 

was corrected by PPARδ activation, which was associated with reduced hepatic 

inflammation and ER-stress.  

 The role of PPARδ activation in liver TG metabolism has been controversial (Lee 

et al., 2006, Liu et al., 2011, Nagasawa et al., 2006, Qin et al., 2008). One study showed 

that GW1516 prevented diet-induced suppression of hepatic AMPK activation, which 

was associated with increased expression of genes involved in FA oxidation and 

increased plasma β-hydroxybutyrate. In spite of these observations, GW1516 had no 

effect on hepatic TG content (Barroso et al., 2011). Another study showed that injection 

of adPPARδ into Ldlr-/- mice significantly increased AMPK phosphorylation in the liver, 

which was thought to contribute to glucose lowering (Liu et al., 2011). The impact of 

increased hepatic AMPK activation on lipid metabolism was not explored (Liu et al., 

2011). Here we provide direct evidence that PPARδ activation increases AMPK and 

ACC phosphorylation in vivo as well as in primary mouse hepatocytes. The GW1516-

mediated increase in phospho-ACC was AMPK dependent as this effect was lost in β1-/- 

hepatocytes. With regard to lipid metabolism, we demonstrate that PPARδ activation in 

vivo stimulates hepatic FA oxidation through PPARδ-specific activation of Cpt1a. We 

recapitulated these results in primary mouse hepatocytes, and identified that AMPK 
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activation is not a requirement for GW1516 to stimulate FA oxidation, as enhanced 

Cpt1a expression and FA oxidation persisted in β1-/- hepatocytes.  

 Carbohydrate oxidation and fat oxidation are thought to be mutually inhibitory 

(Randle, 1998). Thus, an agent that induces liver fat oxidation would be predicted to 

stimulate a faster switch in post-prandial substrate utilization from carbohydrate to fat 

(Hawley et al., 2012). In the current study we show that in an acute setting, GW1516-

injection increased carbohydrate oxidation, yet fat oxidation during this period was not 

suppressed. Furthermore, in a setting of prolonged PPARδ activation, we demonstrate 

that intervention to the HFHC diet with GW1516 increases total EE, yet has no further 

effect on average RER through a 24hr period. Previous work has generated the 

hypothesis that PPARδ activation stimulates carbohydrate and fat utilization 

simultaneously (Kramer et al., 2007, Lee et al., 2006). The findings reported here are 

consistent with this hypothesis, and contribute direct evidence for simultaneous oxidation 

of both fuel sources in response to a synthetic PPARδ ligand. The increased oxidation of 

fat likely contributes to reduced liver TG accumulation. 

Studies which have examined the role PPARδ activation in hepatic de novo 

lipogenesis have yielded both positive and negative results (Lee et al., 2006, Liu et al., 

2011, Qin et al., 2008). On one hand, both adPPARδ injection and GW1516-treatment 

have been shown to increase hepatic expression of genes involved in lipogenesis, and 

consequently increase liver TG accumulation (Lee et al., 2006, Liu et al., 2011). On the 

other hand, delivery of adPPARδ or the synthetic PPARδ agonist GW0742 have 

demonstrated reduced SREBP-1c processing, reduced lipogenic gene expression and 

prevention of hepatic steatosis (Qin et al., 2008). The data presented here are consistent 

with, and extend this latter concept, as we provide evidence that intervention to a HFHC 

diet with GW1516 in mice, corrects selective hepatic insulin resistance, reduces 

lipogenic gene expression and prevents any further increase in fasting fatty acid 
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synthesis. Furthermore, GW1516 reduced de novo lipogenesis in WT primary mouse 

hepatocytes, but not in β1-/- hepatocytes, which demonstrated that a component of the 

inhibition of FA synthesis was AMPK-dependent. Given that two different mechanisms 

may contribute to the observed reduction in lipogenesis by GW1516-treatment, the 

relative contributions of these pathways requires further study.  

During selective hepatic insulin resistance, Akt loses its ability to phosphorylate 

and inactivate FoxO1, while maintaining its ability to phosphorylate and activate 

mTORC1 (Li et al., 2010). Coupled to hyperinsulinemia, this bifurcation in the insulin 

signaling cascade contributes to hepatic steatosis, dyslipidemia and hyperglycemia 

(Brown and Goldstein, 2008). In the present study, we provide evidence that hepatic 

insulin signaling does in fact bifurcate in a model of diet-induced insulin resistance. 

Importantly, we demonstrate that PPARδ activation attenuates the progression of the 

selective hepatic insulin resistant phenotype, as dynamic regulation of fasting-to-feeding 

phospho-FoxO1 and Pck1 expression was restored in the GW1516-intervention cohort. 

These data elaborate on the body of evidence that supports a role for PPARδ activation 

in protection from metabolic disease (Lee et al., 2006, Tanaka et al., 2003, Wang et al., 

2003), and further support the use of PPARδ agonists in management of insulin 

resistance. 

Liver inflammation has been linked to hepatic steatosis and insulin resistance 

(Gregor and Hotamisligil, 2011, Hummasti and Hotamisligil, 2010). Vascular chronic low-

grade inflammation is in part mediated by aortic lipid accumulation and insulin resistance 

(Chapter 2, Chapter 4, (Liang et al., 2007, Tabas et al., 2010)). Given the selective 

insulin resistant phenotype and TG acquisition in livers of HFHC-fed animals and 

correction by GW1516-intervention, it is tempting to hypothesize that similar 

mechanisms govern induction and attenuation of vascular and hepatic inflammation. 

Moreover, Kupffer cell-specific deletion of Pparδ resulted in increased proinflammatory 
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cytokine expression and reduced anti-inflammatory cytokine expression, which was 

coupled to increased liver TG accumulation and hepatic dysfunction (Odegaard et al., 

2008). Therefore, our results are consistent with an anti-inflammatory role for PPARδ 

activation in the liver. The relative impact of reduced inflammation versus correction of 

insulin sensitivity to the attenuation of hepatic steatosis cannot be discerned from the 

present experiments and requires further elucidation.  

In summary, the data reported here provide physiological and molecular 

evidence that intervention with PPARδ-specific activation in the liver alleviates diet-

induced hepatic steatosis, insulin resistance, inflammation and ER-stress. We conclude 

that PPARδ agonists may serve as therapeutic options for the treatment of patients with 

hepatic steatosis. 

 

 



252 

 

5.5 REFERENCES 

Assini, J.M., Mulvihill, E.E., Sutherland, B.G., Telford, D.E., Sawyez, C.G., Felder, S.L., 
Chhoker, S., Edwards, J.Y., Gros, R., and Huff, M.W. (2013). Naringenin Prevents 
Cholesterol-Induced Systemic Inflammation, Metabolic Dysregulation, and 
Atherosclerosis in Ldlr(-)/(-) Mice. J Lipid Res 54, 711-724. 

Barish, G.D., Atkins, A.R., Downes, M., Olson, P., Chong, L.W., Nelson, M., Zou, Y., 
Hwang, H., Kang, H., Curtiss, L., et al. (2008). Ppardelta Regulates Multiple 
Proinflammatory Pathways to Suppress Atherosclerosis. Proc Natl Acad Sci U S A 105, 
4271-4276. 

Barroso, E., Rodriguez-Calvo, R., Serrano-Marco, L., Astudillo, A.M., Balsinde, J., 
Palomer, X., and Vazquez-Carrera, M. (2011). The Pparbeta/Delta Activator Gw501516 
Prevents the Down-Regulation of Ampk Caused by a High-Fat Diet in Liver and 
Amplifies the Pgc-1alpha-Lipin 1-Pparalpha Pathway Leading to Increased Fatty Acid 
Oxidation. Endocrinology 152, 1848-1859. 

Beyea, M.M., Heslop, C.L., Sawyez, C.G., Edwards, J.Y., Markle, J.G., Hegele, R.A., 
and Huff, M.W. (2007). Selective up-Regulation of Lxr-Regulated Genes Abca1, Abcg1, 
and Apoe in Macrophages through Increased Endogenous Synthesis of 24(S),25-
Epoxycholesterol. J Biol Chem 282, 5207-5216. 

Beyea, M.M., Reaume, S., Sawyez, C.G., Edwards, J.Y., O'Neil, C., Hegele, R.A., 
Pickering, J.G., and Huff, M.W. (2012). The Oxysterol 24(S),25-Epoxycholesterol 
Attenuates Human Smooth Muscle-Derived Foam Cell Formation Via Reduced Low-
Density Lipoprotein Uptake and Enhanced Cholesterol Efflux. J Am Heart Assoc 1, 
e000810. 

Brown, M.S., and Goldstein, J.L. (2008). Selective Versus Total Insulin Resistance: A 
Pathogenic Paradox. Cell Metab 7, 95-96. 

Carlson, C.A., and Kim, K.H. (1973). Regulation of Hepatic Acetyl Coenzyme a 
Carboxylase by Phosphorylation and Dephosphorylation. J Biol Chem 248, 378-380. 

Chen, M.B., McAinch, A.J., Macaulay, S.L., Castelli, L.A., O'Brien P, E., Dixon, J.B., 
Cameron-Smith, D., Kemp, B.E., and Steinberg, G.R. (2005). Impaired Activation of 
Amp-Kinase and Fatty Acid Oxidation by Globular Adiponectin in Cultured Human 
Skeletal Muscle of Obese Type 2 Diabetics. J Clin Endocrinol Metab 90, 3665-3672. 

Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., 
Gagne, G., Iyengar, R., et al. (2006). Identification and Characterization of a Small 
Molecule Ampk Activator That Treats Key Components of Type 2 Diabetes and the 
Metabolic Syndrome. Cell Metab 3, 403-416. 



253 

 

DeFronzo, R.A. (2010). Insulin Resistance, Lipotoxicity, Type 2 Diabetes and 
Atherosclerosis: The Missing Links. The Claude Bernard Lecture 2009. Diabetologia 53, 
1270-1287. 

Dzamko, N., van Denderen, B.J., Hevener, A.L., Jorgensen, S.B., Honeyman, J., Galic, 
S., Chen, Z.P., Watt, M.J., Campbell, D.J., Steinberg, G.R., et al. (2010). Ampk Beta1 
Deletion Reduces Appetite, Preventing Obesity and Hepatic Insulin Resistance. J Biol 
Chem 285, 115-122. 

Dzamko, N.L., and Steinberg, G.R. (2009). Ampk-Dependent Hormonal Regulation of 
Whole-Body Energy Metabolism. Acta Physiol (Oxf) 196, 115-127. 

Eckel, R.H., Alberti, K.G., Grundy, S.M., and Zimmet, P.Z. (2010). The Metabolic 
Syndrome. Lancet 375, 181-183. 

Evans, R.M., Barish, G.D., and Wang, Y.X. (2004). Ppars and the Complex Journey to 
Obesity. Nat Med 10, 355-361. 

Farese, R.V., Jr., Zechner, R., Newgard, C.B., and Walther, T.C. (2012). The Problem of 
Establishing Relationships between Hepatic Steatosis and Hepatic Insulin Resistance. 
Cell Metab 15, 570-573. 

Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A Simple Method for the Isolation 
and Purification of Total Lipides from Animal Tissues. J Biol Chem 226, 497-509. 

Fullerton, M.D., Steinberg, G.R., and Schertzer, J.D. (2013). Immunometabolism of 
Ampk in Insulin Resistance and Atherosclerosis. Mol Cell Endocrinol 366, 224-234. 

Gregor, M.F., and Hotamisligil, G.S. (2011). Inflammatory Mechanisms in Obesity. Annu 
Rev Immunol 29, 415-445. 

Haas, J.T., and Biddinger, S.B. (2009). Dissecting the Role of Insulin Resistance in the 
Metabolic Syndrome. Curr Opin Lipidol 20, 206-210. 

Hawley, S.A., Fullerton, M.D., Ross, F.A., Schertzer, J.D., Chevtzoff, C., Walker, K.J., 
Peggie, M.W., Zibrova, D., Green, K.A., Mustard, K.J., et al. (2012). The Ancient Drug 
Salicylate Directly Activates Amp-Activated Protein Kinase. Science 336, 918-922. 

Hummasti, S., and Hotamisligil, G.S. (2010). Endoplasmic Reticulum Stress and 
Inflammation in Obesity and Diabetes. Circ Res 107, 579-591. 

Kaplowitz, N., Than, T.A., Shinohara, M., and Ji, C. (2007). Endoplasmic Reticulum 
Stress and Liver Injury. Semin Liver Dis 27, 367-377. 



254 

 

Kemp, B.E., Stapleton, D., Campbell, D.J., Chen, Z.P., Murthy, S., Walter, M., Gupta, A., 
Adams, J.J., Katsis, F., van Denderen, B., et al. (2003). Amp-Activated Protein Kinase, 
Super Metabolic Regulator. Biochem Soc Trans 31, 162-168. 

Kido, Y., Nakae, J., and Accili, D. (2001). Clinical Review 125: The Insulin Receptor and 
Its Cellular Targets. J Clin Endocrinol Metab 86, 972-979. 

Kramer, D.K., Al-Khalili, L., Guigas, B., Leng, Y., Garcia-Roves, P.M., and Krook, A. 
(2007). Role of Amp Kinase and Ppardelta in the Regulation of Lipid and Glucose 
Metabolism in Human Skeletal Muscle. J Biol Chem 282, 19313-19320. 

Kramer, D.K., Al-Khalili, L., Perrini, S., Skogsberg, J., Wretenberg, P., Kannisto, K., 
Wallberg-Henriksson, H., Ehrenborg, E., Zierath, J.R., and Krook, A. (2005). Direct 
Activation of Glucose Transport in Primary Human Myotubes after Activation of 
Peroxisome Proliferator-Activated Receptor Delta. Diabetes 54, 1157-1163. 

Lee, C.H., Olson, P., Hevener, A., Mehl, I., Chong, L.W., Olefsky, J.M., Gonzalez, F.J., 
Ham, J., Kang, H., Peters, J.M., et al. (2006). Ppardelta Regulates Glucose Metabolism 
and Insulin Sensitivity. Proc Natl Acad Sci U S A 103, 3444-3449. 

Li, S., Brown, M.S., and Goldstein, J.L. (2010). Bifurcation of Insulin Signaling Pathway 
in Rat Liver: Mtorc1 Required for Stimulation of Lipogenesis, but Not Inhibition of 
Gluconeogenesis. Proc Natl Acad Sci U S A 107, 3441-3446. 

Liang, C.P., Han, S., Senokuchi, T., and Tall, A.R. (2007). The Macrophage at the 
Crossroads of Insulin Resistance and Atherosclerosis. Circ Res 100, 1546-1555. 

Liu, S., Hatano, B., Zhao, M., Yen, C.C., Kang, K., Reilly, S.M., Gangl, M.R., Gorgun, C., 
Balschi, J.A., Ntambi, J.M., et al. (2011). Role of Peroxisome Proliferator-Activated 
Receptor {Delta}/{Beta} in Hepatic Metabolic Regulation. J Biol Chem 286, 1237-1247. 

Lu, M., Wan, M., Leavens, K.F., Chu, Q., Monks, B.R., Fernandez, S., Ahima, R.S., 
Ueki, K., Kahn, C.R., and Birnbaum, M.J. (2012). Insulin Regulates Liver Metabolism in 
Vivo in the Absence of Hepatic Akt and Foxo1. Nat Med 18, 388-395. 

Mulvihill, E.E., Allister, E.M., Sutherland, B.G., Telford, D.E., Sawyez, C.G., Edwards, 
J.Y., Markle, J.M., Hegele, R.A., and Huff, M.W. (2009). Naringenin Prevents 
Dyslipidemia, Apolipoprotein B Overproduction, and Hyperinsulinemia in Ldl Receptor-
Null Mice with Diet-Induced Insulin Resistance. Diabetes 58, 2198-2210. 

Mulvihill, E.E., Assini, J.M., Lee, J.K., Allister, E.M., Sutherland, B.G., Koppes, J.B., 
Sawyez, C.G., Edwards, J.Y., Telford, D.E., Charbonneau, A., et al. (2011). Nobiletin 
Attenuates Vldl Overproduction, Dyslipidemia, and Atherosclerosis in Mice with Diet-
Induced Insulin Resistance. Diabetes 60, 1446-1457. 



255 

 

Mulvihill, E.E., Assini, J.M., Sutherland, B.G., DiMattia, A.S., Khami, M., Koppes, J.B., 
Sawyez, C.G., Whitman, S.C., and Huff, M.W. (2010). Naringenin Decreases 
Progression of Atherosclerosis by Improving Dyslipidemia in High-Fat-Fed Low-Density 
Lipoprotein Receptor-Null Mice. Arterioscler Thromb Vasc Biol 30, 742-748. 

Nagasawa, T., Inada, Y., Nakano, S., Tamura, T., Takahashi, T., Maruyama, K., 
Yamazaki, Y., Kuroda, J., and Shibata, N. (2006). Effects of Bezafibrate, Ppar Pan-
Agonist, and Gw501516, Ppardelta Agonist, on Development of Steatohepatitis in Mice 
Fed a Methionine- and Choline-Deficient Diet. Eur J Pharmacol 536, 182-191. 

Narkar, V.A., Downes, M., Yu, R.T., Embler, E., Wang, Y.X., Banayo, E., Mihaylova, 
M.M., Nelson, M.C., Zou, Y., Juguilon, H., et al. (2008). Ampk and Ppardelta Agonists 
Are Exercise Mimetics. Cell 134, 405-415. 

O'Neill, H.M., Holloway, G.P., and Steinberg, G.R. (2012). Ampk Regulation of Fatty 
Acid Metabolism and Mitochondrial Biogenesis: Implications for Obesity. Mol Cell 
Endocrinol. 

Odegaard, J.I., Ricardo-Gonzalez, R.R., Red Eagle, A., Vats, D., Morel, C.R., Goforth, 
M.H., Subramanian, V., Mukundan, L., Ferrante, A.W., and Chawla, A. (2008). 
Alternative M2 Activation of Kupffer Cells by Ppardelta Ameliorates Obesity-Induced 
Insulin Resistance. Cell Metab 7, 496-507. 

Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., 
Gorgun, C., Glimcher, L.H., and Hotamisligil, G.S. (2004). Endoplasmic Reticulum 
Stress Links Obesity, Insulin Action, and Type 2 Diabetes. Science 306, 457-461. 

Qin, X., Xie, X., Fan, Y., Tian, J., Guan, Y., Wang, X., Zhu, Y., and Wang, N. (2008). 
Peroxisome Proliferator-Activated Receptor-Delta Induces Insulin-Induced Gene-1 and 
Suppresses Hepatic Lipogenesis in Obese Diabetic Mice. Hepatology 48, 432-441. 

Randle, P.J. (1998). Regulatory Interactions between Lipids and Carbohydrates: The 
Glucose Fatty Acid Cycle after 35 Years. Diabetes Metab Rev 14, 263-283. 

Reilly, S.M., and Lee, C.H. (2008). Ppar Delta as a Therapeutic Target in Metabolic 
Disease. FEBS Lett 582, 26-31. 

Rowe, A.H., Argmann, C.A., Edwards, J.Y., Sawyez, C.G., Morand, O.H., Hegele, R.A., 
and Huff, M.W. (2003). Enhanced Synthesis of the Oxysterol 24(S),25-Epoxycholesterol 
in Macrophages by Inhibitors of 2,3-Oxidosqualene:Lanosterol Cyclase: A Novel 
Mechanism for the Attenuation of Foam Cell Formation. Circ Res 93, 717-725. 

Saggerson, D. (2008). Malonyl-Coa, a Key Signaling Molecule in Mammalian Cells. 
Annu Rev Nutr 28, 253-272. 



256 

 

Steinberg, G.R., Michell, B.J., van Denderen, B.J., Watt, M.J., Carey, A.L., Fam, B.C., 
Andrikopoulos, S., Proietto, J., Gorgun, C.Z., Carling, D., et al. (2006). Tumor Necrosis 
Factor Alpha-Induced Skeletal Muscle Insulin Resistance Involves Suppression of Amp-
Kinase Signaling. Cell Metab 4, 465-474. 

Tabas, I., Tall, A., and Accili, D. (2010). The Impact of Macrophage Insulin Resistance 
on Advanced Atherosclerotic Plaque Progression. Circ Res 106, 58-67. 

Tanaka, T., Yamamoto, J., Iwasaki, S., Asaba, H., Hamura, H., Ikeda, Y., Watanabe, M., 
Magoori, K., Ioka, R.X., Tachibana, K., et al. (2003). Activation of Peroxisome 
Proliferator-Activated Receptor Delta Induces Fatty Acid Beta-Oxidation in Skeletal 
Muscle and Attenuates Metabolic Syndrome. Proc Natl Acad Sci U S A 100, 15924-
15929. 

Van Beek, M., Oravecz-Wilson, K.I., Delekta, P.C., Gu, S., Li, X., Jin, X., Apel, I.J., 
Konkle, K.S., Feng, Y., Teitelbaum, D.H., et al. (2012). Bcl10 Links Saturated Fat 
Overnutrition with Hepatocellular Nf-Kb Activation and Insulin Resistance. Cell Rep 1, 
444-452. 

Wang, Y.X., Lee, C.H., Tiep, S., Yu, R.T., Ham, J., Kang, H., and Evans, R.M. (2003). 
Peroxisome-Proliferator-Activated Receptor Delta Activates Fat Metabolism to Prevent 
Obesity. Cell 113, 159-170. 

Watt, M.J., Dzamko, N., Thomas, W.G., Rose-John, S., Ernst, M., Carling, D., Kemp, 
B.E., Febbraio, M.A., and Steinberg, G.R. (2006). Cntf Reverses Obesity-Induced Insulin 
Resistance by Activating Skeletal Muscle Ampk. Nat Med 12, 541-548. 

Williamson, R.M., Price, J.F., Glancy, S., Perry, E., Nee, L.D., Hayes, P.C., Frier, B.M., 
Van Look, L.A., Johnston, G.I., Reynolds, R.M., et al. (2011). Prevalence of and Risk 
Factors for Hepatic Steatosis and Nonalcoholic Fatty Liver Disease in People with Type 
2 Diabetes: The Edinburgh Type 2 Diabetes Study. Diabetes Care 34, 1139-1144. 

Yecies, J.L., Zhang, H.H., Menon, S., Liu, S., Yecies, D., Lipovsky, A.I., Gorgun, C., 
Kwiatkowski, D.J., Hotamisligil, G.S., Lee, C.H., et al. (2011). Akt Stimulates Hepatic 
Srebp1c and Lipogenesis through Parallel Mtorc1-Dependent and Independent 
Pathways. Cell Metab 14, 21-32. 
 
 



257 

Chapter 6 
Discussion 

 
6.1 SUMMARY OF FINDINGS 

 Cardiovascular disease due to accelerated atherosclerosis is the primary cause 

of death in patients with dyslipidemia, insulin resistance and type 2 diabetes. Central to 

atherogenesis is the development of lipid-laden macrophage foam cells, which occurs in 

response to retention of apoB-containing lipoproteins within the arterial intima (Moore 

and Tabas, 2011). In addition to the accrual of lipid, macrophage foam cells synthesize 

and secrete proinflammatory effector molecules that potentiate lesion development 

(Libby et al., 2011). Therefore, a macrophage-targeted treatment that inhibits foam cell 

formation and the associated inflammatory responses would be desirable. In this thesis, 

two synthetic agonists for PPARδ were examined in vitro, one of which was extended to 

in vivo experiments. These studies were undertaken to: (1) identify the molecular 

mechanisms involved in macrophage foam cell-associated inflammatory responses, and 

(2) define the mechanism of action and therapeutic potential of PPARδ activation in the 

regulation of lipid metabolism, inflammatory signaling and protection from 

atherosclerosis in states of metabolic disturbance such as insulin resistance and 

dyslipidemia.  

 Elevated plasma TG-rich VLDL is an independent risk factor for the development 

of CVD, and can readily stimulate the development of macrophage foam cells (Evans et 

al., 1993, Whitman et al., 1999a, Whitman et al., 1999b). Paradoxically, VLDL-derived 

fatty acids also activate macrophage PPARδ resulting in up-regulation of genes involved 

in fatty acid and TG metabolism (Chawla et al., 2003). Thus, from an evolutionary 

standpoint, PPARδ serves as a fatty acid sensor in cells of the vasculature to prevent 

arterial lipid accumulation under normolipidemic conditions. The experiments described 

in Chapter 2 tested the hypothesis that synthetic ligand activation of PPARδ would 
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attenuate VLDL-induced macrophage foam cell formation in the context of 

hypertriglyceridemia. These in vitro studies confirmed that VLDL and synthetic PPARδ 

agonists each individually activated similar transcriptional programs (Chawla et al., 

2003). However, the VLDL-stimulated PPARδ-target gene expression was insufficient to 

prevent the 5-fold increase in VLDL-induced macrophage TG deposition. In contrast, 

macrophages incubated with VLDL in the presence of the potent synthetic PPARδ 

agonists GW0742 and GW1516 resulted in the attenuation of VLDL-induced TG 

accumulation. Mechanistically, the PPARδ ligands reduced TG accumulation, at least in 

part, by increasing expression of ANGPTL4, CD36 and CPT1α above VLDL-treatment 

alone, which resulted in: (1) reduced lipolysis, (2) enhanced FA uptake, albeit from a 

smaller FA pool, and (3) increased FA oxidation, respectively. Collectively, the net effect 

of synthetic ligand activation of PPARδ was to reduce intracellular TG accumulation 

(Figure 6.1). It is important to note that the concentrations of the PPARδ agonists used 

in these studies were specific for activating PPARδ, in the absence of activating PPARα 

or PPARγ. 

 In addition to increasing lipid accumulation, previous work has suggested that 

VLDL or VLDL-derived FAs can also stimulate or potentiate macrophage inflammatory 

responses (Saraswathi and Hasty, 2006, Stollenwerk et al., 2005, Su et al., 2009). The 

second hypothesis tested in Chapter 2 was that PPARδ agonists could attenuate VLDL-

induced macrophage inflammatory responses. In VLDL-treated macrophages, 

expression of the proinflammatory mediators IL-1β, MIP-1α and ICAM-1 was significantly 

enhanced, which was associated with increased MAPK activation as well as 

dysregulation of the insulin signaling cascade as evidenced by reduced phosphorylation 

of Akt and FoxO1 (Figure 6.1). In contrast, incubation with the PPARδ agonists almost 

completely inhibited VLDL-induced cytokine expression and MAPK activation, and 

restored the dysregulation of the insulin signaling cascade. These studies also revealed
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Figure 6.1: PPARδ activation inhibits macrophage foam cell formation and the 

inflammatory response. 

PPARδ activation attenuates VLDL-induced triglyceride (TG) accumulation by activating 

a transcriptional program resulting in enhanced CPT-1α-mediated fatty acid β-oxidation 

and ANGPTL4-mediated inhibition of lipoprotein lipase (LPL) activity. Furthermore, 

macrophage treatment with synthetic PPARδ ligands inhibits proinflammatory cytokine 

expression, by inhibiting VLDL-stimulated ERK1/2 activation and reversing VLDL-

mediated inhibition of Akt/FoxO1 phosphorylation. 
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that the PPARδ-mediated inhibition of the inflammatory response was not a 

consequence of increased FA oxidation, as both of the PPARδ agonists normalized 

VLDL-induced cytokine expression, MAPK activation and dysregulated insulin signaling 

even in the presence of etomoxir, a potent inhibitor of CPT1α (Galic et al., 2011).  

 Although hypertriglyceridemia is an independent risk factor for the development 

of CVD, the canonical foam cell-inducing lipoprotein is CE-rich LDL in both its native and 

modified forms. The studies in Chapter 3 addressed the ability of PPARδ activation to 

attenuate native and modified LDL-induced macrophage foam cell formation and the 

associated inflammatory response(s). Cellular CE accumulation in response to native 

and oxLDL was significantly attenuated by both GW0742 and GW1516. With regard to 

oxLDL, both PPARδ agonists increased CD36 mRNA abundance (Chapter 2), which 

would be predicted to enhance particle uptake (Moore and Freeman, 2006). However, 

PPARδ activation also increased ABCA1-mediated cholesterol efflux to apoAI, likely 

owing to increased ABCA1 mRNA and protein, which contributed to a net inhibition of 

CE-rich lipoprotein-induced macrophage foam cell formation. 

 Previous studies examining oxLDL-induced inflammatory responses have yielded 

both positive and negative results (Curtiss et al., 2012, Febbraio et al., 2000, Janabi et 

al., 2000, Kannan et al., 2012, Michelsen et al., 2004, Mullick et al., 2005, Qiu et al., 

2007). The studies in Chapter 3 contribute to the notion that cholesterol-loaded 

macrophages exhibit a dampened inflammatory phenotype, as evidence by reduced 

expression of TNFα and IL-6, which was not further affected by synthetic ligand 

activation of PPARδ. The anti-inflammatory effect of oxLDL was coupled to reduced 

DHCR24 expression, which is known to result in the accumulation of desmosterol, a 

known activator of LXR. Accumulation of desmosterol within cholesterol-loaded mouse 

peritoneal macrophages has recently been shown to have potent anti-inflammatory 

effects (Spann et al., 2012). Thus, the studies conducted in Chapter 3 agree with the 
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concept that cholesterol-loaded macrophages do not exhibit a proinflammatory 

phenotype, suggesting that other immune cells of the arterial intima are responsible for 

the atherosclerosis-associated inflammation observed in vivo. 

 The studies in Chapter 4 were undertaken to determine whether the ability of the 

PPARδ agonists to attenuate macrophage foam cell formation translated into reduced 

foam cell formation in vivo, and in turn, protection from diet-induced atherosclerosis. 

These studies tested the hypothesis that PPARδ activation attenuates the progression of 

diet-induced atherosclerosis and aortic inflammation in Ldlr-/- mice. Previous studies 

involving prevention protocols, in which the PPARδ agonist is administered at the same 

time as the atherogenic stimulus (a high-fat diet), have reported a preventative effect of 

PPARδ activation on atherogenesis (Barish et al., 2008, Graham et al., 2005). The 

studies in Chapter 4 involved an intervention approach, whereby Ldlr-/- mice were fed the 

HFHC diet for 4 weeks to induce dyslipidemia and insulin resistance, which predisposes 

the animals to atherosclerosis development. Subsequently, HFHC-fed animals either 

remained on the atherogenic diet, or were supplemented with GW1516 for a subsequent 

8 weeks. A subset of animals was fed standard laboratory chow for the 12-week period. 

The continued progression of dyslipidemia and hyperinsulinemia in HFHC-fed mice 

contributed to extensive lipid deposition within atherosclerotic plaques. In concert with 

increased lipid accumulation, HFHC-fed animals had significant enrichment of lesion 

macrophage, smooth muscle cell and collagen content. In contrast to the continued 

progression of dyslipidemia, insulin resistance and plaque development in HFHC-fed 

mice, GW1516-intervention induced regression of elevated plasma lipid and plasma 

insulin levels, which contributed to slowed progression of plaque lipid deposition. 

GW1516-intervention also reduced macrophage infiltration, yet had no effect on lesion 

smooth muscle cell content. Despite this, collagen deposition was increased in lesions of 
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GW1516-treated animals, suggesting the development of smaller, more stable 

atherosclerotic lesions. 

 Examination of cytokine expression in full-length aortae revealed that HFHC-

feeding stimulated a proinflammatory phenotype in the aorta, as the M1 cytokines, Ccl3, 

II1b, Icam1, Tnf, II6, iNos and Ccl2 were all markedly elevated. Additionally, the M2 anti-

inflammatory mediator Arg1 was substantially lower and the iNos/Arg1 ratio was greatly 

exacerbated in aortae excised from HFHC-fed animals as compared to those isolated 

from chow-fed animals. In contrast, GW1516-intervention attenuated the progression of 

aortic inflammation, as M1 cytokines were reduced, Arg1 expression was restored and 

the iNos/Arg1 ratio was reverted back to levels in chow-fed mice.  

 To further build on the translation of findings from Chapters 2 and 3 into the in 

vivo setting, aortic analyses of the signaling cascades known to regulate cytokine 

expression were performed. HFHC-feeding significantly increased aortic MAPK 

activation. Furthermore, Nfκb activation was also enhanced, which was correlated with 

the increased expression of aortic Tnf, Il6 and Ccl2. Both MAPK and Nfκb activation 

were attenuated by intervention with GW1516. To assess aortic insulin signaling, aortae 

excised from fasted and re-fed mice were examined for phosphorylated Akt and FoxO1. 

In contrast to the dynamic fasting-to-feeding regulation of pAkt and pFoxO1 observed in 

aortae isolated from chow-fed animals, this effect was lost in aortae from HFHC-fed 

mice. GW1516-intervention corrected aortic insulin signaling, which likely contributed to 

reduced aortic inflammation.  

In addition to exerting atheroprotective effects, the studies in Chapter 4 identified 

that PPARδ activation also corrects dyslipidemia and peripheral insulin resistance. 

Coupled to the fact that hepatic steatosis is a major clinical manifestation of insulin 

resistance that contributes to dyslipidemia (Farese et al., 2012), the studies in Chapter 5 

were undertaken to determine whether PPARδ activation inhibits diet-induced liver lipid 
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accumulation. To assess this, the same induction/intervention protocol used in Chapter 4 

was employed. The Chapter 5 studies demonstrated that the further 2-fold increase 

hepatic TG accrual in animals remaining on the HFHC diet was significantly attenuated 

by intervention with GW1516. The PPARδ agonist reduced cellular TG, in part, through 

increased FA oxidation, which was unrelated to activation of PGC1α, PPARα or PPARγ. 

This was evidenced by GW1516 having no effect on hepatic Pgc1a, Ppara, Acox or 

Fabp4 expression. Furthermore, the studies conducted in Chapter 5 identified that the 

stimulation of FA oxidation by a synthetic PPARδ agonist does not require the activation 

of AMPK. β-oxidation persisted in PPARδ agonist-treated primary mouse hepatocytes 

isolated from AMPKβ1-/- mice. 

Compared to chow-fed controls, the HFHC-fed animals were hyperinsulinemic, 

which was coupled to increased hepatic phosphorylation of the insulin signaling 

mediators Akt and mTORC1. Accordingly, Srebf1c and Fasn expression were 

significantly upregulated. Functionally, increased phospho-mTORC1, Srebf1c and Fasn 

expression was associated with significantly enhanced fasting FA synthesis. All of these 

parameters were markedly attenuated by intervention with GW1516 to the HFHC diet. 

These experiments demonstrated that part of the mechanism by which PPARδ activation 

attenuates hepatic steatosis is through correction of the lipogenic branch of the insulin 

signaling bifurcation. 

The studies in Chapter 5 also revealed that another mechanism by which PPARδ 

activation reduces FA synthesis is through increased AMPK activity. Treatment of 

isolated WT primary mouse hepatocytes with GW1516 resulted in a 30% reduction in 

basal de novo lipogenesis. This effect was lost in β1-/- hepatocytes. Consistent with an 

AMPK effect, the synthetic AMPK activator A-769662 reduced rates of lipid synthesis in 

hepatocytes isolated from WT mice. However, A-769662 was ineffective at inhibiting 

lipogenesis in β1-/- hepatocytes. 
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 In addition to stimulating the development of hepatic steatosis and 

hyperinsulinemia, HFHC-feeding also induced a state of fasting hyperglycemia. The 

hyperglycemia observed in HFHC-fed animals was at least partially a result of the 

inability of insulin to elicit further phosphorylation of FoxO1 during re-feeding. Reduced 

dynamic regulation of FoxO1 activity was associated with a loss of fasting-to-feeding 

suppression of Pck1 expression, as hepatic Pck1 in the 12-week HFHC cohort was 

similar between fasted and re-fed animals. Importantly, GW1516-intervention to the 

HFHC diet prevented the progression of resistance in the gluconeogenic FoxO1 branch 

of the insulin signaling cascade, which likely contributed to the attenuated progression of 

dysglycemia. 

Previous work has suggested that inflammation in the liver is linked to hepatic 

steatosis and insulin resistance (Gregor and Hotamisligil, 2011, Hummasti and 

Hotamisligil, 2010). The Chapter 5 studies confirmed a proinflammatory state of the liver 

during insulin resistance, and showed that intervention to the HFHC-diet with a PPARδ 

agonist was able to completely prevent progression of this inflammatory phenotype. 

Moreover, HFHC-feeding induced the UPR, which is the precursor to ER-stress often 

linked to inflammation and progression of insulin resistance (Gregor and Hotamisligil, 

2011, Hummasti and Hotamisligil, 2010). Importantly, UPR induction was completely 

normalized by GW1516-intervention. 

6.2 CONCLUSIONS AND FUTURE DIRECTIONS 

6.2.1 CHAPTER 2 CONCLUSIONS 

The studies in Chapter 2 demonstrated that although VLDL-derived FAs activate 

PPARδ, potent synthetic agonists for this receptor are required to attenuate VLDL-

induced macrophage lipid accumulation and the associated inflammatory responses. 

Moreover, these studies revealed that the anti-inflammatory and lipid lowering 
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capabilities of PPARδ are discrete. That PPARδ activation was associated with reduced 

LPL activity and increased β-oxidation would suggest that the normalization of the VLDL-

induced inflammatory response by the PPARδ agonists was a result of reduced TG 

accumulation. However, inhibition of TG accumulation with low-dose tetrahydrolipstatin 

to the same extent as that achieved by PPARδ activation failed to normalize VLDL-

induced cytokine expression. Furthermore, GW0742 and GW1516 completely inhibited 

VLDL-induced cytokine expression, even when β-oxidation was inhibited by etomoxir. 

Whether PPARδ activation can attenuate VLDL-induced inflammatory responses in 

ANGTPL4-/-, CPT1α-/- or ANGPTL4/CPT1α double knockout macrophages would be the 

more definitive experiment to confirm the findings here. However, the data presented in 

Chapter 2 strongly suggest that the anti-inflammatory and lipid lowering properties of 

PPARδ activation are distinct.  

 A growing body of evidence indicates that lipid-induced macrophage 

inflammation is a consequence of increased MAPK signaling as well as impaired 

signaling through the Akt/FoxO1 pathway (Han et al., 2006, Saraswathi and Hasty, 

2006, Senokuchi et al., 2008, Su et al., 2009). It is also thought that VLDL-derived FAs 

can stimulate macrophage inflammation through TLR-Nfκb signaling (Nguyen et al., 

2007, Shi et al., 2006). However, this hypothesis has more recently been challenged 

(Anderson et al., 2012, Erridge and Samani, 2009). The studies conducted in Chapter 2, 

performed in the complete absence of LPS, contribute to the paradigm that VLDL-

derived FAs themselves stimulate macrophage inflammatory responses are a 

consequence of macrophage insulin resistance, rather than activation of the TLR-Nfκb 

pathway. This is supported by: (1) reduced pAkt and pFoxO1, increased nuclear FoxO1 

and enhanced MAPK signaling by VLDL treatment, (2) canonical Nfκb target genes 

TNFα and IL-6 being unaffected by VLDL treatment, and (3) the inability of parthenolide 

(an inhibitor of Nfκb signaling) to block VLDL-stimulated expression of IL-1β, MIP-1α, 
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and ICAM-1. Importantly, we found that PPARδ activation blocks VLDL-induced MAPK 

activation as well as the VLDL-mediated inhibition of the insulin signaling cascade.  

6.2.2 CHAPTER 2 FUTURE DIRECTIONS  

Going forward, it will be important to identify the mechanism(s) by which VLDL 

induces MAPK activation and the mechanism(s) by which PPARδ activation normalizes 

VLDL-induced MAPK signaling. It has been suggested that PPARδ activation stimulates 

the expression of Rgs4 and Rgs5 in mouse macrophages, which reduces angiotensin II-

induced phosphorylation of ERK1/2 and p38 (Takata et al., 2008). It remains unknown 

whether this mechanism applies to prevention of VLDL-induced MAPK activation and 

downstream inflammation. If this were the mechanism, it would imply that VLDL-induced 

inflammation through the MAPK pathway involves activation of G-protein coupled 

receptor signaling, which may uncover novel candidates in the inhibition of macrophage 

inflammation and atherogenesis. We propose to examine RGS4 and RGS5 expression 

in macrophages treated with PPARδ agonists. Concurrently, we propose studies in 

which the ability of GW0742 and GW1516 to inhibit VLDL-induced MAPK activation will 

be compared in PPARδ agonist treated control, RGS4, RGS5 and combined 

RGS4/RGS5 knockdown macrophages. We hypothesize that the ability of PPARδ 

activation to attenuate VLDL-induced MAPK activation and cytokine expression will be 

strongly attenuated in the absence of RGS4 and/or RGS5.  

 Another important avenue of investigation will be to identify how VLDL-treatment 

dysregulates insulin signaling, and the mechanism(s) by which the PPARδ agonists 

restore this VLDL-induced dysregulation. One possibility is that VLDL induces negative 

regulators of one or more steps of the cascade. For example, the suppressor of cytokine 

signaling (SOCS)-3 negatively regulates insulin signaling by targeting IRS-1 and IRS-2 

for proteosomal degradation, thereby diminishing signaling to PI3-K and to Akt 

(Emanuelli et al., 2000, Rui et al., 2002). Another example is the c-Jun N-terminal kinase 
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(JNK), which phosphorylates the insulin receptor on serine residues, and in doing so, 

inhibits the intrinsic autophosphorylation of insulin receptor tyrosine residues. In turn, 

JNK-mediated serine-phosphorylation of the insulin receptor dampens the propagation 

of the insulin signal through the IRS-proteins, PI3-K and Akt (Ozcan et al., 2004). The 

hypotheses that SOCS-3 and/or JNK play a role in the impairment of insulin signaling 

during VLDL-induced macrophage inflammation can be tested using knockdown 

experiments for SOCS-3 and inhibitor studies for JNK.  

Regarding the mechanism by which PPARδ activation restores VLDL-mediated 

impairment of insulin signaling, both PPARδ agonists used in the Chapter 2 studies 

stimulated enhanced Akt and FoxO1 phosphorylation in the absence of VLDL. We 

concluded from these experiments that PPARδ activation primes the insulin signaling 

cascade to prevent its downregulation by VLDL-treatment. It has been suggested that 

PPARδ activation can directly activate Akt activity through the induction of integrin-like 

kinase (ILK) and 3-phosphoinositide-dependent kinase 1 expression (PDK1) (Di-Poi et 

al., 2002). These transcripts encode kinases that are known to directly phosphorylate 

Akt and, in turn, FoxO1. However, we and others have observed PPARδ activation-

induced enhancement of Akt and FoxO1 phosphorylation, without increased ILK or 

PDK1 expression (Chapter 2, (Han et al., 2008)). Another series of candidates may be 

phosphatases that are known to downregulate the insulin signaling. One such example 

is the phosphatase and tensin homolog (PTEN), which catalyses the dephosporylation of 

the 3` phosphate of PIP3, resulting in the biphosphate product PIP2. This 

dephosphorylation event inhibits PI3-K activity, thereby mitigating signaling to Akt 

(Nicholson and Anderson, 2002). In keratinocytes, PPARδ plays a role in the 

downregulation of PTEN, thus relieving the impediment on the PI3-K to Akt signal (Di-

Poi et al., 2002). Whether this mechanism applies to the GW0742 and GW1516-

mediated reversal of VLDL-induced insulin resistance in macrophages is unknown. If this 
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were the case, one would hypothesize that macrophages treated with PPARδ agonists 

would exhibited reduced PTEN expression. Additionally, one would hypothesize that 

VLDL and PPARδ agonist treatment of macrophages transfected with constitutively 

active PTEN, would attenuate the ability of PPARδ activation to reverse VLDL-induced 

downregulation of Akt and FoxO1 phosphorylation, resulting in sustained 

proinflammatory cytokine expression. If the converse were true, this would identify that 

activation of insulin signaling by the PPARδ agonists occurs downstream of PI3-K. This 

latter scenario would warrant experiments involving treatment of macrophages 

expressing dominant-negative Akt or phosphorylation-resistant FoxO1, with or without 

PPARδ agonists. 

6.2.3 CHAPTER 3 CONCLUSIONS 

The studies in Chapter 3 showed that PPARδ activation attenuates both native 

and oxLDL-induced macrophage foam cell formation. Although the PPARδ agonists 

increased LDLR and CD36 expression (Chapter 2), these compounds also increased 

cholesterol efflux. We concluded from these studies that PPARδ agonists, similar to 

PPARγ ligands (Argmann et al., 2003), induce a transcriptional program that increases 

cholesterol uptake and concomitantly increases cholesterol efflux, which collectively 

leads to a net depletion of cellular CE and FC. Induction of cholesterol efflux to apoAI 

was significantly increased, whereas efflux to HDL3 was not. The fact that macrophage 

foam cell formation was reduced despite no apparent increase in ABCG1 activity agrees 

with the paradigm that ABCA1 is a more critical efflux transporter in the regulation of 

cholesterol homeostasis in hematopoetic cells of the arterial intima (Tarling et al., 2010, 

Yvan-Charvet et al., 2007). 

 With regard to CE-rich lipoprotein-induced inflammatory responses, we observed 

decreased cytokine expression in macrophages treated with oxLDL compared to vehicle 

controls. Reduced cytokine expression was not further affected by the PPARδ agonists. 
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One interpretation of these data is that the PPARδ agonists require the induction of 

cytokine expression in order to exert their inhibitory effects. In Chapter 2, we observed 

no change in basal cytokine mRNA abundance when macrophages were treated with 

GW0742 or GW1516, yet a complete inhibition of cytokine expression by these 

compounds in the presence of the VLDL-stimulus. A study that supports this hypothesis 

demonstrated that in adipocytes, GW1516 had no effect on basal IL-6 mRNA and 

protein but completely inhibited LPS-induced IL-6 synthesis and secretion (Rodriguez-

Calvo et al., 2008). Another line of evidence that supports this interpretation is that 

GW0742 had no effect on the inhibitors of Nfκb (IκBα and IκBβ) in cardiomyocytes 

unless an LPS-stimulus was present (Ding et al., 2006).   

 Previous studies have suggested that oxLDL-treated macrophages or FC-loaded 

macrophages exhibit a proinflammatory phenotype, characterized by increased TLR 

and/or Nfκb signaling (Curtiss et al., 2012, Febbraio et al., 2000, Janabi et al., 2000, Li et 

al., 2005, Michelsen et al., 2004, Mullick et al., 2011, Stewart et al., 2010). However, 

other studies have provided contrary evidence (Kannan et al., 2012, Qiu et al., 2007, 

Spann et al., 2012). In our hands, oxLDL treatment reduced cytokine expression, and 

inhibition of ACAT activity to significantly increase FC accumulation failed to reverse the 

anti-inflammatory phenotype of oxLDL-treated macrophages. These results suggest that 

oxLDL treatment or FC accumulation in macrophages is not a stimulus for the 

inflammatory response. Furthermore, oxLDL-mediated reduction in cytokine expression 

was coupled to markers of (1) oxysterol accumulation (reduced SREBP-1c and FAS 

expression), (2) LXR activation (increased ABCA1, ABCG1 and MYLIP), (3) PPARγ 

activation (FABP4), and (4) PPARδ activation (ADFP). The activation of LXR, PPARγ or 

PPARδ is known to be anti-inflammatory (Im and Osborne, 2011, Straus and Glass, 

2007). Therefore, oxLDL-mediated activation of all three of these nuclear receptors may 

elicit a combination of effects that contributes to reduced cytokine expression.  
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6.2.4 CHAPTER 3 FUTRE DIRECTIONS 

The association between oxLDL treatment, increased expression of LXR-target 

genes and reduced inflammatory cytokine expression is most likely linked to 

desmosterol accumulation as a consequence of reduced DHCR24 expression. However, 

it will be critical to determine whether desmosterol does in fact accumulate in THP-1 

macrophages exposed to oxLDL. We propose to conduct experiments in which oxLDL-

treated macrophages with or without the PPARδ agonists are examined for intracellular 

desmosterol concentrations by liquid chromatography tandem mass spectrometry 

(Honda et al., 2009, Honda et al., 2008). We hypothesize that oxLDL-treatment will 

stimulate an increase in desmosterol accumulation, which will not be further enhanced 

by the PPARδ agonists. The latter portion of this hypothesis is driven by the fact that the 

PPARδ agonists did not further suppress TNFα and IL-6 expression beyond oxLDL-

treatment alone.  

Although enhanced intracellular desmosterol is the most likely driving factor 

behind the oxLDL-mediated anti-inflammatory response, other mechanisms are certainly 

possible. In fact, Spann et al. reported that in mouse peritoneal macrophages elicited 

from LXR-double knockout mice, the anti-inflammatory phenotype was attenuated, but 

not eliminated, compared to macrophages elicited from LXR-wild type mice (Spann et 

al., 2012). Thus, LXR-independent anti-inflammatory mechanisms must also play a role 

in this context. In the Chapter 3 studies, oxLDL stimulated the expression of the PPARδ-

specific target gene ADFP, implying that oxLDL may induce the accumulation of PPARδ 

ligands. Fatty acids are known to activate PPARδ (Chawla et al., 2003). Spann et al. 

observed increases in oleic acid accumulation in cholesterol-loaded and desmosterol-

treated mouse peritoneal macrophages which were in the picomolar range (Spann et al., 

2012). The studies in Chapter 2 revealed that in the micromolar range, oleic acid 



272 

induces macrophage inflammatory responses. However, picomolar concentrations of 

oleic acid may be sufficient to activate PPARδ but insufficient to stimulate the 

inflammatory response.  

The hypothesis that oxLDL-mediated anti-inflammatory responses are partially 

the result of PPARδ activation can be tested by examining cytokine expression in 

macrophages treated with oxLDL in the presence or absence of PPARδ antagonists 

(GSK0660 or GSK3787). It is important to note that genetic ablation of PPARδ would not 

be an appropriate model system for these experiments, as PPARδ deletion mimics the 

liganded state of the receptor. This is due to genetic ablation of PPARδ resulting in the 

transrepression of inflammatory cytokine expression and derepression of PPARδ target 

genes (Lee et al., 2003, Lee et al., 2006a). Hence, this would create an experimental 

confounder for the proposed studies. Continuing with the proposed PPARδ inhibitor 

experiments, one would hypothesize that antagonizing PPARδ would result in partial 

reversal of the oxLDL-mediated reduction of TNFα and IL-6. If this hypothesis is correct, 

another series of experiments could perhaps determine whether oleic acid or other fatty 

acid ligands for PPARδ accumulate in oxLDL-treated macrophages. Subsequently, 

experiments may also include, but are not limited to, determining the expression of 

cytokines under the following conditions: (1) oxLDL in the presence of both PPARδ and 

LXR antagonists, (2) exogenous addition of the determined fatty acid PPARδ ligand, (3) 

in the presence or absence of PPARδ antagonist(s). The proposed experiments would 

determine the relative contribution of LXR and PPARδ activation to the oxLDL-mediated 

anti-inflammatory response in macrophages, and possibly identify a novel mechanism 

responsible for the reduced proinflammatory responses observed in oxLDL-treated 

macrophages. 

Given that TNFα and IL-6 expression is regulated, at least in part, by Nfκb 

signaling (Ding et al., 2006, Li et al., 2005, Rodriguez-Calvo et al., 2008), one would be 
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inclined to hypothesize reduced phosphorylation of the Nfκb signaling mediators IKK and 

IκB in oxLDL-treated macrophages. However, the anti-inflammatory effects of LXR occur 

as a result of ligand-induced small ubiquitin-like modifier (SUMO)-dependent 

modification of the receptor. The SUMOylation of LXR results in the recruitment of co-

repressor complexes to promoter regions of proinflammatory genes, which inhibit Nfκb 

from binding to its response elements within these targets (Im and Osborne, 2011). 

Hence, it is unlikely that oxLDL-treated macrophages would display reduced phospho-

IKK and IκB. On the other hand, PPARδ inhibits Nfκb signaling through increased 

expression of the IκB proteins, suggesting that oxLDL-treated macrophages may exhibit 

higher IκBα and IκBβ than untreated controls. In oxLDL-treated macrophages with or 

without LXR and PPARδ antagonists, we propose to examine nuclear co-repressor 

occupancy of the TNFα and IL-6 promoters via chromatin immunoprecipitation (Ghisletti 

et al., 2007), as well as phospho- (as a control) and total-IKK, IκBα and IκBβ via 

immunoblotting. These experiments would expand on the mechanism by which oxLDL-

mediates reduced TNFα and IL-6 expression. 

6.2.5 CHAPTER 4 CONCLUSIONS 

The studies in Chapter 4 revealed that, intervention with a synthetic PPARδ 

agonist to a diet-induced setting of pre-established dyslipidemia and insulin resistance 

attenuates the progression of early stage lesions to more complex lesions. A significant 

contributor to this effect was likely the reduction in plasma lipids, thus reducing the 

atherogenic stimulus. However, aortae excised from GW1516-treated mice exhibited 

significantly increased expression of the PPARδ-target genes Adrp, Angptl4 and Cpt1a, 

which we showed in Chapter 2 are important regulators of VLDL-induced macrophage 

foam cell formation. Coupled to the fact that aortic TG in mice receiving the GW1516-

intervention regressed from the 4-week baseline levels, these data suggest that this 
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compound has direct vessel wall effects that contribute to the PPARδ-mediated 

reduction in lesion lipid deposition.  

 In HFHC-fed animals, the markedly increased aortic expression of Ccl3, II1b, 

Icam1, Tnf, II6, iNos and Ccl2 coupled to substantially lower Arg1 and a greatly 

exacerbated iNos/Arg1 ratio strongly suggests the polarization of these aortae towards 

the M1 proinflammatory phenotype. That GW1516-intervention attenuated the 

progression of this M1 polarization demonstrates that PPARδ activation exerts anti-

inflammatory effects in the aorta, which likely contribute to protection from lesion 

progression. Furthermore, GW1516 prevented the induction of aortic MAPK, which was 

associated with increased Rgs4 and Rgs5 expression. Additionally, the PPARδ agonist 

inhibited HFHC diet-induced aortic Nfκb activation, through mechanisms that remain to 

be elucidated.  

The studies in Chapter 4 also revealed that dynamic fasting-to-feeding regulation 

of aortic pAkt and pFoxO1 is lost in a diet-induced model of atherosclerosis. These data 

suggest that nuclear FoxO1 activity is chronically active in the aorta, which likely 

contributes to the sustained accumulation of FoxO1 target genes such as Il1b (Su et al., 

2009), Icam1 and Ccl3 (Chapter 2). This hypothesis is supported by the paradigm that 

atherogenesis is a longitudinal process associated with chronic low-grade inflammation 

(Glass and Witztum, 2001, Libby et al., 2011). Importantly, we found that GW1516-

intervention to the HFHC diet completely reversed the fasting-to-feeding regulation of 

aortic pAkt and pFoxO1 back to levels in chow-fed controls. These data suggest that 

part of the ability of PPARδ activation to protect mice from lesion progression is 

mediated by restoration of normal aortic insulin signaling. 

6.2.6 CHAPTER 4 FUTURE DIRECTIONS 

A caveat to the conclusions from the findings in Chapter 4 is the leap from drug-

treatment to causal relationship. In other words, the ability of GW1516 to lower plasma 
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lipids is unequivocally a major contributor to protection from lesion progression. 

However, the data also provide compelling evidence that GW1516 exerts lipid lowering, 

anti-inflammatory and insulin-sensitizing at the level of the aorta. The relative 

contribution of lipid lowering and direct vessel wall effects cannot be deciphered from the 

experiments performed. Furthermore the lesions after 4-weeks of induction were early 

lesions, which were prevented from further development. Moving forward it will be 

important to determine if PPARδ activation improves the pathology of more advanced 

lesions, and whether extended treatment is able to achieve regression.  

 Given that the use of Pparδ-/- mice results in the experimental confounder 

discussed above, alternative strategies will need to be employed to reconcile the issue 

of lipid lowering versus direct vessel wall effects. To address this issue, and to determine 

if extended treatment is able to achieve regression, one potential experiment would be to 

induce lesion development with HFHC feeding for 12-weeks prior to a 12-week 

intervention with GW1516. Additionally, the introduction of HFHC-fed mice transferred to 

chow with or without GW1516 would provide unique insight into the contribution of 

PPARδ activation within the aorta to improved lesion pathology. The justification for this 

statement arises from ongoing experiments in our laboratory, in which 12-weeks of 

HFHC feeding prior to the introduction of chow for the remaining 12-weeks, completely 

normalizes all metabolic parameters back to levels observed in 24-week chow-fed mice. 

Thus, examining lesion pathology in GW1516-intervention during chow feeding would 

eliminate the variable of drastic lipid lowering contributing to inhibition of plaque 

progression or stimulation of plaque regression. The reversa mouse (Cre-induced 

deletion of hepatic Mttp) provides a similar platform to test the impact of a drug on 

atherosclerosis development independent of lipid lowering (Feig et al., 2011), but is 

unfortunately commercially unavailable.  
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Another strategy to help reconcile lipid lowering versus direct vessel wall effects 

is the utilization of laser-capture microdissection (LCM). Analysis of gene expression 

from LCM samples would allow us to determine the contribution of a particular cell-type 

to the changes we observed in full-length aorta. Specifically, LCM of MOMA-2 positive 

macrophages would provide a tool for the macrophage-specific measurement of Adrp, 

Angptl4 and Cpt1a expression. Additionally, the measurement of cytokines in MOMA-2 

positive macrophages isolated by LCM would provide a more definitive conclusion of 

lesion macrophage polarization in all diet groups. Answering these questions would 

provide a PPARδ-specific mechanism in macrophages for reduced foam cell formation 

and inhibition of inflammatory cytokine expression, particularly in the condition of HFHC 

transferred to chow plus GW1516. 

GW1516 increased lesion collagen deposition without altering lesion SMC 

content. This observation is possibly due to a direct effect of PPARδ activation on plaque 

SMCs, enhancing their capacity to synthesize and deposit extracellular matrix. This 

hypothesis is supported by a report that PPARδ activation in vascular smooth muscle 

cells (VSMCs) inhibits IL-1β-induced matrix metalloproteinase (MMP)-2 and MMP-9 

expression (Kim et al., 2010). Although reduced lipid deposition in VSMCs restores their 

capacity to synthesize extracellular matrix (Beyea et al., 2012, Frontini et al., 2009), the 

ability of PPARδ agonists to improve VSMC function in response to a lipid load is 

unknown. In addition, LCM of smooth muscle cells from aortic lesions would allow us to 

determine whether GW1516-treatment enhanced collagen and elastin expression 

specifically in VSMCs, thus contributing to enhanced matrix deposition.  

An interesting and novel finding in the Chapter 4 studies was the increased aortic 

expression of Ptpn6 and Trib3, which are known negative regulators of hepatic insulin 

signaling (Du et al., 2003, Dubois et al., 2006). While it has recently been demonstrated 

that silencing Trib3 using siRNA suppresses atherosclerosis in diabetic mice (Wang et 
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al., 2012), the role of Ptpn6 in atherogenesis has not been reported. Experiments using 

siRNA against Ptpn6 in a setting of HFHC diet-induced atherosclerosis would identify the 

contribution of induced Ptpn6, and its protein product SHP-1, to atherogenesis. 

Moreover, the ability of GW1516 to inhibit lesion progression in a setting of already 

improved (vascular) insulin signaling (such as Trib3 and/or Ptpn6 knockdown) would 

help determine the impact of improved aortic insulin signaling on atherosclerosis. 

Alternatively, examining the ability of GW1516 to inhibit plaque progression in the setting 

of bone marrow transplantation from Insr-/- mice to Ldlr -/- recipients would also provide 

valuable information regarding the contribution of improved vascular insulin sensitivity by 

PPARδ activation to the atheroprotective effect. If in this scenario GW1516 can still 

inhibit atherogenesis, it will be important to determine the mechanism by which PPARδ 

activation reverses insulin resistance, as discussed in Chapter 2 future directions 

(Section 6.2.2).  

6.2.7 CHAPTER 5 CONCLUSIONS 

In Chapter 5 we demonstrated that intervention to a HFHC diet with a synthetic 

PPARδ agonist attenuates the progression of hepatic steatosis, as evidenced by a 

complete halting of liver TG accumulation from 4-week baseline levels. The addition of 

GW1516 to the HFHC diet did not affect hepatic expression of Pgc1a, Ppara, Acox or 

Fabp4, which led us to conclude that GW1516 did not activate PGC1α, PPARα or 

PPARγ. However, GW1516-treatement enhanced the hepatic expression of Adfp and 

Cpt1a in the liver, which was coupled to increased FA oxidation. These data strongly 

suggest that GW1516 increases CPT1α-mediated β-oxidation in the liver, and that with 

respect to PPARs, this effect is PPARδ specific.  

 The studies in Chapter 5 also revealed that AMPK is not required for PPARδ-

mediated stimulation of liver fat oxidation, as the increase in β-oxidation observed in 

isolated WT primary mouse hepatocytes persisted in AMPKβ1-/- hepatocytes. 
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Irrespective of AMPKβ1 genotype, GW1516-treatment significantly increased Cpt1a 

expression, further demonstrating that PPARδ activates CPT1α-mediated FA oxidation 

independent of AMPK.  

As alluded to above, GW1516-intervention inhibited hepatic fatty acid synthesis, 

which is partially attributable to AMPK activation. We also found that intervention to a 

HFHC diet with GW1516 in mice, corrected selective hepatic insulin resistance, which 

reduced lipogenic gene expression and prevented any further increase in fasting FA 

synthesis. Our findings are supported by a number of studies reporting that PPARδ 

plays a role in improving whole-body insulin sensitivity, which reduces metabolic 

disturbance (Lee et al., 2006b, Tanaka et al., 2003, Wang et al., 2003). However, we 

extended this concept in Chapter 5, as we provided evidence that improved insulin 

signaling specifically in the liver contributes to reduced hepatic steatosis. 

A previous study demonstrated that transplanatation of bone marrow from Pparδ-

/- mice into WT mice polarized hepatic Kupffer cells to the proinflammatory M1 

phenotype, which resulted in increased liver TG accumulation and hepatic dysfunction 

(Odegaard et al., 2008). Given that deletion of PPARδ mimics the liganded state of the 

receptor as discussed in Section 6.2.4, the study by Odegaard and colleagues would 

imply that PPARδ activation in hepatic Kuppfer cells is proinflammatory. Although the 

studies performed in Chapter 5 cannot distinguish between the effects of PPARδ 

activation in hepatocytes versus Kuppfer cells, the results suggest an anti-inflammatory 

rather than a proinflammatory effect. This is consistent with the notion that activation of 

PPARδ in hepatocytes protects from inflammatory responses induced by non-lipid 

stimuli such as cytokines or LPS (Serrano-Marco et al., 2011). Even so, it remains to be 

determined whether the inhibition of hepatic inflammation by GW1516 contributed to 

correction of hepatic insulin signaling, FA synthesis and hepatic steatosis, or was a 

secondary effect of reduced liver TG accumulation. 
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6.2.8 CHAPTER 5 FUTURE DIRECTIONS 

Moving forward it will be important to determine the mechanism by which PPARδ 

activation corrects insulin signaling. The discussion in Chapter 2 highlighted the fact that 

GW1516 activated Akt and FoxO1 phosphorylation in macrophages. Here, the situation 

is vastly different. If GW1516 activated hepatic insulin signaling, mTORC1 

phosphorylation and Srebf1c expression would have been increased compared to 

HFHC-fed mice. Furthermore, fatty acid synthesis would have been increased, or 

perhaps unchanged due to activation of AMPK mitigating the increase in insulin-

stimulated lipogenesis, but certainly not decreased. The simplest explanation for the 

correction of hepatic insulin signaling is improved peripheral insulin sensitivity, which 

would result in enhanced peripheral glucose uptake and a reduction in hyperinsulinemia. 

This hypothesis is supported by: (1) the known ability of PPARδ activation to enhance 

glucose uptake in skeletal muscle (Kramer et al., 2005), (2) the fact that GW1516 treated 

mice exhibit increased insulin stimulated glucose disposal under hyperinsulinemic-

euglycemic clamps (Lee et al., 2006b) and (3) that PPARδ activation in pancreatic islet 

cells increases glucose stimulated insulin secretion (Iglesias et al., 2012). Taken 

together, these studies suggest that the PPARδ-mediated correction of peripheral insulin 

resistance may contribute to reduced fasting hyperinsulinemia, and therefore the lower 

drive on hepatic insulin receptor signaling to stimulate the mTORC1-SREBP1c lipogenic 

axis. Hence, examining the contribution of corrected selective hepatic insulin resistance 

to reduced liver TG accumulation in GW1516-treated animals is not particularly 

straightforward. 

Considering AMPK activation by GW1516 is required for the inhibition of 

lipogenesis, but is not required for the induction of FA oxidation, AMPKβ1-/- mice provide 

an appropriate platform to test the relative contribution of these parameters in the 
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GW1516-mediated inhibition of liver TG accumulation. Furthermore, AMPKβ1-/- mice are 

protected from diet-induced hepatic insulin resistance (Dzamko et al., 2010). Therefore, 

AMPKβ1-/- mice also represent a model which can be used to decipher the relative 

contribution of corrected insulin signaling and AMPK activation to reduced lipogenesis by 

PPARδ activation. We propose to examine the ability of GW1516 intervention to a HFHC 

diet to attenuate hepatic steatosis in AMPKβ1-/- mice. We hypothesize that the ability of 

GW1516 to inhibit liver TG accumulation will be partially attenuated in AMPKβ1-/- mice. 

Furthermore, the addition of a group of mice treated with adenoviral Cpt1a siRNA in the 

presence or absence of GW1516 would inhibit PPARδ activation induced FA oxidation. 

The proposed experiments would provide unique insight into the mechanism of 

GW1516-mediated inhibition of hepatic steatosis. 

In the fasting, acute feeding, injection and re-fasting protocol we found that 

GW1516 acutely stimulated carbohydrate oxidation, while not suppressing fat oxidation. 

Furthermore, in the intervention study, a setting of prolonged PPARδ activation, 

GW1516 increased total EE yet had no further effect on average RER through a 24hr 

period. Taken together, these results suggest that PPARδ activation can simultaneously 

stimulate carbohydrate and fat oxidation. The mechanism by which this occurs has been 

postulated to involve increased glucose flux through the pentose phosphate pathway 

coupled to increased hepatic fatty acid synthesis (Lee et al., 2006b). The consequence 

of these processes being upregulated in response to a PPARδ agonist is that the former 

can consume up to 20% of hepatic glucose, while providing reducing power to stimulate 

fatty acid synthesis (Lee et al., 2006b); hence increased simultaneous carbohydrate and 

fat utilization. Although we did not measure activity of the pentose-phosphate pathway in 

livers of GW1516-treated animals, we did observe a significant reduction in the rate of 

hepatic fatty acid synthesis, thus challenging the theory of Lee and colleagues with 

respect to the liver. However, preliminary experiments in our lab have revealed that in 
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muscle, GW1516 does not inhibit HFHC feeding-induced fatty acid synthesis despite the 

resolution of hyperinsulinemia. Importantly GW1516-treatment significantly increases 

muscle FA oxidation (~2-fold). Together, these data suggest that PPARδ activation may 

stimulate the pentose-phosphate shunt and fatty acid synthesis in muscle, where the 

oxidative machinery to utilize the newly synthesized FAs is upregulated. This would 

create futile cycling of FA synthesis and oxidation which: (1) increases carbohydrate 

consumption as a consequence of increased pentose-phosphate activity to provide 

reducing power for FA synthesis, and (2) simultaneously increases fat oxidation to 

deplete the newly synthesized FAs. However, this is highly speculative and substantial 

experimentation would be required to test this hypothesis. Nevertheless, identifying the 

mechanism by which PPARδ activation stimulates simultaneous utilization of 

carbohydrate and fat is exciting and warrants further study. 

6.3 OVERALL THESIS CONCLUSION 

A substantial body of preclinical evidence supports the hypothesis that PPARδ 

activation represents a favourable therapeutic strategy for the treatment and prevention 

of dyslipidemia, insulin resistant syndromes and atherosclerosis. Despite this wealth of 

knowledge, a significant gap between preclinical and clinical studies has stalled the 

development of PPARδ agonists. The studies described in this thesis have contributed 

to the narrowing of this gap by elaborating on how PPARδ activation confers protection 

from metabolic insult in macrophages, in the aorta and in the liver (Figure 6.2). 

Specifically, Chapters 2-5 of this thesis provided molecular and physiological evidence 

that PPARδ activation favourably regulates lipid metabolism and inflammatory signaling, 

which results in the protection from atherosclerosis and hepatic steatosis in states of 

metabolic disturbance such as dyslipidemia, insulin resistance and type 2 diabetes.
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Figure 6.2: Thesis Summary. 

PPARδ activation in macrophages attenuates TG and CE accumulation in response to 

lipoproteins, corrects impaired insulin signaling and inhibits the inflammatory response 

(Chapters 2 and 3). The ability of PPARδ activation to inhibit foam cell formation, likely 

contributes to attenuation of diet-induced aortic insulin resistance and atherosclerosis in 

vivo (Chapter 4). In the liver, PPARδ activation attenuates hepatic steatosis via 

increased FA oxidation and inhibition of de novo lipogenesis, which is associated with 

the correction of hyperlipidemia, hyperglycemia and hyperinsulinemia (Chapter 4 and 5).  
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