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Abstract 

Total body hypothermia is an established neuroprotectant in global ischemia.  Applying 

hypothermia selectively could provide more rapid cooling and eliminate systemic side 

effects.  We studied the effect of selective hypothermia in a novel stroke model in adult 

domestic swine.   

Via craniotomy under general anesthesia, one middle cerebral artery branch was occluded for 

3 hours followed by 3 hours of reperfusion.  In half the animals, hypothermia was induced 

during reperfusion via a dual-lumen balloon occlusion catheter placed in the carotid 

ipsilateral to the ischemic region.  Following reperfusion, the animals were sacrificed.  Brain 

MRI and histology were evaluated blinded to the intervention. 

In this series of 28 animals, the mean temperature achieved was 26.5C.  Mean time from start 

of perfusion to attainment of moderate hypothermia (< 30 C) was 25.4 minutes.  Mean 

histologic stroke volume was reduced by 38.4-44.2% (p=0.292).   Percentage stroke seen on 

MRI showed a significant reduction(p=0.042) 

Selective moderate hypothermia was rapidly induced using endovascular technology. A 

promising reduction in stroke volumes is seen.  Further study is warranted.  

Keywords 

Selective hypothermia, Focal cerebral ischemia, Stroke, Endovascular, Porcine 
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Chapter 1  

1 Background 

1.1 Introduction. 

As a form of neuroprotection, hypothermia is the only one that has stood the test of time. 

Numerous animal studies and in recent years even some human ones point to its 

protective effect. In the application of hypothermia during surgical procedures, early 

investigators recognized both its potential power but also the systemic risks associated 

with its use.   

A surge of interest has recently arisen in the application of hypothermia to ischemic 

stroke. This stems from developments in endovascular catheter technology, which can 

provide hypothermia more rapidly than traditional surface cooling techniques 

(DeGeorgia, Froehler), and also provide it to more selective regions of the body including 

the brain. Our purpose was to evaluate catheter technology as a means of selectively 

cooling an ischemic region of brain. Focal cooling potentially avoids the systemic 

complications of hypothermia, while providing moderate hypothermia rapidly and 

efficiently. 

 

1.2 The history of total-body and selective 
hypothermia 

 Interest in hypothermia as a protection against hypoxic-ischemic injury during 

surgery dates back to the 1950s (Bigelow, Botterell, Lougheed). At that time, efforts to 

improve surgery on both the heart and the brain led to investigations as to how to 

improve tolerance to circulatory arrest and resultant hypoxia.  For cardiac surgeons the 

issue was with direct surgery on the heart, which would require cardiac standstill, and 

which without some form of protection would result in cerebral ischemia (Bigelow).  For 

neurosurgeons the tantalizing possibility lay in being able to operate in a bloodless field 

in the depths of the cranium to precisely reconstruct diseased blood vessels. This led to 
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interest in methods to arrest cerebral blood flow while improving the brain’s tolerance to 

ischemia (Botterell, Lougheed). 

These lines of investigation were focused on two different forms of cerebral ischemia.  

The cardiac surgeons were interested in the prevention of global ischemia due to cardiac 

standstill. For the neurosurgeons the interest was in preventing focal ischemia due to 

temporary occlusion of a single brain artery (Lougheed, Drake, Lawton).  Temporary 

occlusion provides the advantage of  softening of the brain aneurysm sac, allowing 

manipulation and obliteration with a reduced risk of aneurysm rupture. But temporary 

occlusion comes at the cost of potential stroke in the territory supplied by the artery. 

Providing hypothermia could decrease the metabolic demand of neural tissue and 

decrease the risk of stroke. 

The metabolic effect of hypothermia was established in canine experiments the 1950s by 

Lougheed, who found a 50% reduction in cerebral metabolic rate at 28°C, and a 75% 

reduction at 25°C (Lougheed). Given the degree to which cerebral metabolism was 

reduced by moderate hypothermia, it seemed logical that it would be protective during 

induced ischemia.  Initially cooling was performed by whole body ice water bath, but 

cardiac dysrrhythmias limited the degree of cooling to 30°C (Botterell).  Later studies 

utilized full cardiac bypass with profound hypothermia(10-15°C), but untoward bleeding 

was a significant problem (Drake, Lawton). 

The recognition of these systemic side-effects led to interest in focal or selective 

hypothermia applied to the area at risk for ischemia. Lougheed et al first proposed local 

or selective hypothermia in 1955 as a way of circumventing the cardiac arrhythmia 

problem (Lougheed).  Using a bypass pump attached to a carotid artery in dogs, he was 

able to reduce brain temperature to 20°C in 20 minutes, while the systemic body 

temperature only dropped to 35°C.  The approach was abandoned when all the dogs 

developed fatal arrhythmias.  However, additional canine experiments by Verdura were 

able to overcome this issue with impressive clinical results (Verdura). Of 16 animals 

treated with femoral-carotid bypass hypothermia and concurrent ischemia, all survived 



3 

 

and only 2 had permanent deficits, whereas none of the 5 normothermic controls 

survived. 

Subsequently, a human trial of selective catheter-based brain cooling during surgery for 

aneurysms and tumours was undertaken in the 1960s (Willams).  Although 10 patients 

achieved deep hypothermia of less than 20°C, bleeding complications led to a 50 per cent 

mortality rate. It was concluded that selective brain cooling was inferior to open chest 

cardiopulmonary bypass techniques. However the excessive mortality may have been due 

in part to the technique. The surgical procedure involved the isolation of all 4 arteries to 

the brain in order to perfuse the brain through one of them, the other three being 

clamped.Supra-normal infusion pressures were then used to achieve total brain cooling in 

Williams’ study.  

Despite these early challenges, the scientific allure of hypothermia for brain ischemia 

continues, due to repeated demonstrations of reduced stroke volume in animal studies. 

Animal studies have included both global and focal ischemic models, in both small and 

large animals, and using different timing of induction of hypothermia in relation to the 

onset of ischemia. In one study, a global ischemic model in swine with a full 20 minute 

period of cardiac arrest, femoral–to–carotid bypass using cooled blood for 12 hours led to 

brain temperatures of 32-34°C with drops in body temperature to only 35°C (Mori, Mori 

2).  Histological grading in the CA1 region of the hippocampus, an area known for 

ischemia-sensitive neurons, demonstrated significantly better scores in animals that 

received hypothermia.  In a canine model of global ischemia, clamping off 3 vessels and 

perfusing the brain solely through the right vertebral artery with cold Ringer’s lactate led 

to marked drops in brain temperature with no evidence of cerebral ischemic damage 

either clinically or histologically (Ohta). 

The above were studies of global ischemia during cardiac arrest.  However with 

neuroscientists’ interest in focal ischemia, many studies have used focal ischemic models 

instead.  One common model utilizes rodents in which one middle cerebral artery and the 

ipsilateral or both carotids are occluded.  In many such studies, infarct volumes have been 

found to be smaller compared with normothermic controls  (Huang, Kozlowski, Xue, 
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Onesti, Goto ).  These studies differ in the degree of hypothermia and in the timing of 

hypothermia in relation to the ischemic insult.  Hypothermia was generally induced by 

whole body cooling, and the method, although considered focal, involves a more 

significant loss of blood flow to the whole brain than a focal model would in a larger 

animal.  Also, rats probably tolerate a greater degree of hypothermia without cardiac 

arrhythmias than higher order mammals such as humans.  In one study, whole body 

cooling to less than 24°C was tolerated (Onesti).  

The timing of the induction of hypothermia relative to the ischemic insult is an interesting 

area of study (Onesti).  While ischemic insults applied during hypothermia have shown 

promise, the reverse also appears to be true (Goto, Xue, Huang).  In other words, 

hypothermia can be induced hours after the ischemic insult or even during reperfusion, 

and stroke volumes will still be reduced compared with normothermic controls.  

Proposed mechanisms for this benefit include the protection of “penumbra” neurons at 

the peripheral zone of ischemia, suppression of excitatory neurotransmitters, and 

suppression of leukotrienes (Onesti). During reperfusion with hypothermia there are 

measurable reductions in ischemic metabolites such as lactate and high energy 

phosphates (Koslowski). Hypothermia during reperfusion also leads to reduction in one 

form of blood-brain-barrier disruption (Huang). Thus based on rodent studies it would 

appear that hyperacute stroke may benefit from hypothermia applied during reperfusion. 

 Although rodents are easily handled, tolerate moderate to deep hypothermia with whole 

body cooling, and have provided insight into the mechanisms behind hypothermia’s 

benefit, the transferability of these findings to higher order mammals is not clear.  

Humans do not tolerate temperatures much below 32°C without significant cardiac effect 

(Botterell). Furthermore, whole body cooling can take hours to induce, and thus its 

applicability to acute stroke is limited, where even an hour’s delay can be critical 

(Froehler). 

In swine, focal ischemic models have become more established in recent years.  Sakoh 

and colleagues used full size pigs to compare cerebral metabolic rate of oxygen (CMRO2) 

using positron emission (PET) scanning with activated diffusion coefficient (ADC) 
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changes using magnetic resonance (MR) imaging. Their model was proximal occlusion 

of the middle cerebral artery (MCA) (Sakoh).  Smaller models using either infant or 

miniature piglets have also been described, which allow study of permanent or temporary 

MCA occlusion (Imai, Kuluz, Cooper).  Unlike rodents, no additional carotid clamping is 

required, making swine models much more like the human acute stroke situation. 

While small porcine models are considered advantageous for ease of handling and for 

craniotomy (Imai), their vasculature is too small to evaluate the use of endovascular tools 

designed for humans.  Larger pigs have been used for endovascular equipment evaluation 

and training for close to three decades (Massoud, Guglielmi, Lee). Thus a stroke model in 

domestic swine would be ideal to study endovascular approaches to selective brain 

cooling. 

 

 

 

1.3 The Argument for Selective Hypothermia 

The failure of selective brain cooling observed in humans during the 1960s has been 

noted above. However based on animal studies and on the avoidance of cardiac and 

bleeding complications, further investigations into this promising technique continue. In 

one study in baboons, a femoral-to-carotid circuit was used to cool the ipsilateral cerebral 

hemisphere to under 25°C via one carotid artery. This was rapidly performed within a 

mean of 12 minutes, and maintained for 3h with only minimal systemic cooling to 34°C 

(Schwartz).  No hemodynamic complications were noted, although 2 of 12 animals died 

due to other complications. A second study involved swine, first as a feasibility study, in 

which brain temperatures were reduced to 30°C in 30 min without reducing core 

temperature below 34°C (Mori).  Subsequently, the same group induced a global 

ischemic insult in the form of controlled cardiac arrest for 20 minutes, then randomly 

provided selective cooling for 12 hours. There was a statistically significant improvement 

in histological scores in the cooled group compared with controls (Mori 2).  Brain 
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temperatures in this study were more in the moderate range (32-34°C) while core 

temperatures dropped to 35°C.  Most recently, a small study in baboons demonstrated 

significant reductions in stroke volume by MRI in selective hypothermia maintained over 

12hours (Schwartz 2). 

 

Recently, ice-cold saline has been proposed as a method for selective cooling.  A 

theoretical study predicted that brain temp less than 35°C would be achieved in 10 

minutes at infusion rates of 20ml/min (Konstas).  A clinical pilot study in humans 

demonstrated internal carotid artery infusions of ice-cold saline at 33 ml/min for 10 

minutes led to a statistically significant drop in jugular venous bulb temperatures 

compared with core temperatures (Choi).  The magnitude of the drop was small (0.84°C 

versus 0.15°C).  However, the authors suggested that this form of selective brain cooling 

might be useful in acute stroke as a bridge to recanalization and to prevent reperfusion 

complications.   

Finally, Lownie et al utilized a femoral-carotid bypass to induce selective hypothermia 

during the evacuation and clipping of a giant middle cerebral artery aneurysm (Lownie).  

Both safety and utility were demonstrated in this case report, with temporary occlusion 

times of approximately 20 minutes, and a brain temperature of 22°C, without evidence of 

stroke, hemodynamic or cardiac changes, or coagulopathy.    

1.4 Potential Utility of Selective Hypothermia in Acute 
Ischemic Stroke 

Given the demonstrable effect of hypothermia in reducing stroke volumes in both small 

and large animal models, as well as significant human data suggesting benefit of 

hypothermia in preventing ischemic injury, the utility of hypothermia for treatment after 

a focal ischemic insult is an area of active research.  In a rodent model, delaying 

hypothermia until 1.5 hours after the ischemic insult still showed decreased infarct 

volumes, although not as dramatically as with concurrent hypothermia (Xue).  In clinical 

trials, hypothermia is beneficial after cardiac arrest (Holzer).  There is some disagreement 
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about the length of time required for benefit but depth of hypothermia may not be as 

important (Yenari). In acute ischemic stroke, multiple authors suggest that hypothermia 

may be useful as a bridge to recanalization (Choi, Yenari, Schwartz, Froehler).   

One barrier to clinical utility is the rapidity of hypothermia induction.  This is not an 

issue for rodent studies, but whole body cooling in humans takes a significant amount of 

time. The rate of cooling may be an important determinant for clinical utility in stroke 

(Froehler).  The COOLAID study demonstrated that endovascular cooling combined with 

a drug cocktail (to prevent shivering) achieved target temperature in just over an hour, 

compared with surface cooling technology which can take over 4 hours (De Georgia).  

However, stroke volume was not reduced.   

A subsequent human clinical trial called ICTuS-L evaluated the combination of FDA-

approved intravenous tPA and endovascular hypothermia for the treatment of acute 

ischemic stroke (Hemmen).  This was the first trial to evaluate a demonstrated stroke 

therapy with hypothermia, but unfortunately could not enroll enough patients to evaluate 

whether hypothermia might extend the treatment window for intravenous therapy.  Like 

COOLAID, there were no significant differences in clinical outcome or mortality, 

although pneumonia was more commonly seen in the hypothermia treatment arm.   

Despite the negative results in COOLAID and ICTUS-L, endovascular methods would 

seem to be ideal for the application of hypothermia to acute ischemic stroke.  

Endovascular cooling is significantly more rapid than whole body or surface cooling 

methods.  By being selective, endovascular cooling should reduce or avoid the systemic 

side effects of cardiac dysfunction and coagulopathy, while providing a greater depth of 

hypothermia.   Finally, endovascular techniques are already in use as recanalization 

strategies for stroke, so adding catheter-delivered hypothermia to the mix makes sense as 

a “neuroprotective bridge” to recanalization (Choi, Yenari, Schwartz, Froehler). 

A new catheter technology to administer selective cooling has become available.  This is 

the “Duo-Flo” dual lumen catheter (Thermopeutix Inc., San Diego, CA). The catheter 

consists of a 9.5 French balloon catheter coaxially introduced through a 14 French outer 

catheter.  The outer catheter is positioned in the aorta, and is used to withdraw blood to 
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an extracorporeal perfusion unit, wherein the blood is cooled and then reinfused via the 

balloon catheter into the common carotid artery ipsilateral to the ischemic zone.  The 

Duo-Flo has received 510k approval for human use in 2010 from the U.S. Food and Drug 

Administration (personal communication, Thermopeutix Inc.). 

The ideal animal model provides both a reproducible ischemic stroke and a relative size 

similar to humans for endovascular catheter work.  Endovascular training models in pigs 

weighing 30-45kg are well established (Guglielmi, Massoud, Lee).  The senior author has 

extensive experience with such models for endovascular device evaluation.  Also, stroke 

models in pigs are well established (Sakoh, Imai, Cooper).  Pigs have a relatively thick 

skull that has led investigators to use either transorbital approaches (Sakoh), or smaller 

specimens (Imai, Cooper). However,  miniature or immature pigs would not allow the use 

of human-size endovascular instruments.  

A large animal model of acute focal ischemia with which to test theory and application of 

selective hypothermia is therefore required. 

There remains a significant mismatch between the potential promise of hypothermia for 

acute stroke and actual human data.  Despite decades of successful animal 

experimentation using hypothermia in both global and focal ischemia models, and recent 

clinical trials showing benefit in both adults and neonatal global ischemia, there is no 

evidence that supports the use of hypothermia for stroke in humans (Heleen, Yenari, 

Froehler).  This could be due to the prolonged time to induce whole body hypothermia, 

uncertainties regarding the depth and duration of hypothermia required for clinical 

benefit, and limitations to whole body hypothermia imposed by systemic complications.  

While some of these factors could be addressed using selective hypothermia, the benefit 

of hypothermia in human stroke remains hypothetical.  A large animal model could 

address these issues in a transferable way prior to further human trials.  
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Chapter 2 

2 Integrated Manuscript 

2.1 Introduction  

The extensive history of hypothermia, including successes in both animal series and 

human clinical trials, suggests that it may be effective in acute ischemic stroke.  The 

hurdles include the speed of application, as well as uncertainties regarding the depth and 

duration of hypothermia (Froehler).  The COOLAID and ICTUS-L trials, as well as 

animal selective hypothermia series, suggest that combining selective hypothermia with 

an endovascular approach could allow rapid induction of therapeutic hypothermia within 

a time frame meaningful in acute stroke (DeGeorgia, Ohta, Mori, Schwartz) 

We wished to test two hypotheses.  First, that moderate hypothermia can be induced 

rapidly in a swine model of focal ischemia through percutaneous catheter technology.  

Second, that ischemic stroke volumes in the swine model can be reduced through 

catheter-delivered hypothermia.   We utilized an adult porcine model of temporary 

occlusion of the middle cerebral artery, followed by the percutaneous introduction of an 

endovascular dual-lumen cooling catheter (Duo-Flo, Thermopeutix Inc. San Diego, CA) 

to provide an aorta-to-carotid bypass circuit for selective hypothermia ipsilateral to the 

ischemic territory.  We evaluated both the utility and efficacy of this method in a series of 

animals, alternating normothermic controls with others undergoing intervention with 

hypothermia during the reperfusion phase. 

2.2 Methods 

2.2.1 Set up and craniotomy 

Animals were used under an approved protocol of the Schulich School of Medicine and 

Dentistry AUP 2009-079 at Western University.  50 kg adult swine were anesthetized 

using 1-2 mL subcutaneous Telazol (Fort Dodge, IA), then intubated and maintained with 

a nitrous oxide-isofluorane mixture.  Arterial and central venous monitoring is obtained 

via bilateral transfemoral 6F sheath placement.  A frontal-orbital craniotomy is performed 



 

(Fig 1).  This requires a perforator and 

and Leksell rongeurs to thin the intervening cranium.  Kerrison punches are used to 

connect the burr holes and widen the craniotomy.  Once the frontal and temporal dura is 

exposed, the microscope is used for orbital roof resection. 

Figure 1Craniotomy. A.  Right skin incision extending from the medial orbit 

superiorly then posteriorly over the calvarium, 

anterior to the ear.  B. Superficial exposure, with temporalis muscle reflected 

inferiorly, and the periorbita depressed.  C.  Two burr

periorbita depressed.  An

frontal and temporal dura, with retractor depressing the completely unroofed 

periorbita.  Arrowheads=temporalis muscle, Black arrow = periorbita, Open 

arrow=dura 

perforator and Hudson brace or other hand drill for 2 burr

geurs to thin the intervening cranium.  Kerrison punches are used to 

holes and widen the craniotomy.  Once the frontal and temporal dura is 

exposed, the microscope is used for orbital roof resection.  

. A.  Right skin incision extending from the medial orbit 

posteriorly over the calvarium,  coursing inferiorly to the zygoma, 

anterior to the ear.  B. Superficial exposure, with temporalis muscle reflected 

inferiorly, and the periorbita depressed.  C.  Two burr holes in the skull, with 

An emissary vein is typically found here.  D.   Full exposure of 

frontal and temporal dura, with retractor depressing the completely unroofed 

periorbita.  Arrowheads=temporalis muscle, Black arrow = periorbita, Open 

10 

Hudson brace or other hand drill for 2 burr holes, 

geurs to thin the intervening cranium.  Kerrison punches are used to 

holes and widen the craniotomy.  Once the frontal and temporal dura is 

 

. A.  Right skin incision extending from the medial orbit 

coursing inferiorly to the zygoma, 

anterior to the ear.  B. Superficial exposure, with temporalis muscle reflected 

holes in the skull, with 

typically found here.  D.   Full exposure of 

frontal and temporal dura, with retractor depressing the completely unroofed 

periorbita.  Arrowheads=temporalis muscle, Black arrow = periorbita, Open 
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Once the orbital roof has been removed, the dura is opened in a cruciate fashion (Fig 2).  

The arachnoid is opened to release CSF, and the head of the bed elevated to allow 

maximal brain relaxation without the use of mannitol.  Under high magnification, the 

middle cerebral arteries (MCA) were located along the posterior frontal lobe.  Unlike 

humans, there are 2 or 3 MCA branches arising from the internal carotid artery as it 

continues anteriorly to become the anterior cerebral artery (Imai).  A temporary mini-clip 

is applied to a single branch.  This occlusion is continued for 3 hours. At the conclusion 

of 3 hours of temporary clipping, the microscope is brought back into the field, and the 

temporary clip is removed from the MCA branch.  The surgical field is then irrigated, and 

any remaining cottonoids are removed, but Gelfoam is allowed to remain.  The skin 

incision is closed with interrupted nylon suture. 
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Figure 2 Intradural Exposure  A.  Microscope view, cruciate dural incision.  B and 

C.  Exposure of the MCAs (usually 2-3 are seen).  D.  Final temporary clip 

placement across a single MCA. 

 

At this point, there is a 3-hour period of reperfusion.  If the animal is a normothermic 

control, it remains in the lateral decubitus until the last 30 minutes of a 3-hour reperfusion 

period.  If the animal is a hypothermic intervention, it is turned supine immediately on 

skin closure.  

2.2.2 Selective cooling technology 

Thermopeutix Inc. (San Diego, CA) provided the catheters used in the study.  Prior to the 

conclusion of temporary clipping, the Thermopeutix catheter is prepared on the 

backtable.  This catheter consists of a 14F Outer Flow Lumen (OFL) which is placed in 
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the descending aorta, and a 9.5F Inner Flow Lumen (IFL) balloon catheter placed in the 

ipsilateral common carotid artery (Fig 3).  There are two ports on the OFL and a check 

valve (Fig 4).  One port is attached to the outflow portion of an extracorporeal circuit, 

while the other is for continuous heparinized drip and flushing.  The IFL has 3 ports, 

flushed as usual, and a rotating hemostatic valve which is attached to a heparinized drip.  

One port is attached to the extracorporeal circuit for infusion of cooled blood.  The 

second port is the balloon inflation lumen, which is prepped with 50:50 contrast and 

saline.  The third port is a pressure transducer distal to the balloon for infusion pressure 

measurement.  All ports are attached to 3 way stopcocks. 

 

Figure 3 Thermopeutix catheter.  Distal end of the inner and outer Duo-Flo 

catheters showing the aortic outflow catheter with the carotid inflow balloon 

occlusion catheter 
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Figure 4 A.  Layout of the access ports for the Outflow and Inflow components of 

the Duo-Flo catheter 

. 
 

Figure 5 Final setup 
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2.2.3 Selective Cooling 

With the skin incision closed, the pig is then turned supine for the duration of the case. 

Under continuous fluoroscopy, one of the 6F sheaths is exchanged over a J wire for a 12F 

Coons dilator, followed by the 14F OFL catheter with its dilator.  The OFL is positioned 

in the thoracic portion of the descending aorta, the dilator and J-wire are removed, and 

double flushing performed.  The Activated Clotting Time (ACT) is doubled by 

intravenous heparin bolus and maintained at least two times normal for the remainder of 

the experiment.  A 5F diagnostic H1H catheter is introduced over an exchange-length 

0.038 Terumo Glidewire through the OFL and navigated into the right common carotid 

artery.  The H1H diagnostic catheter is exchanged for the IFL.  Once positioning is 

satisfactory, the OFL outflow port and IFL inflow port are attached to the extracorporeal 

circuit.  Extracorporeal circulation is established with a starting temperature of 25°C (Fig 

5).  The balloon is then inflated under fluoroscopy until occlusion (Fig 6).  Pressure 

monitoring from the distal end of the IFL and inflow rates at the extracorporeal circuit are 

checked to ensure that excessive pressures or flow rates are avoided, and that 

hemodynamic parameters are stable.  Inflow temperature is decreased in increments of 
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5°C to rapidly achieve moderate hypothermia while maintaining hemodynamic stability. 

The perfusion is terminated once 3 hours of reperfusion has occurred.   

Figure 6 Angiographic view of right and left balloon occlusion catheter with distal 

contrast stasis during inflation.   

2.2.3.1 Temperature Measurements 

The core temperature is measured by both rectal and esophageal thermometers.  For the 

most part, rectal temperatures were felt to represent the most accurate core temperature, 

but in some cases (e.g. Pig #0008) only esophageal temperatures were available. For 

brain and head temperatures, in an initial case brain and nasal temperatures followed the 

same trend and were within 2 degrees of the other (Pig #0003, unusable due to cerebral 

contusion).  Thereafter, only nasal temperatures were used because of concern of 

additional brain trauma and/or bleeding from brain probe insertion during the full 

anticoagulation required for the endovascular procedure.  This is consistent with at least 

one other selective hypothermia study in the literature (Mori).  A cutoff temperature of 
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30C was chosen.  This is significantly below what can be routinely tolerated by humans 

during whole body cooling (usually 32-34C) prior to cardiac arrhythmia onset. 

2.2.3.2 Euthanasia and brain fixation 

At the conclusion of the experiment, in situ fixation of the brain is achieved using the IFL 

balloon catheter. The animal is euthanized with 54 mg/kg Euthanyl Forte (Bimeda-MTC, 

Cambridge, ON).  The balloon is inflated, occlusion is confirmed by contrast stasis, and 

then 500 mL saline, followed by 500 mL 10% neutral buffered formalin (EMD, 

Baltimore, MD) is infused through the distal port.  The catheter is then navigated into the 

contralateral common carotid artery where the procedure is repeated. 

2.2.4 Analysis 

The brain is then removed for imaging and histology.  The postmortem animal is turned 

prone and an H-type incision is made in the scalp, centered on the midline.  A 

craniectomy is performed by connecting multiple burr holes with Leksell and Kerrison 

rongeurs, extending to the vertical walls of the cranial vault.  The dura is opened on both 

sides of the sagittal sinus and reflected back, with the sagittal sinus and falx being divided 

and reflected.  The brain is elevated anteriorly and attachments are divided, working 

posteriorly.  These include the olfactory nerve, the optic and oculomotor nerve, the 

pituitary stalk, and the brainstem.  The brain is lifted out of the cranial vault and placed in 

a plastic sling with slits in a plastic container filled with 4% Formalin.   

 

2.2.4.1 Neuroradiology  

MRI is performed postmortem, and therefore DWI sequences are not possible. T2 

volumetric sequences and T1 axial slices are examined by a neuroradiologist blinded to 

the intervention (Fig. 7).  The area of T2 signal abnormality on each slice is calculated 

using Osirix
TM

, and then all contiguous slices with T2 signal abnormality are summated 

to give a volume.  An identical method of calculating hemispheric volume, excluding the 

midbrain, is performed, and the ratio of T2 signal abnormality to hemisphere volume is 

calculated to give a percentage of stroke in the hemisphere.   
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Figure 7.T1 (Left) and T2 (Right) axial MRI images showing ischemic change on the 

side with the Vitamin E pellet.   

 

 

2.2.4.2 Neuropathology  

The fixed cerebrum is sliced into 1cm thick slices, placed in cassettes, and paraffin wax is 

applied.  Pathological examination is conducted by a blinded neuropathologist.  Blocks of 

coronal slices of the cerebrum were stained with hematoxylin and eosin.  This stain was 

chosen for availability and consistency with histologic studies done in selective 

hypothermia animal models (Mori).  The slices were scanned under light microscopy for 

evidence of ischemic injury. A definite change was defined as the presence of both dark 

neuronal change and perineuronal vacuolation. In order to maintain consistency, if only 

one of the aforementioned changes were present without the other, then this was not 

regarded as definite ischemic change. Two-dimensional measurements of the affected 

regions were taken manually and the areas were calculated from those measurements. 

Volumes of affected region were calculated using the area multiplied by the thickness of 

the block that showed the defined ischemic change (each block was 1.0 cm thick). 
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Figure 8  Histopathology  A.  Normal Swine Neocortex  B.  Ischemic Swine 

Neocortex 

2.2.4.3 Statistics 

Data were analyzed by an independent biostatistician (Mr L. Stitt, MSc, Statistical 

Services; lwstitt.com). Calculations included means, ranges, standard deviations, and 

standard error of the mean.  MRI results were analyzed and compared between 13 

controls and 12 selective hypothermia cases.  Pathological results were compared 

between 11 controls and 10 hypothermia cases. Student’s t-test was used for comparison 

of means. Variances were not equal; therefore a square root transformation was used to 

improve equality of variances.  Non-parametric Wilcoxon 2-sample test was also 

performed. 
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2.3 Results 

2.3.1 Animals available for analysis 

Twenty-eight pigs were utilized.  One death (#0025) occurred due to arrhythmia 

approximately 1 hour into clip occlusion time.  Autopsy demonstrated a preexisting 

pulmonic stenosis and hypertrophic cardiomyopathy. Two pigs (#0003 and #0011) were 

deemed unusable because of brain contusions and subsequent edema during exposure. 

Femoral cutdown was required in 1 case (#0021).  Advancement of the 14F OFL into the 

very small femoral artery resulted in aortic dissection.  Ultimately, the true lumen was 

entered and cooling successfully applied cooling for a limited time of 36 minutes.   The 

neuroradiology data is completely analyzed at this time. Histopathology data with 

statistics is presented for 11 animals in the normothermic group (control), and 10 animals 

in the hypothermic (neuroprotection) group. 

2.3.2 Selective cooling in this model 

Temperature trends during selective hypothermia are demonstrated in Fig 8 and 9, and in 

Table 1.  Figure 8 is a typical set of temperature curves generated during selective 

hypothermia.  Core temperature is rectal (or esophageal temperature in #0008).  The right 

and left temperatures are nasal temperatures.  Nasal temperatures follow the brain 

temperature closely, as also observed by others (Mori 2). During hypothermia, the mean 

ipsilateral (right) temperature dropped from 38°C to 26°C, with contralateral (left ) 

temperature dropping to 31.6°C.  Core temperature did drop during the experiment, but 

never below mild hypothermia levels (32-34°C).   
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Figure 9  A typical temperature profile during hypothermia
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Figure 10.Changes in rectal temperature (temp core), right nasal (temp R) and left nasal 

(temp L) with hypothermia  

 

 

 

 

 

 

 

 

 

 

  3 hours  6 hours  

Temperature Mean +/- 

SEM 

Mean +/- 

SEM 

Mean 

Change 

Core 38.0+/-0.2  34.0+/-

0.4  

4.0  

Right 38.0+/-0.2  26.5+/-

0.8  

11.5  
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2.3.3 Metrics related to the model 

The design of the experiment attempted to replicate the realities in establishing vascular 

access and extracorporeal circulation once three hours of ischemia had already taken 

place.  The time needed to set up the system and begin cooling, the overall length of 

cooling time achieved during the second 3 hour window, and the time to achieve 

moderate hypothermia are shown in Table 2.  We also looked at the lowest temperature 

recorded ipsilaterally (the temperature nadir).  The decision as to the depth of 

hypothermia was made on clinical grounds, based on the animal’s tolerance during the 

experiment.  The average length of time to establish the extracorporeal circulation or 

bypass was over 1 hour but highly variable.  Once extracorporeal circulation was 

established, moderate hypothermia (less than 30C) could be achieved in less than 30 

minutes.  Thus the total time from reperfusion to moderate hypothermia was just below 

an hour and a half, so falling within the 3-4.5 hour window following ischemic insult.  

Left 37.8+/-0.3  31.6+/-

1.0 

6.1 

Table 1  Changes in mean temperature in the hypothermia cohort 
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The lowest temperature achieved was often quite lower than what was sustained for the 

duration of cooling.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.4 Hemodynamic parameters during hypothermia 

We evaluated several hemodynamic parameters during the study, with particular attention 

to possible instability from the hypothermia protocol.  Several hemodynamic parameters, 

(core temperature, heart rate, mean arterial blood pressure) and several arterial blood gas 

 Mean  Range 

Set up Time (min) 60.3+/-10.3  22-144 

Temp Nadir (oC) 24.4+/-0.5  21.8-27.5 

Time to <30oC (min) 25.4+/-5.4  6-65 

Total Cooling (min) 109.6 +/- 9.8 36-150 

Total Time to <30oC 

(min) 

85.7+/-10.5  47-155 

Table 2  Hypothermia therapeutic parameters (mean +/- SEM) 
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data points (oxygen, hemoglobin, glucose, and pH) were evaluated for changes in the 

hypothermia group versus controls over the course of the experiment.   Using analysis of 

covariance, a significant drop was seen only in core temperature (p<0.001) and in pH 

(p<0.001) between controls and hypothermia during the last 3 hours of the experiment.  

2.3.5 Selective hypothermia and stroke volume 

Stroke volumes determined by MRI are presented below.  In Table 3 and Figure 10, the 

data for the means and standard error of the mean for each group (n=13 control, 12 

hypothermia)  is presented.   The hypothermia group mean (stroke as % of hemisphere 

volume) is smaller than control, with a wide variance.  This reached statistical 

significance using unpaired Student’s t test (p< 0.05).  

 Control Hypothermia P Value 

Mean+/-SEM 0.050+/-0.016 0.009+/-0.005 0.042 

Median 0.050 0.000  

Table 3  MRI-derived stroke % of hemispheric volume 
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Figure 11 Ratio of stroke volume to hemisphere volume on MRI 

Stroke volumes determined by pathology are seen in fig 12 and Table 4.  Mean 

hypothermia total stroke volumes were 61.6% of controls.  Mean hypothermia largest 

stroke volumes were 55.8% of controls.  However, in both cases the mean stroke volume 

difference is not statistically significant, due to the wide variance.  We looked for any 

correlation between duration of cooling and the stroke volume, using two cooling time 

measures.  The first is the total time the perfusion pump was active (actual cooling time).  

The second is the sum of setup time and time to achieve moderate hypothermia.  All r 
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values were less than 0.25, suggesting no correlation.

 

Figure 12. Graphical illustration of mean pathology volumes (expressed as mean +/- 

standard error) 
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 Control 

(n=11) 

Hypothermia 

(n=10) 

P Value 

Total Path 

Volume (cm3) 

1.12+/-0.31 0.69+/-0.25 0.292 

Largest Path 

Volume (cm3) 

0.95+/-0.32 0.53+/-0.19 0.278 

Table 4 Pathology-derived stroke volume 

 

2.4 Discussion 

2.4.1 Feasibility of rapid-onset moderate hypothermia 

This study confirms other work in animals and humans that femoral-to-carotid bypass can 

rapidly induce hypothermia which is selective to the cranium and particularly to brain 

tissue.  Our mean time to moderate hypothermia (<30C) once the pump was turned on 

was 25.4 min +/- 5min, and mean final temperature of 26.5°C.  Verdura et al were able to 

cool the brain to 15°C on average by 35 min (dogs), Schwartz achieved 18.5°C in an 

average of 26 +/- 13 min, and 24.5°C in 12 +/- 6 min (baboons), and Lownie et al were 

able to drop brain temperature to 26.8°C in 12 minutes (human) (Verdura, Schwartz, 

Lownie).  In the COOLAID trial utilizing endovascular venous cooling, mean time to 

cooling was 77 +/- 44 minutes to a target of 33°C, which is relatively mild (DeGeorgia).  

In contrast, whole body surface cooling typically takes hours (deGeorgia, Froehler), and 

again is limited to 32-34°C typically.  In ICTuS-L, median time to target temperature 

(after catheter placement) was 138.3 +/- 198.9 min 
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Our experiment is the first to use a purely percutaneous approach to produce selective 

hypothermia of such a degree.  Ice cold saline has been previously reported to reduce 

temperatures selectively but reductions in a limited safety trial were very modest (Choi).  

Although cerebral metabolic rate undergoes predictable reduction with hypothermia, it is 

unknown what degree of hypothermia is necessary to provide meaningful 

neuroprotection, especially in acute stroke.  Some authors suggest that mild hypothermia 

may be as effective as moderate or deep hypothermia because of the added risk with 

colder temperatures, but in acute stroke this remains unknown (Yenari).  The selective 

hypothermia method clearly gives reproducible degrees of moderate hypothermia rapidly.  

Thus, if the degree of hypothermia or the rapidity with which it is introduced are 

significant variables in determining outcome, then selective hypothermia should produce 

superior results.  

What is clear from our data and that of other groups is that endovascular selective 

hypothermia is very efficient in attaining moderate hypothermia in the brain.  Our data 

also shows that systemic cooling does occur even with selective hypothermia, which is in 

line with Mori and Schwartz, in which hypothermic perfusion was continued for 12 

hours.   The degree of mild systemic hypothermia should be tolerable but measures of 

this such as arrhythmia frequency was not performed.  Another potential consequence of 

systemic hypothermia, coagulopathy, would be difficult to evaluate as the catheterized 

animals were heparinized during the procedure.  The duration and degree of hypothermia 

required for potential neuroprotection is still unknown.   

Statistically significant drops were seen in core temperature (noted above) and in 

systemic pH.  Other parameters were not significantly affected.  The drop in systemic pH 

may be due to lower extremity ischemia from the catheter, although this hypothesis 

remains to be tested (Thomas Forbes, MD, personal communication).  The relative 

stability of other factors such as mean arterial blood pressure, blood oxygenation, and 

hemoglobin between normothermic and hypothermic groups suggests that the process of 

placing the endovascular device and utilizing extracorporeal perfusion-pump to induce 

selective hypothermia does not destabilize the animal.   
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2.4.2  Trend to reduction in stroke volumes 

Both by MRI and histopathology, the mean stroke volume was decreased by 

hypothermia.  The decrease in mean stroke volume measured by histology was not 

statistically significant compared with controls but was statistically significant for the 

MRI measurements.  There is a wide range of stroke volumes in both control and 

hypothermia animals.   There are a number of variables that could account for this, but 

interestingly, it mirrors the experience of the COOLAID study (DeGeorgia).  In 

COOLAID, hypothermia could be rapidly induced in humans, but a statistically 

significant reduction in stroke volume (measured as % increase from onset to day 3-5) 

was not seen.   Again, their numbers show a difference in mean between controls (108+/-

142.4%, n=11)) and well-cooled hypothermia patients (72.9+/-95.2%, n=8) but there was 

a large variance.  However, in the second Schwartz baboon study, a significant reduction 

in stroke volumes was seen using FLAIR sequence on MRI.  The number of animals in 

each group was very small (4 each) (Schwartz 2).  In animal studies, time to hypothermia 

is controlled, while in the human COOLAID and ICTuS-L trials, up to 8 hours could pass 

before even mild hypothermia was achieved, which could diminish or even eliminate any 

clinical benefit. 

 

2.4.3 Limitations of the study 

This study has several limitations.  First the choice of experimental animal, while helpful 

from an endovascular experience standpoint, has limitations under anesthesia.  The 

experiment is long (usually about 8h under anesthesia), and pigs can have cardiac issues 

that develop under anesthesia.  By the end of the experiment, the animals are almost 

universally on medical blood pressure support. This may have contributed to some of the 

variability in time to cooling, as several experiments required transiently stopping the 

cooling process during stabilization of the animal.  By experimental design, this occurred 

late in the course, when the animal had already been under anesthesia for many hours.   

Second, we chose to selectively clip only one MCA branch.  This makes for a smaller and 

more focal stroke, but also raises the possibility that intracranial collateral flow reduced 
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the area of significant damage, contributing to the wide variability of stroke volumes.  

However, this is not unlike the human acute stroke scenario.  Furthermore, we did not 

confirm that removing the clip actually allowed reperfusion of the ischemic territory.  We 

were able to see blanching at the distal to the clip application site, and then return of flow 

at the occlusion point following removal of the temporary clip, which suggested return of 

flow in the vessel, but did not elucidate the degree of reperfusion in the affected territory.  

Confirmation of patent vessels following temporary occlusion by angiography has been 

reported (Sakoh).  NIRS technology has the potential to noninvasively track cerebral 

blood flow in the hemisphere (Cooper).   Another alternative would be indocyanine green 

fluorescence angiography, which is used clinically to evaluate blood vessel patency, but 

requires a special filter on the microscope.  Another option would be motor evoked 

potentials (Schwartz). 

A third issue relates to our choice of sequences on MRI.  Diffusion weighted imaging is 

the gold standard for determining a volume of stroke, but requires a living creature.  

Since MRI was obtained postmortem in this study, DWI was not applicable.  Thus we 

used T1 and T2, but DWI is considered more sensitive (Knight).  A future experiment 

might include placing a living animal during or just after cooling to assess the stroke 

volume. 

Finally, since the occlusion ended at 3 hours, reperfusion began at that time.  The 

experimental results may reflect changes in reperfusion-related damage, rather than 

stroke damage.  We measured stroke volumes accurately, but microscopic effects 

(changes in local chemical substrates) and macroscopic effects (edema or raised 

intracranial pressure) due to reperfusion were not evaluated.  Thus potential beneficial 

effects of hypothermia on reperfusion injury might have been missed in this model.   

 

2.4.4 Strengths of the study. 

There are three major strengths to this study.  First, the imaging and pathology review 

was conducted by qualified personnel who were completely blinded to the intervention.   
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These specialists are trained to evaluate stroke in humans, but assuming that stroke 

should follow similar patterns in pigs, they should be able to provide an unbiased 

evaluation of stroke volumes.  We acknowledge the difficulty in transferring pattern 

recognition from one species to another, and this may reduce the overall sensitivity of 

analysis.  Nevertheless, we feel that the blinded nature of the analysis allows for the 

highest chance of unbiased assessment of selective hypothermia in acute stroke.   

Second, the design of the study evaluated intervention well after the ischemic insult.  The 

three-hour lag time prior to intervention is consistent with typical presentation time 

frames in human acute ischemic stroke.  While it is known that even delayed 

hypothermia can reduce stroke volumes, the effect is reduced with delay in treatment and 

animal studies have only examined the period of 1.5 to 2 hours post ischemia. (Xue, Ji).  

If hypothermia is to act as a bridge to recanalization, it has to be effective in the time 

frames of recanalization, which for IV tPA are up to 4.5 hours, and for mechanical 

thrombectomy may be up to 6 hours.  Our study suggests that in the 3-6 hour time frame, 

adding hypothermia to recanalization can reduce stroke volume but the number needed to 

show significance may be quite large.   

Finally, this represents the largest paired study of selective hypothermia in a large animal 

model.  Table 5 shows comparable series comparing normothermia with hypothermia.  

Our study is unique in its purely endovascular approach to selective cooling, and thus 

presents the potential advantages of rapid induction as well as selectivity, through the use 

of novel interventional stroke technology.    

Table 5  Comparison Animal Series 

Author Method Total N Normothermia Hypothermia 

Ohta Bypass   12 

Imai None 16 5 MCAO  

Sakoh None 15 5  
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Schwartz Bypass 12  12 

Schwartz Bypass 8 4 4 

Mori Bypass 12 6 6 

Zhang Epidural 12 4 6 

Verdura Bypass 21 5 16 

Mattingly Bypass 25 13 12 

 

2.4.5 Future directions 

This study raises intriguing questions regarding the efficacy of hypothermia in the face of 

acute stroke.  By its design, we have made assumptions regarding both the development 

of focal cerebral ischemia in this model and its response to hypothermia.  We elected to 

clip only one MCA branch. It would be useful to assess the effect of clipping all MCA 

branches, in terms of stroke volume and variability.  The timing of clip removal, 

including whether to remove it at all, is another area worthy of exploration.  Hypothermia 

could be effective in reducing stroke volumes even with no recanalization.  Furthermore, 

the hypothermia group was subjected to a significant change in placing the catheter, 

including repositioning the animal on its back for the exchange of sheath and perfusion. 

Potentially one could make the two groups more equivalent by performing the same 

catheter exchange on the controls without perfusion, or perfuse controls with 

normothermic blood.  This would make any observed differences in outcome more 

directly related to cooling.  Finally, it would be interesting to track the effect of 

hypothermia on stroke volume using real-time MRI.  This would require placing the 

experimental animal in the MRI at least at the end, if not during, cooling.  Logistical 

hurdles to this are substantial, as the entire operation, including life support and catheter 

would need to be MRI compatible at least at some point, and transferring an animal to 
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MRI while on inotropic support might destabilize it, causing a premature end to the 

experiment.    

2.5 Conclusion 

This experimental protocol demonstrated the feasibility of a focal cerebral ischemia 

model in 50kg swine via a transcranial approach, without the need for enucleation of the 

eye.  We also developed a unique method of in situ perfusion fixation for the brain 

without the need for thoracotomy.  We demonstrated that moderate selective hypothermia 

is rapidly achievable through a completely percutaneous endovascular approach and our 

times and temperatures correspond well with the results of other animal studies of 

selective hypothermia using varying forms of femoral-to-carotid bypass. Using moderate 

selective hypothermia, there is a trend toward reduced stroke volume on histopathology, 

and a statistically significant reduction in stroke volume on MRI, within the 3-6 hour 

postischemic timeframe.   These results are promising, and further study is warranted.   
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