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Abstract 

 Condensation and segregation of mitotic chromosomes are critical processes for 

cellular propagation and if compromised, can lead to genomic instability.  Genomic 

instability is known to be an active contributor to tumorigenesis, rather than being a by-

product of malignant progression.  The retinoblastoma protein (pRB) is the prototypic tumor 

suppressor.  Its tumor suppressive properties are linked to its ability to negatively regulate 

proliferation by inhibiting E2F target gene transcription. Using a gene targeted mouse model 

defective for interactions mediated by the pRB LXCXE binding cleft that is distinct from 

E2F binding (Rb1
ΔL/ΔL

), I have demonstrated that LXCXE-interactions are an essential part of 

pRB-mediated tumor suppression.  When these interactions are disrupted, cells exhibit 

chromosome condensation and mitotic defects that are unrelated to G1 to S-phase regulation 

by pRB.  These defects contribute to earlier tumor formation and more aggressive pathology 

in Trp53
+/-

 and Trp53
-/-

 mouse models, revealing a new mechanism of tumor suppression, 

facilitated by pRB, whereby genome stability is maintained by the proper condensation of 

mitotic chromosomes.  Subsequent study of the mechanism by which pRB facilitates genome 

stability suggests that a pRB-E2F1-Condensin II complex localizes to pericentromeric 

heterochromatin.  In the absence of this complex, DNA double strand breaks are observed 

and persist into mitosis and the ensuing G1 phase of the cell division cycle.  Moreover, 

haploinsufficiency of Rb1 was enough to compromise loading of Condensin II at 

pericentromeric DNA and elicit the same defects.  Significantly, RB1
+/-

 fibroblasts from 

retinoblastoma patients also exhibit DNA damage and mitotic errors.  And, in cancers of 

mesenchymal origin, RB1
+/-

 cells exhibit as much genomic instability as RB1
-/-

 cells.  Finally, 

haploinsufficiency of the LXCXE binding cleft of pRB compromises pRB-mediated tumor 

suppression, resulting in tumors with increased chromosome gains and losses, comparable to 

Rb1
ΔL/ΔL

 mutant mice.  The data presented in this thesis change our understanding of the 

importance of genome stability as a tumor suppressive mechanism of the retinoblastoma 

protein and contrary to traditional thought, suggests that haploinsufficiency of RB1 

functionally contributes to tumorigenesis in humans. 
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Chapter 1  

1 Introduction 

1.1 The history of retinoblastoma and the retinoblastoma 
protein 

1.1.1 Retinoblastoma and the discovery of the retinoblastoma 
protein 

 The childhood cancer retinoblastoma was first postulated to result from a 

dominant gene that arose by mutation and was selected against in normal individuals in 

the very generation in which it arose (Neel and Falls 1951).  In essence, retinoblastoma 

was thought to be caused by an oncogene.  However, careful study of the genetics of the 

disease revealed that it was loss of the q14 band on chromosome 13, and therefore loss of 

a tumor suppressive function, that was the source of retinoblastoma (Sparkes et al 1980, 

Sparkes et al 1983, Vogel 1979, Yunis and Ramsay 1978 among others).  Finally, in 

1986, the retinoblastoma gene was cloned through positional mapping and shown to be 

deleted in retinoblastomas and also osteosarcomas (Friend et al 1986). 

 Retinoblastoma can be inherited (germinal mutation) or can occur sporadically 

(somatic mutation) (Fig. 1.1; Falls and Neel 1951, Smith and Sorsby 1958, Schappert-

Kimmijser et al 1966).  In its inherited form, all cells in the developing foetus are 

hemizygous for the retinoblastoma gene (RB1), including germ cells.  Patients with 

inherited retinoblastoma are often affected bilaterally (in both eyes), and a smaller 

proportion are affected unilaterally; rarely are these patients unaffected (Knudson 1971).  

If patients with inherited retinoblastoma survive, they pass the mutation on to 

approximately 50% of their offspring, consistent with Mendel’s rule for dominant 

inheritance.  Patients with non-inherited retinoblastoma acquire somatic mutations 

sequentially, leading to complete loss of RB1 and retinoblastoma.  These patients 

typically do not pass the mutation on to their offspring as the mutation is acquired in the 

somatic cells of the retina (Knudson 1971).  In rare, non-inherited cases, the mutation is  
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Figure 1.1: There are multiple ways to acquire retinoblastoma. 

(A) Retinoblastoma can be inherited whereby one of the contributing gametes is RB1
-
.  

All cells in the patient’s body are subsequently hemizygous for RB1.  A second somatic 

mutation in the retina results in retinoblastoma.  (B) Retinoblastoma can occur 

sporadically, with two somatic hits in the retina often before three years of age.  

Retinoblastoma can also arise from a hit early in development, resulting in a patient 

wherein some cells have two wild type copies of RB1, and other cells have only one wild 

type copy of RB1, including those in the retina.  A second somatic hit in the retina leads 

to retinoblastoma. 
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acquired early enough during embryogenesis that patients can pass the mutation on to 

their offspring. 

In 1971, Knudson published a paper analyzing the mutation rate of RB1 in both 

inherited and non-inherited retinoblastomas.  He found that the mutation rate for loss of 

the first RB1 gene in non-inherited cases, and the loss of the second RB1 gene in both 

inherited and non-inherited cases was similar.  From this study he proposed two key 

findings.  The first is that retinoblastoma resulted from just two genetic events (germinal 

and somatic, or both somatic) resulting in loss of both copies of RB1.  The second is that 

loss of the first RB1 allele did not accelerate loss of the second RB1 allele.  Therefore 

hemizygosity of RB1 did not create a haploinsufficiency, rather it recapitulated the wild 

type condition (Knudson 1971).  As a result of this study, the retinoblastoma gene 

became known as the “prototypic tumor suppressor”, in that its loss in retinoblastoma 

was the prototype to which other proposed tumor suppressor genes were compared 

(Murphree and Benedict 1984).  To date, modeling Rb1 loss in mouse models of cancer 

has supported Knudson’s “two-hit” hypothesis (Jacks et al 1992, Vooijs et al 1998).  

However, data presented in this thesis suggest that certain aspects of pRB function 

exhibit haploinsufficiency when disrupted.  In chapter three, I will discuss the 

applicability of extrapolating Knudson’s hypothesis to other contexts of tumorigenesis. 

1.1.2 The retinoblastoma protein is a regulator of the cell division 
cycle 

 Because loss of the retinoblastoma gene was found to be important for only a few 

tissues in hereditary cancer development (retina, bone), it was expected to have only a 

specialized role in these tissues.  However, studies of the transforming activity of viral 

oncoproteins including the adenovirus E1A, simian virus 40 TAg and the human 

papilloma virus E7 oncoproteins, revealed that inactivation of the retinoblastoma protein 

(pRB) was required for transformation, suggesting that  pRB might have a more broad 

tumor suppressive application (Whyte et al 1988, DeCaprio et al 1988, Dyson et al 

1989). 
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Around the time of this discovery, loss of pRB function was found to be 

associated with loss of cellular proliferation control (Takahashi et al 1991, Bookstein et 

al 1990a, Huang et al 1988).  For example, several studies demonstrated that adding back 

pRB to human cancer cells (bladder, prostate, osteosarcoma) significantly reduced their 

proliferative rate, their ability to form colonies in soft agar and reduced tumorigenicity in 

nude mice (Takahashi et al 1991, Bookstein et al 1990b, Huang et al 1988).  Two 

regions, the “pocket” domain (res. 379-792) and the C-terminus of pRB (res. 793 – 928), 

were found to be responsible for its growth suppression properties (Fig. 1.2A; Qin et al 

1992).  These regions were also demonstrated to be required for pRB binding to the 

family of E2F transcription factors (Fig. 1.2B; Chellappan et al 1991, Bagchi et al 1991, 

Chittenden et al 1991, Bandara and La Thangue 1991). 

 The first human genes demonstrated to be regulated in an E2F dependent manner 

were c-myc and dihydrofolate reductase (DHFR), whose protein products are involved in 

cellular proliferation and DNA synthesis respectively (Hiebert et al 1989, Thalmeier et al 

1989, Blake and Azizkhan 1989).  Furthermore, these genes were shown to be regulated 

in a cell cycle-dependent manner (Hiebert et al 1989, Thalmeier et al 1989, Blake and 

Azizkhan 1989).  In this way, a paradigm was formed in which the growth suppressive 

role of the retinoblastoma protein was mediated through inhibition of E2F target gene 

transcription, which in turn could be deregulated by viral oncoproteins (Nevins 1992).  

These and subsequent studies led to the understanding that pRB regulates the G1 to S-

phase transition of the cell division cycle by binding to E2Fs and inhibiting E2F target 

gene transcription, and that this universal role for pRB in proliferation transcends all cell 

types (studies outlining this principle mechanism of cell cycle control are reviewed in 

Dyson 1998). 

1.1.3 The pocket protein family 

 Based on sequence similarity and their ability to also be bound by viral 

oncoproteins, two other members of the pRB family were identified, RBL1 and RBL2, 

producing the p107 and p130 proteins respectively (Fig. 1.2A; Ewen et al 1991, Zhu et al 

1993, Mayol et al 1993, Cobrinik et al 1993, Li et al 1993, Hannon et al 1993).  These 

proteins share many structural features including the “small pocket” region, which  
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Figure 1.2: Structures of the pocket protein and E2F families of proteins. 

(A) The pocket protein family is defined by the “small pocket” they all possess, into 

which viral oncoproteins bind.  p107 and p130 are structurally more similar to each other 

than to pRB.  CDK- cyclin-dependent kinase.  NLS- nuclear localization signal.  (B) The 

E2F family of transcription factors (E2Fs 1-8) mediate cell cycle advancement.  E2Fs 1-6 

heterodimerize with DP protein to bind to DNA.  Activator E2Fs are bound by pRB, 

which prevents the transcription of genes required for S-phase progression. Repressor 

E2Fs either bind pRB, p107 or p130, or dimerize with atypical E2Fs (E2Fs 7 and 8) and 

recruit repressive complexes to DNA.  NLS- nuclear localization signal. DBD- DNA 

binding domain.  NES- nuclear export signal.  DMZ- dimerization domain.  MB- marked 

box.  TA- transactivation domain.  DP- Differentiation Related Transcription Factor-1 

polypeptide-1. 

A 

B 
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is the most highly conserved region among the pocket protein family and across several 

species of pRB (Lee et al 1998).  As these proteins all contain this “pocket domain”, they 

are commonly called “pocket proteins”.  The small pocket contains an A and B domain, 

as well as a flexible linker that separates the two; each A and B domain contains a single 

cyclin fold, which interact to form the small pocket domain (Fig. 1.2A; Lee et al 1998).  

This small pocket is sufficient to repress transcription and interact with viral oncoproteins 

(Hu et al 1990, Sellers et al 1995, Chow and Dean 1996, Chow et al 1996).  

Crystallography has demonstrated that the LXCXE motif contained in viral oncoproteins 

makes contact with a shallow groove in the B domain of the small pocket (Fig. 1.2A; Lee 

et al 1998, Ewen et al 1989, Munger et al 1989, Whyte et al 1989, Dyson et al 1992).  

Indeed, several cellular proteins contain an LXCXE-like motif, or are otherwise able to 

bind in the LXCXE binding cleft, and thereby interact with the pocket protein family 

(summarized in Dick 2007).  Many of the proteins that bind in the LXCXE binding cleft 

are chromatin remodeling proteins or components of complexes that have chromatin 

remodeling capabilities in order to effect transcriptional repression.   

Pocket proteins also contain a C-terminal domain which, in conjunction with the 

small pocket, comprises the large pocket (Fig. 1.2A).  As described above, this large 

pocket is the minimal growth suppressing domain and is sufficient to interact with the 

E2F family of transcription factors and inhibit E2F target gene transcription (Hiebert et al 

1992, Qin et al 1992, Bremner et al 1995).  Thus recruitment of pocket proteins by E2Fs 

to E2F target genes not only inhibits transactivation, but recruits transcriptionally 

repressive complexes to introduce histone modifications and further prevent E2F target 

gene transcription. 

1.1.4 The current model of proliferative control by pocket proteins 

pRB, p107 and p130 work in a concerted effort to mediate proliferative control 

(Fig. 1.3).  This is aided by the differential expression and sub-cellular localization of 

pocket proteins during the cell division cycle, and their preference for binding to specific 

E2F transcription factors (Fig. 1-4, Fig. 1.2B).   
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Figure 1.3: The current model of proliferative control by pocket proteins. 

(A-B) Briefly, upon mitogenic stimulation, p107 replaces p130 at E2F target gene 

promoters and pRB-E2F complexes increase.  CKIs inhibit the activity of cdks.  (C) 

Upon a feed forward loop of increasing activity of cyclin-cdk complexes, pocket proteins 

become extensively hyperphosphorylated.  (D) E2F target gene transcription occurs, and 

cells are committed to divide.  p107 and p130 are exported from the nucleus and pRB can 

regulate the S-phase DNA damage checkpoint and DNA replication as needed.  (E) At 

the end of mitosis, phosphatases PP1 and PP2A dephosphorylate pocket proteins.  

B 
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Figure 1.4: Pocket proteins are differentially expressed during the cell division 

cycle. 

During quiescence (G0), p130 levels are high.  p130 is found on chromatin bound to 

repressive E2Fs 4 and 5.  pRB levels are moderate and p107 levels are negligible.  Upon 

mitogenic stimulation, pRB and p107 levels rise and p130 levels decrease.  p107 replaces 

p130 at E2F target genes and the amount of pRB-E2F complexes increases.  As the cell 

cycle progresses, p107 and pRB levels peak and p130 levels are almost negligible.  

Levels then remain steady through the remainder of the cell division cycle and into the 

next cycle until cells re-enter quiescence (G0). 
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In brief, p130 binds to inhibitor E2Fs in G0 and recruits a transcriptionally 

repressive DREAM complex, mediating a reversible cell division cycle arrest called 

quiescence (Fig. 1.3A; Moburg et al 1996, Hurford et al 1997, Litovchick et al 2007).  

Upon mitogenic stimulation, cells enter G1 and p107 replaces p130 at E2F target genes 

(Takahashi et al 2000, Wells et al 2000).  Expression of the retinoblastoma protein 

increases and pRB localizes to E2F target genes, inhibiting the transcriptional activity of 

activator E2Fs (Fig. 1.3B).  This is mediated both by physically masking their 

transactivation domain, and by recruiting repressive chromatin remodeling complexes via 

the LXCXE binding cleft (Hiebert et al 1992, Schwarz et al 1993, Shirodkar et al 1992, 

Helin et al 1993, Flemington et al 1993, Zamanian and La Thangue1993). 

E2F target genes that are regulated by pocket proteins include positive regulators 

of the cell division cycle and replication machinery, therefore E2F target gene 

transcription must be activated to progress from G1 into S-phase of the cell division cycle 

(Hurford et al 1997, Lavia and Jansen-Durr 1999, Takahashi et al 2000, Williams et al 

2006).  Activation of E2Fs is mediated by phosphorylation of pocket proteins in a cell 

cycle-dependent manner by cyclin/cyclin-dependent kinase (cdk) complexes (DeCaprio 

et al 1989, Sherr and Roberts 1999).  This releases pocket proteins from binding to E2Fs 

allowing them to transactivate their target genes (Fig. 1.3C; Mudryj et al 1991, 

Chittenden et al 1993).  The activation of cyclin/cdk complexes occurs in a feed-forward 

loop that is antagonized by cdk inhibitors (CKIs) (Fig. 1.3B; Sherr and Roberts 1999, 

Mittnacht 1998, Besson et al 2008).  As a result of the cyclin-cdk feed forward loop that 

maximizes phosphorylation of pRB and inhibition of CKIs, cells are committed to 

irreversibly advance into S-phase. 

At the end of mitosis, pocket proteins are dephosphorylated and once again bind 

to E2Fs and negatively regulate entry into the next cell division cycle.  Protein 

phosphatases 1 and 2 are proposed to dephosphorylate either pRB or all pocket proteins 

respectively (Fig. 1.3E; Nelson et al 1997, Yan et al 1999, Dunaief et al 2002, Garriga et 

al 2004).  Alternatively, pocket proteins are responsible for mediating the permanent cell 

cycle exit paradigms of both senescence and differentiation (Bruce et al 2000, Campisi 

and di Fagagna 2007, Sage et al 2003, Zhang et al 2007, Funayama et al 2006, Sage et al 
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2000, Dannenberg et al 2000, Peeper et al 2001, Gutierrez et al 2008, Berman et al 2008, 

Corbeil et al 1995, Zaksenhaus et al 1996, De Falco et al 2006, Korenjak and Brehm 

2005, Herwig and Strauss 1997, Sellers et al 1998, Lee et al 1999, Thomas et al 2001 

Nguyen and McCance 2005).  The above discussion of the cell division cycle by pocket 

proteins is summarized in Figure 1.5. 

 It is clear that together, the pocket proteins are integral in mediating cell division 

cycle control, and permanent cell cycle arrest.  These functions are tumor suppressive as 

in many human cancers, the activity of pocket proteins are disrupted (Sherr 1996).  While 

deregulated cdks and CKIs lead to the inactivation of all pocket proteins, selective 

mutation of only the retinoblastoma protein in many human cancers distinguishes it from 

p107 and p130 (Harbour et al 1988, Horowitz et al 1989, Lee et al 1988, Malumbres and 

Barbacid 2001, Sherr 1996).   

1.1.5 pRB is unique among pocket proteins 

 During S-phase, the retinoblastoma protein remains in the nucleus and has been 

proposed to be important for mediating cell cycle arrest and facilitating repair upon DNA 

damage by repressing E2F target gene transcription and suppressing further DNA 

synthesis (Fig. 1.3D; Knudsen et al 2000, Sever-Chroneos et al 2001, Wells et al 2003, 

Avni et al 2003).  It is able to do so as its dephosphorylation can be induced upon DNA 

damage, followed by acetylation to inhibit subsequent hyperphosphorylation.  The 

retinoblastoma protein can therefore remain active despite high levels of cdk activity to 

mediate this S-phase DNA damage checkpoint (Fig. 1.3D; Avni et al 2003, Markham et 

al 2006, Chan et al 2001).   

pRB has also been indirectly implicated in events during mitosis.  Certain E2F 

target genes including Emi, Mad2 and BubR1 are required for maintaining the mitotic 

checkpoint, preventing progression through mitosis if chromosomes are not properly 

attached to the mitotic spindle and lined up at the metaphase plate.  If pRB is unable to 

repress transcription of these genes, their overexpression compromises mitosis, delaying 

its progression and resulting in aneuploidy (Hernando et al 2004, Margottin-Goguet et al 

2003).  As well, cells lacking pRB are more prone to re-replicate their DNA after they  
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Figure 1.5: The pocket protein regulatory pathway.   

Pocket proteins inhibit E2F target gene transcription, which in turn inhibits cell cycle 

progression.  Pocket proteins are negatively regulated by cyclin-cdk complexes, and 

positively regulated by phosphatases.  Activated CKIs inhibit cyclin-cdk complexes, 

restoring pocket protein activity.  Pocket proteins can inhibit cyclin-cdk complexes and 

activate CKIs to maintain themselves in a hypophosphorylated state.  (*) Indicates nodes 

in this regulatory pathway that are commonly mutated in cancer.  (↑) Indicates 

upregulation/constitutive activation in cancers.  (↓) Indicates loss or downregulation in 

cancers. 
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fail to progress through mitosis (Niculescu et al 1998, Srinivasan et al 2007).  These cells 

persist in culture and can resume proliferating with aneuploidy. 

 In addition to pRB’s role in the regulation of the cell division cycle, pRB plays 

regulatory rolls in both apoptosis and the DNA damage response (Dick and Dyson 2003, 

Julian et al 2008, Seifried et al 2008, Carnevale et al 2012, Cecchini and Dick 2011).  It 

does this by binding to E2F1 specifically using the C-terminus of pRB (Fig. 1.2A; Dick 

and Dyson 2003).  This specific interaction allows pRB to regulate E2F1-induced 

apoptosis, even when pRB is hyperphosphorylated and presumed inactive (Dick and 

Dyson 2003, Julian et al 2008, Seifried et al 2008, Carnevale et al 2012, Cecchini and 

Dick 2011).  Moreover, pRB-E2F1 interactions are particularly important in mediating 

the DNA damage response, though this role appears to be context-dependent (Carnevale 

et al 2012).  In addition to being unique from the other E2F transcription factors, the 

interaction between pRB and E2F1 is also unique amongst pocket proteins (Dick and 

Dyson 2003, Cecchini and Dick 2011, Julian et al 2008).   

More recent data such as that presented in Chapters 2 and 3 of this thesis has 

begun to outline a unique role for pRB during mitosis that is independent of its regulation 

of E2F target gene transcription (Coschi et al 2010, Longworth et al 2008, Manning et al 

2010, van Harn et al 2010).  Importantly, this novel function contributes to pRB-

mediated tumor suppression (Coschi et al 2010).  Interestingly p107 and p130, whose 

sequences are more similar to each other than to pRB, contain structural features that are 

not found in pRB (Classon and Dyson 2001; Fig. 1.2A).  This allows them to be 

differentially regulated and to accomplish different tasks (Lacy and Whyte 1997, Zhu et 

al 1995, Woo et al 1997, Moberg et al 1996).  Conversely, structural features exclusive 

to pRB have yet to be discovered to explain the unique roles described above.  Thus it has 

fallen to mouse models of the pocket proteins to describe the relative contributions of 

pRB, p107 and p130 to proliferation, cell cycle exit, and tumor suppression. 
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1.2 Mouse models of Rb1 

1.2.1 Rb1-/- cells contribute to ‘normal’ tissues 

 The first models knocking out Rb1 in mice were reported in 1992 from three 

different groups (Jacks et al 1992, Clarke et al 1992, Lee et al 1992).  Each lab, using a 

different genetic strategy, generated homozygous mutant mice (Rb1
-/-

) that died between 

embryonic days (E) 13 and 15, indicating that Rb1 was required for embryogenesis, 

though surprisingly it was indespensible up to at least E13. 

 Mice heterozygous for Rb1 were viable and fertile.  Though humans hemizygous 

for RB1 have a 90% likelihood of developing retinoblastoma by the age of three, Rb1
+/-

 

mice did not develop retinoblastomas or exhibit any precursor lesions (retinomas) 

(Matsunaga et al 1990; Jacks et al 1992, Lee et al 1992, Clarke et al 1992).  One lab 

followed Rb1
+/-

 mice long enough to discover a tumor phenotype (Jacks et al 1992).  

These mice succumbed to adenocarcinoma of the pituitary by ten months of age, and the 

majority of these tumors had lost the remaining wild type Rb1 allele (LOH), seemingly 

consistent with Knudson’s proposal that heterozygosity of the retinoblastoma gene was 

not functionally relevant to tumorigenesis (Jacks et al 1992). 

 A decade later it was reported that the most apparent defect in Rb1
-/-

 mice was 

over-contribution of trophoblast cells to the placenta, creating an hypoxic environment 

for Rb1
-/-

 embryos (Wu et al 2003).  In fact, if the mutant placenta were replaced with 

wild type placenta, Rb1
-/-

 embryos survived to birth with none of the neurological or 

erythropoietic defects previously reported (Jacks et al 1992, Clarke et al 1992, Lee et al 

1992, Wu et al 2003).  Instead, these mice died at birth with severe skeletal muscle 

dysplasia resulting in an inability of the diaphragm to work properly, preventing 

breathing (Wu et al 2003).  The fact that the major defect in Rb1
-/-

 mice was now 

reported to be in the trophoblast cells of the placenta, and that most other tissues appeared 

to develop normally, helped to explain why Rb1
-/-

 cells in chimeric mice were found to 

contribute to a wide variety of what were described as ‘normal’ tissues (Williams et al 

1994, Maandag et al 1994). 
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 Several conditional knockout models of the Rb1 gene have improved upon our 

understanding of the tissue-specific requirements of pRB.  In general, knockout in certain 

tissues leads to increased proliferation and/or lack of proper differentiation though, with 

the exception of the pituitary, no spontaneous tumor development (Mayhew et al 2005, 

Ruiz et al 2004, Classon et al 2000, Hansen et al 2004, Vooijs et al 1998).  Instead, this 

has been shown to require other complimentary mutations, such as disabling the p53 

pathway (Wikenheiser-Brokamp 2004, Meuwissen et al 2003). 

1.2.2 A structure-function approach to investigating pRB’s 
contribution to tumor suppression 

Generally, Rb1
-
 alleles in mice have advanced our understanding of the role for 

pRB in different tissues and stages of development.  Furthermore, lack of a tumor, or any 

overt phenotype, in both p107
-/-

 and p130
-/-

 mouse models has solidified pRB as unique 

among pocket proteins for mediating tumor suppression (Lee et al 1996, Cobrinik et al 

1996).  As described previously, there are currently three known binding surfaces on pRB 

that are distinct from one another and mediate binding to specific proteins.  Knocking out 

pRB in mouse models disrupts all of its functions and therefore we are unable to attribute 

its tumor suppressive properties to one function or another.  To this end, targeted 

mutation of certain binding sites on pRB would reveal their functional contribution to 

pRB-mediated tumor suppression.  In the data chapters to follow, I will demonstrate how 

targeted mutation of the LXCXE binding cleft of pRB contributes to pRB-mediated 

tumor suppression, independently of E2F target gene transcription. 

 The advantage of a structure-function approach to investigating pRB function is 

supported by phenotypes observed in the Rb1
R654W

 mouse.  The arginine to tryptophan 

substitution at amino acid 654 (R654W) in the Rb1 gene inhibits the ability of pRB to 

interact with E2Fs 1, 2 and 3, and thereby modulate their activity in a cell cycle-

dependent manner (Sun et al 2006).  This mutation has been modeled after the R661W 

mutation in the human RB1 gene (Sun et al 2006, Lohmann et al 1994, Onadim et al 

1992).  Rb1
 R654W/R654W

 mice exhibit the same cell cycle defects as Rb1
-/-

 embryos, 

however they survive two days longer than Rb1
-/-

 mice in utero, and defects in 

erythropoiesis and liver macrophage differentiation are ameliorated (Sun et al 2006).  
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This suggests that pRB can have important contributions to differentiation that are 

unrelated to their ability to regulate E2F target gene transcription. 

 The idea that discrete interactions differentially contribute to pRB-mediated 

tumor suppression is supported by cancer mutation data in humans, suggesting that 

inactivation of the entire retinoblastoma gene is required to compromise pRB-mediated 

tumor suppression, and not just one discrete interaction surface.  For example, tumor 

derived mutations of the RB1 gene are inconsistent with the disruption of a single 

function of the retinoblastoma protein as there are thirty five known cancer-causing 

missense mutations in RB1 from retinoblastoma patients, and most of these alleles have 

been reported only once (Fig. 1.6; Retinoblastoma genetics website).  Additionally, the 

majority of these alleles are deletions or nonsense changes, abrogating complete pRB 

function (Lohmann 1999, Retinoblastoma genetics website).  This is contrary to 

mutations in other oncogenes or tumor suppressors that cluster in regions based on 

functional importance as in Ras or p53 (Schubbert et al 2007, Joerger and Fersht 2007).    

With evidence indicating that disrupting discrete pRB interactions with cellular 

proteins could help illuminate the contribution of that particular interaction to tumor 

suppression, the concept of a “structure-function” approach to study the retinoblastoma 

protein has been adopted.  This was greatly aided by the publication of crystal structures 

of pRB’s pocket showing which residues are on the surface of the protein, which are 

buried, and which are important for interacting with viral oncoproteins and E2Fs (Lee et 

al 1998, Rubin et al 2005, Xiao et al 2003).  In this way, key residues mediating 

interactions between pRB and its binding partners were identified and could be used for 

targeted disruption.  Indeed, substitution of amino acids required for pRB-E2F 

interactions in the small pocket of pRB eliminated pRB-mediated transcriptional 

repression of E2F target genes, and revealed a novel role for pRB in the regulation of 

apoptosis (Dick and Dyson 2003, Chau et al 2006).   

Though there may be other, as yet undefined binding sites, at the current time, 

there are three well defined binding interfaces on the retinoblastoma protein that mediate 

binding to cellular proteins.  These include i) the large pocket, which is the minimal  
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Figure 1.6: Spectrum of mutations of RB1 in retinoblastoma patients. 

Mutations of RB1 in patients do not cluster within certain functional domains of the 

retinoblastoma protein.  Most of the mutations are nonsense mutations, which inactivate 

the entire allele and not discrete functions of pRB.  Few of these mutations are found 

more than once.  Together, this indicates that all of pRB’s functions are important for 

pRB-mediated tumor suppression.  Each asterisk (*) is one mutation.  Each cross (†) is 

one recurrent mutation.  A- A cyclin fold. B- B cyclin fold. 
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sequence required for binding to E2F transcription factors, ii) the C-terminus, which 

binds specifically to E2F1, and iii) the LXCXE binding cleft, which is located in the B 

domain of the small pocket and mediates interactions with cellular proteins such as 

chromatin regulatory factors (Fig. 1.2A).  The next several sub-sections of this 

introductory chapter will discuss the LXCXE binding cleft and the rationale for 

investigating the contribution of the LXCXE binding cleft to pRB-mediated tumor 

suppression. 

 

1.3 The Rb1
ΔL/ΔL

 mouse 

1.3.1 The LXCXE binding cleft 

 As previously described, the LXCXE binding cleft is located in the B domain of 

the small pocket of pocket proteins (Lee et al 1998).  Numerous cellular proteins are 

reported to bind pRB using this site (reviewed in Dick 2007).  Many of these proteins can 

modify chromatin structure to induce heterochromatinization and thereby repression of 

gene transcription including HDAC1/2, Suv39h1, BRG1, Brm, DNMT1 and hSWI/SNF 

(Brehm et al 1998, Magnaghi et al 1998, Luo et al 1998, Lai et al 1999, Nielsen et al 

2001, Dunaief et al 1994, Singh et al 1995, Robertson et al 2000, Zhang et al 2000).  

Other proteins function in transcriptional repression or DNA replication, or have no as 

yet known function.  As previously discussed, binding of these proteins to the LXCXE 

binding cleft of pRB facilitates inhibition of E2F target gene transcription, thereby 

contributing to the inhibition of cell cycle progression.   

Alternatively, using an LXCXE motif, viral oncoproteins bind in the LXCXE 

binding cleft to inactivate pRB, p107 and p130 (Lee et al 1998, Ewen et al 1989, Munger 

et al 1989, Whyte et al 1989, Dyson et al 1992).  A study of amino acid sequence 

conservation has revealed that the LXCXE binding cleft is the most highly conserved 

region among pocket proteins and across several species of pRB (Lee et al 1998).  As the 

LXCXE binding cleft on pRB renders it susceptible to viral oncoproteins, it raises the 

question as to why this site has remained so conserved over evolutionary time.  

Evidently, interactions between the LXCXE binding cleft of pRB and cellular proteins 
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must perform an essential function, though this is not reflected by its seemingly modest 

contribution to cell division cycle regulation. 

Early efforts to address this conundrum began with the targeted disruption of 

LXCXE binding cleft interactions without compromising binding to E2Fs in the large 

pocket, or E2F1 in the C-terminus.  These studies have revealed that while proliferative 

control remains intact, the ability of such a mutant pRB to mediate permanent cell cycle 

arrest is compromised (Dick et al 2000, Chan et al 2001, Chen and Wang 2000, Dahiya 

et al 2000).  In order to further investigate the role of the LXCXE binding cleft of pRB in 

isolation, our lab has generated a mouse (Rb1
ΔL/ΔL

) with alanine substitutions at three key 

amino acids in the LXCXE binding cleft that mediate important contacts with cellular 

proteins (I746A, N750A and M754A) (Fig. 1.7; Isaac et al 2006).  The Rb1
ΔL/ΔL

 mouse is 

viable, fertile and born at Mendelian ratios (Isaac et al 2006).  Additionally, these mice 

do not acquire spontaneous tumors (Isaac et al 2006).  The Rb1
ΔL/ΔL

 mouse is described in 

detail below. 

1.3.2 Rb1ΔL/ΔL MEFs exhibit phenotypes independent of G1 to S-
phase transition regulation 

 Mouse embryonic fibroblasts from Rb1
ΔL/ΔL

 mice reflect previous experiments in 

Saos2 and C33A cells in that they maintain proliferative control (E2F target genes are not 

upregulated), but fail to remain permanently arrested in senescence (Isaac et al 2006, 

Talluri et al 2010).  In cycling Rb1
ΔL/ΔL

 MEFs, there is an accumulation of a >4N DNA 

content peak, which is indicative of aneuploidy (Isaac et al 2006).  They also exhibit a 

reduction in histone H4-K20 trimethylation, a mark of heterochromatin.  Centromeres 

characterized by loss of this histone mark exhibit fusions leading to errors in mitosis 

(Isaac 2006).  Finally, these cells also exhibit hypocondensation of chromatin.  Taken 

together, genomic instability appears to be a hallmark of Rb1
ΔL/ΔL

 MEFs. 

In MEFs induced to senesce using oncogenic Ras, there is a reduction in the 

histone H3-K9 trimethylation mark at E2F target genes, which correlates with their 

upregulation.  These cells also exhibit a striking inability to inactivate cell division cycle 

progression when challenged with Ras as Rb1
ΔL/ΔL

 MEFs showed a significantly 
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Figure 1.7: Disruption of protein-interaction sites on the retinoblastoma protein. 

The LXCXE binding cleft of pRB contains three important contact residues with LXCXE 

motif-containing proteins, residues I746, N750 and M754 (Rb1
+
).  Mutation of these 

residues to alanine abrogates the ability of proteins to bind in the LXCXE binding cleft of 

pRB. This mutation is called the Rb1
ΔL

 mutation.  The Rb1
ΔL/ΔL

 mouse is defective for 

binding proteins in its LXCXE binding cleft, but maintains general and specific 

interactions with E2Fs.  I- isoleucine.  N- asparagine.  M- methionine.  A- alanine. 
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increased >4N DNA content compared to wild type.  DNA content was often 8N or 

higher, indicating endoreduplication (Talluri et al 2010).  Intriguingly, this is not 

observed in differentiation, a separate paradigm of permanent cell cycle arrest, suggesting 

that this is unique to pRB-mediated G1 arrest in response to oncogenic stress (Talluri et 

al 2010). 

1.3.3 The Rb1ΔL/ΔL mouse exhibits no overt tumor-suppressive 
phenotype 

 As mentioned above, Rb1
ΔL/ΔL 

mice are viable, fertile and born at the expected 

Mendelian ratios (Isaac et al 2006).  These mice do not acquire spontaneous tumors, 

though they exhibit hyperplasia of the mammary gland ductal epithelium (Francis et al 

2009).  This hyperplasia was found to be a result of insensitivity to transforming growth 

factor β (TGF-β) growth inhibition (Francis et al 2009).  Studies in MEFs were used to 

determine the mechanisms for this insensitivity and it was found that pRB-mediated 

repression of E2F target genes was compromised in response to TGF-β signalling, 

allowing for ectopic proliferation as measured by BrdU incorporation (Francis et al 

2009). 

 In order to investigate the mechanism(s) by which the LXCXE binding cleft itself 

contributes to pRB-mediated tumor suppression, we crossed Rb1
ΔL/ΔL 

mice into a Trp53
-/-

 

tumor prone mouse model.  Trp53
-/-

 mice reliably acquire thymic lymphomas that are 

karyotypically normal, and so this is an appropriate tumor phenotype for us to modify 

with the Rb1-ΔL mutation to observe whether its addition leads to increased genomic 

instability.  Additionally, as mentioned previously, Rb1
ΔL/ΔL 

MEFs are compromised for 

maintaining a G1 arrest in response to DNA damage and oncogene-induced senescence 

(Talluri et al 2010).  Because p53 acts upstream of pRB in mediating such a G1 arrest, 

modification of the Trp53
-/-

 tumor phenotype by pRB will be separate from its regulation 

of this G1 arrest mechanism.  The results of this large tumor study are reported in 

Chapters 2 and 3 of this thesis. 
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1.3.4 A non-canonical role for the LXCXE binding cleft of pRB 

 The data described in this introductory chapter on the retinoblastoma protein have 

focused on the various ways in which it regulates proliferation, with the exception of its 

role in mediating E2F1-induced apoptosis, and the role of the LXCXE binding cleft in 

mediating genome stability.  Recently, a paper published by Longworth et al described a 

role linking Drosophila pRB (RBF1) to the regulation of chromatin structure.  This was 

mediated by an interaction between RBF1 and a subunit of the Condensin II complex, a 

member of the structural maintenance of chromosome (SMC) family of complexes that 

facilitates mitotic chromosome condensation (Longworth et al 2008).   

Longworth et al report that this subunit, dCAP-D3, partially colocalizes with 

RBF1 on chromatin and that RBF1 is required for dCAP-D3 localization to chromatin 

(Longworth et al 2008).  Mutants of dCAP-D3 suppressed phenotypes induced by RBF1 

overexpression and rbf1 mutants exhibited significant defects in chromatin condensation 

during mitosis.  Moreover in humans, adding wild type pRB to pRB-deficient cells 

increased hCAP-D3 loading on chromatin in a manner dependent on pRB’s LXCXE 

binding cleft (Longworth et al 2008).  This report provides a hint at the mechanism by 

which the LXCXE binding cleft was reported to mediate genome stability and contribute 

to pRB-mediated tumor suppression (Isaac et al 2006).  In subsequent chapters I will 

describe the interaction of pRB with the Condensin II complex and will expand upon the 

mechanism by which this occurs in the context of pRB-mediated genome stability and 

tumor suppression. 

 

1.4 Condensins 

1.4.1 The structural maintenance of chromosomes (SMC) family of 
complexes are integral for chromosome dynamics 

 The structural maintenance of chromosome (SMC) family of complexes consists 

of the SMC5/6 complex, Cohesin (mitotic and meiotic), Condensin I and Condensin II 

(Fig. 1.8).  The SMC proteins are conserved across the three phyla of life indicating that 
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chromosome organization is evolutionarily conserved (Cobbe and Heck 2004).  SMC 

proteins always form a dimer and associate with regulatory subunits into a large 

holocomplex.  SMC proteins have a “hinge” domain where the protein self-folds, and an 

ATP-binding cassette-like “head” domain separated by an antiparallel coiled-coil “arm” 

(Fig. 1.8A).  Two of these SMC proteins associate via their hinge to produce a V-shaped 

dimer (Melby et al 1998, Anderson et al 2002, Haering et al 2002, Hirano and Hirano 

2002) (Fig. 1.8A).  It is predicted that ATP binding to, and hydrolysis at, the “head” 

domain facilitates engagement and disengagement respectively (Haering et al 2004, 

Lammens et al 2004, Hirano et al 2001, Hirano and Hirano 2004).  Non-SMC regulatory 

subunits of SMC complexes include kleisins, HEAT-repeat containing proteins or other 

subunits (Fig. 1.8B).  Kleisin subunits interact with the head domain of two SMC 

proteins through their N- and C-terminal domains to form a ring-like structure whereas 

HEAT-repeat containing proteins act as protein scaffolds to assemble cellular 

components and are proposed to direct SMC proteins to specific loci on DNA (Schleiffer 

et al 2003, Neuwald and Hirano 2000).  HEAT-repeat regulatory subunits therefore 

greatly influence chromosome dynamics. 

 The SMC5/6 complex is sequentially divergent from the other SMC complexes 

and an understanding of its functions is reviewed elsewhere (Lehmann 2005, De Piccoli 

et al 2009).  The mitotic Cohesin holocomplex is comprised of SMC1 and SMC3, the 

kleisin subunit hRAD21, and other subunits including a HEAT-repeat containing subunit 

Scc2 (Losada and Hirano 2005) (Fig. 1.8C).  Condensins I and II both have SMC2 and 

SMC4 proteins, but differ in their regulatory subunits.  Whereas Condensin I is composed 

of the kleisin subunit hCAP-H and two HEAT-repeat containing subunits hCAP-D2 and 

hCAP-G, Condensin II is comprised of the kleisin subunit hCAP-H2 and two HEAT-

repeat containing subunits hCAP-D3 and hCAP-G2 (Fig. 1.8D, E respectively). 

In general, Cohesin ensures proper resolution of sister chromatids while 

Condensins I and II facilitate sequential mitotic chromosome condensation (Fig. 1.9).  

Briefly, the Cohesin complex forms a ring-like structure around DNA that maintains 

sister chromatid cohesion as DNA is replicated in S-phase (Fig. 1.9A) (Gruber et al 2003, 
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Figure 1.8: Cohesin, Condensin I and Condensin II are complexes of the structural 

maintenance of chromosome (SMC) family. 

(A) Depiction of the domain organization of SMC proteins.  Domains are organized by 

the folding back upon itself of the SMC protein.  The hinge domain is globular and binds 

to the hinge domain of another SMC protein.  The arms are coiled coils, and the head 

domain contains the N and C-terminus of the protein.  (B) Depiction of the regulatory 

subunits of SMC proteins.  (C) Cohesin facilitates sister chromatid resolution and is 

comprised of SMC1, SMC3, Rad21 and SA1 or SA2.  (D) Condensin I is comprised of 

SMC2, SMC4, CAP-H, CAP-G and CAP-D2.  (E) Condensin II is comprised of SMC2, 

SMC4, CAP-H2, CAP-G2 and CAP-D3.  Adapted from Losada and Hirano, 2005. 

A 

B 

C D E 
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Losada et al 2002).  In prophase, mitotic Condensin II is loaded onto chromatin and 

facilitates condensation; this is accompanied by release of some Cohesin from 

chromosome arms (Losada et al 2002, Sumara et al 2002, Giménez-Abián et al 2004) 

(Fig. 1.9B).  After nuclear envelop breakdown Condensin I, which is constitutively 

cytoplasmic, gains access to chromosomes and facilitates further mitotic chromosome 

condensation during prometaphase and metaphase (Fig. 1.9C).  Again, this is 

accompanied by further release of Cohesin from chromosome arms.  At this point, a 

small subset of Cohesin remains at pericentromeric chromatin and is protected from 

release by the protein shugoshin (Losada et al 2000, Clift et al 2009, Katis et al 2004, 

Kitajima et al 2004, Marston et al 2004).  At anaphase onset, shugoshin is targeted for 

degradation and the kleisin subunit hRAD21 is cleaved by the separase enzyme, breaking 

its ring structure and triggering Cohesin dissociation from chromosomes (Fig. 1.9D).  

Mitotic chromosomes are then pulled to opposite poles of the cell (Gruber et al 2003, 

Losada and Hirano 2005).  After chromosomes have reached opposite poles, Condensins 

are unloaded from chromatin (reviewed in Losada and Hirano 2005) (Fig. 1.9E).   

1.4.2 Condensin I and Condensin II differentially contribute to 
mitotic chromosomes 

Condensins are proposed to facilitate mitotic chromosome condensation by 

introducing supercoiling to DNA, or by associating with each other to create larger DNA 

loops, bringing distant sites on chromosomes together.  While data in Chapters 2 and 3 

report a unique interaction of pRB specifically with the Condensin II complex, 

Condensin I was the first discovered Condensin.  As such, it has been extensively studied 

and what has been learned about Condensin I is inferred for the mechanisms of action of 

Condensin II.  Condensin I has been shown to introduce positive supercoiling to double 

stranded DNA (dsDNA) in an ATP-dependent manner (Kimura and Hirano 1997, Strick 

et al 2004).  This activity is stimulated by phosphorylation of the non-SMC subunits by 

Cyclin B-cdk1 (Kimura et al 1998, Kimura et al 1999, Strick et al 2004).  Indeed, non-

SMC subunit phosphorylation steadily increases from prophase to anaphase of the cell 

division cycle, and this correlates with increasing compaction of mitotic chromosomes 

(Kimura et al 1998).  In accordance with this model, the hCAP-D3 subunit of Condensin 
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Figure 1.9: The SMC proteins are key chromosomal components for mitosis. 

(A) As DNA is being replicated in S-phase, Cohesin is loaded onto chromosome arms to 

facilitate sister chromatid resolution.  (B) In prophase, Condensin II is loaded onto 

chromosomes, facilitating partial chromosome condensation.  Some cohesin is removed 

from chromosome arms.  (C) After nuclear envelope breakdown, Condensin I is loaded 

onto chromosomes and further condenses mitotic chromosomes.  The remaining Cohesin 

is removed from chromosomes except at centromeres and near telomeres.  (D) At 

anaphase onset, the remaining Cohesin at centromeres is removed by separase-mediated 

cleavage of its kleisin subunit, and chromosomes are pulled apart by the mitotic spindle.  

(E) After chromosomes are pulled apart, mitotic Condensins I and II are unloaded from 

chromosomes.  Adapted from Losada and Hirano, 2005. 

A B C D E 
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II has been shown to be phosphorylated by Cyclin B-cdk1 to promote chromosome 

condensation early in mitosis (Abe et al 2011).  In the same study, the Polo-like kinase 1 

(Plk1) was proposed to cooperate with cdk1 to facilitate Condensin II-mediated 

chromosome condensation later in mitosis. 

Despite having similar mechanisms of action, Condensins are differentially 

regulated, suggesting they differentially contribute to chromosome dynamics (Ono et al 

2004, Lipp et al 2007, Takemoto et al 2006, Takemoto et al 2009, Yamashita et al 2011).  

Through numerous studies, Condensin I and Condensin II have been found to 

differentially and non-redundantly contribute to mitotic chromosome condensation as 

depletion of either complex alone leads to segregation errors and condensation defects 

(Hirota et al 2004, Ono et al 2003).  Moreover, Condensin I and II do not colocalize on 

chromosomes, rather they alternate along the length of the chromosome arms (Ono et al 

2003).  Though Condensin I is involved in more primary organization of chromatin fibres 

around the mitotic spindle, Condensin II was found to be more architectural, determining 

the final chromosome shape by being more closely associated with the central mitotic 

chromosome axis. 

While it is known that extensive phosphorylation of non-SMC complexes on 

chromatin facilitates mitotic chromosome condensation, few regulatory proteins such as 

those proposed above have been found to localize Condensins to chromatin and facilitate 

loading.  For example, the Scc2 HEAT-repeat containing protein that associates with 

Cohesin has been shown to be necessary for Cohesin recruitment to chromatin, 

supposedly by facilitating ATP-hydrolysis of the SMC head domains, thereby stimulating 

opening of the ring to allow loading onto chromatin (Arumugam et al 2003).  It is not 

known which proteins perform the same functions for Condensins, though the HEAT 

repeat-containing non-SMC subunits of both Condensin I and Condensin II would be 

natural candidates (Losada and Hirano 2005). 

There must also be discriminatory mechanisms for loading Condensins onto 

chromatin though these mechanisms remain largely elusive.  Cohesin, Condensin I and 

Condensin II are all localized to centromeres.  Cohesin maintains sister chromatid 
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cohesion until anaphase onset, and Condensin I has been shown to be important for the 

rigidity of centromeric heterochromatin and its loss leads to abnormal orientation of sister 

chromatids (Losada et al 1998, Losada et al 2000, Katis et al 2004, Kitajima et al 2004, 

Marston et al 2004, Rabitsch et al 2004, Ono et al 2004, Oliveira et al 2005, Gerlich et al 

2006, Ribeiro et al 2009).    Condensin II also plays a particularly important role at 

centromeres.  In C. elegans, which is holocentric with numerous centromeres assembled 

along the length of each chromosome, Condensin II predominates at centromeres and its 

loss leads to large merotelic attachments and segregation defects (Stear and Roth 2002).  

In humans and other animals, a specialized fraction of Condensin II is enriched at the 

inner kinetochore plate (Ono et al 2004, Shintomi and Hirano 2011, Savvidou et al 2005, 

Samoshkin et al 2009).  Most recently, Condensin II has been proposed to be important 

for loading of the centromere-specific histone 3 variant CENPA, which is important for 

propagation of centromeric heterochromatin (Folco et al 2008, Samoshkin et al 2009).   

1.4.3 Condensin II contributes to functions outside of mitotic 
chromosome condensation 

 In addition to their roles in mitotic chromosome condensation, Condensin II has 

been shown to mediate other cellular processes including gene regulation, recombination, 

and DNA damage response and repair.  For example, in Drosophila, Condensin II has 

been shown to mediate resolution/disassembly of polytene chromosomes, a process that 

occurs during oogenesis in specialized ovarian nurse cells (Hartl et al 2008).  Moreover, 

by resolving sister chromatids, Condensin II prevents homolog-homolog interactions 

from occurring, thereby preventing transvection (Hartl et al 2008).  Similar to the 

resolution of polytene chromosomes in Drosophila, a recent report by Ono et al. also 

implicates the Condensin II complex in the resolution of sister chromatids following 

DNA replication in S-phase (Ono et al 2013). 

 Many studies investigating the roles of Condensins have been performed in yeast 

due to the ease of their genetic manipulation.  Yeast contain only one Condensin 

complex, which more closely resembles Condensin I than Condensin II from higher 

eukaryotes (Losada and Hirano 2005).  However, the non-mitotic functions of this single 

Condensin complex in yeast suggest that it may behave like Condensin II, especially as it 
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has access to chromosomes in the nucleus during interphase, which the higher eukaryotic 

Condensin I lacks (Losada and Hirano 2005).  For example in yeast, Condensin plays a 

critical role in maintaining the copy number of rDNA repeats by preventing their 

expansion via recombination (Johzuka et al 2006, Clemente-Blanco et al 2009, Johzuka 

and Horiuchi 2007).  As well, Condensin has been shown to promote clustering of yeast 

tRNA genes in the nucleolus (Thompson et al 2003, Haeusler et al 2008).  In S. pombe, 

Condensin plays yet another role whereby it recruits Pol III genes to centromeres and 

thereby prevents their transcription (Iwasaki et al 2010).  Interestingly, there appears to 

be a special requirement for these functions at repetitive DNA sequences. 

Condensins have also been implicated in the DNA damage response and 

subsequent repair.  In S. cerevisiae, loss of Condensin results in cells becoming sensitive 

to DNA damage as a result of compromised recombinational repair; these cells also 

exhibit genomic instability (Ide et al 2010).  In S. pombe, loss of Condensin also 

compromises DNA damage repair (Akai et al 2011).  Furthermore in humans, Condensin 

II was shown to be involved in DNA double strand break response and repair (Sakamoto 

et al 2011).  This is supported by work showing that in meiosis in humans, Condensin II 

is important for resolving bivalent chromosomes, including chiasmata resolution (Lee et 

al 2011).   

It is clear that Condensins play an important role in mediating chromosome 

dynamics outside of mitosis.  Therefore the above-described non-mitotic functions of 

Condensin II are of particular interest in considering the data reported in Chapters 2 and 3 

of this thesis where I propose a role for Condensin II at centromeres in S-phase that is 

mediated by the retinoblastoma protein. 

1.4.4 Subunits of the Condensin complexes are mutated in cancer 

 Because Condensins exhibit a diverse array of functions, play an integral role in 

mediating mitotic chromosome condensation, and because defects with Condensins are 

associated with merotely, missegregation and hypocondensation, it is interesting to 

speculate that their proper function is important for preventing aneuploidy and genomic 
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instability.  The SMC field is only beginning to utilize mouse models to explore this 

question, and whether it has any bearing on tumorigenesis.   

Two mouse models have been published to date.  The first mutant mouse was 

made with a mutation knocking out the HEAT repeat-containing CAP-G2 subunit of 

Condensin II; it was found to be embryonic lethal (Smith et al 2004, Xu et al 2006).  This 

is perhaps not surprising as SMC2 and 4, and thereby Condensins I and II, have been 

found to be essential for mouse embryonic stem cell viability (Fazzio and Panning 2010).  

The second mouse was identified in a screen for recessive genes involved in T-cell 

development (Gosling et al 2007).  This mutant mouse strain, referred to as nessy, carries 

a point mutation in CAP-H2, the kleisin subunit of Condensin II (Gosling et al 2007).  

Homozygous mice are viable, fertile, and exhibit no cancer phenotype.  Instead, there is a 

specific defect in T-cell development and failure to initiate a normal immune response 

(Gosling et al 2008).  Interestingly, the other functions of Condensin II appear 

uncompromised (Gosling et al 2008).  One reason for this may be because it is a simple 

point mutation that may disrupt one function of the complex, but not others. 

  More promising data to support the importance of Condensins in tumor 

suppression can be found in the literature and cancer mutation databases.  For example, 

several cases of pyothorax-associated lymphoma in humans have point mutations in 

SMC2 and SMC4 (Ham et al 2007).  Additionally, mutation of the CAP-G subunit of 

Condensin I in zebrafish increases genomic imbalance (Seipold et al 2009).  Finally, 

investigation of human cancer mutations using the Catalog Of Somatic Mutations In 

Cancer (COSMIC) database reveals several cancers containing missense and nonsense 

mutations in SMC and non-SMC subunits of both the Condensin I and Condensin II 

complexes (COSMIC database).  Interestingly, nonsense mutations in these subunits are 

less common than missense mutations, indicating that some measure of proper Condensin 

function is still required by cancer cells to divide.  It follows then, that point mutations 

disrupt minimal function and might serve to enable genomic instability, allowing the 

accumulation of mutations that promote or permit tumorigenesis. 
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1.5 Genomic instability 

1.5.1 Types of genomic instability 

 Genome instability is a broad term used to describe the failure of a cell to 

accurately pass on a copy of its genome to its daughter cells.  There are several 

mechanisms by which this can occur, and these have been grouped into three broad 

categories. Microsatellite instability is caused by defective mismatch repair that leaves 

DNA replication errors uncorrected (Grilley et al 1990, Ionov et al 1993, Thibodeau et al 

1996).  Nucleotide excision repair-related instability arises from defects that prevent 

removal and replacement of UV-damaged nucleotides (Sancar 1996, Wood 1997, Batty 

and Wood 2000).  The third type of instability is chromosome instability (CIN), which 

can be further dissected into two types, whole chromosome instability (W-CIN) and 

segmental chromosome instability (S-CIN) (delineated by Geigl et al 2008). W-CIN 

arises through the gain and/or loss of whole chromosomes, which, if sustained through 

successive cell divisions, results in aneuploidy.  Additionally, smaller regions of gain or 

loss, or changes in chromosome structure that do not result in copy number alterations, 

such as translocations or inversions, are broadly termed S-CIN (Geigl et al 2008).  Over 

the years, genomic instability has been implicated, not surprisingly, in tumorigenesis.  In 

the next few paragraphs I will describe the role of genomic instability in tumorigenesis, 

and how this relates to pRB. 

1.5.2 Genomic instability in cancer 

The concept that aneuploidy is a characteristic of malignant cells was first 

suggested by the work of von Hansemann and Boveri (Boveri 1912, Boveri 2008, 

Shirkhedkar Atul A et al 2009). However, this theory was not verified until the early 

1950s, when Sajiro Makino, and Levan and Hauschka among others demonstrated that 

malignant cells have a unique chromosome compliment compared to their normal 

counterparts (Makino 1952, Makino and Nakahara 1952, Hauschka and Levan 1958, 

Hauschka 1953, Hauschka 1958).  Since then, chromosome instability has been observed 

to be tolerated, and even selected for, in many malignant cell types (Hanahan and 

Weinberg 2000, Hanahan and Weinberg 2011).  Originally, such chromosome instability 
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was thought to be a by-product, or a passenger that accompanied tumorigenesis.  In other 

words, it was a cancer-associated phenotype, not a cancer-causing mechanism.  However, 

in recent years, it has become evident that chromosome instability may exhibit a more 

causative role in the transformation of a normal cell into one that becomes cancerous.  

This shift in thought has been supported by several mouse models in which alterations of 

the spindle assembly checkpoint lead to higher than normal chromosome segregation 

errors, and offers proof of principle that chromosome instability alone can be the root 

cause of spontaneous tumors in mammals (reviewed in Schvartzman et al 2010, Bond et 

al 2004).   

In addition, the combination of these spindle assembly defects with other genetic 

lesions can enhance tumorigenesis, further demonstrating that CIN can stimulate 

progression of the disease (Bond et al 2004).  Moreover, chromosome instability 

phenotypes are caused by mutations in tumor suppressor genes whose primary function 

resides in maintaining genome stability through repair and damage checkpoints, and/or 

the spindle assembly checkpoint, such as BRCA1, BubR1, and others (Huen et al 2010, 

Joukov et al 2006, Stolz et al 2010, Choi and Lee 2008, Elowe et al 2010, Wei et al 

2010).  These tumor suppressors, along with recently reported massive chromosome 

rearrangements (chromothripsis) that are evident in initial disease, and even in relapse 

(Stephens et al 2011), further argue that defects in chromosome stability can be central to 

cancer pathogenesis. 

In a manner similar to our shift towards viewing chromosome instability as an 

active contributor to cancer as opposed to being an associated phenotype, our 

understanding of many well-known oncogenes and tumor suppressors has followed a 

similar path.  The adenomatous polyposis coli gene (APC), p53, and the retinoblastoma 

susceptibility gene (RB1) were all initially discovered to function in growth control (Su et 

al 1993, Rubinfeld et al 1993, Hinck et al 1994, Kastan et al 1991, Yonish-Rouach et al 

1991, Lane 1992, Goodrich et al 1991).  While this remains true, our expanding 

knowledge of these genes has revealed roles for them in the maintenance of genome 

stability and, in many cases, specifically in chromosome stability.  In this way 

chromosome instability enhances the tumorigenic potential beyond deregulated 
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proliferation that is caused by loss of these tumor suppressors, or by gain of oncogenes.  

As a result, chromosome instability caused by common genetic lesions in cancer may be 

more central to the process of tumorigenesis than is currently estimated. 

1.5.3 pRB and genomic instability 

As described above, much attention has been focused on pRB’s ability to regulate 

E2F transcription factors at the G1 to S-phase transition, as this regulates a cell’s 

commitment to replicate its DNA and divide.  There are two general divisions in which to 

categorize pRB’s functions that maintain genome stability.  The first is as a consequence 

of deregulated E2F transcription.  As detailed above, the vast majority of cancers possess 

mutations that disrupt regulation of the pRB pathway, leading to uncontrolled E2F 

transcription.  For this reason, missexpression of genes early in the cell cycle can result in 

chromosome re-replication or missegregation later, as is the case with deregulation of the 

E2F-target genes, cyclin E and MAD2, respectively (Spruck et al 1999, Hernando et al 

2004).  In addition, E2F-independent regulation of the chromatin structure of mitotic 

chromosomes has also emerged as a means by which the retinoblastoma protein 

contributes to the maintenance of genome stability and will be discussed in subsequent 

chapters (Coschi et al 2010, Manning et al 2010, van Harn et al 2010). 

Among E2F transcriptional targets, a number stand out as known causes of 

chromosome instability when overexpressed.  First, both cyclin E1 and E2 isoforms are 

E2F target genes; their stable overexpression leads to abnormally elevated cyclin-

dependent kinase activity, ultimately leading to aneuploidy or polyploidy (Spruck et al 

1999).  Furthermore, a number of components of the spindle assembly checkpoint are 

E2F target genes, including Mad2 and BubR1, whose overexpression leads to enhanced 

checkpoint activity (Schvartzman et al 2010).  This in turn delays progression through 

mitosis and manifests as chromosome segregation errors (Hernando et al 2004).  These 

examples of deregulated E2F target gene-induced expression reveal how elevated levels 

of these gene products drive CIN, and offer a simple connection between loss of 

proliferation control and aneuploidy. 
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The first reports to suggest a role for pRB in maintaining a stable genome 

independently of E2Fs, and thereby G1 to S-phase regulation, demonstrated defects in 

chromosome structure or maintenance.  In a study by Zheng et al. it was demonstrated 

that Rb1
+/-

 and Rb1
-/-

 mouse embryonic stem cells exhibit a high frequency of loss of a 

selectable chromosomal marker compared to wild-type (Zheng et al 2002).  Furthermore, 

loss of drug resistance was due to complete absence of the selectable marker, implicating 

chromosomal loss or rearrangement as the explanation for genetic change (Zheng et al 

2002).  Similarly, it was also observed that cells deficient for all pRB family proteins 

display lengthened telomeres and centromere fusions (Gonzalo et al 2005, Felsher et al 

2000).  Metaphase spreads from these cells are characterized by chromosome fusions and 

tetraploidy (Gonzalo et al 2005). 

Interestingly, similar centromere, aneuploidy, polyploidy, W-CIN, and S-CIN 

phenotypes have been observed in cells with defective Condensin I/II complex function 

(Ono et al 2003, Ono et al 2004, Samoshkin et al 2009, Ribeiro et al 2009, Vagnarelli et 

al 2006).  The Condensin II complex facilitates chromosome condensation during 

prometaphase, and is important for maintaining chromosome structure and architecture 

during mitosis, particularly at the centromere (Ribeiro et al 2009, Yong-Gonzalez et al 

2007, Hagstrom et al 2002).  The association of the Condensin II complex with pRB 

occurs in an LXCXE-dependent manner (Longworth et al 2008).  Defective Condensin II 

function offers an explanation for the observed hypocondensation at centromeres, 

centromere fusions, and increase in lagging chromosomes during mitosis in Rb1
ΔL/ΔL

 

MEFs (Isaac et al 2006).  Presumably, defects in condensation lead to misshapen 

centromeres and merotelic attachments by spindle microtubules, which leads to 

missegregation of chromosomes without activating the spindle assembly checkpoint 

(Thompson et al 2008, Cimini et al 2001).  Defects in S-CIN have also been reported in 

pRB family-deficient fibroblasts, suggesting that chromosome structure defects also 

occur elsewhere in the genome, rather than at centromeres alone (van Harn et al 2010). 

Defects in E2F regulation lead to elevated levels of aneuploidy because of 

improper regulation of DNA replication and activation of the spindle assembly 

checkpoint (Spruck et al 1999, Hernando et al 2004).  The connection between 
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chromosome instability caused by defective condensation in pRB mutants, and 

deregulated cell cycle control is less clear.  For example, wild-type embryonic stem cells 

lack a pRB-dependent G1 arrest mechanism, but display CIN phenotypes caused by pRB 

deficiency (Frame and Balmain 1999, Zheng et al 2002).  For this reason, it remains to be 

determined whether elevated cyclin-dependent kinase activity (the most common way of 

eliminating pRB function in cancer) compromises pRB’s role in chromosome 

condensation, beyond causing aneuploidy through elevated E2F-mediated transcription.  

As mentioned, heterozygous Rb1
+/-

 mice are cancer prone and develop pituitary 

tumors by 1 year of age, the majority of which have lost the remaining wild-type Rb1 

allele (Jacks et al 1992); in this regard, they recapitulate the steps of the two-hit 

hypothesis quite faithfully.  There are no reported attempts to evaluate CIN in these 

tumors, or any others created by conditional deletion of Rb1 in a specific tissue. 

However, it would be difficult to discern the contribution of CIN to an Rb1-deficient 

cancer model in isolation from the effects of deregulated proliferation when using null 

alleles of Rb1.  The recently generated mouse strain called Rb1-ΔL has demonstrated a 

connection between pRB-mediated chromosome condensation and tumor suppression and 

this will be explored in chapters to follow (Coschi et al 2010).  

 

1.6 Hypothesis and objectives 

As it has been introduced, the LXCXE binding cleft is the most highly conserved 

region among pocket proteins and across several species of retinoblastoma protein (Lee et 

al 1998).  However, it is also targeted by viral oncoproteins, rendering the retinoblastoma 

protein non-functional and susceptible to degradation (Whyte et al 1988, DeCaprio et al 

1988, Dyson et al 1989).  If the LXCXE binding cleft was not uniquely important for 

overall protein function, it would not remain so conserved over evolutionary time, given 

its susceptibility to viral oncoproteins.  It is possible that any unique roles of the LXCXE 

binding cleft are masked by loss of the entire protein when proliferative control is 

concomitantly lost (a phenotype which appears dominant over other more subtle ones).  

Therefore I hypothesize that the LXCXE binding cleft of pRB makes a unique 
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contribution to pRB-mediated tumor suppression by facilitating chromosome stability 

outside of regulating the G1- to S-phase transition.  As such, the overall aims of this 

thesis are to determine the unique contribution of the LXCXE binding cleft to pRB-

mediated tumor suppression, and the mechanism(s) by which it does so, utilizing the 

Rb1
ΔL/ΔL

 mouse. 

In Chapter 2, I describe a tumor study whereby we crossed Rb1
ΔL/ΔL

 mice with 

both Trp53
-/-

 and Trp53
+/-

 mice to investigate the contribution of the LXCXE binding 

cleft to pRB-mediated tumor suppression (Coschi et al 2010).  The addition of the Rb1
ΔL

 

mutation to Trp53
+/-

 tumor prone mice accelerated LOH of wild type Trp53.  Moreover, 

there was a significant increase in whole-CIN in tumors from Rb1
ΔL/ΔL

; Trp53
-/-

 mice 

compared to Trp53
-/-

 controls.  Building on previously published data from our lab, I 

establish an interaction between pRB and the Condensin II complex which requires the 

LXCXE binding cleft of pRB.  When this interaction is compromised, cells exhibit 

chromosome condensation and segregation defects (Coschi et al 2010).  This critical role 

for pRB in chromosome condensation is therefore an essential aspect of pRB-mediated 

tumor suppression. 

Data reported in Chapter 3 dissect the mechanism by which pRB interacts with 

the Condensin II complex and facilitates genome stability. I report a novel complex 

comprised of pRB, E2F1 and Condensin II which localizes to centromeres and prevents 

the accumulation of DNA damage following S-phase.  This mechanism was found to be 

dependent upon the gene dosage of Rb1.  Using cells from retinoblastoma patients 

(RB1
+/-

), and copy number data from RB1
+/+

, RB1
+/-

 and RB1
-/-

 cancer cell lines reported 

in the COSMIC database, I demonstrate that hemizygosity of RB1 creates a 

haploinsufficiency that likely functionally contributes to tumorigenesis in humans. 
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Chapter 2  

2 Mitotic chromosome condensation mediated by the 
retinoblastoma protein is tumor suppressive 

2.1 Abstract 

Condensation and segregation of mitotic chromosomes is a critical process for 

cellular propagation and in mammals, mitotic errors can contribute to the pathogenesis of 

cancer.  In this report we demonstrate that the retinoblastoma protein (pRB), a well-

known regulator of progression through the G1 phase of the cell cycle, plays a critical 

role in mitotic chromosome condensation that is independent of G1 to S-phase regulation.  

Using gene targeted mutant mice, we studied this aspect of pRB function in isolation and 

demonstrate that it is an essential part of pRB-mediated tumor suppression.  Cancer prone 

Trp53
-/-

 mice succumb to more aggressive forms of cancer when pRB’s ability to 

condense chromosomes is compromised.  Furthermore, we demonstrate that defective 

mitotic chromosome structure caused by mutant pRB accelerates loss-of-heterozygosity, 

leading to earlier tumor formation in Trp53
+/-

 mice.  These data reveal a new mechanism 

of tumor suppression, facilitated by pRB, in which genome stability is maintained by 

proper condensation of mitotic chromosomes. 

 

2.2 Introduction 

The compaction of the mammalian genome into mitotic chromosomes, and their 

faithful segregation to recipient daughter cells in mitosis, is a critical event for eukaryotic 

cells.  This stage of the cell division cycle carries considerable risk as there is no 

opportunity to reverse the effects of missegregated or damaged chromosomes in daughter 

cells.  For these reasons, understanding mitosis is of vital importance because changes in 

genome integrity can lead to cancer. 

The processes of chromosome condensation and segregation are intimately linked, 

as insufficient condensation of chromosome arms can prevent their proper separation in 

anaphase (Belmont 2006).  Of chief importance in facilitating proper chromosome 
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structure is the mitotic chromosome scaffold, upon which mitotic chromosomes are 

condensed.  These scaffolds are composed largely of topoisomerase 2 and Condensins 

(Maeshima and Laemmli 2003).  While the enzymatic activity of topoisomerases 

suggests a mechanism by which they participate in chromosome compaction, the precise 

role of Condensins has been less clear.  There are two types of condensin complexes (I 

and II) that are structurally very similar.  Each is comprised of an SMC2 and SMC4 

subunit that interact to form the coiled-coil arms of their ring like structures (Losada and 

Hirano 2005).  In addition, each condensin complex also contains distinct subunits, CAP-

H, -D2, and -G in Condensin I and CAP-H2, -D3, and -G2 in Condensin II (Losada and 

Hirano 2005).  Surprisingly, depletion of individual components of these complexes by 

RNA interference does not prevent outright chromosome condensation (Ono et al 2003; 

Hirota et al 2004). Instead each complex appears to offer a unique contribution to the 

architecture of mitotic chromosomes.  This may be in part due to differences in the timing 

of their loading onto chromosomes, with Condensin II being present on chromatin in 

interphase, and Condensin I being loaded only after nuclear envelope breakdown (Ono  et 

al 2003; Hirota et al 2004).  Additionally, differences in subunit composition imply that 

they may have different functional or regulatory properties (Losada and Hirano 2005).  

Importantly, defects and delays in chromatid condensation are manifested as lagging 

chromosomes during anaphase that impede mitotic progression resulting in aneuploidy 

(Hirota et al 2004; Ono et al 2004; Samoshkin et al 2009).  However, there is limited 

evidence connecting condensin proteins and chromosome condensation to cancer (Ham et 

al 2007; Lapointe et al 2008). 

 In addition to condensation defects leading to segregation errors, faithful 

chromosome segregation can also be affected by mitotic spindle abnormalities.  This 

includes the mitotic spindle checkpoint, which serves to detect unattached kinetochores at 

metaphase (Nasmyth 2005, Musacchio and Salmon 2007).  Signals that emanate from a 

complex containing MAD2 and BUBR1 at unattached kinetochores prevent the E3-

ubiquitin ligase complex APC/C from triggering the degradation of cyclin B1 and 

securin.  Once this checkpoint is satisfied, mitotic cyclin dependent kinase activity drops 

and a securin associated protease called separase is free to cleave cohesins, allowing 

sister chromatid separation (Nasmyth 2005, Musacchio and Salmon 2007).  Experimental 
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models in which spindle assembly checkpoint components are misexpressed show errors 

in chromosome segregation (Pei and Melmed 1997, Hernando et al 2004, Vader and Lens 

2008).  Thus, defects in either chromosome condensation, or spindle assembly 

checkpoints, can lead to segregation errors, aneuploidy, and potentially contribute to 

cancer pathogenesis.  A number of examples of spindle assembly checkpoint defects 

contributing to cancer incidence in genetically modified mice have been reported 

(reviewed in Schvartzman et al 2010).  Conversely, even though defects in chromosome 

condensation cause similar mitotic errors, there are no reports using gene-targeted mouse 

models to confirm a role for Condensins as tumor suppressors. 

 The retinoblastoma tumor suppressor protein (pRB) is best known for its role in 

regulating the G1 to S-phase transition early in the cell cycle (reviewed in Burkhart and 

Sage 2008).  Its ability to negatively regulate transcription of DNA replication machinery 

through E2F transcription factors creates a mechanism by which it can inhibit cell cycle 

entry.  More recently, pRB has been shown to influence both chromosome condensation 

and mitotic checkpoint function (Longworth and Dyson 2010, Schvartzman et al 2010).  

Components of the spindle assembly checkpoint, such as MAD2, are regulated by E2F 

transcription factors (Ren et al 2002, Hernando et al 2004).  For this reason loss of E2F 

regulation by pRB, which is almost ubiquitous in cancer, leads to genome instability 

(Mayhew et al 2007, Schvartzman et al 2010).  Conversely, the ability of pRB to 

influence mitotic chromosome condensation has emerged as an E2F independent function 

and loss of pRB function can influence chromosome loss irrespective of proliferation 

(Zheng et al 2002, Gonzalo et al 2005, Isaac et al 2006, Longworth et al 2008).  To date, 

evidence for pRB’s involvement in chromosome condensation has been largely genetic.  

Mouse fibroblasts deficient for all pRB family proteins, or a knock in mutation that 

partially inactivates pRB, have abnormal centromeric heterochromatin, leading to 

chromosome fusions and aneuploidy (Gonzalo et al 2005, Isaac et al 2006).  Further 

analyses that combine the use of Drosophila genetics and mammalian cell culture suggest 

that pRB can interact with the Condensin II subunit CAP-D3, and that this interaction is 

necessary for chromosome compaction in mitosis (Longworth et al 2008).  While studies 

of spindle checkpoint components such as MAD2 have offered explanations for why their 

deregulation in cancer can be traced back to pRB function, the importance for pRB’s role 
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in chromosome condensation is less well understood, and has not yet been connected to a 

cancer phenotype (Schvartzman et al 2010).      

 In this report, we investigate the mechanism used by pRB to facilitate mitotic 

chromosome condensation.  We rely on a viable, gene targeted mouse strain in which 

pRB is mutated to block LXCXE dependent interactions, such as those with viral 

oncoproteins and chromatin remodeling enzymes like histone deacetylases (Isaac et al 

2006).  Cells from these mice have limited proliferative control defects, except for the 

responsiveness to TGF-β and senescence inducing stimuli (Francis et al 2009, Talluri et 

al 2010).  We demonstrate that pRB interacts with the Condensin II complex to establish 

proper chromosome structure.  Our experiments reveal that condensation defects caused 

by a deficiency in pRB-LXCXE interactions occur before metaphase, and are unrelated to 

the ability to regulate G1 to S-phase progression.  We used Rb1
ΔL/ΔL

; Trp53
-/-

 mice, as 

well as Trp53
-/-

 controls, both of which are uniformly defective in their response to G1 

arrest stimuli such as DNA damage and oncogene induced senescence, to study pRB’s 

role in chromosome condensation in isolation.   Rb1
ΔL/ΔL

; Trp53
-/-

 mice succumb to much 

more aggressive forms of cancer than p53 deficient controls, and their tumors are 

characterized by elevated levels of chromosome instability.  Furthermore, we 

demonstrate that defective chromosome condensation caused by mutant pRB can 

accelerate loss of heterozygosity and cancer onset in Trp53
+/-

 mice.  This study reveals 

that participation in mitotic chromosome condensation is an integral aspect of pRB’s 

function as a tumor suppressor protein.  

 

2.3 Methods 

2.3.1 Cell culture, viral infections and microscopy 

Primary mouse embryonic fibroblasts (MEFs) were prepared and cultured 

according to standard methods as reported previously (Hurford et al 1997).  Embryonic 

stem cells (ESCs) were prepared by intercrossing Rb1
ΔL/+ 

mice and harvesting day 3.5 

blastocysts for culture.  The inner cell mass was dissociated and colonies were picked and 

expanded for genotyping as described (Hogan et al 1994).  Mitotic chromosome spreads 
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were prepared from MEFs by treating cells with 50 ng/mL of colcemid for three hours 

before harvesting, swelling, and fixing.  ESC chromosome spreads were generated 

similarly after treating cultures with 10 µg/mL of colchicine for three hours.  

Chromosome spreads were stained with a major satellite pericentromeric probe as before 

(Isaac et al 2006).  Staining of rDNA repeats and the probes used were as described 

(Grummt et al 1979; Romanova et al 2006).  Fluorescent microscopic images were 

captured on a Zeiss axioskop 40 microscope using a Spotflex camera and EyeImage 

software.   

 To introduce H2B-GFP into MEFs, we created a pBABE retroviral vector that 

expresses H2B-GFP by cloning the gene from pBOS-H2B-GFP.  Short hairpin retroviral 

vectors targeting CAP-D3 were purchased from Open Biosystems and were cloned into 

the pLMP plasmid along with the H2B-GFP gene.  Viral vectors were packaged into 

ecotropic retroviruses using Bosc23 cells and subsequently used to infect MEFs as 

described (Pear et al 1993).  

 Live cell microscopy was carried out by plating early passage, H2B-GFP 

transduced MEFs onto glass-bottom tissue culture dishes (MatTek) containing phenol-

free DMEM and 5% FBS supplemented with penicillin, streptomycin, and glutamine.  

During imaging, cells were maintained at 37C with 5% CO2 using a stage mounted 

environment chamber (Neue Biosciences) and were monitored with an automated 

inverted microscope (DMI 6000b, Leica).  Phase contrast and fluorescent images were 

collected every 3 minutes over a 15 hour timecourse using Openlab Software automation 

(Ritchie et al 2008).  Measurements of metaphase plate dimensions were made using 

Volocity software. 

 Stained tissue sections were examined microscopically on a Zeiss axioskop 40 

microscope and photographed using a Spotflex camera and EyeImage software.           

2.3.2 Antibodies and protein detection 

 The following antibodies were used to detect or precipitate proteins in this study.  

Rabbit anti-histone H2B (07-371, Upstate), goat anti-GFP (G095, Clontech), rabbit anti-
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CAP-H (a kind gift of Kyoko Yokomori, UC-Irvine) (Heale et al 2006), rabbit anti-CAP-

H2 (a generous gift of Tatsuya Hirano, Riken, Japan)(Ono et al 2003), rabbit anti-SMC1 

(A300-055A, Bethyl Laboratories), anti-pRB (G3-245, BD-Pharmingen), anti-BubR1: C-

20 (sc-16195, Santa Cruz), anti-PCNA: PC10 (sc-56, Santa Cruz), anti-MCM7: 141.2 

(sc-9966, Santa Cruz), anti-E2F3: C-18 (sc-878, Santa Cruz), and anti-E2F3 clone PG37 

(05-551, Upstate).  Antibodies to CAP-D3 were raised against a GST fusion protein 

containing amino acids 1243-1506 of CAP-D3.  CAP-D2 antibodies were raised against a 

GST fusion containing amino acids 943-1132.  Rabbits were immunized in a commercial 

facility (PTG Labs, Chicago). Antibodies were affinity purified by adsorbing to a His-

tagged version of the same protein coupled to a Sulfolink column (Pierce), eluted in low 

pH, and neutralized. 

 Cell extracts for western blotting were prepared by freeze-thaw lysis as described 

previously (Hurford et al 1997).  Chromatin fractions were prepared by low salt wash of 

nuclei followed by nuclease treatment to solubilize chromatin bound proteins (Mendez 

and Stillman 2000).  MEFs were synchronized using a two-step method of confluence 

arrest and aphidicolin, followed by wash out and collection of cells when the mitotic 

index is greatest (Isaac et al 2006).  Nuclease prepared chromatin fractions were used for 

immunoprecipitation experiments where they were pre-cleared with mouse IgG and 

protein-G magnetic beads before precipitation using anti-pRB antibodies.  Proteins in all 

experiments were resolved by SDS-PAGE followed by western blotting using standard 

techniques. 

2.3.3 Mice 

The Rb1
ΔL

 mutant strain carries three amino acid substitutions in its Rb1 encoded 

protein (I746A, N750A, and M754A) that disrupt interactions with LXCXE motif 

containing proteins, but not E2F transcription factors (Dick et al 2000; Isaac et al 2006); 

details of its construct and initial characterization have been previously published (Isaac 

et al 2006; Francis et al 2009; Talluri et al 2010).  The Trp53
-/-

 mice were purchased 

from Jackson Labs and were intercrossed with Rb1
ΔL

 mutants to produce the required 

genotypes for this study.  All animals were maintained in a mixed 129/B6 background.  

Mice were housed and maintained according to the guidelines of the Canadian Council 
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on Animal Care.  Animals were followed throughout their lives for signs of tumor burden 

and were euthanized when tumors became visible, or the animal experienced sudden 

weight loss or became lethargic.  All animals were subjected to a thorough necropsy and 

abnormal tissues, organs, or tumors were fixed in formalin and processed for histological 

assessment.  Portions of tumors were also snap frozen and used to prepare genomic DNA.  

Tissues were embedded, sectioned, and stained with hematoxylin and eosin according to 

standard methods and photographed as described above.  See Appendix H for synopsis of 

histopathology for all animals used in this study.     

2.3.4 Thymic development 

To investigate thymic development and proliferation we isolated thymi from six 

to eight week old animals.  Tissue was either fixed and frozen for cryosectioning, or 

dissociated and stained for flow cytometry.  Fluorescently labeled antibodies against CD4 

(553650) and CD8 (553032) were purchased from BD Pharmingen.  CD4/CD8 flow 

cytometry was carried out essentially as described (Bruins et al 2004).  To detect 

proliferation, mice were injected with 200 µL of 16 mg/mL BrdU in DMEM one hour 

before euthanasia.  BrdU labeled thymi were fixed, sectioned, and stained with anti-BrdU 

antibodies (347580, BD Biosciences) and photographed under fluorescent optics as 

described above.    

2.3.5 PCR, Southern blotting and aCGH 

High molecular weight DNA was extracted from frozen tumor samples using 

standard DNA isolation procedures and used in the following analyses.  DNA from 

thymic lymphomas was analyzed for T-cell receptor V(D)J recombination patterns using 

nested PCR.  In brief, the Dβ12 and Jβ12 region was characterized using primer pairs and 

PCR conditions as described by Whitehurst (Whitehurst et al 1999).  Loss of 

heterozygosity of Trp53 in tumors from Trp53
+/-

 mice was determined by Southern 

blotting.  Genomic DNA was digested with EcoRI and StuI and resolved, transferred, and 

hybridized using standard methods.  The probe was a genomic DNA clone encompassing 

intron seven to intron nine.  Band intensities were measured on a Molecular Dynamics 
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Storm scanner phosphorimager and densitometry analysis was performed using 

AlphaEase FC software. 

 For array CGH experiments, DNA was extracted from livers of five male and 

female wild type animals to create pools of control DNA.  Same sex control vs. control, 

control male vs. control female, and tumor DNA vs. the appropriate sex control 

hybridizations were performed by NimbleGen on a mouse whole genome array (design 

2006-07-26-MM8-WG-CGH).  Segmentation analysis described by Olshen was 

performed and was used to infer changes in copy number (Olshen et al 2004).  A segment 

was defined as a group of adjacent data points whose log2 ratio values were not 

statistically different.  To determine cut-off values, indicating normal copy number, the 

mean log2 ratio for all data points of individual chromosomes from the control 

hybridization was determined.  A range of +/- one standard deviation from this mean was 

determined to encompass the log2 ratio from 99.8% of all segments from the control 

hybridization, suggesting that it was a reliable range that captures the vast majority of 

normal copy number chromosomal segments.  This range was calculated for each 

individual chromosome from the control hybridization.  Segments from individual 

chromosomes from each tumor hybridization were then compared to the appropriate 

range for their chromosome to determine if they were of a normal copy number.  This 

allowed us to assess, on a chromosome-by-chromosome basis, the copy number status of 

each segment.  Using this approach, we interpreted whole chromosome gains or losses 

based on the chromosomal locations of each constituent segment, and their associated 

copy number status (See Appendices I and J).   

 

2.4 Results 

2.4.1 Aberrant chromosome condensation and segregation in 
Rb1ΔL/ΔL mutant cells 

 A number of recent reports have indicated that cells deficient for pRB family 

proteins have chromosomal abnormalities, and we have demonstrated centromere fusions 

and lagging anaphase chromosomes in cells from Rb1
ΔL/ΔL 

mice (Gonzalo et al 2005, 
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Longworth et al 2008, Isaac et al 2006).  One interpretation of altered chromosome 

numbers in these cells is that they are a consequence of deregulated E2F transcriptional 

control in G1 leading to inappropriate proliferation.  In this way, alterations in 

transcriptional control or commitment to enter S-phase early in the cell cycle, are 

manifested in subsequent mitotic errors.  To investigate this possibility with Rb1
ΔL/ΔL 

mutant cells, we compared chromosomal abnormalities found in homozygous mouse 

embryonic fibroblasts (MEFs) with embryonic stem cells (ESCs).  Since MEFs have a 

pronounced G1 phase regulated by pRB, and ESCs lack the ability to arrest in G1, we 

reasoned that chromosomal abnormalities found in both are unlikely to be a consequence 

of unregulated cell cycle advancement (Herrera et al 1996, Harrington et al 1998, 

Aladjem et al 1998).  Figure 2.1A shows representative chromosome spreads from each 

cell type for both wild type and Rb1
ΔL/ΔL 

mutants.  Chromosomes were stained with DAPI 

and a major satellite DNA probe to visualize contacts between centromeres from different 

chromosomes.  In both cell types, a statistically significant increase in centromere 

interactions was detected in the mutant Rb1
ΔL/ΔL 

genotype, suggesting an increase in 

chromosome fusions (Fig. 2.1A, inlays; 2-test, P<0.05 for each comparison in Fig. 2.1B 

left, middle).  Interestingly, there was also an increase in the number of centromeres 

interacting in Rb1
ΔL/ΔL 

ESCs compared to wild type (2-test, P<0.05; Fig. 2.1A inlay, Fig. 

2.1B right).  In addition to its contribution to centromere structure, pRB is also known to 

silence transcription at nearby rDNA repeats (Cavanaugh et al 1995, Hannan et al 2000, 

Ciarmatori et al 2001).  Therefore, we also investigated their involvement in these 

fusions as they are found on the p-arms of mouse chromosomes 12, 15, 16, 17, 18, and 

19, and are therefore in close proximity to the centromere (Appendix C-A).  These 

chromosomes are not over-represented in Rb1
ΔL/ΔL 

fusion events, further suggesting that 

loss of transcriptional regulation early in the cell cycle does not contribute to this 

phenotype (Appendix C-B, C).  These data support a specific role for pRB in regulating 

chromatin structure at the centromeric repeat sequences of mitotic chromosomes that is 

independent of pRB’s ability to regulate the G1 to S-phase transition in these cells. 

In order to better understand the origin of defective chromosomal compaction in 

Rb1
ΔL/ΔL 

mutant cells and its effect on mitosis, we established a video microscopy assay 
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Figure 2.1: Rb1
L/L 

cells display centromere fusions.   

(A)  Metaphase chromosome spreads were prepared from mouse embryonic fibroblasts 

(MEFs) or embryonic stem cells (ESCs) of the indicated genotypes.  Chromosomes were 

stained with DAPI (blue) and a probe for major satellite repeats (green) to mark 

centromeres.  Red arrows indicate contact between centromeres from different 

chromosomes, yellow arrows indicate centromere contact involving three or more 

chromosomes.  Inlays highlight expanded views of select chromosomes.  The scale bars 

are 25 µm.  (B)  The frequency of centromere interactions per mitosis is plotted for each 

genotype (Rb1
ΔL/ΔL 

and Rb1
+/+

) and cell type (MEF and ESC).  In addition, the number of 

centromeres involved in each interaction was determined for ESC metaphase spreads and 

is displayed as the frequency of multiple chromosome interactions (right-most graph).   

A 

B 
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to observe cell division in MEFs.  Early passage MEFs were transduced with an H2B-

GFP expressing retrovirus.  This led to equivalent expression of the H2B-GFP fusion in 

both genotypes.  Importantly, expression of this fusion protein was very low and did not 

lead to a detectable increase in total H2B levels in these cells (Appendix D-A).  H2B-

GFP expressing cells were monitored microscopically under phase contrast and 

fluorescent optics to visualize chromosome condensation, metaphase alignment, 

anaphase, and cytokinesis.  Images from three representative movies are shown in Figure 

2.2.  Typically, mutant cells took longer to progress from the onset of chromosome 

condensation to the point at which the metaphase plate is most tightly aligned (Table 2.1).  

Furthermore, the metaphase plate in mutant mitoses was less compact than wild type 

(Table 2.1).  To determine whether these phenotypes are associated with defects later in 

mitosis, we observed sister chromatid separation in anaphase, and found that lagging 

chromosomes occurred more frequently in mutant cells (Table 2.1).  Lagging 

chromosomes resulted in a prolonged anaphase that was often resolved abruptly, 

suggesting either chromosomal breaks or missegregation of whole chromosomes (Fig. 

2.2, middle).  Alternatively, some cells failed to complete mitosis and became 

binucleated (Fig. 2.2, bottom).  In summary, mitosis in Rb1
ΔL/ΔL 

cells is characterized by 

delayed chromosome condensation, an abnormal metaphase plate, and lagging 

chromosomes that lead to aneuploidy. 

 The preceding experiments are consistent with previous reports of defects in 

condensation and/or cohesion of mitotic chromosomes (Ono et al 2004).  For these 

reasons we investigated the levels of the Condensin and Cohesin protein complexes that 

were present on chromatin in Rb1
ΔL/ΔL 

cells.  Protein extracts were prepared from cell 

cultures that were synchronized in S-phase, released and harvested at their maximal 

mitotic index (M-phase enriched), or that were asynchronous.  SDS-PAGE and western 

blotting were used to analyze the chromatin fractions from these lysates using histone 

proteins as a marker for this fraction (Fig. 2.3A, Appendix D-B).  Since Cohesins and 

Condensins are multiprotein complexes, we chose representative subunits to measure 

their presence on chromatin.  The SMC1 subunit was used as a surrogate for the levels of 

the Cohesin complex; CAP-H and CAP-D2 were used similarly for Condensin I, and 
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Figure 2.2: Rb1
ΔL/ΔL

 cells display aberrant chromosome condensation and 

segregation. 

Video microscopy was performed on MEFs expressing an H2B-GFP reporter by 

capturing phase contrast and GFP images every three minutes over a 15 hour time course.  

The images shown begin with the onset of chromatin condensation in prophase as the left 

most panel.  The last image of the metaphase plate before the onset of anaphase is 

indicated along with the elapsed time since the onset of prophase (in minutes).  The right 

most image shows resolved daughter (or binucleated) cells.  Scale bars are 50 µm.  
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Table 2.1: Summary of mitotic phenotypes observed in video microscopy 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

a
For all statistical tests, Rb1

ΔL/ΔL
 is compared with wild type, and all shRNAs directed 

against CAP-D3 were compared with shLuc. 
b
Includes mitoses where the metaphase plate never visually divided, chromatin 

decondensed and cells became tetraploid. 
c
Five equally spaced cross-sections for each metaphase plate were measured from the last 

image before the initiation of anaphase. 
d
A difference from controls that is above 95% confidence interval (χ

2
 test, P < 0.05). 

e
Above 95% confidence interval (t-test, P < 0.05). 

Genotype
a
 N-value 

Lagging 

Chromosomes
b
 

N-value 

Average time from onset 

of condensation to onset 

of anaphase (min) 

Average metaphase 

plate width (µm)
c
 

Rb1
+/+

 57 14 43 27.95 4.99 

Rb1
ΔL/ΔL

 37 19
d
 27 33.89

e
 6.22

e
 

Rb1
+/+

 shLuc 38 11 37 33.92 4.77 

Rb1
+/+

 sh63 41 34
d
 43 107.07

e
 5.04 

Rb1
+/+

 sh64 10 8
d
 11 186.5

e
 7.96

e
 

Rb1
+/+

 sh66 27 18
d
 27 121.4

e
 7.03

e
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Figure 2.3: Defective loading of Condensin II complexes on Rb1
ΔL/ΔL

 chromosomes. 

(A)  Chromatin fractions were prepared from MEFs that were either proliferating 

asynchronously or enriched for M-phase cells.  Protein content in these fractions was 

analyzed by SDS-PAGE followed by coomassie staining for histone proteins, or western 

blotting for the indicated components of the Cohesin and Condensin complexes.  (B)  

Extracts were prepared from MEFs of the indicated genotypes.  Chromatin fractions from 

these cells were then subject to immunoprecipitation with anti-pRB antibodies.  The 

relative amount of CAP-D3 precipitated with wild type and mutant pRB, was detected by 

western blotting.  Input levels of relevant proteins from chromatin fractions are shown 

and the CAP-D3 blot is overexposed to demonstrate that Condensin II complexes are 

present in the Rb1 mutant input. 

B 

A 
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CAP-H2 and CAP-D3 were used to detect Condensin II.  This analysis revealed reduced 

levels of Condensin II on chromatin derived from Rb1
ΔL/ΔL 

cells while the overall levels 

of Condensin I and Cohesin were unchanged.  To ensure that the reduction in Condensin 

II loading on chromatin is not due to overall reduction of the protein, we probed for 

levels in whole cell extracts and determined that Condensin II protein is expressed at wild 

type levels in Rb1
ΔL/ΔL 

fibroblasts (Appendix D-C). 

 Depletion of the Condensin II subunit CAP-D3 by RNAi delays progression from 

the onset of condensation to anaphase and results in lagging chromosomes in pRB 

deficient HeLa cells (Hirota et al 2004).  Furthermore, a recent report indicates that GST-

RB can bind to Condensin II complexes using its LXCXE binding cleft region 

(Longworth et al 2008).  For this reason we investigated the role of CAP-D3 in more 

detail using video microscopy so that the mitotic defects in Rb1
ΔL/ΔL 

fibroblasts could be 

directly compared with CAP-D3 deficiency in primary cells.  To this end, we generated 

retroviruses expressing short hairpin RNAs against CAP-D3, along with an H2B-GFP 

reporter, and used them to infect wild type MEFs.  Figure 2.4A demonstrates the degree 

of knock down obtained from each shRNA construct.  We used the partial knock down of 

sh63, and the more extensive depletion of the others, to investigate the impact of different 

levels of CAP-D3 expression on mitosis in MEFs.  Video microscopy revealed that 

partial knock down using sh63 resulted in a delay in reaching anaphase that was longer 

than in Rb1
ΔL/ΔL 

cells, it also caused lagging chromosomes, but little widening of the 

metaphase plate (Fig. 2.4B middle, Table 2.1).   Extensive depletion of CAP-D3, shown 

by sh64 (and sh66) caused a proportionately longer delay from chromosome 

condensation to anaphase than in sh63, but a similar frequency of lagging chromosomes 

(Fig. 2.4B bottom, Table 2.1).  Interestingly, these depleted cells had a wider metaphase 

plate akin to Rb1
ΔL/ΔL 

fibroblasts (Table 2.1).  We interpret this to mean that the earliest 

defect in mitosis in Rb1
ΔL/ΔL 

MEFs is similar to the delayed condensation that results from 

CAP-D3 depletion, but is less pronounced.  Since RNAi depletion of CAP-D3 has been 

shown to reduce sister chromosome cohesion, this is a likely explanation for the broader 

metaphase plate in both Rb1
ΔL/ΔL 

and CAP-D3 depleted MEFs (Hirota et al 2004).  Lastly, 

CAP-D3 depleted, and Rb1
ΔL/ΔL 

mutant cells, both exhibit lagging chromosomes in 

anaphase as a result of these chromosomal abnormalities.  To ensure that the similarity of 
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Figure 2.4: Mitotic phenotypes of CAP-D3 knock down MEFs mimic condensation 

and segregation defects in Rb1
ΔL/ΔL

 MEFs. 

(A)  Wild type MEFs were transduced with retroviruses expressing the indicated shRNAs 

and H2B-GFP.  Cell extracts were analyzed by western blotting for CAP-D3 and Actin.  

UT indicates untransduced cells.  (B)  Video microscopy was performed on cells 

expressing either a control luciferase shRNA, or shRNAs directed against CAP-D3 (sh63 

and sh64).  Phase contrast and GFP images were taken every three minutes for 15 hours.  

Representative pictures include the onset of prophase in the left most panel, and the last 

view of the metaphase plate before anaphase along with the time elapsed from prophase.  

The last frame on the right shows the cells either after cytokinesis (shLuc), or failure to 

resolve as two daughter cells resulting in binucleation (sh63), or as persistent anaphase 

bridges (sh64).  The scale bars are 50 µm.   

A 

B 
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phenotype between Rb1
ΔL/ΔL 

cells and CAP-D3 depleted cells is not a coincidence, we 

investigated the physical interaction between pRB and the Condensin II complex.  

Immunoprecipitation of pRB followed by western blotting for CAP-D3 reveals that pRB 

interacts with the Condensin II complex in the chromatin fraction of wild type, but not 

Rb1
ΔL/ΔL 

MEFs (Fig. 2.3B).  Western blots reveal the input levels of each of the relevant 

proteins and that CAP-D3 is present in this fraction.  Furthermore, control 

immunoprecipitations were performed to detect pRB-E2F3 interactions to confirm the 

specificity of this interaction defect (Appendix D-D).  

 Therefore, these experiments reveal a role for pRB outside of the regulation of 

E2F target genes in the G1 phase of the cell cycle.  We demonstrate that endogenous pRB 

interacts with Condensin II to compact mitotic chromosomes.  Furthermore, a deficiency 

in this process causes a specific defect in condensation during prophase that manifests as 

lagging anaphase chromosomes in a primary cell culture system. 

2.4.2 The Rb1ΔL mutation exacerbates tumorigenesis in Trp53-/- 
mice 

Since chromosome instability is commonly thought to contribute to tumorigenesis 

by facilitating the acquisition of malignant characteristics, we sought to investigate how 

the Rb1
ΔL 

mutation impacts cancer pathogenesis.  Since we have shown that the Rb1
ΔL

 

mutation compromises G1 cell cycle arrest in response to negative growth signals from 

DNA damage and oncogene induced senescence, we chose to cross Rb1
ΔL/ΔL

 mice into a 

Trp53
-/-

 background as Trp53
-/-

 mice are known to be defective for the G1 arrest response 

from DNA breaks and senescence (Talluri et al 2010, Lowe et al 1993, Serrano et al 

1997, Braig et al 2005, Post et al 2010).  Consequently, comparing Rb1
ΔL/ΔL

; Trp53
-/-

 

mice with Trp53
-/-

 controls eliminates G1 to S-phase regulation in response to these 

stimuli in both cohorts of mice, and allows pRB’s role in mitosis to be studied in relative 

isolation.  Interestingly, Rb1
ΔL/ΔL

; Trp53
-/-

 mice succumb to cancer in a significantly 

shorter time than Trp53
-/-

 controls (log rank test, P=0.0067; Fig. 2.5A).  Trp53
-/-

 mice 

have been reported to develop mainly thymic lymphomas with rare metastases and our 

data is no exception (Table 2.2).  However, in addition to earlier tumor onset in Rb1
ΔL/ΔL

; 

Trp53
-/-

 mice, we also see a trend towards more aggressive tumors, increased numbers of  
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Figure 2.5: More aggressive tumors in Rb1
ΔL/ΔL

; Trp53
-/-

 mice. 

(A)  Kaplan-Meier survival proportions are shown for Rb1
ΔL/ΔL

; Trp53
-/-

 (n=45) and 

Trp53
-/-

 (n=35) mice.  (B-I)  Representative images of cancers found in Trp53
-/-

 control 

and Rb1
ΔL/ΔL

; Trp53
-/-

 compound mutants.  (B)  This necropsy reveals lymphoma with 

multiple affected lymph nodes as indicated by arrows.  (C)  H&E staining of a tissue 

section from one of the affected lymph nodes from B.  (D)  Mouse with thymic 

lymphoma and a sarcoma near its left forelimb, both are indicated by arrows.  (E)  

Histological analysis of the sarcoma in D reveals extensive infiltration of this tumor by 

cells from the neighboring lymphoma.  (F)  Necropsy demonstrates an enlarged liver in 

this Rb1
ΔL/ΔL

; Trp53
-/-

 mutant mouse.  (G)  Histology of the liver in F reveals extensive 

infiltration by lymphocytes indicative of metastasis.  (H)  Necropsy of a Trp53
-/-

 control 

mouse shows an enlarged thymus that is typical of these mice.  (I)  This micrograph 

shows H&E staining of a thymic lymphoma from a Trp53
-/-

 mouse.  Scale bars in B, D, F 

and H are 1 cm, and scale bars in C, E, G and I are 100 µm. 

A 

B D H 

C E G I 

F 
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Table 2.2: Summary of pathology from mice used in this study. 

 

 

 

 

 

 

 

Genotype Lymphoma
a
 Sarcoma Carcinoma 

Multiple 

types
b
 

Metastases N-value 

Trp53
-/-

 33 3 0 1 7 35 

Rb1
∆L/∆L

;Trp53
-/-

 31 27 3 15
c
 18

d
 45 

Trp53
+/-

 17 16 1 9 12 25 

Rb1
∆L/∆L

;Trp53
+/-

 18 18 1 13 13 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a
Includes thymic lymphoma and other lymphomas. 

b
An individual mouse had more than one tumor in the categories on the left. 

c
A difference from controls that is above 95% confidence interval (χ

2
 test, P = 0.0019). 

d
Above 90% confidence interval (χ

2
 test, P = 0.094). 
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animals with multiple tumors, and more frequent metastases in Rb1
ΔL/ΔL

; Trp53
-/-

 

compound mutant mice (Table 2.2).  Examples of this aggressive cancer phenotype are 

shown in Figure 2.5.  Figure 2.5B shows a mouse with lymphoma affecting at least five 

major lymph nodes in the thoracic and cervical regions.  Panel C shows an H&E stained 

tissue section from one of these lymph nodes, revealing densely packed cells in 

immediate contact with the underlying epidermis, with no resemblance of normal lymph 

node structure.  The mouse pictured in Panel D had both thymic lymphoma and a 

sarcoma associated with its left forelimb.  The accompanying histology in Figure 2.5E 

shows that the sarcoma is being invaded by lymphocytes from the nearby thymic 

lymphoma.  Figure 2.5F shows striking distension of the liver in a mouse that is caused 

by metastasis.  Histology of this liver in Figure 2.5G shows islands of hepatocytes amid 

abundant invading lymphocytes.  Lastly, the image in Figure 2.5H shows a typical, 

enlarged thymus from a Trp53
-/-

 control.  Histology of these lymphomas was typically 

characterized by larger cells, suggesting that Trp53
-/-

 lymphomas are of a lower grade 

than those in C, E, and G (Fig. 2.5H).  From this analysis it is clear that Rb1
ΔL/ΔL

; Trp53
-/-

 

mice succumb to cancer more rapidly than Trp53
-/-

 controls, and that the characteristics 

of disease in compound mutant animals indicates that these cancers are more aggressive 

than those found in Trp53
-/-

 mice.  

 In order to make direct comparisons between Rb1
ΔL/ΔL

; Trp53
-/-

 and Trp53
-/-

 

derived tumors, we decided to focus on thymic lymphomas.  These tumors have been 

extensively studied in Trp53
-/-

 animals and have been shown to be near diploid with rare 

chromosomal translocations (Liao et al 1998, Artandi et al 2000, Braig et al 2005).  In 

this way, they offered an ideal starting point for investigating the effects caused by the 

Rb1
ΔL

 mutation on chromosome instability.  To ensure that the comparison between these 

tumors was appropriate, we sought to investigate whether the Rb1
ΔL

 mutation affects 

thymic development in a way that could bias this analysis.  First, defects caused by the 

Rb1
ΔL

 mutation alone are not sufficient to cause cancer in this, or any other organ in these 

mice (Appendix E).  Secondly, gross histological analysis of thymi from Rb1
ΔL/ΔL

 and 

Rb1
ΔL/ΔL

; Trp53
-/-

 animals did not reveal any obvious abnormalities (Appendix F-A).  

Furthermore, analysis of CD4 and CD8 positive cells revealed no alterations in T-cell 

development, and rates of proliferation were unaltered by the Rb1
ΔL

 mutation (Appendix 
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F-B, C).  Finally, E2F target gene expression was not deregulated in thymi from these 

mice (Appendix F-D).  From these experiments we conclude that differences in Rb1
ΔL/ΔL

; 

Trp53
-/-

 and Trp53
-/-

 thymic lymphomas are unlikely to be explained by differences in 

either development, or the basal proliferation rate of cells in this organ.  

 Examining the survival proportions of the animals that succumbed to thymic 

lymphoma alone revealed that the Rb1
ΔL/ΔL

; Trp53
-/-

 mice have a shorter latency before 

tumor formation compared with Trp53
-/-

 controls (log rank test, P=0.0198; Fig. 2.6A). 

One possibility to explain the difference in aggressiveness of these tumors is that 

compound mutant lymphomas may arise from many initiating thymocytes resulting in a 

polyclonal tumor, whereas the Trp53
-/-

 controls may be mono or oligoclonal.  To address 

this question we used a PCR assay to detect individual T-cell receptor recombination 

events to estimate the number of individual thymocytes that have become transformed 

and populate each lymphoma (Fig. 2.6B, C).  This revealed that tumors of both genotypes 

were rarely monoclonal, and both showed a similar range of clonality, suggesting that 

clonality does not bias our comparison between the thymic lymphomas found in animals 

of these two genotypes.   

 To investigate the effects of the Rb1
ΔL

 mutation on chromosome instability, we 

used array comparative genomic hybridization (aCGH) to compare the genomes of 

thymic lymphoma cells from Rb1
ΔL/ΔL

; Trp53
-/-

 and Trp53
-/-

 mice.  Figure 2.7A shows 

representative Log2 ratio plots from male versus female control hybridizations as well as 

from selected Rb1
ΔL/ΔL

; Trp53
-/-

 and Trp53
-/-

 tumors hybridized against same sex control 

DNA.  Using male versus male, and male versus female control hybridizations as a guide 

for normal copy number and whole chromosome gains, we inferred changes in 

chromosome copy number present in these tumors.  Since these lymphomas are 

polyclonal, the gain or loss of a single chromosome in one clone can be a relatively 

modest change when the whole thymus is analyzed as one.  For this reason we searched 

for chromosomes that were statistically different than control, and did not try to 

distinguish if these represent single or multiple chromosome gains.  Satisfyingly, the 

average number of gains and losses in our Trp53
-/-

 lymphoma controls (4.2) was similar 

to the frequency of chromosome number changes reported by karyotyping in other 



79 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Non-bias selection of thymic lymphomas for subsequent analysis. 

(A)  Kaplan-Meier survival proportions are shown for Rb1
ΔL/ΔL

; Trp53
-/-

 (n=18) and 

Trp53
-/-

 (n=32) mice that succumbed to thymic lymphoma.  (B)  Schematic diagram of 

the T-cell receptor β (TCRβ) locus that was PCR amplified to assess clonality of thymic 

lymphomas.  Primer pairs 1 and 4, and 2 and 3 were used in a nested strategy to amplify 

rearranged forms of this gene found in tumor samples as described in materials and 

methods.  (C)  Agarose gel electrophoresis of TCRβ PCR, including a water only negative 

control, and three normal thymus samples as positive controls.  Four digit numbers 

correspond to ear tag numbers for individual mice and are present to allow correlations 

with pathology data in Appendix H.  The asterisks indicate samples that were used for 

aCGH analysis.   

A 

C 

B 



80 

 

 

 

 

 

 

 

 

Figure 2.7: Increased genomic instability in Rb1
ΔL/ΔL

; Trp53
-/-

 thymic lymphomas. 

(A)  Control, or tumor DNA versus control, was used for hybridization to whole genome 

arrays to determine regions of gain or loss in thymic lymphoma samples.  Representative 

graphs depicting Log2 ratio values plotted against chromosome number are shown.  Data 

points from individual chromosomes are shown in different colors.  (B)  Whole 

chromosome gains and losses were inferred by differences in an entire chromosome and 

compared with controls.  The number of whole chromosome changes for each tumor is 

plotted against their genotypes.  The control male versus control male hybridization is 

shown in blue, the male versus female hybridizations are shown in yellow, and Trp53
-/-

 

and Rb1
ΔL/ΔL

; Trp53
-/-

 samples are denoted by red and green respectively.  The analysis of 

all chromosomes, or autosomes alone, are shown.  The mean number of changes was 

compared between genotypes using a t-test. 

A B 
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studies of Trp53 deficient lymphomas in which these cancers typically have chromosome 

counts in the low forties (Liao et al 1998, Artandi et al 2000, Braig et al 2005).  Our 

analysis revealed that whole chromosome gains or losses were more prevalent in 

Rb1
ΔL/ΔL

; Trp53
-/-

 lymphomas than in Trp53
-/-

 controls (Fig. 2.7B).  Because not all 

tumors originate from mice of the same sex, and this creates unequal opportunities to 

gain and lose sex chromosomes, we have displayed this data in graphs for all 

chromosomes and for autosomes.  This suggests that whole chromosome instability may 

be the underlying mechanism that increases cancer susceptibility in Rb1
ΔL/ΔL

; Trp53
-/-

 

animals compared with Trp53
-/-

 mice, an interpretation that is consistent with centromere 

fusions observed in metaphase spreads and lagging chromosomes in anaphase that were 

observed in our videos (Fig. 2.1A, Fig. 2.2).  We note that the quantity of copy number 

segments (local regions of gain or loss relative to adjacent chromosomal sequences) are 

also elevated in most Rb1
ΔL/ΔL

; Trp53
-/-

 thymic lymphomas (Appendix G).  This implies 

that smaller genomic rearrangements also take place and this is consistent with resolution 

of lagging chromosomes in Figure 2.2 (middle) occurring by chromosomal breakage.  

Therefore, both forms of chromosomal instability may be caused by the Rb1
ΔL

 mutation 

and contribute to the increase in cancer susceptibility that we observe. 

 Our analysis of the Rb1
ΔL

 allele’s effects on cancer reveal that it causes a dramatic 

increase in susceptibility, and Rb1
ΔL/ΔL

; Trp53
-/-

 mice are characterized by more 

aggressive tumors than the Trp53
-/-

 controls.  Furthermore, characterization of genomic 

abnormalities found in Rb1
ΔL/ΔL

 tumors demonstrates that they are consistent with the 

chromosomal and mitotic abnormalities in primary cultures that we observed in Figure 

2.2 by video microscopy.  These data strongly suggest that pRB facilitates mitotic 

chromosome condensation as part of its function as a tumor suppressor. 

2.4.3 Accelerated loss of heterozygosity in Rb1ΔL/ΔL mice 

Thus far, our work suggests that failure to condense and properly segregate 

mitotic chromosomes because of defective pRB-LXCXE interactions leads to 

chromosome instability and exacerbates cancer pathogenesis.  In order to test this more 

directly, we generated cohorts of Rb1
ΔL/ΔL

; Trp53
+/-

 and Trp53
+/-

 control animals.  It is 

known that Trp53
+/-

 mice develop a broad spectrum of tumors, including thymic 
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lymphomas, after a considerably longer latency period than Trp53
-/-

 mice (Jacks et al 

1994, Purdie et al 1994, Donehower et al 1995).  Loss of heterozygosity, that eliminates 

the remaining wild type allele, is reported with high frequency in tumors from Trp53
+/-

 

mice strongly suggesting that it is the rate limiting step for tumor formation since it can 

cause the same types of cancer found in Trp53
-/-

 animals (Jacks et al 1994).  For this 

reason use of Trp53
+/-

 mice has emerged as an assay for genome instability effects on 

cancer (Kuperwasser et al 2000, Smith et al 2006, Baker et al 2009).  We followed these 

animals over approximately two years and discovered that the Rb1
ΔL/ΔL

; Trp53
+/-

 

compound mutants succumbed to cancer at a significantly younger age than Trp53
+/-

 

controls (log rank test, P=0.0105; Fig. 2.8A).  Consistent with previous reports we found 

that these animals were susceptible to a broad range of cancer types in both Rb1
ΔL/ΔL

; 

Trp53
+/-

 and control genotypes (Table 2.2).  In this cross, the best evidence for increased 

aggressiveness in the compound mutants was the earlier age of cancer incidence.  The 

histopathology of these tumors was similar, reinforcing the validity of comparing these 

two cohorts for their mechanism of tumor initiation (Appendix H).  To search for loss of 

heterozygosity, DNA was extracted from tumors and subjected to Southern blot analysis 

to measure the relative abundance of wild type and null alleles of Trp53.  This revealed 

that the wild type allele was reduced in abundance in tumor samples derived from all 

animals (Fig. 2.8B); the existence of residual wild type Trp53 is consistent with the 

presence of Trp53
+/-

 stroma in these tumor samples.  Since these data reveal loss of the 

wild type Trp53 locus in all of the tumors we analyzed, and Rb1
ΔL/ΔL

; Trp53
+/-

 mice 

develop cancer earlier, this suggests that the rate-limiting step for tumor formation, 

namely loss of heterozygosity, has taken place more rapidly and was facilitated by the 

Rb1
ΔL

 mutation in these mice (Fig. 2.8C).    

This analysis of loss of heterozygosity in tumors from Rb1
ΔL/ΔL

; Trp53
+/-

 mice 

offers evidence that cells bearing the Rb1
ΔL

 mutation are more prone to chromosomal 

instability.  Based on this experiment, and the analysis of Rb1
ΔL/ΔL

; Trp53
-/-

 lymphomas, 

our study reveals that chromosome condensation mediated by pRB is likely an important 

component of its role as a tumor suppressor. 
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Figure 2.8: Accelerated loss of heterozygosity in Rb1
L/L

; Trp53
+/-

 mice.   

(A)  Kaplan-Meier survival proportions are shown for Rb1
ΔL/ΔL

; Trp53
+/-

 (n= 24) and 

Trp53
+/-

 (n=25) mice that succumbed to detectable cancers.  (B)  Southern blot analysis 

of tumors from Rb1
ΔL/ΔL

; Trp53
+/-

 and Trp53
+/-

 mice was performed to assess the relative 

abundance of wild type and null Trp53 alleles.  Four digit numbers correspond to ear tags 

for individual mice to allow correlation with pathology data in Appendix G.  The ratio of 

mutant to wild type allele abundance was determined by phosphorimaging and is 

displayed below each lane.  (C)  Model of the Rb1
ΔL

 mutation’s role in cancer 

susceptibility of these mice.  Prior reports establish that Trp53
+/-

 mice succumb to cancer 

after a long latency and that it is accompanied by loss of heterozygosity at the Trp53 

locus.  The age at which cancer initiates in Rb1
ΔL/ΔL

; Trp53
+/-

 mice and the loss of the 

wild type Trp53 locus in these tumors suggests that chromosome instability, caused by 

the Rb1
ΔL

 mutation, induces loss of heterozygosity more rapidly, causing an earlier onset 

of cancer. 

A C 

B 
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2.5 Discussion 

 This report investigates the role of the retinoblastoma protein in mitotic 

chromosome condensation.  Our data indicate that this is a mechanism by which pRB 

acts as a tumor suppressor.  The novelty of this tumor suppressive mechanism relies 

extensively on the ability to separate the mitotic specific functions of pRB from cell cycle 

entry control in our cancer prone mice.  The analysis of thymic lymphomas in Rb1
ΔL/ΔL

; 

Trp53
-/-

 mice allows us to distinguish between the effects of the Rb1
ΔL

 mutation at these 

different points in the cell cycle.  First, the response to DNA damage, or other stress 

inducing stimuli that activate p53, leads to increased p21/CIP1 expression, this in turn 

inhibits cyclin dependent kinases, and leads to pRB activation during G1 and cell cycle 

arrest (Campisi and d'Adda di Fagagna 2007).  Since we have previously demonstrated 

that Rb1
ΔL/ΔL 

cells are defective for a G1 arrest in response to γ-irradiation or oncogene 

induced senescence (Talluri et al 2010), including p53 deficiency in both cohorts of our 

tumor study prevents these Rb1
ΔL

 defects from confounding our interpretations.  In 

addition to these defects, we have also determined that Rb1
ΔL/ΔL 

cells are resistant to the 

growth inhibitory effects of transforming growth factor β (TGF-β) (Francis et al 2009).  

This growth inhibitory cytokine has been shown to play a key role in peripheral T-cell 

regulation.  In particular, transgenic mice expressing a dominant negative TGF-β type II 

receptor in CD8 positive T-cells are prone to develop lymphoproliferative disease, and 

ultimately lymphoma (Lucas et al 2000, Lucas et al 2004).  Interestingly, the phenotype 

of these animals is very different from Rb1
ΔL/ΔL

; Trp53
-/-

 mice, with extensive expansion 

of T cells in the periphery, but not the thymus.  In fact, these studies suggest that TGF-β 

signaling may have very little function in the thymus.  Since, Rb1
ΔL/ΔL 

mice do not display 

any lymphoproliferative characteristics in their lifetime (Appendix F), it is unlikely that 

defective TGF-β growth control can explain the cancer phenotype of Rb1
ΔL/ΔL

; Trp53
-/-

 

mice.  There is no evidence of aberrant proliferation, or alterations in thymic 

development or morphology in Rb1
ΔL/ΔL

; Trp53
-/-

 mice.  Furthermore, E2F target genes 

are regulated normally in this tissue.  Because there is evidence of elevated chromosomal 

instability in these thymic lymphomas, our conclusion that pRB can function as a tumor 

suppressor by facilitating chromosome condensation is the most appropriate 

interpretation of these data. 
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 The physical interaction between pRB and Condensin II offers a logical 

explanation for how pRB can participate in mitotic chromosome condensation.  The 

phenotypes seen in video microscopy experiments of Rb1
ΔL/ΔL

 cells suggest an acute 

defect in condensation during prophase.  However, the extensive reduction in Condensin 

II levels on chromatin in asynchronously proliferating Rb1
ΔL/ΔL

 MEFs suggests that pRB 

participates in chromatin loading earlier in the cell cycle, as these cultures contain only a 

small proportion of mitotic cells.  In addition, Condensin II is known to be present on 

chromatin in interphase nuclei (Hirota et al 2004).  These observations suggest that 

pRB’s role in chromosome condensation may take place earlier in the cell cycle, perhaps 

in G1 where it is relatively unphosphorylated and already thought to regulate chromatin 

structure.  Immunoprecipitation and western blotting experiments demonstrate that wild 

type pRB interacts with Condensin II in chromatin fractions, but this interaction was 

absent from Rb1
ΔL/ΔL

 chromatin.  Because Condensin II is underrepresented in this 

fraction in the first place, the lack of interaction may not reflect a need for the pRB-

LXCXE binding cleft to mediate physical contact with Condensin II, but may indicate 

that this aspect of pRB is more important for Condensin II to be loaded on chromatin.  It 

will be important in future studies to determine precisely how pRB uses LXCXE type 

interactions to exert its regulatory role over Condensin II function.  At this point we have 

no evidence to indicate that it must be direct.  In similar studies from the Dyson and te 

Riele labs, pRB is shown to also participate in chromosome cohesion at the centromere.  

In their studies, Cohesin complexes are reduced at centromeres.  We cannot rule out that 

a similar biochemical defect may be present in Rb1
ΔL/ΔL

 cells.  However, Condensin 

complexes are also well known to be concentrated at centromeric heterochromatin (Ono 

et al 2004, Oliveira et al 2005, Vagnarelli et al 2006).   Taken together, this suggests that 

future studies to understand pRB’s role in mitosis will need to focus more closely on its 

ability to regulate chromatin at centromeric regions as this is likely where it acts to ensure 

proper chromosome architecture and segregation in mitosis.     

 This study reveals a novel mechanism of tumor suppression by pRB.  While other 

reports have indicated that defective pRB is associated with chromosomal abnormalities 

(Hernando et al 2004, Gonzalo et al 2005, Iovino et al 2006, Isaac et al 2006, Longworth 

et al 2008, Amato et al 2009), our work demonstrates that this manifests in more rapid 
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tumor formation.  This raises the question, how important is this aspect of tumor 

suppression by pRB relative to its well characterized role in regulating E2F transcription 

factors and entry into S-phase?  The lack of spontaneous tumors in our Rb1
ΔL/ΔL

 mice 

may suggest that it is less important.  We favor a more cautious view of this question.  

The inability to arrest proliferation in G1 because of a pRB deficiency is also 

accompanied by deregulation of activator E2Fs, and this creates an intrinsic pro-growth 

signal.  This is inherently a stronger oncogenic event than diminished chromosome 

condensation because it combines the loss of negative growth regulation with the gain of 

a growth promoting signal.  Defective chromosome condensation on the other hand, 

creates the opportunity for genetic change that can contribute to cancer pathogenesis, but 

it does not provide an inappropriate growth promoting signal.  For these reasons, 

experiments designed to equalize the loss of safeguards with gain of proliferative 

advantages will be necessary to appropriately compare these aspects of tumor 

suppression by pRB.  Only through this type of investigation will it be possible to fully 

comprehend what makes the retinoblastoma gene such a critical factor in cell cycle 

regulation and cancer.  

 

2.6 References 

Aladjem, M.I., Spike, B.T., Rodewald, L.W., Hope, T.J., Klemm, M., Jaenisch, R., and 

Wahl, G.M. 1998. ES cells do not activate p53-dependent stress responses and undergo 

p53-independent apoptosis in response to DNA damage. Curr Biol 8: 145-155. 

Amato, A., Lentini, L., Schillaci, T., Iovino, F., and Di Leonardo, A. 2009. RNAi 

mediated acute depletion of retinoblastoma protein (pRB) promotes aneuploidy in human 

primary cells via micronuclei formation. BMC Cell Biol 10: 79. 

Artandi, S.E., Chang, S., Lee, S.L., Alson, S., Gottlieb, G.J., Chin, L., and DePinho, R.A. 

2000. Telomere dysfunction promotes non-reciprocal translocations and epithelial 

cancers in mice. Nature 406: 641-645. 

Baker, D.J., Jin, F., Jeganathan, K.B., and van Deursen, J.M. 2009. Whole chromosome 

instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor 

gene loss of heterozygosity. Cancer Cell 16: 475-486. 

Belmont, A.S. 2006. Mitotic chromosome structure and condensation. Curr Opin Cell 

Biol 18: 632-638. 



87 

 

Braig, M., Lee, S., Loddenkemper, C., Rudolph, C., Peters, A.H., Schlegelberger, B., 

Stein, H., Dorken, B., Jenuwein, T., and Schmitt, C.A. 2005. Oncogene-induced 

senescence as an initial barrier in lymphoma development. Nature 436: 660-665. 

Bruins, W., Zwart, E., Attardi, L.D., Iwakuma, T., Hoogervorst, E.M., Beems, R.B., 

Miranda, B., van Oostrom, C.T., van den Berg, J., van den Aardweg, G.J., Lozano, G., 

van Steeg, H., Jacks, T., and de Vries, A. 2004. Increased sensitivity to UV radiation in 

mice with a p53 point mutation at Ser389. Mol Cell Biol 24: 8884-8894. 

Burkhart, D.L. and Sage, J. 2008. Cellular mechanisms of tumour suppression by the 

retinoblastoma gene. Nat Rev Cancer 8: 671-682. 

Campisi, J. and d'Adda di Fagagna, F. 2007. Cellular senescence: when bad things 

happen to good cells. Nat Rev Mol Cell Biol 8: 729-740. 

Cavanaugh, A.H., Hempel, W.M., Taylor, L.J., Rogalsky, V., Todorov, G., and 

Rothblum, L.I.e. 1995. Activity of RNA polymerase I transcription factor UBF blocked 

by Rb gene product [see comments]. Nature 374: 177-180. 

Ciarmatori, S., Scott, P.H., Sutcliffe, J.E., McLees, A., Alzuherri, H.M., Dannenberg, 

J.H., te Riele, H., Grummt, I., Voit, R., and White, R.J. 2001. Overlapping functions of 

the pRB family in the regulation of rRNA synthesis. Mol Cell Biol 21: 5806-5814. 

Dick, F.A., Sailhamer, E., and Dyson, N.J. 2000. Mutagenesis of the pRB pocket domain 

reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. 

Mol Cell Biol 20: 3715-3727. 

Donehower, L.A., Harvey, M., Vogel, H., McArthur, M.J., Montgomery, C.A.J., Park, 

S.H., Thompson, T., Ford, R.J., and Bradley, A. 1995. Effects of genetic background on 

tumorigenesis in p53-deficient mice. Mol Carcinog 14: 16-22. 

Francis, S.M., Bergsied, J., Isaac, C.E., Coschi, C.H., Martens, A.L., Hojilla, C.V., 

Chakrabarti, S., Dimattia, G.E., Khoka, R., Wang, J.Y., and Dick, F.A. 2009. A 

functional connection between pRB and transforming growth factor beta in growth 

inhibition and mammary gland development. Mol Cell Biol 29: 4455-4466. 

Gonzalo, S., Garcia-Cao, M., Fraga, M.F., Schotta, G., Peters, A.H., Cotter, S.E., Eguia, 

R., Dean, D.C., Esteller, M., Jenuwein, T., and Blasco, M.A. 2005. Role of the RB1 

family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7: 

420-428. 

Grummt, I., Soellner, C., and Scholz, I. 1979. Characterization of a cloned ribosomal 

fragment from mouse which contains the 18S coding region and adjacent spacer 

sequences. Nucleic Acids Res 6: 1351-1369. 

Ham, M.F., Takakuwa, T., Rahadiani, N., Tresnasari, K., Nakajima, H., and Aozasa, K. 

2007. Condensin mutations and abnormal chromosomal structures in pyothorax-

associated lymphoma. Cancer Sci 98: 1041-1047. 



88 

 

Hannan, K.M., Hannan, R.D., Smith, S.D., Jefferson, L.S., Lun, M., and Rothblum, L.I. 

2000. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction 

between UBF and SL-1. Oncogene 19: 4988-4999. 

Harrington, E.A., Bruce, J.L., Harlow, E., and Dyson, N. 1998. pRB plays an essential 

role in cell cycle arrest induced by DNA damage. Proc Natl Acad Sci U S A 95: 11945-

11950. 

Heale, J.T., Ball, A.R., Jr., Schmiesing, J.A., Kim, J.S., Kong, X., Zhou, S., Hudson, 

D.F., Earnshaw, W.C., and Yokomori, K. 2006. Condensin I interacts with the PARP-1-

XRCC1 complex and functions in DNA single-strand break repair. Mol Cell 21: 837-848. 

Hernando, E., Nahle, Z., Juan, G., Diaz-Rodriguez, E., Alaminos, M., Hemann, M., 

Michel, L., Mittal, V., Gerald, W., Benezra, R., Lowe, S.W., and Cordon-Cardo, C. 2004. 

Rb inactivation promotes genomic instability by uncoupling cell cycle progression from 

mitotic control. Nature 430: 797-802. 

Herrera, R.E., Sah, V.P., Williams, B.O., Makela, T.P., Weinberg, R.A., and Jacks, T. 

1996. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in 

Rb-deficient fibroblasts. Mol Cell Biol 16: 2402-2407. 

Hirota, T., Gerlich, D., Koch, B., Ellenberg, J., and Peters, J.M. 2004. Distinct functions 

of condensin I and II in mitotic chromosome assembly. J Cell Sci 117: 6435-6445. 

Hogan, B., Beddington, R., Costantini, F., and Lacy, E. 1994. Manipulating The Mouse 

Embryo:a laboratory manual. Cold Spring Harbor Press, Plainview. 

Hurford, R., Cobrinik, D., Lee, M.-H., and Dyson, N. 1997. pRB and p107/p130 are 

required for the regulated expression of different sets of E2F responsive genes. Genes 

Dev 11: 1447-1463. 

Iovino, F., Lentini, L., Amato, A., and Di Leonardo, A. 2006. RB acute loss induces 

centrosome amplification and aneuploidy in murine primary fibroblasts. Mol Cancer 5: 

38. 

Isaac, C.E., Francis, S.M., Martens, A.L., Julian, L.M., Seifried, L.A., Erdmann, N., 

Binne, U.K., Harrington, L., Sicinski, P., Berube, N.G., Dyson, N.J., and Dick, F.A. 

2006. The retinoblastoma protein regulates pericentric heterochromatin. Mol Cell Biol 26: 

3659-3671. 

Jacks, T., Remington, L., Williams, B.O., Schmitt, E.M., Halachmi, S., Bronson, R.T., 

and Weinberg, R.A. 1994. Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1-

7. 

Kuperwasser, C., Hurlbut, G.D., Kittrell, F.S., Dickinson, E.S., Laucirica, R., Medina, D., 

Naber, S.P., and Jerry, D.J. 2000. Development of spontaneous mammary tumors in 

BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157: 

2151-2159. 



89 

 

Lapointe, J., Malhotra, S., Higgins, J.P., Bair, E., Thompson, M., Salari, K., Giacomini, 

C.P., Ferrari, M., Montgomery, K., Tibshirani, R., van de Rijn, M., Brooks, J.D., and 

Pollack, J.R. 2008. hCAP-D3 expression marks a prostate cancer subtype with favorable 

clinical behavior and androgen signaling signature. Am J Surg Pathol 32: 205-209. 

Liao, M.J., Zhang, X.X., Hill, R., Gao, J., Qumsiyeh, M.B., Nichols, W., and Van Dyke, 

T. 1998. No requirement for V(D)J recombination in p53-deficient thymic lymphoma. 

Mol Cell Biol 18: 3495-3501. 

Longworth, M.S. and Dyson, N.J. 2010. pRB, a local chromatin organizer with global 

possibilities. Chromosoma 119: 1-11. 

Longworth, M.S., Herr, A., Ji, J.Y., and Dyson, N.J. 2008. RBF1 promotes chromatin 

condensation through a conserved interaction with the Condensin II protein dCAP-D3. 

Genes Dev 22: 1011-1024. 

Losada, A. and Hirano, T. 2005. Dynamic molecular linkers of the genome: the first 

decade of SMC proteins. Genes Dev 19: 1269-1287. 

Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A., and Jacks, T. 1993. p53 is 

required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847-849. 

Lucas, P.J., Kim, S.J., Melby, S.J., and Gress, R.E. 2000. Disruption of T cell 

homeostasis in mice expressing a T cell-specific dominant negative transforming growth 

factor beta II receptor. J Exp Med 191: 1187-1196. 

Lucas, P.J., McNeil, N., Hilgenfeld, E., Choudhury, B., Kim, S.J., Eckhaus, M.A., Ried, 

T., and Gress, R.E. 2004. Transforming growth factor-beta pathway serves as a primary 

tumor suppressor in CD8+ T cell tumorigenesis. Cancer Res 64: 6524-6529. 

Maeshima, K. and Laemmli, U.K. 2003. A two-step scaffolding model for mitotic 

chromosome assembly. Dev Cell 4: 467-480. 

Mayhew, C.N., Carter, S.L., Fox, S.R., Sexton, C.R., Reed, C.A., Srinivasan, S.V., Liu, 

X., Wikenheiser-Brokamp, K., Boivin, G.P., Lee, J.S., Aronow, B.J., Thorgeirsson, S.S., 

and Knudsen, E.S. 2007. RB loss abrogates cell cycle control and genome integrity to 

promote liver tumorigenesis. Gastroenterology 133: 976-984. 

Mendez, J. and Stillman, B. 2000. Chromatin association of human origin recognition 

complex, cdc6, and minichromosome maintenance proteins during the cell cycle: 

assembly of prereplication complexes in late mitosis. Mol Cell Biol 20: 8602-8612. 

Musacchio, A. and Salmon, E.D. 2007. The spindle-assembly checkpoint in space and 

time. Nat Rev Mol Cell Biol 8: 379-393. 

Nasmyth, K. 2005. How do so few control so many? Cell 120: 739-746. 



90 

 

Oliveira, R.A., Coelho, P.A., and Sunkel, C.E. 2005. The condensin I subunit 

Barren/CAP-H is essential for the structural integrity of centromeric heterochromatin 

during mitosis. Mol Cell Biol 25: 8971-8984. 

Olshen, A.B., Venkatraman, E.S., Lucito, R., and Wigler, M. 2004. Circular binary 

segmentation for the analysis of array-based DNA copy number data. Biostatistics 5: 

557-572. 

Ono, T., Fang, Y., Spector, D.L., and Hirano, T. 2004. Spatial and temporal regulation of 

Condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15: 

3296-3308. 

Ono, T., Losada, A., Hirano, M., Myers, M.P., Neuwald, A.F., and Hirano, T. 2003. 

Differential contributions of condensin I and condensin II to mitotic chromosome 

architecture in vertebrate cells. Cell 115: 109-121. 

Pear, W.S., Nolan, G.P., Scott, M.L., and Baltimore, D. 1993. Production of high-titre 

helper-free retroviuses by transient transfection. Proc Natl Acad Sci 90: 8392-8396. 

Pei, L. and Melmed, S. 1997. Isolation and characterization of a pituitary tumor-

transforming gene (PTTG). Mol Endocrinol 11: 433-441. 

Post, S.M., Quintas-Cardama, A., Terzian, T., Smith, C., Eischen, C.M., and Lozano, G. 

2010. p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. 

Oncogene 29: 1260-1269. 

Purdie, C.A., Harrison, D.J., Peter, A., Dobbie, L., White, S., Howie, S.E., Salter, D.M., 

Bird, C.C., Wyllie, A.H., Hooper, M.L., and Clarke, A.R. 1994. Tumour incidence, 

spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9: 603-609. 

Ren, B., Cam, H., Takahashi, Y., Volkert, T., Terragni, J., Young, R.A., and Dynlacht, 

B.D. 2002. E2F integrates cell cycle progression with DNA repair, replication, and 

G(2)/M checkpoints. Genes Dev. 16: 245-256. 

Ritchie, K., Seah, C., Moulin, J., Isaac, C., Dick, F., and Berube, N.G. 2008. Loss of 

ATRX leads to chromosome cohesion and congression defects. J Cell Biol 180: 315-324. 

Romanova, L., Korobova, F., Noniashvilli, E., Dyban, A., and Zatsepina, O. 2006. High 

resolution mapping of ribosomal DNA in early mouse embryos by fluorescence in situ 

hybridization. Biol Reprod 74: 807-815. 

Samoshkin, A., Arnaoutov, A., Jansen, L.E., Ouspenski, I., Dye, L., Karpova, T., 

McNally, J., Dasso, M., Cleveland, D.W., and Strunnikov, A. 2009. Human condensin 

function is essential for centromeric chromatin assembly and proper sister kinetochore 

orientation. PLoS One 4: e6831. 

Schvartzman, J.M., Sotillo, R., and Benezra, R. 2010. Mitotic chromosomal instability 

and cancer: mouse modelling of the human disease. Nat Rev Cancer 10: 102-115. 



91 

 

Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. 1997. Oncogenic 

ras provokes premature senescence associated with accumulation of p53 and p16. Cell 

88: 593-602. 

Smith, A.P., Henze, M., Lee, J.A., Osborn, K.G., Keck, J.M., Tedesco, D., Bortner, D.M., 

Rosenberg, M.P., and Reed, S.I. 2006. Deregulated cyclin E promotes p53 loss of 

heterozygosity and tumorigenesis in the mouse mammary gland. Oncogene 25: 7245-

7259. 

Talluri, S., Isaac, C.E., Ahmad, M., Henley, S.A., Francis, S.M., Martens, A.L., Bremner, 

R., and Dick, F.A. 2010. A G1 checkpoint mediated by the retinoblastoma protein that is 

dispensable in terminal differentiation but essential for senescence. Mol Cell Biol 30: 

948-960. 

Vader, G. and Lens, S.M. 2008. The Aurora kinase family in cell division and cancer. 

Biochim Biophys Acta 1786: 60-72. 

Vagnarelli, P., Hudson, D.F., Ribeiro, S.A., Trinkle-Mulcahy, L., Spence, J.M., Lai, F., 

Farr, C.J., Lamond, A.I., and Earnshaw, W.C. 2006. Condensin and Repo-Man-PP1 co-

operate in the regulation of chromosome architecture during mitosis. Nat Cell Biol 8: 

1133-1142. 

Whitehurst, C.E., Chattopadhyay, S., and Chen, J. 1999. Control of V(D)J 

recombinational accessibility of the D beta 1 gene segment at the TCR beta locus by a 

germline promoter. Immunity 10: 313-322. 

Zheng, L., Flesken-Nikitin, A., Chen, P.L., and Lee, W.H. 2002. Deficiency of 

Retinoblastoma gene in mouse embryonic stem cells leads to genetic instability. Cancer 

Res 62: 2498-2502. 



92 

 

Chapter 3  

3 Haploinsufficiency of a pRB-E2F1-Condensin II 
complex causes genome instability and contributes to 
mesenchymal cancers 

3.1 Abstract 

Genomic instability is a characteristic of malignant cells, however, evidence for 

its role as an active contributor to tumorigenesis has been enigmatic.  In this study we 

demonstrate that a complex containing the retinoblastoma protein, E2F1, and condensin 

II localizes to pericentromeric repeat regions.  In its absence, DNA double strand breaks 

ensue and persist through mitosis and into the next G1 phase.  Surprisingly, loss of even 

one copy of the retinoblastoma gene (RB1) was sufficient to cause DNA breaks and 

reduce recruitment of Condensin II to pericentromeric repeats.  We further investigated 

DNA damage and mitotic errors in hemizygous RB1 mutant fibroblasts from 

retinoblastoma patients, these cells also exhibited DNA breaks and lagging chromosomes 

in anaphase.  We subsequently determined that RB1 mutation status correlated with copy 

number variation, chromosomal gains and losses, as well as rearrangements, in cancers of 

mesenchymal origin.  Importantly, the magnitude of these changes was indistinguishable 

between RB1
+/-

 and RB1
-/-

 tumors, demonstrating the haploinsufficiency of RB1 

hemizygosity.  Lastly, using gene-targeted mice we determine that mutation of just one 

copy of the murine Rb1 gene causes sarcomas that are accompanied by chromosomal 

abnormalities comparable to homozygous Rb1 mutants. In sum, our study identifies a 

chromatin regulating complex whose abundance directly impacts genome stability and 

cancer pathogenesis. 

 

3.2 Introduction 

Fidelity of DNA replication and cell division are critical processes in multicellular 

organisms.  Errors that go unrepaired can be passed on to daughter cells and contribute to 

the genetic changes that are essential for cancer (Lukas et al 2011).  A general principal 
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of cell cycle regulation is that damaged DNA signals the cell cycle to arrest, and repair is 

undertaken before advancement into mitosis.  Recent evidence suggests that there may be 

exceptions to this principle, as DNA breaks observed before mitosis have been shown to 

be transmitted through M-phase and result in residual damage in the ensuing G1 phase of 

daughter cells (Torres-Rosell et al 2007, Lukas et al 2011).  These DNA lesions are often 

associated with replication stress that occurs in fragile or repetitive regions of the genome 

(Lukas et al 2011, Aguilera and Gomez-Gonzalez 2008).  The ability of these damaged 

sites to evade checkpoints suggests their impact on genomic instability and cancer may 

be significant. 

 Replication fork stalling in fragile or repetitive sequences can lead to a state 

known as under replication (Dulev et al 2009).  Under replication can create short gaps in 

sequence, or unresolved replication intermediates that persist beyond S-phase (Dulev et 

al 2009).  Much of the evidence for under replication has been demonstrated using 

repetitive elements in yeast such as the rDNA locus, a genomic region that is known to 

require condensin complex function for replication and accurate segregation in mitosis 

(Dulev et al 2009, Johzuka et al 2006, Johzuka and Horiuchi 2007, Clemente-Blanco et 

al 2009, Ide et al 2010).  Mammals contain two condensin complexes, but only 

Condensin II is constitutively nuclear, suggesting it can play roles in both replication and 

condensation during the cell cycle (Losada and Hirano 2005, Hirota et al 2004).  In 

addition to its canonical role in facilitating mitotic chromosome condensation, 

chromosome shape, and controlling recombination, Condensin II has been implicated in 

both DNA replication and DNA damage repair (Wood et al 2008, Wang et al 2005).  In 

particular, Condensin II functions in the resolution of sister chromatids immediately 

following replication in S-phase (Ono et al 2013).  Despite these roles for Condensin II in 

S-phase and mitosis, we still know little about the fundamentals of how it is recruited to 

specific genomic locations, such as repetitive sequences, to carry out these functions. 

The retinoblastoma protein (pRB) is generally thought of as a regulator of the G1 

to S-phase transition through its control of E2F transcription factors (Dyson 1998).  

However, loss of pRB function leads to many of the same phenotypes as defects in 

Condensin II (Coschi et al 2010, Longworth et al 2008, Manning et al 2010).  pRB is 
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implicated in an S-phase checkpoint to repair DNA breaks and it facilitates chromosome 

condensation in mitosis (Knudsen et al 2000, Sever-Chroneos et al 2001, Wells et al 

2003, Avni et al 2003, Coschi et al 2010, Longworth et al 2008).  On a molecular level it 

has been demonstrated to interact with E2F1 in S-phase on chromatin, and a number of 

reports have implicated such a complex in regulating the initiation of DNA replication 

(Knudsen et al 2000, Wells et al 2003, Avni et al 2003).  Phenotypically, pRB deficient 

cells have been demonstrated to have increased levels of spontaneous DNA breaks and to 

undergo chromosome missegregation in mitosis (Pickering and Kowalik 2006, Hernando 

et al 2004, Mayhew et al 2007, Knudsen et al 2000).  In particular, pRB loss alters the 

structure and function of the pericentromeric and centromeric regions of mitotic 

chromosomes, a location known to be enriched in Condensin II complexes (Isaac et al 

2006, Coschi et al 2010, Stear and Roth 2002, Ono et al 2004, Shintomi et al 2011, 

Savvidou et al 2005, Samoshkin et al 2009).  An obvious connection between pRB and 

Condensin II deficient phenotypes is their physical interaction, however there are a 

plethora of competing models for how loss of pRB can cause these genomic 

abnormalities.  Altered regulation of E2F transcription has been implicated in shifts in 

intermediary metabolism, missexpression of spindle assembly checkpoint genes, as well 

as imbalances in nucleotide pools (Nicolay et al 2013, Reynolds et al 2013, Hernando et 

al 2004, Margottin-Goguet et al 2003, Nisculescu et al 1998, Srinivasan et al 2007).  

Thus, a clear mechanism of pRB function in genome stability has yet to emerge, in part 

because these altered phenotypes are not necessarily mutually exclusive, and complete 

loss of pRB function may cause each of them simultaneously.  

Coordination of DNA replication is a complex process and many factors can alter 

replisome progression leading to replication stress.  This suggests that signals to trigger 

the initiation of replication must be tightly regulated and factors involved in the 

replication process must be available in the appropriate abundance to avoid replication 

stress.  Notably, under replication is reported to be caused by insufficient supplies of 

replication machinery (Dulev et al 2009).  Haploinsufficiency occurs when a single 

functional copy of a gene fails to recapitulate the wild type condition.  Given the 

importance of supplying replication machinery in S-phase, it is surprising that examples 

of haploinsufficiency for these factors are unreported.  The CKI p27
Kip1

 inhibits 
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cyclin/cdks whose overactivation can cause replication stress.  While deficiency for the 

cyclin dependent kinase inhibitor p27
Kip1

 has yet to be reported to cause replication stress, 

it is noteworthy that murine p27
Kip1

 has been demonstrated to exhibit a haploinsufficient 

tumor suppressor phenotype when challenged with DNA damage-inducing γ-irradiation 

or chemical carcinogens.  Importantly, these p27
+/-

 mice develop tumors that retain the 

wild type allele (Fero et al 1998).  It is unclear whether pRB exhibits a truly 

haploinsufficient phenotype.  In humans, the retinoblastoma gene (RB1) is lost in the 

majority of retinoblastomas and small cell lung cancers, and is sporadically eliminated in 

other cancers (Sherr 1996, Knudson 1971, Harbour et al 1988, Hensel et al 1990).  The 

canonical way in which RB1 function is lost occurs via the classic ‘two hit’ model 

proposed by Knudson to explain the incidence of retinoblastoma in children (Knudson 

1971).  Because loss of heterozygosity was the rate-limiting step in retinoblastoma 

genesis, Knudson concluded that heterozygosity of RB1 did not create a 

haploinsufficiency, and therefore did not functionally contribute to tumorigenesis.  This 

premise is largely recapitulated in Rb1
+/-

 mice that develop pituitary tumors characterized 

by loss of heterozygosity (Jacks et al1992).  On the contrary, crosses between Rb1 and 

Trp53 deficient mice revealed that Rb1
+/-

; Trp53
-/-

 mice develop more rapid thymic 

lymphomas than Trp53
-/-

 controls (Williams et al 1994).  In most cases, these tumors 

were not accompanied by LOH to eliminate the remaining Rb1 allele (Williams et al 

1994).  Compound homozygous mutant mice from this cross are inviable thus preventing 

a direct comparison of hemizygosity of Rb1 with homozygous null, which would truly 

determine if this is an example of haploinsufficiency.  Therefore while the majority of 

data investigating the role of the retinoblastoma gene in cancer indicates that only LOH 

completely eliminates its function, this may not be true for all contexts of RB1 loss in 

tumorigenesis. 

In this study we describe a complex composed of pRB, E2F1, and Condensin II 

that localizes to pericentromeric repeats.  Cells that are unable to assemble this complex 

display increased DNA breaks at pericentromeric regions, γH2AX foci that persist 

through mitosis into the ensuing G1, and lagging anaphase chromosomes that are evident 

in mitosis.  Our data are highly suggestive that the genomic instability associated with 

loss of this novel complex result from replication stress.  Importantly, these phenotypes 



96 

 

were recapitulated in Rb1
+/-

 and Rb1
ΔL/+

 fibroblasts, indicating that this genome 

instability phenotype is gene-dosage dependent.  Similarly, we demonstrate that 

fibroblasts from retinoblastoma patients (RB1
+/-

) exhibit mitotic defects and increased 

DNA damage, akin to our mutant fibroblasts from mice.  Using genotype and copy 

number variation data from the catalogue of somatic mutations in cancer (COSMIC) 

database, we demonstrate that RB1
+/-

 lymphoma and sarcoma cancer cell lines exhibit as 

much genomic instability as RB1
-/-

 cell lines (COSMIC database).  Finally, using gene 

targeted mice bearing a single mutant allele that is defective for recruiting Condensin II 

to pericentromeric DNA (Rb1
ΔL

), we demonstrate that Rb1
ΔL/+

; Trp53
-/- 

mice have a 

significantly reduced survival compared to Trp53
-/- 

controls that is indistinguishable from 

Rb1
ΔL/ΔL

; Trp53
-/- 

mice. This provides proof of principle that dosage sensitivity of a pRB-

E2F1-Condensin II complex compromises the maintenance of genome stability and plays 

a causative role in cancer. 

 

3.3 Methods 

3.3.1 Cell culture, viral infections and microscopy 

Primary mouse embryonic fibroblasts (MEFs) were prepared and cultured 

according to standard methods as reported previously for the following genotypes: 

Rb1
+/+

, Rb1
+/-

, Rb1
-/-

, Rb1
ΔL/+

, Rb1
ΔL/ΔL

, E2f1
+/+

, E2f1
-/-

 (Hurford et al 1997).  Mitotic 

chromosome spreads were prepared from MEFs by treating cells with 50 ng/mL of 

colcemid for three hours before harvesting, swelling, and fixing.  Chromosome spreads 

were stained with Vectashield mounting media with DAPI.  Fluorescent microscopic 

images were captured on a Zeiss axioskop 40 microscope using a Spotflex camera and 

EyeImage software.   

 To introduce H2B-GFP into MEFs, we utilized the pBABE-H2BGFP vector 

(Coschi et al 2010).  Viral vectors were packaged into ecotropic retroviruses using 

Bosc23 cells and subsequently used to infect MEFs as described (Pear et al 1993).  
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 Primary patient fibroblasts (GM_01123, GM_01408, GM_06418) were obtained 

from the Coriell Institute for Medical Research and cultured in DMEM supplemented 

with 15% FBS and 1X Glutamine-Penicillin-Streptomycin (Fisher Scientific Cat. # SV 

30082.01).  IMR90 fetal lung fibroblasts from ATCC (Cat. # CCL-186), WI-38 fetal lung 

fibroblasts from ATCC (Cat. # CCL-75) and BJ foreskin fibroblasts from ATCC (Cat. # 

CRL-2522) were cultured in DMEM supplemented with 10% FBS and 1X Glutamine-

Penicillin-Streptomycin (Fisher Scientific Cat. # SV 30082.01). 

 To introduce H2B-GFP into human fibroblasts, we created a FUtdTW lentiviral 

vector that expresses H2BGFP by cloning the gene from the pBOS-H2BGFP.  This 

lentiviral vector, along with the PMD2.G and PAX2 vectors were packaged into 

lentiviruses using Phoenix cells and subsequently used to infect human fibroblasts 

according to Coschi et al and Pear et al, with the necessary precautions for lentiviral work 

(Coschi et al 2010, Pear et al 1993).  

Cancer cell lines, SK-PN-DW (Cat. # CRL-2139), RD (Cat. #CCL-136) and T1-

73 (Cat. # CRL-7943) from ATCC were cultured in DMEM supplemented with 10% 

FBS.  Cancer cell lines MES-SA (Cat. #CRL-1976) and SK-LMS (Cat. # HTB-88) from 

ATCC were cultured in McCoy’s 5A and EMEM media respectively, supplemented with 

10% FBS. 

 Live cell microscopy was carried out as described previously (Coschi et al 2010).   

 Stained tissue sections were examined microscopically on a Zeiss axioskop 40 

microscope and photographed using a Spotflex camera and EyeImage software.           

3.3.2 Antibodies and protein detection 

The following antibodies were used to detect or precipitate proteins in this study: 

mouse anti-pRB (G3-245, BD-Pharmingen), rabbit anti-pRB (sc-7905, Santa Cruz), 

mouse anti-Phospho histone H2A.X Ser139 (05-636, Millipore), rabbit anti-Phospho 

H2A.X Ser139 (07-164 Millipore), mouse anti-digoxigenin (11 333062910, Roche), 

rabbit anti E2F1 (C-20) (sc-193, Santa Cruz), rabbit anti-CAP-D3 (previously described 
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Coschi et al 2010), goat anti-mouse Alexa fluor 488 (A11029, Invitrogen), goat-anti-

rabbit Alexa fluor 594 (A11012, Invitrogen). 

3.3.3 GST pulldowns 

Nuclear extracts from cell lines and GST-pulldowns were obtained as previously 

described (Dick et al 2000).  Eluted protein from each sample was used to immunoblot 

for pRB and the nuclear loading control SP1.  Eluted protein was also run on an SDS-

PAGE gel and stained with Coomassie to detect levels of GST and GST-E7. 

3.3.4 Fluorescence in situ hybridization (FISH) and 
immunofluorescence (IF) 

Asynchronously cycling cells were grown on glass cover slips and processed as 

follows.  For FISH, cells were fixed in 3% formaldehyde in 1X PBS.  Cells were washed 

and permeabilized in 0.5% Triton in 1X PBS, dehydrated in an ethanol series, followed 

by denaturation in 50% formamide in 2X SSC.  Cells were then rinsed in ice cold 2X 

SSC and hybridized over night with denatured probe at 37
o
C in a humidified chamber.  

BAC probes were purchased from The Centre for Applied Genomics and include: RP23-

342L13, RP23-191E3.  Cells were rinsed three times with 50% formamide in 2X SSC, 

and three times with 2X SSC at 42
o
C followed by blocking in 0.2% tween/5% BSA in 4X 

SSC at room temperature.  Cells were subjected to two, one-hour long incubations with 

mouse anti-digoxigenin antibody, and goat anti-mouse Alexafluor 488 respectively, with 

washing in 2X SSC between incubations.  Cells were then washed in 2X SSC and 

mounted in Vectashield with DAPI. Cells were examined on an Olympus Fluoview 

FV1000 confocal microscope system, and z stacks at intervals of 7 µm were collected 

using the Olympus Fluoview FV1000 Viewer.  Collapsed images as viewed using 

Volocity software were used to count the number of FISH foci per cell. 

 For IF, cells were fixed in 3:1 ratio of 100% ethanol:methanol, washed, and 

permeabilized in 0.5% Triton in 1X PBS.  Cells were blocked in 0.2% tween, 5% horse 

serum and 5% goat serum in 1X PBS.  Cells were incubated for one hour in indicated 

primary antibodies and the appropriate anti-mouse or anti-rabbit Alexa fluor secondary 

antibody.  Cells were washed three times in PBS-T, and once in PBS followed by 
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mounting in Vectashield with DAPI.  Cells were examined on an Olympus Fluoview 

FV1000 confocal microscope system, and z stacks at intervals of 7µm were collected 

using the Olympus Fluoview FV1000 Viewer.  Collapsed and 3D rendered images using 

Volocity software were used to determine if colocalization of DNA damage foci 

coincided with pericentromeric DNA.  Colocalization was determined if fluorescence 

signals overlapped in the X, Y and Z planes. 

3.3.5 Chromatin immunoprecipitation (ChIP) and real time PCR 
analysis 

Asynchronously cycling cells were fixed in 1% formaldehyde in 1X PBS 

followed by neutralization with glycine to a final concentration of 0.125M.  ChIP was 

performed as described (Thillainadesan et al 2008).  Immuno-precipitated DNA was 

diluted 1:2000 in pGEM4Z-E18-1 plasmid containing murine cyclin E1.  Real-time PCR 

was performed using the iQSYBRGreen master mix on a BioRad CFX Connect Real-

Time System machine using the CFX Manager software for analysis.  Target and cyclin 

E1 sequences were amplified with the following primers: Major satellite repeats (For: 

GACGACTTGAAAAATGACGAAATC , Rev: 

CATATTCCAGGTCCTTCAGTGTGC), Cyclin E1 (For: 

AAGGGAACTTCCGGGGTACT, Rev: CTAGGTTCGGTCCCAACAGG).  Cyclin E 

was used as a technical control for normalization to ensure the same amount of DNA was 

pipetted into each reaction.  ChIPs were performed in triplicate and reported as ‘percent 

of input’. 

3.3.6 Tumor incidence in mice 

The Rb1
ΔL

 mutant strain carries three amino acid substitutions in its Rb1 encoded 

protein (I746A, N750A, and M754A) that disrupt interactions with LXCXE motif 

containing proteins, but not E2F transcription factors (Dick et al 2000; Isaac et al 2006); 

details of its construction and initial characterization have been previously published 

(Isaac et al 2006).  The Trp53
-/-

 mice were purchased from Jackson Labs and were 

intercrossed with Rb1
ΔL

 mutants to produce the required genotypes for this study.  All 

animals were maintained in a mixed 129/B6 background.  Mice were housed and 
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maintained according to the guidelines of the Canadian Council on Animal Care.  

Animals were followed throughout their lives for signs of tumor burden and were 

euthanized when tumors became visible, or the animal experienced sudden weight loss or 

became lethargic.  All animals were subjected to a thorough necropsy and abnormal 

tissues, organs, or tumors were fixed in formalin and processed for histological 

assessment.  Portions of tumors were snap frozen and used to prepare genomic DNA.  

Tissues were embedded, sectioned, and stained with hematoxylin and eosin according to 

standard methods and photographed as described above.  See Appendix K for a synopsis 

of histopathology for all animals used in this study.     

3.3.7 PCR genotyping and array comparative genomic 
hybridization (aCGH) 

High molecular weight DNA was extracted from frozen tumor samples using 

standard DNA isolation procedures and used in the following analyses.   

 To determine whether the remaining wild type allele of pRB was maintained in 

tumors from Rb1
ΔL/ΔL

 mice, DNA extracted from tumors was subjected to PCR 

amplification that detected both the knock-in allele and the wild type allele.  Tail DNA of 

the same mouse from which the tumor was taken was PCR amplified in parallel and used 

for comparison.  PCR amplification used standard conditions and the following primers: 

Genotyping (For: AGCTTCATACAGATAGTTGGG, Rev: 

CACACAAATCCCCATACCTATG). 

 For array CGH experiments, DNA was extracted from livers of five male and 

female wild type animals to create pools of control DNA.  Control male vs. control 

female, and tumor DNA vs. the appropriate sex control hybridizations were performed by 

NimbleGen on a mouse whole genome array (design 2006-07-26-MM8-WG-CGH).  

Segmentation analysis described by Olshen was performed and was used to infer changes 

in copy number (Olshen et al 2004).  Analysis of segmented data was performed as 

previously reported (Coschi et al 2010). 
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3.3.8 Mutation detection in RB1 patient fibroblasts 

Sequencing was performed by Retinoblastoma Solutions  

(www.retinoblastomasolutions.org), (now Impact Genetics Inc.- 

www.impactgenetics.com).  The sequencing results are summarized in Table 3.3.  

Briefly, cell lines were analyzed for copy number and allele-specific PCR of recurrent 

mutations in the RB1 gene.  Chromatographs of mutant and control sequence for 

comparison were supplied by Retinoblastoma Solutions. 

3.3.9 Analysis of instability in cancer cell lines 

Data were obtained from the COSMIC database (Cancer Cell Line Project- Copy 

Number Analysis) for cancer cell lines SK-PN-DW, RD, T1-73, MES-SA, SK-LMS and 

Saos2.  Statistical analysis, segmentation, whole chromosome changes and 

chromothriptic regions were determined using criteria outlined in Figure 3.13 for the 

following mesenchymal cell lines: RB1
+/+

 (ES1, H-EMC-SS, CADO-ES1, TI-73, ES4, 

EW13, A673, A204, G402, MES-SA, SW982, TE-441-T, BL-70, CESS, HT), RB1
+/-

 

(KMS-12-PE, BALL-1, SK-MM-2, IM9, CML-T1, CMK, SK-LMS-1, RD, ES3, NY), 

RB1
-/-

 (Saos2, SK-PN-DW, HUO9, HUO-3N1, SK-UT-1, H9, BC-3, CTV-1, GR-ST, 

KMOE-2, MONO-MAC-6, U266). 

 

3.4 Results 

3.4.1 Loss of Rb1 causes double strand breaks at the centromere 

In normal human fibroblasts, loss of the retinoblastoma protein results in 

spontaneous DNA double strand breaks (Pickering and Kowalik 2006).  The cause of 

these double strand breaks in RB1 deficient cells is unknown as complete loss of RB1 has 

multiple effects on cell physiology.  To investigate the mechanism by which loss of the 

retinoblastoma protein leads to the accumulation of DNA double strand breaks, we 

compared DNA double strand break accumulation between Rb1
+/+

 and Rb1
-/-

 mouse 

embryonic fibroblasts (MEFs).  γH2AX was used as a marker of DNA damage, and cells 

were counterstained with DAPI to visualize DNA.  There was a significant increase in the 
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number of cells with three or more DNA double strand break foci in Rb1
-/-

 MEFs 

compared to wild type (Fig. 3.1A, B).  DAPI counterstain produces punctate foci at 

pericentromeric and centromeric regions because it is a large, highly heterochromatinized 

structure. We observed a bias in the location of DNA double strand breaks in Rb1
-/-

 

MEFs; double strand break accumulation was more frequent at DAPI rich spots in Rb1
-/-

 

MEFs compared to wild type controls (Fig. 3.2B).  Colocalization was determined using 

confocal microscopy and ensuring DAPI-rich foci coincided with γH2AX foci in all three 

planes (Fig. 3.2A). 

Previous data have implicated the retinoblastoma protein as having a unique role 

at centromeric and pericentromeric heterochromatin (Isaac et al 2006, Coschi et al 2010, 

Manning et al 2010).  Specifically, homozygosity of a mutant Rb1 allele that lacks the 

ability to bind proteins in its LXCXE binding cleft (Rb1
ΔL

) results in centromere fusions, 

congression and condensation defects and missegregation in mitosis (Isaac et al 2006, 

Coschi et al 2010).  Therefore, we investigated whether the LXCXE binding cleft was 

required to prevent DNA double strand break accumulation.  Rb1
ΔL/ΔL

 MEFs exhibit a 

significant increase in the number of cells with three or more DNA double strand break 

foci compared to wild type controls (Fig. 3.1A, B).  Moreover, upon examination of 

confocal microscopy images, more Rb1
ΔL/ΔL

 MEFs demonstrated colocalization of DAPI-

rich foci with DNA damage foci (Fig. 3.2 A, B). 

To confirm the colocalization of DNA damage foci at pericentromeres, chromatin 

immunoprecipitation (ChIP) was performed using an antibody against γH2AX, and 

precipitated chromatin was quantified using real time PCR amplification of 

pericentromeric repeat DNA.  There was a significant increase in DNA double strand 

breaks at pericentromeric DNA in both Rb1
-/-

 and Rb1
ΔL/ΔL

 MEFs compared to wild type 

(Fig. 3.2Ci, Cii).  Therefore increased DNA double strand breaks are caused by the 

absence of pRB.  Furthermore, loss of just pRB-LXCXE interactions in isolation was 

sufficient to cause DNA breaks. 

Previous work has implicated pRB-LXCXE interactions in the loading of 

Condensin II complexes on chromatin as a means to maintain genome stability  
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Figure 3.1: Rb1 homozygous mutant MEFs exhibit increased DNA double strand 

breaks.   

(A) Immunofluorescence in Rb1
+/+

, Rb1
-/-

 and Rb1
ΔL/ΔL

 MEFs to detect DNA double 

strand breaks using γH2AX as representative of damage (green).  MEFs were 

counterstained with DAPI (blue).  (B) Quantitation of DNA damage foci in MEFs.  The 

number of cells with two or less foci was compared for Rb1
+/+

 controls (n = 103) and 

Rb1
-/-

 (n = 63) and Rb1
ΔL/ΔL

 (n = 114) MEFs using a χ
2
 test. 

A B 
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Figure 3.2: Rb1 homozygous mutant MEFs accumulate DNA double strand breaks 

at pericentromeric DNA.  

(A) Immunofluorescence of γH2AX foci (green) and DAPI counterstain (blue).  3D 

rendering of the cells in the two rightmost panels allows visualization of colocalization of 

DNA damage foci with DAPI-rich foci.  Orange arrows- DAPI-rich focus absent of DNA 

damage; Yellow arrows- DNA damage foci that do not colocalize with DAPI-rich foci; 

Purple arrows- DNA damage foci colocalizing with DAPI-rich foci.  NC- no 

colocalization.  C- colocalization.  Scale bars are 10µm.  (B)  The proportion of cells with 

DNA damage foci colocalizing with DAPI-rich foci for Rb1
+/+

 controls (n = 103) and 

Rb1
-/-

 (n = 63) and Rb1
ΔL/ΔL

 (n = 114) MEFs was compared using a χ
2
 test. (C) Chromatin 

immunoprecipitation investigating DNA damage at pericentromeric DNA.  ChIP for 

γH2AX was followed by real time PCR amplification of major satellite repeat DNA.  

Data are reported as a percent of the chromatin input into the ChIP.  (Ci) ChIP with a 

γH2AX antibody and IgG control was performed in Rb1
+/+

 and Rb1
-/-

 MEFs; n = 3.  (Cii) 

ChIP with a γH2AX antibody and IgG control was performed in Rb1
+/+

 and Rb1
ΔL/ΔL

 

MEFs; n = 3.  *P < 0.05 using a t-test. 

A 

B C i ii 
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(Longworth et al 2008, Coschi et al 2010, Manning et al 2010).  Based on these data we 

investigated whether loss of Condensin II function could cause DNA double strand 

breaks at a similar genomic location.  MEFs transduced with a short hairpin targeting 

Luciferase (control) or CAP-D3 (a Condensin II complex subunit) were subjected to 

fluorescence confocal microscopy.  Only cells successfully transduced (expressing 

H2BGFP) were investigated for the number and genomic location of DNA double strand 

break foci.  There was a significant increase in the number of CAP-D3 depleted cells 

exhibiting three or more DNA damage foci compared with the Luciferase control (Fig. 

3.3A, B).  Furthermore, γH2AX foci colocalized with DAPI-rich foci more frequently in 

MEFs transduced with short hairpins targeting CAP-D3 than those of the Luciferase 

control (Fig. 3.4A, B).  This strongly implicates the Condensin II complex in the ability 

of pRB to prevent DNA double strand break accumulation at pericentromeres and to 

maintain genome stability. 

Over the course of the above-described immunofluorescence microscopy 

experiments, we noted that DNA damage foci were also present in prometaphase and 

metaphase of Rb1 mutant MEFs (Fig. 3.5A).  Similarly, MEFs depleted of Condensin II 

function also exhibit DNA damage foci in mitosis (Fig. 3.5B).  For these reasons we 

sought to identify the stages in the cell cycle where these foci are present and determine 

when they first arise.  In Rb1
ΔL/ΔL

 MEFs, the proportion of cells in G1 with three or 

greater DNA damage foci was significantly increased over cells in other stages of the cell 

division cycle with comparable numbers of DNA damage foci (P < 0.05; Fig. 3.6A, B).  

The prominence of DNA damage foci in mitosis and the extensive accumulation in G1 is 

highly reminiscent of replication stress that occurs at fragile or repetitive sequences in 

late S-phase and is transmitted through mitosis and into the next G1-phase.  For these 

reasons, our data are consistent with DNA breaks arising in late S-phase and contributing 

to defects in chromosome structure at the pericentromere and interfering with accurate 

chromosome segregation in mitosis.   
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Figure 3.3: Condensin II complex defective MEFs exhibit increased DNA double 

strand breaks.   

(A) Immunofluorescence in Rb1
+/+

 MEFs transduced with short hairpins targeting CAP-

D3 (shCAP-D3-1, shCAP-D3-2) or Luciferase as a control to detect DNA damage.  

Successfully transduced MEFs express H2BGFP (green).  γH2AX was used as 

representative of damage (red).  MEFs were counterstained with DAPI (blue).  (B) 

Quantitation of DNA damage foci in transduced MEFs.  The number of cells with two or 

less foci was compared between CAP-D3 knock down cells (shCAP-D3-1, n = 103; 

shCAP-D3-2, n = 22) and the Luciferase control (n = 49) using a χ
2
 test.   

B 

A 
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Figure 3.4: Condensin II complex defective MEFs accumulate DNA double strand 

breaks in pericentromeric regions of the genome.  

(A) Immunofluorescence of MEFs transduced with control (Luciferase) or target (CAP-

D3) short hairpins showing γH2AX foci (red), H2BGFP (green) and DAPI counterstain 

(blue).  3D rendering of the cells in the two rightmost panels allows visualization of 

colocalization of DNA damage foci with DAPI-rich foci.  Orange arrows- DAPI-rich 

focus absent of DNA damage; Yellow arrows- DNA damage foci that do not colocalize 

with DAPI-rich foci; Purple arrows- DNA damage foci colocalizing with DAPI-rich foci.  

NC- no colocalization.  C- colocalization.  Scale bars are 10µm.  (B) The proportion of 

CAP-D3 knock down (shCAP-D3-1, n = 103; shCAP-D3-2, n = 22) and Luciferase 

control (n = 49) cells with DNA damage foci colocalizing with DAPI-rich foci was 

compared using a χ
2
 test. 

A 

B 
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Figure 3.5: DNA damage in Rb1 homozygous mutant MEFs and Condensin II 

complex defective MEFs persists into mitosis.   

(A) Immunofluorescence of MEFs with the indicated genotypes in various stages of 

mitosis.  DNA damage is marked by γH2AX (green) and DNA is counterstained with 

DAPI (blue).  Scale bars at 10µm.  (B) Immunofluorescence of MEFs transduced with 

either a Luciferase short hairpin control or one of two short hairpins against CAP-D3 (sh-

CAP-D3-1, shCAP-D3-2) in various stages of mitosis.  Successfully transduced MEFs 

express H2BGFP (green), DNA damage is marked by γH2AX (red) and DNA is 

counterstained with DAPI (blue).  Scale bars at 10µm. 

A 

B 
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Figure 3.6: Rb1
ΔL/ΔL

 MEFs accumulate DNA damage in G1.   

(A) Immunofluorescence of MEFs of the indicated genotypes.  DNA double strand 

breaks are marked by γH2AX (green) and cells in G1 are marked by CDT1 expression 

(red).  DNA is counter-stained with DAPI (blue).  Scale bars are 10µm.  (B) 

Representation of the proportion of cells in G1, S/G2 and M phases of the cell division 

cycle with three or greater DNA damage foci in Rb1
ΔL/ΔL

 MEFs (n = 148). 

A 

B 

Rb1ΔL/ΔL 
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3.4.2 E2F1, pRB and Condensin II form a complex at 
pericentromeric heterochromatin 

Since DNA damage found in mitosis is associated with replication stress at 

repetitive DNA, pericentromeric heterochromatin may be particularly sensitive to DNA 

breaks.  We therefore proceeded to investigate whether pRB or the Condensin II complex 

localizes to pericentromeric heterochromatin.  Chromatin immunoprecipitation followed 

by real time PCR amplification of pericentromeric repeats demonstrated that both pRB 

and the Condensin II complex (represented by its subunit CAP-D3) localize to 

pericentromeric heterochromatin (Fig. 3.7Ai, Aii respectively).  In order to confirm that 

these proteins form a complex at pericentromeric heterochromatin, we performed the 

following chromatin immunoprecipitation experiments in Rb1 mutant MEFs.  First we 

demonstrated that localization of CAP-D3 to pericentromeric heterochromatin is 

dependent upon pRB, as CAP-D3 localizes to pericentromeric heterochromatin in Rb1
+/+

 

MEFs, but fails to localize to pericentromeres in Rb1
-/-

 MEFs (Fig. 3.7Bi).  Moreover, 

CAP-D3 localization to pericentromeric repeats was dependent upon interactions with 

pRB’s LXCXE binding cleft as CAP-D3 loading at pericentromeric heterochromatin was 

significantly reduced in Rb1
ΔL/ΔL

 MEFs (Fig. 3.7Bii). 

Interestingly, pRB and E2F1 have been shown to interact at sites of replication in 

S-phase while pRB is hyperphosphorylated and cannot bind to the other E2Fs (Wells et al 

2003, Korenjak et al 2012, Mendoza-Maldonado et al 2010, Barbie et al 2004, Cecchini 

and Dick 2011, Dyson 1998).  For these reasons, we wondered whether E2F1 recruits the 

retinoblastoma protein, and in turn the Condensin II complex, to pericentromeric 

heterochromatin.  Chromatin immunoprecipitation in wild type MEFs demonstrates that 

E2F1 localizes to pericentromeric heterochromatin (Fig. 3.7Ci).  In order to demonstrate 

that E2F1 recruits pRB and the Condensin II complex to chromatin, we performed ChIP 

in E2f1
-/-

 MEFs.  In E2f1
+/+

 controls, CAP-D3 localizes to pericentromeric 

heterochromatin while in E2f1
-/-

 MEFs, CAP-D3 fails to localize to this genomic region 

(Fig. 3.7Cii).   

Pericentromeric repeats do not contain the consensus E2F DNA binding motif, 

which led us to investigate the mechanism by which E2F1 is recruited to pericentromeric  
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Figure 3.7: pRB, E2F1 and Condensin II interact at pericentromeric 

heterochromatin.   

(A-C) Chromatin immunoprecipitation using the indicated antibodies was followed by 

real time PCR amplification of major satellite repeat DNA at pericentromeric 

heterochromatin.  Data are reported as percent of input.  (Ai) ChIP using an antibody 

against pRB in Rb1
+/+

 and Rb1
-/-

 MEFs; n = 3.  (Aii) ChIP using a CAP-D3 antibody in 

wild type MEFs; n = 3.  (Bi-ii) ChIP using a CAP-D3 antibody to represent the 

Condensin II complex in Rb1
+/+

, Rb1
-/-

 and Rb1
ΔL/ΔL

 MEFs; n = 3.  (Ci) ChIP using an 

E2F1 antibody in wild type MEFs; n = 3.  (Cii) ChIP using a CAP-D3 antibody to 

represent the Condensin II complex in E2f1
-/-

 MEFs; n = 3.  (Ciii) ChIP using an E2F1 

antibody in Rb1
+/+

 and Rb1
-/-

 MEFs; n = 3.  *P < 0.05.   

A  i 

B  i 

C  i ii iii 

ii 

ii 
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heterochromatin.  It has been previously reported that binding of pRB to E2F1 can alter 

the preference of E2F1 for canonical E2F consensus sequences such that its preference 

for a non-canonical recognition sequence is dependent on pRB (Wells et al 2003, 

Korenjak et al 2012, Tao et al 1997, Dick and Dyson 2003).  Therefore we determined 

whether the presence of pRB affected the recruitment of E2F1 to pericentromeric DNA.  

Chromatin immunoprecipitation of E2F1 in Rb1
+/+

 and Rb1
-/-

 MEFs demonstrates that 

E2F1 localization to pericentromeric heterochromatin was greatly reduced in Rb1
-/-

 MEFs 

(Fig. 3.7Ciii).  This suggests that binding of pRB and E2F1 is maintained at 

pericentromeric heterochromatin through a co-operative mechanism and likely involves 

interaction with a non-canonical E2F binding sequence.  The Condensin II complex is 

then recruited to chromatin via an interaction with the LXCXE binding cleft of pRB, 

which is abrogated in Rb1
ΔL/ΔL

 MEFs.  If any of these interactions are disrupted, there is a 

loss of Condensin II complex loading at pericentromeric heterochromatin.  Therefore 

pRB, E2F1 and Condensin II form a complex at pericentromeric heterochromatin and 

prevent the accumulation of DNA damage, which likely occurs during S-phase as 

difficult to replicate sites, including pericentromeric heterochromatin, are replicated. 

3.4.3 DNA damage and recruitment of Condensin II to chromatin 
is Rb1 gene dosage-dependent 

 The implication that stable binding of E2F1 at pericentromeric DNA relies on 

binding to pRB suggests that the abundance of pRB may be of particular importance in 

the formation of complexes at this genomic location (Fig. 3.7Ciii).  To determine the 

effect of Rb1 heterozygosity we first transduced Rb1
+/-

 MEFs with H2BGFP to visualize 

the cells as they progressed through mitosis.  Rb1
+/-

 MEFs exhibited both chromosome 

congression and condensation defects as they took significantly longer to reach the 

metaphase plate from the onset of chromosome condensation compared with Rb1
+/+

 

MEFs (Fig. 3.8A middle, Table 3.1).  Moreover, Rb1
+/-

 MEFs presented with a 

significant increase in the number of cells displaying lagging chromosomes during 

anaphase compared to controls (Fig. 3.8A middle, Table 3.1).  As these same genomic 

instability phenotypes were previously linked to a defective interaction between the 

LXCXE binding cleft of pRB and the Condensin II complex, we transduced Rb1
ΔL/+
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Figure 3.8: Rb1 heterozygous mutants exhibit mitotic defects.   

(A)  Video microscopy was performed on MEFs expressing an H2B-GFP reporter by 

capturing phase contrast and GFP images every three minutes over a 15 hour time course.  

The images shown begin with the onset of chromatin condensation in prophase as the left 

most panel.  The last image of the metaphase plate before the onset of anaphase is 

indicated along with the elapsed time since the onset of prophase (in minutes).  The right 

most image shows resolved daughter (or binucleated) cells.  Scale bars are 50 µm.  (B) 

Immunofluorescence in Rb1
+/+

, Rb1
+/-

, and Rb1
ΔL/+

 MEFs to detect DNA double strand 

breaks using γH2AX as representative of damage (green).  MEFs were counterstained 

with DAPI (blue).  (C) Quantitation of DNA damage foci in MEFs.  The number of cells 

with two or less foci was compared for Rb1
+/+

 controls (n = 103) and Rb1
+/-

 (n = 55) and 

Rb1
ΔL/+

 (n = 66) MEFs using a χ
2
 test. 

A 

B C 
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Table 3.1. Summary of mitotic phenotypes observed in Rb1 mutant MEF video 

microscopy experiments. 

 

 

 

 

 

 

Genotype
a
 N-value Lagging 

Chromosomes
b
 

N-value Average time from onset 

of condensation to onset 

of anaphase (min) 

Rb1
+/+

 60 21 47 34.51 

Rb1
+/-

 116 67
c
 106 45.55

d
 

 

 

 

 

 

 

 

 

 

a
For all statistical tests Rb1

+/-
 is compared with wild type controls. 

b
Includes mitoses where the metaphase plate never visually divided, chromatin  

  decondensed, and cells became tetraploid. 
c
Indicates a difference from controls that is above 95% confidence interval (2-test,   

  P<0.05). 
d
Above 95% confidence interval (t-test, P<0.05). 
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MEFs with H2BGFP and observed subsequent mitoses (Coschi et al 2010).  Rb1
ΔL/+

 

MEFs also exhibited an increase in the length of time it took to proceed from the onset of 

chromosome condensation to the metaphase plate, and exhibited a significant increase in 

the number of mitoses with lagging chromosomes as compared to Rb1
+/+

 MEFs (Fig. 

3.8A bottom, Table 3.2).   

Next, because Rb1
-/-

 and Rb1
ΔL/ΔL

 MEFs exhibit DNA double strand breaks, we 

investigated whether the ability of pRB to prevent the accumulation of DNA double 

strand breaks was compromised due to haploinsufficiency.  Immunofluorescence of 

asynchronously cycling Rb1
+/-

 and Rb1
ΔL/+

 MEFs revealed that there was a significant 

increase in the number of cells with three or more γH2AX foci in both heterozygous 

genotypes compared to the wild type control (Fig. 3.8B, C).  Moreover, these double 

strand breaks were found at pericentromeric heterochromatin in Rb1
+/-

 and Rb1
ΔL/+

 MEFs 

more frequently than in Rb1
+/+

 MEFs, as determined by γH2AX foci colocalization with 

DAPI-rich foci (Fig. 3.9A, B).  To further confirm the Rb1 and Rb1
ΔL

 gene dosage 

sensitivity of these phenotypes, we performed chromatin immunoprecipitation of the 

CAP-D3 subunit of the Condensin II complex to determine whether it bound normally at 

pericentromeric heterochromatin.  CAP-D3 was significantly reduced at pericentromeric 

heterochromatin in both Rb1
+/-

 and Rb1
ΔL/+

 MEFs compared to wild type MEFs (Fig. 

3.9Ci, Cii). 

Finally, to determine whether this accumulated DNA damage likely occurred as a 

result of both replication stress and the pRB-E2F1-Condensin II complex interaction at 

pericentromeric DNA, we investigated the amount of DNA damage in Rb1
ΔL/+

 MEFs as a 

function of their phase in the cell division cycle.  Again we observed DNA damage foci 

in mitosis and, the proportion of cells in G1 with three or more DNA damage foci was 

significantly increased over other stages of the cell division cycle (P < 0.05; Fig. 3.10B, 

C). 

Taken together, these data clearly demonstrate that the retinoblastoma gene, and 

an Rb1 gene with a mutation in the LXCXE binding cleft (Rb1
ΔL

), both exhibit 

haploinsufficiency in their ability to prevent the accumulation of DNA double strand  
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Table 3.2. Summary of mitotic phenotypes observed in Rb1-ΔL mutant MEF video 

microscopy experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
For all statistical tests Rb1

ΔL/+
 is compared with wild type controls. 

b
Includes mitoses where the metaphase plate never visually divided, chromatin    

  decondensed, and cells became tetraploid. 
c
Indicates a difference from controls that is above 95% confidence interval (2-test,  

  P<0.05). 
d
Above 93% confidence interval (t-test, P<0.065). 

Genotype
a
 N-value Lagging 

Chromosomes
b
 

N-value Average time from onset 

of condensation to onset 

of anaphase (min) 

Rb1
+/+

 42 13 23 66.26 

Rb1
ΔL/+

 73 42
c
 62 89.76

d
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Figure 3.9: DNA damage and recruitment of Condensin II is Rb1 gene dosage-

dependent.   

(A) Immunofluorescence of γH2AX foci (green) and DAPI counterstain (blue).  3D 

rendering of the cells in the two rightmost panels allows visualization of colocalization of 

DNA damage foci with DAPI-rich foci.  Orange arrows- DAPI-rich focus absent of DNA 

damage; Yellow arrows- DNA damage foci that do not colocalize with DAPI-rich foci; 

Purple arrows- DNA damage foci colocalizing with DAPI-rich foci.  NC- no 

colocalization.  C- colocalization.  Scale bars are 10µm.  (B) The number of cells with 

DNA damage foci for Rb1
+/+

 controls (n = 103) and Rb1
+/-

 (n = 55) and Rb1
ΔL/+

 (n = 66) 

MEFs colocalizing with DAPI-rich foci was compared using a χ
2
 test. (C) Chromatin 

immunoprecipitation (ChIP) investigating the Rb1 gene dosage sensitivity of Condensin 

II complex recruitment to centromeres.  ChIP for CAP-D3 was followed by real time 

PCR amplification of major satellite repeat DNA.  Data are reported as a percent of the 

chromatin input into the ChIP.  (Ci-ii) ChIP with a CAP-D3 antibody and IgG control 

was performed in Rb1
+/+

, Rb1
+/-

 and Rb1
ΔL/+

 MEFs; n = 3.  *P < 0.05 using a t-test. 

A 

B C  i ii 
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Figure 3.10: Rb1
ΔL/+

 MEFs accumulate DNA damage in G1.   

(A) Immunofluorescence of MEFs with the indicated genotypes in various stages of 

mitosis.  DNA damage is marked by γH2AX (green) and DNA is counterstained with 

DAPI (blue).  Scale bars at 10µm.  (B) Immunofluorescence of MEFs of the indicated 

genotypes.  DNA double strand breaks are marked by γH2AX (green) and cells in G1 are 

marked by CDT1 expression (red).  DNA is counter-strained with DAPI (blue).  Scale 

bars are 10µm.  (C) Representation of the proportion of cells in G1, S/G2 and M phases 

of the cell division cycle with three or greater DNA damage foci in Rb1
ΔL/+

 MEFs (n = 

84). 

B 

A 

C 

Rb1ΔL/+ 
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breaks.  Therefore the accumulation of DNA damage at pericentromeric heterochromatin, 

and subsequent mitotic errors are Rb1 gene dosage-dependent. 

3.4.4 Human RB1+/- cells exhibit DNA double strand breaks, 
mitotic defects and genomic instability 

The kinetics of RB1 loss in retinoblastoma gave rise to the now famous ‘two-hit’ 

hypothesis (Knudson 1971).  However, our data on haploinsufficiency in Rb1 mutant 

mouse fibroblasts motivated us to determine if a similar phenotype is present in normal 

fibroblasts from retinoblastoma patients (RB1
+/-

).  To investigate this possibility, we 

obtained several patient fibroblast lines (GM_01408, GM_06418, GM_01123) from the 

Coriell Institute for Medical Research and confirmed their heterozygous status by 

sequencing (Table 3.3).  We compared them with data acquired from three normal 

fibroblast cell lines (IMR90, BJ, WI38).  We first determined whether patient fibroblasts 

exhibited increased DNA double strand breaks compared to controls.  Using γH2AX as a 

marker of DNA double strand breaks, we concluded that there is a significant increase in 

the number of patient fibroblasts exhibiting greater than three γH2AX foci compared with 

pooled data from normal controls (Fig. 3.11A, B).  Moreover, DNA damage foci were 

found in mitosis in RB1
+/-

 fibroblasts and so we investigated whether this resulted in 

subsequent mitotic defects as observed in Rb1 mutant MEFs (Fig. 3.12A; Fig. 3.8A, 

Coschi et al 2010).  We examined patient fibroblasts as they progressed through mitosis 

by transducing cells with H2BGFP and subjecting them to fluorescence video 

microscopy.  All three patient fibroblast lines exhibited a significant delay in progression 

to the metaphase plate from the onset of chromosome condensation as compared to 

pooled normal control data (Fig. 3.12B, Table 3.4).  Moreover, patient fibroblasts also 

showed a significant increase in the number of mitoses exhibiting lagging chromosomes 

compared to controls (Table 3.4).  Taken together, these data demonstrate that as with 

mice, human cells hemizygous for RB1 exhibit haploinsufficiency in their ability to 

prevent the accumulation of DNA double strand breaks, and to prevent mitotic errors. 

Given the direct impact of haploinsufficiency for RB1 on DNA breaks and mitotic 

errors we sought evidence for the manifestation of these errors in cancer.  Using the copy 

number analysis data available in the Cancer Cell Line Project of the Catalogue Of  



120 

 

Table 3.3. Summary of sequencing results of retinoblastoma patient fibroblasts. 
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Figure 3.11: Retinoblastoma patient fibroblasts (RB1
+/-

) exhibit increased DNA 

double strand breaks.   

(A) Immunofluorescence in control (IMR90) and patient (GM_01408, GM_01123 and 

GM_06418) fibroblasts to detect DNA damage using γH2AX as representative of 

damage (green).  Fibroblasts were counterstained with DAPI (blue).  Scale bars are 

10µm.  (B) Quantitation of DNA damage foci in control and patient fibroblasts.  The 

number of cells with two or less foci was compared for all patient fibroblasts (GM_1408, 

n = 79; GM_01123, n = 93; GM_06418, n = 71) against pooled control data (IMR90, BJ, 

WI-38 fibroblasts, n = 246) using a χ
2
 test.   

A B 
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Figure 3.12: Retinoblastoma patient fibroblasts (RB1
+/-

) exhibit mitotic defects.   

(A) Immunofluorescence of control and Retinoblastoma patient fibroblasts in various 

stages of mitosis.  DNA damage is marked by γH2AX (green) and DNA is counterstained 

with DAPI (blue).  Scale bars at 10µm.  (B) Control and Retinoblastoma patient 

fibroblasts were transduced with retroviruses expressing H2B-GFP.  Video microscopy 

was performed by capturing phase contrast and GFP images every three minutes over a 

15 hour time course.  The images shown begin with the onset of chromatin condensation 

in prophase as the left most panel.  The last image of the metaphase plate before the onset 

of anaphase is indicated along with the elapsed time since the onset of prophase (in 

minutes).  The right most image shows resolved daughter cells.  Scale bars are 50 µm.   

A 

B 
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Table 3.4. Summary of mitotic phenotypes observed in retinoblastoma patient 

fibroblast video microscopy experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

a
For all statistical tests each patient fibroblast line is compared with pooled control data. 

b
Includes mitoses where the metaphase plate never visually divided, chromatin  

  decondensed, and cells became tetraploid. 
c
Indicates a difference from controls that is above 95% confidence interval (2-test,  

  P<0.05) 
d
Above 95% confidence interval (t-test, P<0.05) 

Genotype
a
 N-value Lagging 

Chromosomes
b
 

N-value Average time from onset 

of condensation to onset 

of anaphase (min) 

IMR90 31 19 13 45 

BJ 42 14 17 61 

WI38 18 3 3 49 

GM_01123 10 9
c
 7 211

d
 

GM_01408 31 19
c
 20 85

d
 

GM_06418 8 4
c
 6 120

d
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Somatic Mutation In Cancer (COSMIC) database, we asked whether human cancers 

hemizygous for RB1 also exhibit increased levels of genomic abnormalities compared to 

cell lines that are wild type with respect to RB1 status (COSMIC database).  Since 

Retinoblastoma survivors acquire second primary neoplasms that are generally of 

mesenchymal origin, the majority of which are sarcomas, we compared the available 

copy number data from human cancer cell lines of mesenchymal origin for each of 

RB1
+/+

, RB1
+/-

 and RB1
-/-

 genotypes.  We sorted genomic abnormalities into four 

categories: whole chromosome changes, total genomic segments, total abnormal genomic 

segments, and chromothriptic regions (Abramson et al 1976).  Criteria for inclusion in 

these categories can be found in Figure 3.13A and B.  RB1
+/-

 and RB1
-/-

 cancers exhibited 

significantly more whole chromosome changes than cancers retaining both wild type 

copies of RB1 (Fig. 3.14A).  Importantly, RB1
+/-

 cancers exhibited as many whole 

chromosome changes as RB1
-/-

 cancers (Fig. 3.14A).  The same trend was observed in the 

three other measurements of genome stability; RB1
+/-

 and RB1
-/-

 cancers exhibited 

significantly more genome instability than cancers retaining both wild type copies of 

RB1, though they were no different from each other (Fig. 3.14B, C, D).  Select cancer cell 

lines from those used in the copy number analysis were chosen at random to confirm 

their RB1 genotype.  Pulldowns using GST-tagged Human Papilloma Virus E7 protein 

demonstrated functional pRB in RB1
+/+

 and RB1
+/-

 cell lines, and confirmed loss of 

functional pRB in RB1
-/-

 cell lines (Fig. 3.15A).  Real time PCR amplification of the 

retinoblastoma gene locus compared to an internal control locus confirmed the presence 

of only a single copy of the RB1 gene in hemizygous cell lines as compared to two copies 

in the RB1
+/+

 control (Fig. 3.15B). 

From these data it is clear that hemizygosity of RB1 exhibits haploinsufficiency in 

humans, namely through the ability of pRB to prevent both the accumulation of DNA 

double strand breaks and mitotic errors (Fig. 3.11, 3.12).  Moreover, this is associated 

with increased genome instability in human cancers at a level comparable to that found in 

RB1
-/-

 cancers (Fig. 3.14). 
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Figure 3.13: Criteria for determining genome instability using copy number data 

from the COSMIC database.   

(A-B) Criteria for determining segmentation, chromothriptic regions and whole 

chromosome gains or losses using copy number plots from the Catalogue of Somatic 

Mutations in Cancer (COSMIC) database.  The grey data points are normalized copy 

number data.  The dark blue line indicates the total chromosome copy number.  The light 

blue line indicates the predicted copy number of the minor chromosome.  Breaks in the 

blue lines delineate segments of similar copy number status.  (A) A snapshot of 

chromosome 13 from the cancer cell line SK-PN-DW demonstrates what was scored as 

loss of an entire chromosome.  (B) A snapshot of chromosome 1 from the cancer cell line 

Saos2 demonstrates what was scored as a segment (*) and which regions were considered 

as chromothriptic (
#
).  Chromothriptic events are characterized by certain genomic 

features, some of which can be observed using the copy number data found in the 

COSMIC database.  Stephens et al. describe chromothripsis as being marked by 

rearrangements that are confined to a defined genomic region (Stephens et al 2011).  

Additionally, the copy number profile in these regions typically oscillates between two 

copy number states (Stephens et al 2011).  For example, oscillation between copy 

numbers 1 and 2 are indicative of loss of heterozygosity (LOH) and heterozygosity 

respectively (Stephens et al 2011).  These criteria were used to evaluate chromothriptic 

regions for the cell lines selected from the COSMIC database.   

A 

B 



126 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: RB1
+/-

 cancers exhibit as much genome instability as RB1
-/-

 cancers.   

(A-D) Quantitation of genomic instability in at least ten cancer cell lines that are wild 

type (n = 15), hemizygous (n = 10) or null (n = 12) for RB1.  (A) Quantitation of the total 

number of whole chromosome changes per tumor of each genotype was tabulated.  These 

values were plotted and the mean was compared between genotypes using a t-test.  (B) 

Quantitation of the total segments per tumor of each genotype was tabulated.  These 

values were plotted and the mean was compared between genotypes using a t-test.  (C) 

Quantitation of the total abnormal segments per tumor of each genotype was tabulated.  

These values were plotted and the mean was compared between genotypes using a t-test.  

(D) Quantitation of the number of chromothriptic regions per tumor of each genotype 

was tabulated.  These values were plotted and the mean was compared between 

genotypes using a t-test.  *P < 0.05.  NS- not significant. 

A B C D 
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Figure 3.15: Verification of RB1 genotype and functional pRB in mesenchymal 

cancer cell lines.  

(A) GST-E7 was used to pull down pRB from representative cancer cell lines to 

demonstrate whether they had functional pRB.  Immunoblot of a nuclear transcription 

factor SP1 was used as a loading control.  Coomassie staining reveals levels of GST or 

GST-E7 used in the experiment.  (B) Real time PCR amplification of the RB1 gene locus 

in RB1 hemizygous cell lines compared to a RB1
+/+

 cell line.  Results are normalized to 

the copy number of an internal gene locus; n = 3.     

A 

B 
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3.4.5 Haploinsufficiency of Rb1 compromises pRB-mediated 
tumor suppression 

  The pressing question that remains is whether hemizygosity of the retinoblastoma 

gene compromises pRB-mediated tumor suppression, and is therefore relevant for the 

genesis of cancer.  As mentioned in the introduction, loss of heterozygosity of the 

remaining wild type Rb1 allele is required for the development of pituitary tumors in 

Rb1
+/-

 mice however Rb1
-/-

 mice are not viable as a comparison (Jacks et al 1992, Wu et 

al 2003, Clarke et al 1992, Lee et al 1992).  However, Rb1
ΔL/ΔL

 mice are viable and can 

therefore be utilized to study whether haploinsufficiency of the LXCXE binding cleft of 

the retinoblastoma protein, as a surrogate for Rb1 haploinsufficiency itself, compromises 

pRB-mediated tumor suppression.   

We crossed Rb1
ΔL/+

 mice with Trp53
-/-

 tumor prone mice as previously reported 

(Coschi et al 2010).  Rb1
ΔL/+

; Trp53
-/-

 mice exhibited a significantly decreased survival 

compared to Trp53
-/-

 controls, with a median of 147 days, which was not significantly 

different from Rb1
ΔL/ΔL

; Trp53
-/-

 mice (139 days) (Fig. 3.16A; Coschi et al 2010).  PCR 

amplification of the wild type and knock-in Rb1 alleles in tumor and corresponding 

control tail DNA from  Rb1
ΔL/+

; Trp53
-/-

 mice showed retention of the wild type allele in 

all tumors tested (Fig. 3.16B).  Thymic lymphomas from Rb1
ΔL/+

; Trp53
-/-

 mice 

demonstrate a more aggressive tumor phenotype compared to Trp53
-/-

 controls as 

evidenced by smaller cells with large nuclei (Fig. 3.16E-H and D respectively), similar to 

the histology from Rb1
ΔL/ΔL

; Trp53
-/-

 thymic lymphomas (Fig. 3.16C; Coschi et al 2010).  

Furthermore as with Rb1
ΔL/ΔL

; Trp53
-/-

 mice, Rb1
ΔL/+

; Trp53
-/-

 mice exhibit a significant 

shift in their acquired tumor spectrum from thymic lymphoma commonly reported in 

Trp53
-/-

 mice, towards sarcoma (Table 3.5; Coschi et al 2010).  We then investigated 

whether thymic lymphomas from these mice exhibit increased genomic instability.  DNA 

from thymic lymphomas of twelve Rb1
ΔL/+

; Trp53
-/-

 mice were subjected to array 

comparative genomic hybridization (aCGH), and DNA copy number status in tumors was 

evaluated as previously described (Coschi et al 2010).  Figure 3.17A shows 

representative Log2 ratio plots from a male versus female control hybridization and select 

Rb1
ΔL/+

; Trp53
-/-

 tumors hybridized against same sex control DNA.  Our analysis 

revealed a significant increase in the number of whole autosome gains and losses in  
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Figure 3.16: Haploinsufficiency compromises pRB-mediated tumor suppression.  

(A) Kaplan-Meier survival proportions are shown for Rb1
ΔL/+

; Trp53
-/-

 mice (n=52).  Data 

shown for Rb1
ΔL/ΔL

; Trp53
-/-

 and Trp53
-/-

 mice has been previously reported by Coschi et 

al, 2010, and is included as a comparison. (B) Rb1 wild type and ΔL alleles from tail and 

the indicated tumor DNA from Rb1
ΔL/+

; Trp53
-/-

 mice were PCR amplified as described 

(see Methods). (C-H) Representative images of cancers found in Trp53
-/-

 control, 

Rb1
ΔL/ΔL

; Trp53
-/-

 and Rb1
ΔL/+

; Trp53
-/-

 compound mutants.  (C)  H&E staining of a 

thymic lymphoma from a Trp53
-/-

 mouse.  (D)  H&E staining of a thymic lymphoma 

from a Rb1
ΔL/ΔL

; Trp53
-/-

 mouse.  (E-H)  H&E staining of thymic lymphomas from 

Rb1
ΔL/+

; Trp53
-/-

 mice. Scale bars in C-H are 100 µm.   

A 

B 

C D E F G H 
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Table 3.5.  Summary of pathology from mice used in this study. 

 

 

 

 

 

 

Genotype Lymphoma
a
 Sarcoma Carcinoma Multiple 

types
b
 

Metastases N-value 

Trp53
-/-

 33 3 0 1 7 35 

Rb1
∆L/∆L

;Trp53
-/-

 31 27
c
 3 15

c
 18

d
 45 

Rb1
∆L/+

;Trp53
-/-

 37 18
c
 1 8 7 55 

 

 

 

 

 

 

 

 

 

a
Includes thymic lymphoma among others. 

b
This indicates that a single mouse had more than one tumor from the categories on the  

  left. 
c
Indicates a difference from controls that is above 95% confidence interval (2-test,  

  P=0.0019) 
d
Above 90% confidence interval (2-test, P=0.094) 
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Figure 3.17: Tumors from Rb1
ΔL/+

; Trp53
-/-

 mice exhibit genomic instability.   

(A) Control, or tumor DNA, was used for hybridization to whole genome arrays to 

determine regions of gain or loss in thymic lymphoma samples.  Representative graphs 

depicting Log2 ratio values plotted against chromosome number are shown.  Data points 

from individual chromosomes are shown in different colors.  (B)  Whole chromosome 

gains and losses were inferred by differences in an entire chromosome and compared 

with controls.  The number of whole chromosome changes for each tumor is plotted 

against their genotypes.  Control, Trp53
-/-

 and Rb1
ΔL/ΔL

; Trp53
-/- 

data have been 

previously reported by Coschi et al. 2010, and are presented as a comparison for Rb1
ΔL/+

; 

Trp53
-/-

 data.  The control male versus control male hybridization is shown in blue, the 

male versus female hybridizations are shown in yellow, and Trp53
-/-

 and Rb1
ΔL/ΔL

; Trp53
-

/-
 samples are denoted by red and green respectively.  The analysis of autosomes alone is 

shown.  The mean number of changes was compared between genotypes using a t-test. 

A B 
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thymic lymphomas from Rb1
ΔL/+

; Trp53
-/-

 mice compared to Trp53
-/-

 controls and most 

notably, this instability was no less than in Rb1
ΔL/ΔL

; Trp53
-/-

 tumors (Fig. 3.17B; t-test, P 

< 0.05).   

Taken together, these data clearly demonstrate that loss of one functional LXCXE 

binding cleft of pRB results in haploinsufficiency and is enough to compromise pRB-

mediated tumor suppression.  Furthermore, this compromise occurs through the same 

mechanism as in Rb1
ΔL/ΔL

; Trp53
-/-

 mice- compromised genome stability. 

 

3.5 Discussion 

In this study we report a novel pRB-E2F1-Condensin II complex interaction at 

pericentromeric heterochromatin that exhibits Rb1 dose sensitivity.  Loss of this complex 

leads to the accumulation of DNA double strand breaks and mitotic errors which is highly 

suggestive of replication stress.  Recently, replication stress was demonstrated to result in 

genomic instability associated with tumorigenesis (Burrell et al 2013).  While the 

chromosomal abnormalities associated with replication stress are well characterized, the 

mechanism by which this might occur is still unknown.  Therefore understanding the 

mechanism(s) by which replication stress is mitigated represents a key opportunity for the 

development of novel therapeutics. 

Two key findings will now be highlighted from this report.  The first is that we 

provide strong evidence to question the extrapolation of Knudson’s hypothesis, that both 

copies of RB1 must be lost to initiate tumorigenesis, to all contexts of RB1 loss in cancer 

(Knudson 1971).  The sole tumor suppressive role of the retinoblastoma protein has 

traditionally been attributed to its negative regulation of E2F transcription factors, 

thereby preventing cell cycle progression (Dyson 1998).  Studies using the Rb1
ΔL/ΔL

 

mouse however, have revealed an unappreciated role of pRB-mediated tumor 

suppression- the maintenance of genome stability.  Using Rb1
ΔL/ΔL

 mice as a comparison, 

we demonstrate that haploinsufficiency of the LXCXE binding cleft functionally 

contributes to pRB-mediated tumor suppression.  In humans, Retinoblastoma survivors 

acquire early-onset second primary neoplasms with a penetrance increased over the 
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general population (Abramson et al 1976).  Thus it is interesting to speculate that the 

underlying genomic instability we observe in RB1
+/-

 patient fibroblasts could contribute 

to this increased penetrance.  These second primary neoplasms often occur in cells of 

mesenchymal origin (Abramson et al 1976, Friend et al 1987).  Furthermore, like both 

the MEFs and patient fibroblasts used in our studies, the thymic lymphomas and 

sarcomas acquired in our mouse models of cancer also arise from cells of mesenchymal 

origin.    Accordingly, copy number change data from the COSMIC database for several 

tumors of mesenchymal origin found that RB1
+/-

 tumors exhibit as much genome 

instability as RB1
-/-

 tumors across multiple criteria, both of which are significantly 

increased over tumors with wild type RB1.  This suggests that haploinsufficiency of RB1 

is particularly important in the pathogenesis of mesenchymal cancers. 

It is notable that other studies have implicated heterozygosity of Rb1 in 

compromising full pRB-function, though a mechanism to explain the observed 

haploinsufficiency and its contribution to pRB-mediated tumor suppression has been 

lacking (Zheng et al 2002, Williams et al 1994).  The second key finding in this report is 

therefore that we provide strong evidence implicating an Rb1 gene dosage sensitive 

complex of pRB, E2F1 and Condensin II in mitigating replication stress to maintain 

genome stability.  In turn, this novel mechanism contributes to pRB-mediated tumor 

suppression.  Replication stress typically occurs at fragile sites or repetitive regions of the 

genome and is marked by DNA double strand breaks in the ensuing G1 phase, and 

mitotic errors such as lagging chromosomes.  We observe these defects in Rb1
+/-

, Rb1
-/-

, 

Rb1
ΔL/+

 and Rb1
ΔL/ΔL

 MEFs at repetitive pericentromeric heterochromatin, which is 

particularly difficult to replicate (Zaratiegui et al 2011a, Zaratiegui et al 2011b).  The 

Condensin II complex has recently been shown to play an important role in DNA 

replication by helping to resolve sister chromatids (Ide et al 2010, Akai et al 2011, Ono et 

al 2013).  It is also enriched at centromeres, suggesting a unique requirement for its 

function there (Moore et al 2005, Hagstrom et al 2002, Ono et al 2004).  In more than 

one species, pRB and E2F1 have been found together throughout the genome in S-phase, 

including at repetitive DNA and sites of replication (Wells et al 2003, Korenjak et al 

2012, Pickering and Kowalik 2006, Mendoza-Maldonado et al 2010, Barbie et al 2004).  

Moreover, there are multiple studies demonstrating that binding to pRB promotes E2F1’s 
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preference for non-canonical consensus sequences (Tao et al 1997, Dick and Dyson 

2003).  Taken together, our data is highly suggestive that loss of a pRB-E2F1-Condensin 

II complex leads to replication stress.  Future experiments to definitively demonstrate that 

replication stress is indeed occurring, such as demonstrating the accumulation of 

replication protein A (RPA) indicating stalled replication forks, are needed. 

Our data brings seemingly disparate concepts together and proposes an Rb1 gene 

dosage sensitive role for pRB, E2F1 and the Condensin II complex in DNA replication.  

RB1
+/-

 patient fibroblasts are haploinsufficient in their ability to prevent the accumulation 

of DNA double strand breaks and mitotic errors, suggesting that RB1 haploinsufficiency 

functionally contributes to tumorigenesis in humans.  The retinoblastoma protein is 

functionally lost in the majority of human cancers (Sherr 1996).  Therefore pRB’s dosage 

dependent role in the maintenance of genome stability offers new opportunities to better 

classify patients who, based on their RB1 status, may exhibit a superior response to 

therapies exploiting genomic instability. 
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Chapter 4  

4 Discussion 

4.1 A new model for pRB-mediated tumor suppression 

In addition to its well characterized role in the maintenance of proliferative 

control, the retinoblastoma protein has been found on chromatin beyond G1 of the cell 

division cycle where its role is less well defined.  Its location on chromatin coincides with 

E2F1 and together, pRB and E2F1 have been implicated in the regulation of replication 

(Wells et al 2003, Korenjak et al 2012, Mendoza-Maldonado et al 2010, Pickering and 

Kowalik 2006, Knudsen et al 2000, Sever-Chroneos et al 2001, Avni et al 2003).  The 

Condensin II complex has also been implicated in facilitating DNA replication (Stear and 

Roth 2002, Ono et al 2004, Ide et al 2010, Akai et al 2011, Ono et al 2013).  Though an 

interaction between the retinoblastoma protein and E2F1 has been previously described, a 

common mechanism linking this interaction to a role for pRB beyond G1 of the cell 

division cycle has been lacking (Longworth et al 2008). 

The data presented in Chapter 2 implicate the retinoblastoma protein in a role 

separate from the repression of E2F target gene expression and subsequent regulation of 

the G1 to S-phase transition.  This role depends on an interaction between the Condensin 

II complex and the LXCXE binding cleft and also contributes to pRB-mediated tumor 

suppression.  In Chapter 3, I build upon data reported in Chapter 2 and propose a 

mechanism whereby the retinoblastoma protein maintains genome stability.  This is 

achieved by a novel E2F1-pRB-Condensin II complex that localizes to repetitive 

pericentromeric heterochromatin.  As pericentromeric repeats are difficult to replicate 

and may have a special requirement for this complex, this may explain the Rb1 gene 

dosage sensitivity of this complex (Zaratiegui et al 2011a, Zaratiegui et al 2011b).  

Furthermore, experiments reported in Chapter 3 suggest that this complex maintains 

genome stability by mitigating replication stress, as we observe DNA damage persisting 

in mitosis and accumulating in the ensuing G1 phase of the cell division cycle. 
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Therefore I have added to our current model of pRB-mediated tumor suppression, 

suggesting that there are in fact multiple mechanisms by which pRB can be tumor 

suppressive.  Specifically, the LXCXE binding cleft of pRB also contributes to pRB-

mediated tumor suppression through the maintenance of genome stability.  Moreover, I 

have delineated a mechanism that brings together two seemingly disparate pathways, 

uniting the roles for both pRB and E2F1 with Condensin II in the maintenance of genome 

stability.   

 

4.2 Revisiting RB1 haploinsufficiency 

Based on his studies of the childhood cancer retinoblastoma, Knudson proposed 

that loss of one RB1 allele did not hasten the loss of the second RB1 allele and that 

therefore, the pRB tumor suppressor did not exhibit haploinsufficiency (Knudson 1971).  

This conclusion became widely known as the “two hit” hypothesis, which is the litmus 

test for the discovery of new tumor suppressors.  While Knudson demonstrates this 

principle for the childhood cancer retinoblastoma, data presented in this thesis questions 

the applicability this “two hit” hypothesis to all tumorigenic contexts.   

In recent years, genomic instability has transitioned from being viewed as a by-

product of tumorigenesis to being causative through enabling the persistence and 

accumulation of mutations that favour malignancy (Hanahan and Weinberg 2011).  

Therefore our observation that patient fibroblasts (RB1
+/-

) exhibit haploinsufficiency in 

their ability to properly maintain genome stability suggests that pRB could be 

haploinsufficient specifically in the context of mediating the tumor suppression of second 

primary neoplasms in retinoblastoma patients.  There is evidence in the literature to 

support this hypothesis.  Patients with inherited retinoblastoma are more likely to acquire 

second primary neoplasms than the general population.  For example, a study following 

survivors of inherited retinoblastoma that had received radiation therapy in the eye 

reported that patients were diagnosed with osteosarcomas originating in the skull 2000 

times more frequently than the general population (Abramson et al 1976).  Moreover, 

they were also diagnosed with osteosarcomas arising in their extremities 500 times more 
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frequently than is expected from the general population.  In startling contrast, survivors 

of non-inherited retinoblastoma, meaning that not all cells of their body are missing one 

copy of RB1, were diagnosed with osteosarcomas at a frequency identical to the general 

population (Abramson et al 1976).  Data such as these are strongly suggestive that loss of 

only one RB1 allele is in fact predisposing to cancer in certain contexts.   

The patient fibroblasts used in our studies are, and the majority of second primary 

neoplasms arising in survivors of inherited retinoblastoma are, both of mesenchymal cell 

origin (Abramson et al 1976, Friend et al 1987).  Interestingly, the thymic lymphomas 

and sarcomas that we observe in our mouse models of cancer are also of mesenchymal 

origin.  Moreover, all of our in vitro cell-based experiments were performed in mouse 

embryonic fibroblasts (MEFs), again of mesenchymal origin.  One could therefore 

propose that the mesenchymal lineage has a unique requirement for the proper dose of 

RB1.  This is supported by data in Chapter 3 whereby analysis of copy number data from 

the COSMIC database showed that RB1
+/-

 human cancer cells of mesenchymal origin 

exhibit as much genomic instability as those with homozygous loss of RB1.  If we again 

use the COSMIC database to look at tumors of various cell origins, and not specifically 

from retinoblastoma patients, we find that a significant number of tumors retain one wild 

type copy of RB1 (COSMIC database).  In light of these findings, it is tempting to 

speculate that we have delineated both the appropriate context and the mechanism by 

which hemizygosity of RB1 exhibits haploinsufficiency of pRB-mediated tumor 

suppression.   

 

4.3 Impact on human cancer and cancer therapies 

Over 90% of all human cancers have inactivated the retinoblastoma pathway 

(Sherr 1996).  Traditionally, reconstituting cells with wild type pRB, or reactivating the 

pRB pathway (depending on tumor-specific mutations) has been considered the only way 

to restore pRB-mediated cell cycle control and thereby stop cancer cell growth.  This is 

based on experiments which showed that reconstituting cancer cells with wild type pRB 

was enough to restore cell cycle control (Takahashi et al 1991, Bookstein et al 1990, 
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Huang et al 1988).  However, this is not feasible for the many cancers where cyclin/cdk 

complexes are constitutively activated.  If such cancer cells were reconstituted with wild 

type pRB, the protein would become hyperphosphorylated and remain unable to re-

establish cell cycle control. 

In light of the work presented in this thesis, I propose that instead of attempting to 

restore pRB function in cancer cells, their increased genomic instability could be 

exploited therapeutically.  Based on the fact that RB1
+/-

 cells exhibit haploinsufficiency in 

mediating genome stability, this type of therapy would apply to cancers that have lost 

either one or both copies of RB1.  Therefore cancers lacking the wild type dose of RB1 

may respond better to combinations of chemotherapeutic agents or other targeted 

strategies that enhance genomic instability or inhibit DNA damage repair.  In theory, 

these cancer cells will be more sensitive to the increased burden of DNA damage and will 

therefore be sent into genomic catastrophe and subsequent apoptosis.  There is 

precedence for the success of such a therapy schema.  For example, PARP inhibitors are 

used to treat breast cancers with BRCA1/2 mutations (Lord and Ashworth 2008, Rios and 

Puhalla 2011).  BRCA1/2 protein facilitates DNA double strand break repair and when 

mutated, cells rely solely on PARP to mediate DNA damage repair (Huen et al 2010, 

Stolz et al 2010).  When these cells are treated with PARP inhibitors, a synthetic lethality 

is created that compromises DNA repair pathways (Lord and Ashworth 2008, Rios and 

Puhalla 2011).  In turn, cancer cells are unable to recover and undergo apoptosis (Lord 

and Ashworth 2008, Rios and Puhalla 2011).  

Conversely, exploiting the role for pRB in the maintenance of genome stability 

with combinations of chemotherapies or targeted agents may represent a novel 

mechanism to treat cancers which appear “addicted” to pRB expression.  Colon cancer is 

unique in that RB1 has been shown to play an oncogenic role and E2F1 a tumor 

suppressive role (Yang et al 2009, Bramis et al 2004).  It has been shown that loss of 

pRB and activation of E2F1 induces apoptosis in colon cancer cells, and this is supported 

by evidence that the interaction between E2F1 and the C-terminus of pRB serves to 

inhibit E2F1-induced apoptosis in certain contexts (Carnevale et al 2012, Dick and 

Dyson 2003, Elliot et al 2001, Elliot et al 2002, Kitagawa et al 2008).  Therefore, 
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disruption of the interaction between E2F1 and the C-terminus of pRB in colon cancer 

with a targeted therapy would serve a two-fold purpose- to increase genomic instability 

by preventing pRB from recruiting Condensin II to chromatin, and to induce E2F1-

mediated apoptosis.  If such a targeted therapy were combined with a chemotherapeutic 

causing DNA damage, exacerbation of genomic instability may be synergistic in leading 

to cancer cell death. 

Other cancers, such as ovarian cancer and non-small cell lung cancer, also retain 

expression of pRB (Kommoss et al 2007, du Bois et al 2003, Knudsen and Knudsen 

2008).  This has been shown to inversely correlate with the induction of cancer cell death 

in response to DNA damaging chemotherapies and overall survival (Kommoss et al 

2007, du Bois et al 2003, Knudsen and Knudsen 2008).  Therefore these subpopulations 

of patients whose cancers retain pRB expression may benefit from therapies disrupting 

the specific E2F1-pRB interaction as it represents two potentially synergistic approaches 

to inducing widespread apoptosis in cancer cells. 

 

4.4 Remaining questions 

 Though we have begun to delineate the way in which the LXCXE binding cleft 

mediates tumor suppression, there are still several questions to be answered.  For 

example, though this E2F1-pRB-Condensin II complex acts beyond G1 of the cell 

division cycle, we do not know whether the pRB in this complex is hyperphosphorylated 

and whether hyperphosphorylation represents an activating signal for this role, or whether 

a subset of pRB is protected from hyperphosphorylation and becomes part of this 

complex.  There is evidence to support both possibilities.  It has been reported that upon 

DNA damage in S-phase, pRB becomes dephosphorylated and/or acetylated and can bind 

to and repress E2F transcription factors (Knudsen et al 2000, Sever-Chroneos et al 2001, 

Avni et al 2003).  It is possible that this hypophosphorylated species binds to E2F1 only 

at loci that have been marked by DNA damage.  Alternatively, E2F1 can bind to the C-

terminus of hyperphosphorylated pRB, thereby providing a way to separate pRB’s 

inhibition of E2F target gene transcription from its role in the maintenance of genome 
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stability through post translational modifications (Cecchini and Dick 2011).  

Additionally, binding of E2F1 to phosphorylated pRB has been proposed to alter the 

specificity of E2F1 such that it can bind at non-canonical E2F consensus sequences on 

DNA, which is perhaps a more satisfying rationale than the first (Tao et al 1997, Dick 

and Dyson 2003).  Delineating the contexts in which this E2F1-pRB-Condensin II 

complex can be formed merits further research because it could potentially indicate 

whether RB1
+/+

 cancers with constitutively active cyclin/cdk complexes, and therefore 

hyperphosphorylated pRB and deregulated E2F target gene transcription, would respond 

to therapies that exacerbate genomic instability in a pRB-dependent manner. 

 Additionally, though we know that E2F1 recruits pRB to chromatin, which in turn 

recruits the Condensin II complex, we do not know whether Condensin II is recruited 

through a direct interaction with pRB, or whether this occurs through secondary means.  

There is data to suggest that different histone modifications can recruit the Condensin II 

complex to chromatin (Liu et al 2010).  If so, the inability of chromatin modifying 

enzymes to bind in pRB’s LXCXE binding cleft may result in loss of the deposition of 

the necessary histone modifications to recruit Condensin II to chromatin in a pRB-

dependent manner.  However, immunoprecipitation experiments presented in Chapter 2 

of this thesis suggest that the interaction could be direct, for example pRB-ΔL cannot 

immunoprecipitate with CAP-D3 of the Condensin II complex, though wild type pRB is 

able. 

Another open question asks whether this E2F1-pRB-Condensin II complex is 

important for facilitating DNA replication.  Data presented in Chapter 3 is highly 

suggestive that this is the case and this is supported by data from other labs.  For example 

Condensin II has recently been shown to mediate sister chromatid resolution as DNA is 

replicated in S-phase (Ono et al 2013).  Moreover, replication protein A (RPA) has been 

demonstrated to antagonize Condensins during replication such that when Condensins are 

disabled, genomic instability occurs (Akai et al 2011).  Experiments to challenge DNA 

replication will help delineate the function of this E2F1-pRB-Condensin II complex in S-

phase, and also be indicative of the best use of targeted therapies to exploit genomic 

instability in cancers lacking RB1. 
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Finally, data reported in Chapter 3 of this thesis suggests that the specific 

interaction of pRB with E2F1 recruits Condensin II to chromatin, specifically at 

pericentromeric repeats.  In yeast, Condensins have been shown to prevent the 

transcription and expansion of the highly repetitive rDNA sequences (Johzuka et al 2006, 

Clemente-Blanco et al 2009, Johzuka and Horiuchi 2007, Ide et al 2010).  Moreover, 

Condensins have also been shown to promote clustering of yeast tRNA genes in the 

nucleolus (Thompson et al 2003, Haeusler et al 2008).  Therefore it is tempting to 

suggest that while we have so far identified pericentromeric heterochromatin as having a 

unique requirement for the Condensin II complex, other repetitive sequences in the 

human genome may also have this same unique requirement. 

 

4.5 Summary of findings 

 The retinoblastoma protein is known as the prototypical tumor suppressor.  The 

contribution of the retinoblastoma protein to tumor suppression has been largely 

attributed to its maintenance of proliferative control mediated through binding to and 

repressing E2F transcription factors (Dyson 1998).  As a result, other functions of the 

retinoblastoma protein that contribute to tumor suppression have been overlooked.   

 In this thesis I demonstrate that the LXCXE binding cleft of the retinoblastoma 

protein contributes to pRB-mediated tumor suppression, independent of its regulation of 

the cell division cycle, through the maintenance of genome stability.  Using the Rb1
ΔL/ΔL

 

mouse model I show that thymic lymphomas from Rb1
ΔL/ΔL

; Trp53
-/-

 exhibit increased 

genomic instability compared to those from Trp53
-/-

 controls.  Moreover, Rb1
ΔL/ΔL

 MEFs 

exhibit chromosome and mitotic defects correlating with increased aneuploidy that are 

attributed to loss of an interaction between pRB-ΔL and the Condensin II complex. 

 In Chapter 3 I describe the mechanism by which pRB maintains genome stability 

in more detail.  Localization of the Condensin II complex to chromatin at discrete loci 

depends on pRB, which in turn is dependent upon a specific interaction with E2F1.  I 

have found a defined locus where this interaction is of particular importance, namely 
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pericentromeric heterochromatin, a non-canonical E2F binding site.  Loss of this complex 

on chromatin leads to increased DNA damage, specifically at dosage-sensitive loci like 

pericentromeric heterochromatin. 

 Another important finding from work in Chapter 3 revealed that the RB1 gene 

exhibits haploinsufficiency.  RB1
+/-

 retinoblastoma patient fibroblasts recapitulate the 

mitotic defects observed in Rb1
ΔL/ΔL

, Rb1
ΔL/+

 and Rb1
+/-

 MEFs.  Moreover, human cancer 

cells hemizygous for RB1 exhibit as much genomic instability as those with homozygous 

loss of RB1.  This data causes us to re-examine our current view of the “two hit” 

hypothesis stipulating that both copies of RB1 must be lost in order to compromise pRB-

mediated tumor suppression.  However, it may provide an explanation for the statistics 

showing that survivors of familial retinoblastoma are more susceptible to the acquisition 

of second primary neoplasms than the general population (Abramson et al 1976). 
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Appendix A 

Appendix A: Permission for publication by Cellular and Molecular Life Sciences. 

Some material in Chapter 1 was excerpted from a review article published in Cellular and 

Molecular Life Sciences, containing three figures, by Springer and SP Birkhäuser Verlag 

Basel. Copyright © 2012 by Springer Basel AG.   

Coschi CH, and Dick FA. (2012). Chromosome instability and deregulated proliferation: 

an unavoidable duo. Cell Mol Life Sci. 69(12): 2009-24. 

Below, with kind permission from Springer Science+Business Media B. V., is the 

granted permission for publication in this thesis. 
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Appendix B 

Appendix B: Permission for publication by Genes & Development. 

Data presented in Chapter 2 is published in Genes & Development; Copyright © 2010 by 

Cold Spring Harbor Laboratory Press.   

Coschi CH, Martens AL, Ritchie K, Francis SM, Chakrabarti S, Bérubé NG, Dick FA. 

(2010). Mitotic chromosome condensation mediated by the retinoblastoma protein is 

tumor-suppressive. Genes Dev. 24(13): 1351-63. 

Below is permission for publication in this thesis. 
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Appendix C: Investigation of chromosome fusions mediated by rDNA repeats. 

 

(A) Pictogram showing the location of rDNA genes on the p-arms of mouse 

chromosomes 12, 15, 16, 17, 18 and 19. In order to investigate whether centromere 

fusions also include rDNA repeats, fluorescence in situ hybridization using probes 

specific to rDNA repeats was performed on metaphase spreads from MEFs. (B) 

Metaphase spreads were prepared, hybridized with rDNA probes, and subsequently 

stained with DAPI. Images of DAPI stained chromosomes (blue) and FITC stained rDNA 

repeats (green) are shown, as are the corresponding overlaid images. Red arrows indicate 

chromosome interactions in the absence of rDNA repeats, yellow arrows indicate 

centromere interactions where one of the chromosomes stains positively for rDNA. (C) 

The total number of adjacent centromeres was counted, as well as the number of 

interactions involving rDNA-containing chromosomes, in Rb1
+/+

 and Rb1
ΔL/ΔL

 MEFs. 

The proportion of centromere interactions containing rDNA was compared between both 

genotypes using the χ2-test for statistical significance and no difference was found. Thus, 

even though Rb1
ΔL/ΔL

 metaphase spreads have a greater proportion of interacting 

chromosomes than wild type, the frequency with which rDNA repeats could be part of 

this interaction is no more abundant in the mutants than wild type controls. 

A C 

B 
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Appendix D 

 

 

 

 

 

 

 

 

 

 

 

Appendix D: Equivalent, low level expression of H2B-GFP in Rb1
+/+

 and Rb1
ΔL/ΔL

 

MEFs. 

(A) Western blot analysis of pBABE-H2B-GFP transduced MEFs using an anti-GFP 

antibody shows equivalent expression in Rb1
+/+

 and Rb1
ΔL/ΔL

 MEFs (upper panel). The 

lower panel shows a western blot of the same extracts using an anti-H2B antibody. The 

migration positions for endogenous H2B and the expected position of H2B-GFP are 

shown. The inability to detect H2B-GFP over background using anti-H2B antibodies 

reveals that the ratio of H2B-GFP to endogenous H2B is very low. (B) Coomassie stain 

and Western blot analysis of the chromatin fractionation demonstrates clear enrichment 

of the chromatin fraction with histones, that are absent in the nucleoplasmic fraction. (C) 

Western blot analysis of whole cell extract from both MEFs and ESCs demonstrates that 

there are normal levels of CAP-D3 protein in Rb1
ΔL/ΔL

 cells compared to wild type. The 

asterisk (*) indicates a non-specific band. (D)  Western blot analysis of whole cell extract 

reveals the presence of hypophosphorylated pRB in ESCs. Analysis of chromatin 

fractions reveals enrichment of hypophosphorylated pRB on the chromatin of Rb1
+/+

 and 

Rb1
ΔL/ΔL

 MEFs and ESCs. Please note that these samples were not normalized for input 

levels.   

A B 

C 

A 

D 
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Appendix E 

 

 

 

 

 

 

 

Appendix E: Rb1
ΔL/ΔL

 mice do not develop spontaneous tumors. 

(A) Kaplan-Meier survival proportions for wild type (n=9), Rb1
+/-

 (n=9), and Rb1
ΔL/ΔL

 

(n=14) mice.  Rb1
+/-

 mice most frequently succumb to pituitary tumors, and occasionally 

to thyroid cancers, at approximately one year of age. Our data is consistent with previous 

reports for this genotype in a mixed genetic background. From this analysis, Rb1
ΔL/ΔL

 

mutant mice have a similar life expectancy as wild type controls. Furthermore, these 

animals do not display any distinct pathology at the time of euthanasia. (B) Photographs 

of normal pituitaries in wild type and Rb1
ΔL/ΔL

 mice at the time of necropsy, a pituitary 

tumor from a Rb1
+/-

 control is shown for comparison. The scale bar is 2 mm. 

A 

B 
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Appendix F: Normal thymic development in Rb1
ΔL/ΔL

 and Rb1
ΔL/ΔL

; Trp53
-/-

 mice.  

(A) H&E staining of tissue sections from developing thymi in mice of the indicated 

genotypes.  Note the normal appearance of the cortex (C) and medullar regions (M) in all 

genotypes.  The scale bar is 50μm. (B) Development of T-cells was assessed by staining 

for CD4 and CD8 cell surface markers and by quantitating positive cells by flow 

cytometry.  Note normal levels of all cell types in scatter plots and the summary table. 

(C) Proliferation was measured by injecting mice with BrdU one hour prior to euthanasia. 

Cryosections of thymic tissue were stained using anti-BrdU antibodies. The abundance of 

positively staining nuclei per unit area of tissue was counted and averaged for at least 

three mice of each genotype. This analysis revealed that there is no difference in 

proliferation among these genotypes. (D) E2F target gene expression, BubR1, MCM7, 

and PCNA was examined in the thymus of Rb1
+/+

, Rb1
ΔL/ΔL

 and Rb1
ΔL/ΔL

; Trp53
-/-

 mice. 

In all cases, western blots revealed that protein expression was normal. 

Genotype n CD4
-
 CD8

-
CD4

+
CD8

+
CD4

-
CD8

+
CD4

+
CD8

-

Rb1
+/+

6 3.17 + 1.44 81.82 + 5.66 5.60 + 2.08 9.41 + 2.59

Rb1
∆L/∆L

5 3.44 + 2.85 85.18 + 6.89 3.64 + 1.05 7.73 + 3.12

Rb1
∆L/∆L

;Trp53
-/-

6 1.64 + 0.66 84.4 + 6.11 5.11 + 2.05 8.84 + 4.30

A B 

C D 
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Appendix G: Some Rb1
ΔL/ΔL

; Trp53
-/-

 tumor DNA samples have an increased 

number of sub-chromosomal segment changes compared to controls. 

Control DNA samples, or DNA samples from individual tumors versus controls, were 

used for hybridization to whole genome arrays as described in materials and methods. 

The graph shows Log2 ratio values plotted against chromosome number, data points from 

each chromosome are a different color. In order to examine sub-chromosomal DNA copy 

number changes in each control and tumor DNA hybridization, a segmentation algorithm 

was applied to all data sets. Simply put, this algorithm groups data points with similar 

Log2 ratio values that are adjacent to one another. (A) The number of segments found in 

this control male versus control male hybridization is shown below each respective 

chromosome. The total number of segments is 30, which is relatively close to the total 

number of autosomes and sex chromosomes (21) and, as shown, most chromosomes are 

seen as a single segment by this analysis with only a few slight changes in Log2 ratios 

being erroneously detected and described as different. This indicates that increased 

numbers of segments can be related to actual changes in the genome with relatively high 

confidence. (B) The total number of segments for each hybridization experiment was 

determined and are organized into categories by control or tumor genotype. The blue dot 

is control male versus control male, the yellow dots are control male versus control 

female. In the tumor samples, the number of segments vastly exceeds the number of 

individual chromosomes. This implies that extensive sub-chromosomal rearrangements 

take place in these cancers. Some Rb1
ΔL/ΔL

; Trp53
-/-

 tumor DNA samples have elevated 

numbers of segments compared with controls, suggesting that segmental chromosome 

instability may play a role in the increased aggressiveness of Rb1
ΔL/ΔL

; Trp53
-/-

 tumors. 

A 

B 
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Appendix H: Histology and necropsy data of Rb1
ΔL/ΔL

; Trp53
-/-

, Trp53
-/-

, Rb1
ΔL/ΔL

; 

Trp53
+/-

 and Trp53
+/-

 mice in the Chapter 2 tumor study. 

 

 

Mouse Sex Genotype 

# days 

lived Histology/Necropsy results 

          

A4021 M Rb1ΔL/ΔL;Trp53-/- 132 thymic lymphoma 

A4029 M Rb1ΔL/ΔL;Trp53-/- 136 thymic lymphoma 

A4054 M Rb1ΔL/ΔL;Trp53-/- 239 thymic lymphoma, kidney - lymphoma, tumor - sarcoma 

A4074 M Rb1ΔL/ΔL;Trp53-/- 185 tumor - sarcoma 

A4222 M Rb1ΔL/ΔL;Trp53-/- 89 tumor - sarcoma 

A4246 M Rb1ΔL/ΔL;Trp53-/- 119 thymic lymphoma 

A4634 M Rb1ΔL/ΔL;Trp53-/- 93 tumor - sarcoma 

A4636 M Rb1ΔL/ΔL;Trp53-/- 102 salivary gland - lymphoma 

A4678 M Rb1ΔL/ΔL;Trp53-/- 99 thymic lymphoma 

A4832 M Rb1ΔL/ΔL;Trp53-/- 165 thymic lymphoma 

A4850 F Rb1ΔL/ΔL;Trp53-/- 111 thymic lymphoma 

A4871 M Rb1ΔL/ΔL;Trp53-/- 148 thymic lymphoma 

A4891 M Rb1ΔL/ΔL;Trp53-/- 137 liver & spleen - lymphoma, lung - carcinoma & lymphoma  

A4892 F Rb1ΔL/ΔL;Trp53-/- 95 thymic lymphoma 

A5633 M Rb1ΔL/ΔL;Trp53-/- 178 kidneys & lymph nodes - lymphoma 

A5667 M Rb1ΔL/ΔL;Trp53-/- 146 tumor - high grade sarcoma, thymic lymphoma 

A6547 M Rb1ΔL/ΔL;Trp53-/- 157 spleen - lymphoma 

A6553 F Rb1ΔL/ΔL;Trp53-/- 152 tumor - sarcoma 

A7568 M Rb1ΔL/ΔL;Trp53-/- 104 tumor - sarcoma 

A6585 M Rb1ΔL/ΔL;Trp53-/- 160 thymic lymphoma, lymph nodes - lymphoma 

A6557 M Rb1ΔL/ΔL;Trp53-/- 225 
liver - adenocarcinoma & lymphoma, lymph nodes - sarcoma, spleen - 
lymphoma 

A7000 M Rb1ΔL/ΔL;Trp53-/- 127 

tumor - sarcoma with lymphoma infiltration, liver - lymphoma, thymic 

lymphoma 

A7047 M Rb1ΔL/ΔL;Trp53-/- 133 tumor - sarcoma 

A6946 M Rb1ΔL/ΔL;Trp53-/- 101 tumor - sarcoma 

A6968 F Rb1ΔL/ΔL;Trp53-/- 172 spleen - lymphoma 

A6985 M Rb1ΔL/ΔL;Trp53-/- 102 thymic lymphoma, lung, kidneys & liver - lymphoma 

A7504 M Rb1ΔL/ΔL;Trp53-/- 97 thymic lymphoma, kidney, spleen & liver - lymphoma 

A7516 F Rb1ΔL/ΔL;Trp53-/- 100 tumor - sarcoma 

A7540 F Rb1ΔL/ΔL;Trp53-/- 147 tumor - squamous cell carcinoma, thymus - sarcoma 

A7557 M Rb1ΔL/ΔL;Trp53-/- 183 tumor - sarcoma 

A7567 M Rb1ΔL/ΔL;Trp53-/- 169 

thymic lymphoma, thyroid, spleen & liver - lymphoma, tumor - lymphoma & 

sarcoma 

A7568 M Rb1ΔL/ΔL;Trp53-/- 104 tumor - sarcoma 

A7598 F Rb1ΔL/ΔL;Trp53-/- 155 

high grade lymphoma throughout lymphatics, lymphoma encapsulating 

kidney, salivary gland & lymph node - lymphoma 

A9714 M Rb1ΔL/ΔL;Trp53-/- 182 

heart, liver, spleen & lymph node - lymphoma, tumor & lungs - sarcoma & 

lymphoma 

A9728 M Rb1ΔL/ΔL;Trp53-/- 180 

lymph node, spleen, pancreas & salivary gland - lymphoma, thymic 

lymphoma, lung- sarcoma, tumor - sarcoma 

A9747 M Rb1ΔL/ΔL;Trp53-/- 179 large intestine & colon - sarcoma 

B2958 M Rb1ΔL/ΔL;Trp53-/- 109 large intestine - sarcoma with some lymphoma 

B2309 F Rb1ΔL/ΔL;Trp53-/- 161 lymph node & spleen - lymphoma, thymus - sarcoma with some lymphoma 

B2311 F Rb1ΔL/ΔL;Trp53-/- 163 lymph node, salivary gland - lymphoma, tumor - sarcoma,ovary - lymphoma 

B2330 F Rb1ΔL/ΔL;Trp53-/- 114 

liver - lymphoma, thymic lymphoma, spleen - lymphoma, tumor - lymphoma 

& sarcoma  

B2386 M Rb1ΔL/ΔL;Trp53-/- 181 tumor - sarcoma 

B3854 M Rb1ΔL/ΔL;Trp53-/- 155 thymic lymphoma, spleen & liver - lymphoma  

B4699 M Rb1ΔL/ΔL;Trp53-/- 139 tumor - sarcoma & lymphoma 

B4931 F Rb1ΔL/ΔL;Trp53-/- 113 tumor - sarcoma, kidney - sarcoma 

B4920 F Rb1ΔL/ΔL;Trp53-/- 77 liver - sarcoma, spleen - lymphoma, tumor - sarcoma  
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Mouse Sex Genotype 

# days 

lived Histology/Necropsy results 

A2986 M Trp53-/- 124 thymic lymphoma  

A3306 M Trp53-/- 133 thymic lymphoma 

A3323 F Trp53-/- 224 thymic lymphoma 

A3328 M Trp53-/- 170 thymic lymphoma 

A3332 M Trp53-/- 205 thymic lymphoma  

A3358 M Trp53-/- 124 tumor - sarcoma (mesenchymal) 

A3359 M Trp53-/- 100 thymic lymphoma 

A3365 M Trp53-/- 142 tumor - sarcoma 

A3374 M Trp53-/- 138 thymic lymphoma 

A3379 M Trp53-/- 179 thymic lymphoma 

A3381 M Trp53-/- 211 thymic lymphoma 

A3382 F Trp53-/- 198 thymic lymphoma 

A3385 M Trp53-/- 177 thymic lymphoma 

A3387 F Trp53-/- 220 thymic lymphoma, ovary - lymphoma 

A3388 M Trp53-/- 211 thymic lymphoma, spleen - lymphoma 

A3392 M Trp53-/- 231 thymic lymphoma (poorly differentiated) 

A4904 M Trp53-/- 218 thymic lymphoma 

A4914 M Trp53-/- 220 thymic lymphoma, spleen - lymphoma 

A4915 M Trp53-/- 169 thymic lymphoma, liver, kidney & spleen - lymphoma 

A4938 F Trp53-/- 150 thymic lymphoma 

A4941 F Trp53-/- 148 thymic lymphoma 

A4948 M Trp53-/- 192 thymic lymphoma 

A4957 M Trp53-/- 145 very aggressive thymic lymphoma 

A4959 M Trp53-/- 163 thymic lymphoma 

A4970 M Trp53-/- 130 thymic lymphoma 

A4974 M Trp53-/- 251 thymic lymphoma 

A4982 M Trp53-/- 163 tumor - high grade sarcoma & diffuse lymphoma 

A4986 M Trp53-/- 113 thymic lymphoma 

A4992 M Trp53-/- 116 thymic lymphoma 

A4997 F Trp53-/- 179 thymic lymphoma 

A8510 M Trp53-/- 96 thymic lymphoma, lymph node, spleen, kidney & liver - lymphoma 

A8518 M Trp53-/- 93 

thymic lymphoma, thyroid & salivary gland - lymphoma (poorly 

differentiated) 

B2489 M Trp53-/- 233 thymic lymphoma, lung - lymphoma 

B2493 M Trp53-/- 178 thymic lymphoma 

B2495 F Trp53-/- 157 thymic lymphoma 

A4493 M Rb1ΔL/ΔL;Trp53+/- 362 tumor - high grade sarcoma 

A4494 M Rb1ΔL/ΔL;Trp53+/- 440 small cell lymphoma in lymph node, tumor - sarcoma 

A4622 M Rb1ΔL/ΔL;Trp53+/- 480 kidney  & liver - lymphoma 

A5604 M Rb1ΔL/ΔL;Trp53+/- 449 lymphoma & sarcoma (poorly differentiated) - lymph node, liver - sarcoma 

A5631 M Rb1ΔL/ΔL;Trp53+/- 498 tumor - sarcoma 

A5656 F Rb1ΔL/ΔL;Trp53+/- 531 thymic lymphoma, spleen - lymphoma, tumor - sarcoma 

A5674 F Rb1ΔL/ΔL;Trp53+/- 233 lymph node & salivary gland - lymphoma 

A5700 M Rb1ΔL/ΔL;Trp53+/- 361 high grade spindle cell sarcoma, salivary gland - lymphoma  

A6531 F Rb1ΔL/ΔL;Trp53+/- 236 salivary gland, spleen & liver - sarcoma 

A6540 M Rb1ΔL/ΔL;Trp53+/- 451 tumor - sarcoma, lung - sarcoma 

A6600 M Rb1ΔL/ΔL;Trp53+/- 482 tumor - sarcoma, spleen - lymphoma 

A6916 F Rb1ΔL/ΔL;Trp53+/- 372 tumor - sarcoma, lymph node & spleen - lymphoma 

A6999 F Rb1ΔL/ΔL;Trp53+/- 398 tumor - sarcoma with some lymphoma  

A7046 M Rb1ΔL/ΔL;Trp53+/- 332 spindle cell carcinoma from wall of seminal vesicle 

A7521 M Rb1ΔL/ΔL;Trp53+/- 534 liver & kidney - lymphoma, spleen & lungs - sarcoma & lymphoma 

A7528 F Rb1ΔL/ΔL;Trp53+/- 414 tumor - sarcoma, colon - sarcoma 

A7530 F Rb1ΔL/ΔL;Trp53+/- 458 tumor - sarcoma & lymphoma 

A7565 M Rb1ΔL/ΔL;Trp53+/- 458 intestine - sarcoma with some lymphoma 

A7573 M Rb1ΔL/ΔL;Trp53+/- 250 salivary gland & lymph node - lymphoma 

A7580 F Rb1ΔL/ΔL;Trp53+/- 342 liver & spleen - lymphoma 

A7581 F Rb1ΔL/ΔL;Trp53+/- 184 lymph node - lymphoma 

A7583 F Rb1ΔL/ΔL;Trp53+/- 342 
lymph node - lymphoma & sarcoma, spleen - lymphoma, liver - lymphoma & 
sarcoma 

A8483 M Rb1ΔL/ΔL;Trp53+/- 662 

liver - sarcoma, spleen - lymphoma (poorly differentiated), tumor - sarcoma 

with some lymphoma 

B4621 M Rb1ΔL/ΔL;Trp53+/- 137 tumor - sarcoma, spleen - lymphoma 
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Mouse Sex Genotype 

# days 

lived Histology/Necropsy results 

A2936 M Trp53+/- 414 tumor - high grade sarcoma 

A2941 M Trp53+/- 422 spleen - low grade hemangiosarcoma 

A3380 M Trp53+/- 620 liver - lymphoma 

A3384 M Trp53+/- 659 

tumor - squamous cell carcinoma & lymphoma, seminal vesicles - lymphoma, 

seminal vesicles & salivary gland - lymphoma 

A3398 M Trp53+/- 304 thymic lymphoma  

A3399 F Trp53+/- 342 tumor - sarcoma 

A4903 M Trp53+/- 389 thymic lymphoma 

A4905 M Trp53+/- 726 

kidney encapsulated with lymphoma, lungs - sarcoma, spleen - sarcoma, liver  

- sarcoma, seminal vesicles - sarcoma 

A4909 F Trp53+/- 406 lymphoma (large cell, highly proliferative) in liver & spleen 

A4910 F Trp53+/- 505 

thymic lymphoma with sarcoma,  liver, spleen, lymph node & thymus - 

lymphoma, spleen,liver & thymus - sarcoma 

A4911 F Trp53+/- 612 tumor - sarcoma 

A4918 F Trp53+/- 526 tumor - sarcoma with osteoid definition (osteosarcoma) 

A4920 F Trp53+/- 567 
hematopoetic lymphoma (infiltration into muscle, mesenchymal tumor), liver 
- lymphoma & sarcoma, ovary - sarcoma 

A4935 M Trp53+/- 600 

sarcoma invading pancreas & some lymphoma, lump - sarcoma, spleen - 

lymphoma, seminal vesicles - sarcoma 

A4942 M Trp53+/- 408 large cell lymphoma in lymph node 

A4943 M Trp53+/- 462 hemangiosarcoma in spleen & liver 

A4944 M Trp53+/- 498 tumor - osteosarcoma  

A4947 F Trp53+/- 537 spleen & liver - lymphoma 

A4971 F Trp53+/- 494 tumor - sarcoma 

A4980 M Trp53+/- 590 liver, kidney & spleen - lymphoma 

A4985 F Trp53+/- 394 

lymph node - lymphoma, spleen - lymphoma, liver - small amount of 

lymphoma 

A4990 M Trp53+/- 588 kidney & spleen - lymphoma, liver - sarcoma, seminal vesicles - sarcoma 

A4991 M Trp53+/- 484 

seminal vesicles- sarcoma with lymphoma infiltration, lymph node - 

lymphoma  

A4995 F Trp53+/- 137 liver - lymphoma & sarcoma 

A4996 F Trp53+/- 515 uterus - spindle cell sarcoma, large & small tumor - lymphoma 
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Appendix I: Example of a whole chromosome loss from aCGH data. 

The graph depicts the Log2 ratio values versus chromosome number for the entire 

genome. Data points for each chromosome are a different color. This plot corresponds to 

the thymic lymphoma from mouse number 6585. The dot plot below is a close up view of 

the data points (black dots) and the segments they fall into (red lines) for chromosome 7. 

In some cases, segments are small enough to appear as red dots (see segment #2). After 

comparing the Log2 ratio values of the segments for chromosome 7 with the normal 

Log2 ratio range for this chromosome (see materials and methods), it was determined that 

segments 1, 2, 4 and 5 fell below the normal copy number range. The Log2 ratio value 

for segment 3 was within the normal range. Because the majority of chromosome 7 fell 

below the established normal range, and the only normal copy segment was a small 

internal portion, chromosome 7 from mouse number 6585 was scored as a whole 

chromosome loss.  
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Appendix J: Example of a whole chromosome gain from aCGH data. 

The upper graph depicts the Log2 ratio values for the entire genome versus chromosome 

number for the thymic lymphoma from mouse 4871.  The dot plot below depicts the data 

points (black dots) and the segments they fall into (red lines) for chromosome 5. Again, 

in some cases, segments are small enough to appear as red dots (see segments #2 and #8). 

After examining the Log2 ratio values of the segments for chromosome 5, it was 

determined that segments 1, 2 and 4 -9 were above of the normal copy number range 

established from the chromosome 5 control hybridization (see materials and methods), 

while the Log2 ratio value for segment 3 fell within the normal range. Because the 

majority of chromosome 5 was above the established normal range, and the only segment 

that was normal was a small internal portion of the chromosome, chromosome 5 from 

mouse 4871 was scored as a whole chromosome gain.  
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Appendix K: Histology and necropsy data of Rb1
ΔL/+

; Trp53
-/-

 mice in the Chapter 3 

tumor study 

 

Mouse Sex Genotype 
# days 

lived 
Histology/Necropsy Results 

A4025 M Rb1ΔL/+;Trp53-/- 164 thymic lymphoma, tumor- unknown origin, tumor- unknown origin 

A4053 M Rb1ΔL/+;Trp53-/- 116 tumor- unknown origin 

A4247 M Rb1ΔL/+;Trp53-/- 119 thymic lymphoma 

A4621 M Rb1ΔL/+;Trp53-/- 115 tumor- sarcoma 

A4652 M Rb1ΔL/+;Trp53-/- 214 thymic lymphoma, metastasis (pancreas, liver)- lymphoma 

A4675 M Rb1ΔL/+;Trp53-/- 110 tumor- sarcoma 

A4679 M Rb1ΔL/+;Trp53-/- 104 tumor- sarcoma 

A4685 M Rb1ΔL/+;Trp53-/- 231 thymic lymphoma 

A4686 M Rb1ΔL/+;Trp53-/- 115 tumor- sarcoma 

A4688 F Rb1ΔL/+;Trp53-/- 109 thymic lymphoma 

A4689 F Rb1ΔL/+;Trp53-/- 91 thymic lymphoma 

A4827 F Rb1ΔL/+;Trp53-/- 65 enlarged thymus 

A4842 F Rb1ΔL/+;Trp53-/- 119 thymic lymphoma 

A4858 M Rb1ΔL/+;Trp53-/- 166 thymic lymphoma 

A4870 M Rb1ΔL/+;Trp53-/- 103 tumor- sarcoma 

A4876 M Rb1ΔL/+;Trp53-/- 211 thymic lymphoma, tumor- sarcoma 

A4877 M Rb1ΔL/+;Trp53-/- 179 thymic lymphoma 

A5216 M Rb1ΔL/+;Trp53-/- 151 tumor- unknown origin 

A5221 M Rb1ΔL/+;Trp53-/- 128 thymic lymphoma 

A5269 M Rb1ΔL/+;Trp53-/- 156 thymic lymphoma 

A5270 M Rb1ΔL/+;Trp53-/- 157 thymic lymphoma, metastasis (lump around forelimb)- carcinoma 

A5601 M Rb1ΔL/+;Trp53-/- 211 thymic lymphoma, tumor- sarcoma 

A5605 M Rb1ΔL/+;Trp53-/- 112 thymic lymphoma 

A5606 M Rb1ΔL/+;Trp53-/- 138 thymic lymphoma, metastasis (kidney, liver, skin)- lymphoma 

A5610 F Rb1ΔL/+;Trp53-/- 216 tumor- sarcoma 

A5618 F Rb1ΔL/+;Trp53-/- 169 thymic lymphoma 

A5651 M Rb1ΔL/+;Trp53-/- 189 thymic lymphoma 

A5662 M Rb1ΔL/+;Trp53-/- 125 tumor- sarcoma 

A5666 M Rb1ΔL/+;Trp53-/- 97 enlarged thymus 

A5683 F Rb1ΔL/+;Trp53-/- 229 thymic lymphoma 

A6502 M Rb1ΔL/+;Trp53-/- 116 tumor- sarcoma 

A6504 F Rb1ΔL/+;Trp53-/- 161 thymic lymphoma 

A6518 M Rb1ΔL/+;Trp53-/- 109 thymic lymphoma 

A6527 M Rb1ΔL/+;Trp53-/- 115 thymic lymphoma 

A6558 M Rb1ΔL/+;Trp53-/- 130 tumor- sarcoma 

A6577 M Rb1ΔL/+;Trp53-/- 217 thymic lymphoma 

A6590 M Rb1ΔL/+;Trp53-/- 227 thymic lymphoma 

A6917 M Rb1ΔL/+;Trp53-/- 208 tumor- sarcoma 

A6926 M Rb1ΔL/+;Trp53-/- 104 thymic lymphoma 

A6927 M Rb1ΔL/+;Trp53-/- 108 thymic lymphoma 

A6930 F Rb1ΔL/+;Trp53-/- 179 tumor- lymphoma, tumor- sarcoma 

A6951 F Rb1ΔL/+;Trp53-/- 177 metastasis (lump above tail)- lymphoma, tumor- sarcoma 

A6958 F Rb1ΔL/+;Trp53-/- 130 thymic lymphoma, tumor- sarcoma 

A6981 F Rb1ΔL/+;Trp53-/- 224 tumor- unknown origin 

A6983 M Rb1ΔL/+;Trp53-/- 207 tumor- sarcoma 

A6988 M Rb1ΔL/+;Trp53-/- 149 tumor- sarcoma 

A6992 F Rb1ΔL/+;Trp53-/- 197 thymic lymphoma 

A7502 M Rb1ΔL/+;Trp53-/- 152 thymic lymphoma 

A7568 M Rb1ΔL/+;Trp53-/- 104 tumor- sarcoma 

A7577 M Rb1ΔL/+;Trp53-/- 129 metastasis (pancreas)- lymphoma 

A7578 M Rb1ΔL/+;Trp53-/- 121 thymic lymphoma 

A9727 M Rb1ΔL/+;Trp53-/- 149 thymic lymphoma 
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Mouse Sex Genotype 
# days 

lived 
Histology/Necropsy Results 

A9768 F Rb1ΔL/+;Trp53-/- 147 thymic lymphoma, metastasis (lung)- lymphoma, tumor- sarcoma 

A9784 M Rb1ΔL/+;Trp53-/- 167 thymic lymphoma, metastasis (liver)- lymphoma 

B439 F Rb1ΔL/+;Trp53-/- 98 thymic lymphoma 
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Appendix L: List of Plasmids. 

 

Plasmid name Genes encoded 
Obtained/ 

Constructed by 
Resistance Stock # 

pBOS-H2BGFP H2BGFP fusion BD Pharmingen 
Ampicilin, 

Blasticidin 
0448 

pBABE-H2BGFP H2BGFP fusion Christina Isaac 
Ampicillin, 

Puromycin 
0449 

pMr100 rDNA genes Ingrid Grummt Ampicillin 0664 

pMr3’Eco rDNA genes Ingrid Grummt Ampicillin 0665 

pMr074 rDNA genes Ingrid Grummt Ampicillin 0666 

shLuc H2BGFP, shLuc Courtney Coschi Ampicillin 0608 

sh63 
H2BGFP, 

sh63 
Courtney Coschi Ampicillin 0607 

sh64 
H2BGFP, 

sh64 
Courtney Coschi Ampicillin 0606 

sh66 
H2BGFP, 

sh66 
Courtney Coschi Ampicillin 0605 

sh67 
H2BGFP, 

sh67 
Courtney Coschi Ampicillin 0604 

pLMP PGK, GFP, shLuc Mike Golding Puromycin 0487 

pGIPz-V2LMM_91263 sh63 Open Biosystems 

Ampicillin, 

Puromycin, 

Hygromycin, 

Zeomycin 

0650 

pGIPz-V2LMM_91264 sh64 Open Biosystems 

Ampicillin, 

Puromycin, 

Hygromycin, 

Zeomycin 

0651 

pGIPz-V2LMM_91266 sh66 Open Biosystems 

Ampicillin, 

Puromycin, 

Hygromycin, 

Zeomycin 

0652 

pGIPz-V2LMM_91267 sh67 Open Biosystems 

Ampicillin, 

Puromycin, 

Hygromycin, 

Zeomycin 

0653 

pCR2.1-TOPO LacZα fragment Invitrogen 
Ampicillin, 

Kanamycin 
N/A 

pCR2.1-TOPO-Trp53 Trp53 Courtney Coschi 
Ampicillin, 

Kanamycin 
0603 

psCodon1-GST-RBLP 
GST, 

RB 
Fred Dick Ampicillin 0526 

pGST-E7 
GST, 

E7 
K. Munger Ampicillin 0111 

FUtdTW 
Td Tomato, 

HIV psi pack 
Greg Fonseca Ampicillin 0654 

PAX2 Gag_HIV (variant) Greg Fonseca Ampicillin 0655 

PMD2G vsv-G Greg Fonseca Ampicillin 0656 

FUtdTW-H2BGFP H2BGFP fusion Courtney Coschi Ampicillin 0657 



169 

 

Appendix L Cont’d 

 

Plasmid name Genes encoded 
Obtained/  

Constructed by 
Resistance Stock # 

psCodon-GST-CAP-D3 
GST 

CAP-D3 fusion 
Courtney Coschi Ampicillin 0658 

psCodon-GST-CAP-D2 GST CAP-D2 fusion Courtney Coschi Ampicillin 0659 

psCodon-GST-SMC2 GST SMC2 fusion Courtney Coschi Ampicillin 0660 

pSTABY1.2 ccdA Eurogentec Ampicillin 0509 

pHISTEV30a-CAP-D3 His CAP-D3 fusion Courtney Coschi Kanamycin 0661 

pHISTEV30a-CAP-D2 His CAP-D2 fusion Courtney Coschi Kanamycin 0662 

pHISTEV30a-SMC2 His SMC2 fusion Courtney Coschi Kanamycin 0663 
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Appendix M: PCR conditions for genotyping. 

PCR Conditions- Rb1-ΔLXCXE  PCR Conditions- Trp53 

Master Mix per reaction:   Master Mix per reaction: 

0.5 µL MgCl2     1 µL MgCl2 

2 µL dNTPs     2.5 µL dNTPs 

2 µL 10X PCR Buffer    2.5 µL 10X PCR Buffer 

0.25 µL of 20 µM FD-134 primer  0.62 µL of 20 µM AM3 primer 

0.25 µL of 20 µM FD-135 primer  0.62 µL of 20 µM AM4 primer 

12.5 µL water     0.27 µL of 20 µM neo-sense primer 

0.5 µL Taq     0.27 µL of 20 µM neo-antisense primer 

2 µL DNA     16.8 µL water 

      0.15 µL Taq 

      2 µL DNA 

Reaction Conditions:    Reaction Conditions: 

Program SL01     Program p53 new 

94
o
C for 2:30     94

o
C for 2:30 

94
o
C for 0:20     94

o
C for 0:30 

60
o
C for 0:20     58

o
C for 0:30 

70
o
C for 2:00     72

o
C for 1:10 

Go to step #2, 29 times   Go to step #2, 29 times 

72
o
C for 10:00     72

o
C for 10:00  

12
o
C until stopped    12

o
C until stopped 

Expected Results:    Expected Results: 

Wild type band- 136 bp   Wild type band- 548 bp 

Mutant band- 274 bp    Mutant band- 424 bp 

 

Primers: 

FD134- AGCTTCATACAGATAGTTGGG 

FD135- CACAAATCCCCATACCTATG 

AM3- ATAGGTCGGCGGTTCAT 

AM4- CCCGAGTATCTGGAAGACAG 

Neo-sense- GGAAGGGACTGGCTGCTATTG 

Neo-antisense- CAATATCACGGGTAGCCAACG 
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Appendix N: List of antibodies. 

 

Antibody name Protein recognized Species Supplier Category # Application* 

H2B Histone H2B Rabbit Millipore 07-371 WB 

GFP GFP Goat Clontech G095 WB 

CAP-H CAP-H Rabbit 

Gifted by Kyoko 

Yokomori, University 

of California at Irvine 

N/A WB 

CAP-H2 CAP-H2 Rabbit 
Gifted by Tatsuya 

Hirano, Riken, Japan 
N/A WB 

SMC1 SMC1 Rabbit Bethyl Laboratories 
A300-

055A 
WB 

G3-245 pRB Mouse BD Pharmingen G3-245 WB, IP 

C-20 BubR1 Goat 
Santa Cruz 

Biotechnology Inc. 
sc-16195 WB 

PC10 PCNA Mouse 
Santa Cruz 

Biotechnology Inc. 
sc-56 WB 

141.2 MCM7 Mouse 
Santa Cruz 

Biotechnology Inc. 
sc-9966 WB 

C-18 E2F3 Rabbit 
Santa Cruz 

Biotechnology Inc. 
sc-878 WB, IP 

PG37 E2F3 Mouse Millipore 05-551 WB, IP 

Phospho histone 

H2A.X Ser 139 

Histone variant 

H2A.X 

phosphorylated at 

serine 139 

Mouse Millipore 05-636 IP, IF 

Phospho histone 

H2A.X Ser 139 

Histone variant 

H2A.X 

phosphorylated at 

serine 139 

Rabbit Millipore 07-164 IP, IF 

Anti-

digoxigenin 
Digoxigenin Mouse Roche 

11 

333062910 
IF 

C-20 E2F1 Rabbit 
Santa Cruz 

Biotechnology Inc. 
sc-193 IP 

Donkey anti-

goat HRP-

conjugated 

Goat IgG Donkey 
Santa Cruz 

Biotechnology Inc. 
sc-2020 WB 

Sheep anti-

mouse HRP- 

conjugated 

Mouse IgG Sheep GE NA931V WB 

Donkey anti-

rabbit HRP- 

conjugated 

Rabbit IgG Donkey GE NA934V WB 

Goat anti-

mouse Alexa 

Fluor 488 

Mouse IgG Goat Invitrogen A11029 IF 

Goat anti-rabbit 

Alexa fluor 594 
Rabbit IgG Goat Invitrogen A11012 IF 

*WB: Western blot, IP: Immunoprecipitation, IF: Immunofluorescence 
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Antibody name Protein recognized Species Supplier Category # Application* 

CAP-D3 CAP-D3 Rabbit Courtney Coschi** N/A WB, IP 

CAP-D2 CAP-D2 Rabbit Courtney Coschi** N/A WB 

SMC2 SMC2 Rabbit Courtney Coschi** N/A WB 

*WB: Western blot, IP: Immunoprecipitation, IF: Immunofluorescence 

**See Appendix O for information on making these antibodies 
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Appendix O: Instructions for making and purifying anti-CAP-D3, -CAP-D2, -SMC2 

antibodies. 

 

GST- or His-tagged proteins (as indicated below) were generated.  Rabbits were 

immunized at PTG Laboratories and immunogenicity was tested by ELISA using His- or 

GST-tagged proteins respectively.  Non-purified test bleeds and production bleeds are 

stored at -80
o
C in box 4-6. 

Antibodies to CAP-D3 were raised against a GST fusion protein containing 

amino acids 1243-1506 of mouse CAP-D3.  A His-tagged version was created for ELISA 

(to test immunogenicity) and purification purposes.  The CAP-D3 antibody was 

immunogenic to a titre of 1:1,000,000. 

Antibodies to CAP-D2 were raised against a GST fusion protein containing 

amino acids 943-1132 of mouse CAP-D2.  A His-tagged version was created for ELISA 

(to test immunogenicity) and purification purposes.  The CAP-D3 antibody was 

immunogenic to a titre of 1:10,000. 

Antibodies to SMC2 were raised against a His fusion protein containing amino 

acids 24-308 of mouse SMC2.  A GST fusion version was created for ELISA (to test 

immunogenicity) and purification purposes.  The CAP-D3 antibody was immunogenic to 

a titre of 1:1,000,000. 

Antibodies were affinity purified according to the following protocols: 

A) Reduce the peptide or protein to be coupled to the SulfoLink® column for 

antibody purification (Steps 1-5 of the Immobilized TCEP Disulfide Reducing 

Gel protocol for Reduction in Gravity Flow Columns (> 250µL samples); Cat # 

77712 from Pierce). 

1. Choose a column size (Poly-Prep® Chromatography Columns Cat# 731-1550 and 

Two-way stop cock Cat# 7328102 from Bio Rad Laboratories) appropriate for a 

volume of TCEP Disulfide Reducing Gel that is 2X the volume of the sample you 

are reducing.   
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2.    Ensure the TCEP gel is a homogeneous slurry and pipette the appropriate volume 

into the column.  The slurry is 50% gel so 4X the sample volume gives a gel bed 

that is 2X the sample volume.  **Do not let buffer drain below the top of the gel 

bed. 

1. Wash the gel with two column volumes of water if desired. 

2. Apply the peptide/protein to the column (Ex. 1mg peptide/mL gel bed) and allow 

the buffer to drip out the bottom until the entire sample has entered the gel bed.  

Incubate the peptide/protein with the gel bed according to criteria outlined in the 

Immobilized TCEP Disulfide Reducing Gel protocol (Cat # 77712 from Pierce). 

3. Elute sample from the column with Coupling Buffer (recipe in the SulfoLink® 

Coupling Gel protocol; Cat # 20401 from Pierce) and collect fraction volumes 

appropriate to the column size prepared (Ex. 0.5-1mL fractions from a 2mL 

column to which 1mL of peptide/protein was applied). 

4. Determine which fractions contain protein by checking absorbance at 280nm 

relative to a buffer blank (which ever buffer the peptide/protein was originally 

dissolved in). 

B) Immobilize the peptide/protein to the SulfoLink® gel (Select steps are 

highlighted below from the SulfoLink® Coupling Gel protocol; Cat 20401 from 

Pierce). 

1. Follow steps A, B, C and D from the Procedure for Immobilizing a Protein or 

Peptide Having Free Sulfhydryls in the SlufoLink® Coupling Gel protocol. 

2. For step B1, look ahead to determine how much gel slurry you need for the 

amount of serum you will load (Ex. Loading 5mL of serum requires 5mL of gel 

bed and therefore 10mL of slurry). 

3. For step B8, consider using the BCA or the Bradford assays to measure 

protein/peptide concentrations. 

4. Stop before step D3 if you intend to continue with antibody purification.  If you 

are storing the column for future antibody purification, continue with steps D3-

D4.  Finish by capping the column and storing it upright at 4
o
C. 

C) Affinity Purification of the Antibody- perform at 4
o
C 

1. If you are using an already coupled SulfoLink® column, follow step “E” of this 

protocol to regenerate the column for antibody purification.  If you are proceeding 

directly from step “B”, continue antibody purification with the following steps: 
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2. Thaw production bleeds of the antibody at 4
o
C.  Centrifuge the serum to clear 

debris (Ex. SS34 rotor at 10,000 rpm for 10 min at 4
o
C). 

3. Apply 5mL of serum to the affinity column and run the column at 10mL/hr at 

4
o
C.  Collect and save the flow through. 

4. Wash the column with 20mL of 1X PBS at 20mL/hr. 

5. Elute the antibody in two steps.  **Ensure the gel bed does not run dry between 

elutions- after the first 8mLs has reached the top of the gel bed, add the next 

8mLs as described in steps 6 and 7 below.  After the second 8mLs has reached the 

top of the gel bed, add 20 mL of 1X PBS and let it flow through at a rate of 

20mL/hr. 

6. Elute in 8mL of 0.2M glycine-HCl pH 2.5 (150mg glycine, 0.82mL of 1N HCl, 

9.2mL H2O).  Collect 1mL fractions into eppendorf tubes already containing 

95µL of 1.5M Tris-HCl pH 8.8 to immediately neutralize each fraction to ~ pH 

7.3. 

7. Elute in another 8mL of 0.2M glycine-HCl pH 1.9 (150mg glycine, 1.58mL of 1N 

HCl, 8.4mL H2O).  Collect 1mL fractions into eppendorf tubes already containing 

160µL of 1.5M Tris-HCl pH 8.8 to immediately neutralize each fraction to ~ pH 

7.3. 

8. While the 20mL of 1X PBS is flowing through the column (this washed out 

residual antibody/protein), check the absorbance of each fraction.  This can be 

done by dotting ~ 50µL of Bradford Reagent on a swatch of Parafilm and adding 

1-2µL of each eluted fraction to a dot.  Fractions with eluted antibody will change 

the colour of the Bradford Reagent to blue. 

9. Pool the fractions containing antibody and dialyze it in 4L of 1X PBS overnight at 

4
o
C.  The following morning, determine the protein concentration of the antibody. 

10. Store the antibody at 1µg/µL in 1X PBS with 10% glycerol and 0.05% sodium 

azide. 

D) Regenerating and Storing the SulfoLink® Column 

1. Wash the column with 20mL of 1X PBS.   

2. Equilibrate the column with 10mL of degassed 1X PBS with 0.05% sodium azide 

(Storage Buffer). 

3. Stop the gravity flow and add 2mL of storage buffer to the top of the column and 

store it upright at 4
o
C. 
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E) Regenerating the column for Antibody Purification 

1. Remove the top cap of the column first to avoid drawing air into the gel bed, 

remove the bottom cap and allow the excess Storage Buffer to drain until it is 

level with the gel bed.   

2. Equilibrate the column by washing it with 10mL of 1X PBS at 4
o
C and proceed 

with step “C” of this protocol. 
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