The University of Western Ontario

Abort, Retry, Fail?

Why Computer Science is an Essential Part of Every Science Education

Michael Katchabaw and Mark Daley Department of Computer Science The University of Western Ontario

Abort, Retry, Fail?

Research published in a recent edition of Nature brought to light something disturbing, yet widely known and accepted

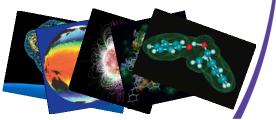
Abort, Retry, Fail?

Scientists are often woefully unprepared for the rising use of computing in their work

Abort, Retry, Fail?

Survey results illustrate this rising use:

- 45% of scientists spend more time developing computer software as part of their work than five years ago
- 38% of all scientists now spend at least one fifth of their time developing software

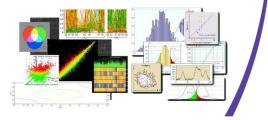

Abort, Retry, Fail?

This is only natural, as computers are needed to assist in many things ...

Abort, Retry, Fail?

This is only natural, as computers are needed to assist in many things ... • Modeling

This is only natural, as computers are needed to assist in many things ...


Experimentation

Abort, Retry, Fail?

This is only natural, as computers are needed to assist in many things ...

Data collection and analysis

Abort, Retry, Fail?

This is only natural, as computers are needed to assist in many things ... • Presentation and visualization

Abort, Retry, Fail?

The frightening parts?

- Nearly all of what these scientists know of computing and software is self-taught
- They often lack even the basic skills, background, and understanding to realize just how bad they are at it

Learn

Abort, Retry, Fail?

The frightening parts?

- Formal computer science training was simply not a part of their education
- Only 34% of scientists surveyed think that such training is important though, so the lack of background and skills is unsurprising

Abort, Retry, Fail?

The frightening parts?

 As problem complexity and the sheer volume of data continues to increase at an alarming rate, we are left with a growing and rather substantial skills gap

The results?

· Work is riddled with errors and inaccuracies

Abort, Retry, Fail?

The results?

· Precious time and valuable resources are lost

Abort, Retry, Fail?

The results?

· Project maintainability becomes impossible

Abort, Retry, Fail?

The results?

Publications are retracted and proven wrong

Abort, Retry, Fail?

The results?

• The costs are staggering and only getting worse with time ...

Abort, Retry, Fail?

So what can we do about this?

 Peer review of software is advocated by some, but this is imperfect and does not prevent problems from happening in the first place

So what can we do about this?

• Trained computer scientists can be integrated into research groups, but they often lack domain-specific knowledge and background

Abort Retry Fail?

So what can we do about this?

• The best solution is to make computer science an integral part of every science education

Abort, Retry, Fail?

Doing so is not without its challenges ...

• Existing computer science courses are often made for computer scientists and are not always applicable to other sciences

Abort, Retry, Fail?

Doing so is not without its challenges ...

 Specific adaptations and tailoring may be needed for each scientific discipline to make things most relevant and engaging to students

Abort, Retry, Fail?

Doing so is not without its challenges ...

• Squeezing computer science into already full science curricula is not an easy matter

Doing so is not without its challenges ...

 Instructional resources are already stretched thin, and adding more strain can be something difficult to support

What are we doing at Western?

- New computer science courses aimed at the life sciences and physical sciences
- New program modules designed to integrate with other science degrees
- New lines of communications between departments

Abort, Retry, Fail?

In summary ...

 Computer science provides an understanding of the fundamental tools to work with technology and information in the modern world

Abort, Retry, Fail?

In summary ...

 Educating and graduating students from science programs without this is an increasingly dangerous proposition, and does no service to the students or the scientific community at large

Abort, Retry, Fail?

In summary ...

 Efforts to increase the presence of computer science within broader scientific study must continue

