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Abstract 

This thesis presents field measurements and numerical modeling that provide insight into the 

nearshore geochemical conditions and groundwater flows controlling the mobility of arsenic 

(As) in a freshwater beach aquifer and its potential discharge to Lake Erie. Field measurements 

were performed via shore-normal monitoring transects installed at beaches (Little Beach and 

Main Beach) located adjacent to a brownfield industrial harbour site that has elevated sediment 

and groundwater As concentrations. Detailed pore water chemistry analyses revealed elevated As 

(up to 0.056 mg/L) 1 - 2 m below the shoreline at all transect locations. The distributions of 

species in the aqueous and sedimentary phases suggest that As mobility is strongly linked with 

iron (Fe) redox cycling. Sediment analysis by sequential extraction revealed a layer of 

amorphous and crystalline Fe (hydr)oxides present at the sediment-water interface (SWI) near 

the shoreline. This Fe hydr(oxide) layer may be accumulating As and preventing its release to 

nearshore waters. Numerical modeling combined with vertical hydraulic gradient measurements 

indicated that wave-induced recirculation across the aquifer-lake interface was significant and 

this likely establishes the redox gradient that led to Fe (hydr)oxides precipitation at the SWI. 

Numerical and field results showed that the water infiltration/exfiltration across the groundwater-

lake interface were sensitive to varying wave intensity and seasonal lake water level fluctuations. 

The source of As in the nearshore beach aquifers remains unknown. While Little Beach is 

adjacent to the East Headland of the industrial site where elevated As has been recorded, Main 

Beach is disconnected hydraulically from the East Headland. If the elevated dissolved As 

observed is from a natural geogenic source, this findings of this thesis may have widespread 

implications for As cycling in the nearshore areas of the Great Lakes. Finally, while this study 

focused on As, the nearshore geochemistry and subsurface flows investigated are be pertinent to 
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understanding the discharge of other chemicals (e.g., nitrate, ammonium, phosphorous) to 

nearshore inland coastal waters via the groundwater pathway. 

Keywords:  groundwater-lake interactions, wave effects, numerical modeling, Great Lakes, 

groundwater discharge 
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CHAPTER 1   

INTRODUCTION 

1.1 Background 

The Great Lakes are the largest system of fresh surface water in the world containing nearly 21 

percent of the world's fresh water [U.S. EPA, 2012]. The lakes provide significant ecological, 

recreational and economic benefits for the approximately 34 million people that live in the Great 

Lakes Basin. They are also an important source of drinking water – for example, the Great Lakes 

are the drinking source for nearly 80% of Ontarians [Ontario Ministry of the Environment, 

2012]. The Great Lakes are under significant stress due to population growth, industry, 

agriculture and contemporary issues such as climate change and emerging contaminants.  

The Great Lakes are susceptible to anthropogenic pollution and pollution mitigation strategies 

need to be enhanced to improve water quality and also to ensure safe drinking water. 

Traditionally, point sources (e.g., wastewater treatment plants) have been the focus of water 

quality management strategies for the Great Lakes. However, it is recognized that non-point 

sources (e.g., storm water runoff, combined sewer overflows, groundwater discharge), although 

poorly quantified, are also important pathways for delivering contaminants to surface waters 

[International Joint Comission, 2011]. These complex non-point sources need to be addressed to 

improve the water quality in the Great Lakes.  

Groundwater discharge is difficult to quantify as it is typically characterized by low specific flow 

rates and exhibits high spatial variability along shorelines [International Joint Comission, 2011]. 

Direct groundwater discharge to the lakes can occur where ever there is an unconfined permeable 
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aquifer near the shore and the groundwater watertable is elevated relative to the lake water level. 

Groundwater discharge fluxes are typically highest near the shore with fluxes decrease 

exponentially offshore [Grannemann and Weaver, 1999]. The Great Lakes has ~6150 km of 

highly permeable shoreline (sandy, gravel and cobble beaches) and this represents a significant 

area along which direct groundwater discharge may occur [Environment Canada and U.S. EPA, 

2009].   

This thesis focuses on understanding the delivery of pollutants, in particular arsenic (As), from 

groundwater to Lake Erie along permeable shoreline adjacent to a brownfield site at Port 

Stanley. The Clean Water Act [2006] requires Source Water Protection Planning as a first step in 

a multi-barrier approach to ensure safe drinking water. The Source Water Protection Plan 

compiled for the Elgin Area Water Treatment Plant (WTP) identified the Port Stanley Harbour 

site, located 2 km from the offshore WTP intake, to be a potential threat for its source water 

[Stantec, 2009]. The brownfield site has elevated levels of heavy metals, polyaromatic 

hydrocarbons (PAHs), benzene, toluene, ethylbenzene, xylenes (BTEX) and petroleum 

hydrocarbons (PHCs) in the sediment and groundwater [CH2MHILL, 2009]. This thesis presents 

field investigations that focus on quantifying groundwater discharge and the distribution of 

heavy metals, specifically As, in a sandy beach (Little Beach) located adjacent to the east portion 

of the brownfield site. This sandy shoreline may be a zone of groundwater discharge from the 

site as the remainder of the brownfield site is enclosed by sheet piling, pier concrete structures 

and rip-rap reinforced walls [CH2MHILL, 2009].  

Quantifying the flux of chemicals from groundwater to surface waters is complex as chemicals 

are often transformed along their subsurface pathway before being discharged. The transport of 

chemicals in the subsurface is often influenced by geochemical gradients (i.e., pH, redox) that 
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affect the transformation and mobility of chemicals. On the Great Lakes, forcing such as waves 

and lake level variations lead to recirculation of lake water through nearshore sandy (beach) 

aquifers. This recirculating lake water has a different chemical composition compared with the 

discharging groundwater. The mixing of the waters in the aquifer near the shore may set up 

important geochemical gradients and a reaction zone that strongly influences the fate of 

discharging contaminants and subsequent chemical fluxes to the lake. In light of its significance 

for controlling groundwater fluxes to surface waters, this mixing and reaction zone is commonly 

referred to as a riparian zone in the context of groundwater-river interactions [Carlyle et al., 

2001] and a subterranean estuary in the context of groundwater-ocean interactions [Moore et al. 

1999]. The physical and chemical processes occurring in this reaction zone must be understood 

to be able to evaluate the potential discharge of groundwater contaminants to the lake at Little 

Beach.       

1.2 Research Objective 

The objective of this thesis is to evaluate the potential discharge of groundwater contaminants, in 

particular As, to Lake Erie from the Port Stanley Harbour site. As a potential hotspot of 

groundwater discharge from the brownfield site, this thesis focuses on quantifying the 

groundwater-lake interactions and their impact on the discharge of As to the lake at Little Beach. 

For comparison, the groundwater-lake interactions and As occurrence at a nearby beach (Main 

Beach) are also evaluated. The specific research objectives are to: 

1. Quantify the groundwater flow patterns and the magnitude of groundwater discharge and 

recirculating lake water at Little Beach and Main Beach. 

2. Quantify the occurrence of As and other chemical species in the groundwater at Little 

Beach and Main Beach. 
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3. Assess the temporal and spatial variability in the groundwater discharge, flows and 

chemical species distributions and how these are influenced by changing hydraulic 

conditions (waves, lake level variations).   

4. Evaluate the geochemical processes that influence the transport, mobility and potential 

accumulation of As in the beach aquifers.  

1.3 Thesis outline 

This thesis is written in “Integrated Article Format.”  A description of each chapter is as follows: 

Chapter 1: Introduces background information and provides the objectives of the study. 

Chapter 2: Reviews past work focused on groundwater discharge to the Great Lakes, the 

transport of As in coastal aquifers and the background site conditions of the Port Stanley 

Harbour site. 

Chapter 3: Details the field investigations, numerical model and provides discussion of the 

factors controlling the fate and transport of As in the nearshore aquifer. 

Chapter 4: Summarizes the research results and outlines recommendations for future work. 

1.4 References 

Carlyle, G. C., and Hill, A. R. (2001). Groundwater phosphate dynamics in a river riparian zone: 

effects of hydrologic flowpaths, lithology and redox chemistry. Journal of Hydrology, 
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Elgin County. Prepared for Public Works and Government Services Canada. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Groundwater discharge into the Great Lakes  

The nearshore water quality in the Great Lakes is degraded due to urbanization, industrialization 

and extensive agriculture in the Great Lakes Basin [Environment Canada and U.S. EPA, 2009]. 

Water quality management strategies for the Great Lakes historically focused on identifying and 

controlling point pollution sources. However, it is now widely acknowledged that non-point 

pollution sources (e.g., storm water runoff, combined sewer overflows, groundwater discharge) 

need to be addressed to improve nearshore water quality [International Joint Comission, 2011]. 

In particular the groundwater contribution is poorly quantified. Groundwater is a large 

uncertainty for predicting nearshore water quality because its pathway and delivery are difficult 

to quantify [International Joint Comission, 2011]. Pollutants of concern that may enter the lake 

via the groundwater pathway are varying but include toxic chemicals, nutrients, heavy metals, 

household products, hormones, antibiotics, pharmaceuticals and road salt [International Joint 

Comission, 2011].   

The groundwater contribution to the Great Lakes can be separated into two components: (i) 

groundwater that discharges into tributaries and indirectly to the Great Lakes as a component of 

stream flow, and (ii) groundwater that directly flows from aquifers to the Great Lakes (Figure 

2.1). While prior studies have shown the importance of indirect groundwater discharge for 

pollutant loading and water supply for the Great Lakes [International Joint Commission, 2011], 

this thesis focuses on direct groundwater discharge. The Great Lakes function as discharge areas 



 

(sinks) for the aquifers in the Great Lakes Basin under natural flow conditions because the lakes 

are in a topographically low setting 

will occur where there is an unconsolidated permeable aquifer near the shore and the aquifer 

watertable is elevated relative to the lake water level. 

permeable shoreline (sandy, gravel and cobble beaches) [Environment Canada 

2009]. While groundwater fluxes are typically low compared to surface water inputs (e.g., rivers 

and streams), direct groundwater discharge may be a significant contributor when the fluxes are 

integrated over the entire shoreline length. Along unc

discharge is typically largest 

[Grannemann and Weaver, 1999].

 

Figure 2.1: Generalized diagram showing indirect and direct gro

Great Lakes.  This figure is reproduced from Grannemann et al. [2000]

Few studies have attempted to quantify direct groundwater discharge into the Great Lakes. 

Estimates of groundwater discharge into Lake Michigan 

of shoreline [Bergstrom et al., 1962; Cartwright et al., 1979; Sellinger,

due to different measurement method
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watertable is elevated relative to the lake water level. The Great Lakes has ~6150 km of highly 

permeable shoreline (sandy, gravel and cobble beaches) [Environment Canada 

. While groundwater fluxes are typically low compared to surface water inputs (e.g., rivers 

and streams), direct groundwater discharge may be a significant contributor when the fluxes are 

integrated over the entire shoreline length. Along unconsolidated shorelines direct 

is typically largest around the shoreline and decreases exponentially offshore 

Grannemann and Weaver, 1999]. 

Generalized diagram showing indirect and direct groundwater discharge into the 

Great Lakes.  This figure is reproduced from Grannemann et al. [2000]. 

Few studies have attempted to quantify direct groundwater discharge into the Great Lakes. 

groundwater discharge into Lake Michigan vary widely from 19 - 

[Bergstrom et al., 1962; Cartwright et al., 1979; Sellinger, 1995]. The variability 

methods used, the scale of the study (basin-wide c.f. localized 

(sinks) for the aquifers in the Great Lakes Basin under natural flow conditions because the lakes 

]. Direct groundwater discharge 
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~6150 km of highly 

permeable shoreline (sandy, gravel and cobble beaches) [Environment Canada and U.S. EPA, 

. While groundwater fluxes are typically low compared to surface water inputs (e.g., rivers 

and streams), direct groundwater discharge may be a significant contributor when the fluxes are 

direct groundwater 

exponentially offshore 

 

undwater discharge into the 
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 18,300 m
3
/d/

 
km 

1995]. The variability is 

wide c.f. localized 
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groundwater flow) and the locations where flows were measured [Sellinger, 1995]. Many factors 

influence local groundwater discharge rates including the local hydrogeology, groundwater 

recharge area, topography, lake bathymetry and shape of the shoreline [Cherkauer and 

McKereghan, 1991; Grannemann et al., 2000].  

2.2 Nearshore groundwater-lake interactions 

Direct groundwater discharge is defined as all pore water that discharges across the sediment-

water interface (SWI). As such it is made up of not only terrestrial groundwater (derived from 

the aquifer) but also water that recirculates across the SWI (Figure 2.2). In marine environments, 

the total direct groundwater discharge (terrestrial and recirculating) is referred to as submarine 

groundwater discharge [Burnett et al., 2001; Taniguchi et al., 2002]. It is necessary to consider 

the recirculating component because it can alter flow paths and biogeochemical conditions in the 

nearshore aquifer [Burnett et al., 2003]. In addition, this component is included in measured 

estimates when direct groundwater discharge measurement techniques are adopted (e.g., seepage 

meters, nested piezometers). While the mechanisms contributing to total groundwater discharge 

rates have been well studied along marine shorelines, they are not well understood for inland 

coastal environments such as the Great Lakes. The coastal water level fluctuations that drive 

recirculation are different; for example, marine shorelines are exposed to tides and oceanic 

waves whereas inland coastal shorelines are exposed to long-term and seasonal lake level 

changes and higher frequency waves [Crowe, et al., 2009; Robinson et al., 2010]. 
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Figure 2.2:  Schematic of dynamic groundwater-lake water interactions. SWL is the still water 

level, D is the water depth from the SWI to the SWL and η is the height of wave set-up. 

The water levels in the Great Lakes fluctuate seasonally and exhibit long-term variability. Water 

exchange between the aquifer and lake is driven by the hydraulic gradient between the lake and 

nearshore aquifer, and therefore direct groundwater discharge is influenced by these lake level 

variations [Crowe et al., 2009]. Terrestrial groundwater discharge to the lake increases when the 

lake water levels drop relative to the nearshore watertable. In contrast, water will flow from the 

lake into the aquifer when the lake level rises relative to the nearshore watertable. The location 

of the shoreline also changes in response to lake level fluctuations; i.e., the shoreline retreats as 

the lake water level drops [Crowe et al., 2009]. The location of the shoreline is an important 

factor for understanding nearshore groundwater discharge as the majority of groundwater 

discharge occurs at the shoreline and decrease exponentially offshore. Thus, the change in 

shoreline location will modify the groundwater discharge location.  

The shorelines of the Great Lakes are subject to significant wave action (Figure 2.3). Studies for 

marine shorelines have shown that wave-driven recirculation can constitute a large proportion of 
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the total groundwater discharge [Xin et al., 2010; Li et al., 1999]. While waves induce rapid 

instantaneous pore water flows in response to individual wave fronts and wave run-up, these 

flows are rapidly attenuated in the beach sediment due to their high frequency [Horn, 2006]. 

Rather, it is the phase-averaged effects of waves that strongly control nearshore groundwater 

behaviour (Figure 2.4) [Longuet-Higgins, 1983; Li et al., 2000]. As waves propagate towards the 

shore and break, wave energy is dissipated leading to an upwards tilt in the mean coastal water 

level, known as wave set-up. The mean-onshore pressure gradient due to wave set-up drives a 

groundwater recirculation cell with infiltration near the maximum run-up limit and exfiltration 

near the wave breaking point (Figure 2.4). While wave-induced recirculation can account for a 

large proportion of total groundwater discharge [Li et al., 1999], the recirculation rate is 

modulated by the relative height of the watertable landward of the shoreline [Li et al., 2000]. Li 

et al. [2000] showed numerically that the wave-induced groundwater recirculation is greater 

when the landward watertable is low and the fresh groundwater discharge does not to restrict the 

wave-induced recirculation cell.  

 

Figure 2.3:  Characteristic wave height and peak wave periods for wave buoy station in South 

Georgian Bay from May – November 2009 [Fisheries and Oceans Canada, 2012]. 



 

Figure 2.4:  Wave set-up and phase

analytical solution of Longuet-Higgins [1983]

[2000]. (a) is reproduced from  Longuet

[2000]. 
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It was shown numerically by Xin et al. [2010] that the effect of waves on nearshore flow and 

water exchange rates across the SWI can be well represented by adopting a phase

up approach rather than simulating individual waves (i.e., phase-resolved approach). This 

approach is also significantly more computationally efficient. Solutions describing wave set

are available, including that by Longuet-Higgins [1983], or alternatively, as done by Xin et al. 

, instantaneous waves generated in a shallow water wave simulator such as BEACHWIN 

averaged wave groundwater circulations as described by (a) 

erical model of Li et al., 
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It was shown numerically by Xin et al. [2010] that the effect of waves on nearshore flow and 

water exchange rates across the SWI can be well represented by adopting a phase-averaged wave 

resolved approach). This 

olutions describing wave set-up 

, or alternatively, as done by Xin et al. 

such as BEACHWIN 



13 

 

[Li et al., 2000] may be averaged to provide a description of wave set-up. In this study, an 

empirical equation developed and validated by Nielson [2009] was used to estimate the wave set-

up profile. This equation is given as: 

η � 0.4����
1
10 �
η

����
         (2.1) 

where η(x) is height of wave set-up along the interface (m),  Hrms is the root mean square wave 

height (m) and D(x) is the still water depth measured from local beach surface to the still water 

level (SWL) (m). These terms are defined in Figure 2.2.   

2.3 Influence of groundwater-lake interactions on pollutant discharge 

Quantifying the discharge of groundwater pollutants to nearshore waters is complicated because 

it is controlled not only by the groundwater discharge flow paths but also the specific pollutant 

sources and the biogeochemical conditions along the pollutant discharge pathway [Robinson, et 

al., 2007; Robinson, et al., 2009; Westbrook, et al., 2005]. In marine environments, it has shown 

that coastal water level fluctuations create dynamic flows and complex geochemistry in an 

unconfined nearshore aquifer [Robinson et al., 2006, 2007, 2009; Xin et al., 2000; Charette et al., 

2002]. Surface water recirculating through a nearshore aquifer has a different chemical 

composition to terrestrial groundwater. For example, surface water can deliver oxygen and 

organic material to the nearshore aquifer [Horn, 2002]. When the recirculating water and 

terrestrial groundwater mix, this can create an active biogeochemical mixing and reaction zone in 

the aquifer that is often characterized by distinct pH and redox gradients [Moore et al. 1999; 

Robinson et al., 2007; Charette and Sholkovitz, 2006]. Chemicals undergo important 

transformations in this reaction zone and so this zone can control the exit conditions and 
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subsequent loading of land-derived groundwater chemicals to nearshore water. This zone can 

also affect biogeochemical cycling in coastal environments by altering the composition of 

recirculating water [Charette and Sholkovitz, 2006; Hays and Ullman, 2007]. Due to its 

importance, this mixing and reaction zone is termed a subterranean estuary in marine 

environments (in analogy to a surface estuary) [Moore et al. 1999]. To our knowledge there is no 

prior research conducted to understand the existence and role of this mixing and reaction zone 

for inland coastal environments such that exist on the Great Lakes. The physical processes that 

set-up the mixing zone are different between marine and freshwater coastal environments (e.g., 

tides, oceanic waves versus long-term and seasonal lake level variations and high frequency 

waves). However, most significantly the chemical composition and density of the recirculating 

waters are different (seawater versus lake water).  

2.4 Occurrence of arsenic (As) in groundwater  

Arsenic (As) is a carcinogenic heavy metal that occurs in groundwater worldwide. Elevated As 

levels threaten the health of millions of people who depend on groundwater as their drinking 

water source [Smedley and Kinniburgh, 2002]. In some case elevated As concentrations that 

exceeds regulation standard can be attributed to anthropogenic activities (e.g., mining and 

industry) but often As is naturally occurring in the aquifer [Smedley and Kinniburgh, 2002]. The 

World Health Organization (WHO) drinking water standard for As is 0.01 mg/L [WHO, 2008] 

and this standard is adopted by many countries including Canada. The Ontario drinking water 

standard for As is 0.01 mg/L (O. Reg. 169/03) [Ministry of the Environment, 2002].  In addition 

to drinking water standards, Ontario regulates As concentrations in groundwater. The As 

standard for non-potable groundwater is 1.9 mg/L (Table 3) and for background site conditions is 

0.013 mg/L (Table 1) [Ministry of the Environment, 2011]. 
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Fe (hydr)oxides and Fe sulfide minerals are the main geogenic sources of As and are strongly 

linked to As occurrence and cycling in the subsurface. As is strongly adsorbed to Fe (hydr)oxides 

that form under oxidizing condition [Smedley and Kinniburgh, 2002]. Other metal (hydr)oxides 

such as manganese (Mn) and aluminium (Al) can also have significant affect on As cycling if 

they exist in abundance. At pH < 7.5, Al (hydr)oxides are as effective as Fe (hydr)oxides in 

adsorbing As. In strongly reducing groundwater, As is immobilized via formation of Fe sulfides 

[Couture et al., 2009]. Strongly reducing conditions refer to a redox state for which sulphate 

(SO4
2-

) reduction occurs. Under undisturbed conditions, As is strongly bound to these minerals 

(either metal (hydr)oxides, or Fe sulphide minerals) and remains immobilized. However, a shift 

in the redox condition leads to mobilization of As through either reductive dissolution of metal 

(hydr)oxides or dissolution of sulfide minerals [Bone et al., 2006; Jung et al., 2009; Cook et al., 

1995; Couture et al., 2009; Johnston et al., 2010]. Dissolution of Fe (hydr)oxides occurs under 

reducing conditions at neutral pH and dissolution of sulfide minerals occurs when the 

groundwater becomes more oxidizing. An increase in pH (> 8.5) or the presence of species that 

compete for adsorption site such as phosphate (PO4
3-

), bicarbonate (H2CO3), silicate (SiO4) or 

organic matter may also lead to the desorption of As from metal hydr(oxides). PO4
3-

 has a similar 

affinity to metal hydr(oxides) as As and so its presence is often used as an indicator for As 

mobilization.  

2.5 Mobility of As in coastal aquifers and lake sediments 

Previous studies have examined As mobility in coastal (marine) aquifers [Bone et al., 2006; Jung 

et al., 2009] and also in shallow lake sediments [Cook et al., 1995; Couture et al., 2009; Johnston 

et al., 2010]. Occurrence of elevated dissolved As at the SWI can be attributed to the shift in 

redox potential (Eh) and pH which triggers mineral dissolution and the release of As [Smedley 
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and Kinniburgh, 2002; Root et al., 2009]. The release of As from metal (hydr)oxides can be 

triggered in response to: (1) an increase in pH to higher than 8.5 leading to desorption of As from 

metal hydr(oxides) (even in oxidized conditions) [Pierce and Moore, 1981] and (2) shift to 

reducing conditions under neutral pH resulting in the dissolution of metal (hydr)oxides [Bone et 

al., 2006; Smedley and Kinniburg, 2002].   

High abundance of Fe (hydr)oxides (ferrihydrite, goethite, and lepidocrocite) was observed by 

Charette and Sholkovitz [2002] in the shallow sediment along the shoreline of Waquoit Bay 

(Cape Cod, Massachusetts). They showed that these Fe (hydr)oxides precipitate as Fe-rich 

groundwater mixes with more oxidized seawater that recirculates through the shallow nearshore 

sediments. This layer of Fe (hydr)oxides was termed an ‘iron curtain’ as it acts as a geochemical 

barrier trapping chemicals that are powerfully adsorbed to the (hydr)oxide minerals and 

preventing their release to coastal water. A follow up study by Bone et al. [2006] showed that the 

‘iron curtain’ adsorbs and immobilizes As diffusing upward from the reduced aquifer and this 

prevents As from discharging to the sea. Amorphous Fe (hydr)oxides (ferrihydrite) have higher 

affinity for As than crystalline Fe (hydr)oxides (goethite and lepidocrocite) and were mainly 

responsible for As immobilization in the nearshore sediments [Jung et al., 2009; Smedley and 

Kinniburgh, 2002; Bone et al., 2006; Charette and Sholkovitz, 2002]. As a result of this As 

immobilization, elevated pore water As (up to 0.0143 mg/L) was observed in groundwater near 

the shoreline while the nearshore coastal water had low As concentration [Bone et al., 2006; 

Jung et al., 2009].  A numerical model developed by Jung et al. [2009] estimated it would have 

taken ~2300 years to accumulate the 0.4 mg/kg of As to be contained in the ‘iron curtain’ layer 

at the Waquoit Bay field site.   
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Johnston et al. [2009] and Root et al. [2009] examined As mobilization in tidally-influenced 

aquifers and also observed high pore water As in the shallow intertidal aquifer. They showed that 

the As concentrations were highest in the redox transition zone between Fe oxidizing and SO4
2-

reducing conditions (Figure 2.5) [Johnston et al., 2009; Root et al., 2009]. The transition zone 

occurs where the oxygen-rich seawater mixes with the more reduced groundwater. This mixing 

sets up redox and pH gradients that lead to the mobilization of As and Fe. Tidal fluctuations 

generate an upward advective flow below the shoreline and this transports the dissolved As and 

Fe to the oxidized shallow sediments where an As-Fe (hydr)oxide layer (iron curtain) is formed 

[Johnston et al., 2009]. The As is immobilized in both the oxidized and reducing zones and thus 

pore water As is highest in the transition zone.  

 

Figure 2.5:  Conceptual diagram of redox zones beneath sediment-water interface in a coastal 

nearshore sediments.  In the transition zone dissolved As and Fe complex to form FeSO4(aq) and 

As(OH)3(aq) [Root et al., 2009]. 
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2.6 Background information on Port Stanley Harbour Site 

Port Stanley Harbour, located on the north shore of Lake Erie at the outfall of Kettle Creek, was 

identified as an area of environmental concern and potential source of contamination by the 

Source Water Protection Planning for Elgin Area Water Treatment Plant (WTP) [Stantec 2009a; 

2009b]. The brownfield site recently transferred from Transport Canada to the Municipality of 

Central Elgin is divided into the West Pier, East Pier and East Headland with the Bridge Street 

lift-bridge as the northern boundary for the site (Figure 2.6). The lands were historically used for 

commercial fisheries and industrial land uses including petroleum product, grain and liquid 

fertilizer storage and handling and coal stockpiling. Past tenants at the East Headland were Lakes 

Terminals and Warehousing, Public Utilities Commission (PUC) and Works Department, 

Animal Shelter and Recycling Depot. Lakes Terminals and Warehousing had three 1.5 million 

litre above-ground storage tanks (ASTs) used to store ammonium nitrate and had open piles of 

coal, salt and gravel on the East Headland [CH2MHILL, 2009a]. The WTP intake is located 

offshore approximately 2 km to the east of the harbour, and with a portion of the East Headland 

located within the Elgin Area Intake Protection Zone 2 (IPZ-2), the impacted soil and 

groundwater at the site is a potential issue of concern for source water protection planning 

[Stantec, 2009b].   

Over the last 15 years numerous studies have been conducted to characterize the soil and 

groundwater contamination at the site including the recent Environmental Site Assessments 

(Phase I, II, and Risk Assesment) [CH2MHILL, 2009a; 2009b; 2010]. Measurements have 

identified concentrations of petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) 

and heavy metals in soil and groundwater at the harbour site exceeding the applicable Federal 

and Provincial criteria (summarized in Table 2.1). The soil stratigraphy at the site is complex and 
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reflects primarily the fill material used for the construction of the harbour lands rather than the 

regional geology [CH2MHILL 2009b; 2006a]. Interpolations of sediment stratigraphy at across 

the East Headland are presented in Figure 2.7. In addition to the industrial activities that took 

place on the site, reports suggest that the fill material itself, which was mainly dredged sediment 

from Kettle Creek, may be a significant source of contamination [CH2MHILL 2009b; 2006a; 

2006b]. Water quality measurements taken at surface water stations in the harbour (three stations 

in recent 2009 sampling program [CH2MHILL. 2009a]) indicated elevated levels of metals 

including aluminum, iron and chromium in the surface water with respect to background 

concentrations. However, based on these measurements it was not possible to ascertain if the 

high levels of metals was due to contamination upstream in Kettle Creek or linked with 

contaminated groundwater potentially discharging from the harbour lands.  



20 

 

 

Figure 2.6:  Schematic of Port Stanley Industrial Site showing the East Headland, East Pier and 

West Pier.  
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Figure 2.7:  Interpolations of soil stratigraphy at East Headland: a) 0 - 1 m below ground surface 

and b) 1 - 5 m below ground surface [CH2MHILL, 2009b; CH2MHILL, 2006a]. 



22 

 

Table 2.1:  Contamination concentrations exceeding relevant soil and groundwater guidelines at 

Port Stanley Harbour site. Concentrations are provided in CH2MHILL [2009b].  

 West Pier  East Pier East Headland  

Soil  Metals: Boron
2, 3

, 

antimony
1,2

, silver
1
, lead

1,2
, 

zinc
1 
 

PHCs: Toluene
1
, F1 (C6-

C10)
2
, F2 (C10-C16)

2
, F3 

(C16-C34)
2
  

PAHs
1, 4

 

 

Metals: Lead
1, 4

 

PAHs
1, 4

 

 

Metals: Antimony
1
, arsenic

1, 2, 4
, lead

1
, 

molybdenum
1
, cadmium

1
, cobalt

1, 2
, nickel

1, 4
, 

selenium
1
, zinc

1
  

PHCs: Ethyl Benzene
1
, Toluene

1
, Xylenes 

(total)
 1
, F1 (C6-C10)

2
, F2 (C10-C16)

 2, 3
, F3 

(C16-C34)
 2
, F4G-SG (GHH-Silica)

 2
  

PAHs
1
  

 

Groundwater  Metals: Chromium
5
, 

cobalt
5
, copper

5
, 

vanadium
5
, zinc

5
, 

cadmium
5
, lead

5
, flourine

5
 

PHCs: ethyl benzene
5
, 

toluene
5
, F1 (C6-C10)

6
, F2 

(C10-C16)
6
, F3 (C16-

C34)
6
  

PAHs
5,6,8

  

Nutrients: Ammonia
8
, 

nitrate
8 

Metals: chromium
5
, 

cobalt
5
, copper

5
, lead

5
  

PHCs: toluene
7
  

PAHs:
 
Pyrene

5
 

 

 

Metals: Arsenic
8
, Chromium

5
, cobalt

5
, 

copper
5
, nickel

5
,
 
vanadium

5, 7
, zinc

3
, sodium

7
, 

Iron
8,5

 

PHCs: F3 (C16-C34)
7
, F4 (C34-C50)

7
  

PAHs: Benzo(a)pyrene
5
 

Nutrients: Ammonia
8
, nitrate

8
 

 

Surface water around harbour 
                              Nutrients: Ammonia, nitrite

1
 

                              Metals: Aluminium, iron, zinc, chromium
1,2

 

1. MOE Table 1 (Full Depth Background Site Condition Standards) [MOE, 2011] 

2 MOE Table 3 (Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition) [MOE, 

2011] 

3. Canadian Soil Quality Guidelines Tier 1 levels (for petroleum hydrocarbons only) [Canadian Council of Ministers 

of the Environment, 2001] 

4. Canadian Soil Quality Guidelines for Commercial land  use and industrial land use [Canadian Council of 

Ministers of the Environment, 2007] 

5. MOE Table 1 (Full Depth Background Site Condition Standards)  [MOE, 2011] 

6. MOE Table 3 (Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition) [MOE, 

2011] 

7. MOE Table 2 (Full Depth Generic Site Condition Standards in a Potable Ground Water Condition) [MOE, 2011]  

8.  Guidelines for Canadian Drinking Water Quality [Health Canada, 2010] 

9. CCME Canadian Environmental Quality Guidelines, Canadian Water Quality Guidelines for the Protection of 

Aquatic Life (WQGAL) [Canadian Council of Ministers of the Environment, 2007] 

10. MOE Provincial Water Quality Objectives (PWQO) [MOE, 1994] 

Elevated As in the groundwater and soil were recorded at the industrial site, particularly around 

the East Headland (Figures 2.8 and 2.9) [CH2MHILL, 2009b]. Water quality analysis performed 

for 19 wells across the site in September 2008 found the maximum dissolved As concentration to 
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be 0.02 mg/L (Figure 2.8). This maximum concentration was recorded at the well located where 

coal was formerly stockpiled on the East Headland. Coal typically contains pyrite (Fe sulphide 

minerals) to which As can be bound and so this may be the source of the elevated As observed at 

the East Headland [Katrinak and Benson, 1995].  Even though the coal piles are no longer 

present, coal fragments are still widespread in the top soil across the East Headland.  The 

maximum As concentration observed in the groundwater at the site exceeds the O. Reg. 169/03 

drinking water standard (0.01 mg/L) and MOE standard for background site conditions (0.013 

mg/L, Table 1). Soil analysed from boreholes and test pits revealed that the soil at East Headland 

is mostly sand, silty clay and dredged fill material (gravel and coal fragment) [CH2MHILL, 

2009b].  The maximum concentrations of As in sediment was recorded to be 48 mg/kg and again 

this maximum levels was for sediment located in East Headland (Figure 2.9). This sediment 

concentration also exceeded the MOE background site condition standard (Table 1, 17 mg/kg) as 

well as the MOE non-potable groundwater standard (Table 3, 20 mg/kg) [CH2MHILL, 2002].  

Other sediment samples across the industrial site had relatively low As concentrations.   
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Figure 2.8: Measured dissolved As at Port Stanley industrial site [CH2MHILL, 2009b]. 
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Figure 2.9:  Measured As sediment concentrations at Port Stanley industrial site [CH2MHILL, 

2009b]. 

2.7 Summary 

This chapter has summarized the relevant background information for this thesis including prior 

studies on groundwater discharge to the Great Lakes, factors controlling chemical fluxes via the 

groundwater pathway and arsenic occurrence in groundwater including coastal aquifers.  A brief 

description of the contamination at the Port Stanley Harbour site was also provided. While significant 

research has been done previously on groundwater discharge to marine environments including the 

physical flow and geochemical processes that control the exit conditions for chemicals, little is 



26 

 

known regarding the flux of chemicals via direct groundwater discharge to inland coastal seas such 

as the Great Lakes. The original contribution of this thesis is that the geochemical and physical flow 

processes controlling the As mobility in a nearshore aquifer and its subsequent discharge to the Great 

Lakes is examined. While this thesis focuses on As mobility, the findings are pertinent for 

understanding the flux of other chemicals to inland coastal waters via the groundwater pathway.  The 

findings of this thesis are also relevant for Source Water Protection Planning for the Elgin Area 

WTP.   
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CHAPTER 3  

RESULTS AND DISCUSSIONS  

3.1 Introduction 

 

The Great Lakes contain nearly 20 percent of the world's fresh water and provide essential 

services for approximately 30 million people that live in the Great Lakes Basin [Ministry of 

Natural Science, 2012]. The nearshore water quality in the lakes continues to degrade in response 

to increasing urbanization, industrialization and extensive agriculture [Environment Canada and 

the U.S. EPA, 2009]. Water quality management strategies for the Great Lakes historically 

focused on identifying and controlling point pollution sources. However it is now widely 

acknowledged that non-point pollution sources (e.g., storm water runoff, combined sewer 

overflows, groundwater discharge) need to be addressed to improve the water quality 

[International Joint Comission, 2011]. In particular, the role of groundwater as a pathway for 

delivering pollutants to the lakes is poorly understood [International Joint Comission 2011].  

The Great Lakes have approximately 6150 km of permeable shoreline (sandy, gravel and cobble 

beaches) [Environment Canada and U.S. EPA, 2009]. This shoreline represents a potentially 

important zone for the direct discharge of groundwater from shallow unconsolidated nearshore 

aquifers to the lake [Grannemann et al., 2000; Harvey et al., 2000; Crowe, et al., 2009]. 

Quantifying and predicting the discharge of groundwater pollutants to nearshore waters is 

complex as it is controlled by the specific pollutant sources, groundwater flow paths and 

biogeochemical processes along the pollutant subsurface discharge pathway [Robinson, et al., 

2007; Robinson, et al., 2009; Westbrook, et al., 2005].  



34 

 

In coastal environments such as the Great Lakes, dynamic interactions between the surface water 

and aquifer lead to complex subsurface flow patterns and significant exchange of water and 

chemicals across the sediment-water interface (SWI) near the shoreline. Coastal water level 

fluctuations (i.e., waves) can drive significant recirculation of surface water across the SWI 

(Figure 3.1). The mixing of the recirculating surface water with terrestrially-derived discharging 

groundwater can set up an important reaction zone near the SWI due to the different chemical 

compositions of these waters [Robinson, et al., 2007; Ullman, et al., 2003; Robinson, et al., 

2006]. This reaction zone is often characterized by strong redox and/or pH gradients and 

groundwater pollutants may undergo transformations or attenuation in this zone prior to their 

discharge to coastal water [Charette, et al., 2006]. While this reaction zone has been well studied 

in marine environments (commonly termed a subterranean estuary), it has not been examined for 

freshwater shorelines such that exist on the Great Lakes. The coastal water level fluctuations are 

different; for example, marine shorelines are exposed to tides and oceanic waves whereas 

freshwater shorelines are exposed to seasonal lake level changes and higher frequency waves 

(Figure 3.1) [Crowe, et al., 2009]. The chemical composition of the recirculating water is also 

different – the most significant difference being the absence of density-driven flow in freshwater 

beaches. This study is the first time that the geochemical conditions and groundwater flow 

patterns in a freshwater beach aquifer have been simultaneously quantified to gain insight into 

the dynamic processes controlling the nearshore discharge of groundwater pollutants to inland 

seas such as the Great Lakes.  
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Figure 3.1: Conceptual diagram of the water levels and groundwater flows in a nearshore 

aquifer exposed to waves. The still water level (SWL), instantaneous water surface (thick solid 

line) and wave set-up profile (phase-averaged water surface) are shown. The still water depth 

(D), and the wave set-up height (η) are annotated on the diagram.  

While the dynamic flows and reaction zone near the SWI will control the exit conditions many 

chemical species, this study focuses specifically on understanding their impact on 

transformations and transport of arsenic (As) in a sandy beach aquifer on Lake Erie and its 

potential discharge to nearshore waters. Arsenic is a highly toxic metal with elevated As levels in 

groundwater threatening the health of millions of people worldwide [Smedley, et al., 2002; 

Ahmed et al., 2004]. Arsenic can be naturally occurring in groundwater but in some cases its 

occurrence is related to anthropogenic activities such as mining and industry. The subsurface 

mobility and transport of As has been well studied [Ahmed et al., 2004]. In recent years, research 

has extended to examine the geochemical processes controlling the discharge of As from 

groundwater to coastal waters [Johnston et al., 2010; Bone et al., 2006; Jung et al., 2009].  Bone 

et al. [2006] and Jung et al. [2009] presented field and numerical investigations focused on a 

marine beach aquifer (Waquoit Bay, MA) that illustrated As mobility was strongly controlled by 
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the redox conditions near the SWI. They demonstrated that As transport was strongly coupled to 

iron (Fe) and manganese (Mn) redox cycling due to the adsorption of As to Fe (hydr)oxides and 

to a lesser extent Mn (hydr)oxides. At their field site, a layer of Fe (hydr)oxides was present 

where the seawater and fresh groundwater mix below the SWI. This layer, termed an ‘iron 

curtain’, was shown to act as a reactive barrier accumulating As and preventing its release to 

coastal waters. In this study we examine if this phenomenon also occurs along freshwater 

shorelines where the chemical composition of the coastal water and the forcing that set-up the 

reaction zone near the SWI are different.   

This study presents field measurements that provide insight into the nearshore geochemical 

conditions, groundwater flows and water exchange controlling the mobility of As in a freshwater 

beach aquifer on Lake Erie. The field location is adjacent to a brownfield industrial harbour site 

that has elevated sediment and groundwater As concentrations. Numerical modeling is used to 

simulate the discharge rates and flows in the nearshore aquifer, including the effect of waves. 

While this study focuses on As, the nearshore geochemistry and subsurface flows are be 

pertinent to understanding the discharge of other chemicals (e.g., nitrate, ammonium, 

phosphorous) to nearshore inland coastal waters via the groundwater pathway. 

3.2 Field Methodology 

3.2.1 Field Site 

Field measurements were conducted on two adjacent beaches (Little Beach and Main Beach) on 

Lake Erie. These beaches are separated by Kettle Creek and a brownfield industrial harbour site 

(Figure 3.2). The potential discharge of heavy metals from the groundwater to the lake is of 

particular interest along this shoreline as the brownfield site has elevated groundwater and 
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sediment heavy metal concentrations (As, Fe, chromium, copper, lead, nickel, cobalt, and zinc)  

[CH2MHILL, 2009]. The brownfield site straddles Kettle Creek and is divided into three areas: 

East Headland, East Pier and West Pier. The highest dissolved heavy metal concentrations have 

been observed at the East Headland; this area was constructed using dredged sediment from 

Kettle Creek over three decades until 1978. Little Beach also underwent a beach nourishment 

program using dredged sediment from Kettle Creek over this period. 

 

Figure 3.2:  Map showing brownfield industrial site areas (East Headland, East Pier, and West 

Pier) and beaches (Little Beach and Main Beach). Field measurements were carried out at Little 

Beach and Main Beach with the dashed lines depicting where the shore-normal groundwater 

monitoring transects were installed. 
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Little Beach, located adjacent to the East Headland, was the main focus of the field 

investigations. As the East Headland is surrounded by a concrete pier structure along Kettle 

Creek and a reinforced riprap break wall along Lake Erie, groundwater contaminants may 

discharge to the lake via Little Beach due to the comparatively high permeability of the beach 

sediments. Little Beach is approximately 100 m wide and 180 m long. The beach is bounded by 

the East Headland to the south-west and a rock outcrop to the north-east. The width of the beach 

is constrained by a ~25 m high glacial till bluff. The beach slope is mild (0.005) except around 

the shoreline where it increases to approximately 0.1. Sediment samples collected across the 

beach up to a depth of 2 m below the ground surface revealed that the surficial beach aquifer is 

relatively homogeneous. The beach sediment is sand and silty sand with a mean sediment size of 

0.207 mm and uniformity coefficient of 3. The average hydraulic conductivity of the beach 

sediment was estimated to be 8.06 m/d using the Krumbien and Monk [1942] equation. The 

parameters used for this calculation are presented in Appendix A.   

To evaluate the spatial variability in groundwater discharge rates and occurrence of As in beach 

groundwater, field measurements were also conducted at Main Beach (Figure 3.2).  Main Beach 

is approximately 600 m long and 85 m wide. The average beach slope is 0.025 except around the 

shoreline where the slope increases to 0.09. The beach sediment is similar to Little Beach with an 

estimated average hydraulic conductivity of 8.06 m/d. The beach sediment is relatively 

homogeneous except along the western portion of the beach (location of west transect) there is a 

gravel layer approximately 1.5 m below the ground surface. 

Long term and seasonal lake level fluctuations and wave conditions will affect the nearshore 

groundwater flow dynamics including the groundwater discharge rates. Lake water levels and 

wave height data (significant wave height, Hsig) from a bouy located ∼20 km offshore of the field 
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sites are shown in Figure 3.3.  Wave conditions were variable but Hsig typically ranged from 0 to 

3 m.  

 

Figure 3.3: (a) Lake water levels from November 2010 to November 2012 and (b) Hsig from 

May 2011 to September 2012. Data is from a buoy located 20 km offshore of the field site 

[Oceans and Fisheries Canada, 2012]. The vertical height datum used in (a) has been adjusted 

relative to a local benchmark on Little Beach. Vertical dashed and dotted lines indicate time of 

monitoring events at Little Beach and Main Beach, respectively. 

3.2.2 Field Methods 

A shore-normal monitoring transect was installed at Little Beach with additional monitoring on 

either side of the transect to assess alongshore variability (Figure 3.4). The shore-normal transect 

extended from the bluff (landward extent of the beach) to ∼20 m offshore. Multiple monitoring 

events were conducted at Little Beach (3 - 5 August 2011, 10 October 2011, 8 December 2011, 

and 14 - 18 May 2012) to assess the temporal variability in the pore water flows and chemistry. 

The equipment layout was similar for all monitoring events.  
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Figure 3.4: (a) Spatial and (b) cross-sectional view of monitoring equipment installed at Little 

Beach for 14 - 18 May 2012 monitoring event. Manometers ( ) were installed around the 

shoreline and piezometers (×) and MLS (O) were installed from the bluff (x = 0 m) to ∼20m 

offshore (x = 85 m). Six sediment cores ( ) were collected along the transect in June 2012. 

Piezometers were installed along the transect and landward of the shoreline to measure the 

watertable and the lake level elevations. Landward of the shoreline, these were constructed from 

φ 50 mm PVC pipe and screened at the bottom. At the shoreline and offshore, piezometers were 

constructed from φ 32 mm clear polycarbonate tubing with external measurement tapes for water 

level readings. Vertical head gradients around the shoreline were measured using differential 

manometers connected to nested piezometers (φ 5 mm) with openings at two different depths 

(0.4 and 1.4 m below the ground surface). Water fluxes across the SWI were inferred from these 

vertical gradient measurements using estimated local hydraulic conductivities. Finally, pore 

water samples were collected from multi-level samplers (MLS). MLS were constructed from 2.5 
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m long φ 50 mm PVC pipe with sampling ports spaced at 0.2 m depth intervals. Details of the 

field equipment are provided by Gibbes et al. [2007].   

Two monitoring transects similar to that installed at Little Beach were installed on Main Beach 

The east transect was located adjacent to the West Pier of the brownfield site and the west 

transect located 450 m further west (Figure 3.2). The east transect was installed and monitored 

from 25 - 28 June 2012 and the west transect was installed and monitored from 30 July – 3 

August 2012.    

3.2.3 Pore water sampling methods and analysis 

Pore water sampling was performed at least 24 hours after the installation of MLS to ensure the 

sample was not disturbed by the installation procedure. Samples were drawn from the φ 1.35 mm 

PVC tubes connected to each MLS port using syringes. Syringes minimize air entrainment as the 

sample is drawn up. Two samples were collected from each MLS port: 50 mL sample for total 

metal analysis and 60 mL sample for nutrient and DOC analysis. Samples for metal analysis 

were stored in 60 mL polyethylene bottles pre-spiked with 0.5 N nitric acid and samples for 

nutrient, anion, dissolved organic carbon (DOC) analysis were stored in 120 mL glass bottles. 

All samples were filtered (45µm nylon filters) onsite and frozen until analysis. Once samples 

were collected, pore water was pumped from each sampling port into a flow cell where a YSI 

6600 Sonde measured the pore water temperature, pH, dissolved oxygen and redox potential 

(Eh). 

Total metal analysis including determination of dissolved As, Fe and S was performed using an 

ICP-OES (Varian, Inc., Vista-Pro Axial) and anions were analyzed using an HCLP. For samples 

collected in 2011, ammonia was analyzed using a HACH color pocket meter set for ammonia 
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nitrogen (No. 5870040). For all samples collected in 2012, nutrients (ammonia, nitrate, 

orthophosphate, and silica) were analyzed using a Lachat 7500 Flow Injection Analysis system. 

DOC was analyzed using HACH’s organic carbon method (No. 10129) for samples collected in 

May 2012 and using a Shimadzu TOC analyzer (SSM-5000A combustion unit and TOC-Vcpn 

analyzer) for samples collected from Main Beach in June and August 2012. 

3.2.4 Sediment cores and analysis 

Six φ 64 mm sediment cores were collected along the transect at Little Beach in June 2012 using 

a vibracoring method. The location of the coring is shown in Figure 3.4. To maximize the depth 

of the cores collected a hole was dug down to the watertable before inserting the vibracorer and 

extracting the sediment cores (maximum length 1.2 m).  Immediately after the extraction of each 

sediment core, they were sectioned in the field at 0.015 cm depth intervals. Each sectioned 

sample was stored in a 250 mL polyethylene sampling bottle and frozen until analysis. Sediment 

samples were analyzed using the five-step sequential extraction method of Wenzel et al. [2001]. 

This method targets non-specific bound arsenic, specific bound arsenic, amorphous hydr(oxides), 

crystalline hydr(oxides) and residual metals. Details of the extractant, extraction conditions, soil 

to solution ratio (SSR) and wash method for each step are provided in Table 3.1.  Sediment 

samples were air dried and then 7.5 g of dried sample was weighed and placed in a 250 mL 

polyethylene centrifuge bottle. Extractant was added to the centrifuge bottle and placed under the 

conditions described in Table 3.1. After each extraction, the sample was centrifuged for 15 min 

at 4000 rpm and 20 mL of the solution was filtered (45  µm nylon filter) and analyzed using ICP-

OES. Before proceeding to the next extraction step, the samples were washed with solutions 

specified in Table 3.1. Select sediments samples were also analyzed for total elemental S at the 
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Agricultural and Food Laboratory at University of Guelph using LECO combustion method 

SC444. 

Table 3.2: Details of five-step sequential extraction method of Wenzel et al. [2001]. 

Step Extractant Extraction conditions SSR Wash step 

1 0.05 M (NH4)2SO4 Shake for 4 hours 1:25 D.I. water 

2 0.05 M (NH4)H2PO4 Shake for 16 hours  1:25 D.I. water 

3 

540 mL 0.2 M (NH4)2C2O4 + 

460mL of 0.2 M H2C2O4.H2O 

(adjust pH to 3.25).  This 

solution is referred to as “pH 

solution”. 

Cover bottle with 

aluminum foil and shake 

for 4 hours 

1:25 

Add 94 mL of pH 

solution, cover bottle 

with aluminum foil and 

shake for 10 min 

4 

41 mL of 0.2 M (NH4)2C2O4 

+ 959mL of 0.2 M 

H2C2O4.H20 + 17.61g of 

C6H8O6 

Water bath (96°C ) 

under bright light for 20 

min 

1:25 

Add 94 mL of pH 

solution, cover bottle 

with aluminum foil, 

shake for 10 min, dry 

residual soil at 60°C  

5 

250 mg of sediment with 7 

mL of aqua regia reagent 

(v/v: 2/3 HCl + 1/3 HNO3) 
Microwave digester 1:28 D.I. water  

 

3.3 Numerical groundwater model 

Numerical steady-state groundwater flow simulations were conducted in MODFLOW-2005 

[Harbaug, 2005] to provide insight into the nearshore groundwater flows and water exchange 

rates. The governing equation used by MODFLOW-2005 is described in Appendix B.  

Groundwater models were developed to represent the shore-normal transects at Little Beach and 

Main Beach for each monitoring event. Alongshore variability is considered negligible at the 

sites and therefore three-dimensional flow was not considered. A schematic of the model domain 

adopted to simulate groundwater flow at Little Beach (May 2012) is shown in Figure 3.5.  This 
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domain for the models of Little Beach was 100 m long and extended from the most landward 

monitoring well (x = 0m) to 17 m lakeward of the shoreline.  The simulated depth of the 

unconfined aquifer was 10 m.  Additional simulations performed to evaluate the sensitivity of the 

results to the aquifer depth are provided in Appendix C.  The slope of the aquifer-lake boundary 

(AC) was modified for each model to match the measured beach profile for the monitoring event 

being simulated. The length of the model domain for the Main Beach east and west sites were 

adjusted to 140 m to correspond to the monitoring transects installed at these locations. 

Calculated spatially-varying hydraulic conductivities were used to parameterize the model 

domain. The estimated hydraulic conductivity values ranged from 1 - 21 m/d with a mean value 

of 8.06 m/d and standard deviation of 5 m/d. The Krumbien and Monk [1942] equation and 

particle size distributions used to calculate are provided in Appendix A. For all models the 

aquifer was assumed to be isotropic and the effective porosity (ne) was set to 0.25.  
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Figure 3.5: Numerical model domain of Little Beach including boundary conditions.  The 

shaded region represents the active model (aquifer) region.  The dark shaded regions depict the 

constant head cells along the landward boundary and SWI.    

The boundary conditions for the groundwater flow equation were adjusted for each simulation 

based on the landward groundwater head, lake water level and wave conditions. A constant head 

condition was applied at the landward boundary (AE) with the head value corresponding to 

watertable measurements at the most landward well (x = 0 m). A no flow boundary was specified 

along the bottom of the domain (DE) to represent an impermeable aquifer base. The vertical 

offshore boundary (CD) was also set as no flow. This no flow conditions does not affect the flow 

simulations as the pore water flows and discharge are greatest around the shoreline and become 

negligible offshore. The upper boundary (AB) is a phreatic surface with negligible recharge.  

Constant heads corresponding with the lake level and wave conditions were applied along the 

submerged aquifer-lake boundary (BC). Wave effects were included in the model by simulating 

the wave-induced onshore pressure gradient (termed wave set-up). Xin et al. [2010] showed that 

this phased-averaged approach of representing waves produces similar groundwater flows and 

water exchange rates as simulation of individual waves.  An empirical equation developed and 

validated by Neilson [2009] was used to estimate the wave set-up profile that was applied as 

constant heads along the boundary BC. This equation is given as:  

η� �.����
���� ��η

����
         (3.1) 

where η(x) is the elevation in head above the SWL due to wave set-up (m), Hrms is the root mean 

square wave height (m) and D(x) is the still water depth measured from local SWI surface to still 



46 

 

water level (SWL) (m). Hrms was calculated from Hsig values (Figure 3.5) using equation 

[Nielson, 2009]: 

���� �
����
√�           (3.2) 

The SWL, Hrms and landward head values used to simulate each monitoring event are provided in 

Appendix C.  

The size of grid cells were uniform with ∆x = 0.125 m and ∆z = 0.1 m. Grid discretization tests 

were performed to ensure that the model was converged and independent of the grid size. The 

observed field groundwater level measurements were used as initial heads for each model. 

Conservative particle tracking was performed in MATLAB using the steady state flows 

simulated by MODFLOW to determine the advective flow paths and corresponding transit times 

for groundwater discharging and lake water recirculating through the aquifer. Conservative 

particles were released along a vertical line at x = 0 m with 1 m vertical interval and along the 

SWI at 0.2 m interval.  The time step used for the particle tracking was 0.1 d.  

3.4 Results and discussion 

3.4.1 Aqueous and sediment phase geochemistry at Little Beach 

Dissolved As was elevated in the groundwater below the shoreline (x = 68 - 77 m) at Little 

Beach for all monitoring events with maximum As ranging from 0.022 mg/L (May 2012) to 

0.033 mg/L (August 2011). The subsurface As distribution was similar for all sampling events. 

The distributions of select dissolved species, including As, are shown in Figure 3.6 for the May 

2012 sampling event and in Appendix D for other sampling events. The pore water As 

concentrations observed were greater than the maximum As concentrations historically recorded 
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at the adjacent industrial site (0.020 mg/L) [CH2MHILL, 2009]. These concentrations also 

exceeded the Ontario standards for non-potable groundwater (Table 3, 0.019 mg/L) and 

industrial/commercial background site conditions (Table 1, 0.013 mg/L) [Ministry of the 

Environment, 2011].  

From Figure 3.6 and 3.7, it can be seen that during the May 2012 monitoring event As was 

elevated at sampling ports  ∼1.4 – 2.4 m below the SWI (z = -4.4 – -5.4  m) around the shoreline 

(MLS 3 –5; x = 68 –77  m). Dissolved As sharply decreased at shallower depth with 

concentrations decreasing to below detection (0.0015 mg/L) ∼ 1 m below the SWI (z = -4 m). 

Dissolved As concentrations were mostly below detection landward of the shoreline (MLS 6, 7 

and 8) and further offshore (MLS 1). It is possible that a groundwater-derived As plume existed 

below the sampling zone but this could not be captured due to our limited water sampling depth 

(up to 2.5 m below ground surface). 
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Figure 3.6:  Distributions of  dissolved (a)  As (mg/L), (b) Fe (mg/L), (c) Mn (mg/L), (d) PO4
3- 

(µg/L), (e) pH, (f) Eh (mV), (g) DOC (mg/L) and (i) S (mg/L) at Little Beach for May 2012 field 

sampling event. MLS ports where samples were collected are depicted by the red circles.   
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Figure 3.7:  Dissolved As, Fe and PO4
3-

 vertical profiles for MLS installed in close to the 

shoreline (MLS 6 - 2).  Note the change in the concentration scale between subplots.  The dashed 

horizontal lines depict the sand surface elevation. 

The vertical dissolved As profiles near the shoreline (MLS 3, 4 and 5) match well with the Fe 

profiles with maxima for these species coinciding at z = -5.24 m at MLS 4 (Figure 3.6 and 2.7). 

Dissolved Fe decreased at shallow depth (z ≈ -4.25 m) at MLS 3 and 4 and low concentrations 

were observed offshore (Fe < 2 mg/L at MLS 1 and 2). Elevated As was observed further 

offshore than Fe (Figure 3.7, MLS 2) and slightly shallower in the MLS 4 and 5 depth profiles. 

There is a discontinuity between As and Fe landward of the shoreline - maximum dissolved Fe 

(32 mg/L) was observed at the most landward MLS (MLS 8) with an Fe-rich plume extending 

along the bottom of the sampling zone (z < 3.5 m).  Despite this discontinuity the correlation 

between Fe and As vertical profiles at MLS 3 - 5 indicates that As mobility is coupled to Fe 

redox cycling near the shoreline. This has behaviour has been observed previously in beach and 

lake sediments [Bone et al. 2006; Johnston et al., 2010, Couture et al., 2010]. The rapid 

attenuation of dissolved Fe and As at shallow depth may be due to the precipitation of Fe 
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(hydr)oxides and subsequent As adsorption as the groundwater becomes less reducing near the 

SWI [Smedley, et al., 2002]. By accumulating chemical species such as As that are strongly 

adsorbed to them, Fe hydr(oxides) can control the flux of chemical species to surface waters 

[Charette and Sholkovitz et al., 2002].   

The concentrations of As and Fe in the sediment cores further support the existence of an ‘iron 

curtain’ barrier near the SWI at the shoreline. Step 1 and 2 of the selective extraction showed that 

sedimentary non-specific and specific bound As was low (Appendix E). Higher As 

concentrations were released by steps 3, 4 and particularly 5, indicating that sedimentary As was 

associated with amorphous (hydr)oxides, crystalline (hydr)oxides and residual mineral phases. 

Step 3 extracted concentrations show that the highest abundance of As associated with 

amorphous Fe hydr(oxides) occurred near the SWI at the shoreline with high As (up to 2.1 

mg/kg) and Fe (up to 1500 mg/kg) was released from sediment at this location (Figure 3.8a). In  

addition to the high As and Fe content associated with amorphous solid phases below the 

shoreline, the step 3 and 4 extractions showed that amorphous and crystalline Fe hydr(oxides) 

and associated As were present through the beach aquifer (As = 0.9 – 3.2 mg/kg and Fe  = 620 – 

3430 mg/kg). As can be seen in Figure 3.8a and b, for step 3 and 4 there was a reasonable 

correlation between the sedimentary Fe and As concentrations for all sediments except the 

deepest samples from the landward cores (x = 0 m and x = 17 m). Arsenic associated with 

residual solid phases was significantly elevated for a number of sediment samples (Figure 3.8 

and 3.9). The deepest sample analyzed from the core at the shoreline (x = 67.5 m, z = -3.94 m) 

had the highest As (26 mg/kg) associated with the residual phase. The residual Fe was also 

elevated at this location (3985 mg/L). Cores were only collected to a depth of 1.5 m below the 

watertable and so this location where maximum sedimentary Fe and As was detected in the 
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residual phases was ~0.3 m above where dissolved Fe and As decreased at shallower depth 

(Figure 3.8 and 3.6a). Compared to the As and Fe released from steps 3 and 4, there was poor 

correlation for the As and Fe content associated with residual mineral phases (Figure 3.9c).  

 

Figure 3.8: As and Fe extracted from sediment cores collected at  Little Beach in June 2012: (a) 

As (mg/kg) extracted from step 3 (amorphous (hydr)oxides), (b) Fe (mg/kg) extracted from step 

3 (amorphous (hydr)oxides), (c) As (mg/kg) extracted from step 4 (crystalline (hydr)oxides), (d) 

Fe (mg/kg) extracted from step 4 (crystalline (hydr)oxides), (e) As (mg/kg) from step 5 (residual 

mineral phases), and (f) Fe (mg/kg) extracted from step 5 (residual mineral phases).  



52 

 

 

Figure 3.9: Sedimentary As versus Fe for extraction step 3 (amorphous (hydr)oxides), step 4 

(crystalline (hydr)oxides) and step 5 (residual minerals). The different symbols denote the 

location of the sediment core from which the sample was collected. Note the change in 

concentration scales for (c). 

The Eh measurements are consistent with precipitation of Fe hydr(oxides) and subsequent As 

sequestration at shallow depth below the shoreline (Figure 3.6f). The groundwater was less 

reducing at shallower depth (z > -4.24 m) near the shoreline these conditions would have 

promoted the precipitation of Fe hydr(oxides). Higher pH (7.5 - 7.8) was observed in the shallow 

pore water, particularly around the shoreline, compared to deeper in the aquifer (z < -4.35 m) and 

further landward (pH = 6.75 - 7). The elevated pH was likely associated with the recirculation of 

lake water through the beach sediments (average pH = 7.76 for lake water, see Section 3.4.3). At 

MLS 4, the increasing pH and Eh above z = -4.24 m coincided with a sharp decrease in dissolved 

As. We did not measure the oxidation state of As so we cannot conclusively determine the 

relative concentrations of As(III) and As(V), however thermodynamically the increase in pH and 

Eh may have oxidized As(III) to As(V). As(V) is more strongly adsorbed to Fe hydr(oxides) than 

As (III) at near-neutral pH  [Smedley, et al., 2002]. A change in redox state from As(III) to 

As(V) may explain why As was rapidly sequestered at this depth (z = -4.24m) compared with Fe 
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which decreased gradually between -4.84 to -4.24m. The pH gradient may also have changed the 

speciation of ions that compete with As for adsorption sites (e.g., HCO3, P, Si) such that As 

preferentially adsorbed at this depth. 

Some studies have shown that surface water can deliver high DOC to shallow pore waters 

leading to more reducing rather than oxic conditions near the SWI [e.g., Canavan et al., 2006]. 

Reducing conditions would drive reductive dissolution rather than precipitation of Fe 

(hydr)oxides near the SWI. However, measurements indicate that DOC is spatially 

heterogeneous through the beach aquifer with higher DOC levels at the most landward MLS 

(MLS 8, 14.2 mg/L) compared with the lake water (2.8 mg/L; Figure 3.6g). This suggests that 

the recirculation of lake water with high dissolved oxygen (up to ~10 mg/L) and low DOC 

relative to the landward groundwater end member leads to the more oxidized conditions in pore 

water below the shoreline - this would promote the precipitation of Fe hydr(oxides) and 

subsequent As accumulation.  

At near-neutral pH, PO4
3-

 behaves similarly to As(V) and is also strongly adsorbed to Fe 

(hydr)oxides [Smedley, et al., 2002]. While dissolved PO4
3-

 is more uniformly distributed with 

depth across the entire sampling zone, suggesting a shallower and more extensive groundwater 

source, similar to As and Fe, dissolved PO4
3-

 decreases with depth at MLS 3 and 4 near the 

shoreline and decreases offshore (Figure 3.6 and Figure 3.7). Fewer pore water samples were 

analyzed for PO4
3-

 compared with As and Fe and this is the cause of some discrepancy between 

the species distribution contours and vertical profiles shown in Figure 3.6 and 3.7. Nevertheless 

the decrease in PO4
3- 

with depth at MLS 3 and 4 near the shoreline indicates that adsorption to Fe 

hydr(oxides) may also be controlling the mobility of PO4
3- 

at the site and preventing  PO4
3-

 

release to the nearshore water.  
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Mn cycling also often affects the mobility of As and PO4
3-

 as these species are powerfully 

adsorbed to Mn (hydr)oxides [Smedley, et al., 2002]. At Little Beach, the dissolved Mn 

distribution does not compare well with the As and PO4
3-

 distributions suggesting that Mn 

cycling does not significantly affect the As and PO4
3-

 geochemistry (Figure 3.6). This is likely 

because the Mn in the beach groundwater (maximum = 2.3 mg/L) is over an order of magnitude 

lower than the Fe (maximum = 32 mg/L). Similarly there was little correlation between the 

sedimentary As and Mn content and Mn sediment concentrations (ranged from 99 - 325 mg/kg, 

Appendix E) were significantly lower than Fe concentrations (ranged from 2832 - 8456 mg/kg). 

This implies Fe rather than Mn cycling controls the mobility of As (and other species such as 

PO4
3-

)
 
at the site.  

Fe and As geochemistry are also often influenced by S cycling [Couture et al., 2010]. In reducing 

conditions As can be immobilized by the precipitation of As-sulphide minerals or by attaching to 

Fe-sulphide minerals. Similar to Fe, dissolved S was elevated at the landward MLS (MLS 8) 

below z = -5 m (67 - 137   mg/L) and a S-rich plume was present along the base of the sampling 

zone. The speciation of S was not determined and therefore the S redox cycling between SO4
-2

 

and S
2-

 is unknown. Total sedimentary S at six locations in the beach aquifer are provided in 

Table 3.2. Sediment analyzed from the most landward sediment core had the highest abundance 

of total S (2900 mg/kg) this sample also had the highest total Fe (8456 mg/kg; sum of extraction 

steps). The similar dissolved and sedimentary Fe and S distributions suggest that the high Fe and 

S in the beach groundwater may be attributed to a mineralogical source such as dissolution of Fe-

sulphide minerals. The low pH observed at the landward MLS (MLS 8) is consistent with Fe-

sulphide dissolution as this process generates acidity. Similar to Fe, dissolved S concentrations 

decreased towards the shoreline however S was attenuated at greater depth and more landward 



55 

 

than for. Sedimentary total S concentrations were also high near the shoreline (400 mg/kg - 1100 

mg/kg) with higher S content in the sediment at shallower depth (Table 3.2). The form of the 

solid phase S is unclear but as the vertical profiles of dissolved S do not correlate as well with 

the dissolved Fe and As below the shoreline (MLS 4 and 5) it is unlikely that the formation of 

sulphide minerals is responsible for the accumulation of As in the shallow sediments near the 

shoreline.    

Table 3.3: Total S sedimentary concentrations for select samples at Little Beach. 

x (m) z (m) 

Total S 

(mg/kg) 

72 -3.5 1100  

72 -4.4 600 

68 -3.1 700 

68 -3.94 400 

17 -3.88 <200 

0 7 2900 

 

3.4.2 Aqueous phase geochemistry at Main Beach 

Sampling was conducted at two shore-normal transects on Main Beach to determine if the 

elevated dissolved As observed at Little Beach was an isolated occurrence. Consistent with Little 

Beach, high dissolved As was observed in the groundwater below the shoreline and offshore at 

Main Beach with maximum As of 0.056 mg/L and 0.036 mg/L detected at the east and west 

transects, respectively. Dissolved As, Fe, S, PO4
3-

, pH and Eh distributions for the east transect 

are shown in Figure 3.10.  The distributions for other chemical species and distributions for the 

west transect are provided in Appendix F.   At both sites elevated dissolved As was observed at 

depth ∼5 - 10 m lakeward of the shoreline with As concentrations sharply decreasing at 

shallower depth approximately 0.7 m below the SWI (z = -3.8 m at MLS 1 and 2). The As and Fe 
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vertical profiles displayed similar trends near the shoreline and offshore (MLS 1 and 2, Figure 

3.10).  This suggests that the Fe redox cycling also governs subsurface mobility of As and its 

potential discharge from the groundwater to the lake at the Main Beach sites. In contrast to Little 

Beach, Fe was only elevated lakeward of the shoreline and not at depth across the beach transect 

at the Main Beach sites. Deeper sampling is required to determine if Fe and As plumes are 

present below the sampling zone. Deeper Fe and As plumes may account for high dissolved As 

and Fe being detected at depth further offshore than at Little Beach. While the dissolved PO4
3-

 

distribution was relatively consistent with the As and Fe distributions at the west transect, 

elevated PO4
3-

 (8.8 mg/L) was only detected in the shallow groundwater at the landward MLS at 

the east transect (MLS 6, x = 0 m; Figure 3.10). Eh was much higher in the shallow groundwater 

at the east transect and less reducing conditions may have led to PO4
3-

 attenuation further 

landward. Dissolved S was significantly lower at both Main Beach sites compared with Little 

Beach (maximum S was 18 mg/L and 42 mg/L at the west and east transects, respectively, 

compared with 209 mg/L at Little Beach). In addition, the pH at the landward MLS and along 

the base of the sampling zone was higher at the Main Beach transects (8.3 - 9 at the east and west 

transects). As the groundwater end member pH was higher than the lake water pH it set up a 

reversed pH gradient compared to that observed at Little Beach. Despite these distinctively 

different geochemical conditions the occurrence of As and the importance of Fe redox cycling in 

controlling As mobility near the shoreline was consistent at all beach sites.  
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Figure 3.10: Contoured distributions of  dissolved (a)  As (mg/L), (b) Fe (mg/L), (c) S (mg/L), 

(d) PO4
3- 

(µg/L), (e) pH and (f) Eh (mV) at Main Beach east transect for June 2012 monitoring 

event. MLS ports where samples were collected and analyzed are depicted by the red circles.   
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Figure 3.11: Dissolved As and Fe vertical profiles at Main Beach east transect for MLS installed 

in proximity to the shoreline and offshore (MLS 1-4).  Note the change in the concentration scale 

between subplots. The dashed horizontal lines depict the sand surface elevation. 

3.4.3 Groundwater flows and exchange rates  

The beach groundwater flows are dynamic as they respond to a range of forcing including low 

(e.g., seasonal) and high (e.g., waves) frequency lake level fluctuations and variations in the 

landward hydraulic gradient. Water level measurements at Little Beach indicated that the 

groundwater flows, including the flow direction across the beach (landward versus lakeward) 

changed depending on the relative magnitude of the landward hydraulic gradient and wave 

conditions. For example, on 5 August 2011, a positive groundwater hydraulic gradient (0.0025) 

was observed from the landward well (x = 0 m) to the well just landward of the shoreline (x = 64 

m), compared to 15 May 2012 when a negative gradient was observed (-0.0058; Figure 3.11). 

The SWL were lower on 15 May 2012 while landward water level is higher (-2.63 m and -3.04 

m, respectively) compared with 5 August 2011 (-2.69 m and -2.83 m, respectively) and the 

offshore Hsig was greater (0.27 – 0.45 m on 15 May 2012 c.f. 0.11 - 0.22 m on August 5 2011).  

On both these sampling dates, wave set-up was evident from the stilling well measurements, but 
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only on 5 August 2011 did the wave set-up cause the water level at the shoreline (z = -2.20 m) to 

be higher than the landward groundwater level (z = -2.25 m). 

 

Figure 3.12: Water level and sand level measurements at Little Beach on 5 August 2011 and 15 

May 2012.  The water levels and sand levels for 5 August 2011 are depicted by  and the solid 

line (-). The water levels and sand levels for 15 May 2012 are depicted by  and the dashed line 

(--). 

The simulated steady-state groundwater flows for 5 August 2011 and 15 May 2012 are shown in 

Figure 3.12. Water levels and simulation results for other monitoring dates and for the Main 

Beach sites are provided in Appendix G. As expected the simulated groundwater flow direction 

was landward on 5 August 2011 and lakeward on 15 May 2012. At both times the model 

indicates that wave set-up would have led to the recirculation of lake water across the SWI from 

the wave set-up point to offshore (x = 62.5 - 72.2 m on 5 August 2011 and x = 65 - 68 m for 15 

May 2012). The simulated flow recirculation cell was larger on 5 August 2011 with lake water 

recirculating to a depth of 4.35 m (z = -6.85 m) below the SWI compared to a depth of 0.9 m (z = 

-3.9 m) for 15 May 2012. Consistent with Xin et al. [2010], weaker wave-induced flow 
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circulations occur when the magnitude of the landward hydraulic gradient is strong relative to the 

wave set-up gradient (i.e., high groundwater discharge restricts the wave-induced flow 

circulations). Particle tracking revealed that while the steady-state recirculation flow paths are 

deep, particularly for 5 August (∼4.35 m below SWI) the time for lake water to recirculate 

through the aquifer is slow. The average recirculation time was calculated to be 25 d for 5 

August and 24 d for 15 May 2012.  The wave conditions are constantly varying and therefore in 

reality infiltrating water would not penetrate to this depth before the wave intensity (and set-up) 

diminished. For both monitoring times, the simulated infiltration/exfiltration rates across the 

SWI around the shoreline and offshore compare well with the rates estimated from the 

manometer measurements (Figure 3.14) - infiltration occurred close to the wave set-up point and 

exfiltration decreased offshore. The good match for the simulated and measured exchange rates 

indicates that the steady state modeling approach simulates well the water exchange around the 

shoreline in response to the wave conditions and landward hydraulic gradient. For 5 August 

2011, the total rate of lake water infiltrating into the aquifer was simulated to be 0.73 m
2
/d 

compared to only 0.08 m
2
/d for 15 May 2012. The total groundwater discharge rate was also 

greater for the 5 August 2012 simulation (0.73 m
2
/d c.f. 0.46 m

2
/d) due to significant increase of 

infiltration. 
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Figure 3.13: Simulated flow velocities and particle flow paths for (a) 5 August 2011 and (b) 15 

May 2012 (Little Beach). The line colouring indicates the travel times (up to 500 d) as particles 

move along their flow path. 

  

Figure 3.14: Observed ( ) and simulated (-) groundwater discharge along shore-normal transect 

at Little Beach for (a) 5 August 2011 and (b) 18 May 2012. The dashed vertical line indicates the 

location of the shoreline.  
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The flow paths (500 d only) for particles originating at the landward boundary can be seen in 

Figure 3.13. Due to the lakeward-directed hydraulic gradient transport of particles flows 

landward for 5 August 2011. On the other hand, the particles were transported lakeward for the 

15 May 2012 conditions and the average transit time was 464 d. For this case, the particles were 

transported horizontally before migrating downwards around the wave-induced flow 

recirculations and discharging offshore of these circulations. The simulated flow paths for the 

land-derived particles compare well with the observed S and Fe plumes (Figure 3.6), except in 

the field Fe and S are sequestered to solid phases along their subsurface discharge pathway. The 

simulations illustrate the importance of waves on the subsurface discharge flow paths in addition 

to driving significant recirculation of lake water across the SWI. The temporal variability in the 

wave conditions and landward hydraulic gradient causes complex flows and geochemical 

conditions in the beach aquifer. The subsurface flows were slow as indicated by the long transit 

times – this provides significant time for solid-aqueous phase interactions. The mixing of 

recirculating lake water with the discharging groundwater below the shoreline would have set up 

the distinct redox and pH gradients observed below the shoreline, and this in turn controls the 

distribution of chemical species and their movement from the groundwater to the lake. The 

implications for chemical fluxes to the lake are discussed in Section 3.6.  

3.5 Source of As in beach groundwater 

The elevated dissolved As consistently observed in the groundwater below the shoreline at Little 

Beach and Main Beach was, as previously stated, higher than concentrations previously detected 

at the adjacent brownfield site (0.05 mg/L) and Ontario standards for non-potable groundwater 

[Ministry of the Environment, 2011]. The occurrence of As below the shoreline at the Main 

Beach sites - not directly hydraulically connected with the East Headland – suggests that the 
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brownfield site may not be source of As in the beach groundwater. Further, while Little Beach 

underwent a beach nourishment program using sediment from Kettle Creek (possibly 

contaminated), this nourishment program not occur on Main Beach – again implying that this 

also is not the As source. 

While the concentrations of As observed are often associated with mining and industrial 

activities, elevated As can also be attributed to naturally occurring geogenic processes. In fact, 

high concentrations of As in groundwater have previously been recorded in aquifers in 

southwestern Ontario [MNDM, 2012]. The acidity and high dissolved Fe and S observed at the 

landward MLS at Little Beach suggest that As may have been released by the dissolution of 

sulphide minerals (e.g., pyrite and arsenopyrite) [Smedley and Kinniburgh, 2002]. While not 

tested it is possible that minerals may be naturally occurring in the unconsolidated aquifer at the 

sites. While As was not observed at the landward MLS at any sites it may have been present 

below our sampling zone. Further field investigation is required to determine if the source of As 

is geogenic. Other potential As sources include (i) air borne deposition from the industrial site, 

(ii) historical application of As-containing fertilizers/pesticides in the surrounding agricultural 

region and (iii) recirculation of lake water with low As concentrations through the sediments and 

subsequent accumulation to Fe hydr(oxides). Further study is required to determine the regional 

extent of the elevated As and its accumulation along the shores of the Great Lakes. If the As is 

naturally occurring and widespread it may have important implications for As biogeochemical 

cycling in the Great Lakes.  

3.6 Implications for As and chemical fluxes to the Great Lakes  

This study has revealed that As mobility in the nearshore aquifer and subsequent discharge to the 

lake is strongly linked with Fe redox cycling at the studied field sites. The redox conditions near 
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the SWI are controlled by the recirculation of lake water through the nearshore sediments. While 

this recirculation was driven primarily by waves, the groundwater flows and 

infiltration/exfiltration across the SWI was complex due to varying wave intensity, lake levels 

and the landward groundwater hydraulic gradient. To our knowledge, this study is the first to 

demonstrate that, as can occur in marine environments, an ‘iron curtain’ may form below the 

SWI at freshwater shorelines. This layer of Fe hydr(oxides) may control the discharge of 

chemical species that are strongly adsorbed to these minerals. While this study focused on As, 

other species such as PO4
3-

 are also powerfully adsorbed to Fe hydr(oxides). Phosphorous inputs 

into the Great Lakes are of considerable concern with elevated P implicated in outbreaks of 

harmful algae blooms. Where present this ‘iron curtain’ barrier may accumulate P in the 

nearshore sediments and prevent its release from the groundwater to nearshore water. 

While the field results indicate that the presence of Fe hydr(oxides) accumulates chemical 

species such as As , it remains unclear under what conditions these accumulated species may 

desorb and subsequently discharge to nearshore waters. The nearshore groundwater flow 

dynamics are complex and certain hydraulic changes such as seasonal changes in the lake water 

level or an episodic wave event may stimulate the release of adsorbed species. Also, for example, 

an increase in organic matter availability along the shoreline (e.g., due to algae build-up at the 

shoreline) could promote reductive dissolution of Fe hydr(oxides) in shallow sediments and the 

remobilization of As and other adsorbed species. Additional research is needed to determine to 

conditions that control the remobilization of species and their potential release to nearshore 

waters. 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

This thesis has investigated the transport and mobility of As in a nearshore aquifer and its 

potential discharge to Lake Erie. Field studies were conducted along transects at Little Beach and 

Main Beach at Port Stanley, Ontario. Little Beach is located nearby to the East Headland of the 

Port Stanley industrial harbour where elevated As concentrations (0.02 mg/L) have been 

recorded [CH2MHILL, 2009]. The Main Beach field sites were located on the opposite site of 

Kettle Creek and not directly hydraulically connected to the areas where there was As 

contamination at the industrial site. Field investigations revealed elevated dissolved As 

concentrations (up to 0.056 mg/L) below the shoreline at all field sites.  Distributions of species 

in aqueous and sedimentary phases showed that the As mobility in the nearshore aquifer and 

subsequent discharge to the lake was strongly linked with Fe redox cycling. While dissolved As 

and Fe concentrations were elevated approximately 1-2 m below the shoreline at all sites 

concentrations sharply decreased at shallower depth towards the sediment-water interface (SWI).  

Analysis of sediment cores via a five-step selective extraction procedure indicated that the 

attenuation of As and Fe at shallow depth (i.e., prior to discharge to the lake) is because the 

groundwater becomes less reducing and this leads to Fe hydr(oxides) precipitation and the 

subsequent adsorption of As to this solid phase. To our knowledge, this study is the first to 

demonstrate that, as can occur in marine environments, a Fe hydr(oxide) layer (also termed an 

‘iron curtain’) may form below the SWI at freshwater shorelines. This ‘iron curtain’ may 

strongly impact the fate of As and other groundwater-derived species discharging to the 
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nearshore waters of the Great Lakes.  Phosphate shows a similar distribution to As and Fe near 

the shoreline at Little Beach; this suggests that this iron curtain barrier may also control 

phosphorous loading to the lakes.   

The redox gradient near the SWI that led to the formation of the Fe hydr(oxides) was set up by 

the recirculation of lake water through the nearshore sediments. Measurements of the vertical 

hydraulic gradients around the shoreline combined with steady state groundwater flow modeling 

showed that this recirculation was driven primarily by waves. However, the groundwater flows 

and infiltration/exfiltration across the SWI are very complex and are influenced by the varying 

wave intensity, lake levels and the landward groundwater hydraulic gradient. Numerical 

simulations for the different monitoring events show that the landward groundwater level, lake 

water level and wave conditions control the water exchange across the SWI.  The direction of 

flow (lakeward vs. landward) in the nearshore aquifer was seen to reverse depending on the 

relative water levels and wave conditions.   

The source of the elevated dissolved As in the nearshore groundwater at the field sites remains 

unknown. The Main Beach sites are not hydraulically connected with the industrial site and also 

never underwent a beach nourishment program as occurred at Little Beach. Therefore the 

occurrence of elevated As at Main Beach suggest that the As may be from a naturally-occurring 

geogenic source.  The acidity and high dissolved Fe and S observed at the landward MLS at 

Little Beach suggest that As may be released by the dissolution of sulphide minerals (e.g., pyrite 

and arsenopyrite) [Smedley and Kinniburgh, 2002]. Other potential As sources include (i) air 

borne deposition from the industrial site, (ii) historical application of As-containing 

fertilizers/pesticides in the surrounding agricultural region and (iii) recirculation of lake water 



73 

 

with low As concentrations through the sediments and subsequent accumulation to Fe 

hydr(oxides).  

4.2 Recommendations  

This thesis has provided important insight into the factors affecting the transport and fate of 

groundwater-derived chemical species, in particular As, in a near-shore freshwater aquifer and 

the potential discharge of these species to the Great Lakes. The persistent occurrence of elevated 

dissolved As below the shoreline at the three beach sites investigated raises questions regarding 

the widespread occurrence of As in nearshore sediment and groundwater along the shores of the 

Great Lakes.  If this phenomenon is naturally-occurring and widespread it may represent a 

significant As sink and have important implications for As cycling in the Great Lakes. The 

aqueous and sedimentary phase chemistry at the field sites indicated that As was trapped below 

the shoreline by an ‘iron curtain’ (Fe (hydr)oxide) layer.  This ‘iron curtain’ may impact the 

mobility of other chemicals at these field sites and also, if widely occurring, could affect the 

mobility and discharge of other chemical species such as PO4
3-

 all along the shores of the Great 

Lakes. It is recommended that additional field work be performed at other beach sites on the 

Great Lakes to determine the occurrence and role of the ‘iron curtain’ layer along the freshwater 

shorelines and also the prevalence of elevated As in nearshore groundwater.  

Recommendations for enhancing understanding of the source of As and geochemical conditions 

controlling the mobility of As (and other chemical species) in the nearshore groundwater are 

outlined below. 
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•  Analysis of redox species, particularly As(III)/As(V) and S(II)/S(IV) would provide 

improved understanding of the redox cycling processes, in particular the linkages between 

the S and Fe cycling and subsequent affect on As mobility in the nearshore groundwater.  

• Extension of the water sampling zone deeper and further landward and offshore is needed to 

determine if there is a deeper landward source of As at the field sites. 

• Deeper sediment cores are required to provide As, Fe and S sedimentary concentrations in 

areas where the groundwater concentrations were greatest below the shoreline and at the 

landward boundary. 

Finally the interacting flow and geochemical process controlling As mobility at the field sites are 

extremely complex. Individual steady state groundwater flow models were developed in this 

thesis to provide insight into the instantaneous flow patterns. However, these steady state flow 

simulations are not entirely realistic because the hydraulic gradient and wave conditions are 

continuously varying. Transit groundwater flow simulations incorporating this variability would 

provide more accurate representation of the dynamic beach groundwater flows.  In addition, it is 

recommended that the field data be used to develop a numerical reactive transport model capable 

of simulating the transport and mobility of As in a nearshore aquifer. A validated model would 

be an extremely valuable tool to identify the conditions that may lead to release of As from 

sediments and the subsequent discharge of As to the nearshore waters. For example, this tool 

could be used to evaluate if lake water level variations, wave conditions and episodic input of 

organic-rich lake water would affect the release of As to the nearshore waters.  
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Appendix A – Grain Size Distribution and Hydraulic Conductivity Estimation 

Sediment samples were collected along the shore-normal transect at Little Beach in August 

2011.  Particle size analysis was performed on all samples and the hydraulic conductivities 

were estimated with Krumbein and Monks [1942] formula.  This formula is given as:  

� � � �
!           (A-1) 

where K is hydraulic conductivity [L/T], ρ is density [M/L
3
], g is gravity [L/T

2
], µ  is 

viscosity [M/LT] and k is the property of the medium calculated by:  

" � 760%&�� '(�.)�*         (A-2) 

where d50 is the particle size having 50% passing [L] and σ is the standard deviation of 

particle size distribution. 
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Table A1:  Parameters for Krumbien and Monks [1942] formula. 

Parameters Values 

ρ, density (g/cm
3
) 0.9982 at 20°C 

g, gravity (cm/sec
2
) 980  

µ , viscosity (g/(cm.sec)) 0.01 at 20°C 

 

Table A2: Particle size distribution and estimated hydraulic conductivities. 

      Particle Size Passing   

Well x (m) z (m) d95 d5 d84 d16 d50 K (m/d) 

MLS1 73 0m 0.40 0.14 0.36 0.17 0.25 20.58 

MLS1 73 3m 0.25 0.04 0.14 0.04 0.07 1.09 

MLS2 65 1m 0.40 0.10 0.33 0.11 0.16 6.49 

MLS2 65 2m 0.37 0.09 0.30 0.10 0.15 5.75 

MLS3 54 0.3m 0.40 0.10 0.35 0.14 0.21 12.33 

MLS3 54 1.2m 0.36 0.10 0.29 0.11 0.16 6.58 

MLS3 54 2.5m 0.31 0.07 0.18 0.08 0.12 3.67 

MLS4 34 0.3m 0.37 0.10 0.32 0.12 0.17 7.93 

MLS4 34 3m 0.36 0.10 0.32 0.12 0.17 8.08 

average (m/d) 8.06 

standard deviation (m/d) 5.30 

min (m/d) 1.09 

max (m/d)             20.58 
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Figure A1.1: Grain size distribution for sediment samples collected from Little Beach in 

August 2011: (a) MLS 1, (b) MLS 2. (c) MLS 3 and (d) MLS 4. 
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Appendix B – Governing Equation for MODFLOW-2005 

MODFLOW-2005 was used to simulate groundwater flow in an unconfined beach aquifer 

and water exchange between the aquifer and Lake Erie. MODFLOW is a finite-difference 

saturated groundwater flow model developed by the U.S. Geological Survey [Harbaug, 

2005].  Groundwater flow is described by: 

+
+, -�,,

+.
+,/ 


+
+0 -�00

+.
+0/ 


+
+1 -�11

+.
+1/ 
2 � 3� +.+4  (B1)  

where Kxx, Kyy, and Kzz are the hydraulic conductivities [L/T] along the x, y, and z coordinate, 

h is the head [L], W is the volumetric flux per unit volume representing sources or sink of 

water [T
-1

], Ss is the specific storage of the porous media [L
-1

], and t is time [T] [Harbaug, 

2005]. 
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Appendix C – Model input parameters and sensitivity analyses  

C.1 Numerical model input parameters 

Input parameters used in the two-dimensional steady-state groundwater models simulating 

flow conditions at Little Beach (August 2011, December, 2011, and May 2012), Main Beach 

East (June 2012) and Main Beach West (August 2012) are provided in Table C1. 

Table C1:  Inputs for defining lake and landward boundary conditions for each monitoring 

event. 

 5 Aug 11 8 Dec 11 15 May 12 21 Jun 12 02 Aug 12 

Hrms (m) 0.582 0.400
1
 0.110 0.321 0.120 

SWL (m) -2.785 -3.387 -3.060 -2.819 -3.407 

Inland 

head (m) 

-2.697 -1.908 -2.659 -2.347 -3.135 

1 – Estimated Hrms applied because Hsig was not available from wave 

buoy. 

 

C.2  Influence of aquifer depth and grid discretization 

The model for Little Beach May 2012 was run with various aquifer depths including: 6 m, 10 

m and 15 m.  The models with aquifer depth of 10 m and 15 m were also run with ∆x = 0.25 

m and 0.125 m to ensure the solution was independent of the grid discretization. Similar flow 

patterns were observed for the models with different grid discretization (Figure C1). The 

average transit times for particles originating at the landward boundary to discharge and 

recirculating particles changes as the aquifer depth changes. The transit times are also 

slightly greater for the models with finer grid discretization.  The simulated discharge pattern 

changed between different ∆x discretization but remained relatively similar between the 
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simulations with different aquifer depth (Figure C2).  In both models with aquifer depth 10 

and 15 the infiltration/exfiltration is higher in the model with ∆x = 0.125 m compare to ∆x = 

0.25 m. 

Table C2: Calculated average transit times and total infiltration and exfiltration rates.  

Avg. 

Recirculation 

Time (d) 

Avg. 

Transit 

Time (d) 

Total 

Infiltration 

(m
2
/d) 

Total 

Exfiltration 

(m
2
/d) 

Depth = 6 m, ∆x = 0.25 m 34.5 509 0.08 0.28 

Depth = 10 m, ∆x = 0.25 m 27 470 0.07 0.45 

Depth = 10 m, ∆x = 0.125 m 24 464 0.08 0.46 

Depth = 15 m, ∆x = 0.25 m 20.75 517 0.06 0.67 

Depth = 15 m, ∆x = 0.125 m 17.7 500 0.07 0.60 
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Figure C1: Simulation results for models with different aquifer depth and grid discretization: 

a) 6 m depth model domain and ∆x =0.25 m, b) 10 m depth and ∆x =0.25 m, c) 10 m depth 

and ∆x =0.125 m, d) 15 m depth and ∆x =0.25 m, and e) 15 m depth and ∆x =0.125 m.  
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Figure C2: Simulated discharge from models with different grid discretization and aquifer 

depth including: a) 6 m depth model domain and ∆x =0.25 m, b) 10 m depth and ∆x =0.25 m, 

c) 10 m depth and ∆x =0.125 m, d) 15 m depth and ∆x =0.25 m, and e) 15 m depth and ∆x 

=0.125 m. 
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Appendix D – Pore water chemistry distributions at Little Beach  

D.1 Pore water chemistries at Little Beach from 3 – 5 August 2011 

 

Figure D1:  Groundwater distribution of dissolved: (a) As (mg/L), (b) Fe, (c) Cl, (d) Ni, (e) 

Zn, (f) NH3 at Little Beach for 3-5 August 2011.  
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D.2 Pore water chemistries at Little Beach for 8 December 2011 
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Figure D2:  Little Beach groundwater distribution of dissolved species on 8 December 2011:  

(a) As (mg/L), (b) Fe (mg/L), (c) S (mg/L), (d) Mn (mg/L), (e) Mg (mg/L), (f) Zn (mg/L), (g) 

Al (mg/L), (h) NH3 (mg/L),  (i) NO3
- 
(mg/L), and (j) Ni (mg/L). 
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D.3 Pore water chemistries at Little Beach for 14-18 May 2012 
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Figure D3:  Little Beach groundwater distribution of dissolved species on 14-18 May 2012: 

(a) Mg (mg/L), (b) Ni (mg/L), (c) Al (mg/L), (d) Ba (mg/L), (e) Ca (mg/L), and (f) Na 

(mg/L), (g) Sr (mg/L), (h) Si (mg/L), (i) P (mg/L), (j) Zn (mg/L), (k) NH3 (mg/L) and (l) DO 

(mg/L), (m) conductivity (µS/cm) and (n) NO3
-
 (mg/L). 
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Appendix E – Supplementary results from selective extractions performed on sediments 

from Little Beach  

 

Figure E1:  Arsenic extracted from sediment cores collected at Little Beach (June 2012): (a) 

As (mg/kg) extracted from step 1 (non-specific bound) and (b) As (mg/kg) extracted from 

step 2 (specific bound).  
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Figure E2:  Mn extracted from sediment cores collected at Little Beach (June 2012): (a) step 

3 (extracted from amorphous hydr(oxides) (mg/kg)), (b) step 4 (extracted from crystalline  

hydr(oxides) (mg/kg)), (c) Step 5 (residual mineral phase extraction (mg/kg), and (d) total 

concentration (mg/kg). 



94 

 

 

Figure E3:  Mg extracted from sediment cores collected at Little Beach (June 2012):  (a) 

step 3 (extracted from amorphous hydr(oxides) (mg/kg)), (b) step 4 (extracted from 

crystalline  hydr(oxides) (mg/kg)), (c) Step 5 (residual mineral phase extraction (mg/kg), and 

(d) total concentration (mg/kg). 
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Figure E4:  Al extracted from sediment cores collected at Little Beach (June 2012):  (a) step 

3 (extracted from amorphous hydr(oxides) (mg/kg)), (b) step 4 (extracted from crystalline  

hydr(oxides) (mg/kg)), (c) Step 5 (residual mineral phase extraction (mg/kg), and (d) total 

concentration (mg/kg). 
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Figure E5:  Sr extracted from sediment cores collected at Little Beach (June 2012): (a) step 

3 (extracted from amorphous hydr(oxides) (mg/kg)), (b) step 4 (extracted from crystalline  

hydr(oxides) (mg/kg)), (c) Step 5 (residual mineral phase extraction (mg/kg), and (d) total 

concentration (mg/kg). 



97 

 

 

Figure E6:  Ni extracted from sediment cores collected at Little Beach (June 2012): (a) step 

3 (extracted from amorphous hydr(oxides) (mg/kg)), (b) step 4 (extracted from crystalline  

hydr(oxides) (mg/kg)), (c) Step 5 (residual mineral phase extraction (mg/kg), and (d) total 

concentration (mg/kg). 
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Figure E7:  Zn extracted from sediment cores collected at Little Beach (June 2012):: (a) step 

3 (extracted from amorphous hydr(oxides) (mg/kg)), (b) step 4 (extracted from crystalline  

hydr(oxides) (mg/kg)), (c) Step 5 (residual mineral phase extraction (mg/kg), and (d) total 

concentration (mg/kg). 
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Appendix F – Supplementary results from Main Beach groundwater investigations 

F.1 Supplementary data for Main Beach east transect: 25 – 28 June 2012 

 

Figure F1.1:  Layout of monitoring equipment at Main Beach east transect. 
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Figure F1.2:  Distribution of dissolved species at Main Beach east transect (25- 28 June 

2012): (a) Mn (mg/L), (b) Mg (mg/L), (c) Ni (mg/L), (d) Zn (mg/L), (e) P (mg/L), (f) Al 

(mg/L), (g) Sr (mg/L), (h) Si (mg/L), (i) NO3
- 
(mg/L), (j) NH3 (mg/L), and (k) Cl (mg/L). 
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F.3 Supplementary data for Main Beach west transect: 30 July  – 3 August 2012 

 

Figure F2.1:  Layout of monitoring equipment at Main Beach west transect.  
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Figure F2.2:  Distribution of dissolved species at Main Beach west transect (30 July - 3 

August 2012):  (a) As, (b) Fe, (c) S, (d) P, (e) Mn, (f) Mg, (g) Ni, (h) Al, (i) Sr, (j) Na, (k) Zn, 

(l) Ba, (m) pH, (n) Eh, (o) NH3, (p) NO3
-
, and (q) Cl.  
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Appendix G - Groundwater hydrology at Little Beach and Main Beach 

G.1 Simulated and observed water level and water exchange rates at Main Beach 

 

Figure G1:  Main Beach East (a) groundwater level and (b) observed ( ) and simulated (-

)groundwater discharge along shore-normal transect. 
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Figure G2:  Main Beach West (a) groundwater level and (b) observed ( ) and simulated (-) 

groundwater discharge along shore-normal tranect. 
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G.2 Simulated groundwater flow and particle tracking for Little Beach and Main Beach 

monitoring events. 

 

Figure G3:  Simulated flow velocities and particle flow paths for December 2011 simulation of 

transect at Little Beach. The line colouring indicates the travel times (up to 500 d) as particles 

move along their flow path. 
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Figure G4:  Simulated flow velocities and particle flow paths for June 2012 simulation of east 

transect at Main Beach. The line colouring indicates the travel times (up to 500 d) as particles 

move along their flow path. 
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Figure G5:  Simulated flow velocities and particle flow paths for June 2012 simulation of west 

transect at Main Beach. The line colouring indicates the travel times (up to 500 d) as particles 

move along their flow path. 

 

Table G1:  Calculated average transit times and total infiltration and exfiltration rates. 

Avg. 

Recirculation 

Time (d) 

Avg. 

Transit 

Time (d) 

Total 

Infiltration 

(m
2
/d) 

Total 

Exfiltration 

(m
2
/d) 

Little Beach - December 2011 22 210 0.28 1.14 

Main Beach East - June 2012 44.5 2028 0.27 0.41 

Main Beach West - August 2012 11 1900 0.10 0.21 
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