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Abstract 

Purpose: This thesis uses magnetic resonance imaging (MRI) techniques to study natural 

killer (NK) cell therapy in a nude mouse model of prostate cancer. Cellular MRI, 

anatomical MRI and hyperpolarized 13C pyruvate spectroscopy were used to study 

various aspects of the model. Methods: The cells used were KHYG-1 NK cells and PC-

3M prostate cancer cells. Imaging was performed on a clinical 3T GE MR750 scanner, 

using a high-performance gradient insert for acquisition with the balanced steady state 

free precession (bSSFP) sequence, and using the built-in gradients for 13C pyruvate 

spectroscopy. Pyruvate was hyperpolarized by dynamic nuclear polarization. Results: 

KHYG-1 were toxic to PC-3M in vitro, and were successfully labeled with 

MoldayRhodamine, a superparamagnetic iron oxide nanoparticle (SPIO). A subcutaneous 

PC-3M tumour model was used to investigate tracking of KHYG-1 in vivo using the 

bSSFP sequence. Four days after administration, KHYG-1 accumulation in the tumours 

was detected by histology but not by MRI, although labeled KHYG-1 at high density 

were visible in MR images. The bSSFP sequence was then optimized for imaging the 

mouse prostate and the whole mouse body. Tumour development in an orthotopic 

prostate cancer model was characterized by MRI and histology for tumour growth, 

metastasis and tumour metabolism. Tumours were visible by MRI day 9 after injection. 

Using histology, metastasis was detected in the lymph nodes and spleen of the mice. 

Necrotic regions in the tumours were detected on day 22 by both anatomical imaging and 

pyruvate spectroscopy and were confirmed by histology. Conclusions: KHYG-1 cell 

therapy shows promise as a treatment of prostate cancer. A mouse model that developed 

lymph node metastases was characterized. Based on the accumulation of KHYG-1 in SC 

tumours 4 days after administration, and the consistent presence of MRI-visible tumours 

on day 9-13, a treatment time point of 9-13 days is proposed for future NK cell tracking 

experiments. 

Keywords: Natural killer cells, prostate cancer, KHYG-1, PC-3M, MRI, cell tracking, 

SPIO, bSSFP, hyperpolarized carbon 13 spectroscopy, pyruvate, nude mouse, metastasis 
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Chapter 1  

1 Introduction 

Prostate cancer is a leading cause of cancer death in North American men (1,2). New 

treatment strategies are required for treating the disease, particularly metastatic prostate 

cancer. A promising field of study involves using the immune system as a treatment for 

prostate cancer. In this thesis, we use magnetic resonance imaging (MRI) to track an 

immune therapy for prostate cancer using natural killer cells (NK), and fully characterize 

a metastatic mouse model of prostate cancer. 

1.1 The Immune System 

In general, one purpose of the immune system is to differentiate cells that are “self” from 

“non-self” and eliminate cells that do not belong. Immune cells are constantly circulating 

through the blood and lymphatic systems to detect non-self and abnormal cells; one 

important cell surface marker of “self” is the major histocompatibility complex I (MHC 

I) that is shared by all cells in an organism. The immune system is composed of 2 parts, 

the innate and the adaptive immune systems. The innate immune system is the first, less 

specific response to pathological organisms and non-self cells or abnormal cells. Cells 

that are part of the innate immune system include natural killer cells (NK), γδ T-cells, 

macrophages, mast cells and others. The adaptive immune system takes a few days to 

respond to threats and provides a reaction that is specific to a foreign or non-self antigen, 

is long-lasting and can respond to subsequent presentations of the same foreign antigen 

much more quickly. This system includes cells such as T-cells (of the αβ subtype), and B 

cells, among others. The two systems are bridged by dendritic cells (DC) (3). 

1.1.1 The Immune System and Cancer 

Many cells of the innate immune system are involved in cancer immunology, in both 

tumour-promoting and tumour-suppressing roles. Natural killer cells and γδ T-cells are 

directly cytotoxic towards tumour cells, but myeloid derived suppressor cells (MDSC), 

DC and macrophages are also important in the immune response toward cancer (4). The 
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focus of this thesis is NK cells, although there are similarities in mechanism between the 

Nk and γδ T-cells. NK cytotoxicity depends on the cell-to-cell contact between the NK 

cell and the target cell and the engagement of receptors and ligands between the cells. NK 

have both activating and inhibitory receptors for cytotoxicity, and if more activating than 

inhibitory receptors are engaged, then the NK cell is activated (5). There are 3 key types 

of receptors on NK cells that determine their activity: the natural cytotoxicity receptors, 

the killer immunoglobulin-like receptors (KIR) and the lectin-type receptors. Inhibitory 

KIR such as KIR2D4, KIR3DL and KIR2DL recognize MHC I molecules on the target 

cell to prevent NK from killing healthy cells. Activating receptors include the natural 

cytotoxicity receptors NKp30, NKp44 and NKp46, which bind to proteins on the surface 

of target cells that are transformed by viral infection or by the transformation to cancer 

cells. Another activating receptor expressed by NK cells is called NKG2D, a lectin-type 

receptor that recognizes stress-induced markers MIC A/B and ULBP (6), which are 

present on a variety of tumour types including prostate cancer (7). Once activated, NK 

cells kill the target cell through one of two pathways: the release of cytotoxic granules 

containing perforin and granzyme, or the expression of death ligands such as Fas and 

tumour necrosis factor (TNF) to trigger apoptosis in the target cell, as well as releasing 

cytokines such as interferon-γ (IFN-γ) to stimulate other immune cells (5).  

DC activate T-cells and NK cells to act in concert to target tumour cells. Immature DC 

serve as sentinels and are distributed throughout the body, and when they encounter a 

foreign antigen (Ag) in combination with a pro-inflammatory danger signal, they take the 

Ag up and start to differentiate into a mature, migratory DC phenotype and begin to 

display activation markers as well. Then, the DC migrates to a draining lymph node, 

completing its maturation and becoming fully activated on contact with T cells. There, it 

presents the foreign or non-self antigen to T-cells present in the lymph node. The T-cells 

activate and rapidly proliferate so that they can then circulate and kill the cells expressing 

that antigen, once again through the release of perforin and granzymes (3). Mature DC 

can also activate NK cells to become more effective killer cells (8,9). Upon cell-to-cell 

contact, mature DC induce NK to produce IFN-γ and also increase their cytolytic activity 

toward tumour cells (9). 
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1.1.2 Immunosuppressive Environment of Tumours 

The tumour microenvironment helps the tumour to evade the immune system by 

producing factors that upregulate and activate regulatory cells of the immune system. 

Regulatory T-cells (Treg) suppress the proliferation of T-cells by secreting TGF-β and IL-

10 or through cell contact-dependent mechanisms (10). Myeloid derived suppressor cells 

(MDSC), which are improperly matured dendritic cells, monocytes and macrophages, 

produce reactive oxygen species (ROS) that inhibit T-cell function, and also inhibit 

expansion of T-cells through the secretion of TGF-β and the metabolism of arginine (11). 

MDSC also inhibit NK cell cytotoxicity (12). Both Tregs and MDSC are 

activated/recruited by tumour-derived factors (10,11). Tumour-associated macrophages 

(TAM) that are activated by the M2 pathway – the most common type of macrophage in 

the tumour microenvironment – similarly inhibit T-cell function through the secretion of 

IL-10 and reactive oxygen species (ROS) (10,13). As well, MHC I molecules on the 

tumour cells can be downregulated, resulting in a lower T-cell response (14). 

 

1.2 Cancer Immunotherapy 

The goal of cancer immunotherapy is to use the immune system to treat cancer. Early 

iterations involved stimulating the immune system with interleukin-2 (IL-2), although 

this had limited effectiveness and toxic side effects (15). Other treatments attempted to 

stimulate existing cells have included IFN-γ (16) and granulocyte macrophage colony 

stimulating factor (GM-CSF) (17). More recently, DC based vaccines have been 

investigated. With DC based vaccines, DC are harvested from the patient, then pulsed 

with a tumour antigen ex vivo and returned to the patient to induce a T-cell and NK-cell 

based immune response (18). As well, autologous and allogenic tumor infiltrating T-cells 

have also been expanded ex vivo and adoptively transferred into patients. Alternatively, 

T-cells that are specific to the tumour’s antigen(s) are extracted from the patient’s blood 

are selected and expanded, and then are transplanted back into the patient. This therapy 

has been tested in early phase trials of patients with melanoma (19,20).  
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NK cells are an attractive cell type for immunotherapy because they kill target cells 

without needing to be sensitized in an antigen specific manner. NK cell-based therapy is 

being studied for solid tumours and leukemia/lymphoma. Early phase clinical trials are in 

progress, with mixed results – some trials were terminated early for toxicity, some had no 

expansion of the administered NK cells, and some reached their endpoints successfully 

(for example, clinicaltrials.gov identifiers NCT00652899, NCT00328861, 

NCT00823524, NCT00697671). Several avenues of NK cell therapy are being explored, 

including in vivo and ex vivo expansion of the patient’s NK cells, ex vivo expansion of 

allogenic NK cells from a donor, or administration of cytotoxic cell lines (such as NK-92, 

YT or KHYG-1) (21-23). Cytotoxic cell lines can be expanded ex vivo in compliance 

with good manufacturing practices (GMP) (21) and have the advantage of expressing a 

different receptor repertoire than the patient’s own NK cells, which have already allowed 

immune evasion of the tumour cells. In human trials, NK cell therapy is administered as 

one or several IV infusions or an intra-arterial injection (24-26).  

 

1.3 Prostate Cancer 

Immunotherapies are being investigated in a variety of blood-borne and solid tumours, 

including prostate cancer. Prostate cancer is the 3rd most deadly cancer in Canadian men, 

and the 2nd most deadly in American men (1,2) and the most commonly diagnosed cancer 

in men. Early cancers are detected by a blood test for elevated Prostate Serum Antigen 

(PSA) and confirmed by a biopsy. The differentiation of the cells in the biopsy core is 

used to grade the cancer and is called the Gleason score (27,28). The higher the Gleason 

score, the more advanced the cancer. Prostate cancer is generally slow growing, so the 

first line of treatment is watchful waiting or active surveillance, to monitor disease 

progress. In cases where treatment is needed, it includes androgen deprivation therapy – 

prostate cancer is dependent on testosterone for growth in its initial stages – radiotherapy 

and surgical removal of the prostate, all of which have side effects ranging from lower 

gastrointestinal effects to incontinence and impotence. Prostate cancer most commonly 

metastasizes to the bone, lung, lymph nodes and liver (29).  
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More advanced cancers are androgen-independent and so androgen-deprivation therapy 

becomes ineffective. When androgen therapy fails, the cancer is then termed castration-

resistant (or recurrent) prostate cancer (CRPC), and can be either metastatic or confined 

at this stage (18). The current treatment for metastatic CRPC (mCRPC) is docetaxel. 

After docetaxel has failed, additional chemotherapeutic agents such as cabazitaxel and 

abiraterone are approved for treatment (in conjunction with prednisone) (18,30).  

Immunotherapy is approved to treat patients with mCRPC and may offer a treatment 

option with fewer side effects than chemotherapy (30). Sipuleucel-T involves drawing 

blood from the patient and retaining the DC, T-cells, monocytes, B cells and NK cells 

(31). Then the cells are co-cultured with a fusion antigen comprised of GM-CSF (to 

activate immune cells) and prostatic acid phosphatase (PAP, an antigen that is 

overexpressed in most prostate cancers (31,32)). The fusion protein is washed out and the 

leukocytes are administered to the patient, where they are assumed to induce a T-cell 

response (30,32). In a phase III trial, this treatment resulted in an improvement in overall 

survival of 4.1 months (32). 

Other immunotherapies under investigation but not yet out of Phase III trials include the 

monoclonal antibody ipilimumab, which blocks the CTLA-4 receptor on T-cells that 

downregulates T-cell activity (30). Another strategy is to induce an immune response to 

prostate tumours by treating with a poxvirus containing PSA and immune system 

stimulators (30). Immune therapies under investigation for other cancers include restoring 

the function of exhausted T-cells (33).    

1.3.1 Mouse models of prostate cancer 

A variety of mouse strains have been developed that spontaneously develop prostate 

cancer. These include the TRAMP mouse (transgenic adenocarcinoma of the mouse 

prostate), which was one of the earliest transgenic mouse models of prostate cancer and is 

still commonly used (34). Prostate cancer occurs because a promotor is inserted into the 

epithelial cells of the prostate and inactivates tumour suppressor genes (34,35). This 

model develops cancer in a predictable way that recapitulates the human disease 

progression, but rarely metastasizes to bone and is much more rapid than human disease 
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(35). Other models include those based on deletion of the pten tumour suppressor gene, 

which can also be combined with other gene deletion to manipulate the phenotype (35). 

However, in the context of a model for NK cell-based therapy for prostate cancer, 

interaction between human NK cells and human prostate cancer is required. A number of 

different models have been developed that are based on the implantation of human cancer 

cell lines into immunocompromised mice; immunocompetent mice would reject the 

implantation of a xenograft as well as the human cell line administered to treat the 

tumour. The nu/nu or nude mouse lacks mature T-cells and so cannot mount immune 

responses that are dependent on T-cells, such as cytotoxicity to cells that are infected 

with viruses and stimulation of B cells to produce antibodies (3). Other, more immune 

compromised mice include the severe combined immune deficiency or SCID mouse, 

which has no T or B cells, and SCID/beige mice which have no NK cells (36).  The 

research presented in this thesis, like many other xenograft prostate cancer models 

(37,38), uses nude mice. 

Prostate cancer cell lines have been isolated from human primary or metastatic tumours. 

Some examples are LNCaP, which is a slow growing cell line that is androgen dependent 

and the related cell line C4-2B which has a tendency to metastasize to bone (39). PC-3 is 

another commonly-used cell line which was isolated from a bone metastasis in a patient 

(40). This cell line was further passaged in vivo in a mouse and a splenic metastasis was 

cultured to develop the PC-3M cell line, which is a highly metastatic cell line that is 

androgen independent (41), and so models the more advanced case of CRPC.  

 

1.4 Magnetic Resonance Imaging (MRI) 

Subcutaneous (SC) tumour growth can be easily measured with calipers, but this is 

difficult with orthotopic tumours because they are difficult to palpate until they are quite 

large. Magnetic resonance imaging (MRI), a non-invasive imaging modality with 

excellent soft tissue contrast, is an ideal method to monitor orthotopic tumour growth and 

response to therapy. 
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1.4.1 General MRI 

MRI derives a signal by exploiting the interaction between nuclear spin and an 

externally-applied magnetic and radiofrequency (RF) field. This requires no ionizing 

radiation and results in an image with excellent soft-tissue contrast. The contrast can be 

manipulated to emphasize different tissues by changing the parameters of RF excitation 

and manipulating the magnetic field in the sample. 

An MRI system consists of 3 components: a main magnetic field, gradient coils and 

radiofrequency coils. Each component is important in image creation. Interaction with the 

sample occurs at the level of the nucleus. All nuclei have an intrinsic property known as 

spin – only those nuclei with non-zero nuclear spin are visible with MRI and those with 

½ spin are the most useful. Hydrogen, as the most abundant element in our bodies, is the 

usual nucleus detected by MRI. The orientation of these nuclei or ‘spins’ is determined 

by thermodynamic principles and is random when they are outside of a magnetic field. 

When the sample is placed inside a strong external magnetic field, as in the bore of the 

MRI scanner, the spins precess around the magnetic field and tend to align with or 

against the magnetic field; the stronger the field, the more net alignment there is and so 

the stronger the magnetization. The net alignment is still very small, however, at 10 ppm 

in a 3T field. The frequency of precession is determined by the Larmor equation: 

 

 

where ω0 is the angular frequency of the spins, γ is the gyromagnetic ratio of the spins 

(42.5 MHz/T for protons), and B0 is the strength of the main magnetic field. In the co-

ordinate system used in MRI, the axis of the scanner that is parallel to the bore is the z-

axis, with the xy-plane perpendicular to the bore.  

The gradient coils are used to encode for position along one axis (eg the z-axis) of the 

scanner by creating a field that is approximately linear in space. The frequency of 

precession is field-dependent, so the frequency is linearly dependent on position along 

that axis. The assumption in image reconstruction is that all changes in frequency are a 

(1) 
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result of manipulation of the gradients; however, the moving electrons in molecules also 

create a varying magnetic field and can actually shield the hydrogen nuclei so that they 

are exposed to a different effective magnetic field, and so precess at a different frequency 

than the one imposed by the field applied by the scanner. This can lead to an artifact 

called chemical shift, where signal is assigned to the wrong physical location because its 

frequency has been increased or decreased by local differences in magnetic field. 

The position in the other directions (eg x and y directions) is also determined using the 

gradient fields. Magnetic gradient pulses are applied to change the phase (but not the 

frequency) of the rotation of the spins as a function of position; the longer a positive 

gradient is applied, the more the phase will change. This can be used to encode position 

in 2 directions for 3D imaging, or in one other direction for 2D imaging. 

The RF pulse excites a portion of the spins into a stable high-energy state, which 

effectively ‘tips’ the magnetization from the z-axis into the xy-plane – the longer the 

pulse lasts and the greater its amplitude, the more the magnetization tips. The 

magnetization is also precessing around the z-axis at the Larmor frequency, so to simplify 

the conceptualization of the MR sequences, it is easier to consider a rotating frame of 

reference that is also rotating at the Larmor frequency (x’y’-plane). The magnetization 

decays back to the low energy state through two mechanisms: spin-lattice, or longitudinal 

(T1) relaxation and spin-spin or transverse (T2) relaxation (Figure 1.1). T1 relaxation 

involves the increase of the magnetization along the z-axis and is achieved by the transfer 

of energy from the nucleus to the lattice around it. T2 relaxation involves the transfer of 

energy between spins, so that the net amount of magnetization decays because of loss of 

spin coherence. T2* relaxation is due to local inhomogeneities in the magnetic field 

caused by either the magnet itself or by differences in susceptibility such as bone, air or 

blood with high iron content and also causes signal to decay in the xy plane (42). 

Magnetization lost through T2* effects is by rephasing the spins, while magnetization lost 

through T2 effects is not. The recovery of the longitudinal magnetization is exponential 

and is characterized by the time constant T1; it takes about 5 T1 intervals to return to the 

initial level of magnetization. Similarly, the decay of the transverse magnetization is 

exponential and is characterized by the time constant T2 (42). 
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Figure 1.1: T1 and T2 relaxation curves. 
Decay of transverse magnetization due to T2 relaxation (dephasing of spins) (purple, left 
axis) and recovery of longitudinal magnetization due to T1 relaxation (blue, right axis). T2 
is the time it takes for the transverse magnetization to decay by 63% and T1 is the time for 
the longitudinal relaxation to recover to 63% of its initial value. Values calculated for 
white matter relaxation values of T1/T2=1331/80 ms. Figure adapted from (42). 

 

1.4.2 Pulse Sequences 

Pulse sequences are programmed manipulations of the gradient and RF coils. They are 

categorized by the method they use to generate an image as either spin-echo (SE) or 

gradient-echo (GRE), and by the timing of the echoes, as either T1 weighted or T2 (or T2*) 

weighted. The timing of the echoes is defined by the repetition time TR (the time 

between the excitations) and the echo time TE (the time between the excitation and 

reading the signal).  

In a SE sequence (Figure 1.2), the spins are tipped into the xy plane by a 90° pulse, then 

allowed to dephase for a certain amount of time (TE/2). Then a 180° pulse is applied; this 

reverses the direction of the spins and so they begin to rephase and an echo is formed at 
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time TE. This is the signal received by the receive coil and then reconstructed using a 

Fourrier transform to form the image. The magnitude of the echo is determined by how 

much T2 decay has occurred. Differences in magnetic field inhomogeneity do not affect 

the magnitude of the echo (42). 

 

 

Figure 1.2: Vector diagram of spin-echo pulse sequence. 
A) The magnetization is pointed along the z axis. B) A 90º RF pulse is applied, tipping 
the magnetization into the x’y’ plane. C) Spins have dephased and at time TE/2 180º 
pulse is applied to flip the vectors. D) Spins start to rephase. E) At time TE, spins have 
reached maximum rephasing and the signal is read. This simple model does not include 
T2 effects. Figure adapted from (42). 

 

In a GRE sequence (Figure 1.3), the spins are tipped into the xy plane by some angle α 

that is usually smaller than 90°. Then, instead of allowing the spins to dephase naturally, 

a negative gradient is applied to rapidly dephase the spins for a time, then a positive 

gradient is applied to rephase them at time TE.  In contrast to SE, differences in spins due 

to magnetic field inhomogeneity are not rephased by the gradients, so the magnitude of 

the echo is determined by T2* (42). Because the dephasing is induced by the gradients 

instead of occurring naturally, GRE sequences are faster than SE and result in less power 

deposition because GRE sequences use fewer 90º and 180º pulses than SE sequences.  
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Figure 1.3: Vector diagram of gradient-echo pulse sequence. 
A) Magnetization is pointed along the z direction. When an RF pulse is applied, the 
magnetization is tipped to lie on the x’ axis (B). Then a negative gradient rapidly 
dephases the spins (C), followed by a positive gradient to rephase the spins (E). At the 
echo time (E), the spins have rephased. This simple model does not include T2* effects. 
Figure adapted from (42). 

 

1.4.3 Balanced Steady State Free Precession Sequence (bSSFP) 

This pulse sequence, also known by the manufacturers’ names of TrueFISP (Siemens), 

balanced FFE (Phillips) and FIESTA (GE Healthcare), is unique because the dephasing 

induced by the gradients is balanced, which means that each positive RF or gradient pulse 

is balanced by a negative RF or gradient pulse and the residual transverse magnetization 

is focused at the end of each TR. This feature results in minimal magnetization loss 

between excitations (Figure 1.4); thus, bSSFP is the most signal-to-noise (SNR) efficient 

pulse sequence (42,43).   
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Figure 1.4: Pulse sequence diagram for balanced steady state free precession (bSSFP) 
sequence.  
RF indicates radiofrequency pulse, GSS slice select gradient, GPE phase encode gradient, 
GFE frequency encode gradient, TR repetition time, TE echo time. Adapted from (42,43). 

 

The flip angle (α) that provides the largest signal for each flip angle can be optimized 
according to the formula: 

 

 

 

Under the biologically relevant conditions that TR<<T1, T2, and with the optimal flip 

angle used, the steady state magnetization (MSS) is described by: 

 

 
(3) 

(2) 
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where M0 is the initial magnetization. Thus, the signal amplitude is proportional to 

√(T2/T1) and so is the image contrast. Additionally, if T2 and T1 for the tissues are similar, 

the signal approaches 50% of the initial magnetization, which is much higher than any 

other pulse sequence can achieve (43). 

One drawback of bSSFP is its sensitivity to off-resonance effects. These appear in the 

form of banding artifacts, in which thick bands of signal loss appear on the image. 

Inhomogeneities in the magnetic field create dephasing that is not rephased by the 

balancing gradients (because it was not caused by the pulse sequence), which leads to 

regions of signal dropout – when the dephasing approaches 2π the signal reaches zero. 

This can be corrected by employing phase cycling, so that the initial flipping of the 

magnetization onto the xy plane is distributed along the plane with each excitation; for 

example for 4 phase cycles, the magnetization could be flipped onto the x’-axis, the y’ 

axis, the –x’ axis and the –y’ axis. When the images acquired using the 4 excitations are 

summed using a sum of squares reconstruction, the banding artifact is averaged out 

(43,44).  

 

 

Figure 1.5: Example of a phase cycling scheme for 4 phase cycles. 
A) Magnetization is initially along the z axis. B) In the first phase cycle, the 
magnetization is tipped onto the x’ axis. C) In the second phase cycle, it is tipped onto the 
–y’ axis. It is tipped onto the D) –x’ and the E) +y’ axis in subsequent acquisitions. One 
complete image is acquired with each phase cycle setting and the images are added using 
a sum of squares reconstruction.  
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bSSFP is also sensitive to T2 contrast agents because of its signal dependence on T2; 

however, the images are not as affected as some other gradient echo sequences which 

allows for more precise localization of the signal due to a smaller blooming artifact (45). 

bSSFP was not widely clinically used until recently because it requires rapid switching of 

gradients, which is not possible with older gradient systems. As well, steep gradients are 

required to obtain smaller voxels suitable for small-animal imaging. This thesis presents 

bSSFP scans that were obtained using a high-performance gradient insert (46,47) that has 

gradients ten times stronger than the native gradients in the 3T GEMR750 at our site, as 

well as integrated cooling to enable long scans with rapid switching of high-gradient 

fields.  

1.4.4 Contrast Agents 

The most common MR contrast agent in clinical use is gadolinium (Gd), a T1 shortening 

contrast agent. It is administered as an IV injection of a gadolinium chelate (Gd-DTPA). 

Gd-DTPA first stays in blood vessels, then extravasates, but cannot cross the intact 

blood-brain barrier. Gd is a paramagnetic metal and decreases the T1 of nearby nuclei; the 

extent of its effect is quantified by r1 or longitudinal relaxivity. Water molecules 

constantly exchange in and out of proximity to the Gd so the effect is larger than the Gd 

atom. Where the T1 is shorter, the image is brighter, so there are hyperintensities in the 

image where Gd is present. Clinically, Gd in various forms is used for the detection of 

brain tumours, in angiography, and for the detection of brain lesions due to multiple 

sclerosis (48-50). In addition, Gd is critical in more advanced methods such as dynamic 

contrast enhanced MRI (DCE-MRI), in which the kinetics of the wash-in and wash-out of 

Gd provide information about the blood vessels supplying tumours (51). Gadolinium 

agents are excreted through the kidneys, usually about 24 hours after administration. 

Nephrogenic systemic fibrosis is a rare but damaging side effect that is seen when Gd is 

administered to patients with decreased kidney function (52). 

T2 agents are superparamagnetic and act by producing large inhomogeneities in the 

magnetic field. This rapidly dephases the transverse magnetization and decreases T2* and 

T2, causing a region of signal loss in the image (42). The field perturbation is much larger 
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in extent than the particle itself and is quantified by r2, or transverse relaxivity – the 

larger the relaxivity, the larger the effect on the magnetic field. These agents are provided 

as particles in the nanometer to micrometer size range called superparamagnetic iron 

oxide particles (SPIO). Clinically, SPIO particles are administered IV and then are taken 

up by phagocytic cells. One application is liver tumour diagnosis; the iron particles are 

phagocytosed by healthy Kupffer cells in the liver causing normal liver tissue to appear 

hypointense and liver tumours appear bright. T2 agents are used in conjunction with T2 

or T2* weighted sequences. SPIO particles have been approved by the FDA for imaging 

liver cancer but are no longer being manufactured (53). 

1.5 Cellular Magnetic Resonance Imaging 

The purpose of cellular MRI is to use contrast agents to obtain contrast between specific 

cell types and the tissue they are in. These cells can be either transplanted or already 

present in the body. This technique has been applied to a variety of cell types, including 

cancer cells (46), immune cells (54,55), neural progenitor cells (56), mesenchymal 

stromal cells (57) and others. The most common contrast agent used for cellular MRI is 

SPIO although other agents based on Gd nanoparticles or fluorine are also under 

investigation (58,59). Cellular MRI using transplanted cells overexpressing iron storage 

proteins is also being studied (60,61).  

SPIO are divided into 3 main classifications by size: micron-sized iron oxide 

nanoparticles (MPIO) that are approximately 1 µm in diameter, SPIO that are in the 100-

500 nm range, and ultra-small particles (USPIO) that are less than 30 nm in diameter. 

They are often available with a fluorescent tag for visualization by fluorescence 

microscopy. The particles are typically made of Fe3O4 embedded in polystyrene (typical 

for MPIO), or coated with dextran or dextran derivatives (SPIO and USPIO). Dextran-

coated particles are biodegradable and after digestion by lysosymes in the cell, the iron is 

reused in cellular processes (62). MPIO coated with polystyrene are not degraded by the 

cells but can be taken up by bystander cells if the original cell undergoes apoptosis 

(55,63). The properties of a selection of iron oxide nanoparticles including their 

commercial availability are presented in Table 1.1. 
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Table 1.1: Properties of Selected Iron Oxide Nanoparticles 

Particle Size 
(nm) Coating Relaxivity 

(mmol-1.s-1) 
Clinically 
approved? Available? 

Feridex 120-180 Dextran r1 40 * 
r2 160* 

Liver 
imaging No 

Resovist 45-60 
Anionic 
dextran 

derivative 

r1 7.2* 
r2 82* 

Liver 
imaging No 

MoldayRhodamine 35 Dextran r1 33 ** 
r2 71 ** No Yes 

Feraheme 17-31 Anionic 
dextran 

r1 15* 
r2 89* 

Iron 
replacement Yes† 

FeRex 50-150 Dextran r1 25** 
r2 161** No Yes 

Bangs Beads 1000 Polystyrene r2 50†† No Yes 

* at 1.5T, **0.47T, ††4.7T,  † only available in the US, and for iron replacement therapy  

Sources: (63-67) 

1.5.1 Cell Labeling 

Cells can be labeled for cellular MRI either ex vivo, and then administered to the subject, 

or the contrast agent can be administered IV and then taken up by cells in vivo. There are 

three main methods of uptake of particles into cells which vary depending on the cell 

type and particle size. Phagocytic cells such as monocytes and macrophages employ 

phagocytosis to internalize large (>750 nm) foreign particles as part of their normal 

function (68). In non-phagocytic cells, the most common internalization process is 

clathrin-mediated endocytosis (CME), which occurs in all cell types and ends with the 

particle in a lysosome in the cytoplasm (68). This pathway has also been implicated in 

macrophage uptake of nanosized (~100 nm) particles (69). This can be both receptor-

dependent or receptor-independent – the latter is more significant for non-targeted 

nanoparticles and slightly slower (68). A similar process occurs in small (~50-80 nm) 

depressions in the cell surface called caveolae and lined by caveolin. This is a more 
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regulated and signaling-intensive pathway and particles are sent into non-digestive 

vesicles (68). 

In general, adherent cells are much easier to label in vitro than non-adherent cells because 

particles, especially large MPIO, tend to settle to the bottom of the culture dish and so 

there is less contact between the cells and the nanoparticle when labeling non-adherent 

cells. Thorek conducted a thorough study of the factors affecting particle uptake in non-

adherent cells (T-cells in this case), studying particle sizes from 30 nm - 1.5 µm and 

various particle coatings. In general, the highest iron uptake was seen in a particle with a 

diameter of 107 nm and a positive charge (70).  

Techniques from cell transfection with DNA have been adapted to cell labeling with iron 

oxide nanoparticles to enhance uptake. Transfection agents such as lipofectamine, poly-

L-lysine and protamine sulfate can be used to coat particles with a cationic coating to 

increase uptake, although this can also result in particles attached to the outside of cells 

(71). Electroporation has also been used to improve labeling efficiency for some cells 

types. This method induces transient pores in the cell surface to allow nanoparticles to 

enter the cell, although the timing and strength of the electric charge must be carefully 

calibrated to avoid low cell viability (72). In magnetofection, the cells and label are co-

incubated with the cell culture plate sitting on a strong magnet, which pulls the label 

down towards the cells and increases uptake (73). 

At this point, cell tracking with SPIO is primarily a pre-clinical tool. Feridex particles 

were approved by the FDA for liver imaging; however, they went off-market in 2008 

(53). In one clinical study of patients with melanoma, autologous DC were harvested and 

labeled with Feridex then injected intranodally. MRI was used to determine the success 

of the injections and to track the DC to adjacent lymph nodes (74). Both Feraheme and 

protamine sulfate are approved (separately) by the U.S. FDA for non-cell tracking 

applications.  

Pulse sequences used for detecting iron-labeled cells must be sensitive to T2* or T2 

effects, so sequences such as T2* weighted GRE and bSSFP are used. As well, small 

voxels and high SNR are required, although as the amount of iron per voxel increases – 
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either because of density of labeled cells or amount of iron per cell – voxels can be larger 

and the signal is still detectable (75). Sensitivity can be improved by increasing TR and 

TE (47,76).   

1.5.2 Cellular Imaging of Immune Cells 

Natural killer cells have previously been labeled with iron nanoparticles and tracked for 

immunotherapy applications by three groups. The first study used parental NK-92 cells 

and NK-92 cells that were stably transfected to express a ligand for the Her2 receptor 

expressed by some breast cancers (NK-92-scFv(FRP5)-ζ). An orthotopic mouse model of 

breast cancer using Her2 positive cells was used. The NK cells were labeled with Feridex 

and Resovist using simple incubation, electroporation and transfection agents; the 

optimal combination of uptake and cell viability was achieved using Resovist and 

lipofectamine. Targeted and non-targeted NK-92 were injected IV then the mice were 

scanned 1 day after administration. The targeted NK-92 were detectable by MRI and 

histology while the non-targeted NK cells were not (64). In a similar experiment by the 

same group, NK-92 were transfected to target EpCAM on prostate cancer cells (NK-92-

scFv(MOC31)-ζ), labeled with Feridex and Lipofectamine, and then tracked to tumours 

in a rat model of prostate cancer (77). Another group used MRI to evaluate the delivery 

of SPIO-labeled NK-92 cells that were injected intra-arterially via a hepatic catheter to 

treat liver metastases in a rat model (78). More recently, a third group used NK-92-

scFv(FRP5)-ζ (targeted to the Her2 receptor) that were labeled with SPIO and liposomes 

and tracked to a brain metastatic model of breast cancer after the blood-brain barrier was 

disrupted using focused ultrasound (79). These experiments were conducted at 3T and 

7T, using T2* weighted or FFE GE sequences. Similar experiments have used positron 

emission tomography (PET) and optical imaging to track targeted NK in small animal 

models of breast and prostate cancer (80,81), as well as single photon emission computed 

tomography (SPECT) tracking of NK in small human pilot studies (25,82). 

MR cell tracking has also been used for detection of other immune cell types. T-cells 

have been labeled with Feridex using poly-L-lysine and Resovist using liposomes for 

cancer and central nervous system applications (83-85). Dendritic cells can be labeled 
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with SPIO or MPIO for monitoring their migration to lymph nodes, although labeling has 

some functional effects on the DC (54,86-88).  

1.5.3 Hyperpolarized Spectroscopy 

MRI as described above allows for localization of tissues, tumours or cells. Spectroscopy 

using hyperpolarized contrast agents provides functional information about tissue 

metabolism. In 2D chemical shift imaging (CSI), unlike with conventional MR imaging, 

a spectrum of resonance frequencies is created for each voxel in the field of view. The 

chemical environment of the nuclei can be determined based on the location of the 

resonance peaks, because nuclei are exposed to slightly different magnetic fields 

depending on the configuration of electrons in the molecule (42). Images of this type can 

be acquired by exciting any MR suitable nucleus. In order to perform CSI for 13C at 3T, 

an RF coil that can be tuned to either the hydrogen Larmor frequency (127.6 MHz) or the 

carbon Larmor frequency (32.12 MHz) is used. 

One common application of spectroscopy uses substrates involved in cellular energy 

metabolism. This method incorporates the use of 13C-enriched endogenous compounds. 

While 12C is the most abundant isotope of carbon (98.9%), it has no nuclear magnetic 

moment, so it is not visible with MRI. Carbon-13 (13C) has a magnetic moment but its 

natural abundance is only 1.1%, so compounds must be synthesized that are enriched in 
13C. Even with this enrichment, however, the density of 13C nuclei is too low for 

spectroscopy; even in a 3T magnetic field the amount of polarization is not sufficient 

(89). This is mainly the result of the smaller nuclear magnetic dipole moment of 13C 

compounds compared with 1H. In order to overcome this limitation, 13C compounds are 

hyperpolarized; this increases the signal by ≥10,000 times (90). Rapid MRSI is used to 

temporally and spatially map the biodistribution of the hyperpolarized probe and its 

metabolic products. Only signal from the injected hyperpolarized probe and its 

metabolites are observed, resulting in a sparse and well-resolved spectrum. 

At our site, metabolites enriched in 13C are hyperpolarized using dynamic nuclear 

polarization (DNP), although other methods exist. Briefly, in this process, the 13C-

enriched metabolite is mixed with a trityl radical and cooled to a glass at a very low 
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temperature in a high magnetic field (3T); the electron spins of the free radical are easily 

polarized by the magnetic field. The polarization is then transferred to the 13C nuclei by 

microwave irradiation (90,91). Then the compound is rapidly thawed to body temperature 

and dissolved in a buffer solution at physiological pH and quickly transported to the 

magnet for injection into the subject (89,90,92). Many different metabolites can be 

hyperpolarized, allowing for different aspects of metabolism to be studied. In order to be 

hyperpolarizable and useful for spectroscopy the molecule must form a glass easily and 

have a relatively long T1 in solution at room temperature. One of the first and most 

commonly 13C-enriched compounds is [1-13C]pyruvate, which has a T1 of about 65 s at 

3T and is readily polarizable to levels greater than 20% (93). 

Pyruvate is important because it is located at a fork in the pathway that metabolizes 

glucose to adenosine triphosphate (ATP), the molecule use for energy in cells. Glucose is 

metabolized differently depending on the type and proliferative status of the tissue 

(Figure 1.6). In non-proliferative tissue, pyruvate is converted to AcetylCo-A by the 

enzyme pyruvate dehydrogenase and enters the citric acid cycle, which is the most 

efficient way to convert glucose to ATP but requires oxygen. However, in tumours, 

metabolism tends to be through the process of aerobic glycolysis, which begins with the 

conversion of pyruvate to lactate through the action of the enzyme lactate dehydrogenase. 

This is called the Warburg effect and has been observed in multiple tumour types and is a 

hallmark of cancer (94) although the precise reason that tumours use a less-efficient ATP 

production pathway is not fully understood (95).  
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Figure 1.6: Metabolic fate of pyruvate changes depending on tissue type and 
proliferation. 
In oxygenated differentiated tissue, glucose is metabolized through oxidative 
phosphorylation (citric acid cycle), which produces the most ATP of the three pathways. 
In deoxygenated differentiated tissue, pyruvate is instead converted to lactate and then 
undergoes anaerobic glycolysis. In proliferative tissue and tumours, glucose is primarily 
metabolized through glycolysis with or without the presence of oxygen. Adapted from 
(95). 
 

In this thesis, pyruvate labeled at the first carbon is used [1-13C]pyruvate; this is 

converted by the enzyme lactate dehydrogenase to  [1-13C]lactate inside the cell. The 

observed signal for [1-13C]pyruvate is a single peak at 171 ppm and for [1-13C]lactate is 

at 183 ppm. For each voxel, the ratio of the area under the lactate and pyruvate peaks is 

used to determine the relative amounts of lactate and pyruvate. Using a ratiometric 

approach compensates for differences in injection volume or polarization between 

samples and allows for comparison between experiments. An increased ratio of lactate to 

pyruvate indicates that the tissue is using aerobic or anaerobic glycolysis instead of the 

citric acid cycle as an energy source, and thus identifies tumours. 
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Figure 1.7: Sample lactate and pyruvate spectrum.  
The lactate peak is located at 183 ppm and the pyruvate peak at 171 ppm. In this 
spectrum acquired at 3T in a mouse with a prostate tumour, the area under the lactate 
peak is larger than that under the pyruvate peak.  

 

[1-13C]pyruvate spectroscopy has been used in mouse models of prostate cancer to grade 

tumours and to locate metastases, and to monitor response to treatment in models of 

lymphoma, glioma and breast cancer (96-99). In humans, it is under study in prostate 

cancer patients ((100), clinicaltrials.gov NCT01229618). Non-cancer applications include 

cardiac function and inflammation due to radiation-induced lung injury and arthritis 

(92,101-103). 
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1.6 Model 

The cancer model in this thesis is PC-3M cells injected either SC or orthotopically in 

nude mice. These cells express the MIC A/B ligand that binds to the NKG2D activating 

receptor on NK cells. For the orthotopic model, the prostate was surgically exposed and 

cells were injected into the left dorsolateral lobe, then the incision was re-sutured and the 

tumour was allowed to grow for up to 30 days (Figure 1.8). 

.  

 

 

 

 

 

 

 

 

 

 

Figure 1.8 The mouse prostate.  
Schematic of mouse prostate and surrounding tissues. The injection site used in this 
model is indicated by the arrow. BL: bladder, VP: ventral prostate, DP: dorsal prostate, 
SV: seminal vesicles, UR: urethra, CG: coagulating gland (adapted from (104)). 

 

The human NK cell line used is KHYG-1. This cell line was derived from a patient with 

an NK cell leukemia (22). It has been found to have increased cytotoxicity relative to 

NK-92 and YT, perhaps because the granzymes in the cytoplasm are constitutively 

polarized, and thus are primed to release their cytotoxic cargo upon activation (105). 

KHYG-1 expresses NKG2D and NKp44 among other cytotoxicity receptors (105).  
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The SPIO used to label the KHYG-1 is MoldayRhodamine, which has a dextran coat and 

is labeled with a Rhodamine tag for fluorescence microscopy validation (Table 1.1). For 

the hyperpolarized 13C spectroscopy experiments, [1-13C]pyruvate was used to examine 

tumour metabolism. 

 

1.7 Purpose of Thesis 

In this thesis we use MRI techniques to track and monitor NK cells and NK cell therapy 

in a model of prostate cancer. Previous studies by other groups have used MRI and PET 

to track targeted NK-92 cells to prostate and breast cancer mouse and rat models, but this 

is the first study to use non-targeted NK cells administered systemically globally, the first 

to label KHYG-1 NK cells, and the first to administer them in vivo. This is also the first 

adminstration of [1-13C]pyruvate spectroscopy in a xenograft model of prostate cancer. 

1.7.1 Objectives 

1- To label KHYG-1 cells with iron oxide nanoparticles 

2- To use the bSSFP sequence to image the healthy mouse prostate in a reasonable 

scan time with high SNR and contrast 

3- To determine if KHYG-1 will accumulate in PC-3M tumours after they are 

administered to mice bearing tumours 

4- To use spectroscopic imaging with hyperpolarized carbon-13 MRI to image 

metabolism in PC-3M tumours and determine sensitivity for monitoring disease 

and treatment progress 

In Chapter 2, iron oxide labeled KHYG-1 NK cells were injected into mice with 

subcutaneous PC-3M tumours. MRI and histology techniques were used to monitor the 

accumulation of the NK cells in the tumours. This chapter is derived from two published 

papers (McFadden C et al, Labeling of multiple cell lines using a new iron oxide agent 

for cell tracking by MRI. Contrast Media and Molecular Imaging 2011, Nov;6(6):514-22 
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and Mallett et al, Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous 

tumors in nude mice, as detected by magnetic resonance imaging. Cytotherapy 2012, 

Jul;14(6):743-51) as well as unpublished work.  

In Chapter 3, the bSSFP sequence was optimized for use in imaging the mouse prostate. 

This was published in PLoSOne as: Mallett CL and Foster PJ. Optimization of the 

balanced steady state free precession (bssfp) pulse sequence for magnetic resonance 

imaging of the mouse prostate at 3T. PLoS One 2011;6(4):e18361. 

In Chapter 4, the optimized pulse sequence was used to characterize the growth and 

metastasis of an orthotopic model for prostate cancer. As well, hyperpolarized 13C 

spectroscopic imaging was used to probe pyruvate metabolism is the tumours. This work 

is in preparation for submission to The Prostate for consideration for publication. 

The appendices include additional results from a longitudinal pilot study of 

hyperpolarized [1-13C]pyruvate in mice with prostate tumours treated by direct injection 

of KHYG-1. 
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Chapter 2  

2 Labeling of KHYG-1 with Molday-Rhodamine and MRI 
of Migration to Subcutaneous PC-3M Tumours in Nude 
Mice* 

2.1 Introduction 

Natural killer cells (NK) are a potential immunotherapy for both solid tumours and 

blood-borne malignancies (1-6). NK cells kill target cells by recognizing inhibitory and 

activating receptors on the target cell surface, without a need for prior antigen 

sensitization (7). Upon recognition of target cells, NK release granules containing 

perforins and granzymes that trigger apoptosis in the target cells. Killing can also result 

from the release of death ligands such as tumour necrosis factor (TNF) (8). Prostate 

cancer is the most common non-melanoma cancer in Canadian men (9). In this pilot 

study, we investigate the use of magnetic resonance imaging (MRI) to track KHYG-1 NK 

cells in a mouse model of prostate cancer. 

Several avenues of NK cell therapy are possible, including in vivo and/or ex vivo 

expansion of patient or donor NK cells (eg (3,10)) or administration of cytotoxic cell 

lines (eg (4)). Cytotoxic cell lines (such as NK-92, YT, NKL, KHYG-1 and NKG) (11-

15) can be expanded ex vivo in compliance with GMP (16) and have the advantage of 

expressing a different receptor repertoire than the patient’s own NK cells, which have 

already allowed immune evasion of the tumour cells. In Phase I/II clinical trials, NK cell 

therapy has been found to be non-toxic in patients with a variety of solid tumours 

including neuroblastoma, renal cell cancer, melanoma, non-small cell lung cancer, breast 

cancer and ovarian cancer (2-5). Adverse events such as lymphopenia and fever are 

related to the preparatory myeloablative therapy (eg high doses of cyclophosphamide and 

                                                
*
 This chapter contains material from previously published work as well as unpublished data. The papers 

are: Mallett CL et al (2012) Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors 
in nude mice, as detected by magnetic resonance imaging Cytotherapy 14:6, 743-51, and McFadden C et al 
(2011) Labeling of multiple cell lines using a new iron oxide agent for cell tracking by MRI Contrast Media 
and Molecular Imaging 6:6, 514-522. 
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fludarabine) and IL-2 administered to allow for in vivo expansion of the transplanted cells 

(3); some success has been achieved when the myeloablative therapy is not performed 

but more work is needed (5).  

Despite these studies, there are currently unanswered questions about the fate of NK cells 

after therapy, including the timing of their homing to tumours and their activity once the 

tumour has been reached (17). Cell distribution and fate have been examined in humans 

using nuclear medicine techniques (1,18). Proliferation of transplanted allogenic NK cells 

can be quantified by measuring donor chimerism in the peripheral circulation (3,6). 

Animal models have been used in imaging studies to examine homing to tumours in a 

variety of solid tumour models using nuclear medicine, optical imaging, fluorescence and 

magnetic resonance imaging (MRI) (19-25). 

Of these imaging modalities, MRI is a non-irradiative and non-invasive method of cell 

tracking that has potential for clinical translation. Cells are labeled in vitro with a 

superparamagnetic iron oxide contrast agent and then administered to the animal. The 

iron oxide causes susceptibility artifacts, which appear as signal voids in the image. 

Single cells have been detected using this method (26-28), although it is more common to 

track the accumulation of larger numbers of cells, including cancer cells, stem cells, and 

macrophages in a target tissue (29-32).  

In this study we have used the KHYG-1 NK cell line, which was established from a 

human NK cell leukemia (14) and has enhanced in vitro cytotoxicity toward the leukemia 

cell line K562 compared to other NK cell lines NK-92 and YT (33). The purpose of this 

study was to use cellular MRI and histology to monitor accumulation of KHYG-1 NK 

cells in prostate tumours, comparing three routes of administration. We established 

subcutaneous tumours in nude mice using the human prostate cancer cell line PC-3M 

(34) and injected KHYG-1 cells labeled with an iron oxide contrast agent, MoldayION 

RhodamineB. Tumour size and appearance and presence of NK cells were measured by 

MRI, using the iron-sensitive and SNR efficient bSSFP sequence, and by histology. Next, 

KHYG-1 were directly administered to subcutaneous (SC) tumours to determine if there 
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would be a treatment effect. To the best of our knowledge, this was the first report of in 

vivo administration of KHYG-1 NK cells.   

2.2 Methods 

2.2.1 Cell Culture 

PC-3M cells (NCI, Frederick, MD) were cultured in RPMI-1640 supplemented with 10% 

fetal bovine serum (FBS). KHYG-1 (gift from Dr. Armand Keating, Princess Margaret 

Hospital, Toronto, Canada) were cultured in RPMI supplemented with 10% FBS and 100 

IU of IL-2 per 500 mL (Proleukin, Novartis, Dorval, QC, Canada). All cells were 

maintained at 37ºC and 5% CO2.  

2.2.2 KHYG-1 Labeling with Iron Oxide Nanoparticle 

KHYG-1 were labeled with MoldayION-RhodamineB (BioPal, Worcester, MA, USA), 

which is considered an ultra-small superparamagnetic iron oxide (USPIO) and has a 

colloidal diameter of 35 nm, with relaxivity values of r1= 30.4 mM-1s-1 and r2=75.8 mM-

1s-1  (35). Labeling was achieved by co-incubating the cells at a concentration of 

2x106/mL with MoldayION RhodamineB at a concentration of 50 µg Fe/mL for 24 hours, 

in a 75-cm2 flask or 6-well plate depending on the quantity of cells required. Cells were 

washed 3 times in HBSS after harvest. Cell suspensions were spun onto slides for 

staining with Perls’ Prussian Blue, and cell labeling efficiency was calculated by 

counting labeled and unlabeled cells in random fields of view from different batches of 

labeled cells. Cell viability was measured using trypan blue exclusion and using a flow-

cytometry assay to measure expression of annexinV and 7AAD. For this assay, cells were 

washed three times in 5ml HBSS and then treated with 0.25% trypsin–EDTA. An equal 

volume of media was added and the suspension was centrifuged for 5 minutes. The cell 

pellet was washed once with 5 ml of HBSS and spun for 5 minutes. The pellet was then 

washed once with Annexin V binding buffer and then counted. Approximately 1×106 

cells were treated with 7‐AAD and/or Annexin V for 15 min and then put through a cell 

strainer with 400 µl of binding buffer to remove clumped cells from the working 
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suspension. Data was acquired using a BD FACSCalibur flow cytometer (BD 

BioScience, USA) and then analyzed using Flowjo software. 

2.2.3 Electron Microscopy 

Cells were fixed overnight in 2.5% glutaraldehyde in 0.1M sodium cacodylate buffer at 4 

°C, washed in 0.1 M sodium cacodylate buffer, post‐fixed in 1% osmium tetroxide in 0.1 

M cacodylate buffer for 1 h, washed in the buffer and enrobed in noble agar. After 

washing in distilled water, they were stained in 2% uranyl acetate for 2 h, dehydrated in a 

graded series of ethanols, cleared in propylene oxide and embedded in Epon 812 resin. 

Sections of 60–90 nm were mounted on 300 mesh formvar–carbon coated copper grids, 

stained with 2% uranyl acetate followed by lead citrate, and viewed in a Philips 410 

transmission electron microscope. 

2.2.4 Cytotoxicity Assay 

The toxicity of the labeled and unlabeled KHYG-1 cells was tested by measuring 

cytotoxicity to PC-3M cells in vitro using an MTT assay kit (Sigma-Aldrich, Canada). 

The experiment was performed in triplicate with three wells per condition in each assay. 

KHYG-1 cells were labeled with Molday as above, with 50 µg/mL of Fe in a six well 

plate. PC-3M cells were plated at 1.6x104/well in 24 well plates and allowed to adhere 

overnight. The PC-3M media was aspirated and replaced with media (control wells) and 

labeled and unlabeled KHYG-1 cells at a KHYG-1:PC-3M ratio of 15:1. After 24 h of 

co-culture, the KHYG-1 were aspirated and the plates were washed three times with 

HBSS, then 250µl of PC-3M media was added to each well, with 25 µl of the MTT 

reagent. The formazen reaction was allowed to proceed for 4 h, then 250 µl of the MTT 

solubilization solution was added to each well and the plates were incubated overnight. A 

sample of each well was pipetted into a well of a 96-well plate for reading at 590 and 650 

nm (background) to measure the relative number of viable cells. Absorbance was 

normalized to the absorbance of control wells containing only media (plus the MTT 

reagents).  
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2.2.5 In vivo tracking experiments 

Male nude mice (nu/nu, Charles River Laboratories) aged 6-8 weeks were housed in a 

specific pathogen free barrier facility. All animal experiments were approved by the 

Animal Use Subcommittee of the University Council on Animal Care at The University 

of Western Ontario following the guidelines of the Canadian Council on Animal Care 

(protocol # 2010-210). 

For the subcutaneous tumour model, 2 million PC-3M suspended in 200 µL of HBSS 

were injected subcutaneously in the right flank of nude mice at day 0. Control tumours, in 

mice that did not receive any injection of KHYG-1, were established in the right and left 

flanks of the mice (6 tumours in 3 mice). On day 8, labeled KHYG-1 were injected either 

intravenously (IV) (20 million cells in 200 µL HBSS, 11 mice), intra-peritoneally (IP) 

(20 million cells in 200 µL HBSS, 5 mice) or SC in the leg near the tumour (2 million 

cells in 200 µL HBSS, 3 mice). One additional mouse received an IV injection of 20 

million unlabeled KHYG-1 cells. (Four of twelve mice died shortly after IV 

administration of KHYG-1, presumably of an embolism in the lungs.) A few 

modifications to this protocol were used: one of the above mice received 20 million 

KHYG-1 IP labeled with MoldayCoumarin instead of MoldayRhodamine and one mouse 

received 40 million KHYG-1 IP labeled with MoldayRhodamine instead of 20 million.  

2.2.6 Magnetic Resonance Imaging 

MRI scans were performed the day before tumour induction and on days 7, 9 and 12 

afterward. Scans were performed on a 3T GE Excite MR750 system using a custom-built 

high-performance gradient insert with an inner diameter of 17.5 cm, maximum gradient 

strength of 500 mT/m and peak slew rate of 3,000 T/m/s, and a custom solenoidal whole-

mouse body RF coil 4 cm in length and 3 cm in diameter. Mice were anaesthetized with 

isoflurane (2% in oxygen) and placed supine in the coil with tape applied to stretch the 

skin over the subcutaneous tumours; warm saline bags were taped near the RF coil to 

maintain body temperature. Rarely, mice were positioned prone in the RF coil to better 

position the tumours for imaging. The balanced steady state free precession (bSSFP) 

sequence was used with the following parameters: field of view 6x6 cm, 200 µm 
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isotropic voxels, TR/TE = 4.6/2.3 ms, bandwidth = ±62.5 kHz, 2 averages, 4 phase cycles 

(with sum of squares reconstruction), 36 minute scan (called the short TR acquisition for 

the remainder of the chapter). A second sequence, henceforth called the long TR 

acquisition, was also tested with the following parameters changed: field of view 5x5 cm, 

TR/TE=12/6 ms, bandwidth 31.25 kHz, scan time 60 minutes (voxel size, signal 

averaging and phase cycling were the same as for the short TR sequence). 

MR images were analyzed using Osirix version 3.7.1 (36); at each time point, tumours 

were manually segmented every 100 µm and the volume was calculated using the ROI 

volume tool.  

2.2.7 Direct injection experiment 

Six female nude mice were injected on both flanks with PC-3M as above. Six days after 

tumour cell injection, mice were divided into 2 groups – 3 control mice (6 tumours) and 3 

treatment mice (6 tumours); groups were determined to keep volumes as similar as 

possible. Mice were treated by injecting directly into the tumour either 35 µL saline 

(control) or 5 million KHYG-1 in 35 µL HBSS (treatment). The treatment group were 

additionally treated with 25,000 IU of rhIL-2 IP daily for 6 days. For all groups, tumours 

were measured using calipers and the volume was calculated according to the formula: 

V=1/2(L*W2), where L is the long axis of the tumour and W is the short axis (37). 

Treatment was repeated on day 12.  

2.2.8 Histology  

For the tracking experiment, mice were sacrificed after imaging at time points ranging 

from 13-20 days after tumour injection (5-13 days after KHYG-1 administration). 

Approximately half were perfused with 4% paraformaldehyde (PFA), while the rest were 

sacrificed by euthanyl injection (as indicated in figure captions). Tumours were removed, 

preserved in 10% formalin, and then passed through a sucrose gradient (10%-30%) for 

dehydration and cryoprotection. Tissues were embedded in OCT and frozen sections 

were cut at a thickness of 16 µm using a cryostat. To detect NK cells, slides were stained 

with purified mouse antihuman CD56 (NCAM) (1:100 dilution) (BioLegend, San Diego, 

CA, USA). The secondary antibody was biotinylated donkey anti-mouse IgG (H+L) 
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(1:500 dilution) (Jackson Immune Research Laboratories, Bar Harbor, ME, USA). 

Blocking was done with 10% normal goat serum (Cedarlane, Burlington, ON, Canada). 

The chromophores were DAB (Liquid DAB-Plus substrate kit, Invitrogen, Carlsbad, CA, 

USA), Alkaline-phosphatase (AP kit, Vector Labs, Burlingame, CA, USA) or 

StreptAvidin AlexaFluor 488 (Invitrogen, Carlsbad, CA, USA). TUNEL staining was 

performed using the ApopTag Plus Peroxidase in situ Apoptosis Detection Kit 

(Chemicon International, Billerica, MA, USA). Perls’ Prussian Blue (PPB) staining for 

iron was performed using a 1:1 solution of 2% HCl and 2% potassium ferrocyanide 

solution for 30-45 minutes, with nuclear fast red or eosin counterstaining. Slides were 

examined on a Zeiss Axio Imager microscope (Germany) with a Retiga EXi Digical CCD 

camera (Q Imaging, Vancouver, BC, Canada). 

For the direct injection experiment, mice were sacrificed by euthanyl injection on day 18 

after tumour cell injection and the tumours were fixed in formalin for at least 24 hours, 

then embedded for paraffin sectioning. Sections were stained for CD56 as above with a 

red indicator and counterstained with hematoxylin. TUNEL staining was performed as 

above.  

2.2.9 Statistics 

Statistical analysis was performed using GraphPad Prism version 5.0b (GraphPad, San 

Diego, CA). The labeled and unlabeled cytotoxicity were compared using a one-way 

analysis of variance. To measure volume change in the tracking experiment and the direct 

injection experiment, a two-way analysis of variance was used with Tukey post-hoc tests.  

2.3 Results 

2.3.1 Cell Labeling and Cytotoxicity 

After incubation with MoldayION RhodamineB, KHYG-1 were labeled with high 

efficiency (Figure 2.1). The label was contained in vacuoles in the cytoplasm as seen in 

the electron micrograph images. Using both the trypan blue assay and the flow-cytometry 

annexin 7AAD assay, there was no decrease in viability of the KHYG-1 cells with 
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labeling, with over 90% viability in all cases. There was no difference in in vitro 

cytotoxicity toward PC-3M cells between labeled and unlabeled cells (Figure 2.2). 

 

Figure 2.1: KHYG-1 labeling with MoldayION RhodamineB was highly efficient.  
A: Cytospin slide stained with Perls’ Prussian Blue (for iron) and eosin. Scale bar is 10 
µm. B: Transmission electron micrograph of cell with endosomes visible (6500X). Box is 
magnified in C (44,500X).  

 

 

 

 

 

 

 

 

 

Figure 2.2: Molday labeling did not affect KHYG-1 cytotoxicity to PC-3M cells. 
Viability of PC-3M cells in control wells was compared to that of cells co-cultured with 
unlabeled and labeled KHYG-1 at a ratio of 15:1 KHYG-1: PC-3M. Labeling had no 
effect on cytotoxicity. Error bars are standard deviation of 3 replicates. * indicates 
significant difference, p<0.01. 
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2.3.2 Migration of KHYG-1 to PC-3M Tumours 

Tumour sections were stained for CD56 to detect NK cells. KHYG-1 cells were present 

after each route of administration (Figure 2.3). Following SC administration, there were 

KHYG-1 in the tumour lobes closest to the site of injection and at the tumour edge 

(Figure 2.3 A, B). After IV administration there were KHYG-1 in the centre of the 

tumour (Figure 2.3C, D). There was some heterogeneous accumulation of KHYG-1 after 

IP administration (Figure 2.3 E, F). The majority of the CD56 positive cells in this 

section were not stained by the TUNEL reagent, suggesting that there are live NK cells 

10 days after administration (Figure 2.3E, F). (The other sections in this panel were not 

double-stained.) Unlabeled KHYG-1 showed a similar migration to the tumour after IV 

administration, with accumulation of KHYG-1 in the centre of the tumour, and several 

CD56 positive, TUNEL negative cells were observed (Figure 2.4). No difference was 

observed for the KHYG-1 labeled with Molday-Coumarin or for the mouse that received 

40 million cells IP.  
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Figure 2.3: KHYG-1 were present in tumours after all routes of administration.  
A, B: 5 days after subcutaneous injection of 2 million MoldayION RhodamineB-labeled 
KHYG-1 (non-perfused mouse). Stained with DAB anti-CD56, hematoxylin 
counterstain; C, D: 5 days after intravenous injection of 20 million MoldayION 
RhodamineB-labeled KHYG-1 (perfused mouse). Stained with AP anti-CD56; E, F: 12 
days after intraperitoneal injection of 20 million MoldayION RhodamineB-labeled 
KHYG-1 (perfused mouse). Stained with AP anti-CD56, DAB TUNEL, eosin counter-
stain. Arrows indicate KHYG-1 cells, arrowheads indicate TUNEL positive cells, and 
boxes indicate magnified regions. Scale bars are 100 µm.  
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treated and untreated tumors or between the tumors 
that were treated via different routes of administration 
(two-way analysis of variance,  P   !    0.05). 

 Figure 4 shows representative MRI images (short 
TR sequence) of a mouse that received an s.c. injec-
tion of iron-labeled KHYG-1 cells. Figure 4A, B 
show images acquired at 24 h and 4 days post-cell 
injection. A large region of signal loss was observed 
at the site of injection (arrowheads) at both time-
points. This area was larger at 24 h post-injection. In 
Figure 4B, signal loss appeared along the margin of 
the tumor and between the lobes. This change in the 
appearance of the signal void because of KHYG-1 
cells implies that the cells had moved over time, 
migrating toward and into the tumor tissue. These 
regions of signal loss corresponded to locations that 
stained strongly for CD56-positive cells (Figure 4C, 
D). Similarly, a piece of connective tissue that was 
rhodamine positive was also positive for KHYG-1 
(Figure 4E, F). 

 Despite the histologic confi rmation of KHYG-1 
in the center of the tumors, as seen in Figure 2, there 
was no change in MRI signal from the iron oxide 
label. For example, Figure 5 compares the MRI sig-
nal (short TR sequence) in mice that received s.c. 
and i.v. KHYG-1. For the tumor that received s.c. 
KHYG-1 (Figure 5A, B), there were no signal voids 
in the center of the tumor 4 days after KHYG-1 
administration; however, there was a strong disper-
sal of rhodamine signal inside the tumor. Similarly, 
there was no change in the MRI appearance of the 
tumor 4 days after i.v. administration of labeled 
KHYG-1, and there was a strong rhodamine signal 
in the tumor. There was a persistent black spot in 

(The other sections in this panel were not double-
stained). Unlabeled KHYG-1 showed a similar 
migration to the tumor after i.v. administration, with 
accumulation of KHYG-1 in the center of the tumor, 
and several CD56-positive, TUNEL-negative cells 
were observed (Figure 3). No difference was observed 
for the KHYG-1 labeled with MoldayCoumarin or for 
the mouse that received 40 million cells i.p.   

 In vivo longitudinal MRI 

 Tumor volumes were measured from the MRI images. 
On day 7 after tumor injection, the mean tumor vol-
ume was 10    "    11 mm 3  (average of 26/34 tumors). 
KHYG-1 was administered the following day. At 
day 12 after tumor injection (4 days after KHYG-1 
administration), the average tumor volume was signifi -
cantly larger than at baseline, at 51    "    75 mm 3  (average 
of 27/31 tumors). At both time-points, some tumors 
were not clearly visible in the MRI images, because 
of motion artifacts (particularly in the long TR scans) 
and distortions from the tumors being at the skin – air 
interface. The volume of these tumors was not mea-
sured. There was no difference in volume between 

Figure 2. KHYG-1 were present in tumors after all routes of 
administration. (A, B) Five days after s.c. injection of 2 million 
MoldayION RhodamineB-labeled KHYG-1 (non-perfused mouse). 
Stained with DAB anti-CD56, hematoxylin counterstain. (C, D) 
Five days after i.v. injection of 20 million MoldayION RhodamineB-
labeled KHYG-1 (perfused mouse). Stained with AP anti-CD56. 
(E, F) Twelve days after i.p. injection of 20 million MoldayION 
RhodamineB-labeled KHYG-1 (perfused mouse). Stained with AP 
anti-CD56, DAB TUNEL, eosin counterstain. Arrows indicate 
KHYG-1 cells, arrowheads indicate TUNEL-positive cells, and 
boxes indicate magnifi ed regions. Scale bars are 100 µm.

Figure 3. There are live NK cells in the tumors. Overlay of fl uorescence 
and brightfi eld (with colors inverted) images of a slide stained with 
anti-CD56 (green) and TUNEL (DAB, color inverted to white) from 
a tumor 5 days after i.v. injection of unlabeled KHYG-1 cells 
(perfused mouse). KHYG-1 were distributed throughout the tumor 
(solid arrows). There were many dead cells (arrowheads), but few 
were CD56 positive (hollow arrow). Scale bar is 50 µm.
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Figure 2.4: There are live NK cells in the tumours. 
Overlay of fluorescence and brightfield (with colours inverted) images of a slide stained 
with anti-CD56 (green) and TUNEL (DAB, colour inverted to white) from a tumour 5 
days after IV injection of unlabeled KHYG-1 cells (perfused mouse). KHYG-1 are 
distributed throughout the tumour (solid arrows). There are many dead cells 
(arrowheads), but few are CD56 positive (hollow arrow). Scale bar is 50 µm.  

 

2.3.3 In vivo Longitudinal MRI  

Tumour volumes were measured from the MR images. On day 7 after tumour injection, 

the mean tumour volume was 10 ± 11 mm3 (average of 26/34 tumours). KHYG-1 were 

administered the following day. At day 12 after tumour injection (4 days after KHYG-1 

administration), the average tumour volume was significantly larger than at baseline at 51 

± 75 mm3 (average of 27/31 tumours). At both time points, some tumours were not 

clearly visible in the MR images, due to motion artifact (particularly in the long TR 

scans), and distortions from the tumours being at the skin-air interface. The volume of 

these tumours was not measured. There was no difference in volume between treated and 
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untreated tumours or between the tumours that were treated via different routes of 

administration (2-way analysis of variance, p>0.05). 

Figure 2.5 shows representative MR images (short TR sequence) of a mouse that received 

a subcutaneous injection of iron-labeled KHYG-1 cells. Figure 2.5A and Figure 2.5B 

shows images acquired at 24 hours (A) and 4 days (B) post NK injection. A large region 

of signal loss was observed at the site of injection (arrowheads) at both time points. This 

area is larger at 24 hours post injection. In Figure 2.5B signal loss appeared along the 

margin of the tumour and between the lobes. This change in the appearance of the signal 

void due to KHYG-1 cells implies that the cells have moved over time, migrating toward 

and into the tumour tissue. These regions of signal loss corresponded to locations that 

stained strongly for CD56 positive cells (Figure 2.5C, Figure 2.5D). Similarly, a piece of 

connective tissue that was rhodamine positive was also positive for KHYG-1 (Figure 

2.5E, Figure 2.5F).  
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Figure 2.5: Signal loss at edge of tumour after subcutaneous injection of labeled KHYG-
1 cells and histological validation of KHYG-1 in tumour margins.  
(A) MRI image of centre slice through tumour day 1 after SC KHYG-1 injection (2 
million cells). (B) MRI image of centre slice through tumour day 4 after SC KHYG-1 
injection. Solid white arrows indicate signal loss at the tumour margins and between 
tumour lobes. White arrowhead indicates large region of signal loss close to injection 
site. Anti-CD56 (DAB) staining of the same tumour at 10x (C) and (D) 40x shows 
accumulation of natural killer cells in tumour margin. Similarly, anti-CD56 staining from 
connective tissue (E) corresponds to a region of high rhodamine fluorescence in an 
adjacent section (F). Histology from a tumour 5 days after KHYG-1 injection, non-
perfused mouse. Scale bar is 2.5 mm in MR images and 50 µm in histology images. 
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Despite the histological confirmation of KHYG-1 in the centre of the tumours as seen in 

Figure 2.3, there was no change in MR signal from the iron oxide label. For example, 

Figure 2.6 compares the MR signal (short TR sequence) in mice that received SC and IV 

KHYG-1. For the tumour that received SC KHYG-1 (Figure 2.6A-B), there were no 

signal voids in the centre of the tumour 4 days after KHYG-1 administration; however, 

there was a strong dispersal of rhodamine signal inside the tumour. Similarly, there was 

no change in the MR appearance of the tumour 4 days after IV administration of labeled 

KHYG-1, and there was a strong rhodamine signal in the tumour. There was a persistent 

black spot in the centre of that tumour that is likely due to a blood vessel. 
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Figure 2.6: Labeled KHYG-1 are in the tumour but not detectable by MRI. 
There are no new signal voids in the centre of the tumour 4 days after labeled KHYG-1 
administration despite strong rhodamine fluorescence in these tumours from mice that 
received SC (top row) and IV (bottom row) injections of labeled KHYG-1. A, D: MRI 
images from the day before KHYG-1 administration; B, E: MRI images from 4 days after 
KHYG-1 administration; C, F: Rhodamine fluorescence images from the centre of the 
tumours 5 days after KHYG-1 administration (non-perfused mice). Some signal loss is 
visible around the edges of tumour that received SC KHYG-1 (B): there is a large void 
corresponding to the site of injection (arrowheads), and signal loss around the margin of 
the tumour and between the lobes (solid arrows). There is a persistent spot of signal loss 
pre- and post-IV administration of KHYG-1 (D, E), likely due to a blood vessel in the 
tumour (hollow arrows). Magnetic resonance images are from the centre of the tumour at 
both time points. Scale bar in MR images indicates 2.5 mm, in fluorescence microscopy 
images indicates 50 µm.  
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tumors from mice that had had i.v. and s.c. admin-
istration of labeled KHYG-1, a pattern of branching 
signal loss was seen in the center of the tumor; how-
ever, this was also seen in a control tumor, albeit at 
a lower intensity (data not shown).    

 Discussion 

 We present the fi rst results from a pilot study of 
administration of the KHYG-1 NK cell line in a 
mouse model of prostate cancer. KHYG-1 were 
labeled with MoldayION RhodamineB, an iron oxide 
contrast agent, for cell tracking with MRI. KHYG-1 
accumulation in a tumor after s.c. injection was 
detected using MRI and confi rmed with histology. 
KHYG-1 migration to the tumors after i.v. and i.p. 
injection was confi rmed by histology but could not 
be defi nitively detected by MRI. 

 Cytotoxic NK cell lines are under investigation 
for treatment of a variety of cancers, with some 

the center of that tumor that was probably caused 
by a blood vessel. 

 The rhodamine signal in the tumor center was co-
localized with intracellular iron, as determined by a 
Perl ’ s Prussian Blue stain. Figure 6 shows a tumor sec-
tion from a mouse that received labeled KHYG-1 s.c. 
The pattern of rhodamine fl uorescence corresponded 
to the location of iron staining, seen in blue.   

 Additional MRI fi ndings 

 An MRI sequence with a long TR was also tested 
to determine whether it was more sensitive to the 
labeled KHYG-1 cells. In mice that were scanned 
with both sequences, there was no difference in 
appearance of the tumor between the two sequences 
(data not shown). Nor was there a difference in the 
MRI appearance of other organs, such as the liver 
and spleen, that were also expected to accumulate 
iron-labeled cells, with none of them showing vis-
ible signal loss with either sequence. In several of the 

  Figure 4.     Signal loss at edge of tumor after s.c. injection of labeled 
KHYG-1 cells and histologic validation of KHYG-1 in tumor 
margins. (A) MRI image of center slice through tumor on day 1 
after s.c. KHYG-1 injection (2 million cells). (B) MRI image of 
center slice through tumor on day 4 after s.c. KHYG-1 injection. 
Solid white arrows indicate signal loss at the tumor margins and 
between tumor lobes. White arrowhead indicates large region 
of signal loss close to injection site. Anti-CD56 (DAB) staining of 
the same tumor at 10  !  (C) and 40  !  (D) (box) shows accumulation 
of NK cells in the tumor margin. Similarly, anti-CD56 staining 
from connective tissue (E) corresponds to a region of high 
rhodamine fl uorescence in an adjacent section (F). Histology from 
tumor 5 days after KHYG-1 injection, non-perfused mouse. Scale 
bar is 2.5 mm in MRI images and 50  µ m in histology images.  

Figure 5. Labeled KHYG-1 are in the tumor but not detectable 
by MRI. There are no new signal voids in the center of the tumor 
4 days after labeled KHYG-1 administration despite strong 
rhodamine fl uorescence in these tumors from mice that received 
s.c. (top row) and i.v. (bottom row) injections of labeled KHYG-1. 
(A, D) MRI images from the day before KHYG-1 administration. 
(B, E) MRI images from 4 days after KHYG-1 administration. 
(C, F) Rhodamine fl uorescence images from the center of the 
tumors 5 days after KHYG-1 administration (non-perfused mice). 
Some signal loss was visible around the edges of tumor that 
received s.c. KHYG-1 (B): there was a large void corresponding 
to the site of injection (arrowheads) and signal loss around the 
margin of the tumor and between the lobes (solid arrows). There 
was a persistent spot of signal loss pre- and post-i.v. administration 
of KHYG-1 (D, E), probably because of a blood vessel in the 
tumor (hollow arrows). MRI images are from the center of 
the tumor at both time-points. Scale bar in MRI images indicates 
2.5 mm, in fl uorescence microscopy images indicates 50 µm.

Cy
to

th
er

ap
y 

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

U
ni

ve
rs

ity
 o

f W
es

te
rn

 O
nt

ar
io

 o
n 

09
/1

8/
12

Fo
r p

er
so

na
l u

se
 o

nl
y.



53 

 

The rhodamine signal in the tumour centre is colocalized with intracellular iron, as 

determined by a PPB stain. (Figure 2.7) shows a tumour section from a mouse that 

received labeled KHYG-1 SC. The pattern of rhodamine fluorescence corresponds to the 

location of iron staining, seen in blue.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Rhodamine and iron are co-localized.  
Tissue sections from a mouse that received SC MoldayION RhodamineB-labeled 
KHYG-1 (non-perfused mouse). A: Rhodamine fluorescence image. In a nearby section 
stained with PPB, the iron staining matches the rhodamine positive regions. B: Magnified 
image of the centre-left region including the large blood vessel. C: Magnified image of 
the region enclosed by the box. Scale bar indicates 50 µm. 

 

2.3.4 Additional MRI Findings 

A bSSFP sequence with a long TR was also tested to determine if it was more sensitive to 

the labeled KHYG-1 cells. In mice that were scanned with both sequences, there was no 

difference in appearance of the tumour between the two sequences (not shown). Nor was 

there a difference in the MR appearance of other organs such as the liver and spleen that 

are also expected to accumulate iron labeled cells, with none of them showing visible 
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cancer immunotherapy. KHYG-1 is a relatively 
new NK cell line (14) and is of interest as a cancer 
immunotherapy because of higher  in vitro  cytotoxic 
potential against several leukemia cell lines than 
NK-92 (33). This has been attributed in part to 
constitutive activation of the ERK2 promoter, a key 
kinase in the release of granzymes, which results in 
increased activation of KHYG-1 relative to the NK 
cell lines YT and NK-92 (33). KHYG-1 appears to 
be cytotoxic via the granzyme M/perforin pathway, 
in contrast to the granzyme B pathway employed by 
NK-92; this may allow KHYG-1 to target cells that 
escape toxicity from the granzyme B pathway (33). 
In addition, KHYG-1 has an increased expression 
of the activating NKG2D receptor compared with 
NK-92 (33). KHYG-1 maintain their cytotoxicity 
after administration of 10 Gy of radiation, so that 
they can be adoptively transferred without the risk 
of engraftment in patients (38). PC-3M, which were 
used as the target cell line in this work, are a meta-
static variant of the PC-3 cell line, which expresses 
altered major histocompatibility complex class I 
chain-related molecules (MIC A/B) and allows for 
recognition by the NKG2D cytotoxicity receptor on 
KHYG-1 (39). This work may thus be generalizable 
to other tumors that express altered MIC A/B. 

 We compared three routes of administration of 
KHYG-1: i.v., i.p. and s.c. The dose of KHYG-1 
administered i.v. and i.p. was 20 million cells. This 
is of the same order of magnitude as the dose given 
in similar studies: 5 – 10 million cells in mice (16,21) 
and 15 million in rats (23,25). A much larger dose 
of 45 million lymphokine-activated killer cells was 
administered in various metastatic mouse models 
(40). Human doses vary but have been provided 
variously as 1 – 3.25  !  10 10  cells over 1 – 4 i.v. doses, 
1  !  10 8  – 3  !  10 9 /m 2 , 5  !  10 8 , 2  !  10 7  and up to 29  !  10 6  
cells/kg (3 – 6,18). In our study, there was a high mortal-
ity (25%) associated with i.v. injections of the KHYG-1 
cells, which might be lowered in future experiments by 
fi ltering the cells prior to injection to remove any clus-
ters, as well as distributing the large dose over multiple 
injections. KHYG-1 accumulated in the tumor after 
s.c. injection of NK cells near the tumor; however, this 
route of administration will not be possible in future 
experiments using orthotopic prostate tumors and was 
tested as a proof-of-concept only. 

 Human and animal biodistribution studies (1,18,
22) show that there is cell trapping, or the transient 
presence of NK cells, in the lungs after i.v. injection, 
so to increase the potential number of cells that reach 
the tumor, NK cells were also administered i.p. There 
was no detectable signal change in the tumors after 
i.p. administration of labeled KHYG-1, although 
some KHYG-1 were detected by histology. This 
was probably because the KHYG-1 cells were sparsely 

success. A phase I study of NK-92 in renal cell car-
cinoma and melanoma patients achieved substantial 
 in vitro  NK-92 expansion, and, although this study 
was not designed to detect effi cacy, there was a tran-
sient decrease in tumor size in one of the 12 patients 
(4). NK-92 increased survival of To-SCID mice 
when administered i.v. 3 h before melanoma cells 
were injected (16). In a nude mouse model of ovar-
ian cancer, the newly established NK cell line NKG 
increased survival time when administered both 
simultaneously with the cancer cells and after the 
tumors were established (15). An additional advan-
tage of cytotoxic NK cells lines compared with  ex 
vivo -expanded donor cells is the ability to modify the 
cells for targeting. NK-92 cells have been transfected 
to target specifi c tumor antigens, including CD20 
on B-cell malignancies, epithelial cell adhesion mol-
ecule (EpCAM) on prostate cancers and HER2 
on breast cancers (21,22,37). In addition, NK-92 
can be modifi ed to be IL-2 independent (16). No 
IL-2 was administered in our study, which probably 
affected the toxicity of the cells, although NK-92 
retain about 10% of their cytotoxicity 3 days after 
IL-2 withdrawal (12). 

 These genetic modifi cations could also be applied 
to the KHYG-1 cell line for application as a human 

Figure 6. Rhodamine and iron are co-localized. Tissue sections 
from a mouse that received s.c. MoldayION RhodamineB-labeled 
KHYG-1 (non-perfused mouse). (A) Rhodamine fl uorescence 
image. In a nearby section stained with Perl’s Prussian Blue, 
the iron staining matches the rhodamine-positive regions. 
(B) Magnifi ed image of the center-left region including the large 
blood vessel. (C) Magnifi ed image of the region enclosed by the 
box. Scale bar indicates 50 µm.
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signal loss with either sequence. In several of the tumours from mice that had IV and SC 

administration of labeled KHYG-1, a pattern of branching signal loss was seen in the 

centre of the tumour; however, this was also seen in a control tumour, albeit at a lower 

intensity (Figure 2.8).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Additional MR signal loss patterns. 
A: In a tumour from a mouse that received labeled KHYG-1 IV, a branching pattern that 
appears to correspond to blood vessels is visible. B: In a control tumour, a similar, but 
fainter branching pattern is seen (red arrow). C: In a tumour from a mouse that received 
labeled KHYG-1 IP, there is a region of signal loss between the lobes. D: This 
corresponds to a region in a Perls’s stained section that contains iron (indicated by black 
arrow). Scale bars are 2.5 mm in MR images and section is at 10X magnification. Images 
acquired with short TR sequence. 

 

2.3.5 Direct Injection Experiment 

There was a significant difference in tumour volume between the treated and control 

tumours starting from day 10 after the treatment began although a trend can be visually 

identified sooner (Figure 2.9). 
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Figure 2.9: Effect of KHYG-1 direct injection on tumour volume. 
Tumour volume was measured with calipers. Dashed line indicates intratumoural 
injection of saline or KHYG-1. Grey box indicates daily IL-2 administration (treated 
group only). Plotted as average of 6 tumours per group, with standard deviation. * 
indicates significant difference between groups in a repeated measures analysis of 
variance (p<0.05). 

 

When the tumours were stained for the presence of NK cells and for apoptosis, the 

staining showed that there were regions of NK cells in a large group, presumably where 

they were injected. By day 12 after the start of treatment, the NK cells were dead (Figure 

2.10).  
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Figure 2.10: Histology of intratumoural injection site. 
Section is from 12 days after the start of treatment (d18 of tumour growth). It was stained 
for dead cells (A) (TUNEL, brown) and for NK cells (B) (anti-CD56 in pink with blue 
hematoxylin counterstain. There is a large pocket of dead NK cells in the bottom right of 
the image (solid white arrows), as well as a region that is positive for live NK cells just 
above the pocket (solid black arrows). The two regions of NK cells may be because there 
were two separate injections of NK cells. As well, there are scattered dead cells in the rest 
of the tumour (hollow black arrows). Scale bar is 100 µm. 

 

2.4 Discussion 

In this paper we present the first results from a pilot study of administration of the 

KHYG-1 NK cell line in a mouse model of prostate cancer. KHYG-1 were labeled with 

MoldayION RhodamineB, an iron oxide contrast agent, for cell tracking with MRI. There 

was no effect on cell viability or function. KHYG-1 accumulation in a tumour after SC 

injection was detected using MRI and confirmed with histology. KHYG-1 migration to 

the tumours after IV and IP injection was confirmed by histology but could not be 

definitively detected by MRI.  

Cytotoxic NK cell lines are under investigation for treatment of a variety of cancers, with 

some success. A phase I study of NK-92 in renal cell carcinoma and melanoma patients 

achieved substantial in vitro NK-92 expansion, and, although the study was not designed 

to detect efficacy, there was a transient decrease in tumour size in one of the 12 patients 

(4). NK-92 increased survival of To-SCID mice when administered IV 3 hours before 

melanoma cells were injected (16). In a nude mouse model of ovarian cancer, the newly 
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established NK cell line NKG increased survival time when administered both 

simultaneously with the cancer cells, and after the tumours were established (15). An 

additional advantage of cytotoxic NK cells lines compared to ex-vivo expanded donor 

cells is the ability to modify the cells for targeting. NK-92 cells have been transfected to 

target specific tumour antigens, including CD20 on B cell malignancies, EpCAM on 

prostate cancers and HER2 on breast cancers (21,22,38). As well, NK-92 can be modified 

to be IL-2 independent (16). No IL-2 was administered in our study, which likely affected 

the toxicity of the cells, although NK-92 retain about 10% of their cytotoxicity 3 days 

after IL-2 withdrawal (12).  

These genetic modifications could also be applied to the KHYG-1 cell line for 

application as a human cancer immunotherapy. KHYG-1 is a relatively new NK cell line  

(14), and is of interest as a cancer immunotherapy because of higher in vitro cytotoxic 

potential against several leukemia cell lines than NK-92 (33). This has been attributed in 

part to constitutive activation of the ERK2 promoter, a key kinase in the release of 

granzymes, which results in increased activation of KHYG-1 relative to the NK cell lines 

YT and NK-92 (33). KHYG-1 appears to be cytotoxic via the granzyme M/perforin 

pathway, in contrast to the granzyme B pathway employed by NK-92; this may allow 

KHYG-1 to target cells that escape toxicity from the granzyme B pathway (33). In 

addition, KHYG-1 has an increased expression of the activating NKG2D receptor 

compared to NK-92 (33). KHYG-1 maintain their cytotoxicity after administration of 10 

Gray of radiation, so that they could be adoptively transferred without the risk of 

engraftment in patients (39). PC-3M, which were used as the target cell line in this work, 

are a metastatic variant of the PC-3 cell line, which expresses altered major 

histocompatibility complex class I chain related molecules (MIC A/B), and allows for 

recognition by the NKG2D cytotoxicity receptor on KHYG-1 (40). This work may thus 

be generalizable to other tumours that express altered MIC A/B. 

We compared 3 routes of administration of KHYG-1: IV, IP and SC. The dose of 

KHYG-1 administered for IV and IP was 20 million cells. This is of the same order of 

magnitude as the dose given in similar studies: 5-10 million cells in mice (16,21) and 15 

million in rats (23,25). A larger dose of 45 million lymphokine-activated killer cells was 
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administered in various metastatic mouse models (41). Human doses vary but have been 

provided variously as 1–3.25 x 1010 cells over 1-4 intravenous doses; 1x108-3x109/m2; 

5x108, 2x107 and up to 29x106 cells/kg (3-5,18). In our study, there was a high mortality 

(25%) associated with IV injections of the KHYG-1 cells, which might be lowered in 

future experiments by filtering the cells prior to injection to remove any clusters, as well 

as distributing the large dose over multiple injections. KHYG-1 accumulated in the 

tumour after SC injection of NK cells near the tumour; however, this route of 

administration will not be possible in future experiments using orthotopic prostate 

tumours and was tested as a proof-of-concept only.  

Human and animal biodistribution studies show (1,18,22) that there is cell trapping, or 

the transient presence of NK in the lungs after IV injection, so to potentially increase the 

number of cells that reach the tumour, NK were also administered IP. There was no 

detectable signal change in the tumours after IP administration of labeled KHYG-1, 

although some KHYG-1 were detected by histology. This was likely because the KHYG-

1 cells were sparsely distributed throughout the tumor and because the loading with iron 

was relatively low; combined, these two factors would limit the detection sensitivity by 

MRI. IP administration may be more relevant when the tumour is located in the 

abdomen; in ovarian cancer, IP administration of cisplatin and paclitaxel improved 

survival over IV drug administration (42). In mice, homing times of T-cells after IV and 

IP routes of administration have been compared in a study of ovalbumin-targeted T-cell 

homing to ovalbumin-expressing subcutaneous tumours. There was no difference in 

tumour T-cell accumulation, kinetics or therapeutic effect after IV and IP injection of 20 

million cells, although there was a larger accumulation of T-cells in the spleen after IP 

administration (43). Peak accumulation was seen 5 days after injection for both routes of 

administration (43), which closely matches the imaging and histology timelines in our 

study. 

There are two other published reports on the use of MRI cell tracking to image NK cells 

in cancer models, both involving the transfection of NK-92 to specifically target cancers 

(21,25). In the first of these papers, NK-92 were transfected to express a receptor for the 

Her2/neu antigen found on many breast cancers, then were labeled with a ferrocarbutran 
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contrast agent and injected IV into nude mice bearing Her2/neu expressing tumours in the 

mammary fat pad. In the second study, NK-92 were transfected to target the epithelial 

cell adhesion molecule (EpCAM) and labeled with ferumoxides. Athymic rats bearing 

subcutaneous tumours from a human prostate cancer cell line expressing EpCAM were 

injected IV with the targeted and untargeted NK-92. In both experiments, migration of 

the targeted NK-92 was easily detected within 24 hours of injection by MRI and by 

histology. The non-targeted NK-92 did not migrate to the tumours in 24 hours (21,25). 

No later imaging and histology time points were reported in either study. Similar studies 

using have used PET and optical imaging to track targeted, but not untargeted, NK-92 to 

subcutaneous tumours  (22,23).  

 In contrast, in our experiment we were able to histologically demonstrate accumulation 

of non-targeted KHYG-1 after 4 days. It is possible that there was some accumulation of 

KHYG-1 one day after administration; however, no mice were sacrificed at that time 

point so this cannot be confirmed. There was not sufficient change in the MRI images at 

day 1 post-injection to monitor migration of the labeled KHYG-1 cells that were injected 

IV and IP. In one mouse that received KHYG-1 SC near the tumour, there was both 

signal loss in the MRI image and histological findings of KHYG-1 in the margins of the 

tumour 1-4 days (MRI) and 5 days (histology) after. After IV and IP administration of 

KHYG-1, we were not able to detect a signal loss in the tumours despite histological 

evidence of KHYG-1 migration and persistence 4-12 days after administration.  

The ability to detect iron-labeled cells with MRI is related to several factors, including: 

the total amount of iron per cell (which is influenced by the cell type, cell size, and type 

of iron particle), the pulse sequence used to collect MR images and the parameters of the 

pulse sequence (especially resolution and timing), the signal to noise ratio (tissue proton 

density and motion become important) and the distribution of iron labeled cells (signal 

loss is proportional to concentration of iron per image voxel) (44). We have previously 

shown that single, iron-labeled cells can be detected by MRI in vivo in the mouse brain 

with the bSSFP imaging sequence (26,27). However, those studies used macrophages and 

cancer cells, which incorporated much more iron per cell, the cells were labeled with 

agents which contain more iron per particle, and the cells were detected against an ideal 
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background (the brain) which further improved detection sensitivity. Shapiro et al. also 

demonstrated single cell detection in vivo with MRI using MPIO (45). 

We chose to use MoldayION RhodamineB because it is biodegradable, non-toxic to cells 

at loading levels required for MRI and because the rhodamine tag provided an excellent 

means of validation. It has been also used to label mouse and non-human primate MSC 

and human breast cancer cells, without causing changes in viability, function, or the 

ability to differentiate (46,47). Feridex and Resovist, which are standard SPIO and have 

previously been used for NK cell tracking (21,25), are no longer commercially available. 

Although MPIO are advantageous for their very high iron content, we have found that 

labeling dendritic cells with MPIO caused alterations in some markers of DC activation 

and maturation (48). The lack of an obvious change in the MRI signal in tumours after IV 

and IP administration of KHYG-1, despite histological evidence of their accumulation in 

the tumour, is likely due to the combination of a relatively low iron content per cell and a 

low density of KHYG-1 in tumours. Future imaging experiments in orthotopic tumour 

models could focus on methods to increase iron loading into the KHYG-1 cells, by using 

a different SPIO contrast agent and methods such as electroporation and transfection 

agents, which have increased labeling of NK-92 cells (21,25). 

A limitation of cellular MRI is the possibility of the iron being expelled from the labeled 

cells and taken up by bystander cells such as macrophages. Currently this can only be 

verified histologically. Another potential complication with interpreting subtle changes in 

MR signal, particularly decreases in signal intensity such as those that arise from iron 

oxide nanoparticles, is signal loss that results from endogenous sources of negative 

contrast in bSSFP images, such as bone, air, ferritin deposits and blood vessels. An 

example of this is the focal areas of signal loss that appeared in some tumors in mice that 

received no KHYG-1 cells and also in some IV treated mice. The similarities in the 

appearance of signal loss in the control and treated mice do not allow for a definitive 

conclusion that iron-labeled KHYG-1 were detected after IV administration.  

We did not observe any difference in tumour volume in the treated and untreated mice in 

the cell tracking experiment. These experiments were not designed with conditions that 
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would optimally affect the tumours since our focus was on demonstrating that KHYG-1 

cells could be labeled and detected in PC-3M tumours and comparing the 3 routes of 

administration. The lack of an observable change in the tumours after systemic KHYG-1 

administration may be due to the relatively large tumour size at the beginning of 

treatment, or because the KHYG-1 were not provided with IL-2 to maintain their 

activation. The preclinical model of subcutaneous tumours used here is not representative 

of the therapeutic situation, where the targets would more likely be sites of metastasis. 

Still, this proof-of-principle study in a simple mouse model provides a first step toward 

realistic treatment goals and will be followed by studies in orthotopic and metastatic 

mouse models. MRI is an ideal technique to monitor response to treatment in these future 

studies. 

As a pilot study for the effectiveness of NK cells on tumour growth under more optimal 

conditions and without the need for the NK cells to migrate to the tumours, KHYG-1 

were injected directly into PC-3M tumours and Il-2 was administered to attempt to keep 

the NK cells viable for longer. There was a difference in tumour volume between treated 

and untreated tumours. This is consistent with a previous report in which NK-92 

transfected to be IL-2 independent were injected into SC melanoma tumours and a 

treatment effect was seen (24). 
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Chapter 3  

3 Optimization of the Balanced Steady State Free 
Precession (bSSFP) Pulse Sequence for Magnetic 
Resonance Imaging of the Mouse Prostate at 3T* 

3.1 Introduction 

Prostate cancer is the most-diagnosed non-melanoma cancer in Canadian men and the 

third-leading cause of cancer death (1). Mouse models of prostate cancer are valuable for 

pre-clinical studies of prostate cancer and include transgenic models such as the 

Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model (2), and xenograft 

models (3–5) that typically involve subcutaneous or orthotopic (intra-prostatic) injection 

of cancer cells. Subcutaneous tumours are easy to implant and measurable with calipers, 

but orthotopic tumours are superior for studies in which metastasis is desired (6–9). In the 

case of intra-prostatatic tumours, without imaging, tumour volume can only be estimated 

by palpation and then measured after sacrifice, which requires a single measurement for 

each animal and potentially a large number of animals with separate groups of mice 

sacrificed at multiple time points. 

The use of magnetic resonance imaging (MRI) allows for the non-invasive quantification 

of tumor size, so that multiple time points are measured in each animal, allowing for 

smaller sample sizes and more complete data. There is also the opportunity to manipulate 

the tissue contrast to better visualize the tissue of interest and to gain different 

information about pathology. The prostate is adjacent to the bladder and surrounded by 

fatty tissue, which must be taken into account when determining which imaging pulse 

sequence and parameters to use. MRI has been used to monitor prostate tumour growth in 

mice, primarily at high field strengths (>4T), but also at clinical field strengths (1.5T and 

                                                
*
 This chapter was previously published as: Mallett CL and Foster PJ (2011) Optimization of the Balanced 

Steady State Free Precession (bSSFP) Pulse Sequence for Magnetic Resonance Imaging of the Mouse 
Prostate at 3T PLoSONE 6(4):e18361.  
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3T). Most investigations have used 2D T1- or T2-weighted spin echo sequences (T1wSE 

and T2wSE), but 3D imaging sequences have also been used (9–23). 

The purpose of this study was to optimize 3D imaging of the mouse prostate to achieve 

high SNR, high contrast-to-noise (CNR) and high resolution between the prostate and 

surrounding tissues, using the balanced steady state free precession (bSSFP) pulse 

sequence. This SNR-efficient sequence has not previously been used for mouse prostate 

imaging, and has the advantage of sensitivity to iron, which will be useful in future 

studies of iron-labeled cell tracking in a mouse model of prostate cancer. 

3.2 Methods 

3.2.1 Animals 

Healthy male nude mice (5–12 weeks of age) were studied. Mice were housed in a 

specific pathogen-free barrier facility in between scanning sessions. All animal 

experiments were approved by the Animal Use Subcommittee of the University Council 

on Animal Care at The University of Western Ontario following the guidelines of the 

Canadian Council on Animal Care (protocol # 2006-03). 

3.2.2 MRI 

Scans were performed on a 3T GE Excite MR750 system using a custom-built high-

performance gradient insert with an inner diameter of 17.5 cm, maximum gradient 

strength of 500 mT/m and peak slew rate of 3,000 T/m/s, and a custom solenoidal whole-

mouse body RF coil 4 cm in length and 3 cm in diameter. For live mouse imaging, mice 

were anaesthetized with isoflurane (2% in oxygen) and placed supine in the coil, warm 

saline bags were taped near the RF coil to maintain body temperature, and the mice were 

wrapped with gauze and tape for consistent positioning and to minimize motion artifact 

due to respiration. For ex vivo imaging, a mouse was euthanized by euthanyl then 

immediately imaged in the same manner. 

Images acquired using the bSSFP pulse sequence had the following parameters at 200 µm 

isotropic spatial resolution. For axial scans, the field of view (FOV) was 3x3 cm (14 

minutes) or 4x4 cm (20 minutes), and for coronal scans it was 6x3.3 cm (26 minutes). 
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The flip angle (FA) was varied between 30º, 40º and 50º. The receiver bandwidth (BW) 

was varied from ±31.25, ±41.67, ±62.5 and ±83.3 kHz. Repetition time (TR) was 

automatically set by the scanner software in accordance with BW and FOV, and echo 

time (TE) was set to be half of TR. Thus, TR ranged from 3.3–4.6 ms and TE from 1.7–

2.3 ms. The number of signal averages (NEX) ranged from 1–4. An RF phase cycling 

scheme with a sum of squared reconstruction was implemented and the number of phase 

cycles (PC) was varied between 2–8. Axial bSSFP images (FOV 3x3 cm, 14 minutes) 

were compared with the more traditionally-used spin echo (SE) images acquired with the 

following parameters: axial orientation, FOV 3x3 cm, TR/TE = 600/25 ms (T1w), 

2000/70 ms (T2w), 1 mm slice thickness, 128x128 matrix, 234 mm in-plane resolution, 

and acquisition time of 20 (T1w) or 17 (T2w) minutes. 

3.2.3 Image Analysis 

Images were compared based on SNR, contrast to noise ratio CNR, and presence of 

artifacts such as chemical shift. SNR was calculated as the mean signal from the hindlimb 

muscle divided by the standard deviation of the background signal. CNR was calculated 

as the difference in SNR between the prostate and the surrounding fatty tissue. In order to 

compare sequences with different scan times and slice thicknesses, SNR efficiency was 

calculated as the SNR divided by the square root of the scan time (in minutes) and was 

normalized by slice thickness (in mm). 

 

3.3 Results 

3.3.1 Effect of phase cycles and averaging 

Phase cycling is used with the bSSFP sequence to avoid the appearance of characteristic 

dark banding artifacts that are caused by sensitivity to local field inhomogeneities and 

which degrade image quality considerably. Figure 3.1 shows the effect of phase cycling 

(2, 4 and 8 PC) and averaging (4, 2 and 1 NEX) on prostate image quality in a sacrificed 

mouse. All scans took 20 minutes. SNR values did not vary significantly with different 

amounts of phase cycling, and CNR was highest for 4 PC, 2 NEX and 8PC, 1 NEX. 
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There was no banding artifact in any of the images. The shape of the prostate in these ex 

vivo images is different from the prostate in vivo due to deflation of the bladder in the 

sacrificed mouse. For all future bSSFP acquisitions, 4 PC and 2 NEX were used. 

 

 

Figure 3.1: Effect of phase cycling and averaging on ex vivo prostate image quality. 
Cropped and enlarged sections of axial scans: A: 2 PC, 4 NEX, B: 4 PC, 2 NEX, C: 8 PC, 
1 NEX. Black arrowheads indicate prostate, white arrowheads urethra, FP is the fat pad 
used for CNR measurements and LN are the inguinal lymph nodes. Scale bar is 1 cm. 
Axial scan, FOV 4x4 cm, 200 µm isotropic resolution, TR/TE = 3.9/2.0 ms, FA 30º, BW 
±62.5 kHz, 20 minutes. 

 

3.3.2 Effect of bandwidth and flip angle 

When flip angles were compared, image SNR (based on muscle signal) was 

approximately equal between flip angles, ranging from 20 to 23 (Figure 3.2). CNR 

increased with flip angle, with values of 40, 54 and 77 for 30º, 40º and 50º, respectively. 

With a flip angle of 50º, the best SNR and CNR was obtained with a bandwidth of ±31.25 

kHz (SNR = 25, CNR = 116); however, there were artifacts such as a slight chemical 

shift between the urethra and prostate tissue, as well as a blurring of the edges of the 

prostate, at the lowest bandwidth (D) compared to the highest bandwidth (F). When the 

bandwidth was set to ±62.5 kHz, the artifacts were reduced with a higher CNR than was 

seen at a bandwidth of ±83.5 kHz. 
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Figure 3.2: Effect of flip angle and bandwidth on prostate visibility and artifacts. 
Flip angle of A: 30º vs B: 40º vs C: 50º at BW of ±62.5 kHz. Bandwidth of D: ±31.25 
kHz vs E: ±62.5 kHz vs F: ±83.3 kHz. Red arrowheads indicate prostate boundaries. 
White arrows point to fat pad used for CNR calculations (FP) and to inguinal lymph 
nodes (ILN). Scale bar is 1 cm. Scan parameters: Axial scan, FOV 3x3 cm, 200 µm 
isotropic resolution, TR/ TE = 3.3–4.6 ms/1.1–2.3 ms, 4 PC, 2 NEX, 14 minutes. 

 

3.3.3 Comparison of bSSFP with T1w and T2w SE 

Axial scans of a mouse were acquired with bSSFP with 4 PC, 2 NEX, FA 50º and BW 

±62.5 kHz (14 minutes) as determined above and compared to T1wSE (20 min) and 

T2wSE (17 min) scans with parameters as indicated in the methods section (Figure 3.3). 

The T1wSE image had the highest CNR of the prostate relative to the surrounding fat at 

114, compared to 84 for the bSSFP image and 12 for the T2wSE. While the overall SNR 

was highest for the T1wSE image at 41, it must be noted that the slice thickness for the 

bSSFP, which had an SNR of 17, was 0.2 mm, compared to 1 mm for T1wSE. The SNR 

for the T2wSE, also acquired with 1 mm slices, was 16. The SNR efficiency was 

calculated and normalized by slice thickness: the bSSFP had the largest SNR efficiency 

at 23, compared to 9 for the T1wSE and 3 for the T2wSE. 
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Figure 3.3: Comparison of in vivo axial images acquired with 3 different pulse 
sequences. 
A: bSSFP, B: T1WsE and C: T2wSE. Black arrows indicate prostate, white arrows 
indicate urethra. Scale bar is 1 cm. bSSFP images acquired using optimized sequence 
with 3x3 cm FOV. Spin echo sequences acquired with axial orientation, FOV 3x3 cm, 
TR/TE = 600/25 ms (T1w), 2000/70 ms (T2w), 1 mm slice thickness, 128x128 matrix, 
234 mm in-plane resolution, and 20 (T1w) and 17 (T2w) minutes acquisition time. 

 

3.3.4 3D nature of bSSFP 

Since bSSFP is a 3-dimensional sequence, the image can be re-oriented to view the 

prostate from any angle (Figure 3.4). This is valuable to visualize the morphology and 

size of the prostate. A simple re-orientation of the scan plane and enlargement of the field 

of view allows for acquisition of whole mouse-body images, in a short scan time, that 

include clear views of the prostate and other organs of interest, such as lymph nodes and 

lymph vessels (Figure 3.5). 
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Figure 3.4: 3 views of prostate from one 3-dimensional in vivo scan. 
A: axial, B: coronal, C: sagittal. White arrows indicate prostate. Scale bar is 0.5 cm. 
Axial scan, FOV 3x3 cm, 200 mm isotropic resolution, TR/TE = 4.6 ms/2.3 ms, 4 PC, 2 
NEX, FA 50º, BW ±62.5 kHz, 14 minutes. 

 

 

Figure 3.5: Sections of coronal view of mouse with prostate and lymph nodes 
identified. 
Tail is at left, head at right. White arrows indicate organs of interest as follows. A: 
popliteal lymph nodes; B: prostate; C: iliac lymph nodes; D: inguinal lymph nodes with 
lymph vessels visible; E: Renal lymph nodes. Scale bar is 0.5 cm. Coronal scan, FOV 
6x3.3 cm, 200 µm  isotropic resolution, TR/TE = 4.6/2.3 ms, BW ±62.5 kHz, FA 40º, 8 
PC, 2 NEX, 26 minutes. 
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3.4 Discussion 

MRI measurements of the mouse prostate are desirable for visualizing the prostate over 

time with the flexibility of being able to manipulate contrast. An advantage of MRI is 

sensitivity for early detection: measurements of the long and short axes of the prostate in 

2D T1wSE images acquired at 7T were able to detect prostate cancer 4 weeks sooner than 

by palpation (12,16). 

Previous work on imaging the mouse prostate has been primarily with 2-dimensional 

T1W (12,16,19,21) or T2W (9,11,18–20,22,23) spin echo pulse sequences that provide 

only a single orientation for viewing. With these 2D sequences it is often necessary to use 

thick slices in order to obtain a reasonable SNR in a reasonable scan time – these have 

been as high as 500–2000 µm (14,15,19,22,23) in these sequences, although in one case it 

was reduced to 50 µm when field strength was increased to 4.7T from 1.5T (10). In plane 

resolution is higher, typically ~100 µm. Three-dimensional sequences such as T1W and 

T2W fast spin echo and fast low angle shot also yield a variety of slice thicknesses from 

300–2000 µm and in-plane resolutions of 80–400 µm at clinical and high field strengths 

(11,13–15,17). 

Even at high field strength, scan time can be quite long, for example 2.5 hours with an 

additional hour for setup (18). While this protocol at 7T allowed for impressive 

discrimination of the ventral from the dorsolateral lobes of the prostate using a 2D 

T2WSE sequence with CHESS (chemical shift selective sequence), this scan time is 

impractical for studies involving more than a few mice. More reasonable scan times of 

10–15 minutes at 7T were achieved through the use of techniques such as RARE and 

multi-echo sequences (9,11). 

Techniques for enhancing prostate contrast include using a long TE and fat saturation in a 

5–15 minute 2D fast spin-echo (FSE) scans at 3T (19). Also at 3T, a 3D fast low-angle 

shot sequence with fat suppression was used to obtain scans with 400 µm isotropic voxel 

size in 10 minutes (17). Additionally, fat suppression by saturation pre-pulses has been 

used at 7T (9,17–19). Gadolinium has also been used to enhance contrast (21,24). Other 

methods of visualizing prostate tumours include using diffusion weighted imaging, which 
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improved detection of small tumours (<1mm in diameter) compared to T2W imaging in a 

transgenic mouse model of prostate cancer (20). 

In this study, we did not use any additional contrast enhancement techniques such as fat 

suppression; consequently, the seminal vesicles were not detectable from the surrounding 

fat in healthy mice. It is common for prostate tumours to spread to the seminal vesicles; 

however, the seminal vesicles can be completely destroyed by large prostate tumours 

(16), and the tumour-fat contrast may be different from healthy seminal vesicle-fat 

contrast. Nevertheless, it might be helpful in the future to exploit the chemical shift 

artifact of the second kind to suppress mixed water-fat pixels using a TE and TR such 

that the water and fat frequencies are out of phase; fat-tissue interfaces would be black. 

However, the TR would have to be increased, leading to a longer scan time (25). 

The bSSFP pulse sequence is very SNR efficient and produces unique T2/T1 contrast (26). 

This sequence has been recently applied to investigations of glioma in the mouse brain 

(27,28). A challenge presented by bSSFP, however, is its high sensitivity to local field 

inhomogeneities. The result is a characteristic ‘‘banding artifact’’ that worsens at higher 

field strengths and with longer TR (26). Multiple acquisition RF phase cycling techniques 

ameliorate this problem and have allowed for bSSFP imaging at higher field strengths 

and with longer TR (28,29). Although the sensitivity of bSSFP to local field 

inhomogeneities can be problematic, it has also been what has enabled this sequence to 

be used for highly sensitive cellular imaging, which has allowed the detection of iron-

labeled single cells and cell clusters at 1.5 T and 3 T (30–35). This feature of bSSFP may 

be useful in mouse models of prostate cancer for detecting and monitoring metastases. 

We have obtained excellent high resolution, high SNR images of the healthy mouse 

prostate in a relatively short scan time using the bSSFP pulse sequence. For our mouse 

studies, this was achieved using a custom-built high-performance gradient insert on a 

clinical 3T system. While the maximum strength of the insertable gradient coil used in 

this study is 500 mT/m, we operated below this. For example, with receiver BW of ±62 

kHz, and FOV of 3 cm, (γ is 42.57 Hz/T), the strength of the readout gradient is 

approximately 100mT/m (using the equation G(read-out)  =  2*BW/(γ*FOV)). The 
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gradient strength used to excite the slab is also far below this maximum strength since a 

thick slab is used that encompasses the whole mouse body. Clinical gradients of 50 mT/m 

and higher are now available on whole body scanners; therefore, bSSFP protocols similar 

to that used in this study are not out of the question for modern-day clinical gradients. 

In conclusion, this study shows that with optimized imaging parameters, 3D mouse body 

images acquired with bSSFP allow for the simultaneous visualization of the prostate and 

its draining lymph nodes, the iliac and renal lymph nodes, as well as the nearby inguinal 

and popliteal lymph nodes. The ability to detect both the prostate and the lymph nodes in 

a single fast, high-resolution scan will be useful for studies that aim to investigate 

prostate cancer metastasis. 
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Chapter 4  

4 Anatomical and Metabolic Magnetic Resonance 
Imaging Characterization of an Orthotopic Mouse 
Model of Prostate Cancer Using the PC-3M Cell Line in 
Nude Mice 

 

4.1 Introduction 

Prostate cancer (PCa) is the second most commonly diagnosed non-skin cancer in North 

American men and the 2nd and 3rd most deadly in the United States and Canada, 

respectively (1,2). Mouse models of prostate cancer include transgenic and knockout 

models such as TRAMP and Pten (3,4), as well as subcutaneous or orthotopic injection of 

human cancer cells into immune-compromised mice. With orthotopically-implanted cells, 

prostate tumours can be difficult to palpate, particularly when the tumours are small (< 

0.5 cm), and precise volume measurement is possible only at necropsy. Magnetic 

resonance imaging (MRI) can be a valuable tool to track tumour growth longitudinally in 

vivo as well as response to therapy (3,5-8). We have previously shown that the bSSFP 

MRI sequence can be used to image the mouse prostate and we have determined the 

optimal sequence parameters in healthy male mice. These whole body images also allow 

visualization of prostate-draining lymph nodes that could be sites of metastasis (9).  

The unique flexibility of MRI also allows for the measurement of factors other than 

volume. For example, spectroscopy after the injection of hyperpolarized 13C-labeled 

compounds into the mice can be used to measure metabolism. With hyperpolarized 13C-

labeled pyruvate, the difference in pyruvate metabolism between normal tissue (through 

the citric acid cycle) and tumour (aerobic glycolysis and conversion of pyruvate to 

lactate) can be detected by measuring the ratio of lactate to pyruvate in a spectrum (10). 

Lactate/pyruvate ratio has been found to correlate with the grade of PCa in TRAMP mice 

(11) and is an early indicator of response to chemotherapy and radiation therapy in other 

cancer models (12-14).  
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This study was conducted to use MRI to characterize the growth, metastasis and 

metabolism of developing orthotopic human-derived prostate tumours in an immune-

compromised mouse model, in the context of establishing a timeline for therapy with 

natural killer (NK) cells. The criteria we determined for an optimal therapeutic time is 

one where a tumour is reliably present as detected by MRI, but where the tumour is still 

small enough to allow for long-term comparisons of treated and untreated tumours; for 

example, a time point for treatment should be before a tumour becomes necrotic, and well 

before the onset of morbidity such as bladder stenosis and impaired mobility. Knowing 

the time required for lymph node metastases to develop would offer the ability to 

determine the effectiveness of the treatment in preventing metastasis and monitor the 

ability of NK to track to lymph nodes. In order to characterize this model for tumour size, 

appearance and cancer cell distribution, mice were followed with anatomical MRI long-

term for 30 days, and shorter term for 9 or 13 days. Additionally, [1-13C]pyruvate 

spectroscopy was used to measure pyruvate metabolism in the later stages of tumour 

growth. At the endpoints, the spleen and draining lymph nodes (iliac, renal, sciatic, 

popliteal as well as the inguinal) of the prostate were examined ex vivo for the presence 

of cancer cells and histological characteristics. To the best of our knowledge, this is the 

first study to use MRI to monitor volume of orthotopic PC-3M tumours over time and the 

first to use 13C spectroscopy on a xenograft model of prostate cancer.  

 

4.2 Methods 

4.2.1 Cells 

We used the PC-3M cell line, which is a metastatic variant of the PC-3 cell line (15,16). 

PC-3M cells were cultured in RPMI-1640 with 10% fetal bovine serum (FBS). Cells in 

log phase were harvested by trypsinization, washed once with HBSS, and suspended in 

HBSS at a density of 0.5 million cells per 30-40 µL for injection into the mice.  
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4.2.2 Tumour Cell Injection 

All experiments were approved by the University of Western Ontario Animal Use 

Committee. Male nude mice (nu/nu, aged 6-8 weeks) (Charles River Laboratories, Saint-

Constant, QC) were housed in a specific pathogen-free exclusion barrier facility. For 

surgery, mice were anaesthetized with 2% isoflurane in oxygen, an incision was made in 

the lower abdomen, and the bladder was retracted to expose the prostate. Cells were 

injected into the left lateral or dorsal lobes of the prostate using a butterfly needle 

attached by a catheter to a Hamilton syringe for precise injection, following the model 

presented by (17-19). The inner and outer layers of the incision were sutured. Mice were 

treated with ketaprofen at 4 mg/kg IP 2x a day for 3 days.  

4.2.3 Anatomical Imaging Study 

Ten mice (Group 1) were implanted with tumours on day 0, and then followed for 30 

days to determine the rate of tumour growth and the extent of metastasis. Mice were 

scanned at baseline and on days 6, 13, 22 and 29 after tumour induction. The volume of 

the prostate and tumour were measured, the number of tumours in the prostate and 

abdomen were counted, and the lymph nodes were examined for morphological changes 

that might correspond to metastasis.  

In order to histologically determine sites of metastasis early after tumour induction, six 

mice were included in a cross-sectional experiment. The mice were injected intra-

prostatically with PC-3M as above, then 3 mice were scanned on day 9 (Group 2a) and 3 

mice were scanned day 13 (Group 2b). As before, mice were sacrificed and perfused with 

saline on the day after scanning.  

4.2.4 Anatomical Magnetic Resonance Imaging 

Mice were scanned on a clinical 3 Tesla GE MR750 whole body system equipped with a 

custom-built, high-performance insert gradient. Mice were anaesthetized with isoflurane 

in oxygen (2% for induction, ~1% during scanning as required) and placed within a 

solenoidal mouse body radiofrequency (RF) coil (4 cm long, 3 cm diameter). Whole 

mouse body images were acquired with the following 3D bSSFP imaging parameters: 
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200 µm spatial resolution in all three imaging planes, achieved with a 6 cm field of view 

and a 300x300 image matrix and a 200 µm slice thickness, repetition time/echo time 

(TR/TE)=4.7/2.3 ms, flip angle 30º or 50º, receiver bandwidth ± 62.5 kHz, 2 signal 

averages and 4 phase cycles for a 24 minute scan. Tumour volumes were measured using 

Osirix (20). The prostate and tumour were manually segmented to create regions of 

interest (ROI); smaller tumours were segmented every 100 µm while larger tumours were 

segmented every ~300 µm, using the ‘generate missing ROI’ tool to automatically 

segment the intermediate slices. The auto-generated segmentations were verified and 

adjusted as required. 

4.2.5 Spectroscopic Imaging 

Six mice (Group 3) were scanned on day 22 after orthotopic PC-3M injection. Mice were 

scanned at 3T using a custom-built switch-tuned 1H/13C coil with a birdcage transmit and 

surface receive coils. Mice were anaesthetized with isoflurane as described above. A 

catheter (approximately 60 cm long) made from PE-20 tubing and tipped with a 30 gauge 

needle was placed in the tail vein and filled with heparinized saline. Temperature was 

maintained by circulating 42 °C water through the animal bed. Breathing was monitored 

(Small Animal Instruments Inc., Stony Brook, NY) and maintained between 30 and 80 

breaths per minute. T2-weighted spin-echo (T2WSE) 1H scans were performed in the axial 

and sagittal planes to localize the tumour with the parameters: ~400 µm in-plane 

resolution, 5 cm field of view, 128x128 image matrix, 3 mm slice thickness, 

TR/TE=4000/85 ms, echo train length 24, bandwidth ±10.42 kHz, 25 signal averages, 10 

minute scan. For the spectroscopy acquisition, a 6-8 mm thick axial slab, depending on 

the tumour size, was placed based on the SE images. [1-13C]Pyruvate was polarized for 

45 minutes using a HyperSense polarizer (Oxford Instruments, UK) then dissolved to a 

final concentration of 79 mM at a pH of 7.6. 300 µL of [1-13C]pyruvate was injected in a 

single bolus injection through the catheter over 12 seconds. 25 s after the start of the 

injection, a chemical shift image was acquired (6x6 cm field of view, 12x12 matrix, TR 

80 ms, scan time 12 s) using the 2D FID-CSI sequence on the scanner. Spectra were 

analyzed using SAGE software provided by GE on the scanner. The spectra were 

apodized, zero-filled, and then Fourier transformed. The area of the lactate and pyruvate 
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peaks in the magnitude spectra was used to calculate the ratio of lactate to pyruvate 

(lac/pyr) in the tumour-containing voxels. Anatomical images of these mice were 

obtained on day 23 using the bSSFP sequence as described above. 

4.2.6 Histology 

Mice were sacrificed the day after their final imaging time point, on day 10, 14 or 30-31. 

About 30 minutes before sacrifice, ~5 µL of Evans blue dye was injected SC into the 

hind footpads of the mice for visualization of the lymph nodes (Groups 1 and 2). Mice 

were sacrificed by intraperitoneal euthanyl injection and perfused with saline. Lymph 

nodes (popliteal, sciatic, iliac, renal, inguinal – for Group 2 only) as well as the spleen 

were removed and processed through a sucrose gradient (24 hours in formalin, 10%, 20% 

and 30% sucrose) for frozen sectioning at a thickness of 14 µm. Sections from lymph 

nodes of one mouse from Group 1 (d30), Group 2a (d9) and Group 2b (d13) were 

randomly selected for detection of human cells using mouse anti-HuNu staining, which 

stains human nuclear membranes. Sections were blocked with goat serum, stained with 

mouse anti-HuNu primary antibody (Millipore) overnight, then the secondary antibody, 

goat anti-mouse IgG labeled with green fluorescent Alexa Fluor 488 (Invitrogen) was 

applied. Sections were cover slipped using mounting media containing DAPI 

(Vectashield, Vector Laboratories, Burlington, ON). A Zeiss Axio Imager microscope 

(Canada) with a Retiga EXi Digical CCD camera (Q Imaging, Vancouver, BC, Canada) 

was used to photograph the sections for a determination of the presence of human 

prostate cancer cells in the lymph nodes and spleens. Two to three slides containing four 

sections each were stained and examined for each node. Prostate tumours from Group 1 

and 3 were similarly processed for frozen sectioning at 14 µm and stained with 

hematoxylin and eosin (H&E) according to standard methods. Whole tumour sections 

were scanned using a TISSUEscope 4000 slide scanner (Huron Technologies, Waterloo, 

Canada).	  
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4.2.7 Statistical Analysis 

A one-way repeated measures analysis of variance with Tukey post-hoc tests was used to 

analyze the rate of tumour growth and the change in lymph node volume over time 

(GraphPad Prism 5.0, GraphPad, San Diego, CA). Because this analysis requires data 

from all time points, tumours and lymph nodes that were not clearly visible at one time 

point required the exclusion of all measurements of that tissue from the analysis. This 

restriction excluded 1/10 tumours, 3/20 iliac lymph nodes and 6/20 inguinal lymph nodes 

from the statistical analysis; however, volumes at the measurable time points are included 

in graphical representations of the data. To compare tumour volumes in the longitudinal 

and cross-sectional experiment, an unpaired 2-tailed student t-test with equal variances 

not assumed was performed (Microsoft Excel 2008). To compare lactate/pyruvate ratios 

between high and low uptake voxels, an unpaired 2-tailed t-test was used (GraphPad 

Prism).  

 

4.3 Results 

4.3.1 Tumour Appearance in MRI Images 

The prostate and tumours were easily visualized and segmented in the bSSFP images 

(Figure 4.1). The prostate was discernible at baseline and day 6 by its position under the 

bladder and its shape but was engulfed by the tumour at later time points. In some images 

from early time points the healthy prostate is visible surrounding the tumour as a brighter 

tissue surrounding the darker tumour, as seen in Figure 4.1B. There were regions of 

signal hypo- and hyper-intensities in the tumours, likely caused by blood vessels and 

fluidic regions in the tumour, respectively. Hypointensities appear as discrete black dots 

in the image and appeared as early as day 6 after tumour injection and at all other 

imaging time points. Hyperintensities were visible as large patches of white in the centre 

of the tumour; they were present starting at day 22 in some tumours and appeared in most 

tumours on day 29. 
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Figure 4.1: MR appearance and sample segmentation of the prostate and tumour 
over time.  
A: Progression of tumour in one mouse over time (Group 1). B: Sample image of tumour 
on day 9 (Group 2a) with normal prostate tissue still visible (orange arrow). The tumour 
is outlined in orange; b indicates the bladder, white arrow indicates regions of 
hypointensity, white arrowhead regions of signal hyperintensity. Scale bar is 2.5 mm. 

 

4.3.2 Tumour Volume 

The volume of the ventral and lateral prostate plus tumour increased with time. At 

baseline, the mean volume was 7 ± 2 mm3, on day 6 it was11 ± 5 mm3, on day 13 it was 

51 ±30 mm3, on day 22 it was 226 ± 74 mm3, and the mean final volume on day 29 was 

720 ± 190 mm3 (Figure 4.2). The difference in volume from baseline was statistically 

significant on day 22 and day 29, although prostate tumours were clearly visible in the 

images by day 13. At day 6 and day 13, all mice had only one tumour in the prostate. By 

day 22, 4 mice had one tumour and 6 had multiple tumour lobes. On day 29, 3 mice had 

one tumour and 7 had multiple tumours. The additional tumour lobes tended to be located 

in the abdomen, superior and anterior to the prostate and bladder (Figure 4.3). 
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Figure 4.2: Tumour volume over time. 
Volume of ventral/lateral lobes of prostate plus tumour was measured at each time point. 
BL = baseline measurement of prostate volume; *indicates significant difference from 
baseline prostate volume in a repeated measures analysis of variance (p<0.05).  

 

 

Figure 4.3: Distribution of multiple tumour lobes.  
bSSFP images of a mouse in which the tumour had one lobe on day 13 (A), then 3 lobes 
by day 22 (B). On day 29 (C) all 3 lobes were larger. Sagittal view of mouse. b indicates 
the bladder. The prostate has been enveloped by the tumour. Scale bar is 2.5 mm. 
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Based on the consistent presence of tumours in the prostate by day 13 after PC-3M 

injection, a cross-sectional study was conducted to determine the tumour size and 

presence of tumour cells in the lymph nodes on day 9 and day 13. Our previous 

experiments with histology of subcutaneous tumours (9) have shown that NK are 

expected to be present in the tumour 3-5 days after intravenous and intraperitoneal 

administration, so a time-point 4 days before day 13 was selected as it would be a 

potential window for IV therapy administration. 

On day 9 of the cross-sectional study, 3/3 mice had prostate tumours, with a mean 

volume of 20 ± 14 mm3. On day 13, 2/3 mice had measurable tumours, with a mean 

volume of 39 ± 16 mm3 (mean of 2 tumours). These values are not significantly different 

from the mean tumour volume in the longitudinal experiment on day 13 (p=0.5). 

4.3.3 Lymph Node Histology  

One mouse from day 30 (Group 1), day 9 and day 13 (Group 2) was selected for 

histological examination for the presence of human cells in lymph nodes (Figure 4.4). 

The results are summarized in Table 4.1). The iliac lymph node was the only node with 

PC-3M cells present on day 9 and was the only node where the cells were present at all 

time points. On day 13, the iliac and renal nodes had human cells. All lymph nodes from 

the mouse sacrificed on day 30 had PC-3M cells in them. The PC-3M cells were 

distributed in the center of the nodes, in what would be the T-cell region in mice with 

intact immune systems.   
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Table 4.1: Summary of locations where prostate cancer cells were detected. 
Selected sections from one mouse at each time point were stained for Hu/Nu. + indicates 
that PC-3M cells were detected in the node/spleen by fluorescence microscopy, - 
indicates no cells were detected. Nd indicates not done, because the nodes were not 
collected. 

Time	   Spleen	   Iliac	   Popliteal	   Sciatic	   Renal	   Inguinal	  

Day	  9	   +	   +	   -‐	   -‐	   nd	   -‐	  

Day	  13	   +	   +	   +	   -‐	   +	   -‐	  

Day	  30	   +	   +	   +	   +	   +	   nd	  
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Figure 4.4: Presence of PC-3M in lymph nodes and spleens.  
Lymph nodes and spleen sections were stained with HuNu (human cells, green) and 
DAPI (all nuclei, blue). This is a selection of lymph nodes and spleen sections from all 
time points in which PC-3M were detected (+) and not detected (−). For the iliac lymph 
nodes, 2 magnifications are presented to show distribution of the cells; the white box 
indicates the section that is magnified in the row below. Scale bars are 50 µm. 
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4.3.4 MR appearance of metastatic lymph nodes   

Other than size, there were no gross differences in MR appearance or at necropsy 

between metastatic and non-metastatic lymph nodes. Figure 4.5 shows the appearance of 

the iliac lymph node over time in a representative mouse. The volume of this node, which 

contained PC-3M cells upon histological examination on day 30, increased with time. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: MR appearance of the iliac lymph node over time.  
Magnified views of the iliac lymph node in coronal images from one mouse (Group 1) at 
baseline (A), day 6 (B), day 13 (C), day 22 (D) and day 29 (E). The node (circled in 
orange) increases in size, particularly in the last 2 imaging time points, but there are no 
changes in the contrast of the node itself. Scale bar is 2.5 mm. 

 

When the volume of all iliac lymph nodes for all mice in the longitudinal experiment was 

measured, there was a significant increase in lymph node size on day 29 compared to all 

other time points (Figure 4.6a). For the inguinal lymph nodes, where metastasis is not 

expected, there was no trend to increasing size over time (Figure 4.6b). 
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Figure 4.6: Volumes of iliac and inguinal lymph nodes over time.  
Volumes of the iliac (A) and inguinal (B) lymph nodes for each time point in mice from 
Group 1. The volume of the iliac lymph nodes increased over time and was significantly 
different on day 29 than all other time points. There was no significant difference in 
inguinal lymph node volume over time. Volumes of all measurable nodes are presented 
(including nodes that were excluded from the analysis because of incomplete data at 
some time points). Horizontal lines indicate mean node volume, error bars are standard 
deviation (upper bound only), *= significant difference, p<0.05, relative to baseline.  

 

4.3.5 Pyruvate Metabolism  

On day 22, the mean volume of the tumours was 290 ± 110 mm3. The mean lac/pyr ratio 

of the 6 tumours was 1.2 ± 0.5. Values of lac/pyr were heterogeneous in the tumours, 

with coefficients of variation ranging from 20% to 80%. The amount of signal varied 

between tumour voxels. Voxels were visually categorized as high or low uptake based on 

the relative total height of the pyruvate and lactate peaks across all tumour voxels; the 

low-uptake voxels tended to be in the middle of the tumours, with the high-uptake voxels 

around the edge (Figure 4.7). When all high-uptake voxels were compared to the low-

uptake voxels, there was a trend to the low-uptake voxels having a higher lac/pyr ratio 

than the high-uptake voxels (unpaired t-test, p=0.07) (Figure 4.8). Low uptake voxels 

corresponded to regions with bright signal on the bSSFP images, which indicates the 

presence of fluid. These also corresponded to regions in the histology that showed 

necrosis, as indicated by regions of low cell density in the middle of the tumour (Figure 

4.9). 
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Figure 4.7: Sample image of lactate/pyruvate spectrum in a tumour with variable 
uptake. 
The spectra are shown in red overlaid on the axial T2 weighted anatomical image of the 
mouse at the level of the prostate. In each spectrum, the left peak is the lactate peak and 
the right peak is the pyruvate peak. Tumour is outlined in orange. Voxels shaded in pink 
were categorized as high uptake while those shaded in blue are low uptake. Only voxels 
comprised entirely of tumour were included in the analysis. Voxels are 3.3 x 3.3 x 8 mm. 

 

 

 

 

 



96 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Comparison of lactate/pyruvate ratio in voxels with high and low 
pyruvate and lactate signal. 
All tumour voxels were included in the analysis and categorized as having a high or low 
total uptake of pyruvate and lactate. There was a trend to a significant difference between 
low and high uptake voxels (p=0.07). 
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Figure 4.9: Comparison of spectroscopy, bSSFP and histology. 
(A) Spectrum (red) overlaid on axial T2WSE image (day 22). B: bSSFP image of same 
mouse (day 23). C: Tumour section (day 25) stained with H&E. The upper left part of the 
tumour has a low total signal image in the spectrum from day 22, a white, fluidic region 
in the day 23 anatomical image and necrosis in the day 25 histological section (white 
arrows). Tumour is outlined in orange. Voxels are 3.3x3.3x8 mm and scale bars are 2.5 
mm.  
 

4.3.6 Sample Size Calculation 

A standard sample size calculation was performed to calculate the number of mice 

required to see a therapeutic effect with pyruvate metabolism data using a t-test:  

  

 

where n is the total number of animals, σ is the standard deviation of the measurements, 

Zα is the significance criterion, Zβ is the power value and Δ is the desired difference 

between groups to be measured. In this case, σ was 0.5, Zα = 1.960 for a p value of 0.05, 

Zβ is 0.842 for a power of 80% (21), and Δ is 0.6, taken from a paper in which the 

difference in lac/pyr between treated and untreated tumours one day after temozolamide 

(4) 
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treatment was 50% (13). With these values, the number of mice required is 22, or 11 per 

group (treated and untreated).  

 

4.4 Discussion 

We have described the growth and metabolism of orthotopic PC-3M tumours in nude 

mice. Tumour take rate was 21/22 mice (including the longitudinal, cross sectional and 

spectroscopy experiments). The MR appearance of orthotopic PC-3M tumours included 

both hyper- and hypo-intense regions, which correspond to regions with necrosis and 

hemorrhage, respectively. Tumour volume increased with time to an average of 720 ± 

190 mm3 on day 29. A full summary of previous orthotopic PC-3 and PC-3M studies is 

presented in Table 4.2. In previously reported experiments with intraprostatic PC-3 

tumours, tumour volumes of approximately 400-500 mm3 were observed after 4 weeks of 

tumour growth; however, volumes as low as 50-70 mm3 were also reported. PC-3M and 

PC-3 cells have been injected into the prostate in studies where palpitation is used 

primarily to monitor tumour progression and ex vivo measurement of tumour volume is 

performed at necropsy. Cells can be transfected with luciferin and bioluminescence 

measured as a surrogate for tumour volume eg (22,23). There have been no studies to 

date that have directly measured the volume of intraprostatic PC-3M tumours; volume of 

PC-3M tumours has only been provided from an extrapolation based on bioluminescence 

intensity as 1100 mm3 (24).  

Metastasis was seen in the iliac lymph node on days 9, 13 and 30 using histology in this 

study. Metastasis in more distant lymph nodes was seen at later time points. This agrees 

with previous experiments where metastases from orthotopically implanted PC-3 and PC-

3M cells have been observed in the draining nodes of the prostate, in the lungs and, more 

rarely, in bone after tumour growth times of 4-8 weeks (Table 4.2). One study using 

bioluminescence imaging (BLI) appeared to show metastatic spread to the inguinal 

lymph node on day 21 after implantation (23). We did not observe PC-3M cells in the 

inguinal node in this experiment on day 9 or day 13, but those nodes were not collected 

on day 29 so it is not known whether in our model there is the potential for PC-3M to 
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spread to inguinal lymph nodes. The lungs and bone were not examined histologically in 

this study but there were no abnormal MRI findings in the bone or lungs of the mice. The 

determination of metastasis was limited by the fact that only a small subset of all lymph 

nodes was examined histologically for PC-3M cells. 

Because the iliac lymph node was positive for PC-3M cells in all 3 mice that were 

examined histologically, the volume of this node was evaluated over time in mice from 

Group 1. The mean volume was larger on day 29 than it was at baseline. To attempt to 

rule out the possibility that this was due to growth of the mice, the volume of the inguinal 

lymph node was also measured and did not vary with time. It is tempting to attribute the 

increase in iliac lymph node volume to the presence of metastases; however, other factors 

such as node reactivity, i.e. proliferation of immune cells due to a pathogen in the mouse 

body can change the volume of lymph nodes. As well, previous studies have 

demonstrated that nodes may be metastatic without increasing in size and may increase in 

size without being metastatic, so a change in lymph node volume cannot be over-

interpreted as due to metastasis (25). The nu/nu strain used in this study is maintained as 

an outbred strain which may contribute to size variability. There is the potential to detect 

metastatic lymph nodes using pyruvate spectroscopy in future work; lymph node 

metastases of 100 mm3 have been detected in TRAMP mice (11). 

We obtained lactate/pyruvate spectra for tumours on day 22 using hyperpolarized 13C-

labeled pyruvate. This is the first report of this technique being used in a xenograft model 

of prostate cancer. The mean lac/pyr ratio was 1.2 ± 0.5 on day 29. A sample size 

calculation indicated that in order to be sensitive to 50% changes in lac/pyr ratio with 

treatment, 11 mice per group would be required. In TRAMP mice, lac/pyr values of 1.1 – 

3.1 have been reported in low- and high-grade tumours, respectively (11). These values 

are not precisely equivalent to the results reported here, because in the TRAMP study the 

spectra were acquired 35 seconds after the start of the pyruvate injection as compared to 

24 seconds in our study, resulting in more lactate conversion due to the longer delay time. 

We observed heterogeneous uptake of pyruvate in the tumours, with low uptake voxels 

corresponding to necrotic regions as determined by bSSFP imaging and histology. There 

was still some signal in these large spectroscopic voxels, likely because there was still 
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some viable tissue present; however, the lac/pyr ratio was higher, indicating a more 

advanced tumour. In TRAMP tumours, a higher grade of tumour corresponds to a higher 

lactate/pyruvate ratio (11). 

In our experiment, tumours were visible using MRI by day 9 and on day 13, and there 

was no necrosis, as indicated by the lack of hyperintensities in the MRI images. This 

indicates that day 9-13 could be a suitable time point for therapeutic injection of NK 

cells, either intravenously or intraperitoneally. This is consistent with the timeline used in 

a similar model for gemicitabine treatment (26). In our study, the MRI appearance of the 

tumours throughout their development included spots of hypointensity. Because of these 

hypointensities, a subtle change in MR signal due to iron-oxide labeled NK cells could be 

confused with a naturally-occurring signal void so caution must be used in interpreting 

results. However, it is usually possible to trace the path of blood vessels through the 

images so this not a major concern. Metastasis was seen in all draining lymph nodes of 

the prostate at later time points by histology, but only in proximal lymph nodes at early 

time points.  

In summary, in this prostate cancer model, tumours were visible by MRI 9 days after 

tumour cell implantation, and we observed the presence of PC-3M in the iliac lymph 

nodes as early as day 9 after tumour cell injection, with more lymph nodes involved in 

later time points. Necrosis was present at day 22, and large tumours required sacrifice of 

the mouse by about day 30. Based on these results, this model could be used for studying 

NK therapy as early as day 9 after cells are injected and would allow for the 

determination of the effect of NK treatment on primary tumour development and 

metastasis. 
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Chapter 5  

5 Summary and Future Work 

5.1 Conclusions 

Prostate cancer is the most diagnosed and second most deadly cancer in North American 

men (1). Several immunotherapies are currently under investigation to treat metastatic 

castration-resistant prostate cancer (2). The purpose of this project was to use MRI to 

study NK cell therapy in a mouse model of prostate cancer. This work used a novel NK 

cell line (KHYG-1) in SC and orthotopic mouse models of prostate cancer. The KHYG-1 

were labeled with an iron oxide contrast agent, an MR pulse sequence was optimized and 

the model was characterized using anatomical and metabolic MRI.  

In Chapter 2, NK cells were labeled with Molday-Rhodamine, an iron oxide contrast 

agent, and administered in a subcutaneous (SC) model of prostate cancer. Iron oxide-

labeled NK cell migration to tumours was detected by histology for IV, IP and SC 

injections of the cells. However, iron-labeled NK cells were only detected by MRI in 

regions with a large concentration of labeled cells in the periphery of tumours, after SC 

injection of KHYG-1, and not for more sparsely distributed cells in the centre of tumours, 

which occurred after IV and IP administration. In a subsequent experiment, KHYG-1 

were injected directly into SC tumours; there was a significant difference in tumour 

growth between the treated and control tumours. This presents a proof of concept that if 

systemically administered cells reach the tumour in sufficient numbers, there is the 

potential to see a treatment effect. There are several novel aspects to this work: (i) this 

was the first time that the KHYG-1 cell line was labeled with an iron oxide nanoparticle 

(ii) there are no other published reports of the in vivo administration of the KHYG-1 cell 

line in a tumour model, (iii) this is the first study to track the KHYG-1 cell line in vivo in 

a tumour model, and the first to use MRI to visualize tumour accumulation of a non-

targeted NK cell line in vivo. 

In Chapter 3, the bSSFP sequence was optimized for imaging the normal mouse prostate. 

The flip angle, bandwidth, phase cycling and excitations were adjusted to obtain the 
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maximum SNR while also minimizing artifacts such as chemical shift and banding. 

When compared with 2D T1WSE and T2WSE sequences with similar scan times, the SNR 

for the bSSFP sequence was superior. As well, the optimized bSSFP images were 

acquired in under 30 minutes and allowed for visualization of the prostate as well as 

lymph nodes that are potential sites of metastasis. 

This pulse sequence was then applied to characterize an orthotopic mouse model of 

prostate cancer in Chapter 4. The growth rate of the primary tumour and its appearance in 

MR images was described. Histology was used to determine sites of metastasis; the iliac 

lymph node was metastatic in all examined mice. This information was consolidated to 

determine that in future cell tracking experiments, treatment with iron-oxide labeled NK 

cells should begin around day 9-13 after the injection of tumour cells to provide the 

opportunity to monitor cell tracking to tumours, tumour growth, and metastasis. As well, 

hyperpolarized 13C pyruvate MR spectroscopy was used to examine tumour metabolism. 

This is the first reported use of hyperpolarized 13C spectroscopy in a xenograft model of 

prostate cancer. 

In this work we have demonstrated that tracking NK cells labeled with 

MoldayRhodamine is feasible, and showed that they accumulate in prostate cancer 

tumours in mice. We can image the mouse prostate and surrounding lymph nodes with 

bSSFP, and have used this sequence   to characterize the growth of orthotopic PC-3M 

tumours in nude mice, as well as using histology to detect lymph node and splenic 

metastases. This model can now be used in future studies to examine NK cell tracking in 

the orthotopic model.  

5.2 Future Work 

Future work may expand on the model development and initial cell tracking work 

presented in this thesis. The focus will be on applying cell tracking in the orthotopic 

model, in metastatic models, exploring the use of other imaging techniques and 

expanding on which hyperpolarized metabolites are used. 
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5.2.1 NK Cell Dose Optimization 

The iron oxide labeled KHYG-1 can be administered in the orthotopic model of prostate 

cancer. Using labeled KHYG-1 would allow the determination of the time taken for the 

NK cells to migrate to the tumours. As well, because the MR images acquired with 

bSSFP also include most of the body (from the hind limbs to the bottom of the lungs), 

NK can be tracked to lymph nodes as well as other organs such as the spleen and liver to 

determine biodistribution in vivo. The first step in this experiment would be to change the 

imaging parameters of the bSSFP sequence to make it more sensitive to SPIO than it was 

in Chapter 2. This would be achieved by injecting labeled NK cells IV into mice with SC 

tumors, since we have established that KHYG-1 will migrate to those tumours. Then the 

imaging parameters would be optimized by increasing TR and decreasing the voxel size, 

with starting values of 10 ms and 100x100x200 µm to start.  

Once the imaging parameters are optimized, the next step is to determine the optimal 

route of injection. We found there was NK cell migration to SC tumours after IV 

injection, but there was high mortality with this route of administration due to cell 

trapping in the lungs. This could be resolved by testing the effect of injecting cells into 

the left ventricle of the heart (IC), so that they are distributed to the rest of the body 

before reaching the lungs. Accumulation in the tumour and other sites of interest over 

time could be monitored using the new optimized sequence.  

The next question to answer would be whether there is an optimal number of cells to be 

administered and if there is an increase in the accumulation of NK cells in the tumor 

following injection of multiple doses. In patients, NK cells have been administered in one 

dose (3,4) or multiple doses (5). In order to test this in a mouse model, NK cells could be 

injected, the mice scanned to determine if the degree of signal increases reflecting the 

presence of migrated NK cells, then another dose could be injected and then the mice 

scanned again to determine if more NK cells have tracked to the tumour. A similar 

procedure could be followed to determine if there is a difference in accumulation 

following the injection of different numbers cells, which could then be scaled up for 

human clinical trials of NK therapy. A disadvantage of this approach is that it is only 

semi-quantitative. The tumour image may be obliterated by the blooming artifact as 
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labeled KHYG-1 accumulate in the tumour. This problem could be solved by reducing 

the SPIO sensitivity of the MRI sequence by reducing TR, or by injecting mixed 

populations of labeled and unlabeled cells to reduce the size of the blooming artifact. 

5.2.2 Metabolic Imaging 

In this thesis, pyruvate was used to monitor tumour metabolism in terms of the 

conversion of pyruvate to lactate. Other metabolites in the ATP production pathway can 

also be labeled with 13C and would be useful for studying different aspects of tumour 

development and response to NK therapy. For example, the conversion of [1,4-
13C2]fumarate to [1,4-13C2]malate is an indicator of necrosis and cell death due to 

chemotherapy, which is particularly interesting because we observed necrosis in our 

tumour model (6). Tumours also have a lower extracellular pH, which can be detected 

through spectroscopy of the conversion of bicarbonate (H13CO3−) to carbon dioxide 

(13CO2) (7).  

5.2.3 Bioluminescence Imaging  

Bioluminescence imaging (BLI) is another imaging modality that could be useful in 

preclinical studies of NK therapy in prostate cancer. Cancer cell lines transduced with 

luciferase emit light when the substrate luciferin is injected, then this light is detected by 

a camera. In these experiments, either the PC-3M cell line or the KHYG-1 cell line could 

be transduced with luciferase, depending on the desired measurement. One advantage of 

BLI is that only live cells catalyze the substrate and emit light, whereas with SPIO it is 

harder to differentiate between living and dead labeled cells (8,9). Another advantage 

over cell tracking with SPIO is that BLI allows for quantification of the light signal 

generated (10), while there is less ability to quantify hypointensities in MRI, particularly 

once the signal is essentially zero with a high dose of SPIO per voxel. If this technique 

was used with transduced PC-3M cells, it could be used to study metastasis and treatment 

success. If the KHYG-1 cells were stably transduced with a suitable luciferase expression 

vector, it could be used for tracking NK cells and monitoring their viability in vivo, 

although the sensitivity would not be as high as it is in MRI when iron oxide 

nanoparticles are used as a contrast agent.   
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5.2.4 Imaging NK Cells in Metastatic Models 

The orthotopic model is presented here as a model for the treatment of the primary 

tumour in human patients. However, this is perhaps not representative of how NK 

therapy would be used clinically; the available immunotherapies are all treatments for 

late stage metastatic castrate resistant prostate cancer (mCRPC) after the primary tumour 

has been treated by irradiation or chemotherapy (2). While the orthotopic PC-3M model 

uses an androgen independent cell line and causes metastases in the locoregional lymph 

nodes, the primary tumour is too large to allow the spontaneous metastases to grow to a 

significant size before the mouse must be sacrificed.  

There are metastatic models of prostate cancer that may be more representative of the 

situation in human disease. Cancer cells can be injected directly into the bone marrow 

(11) to mimic bone metastasis. Bone marrow and bone metastases are hyperintense in 

bSSFP images, so the bSSFP sequence could still be used to track labeled NK to the 

metastases, to optimize dose and dose timing, and to monitor the effect of treatment on 

metastasis volume. Other metastatic models involve the intravenous or intracardiac 

administration of the cancer cells to cause multiple metastases throughout the body (12), 

or direct injection of cells into the lymph node (13).  

Because the treatment of the primary tumour in clinical practice can include radiation 

therapy and chemotherapy, it would also be interesting to similarly treat the orthotopic 

tumour and determine the effect on NK tracking and effectiveness of NK cytotoxicity 

following such therapy. The different activating and inhibiting ligands on the cancer cells 

may be up- or down-regulated after treatment with chemotherapeutics and radiation 

therapy (14), so the effect of each on the cytotoxicity of NK cells could be examined in a 

more clinically relevant model. Stress induced by treatment can increase the expression 

of activating receptors, but can also induce ligand shedding which would decrease the 

NK response. It has been determined that tumour expression of MIC A/B (the ligands for 

the NKG2D activating receptor on NK cells) is upregulated by radiation therapy and 

chemotherapy, and there are mixed results on the effect of radiation therapy and 

chemotherapy on the tumour expression of the ligands for the natural cytotoxicity 

receptors (14). As well, other experiments show that radiation can make the tumour 
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microenvironment less immunosuppressive (15). A microCT system has been modified at 

our site to irradiate small animals and could be used in this experiment (16).  
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Appendices 

Appendix A: Pilot Study of Longitudinal Hyperpolarized 13C Imaging of Tumour 
Metabolism 

 

Introduction 

This study was conducted to attempt to measure a treatment effect of NK cells in 

orthotopic prostate tumours using hyperpolarized [1-13C]pyruvate MRI. The experiment 

was based on the direct injection experiment presented in Chapter 2 and literature reports 

of tumour treatment with natural killer cells (1). The baseline results from this study are 

reported in Chapter 4. Here the follow-up results and relationships between volume and 

lac/pyr ratio are presented. We hypothesized that the lac/pyr ratio would be lower in the 

treatment group than in the follow-up group, as cancer cells in the treated tumours were 

killed by the KHYG-1 cells and the untreated tumours continued to grow. 

Methods 

PC-3M and KHYG-1 were cultured as previously described (no iron oxide labeling) As 

described in Chapter 4, 500,000 PC-3M were injected into the prostate of male nude mice 

(6 mice) and allowed to grow for 22 days. On day 22, mice were scanned (13C MRSI) 

using [1-13C]pyruvate to quantify tumour metabolism. On day 23, they were scanned 

using bSSFP (1H) to obtain tumour volumes. On day 25, ~35 µL of saline (control, 3 

mice) or 10 million KHYG-1 in HBSS (treated, 3 mice) were injected directly into the 

tumours. The incisions were re-sutured and the mice were treated with ketaprofen IP for 

one day (anti-inflammatory, analgesic) and enrofloxacin intramuscularly (antibiotic) for 3 

days. One control mouse died after the injection of saline. Mice in the treatment group 

also received 25,000 IU of IL-2 IP daily for 3 days. On day 28, the mice were scanned for 

both pyruvate metabolism and anatomical images then sacrificed.  
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Tumour volumes and lac/pyr ratios were calculated as in Chapter 4, using Osirix and 

SAGE, respectively. Pyruvate voxels were classified as low- or high-uptake as in Chapter 

4. Percentage change values were calculated as 100% × |d22-d28|/d22. All statistics were 

calculated in GraphPad Prism 5.0. 

Results 

Figure 1: Prostate tumour volume over time. 

The volumes of all mice at each time point were included (3 control mice on day 22, 2 on 

day 28, 3 treated mice at each time point). A 2-way repeated measures analysis of 

variance was used to compare tumour volume over time and between treatment groups. 

There was a significant increase in volume overall but there was no difference between 

groups.  
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Figure 2: Tumour metabolism over time. 

The lac/pyr ratio for 2 control mice and 2 treated mice was compared over time using a 2-

way repeated measures analysis of variance. Using a Bonferroni post-hoc test, the treated 

tumours increased in ratio more than the control tumours (0.46 for treated vs. 0.34 for 

control). Note: one treated mouse was excluded because the follow-up pyruvate spectrum 

was acquired through the incorrect section of the mouse so this analysis includes 2 mice 

in the treated and 2 mice in the control groups. 
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Figure 3: Difference in lac/pyr between high- and low-uptake voxels 

Lac/pyr ratio was compared between all high uptake voxels and all low-uptake voxels. At 

baseline (see Chapter 4), the lac/pyr ratio trended to be higher in the low uptake voxels 

than the high uptake voxels (p=0.07). At follow-up, lac/pyr ratio was significantly higher 

in low-uptake voxels than high uptake voxels. As discussed in Chapter 4, regions of low 

pyruvate uptake correspond to regions of necrosis in the bSSFP and histology images. At 

baseline, 3/6 mice had low-uptake regions in the tumours, while at follow-up, 3/4 did. 

Both tumours in the control group and one tumour in the treatment group had necrosis. 
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Figure 4: Change in tumour volume and change in lactate/pyruvate are correlated.  

The percentage change in tumour volume was compared to the percentage change in 

lac/pyr ratio for all tumours pooled together. There was a linear relationship between the 

relative change in tumour volume and the relative change in lac/pyr ratio. 

Discussion 

Lac/pyr ratio may be a sensitive measure for detecting change in tumour metabolism due 

to natural killer cell treatment. However, the difference detected here is the opposite of 

what was hypothesized. Change in tumour volume was correlated with change in 

lactate/pyruvate. A possible explanation for this effect could be that the tumours were 

becoming more hypoxic as they increased in size, so there was an increase in anaerobic 

glycolysis. This experiment should be repeated with a larger sample size and smaller 

tumours to allow for longer studies and non-necrotic tumours. Histology should be used 

to determine the biological basis for the signal change. 
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