
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-16-2013 12:00 AM

Integrated Development and Parallelization of Automated Integrated Development and Parallelization of Automated

Dicentric Chromosome Identification Software to Expedite Dicentric Chromosome Identification Software to Expedite

Biodosimetry Analysis Biodosimetry Analysis

Yanxin Li
The University of Western Ontario

Supervisor

Dr. Peter K. Rogan

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Yanxin Li 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Biochemistry Commons, Other Computer Sciences Commons, Programming Languages

and Compilers Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Li, Yanxin, "Integrated Development and Parallelization of Automated Dicentric Chromosome
Identification Software to Expedite Biodosimetry Analysis" (2013). Electronic Thesis and Dissertation
Repository. 1230.
https://ir.lib.uwo.ca/etd/1230

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=ir.lib.uwo.ca%2Fetd%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ir.lib.uwo.ca%2Fetd%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ir.lib.uwo.ca%2Fetd%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1230?utm_source=ir.lib.uwo.ca%2Fetd%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

INTEGRATED DEVELOPMENT AND PARALLELIZATION OF AUTOMATED
DICENTRIC CHROMOSOME IDENTIFICATION SOFTWARE TO EXPEDITE

BIODOSIMETRY ANALYSIS

(Thesis format: Monograph)

by

Yanxin Li

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Yanxin Li 2013

ii

Abstract

Manual cytogenetic biodosimetry lacks the ability to handle mass casualty events. We

present an automated dicentric chromosome identification (ADCI) software utilizing parallel

computing technology. A parallelization strategy combining data and task parallelism, as

well as optimization of I/O operations, has been designed, implemented, and incorporated in

ADCI. Experiments on an eight-core desktop show that our algorithm can expedite the

process of ADCI by at least four folds. Experiments on Symmetric Computing, SHARCNET,

Blue Gene/Q multi-processor computers demonstrate the capability of parallelized ADCI to

process thousands of samples for cytogenetic biodosimetry in a few hours. This increase in

speed underscores the effectiveness of parallelization in accelerating ADCI. Our software

will be an important tool to handle the magnitude of mass casualty ionizing radiation events

by expediting accurate detection of dicentric chromosomes.

Keywords

Parallel computing, Parallelism, Distributed system, High performance computing, Image

processing, Cytogenetic biodosimetry, Human metaphase chromosomes

iii

Acknowledgments

I would like to thank my supervisor Dr. Peter Rogan for the opportunity to study and work in

his lab for the last two years. His enthusiasm for science encouraged my pursuit of our

project. His expertise in biochemistry and computer science allowed me to think critically

about my research. I would also like to thank my co-supervisor Dr. Jagath Samarabandu for

his invaluable guidance on software engineering and image processing and Dr. Joan Knoll

for providing crucial feedback on the accuracy of our software.

Asanka Wickramasinghe and Akila Subasinghe helped me design and implement the ADCI

software. I feel grateful for their support. Natasha Caminsky and Wahab Khan prepared most

of the metaphase slides used for our project. I appreciate their contribution. I also want to

show my gratitude to Dr. Samarabandu and Dr. Marc Moreno Maza as the knowledge I

acquired in their courses helped move our project forward.

I would like to thank the staff that helped us with SHARCNET and Scinet, especially Baolai

Ge, Tyson Whitehead and Daniel Gruner. Finally, thanks to all members in our lab for their

support in my academic and personal life in Canada. I am very thankful to Wahab Khan for

his selfless help in proofreading my thesis.

Yancey Li

iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures ... vii

List of Appendices ... xi

Chapter 1 ... 1

1 Introduction .. 1

1.1 Cytogenetic biodosimetry ... 1

1.2 Automated Dicentric Chromosome Identification .. 5

1.2.1 The Ranking Module .. 7

1.2.2 Chromosome Classification and Gradient Vector Flow Contour Extraction

... 9

1.2.3 Discrete Curve Evolution and Centerline-Based Modules 11

1.2.4 Contribution of This Thesis .. 15

Chapter 2 ... 17

2 Rationale for Parallelization of ADCI ... 17

2.1 Background on Parallel Computing .. 17

2.2 The General Parallelizing Method .. 22

2.3 Parallel Strategy on ADCI .. 24

Chapter 3 ... 26

3 Implementation of Parallel ADCI .. 26

3.1 Optimization of I/O on ADCI cluster ... 26

3.1.1 Asynchronous I/O ... 27

v

3.1.2 Metaphase Gridding .. 28

3.2 Task Parallelism .. 29

3.2.1 Parallelizing Binary Image Labeling .. 29

3.2.2 Parallelizing Inversion of Circulant Tri-diagonal Matrices used in GVF . 40

3.3 Data Parallelism .. 44

3.3.1 Multi-thread Data Parallelism ... 44

3.3.2 MPI Data Parallelism .. 45

Chapter 4 ... 48

4 Experiments and Discussion .. 48

4.1 Experiments of Task Parallelism .. 48

4.1.1 Experiments on Parallel Binary Image Labeling 48

4.1.2 Parallelized Matrix Inversion Experiments .. 51

4.2 Experiments of Data Parallelism .. 53

4.2.1 Experiment of ADCI desktop on Desktop .. 53

4.2.2 Experiment of ADCI Module on Symmetric Computing System 55

4.2.3 Experiment of ADCI Module on Cluster .. 56

4.2.4 Experiment of ADCI cluster on Blue Gene/Q .. 58

Chapter 5 ... 68

5 Conclusion and Future Work ... 68

5.1 Conclusion .. 68

5.2 Future Work .. 70

References or Bibliography .. 71

Appendices .. 75

Curriculum Vitae .. 76

vi

List of Tables

Table 1: Comparison of Parallel Odd-Even reduction and Gaussian Elimination. Matrix size

stands for the number of rows in the square matrix. ... 52

Table 2: Experiment summary of data parallel modules on an 8-core desktop. 53

Table 3: Data Parallelized ADCI desktop on an 8-core desktop. Average time recorded to

process one sample (250-300 images) in seconds .. 55

Table 4: Data-parallelized ranking module on Goblin, SHARCNET 57

Table 5: Influence of Asynchronous I/O on Goblin, SHARCNET .. 58

Table 6: Summary of Experiment on BG/Q, time recorded by samples. 63

Table 7: Summary and comparison of ADCI of different versions .. 69

vii

List of Figures

Figure 1: Metaphase image of human chromosomes shown in gray-scale. A) Structurally

abnormal marker chromosome in which no part of the chromosome can be identified is

flagged. B) Dicentric chromosome is shown with two primary constrictions, each containing

a centromere. C) Ring chromosome in which the telomere ends are lost and the remaining

chromosome components have fused. .. 2

Figure 2: A metaphase with a dicentric chromosome is indicated. Arrows point to the two

centromeres on this chromosome that can be identified by their narrow width. Chromosomes

are counterstained with 4',6-diamidino-2-phenylindole (DAPI). ... 4

Figure 3: A metaphase with a dicentric chromosome indicated. Arrows point to the two

centromeres that can be identified by their narrow width and distinguishable intensity. Cell

stained method: Constitutive banding (C-banding). ... 5

Figure 4: Flow chart of ADCI system. Green shapes depict data in ADCI. Blue boxes

represent current functional modules. In the box of three categories of metaphases, the

strikethrough indicates that the ‘overspread’ images are discarded, and arrow means the

‘nice’ metaphases have higher ranks than the ‘overlap’. .. 6

Figure 5: Example of processes in the six functional modules. The ranking module selects the

best 50 images of all metaphases in a sample [11]. For each selected image, the classifying

module segments individual chromosomes and classifies it into a single chromosome class or

chromosome cluster class. Single chromosomes are fed into further processes [3]. 7

Figure 6: Examples for three metaphase categories in ranking. ‘Nice’ metaphases have a

complete (46 human chromosomes) or almost complete set of chromosomes. Most

chromosomes in ‘nice’ metaphase category are well separated with clear boundaries, which

are critical for DCA. ‘Nice’ chromosomes are permitted to contain a limited number of

overlapped chromosomes. ‘Overlapped’ metaphases also have most or all of the 46

chromosomes, yet the chromosomes are under-spread. ‘Overspread’ metaphases contain

chromosomes that are completely missing from the field of view and some are only partially

visible in the image. .. 8

viii

Figure 7: The images (a to e) show chromosome contours obtained from the GVF module.

GVF contours of gray-scaled objects are shown as colored outlines circumscribing the

chromosomes. The boundaries of concave chromosomes (d and e) are precisely matched by

their corresponding GVF contours. ... 11

Figure 8: Example of relevance measurement function. The importance of arc a-b(c)-c to the

curve can be measured by Equation (1.6). .. 12

Figure 9: Examples of centerlines obtained from DCE and interpolation module. Centerlines

of gray-scale chromosomes are shown as colored curve. ... 14

Figure 10: Examples of centromeres successfully detected in ADCI. Centromeres are marked

as green dots. ... 15

Figure 11: Two examples of dicentric detection in ADCI. The first centromeres are marked

as green dots and the second centromeres marked as red dots. .. 15

Figure 12: An example of computation model. Each node represents a part of instruction in

the program. Node 0 and 9 are the start and end parts, respectively. Lines with arrows

illustrate dependency. Nodes in the critical path are marked with red numbers. 21

Figure 13: Comparison of three I/O mechanisms. In synchronous blocking I/O, I/O tries to

fetch all data requested, while users have to wait for the return of I/O. In non-blocking I/O,

I/O fetches and returns what is available currently. In asynchronous I/O, I/O returns

immediately but keeps fetching data. Data are passed to user later. 28

Figure 14: Binary image labeling function in a metaphase. Red numbers indicate the first to

fourth connected components. .. 30

Figure 15: Example of two passes of scanning in binary image labeling algorithm. The image

is scanned in row-major order. A total 7 preliminary connected components are found after

the first pass of scan. Preliminary connected components are sorted out to 2 connected

components in the second pass of scan after EQTABLE is Resolved. 34

Figure 16: Equivalence set (EQTABLE) for binary image labeling in the example shown in

Figure 15. Only a part of steps in building and resolving EQTABLE are demonstrated. When

ix

a new label is created, a new node is inserted as in step 3. When two preliminary labels are

equal, their trees are merged as in step 7. ... 34

Figure 17: A binary image of a single connected component that generates a five-level tree in

its EQTABLE. This situation rarely happens in metaphase images. 36

Figure 18: Dividing a binary metaphase to two sub-images evenly in the horizontal direction.

Upper sub-image and lower sub-image can be processed in parallel. 37

Figure 19: Dividing the binary metaphase in Figure 18 to 2 sub-images and recursively

dividing them into 4 sub-images. Labeling work can be shared by 4 concurrent threads. 38

Figure 20: DAG analysis of the parallel binary image labeling when dividing a metaphase to

4 sub-images in fork-join parallel schema. Left figure is the DAG of parallel loop of the first

and second scanning. Right figure is the DAG of parallel divide-and-conquer algorithm of

merging equivalence tables (Fork and join are omitted). Red lines show the critical paths... 39

Figure 21: An example of DAG analysis of parallel Odd-Even reduction in inversion of a 9-

by-9 matrix in ADCI. Fork and join are omitted. In both the forward and back substitutions,

 (3 in this case) layers of substitutions are required. In each layer of substitution,

execution can be parallelized in parallel loop. .. 43

Figure 22: Work sharing scheduling in ADCI cluster. MPI process 0 is the Scheduler process

and manages the global work queue. .. 47

Figure 23: Comparison of serial and parallel binary image labeling for different number of

ending sub-images. Binary image labeling of different versions and stopping conditions are

distinguished by colors in bars. Serial binary image labeling and parallel binary image

labeling with 5 different stopping conditions were tested on 5 randomly selected metaphases.

For example, ‘4 sub-images’ denote that the ending sub-images are at ¼ height of the

original metaphase, and thus there are 4 ending sub-images to be processed. 49

Figure 24: Comparison of serial modules and parallel modules. Panels a and b demonstrate

experiments in the Ranking and GVF. Blue and red bars show the time cost by modules with

serial functions versus task parallelized functions, respectively. ... 50

x

Figure 25: Parallel information Odd-Even reduction matrix inversion. Part ‘a’ gives the

maximum speedup of the parallel program in Cilk as well as the estimation of speedup when

utilizing different numbers of processors. Panel ‘b’ plots part ‘a’ where red and green lines

illustrate the lower and upper bounds of possible speedup. The horizontal green line is

defined by the limitation from the critical path in the program and the diagonal green line

shows the speedup restricted by number of available processors. .. 52

Figure 26: Parallel ranking module on a SMP system with 18694 samples. Average time to

rank all metaphases in one sample is displayed on the Y-axis. .. 56

Figure 27: Sequential diagram of ADCI cluster. Blue boxes represent modules in ADCI

cluster. Functional modules are resident in memory. The scheduler module parallelizes data

in parallel loop and call functional modules. .. 60

Figure 28: Deployment of ADCI cluster on BG/Q. A total of 64 MPI processes resided on 64

nodes individually with 64 or 50 OpenMP threads in each MPI process. 62

Figure 29: Distribution of processing time on BG/Q nodes. The longest processing time,

5090 seconds (1 hr. 24 min. 50 sec.), was observed on node 63. ... 65

Figure 30: Distribution of samples in BG/Q nodes, 4 samples per chunk. Most nodes were

scheduled with 4 chunks with a few scheduled for 3 or 5 chunks. ... 66

xi

List of Appendices

Appendix A: Acronym. ... 75

1

Chapter 1

1 Introduction

Ionizing radiation is ubiquitous in the environment. Its source can be natural such as

radioactive materials and cosmic rays or artificial, such as nuclear power plants.

Overexposure to ionizing radiation damages living tissue and could cause severe health

problems (i.e. mutation, radiation sickness, cancer and death). Cytogenetic biodosimetry

is the definitive assessment for exposure to ionizing radiation recommended by the World

Health Organization (WHO). This involves counting the frequency of dicentric

chromosomes (DCs) on metaphase cells, termed dicentric chromosome analysis (DCA)

[1]. A set of algorithms implemented using MATLAB has been previously developed to

automatically identify dicentric chromosomes [2] [3]. Based on these algorithms, we are

developing an Automated Dicentric Chromosome Identifying software (ADCI) with

C++/OpenCV. This thesis discusses the parallelization and implementation of ADCI.

1.1 Cytogenetic biodosimetry
There exist many situations in which one or more individuals have been overexposed to

ionizing radiation [4]. A subset of these incidents happened in mass casualty scenarios [5]

[6], among which the Fukushima Daiichi nuclear disaster is the most recent example.

Such mass casualty events could be nuclear power plant related, terrorism involving

radiological weapons, and/or nuclear weapon attacks [7]. Although a nuclear attack has

not occurred recently, due to terrorist activities and nuclear weapons proliferation,

attention must be paid to the possibility of these extreme cases. The number of

individuals potentially exposed to radiation who require urgent medical evaluation could

number into the thousands.

There are many accepted radiation dosimetry assessments in early-phase response to

acute radiation, including monitoring the exposed individuals, observing and recording

symptoms or counting white-blood-cell differential [5]. In these approaches, sampling

blood for cytogenetic biodosimetry analysis usually provides an accurate estimate of the

radiation dose. Ionizing radiation can cause many structural changes to the human

2

chromosome. These are readily identifiable by light microscopy during the metaphase

stage of the cell cycle and can include chromosome breaks, marker, dicentric and ring

chromosomes, as well as chromosomes with complex rearrangements. The dicentric

chromosome assay (DCA) serves as the “gold standard” in dose assessment [8]. Figure 1

is a metaphase cell image generated in our laboratory in which we see a marker, a ring

and at least one dicentric chromosome.

Figure 1: Metaphase image of human chromosomes shown in gray-scale. A)

Structurally abnormal marker chromosome in which no part of the chromosome

can be identified is flagged. B) Dicentric chromosome is shown with two primary

constrictions, each containing a centromere. C) Ring chromosome in which the

telomere ends are lost and the remaining chromosome components have fused.

3

A centromere is the part of a chromosome where sister chromatids are linked to each

other. In stained metaphase cell images, the centromere can be observed as a narrow part

in a chromosome exhibiting an intensity different from other regions of the chromosome

[9]. A normal chromosome can only have one centromere and is always located at a

certain position that is determined by the particular chromosome that contains it, which is

numbered from 1 to 22, X and Y. Abnormal chromosomes with two centromeres in a

single chromosome are defined as dicentric chromosomes. The frequency of dicentric

chromosomes is critical in diagnosis of radiation exposure: a high frequency of dicentric

chromosomes implies that the individual was exposed to a high radiation dose. Dicentric

chromosomes have an extra centromere relative to normal chromosomes, but depending

on shape of the chromosome, identification of the narrowest part can be subtle on certain

metaphase chromosomes. Dicentric chromosomes are shown in Figures 2 and 3.

Examination of dicentric chromosomes is usually made in reference cytogenetic

laboratories by individuals who have experience and professional expertise in

cytogenetics. A typical process of DCA for an individual includes culturing lymphocytes

(white blood cells) and harvesting mitogen-stimulated cells, preparing fixed

chromosomes, identifying metaphase chromosomes, selecting a small proportion for fast

triage (typically, 50 metaphases), and counting the dicentric chromosomes in these

selected metaphases [1]. For microscopists, this analysis is time consuming, and requires

significant patience and energy, compromising rapidity of processing, especially for

large numbers of samples. A rushed assessment may lead to errors in counting. In a mass

casualty case, the magnitude and density of evaluation would be a challenge for early

medical response, since the number of samples (patients) could be thousands, while the

assessment and treatment window only lasts for a few days [1].

4

Figure 2: A metaphase with a dicentric chromosome is indicated. Arrows point to

the two centromeres on this chromosome that can be identified by their narrow

width. Chromosomes are counterstained with 4',6-diamidino-2-phenylindole

(DAPI).

5

Figure 3: A metaphase with a dicentric chromosome indicated. Arrows point to the

two centromeres that can be identified by their narrow width and distinguishable

intensity. Cell stained method: Constitutive banding (C-banding).

1.2 Automated Dicentric Chromosome Identification
A set of algorithms was developed in MATLAB to automatically and accurately locate

centromeres for dicentric analysis [3]. These algorithms have been converted to a

C++/OpenCV ADCI software version and parallelization of the C++/OpenCV ADCI has

been completed. MATLAB was not available for all hardware clusters that we used, such

as BG/Q and Symmetric Computing. Developing software in MATLAB will also involve

license issues. We have also obtained significant improvement in performance by

recoding in C++/OpenCV (Table 7). The current ADCI system is comprised of six

functional modules: metaphase ranking (ranking), chromosome classification

(classifying), gradient vector flow contour extraction (GVF), discrete curve evolution

(DCE), centerline interpolation (interpolation) and centromere detection (centromere).

There are additional modules whose algorithms are still in development such as Sister

Chromatid Separation with Integrated Intensity Laplacian and Chromosomes Separation

6

[10]. Figure 4 shows the flow chart of the ADCI system, and Figure 5 gives a visualized

example of ADCI process. Two versions of ADCI, ADCI desktop and ADCI cluster,

were developed for interactive use in desktops and handling mass casualty events in high

performance computing clusters respectively. ADCI desktop has a GUI module and

ADCI cluster has a Scheduling module.

Figure 4: Flow chart of ADCI system. Green shapes depict data in ADCI. Blue

boxes represent current functional modules. In the box of three categories of

metaphases, the strikethrough indicates that the ‘overspread’ images are discarded,

and arrow means the ‘nice’ metaphases have higher ranks than the ‘overlap’.

7

Figure 5: Example of processes in the six functional modules. The ranking module

selects the best 50 images of all metaphases in a sample [11]. For each selected

image, the classifying module segments individual chromosomes and classifies it into

a single chromosome class or chromosome cluster class. Single chromosomes are fed

into further processes [3].

1.2.1 The Ranking Module

In the ranking module, ADCI performs a preliminary selection of metaphases suitable for

further analysis, as well as preprocesses of metaphases. The ranking algorithm combines

content extraction and classification of metaphases to select the optimal candidates for

dicentric chromosomes identification [11]. Both graphical and cytogenetic features are

extracted from a metaphase based on its content. In total, 17 features are collected,

including graphical data such as image contrast and foreground pixel numbers.

Cytogenetic information such as number of separated connected components (blobs,

corresponding to either individual or overlapping chromosomes), their average lengths

and distance between separated blobs is also collected. When features of all candidate

images are extracted, these are normalized with a training set consisting of the same

features, obtained from several hundreds of metaphase cells previously scored by 2

certified cytogeneticists. Metaphases within this training set have been categorized into

8

three classes as ‘nice’; in which chromosomes are well separated but within field of view,

‘overlapped’; in which chromosomes are highly overlapped, and ‘overspread’; in which

the metaphase is incomplete because some chromosomes are outside the viewing field

[11] [12]. Figure 6 gives an example for every class. ‘Nice’ metaphases are the best for

DCA. Metaphases with overlapped chromosomes are less ideal for DCA, as many of

their chromosome boundaries are not completely distinguishable. However, when there is

an insufficient number of ‘nice’ metaphases in a sample, some overlapped chromosomes

may be necessary. ‘Overspread’ metaphases are not useful for DCA and are generally not

considered. In ADCI, the classification of metaphases in a given sample is accomplished

by the K-nearest neighbor algorithm, where K = 1 [13]. The ‘nice’ and ‘overlapped’

metaphases are provided as input to a formula to calculate scores, based on their

cumulative set of features. Within a given category, ‘nice’ or ‘overlapped’ metaphases

are ranked in decreasing order of their scores. In three categories, metaphases in ‘nice’

class always keep a higher rank than those in ‘overlapped’ category, while ‘overspread’

metaphases are lowest ranked. Top 50 ranked metaphase are chosen for DCA. This

guarantees that ‘overlapped’ metaphase can be applied to DCA only after the set of all

‘nice’ metaphases has been exhausted [11] [12]. The ranking module provides not only a

list of the most useful metaphases for further steps in ADCI, but also some intermediate

results, such as the shapes of separated blobs in a metaphase. These intermediate data

generated during ranking remain resident in memory to avoid duplicated operations in the

subsequent software modules.

Figure 6: Examples for three metaphase categories in ranking. ‘Nice’ metaphases

have a complete (46 human chromosomes) or almost complete set of chromosomes.

9

Most chromosomes in ‘nice’ metaphase category are well separated with clear

boundaries, which are critical for DCA. ‘Nice’ chromosomes are permitted to

contain a limited number of overlapped chromosomes. ‘Overlapped’ metaphases

also have most or all of the 46 chromosomes, yet the chromosomes are under-

spread. ‘Overspread’ metaphases contain chromosomes that are completely missing

from the field of view and some are only partially visible in the image.

1.2.2 Chromosome Classification and Gradient Vector Flow
Contour Extraction

The chromosome classification (classifying) module determines whether the input blob is

a single chromosome or a chromosomal cluster with two or more chromosomes in

overlap. The current algorithm is a variation of the algorithm proposed by Rizvandi et al.

(2008) [14]. It generates and prunes a coarse centerline for an input blob, and counts the

number of conjoined parts of the centerline. If conjoined part(s) exist, the input blob is

considered to be a cluster of multiple chromosomes; otherwise, it is a single

chromosome. Clusters of multiple chromosomes can produce false positive DC

assignments. For this reason, only single chromosomes are selected for further processing

by DCA.

The Gradient Vector Flow (GVF) Contour Extraction is one of the key components in

ADCI [15], which produces a very descriptive contour for the input chromosome. The

initial contours of chromosomes are obtained by threshold segmentation by Otsu’s

method, which is known to be somewhat inaccurate. We have employed active contours

or snakes, to define the chromosome boundaries. Active contours are curves that can

move under the effect of internal energy from the shape of the curve, and the effect of

external energy from the data in the image. A parametric curve controlled by parameter

is expressed as Equation (1.1):

 . (1.1)

Given an initial contour, the energy of this contour is defined as in Equation (1.2):

10

 . (1.2)

The component within the square brackets is the internal energy function where

parameters and control the active contour’s tension and rigidness, respectively. The

variable, in Equation (1.2), represents the external energy coming from the

data in the image. The active contour can expand or shrink from the initial contour while

minimizing the energy defined in Equation (1.2), making the curve a function of time .

An active contour minimizing Equation (1.2) has to satisfy the Euler-Lagrange equation:

 . (1.3)

In GVF Snake model, the gradient vector flow vector field, in Equation (1.4), serves as

the external energy component. The parametric curve that can solve Equation (1.4) is a

GVF snake, which is the final contour obtained from the GVF module for chromosomes.

 (1.4)

The gradient vector flow in Equation (1.4) is defined as a vector field

 and can be acquired by minimizing the energy function in Equation

(1.5):

 . (1.5)

The in Equation (1.5) is the edge map of the input image, which can be any gray-level

or binary edge map defined in image processing. is the gradient of the edge map. In

ADCI, we use the Canny edge map [16].

Compared with other external energy methods that can define active contours, for

example, the distance transform, GVF snake has two advantages. The initial curve for the

GVF snake can be flexible, and the GVF snake can facilitate the convergence of the

curve to its boundary concavities. Concavity is very common for contours of

chromosomes [15]. Figure 7 shows some examples of contours obtained from the GVF

11

module and that these GVF snakes can satisfactorily fit the concavities in chromosome

contours [50].

Figure 7: The images (a to e) show chromosome contours obtained from the GVF

module. GVF contours of gray-scaled objects are shown as colored outlines

circumscribing the chromosomes. The boundaries of concave chromosomes (d and

e) are precisely matched by their corresponding GVF contours.

1.2.3 Discrete Curve Evolution and Centerline-Based Modules

Typical morphological methods for generating the centerline for an object [17], such as

skeletonizing, often produce extra branches along the centerline of a chromosome. To

obtain contiguous centerlines without branching, the initial centerlines acquired from

skeletonizing have to be pruned. Discrete Curve Evolution (DCE) algorithm decomposes

a 2D object by generating a polygon, which highly represents the input 2D object [18].

Skeleton pruning based on the polygon resulting from the DCE method, is one of its

important applications [19]. In ADCI, a minimum polygon (a triangle) is obtained in the

DCE module for long chromosomes, which instructs that the shortest branches along the

centerline to be pruned. Centerlines of short chromosomes are obtained by medial axis

thinning [20].

The DCE algorithm can be summarized in the following algorithm. The termination

criterion is scenario-dependent, which is in ADCI.

procedure Discrete Curve Evolution

input: polygonal decomposition of a target curve with k vertices:

12

input: lines segment connecting and in :

input: the relevance measure function of two joint line segments.

for

 Find in a pair and (mod) that minimizes ;

 Delete , and in ;

 Create a new line segment connects and ;

 ;

 Update indices.

 .

end for

Algorithm 1: Pseudocode of Discrete Curve Evolution in the ADCI

The relevance measure function represents the contribution of arc to

the shape of [19]. Equation (1.6) defines the relevance measurement function in the

DCE method. Figure 8 gives a geometric example of relevance measurement function on

two joint lines.

 (1.6)

Figure 8: Example of relevance measurement function. The importance of arc a-

b(c)-c to the curve can be measured by Equation (1.6).

13

In Equation (1.6), is the turn angle of line and . The and

variables are the lengths of line and . A larger turn angle and longer lines mean a

more important role of the arc to the curve. This explains the rationale behind the

relevance measurement function. The final triangle, resulting from the DCE module,

partitions the chromosome contour curve to 3 sections. In pruning, any point in the

skeleton whose maximal disk in the skeletonizing process [17] touches a same curve

section at more than one point will be pruned from skeleton. After that, a centerline

consisting of discrete or continuous points is obtained for every chromosome.

In order to get a curve to exactly represent a chromosome centerline, interpolation is used

which connects the discrete centerline. In numerical analysis, when only some of the data

points are known, interpolation is widely used to construct new data points. Interpolation

is close to function approximation except that the latter does not return new data points

but can be used to calculate new data points. Several common interpolation methods can

be found in [21]. In ADCI, cubic spline interpolation is applied to both x and y axes for a

discrete centerline. Because a final polygon in the DCE module is a triangle, a centerline

obtained after interpolation still keeps an extra short branch. This extra branch is located

at the end of a centerline, which means a centerline consists of a long stem branch and

two short twig branches. The two twig branches are pruned and the long stem branch

keeps most of the required information [20]. Figure 9 displays centerlines obtained in the

ADCI desktop.

14

Figure 9: Examples of centerlines obtained from DCE and interpolation module.

Centerlines of gray-scale chromosomes are shown as colored curve.

As stated earlier, centromeres are the most condensed and constricted parts of

chromosomes, where two sister chromatids join. Locations of centromeres play a vital

role in identification of chromosomes. Specifically, the designated centromere on a given

chromosome dictates its cytogenetic classification as metacentric, sub-metacentric, or

acrocentric [22]. When centromeres are manually identified, the location of the primary

constriction (i.e. narrowest feature on the chromosome) is used to determine their

location. However, the centromere region in DAPI-stained chromosomes in gray-scale

metaphase images also exhibits pixel intensities that are distinguishable from other

elements of the same chromosome.

In ADCI, centromeres are searched through the centerlines obtained from the DCE and

interpolation modules by combining the intensity and width information along the length

of the chromosomes. Metaphase chromosomes are formatted as 8-bit gray-scale images

on a black background. Chromosomes shapes are obtained from the GVF module. Along

the centerline, virtual lines (referred to as trellis) that are perpendicular to the centerline

are generated at a unit length, with each line corresponding to a different segment of the

centerline. The combined information at every centerline segment is calculated for each

trellis element. Intensity information along the line element is weighted according to a

Gaussian function to reduce noise at the boundaries of chromosomes [20]. Width

information is determined as the length of a line in the trellis. These two sets of

15

information are combined into a single profile [20]. The first centromere is located by

finding the global minima in the profile. Figure 10 gives examples of the first centromere

in each chromosome located by ADCI. Subsequently, a regional mask covering a small

neighborhood circumscribing the first centromere is applied in the profile, and the second

global minimum of intensity and width is determined in the masked profile. If the first

and second minima are far enough apart, this chromosome is assigned to be a dicentric;

otherwise, the first and second minima are considered to represent the same centromere.

Figure 11 shows two dicentric chromosomes detected by ADCI.

Figure 10: Examples of centromeres successfully detected in ADCI. Centromeres

are marked as green dots.

Figure 11: Two examples of dicentric detection in ADCI. The first centromeres are

marked as green dots and the second centromeres marked as red dots.

1.2.4 Contribution of This Thesis

In this thesis, I describe the design and building of a parallel software version of ADCI. A

parallel algorithm for binary image labeling is introduced and a fast algorithm for

circulant tri-diagonal matrix inversion is described, as well as its parallelized version in

Section 3. Strategies for incorporating data parallelism for processing multiple images

from many different samples, and the combination of data and task parallelism on ADCI

16

are also discussed. We built the parallel ADCI desktop and ADCI cluster based on these

principles, and tested our software on various platforms in Section 4. Results and

conclusions are given in Section 4 and 5. We show that our parallelized ADCI can

accelerate the DCA process by several folds and the cluster computing version of ADCI

is capable of processing thousands of samples in a few hours.

17

Chapter 2

2 Rationale for Parallelization of ADCI

Both the traditional DCA undertaken by cytogenetic experts in reference laboratories and

the automated DCA by our ADCI desktop are challenged to process thousands of

samples within a clinically relevant timeframe (i.e. a few hours). As introduced in Section

1.2, metaphase images obtained from automated cytogenetic microscopy systems can be

extremely variable in morphology. Thus dedicated image processing procedures are

required to recognize the key features in chromosomes that are diagnostic for DCs.

Furthermore, the system modules GVF snake and DCE can consume a lot of time to

perform the computations necessary to extract these features. It is also difficult to find

faster algorithms with the requisite accuracy to produce useful measurements of radiation

exposure based on DCA. As parallel computing hardware like multicore processors and

computing clusters are becoming widespread, a feasible way to accelerate ADCI is via

parallelization of these existing algorithms. The need of handling thousands of samples in

hours motivated us to build the ADCI cluster software that can utilize many processors in

a high performance computing environment in order to efficiently accelerate DCA. We

developed a set of strategies to accelerate both ADCI desktop and ADCI cluster from

different perspectives. This chapter outlines background knowledge on parallel

computing, general methods to parallelize programs, and the parallel strategies that we

adopted for ADCI.

2.1 Background on Parallel Computing
Frequency scaling was the dominant reason for improvement in computer performance in

past decades. By ramping up the frequency of a processor, faster processing speed can be

obtained. Recently, the requirement for cooling associated with increasing frequency has

limited the growth of CPU speed [23]. The gap in speed between CPU and memory is

also become a major bottleneck, in instances when the speed of a single CPU has been

comparatively fast. With the lower costs, and the availability of multi-processor CPUs,

parallel computing hardware containing multiple processors can be exploited to achieve

18

higher throughput through scalable architectures. Software has been developed to enable

parallelized computation and programming simpler, which is making significant

contributions to improving computer performance. According to Hennessey and

Patterson, contemporary computers can be categorized into fives classes: personal mobile

devices (PMD), desktops, servers, clusters and embedded computers [24]. Parallel

computing hardware has widely emerged in computers from the first four categories and

examples include multi-core smartphones or tablets, multi-core desktop or laptop

computers, symmetric multi-processing (SMP) systems and distributed clusters. SMP

systems and distributed clusters are usually supercomputers that are much more powerful

than multi-core systems. Therefore SMP supercomputers and clusters are considered to

be high performance computing (HPC) systems. Although multi-core or multi-processor

desktops or servers also use SMP architectures, we exclusively refer to SMP

supercomputers as SMP.

On the basis of the instruction stream processed by computers and the data stream called

by instruction stream, Flynn proposed a simple classification for parallel computing

architecture in 1960s [25] [26], which is still widely used today. Any computer can be

assigned to one of the following four classes: single instruction stream with single data

stream (SISD), single instruction steam with multiple data streams (SIMD), multiple

instruction streams with single data stream (MISD) and multiple instruction streams with

multiple data streams (MIMD) [25]. SISD is the uniprocessor type. In computer

programming, this is the standard sequential computer but it can exploit instruction

parallelism, such as pipeline and speculative instructions. In SIMD, multiple processors

run the same program on their own data streams, such as Graphic Processing Units

(GPU), exploiting a typical data parallelism model. Computers in MISD run multiple

instruction streams on the same data stream, but processors in this class have not been

commercially released. Each processor in a MIMD computer fetches its own instruction

and operates on its own data. It provides the most flexible way to implement parallel

computing. Both task parallelism and data parallelism can be exploited on MIMD

computers. We also classify parallel hardware to multi-core systems, SMP and HPC

clusters, when considering implementation of parallel programs. All multi-core

computers, SMP systems and HPC clusters we have used belong to the MIMD category.

19

Multi-core computers are computers with two or more central compute units (cores) on a

single processor chip. Desktops or servers with a few processor chips sharing memory are

also common. In this thesis, these computers are generally referred to as multi-core

systems. Cores in a multi-core system are fully functional processors which have the

same features as single-core processors, e.g. instruction pipeline, vector processing or

multi-thread. Parallelizing algorithms and software on multi-core systems is a major on-

going research area in parallel computing. SMP systems are computing system, where a

group of identical processors are connected on a shared memory space. This differs from

multi-core system as SMP systems are usually supercomputers. HPC clusters consist of a

set of connected computers working together. Computing nodes in a cluster are

standalone computers usually connected by fast local area networks. Nodes belonging to

a same cluster are not guaranteed to be symmetric.

In considering what should be parallelized, the methods of parallelism in applications can

be basically divided into data and task parallelism classes. In data parallelism, many data

items are distributed to different computing units and operated at the same time. In task

parallelism, a task of computation on a single data object is subdivided into multiple tasks

that are processed concurrently. The boundary between data and task parallelism is not

strict as data and task are highly related in most programs [27]. Based on different

hardware level, computers exploit these two methods in four ways: instruction-level

parallelism, data-level parallelism implemented by vector architecture and GPU, thread-

level parallelism and request-level parallelism [24]. Both data and task parallelism

methods can be exploited in these four ways. Instruction-level parallelism and vector

architecture are determined by hardware and compilers. GPU parallelism, like CUDA,

runs the same instructions on thousands of stream processors on arrays of data. Thread-

level parallelism and request-level parallelism are the two major ways to program in

parallel on CPUs. Thread-level is a relatively high-level parallelism method involving

cooperation among threads. There have been a lot of research and applications in parallel

computing focusing on thread-level parallelism. In request-level parallelism, programs

are executed in large groups of tasks or processes specified by programmers, such as

serial farming or message passing interface (MPI) processes.

20

Under optimal conditions, the speedup brought by a parallel algorithm can be linearly

inverse to the number of computing units available. This means for example, doubling

number of processors can halve the total process time. Most parallel algorithms are

unable to achieve a level of performance at this scale, because of overhead from inter-

process communication, latency due to scheduling and the specific hardware.

Dependency within the software program also prevents efficient parallelism. The

potential performance improvement of a parallel algorithm can be evaluated by Amdahl’s

law, shown as Equation (1.7), based on the extent of a program being parallelized, which

was originally formulated by Amdahl [28]. In Equation (1.7),

 (1.7)

 represents the portion of the program which cannot be parallelized and stands for the

number of available processors. If no part of the program can be parallelized, the speedup

will always be 1. If the program can be fully parallelized, the speedup will be linearly

increasing with the number of processors. In design of parallel algorithms, parallelizing

the maximum portions of a program is the main objective. The degree of parallelism

possible for a certain program is related to the dependency in the program, which can be

analyzed by control flow and data flow diagrams [29]. A directed acyclic graph (DAG)

which represents computations in a program, is a useful model (referred to as

computation model) to measure performance of a parallel algorithm, as shown in Figure

12. A part of the program cannot be executed before any parts preceding it in the DAG.

The series of actions in a program that cost the most time is the largest portion in the

program that cannot be parallelized. This is defined as the critical path [30] [31].

Assuming every node costs a unit of time, the longest path in the DAG is the critical path.

In a computation model, we define , and as the time requirements of a program

when running on , one and infinite processors respectively. In the DAG, is the sum of

time cost by all nodes, defined as work, and is the time required by the critical path,

defined as span. satisfies Equation (1.8):

 (1.8 a)

21

 (1.8 b)

If at each step in the execution of a parallel program, a scheduling mechanism attempts to

do as much work as possible, this mechanism is called greedy schedule. Most current

multi-core parallel platforms use a fork-join parallel schema, which means an existing

thread spawns a new thread at one time. According to Graham and Brent, for any greedy

schedules in fork-join schema, we have Equation (1.9) [35]:

 . (1.9)

Figure 12: An example of computation model. Each node represents a part of

instruction in the program. Node 0 and 9 are the start and end parts, respectively.

Lines with arrows illustrate dependency. Nodes in the critical path are marked with

red numbers.

The calculation above does not account for overhead due to process communication and

scheduling. Implementation of communication between processors varies on hardware.

Typical communication times between cores on a same chip cost 35 to 50 clock cycles,

and communication among separated chips costs 100 to 500 or even a greater number of

clock cycles [24]. The latency for distributed clusters mostly relies on network

architecture and performance, which can be very inefficient compared with processor

speed. Scheduling and data management also detract from performance. In thread-level

parallel programs, computations are made within software threads. Software threads must

be mapped to hardware threads at run time by the specific thread-level parallel platform

22

or operating system. The workload carried by the software threads is scheduled and

balanced across hardware resources. For process-level (request-level) parallelism, for

example programs running under MPI, programmers take the responsibility to map the

workload to processes. In summary, parallelism demands time for overhead functions,

which ultimately means that there is a tradeoff of benefits of multi-processor computation

and the corresponding overhead cost. Therefore, theoretical estimation of parallel

performance, dedicated design, and adequate experiments are required when a program is

going to be parallelized.

2.2 The General Parallelizing Method
In most cases, data and tasks are related so closely that they are difficult or even

unnecessary to distinguish. Therefore, only discussion of task parallelism is provided

here, but it should be recognized that the same comments are also applicable to data

parallelism. The general method of parallelizing software includes Decomposition,

Assignment, Orchestration and Mapping phases [27]. Decomposition means subdividing

tasks of the target problem into a collection of subtasks. The number of tasks may change

dynamically during the course of execution of the program. Among all the tasks at a

certain time in execution, some tasks can run concurrently, but others cannot due to their

dependency on prior tasks or availability of data produced by prior tasks. The maximal

number of tasks that can be executed simultaneously at a given time provides the upper

bound of the number of processors that can be used effectively. Therefore in the

Decomposition phase, the primary objective is to expose sufficient concurrency, while

avoiding data race [27]. Limited concurrency is the most fundamental limitation for

achieving speedup by parallelism. This is reflected in the analysis of DAG; exposure of

concurrency finds a shorter critical path. Decomposition actually implies not only the

procedure of decomposing target problem into pieces, but also the process of combining

these pieces subsequent to their parallel execution. In the Assignment phase, there should

be a mechanism to decide how tasks are distributed among threads or processes. There

are four major goals in Assignment: reducing data competition, balancing workload

across threads or processes, reducing communication - especially expensive

communication such as message passing through network, and suppressing overhead

23

caused by scheduling and managing Assignment. The work to be balanced could be

either computation of data, I/O operations, and communication or any combination of

these. Sometimes, these four elements of parallelization can be discordant with one other.

A tradeoff has to be made under these circumstances. Decomposition and Assignment

form partitioning of the target problem and comprise the key steps in designing a parallel

algorithm. They are usually irrelevant to the hardware architecture and programming

model, but these factors do influence the performance of Decomposition and Assignment.

At the Orchestration phase, different threads and processes perform their own tasks

individually and simultaneously in accordance with a certain mechanism. The correctness

of accessing data, exchanging data, and synchronization must be guaranteed in

Orchestration [27]. The design and implementing of Orchestration is strongly related to

hardware and software platforms. In most cases, parallelizing algorithms ends at the first

three steps. In the Mapping step, the threads or processes created in previous steps are

mapped to real physical processors or cores. Much research has evaluated different

algorithms according to their resource allocation and management [32]. For most parallel

software platforms, this work is accomplished by the platform itself or the operating

system.

Most parallelization methods are problem-dependent and can only follow the general

method stated above. However, there exist a few typical parallel models. For instance, the

divide-and-conquer algorithm is an algorithmic paradigm for parallelism. This algorithm

splits a problem into a series of sub-problems that are identical to the original but easier

to solve because of the divided computation. If all sub-problems are solved, their

solutions can be combined and a solution to the original problem can be constructed.

Divide-and-conquer algorithms are usually recursively used to solve a problem. Divide-

and-conquer algorithm can be efficiently parallelized, as sub-problems are independent

and can be solved in parallel. In parallel divide-and-conquer algorithm, problems are

commonly divided to many sub-problems to expose enough concurrency [33].

Parallelization of dividing and merging steps are also necessary to yield a high degree of

parallelism.

24

2.3 Parallel Strategy on ADCI
In this thesis, we refer to parallelizing high-level data, such as thousands of samples, each

consisting of hundreds of metaphase images, as data parallelism. The tasks performed in

task parallelism refers to certain low-level basic functions performed on each image.

Both data parallelism and task parallelism are used in the ADCI desktop and the ADCI

cluster. Here, efforts are focused on thread-level and process-level parallelism. Data

parallelism in ADCI is straightforward, as the data are organized as naturally separated

objects to be processed. The data are organized in three layers: including samples,

metaphase cell images, and chromosome sub-images. A sample is a set of metaphases

belonging to one individual and a metaphase is an image containing chromosomes.

Samples in ADCI are totally independent of each other, which mean processing samples

can be perfectly parallelized. Metaphases in a sample keep dependency in the ranking

module, but are independent of each other post-ranking. ADCI processes chromosomes

one by one and all data are highly distributable which brings a very high degree of

parallelism. In task parallelism, several functions that consume the most time in ADCI

are selected and parallelized. Task parallelism can also contribute to speedup when there

is still excess computing capacity remaining after data parallelism. Images are

represented as matrices in OpenCV. Task parallelism on these images/matrices are not

hard to design and implement, but not efficient as data parallelism. The priority and

combination of data parallelism and task parallelism will be based on specific cases. The

ADCI desktop is able to execute only in thread-level parallelism while the ADCI cluster

can execute in thread-level parallelism, process-level parallelism or a combination of the

two. In our strategy, data parallelism is the primary parallel method. In data parallelism,

parallelization of higher-level data is initially performed. This helps exploit data locality.

Although some parallelization scenarios in the ADCI are suitable for GPU parallel

computing, there are two major reasons why GPU is not ideal for parallelizing ADCI.

GPU computing requires C kernel functions with dedicated memory management for

GPU. This will cause overhead or compatibility problems in OpenCV. More importantly,

it will also reduce the portability of ADCI, which discussions with end users have told us

will be critical for future implementations.

25

C/C++ programming on raw threads is problematic for the developer and leads to high

probability of errors, since it is closely related to the hardware employed. Several thread-

level parallel tools/platforms have been built to address this. POSIX Threads (PThreads)

is the POSIX (Portable Operating System Interface) standard for threads defined by IEEE

in order to make a universal interface for different proprieties of threads implemented by

hardware vendors [28]. PThreads is a low-level portable multi-threads tool defined as a

set of C language programming types, constants and functions [34]. Cilk is a lightweight

general-purpose language that is designed on ANSI C language for multi-threads

computing [35]. Intel Threading Building Blocks (TBB) is a relatively high-level C++

programming template library providing a set of parallel algorithm and containers [36].

In the ADCI desktop, both data parallelism and task parallelism are achieved with TBB.

Data are parallelized mainly with parallel loop and functions are broken into parallel

tasks. Open Multiprocessing (OpenMP) is an API supporting multi-threads programming

in C, C++ and Fortran, on most processor architectures and operating systems [37]. It is

used in the ADCI cluster to implement thread-level data parallelism and task parallelism,

and mixed with MPI in a hybrid parallel programming model.

Message Passing Interface (MPI) is a standardized portable message-passing library

interface specification, widely used in a variety of parallel computers. MPI is a language-

independent communication protocol that still dominates high-performance computing,

especially for HPC clusters [41]. The latest version is MPI 3.0 [38]. There exist different

versions of MPI implementation, such as Open MPI [39] and MPICH [40], of which both

APIs can be directly called by C/C++ and Fortran. In the ADCI cluster software, MPI is

used to accomplish data parallelism in distributed computing nodes.

26

Chapter 3

3 Implementation of Parallel ADCI

The object of parallelizing ADCI is to achieve faster processing speeds. This goal will be

approached from three aspects: optimizing I/O operation on ADCI cluster, task

parallelization of functions in image processing, and parallelization of data processing

carried out by ADCI.

3.1 Optimization of I/O on ADCI cluster

The input data in the ADCI are organized in two layers: samples and metaphase images.

Samples are collections of all metaphase images belonging to the same individual.

Metaphase images are the only physical input data files in the ADCI, which are

previously captured on an optical microscope and processed using chromosome

karyotyping and analysis software available in many cytogenetic reference laboratories.

Although the format and visual information contained in these metaphases can vary based

on this software, a typical metaphase image is a one-channel gray-scale tagged image file

format (tiff) or three-channel RGB tiff image, with a size ranging from several hundred

kilobytes to two or three megabytes. Metaphase images from a given individual are

stored in their own directory.

This organization of data works well for the ADCI desktop since secondary storage

devices for desktops, such as hard disk drives, are usually connected by bus and can be

accessed by one user at a certain time. The density of I/O operations on a desktop is not

too large. On most desktops, the relatively slow processing speed and highly interactive

interface results in I/O latency will not noticeably delay processing by the ADCI. But in

distributed cluster computers, the disadvantage of this data organization has to be

considered. In our test of the ADCI cluster on a distributed system, major delays caused

by I/O operations were observed. In the ADCI cluster, multiple MPI processes run in

parallel, so the overall processing speed is much faster than the speed of the ADCI

desktop. The file system in a distributed cluster is usually connected to each computing

node by a local area network (LAN). Compared with processing speed of the ADCI

27

cluster, I/O operation speed can be much slower. This is because, in a cluster, the file

system is shared with other users. This means that I/O requests from different processes

in the ADCI and from other users compete for limited I/O resources. The delay is most

apparent when transporting or reading a large number of relatively small files. When an

I/O request is sent, the file system server searches directories for the location of the file.

A large number of independent, frequent searches in file directories on the file server is

particularly time consuming.

3.1.1 Asynchronous I/O

One very common method to boost the performance of an application containing many

demands on the I/O controller is to overlap the execution of the application and I/O

operations. When a program issues a synchronous blocking I/O system call, the program

will be blocked and have to wait until the system call succeeds or fails. The time between

the program sending an I/O request and system returning is wasted since processors are

idly waiting for the return of data from the I/O system. Overlapping the I/O operations

and the program processing can make full use of the processing capabilities of the cluster.

Programmers can define an exclusive I/O-operation thread by themselves to overlap I/O

and computing. Alternatively, programmers can also use asynchronous I/O system calls

to achieve this goal. As shown in Figure 13, I/O system calls can be divided into three

categories based on their mechanisms: synchronous blocking I/O, non-blocking I/O, and

asynchronous I/O [42]. For Unix-like systems, asynchronous I/O functionality is

supported by Kernel Asynchronous I/O (AIO) library.

28

Figure 13: Comparison of three I/O mechanisms. In synchronous blocking I/O, I/O

tries to fetch all data requested, while users have to wait for the return of I/O. In

non-blocking I/O, I/O fetches and returns what is available currently. In

asynchronous I/O, I/O returns immediately but keeps fetching data. Data are passed

to user later.

3.1.2 Metaphase Gridding

Asynchronous I/O does not directly solve the I/O problem in ADCI cluster. File system

servers still have to deal with a large number of I/O requests in a short timeframe. One

method of addressing this is to load a small number of large files, each of which contains

many metaphase images. These large files are called metaphase grids (or Bigtiff files),

which use standard tiff formats. The major obstacle in this method is that almost all

biodosimetry reference laboratories generate only single separated metaphases, and a

separate program is required to combine them into a Bigtiff file. However, metaphase

grids are used in ADCI cluster where the individual metaphases are organized into

metaphase grids. A metaphase grid in the ADCI cluster is organized as a 20-by-16 image

29

rectangle, consisting of 16 metaphases per row, 20 metaphases per column, and 320

metaphases in total. This usually exceeds the total number of metaphases obtained for

each sample.

3.2 Task Parallelism

As task parallelism involves more synchronization and communication, it is not as

efficient as data parallelism. Parallelization of a task is useful only when workload for the

task is big enough to outweigh the overhead of parallelism. A principle in task

parallelism is profiling ADCI in order to parallelize the tasks that consume a large

proportion of time in ADCI.

3.2.1 Parallelizing Binary Image Labeling

Binary connected component labeling (referred as binary image labeling) is a widely used

image morphological operation. By profiling the ranking module, we know that binary

image labeling costs roughly 47 percent time of total processing in ranking.

A pixel at coordinate in a two-dimensional image has four neighbors in vertical

and horizontal directions: , , and . The set of

these four pixels is the 4-neighbor of , denoted as . Pixel also has four neighbors

in two diagonal directions: , , and

 . The set of these four pixels is the diagonal-neighbor of , denoted as .

The union of 4-neighbor and diagonal-neighbor is the 8-neighbor of , denoted as .

The set of intensity value by which adjacency is counted is defined as . To simplify the

problem, only binary image is discussed here. As we are only interested in connectivity

of foreground pixels, we have . There exist two adjacencies: 4-adjacency and 8-

adjacency. Two pixels and with values from are 4-adjacent if . Pixels

and are 8-adjacent if [17].

A path from pixel with coordinate to pixel with coordinate is defined as

a sequence of distinct pixels:

 (3.1)

30

where , , and pixels are

adjacent. Depending on specified adjacency, 4-path and 8-path are defined. In a binary

image, two foreground pixels and are connected, if a path consisting entirely of

foreground pixels exists between them. For any foreground pixel in a binary image, a set

of foreground pixels connected to each other is a connected component [17].

Binary connected component labeling tries to assign an identical index number for all

pixels in one connected component. Different connected components keep different

indices. The returned image is an index image in which all pixels with a value

belong to the connected component in the corresponding binary image. Pixel with

index 0 is considered the background. Figure 14 shows an example of binary image

labeling in a metaphase image.

Figure 14: Binary image labeling function in a metaphase. Red numbers indicate the

first to fourth connected components.

There are several serial algorithms capable of achieving binary image labeling. The

algorithm used in ADCI is the same algorithm used in BWLabeln function in MATLAB

[56]. Detailed description of this algorithm by Rosenfeld and Pfaltz can be found in [43].

It involves two passes of scanning a binary image and building of an equivalence table.

Pseudocode of this algorithm is illustrated in Algorithm 2 below.

31

procedure BWLabeln

input: binary image IMAGE

output: index label image LABEL

LABEL = new zeros matrix of the same size of IMAGE;

create EQTABLE;

for L = 1 to last row in IMAGE // First pass of scanning image

 for P = 1 to last column in IMAGE

 if IMAGE(L, P) == 1

 A = Neighbors((L, P));

 if A is empty

 M = new label number;

 else

 M = Min(LABELS(A));

 end if

 LABEL(L, P) = M;

 for X in LABELS(A) and X != M

 Add (X, M EQTABLE);

 end for

 end if

 end for

end for

EQLABELS = Resolve(EQTABLE);

for L = 1 to last row in IMAGE // Second pass of scanning image

 for P = 1 to last column in IMAGE

 if IMAGE(L, P) == 1

32

 LABEL(L, P) = EQLABELS(LABEL(L, P));

 end if

 end for

end for

Algorithm 2: Pseudocode of Binary Image Labeling Algorithm [43]

The equivalence table EQTABLE has two functions. These include Add (i.e. adding a

new equivalence) and Resolve. Resolve sorts out final connected component indices in its

equivalences. The first pass of scanning returns a preliminary indexed image and an

equivalence table containing these preliminary labels. After Resolve of the equivalence

table, final label indices are assigned to the labeled image in the second pass of scanning.

There could be different data structures to represent EQTABLE. The two most frequent

operations in Resolve of EQTABLE are union of two equivalences and finding of an

equivalence containing a certain preliminary label. A fast technique to achieve this

functionality as well as to represent equivalence uses the tree data structure [44]. In this

data structure, nodes represent the preliminary labels and trees represent equivalences. A

new node is inserted when a new label is created. Add equivalence and Resolve

EQTABLE functions are implemented by a union of two trees and sorting out all roots of

trees in the equivalence table, respectively. Algorithm 3 and 4 illustrate these two

functions.

procedure Add

input: label X, label M, EQTABLE

root A = Find(M); root B = Find(X);

if Level(A) > Level(B)

 Union(A, B); // B is attached under A

else

 Union(B, A); // A is attached under B

33

end if

Algorithm 3: Pseudocode of Add equivalence in Equivalence set, using the tree data

structure [44]

procedure Resolve

input: EQTABLE

output: EQLABELS

i = 1;

initial EQLABELS[1 : last node number in EQTABLE] = {0};

for N = nodes in EQTABLE

 root = Find(N);

 if EQLABELS[root] == 0

 EQLABELS[root] = i;

 i = i+1;

 EQLABELS[N] = EQLABELS[root];

 else

 EQLABELS[N] = EQLABELS[root];

 end if

end for

Algorithm 4: Pseudocode of Resolve Equivalence set, using the tree data structure

[43] [44]

The 4-connected and 8-connected component labeling can be solved by this algorithm

depending on the choice of adjacency. An example based on 4-adjacency is given in

Figure 15 and Figure 16 to illustrate the serial algorithm.

34

Figure 15: Example of two passes of scanning in binary image labeling algorithm.

The image is scanned in row-major order. A total 7 preliminary connected

components are found after the first pass of scan. Preliminary connected

components are sorted out to 2 connected components in the second pass of scan

after EQTABLE is Resolved.

Figure 16: Equivalence set (EQTABLE) for binary image labeling in the example

shown in Figure 15. Only a part of steps in building and resolving EQTABLE are

demonstrated. When a new label is created, a new node is inserted as in step 3.

When two preliminary labels are equal, their trees are merged as in step 7.

Time in the binary image labeling algorithm is easy to calculate. In the first pass of

scanning the image, insertion of a node in the equivalence table at a foreground pixel

35

costs constant time. Adding equivalence is broken up into finding the roots of trees and

merging the two trees (e.g. step 7). Merging two trees costs constant time. Finding the

root for a certain tree depends on level of the tree, where the worst case is searching from

the farthest leaf to root. The levels of trees in equivalence sets are highly relevant to the

shapes of connected components. A large number of levels in the equivalence set could

appear in some images with irregularly shaped connected components, especially

connected components with numerous branches and spurs. Figure 17 shows a single

connected component which generates a 5-level tree in its equivalence set. Only when

two trees are of the same level, can the level of the merged tree increase by 1. Every tree

represents a preliminary connected component in the binary image. Thus the highest level

of trees in equivalence sets cannot exceed the number of preliminary connected

components. To simplify the problem, we restrict binary image labeling in metaphase

images. Since most metaphases selected by ranking module are ‘nice’ images,

chromosomes in these metaphases are in a neatly separated distribution with regular

shapes. A total of 46 chromosomes plus background noise is a reasonable estimation for

number of connected components in a given metaphase. The regular shape of objects in

metaphases limits the number of its preliminary connected components. In high ranked

metaphase images, the number of total preliminary connected components can be counted

as a constant. Resolving the equivalence set costs time linear to the number of

preliminarily-connected components. In the second pass of scanning, finding roots of

trees is called at all foreground pixels. The time cost in serial binary image labeling can

be expressed as Equation (3.2):

(3.2)

where is the average percentage of foreground pixels in metaphases and is number of

pixels in a metaphase. In Equation (3.2), is the time needed to label a foreground pixel

and add an equivalence, is the time required to scan a background pixel, and is the

time cost to resolve the equivalence table. Values and are constants relevant to the

average number of preliminary connected components and hardware. The time

requirement for serial binary image labeling is linear to the size of image.

36

Figure 17: A binary image of a single connected component that generates a five-

level tree in its EQTABLE. This situation rarely happens in metaphase images.

This algorithm can be designed with a divide-and-conquer strategy. The parallel binary

labeling algorithm takes an image to be labeled and divides it into several sub-images. If

these sub-images satisfy the recursive condition, they are labeled by recursively calling

the parallel binary image labeling method. Otherwise sub-images are labeled by the serial

algorithm. Labeled sub-images are combined to form a labeled complete image. A

drawback of this method is that in the combining phase, the combination of labeled sub-

images requires a re-scan and a re-label step. This includes all sub-images, except the

first, in order to avoid index number conflict in different sub-images. Individually

parallelizing the three steps in binary image labeling can avoid this problem. The parallel

algorithm used in ADCI is explained as follows. In the first pass of scanning, a

metaphase image is divided to 2 sub-images in horizontal direction, and sub-images are

divided recursively in the same way until the size of sub-images meets stopping

condition, which we call ending sub-images. Each ending sub-image completes its first

scan in serial, returning a local equivalence set and the corresponding labeled ending sub-

image. This process can be executed in parallel for all ending sub-images. Before

resolving equivalence set, local equivalence sets from sub-images must be merged to a

global equivalence set. Generating the global equivalence set is executed in a parallel

divide-and-conquer manner. The metaphase is divided in the same way as in its first pass

of scanning. The global equivalence set for the current image is combined from two local

equivalence sets returned from its upper sub-image and lower sub-image. Initially, the

global equivalence set is a simple union of the two local equivalence sets. The last line in

the upper half-image and the first line in the lower half-image are scanned and compared.

If two connected components belonging to different sub-images are actually connected,

37

an equivalence is added in the global equivalence set. The global equivalence set is

returned as a local equivalence set if the current image is also an intermediate sub-image.

If the current image is the complete metaphase, the global equivalence set is found and is

resolved serially. In the second pass of scanning, each ending sub-image resulting from

the first pass of scanning is labeled with help of the global equivalence set serially. This

process is executed in parallel for all ending sub-images and consequently the complete

metaphase is correctly labeled. Figure 18 shows evenly dividing a metaphase into two

sub-images in the horizontal direction. Figure 19 shows recursively division of Figure 18

into four sub-images.

Figure 18: Dividing a binary metaphase to two sub-images evenly in the horizontal

direction. Upper sub-image and lower sub-image can be processed in parallel.

38

Figure 19: Dividing the binary metaphase in Figure 18 to 2 sub-images and

recursively dividing them into 4 sub-images. Labeling work can be shared by 4

concurrent threads.

The time cost of parallelized binary image labeling is approximated in Equation (3.3)

(overhead not included):

 .

(3.3)

In Equation (3.3), is the number of ending sub-images, is the number of processors,

or more specifically threads, is the number of pixels in metaphase, is the average

percentage of foreground pixels and is width of a metaphase. The values
 and

define the constant operation time of adding an equivalence in the first and second pass

of scanning. The value
 defines the constant operation time of adding an equivalence in

combining two local equivalence sets. All constants, including , are relevant to number

of preliminary connected components and hardware. From Equation (3.3), we know that

the time requirement of parallel binary image labeling is approximately reciprocal to the

number of processors. It is also strongly relevant to the number of ending sub-images.

Figure 20 illustrates an example of the DAG analysis of the parallel binary image

39

labeling algorithm. When parallel overhead is not counted, length of the critical paths in

the first and second passes of scanning sub-images and in the merging of equivalence

tables are 1 and respectively. This implies the rationale of Equation (3.3).

Figure 20: DAG analysis of the parallel binary image labeling when dividing a

metaphase to 4 sub-images in fork-join parallel schema. Left figure is the DAG of

parallel loop of the first and second scanning. Right figure is the DAG of parallel

divide-and-conquer algorithm of merging equivalence tables (Fork and join are

omitted). Red lines show the critical paths.

procedure Parallel Binary Image Labeling

input: binary image IMAGE

output: index label image LABEL

LABEL = new zeros matrix of the same size of IMAGE;

Evenly divide IMAGE and LABLE to K sub-images: IMAGE[1:K] and LABEL[1:K];

parallel for L = 1 to K

 EQTABLE[L] = new EQTABLE;

 first scan and label of IMAGE[L];

end parallel for

Divide-and-Conquer Merging(IMAGE, EQTABLE);

parallel for L = 1 to K

40

 second scan and label of IMAGE[L];

end parallel for

Algorithm 5: Pseudocode of parallel binary image labeling

procedure Divide-and-Conquer Merging

input: binary image IMAGE, equivalence tables EQTABLE

output: global equivalence table GTABLE

IMAGE1 = upper half of IMAGE;

IMAGE2 = lower half of IMAGE;

if IMAGE > stop condition

 GTABLE1 = Divide-and-Conquer Merging(IMAGE1, EQTABLE);

 GTABLE2 = new thread (Divide-and-Conquer Merging(IMAGE2, EQTABLE));

end if

 scan the last row of IMAGE1 and the first row of IMAGE2;

 GTABLE = Merge EQTABLE[IMAGE1] and EQTABLE[IMAGE2];

Algorithm 6: Pseudocode of Parallel Divide-and-Conquer merging of equivalence

table.

3.2.2 Parallelizing Inversion of Circulant Tri-diagonal Matrices
used in GVF

To solve the energy function in GVF module, circulant tri-diagonal matrices have to be

repeatedly inverted. These matrices are circulant, sparse but not strictly tri-diagonal,

whose general form is expressed in Equation (3.4), where dots stand for zeros.

(3.4)

41

In terms of computational complexity, matrix inversion is a NC class problem [45]. The

NC class is a set of problems which can be solved in poly-logarithmic time by parallel

computers with a polynomial number of processors [45]. Belonging to NC class problems

means that matrix inversion has efficient parallel algorithms available. There have been a

lot of serial algorithms developed for matrix inversion. Gaussian elimination is the most

general algorithm to invert a matrix. An alternative method of Gaussian elimination is LU

decomposition, generating upper and lower triangular matrices which can be inverted

more easily [21]. OpenCV uses this method by choosing optimal pivot elements to invert

matrices. Some special matrices provide faster approaches for inverse such as eigen-

decomposition and Cholesky-decomposition [21]. The time complexity of inverting an n-

by-n matrix by Gaussian elimination is .

The inverses of circulant matrices are also circulant matrices. In this case, inversion of a

matrix can be simplified to solving the linear system represented in the matrix. The

Fourier Transform is widely used in solving circulant linear systems. The Fast Fourier

Transform (FFT) method can give fast inversions for circulant matrices. In one

implementation of FFT, library FFTW [46], the time complexity of inverting an n-by-n

matrix in serial is . If infinite processors are provided, inverting an n-by-n matrix

in parallel by FFTW can be achieved in time. As the matrices to be inverted in GVF

are always sparse tri-diagonal, a fast solution for solving the linear system is the Thomas

algorithm [47], which is a variation of Gaussian Elimination. To solve the target matrices

in ADCI, shown as Equation (3.5), a slightly modified Thomas algorithm is demonstrated

as follows.

.

(3.5)

For we can substitute in the unknown

vector with the following expression:

42

 . (3.6)

We repeat this process with until there are only and left in the

unknown vector. For an n-by-n matrix, substitutions in repeats are required.

The linear system is reduced to Equation (3.7):

(3.7 a)

(3.7 b)

where
 and

 are expressed by and . Equation 3.7 can be solved by Gaussian

elimination quickly and all unknowns in the unknown vector can be obtained by back

substitutions.

Implementation of Thomas algorithm is also called Odd-Even reduction [48]. In the

forward substitution phase, even rows in the matrix are eliminated by substituting the row

above and the row below with elements in the current row. This process is repeated until

only the first and the last rows remain. After solving this two-row matrix, unknowns are

solved in back substitution phase in the reverse order of the forward substitution phase.

Every row in the matrix is only eliminated once in forward substitution and every

unknown is calculated once in back substitution. This makes the time complexity of Odd-

Even reduction .

The elimination for even rows in forward substitution and solving unknowns in back

substitution can be executed in parallel. The time cost of parallel Odd-Even reduction can

be calculated as Equation (3.8):

(3.8)

where represents the work in forward substitution and

back substitution, and represents the work to solve Equation (3.7). Assuming infinite

processors are available, the time complexity is , which is the same as parallel

FFTW. To avoid importing extra 3
rd

 party libraries, we use parallel Odd-Even reduction

43

in ADCI to invert our matrices. DAG analysis and pseudocode of parallel Odd-Even

reduction are given in Figure 21 and Algorithm 7.

Figure 21: An example of DAG analysis of parallel Odd-Even reduction in inversion

of a 9-by-9 matrix in ADCI. Fork and join are omitted. In both the forward and

back substitutions, (3 in this case) layers of substitutions are required. In

each layer of substitution, execution can be parallelized in parallel loop.

procedure parallel Odd-Even reduction

input: n-row (n+1)-column Linear system L representing a n-row n-column Circulant Tri-
diagonal Matrix M

Current_rows = n;

Step = 1;

for Current_rows > 2

 Start = 1+Step;

 I = Start;

44

 parallel for I < n

 substitute row I-1 with row I in L;

 I = I + 2*Step;

 end parallel for

 I= Start;

 parallel for I <n

 substitute row I+1 with row I in L;

 I = I + 2*Step;

 end parallel for

 Step = Step*2;

 Current_rows = Current_rows/2 + 1;

end for

Solve equations represented the first line and last line in L;

Algorithm 7: Pseudocode of Parallel Odd-Even reduction. Back substitution is

omitted as it is simply the reverse order of the forward substitution.

3.3 Data Parallelism

As mentioned in the previous sections, ADCI data parallelism is defined as parallelizing

samples, metaphases or chromosomes. Unlike low-level data such as pixels in image or

elements in array, parallelizing these high-level data divides the whole data set to be

processed by ADCI. This yields a high degree of parallelism and notable speedup in

processing time. In ADCI, there are two levels of data parallelism: multi-thread data

parallelism and MPI data parallelism.

3.3.1 Multi-thread Data Parallelism

Multi-thread data parallelism is used both in the ADCI desktop (assuming the desktop is

able to run in multiple threads) and in the ADCI cluster. In multi-thread data parallelism,

metaphases are distributed to multiple threads to be processed. The reason why

45

metaphases instead of samples are parallelized is that the data set for the ADCI desktop is

small, containing only a small number of samples. Under these conditions, parallelizing

metaphases may be more efficient. It also keeps consistency of multi-thread parallelism

in the ADCI desktop and in the ADCI, where samples are parallelized in MPI data

parallelism. Division and allocation of metaphases is executed through a parallel loop.

Two outstanding advantages of multi-thread parallelism are the use of shared memory by

multiple threads, which saves parallel overhead on communication, and the built-in

scheduling mechanism that saves programmer’s work.

Multi-thread data parallelism appears in ranking module and all the modules following.

In ranking module, image preprocess, feature extraction, classification and scoring for all

metaphase are executed in parallel. In order to finish the preceding processes for all

metaphases in a given sample, synchronization barriers are put in place before

normalizing and ranking occur. Normalizing and ranking are executed in serial because

of their dependency on data from other metaphases in the same sample.

3.3.2 MPI Data Parallelism

Most computing clusters are organized as distributed computing nodes connecting by a

LAN. Each computing node in the cluster has its local memory space that can only be

shared by processors resident on this node. MPI provides a convenient communication

mechanism known as message passing which transfers data and information across

computing nodes. However, the speed of passing messages depends on the size of data to

be passed and the performance of the hardware. In programming MPI in ADCI cluster,

we wanted to keep the frequency of communication and the size of data to be passed as

small as possible. Parallelizing samples is a good way to fulfill for this constraint. The

ADCI process for one sample is not dependent on the ADCI processes of other samples.

The only exception is the communication required to schedule and balance workload, and

there is no additional communication necessary for standalone MPI processes. As sample

files are stored in file system, which is commonly managed by file system servers

connected to every computing node, scheduling and assigning samples does not involve

actual sample or image transfer. Messages passed to schedule work only need to indicate

46

MPI processes. These messages indicate which samples should be queued for the next

data input. MPI processes can load samples from the file system by itself.

Scheduling work (samples) in multiple processes is important in ADCI cluster, since MPI

does not handle this task automatically. This is also the reason why we do not run

multiple serial ADCI programs on cluster ADCI. There are two general schedule

paradigms in multi-thread parallelism: work sharing and work stealing [32]. They are

mainly developed for balancing threads across processors or cores in multi-thread

parallelism. In work sharing, whenever new threads are created in a processor, the

scheduler tries to migrate some of them to other processors in order to reduce the load on

itself. In work stealing, whenever the thread queue of a processor is empty or in low load,

the scheduler tries to steal some threads from other processors to fully utilize processors

resource [32]. In scheduling and balancing the workload in MPI, there are similar

mechanisms. In work sharing, all work is stored in a centralized queue managed by a

scheduler MPI process. Whenever a MPI process is underutilizing available resources

and is available to process more work, it has to apply to the scheduler MPI process for

more work, and the scheduler will respond to this application. In work stealing, all MPI

processes have their local work queues. If an MPI process needs supply of data for its

local work queue, it steals some work from other MPI processes.

There is research showing that work stealing has comparative, if not better, performance

than work sharing [49]. Currently, work sharing is applied in ADCI cluster. Samples are

divided to work chunks, which are the basic process units for a MPI process in ADCI

cluster. There is a ‘Scheduler’ MPI process maintaining a global work queue containing

all samples. Every MPI process keeps a local work queue, and initially some samples are

assigned to every local work queue from the global work queue. When the load in a local

work queue is low, an MPI process sends a request to the Scheduler MPI process to begin

to run new chunks (of samples). The Scheduler MPI process checks requests in loop

within a certain time limit or within a specific thread, assigning work chunks to MPI

processes that send requests until the global work queue is empty. Figure 22 illustrates

work sharing mechanism in the ADCI cluster.

47

Figure 22: Work sharing scheduling in ADCI cluster. MPI process 0 is the

Scheduler process and manages the global work queue.

48

Chapter 4

4 Experiments and Discussion

We performed several experiments to validate our method in parallelizing ADCI and to

explore the effect of parallelism in accelerating ADCI. Effectiveness of task parallelism

was verified in unit tests. Separate modules were experimented with data to test

efficiency of task-parallelized functions when integrated into ADCI. Multi-threaded data

parallelism was tested in experiments using a desktop version with images from a few

samples and using a SMP supercomputer to process 18,694 samples. For comparison,

MPI data parallelism was tested using a small cluster machine with 1000 samples. In

order to investigate the performance of parallelized complete ADCI software, the parallel

ADCI desktop and ADCI cluster were tested in a multi-core desktop and a supercomputer

cluster, respectively.

4.1 Experiments of Task Parallelism
We tested task parallelism on an 8-core i7 Linux desktop, which is able to run 8 logic

threads in parallel. Parallelism is implemented with Intel TBB.

4.1.1 Experiments on Parallel Binary Image Labeling

As mentioned in Chapter 2, the stopping condition in parallel binary image labeling is the

size of an ending sub-image that controls the total number of ending sub-images

processed in parallel. In our implementation, we used the ratio of sub-images’ height to

the metaphase’s height as the stopping condition. This condition was optimized with

several values in unit tests and adjusted to find the optimal number of sub-images.

49

Figure 23: Comparison of serial and parallel binary image labeling for different

number of ending sub-images. Binary image labeling of different versions and

stopping conditions are distinguished by colors in bars. Serial binary image labeling

and parallel binary image labeling with 5 different stopping conditions were tested

on 5 randomly selected metaphases. For example, ‘4 sub-images’ denote that the

ending sub-images are at ¼ height of the original metaphase, and thus there are 4

ending sub-images to be processed.

Figure 23 shows the result of a unit test of parallel binary image labeling. Five tested

stopping conditions includes the height of ending sub-image at 1/4, 1/8, 1/16, 1/32, or

1/64 of the height of the input metaphase. The times to label these five input metaphases

by different versions of parallel binary image labeling are compared with each other and

with serial binary image labeling. For all five tested metaphases, the parallel versions of

binary image labeling were faster than the serial version. The largest speedup gained

from parallelism came from parallel binary image labeling with 32 ending sub-images on

image 5. The serial labeling on image 5 cost 22.73 milliseconds while the parallel

labeling with 32 ending sub-images only took 7.332 milliseconds. This was 32.3 percent

of the time cost by serial. The least improvement observed was 72.3 percent of the time

requirement of serial labeling, which is obtained from parallel binary image labeling with

4 ending sub-images on image 1. On average, in these five stopping conditions,

additional ending sub-images lead to a larger speedup in performance. Parallelization

with 32 or 64 ending sub-images parallelism brought similar average performance

improvements. Compared with serial labeling, these cost 34.1 and 33.7 percent of the

time, respectively. However 32 ending sub-images parallelism were faster than 64 ending

50

sub-images among 3 tested metaphases. We took 32 ending sub-images as the stopping

condition in following experiment.

According to the time complexity calculation in chapter 2, the theoretical time cost of

parallel binary image labeling approximately decreases reciprocally with the number of

processors used. In the experiment, for the best improvement we can observe 3-fold

speedup. A feature of a selected metaphase is that most chromosomes and connected

components are concentrated in the center of the image. If sub-images are divided evenly,

the number of connected components in sub-images physically located at the center of a

metaphase will be much larger than the number of connected components in other sub-

images.

We tested the ranking module integrated with parallel binary image labeling on samples,

with 200 metaphase images per sample. The average processing time is shown in Figure

24 (a). In serial ranking module, 200 metaphases took 10.76 seconds to rank. Ranking the

same metaphases with parallel binary image labeling took 8.513 seconds, resulting an

approximately 1.25 fold speedup.

Figure 24: Comparison of serial modules and parallel modules. Panels a and b

demonstrate experiments in the Ranking and GVF. Blue and red bars show the time

cost by modules with serial functions versus task parallelized functions, respectively.

51

4.1.2 Parallelized Matrix Inversion Experiments

In the unit test for parallel Odd-Even reduction, we implemented parallelization in both

Cilk and Intel TBB. Cilk provides a useful tool, Cilk View, that can collect parallel

information while a Cilk program is running. It can also benchmark and analyze the

collected data to give a better understanding of the performance of the parallel algorithm.

Cilk was used to investigate the performance of parallel Odd-Even reduction. The TBB

version of the Odd-Even reduction was used in ADCI. A 300-by-300 circulant tri-

diagonal matrix was tested with Cilk Odd-Even reduction. Figure 25 shows the analysis

by Cilk View. Figure 25 (a) gives the estimated possible speedup with different number

of processors. In this case, a 9.97 fold increase is the upper bound of possible speedup.

Figure 25 (b) plots the data in Figure 25 (a). The analysis given by Cilk View implied

that parallelism could effectively accelerate Odd-Even reduction by up to this level.

In the unit test of TBB version parallelism, we compared the Odd-Even reduction

method, TBB parallel Odd-Even reduction and the matrix inversion function provided by

OpenCV on circulant tri-diagonal matrices of various sizes. OpenCV implements

Gaussian Elimination with LU decomposition to invert matrices. When the size of the

matrix is large, Gaussian Elimination may cause rounding errors. In ADCI, the matrices

to be inverted are diagonal dominant and in OpenCV, Gaussian Elimination is

implemented with optimal pivot element choosing. These two facts guarantee that

Gaussian Elimination returns correct results in our test. Table 1 shows this comparison.

In Gaussian Elimination provided by OpenCV, the time cost increases rapidly as the size

of target matrix increases. Serial and parallel Odd-Even reduction can significantly

control this time cost as the matrix size increases. When matrix sizes exceed 200

elements, the parallel Odd-Even reduction has better performance than the serial version.

Because of parallelization overhead, the serial Odd-Even reduction is slightly faster than

the parallel version for the matrices for those smaller than 100-by-100. In ADCI, Odd-

Even reduction instead of the Gaussian Elimination is always utilized.

52

Figure 25: Parallel information Odd-Even reduction matrix inversion. Part ‘a’ gives

the maximum speedup of the parallel program in Cilk as well as the estimation of

speedup when utilizing different numbers of processors. Panel ‘b’ plots part ‘a’

where red and green lines illustrate the lower and upper bounds of possible

speedup. The horizontal green line is defined by the limitation from the critical path

in the program and the diagonal green line shows the speedup restricted by number

of available processors.

Table 1: Comparison of Parallel Odd-Even reduction and Gaussian Elimination.

Matrix size stands for the number of rows in the square matrix.

 Average time for Circulant Tri-diagonal Matrix Inversion (millisecond)

Matrix

size

Gaussian Elimination

provided by OpenCV

Serial Odd-Even

reduction

Parallel Odd-Even

reduction with 8 cores

100-200 5.8399 0.1955 0.2134

201-300 27.0717 0.5223 0.44

301-400 75.311 1.0427 0.7223

401-500 271.7779 1.7316 1.1422

501-600 818.2553 2.6299 1.7553

53

We tested the GVF module integrated with parallelized Odd-Even reduction on

chromosomes. The average times to process 46 chromosomes in both versions of GVF

module are shown in Figure 21 (b). Original GVF module using Gaussian Elimination

required an average 13.4 seconds to find contours for 46 chromosomes. The GVF module

integrated with parallel Odd-Even took 3.9 seconds to process these same chromosomes.

4.2 Experiments of Data Parallelism

In experiments of data parallelism, the ADCI has been tested on a variety of computing

systems. Data parallelism is performed prior to task parallelism. Therefore, in the

complete ADCI, task parallelism is applied only when there is sufficient parallel

computing capacity remaining after data parallelization has taken place. In the following

experiments testing data parallelism, all parallel computing capacity was applied in data

parallelism.

4.2.1 Experiment of ADCI desktop on Desktop

We tested data parallelism of the individual modules in the ADCI on the same 8-core i7

desktop that was used in experiments of task parallelism. Data parallelism of metaphase-

level was tested in the Ranking module and data parallelism at the chromosome-level was

tested in the GVF and centerline-based modules (DCE, Spline Interpolation, and

Centromere detection). Table 2 shows the details of these experiments.

Table 2: Experiment summary of data parallel modules on an 8-core desktop.

 Ranking

(seconds)

GVF

(seconds)

Centerline based modules

(DCE + Interpolation +

Centromere) (seconds)

54

Time cost of serial

version

10.8 13.4 3.50

Time cost of data

parallelism version

2.22 1.76 0.70

Speedup 4.8 fold 7.6 fold 5 fold

Data size 200 images 46 chromosomes

Data Parallelism using 8 processors on the Ranking, GVF and Centerline based modules

can increase processing speeds 4.8, 7.6 and 5-fold respectively. The GVF module

approximately reached the theoretical optimal speedup, which is 8-fold. The Ranking

module is unable to perform data parallelism throughout, due to dependency on

individual metaphase images. Therefore, it is reasonable that data parallelization only

gave a 4.8-fold speedup for the ranking module. The centerline-based modules did not

achieve optimal speedup due to workload unbalances. Parallelizing processing of

metaphase chromosomes is likely to result in unbalanced work across multiple threads for

several reasons. The A and B group chromosomes, for example chromosomes 1 and 2 are

typically longer than others than others in a metaphase image, and require more time to

process. Additionally, among the ‘nice’ metaphases, there may be a number of

chromosomes that touch or overlap each other, forming a chromosome cluster.

Processing a chromosome cluster requires more time than processing a normal

chromosome. This results in an unequal work distribution among threads for each

metaphase cell. When dividing the iteration space in a parallel loop, multi-thread parallel

platforms like OpenMP and TBB can split the work on the basis of iteration index.

However in our case, the workload in iterations is biased based on the size and

distribution of the chromosomes in an image, neither of which is predictable until image

processing begins.

55

The fully functional ADCI desktop was also tested on the same hardware. Average time

to process a sample (250-300 images) and time stamps recorded by individual steps are

shown in Table 3.

Table 3: Data Parallelized ADCI desktop on an 8-core desktop. Average time

recorded to process one sample (250-300 images) in seconds

Average time to process a sample by

modules

Serial Data Parallel with 8

threads

Ranking modules 17.6034 4.12013

Other modules on chromosomes 144.803 38.2106

Fully functional ADCI 163.268 43.4368

The average time of processing a sample throughout the serial ADCI desktop is 163.27

seconds. The data parallelized ADCI desktop with 8 threads requires 43.44 seconds,

approximately ¼ of the time for the same sample. However, the file loading and result

committing functions increase overhead.

4.2.2 Experiment of ADCI Module on Symmetric Computing
System

We tested the ranking module of ADCI on the Symmetric Computing (Boston) system

with large dataset. Symmetric Computing provides two types of SMP systems with large

shared memory for high performance computing [51]. We accessed the Trio shared-

memory supercomputer in Symmetric Computing system, where up to 1.5 TB memory

and 192 processor cores with AMD Opteron 6200 series processor are available. In this

test, up to 64 cores were used to process 18,694 samples (each consisting of 250-300

metaphases) using the Ranking module parallelized with TBB, This is the same

configuration that was performed in the experiment with the 8-core desktop. Figure 26

illustrates the result. When 4 processors were used, ranking module took 11.4 hours to

process all of the samples. The fastest process was obtained when 40 processers were

56

used, taking 0.65 seconds on average to rank each sample and 3.38 hours to rank all

samples. When more than 40 processors were used, the performance decreased slightly.

This was not a satisfactory result. It might be caused by the imbalance in work

distribution when the number of threads is large. However due to limited access time to

Trio (48 hr.), we could not fully assess the cause of the plateau in performance. This

experiment was performed in the early-stage development of ADCI, where only the

ranking module was tested, and the parallelization implementation might not have been

fine tuned. The other possibility is that, beyond 40 cores, overhead becomes a detrimental

factor affecting the performance of the program.

Figure 26: Parallel ranking module on a SMP system with 18694 samples. Average

time to rank all metaphases in one sample is displayed on the Y-axis.

4.2.3 Experiment of ADCI Module on Cluster

To evaluate the performance of the ADCI on cluster, the ranking module on the Goblin

cluster in SHARCNET was performed. SHARCNET consists of more than 20 HPC

systems connected by a wide area network, including large-scale distributed clusters and

SMP systems [52]. A group of workstations are also connected to the network and all

systems share a global file system.

57

In this test, 8 computing nodes in Goblin system with 8 cores per node were employed to

run MPI parallelized ranking module for 1000 samples. Each node in Goblin keeps an 8-

core Intel Xeon processor and up to 48 GB memory. Nodes are connected by a gigabit

Ethernet connection and a total 64 MPI processes were started in all these cores. Samples

were scheduled and balanced by work-sharing scheduling. Table 4 shows the summary of

this test. The total time of all MPI processes to complete the Ranking module was 434

seconds, which was determined based on the slowest MPI process. The fastest MPI

process cost 101 seconds to complete its work. The average processing time for one

sample was 0.434 seconds.

Table 4: Data-parallelized ranking module on Goblin, SHARCNET

Total processing time of

the fastest MPI process
Total processing time of

the slowest MPI process
Average processing

time for one sample

Time

(sec)

101 434 0.434

Image files for each sample in this test were organized within the same directory, as

opposed to metaphase grids (see Section 2.4.2). We discovered the bottleneck in

throughput to be the I/O latency in this test. Although the processing speed of parallel

ranking module was fast, loading metaphase images delayed the total time of parallel

ranking module. In the worst case, the time spent on loading a sample, 250-300

individual metaphase images, could be 10-fold higher than the actual time required to

process the images. We tested asynchronous I/O to overlap I/O work with real image

processing in ADCI. Every MPI process maintained a local data buffer large enough to

contain several samples. MPI processes fetched samples from their respective local data

buffer to process by ranking module. The asynchronous I/O thread in a MPI process

would load samples from file system whenever the MPI process was assigned samples

and the local data buffer was not full. In this manner, the I/O capacity was fully

employed. If the I/O speed is reduced due to an I/O traffic peak, MPI processes do not

have to wait as long as there are samples deposited in the local data buffers. Following an

I/O traffic peak, local data buffers can be supplied by a relatively high-speed I/O. Table 5

58

shows the comparison of ranking module with synchronous blocking I/O and with

asynchronous I/O. Average time to load and rank one sample with synchronous blocking

I/O strategy on Goblin is 12 seconds. With asynchronous I/O, it still requires an average

11.3 seconds to accomplish the same work.

Table 5: Influence of Asynchronous I/O on Goblin, SHARCNET

I/O strategy Average total loading and ranking time

on one sample

Synchronous Blocking I/O 12 seconds

Asynchronous I/O 11.3 seconds

4.2.4 Experiment of ADCI cluster on Blue Gene/Q

In previous experiments, modules or components in ADCI were tested. In order to collect

overall data and analyze the fully functional ADCI-cluster, we tested ADCI-cluster with

1025 simulated samples on the IBM Blue Gene/Q hardware. The version of ADCI-cluster

that was specifically modified for Blue Gene/Q is called ADCI-BG/Q, because of the

requirements of Blue Gene/Q’s special PowerPC-based hardware architecture.

Blue Gene is an IBM project aimed at designing supercomputers that can achieve

level floating-point operations per second with low energy consumption. Blue Gene/Q is

the third and latest generation of Blue Gene, which is equipped and configured according

to the individual requirements of each customer. The Blue Gene/Q (referred as BG/Q in

the following text) that we used for testing ADCI-cluster belongs to the Southern Ontario

Smart Computing Innovation Platform (SOSCIP) and is located at the University of

Toronto’s SciNet HPC facility. BG/Q has a very dense hardware architecture that can be

divided to several layers. The basic computing units in BG/Q are comprised of computing

cards. A computing card contains a single chip with a 16-core 1.6 GHz 64-bit PowerPC

A2 processor and 16 GB of RAM. Every core in a PowerPC A2 processor is 4-way

simultaneous multi-thread, which means 4 concurrent threads or MPI processes can be

executed in one core. Computing cards are bundled in groups of 32, making a node

59

board. Every 2 boards are associated with a specific I/O node. Every 16 boards make up a

mid-plane and 2 mid-planes make up a rack. SciNet has a 2.5-rack BG/Q with a ½-rack

development part and a 2-rack production part. Computing cards are connected by a 5-

dimensional optical interconnect network, with direct links to its positive and negative

nearest neighbors in every dimension. From the perspective of a distributed cluster a

computing card in BG/Q is considered a computing node with 64 logic cores and 16 GB

memory. A computing node is directly connected with 10 nearest neighbor nodes by an

optical interconnect. This network topology gives BG/Q a very fast communication speed

relative to other clusters interconnected by LAN. A group of 64 computing nodes are

associated with a single I/O node. Therefore, not all nodes in the cluster compete for a

single file system. Figure 27 shows the sequential diagram for ADCI cluster, which is

tested on BG/Q.

60

Figure 27: Sequential diagram of ADCI cluster. Blue boxes represent modules in

ADCI cluster. Functional modules are resident in memory. The scheduler module

parallelizes data in parallel loop and call functional modules.

In this test, 1025 samples were processed throughout ADCI. Samples were organized as

metaphase grids. A total of 64 nodes containing1024 physical cores in BG/Q were

utilized to process these samples. A MPI process was created for every computing node,

to process samples in serial. In total, 64 MPI processes were run in parallel. Inside a

61

node, 64 OpenMP threads executed ranking of a sample in parallel. After the Ranking

completed for a sample, 50 OpenMP threads were issued to process the top 50

metaphases in parallel. In scheduling, the chunk size was kept at 4 samples. Figure 28

shows the deployment of ADCI on BG/Q.

62

Figure 28: Deployment of ADCI cluster on BG/Q. A total of 64 MPI processes

resided on 64 nodes individually with 64 or 50 OpenMP threads in each MPI

process.

63

The total time for processing all samples on BG/Q was 5090 seconds. Some intermediate

statistical data are summarized in Table 6:

Table 6: Summary of Experiment on BG/Q, time recorded by samples.

 Tiff File

Loading

Ranking Module Chromosome Based

Modules

Complete

ADCI

Data Scale 1025 tiff

files

1025 tiffs * (250-300

) images

1025 tiffs * (250-

300) images * (~46)

chromosomes

1025 tiff

files

Parallel mode 64 MPI

processes

64 MPI processes *

64 OpenMP threads

64 MPI processes *

50 OpenMP threads

Accumulated

Time for all

samples

4 hr. 45

min. 25

sec.

19 hr. 24 min. 47

sec.

44 hr. 44 min. 7 sec. 68 hr. 54

min. 19 sec.

Maximum

time among

all samples

18 sec. 1 min. 12 sec. 5 min. 33 sec. 7 min.

Minimum

time among

all samples

16 sec. 1 min. 7 sec. 2min 16 sec. 3 min. 41

sec.

Average Time

per Sample

16.7 sec. 1 min. 8.2 sec. 2 min. 37.1 sec. 4 min 2sec.

Standard

Deviation of

Time

0.48 sec. 0.73 sec. 53.6 sec. 53.8 sec.

64

We divided ADCI-BG/Q into 3 major steps (based on parallelization modes) when

collecting execution information by samples. These included Tiff file loading, Ranking

and Chromosome-based steps, including the chromosome classification, GVF, DCE,

interpolation, and centromere modules. The Tiff file loading step was parallelized with

MPI at sample-level. The Ranking and Chromosome-based steps were parallelized with

MPI at sample-level and with OpenMP at metaphase-level. In Table 6, a tiff file

represents a metaphase grid tiff file containing all metaphases in a sample. Accumulated

time sums the time spent on all samples for each step. It gives the total workload for

processing all samples. Statistical data such as the maximum and minimum time helps to

understand the workload distribution among samples at each step. The processing time of

a sample in File loading and Ranking steps were very consistent, as indicated by a

relatively small standard deviation. A large standard deviation in Chromosome-based

step signifies the unbalanced workload in this step and emphasizes the importance of

scheduling workload among processors.

Figure 29 and Figure 30 shows parallelization statistics from the perspective of the

compute nodes of BG/Q. Figure 29 displays the real processing time of all nodes in the

experiment. The longest time is the total processing time of ADCI-BG/Q, which was

5090 seconds (1 hr. 24 min. 50 sec.) required by node 63. Figure 30 shows the number of

samples processed by nodes. Most nodes processed 16 samples. Some nodes processed

20 or 12 samples, one chunk more or less compared with nodes of 16 samples.

65

Figure 29: Distribution of processing time on BG/Q nodes. The longest processing

time, 5090 seconds (1 hr. 24 min. 50 sec.), was observed on node 63.

66

Figure 30: Distribution of samples in BG/Q nodes, 4 samples per chunk. Most nodes

were scheduled with 4 chunks with a few scheduled for 3 or 5 chunks.

It should be noted that BG/Q is not dedicated for image processing and there is no library

to handle tiff files in its operating system. Therefore, we had to build a tiff library from

source code. The tiff specification suggests that every tiff library should be able to

handled tiff files in both little Endian order and big Endian order. However, we found

that on BG/Q, OpenCV integrated with the tiff library worked well with 8-bit 1-channel

tiff images, but failed at decoding 8-bit 3-channel RGB tiff images. A 24-bit

uncompressed RGB tiff image stores the bytes of each color channel in the order blue,

green and red, when little Endian is used, and in the order red, green and blue when big

Endian is used. In the tiff header, there is a 2-byte value indicating which Endian is used.

After decoding the image data and representing the image as a matrix in OpenCV, the

triple-byte structure to represent a pixel is always organized as blue, green and red. In our

test of ADCI on BG/Q, we found that the triple-byte structures were organized as green,

blue and a hexadecimal value 0xFF. Therefore when converting the RGB to a gray-scale

67

image, the gray-scale value for every pixel had a wrong value. The final centromere

location for a given chromosome was therefore off-target. We suspect that this may be

caused by an internal problem of the tiff library or compatibility issues with OpenCV.

However the time and speed measurement of ADCI BG/Q in this test is still trustworthy

since all modules and steps in ADCI were executed for all tested images. The error in

decoding tiff files actually means the green channel and blue channel of an input image

were switched and the red channel was always of maximal value. For an RBG metaphase,

a wrong input image resulted from incorrect decoding but the boundary and intensity

information are still able to differentiate chromosomes from background.

68

Chapter 5

5 Conclusion and Future Work

In this chapter, conclusion of the parallelization of our ADCI software and future work

are discussed.

5.1 Conclusion

In endeavoring to accelerate ADCI, we parallelized it in two ways: task parallelism and

data parallelism. In task parallelism, two basic functions costing the most time in ADCI

were parallelized. Parallelized binary image labeling on an 8-core desktop can reduce the

time of ranking to approximately 80 percent of its serial time requirement. The parallel

GVF module with the help of parallel Odd-Even reduction on an 8-core desktop can be

3.4 times faster than the serial GVF module. We can also conclude from unit tests of

parallel Odd-Even reduction that parallel Odd-Even reduction is able to control the

increase in computation caused by the growing size of matrices. In data parallelism,

parallelized ranking, GVF and centerline based modules were 4.8, 7.6 and 5-fold faster

than their serial versions respectively. Data-parallelized ADCI desktop on an 8-core

systems required ¼ of the time needed by serial ADCI desktop. These results supported

our hypothesis: parallelization can effectively and efficiently accelerate ADCI.

Besides comparative speedup, we can also analyze the performance of parallel ADCI.

The ranking module on a SMP supercomputer utilizing 40 cores was able to handle

18,649 samples in 4 hours, average 0.64 seconds per sample. The average time to rank a

sample on the 64 core Goblin cluster nodes was 0.434 seconds, equivalent to ranking a

thousand of samples in 80 minutes. From these experiments, we know that parallel ADCI

is capable of processing thousands of samples through each of the 6 functional modules

within a few hours. In experimentation on Blue Gene/Q, we concluded that ADCI cluster

is capable of processing thousands of samples to identify DCs in 2 hours when the raw

data are organized as metaphase grids. Although centromere detection in ADCI BG/Q

returned incorrect locations due to a problem resulting from compatibility between the

69

OpenCV and Tiff library implementations on the PowerPC architecture, the assessment

of execution time was still correct.

We give a summary and comparison of ADCI from different platforms in Table 7.

Current ADCI includes image ranking and chromosome-based modules. Meanwhile we

have chromosome separation and sister chromatid separation in development and

expected ADCI may include these modules [54] [55]. The summarized accuracies on

stages of ADCI, also shown in Table 7, give a comprehensive description for ADCI,

whose details can be found in reference. In ranking and chromosome-based modules, we

observed an approximate 25-times speedup when code is converted from MATLAB to

serial C++. Converting MATLAB to parallel C++ with 8 available cores brought us 64-

fold and 92-fold speedup in ranking module and chromosome-bases modules,

respectively. Overall, C++ ADCI software is 3.7-times and 30-times faster when

parallelized on an 8-core desktop and on BG/Q. The 8-core parallel ADCI desktop and

ADCI BG/Q are able to process ~1000 samples in 12 and 1.5 hours respectively.

Table 7: Summary and comparison of ADCI of different versions

 Time to process one sample (sec) Accuracy, compared

with cytogeneticists

[2] [3] MATLAB C++/OpenCV

Serial 8-core Parallel

Image ranking 266 10.7 4.12 ~98%

Classifying to

centromere detection

3540 145 38.2 96.6% Normal

85% DCs

Sister chromatid

separation

 93.1%

70

Complete ADCI 63.4 min. 2.6 min. 0.7 min.

 Time to process 1000 samples

 MATLAB Serial 8-core Parallel BG/Q, 32 nodes

Complete ADCI 44 days 1.8 days 11.7 hours 1.4 hours

We are encouraged to see that our parallel strategy can reduce the required time of

processing cytogenetic biodosimetry data in large casualty events from several days to a

few hours. This parallel strategy is able to achieve thorough image processing demanded

by the short diagnostic and treatment windows to analyze a large number of individuals

exposed to varying levels of ionizing radiation.

5.2 Future Work

In future, we will fix the error caused by Endian in BG/Q codes by reinstalling tiff library

or build our own library. An assisting program to create metaphase grids from individual

metaphases will be implemented. Alternative parallel schema, such as work-stealing in

scheduling MPI workload and parallelization parameters, such as the size of chunk will

be tested. Our work will focus on BG/Q as it provides superior computing. We also plan

to explore implementations which use hybrid MPI and OpenMP to improve the efficiency

of the overall process.

71

References or Bibliography

[1] W. F. Blakely et al., “Early-response biological dosimetry-recommended

countermeasure enhancements for mass-casualty radiological incidents and

terrorism,” Health Physics, 89(5), pp. 494-504, 2005.

[2] A. Subasinghe et al., “An accurate image processing algorithm for detecting FISH

probe locations relative to chromosome landmarks on DAPI stained metaphase

chromosome images,” in IEEE Canadian Conference on Computer and Robot

Vision, pp. 223-230, DOI: 10.1109/CRV.2010.36. 2010.

[3] A. Subasinghe et al., “An image processing algorithm for accurate extraction of

the centerline from human metaphase chromosomes,” in IEEE International

Conference on Image Processing, pp. 3613-3616, DOI:

10.1109/ICIP.2010.5652017. 2010.

[4] A. J. González, “An international perspective on radiological threats and the need

for retrospective biological dosimetry of acute radiation overexposures,”

Radiation Measurements, 42(6-7), pp. 1053-1062. 2007.

[5] G. A. Alexander et al., “BiodosEPR-2006 meeting: Acute dosimetry consensus

committee recommendations on biodosimetry applications in events involving

uses of radiation by terrorists and radiation accidents,” Radiation Measurements,

42(6), pp. 972-996, 2007.

[6] P. Prasanna et al., “Diagnostic Biodosimetry Response for Radiation Disasters:

Current Research and Service Activities,” in NATO Medical Surveillance and

Response, Research and Technology Opportunities and Options, Budapest,

Hungary, 2004.

[7] J. K. Timins and J. A. Lipoti. “Radiological terrorism,” N. J. Med., 100(6), pp. 14-

21, quiz 22-4, 2003.

[8] P. G. Prasanna et al., “Triage dose assessment for partial-body exposure:

Dicentric analysis,” Health Physics, 98(2), pp. 244. 2010.

[9] T. D. Pollard et al., Cell Biology, 2nd ed. Philadelphia: Saunders, 2007.

[10] Y. Li et al., “Towards large scale automated interpretation of cytogenetic

biodosimetry data,” in IEEE 6th Annual International conference on Automation

for Sustainability, pp. 30 - 35, DOI: 10.1109/ICIAFS.2012.6420039. 2012.

[11] T. Kobayashi et al., “Content and classification based ranking algorithm for

metaphase chromosome images," in IEEE Conference on Multimedia

Imaging, Taipei, 2004.

[12] Y. Panala et al., “Automated detection of metaphase chromosomes for FISH and

routine cytogenetics,” in 54th Annual ASHG Meeting, Toronto, pp. 195, 2004.

[13] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information

Theory, IEEE Transactions, 13(1), pp. 21-27, 1967.

72

[14] N. B. Rizvandi et al.,

“Skeleton Analysis of Population Images for Detection of Isolated and Overlappe

d Nematode C.elegans,” in 16th European Signal Processing Conference

(EUSIPCO 2008), 2008.

[15] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,” Image

Processing, IEEE Transactions, 7(3), pp. 359-369, 1998.

[16] J. Canny, “A computational approach to edge detection,” Pattern Analysis and

Machine Intelligence, IEEE Transactions, vol. 6, pp. 679-698. 1986.

[17] R. C. Gonzalez and R. E. Woods. Digital Image Processing, 3rd ed. Boston:

Addison-Wesley, 2008.

[18] L. J. Latecki and R. Lakämper, "Polygon evolution by vertex deletion," in Scale-

Space Theories in Computer Vision, 1999.

[19] X. Bai et al., “Skeleton pruning by contour partitioning with discrete curve

evolution,” Pattern Analysis and Machine Intelligence, IEEE Transactions, 29(3),

pp. 449-462, 2007.

[20] A, Subasinghe, “Image Processing Techniques for Detecting Chromosomes

Abnormalities,” M.S. thesis, Dept. ECE, University of Western Ontario, London,

Ontario, 2010.

[21] R. L. Burden and J. D. Faires, Numerical Analysis, 7th ed. Stamford: Brooks

Cole, 2001.

[22] R. C. King et al., A Dictionary of Genetics, 7th ed. Oxford, UK: Oxford

University Press, 2006.

[23] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective, Upper Saddle

River: Prentice Hall, 1996.

[24] J. L. Hennessy et al. Computer Architecture: A Quantitative Approach, 4th ed.

Burlington, MA: Morgan Kaufmann, 2007.

[25] M. J. Flynn, “Some computer organizations and their effectiveness,” Computers,

IEEE Transactions, 100(9), pp. 948-960, 1972.

[26] R. Duncan, “A survey of parallel computer architectures,” Computer, 23(2), pp.

5-16, 1990.

[27] D. E. Culler et al., Parallel Computer Architecture: A Hardware/Software

Approach, Burlington, MA: Morgan Kaufmann, 1999.

[28] G. M. Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” presented at Spring Joint Computer Conference, 1967.

[29] R. S. Pressman, Software Engineering: A Practitioner's Approach, 5th ed. New

York: McGraw-Hill, 2001.

[30] A. J. Bernstein, “Analysis of programs for parallel processing,” Electronic

Computers, IEEE Transactions, vol. 5, pp. 757-763, 1966.

73

[31] C. Q. Yang and B. P. Miller, “Critical path analysis for the execution of parallel

and distributed programs,” in 8th International Conference on Distributed

Computing Systems, 1988.

[32] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by

work stealing,” in 35th Annual Symposium on Foundations of Computer Science,

1994.

[33] G. E. Blelloch and M. M. Bruce, “Parallel algorithms,” in Algorithms and Theory

of Computation Handbook, London, UK: Chapman and Hall/CRC, 2010.

[34] D. R. Butenhof, Programming with POSIX Threads, Boston: Addison-Wesley,

1997.

[35] R. D. Blumofe et al., “Cilk: An efficient multithreaded runtime system,” Journal

of Parallel and Distributed Computing, 37(1), pp. 55-69, 1996.

[36] J. Reinders, Intel Threading Building Blocks: Outfitting C for Multi-Core

Processor Parallelism, Sebastopol: O’Reilly, 2010.

[37] L. Dagum and R. Menon, “OpenMP: An industry standard API for shared-

memory programming,” IEEE Computational Science & Engineering, 5(1), pp.

46-55, 1998.

[38] “MPI Forum,” http://www.mpi-forum.org/docs/.

[39] E. Gabriel et al., “Open MPI: Goals, concept, and design of a next generation MPI

implementation,” Recent Advances in Parallel Virtual Machine and Message

Passing Interface, vol. 3241 2004.

[40] W. Gropp et al., “A high-performance, portable implementation of the MPI

message passing interface standard,” Parallel Computing, 22(6), pp. 789-828,

1996.

[41] W. Gropp et al., Using MPI-: Portable Parallel Programming with the Message

Passing Interface, 2nd ed. Cambridge, MA: MIT Press, 1999.

[42] A. Silberschatz et al., Operating System Concepts, 7th ed. Hoboken, NJ: John

Wiley and Sons, 2005.

[43] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Boston: Addison-

Wesley, 1992.

[44] R. Sedgewick, Algorithms in C, 3rd ed. Boston: Addison-Wesley, 1998.

[45] S. Arora and B. Barak, Computational Complexity: A Modern Approach,

Cambridge, UK: Cambridge University Press, 2009.

[46] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”

Proceeding of the IEEE, 93(2), pp. 216-231, 2005.

[47] L. H. Thomas, “Elliptic Problems in Linear Differential Equations over a

Network,” Watson Laboratory Report, Columbia University, 1949.

[48] H. S. Stone, “Parallel tridiagonal equation solvers,” ACM Transactions on

Mathematical Software (TOMS), 1(4), pp. 289-307, 1975.

74

[49] J. Dinan et al., “Dynamic load balancing of unbalanced computations using

message passing,” in IEEE International Parallel and Distributed Processing

Symposium, 2007.

[50] C. Li et al., “Segmentation of edge preserving gradient vector flow: An approach

toward automatically initializing and splitting of snakes,” in IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2005.

[51] “Symmetric Computing (Boston),” http://www.symmetriccomputing.com.

[52] SHARCNET, https://www.sharcnet.ca/my/front/

[53] IBM Blue Gene/Q Solution,

http://www.redbooks.ibm.com/abstracts/sg247948.html.

[54] A. Subasinghe et al., “Intensity integrated Laplacian algorithm for human

metaphase chromosome centromere detection,” in 25th IEEE Canadian

Conference on Electrical & Computer Engineering, pp. 1-4,

DOI: 10.1109/CCECE.2012.6334866, 2012.

[55] A. Subasinghe et al., “Intensity Integrated Laplacian Based Thickness

Measurement for Detecting Human Metaphase Chromosome Centromere

Location,” IEEE Transactions on Biomedical Engineering, DOI:

10.1109/TBME.2013.2248008.

[56] BWLabeln function in MATLAB,

http://www.mathworks.com/help/images/ref/bwlabeln.html

75

Appendices

Appendix A: Acronym.

DAPI 4',6-diamidino-2-phenylindole
C-banding Constitutive banding

GVF Gradient Vector Flow
DCE Discrete Curve Evolution
DCs Dicentric Chromosomes

DCA Dicentric Chromosome Assay

ADCI
Automated Dicentric Chromosome
Identification

SISD
Single Instruction stream, Single Data
stream

SIMD
Single Instruction stream, Multiple Data
stream

MISD
Multiple Instruction stream, Single Data
stream

MIMD
Multiple Instruction stream, Multiple Data
stream

PThread POSIX Threads

TBB Intel Threading Building Blocks

MPI Message Passing Interface

AIO Asynchronous I/O

DAG Directed Acyclic Graph

LAN Local Area Network

BG/Q Blue Gene/Q

76

Curriculum Vitae

Name: Yanxin Li

Post-secondary Zhejiang University
Education and Hangzhou, Zhejiang, People’s Republic of China
Degrees: 2007-2011 B.Eng., School of Computer Science and Technology

The University of Western Ontario
London, Ontario, Canada
2011-2013 M.Sc. Candidate, Department of Computer Science

Honours and Western Graduate Research Scholarship
Awards: 2011-2012

Faculty of Science, The University of Western Ontario
Graduate Thesis Research Award
2012-2013

Related Work Teaching Assistant
Experience The University of Western Ontario

2011-2012

Publications and Presentations:

Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Samarabandu, Jagath; Knoll,

Joan; Wilkins, Ruth; Flegal, Farrah.; Rogan, Peter K. "Towards large scale automated

interpretation of cytogenetic biodosimetry data." IEEE 6th Annual International

conference on Automation for Sustainability, 2012. pp. 30 – 35; DOI:

 10.1109/ICIAFS.2012.6420039.

Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Samarabandu, Jagath; Knoll,

Joan; Rogan, Peter K. "Towards large scale automated interpretation of cytogenetic

biodosimetry data" Presented at Great Lakes Bioinformatics Conference (GLBIO), Ann

Arbor MI, 2012.

http://dx.doi.org/10.1109/ICIAFS.2012.6420039

77

Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Samarabandu, Jagath; Knoll,

Joan; Rogan, Peter K. "Towards large scale automated interpretation of cytogenetic

biodosimetry data" Presented at SHARCNET Research Day, 2012.

Li, Yanxin; Wickramasinghe, Asanka; Subasinghe, Akila; Samarabandu, Jagath; Knoll,

Joan; Rogan, Peter K. "Towards large scale automated dicentric analysis for cytogenetic"

Presented at University of Western Ontario Research at Computer Science (UWORCS),

2012.

	Integrated Development and Parallelization of Automated Dicentric Chromosome Identification Software to Expedite Biodosimetry Analysis
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	Chapter 1
	1 Introduction
	1.1 Cytogenetic biodosimetry
	1.2 Automated Dicentric Chromosome Identification
	1.2.1 The Ranking Module
	1.2.2 Chromosome Classification and Gradient Vector Flow Contour Extraction
	1.2.3 Discrete Curve Evolution and Centerline-Based Modules
	1.2.4 Contribution of This Thesis

	Chapter 2
	2 Rationale for Parallelization of ADCI
	2.1 Background on Parallel Computing
	2.2 The General Parallelizing Method
	2.3 Parallel Strategy on ADCI

	Chapter 3
	3 Implementation of Parallel ADCI
	3.1 Optimization of I/O on ADCI cluster
	3.1.1 Asynchronous I/O
	3.1.2 Metaphase Gridding

	3.2 Task Parallelism
	3.2.1 Parallelizing Binary Image Labeling
	3.2.2 Parallelizing Inversion of Circulant Tri-diagonal Matrices used in GVF

	3.3 Data Parallelism
	3.3.1 Multi-thread Data Parallelism
	3.3.2 MPI Data Parallelism

	Chapter 4
	4 Experiments and Discussion
	4.1 Experiments of Task Parallelism
	4.1.1 Experiments on Parallel Binary Image Labeling
	4.1.2 Parallelized Matrix Inversion Experiments

	4.2 Experiments of Data Parallelism
	4.2.1 Experiment of ADCI desktop on Desktop
	4.2.2 Experiment of ADCI Module on Symmetric Computing System
	4.2.3 Experiment of ADCI Module on Cluster
	4.2.4 Experiment of ADCI cluster on Blue Gene/Q

	Chapter 5
	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	References or Bibliography
	Appendices
	Curriculum Vitae

