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Abstract 

GIS-based multicriteria analysis is a procedure for combining a set of criterion maps and 

associated criterion weights to obtain an overall value for each spatial unit (location) in the 

study area. Ordered Weighted Averaging (OWA) is a generic algorithm of multicriteria 

analysis. It has been integrated into GIS and applied for tackling a wide range of spatial 

problems. However, the conventional OWA method is based on an assumption of spatial 

homogeneity of its parameters. Therefore, it is referred to as a global model. This thesis 

proposes a local form of OWA. The local model is based on the range sensitivity principle. A 

case study of examining spatial patterns of socioeconomic status in London, Ontario is 

presented. The results show that there are substantial differences between the spatial 

patterns generated by the global and local OWA methods.  

 

Keywords 

Multicriteria analysis, local ordered weighted averaging (OWA), geographic information 

system (GIS), socioeconomic status, London Ontario. 
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Chapter 1  

1 Introduction 

Multicriteria Analysis (MCA) is a systematic procedure for evaluating a set of decision 

alternatives based on multiple criteria. It has emerged as an area of research within the 

field of environmental economics and regional planning in the early 1970s (Carver, 

1991). Over the last two decades there has been substantial growth of MCA applications 

(Wallenius et al., 2008). Decision or evaluation problems that involve geographical 

(spatial) data are referred to as spatial decision problems. This type of problems is 

typically tackled with the use of Geographic Information Systems (GIS). However, GIS 

has limited capability for handling preferential information (such as preferences with 

respect to relative importance of evaluation criteria). This limitation can be addressed 

by integrating GIS and MCA (Malczewski, 1999; Chakhar and Mousseau, 2008). 

A number of GIS-based MCA (GIS-MCA) methods have been developed over the last two 

decades or so. These include weighted linear combination (WLC) (Eastman et al., 1993; 

Malczewski, 2000; Mahini and Gholamalifard, 2006), ideal point methods (Carver, 1991; 

Jankowski, 1995), analytical hierarchy process (Banai 1993; Rinner and Taranu, 2006) 

and outranking analysis (Joerin et al., 2001; Chakhar and Mousseau, 2008). Among these 

procedures, WLC and Boolean overlay approaches are considered as the most 

straightforward and are most often employed (Malczewski, 1999). Boolean overlay 

approaches apply the logical operators such as intersection (AND) and union (OR) on 

Boolean maps to assess criteria (Jiang and Eastman, 2000). Yager (1988) generalized 

these approaches and introduced a MCA method based on the ordered weighted 

averaging (OWA) concept. 
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1.1 The Significance of GIS-based OWA 

The main rationale for integrating GIS and OWA is that the two sets of methods have 

unique and complementary capabilities for tackling spatial decision problems. On one 

hand, GIS is efficient at storing and managing data, analyzing spatial information and 

visualizing outcomes. On the other hand, OWA is a generic MCA procedure that 

provides a platform for analyzing, evaluating, and prioritizing decision (or evaluation) 

strategies (Malczewski, 1999; Rinner and Malczewski, 2002). 

GIS-based OWA provides a tool for generating and visualizing a wide range of 

multicriteria evaluation strategies by applying different operators and associated set of 

ordered weights. The strength of OWA is that it can efficiently generate a set of diverse 

solutions by changing the set of ordered weights. The OWA method not only provides a 

single “optimal” solution, but can also generate a combination of solutions that can be 

further examined for developing decision or evaluation scenarios.  

 

1.2 The Limitation of Conventional OWA 

In the last two decades, GIS-based OWA has been widely applied for solving a variety of 

spatial problems including: use-land suitability problems (Eastman 1997; Malczewski, 

2006b; Chen, et al., 2009 ), site-selection problems (Rinner and Raubal, 2004; Valente, 

2008; Ekmekçioĝlu, et al., 2010), heat vulnerability assessment (Rinner, et al., 2010), 

urban water management (Makropoulos et al., 2003), natural hazards (Gorsevski, et al., 

2010), and personal route planning (Nadi and Delavar, 2011). However, the limitation of 

previous researches should be noted. The conventional OWA approach applied in 

previous studies is regarded as “global OWA” because of the underlying assumption 

about spatial homogeneity of the OWA parameters. The procedures of GIS-MCA, 

including GIS-OWA, have mostly been derived from the general theory of decision 

analysis (Malczewski, 1999) rather than from spatial theories. Consequently, the 

conventional GIS-OWA approach fails to adequately represent spatial variability. The 
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method is based on an assumption that there is spatial homogeneity within the study 

area. For instance, in the conventional GIS-OWA procedure, every alternative (location) 

is assigned the same criterion weight. The conventional procedure uses a single value 

function for the whole study area ignoring the fact that the form of the function may 

depend on the local context (Malczewski, 2011). Therefore, all the previous studies are 

based on the global OWA method and do not involve an explicit spatial representation 

of local contexts.  

Both Feick and Hall (2004) and Malczewski (2011) have addressed this limitation of 

global GIS-MCA. Feick and Hall (2004) adopt an easy-to-use procedure to examine 

weight sensitivity in both criteria and geographic space. They demonstrate a method for 

visualizing the spatial dimension of criteria weight sensitivity by mapping the weight 

sensitivity in order to detect localized variations of outcomes. Malczewski (2011) 

introduces the concept of local weighted linear combination (WLC) to advance the 

global WLC method, using the range sensitive principle as a core concept for developing 

the local form of WLC model. However, there has been no attempt to develop the local 

OWA method. This research is designed to fill this gap in the GIS-OWA studies.  

In sum, OWA method is a generic GIS-MCA procedure. The conventional OWA method is 

based on an assumption of spatial homogeneity. Consequentially, the conventional 

OWA is referred to as the global OWA method. This research aims at advancing the 

global OWA approach by developing a new OWA method to take into account the 

spatial homogeneity. This new method is called local OWA. 

 

1.3 Research Objectives 

There are two main objectives of this research:  
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(1) To develop a local form of the OWA method. This objective will be achieved by 

developing a new algorithm for transforming the global OWA to local OWA using the 

range sensitivity principle. 

(2) To examine the results of the local and global OWA using a case study of 

socioeconomic status of neighborhoods in London, Ontario, Canada. 
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Chapter 2  

2 Theoretic Background 

This chapter provides a theoretical background of GIS-MCA methods. It includes the 

concept of MCA and spatial MCA. 

 

2.1 Multicriteria Analysis 

Multicriteria analysis (MCA) is a set of methods and procedures for evaluating decision 

alternatives on the basis of multiple, conflicting criteria and selecting the best 

alternative(s) (Voogd, 1983; Janssen and Rietveld, 1990).  Criterion is a generic term that 

includes both the concept of attributes and objectives (Malczewski, 1999). Hence 

multicriteria analysis can be classified into two types: multiobjective and multiattribute 

analysis. 

Objective is a statement about the desired state of the system under consideration (e.g., 

land-use pattern, spatial pattern of transport facilities, location of public services, spatial 

pattern of socioeconomic status, etc.). Objectives are functionally related to, or derived 

from a set of attributes, indicating the direction towards which the attributes should be 

optimized. Each objective represents one aspect of the desired state of the system. A 

set of objectives should summarize all relevant concerns for achieving an overall goal of 

the decision or evaluation problem. The multiobjective analysis is a model-oriented, 

where the alternatives must be designed using the methods of mathematical 

programming (Janssen and Rietveld, 1990; Malczewski, 1999).  

Attribute is a measurable characteristic of an object (decision alternative, location, area, 

etc.). It is a descriptive value (Drobne and Lisec, 2009). It aims at assessing the degree to 

which a given objective might be achieved (Pitz and McKillip, 1984). Attributes are used 

as the measurements of preference related to objectives. They can be regarded as the 
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means or information sources available to the decision maker for formulating and 

achieving the decision maker’s (or expert’s) objectives (Starr and Zeleny, 1977). 

Multiattribute analysis is based on the assumption that the set of alternatives are 

known. The core of solving multiattribute decision problems is the evolution of (and 

choice among) alternatives described by their attributes. For the most part, GIS-MCA 

belongs to the multiattribute analysis (Malczewski, 2006). This research is concerned 

with multiattribute analysis. Hereafter, the terms multiattribute analysis and 

multicriteria analysis will be used interchangeably. 

 

2.2 Spatial Multicriteria Analysis 

Spatial MCA focuses on geographically defined decision alternatives which are evaluated 

by a set of criteria (Carver, 1991; Jankowski, 1995; Malczewski, 1999). The kernel of 

spatial MCA is the integration of MCA and GIS methods. Conventional MCA can be used 

to deal with the complexity of the real world problems that may involve a large number 

of alternatives and multiple and conflicting evaluation criteria. Nevertheless, to solve 

spatial decision problems, MCA also requires spatial analytical functions and the 

capacity of processing geographic data. This calls for the integration MCA and GIS.  

In spatial multicriteria analysis or GIS-MCA, attributes, represented as map layers, are 

the properties of geographical entities; hence attributes can be interpreted as criteria 

(criterion maps). The weight associated with a criterion map represents the preference 

of decision makers (or experts). It indicates the relative importance of criteria. The 

spatial units (locations or areas) represent the decision (or evaluation) alternatives. In 

the raster data, each raster cell or a combination of cells is considered as an alternative. 

In the vector data, alternatives are represented by points, lines, polygons or a 

combination of these three spatial objects.  

An evaluation matrix can be formed to represent the relationships between alternatives 

and criteria (see Table 2-1). The matrix contains criterion values,    ,  = 1, 2, … ; and   
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= 1,2,…,  ; where   and   are the number of alternatives and criteria,  respectively. The 

criterion weights (  ) are shown in the last row. In the spatial MCA, the evaluation 

criteria are associated with geographical entities therefore can be represented in the 

forms of maps (see Figure 2-1). 

 

Table 2-1 Example of Evaluation Matrix 

 Criterion 1 Criterion 2 … Criterion   

Alternative 1         …     

Alternative 2         …     

… … … … … 

Alternative           …     

Weights       …    

 

A criterion map consists of a set of polygons. Each polygon stands for an alternative in 

the evaluation matrix and is described by a set of criterion values (that is, the  -th 

alternative or polygon is described by     for k = 1,2,…,  ). Criterion weights are assigned 

to each criterion maps. Given the set of criterion maps and associated criterion weights, 

the input data can be processed by GIS techniques and MCA methods to obtain the 

decision (evaluation) outcome map. 
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Figure 2-1 Example of Spatial MCA  
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2.3 GIS-based OWA Method 

GIS-based OWA method is the combination of GIS techniques and OWA method. 

Eastman (1997) first extended the concept of OWA to GIS application to establish the 

decision support model in Idrisi-GIS. In the recent decade, many researches focus on 

integrating OWA concept and GIS application to practical problems (Jiang and Eastman, 

2000; Malczewski, 2000; Rasmussen et al., 2002; Araújo and Macedo, 2002; Chen et al., 

2009; Charabi and Gastili, 2011; Feizizadeh and Blaschke, 2012).  

Criterion values, criterion weights and order weights are three important elements of 

OWA. Criterion values are the presentation of attributes. The criterion weights indicate 

the importance of each criterion. The order weights are assigned to each reordered 

criterion after the reordering process. The determination of order weights is critical on 

integrating GIS and OWA (Malczewski, 2006c). Jiang and Eastman (2000) demonstrated 

the Idrisi-OWA procedure but failed to provide a method for obtaining the order 

weights. Consequently, several researches proposed methods for generating the 

optimal order weights: based on the degree of ORness and trade-off (Asproth et al., 

1999; Mendes and Motizuki, 2001; Rasmussen et al., 2002), based on the principles of 

maximum dispersion or the maximum trade-off (Rinner and Malczewski, 2002; 

Malczewski et al., 2003; Malczewski, 2006c). The approach of maximum trade-off can be 

implemented by parameterized OWA. This research applied a linguistic quantifier by 

using the   parameter to determine the order weights (see Section 3.1.5). The 

generality of OWA is related to its capability to implement different OWA operators by 

selecting appropriate order weights (Malczewski, 2006c).  
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Chapter 3  

3 Methods 

This chapter consists of two sections: the implementation of global OWA method and 

the development of local OWA approach. 

 

3.1 Global OWA Method 

3.1.1 Global OWA Procedure 

The global or conventional OWA method applies a weighted sum of ordered evaluation 

criteria including a set of alternatives (or locations) and a set of evaluation criteria. Each 

alternative,  , is described by a set of standardized criterion (or attribute) values (   ), 

for  = 1, 2, … ,  , and   = 1, 2, … ,  . The OWA is composed of two types of weights: 

criterion weights (  ) and ordered weights (  ). The global criterion weights: 

           (         , ∑   
 
   = 1) are applied to specific criteria. They represent 

the preferences (of the decision maker or expert), with respect to each criterion to 

indicate its relative importance. On the other hand, order weights,             

(        ; ∑   
 
     ), are assigned to ordered criteria associated with criterion 

values on location-by-location basis (see Section 3.1.5). 
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Figure 3-1 Global OWA Procedure 
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The procedure of global OWA involves the following steps (see Figure 3-1):  

(1) standardize criterion values of each criterion maps;  

(2) define the global criterion weights according to the preferences of experts; 

(3) sort weighted standardized criterion values of each location in descending order;  

(4) order global criterion weights according to the ordered criterion values for each 

location; 

(5) select appropriate ordered weights by adopting different OWA operators; 

(6) multiply the weighted standardized values by corresponding order weights; 

(7) sum up the products to obtain an overall OWA score for each location. 

 

3.1.2 Standardizing Criterion Maps 

The first step of any MCA is to collect relevant data and information about the decision 

or evaluation problem. In GIS-MCA, the input data is typically represented in the form of 

criterion maps. Since the various criteria are likely to be measured in different system, 

the criterion maps must be transformed into a standardized scale (Carver, 1991). The 

method for transforming criterion maps into standardized forms is defined as follows: 

                                  (3-1) 

     
               

  
   for  -th criterion to be minimized;  (3-2) 

     
                

  
   for  -th criterion to be maximized  (3-3) 

where,     refers to the raw (unstandardized) criterion value;           and           

indicate the maximum and minimum criterion value of the  -th criterion, respectively; 

   is the global range of the  -th criterion;     is the standardized criterion value, 

ranging from 0 to 1, where 0 is the least-desired value, while 1 indicates the most-

desired value. If a criterion is to be maximized, then Equation 3-2 should be used to 



13 

 

perform the criterion standardization (e.g., a benefit criterion). Equation 3-3 should be 

applied for criterion to be minimized (e.g., a cost criterion).  

 

3.1.3 Deriving Criterion Weights using Pairwise Comparisons 

Some criteria are more important than the others. The criterion weights estimate the 

perceived importance of individual criterion relative to the other criteria (Carver, 1991). 

The pairwise comparison method is applied to estimate criterion weights (see Table 3-1).  

Table 3-1 Pairwise Comparison Matrix 

 Criterion 1 Criterion 2 … Criterion n 

Criterion 1 1 p12 … p1n 

Criterion 2 p21 = 1/p12 1 … p2n 

… … … … … 

Criterion n pn1 = 1/p1n pn2=1/p2n … 1 

 

In the pairwise comparison method, the pairwise comparison matrix should be 

developed first (Table 3-1). Comparing each pair of criteria, decision maker (or expert) 

evaluates the relative importance of criteria using the scale shown in Table 3-2. For 

instance, if criterion 1 is moderately more important than criterion 2, then p12 = 4; the 

comparison value of p21 is calculated using the reciprocal principle (that is, p 21 = 1/p12 = 

0.25). Note that the cells on the diagonal in the pairwise comparison matrix have the 

same values of 1 because pairwise comparisons represented of those cells are between 

a given criterion and itself. Given the pairwise comparison matrix, the pairwise 

comparisons are normalized; that is, each value is divided by the sum of its column and 
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then the criterion weight is calculated as an average value of the normalized pairwise 

comparisons (see Section 4.3.2). 

Table 3-2 Scale for Pairwise Comparison (Source: Saaty, 1980) 

Intensity of 

Importance 
Definition 

1 Equal importance 

2 Equal to moderate importance 

3 Moderate importance 

4 Moderate to strong importance 

5 Strong importance 

6 Strong to very strong importance 

7 Very strong importance 

8 Very to extremely strong importance 

9 Extreme importance 

 

3.1.4 Sorting Weighted Criteria 

The next step is to generate ordered criteria (   ). This is achieved by sorting the 

weighted standardized criterion values (     ) for each alternative or location in a 

descending order (Yager, 1988; Malczewski and Rinner, 2005). Table 3-3 illustrates the 

procedure using a set of four alternatives (locations), three standardized criterion 

(                   ), and associated criterion weights (   = 0.2,    =0.5,   = 0.3). 

The standardized criteria are weighted by multiplying the associated criterion weights. 

Further, the weighted criterion values (     ) are sorted in a descending order. The 

ordered weighted criterion values (   ) are obtained as the results. For instance, the set 
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of weighted criterion values (     = 0.0,       = 0.45,       = 0.18) associated with   

= 1 is arranged in the descending order as follows:     = 0.45,     = 0.18,     = 0.0.  

Since the criterion values are shuffled, the corresponding criterion weights are also 

rearranged in the sorting process. These rearranged criterion weights form a new matrix, 

the ordered criterion weight (   ). The ordered criterion weights are used to 

determinate the ordered weights (see Section 3.1.5). The procedures of sorting criterion 

values and generating ordered criterion weights have been implemented in a Local MCA 

Calculator (see Appendix).  

 

Table 3-3 Illustrative Example: calculating ordered criterion (   ) 

Criteria              

   {0.0, 0.7, 1.0 ,0.4} 0.2 {0.0, 0.14, 0.2, 0.08} 

   {0.9, 0.3, 0.2, 0.6} 0.5 {0.45, 0.13, 0.01, 0.3} 

   {0.6, 0.8, 0.1, 0.3} 0.3 {0.18, 0.24, 0.03, 0.09} 

Criteria         

   {0.5, 0.3, 0.2, 0.5} 

{0.3, 0.2, 0.3, 0.3} 

{0.2, 0.5, 0.5, 0.2} 

{0.45, 0.24, 0.2, 0.3} 

   {0.18, 0.14, 0.03, 0.09} 

   {0.0, 0.13, 0.01, 0.08} 

 

  



16 

 

3.1.5 Determining Order Weights  

3.1.5.1 Fuzzy linguistic quantifiers 

The order weights can be estimated using a number of methods (Yager, 1996). The 

linguistic quantifier-based method is one of the most often used in OWA applications. 

Linguistic quantifiers can be represented as a fuzzy set (Zadeh, 1983). Consequently, the 

term linguistic and fuzzy quantifiers can be used interchangeable. Translating natural 

language specifications into mathematics formulas is the core purpose of fuzzy 

quantifiers. Yager (1996) proposed a procedure for quantifier-guided MCA that fuzzy 

linguistic quantifiers were used to specify the statement about the number (proportion) 

of criteria to be satisfied by applying OWA operators (e.g., all criteria must be satisfied, 

most of the criteria should be satisfied or at least half of criteria should be satisfied).  

To determine the values of order weights, the associated quantifier Q needs to be 

specified first. There are two generic classes of linguistic quantifiers: absolute and 

relative quantifiers (Zadeh 1983; Yager 1996). The statements such as “about five” or 

“more than ten” belong to the class of absolute quantifiers; they are defined as fuzzy 

subsets of [0,   ]. The relative quantifiers are closely related to imprecise proportions. 

They are defined as fuzzy subset of [0, 1] with proportional terms such as “a few”, “half”, 

“many”, “most”. Therefore, the relative quantifier can be identified by one of the 

simplest and the most often used method to parameterize subset on the unit interval as 

following (Yager, 1996): 

 ( )               (3-4) 

The  ( ) represents a fuzzy set in interval [0, 1], including monotonically increasing 

proportions of elements. Hence the whole family of regular increasing monotone (RIM) 

quantifier can be generated from this quantifier  ( ). Consequently, by changing the 

value of parameter  , one can obtain a wide range of aggregation operators. Specifically, 

one can also generate different types of quantifiers and associated order weights 
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between the two extreme cases of the “at least one” and “all” quantifiers (see Table 3-4) 

(Malczewski and Rinner, 2005). For instance, when the value of parameter   tends to be 

zero, the quantifier  ( ) approaches its extreme case of “at least one”. When the value 

of parameter   approaches infinity, the quantifier  ( ) approaches its extreme case of 

“all”. Using the parameter  , the order weights can be defined as follows (Yager, 1996; 

Malczewski, 2006b):     

      (∑    
 
   )    (∑    

   
   )          (3-5) 

where     is the order weight for the k-th criterion associated with the  -th location;     

is the ordered criterion weights;   is the parameter associated with the fuzzy quantifier.  

 

Table 3-4 Properties of Regular Increasing Monotone Quantifiers with selected values 

of Parameter   (source: Malczewski, 2006b) 

Parameter 

  

Quantifier 

 (𝑸) 

Order Weights  

(𝒗  ) 

GIS 

Combination 

Procedure 

ORness Trade-off 

  → 0 At least one 
    = 1;     = 0, 

( <  ≤  ) 
OWA (OR) 1.0 0 

  → 0.1 At least a few * OWA * * 

  → 0.5 A few * OWA * * 

  → 1 Half (identity) 
    = 1/ ,  

( ≤  ≤  ) 
OWA (WLC) 0.5 1 

  → 2 Most * OWA * * 

  → 10 Almost all * OWA * * 

  →    All 
    = 1;     = 0, 

( ≤  <  ) 
OWA (AND) 0 0.0 

Note: * the set of order weights depends on values of sorted criterion weights and 

parameter α according to Equation 3-5.  
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3.1.5.2 OWA operators 

The generality of OWA method is related to its ability of implementing a wide range of 

combination operators by selecting an appropriate set of order weights (Yager 1988). 

The combination operators are called OWA operators. They include the weighted linear 

combination (WLC) and Boolean overlay operations such as intersection (AND) and 

union (OR) (Yager 1988; Jiang and Eastman, 2000). The AND and OR operators are the 

most often used GIS combination procedures. 

In fact, the set of order weights determinates the type of the OWA operator. In the 

practical application, the AND and OR operators represent the two extreme situations. 

For example, when parameter        ( →  ), the order weights are generated as 

                       . This extreme case represents the Boolean OR 

combination (see Table 3-4). If parameter   = 0.001 ( → 0), only the lowest values are 

selected by the OWA operator because the order weights                        ; 

this is an equivalent of the AND type of Boolean combination (see Table 3-4).  

Moreover, the WLC operator is determined by a set of equal order weights 

(              
 

 
 
 

 
 
 

 
  

 

 
 ); that is, the identity quantifier or parameter   = 1 is 

applied. Hence, the WLC operator does not change in the re-order weighted criterion 

value because equal ordered weights are assigned to each ordered weighted criterion. 

The AND, OR and WLC operators are only three ‘special’ cases. One can generate a large 

number of OWA operators by changing the value of parameter   or the quantifiers 

ranging from “all” to “at least”. 

One can use the measurements ORness and trade-off to classify the OWA operators 

with respect to their positions between the AND and OR operators (Yager, 1988; 

Eastman, 1997; Jiang and Eastman, 2000): 

        =  ∑
(   )

   
   

 
    ,  0 ≤ ORness ≤ 1    (3-6) 
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     -     =   √ ∑
(    

 

 
) 

   
 
    , 0 ≤ trade-off ≤ 1   (3-7) 

ORness measures the degree similarity of an OWA operator to the logical OR in terms of 

its combination behavior (Malczewski et al., 2003). The trade-off is a measurement for 

the substitutability (or compensation) of low values on one criterion by high values on 

other criterion (Jiang and Eastman, 2000). It indicates the degree of how a good 

performance on one criterion under consideration compensates a poor performance on 

other criterion (Malczewski et al., 2003). The value of zero conveys no trade-off among 

criteria and the value of one indicates a full trade-off.  

 

3.1.5.3 Evaluation strategy space 

Evaluation (or decision) strategy space can be formed by two measurements: ORness 

and trade-off (Jiang and Eastman, 2000; Rinner and Malczewski, 2002). Figure 3-2 shows 

the relationship between ORness and trade-off. The shape of evaluation strategy space 

depends on the number of criteria ( ). When two criteria are involved in the evaluating 

process, the strategy space has a triangle shape (Figure 3-2). The three vertices of the 

triangle represent the three extreme cases of the OWA operators: AND, OR and WLC 

(see Figure 3-2). For instance, the top vertex represents the WLC operator (  = 1), 

characterized by an intermediate degree of ORness and full trade-off.  

As the number of criteria increases from   = 2 to  →  , the shape of decision strategy 

space changes to a rectangular form (Malczewski and Rinner, 2005). Specifically under a 

given degree of ORness, more criterion maps are involved in the procedure and this 

leads to the higher level of trade-off, except for the extreme cases of OWA operators 

(AND, OR and WLC operators). For AND, OR and WLC operators, the measures of trade-

off and ORness are fixed irrespectively of the number of criterion maps (Malczewski and 

Rinner, 2005). 
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Figure 3-2 Evaluation Strategy Space: the relationship between the measures of 

ORness and trade-off (Source: Eastman, 1997) 

 

3.1.6 Defining Global OWA 

For a given set of criterion maps, the function of OWA scores is defined as follows (Yager, 

1988): 

      ∑    
 
           (3-8) 

where       is the overall OWA score of the  -th location or alternative;     is the 

ordered weight;      is the ordered weighted criterion value. The spatial pattern of OWA 

scores can be displayed on a map. The location (alternative) with the highest overall 

score indicates the best alternative.  
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3.2 Local OWA Method 

3.2.1 Local OWA Procedure 

The local OWA procedure is illustrated in Figure 3-3. It starts with defining the set of 

evaluation criterion maps. Next, a neighborhood scheme is specified. Based on the 

neighborhood scheme, the range sensitivity principle is applied to obtain the local range 

for each location in the study area. This is followed by performing the local 

standardization for each criterion map. Then, the global criterion weights are estimated, 

providing the basis for calculating local criterion weights. Particularly, the local criterion 

weight associated with a given location is a function of the global weight and the local 

range. Given the local standardized criteria and local criterion weights, one can generate 

local weighted criterion maps. Further, a set of order weights is defined based on the 

specified value of parameter  . Finally, the local weighted criteria maps and order 

weights are combined to obtain the local OWA scores (output map). 

The concept of the neighborhood, local range and local criterion weight are critical for 

conveying spatial heterogeneity and local context. Therefore, the rest of this chapter 

will focus on this concept.  The order weights of the local OWA method are obtained in 

the same way as in the global OWA approach (see Section 3.1.5). Therefore, the process 

of selecting appropriate order weights by specifying different values of parameter   is 

not repeated here. 
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Figure 3-3  Local OWA Procedure 
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3.2.2 Defining Neighborhoods 

One of the crucial differences between the local and global OWA methods is the 

utilization of the neighborhood scheme for localizing OWA method.  In this research, an 

alternative is a polygon (or location). Two approaches are applied to identify 

neighborhoods: the distance-based method and the boundary-based method.  

3.2.2.1 Distance-based neighborhood scheme 

In the distance-based method, neighborhoods are generated based on the threshold 

distance ( ). The centroid of each polygon must be found in order to measure the 

distance between polygons (locations). The threshold distance is assigned according to 

specific situation. Once the threshold distance is determined, one can compare the 

threshold distance with the distances between focal polygon and other polygons. If the 

distance between the focal location and its nearby polygon is smaller than the threshold 

distance, then the polygon is defined as a neighbor of the focal polygon. The 

neighborhood of focal location consists of the focal location and its neighbors. For the 

local OWA method, the value of threshold distance must be large enough to guarantee 

that each polygon has at least one polygon as its neighbor. This rule ensures that 

the denominator of Equations 3-10, 3-11 and 3-12 is greater than zero. Moreover, if the 

threshold distance is large enough to cover the whole study area, then the 

neighborhood of each location contains all other locations in the study area. In this case, 

the local and global OWA methods generate the same results.  

Figure 3-4 shows an example. The study area is represented in a vector format. Points 

from 1 to 9 represent the centroids of nine polygons. In Figure 3-4-A,   represents the 

threshold distance and polygon 4 is the focal polygon. Since the straight line distances 

between the centroid of polygon 4 and centroids of polygon 1, 5 and 7 are smaller than 

the threshold distance ( ), polygons 1, 4, 5 and 7 form the neighborhood of the focal 

polygon (see Figure 3-4-B). 
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(A)       (B)  

Figure 3-4 Identifying Neighborhood Using the Distance Based Method 

 

3.2.2.2 Boundary-based neighborhood scheme 

     

(A)       (B)  

Figure 3-5 Identifying Neighborhood Using the Boundary Based Method 

In the boundary-based method, neighborhoods are defined as areas which share their 

boundaries with the focal area. This research is based on the Queen’s case. If two 

polygons share boundary, including any shared line or point, they are considered as 
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neighbors. Any polygon sharing boundaries with a given focal polygon is defined as the 

neighbor of that area (see Figure 3-5). For example, the polygon 4 shares three points 

and three lines with surrounding polygons (see Figure 3-5-A), therefore polygon 1 to 7 

form the neighborhood of polygon 4 (see Figure 3-5-B). 

 

3.2.3 Range Sensitivity Principle and Local Range 

The range sensitivity principle is used as a core concept for developing the local form of 

OWA method. The range sensitivity is a normative property with respect to the 

dependence of criterion weights on the ranges of criterion values (von Nitzsch and 

Weber 1993; Fischer, 1995; Malczewski, 2011). In the global OWA method, an 

assumption about uniformity of preferences over the whole study area is applied to 

global criterion weights. In the process of global standardization, the global 

standardized criterion value (   ) is the function of global range (  ) (see Equation 3-2 

and 3-3). The global range is the parameter that is defined for the whole study area. It 

implies that the spatial heterogeneity is ignored, irrespectively of the local context and 

factors that may affect the level of worth associated with a particular criterion value. 

The range sensitivity principle assumes that for a given criterion the greater the range of 

the criterion values is, the greater the weight of importance assigned to the criterion 

should be (von Nitzsch and Weber 1993; Fischer, 1995). To convey local context in the 

specific neighborhood, the local range can be generated based on this principle. The 

local range (   
𝑞) is defined as the difference between the maximum and minimum 

criterion values in the 𝑞q-th neighborhood for the  -th criterion. Formally: 

  
𝑞       𝑞{   

𝑞 }       𝑞{   
𝑞 }     (3-9) 

where      𝑞{   
𝑞 } and      𝑞{   

𝑞 } are the minimum and maximum values of the  -th 

criterion in the q-th neighborhood;   
𝑞 is the local range of the  -th criterion in the q-th 

neighborhood. 
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3.2.4 Local Standardization 

The values of each criterion are standardized locally as follows:  

   
𝑞   

           
 

       
 

                     
  

     for the  -th criterion to be minimize;  (3-10) 

   
𝑞   

    
 

             
 

  

 
 
   for the  -th criterion to be maximize  (3-11) 

where      𝑞{    
𝑞 } and      𝑞{    

𝑞 } are the minimum and maximum values of the 𝑞-th 

neighborhood for the k-th criterion;   
𝑞 is the local range;    

𝑞  is the locally standardized 

criterion values,  ranging from 0 to 1, where 0 is assigned as the least-desired criterion 

value and 1 is assigned as the most-desired value in the q-th neighborhood.  

 

3.2.5 Local Criterion Weights 

The value of local criterion weight depends on the scheme used for subdividing a study 

area into neighborhoods (zones or regions). Local criterion weight (  
𝑞) can be obtained 

as follows: 

  
𝑞   

   
 
 

  

∑
   

 
 

  

 
   

   ≤    
𝑞 ≤   and ∑   

𝑞 
        (3-12) 

where   
𝑞 is the local criterion weight associated with the q-th neighborhood for the  -

th criterion;    is the global criterion weight of  -th criterion;    is the global range, 

which equals to the maximum minus the minimum criterion value in the  -th criterion; 

  
𝑞 is the local range. Since the value of local weight depends on the neighborhood 

scheme, it is also referred to the neighborhood-based criterion weights (Feick and Hall 

2004).  
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3.2.6 Sorting Local Weighted Criteria 

Unlike global criterion weights (  ), which are presented as an array, the local weights 

(  
𝑞) form a matrix. It implies that each location (spatial unit) on the criterion map has 

assigned a corresponding value of the local weight. The calculation process of weighting 

local criterion maps involves the matrix multiplication of standardized criterion values 

and local criterion weights. The procedure for sorting (ordering) local weighted criteria 

is the same as the sorting method for the global OWA method (see Section 3.1.4). Thus, 

one can sort the weighted criterion values (   
𝑞   

𝑞) to obtain the ordered weighted 

criterion values (  
𝑞) 

 

3.2.7 Generating Local Order Weights 

In the local OWA method, the procedure of generating local order weights is the same 

as of determining order weights in the global OWA method (see Section 3.1.5). 

According to Equation 3-5, the order weights (   ) are derived from ordered criterion 

weights (   ). Although the local criterion weights (  
𝑞) are different from global 

criterion weights (  ), both weights are formed as a matrix. In the local OWA method, 

the order weights are defined as follows: 

  
𝑞   (∑   

𝑞 
   )    (∑   

𝑞   
   )           (3-13) 

where   
𝑞 is the local order weight;   

𝑞 is the ordered weighted local criterion values for 

the  -th criterion in the 𝑞-th neighborhood;   is the parameter associated with the fuzzy 

quantifier(see Section 3.1.5.1). 

 

app:ds:matrix
app:ds:multiplication
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3.2.8 Calculating Local OWA 

The calculation of local OWA scores is defined as follows:  

   𝑞  ∑   
𝑞 

     
𝑞     (3-14) 

where    𝑞  is the overall local OWA score for the 𝑞-th neighborhood;   
𝑞 is the local 

order weights (see Section 3.2.7);   
𝑞 is the ordered weighted local criterion values for 

the  -th criterion in the 𝑞-th neighborhood(see Section 3.2.7). 

 

 

3.3 Comparing Local OWA methods and Global OWA methods 

The most important difference between local and global OWA methods lies in applying 

different criterion weights. In the global OWA method, the relative importance of 

evaluation criterion is the only factor to determine the criterion weights, defined as the 

global weights. In the local OWA method, however, the local criterion weights are 

estimated on the basis of the preferences with respect to relative importance of criteria 

and the local context. In addition, the local weights can be considered as the adjusted 

global weights depending on the definition of neighborhoods. To be more specific, the 

local criterion weight is the function of the global criterion weight modified by the 

relationships between the local and global ranges. The ranges in turn depend on the 

configuration of neighborhoods and the size of study area.  



29 

 

Chapter 4  

4 Case Study 

The aim of the case study is to test the local OWA method and to compare the results of 

global and local OWA methods by evaluating the socioeconomic status of 

neighborhoods in London, Ontario. 

 

4.1 The Study Area 

The study area is the City of London, Ontario (see Figure 4.1). London is located in 

Southwestern Ontario. It is situated along the Quebec City - Windsor corridor. The city 

of London has a population of 366,151 (Statistics Canada, 2011).  

 

Figure 4-1 The Study Area: London, Ontario (Source: Google Earth) 
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4.2 Data Sources 

The geographic data of the study area is obtained from a secure website database 

distributed through the university’s library system (UWO, 2011). The geographic data 

are in the vector format; that is, the census dissemination area is represented by 

polygons. ArcMap 10.0 is applied to manipulate the spatial data. 

The socioeconomic data for London was derived from the Population Census of 2006 

(Statistics Canada, 2006). The census dissemination area is the basic unit of the analysis. 

The statistic data for the evaluation criteria is available for 494 dissemination areas in 

London, Ontario. The unpopulated Census Tract 0056 is excluded from the analysis. 

 

4.3 The Application of OWA methods 

4.3.1 Criteria Selection 

The problem of evaluating socioeconomic conditions of residential neighborhoods (and 

related problem of measuring quality of life or residential quality) provides a good 

example of a situation in which one has to combine a number of evaluation criteria 

(indicators) to obtain a composite measure of socioeconomic status. Many studies rely 

on multivariate statistics and/or multicriteria evaluation procedures (Can, 1992; Raphael 

et al., 1996; CUISR, 2000). The weighted linear combination (WLC) is the most often 

used approach for obtaining a composite measure of quality of life (e.g. Raphael et al., 

1996; CUISR, 2000; Massam, 2002). The Federation of Canadian Municipalities (FCM) 

provides a reporting system to monitor the quality of life in Canadian municipalities 

(FCM, 1999; FCM, 2001). The project is known as the quality of life reporting system 

(QOLRS). The selection of evaluation criteria for this case study of assessing the 

socioeconomic status in London is based on the QOLRS. The set of criteria includes: 

median incomes, incidence of low incomes, employment rate, average values per 

dwelling, university education and residential burglary (see Table 4-1). For the type of 
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criterion, the maximum type indicates that the higher value is more desired. The 

minimum type means that the lower value of the criterion is more desired.  

Table 4-1  Criteria for Evaluating Socioeconomic Status in London, Ontario  

 Name Description Type 

1 MED_INC* Median incomes ($) Maximum 

2 LOW_INC* Incidence of low income (%) Minimum 

3 EMP_RAT* Employment rate (%) Maximum 

4 AVE_DWE* Average value of dwelling ($) Maximum 

5 UNI_EDU* 
University education 

(% population 15 years and over) 
Maximum 

6 RES_BUR** Residential burglary (relative risk ratio) Minimum 

( Sources of data: * Statistics Canada, 2006 and  ** Poetz, 2003) 

 

4.3.2 Identify Global Criterion Weights 

The global criterion weights represent the relative importance of criteria. To define the 

global criterion weights, several scenarios are developed by applying the pairwise 

comparison approach (see Section 3.1.3). For the purpose of demonstrating the OWA 

procedures, this case study focuses on one of the criterion weighting scenarios. Table 4-

2 shows the pairwise comparison matrix. The meaning of scores in the pairwise 

comparison matrix is given in Table 3-2. The pairwise comparisons are normalized; that 

is, each cell of the matrix is divided by its column total (the results are shown in Table 4-

3). Then the global criterion weights are obtained by computing the average value of the 

normalized pairwise comparisons (see Table 4-3).  



32 

 

 

 

Table 4-2 A Scenario for Global Criterion Weighting: Pairwise Comparison Matrix 

 
MED_INC LOW_INC EMP_RAT AVE_DWE UNI_EDU RES_BUR 

MED_INC 1 1 3 1 2 2 

LOW_INC 1 1 1 2 1 1 

EMP_RAT 0.33 1 1 1 2 1 

AVE_DWE 1 0.5 1 1 1 1 

UNI_EDU 0.5 1 0.5 1 1 1 

RES_BUR 0.5 1 1 1 1 1 

 

 

Table 4-3 Global Criterion Weights 

 
MED_INC LOW_INC EMP_RAT AVE_DWE UNI_EDU RES_BUR Weights 

MED_INC 0.23 0.18 0.40 0.14 0.25 0.29 0.25 

LOW_INC 0.23 0.18 0.13 0.29 0.13 0.14 0.18 

EMP_RAT 0.08 0.18 0.13 0.14 0.25 0.14 0.15 

AVE_DWE 0.23 0.09 0.13 0.14 0.13 0.14 0.14 

UNI_EDU 0.12 0.18 0.07 0.14 0.13 0.14 0.13 

RES_BUR 0.12 0.18 0.13 0.14 0.13 0.14 0.14 

Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Note: the consistency ratio CR = 0.06 < 0.1 indicates that the global criterion weights are 

based on a consistent set of pairwise comparisons (see Section 3.1.3). 
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4.3.3 Global Standardization 

The six standardized global criterion maps are generated according to Equations 3-1, 3-2, 

and 3-3 (see Figure 4-2). The Jenks natural breaks classification method is applied to 

display criterion maps, where classes are developed on natural groupings inherent in 

the data. The class breaks are statistically determined by best grouping similar values 

and maximizing the differences between classes in ArcGIS 10.0 (ESRI, 2010). Boundaries 

of divided classes are set according to the relatively ‘big jumps’ within data values. The 

Jenks natural breaks classification method is applied to all criterion maps in this study.  

In the outcome of global standardization, the criterion map of median incomes shows 

that the northwestern of London has high values, while the central and southeastern of 

the city are characterized by low values of median incomes (see Figure 4-2-A). A similar 

spatial pattern can also be observed for criteria of average value per dwelling, university 

education and residential burglary (see Figures 4-2-D, 4-2-E and 4-2-F). One can 

conclude that the residential neighbourhoods in the northwest part of London are 

characterized by higher median incomes, higher average value of dwelling, higher level 

of education and lower residential burglary rates. Conversely, the central and southeast 

sectors of the city tend to have lower median incomes, lower average value of dwelling, 

lower level of education and higher residential burglary rates. For criterion maps of the 

incidence of low income and the employment rate (see Figures 4-2-B and 4-2-C), the 

spatial pattern is dispersed with a slight tendency of clustering higher values at the 

outskirts of the study area. 
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(A) MED_INC     (B) LOW_INC   

 
(C) EMP_RAT    (D) AVE_DWE   

 
(E) UNI_EDU     (F) RES_BUR   

Figure 4-2 Global OWA: Standardized Criterion Maps 
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4.3.4 Neighborhood Scheme  

This research applies two methods of the neighborhood scheme: distance-based and 

boundary-based methods (see Section 3.2.2). ArcGIS 10.0 is used as the tool to establish 

the neighborhood scheme (ESRI, 2010). Table 4-5 lists the four specific neighborhood 

schemes applied in this case study. 

Table 4-4 Neighborhood Scheme 

Method Descriptions 

Based on the distance 

d = 850 m 

d = 1600 m 

d = 2400 m 

Based on the boundary Queen’s case 

(Note: d = threshold distance) 

Implementing the distance-based method in ArcGIS involves two steps: (1) the “Feature 

to Point” tool generates centroid points of polygons, and (2) the tool “Point Distance” is 

applied to find neighbors according to the threshold distance. The output is a table that 

contains the list of the focal polygons and information of about all near polygons 

(centroids) within the search radius or threshold distance. Three threshold distances are 

used: 850m, 1600m and 2400m (see Table 4-5). The threshold should be large enough 

to guarantee that each location (polygon) has at least one neighbor. The distance of 

850m is the smallest threshold to meet this constrain, and the distance of 2400m is 

selected based on previous research (Malczewski and Poetz, 2005). The research 

findings suggest that the processes underlying the relationships between some 

socioeconomic variables in London, Ontario operate at a local (neighborhood) scale. 

Malczewski and Poetz (2005) demonstrated in the context of geographically weighted 
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regression that the spatial variability in the relationships is significant at the spatial scale 

associated with kernel bandwidths less than 2400 m. 

The boundary-based method is another way to identify the neighborhood scheme (see 

Section 3.2.2.2). Using the tool “Spatial Join” in ArcGIS 10.0 creates the neighborhood 

attribute table for identifying neighborhoods based on shared boundaries (ESRI, 2010). 

For instance, the neighborhood attribute table of the example showed in Figure 3-5 is 

given in Table 4-5. The Neighbor column of the table indicates the number of polygons 

which share the boundary with the target polygon.  

Table 4-5  Neighborhood Attribute Table Based on Boundary Method 

No. Target Neighbor No. Target Neighbor No. Target Neighbor 

1 1 2 14 4 2 27 7 1 

2 1 3 15 4 3 28 7 3 

3 1 4 16 4 5 29 7 4 

4 1 5 17 4 6 30 7 5 

5 1 7 18 4 7 31 7 6 

6 2 1 19 5 1 32 7 8 

7 2 4 20 5 2 33 7 9 

8 2 5 21 5 4 34 8 3 

9 3 1 22 5 6 35 8 7 

10 3 4 23 5 7 36 8 9 

11 3 7 24 6 4 37 9 7 

12 3 8 25 6 5 38 9 8 

13 4 1 26 6 7    
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Based on the table of neighborhoods, generated by both the distance-base method and 

the boundary-based method, one can compute the local range for each dissemination 

area (polygon) according to Equation 3-9 (see Section 3.2.3). Since the calculation of the 

local range cannot be accomplished in the ArcGIS, a calculator for computing the local 

ranges is developed (see Appendix). 

 

4.3.5 Local Standardization 

Since four neighborhood schemes are applied in this case study, four sets of local 

standardized criterion maps are generated by using Equations 3-10 and 3-11. Figure 4-3 

shows the results of local standardization for six criteria according to the boundary-

based neighborhood scheme. The local standardized criterion maps based on distance-

based neighborhood scheme with the threshold distance of 850m, 1600m and 2400m 

are showed in Figures 4-4, 4-5, and 4-6, respectively. 

There are essential differences between the global standardized criterion map (Figure 4-

2) and corresponding local criterion maps (Figures 4-3, 4-4, 4-5 and 4-6). As expected, 

spatial patterns of criterion values generated by the local OWA method are more 

localized than the global one. The AVE_DWE criterion (the average value per dwelling) is 

used to illustrate the differences between the global and local patterns (see Figure 4-7). 

This criterion has the distinct spatial pattern of the global standardization values (see 

Section 4.3.3). The spatial pattern with the higher values in the northwestern part of 

London can be observed for the global standardization (see Figure 4-7-A). However, the 

local standardized criterion maps are characterized by dispersed distribution of peaked 

values across the whole study area (see Figures 4-7-B, 4-7-C, 4-7-D, and 4-7-E). 

According to the global criterion standardization results, the spatial clustering of less 

expensive dwellings in central and southeastern London is greater than in the 

northwestern section of the city. On the other hand, in the local criterion results, peak   
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(A) MED_INC     (B) LOW_INC   

 

(C) EMP_RAT    (D) AVE_DWE   

 

(E) UNI_EDU     (F) RES_BUR   

Figure 4-3 Local Standardized Criterion Maps Based on the Boundary 
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(A) MED_INC     (B) LOW_INC   

 

(C) EMP_RAT    (D) AVE_DWE   

 

(E) UNI_EDU     (F) RES_BUR   

Figure 4-4 Local Standardized Criterion Maps Based on 850m Distance 
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(A) MED_INC     (B) LOW_INC   

 

(C) EMP_RAT    (D) AVE_DWE   

 

(E) UNI_EDU     (F) RES_BUR   

Figure 4-5 Local Standardized Criterion Maps Based on 1600m Distance 
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(A) MED_INC     (B) LOW_INC   

 

(C) EMP_RAT    (D) AVE_DWE   

 

(E) UNI_EDU     (F) RES_BUR   

Figure 4-6 Local Standardized Criterion Maps Based on 2400m Distance 
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values can be observed in the central and southeastern parts of the city because local 

patterns underscore the relatively high values at the neighborhood scale. 

Furthermore, four neighborhood schemes present difference outcomes. The results 

based on neighborhoods defined by shared boundaries and threshold distance of 850m 

show an ‘evenly’ dispersion of higher values (see Figures 4-7-B and 4-7-C). Comparing 

spatial patterns obtained with neighborhood schemes based on different threshold 

distances (see Figures 4-7-B, 4-7-C and 4-7-D), one can conclude that with increasing the 

threshold distance the number of areas with the highest criterion values decreases. This 

can be attributed to the increasing size of the neighborhood as a function of the 

increasing threshold distance. In general, the area having the highest value in every 

neighborhood is identified as a focal area of that neighborhood. When the size of the 

neighborhood increases, the number of peak values decreases. 

For the case of 2400m threshold distance (Figure 4-7-D), the high criterion values tend 

to cluster in the north and west sections of the study area. This makes the spatial 

pattern similar to that generated by the global standardization procedure (Figure 4-7-A). 

Note that when the value of threshold distance is sufficiently large, the outcomes of 

local and global standardization will be the same. Consequently, the global method can 

be deemed as the extreme case of the neighborhood scheme based on the threshold 

parameter. 
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(A) global standardization 

 

(B) local standardization on the boundary           (C) local standardization on 850m 

 

(D) local standardization on 1600m  (E) local standardization on 2400m 

Figure 4-7 The Comparison of Global and Local Standardized Criterion Maps for 

Average Dwelling Value Criterion 
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4.3.6 Local Criterion Weight 

The local criterion weight is a function of global criterion weights, local range and global 

range (Equation 3-12). Given four neighborhood schemes, the results of the local 

criterion weighting have four sets of outcomes. Figures 4-8, 4-9, 4-10 and 4-11 show the 

spatial patterns of local criterion weights under different neighborhood schemes. 

The local criterion weights are the kernel of the local OWA method. The local criterion 

weight contains the local context and supports spatial visualization. In the global OWA 

method, all locations (areas) are assigned by a single value as the global criterion weight. 

For example, the global criterion weight of median incomes is 0.25 (see Table 4-3). Since 

the local criterion weight depends on the local range, each location is assigned by a 

unique value of local criterion weight. This is because, for a given criterion, values of the 

global weight and the global range are constant, while the local criterion weight is a 

function of the local range which varies on the location basis (see Equation 3-12). The 

local ranges in turn depend on the neighborhood scheme. Therefore, the spatial pattern 

of local criterion weights can be considered as an important element of defining the 

character and the spatial arrangement of residential neighborhoods. 
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(A) MED_INC     (B) LOW_INC   

 

(C) EMP_RAT    (D) AVE_DWE   

 

(E) UNI_EDU     (F) RES_BUR   

Figure 4-8 Local Weights Based on the Boundary  
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(A) MED_INC     (B) LOW_INC   

 

(C) EMP_RAT    (D) AVE_DWE   

 

(E) UNI_EDU     (F) RES_BUR   

Figure 4-9 Local Weights Based on 850m Distance  
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(A) MED_INC     (B) LOW_INC   

 

(C) EMP_RAT    (D) AVE_DWE   

 

(E) UNI_EDU     (F) RES_BUR   

Figure 4-10 Local Weights Based on 1600m Distance 
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(A) MED_INC     (B) LOW_INC   

 

(C) EMP_RAT     (D) AVE_DWE   

 

(E) UNI_EDU     (F) RES_BUR   

Figure 4-11 Local Weights Based on 2400m Distance  
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The criterion of the average value per dwelling (AVE_DWE) is selected to illustrate the 

impact of changing neighborhood schemes on the spatial patterns of local criterion 

weights (see Figures 4-8, 4-9, 4-10 and 4-11). The set of criterion maps also includes the 

global criterion weight of AVE_DWE criterion to show the difference between the spatial 

patterns of global and local criterion weights (see Figure 4-12). 

The global criterion weight is homogeneously applied to every location in the study area. 

In this example, each location is assigned the same value of 0.14 (see Figure 4-12-A). A 

comparison of spatial patterns of local criterion weights indicates that the neighborhood 

scheme has the considerable impact on the spatial distribution of local criterion weights. 

For the boundary-based neighborhood scheme, the size of neighborhoods tends to be 

smaller compared with the size of neighborhood generated by other neighborhood 

schemes. It results in a ‘patchy’ spatial pattern of local criterion weighs. The patches of 

local criterion weights become larger with the increasing threshold distance (see Figures 

4-12-C, 4-12-D and 4-12-E). 
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(A) global criterion weight 

 

(B) local criterion weights on the boundary      (C) local criterion weights on 850m 

 

(D) local criterion weights on 1600m  (E) local criterion weights on 2400m 

Figure 4-12 The Comparison For Global and Local Criterion Weights of AVE_DWE 



51 

 

4.3.7 Measures of Order Weights 

One can generate a wide range of OWA solutions (scenarios or spatial patterns) by 

changing the   parameter or the associated set of order weights (see Equation 3-5 and 

Equation 3-13). This case study explores five scenarios of order weights by applying 

different values of the parameter:   = 0.001, 0.5, 1, 2 and 1000 (see Section 3.1.5.2). 

For the parameter of    = 0.001, the OWA model corresponds to the conventional OR 

operator. When parameter    = 1000, the OWA model is an equivalent of the 

conventional AND operator. These two operators are non-compensatory. Any value of 

parameter   between the two extreme cases results in a compensatory OWA method; 

that is, a relatively poor value of criterion can be compensated by a relatively high value 

for other criterion. The compensatory method is also referred to as the OWA trade-off 

method. Particularly, when parameter   = 1, then the OWA operator corresponds to the 

WLC operator, which is characterized by maximum value of the trade-off (see Equation 

3-7).  

The ORness and trade-off are the measures of OWA operators (see Section 3.1.5.2). 

Increasing the parameter   from 0 to 1 leads to different OWA operators, which are 

associated with the two measures. The types of OWA operators are defined by the 

values of order weights. For the AND, OR and WLC operators, the set of order weights 

remains the same values for both global and local OWA models (see Table 3-4), 

consequently, the ORness and trade-off holds same value of these three OWA operators 

among different OWA models; while, other trade-off operators have different values of 

order weights according to Equation 3-5 for the global OWA method or Equation 3-13 

for the local OWA method. 
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Table 4-6 The ORness and trade-off of different OWA operators for global and local 

order weights 

OWA 

Operators: 
OR (  = 0)   = 0.5 WLC (  = 1)   = 2 AND (  = 1000) 

Global OWA 

ORness 1 0.676 0.5 0.311 0 

Trade-off 0 0.729 1 0.738 0 

Local OWA based on 850m neighborhood scheme 

ORness 1 0.682 0.5 0.332 0 

Trade-off 0 0.724 1 0.777 0 

Local OWA based on 1600m neighborhood scheme 

ORness 1 0.694 0.5 0.343 0 

Trade-off 0 0.707 1 0.784 0 

Local OWA based on 2400m neighborhood scheme 

ORness 1 0.694 0.5 0.343 0 

Trade-off 0 0.708 1 0.774 0 

Local OWA based on boundary-based neighborhood scheme 

ORness 1 0.676 0.5 0.324 0 

Trade-off 0 0.732 1 0.769 0 
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Table 4-6 shows the ORness and trade-off of five OWA operators used in this case study 

for the global OWA method and four different neighborhood schemes of the local OWA. 

Particularly, given parameter   equals 0.5 and 2, the values of ORness and trade-off 

shown in the Table 4-6 are the sum up value of the measurement of each location and 

divided by the total number of observations. With the increasing of parameter   that 

the OWA operator is changed from OR operator to AND operator, the value of ORness 

decreases from 1 to 0 (see Equation 3-6). This implies a decreased degree similarity of 

the OWA operators to the logical OR from OR operator to AND operator by increasing 

the value of parameter  . Moreover, for the OR operator and AND operator, the zero 

trade-off values indicate no compensation among criteria; while WLC operator conveys 

a full trade-off. The OWA operators of parameter   = 0.5 and   = 2 are in the similar 

medium degree of substitutability (or compensation) (see Section 3.1.5.2).  

 

4.4 The Overall OWA Scores 

Changing the   parameter on the continuum ranging from 0 to 1 results in different 

OWA operators (including the conventional OR, AND and WLC operators). For each 

value of the    parameter, one output map can be obtained. In the local OWA method, 

varying neighborhood schemes also leads to different results. To explore the spatial 

pattern of socioeconomic status in London, five OWA operators are applied: OR, AND, 

and three trade-off operators. Furthermore, the local OWA method is used to generate 

the solutions in four different neighborhood schemes.  

4.4.1 Overall Global OWA Scores 

A set of output maps of the overall global OWA score is shown in Figure 4-13. In general, 

the northwestern sections of London have higher socioeconomic status than the central 

area and eastern part of the city. This spatial pattern can be observed from each of the 

five global OWA outcomes. 
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(A) OR        (B) Trade-off   = 0.5 

 

(C) Trade-off   = 1 (WLC)     (D) Trade-off   = 2  

    (E) AND 

Figure 4-13 Output Maps of Global OWA Method 
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The results of OR operator (see Figure 4-13-A) represent an ‘ideal’ situation of the 

socioeconomic status in London, Ontario. Specifically, the OR operator assigns the 

highest criterion values to each location. This type of spatial pattern can be referred to 

as an optimistic evaluation scenario (Yager, 1988; Malczewski, 2006). Figures 4-13-B, 4-

13-C and 4-13-D show the results of three compensatory OWA operators (trade-off 

situations). In general, the spatial patterns of these three situations are similar to that 

generated by the OR operator; that is, the northwestern part of London has high 

socioeconomic status while the central and eastern areas of the city are characterized 

by low socioeconomic status. It is important to note that an increasing value of the 

  parameter corresponds to a decreasing degree of ORness (Malczewski, 2003).  The 

maximum trade-off is achieved for the WLC model when      (see Table 4-6). The 

AND scenario represents an extremely pessimistic situation by assigning the lowest 

criterion value to each location (see Figure 4-13-E).  

4.4.2 Overall Local OWA Scores 

Four sets of results of the local OWA method with different neighborhood schemes are 

presented in Figures 4-14, 4-15, 4-16 and 4-17. Each figure includes five output maps for 

different values of the   parameter.  

In Figure 4-14, despite varying operators applied, a similar spatial pattern can be 

observed; that is, the areas (locations) of the same value class are dispersed in the study 

area. The patterns of high spatial heterogeneity agree with the expectation that the 

local OWA scores are more localized than the global OWA scores.  

The result of OR operator (see Figure 4-14-A) conveys the ‘ideal’ situation (or the most 

optimistic scenario) of the socioeconomic status of the study area. The highest criterion 

value is assigned by OR operators for each location. Hence many areas are located in the 

highest value class, presenting a relatively high socioeconomic status. Figures 4-14-B, 4-

14-C and 4-14-D show the results of three compensatory (or trade-off) situations of the 

local OWA methods. With the increasing of the value of  , the evaluation scenario 
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changes from optimistic to pessimistic. The results of AND situation (see Figure 4-14-E) 

indicates the most pessimistic pattern of the socioeconomic status; it is obtained by 

assigning the lowest criterion value to each location. In addition, outcomes of local OWA 

based on the threshold distance neighborhood scheme (see Figures 4-15, 4-16 and 4-17) 

hold the similar tendency of altering the value of   (associated to OR, trade-off and 

AND). 

The local OWA method aims at revealing the local information of the neighborhood 

context. The high value areas in outcome maps indicate locations with relatively high 

socioeconomic status in the defined neighborhood. It should be noted that the concepts 

of “relatively high” or “relatively low” are essential for understanding the results of local 

OWA method. For a given neighborhood, the focal location with the highest value in the 

neighborhood will be highlighted in the results of local OWA method. By this method, 

even if neighborhoods with low values have a location with a relatively higher value 

compared to other locations in the same neighborhood, this location is assigned a 

higher local weight and local overall OWA score as compared to the corresponding 

global weight and overall OWA score. Furthermore, two locations sharing the same raw 

value of all set of criteria might not be assigned the same overall local OWA score. To 

better understand the results of local OWA method, one should be aware of the 

difference between the absolute high value areas and relatively high value areas. In fact, 

the results of global OWA method reveal the area with absolute values, while the results 

of local OWA method present the area with relative values. It is important to analyze 

the results of absolute values and relatively values in comparison. Hence results of 

global OWA and local OWA should be interpreted together. 
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(A) OR        (B) Trade-off   = 0.5 

 

(C) Trade-off   = 1 (WLC)     (D) Trade-off   = 2  

     (E) AND 

Figure 4-14 Output Maps of Local OWA based on Boundary Neighborhood Scheme 
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(A) OR        (B) Trade-off   = 0.5 

 

(C) Trade-off   = 1 (WLC)     (D) Trade-off   = 2  

 (E) AND 

Figure 4-15 Output Maps of Local OWA based on 850m Neighborhood Scheme 
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(A) OR        (B) Trade-off   = 0.5 

  

(C) Trade-off   = 1 (WLC)     (D) Trade-off   = 2  

 (E) AND 

Figure 4-16 Output Maps of Local OWA based on 1600m Neighborhood Scheme 
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(A) OR        (B) Trade-off   = 0.5 

  

(C) Trade-off   = 1 (WLC)     (D) Trade-off   = 2  

 (E) AND 

Figure 4-17 Output Maps of Local OWA based 2400m Neighborhood Scheme 
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4.4.3 Comparing Local and Global Overall OWA Scores 

The WLC operator is selected as an example in the following illustration of the 

comparisons between the global and local OWA method. Figure 4-18 shows five output 

maps of WLC (see also Figures 4-13 to 4-17). 

 In this case study, the spatial pattern of global WLC (Figure 4-18-E) indicates that 

northwestern London has a higher socioeconomic status than the central and eastern 

areas of the city. However, the WLC results of global OWA only convey the global trend 

by showing areas with absolute values while local OWA can indicate the relative 

differences within the northwestern area of the city. The results the local WLC operator 

(see the Figures 4-18-A and 4-18-B) show that the locations with high values are evenly 

distributed in the central and eastern areas indicating the locations with the relatively 

high socioeconomic status in the low socioeconomic status neighborhoods. Compared 

with the global WLC (Figures 4-18-C and 4-18-D), although high value locations appear in 

the central and eastern parts of the city (the low value areas in the global trend, the 

high value locations also tend to cluster together in the northwestern area of the city. 

This implies that the spatial pattern of the local overall OWA scores generally approach 

the global pattern along with the increasing of the value of threshold distance.  

One of the aims of changing the threshold distance is to examine the spatial pattern of 

neighborhoods. Selecting small threshold distance results in more localized pattern of 

both highest and lowest values of the overall OWA scores. This means that high and low 

values can be located next to each other creating a dispersed spatial pattern. A gradual 

increase of the threshold distance results in the increasing clustering of areas having 

similar (high or low) score in the results of local OWA method. The clustered units form 

the relatively homogenous neighborhoods of low and high socioeconomic status (see 

Figure 4-18). This finding is confirmed by the results of spatial autocorrelation (see next 

Section).   
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(A) Local WLC on the boundary  (B) Local WLC based on 850m 

 

(C) Local WLC based on 1600m  (D) Local WLC based on 2400m 

 

(E) Global WLC 

Figure 4-18 WLC Results of Global OWA Method And Local OWA Methods Based on 

Different Neighborhood Schemes 



63 

 

4.4.4 Comparing Spatial Autocorrelation 

The spatial patterns of the overall OWA scores can be qualified by measuring the spatial 

autocorrelation. Moran’s I is used as the index to evaluate the degree of spatial 

autocorrelation (see Table 4-6 and Figure 4-19). As indicated in Table 4-7, the spatial 

autocorrelation of global WLC is clustered. Moreover, the values of Moran’s I statistic 

(and associated z-scores) indicate that increasing of threshold distance results in an 

increasing clustering of similar OWA scores of socioeconomic status. Specifically, the 

spatial autocorrelation the local OWA methods for the boundary-based case and 850m 

case are spatially dispersed. The local OWA scores based on the 1600m and 2400m 

distance parameters are characterized by a clustered pattern. Also, the local OWA 

patterns are becoming more similar to the global OWA along with increasing the 

threshold distance (see Figure 4-18). Note that each of the Moran’s I statistics (z-score) 

is significant as indicated in the p-values (see Table 4-6 and Figure 4-19). 

 

Table 4-7 The Spatial Autocorrelation Index for WLC 

WLC Moran's I z-score p-value Spatial pattern 

Local_boundary -0.115 -4.132 0.000036 Significant dispersed 

Local_850m -0.097 -3.460 0.000540 Significant dispersed 

Local_1600m 0.134 4.964 0.000001 Significant clustered 

Local_2400m 0.283 10.408 0.000001 Significant clustered 

Global 0.344 12.652 0.000001 Significant clustered 
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(A) Clustered            (B) Dispersed  

Figure 4-19 Spatial Autocorrelation Statistics 

 

4.4.5 Comparing Scatter Plots 

The results of the global and local OWA methods can also be examined by using scatter 

plots (see Figure 4-20). The y and x axes of the scatter plots represent standardized 

values for the global and local WLC scores, respectively. The scatter-plot points can be 

grouped into four classes corresponding to the plot’s quadrants. A vast majority of the 

points is situated the first and third quadrants, where the local and global scores are 

above their mean values (in the first quadrant) and the scores are smaller their mean 

values (in the third quadrant). The second quadrant contains points with the global 

values greater than the mean and the local values smaller than the mean. Points with 

the global values smaller than the mean and the local values greater than the mean are 

situated in the fourth quadrant. In general, the points tend to be more clustered around 

the trend line along with increasing the threshold distance (see Figure 4-20). 
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(A) Global WLC vs. Local WLC (boundary)  (B) Global WLC vs. Local WLC (850m)  

 

(C) Global WLC vs. Local WLC (1600m)  (D) Global WLC vs. Local WLC (2400m) 

Figure 4-20 Scatter Plots of Global WLC and Local WLC 
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The numbers of points that belong to the second and fourth quadrants can be used as 

an indication of the differences between the global and local OWA results. The larger 

the number of points in the two quadrants, the larger the difference is between the two 

OWA results. In addition, one can select the points in the second and fourth quadrants 

of the scatter plots to examine the spatial patterns of the associated areas on the 

criterion map. 

The highlighted areas in the Figure 4-21 indicate the corresponding selected points in 

scatter plots. Focusing on the second quadrant for the global WLC (see Figure 4-21-C), 

the highlighted areas have high values and tend to be located along edges of the study 

area. These selected locations are geographically related to locations with the peak 

value in their neighborhood. To localize the OWA method, the value of these selected 

areas is reduced to highlight the location with the local peak value. However, the fourth 

quadrant for global WLC (see Figure 4-21-D) contains a set of locations which are 

characterized by low values and tend to be situated in the periphery of central London. 

These selected locations are not characterized by the lowest value but are 

geographically adjacent to the locations with the lowest value in their neighborhood. In 

the local OWA method, the value of these selected locations is increased to emphasize 

the location with the local lowest value.  

Figure 4-22 indicates the distributions of the selected points of the second and the 

fourth quadrants from the scatter plots, presented on the outcome maps of local WLC 

for the boundary-based, 1600m and 2400m neighborhood schemes. For these three 

neighborhood schemes, the changes of spatial patterns from global to local OWA are 

similar to the patterns described in the last paragraph. In addition, the number of 

selected location is decreased (see Figures 4-21). Two observations can be made from 

Figures 4-20 and 4-21: the points are gradually more clustered around the trend line 

with the increasing threshold distance, and the number of points in the second and the 

fourth quadrants decreased. These observations imply that the difference between the 

local OWA and global OWA method tend to be reduced by enlarging the neighborhood 
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under the distance-based neighborhood scheme of local OWA method. 

 

 

 

(A) the second quadrant on local WLC (850m) (B) the fourth quadrant on local WLC (850m) 

 

(C) the second quadrant on global WLC  (D) the fourth quadrant on global WLC 

Figure 4-21 Selections from the Scatter Plot (Global WLC vs. Local WLC) 
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(A) the second quadrant on local WLC (boundary) (B) the fourth quadrant on local WLC (boundary) 

 

(C) the second quadrant on local WLC (1600m) (D) the fourth quadrant on local WLC (1600m) 

 

(E) the second quadrant on local WLC (2400m) (F) the fourth quadrant on local WLC (2400m) 

Figure 4-22 Selections from Scatter Plots (Global WLC vs. Local WLC) 
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4.5 Summary 

Three main conclusions can be reached by analyzing the spatial patterns of OWA scores. 

First, the results of local OWA method convey more spatial information about 

neighborhoods. The location with the relatively higher value in the neighborhood is 

assigned greater criterion value and highlighted in the local OWA patterns. Although the 

central and eastern regions of London have lower socioeconomic status than the 

northwestern parts of the city according to the result of global OWA method, locations 

with relatively higher value in those low-value regions should be noticed. Such local 

spatial information is provided by the results of the local OWA method.  

Second, the neighborhood scheme has a significant impact on the spatial patterns of the 

local OWA results. With increasing threshold distance, the spatial pattern of outcomes 

of local OWA changes and turns more similar to the global OWA pattern. 

Third, the global and local OWA methods reveal different spatial patterns of 

socioeconomic status of London. In the global OWA method, the northwest regions of 

London have a better socioeconomic status than the central and eastern of the city. 

However, the results of local OWA indicate that locations with relatively high 

socioeconomic status are dispersed across the whole study area. 
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Chapter 5  

5 Conclusion 

This thesis has focused on developing a local form of the global OWA. Related 

terminologies are first introduced in Chapter 2, followed by the methods chapter in 

which the procedures of the global and local OWA methods are presented. Then, the 

various neighborhood schemes are defined and the concept of local criterion weights is 

introduced.  A case study of assessing the socioeconomic status of London, Ontario is 

presented to illustrate the local OWA method. Finally, the results of local and global 

OWA methods are compared.  

The local OWA method advances research on GIS-based OWA in the following aspects. 

First, the local OWA method provides a tool for examining spatial patterns locally, while 

the global OWA method fails to represent the local context. Second, the local OWA gives 

an opportunity for visualizing and analyzing spatial patterns of the results (overall scores) 

and the model parameters (e.g., the local criterion weights). The parameters have 

constant values in the global OWA model (e.g., the criterion weight has a single value for 

a given criterion). Third, the neighborhood scheme is defined as the parameters of the 

local OWA method. The changeable neighborhood schemes increase the flexibility of 

OWA and make it more practical for real world problems. Fourth, the global OWA is a 

special case of the local OWA method. By defining a suitable distance-based 

neighborhood scheme, the local OWA method can generate the same results as the 

global OWA. 

One of the limitations of this research is related to the problem of zero local range value 

for a neighborhood scheme. To avoid this situation, rules need to be followed when 

defining the neighborhood scheme, thus flexibility in defining the neighborhood scheme 

is confined. For example, in the case study of London, Ontario the threshold distance 

cannot be less than 850m. On the other hand, when the criterion values have no 

significant spatial variation, the value of local range has high possibility to be zero in the 
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given neighborhood. Therefore, such criteria are not applicable in the local OWA 

method. Another limitation is that due to the lack of data of the neighborhood partition, 

it is unable to discuss the precise definition of neighborhood in the sociology field.  

Future research should focus on exploring how defining a given neighborhood scheme 

affects the results in the local OWA method; that is, some theoretical foundation should 

be developed for the selection of neighborhood scheme. This thesis also suggests that in 

the future, the theory of localizing the conventional OWA method can be applied to 

other approaches in GIS-based multicriteria analysis.   
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Appendix 

 

Figure A-1 Interface of Local Calculator 

Existing GIS systems do not provide modules for the local MCA procedures. Therefore a 

local MCA calculator was developed using JAVA. The core of the calculator consists of 

procedures for generating local range and ordered criterion weights (see Section 3.1.4 

and 3.2.3). Figure A-1 shows the interface of the local calculator. It requires five inputs 

and has four output options. The input files are in the text format. In this case study, the 

raw criterion values of six criteria should be imported into the ‘Polygon File’. The 

neighborhood schemes, based on three different distances (850m, 1600m and 2400m) 

and the boundary, should be respectively imported into the ‘Neighbor File’. The table of 

global criterion weights should be imported into the ‘Global Weight File’. The types of 

criteria (1 = Maximum and 0 = Minimum) (see Table 4-1) should be imported into 

‘Indicator File’. The table of global standardized criteria is imported when the ‘OWA’ 

option of output is checked.  

There are four outputs of the OWA method. The first three output options (‘Criteria 

Range’ ‘Local Weight’ and ‘Standardized Criteria’) are designed for obtaining results of 



80 

 

the intermediary steps of the OWA method. Selecting “OWA” option can generate the 

final outcome of the local and global OWA procedures. 
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