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Abstract 

This thesis investigated plant-microbe-metal interactions at two scales: a single plant-

microbe system and an agricultural rhizobacterial community.  The first objective was to 

investigate the effectiveness of a plant growth-promoting rhizobacterium (PGPR) on 

mediating cadmium stress in a plant model system.  Arabidopsis thaliana Col-0 was 

inoculated with Pseudomonas putida UW4, which in its wild type form has been reported to 

reduce plant stress by simultaneously metabolizing the ethylene precursor 1-

aminocyclopropane-1-carboxylate (ACC) with the enzyme ACC deaminase and stimulating 

plant growth through the production of indole-3-acetic acid (IAA).  A mutant strain that lacks 

ACC deaminase and a no bacteria treatment were used as controls.  When plants were grown 

on agar-based or hydroponic Murashige and Skoog (MS) medium containing cadmium both 

strains of PGPR had deleterious effects on plant growth.  Further investigation revealed that 

the PGPR were unable to survive in MS medium without the presence of a plant.  Loss of 

plant growth-promotion was hypothesized to be due to the unfavourable environment for the 

bacterium.  To test this, agricultural soil was maintained for 28 days with either MS medium 

or distilled water and the bacterial community profile was analyzed using terminal restriction 

fragment length polymorphism (TRFLP) analysis.  A decrease in fragment richness was 

observed in the MS medium treatment, which lends further support to the theory that certain 

environmental conditions can be detrimental to rhizobacteria.  The final objective was to 

determine if the rhizosphere microbial communities varied among two pairs of high and low 

metal-accumulating plants (two cultivars of Triticum durum, Kyle and Arcola, as well as 

Brassica juncea and B. napus).  Plants were grown in agricultural soil containing cadmium 

and the microbial community profiles were analyzed using TRFLP.  When the plant’s metal-

accumulating ability was well matched to the metal concentration in the soil a unique 

rhizobial community developed; when they were unmatched, the rhizobacteria did not differ 

from the bulk soil.  As a whole, this thesis demonstrates the complex nature of plant-

microbe-metal interactions and the need to continue to look at these systems.   Knowledge 

gained will help in properly matching PGPR to field applications to increase the efficacy of 

bioremediation strategies, agricultural yields, and food safety.   
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Chapter 1  

1 General Introduction 

1.1 Overview 

Often, when attempting to explain unexpected outcomes of agricultural or 

phytoremedation field trials, researchers use the catchall disclaimer that any number of 

unknown and complex interactions between plants, microbes, and the environment may 

be contributing to the result.  Although many potential mechanisms have been proposed 

for the way plants and microbes interact, especially mechanisms of action for beneficial 

and deleterious microbes on plant health, growth and development, most of this research 

focuses on single pathways of interest under defined growth conditions and fails to 

address how these mechanisms may be altered by other environmental factors.   

Additionally, a lot of research has focused on the identification and isolation of 

potentially beneficial microbes from the rhizosphere of plants.  However, very little has 

been done to characterize the role(s) of these microbes at the community level, their 

interactions with other microbes, or how the plants themselves, in turn, affect these 

microbes.  This may be due to the fact that it has been difficult to characterize microbial 

communities in the past due to the limitations of culture-based methodology.  However, 

with the development of new molecular techniques researchers can start to look at 

community interactions in a whole new way.  Knowing the complexity of plant-microbe 

interactions, it is important that future research attempts to understand both small-scale 

plant-microbe-metal interactions, such as elucidating particular mechanisms of action for 

beneficial and deleterious microbes under different environmental conditions, as well as 

to examine plant-microbe-metal interactions as a whole ecosystem. 

1.2 Cadmium as a Human Health and Environmental Issue 

Cadmium (Cd) is a non-essential, potentially toxic, metal for almost all living 

things.  Essentiality of elements required by plants was established by Arnon and Stout 

(1939), who deemed an element essential if: 1) the organism is unable to grow or 

complete its lifecycle in the absence of the element, 2) the element cannot be replaced 
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completely by another element, and 3) the element is involved in the organism’s 

metabolism.  Cadmium does not fit any of the above criteria, for any known organism 

except the marine diatom Thalassiosira weissflogii, which can substitute cadmium for 

zinc to maintain growth (Lane et al. 2005). 

Cadmium exists naturally in soil and is also introduced anthropogenically through 

a variety of sources, such as atmospheric deposition, application of manure, fertilizing 

regimes, other soil amendments, and accidental contamination from industry (Alloway 

and Steinnes, 1999).  Repeated application of phosphate fertilizer on agricultural fields is 

a major source of cadmium in agricultural systems and, consequently, human exposure 

(Sheppard et al. 2007; Grant et al. 2011).  Phosphate fertilizer can contain up to 340 mg 

cadmium/kg fertilizer depending on the cadmium concentration in the phosphate rock 

used to manufacture it (Alloway and Steinnes, 1999).  The accumulation of cadmium in 

food crops, especially food staples such as wheat, is of major concern to human health 

due to the potentially toxic effects.  The United States Environmental Protection Agency 

(US EPA) has classified cadmium in Group B1, a probable human carcinogen, and lists 

both acute and chronic effects such as pulmonary irritation, kidney disease, and 

developmental abnormalities (US EPA, 2000).   

In addition to human health effects, cadmium can have a negative impact on crop 

yields.  Visible symptoms of cadmium toxicity in plants include browning of leaves, 

chlorosis, reddish veins and petioles, brown stunted roots, and severe reduction in growth 

(Kabata-Pendias and Pendias, 1994).  Cadmium can interfere with photosynthesis by 

disrupting the function of the photosynthetic apparatus, including light harvesting 

complex II (Krupa, 1988), photosystems I and II (Siedlecka and Krupa, 1996), and 

chlorophyll content (Larsson et al. 1998).  Cadmium also negatively affects water 

balance (Barceló et al. 1986), nutrient uptake (Yoshihara et al. 2006), and function of a 

variety of enzymes including rubisco, arguably the most important enzyme in plants since 

it is essential for carbon fixation (Siedlecka et al. 1997).  However, plant sensitivity to 

cadmium varies widely among species and varieties. 
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The range of cadmium that naturally exists in soil is 0.01 – 1.0 mg/kg (Pais and 

Jones, 1997).  The Canadian Council of Ministers of the Environment (CCME) set the 

maximum allowable concentration of cadmium in agricultural soil at 1.4 mg/kg (CCME, 

2007).  However, standards  based on soil concentration fail to take into consideration the 

range of factors that may influence metal bioavailability such as pH (Naidu et al. 1997), 

organic matter content (Murray et al. 2011), and microbial processes.  Microbes have 

been shown to both inhibit and stimulate the mobility of cadmium in soil.  Organic 

substances produced by some microbes can chelate and mobilize cadmium (Bollag and 

Czaban, 1989) and microbial metabolism of organic matter, which normally binds 

cadmium, results in the release of cadmium from these complexes and increases its 

overall mobility (Cole, 1979).  Conversely, microbial production of hydrogen sulphides 

results in the formation of stable, insoluble cadmium sulphides (Bollage and Czaban, 

1989), which are unavailable for plant uptake. 

Given the prevalence of cadmium in agricultural soils globally, and especially in 

Canada, and the significant impact that this has on human health and crop yields, 

cadmium is an important toxic metal to study. 

1.3 Plant Responses to Toxic Metals 

1.3.1 Ethylene Stress Response 

The production of ethylene is the most common response of plants exposed to a 

variety of biotic and abiotic stresses.  Ethylene is a gaseous plant hormone that, in low 

concentrations, is responsible for a wide range of processes including: developmental 

processes, such as formation of roots; flowering; sex determination; and acclimation 

processes, such as defense response to pathogens (Taiz and Zeiger, 2010).  It is thought 

that low concentrations of ethylene exist in all plants and that the introduction of a stress 

results in an initial small peak in ethylene, which triggers protective responses that might 

ameliorate the stress.  With continued exposure to the stress a second, larger peak of 

ethylene will then trigger stress-induced symptoms in the plant (reviewed in Glick, 2005), 

such as stunted growth and senescence (Gazzarrini and McCourt, 2003).  Toxic metal 
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exposure, such as exposure to cadmium in concentrations above 1 µM, have been shown 

to stimulate stress ethylene production in leaf tissue (Fuhrer, 1982) 

1.3.2 Plant Tolerance to Toxic Metals 

Plants have evolved many mechanisms for coping with metal stress including 

different avoidance and tolerance strategies to limit the stress response.  Avoidance 

strategies include excluding the metal from the plant tissue by immobilizing the metal in 

the soil.  This can occur through the production of plant exudates, such as organic acids, 

that bind metal present in the soil making it less bioavailable to the plant (Costa et al. 

1997) or by altering soil pH to reduce metal solubility (Yang, et al. 2001).  Plants also 

have tolerance mechanisms to minimize the damage of non-essential metals when they 

enter the plant.  Plants respond by binding metals with phytochelatins (Akhter et al. 

2012) and/or organic acids (Sanita di Toppi and Gabbrielli, 1999) and 

compartmentalizing these complexes within metabolically inactive sites, such as the 

vacuole, where they are rendered inert (Salt and Rauser, 1995).   

1.4 Plant-Microbe interactions 

1.4.1 The Rhizosphere 

The rhizosphere is the volume of soil surrounding plant roots that is directly 

influenced, chemically, physically, and biologically, by the plant root, leading to a 

favorable habitat for microorganisms (Sorenson, 1997).  These microorganisms may in 

turn heavily influence the plant.  Environmental and soil conditions have known effects 

on both plant and microbe development.  While plant responses to metals are well 

documented (section 1.3), similar information on microbes is scarce.  For example, it is 

known that exposure to toxic metals and other pollutants can reduce overall microbial 

biomass and diversity in soil (Giller et al. 1998).  Beyond measures of biomass and 

metabolic rates there currently is no literature available on the response of microbes to 

toxic metal exposure.  In addition to abiotic factors, biological interactions and the 

intimate relationship between plants and microbes in the rhizosphere can make it difficult 

to tease apart the degree and directionality of influence between these organisms.   
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1.4.2 Plant Influence on Microbes 

The most fundamental way in which plants exert influence on the microbes in the 

rhizosphere is through the secretion of various exudates.  Organic acids (Lugtenberg et 

al. 1999), photosynthetically-fixed carbon in the form of sugars (Marschner, 1995), and 

amino acids (Simons et al. 1997) have all been identified as major components of plant 

exudates.  The increase in the availability of these nutrients stimulates proliferation of 

microorganisms and can alter the community structure by selecting for, or against, 

species that are most able to utilize those nutrients.  Some exudates can specifically 

recruit beneficial microbes.  When secreted from the roots of Arabidopsis, malic acid acts 

as a signal to recruit the beneficial bacterium Bacillus subtilis FB17 (Rudrappa et al. 

2008).  On the other hand, the secretion of defense proteins and other chemicals prevents 

the proliferation of some plant pathogens such as Pseudomonas solanacearum, Pythium 

aphanidermatum, P. ultimum, and Rhizoctonia solani (Flores et al. 1999). 

1.4.3 Microbial Influence on Plants 

Microbes found in the rhizosphere can have both beneficial and deleterious 

effects on plants.  Many of the beneficial impacts are discussed below.  Deleterious 

microbes include known plant pathogens, such as Phytophthora cinnamomi (Gotesson et 

al. 2002) and microbes that secret phytotoxic metabolites, such as Fusarium moniliforme, 

which produces fusaric acid, a corn phytotoxin that interferes with seed germination and 

plant growth regulation.  Additionally, microbes have the ability to make toxic metals 

more bioavailable to plants by chelation (Bollag and Czaban, 1989) and metabolism of 

organic-metal complexes that results in the release of metals (Cole, 1979).  Microbes can 

also compete with plants for nutrients.  In the case of iron, iron-chelating siderophores 

released by microbes bind to iron.  Uptake of these iron-siderophore complexes requires a 

transporter that can be specific to the microbe that released it (Crosa, 1989), thereby 

limiting the availability of iron for the plants. 

 Most research on the microbial component of the rhizosphere has focused on 

characterizing the physiological function of microbial communities and on the 

identification and isolation of microbes of interest from the rhizosphere.  For example, 
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past research has isolated cadmium-tolerant microbes from the roots of Indian mustard 

growing in contaminated soil (Belimov et al. 2005) and identified microbes that are 

capable of stimulating plant growth in stress conditions (Glick et al. 1998). 

1.4.4 Plant Growth-Promoting Rhizobacteria 

Plant growth-promoting rhizobacteria (PGPR) were first defined by Kloepper and 

Schroth (1978) as root-colonizing bacteria that exert beneficial effects on plant growth.  

Since being recognized as important for increasing seedling emergence, vigor, biomass, 

proliferation of root systems, and crop yield in many species, several studies have 

focused on identifying PGPR in natural systems and the development of these bacterial 

strains for commercial use (Podile and Kishore, 2006).  Several direct and indirect 

mechanisms for growth-promotion have been documented.  Direct mechanisms include 

nitrogen-fixation (Bashan et al. 2004), production of phytohormones such as the auxin 

indole-3-acetic acid (IAA), which stimulates cell growth and proliferation at low 

concentrations (Vessey, 2003), metabolism of the ethylene precursor 1-

aminocyclepropane-1-carboxylate (ACC) through the enzyme ACC deaminase (Glick et 

al. 1998), and increased availability of iron through bacterial production of siderophores 

(Kloepper et al. 1991).  Indirect mechanisms include increased competition between 

PGPR and deleterious and pathogenic microorganisms for nutrients, a mechanism 

common in the nutritionally versatile pseudomonads (Walsh et al. 2001), and formation 

of biofilms that may help to exclude toxic metals from the plant (Stout et al. 2010).     

One model for bacterial plant growth-promotion that has been thoroughly tested 

suggests two simultaneous mechanisms (Figure 1-1).  First, bacterially produced IAA can 

stimulate root cell elongation and proliferation (Arshad and Frankenberger, 1991).  

Concurrently, the bacterial enzyme ACC deaminase acts as an extracellular sink for 

plant-produced ethylene precursor, ACC, by metabolizing it into the inert byproducts 

ammonia and !"ketobutyrate, reducing the amount of ACC available for conversion into 

ethylene and minimizing the stress response that is a result of increased ethylene 

concentration in the plant (reviewed in Gamalero et al. 2009).    
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Figure 1-1: A model for plant growth-promotion by plant growth-promoting 

rhizobacteria (modified from Glick et al. 1998) 

This figure illustrates the proposed influence of bacteria indole-3-acetic acid (IAA) and 

1-aminocyclopropane-1-carboxylate (ACC) deaminase on plant production of ethylene.  

Bacterial IAA can either enhance root growth or increase the synthesis of ethylene.  

Bacterial ACC deaminase can divert ACC from the ethylene synthesis pathway and 

metabolize it into inert by-products.  When kept at a low concentration ethylene is 

important for growth, development, and defense but at high concentrations it triggers a 

stress response in plants. 
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1.4.5 The PGPR Pseudomonas putida UW4 

Pseudomonas putida is a gram-negative, aerobic, rod shaped bacterium in the 

family Pseudomonadaceae that is normally isolated from soil and water and has an 

optimum growth temperature between 25 – 30ºC (Palleroni, 1984).  Pseudomonas putida  

UW4 was isolated from the roots of common reeds (Phragmites australis) in Waterloo, 

Ontario, for its ability to utilize ACC as a sole nitrogen source (Glick et al. 1995).  This 

bacterium was originally classified as Enterobacter cloacae based on fatty acid profiles 

(Shah et al. 1998) and was later reclassified as P. putida based on 16S rRNA gene 

sequencing with 98% sequence similarity in the GenBank database (Hontzeas et al.  

2005).   Research prior to this reclassification in 2005 named this organism E. cloacae 

UW4; subsequent work was done with the same lab strain under the name P. putida 

UW4.   No further attempts have been made to identify this organism.  Given the 2% 16S 

rRNA gene sequence dissimilarity there is a possibility that this organism will be 

reclassified at a later date.   

This organism has garnered attention for its ability to promote plant growth by 

simultaneously 1) metabolizing the ethylene precursor ACC with the enzyme ACC 

deaminase and 2) stimulating plant growth through the production of the beneficial plant 

hormone IAA.  A mutant of P. putida UW4 that can no longer produce the enzyme ACC 

deaminase, but continues to produce IAA, was created by the insertion of a tetracycline 

resistance gene into the coding region of the enzyme (Li et al. 2000).  This mutant has 

since been used in ACC deaminase-containing PGPR studies to act as an ACC deaminase 

control.  A large body of research has shown the ability of P. putida UW4 to promote 

plant growth and alleviate plant stress under a range of environmental stresses in many 

plant species.  A summary of some of the stresses, plant species, and results that directly 

demonstrate the plant growth-promoting affects of this bacterium is presented in Table 1-

1.   

1.5 Characterizing Microbial Communities 

Compared to determining the functional role(s) of microbial communities very 

little research has been done to characterize differences in microbial communities in 
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Table 1-1: Summary of past research utilizing the plant growth-promoting rhizobacterium Pseudomonas putida UW4 

 

Bacterium Plant Species Stress Results Reference

Enterobacter cloacae UW41 Tomato (Lycopersicon 

esculentum cv. Heinz 902)

Flooding Maintained root and shoot growth 

and increased chlorophyll content 

Grichko and Glick 

(2001)

Canola (Brassica napus) Metal (As) Increased biomass and metal 

accumulation

Nie et al. (2002)

Common reed (Phragmites 

australis)

Metal (Co)  

Polycyclic 

Aromatic 

Hydrocarbons

Increased seed germination and 

plant size

Reed et al. (2005)

Pseudomonas putida UW4 Canola (Brassica napus) Salt             

Temperature

Increased root and shoot biomass Cheng et al. (2007)

Canola (Brassica napus) Flooding       

Metal (Ni)

Increased shoot biomass Farwell et al. (2007)

Cucumber (Cucumis sativus) Salt Promoted symbiosis with 

beneficial mycorrhizal fungi 

Gigaspora rosea resulting in 

increased biomass

Gamalero et al. 

(2008)

Ryegrass (Lolium perenne) 

Barley (Hordeum vulgare) 

Tall fescue (Festuca 

arundinacea var. Inferno) 

Fall rye (Secale cereale)

Petroleum 

Hydrocarbons

Increased biomass, particularly in 

roots and ground cover

Gurska et al. (2009)

Pseudomonas putida
2 Canola (Brassica napus) Metal (Cd) Increased root elongation Belimov et al. 2001

1
 Before 2005, P. putida UW4 was classified as E. cloacae UW4 (Hontzeas et al. 2005)

2 This is believed to be UW4, although not stated in the paper, based on other publications from this group
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different environmental conditions and under different stresses.  However, there has been 

a movement towards research of this nature.  For example, one study used a combination 

of culture-dependent and molecular techniques to document differences in microbial 

strains in the soil surrounding two different clones of poplar trees (Gamalero et al. 2012).  

Another study used the molecular technique of terminal restriction fragment length 

polymorphism analysis to determine that metal contamination in soil reduced microbial 

richness and diversity (Tipayno et al. 2012). 

Complex soil microbial communities can be difficult to characterize using 

traditional culture-based methods such as plate counts and metabolic profiling.  This is in 

equal parts due to that fact that a large number of organisms that exist in nature cannot be 

cultured in laboratory conditions (Ward et al. 1990) and that any departure from the 

original environmental parameters during cultivation will alter the community structure 

by imposing new selective conditions (Dunbar et al. 1997).  Modern molecular methods 

can overcome the problems associated with culture-based methods and allow for rapid, 

high-throughput processing of environmental samples.  One quantitative molecular 

technique for rapid analysis of complex microbial communities using polymerase chain 

reaction (PCR) amplification with fluorescently labeled primers to detect terminal 

restriction fragment length polymorphisms (TRFLP) was first developed by Liu et al. 

(1997).  This technique has since undergone many advancements to become one of the 

most commonly used, culture-independent techniques for rapid analysis of microbial 

community diversity because it has been shown to be highly reproducible and yields a 

higher number of operational taxonomic units than many other PCR-based methods 

(Osborn et al. 2000).  Methods such as TRFLP analysis can allow researchers to 

“fingerprint” the microbial community at a given time point and allows for comparison of 

communities between samples.  Analysis of TRFLP has been successfully used to 

analyze microbial populations isolated from a range of substrates including biofilms 

(Wuertz et al. 2004), water (Dorigo et al. 2005), and soil (Leckie, 2005) as well as for 

monitoring changes in communities in response to environmental changes such as 

phytoremediation processes (Tipayno et al. 2012). 
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The most common technique for TRFLP analysis involves amplifying small 

subunit (16S or 18S) rRNA gene amplicons from total genomic DNA isolated from an 

environmental sample using PCR where both primers are fluorescently labeled.  The 

amplicons are then digested with one or more restriction enzymes, and the size and 

abundance of the resulting fragments are determined using a DNA sequencer.  Since the 

size of the fragment reflects differences (polymorphisms) in the 16S rRNA genes, 

phylogenetically distinct populations can be determined and the pattern of fragments can 

be used to profile (“fingerprint”) the dominant contributors to the community (reviewed 

in Schutte et al. 2008).  When combined with phylogenetic information and statistics 

software researchers are able to detect differences in the composition of microbial 

communities and determine plausible members of these communities. 

Choice of primers can alter the TRFLP profiles that are generated.  Once 

considered a ‘universal’ bacterial primer, 8fm has since been shown to amplify as low as 

76% of 16S rRNA gene sequences that are available (Marsh et al. 2000).  However, new 

primers are constantly being developed that can overcome these shortcomings.  

Therefore, primers should be selected based on the type of analysis that will be carried 

out and with the acknowledgement that some groups may be missed in the analysis. 

Run-to-run variability, generally 0.5 – 1 bp, can result in size discrepancies 

among fragments from the same bacterial population (Schutte et al. 2008).  However, 

since this is a known variable researchers can apply methods such as rounding to the 

nearest integer and manual “binning,” which when coupled with experimental duplicates 

and common sense allows for populations within the community to be properly grouped. 

Finally, variability between samples may be masked by analytical variability 

related to DNA purification, efficiency, and pipetting error; therefore, care should be 

taken at all steps of the analysis to reduce this error.  Also, this source of analytical noise 

can be reduced by transforming the data output into a binary presence/absence matrix to 

eliminate variability in abundance due to these errors (Culman et al. 2008).  

Most of the limitations discussed above can be overcome with consistent and 

careful technique.  With knowledge of the limitations and careful analysis of the data 



 

 

12 

researchers can quickly and repeatedly compare entire microbial communities and 

monitor changes over time.  

It is possible to use TRFLP data to identify probable members of a microbial 

community by comparing detected fragment lengths to fragments predicted by databases 

of 16S rRNA gene sequences.  However, this should be done with caution since the 

length of fragments measured by the DNA sequencer can be influenced by differences in 

electrophoretic mobility of DNA caused by the use of different fluorophores to label 

DNA fragments (Tu et al. 1998) and sequence composition, especially purine content 

(Kaplan and Kitts, 2003).  Also, comparison to DNA databases is limited by the facts that 

not all isolates have been sequenced and there are many novel and unknown microbes yet 

to be identified, let alone sequenced (Blackwood and Buyer, 2007). 

The repeatability, ease of use, and range of potential applications possible with 

TRFLP analysis makes it a good tool for to study diversity and changes in complex 

microbial community structure in a wide range of environmental samples. 

1.6 Rationale and Research Objectives 

Improvements in our understanding of plant-microbe interactions under a variety of 

environmental stresses on all scales, from single-pathway biochemistry to the whole 

ecosystem, is essential for understanding factors that affect the efficiency of both 

bioremediation processes and use of PGPR for agricultural purposes.  Advancements in 

this field could help us to understand why field trials often fall short of the expected 

outcomes predicted from laboratory studies and make improvements for future field 

applications. 

It has been generally accepted that plants and microbes influence each other as well 

as their environment, but the specifics of these interactions, especially under varying 

environmental conditions are often lacking.  This could be due to the fact that it has been 

nearly impossible to include all environmental factors into lab testing or to test microbial 

communities in natural settings due to the limitations of culture-based techniques.  With 
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increasingly complex lab systems and advancements in molecular techniques we can now 

start to get a glimpse of these complex systems. 

The studies presented in this thesis were designed to investigate plant-microbe 

interactions under toxic metal stress starting from the small-scale, single bacterium 

system utilizing a known biochemical pathway, and moving up to investigating the plant-

microbe interaction as a whole ecosystem.  

The specific objectives of the studies reported in this thesis were to: 

1) Investigate the efficiency of the putative PGPR Pseudomonas putida UW4 at 

ameliorating cadmium stress in Arabidopsis thaliana grown in the common plant nutrient 

MS medium (Chapter 2) 

2) Determine whether MS medium would have a negative impact on the composition 

of native bacterial communities in agricultural soils (Appendix B) 

3) Investigate the impact of high- and low metal-accumulating plants on the 

composition of the microbial community in their rhizosphere when grown in agricultural 

soils varying in cadmium concentration (Chapter 3) 

The organisms used in each chapter were carefully selected based on the 

corresponding research objective.  In Chapter 2, the plant model species Arabidopsis 

thaliana was used due to the fact that it has well characterized physiological and 

morphological responses to the two hormones of interest, ethylene and IAA (Le et al. 

2001; Ruzicka et al. 2007; Pitts et al. 1998; Rahman et al. 2002), and that mutant lines 

were readily available.  The documented and predictable detailed responses of A. thaliana 

to these hormones, would allow me to draw conclusions about the relative roles of 

bacterial IAA production and ethylene metabolism on mitigating plant stress.  

Pseudomonas putida UW4 had been well characterized and studied.  There is a lot of 

evidence for its mechanisms of action (Figure 1-1) and it had been shown to be 

universally effective as a plant growth-promoter (Table 1-1).  Additionally, an AcdS- 

mutant of P. putida UW4 exists that can produce IAA but has no measureable ACC 

deaminase activity (Li et al. 2000).  Using these two bacterial strains could allow for 
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distinctions to be made between the relative roles of these two pathways in plant growth 

promotion.  Together, these two organisms were an ideal system for studying small-scale 

beneficial plant-microbe interactions.   

To confirm that the results of Chapter 2 were not an artifact of using an agar-

based medium or hydroponics I performed a side-project (Appendix B) to test the effect 

of MS medium on the native bacterial communities in soil.  These communities were 

compared to those from soil watered with distilled water based on the fact that many 

PGPR studies that report positive results maintained their systems in this way.      

In Chapter 3, I chose two pairs of high- and low-accumulating plants.  Metal 

uptake in durum wheat (Triticum durum) is intensively studied due to the agricultural and 

economic significance of this crop.  Natural variation in metal accumulation exists in the 

different cultivars of this crop (Garret et al. 1998).  The cultivars Kyle and Arcola are 

known to be high- and low-accumulators, respectively (Chan and Hale, 2004).  Brassica 

juncea, better known as Indian mustard, is the most popular metal hyperaccumulator used 

in phytoremediation, while B. napus is commonly used as a non-hyperaccumulating 

control (McGrath et al. 2001).   Individually, each of these pairs of plants offers a good 

system to study metal-uptake and distribution in plants, as well as plant-microbe 

interactions arising from the plant’s inherent metal accumulating abilities.  The use of 

both pairs will allow for additional insight into these mechanisms at the genus level.   

All of these studies use cadmium as a metal of interest for the reasons outlined in 

section 1.2.   
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Chapter 2  

2 The message is in the medium: the putative PGPR 

Pseudomonas putida UW4 appears to become deleterious in 

the presence of MS medium  

This chapter contains a series of experiments that were designed to evaluate the 

effectiveness of the putative plant growth-promoting bacterium P. putida UW4 under 

conditions of cadmium stress.  My initial goal was to use the model plant Arabidopsis 

thaliana grown in agar and hydroponic conditions to determine the relative roles of two 

pathways responsible for bacterial promotion of plant growth.  This project took an 

interesting turn, however, when I discovered that bacteria considered beneficial to plant 

growth under certain conditions could become deleterious. 

2.1 Introduction 

Naturally occurring soil bacteria that grow in close association with plants and are 

beneficial to plant growth are often referred to as plant growth-promoting rhizobacteria 

(PGPR).  These PGPR have the ability to increase agricultural crop yields (Glick et al. 

1997; Sziderics et al. 2007), act as biocontrol agents (Schroth and Hancock, 1982; Silva 

et al. 2004) and alleviate a variety of biotic and abiotic stresses (reviewed in 

Saravanakumar, 2012).  It is also possible to use PGPR to enhance the efficacy of 

phytoremediation processes by maintaining plant growth and reducing the plant stress 

response in the presence of soil contaminants.  Many studies have examined the ability of 

various PGPR to promote plant growth under stress conditions.  However, the magnitude 

of the plant response in the presence of the bacteria, and the variables that were reported 

as indicators of plant growth promotion, has not been consistent among studies. 

One of the most common responses of plants exposed to both biotic and abiotic 

stress is the increased production of ethylene.  Ethylene production and subsequent 

ethylene-dependent signaling are involved in both stress-induced responses, such as 
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stunted growth and senescence, as well as in acclimation processes that can aid in plant 

performance and survival (Gazzarrini and McCourt, 2003).  It is thought that in stressed 

plant tissues there is an initial small peak of ethylene that initiates a protective response 

followed by a much larger peak which initiates processes such as senescence (reviewed 

in Glick, 2005).  Many PGPR are capable of producing the enzyme 1-

aminocyclopropane-1-carboxylate (ACC) deaminase (AcdS), which acts as an 

extracellular sink for the plant-produced ethylene precursor ACC, metabolizing it into 

ammonia and !-ketobutyrate thereby reducing the amount of ACC available for 

conversion into ethylene and reducing the ethylene concentration in plant tissues 

(reviewed in Gamalero et al. 2009).  

The reduction of ethylene by ACC deaminase is not the only contributor in 

promoting plant growth under stress conditions.  Bacterial production of other plant 

hormones, such as the auxin indole-3-acetic acid (IAA), has also been implicated in 

influencing plant growth (Arshad and Frankenberger, 1991).    One model for lowering 

plant ethylene concentrations using PGPR has been proposed that includes bacterial 

production of IAA to stimulate root cell elongation and proliferation while 

simultaneously reducing the amount of ethylene produced by ACC deaminase (Glick et 

al. 1998; Figure 1-1).  Thus, the combination of the bacterial metabolism of the plant 

stress hormone ethylene and the bacterial production of IAA could explain plant growth 

promotion under stress conditions (Patten and Glick, 1996; reviewed in Gamalero et al. 

2009).   

The PGPR Pseudomonas putida UW4 has garnered a lot of attention for its ability 

to promote plant growth and root elongation effectively under salt, drought, flooding, 

heat, and metal stress in a variety of plant species such as canola, tomato, Brassica spp, 

cucumber, and peppers (reviewed in Saravanakumar, 2012).  Isolated from roots of 

common reeds in Waterloo, Ontario, and originally classified as Enterobacter cloacae 

UW4, P. putida UW4 has been shown to contain the enzyme ACC deaminase, as well as 

to produce the beneficial auxin IAA (Glick et al. 1995).  An AcdS- mutant of P. putida 

UW4 was created that can produce IAA but has no measureable ACC deaminase activity 
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(Li et al. 2000).  Using these two bacterial strains could allow for distinctions to be made 

between the relative roles of these two pathways in plant growth promotion.   

The plant model Arabidopsis thaliana and its mutants are commonly used to 

identify genes involved in hormone signal transduction and hormone signaling during 

plant growth and development (Gazzarrini and McCourt, 2003).  More specifically, the 

cellular organization of roots (Dolan et al. 1993; Carol and Dolan, 2002) and the roles of 

both ethylene and IAA in root development and plant growth have been extensively 

studied in A. thaliana (Le et al. 2001; Ruzicka et al. 2007; Pitts et al. 1998; Rahman et al. 

2002).  Given the documented and predictable detailed responses of A. thaliana to these 

hormones, the use of this plant is ideal for investigations of the relative roles of bacterial 

IAA production and ethylene metabolism on mitigating plant stress.   

The objective of this study was to evaluate the relative effectiveness of the wild-

type P. putida UW4 in mitigating cadmium-stress in A. thaliana grown in agar and 

hydroponic conditions.  Nutrient agar and hydroponic media were used to control 

bioavailability of cadmium to the plants and to enable non-damaging harvest of intact 

plant roots.   

2.2 Methods 

2.2.1 Bacterial Strains 

Wild type P. putida UW4 (AcdS+), and the ACC deaminase minus mutant (AcdS-), 

were provided by Dr. Bernard Glick (University of Waterloo).  Bacterial cultures were 

stored in 15% glycerol at -80°C when not in use.  The genome sequence of P. putida 

UW4 is available in the GenBank database 

(http://www.ncbi.nlm.nih.gov/nuccore/CP003880.1).  

2.2.2 Bacterial Culture Maintenance 

Bacterial cultures were maintained according to Penrose and Glick (2003).  Cultures 

were taken out of storage and streaked onto tryptic soy agar (TSA) plates containing 
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approximately 20 mL of tryptic soy broth (TSB) (VWR Canada), 1.5% bacteriological 

grade agar (BioShop Canada), and 15 µg/mL tetracycline (TET, BioShop Canada) when 

necessary.  Due to the presence of the tetracycline resistance gene in the AcdS- mutant it 

is necessary to grow the mutant in the presence of TET (Li et al. 2000).  Plates were 

incubated at 30°C for 24 h or until late log phase.  A streak of bacterial colonies from 

each plate was transferred into 5 mL sterile TSB (with TET when necessary) and allowed 

to grow in an incubating mini-shaker (VWR, Radnor, PA, USA) set to 30°C and 200 rpm 

for 24 h. To induce ACC deaminase activity, overnight cultures were centrifuged at 2550 

g for 10 min at 4°C using a Sorvall Biofuge PrimoR bench top centrifuge (Thermo 

Scientific Co, Asheville, NC, USA) and the supernatant was discarded.  Cells were 

washed twice with 5 mL DF salts minimal medium without nitrogen (Dworkin and 

Foster, 1958) and then re-suspended in 7.5 mL DF salts minimal medium with 45 µL 0.5 

M ACC (Calbiochem) to obtain a final ACC concentration of 3.0 mM.  The ACC 

solution acts as the sole nitrogen source for the cultures.  Cultures were then incubated 

for 24 h at 30°C and 200 rpm.  Overnight cultures were centrifuged at 2550 g for 10 min 

at 4°C and the supernatant was discarded.  Cells were washed twice with 5 mL of 0.03 M 

MgSO4 to ensure the cells were free of the bacterial growth medium and re-suspended in 

0.03 M MgSO4 to a final OD600 of 0.15 before inoculating plant seeds. 

2.2.3 Plant Growth Conditions 

Arabidopsis thaliana (Col-0) seeds were surface-sterilized in a sterile microcentrifuge 

tube by adding 1 mL 70% ethanol for 5 min, replacing the ethanol with a 30% bleach 

solution for 10 min, and rinsing three times with sterile distilled water (dH2O).  A small 

volume of dH2O was left in the tube to avoid desiccation and the seeds were stored at 4°C 

in the dark for 3 days to synchronize germination (modified from Hetu et al. 2005).  

Seeds were inoculated with the appropriate bacterial strain, or 0.03 M MgSO4 as a 

control, and then transferred to Petri dishes containing approximately 20 mL half strength 

MS medium, 0.8% agar, 1% sucrose, pH 5.8 and either 0, 0.1, 1.0, 5.0, or 10.0 µM CdCl2 

(Murashige and Skoog, 1962).  This range of CdCl2 concentrations was selected based on 

a dose response study that showed seeds had visible symptoms of Cd-stress at 10 µM 

CdCl2, including reduced size and root elongation, but failed to germinate on plates 
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containing 25 µM CdCl2 (Appendix A).  Plates were sealed with Parafilm and placed in a 

growth chamber with a 16:8 h light: dark cycle maintained at 22°C and 60% relative 

humidity (RH).  Light intensity was determined to be 230 ± 5.7 µmol/m2/s as repeatedly 

measured using a Fieldscout Quantum Light Meter (Spectrum® Technologies Inc, IL, 

USA).  Plates were placed in either a horizontal or vertical orientation depending on the 

data to be collected and grown for 7 or 14 d (Boyes et al. 2001).  Plate position in the 

growth chamber was rotated daily to control for position-dependent variation.   

For hydroponic studies A. thaliana (Col-0) plants were grown according to Hetu et al. 

(2005).  Briefly, seeds were surface-sterilized and cold-synchronized as previously 

described and inoculated with the appropriate bacterial strain or control.  Seeds were 

transferred onto agar plates as described above; however, sterile 2.5 cm2 pieces of 

fiberglass window screen (Easy Screen, RCR International Inc, Quebec) were placed on 

the agar before the seeds were added to act as a support matrix for the roots.  Seeds were 

placed in a growth chamber and allowed to grow for 7 d or until the shoots were larger 

than the holes in the screen.  At this point, ethanol-flamed forceps were used to transfer 

the screens holding the seedlings into sterile glass jars containing 10 mL 0.5 MS medium, 

1% sucrose, pH 5.8 and one of the experimental concentrations of CdCl2. The openings 

of the jars were covered in aluminum foil to prevent contamination.  After 7 d the screens 

were transferred into 20 mL of fresh solution seedlings were allowed to grow for a total 

of 21 d from the time of plating.  Hydroponic jars were maintained in a growth chamber 

with a 16:8 h light: dark cycle at 22°C and 60% RH on a rotary shaker set to 60 rpm.  All 

manipulations took place in a sterile laminar flow hood using aseptic techniques.   

The nutrient solution MS medium is common in plant studies, especially those with 

Arabidopsis.  This medium was used in both of the methodological papers for growing 

and measuring morphological features of A. thaliana used in this experiment (Boyes et 

al. 2001; Hetu, et al. 2005).  Additionally, it has been observed that without certain 

nutritional inputs, such as sucrose, it can be difficult to germinate Arabidopsis seeds 

reliably (personal observation).  For these reasons, MS medium was chosen as the plant 

medium in this study.  The following recipe for MS medium was diluted by 50% for all 

experiments:  1650 mg/L ammonium nitrate, 6.2 mg/L boric acid, 332.3 mg/L anhydrous 
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calcium chloride, 0.025 mg/L tribasic calcium phosphate – 6H2O, 0.025 mg/L cupric 

sulfate - 5H2O, 37.26 mg/L Na2-EDTA, 27.8 mg/L ferrous sulfate - 7H2O, 180.7 mg/L 

magnesium sulfate, 16.9 mg/L manganese sulfate - H2O, 0.25 mg/L molybdic acid - 

2H2O, 0.83 mg/L potassium iodide, 1900 mg/L potassium nitrate, 170 mg/L monobasic 

potassium phosphate, 8.6 mg/L zinc sulfate - 7H2O, 2.0 mg/L glycine, 100 mg/L myo-

inositol, 0.5 mg/L nictotinic acid, 0.5 mg/L pyridoxine – HCl, and 0.1 mg/L thiamine – 

HCl. 

2.2.4 Analysis of Plant Health and Growth 

2.2.4.1 Maximum Photochemical Efficiency of Photosystem II 

Fluorescence measurements used to calculate photosystem II (PSII) efficiency were 

made using an Imaging PAM Chlorophyll Fluorometer (Heinz Walz, Germany).  

Following dark adaptation for 1 h at room temperature plant shoots were exposed to a 

short (800 ms) pulse of saturating blue light (" = 470 nm; 6000 µM photons/m2/s) 

provided by the Imaging PAM photodiode (IMAG-L; Heinz Walz).  The maximum 

photochemical efficiency of PS II was calculated as Fv/Fm (Maxwell and Johnson, 

2000).   

2.2.4.2 Chlorophyll Content 

Plants were grown for 14 days on horizontal agar plates as described above.  The 

shoot tissue was then harvested and chlorophyll was isolated from the tissue according to 

Pocock et al. (2004).  Tissue was ground with liquid nitrogen in a chilled mortar and 

pestle.   Chlorophyll was then extracted from a subsample of 0.1 g of shoot tissue by 

adding 1 mL of 80% acetone solution buffered with 2.5 mM sodium phosphate to a pH of 

7.8 to minimize the conversion of chlorophylls to phaeophytins.  The samples were then 

centrifuged for 5 min at 3024 g at 4°C to clarify the samples and remove whole 

chloroplasts.  A volume of 0.05 mL of the pigment extract was then added to 0.95 mL of 

the acetone solution.  A 200 µL aliquot of each sample was then added to a 96 well plate 

and absorbance was measured at 664, 647, and 750 nm using a SpectramMax M2 
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Microplate Reader (Molecular Devices, Sunnyvale, CA, USA).  Chlorophyll content and 

chlorophyll a:b ratio were calculated (Porra et al. 1989). 

2.2.4.3 Rosette Diameter 

Plants were grown on horizontal agar plates as described above for 14 d.  Five 

plants were placed on each of 4 plates no less than 2 cm apart and away from the plate 

edge.  The maximum rosette diameter for each plant was measured using digital calipers 

and recorded. 

2.2.4.4 Root Morphology and Elongation 

Plants were grown on vertical agar plates as described above until the roots were 

close to, but not touching the bottom of the plate (approximately 7 d).  An image was 

taken of each plate on a black background using a mounted Nikon D2X camera.  Primary 

root length, number of lateral roots, and length of lateral roots were determined and 

recorded using ImageJ 1.44o (Rasband, 2012). 

2.2.4.5 Biomass 

Plants were grown hydroponically as described above for 21 d and the number of 

seeds per plate was recorded.  On day 21 plants were separated into roots and shoots and 

the fresh weight (FW) was recorded.  Root and shoot tissue were then placed into 

individual envelopes made out of aluminum foil and placed in a drying oven set to 60°C 

for 4 d or until a constant weight was reached.  The root and shoot dry weight (DW) was 

recorded.   

2.2.4.6 Cadmium Content 

The concentration of cadmium in roots and shoots was determined using a 

modified version of the Environmental Protection Agency test method SW-846 (United 

States Environmental Protection Agency, 2005).  Dried root and shoot tissue was ground 

in a mortar and pestle and subsamples were taken for analysis.  A standard reference 

material from the National Institute of Standards and Technology (NIST 1570a, trace 
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elements in spinach leaves) and reagent blanks were also included in the analysis.  For 

shoot samples, 0.025 g of tissue was placed in a 15 mL glass test tube and for root 

samples 0.010 g of tissue was used.  All the test tubes were placed in a rack and 250 µL 

of ultrapure nitric acid (OmniTrace®, EM Science, USA) was added to the shoot samples 

and 200 µL to the roots samples.  Test tubes were covered with glass marbles to prevent 

evaporation while allowing pressure to escape.  The samples were allowed to sit 

overnight to allow for partial digestion of the organic matter in the samples.  On the 

following day, the test tube rack was placed in a tray filled with sand and heated to 90-

100°C on a hot plate until the vapors became transparent.  The sand helped to ensure 

even distribution of heat among the samples during digestion.  The samples were allowed 

to cool to room temperature before being filtered using qualitative grade filter paper 

(VWR, qualitative grade 413).  Reverse osmosis water was used to rinse the test tube and 

bring the final volume of sample to 5 mL.  The samples were analyzed for cadmium 

content by inductivity-coupled plasma atomic emission spectrometry (ICP-AES). 

2.2.4.7 Light Microscope Images of Plant Roots 

To determine whether the presence of the bacteria resulted in visible damage to 

plant roots, 7 d-old plants grown vertically on agar plates were mounted on a standard 

microscope slide in RO water and imaged using an Olympus CX31 light microscope with 

an Infinity-1 Camera and Infinity Analyze version 5.0.5 software.  Toluidine Blue O 

(TBO) stain made the images dark and unclear and was therefore not used.  Images were 

taken at the first root hair from the root tip of each plant. 

2.2.5 Bacterial Growth and Plant Root Colonization 

2.2.5.1 Growth Rate 

The bacterial growth rates in MS and TSB media were determined using a 

BioScreen C apparatus (Oy Growth Curves Ab Ltd, New Jersey, USA).  A 250 µL 

aliquot of the ACC deaminase-activated cultures of wild type and mutant strains, 

standardized to the same starting OD600, was added to an equal volume of medium, 

brought to the desired CdCl2 concentration, and loaded into the BioScreen microplate.  
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The plates were placed in the apparatus, which preventing settling of the cultures and 

maintained an incubating temperature of 30°C while taking OD600 readings every 15 min 

for 24 h.  These data points were then used to create growth curves.  Growth curves were 

also generated for both bacterial strains grown in 0.5 ! MS medium with 1, 2, 3, 4, and 5 

% sucrose, glucose, fructose, or a combination of glucose and fructose (1:1 ratio to obtain 

the same total concentrations as listed above) to determine the growth rate of each 

bacterial strain in MS medium with varying carbon sources and concentrations provided. 

2.2.5.2 Bacterial Viability in Media 

To determine whether the bacteria used were viable in the different liquid media 

used and the CdCl2 concentrations tested, a streak of bacterial colonies grown on TSA  

(as previously described) was added to 5 mL of TSB (plus TET when necessary) or 0.5! 

MS with 1% sucrose ranging in concentration from 0 to 10.0 µM CdCl2 and incubated for 

24 h at 30°C and 200 rpm.  Using an ethanol-flamed metal loop, a sample of each culture 

was then plated onto TSA (plus TET when necessary) and incubated for 24 h at 30°C at 

which point the plates were checked for bacterial colonies.  If bacterial colonies failed to 

form on this bacterial medium they were considered not viable in the tested medium and 

CdCl2 concentration.  If bacterial colonies were able to form they were considered viable 

in the tested medium and CdCl2 concentration. 

2.2.5.3 Bacterial Viability on Plant Roots 

To determine whether the presence of plants affected bacterial survival in the 

different media and CdCl2 concentrations used the bacteria were grown with plants on 

agar plates as previously described for 7 d.  Plant roots were then vigorously vortexed in 

1 mL TSB medium in a sterile microcentrifuge tube for 1 min.  The entire volume was 

then plated onto TSA using an ethanol-flamed glass rod.  Plates were incubated at 30°C 

for 24 h at which point the plates were checked for formation of bacterial colonies. 
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2.2.5.4 Bacterial Colonization and Survival on Plant Roots 

Fluorescence staining combined with confocal microscopy was used to visualize 

the bacterial colonization of plant roots and to determine whether the bacteria present 

were living or dead.  Plant roots from 21 d old plants were stained using the Live/Dead® 

BacLightTM Bacterial Viability Kit (Invitrogen, Cat# L7012), which uses green 

fluorescent stain SYTO® – 9 and red fluorescent stain propidium iodide.  SYTO® – 9 

stains both living and dead cells while propidium iodide will only penetrate cells with 

damaged membranes.  When imaged under a fluorescence microscope living cells appear 

green while dead cells appear red.  The staining kit was used with slight modifications 

from the manufacturer’s instructions.  In a sterile microcentrifuge tube 3 µL of each 

SYTO® – 9 and propidium iodide were mixed into 1 mL of sterile RO water and 

vortexed.  After incubation at room temperature for 5 min in the dark 200 µL was added 

to fresh microcentrifuge tubes containing a plant root sample.  The sample was allowed 

to sit for 25 min at room temperature in the dark.  Instead of adding water to the tube to 

remove the excess dye the plant roots were dipped in three successive rinses of sterile 

dH2O in order to avoid removing loosely bound bacteria.  Plant roots were then mounted 

on a glass microscope slide in approximately 50 µL ProLong® Gold antifade reagent 

(Invitrogen, Burlington, ON) and covered with a 0.17 mm thick cover slip.  Plant roots 

were imaged using a Zeiss LSM 510 Meta laser scanning confocal microscope (Carl 

Zeiss Inc, Germany) at 63! magnification and glycerol immersion.  Roots were imaged 

in the X, Y, and Z planes so that the images could be stacked and living and dead 

colonies could be counted on the entire plant root surface.  Variability in counts resulted 

in the Z plane stacks being discarded.   

2.2.5.5 Statistical Analysis 

Two-way analysis of variance (ANOVA) and Tukey’s post hoc test were performed 

using SigmaPlot version 11.0 to detect treatment effects and significant differences 

among treatment means (p < 0.05).  All experiments in section 2.2.4 were repeated at 

least twice with the same result.  The data presented are the data collected on the final 

trial.   
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2.3 Results 

2.3.1 Analysis of Plant Health and Growth 

The photosynthetic health of A. thaliana plants inoculated with either P. putida 

UW4/AcdS+ or P. putida UW4/AcdS- at a range of CdCl2 concentrations is shown in 

Figure 2-1.  The plants showed no visible response to the presence of either bacterial 

strain and appeared healthy in all treatments.  Photosystem II efficiency decreased by as 

much as 10% with increasing CdCl2 concentration (Figure 2-1 A); however, within a 

given concentration there was no difference in PSII efficiency among the bacterial 

treatments (p > 0.05, n " 3).  Chlorophyll a and chlorophyll b content were reduced by an 

average of 23% at higher concentrations of CdCl2 (Figure 2-1 B) but there was no 

difference in chlorophyll a:b ratio among the CdCl2 treatments (Figure 2-1 C, p > 0.05, n 

= 4).  As with PSII efficiency, neither chlorophyll content nor chlorophyll a:b ratio were 

affected by bacterial treatment.   

Increasing the concentration of CdCl2 decreased all aspects of plant size that were 

measured (Figure 2-2).  Unexpectedly, plants that were inoculated with either of the 

putative plant growth-promoting bacteria were either the same size or smaller than the 

control plants.  Plants inoculated with the mutant that lacked ACC deaminase, P. putida 

UW4/AcdS-, were often larger than those inoculated with wild type P. putida 

UW4/AcdS+, although this pattern was not significant at all concentrations of CdCl2 (p > 

0.05, n " 3).  Mean rosette diameter of the plants was often lower in bacterial treatments 

than in controls when CdCl2 was present (Figure 2-2 A) while primary root length (Figure 

2-2 B), number of lateral roots (Figure 2-2 C) and mean length of lateral roots (Figure 2-2 

D) usually decreased in the presence of bacteria even in the absence of CdCl2.   

Similarly, shoot biomass decreased with increasing CdCl2 concentration and plants 

from both bacterial treatments often had reduced biomass compared to controls (Figure 2-

3).  At 0 and 0.1 µM CdCl2, plants inoculated with P. putida UW4/AcdS+
 had reduced 

shoot biomass compared to plants inoculated with no bacteria or P. putida UW4/AcdS-
.  

At CdCl2 concentrations of 1 µM or higher, both bacterial treatments induced  
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Figure 2-1:  Photosynthetic health of plants in different bacteria and cadmium 

treatments   

Measured as A) photosystem II efficiency B) chlorophyll content (Chl a: top bar, Chl b: 

bottom bar) and C) chlorophyll a:b ratio when plants were inoculated with no bacteria, P. 

putida UW4/AcdS+, or P. putida UW4/AcdS- at a range of CdCl2 concentrations.  

Vertical error bars represent standard error.  Treatments not sharing a common letter are 

significantly different (two-way ANOVA followed by Tukey post-hoc test, p < 0.05, n = 

3). 
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Figure 2-2:  Plant size and growth of plants in different bacteria and cadmium 

treatments 

Measured as mean A) rosette diameter B) primary root length C) number of lateral roots 

and D) total length of lateral roots of plants inoculated with no bacteria, P. putida 

UW4/AcdS+, or P. putida UW4/AcdS- at a range of CdCl2 concentrations.  Vertical error 

bars represent standard error.  Treatments not sharing a common letter are significantly 

different (two-way ANOVA followed by Tukey post-hoc test, p < 0.05, n " 3). 
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Figure 2-3: Dry Weight of shoots (top) and roots (bottom) from plants in different 

treatments  

Vertical error bars represent standard error.  Treatments not sharing a common letter are 

significantly different (two-way ANOVA followed by Tukey post-hoc test, p < 0.05, n " 

3).  Roots inoculated with P. putida UW4/AcdS+ were too small to weigh (n/a). 
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approximately a 50% reduction in shoot biomass.  Within a bacterial treatment, root 

biomass did not vary with increasing CdCl2 concentration; however, root biomass of 

plants inoculated with P. putida UW4/AcdS- was 20 - 30% lower than those from the no 

bacteria treatment (p < 0.05, n = 3).  Plants in the hydroponics studies had to be grown on 

sterile mesh, and a small portion of root biomass was lost in the mesh.  The amounts of 

roots that could be harvested from plants inoculated with P. putida UW4/AcdS+
 were 

below the amount that could be measured (i.e. < 0.1 mg/25 plants).  Plants in the no 

bacteria treatment contained up to 40% more cadmium in the shoot tissue and up to 80% 

more cadmium in the root tissue than plants in either of the bacterial treatments (Figure 

2-4).  Since the biomass and cadmium content data were not collected in a paired manner 

(data were collected from independent experiments) statistical analysis was not possible. 

The decreased size of plants grown in the presence of bacteria and CdCl2 did not 

appear to be due to damage of the plant roots (Figure 2-5).  In over 130 images taken 

there were only 5 with signs of damage.  These did not come from any one experimental 

treatment, and this damage likely occurred during sample mounting. 

When this phenomenon of PGPR inhibiting plant growth was first documented it was 

assumed that there was a contamination of the stock P. putida cultures.  After confirming 

with the Glick lab that these strains were still able to promote plant growth, and 

confirming that the stock culture was a pure culture, the experiment was repeated with 

new stock culture with the same results.   
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Figure 2-4: Total amount of cadmium in shoots (top) and roots (bottom) from plants 

in different treatments  

Vertical error bars represent standard error.  Roots inoculated with P. putida UW4/AcdS+ 

were too small to process for cadmium content (n/a); in some treatments, cadmium was 

below the detection limit (bdl).  Due to the unpaired collection of data statistical analysis 

was not possible. 
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Figure 2-5:  Light microscope images of plant roots 

Plants were inoculated with A, D) no bacteria, B, E) P. putida UW4/AcdS+, or C, F) P. 

putida UW4/AcdS- in media supplemented with 0 µM CdCl2 (Top) or 10 µM CdCl2 

(Bottom). 
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2.3.2 Bacterial Growth and Plant Root Colonization 

The growth curves of the two bacterial strains in bacterial broth (TSB) or the plant 

medium used in all of the above plant studies (0.5 ! MS with 1% sucrose) with varying 

concentrations of CdCl2 are plotted in Figure 2-6.  There was no effect of CdCl2 on either 

bacterial strain (one-way ANOVA at 24 h, p > 0.05 for all main effects, n = 4).  Both 

bacterial strains grew to the same final OD600 at all the tested CdCl2 concentrations in 

TSB.  However, neither strain was able to grow in MS medium.  Growth curves were 

also plotted for both strains in MS media with a range of 1 to 5% sucrose, glucose, 

fructose, or a combination of glucose and fructose; however, neither strain was able to 

grow in any of these conditions (data not shown).   

To determine whether the bacteria were alive, despite the lack of growth in MS 

medium, samples from the growth curve study were plated onto TSA and allowed to 

grow for 24 h.  Interestingly, although neither strain was able to grow on TSA after 24 h 

in liquid MS medium (Figure 2-7 A, D), both strains were able to grow when plated from 

culture in TSB (Figure 2-7 B, E), and could be repeatedly recovered from plant roots that 

were grown in MS medium (Figure 2-7 C, F).    

Further evidence for bacterial growth on plant roots grown in MS medium comes 

from fluorescence micrographs that repeatedly showed a close association of both strains 

with plant roots grown in MS medium (Figure 2-8).  Additionally, the majority of 

bacteria on the plant roots were alive at the point the micrographs were taken.  However, 

there appeared to be fewer P. putida UW4/AcdS- visible on the plant roots than P. putida 

UW4/Acds+ despite being inoculated at the same OD600.  This can also be seen in the 

relative amount of bacteria growing on the plates in Figure 2-7.  It was not possible to 

enumerate the bacteria visible on the plant roots in Figure 2-8.  Background 

autofluorescence inhibited the use of counting software and duplicate manual counts 

were not consistent. 

To determine if the failure to thrive on MS medium was an artifact of agar or 

hydroponic culture, changes between the bacterial community structure in two soil types 

maintained with either dH2O or MS medium were assessed (Appendix B).  The native  
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Figure 2-6: Bacterial growth curves in TSB and MS medium at a range of CdCl2 

concentrations  

Growth curves were created for A) P. putida UW4/AcdS+ and B) P. putida UW4/AcdS- 

in TSB, C) P. putida UW4/AcdS+ and D) P. putida UW4/AcdS- in 0.5 ! liquid MS 

medium with 1% sucrose grown in 0 to 10 #M CdCl2 for 24 h. Vertical error bars 

represent standard error.  One-way ANOVA at 24 h, p > 0.05 for all main effects, n = 4. 
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Figure 2-7:  Inoculation of TSA with P. putida UW4/AcdS
+ 

(top) and P. putida 

UW4/AcdS
-  

(bottom) from the cultures in Figure 2-6 

Plates were inoculated with cultures from A, D) liquid MS, B, E) TSB, or C, F) plant 

roots grown on MS medium and then grown for 24 h.  
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Figure 2-8:  Fluorescence micrographs of plant roots with living and dead bacteria 

Plant seeds were inoculated with A) P. putida UW4/AcdS+ or B) P. putida UW4/AcdS-  

and grown hydroponically for 21 d.  After staining, living bacteria are stained green and 

dead bacteria are stained red and appear as small areas of high intensity indicated by 

green and red arrows.  Diffuse green is background autofluorescence of the plant root 

where the white arrow indicates the location of the xylem.  Diffuse red and orange is 

indicative of background staining. 
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bacterial communities in the soil were impoverished, as seen in the reduction in fragment 

richness, when the soil was watered with MS medium but not when watered with dH2O. 

2.4 Discussion 

2.4.1 Analysis of Plant Health and Growth 

Glick et al. (1998) proposed a model to explain how two simultaneous 

mechanisms result in plant growth promotion under stress conditions (Figure 1-1).  First, 

PGPR that are closely associated with a plant root are able to produce the plant auxin 

IAA which, when taken up by the plant, can stimulate plant cell proliferation and/or 

elongation or stimulate the activity of ACC synthase, which produces ACC, the precursor 

of the plant stress hormone ethylene.  Secondly, the PGPR stimulate the exudation of 

ACC from the plant root where it is used as a nitrogen source by the bacterium and 

metabolized by the enzyme ACC deaminase.  This should reduce the amount of ACC 

available to the plant for production of ethylene.  This process could reduce the ethylene 

stress response of the plant allowing it to maintain plant growth and health under stress 

conditions.  Specifically, plants that have been inoculated with a PGPR that produces 

ACC deaminase (P. putida UW4/AcdS+) should be photosynthetically healthier, have 

longer roots, and larger shoots than plants that have not been inoculated with bacteria or 

inoculated with a bacterium that cannot produce ACC deaminase (e.g., P. putida 

UW4/AcdS-), although some amount of growth promotion could still be seen due to the 

production of IAA.  Support for this model has been repeatedly shown in the literature 

(reviewed by Saravanakumar, 2012). 

To determine the extent to which the wild type and mutant strains of P. putida 

UW4 affect the growth and health of Arabidopsis thaliana (Col-0) in the presence of 

cadmium stress, a wide range of variables were measured in this study.  The plants in all 

treatments showed no visible symptoms of cadmium-toxicity (e.g. chlorosis, necrosis, 

etc.) and the different bacterial treatments had no effect on the parameters related to 

photosynthetic health (Figure 2-1).  An increase in all three of these parameters has been 

reported, for example when P. putida UW4 was used to ameliorate flooding stress in 
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tomatoes (Grichko and Glick, 2001), but neither chlorophyll content nor photosynthetic 

efficiency were reported in other studies using this strain (Mayak et al. 2004a; Mayak et 

al. 2004b), which suggests that these parameters were either not measured or were not 

reported due to a lack of response. 

  As expected, increasing concentrations of cadmium in the growth medium 

resulted in smaller plants, both aboveground and below ground (Figure 2-2).  

Unexpectedly, and contrary to all published experiments with these strains, I found that 

inoculation with either P. putida UW4/AcdS+ or P. putida UW4/AcdS- decreased the size 

of the plants for all parameters measured.  All previous reports on these strains of P. 

putida led me to expect that the bacterial treatments would have had a positive effect on 

plant size under stress conditions, and that plants inoculated with P. putida UW4/AcdS+ 

would have been larger than those inoculated with P. putida UW4/AcdS-
 due to a lack of 

ACC deaminase production in the mutant strain.  For example, Li et al. (2000) found that 

when canola was inoculated with P. putida UW4/AcdS- root elongation was not observed 

and roots inoculated with the mutant were shorter than those inoculated with the wild 

type.  However, the plants in my study were smaller in the presence of bacteria and were 

often larger when inoculated with P. putida UW4/AcdS-
 than with the wild type strain 

(Figure 2-2 and Figure 2-3).  The fact that there was a reduction in the size of the plants 

even in the control 0 µM cadmium treatment suggests that this was not a response to the 

metal stress but was instead due to the plant medium used in the study. 

Both wild type P. putida UW4/AcdS+ and the mutant P. putida UW4/AcdS- have 

been shown to produce the principal plant auxin IAA (Li et al. 2000; Saleh and Glick, 

2001).  While it is well established that auxins are essential for stimulation of growth and 

development of plants, excessive exogenous IAA is known to have an inhibitory effect on 

root length and plant growth, a response that is generally attributed to an increased 

production of ethylene in the presence of IAA (Hopkins and Huner, 2004).  Reduced or 

inhibited root development may also lead to overall nutrient deficiencies that would 

produce overall smaller plants due to a reduced root surface area for nutrient and water 

uptake.  Kremer (2006) proposed the overproduction of IAA as a mechanism by which 

deleterious rhizobacteria may act to suppress plant growth.  Additional proof for the 
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potential negative role of bacterially produced IAA comes from a study by Xie et al. 

(1996), who grew canola plants with IAA-overproducing mutants of P. putida GR12-2, a 

putative PGPR.  A mutant that produced 4-times the IAA compared to the wild type 

inhibited root elongation.  This was possibly due to a high degree of interaction between 

bacterially produced IAA and the plant enzyme ACC synthase, which quickly converts 

ACC to ethylene at a rate that cannot be effectively reduced by ACC deaminase.  

However, a mutant that produced 3 times as much IAA as wild type did not inhibit root 

elongation, suggesting that the threshold between IAA concentrations that can be 

considered beneficial versus detrimental may be small.  It is possible that under my 

experimental conditions, the bacterial strains were over-producing IAA, leading to the 

suppression of plant growth. 

The pathway by which microbes are able to synthesize IAA varies, is dependent 

on environmental conditions, and may be a deciding factor in whether a microbe is 

beneficial or pathogenic (reviewed in Patten and Glick, 1996).  For example, while there 

are reported cases of IAA synthesis via the indoleacetamide pathway in plants, such as in 

the case of Japanese cherry (Saotome et al. 1993), it is thought to be a predominantly 

microbial process.  It has been suggested that plants may lack the ability to regulate 

exogenous IAA from this pathway to the same extent that regulation of IAA from a 

shared pathway between plants and microbes occurs (Patten and Glick, 1996).  

Additional support for this theory comes from the fact that the primary IAA synthesis 

pathway for many phytopathogens is the indoleacetamide pathway.  For example, 

pathogenic strains of Erwinia herbicola contain both indoleacetamide and indolepyruvic 

acid pathways, but when the indoleacetamide pathway was inactivated, pathogenicity was 

reduced (Manualis et al. 1991).  In contrast, PGPR, such as Enterobacter cloacae (Koga 

et al. 1994) and Pseudomonas putida GR12-2 (Patten and Glick, 2002), mainly utilize the 

indolepyruvic acid pathway and have been shown to promote root elongation and lateral 

root formation.  It is possible that, in my experiment, the non-ideal growth conditions in 

MS media (discussed below) caused the bacterial strains to shift IAA production to one 

of the bacteria-specific pathways that have been shown to be pathogenic to plants, 

resulting in an inability of the plants to regulate exogenous IAA, and that the surplus IAA 

resulted in reduced growth. 
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The roles of both ethylene and IAA in root development of plants, especially 

Arabidopsis, have been extensively studied in stressed (Potters et al. 2007) and non-

stressed plants (Overvoorde et al. 2011; Ruzicka et al. 2007).  Although the interactions 

between these two plant hormones are less well understood, it has been established that 

both hormones are essential for promoting root hair initiation and elongation (Pitts et al. 

1998).  It has also been shown that ethylene signaling is responsible for the transport of 

auxin to root cells that is necessary for growth, or growth inhibition depending on 

concentration (Ruzicka et al. 2007). The fact that there was a complete lack of root 

development in plants inoculated with P. putida UW4 AcdS+ (Figure 2-3) suggests that 

the delicate balance between plant hormones was interrupted.  Since this response was 

seen only in plants inoculated with the ACC deaminase-producing strain it was likely due 

to a reduction in available ethylene and not IAA.  Bacterial metabolism of ACC may 

reduce the ACC pool available for conversion to ethylene, reducing the ethylene 

concentration in the plant to a level that is not sufficient for proper signaling of transport 

of auxins to the root tips to allow for elongation and growth.   

 The concentration of cadmium in the roots of plants inoculated with the P. putida 

UW4/AcdS+ could not be measured due to a lack of tissue; however, root cadmium 

concentration was higher with no bacteria inoculation compared to plants inoculated with 

P. putida UW4/AcdS-, while shoot tissue cadmium concentration was higher in plants 

inoculated with bacteria than those not inoculated with bacteria (Figure 2-4).  This 

suggests that the presence of bacteria may cause the plant to store less cadmium in the 

roots and translocate more cadmium to the shoots.  Increased accumulation of metals, 

including cadmium, in plants inoculated with different PGPR, has previously been 

reported (Safronova et al. 2006), which could be due to microbial changes in metal 

availability (Gao et al.  2010).  Translocation from roots to shoots depends on water 

relations and xylem loading and transport (Uraguchi et al. 2009), factors that could be 

altered by the presence of microbes.       

One way in which bacteria can suppress plant growth is through mechanical 

damage to the cell walls that can be caused by bacterial production of phytotoxins and 



 

 

47 

cell wall-degrading enzymes (Kremer, 2006).  This was not likely the case in this study 

since there was no evidence of mechanical damage to the plant roots (Figure 2-5). 

There are a few documented cases of putative PGPR that have suppressed plant 

growth, such as the above-mentioned case of the IAA over-expressing P. putida GR12-2 

mutant (Xie et al. 1996).  However, all of these reports used a mutant strain lacking an 

essential process (Li et al. 2000) or over-expressing a deleterious process (Xie et al. 

1996) to achieve growth suppression.  Occasionally, the deleterious effect could be linked 

to a lack of stress conditions.  For instance, one PGPR that promotes growth in the 

presence of a deleterious plant fungus by producing phytotoxins that kill the fungi 

suppressed plant growth when the fungus was not present (Maurhofer et al. 1992).  To 

my knowledge, my study is the first case of bacterial growth-limiting conditions causing 

a putative PGPR to become deleterious that will appear in the literature.  Personal 

communication with other research groups (Dr. B. Glick at the University of Waterloo 

and Dr. G. Lazarovits at A&L Laboratories Canada) suggests that this phenomenon has 

been witnessed in the past but has not been well documented.    

2.4.2 Bacterial Growth and Plant Root Colonization 

To ensure that the two strains of bacteria were not negatively affected by the 

presence of cadmium, the growth curves of the bacteria in bacterial broth (TSB) and the 

plant medium used in all the above plant studies (0.5 MS with 1% sucrose) with varying 

concentrations of CdCl2 were plotted (Figure 2-6).  There was no evidence that either 

strain was affected by cadmium (One-way ANOVA at 24 h, p > 0.05 for all main effects, 

n = 4).  However, neither strain of bacteria used in my study was able to grow in MS 

medium.  After comparing the constituents of the plant growth medium and the bacterial 

broth used, it appeared that MS medium might be lacking the quantity and type of carbon 

sources required for bacterial growth.  Sugars did not seem to be the limiting factor since 

the addition of 1 to 5% sucrose, glucose, fructose, or a combination of glucose and 

fructose (1:1 ratio to obtain final concentration) was unable to promote bacterial growth 

in MS medium.  However, when tested for viability in MS medium in the presence of 

plants, it was clear that the bacteria thrived (Figure 2-7 and 2-8).  These results suggest 
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that the plant must be providing an additional nutritional component that is lacking in the 

MS medium, such as organic acids (Lugtenberg et al. 1999) or amino acids (Simons et al. 

1997) or may be protecting the bacteria from the toxic effects of MS.   

In a study on bacterial growth in plant culture media, Leifert and Waites (1992) 

tested the ability of common bacterial contaminants of plant tissue cultures to grow in 

MS medium.  Most of the tested species were not able to grow in the medium without the 

presence of plants even when supplied with additional growth factors, which provides 

further support that the plants must release additional nutrients required for bacterial 

growth.  Interestingly, Leifert and Waites (1992) also reported a decrease in plant size 

when the bacterial species were present; however, the bacteria used were common cell 

culture media contaminants, including Lactobacillus plantarum and Staphylococcus 

species, which were known to reduce plant size.   The fact that the bacteria used in my 

study are putative PGPR suggests that the dependence of the bacteria on the plants for 

nutrition may result in a reduction in plant size.  This might be explained by an increase 

in plant cell wall permeability caused by bacterially produced IAA, which increases 

availability of nutrients to the bacteria (Nelles, 1977).  The loss of these essential 

nutrients from the plant might reduce overall growth.  Additionally, the bacterium may be 

competing with the plants for nutrients that are essential for growth. 

Another explanation for the unfavourable bacterial growth conditions in MS 

medium is the high concentration of salts in the medium.  However, P. putida UW4 has 

been successfully utilized in studies on growth promotion of tomato plants grown under 

salt stress, therefore, this possibility is not likely (Mayak et al. 2004a). 

Other possible explanations for the lack of an effect of bacterial treatments on 

plant photosynthetic health, and a deleterious effect on plant size, are that the bacteria 

either did not form an association with the plant root or that the bacteria died when grown 

in MS medium and emitted a substance that was harmful to the plants.  However, it is 

clear from both the plated growth study (Figure 2-7) as well as the confocal micrographs 

(Figure 2-8) that the bacteria were associated with the plant root and that most of the 

bacteria present are alive in the current system.  It was also clear that P. putida 
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UW4/AcdS+ was able to colonize the plant root better than P. putida UW4/AcdS- as seen 

by the increased relative number of colony forming units in the plated viability test and 

the relative number of visible bacteria in the confocal micrographs.  The ability of each 

strain to colonize the plant root might help to explain the difference in the magnitude of 

the negative effect each strain had on the plant measures.  The fact that the mutant strain 

had less of a negative effect than the wild type strain could be due to reduced bacterial 

colonization of the plant root.  This is consistent with a study that showed the density of 

P. putida UW4/AcdS- was one log order lower than that of the wild type (Gamalero et al. 

2008).  Differential colonization might be related to the mutant strain having a longer lag 

phase growth rate (Li et al. 2000).   

Finally, the bacterium may have produced a phytotoxin that was deleterious to 

plant growth.  The pseudomonads are well known for their ability to act as biocontrol 

agents through the production of various substances.  Some of these may act as 

phytotoxins.  For example, Pseudomonas syringae produces the phytotoxin coronatine, 

which is believed to act as an analogue for one or more of the growth regulating 

jasmonates, disrupting growth (Brooks et al. 2005).  A follow-up experiment should be 

completed to determine whether P. putida UW4 is producing known phytotoxins when 

grown in MS medium. 

2.5 Conclusions 

In my opinion, the negative effect of the bacteria observed in my current system 

was likely due to the bacteria being dependent on the plant for survival.   In the process 

of providing the protective mechanism for bacterial survival, the association between 

plant and bacteria that in other systems has been beneficial has become deleterious 

possibly due to an over-production of bacterially produced IAA.  The increase in IAA 

could be brought on by a bacterial growth-limiting environment and result in 1) overall 

suppression of plant growth, 2) an imbalance between necessary root growth and 

development hormones, and 3) an increase in plant cell wall permeability that increases 

nutrient leaching, all of which would lead to smaller plants.  Additionally, while the 

plants in this study visibly appeared healthy, and were healthy based on photosynthetic 
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measures, it was only after careful examination of multiple growth parameters that the 

deleterious effect of these bacterial strains was noted.  Thus, when evaluating the efficacy 

of putative PGPR, it is important to take many measures of plant health and growth to 

ensure that the PGPR applied are in fact beneficial.  

The complex nature of plant-microbe interactions makes it difficult to make any 

definitive statement regarding a specific bacterial strain’s potential to be a PGPR.  My 

results tell a cautionary tale that should be taken into consideration when attempting to 

use PGPR in field settings since it can be difficult to control for all nutritional factors.  I 

have shown that in a growth-limiting environment, the putative PGPR P. putida UW4 

can become deleterious to plant growth and size while having no impact on overall plant 

health.  This means that when using this strain in a field setting there may be a negative 

overall response without any obvious signs.  Researchers need to be aware that plants can 

appear healthy while actually having reduced size, as this may affect agricultural yield 

and reduce remediation efforts.  I suggest that before field application of any PGPR strain 

the independent growth of that strain is confirmed at the field site and under the 

fertilizer/nutrient conditions that will be used. 
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Chapter 3  

3 It takes a community to raise a plant: TRFLP analysis of the 

rhizosphere microbial community of two pairs of high and 

low metal accumulating plants in two soil types 

The results of Chapter 2 sparked my interest in further exploring how bacteria, 

and other potentially beneficial microbes, respond to different environmental conditions 

in the rhizosphere of different plants.  To keep the system as natural as possible, I used 

soil collected from active, cadmium-contaminated agricultural fields and examined the 

responses of their constituent microbial communities in the presence of plants that vary in 

their ability to take up and accumulate cadmium.  I expected the different plant types to 

alter their rhizosphere in different ways and that these changes would be reflected in 

microbial community structure. 

3.1 Introduction 

Accumulation of cadmium, a non-essential metal, in food staples, such as wheat, 

is of concern to human health due to the potentially toxic effects.  This element occurs 

naturally in soil but also has anthropogenic sources such as the application of manure and 

fertilizers at agricultural sites (Alloway and Steinnes, 1999).  Phosphate fertilizers are 

often contaminated with cadmium at concentrations as high as 340 mg/kg depending on 

the cadmium concentration in the phosphate rock used to manufacture it.  Repeated 

application of these fertilizers is a major source of cadmium in agricultural systems 

(Sheppard et al. 2007; Grant et al. 2011) and is therefore an important toxic metal for 

study. 

Cadmium uptake in durum wheat (Triticum durum) has been intensively studied 

due to the agricultural and economic importance of this crop.  Durum wheat is a food 

staple worldwide and is a major agricultural crop in the Canadian prairies.  Natural 

accumulation of cadmium in wheat grains grown in Canada varies from 0.1 – 0.5 mg/kg 
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grain depending on the cultivar (Garret et al. 1998).  Natural variation in the uptake and 

distribution of toxic metals exists among plant species and among varieties within a 

species (reviewed in Grant et al. 2008).  Chan and Hale (2004) examined the distribution 

of cadmium among plant parts in two cultivars of durum wheat, Arcola and Kyle, using 

stable isotope labeling of cadmium.  In addition to confirming Kyle as a high-

accumulator and Arcola as a low-accumulator, it was found that Arcola had a decrease in 

root-to-shoot translocation and enhanced shoot-to-root retranslocation of cadmium 

compared to Kyle, meaning that more cadmium is accumulated in the shoot tissue in 

Kyle compared to Arcola.  Similarly, natural high- and low-metal accumulators exist in 

the genus Brassica.  Brassica juncea is an established metal hyperaccumulator that is 

frequently used in phytoremediation studies, while B. napus is a non-hyperaccumulator 

(McGrath et al. 2001).  Each of these pairs of plants offers a good system to study 

mechanisms of metal-uptake and distribution in plants.  The use of both pairs will allow 

for additional insight into these mechanisms at the genus level. 

Differences in the composition of the microbiome surrounding plants are often 

described as a potential mechanism for differential metal accumulation in plants.  

Research has often focused on how the microbes in the rhizosphere can aid in the plants 

response to toxic metals.  Some bacteria have been shown to increase metal 

bioavailability in soil (Bollag and Czaban, 1989), while others have been shown to 

reduce the plant stress response to toxic metals (Hontzeas et al. 2004).  Plants are known 

to have dramatic influence on the rhizosphere by supplying nutrients via plant exudates 

and changing the soil physical and chemical properties.  These exudates may act as 

signals for potentially beneficial microbes to colonize the plant root under conditions of 

metal stress.  Attempts are often made to isolate beneficial microbes from the rhizosphere 

of plants that are known to accumulate metals, including the hyperaccumulating B. 

juncea (Belimov et al. 2005) for potential use in phytoremediation.  However, few 

studies have been done to characterize how the host plant’s inherent metal tolerance may 

shape the rhizosphere community that surrounds it. 

The present study examined the microbial community profile of the rhizosphere 

of two sets of high- and low-metal accumulating plant types grown in each of two soils 
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that had been contaminated with varying concentrations of cadmium to determine how a 

plant’s inherent metal-accumulating ability might influence the microbial community 

profile of its rhizosphere.  This was accomplished by generating bacterial and fungal 

community profiles using terminal restriction fragment length polymorphism (TRFLP) 

analysis. Use of TRFLP has been shown to allow reliable and repeatable quantitative 

comparison of microbial communities in a culture-independent manner (Blackwood et al. 

2003). 

3.2 Methods 

3.2.1 Soil Collection 

Soil was provided by Dr. Cynthia Grant at Agriculture and Agri-Food Canada 

(AAFC), Brandon, Manitoba.  Fertilized (high cadmium) and unfertilized (low cadmium) 

soil was collected from the top 7.5 cm of an agricultural field in Brandon, Manitoba 

immediately following harvest of durum wheat in August 2012.  Soil was immediately 

packaged in a semi-dry state and shipped in 20 L plastic pails to London, Ontario for 

experimentation.  The fertilized treatment was created by applying 80 kg of 11-52-0 

(nitrogen-phosphorus-potassium) fertilizer/ha/year from 2002 to 2009 inclusive (a total of 

354 kg/ha).  The fertilizer contained cadmium as a contaminant, and was chosen as a way 

to elevate cadmium concentrations in the soil.  The unfertilized treatment did not receive 

any phosphate fertilizer during this time and thus contained only background 

concentrations of cadmium.  Nitrogen concentration was kept equal by adding urea to the 

unfertilized treatment (personal communication with Dr. Cynthia Grant, AAFC).   

3.2.2 Soil Characterization 

After sieving to < 2 mm, 3 subsamples of each soil were sent to A&L Canada 

Laboratories Inc. (London, Ontario) for soil analysis including phosphorus, nitrogen, 

potassium, magnesium, calcium, sodium, zinc, manganese, iron, copper, boron, 

aluminum and organic matter (OM) content as well as pH and cation exchange capacity 

(CEC).  Before beginning the experiment, phosphorus was added to the unfertilized soil 

as Triple Superphosphate (Plant Products Co. Ltd., Brampton, ON) to balance the 
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phosphorus concentration in the two soils.  The amount of phosphorus required was 

determined based on the soil report provided by A&L Canada Laboratories Inc.   

The concentration of cadmium in the soil was determined using inductively-

coupled plasma atomic emission spectrometry (ICP-AES).  Soil was prepared as 

described in Chapter 2 with modifications.  A total of 1 g of soil was digested in 1 mL of 

ultrapure nitric acid (OmniTrace®, EM Science, USA) for each treatment and a soil 

standard reference material from the National Institute of Standards and Technology 

(NIST 2711 – Montana Soil) was used.  

Particle size analysis was conducted according to Diaz-Zorita et al. (2002).  

Briefly, 20 g of oven-dried soil was thoroughly mixed with 200 mL of 1% sodium 

pyrophosphate to disperse and separate soil aggregates.  This mixture was then poured 

into a 250 mL graduated cylinder and covered in Parafilm.  The depth of settled particles 

was measured after exactly 2 min (sand), 2 hours (silt), and 18 hours (clay). Soil texture 

was determined based on the percentage of sand, silt, and clay and using the soil triangle 

according to the United States Department of Agriculture (2013).      

3.2.3 Seed Sources and Plant Growth Parameters 

Two pairs of high- and low-cadmium accumulating plants were used.  The high 

accumulating durum wheat (Triticum durum) variety Kyle and low accumulating variety 

Arcola were provided by the AAFC Research Farm Seed Increase Unit (Indian Head, 

Saskatchewan) and the Durum and CPS Wheat Breeding Program Crop Development 

Centre, University of Saskatchewan (Saskatoon, Saskatchewan), respectively.  The 

hyperaccumulating Brassica juncea and the low accumulating B. napus were both 

provided by AAFC Saskatoon Research Centre (Saskatoon, Saskatchewan).     

Seeds were surface-sterilized in a 30% bleach solution for 5 min followed by 70% 

ethanol for 10 min.  Seeds were then rinsed 3 times with sterile distilled water (dH2O) to 

remove any remaining bleach or ethanol.  Following surface sterilization, seeds were 

germinated on moist filter paper in the dark for 36 h.  When radicles had emerged, seeds 

were transferred to individual 8 ! 6 ! 6 cm pots containing one of the two experimental 
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soils and allowed to grow for 28 d from time of planting.  All pots were kept in a growth 

chamber maintained at 21°C and 60% RH with a 16:8 hour light:dark cycle.  Light 

intensity was 230 ± 5.7 µmol/m2/s as repeatedly measured using a Fieldscout Quantum 

Light Meter (Spectrum® Technologies Inc, Illinois, USA).  One treatment in each soil 

type was left unplanted to represent bulk soil.  Each treatment contained 4 replicates.     

3.2.4 Plant Growth Measures 

Plants were harvested after 28 d in the growth chamber.  The height of each plant 

from the soil to the tip of the longest shoot and the total number of leaves on each plant 

were recorded.  Shoot tissue was then harvested and fresh weight (FW) was recorded 

before placing the shoots into individual aluminum foil envelopes and drying in an oven 

set at 60°C for 4 d or until constant weight.  The shoot dry weight (DW) was then 

recorded.  

3.2.5 Plant Tissue Cadmium Content 

Plant shoot and root tissue was digested for metal content analysis as described in 

Chapter 2 with the following modification.  At harvest, the root tissue was placed in a 50 

mL tube with 25 mL of 1 mM ethylenediaminetetraacetic acid (EDTA) for 30 min to 

remove any surface-bound cadmium and prevent measurement of surface cadmium in 

tissue analysis. 

3.2.6 Preparation of Samples for DNA Extraction 

3.2.6.1 Seeds 

Seeds for all species used were surface-sterilized as described above.  Approximately 

10 seeds (Triticum) and 25 seeds (Brassica) were then pulverized in a Kleco tissue 

pulverizer for 30 sec (Kleco Laboratory Equipment, Vasalia, CA, USA).  Samples were 

taken from this homogenized tissue.  The process was repeated with new seeds for each 

sample.  Any microorganisms detected after surface sterilization were considered to 

comprise the seed endophyte community.  
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3.2.6.2 Unplanted Bulk Soil 

A representative soil sample was collected directly from each unplanted pot.  Soil 

was briefly mixed with a spatula and subsamples were taken from at least three locations 

in the pot to ensure a representative sample. 

3.2.6.3 Rhizosphere 

To collect the rhizosphere soil, and avoid bulk soil, the plant roots were removed 

from the pots and shaken until all loose soil particles were removed.  Plant roots were 

placed in a 50 mL tube with 25 mL of distilled water and vortexed to remove the 

remaining soil from the roots.  Samples were then centrifuged (10,000 ! g for 5 min) to 

pellet the soil.  The soil pellet was then used for DNA extraction. 

3.2.7 DNA Extraction 

Total community DNA was extracted from 250 mg of dry bulk soil, rhizosphere soil, 

or seed tissue using a NORGEN Soil DNA Isolation Kit (Cat # 26500, Biotek 

Corporation, Broadview Illinois, USA).  Each sample was added to a tube containing 

glass beads along with 750 µL of lysis solution and 100 µL of lysis additive.  Tubes were 

thoroughly agitated in a FastPrep®-24 (MP Biomedicals Canada, Montreal, QC) at 

maximum speed for 1 min to lyse the bacterial cells.  The lysate was then clarified by 

centrifugation (14,000 ! g for 1 min at room temperature) and 400 µL of the supernatant 

was removed and placed in a new sterile 1.7 mL microcentrifuge tube and mixed with 

100 µL binding solution by inverting the tubes.  Tubes were then placed on ice for 5 min 

before being clarified by centrifugation (14,000 ! g for 1 min at room temperature) then 

400 µL of the supernatant was removed and placed in a new sterile 1.7 mL 

microcentrifuge tube.  An equal volume of 70% ethanol was added to each tube and 

mixed by inverting.  This solution was added to the spin column and centrifuged (14,000 

! g for 1 min at room temperature) in two equal volumes, followed by washing with 500 

µL of Wash Solution I, two washes of 500 µL Wash Solution II, and a dry spin to remove 

all remaining ethanol from the column.  The spin column was then placed into a new tube 
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and 50 µL of elution buffer was added to the spin column.  Columns went through slow 

centrifugation (200 ! g for 2 min at room temperature) to adsorb elution buffer to the 

column before being centrifuged to complete the DNA elution (14,000 ! g for 1 min at 

room temperature).  The concentration of extracted DNA was determined using an 

Eppendorf® BioPhotometer (Eppendorf Canada, Mississauga, Ontario) and diluted to 

exactly 30 µg/mL in filter-sterilized 10 mM Tris, pH 8.0. 

3.2.8 Polymerase Chain Reaction (PCR) Amplification 

Bacterial 16s rRNA genes and fungal internal transcribed spacer (ITS) regions were 

PCR-amplified from total genomic DNA extract using common primers that target a wide 

range of members within Bacteria and Eukarya using highly conserved sequences. The 

fluorophore-labeled primer sets 63F and 1389R (for bacteria), and ITS1F and ITS4 (for 

fungi) were used (Table 3.1).  The PCR reaction mix contained 37.5 µL DNA-free water, 

5 µL 10! buffer, 2 µL 50 mM MgCl2, 1.25 µL 20 mg/ml BSA, 1 µL 4 mM dNTP, 1 µL 

20 pmol forward primer, 1 µL 20 pmol reverse primer, 0.25 µL 5 U/µL Taq polymerase, 

and 1 µL 30 µg/mL template per reaction (bacteria), or 31 µL DNA-free water, 5 µL 10x 

buffer, 4 µL 50 mM MgCl2, 1.25 µL 20 mg/ml BSA, 2.5 µL 4 mM dNTP, 2.5 µL 20 

pmol forward primer, 2.5 µL 20 pmol reverse primer, 0.25 µL 5 U/µL Taq polymerase, 

and 1 µL 30 µg/mL template per reaction (fungi).  The PCR reaction took place in 0.2 

mL reaction tubes and an Eppendorf Mastercycler gradient thermocycler (Eppendorf 

Canada, Mississauga, ON) with the following program parameters: an initial denaturation 

for 2 min at 94°C followed by 30 cycles of 1 min at 94°C, 1 min at 56°C and 2 min at 

72°C and a final elongation at 72°C for 10 min (bacteria), or initial denaturation for 5 min 

at 94°C followed by 30 cycles of 30 sec at 94°C, 30 sec at 55°C and 30 sec at 72°C and a 

final elongation at 72°C for 10 min (fungi).  To confirm that the PCR reaction was 

successful 3 µL of the reaction solution was mixed with 2 µL loading dye and subjected 

to gel electrophoresis on a 1% agarose gel stained with GelRed Nucleic Acid Stain 

(Biotium Inc, Hayward CA, USA).  Positive controls of purified genomic bacterial and 

fungal DNA and negative controls of reaction mixture without template were used. 
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Table 3-1: PCR targets, primers, and sequences 

 

 

Target Primer Sequence

1389R

63F

ITS1F 5'-CTTGGTCATTTAGAGGAAGTAA-3'

ITS4 5'-TCCTCCGCTTATTGATATGC-3'

Bacteria
5!-ACGGGCGGTGTGTACAAG-3!

5!-CAGGCCTAACACATGCAAGTC-3!

Fungi

Bacterial (Marchesi et al. 1998) and fungal (Manter and Vivanco, 2007) primers were chosen 

for the ability to reproducibly amplify diverse organisms with minimal bias from mixed 

template samples
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3.2.9 Terminal Restriction Fragment Length Polymorphism (TRFLP) 

Analysis 

3.2.9.1 DNA Purification 

The amplified DNA was purified using DNA Clean and ConcentratorTM – 5 Kit 

(Zymo Research Corporation, Irvine CA, USA – cat # D4014).  In a sterile 1.7 mL tube 

250 µL DNA binding buffer was added to the remaining amplified DNA sample.  This 

mixture was then loaded into a Zymo-Spin Column placed in a 2 mL collection tube.  

Columns were centrifuged at 10,000 ! g for 30 sec at room temperature.  After discarding 

the flow through, 200 µL of wash buffer was added to the column and centrifuged.  The 

wash step was repeated followed by a dry spin to remove all remaining solution.  The 

column was then placed in a new 1.7 mL tube and 13 µL of DNA elution buffer was 

added directly to the column.  Centrifugation was repeated to elute the DNA.   

3.2.9.2 Restriction Enzyme Digestion 

The purified amplicons were digested with the restriction enzyme HhaI.  

According to the supplier this enzyme has the restriction site 5’-GCG^C-3’.  The reaction 

contained 10 µL purified DNA, 2.5 µL10! buffer C, 0.25 µL acetylated BSA, 0.5 µL 

HhaI, and 11.75 µL DNA-free water per reaction.  Reaction mixtures were incubated at 

37°C for 3 h to allow for digestion and then placed in a 65°C water bath for 20 min to 

heat-kill the enzyme and stop the reaction.  The samples were diluted in 75 µL water for 

a final volume of 100 µL for fragment analysis. 

3.2.9.3 Fragment Analysis 

Samples were sent to the Advanced Analysis Centre Genomic Facility (University of 

Guelph, Guelph, Ontario) for fragment analysis using the Applied BioSystems 3730 

DNA Analyzer. 
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All steps from DNA extraction to fragment analysis were duplicated for a single pot 

from each treatment.  These duplicates were used to ensure repeatability of the 

methodology. 

3.2.10 Data and Statistical Analysis 

Differences in each soil characteristic between fertilized and unfertilized soils were 

assessed using a Student’s t-test.  Within a genus, for each plant parameter, differences 

among the high and low accumulating plants in fertilized or unfertilized soil were 

calculated using a two-way ANOVA followed by Tukey’s post-hoc test.  Statistical 

analysis was performed in SigmaPlot 11.0.   

The TRFLP fragments from each sample were analyzed using GeneMarker® 

AFLP/Genotyping Software version 2.2.0 to generate a raw data matrix based on relative 

peak intensity.  Fragment lengths less than 30 bp were eliminated from all datasets to 

exclude the presence of primers from the analysis.  A baseline threshold of 50 

fluorescence units was used to distinguish ‘true peaks’ from background noise (Culman 

et al. 2008).  To account for run-to-run variability each profile underwent alignment by 

placing each fragment size peak into a “bin” using nearest integer rounding and visual 

inspection of the peaks.  The matrix generated by GeneMarker was then transferred to a 

Microsoft Office Excel v12.3.5 spreadsheet and turned into a presence/absence matrix.  A 

binary presence/absence matrix eliminates variability related to factors such as DNA 

purification efficiency, pipetting errors, and community structure (Blackwood et al. 2003, 

Dunbar et al. 2001).  Due to the binary nature of the data set, indices of community 

diversity could not be calculated since these calculations require information about the 

frequency of occurrence of individual fragments (relative abundance). A Bray-Curtis 

similarity matrix was then generated in Primer 5.2.4 and non-metric multidimensional 

scaling (NMDS) plots were generated using 10 iterations.  For NMDS, a Kruskal’s stress 

value of below 0.15 is considered good and below 0.1 is considered ideal (Clarke, 1993).  

Analysis of similarity (ANOSIM) was performed for all samples including all factors: 

time, soil type, genus, plant type, metal accumulating ability, and accumulating 

ability/soil type match.  For this last parameter, high accumulating plants were assumed 
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to have a good match with the high cadmium soil, and low accumulating plants were 

assumed to have a good match with the low cadmium soil.  Bacterial and fungal data 

were run separately. 

Fragment richness was calculated from the binary matrix by treating each fragment 

length as an ‘individual’ species.  Therefore, fragment richness is equal to the total 

number of unique fragment lengths present in each sample.  Within a plant type, 

including bulk soil, differences among treatments was analyzed with a one-way ANOVA 

followed by Tukey’s post-hoc test.  For all statistical tests a p value of $ 0.05 was 

considered significant. 

3.3 Results 

3.3.1 Soil Characterization 

 The concentrations of various trace elements in the two experimental soils are 

given in Table 3-2.  There was a statistical difference between the concentration of 

phosphorus, potassium, iron, zinc, and cadmium between the fertilized and unfertilized 

soils (t-test, n = 3, p < 0.05).  However, cadmium was the only element that was present 

in a concentration above the CCME limits, or considered in excess, and it was above this 

threshold in both soil types. Organic matter content, pH, cation exchange capacity and 

soil texture are given in Table 3-3.  These physical and chemical properties did not vary 

between the two soils (t-test, n = 3, p > 0.05).   
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Table 3-2: Trace element concentrations in unfertilized and fertilized soil (mean ± SE)  

 

 

 

 

Soil Calcium Magnesium Nitrogen (NO3) Phosphorus Potassium1
Sodium

(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

Unfertilized 3673.3 ± 99.1 571.7 ± 27.4 7.7 ± 0.3 19.0 ± 1.0* 225.7 ± 8.8* 10.0 ± 0.6

Fertilized 3566.7 ± 70.0 623.3 ± 28.4 9.7 ± 0.6 47.3 ± 8.9 197.7 ± 11.8 11.3 ± 0.7

Soil Boron Copper Iron Manganese Zinc Aluminum Cadmium

(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

Unfertilized 1.4 ± 0.0 1.7 ± 0.0 40.3 ± 0.3* 141.3 ± 4.3 2.8 ± 0.1* 420.3 ± 12.5 2.38 ± 0.17*

Fertilized 1.3 ± 0.1 1.6 ± 0.0 43.7 ± 0.9  128.3 ± 7.8 5.2 ± 0.6  439.7 ± 6.2 3.07 ± 0.10  

CCME Limits2 n/a 63 n/a n/a 200 n/a 1.4

Excess Soil3 

Concentration 
> 3 - 5 > 17 - 25 n/a > 150-200 >10 n/a n/a

1Concentration of potassium in typical agricultural soils is 212.75 ± 81.66 (Gosling and Shepherd, 2005). 
2Canadian Council of Ministers of the Enviornment (CCME, 2006)
3Excess soil concentrations source: Sillanpaa (1982)

* represents significant difference (p < 0.05)

Macronutrients

Micronutrients Non-essential
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Table 3-3: Physical and chemical properties of unfertilized and fertilized soil (mean ± SE)

Soil Organic Matter pH Cation Exchange Capacity Sand Silt Clay Texture

(%) (meq/100 g) (%) (%) (%)

Unfertilized 5.3 ± 0.1 8.0 ± 0.0 23.7 ± 0.7 69.1 ± 3.2 25.8 ± 1.7 5.0 ± 1.5 Sandy Loam

Fertilized 5.2 ± 0.1 7.8 ± 0.0 23.6 ± 0.6 66.5 ± 5.5 24.9 ± 3.5 4.1 ± 2.2 Sandy Loam

No significant difference in variables was detected between fertilized and unfertilized soil (t-test, p > 0.05, n = 3)
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3.3.2 Plant Growth Measures 

Plant growth measures are presented in Table 3-4.  The mean height within the 

Triticum cultivars was equal among all treatments.  Kyle grown in unfertilized soil had 

the lowest number of leaves, followed by Kyle and Arcola grown in fertilized soil, while 

Arcola grown in unfertilized soil had the highest number of leaves.  Shoot dry weight was 

lowest in Kyle grown in unfertilized soil compared to all other samples (two-way 

ANOVA with Tukey’s post-hoc, n = 4).  Among the Brassica species, there was no 

treatment effect on mean height or shoot dry weight; however, B. napus had consistently 

fewer leaves compared to B. juncea independent of soil treatment (two-way ANOVA 

with Tukey’s post-hoc, n = 4).   

3.3.3 Plant Tissue Cadmium Content 

Plant tissue cadmium concentration and total content is given in Table 3-5.  For 

durum wheat, both cadmium concentration and total cadmium content was higher in the 

shoots of the Kyle variety grown in fertilized soil compared to unfertilized soil.  

Cadmium was below the detection limit in shoots of the Arcola variety.  However, root 

cadmium concentration was equal between durum wheat cultivars when grown in the 

same soil type and was lower in plants from unfertilized soil than from fertilized soil 

(two-way ANOVA, n = 3).  The concentration and total amount of cadmium in the shoots 

did not vary between the Brassica species among soil treatments; however, root cadmium 

concentration ranged from below detection limit in the unfertilized soils to 1.659 – 2.940 

µg/g in the fertilized soil for both species.   
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Table 3-4: Plant height, number of leaves, and shoot dry weight for each plant type in unfertilized and fertilized soil (mean ± 

SE) 

 

 

 

Species Soil Height Number of Leaves Shoot Dry Weight

(cm) (mg)

Unfertilized 40.03 ± 0.17 a 5.0 ± 0.2 a 230 ± 10 a

Fertilized 44.65 ± 0.25 a 7.5 ± 0.5 b 358 ± 42 b

Unfertilized 45.63 ± 1.77  a 10.25 ± 0.9 c 369 ± 25 b

Fertilized 44.15 ± 2.45 a 8.0 ± 0.8 b 340 ± 25 b

Unfertilized 23.83 ± 1.43 a 9.3 ± 0.8 b 284 ± 27 a

Fertilized 23.58 ± 4.78 a 8.8 ± 0.8 b 349 ± 57 a

Unfertilized 16.7 ± 1.7 a 4.3 ± 0.8 a 215 ± 7 a

Fertilized 17.4 ± 0.96 a 4.5 ± 0.5 a 361 ± 61 a

For each variable within each genus values not sharing a common letter are significantly 

different (p < 0.05)

Expected 

Cadmium 

Accumulation

High

Low

High

Low

Triticum durum var. 

Kyle

Triticum durum var. 

Arcola

Brassica juncea

Brassica napus
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Table 3-5: Plant shoot and root cadmium content (mean ± SE) 

 

 

 

 

Species Soil
Shoot Cadmium 

Concentration

Total Shoot 

Cadmium

Root Cadmium 

Concentration 

(µg/g) µg (µg/g)

Unfertilized 0.410 ± 0.093 b 0.121 ± 0.055 b 1.992 ± 0.290 a

Fertilized 0.791 ± 0.242 c 0.286 ± 0.058 c 2.613 ± 0.506 b

Unfertilized bdl a bdl a 2.169 ± 0.344 a

Fertilized bdl a bdl a 2.993 ± 0.172 b

Unfertilized 0.705 ± 0.242 a 0.228 ± 0.076 a bdl a

Fertilized 0.907 ± 0.205 a 0.305 ± 0.067 a 2.940 ± 1.798 b

Unfertilized 0.481 ± 0.137 a 0.099 ± 0.028 a bdl a

Fertilized 0.780 ± 0.224 a 0.358 ± 0.108 a 1.659 ± 0.231 b

For each variable within each genus values not sharing a common letter are significantly different (p < 0.05)

bdl = below detection limit (< 0.001 µg/g)

High or low accumulation as predicted from Chan and Hale, 2004 (Triticum) and McGrath et al. 2001 (Brassica)

Expected 

Cadmium 

Accumulation

Triticum durum var. 

Arcola

Brassica juncea

Brassica napus

High

Low

High

Low

Triticum durum var. 

Kyle
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3.3.4 TRFLP Microbial Community Analysis of Similarity 

3.3.4.1 Bacterial Communities 

Fragment richness, calculated from TRFLP profiles, in bulk soil, rhizosphere, and 

endophyte bacteria communities are given in Table 3-6.  Fragment richness of the 

endophyte communities and of unfertilized soil was low and fragment richness in the 

fertilized soil was about two times greater than that of the unfertilized soil.  Within the 

rhizosphere samples fragment richness values were highest for matched and unmatched 

Kyle, unmatched Arcola, and matched B. napus (one-way ANOVA within plant type, 

including bulk soil, followed by Tukey’s post hoc test, p < 0.05, n = 3).  Fragment 

richness was the same in matched and unmatched rhizosphere of B. juncea. 

 The NMDS ordination for bacteria community profiles from TRFLP analysis are 

plotted in Figure 3-1 and Figure 3-2.  These plots show relative (dis)similarity between 

bacterial communities, where greater distance between points is equivalent to greater 

dissimilarity. There was no difference between the bacterial community profiles between 

the two soil types (Figure 3-1 A) or time points (Figure 3-1 B) based on one-way 

ANOSIM (p > 0.05, n = at least 6).  Similarly, there was no difference between the 

rhizosphere communities when plant type, accumulation ability, or genus was plotted 

(data not shown).  However, the seed endophyte bacteria (Figure 3-1 C) were different 

between the Triticum cultivars Kyle and Arcola and the Brassica species.  Despite the 

lack of separation based on factors such as soil, time, plant type, and genus it was found 

that the rhizosphere bacteria communities were significantly different when considered as 

being matched for the plant’s cadmium accumulating ability and the soil type (i.e. high 

accumulating plant in more contaminated soil or low accumulating plant in less 

contaminated soil) or unmatched (i.e. high accumulating plant in less contaminated soil 

or low accumulating plant in more contaminated soil) (Figure 3-1 D).   
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Table 3-6: Bacterial fragment richness in bulk soil, matched and unmatched 

rhizosphere, and seed endophytes (mean ± SE) 

 

 

 

 

Plant Type Endophytes

Fertilized Unfertilized Matched Unmatched

Bacteria species richness for each plant type was compared among bulk soil, rhizosphere soil, and 

seed endophytes.  Values not sharing a common letter are significantly different (one-way ANOVA,

p < 0.05, n = 3).  Where matched rhizosphere was sampled from a plant with high accumulating ability 

in more contaminated soil or low accumulating ability in less contaminated soil and unmatched

 rhizosphere was sampled from a plant with high accumulating ability in less contaminated soil or low 

accumulating ability in more contaminated soil.

Triticum durum  

var. Arcola

Rhizosphere

47 ± 6 a

391 ± 177 c 109 ± 10 b 45 ± 7 a

Brassica juncea

Brassica napus

173 ± 20 b 300 ± 103 c

469 ± 39 d

309 ± 131c

228 ± 9 c 67 ± 11a

563 ± 37 d 58 ± 7 a

Triticum durum  

var. Kyle

Bulk Soil

150 ± 9 b 86 ± 35 a
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Figure 3-1: NMDS ordination based on Bray-Curtis similarities of soil bacteria 

community TRFLP profiles 

Dis(similarity) is reflected in the distance between points for A) soil types B) time C) 

seed endophytes and D) plant accumulating ability/soil type match.  Where matched 

rhizosphere was sampled from a plant with high accumulating ability in more 

contaminated soil or low accumulating ability in less contaminated soil and unmatched 

rhizosphere was sampled from a plant with high accumulating ability in less 

contaminated soil or low accumulating ability in more contaminated soil.  Global R and P 

are based on the ANOSIM overall trend.  Treatments not sharing a common letter in the 

stats column were significantly different (ANOSIM with pair wise post-hoc test for plant 

type, p < 0.05, n = 3). 
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Figure 3-2: NMDS ordination based on Bray-Curtis similarities of bacteria 

community TRFLP profiles among bulk soil, endophytes, matched, and unmatched 

soil/plant communities in each plant type 

Dis(similarity) is reflected in the distance between points for A) Triticum durum cv. Kyle 

B) T. durum cv. Arcola, C) Brassica juncea and D) B. napus.  Where matched 

rhizosphere was sampled from a plant with high accumulating ability in more 

contaminated soil or low accumulating ability in less contaminated soil and unmatched 

rhizosphere was sampled from a plant with high accumulating ability in less 

contaminated soil or low accumulating ability in more contaminated soil.  Global R and P 

are based on the overall trend.  Treatments not sharing a common letter in the stats 

column were significantly different (ANOSIM followed by pair wise post-hoc test for 

each plant type, p < 0.05, n = 3). 
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 To determine whether the seed endophytes or native soil bacteria could be 

contributing to the difference between the bacteria communities in matched or unmatched 

conditions, the community profiles for the endophytes, soil types, matched rhizosphere 

and unmatched rhizosphere, for each plant type were plotted in a NMDS ordination 

(Figure 3-2).  It can be seen that for all plant types there was a significant difference 

between the seed endophytes and all the soil communities, the bacteria community in the 

unmatched rhizosphere is the same as the communities found in either soil type, and the 

communities in the matched rhizosphere are different than the communities found in any 

other treatment (one-way ANOSIM followed by pair wise post-hoc test, p < 0.05, n = 3).  

Also, the bacteria communities in the matched soil type appear to have the most variation 

among samples where as all other treatments form distinct clusters that reflect greater 

similarity among samples. 

 The dissimilarity between the matched rhizosphere versus the unmatched 

rhizosphere or bulk soil might be explained by an increase or decrease in unique 

fragments compared to the bulk soil.  The numbers of unique and shared fragments 

identified by TRFLP analysis among treatments is represented in Figure 3-3.  

Approximately 40% of the fragments were found in all three treatments and 10% of the 

fragments were unique to a particular treatment.  The bulk soil samples did not contain 

any unique fragments.  The matched rhizosphere samples appear to be the most different, 

containing 150 unique fragments while the unmatched rhizosphere samples only contain 

56 unique fragments.  Similarly, the matched rhizosphere samples shared approximately 

100 fewer common fragments with the bulk soil than the unmatched rhizosphere did. 
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Figure 3-3: Schematic representation of the number of common fragments among 

matched rhizosphere, unmatched rhizosphere, and bulk soil samples 

Number of fragments based on pooled TRFLP fragment presence/absence data. Within 

the matched rhizosphere treatment, samples from plants with high accumulating ability in 

more contaminated soil and those with low accumulating ability in less contaminated soil 

were pooled.  Similarly, within the unmatched rhizosphere treatment, samples from 

plants with high accumulating ability in less contaminated soil and those with low 

accumulating ability in more contaminated soil were pooled.  For the bulk soil treatment, 

the two soil types were also pooled.  These pools were deemed acceptable since no 

dignificant differences were found among the components of each pool (Figures 3-1 and 

3-2). 
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3.3.4.2 Fungal Communities 

Fungal genomic DNA could not be repeatedly amplified from soil.  After ruling out 

problems with the DNA extraction procedure, DNA inhibitors, and the primers, the 

results of the fungal analysis were omitted from this thesis due to the inconsistency.  It is 

possible that the procedure used to extract DNA from the soil was not aggressive enough 

to lyse the fungal cells, therefore, there was little to no fungal DNA present for 

amplification.  Future work should use different DNA extraction procedures to ensure 

isolation of fungal DNA from soil samples.   

3.4 Discussion 

3.4.1 Soil Characterization 

Among the soil trace elements that were measured, the unfertilized and fertilized 

soils varied only in the concentrations of phosphorus, potassium, iron, zinc, and cadmium 

(Table 3-2).  The initial difference in phosphorus, which was the result of applying 

phosphate fertilizer containing cadmium as a contaminant (personal communication, Dr. 

Cynthia Grant, AAFC), was eliminated prior to sowing the plants.  However, it was 

determined that the difference between the two soils in the concentration of potassium, 

iron, and zinc, while statistically significant were not biologically significant.  The typical 

concentration of potassium in agricultural soils is 212.75 ± 81.66 (Gosling and Shepherd, 

2005).  Both of the soils used were within this range and therefore, the difference 

between the two soils was likely not biologically significant.  Similarly, the mean 

difference of 3.4 mg/kg iron observed between the two soil treatments would not have a 

biological impact since the concentration of iron in both soils is well above the 3.6 to 

12.8 mg/kg range required by most crop species (Christ, 1974).  Likewise, the 

concentration of zinc was an order of magnitude below CCME limits and half the 

concentration considered to be in excess in soil for both soil types.  This indicates that the 

only known way in which the two soils varied was in the concentration of cadmium.  The 

CCME sets thresholds for the concentrations of potentially toxic metals in agricultural 
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soils.  The current CCME limit for cadmium is 1.4 mg/kg soil (CCME, 2006).  Both the 

unfertilized and fertilized soils were above this threshold at 2.38 and 3.07 mg/kg, 

respectively.  The unfertilized soil can therefore be considered a low cadmium treatment, 

while the fertilized soil can be considered a high cadmium treatment.   

 Many soil physical and chemical factors such as organic matter content, pH, 

cation exchange capacity, and soil texture can affect the bioavailability of metals in soil 

(Yang et al. 2001).  It was therefore important to ensure that these factors did not vary 

between the soils used in this study to eliminate their effect on of cadmium 

bioavailability.  The two soils did not vary among these measures.  Given the 8-year 

history of different fertilizer regimes between the two soil types it is possible that the 

soils varied in other ways that were not measured in this study.    

3.4.2 Plant Growth Measures and Plant Tissue Cadmium Content 

Kyle and Arcola cultivars of durum wheat are regarded as being high- and low-

cadmium accumulators, respectively (Chan and Hale, 2004), while B. juncea and B. 

napus are considered a metal hyperaccumulator and non-hyperaccumulator (McGrath et 

al. 2001).  Variation in plant growth measures such as height, number of leaves, and 

shoot dry weight may occur within a plant genus when the plant is able to tolerate the 

contamination level of the soil in which it was grown.  However, there was no variation 

in height or shoot dry weight among soil types and plant type within a genus, except for 

an unexpected reduction in dry weight when Kyle was grown in unfertilized soil (Table 

3-3).  The variation in the number of leaves between the two Brassica species may be due 

to phenotypic differences between the two species.  Interestingly, the number of leaves 

among the Triticum cultivars appears to be related to whether the metal-accumulating 

ability of the plant type was matched to the contamination level of the soil type.  The 

high-accumulating variety had an increase in the number of leaves when grown in the 

more contaminated fertilized soil while the low-accumulating variety had the highest 

number of leaves when grown in the less contaminated unfertilized soil.  The tissue 

cadmium content data given in Table 3-4 is consistent with previous work documenting 

the metal-accumulating ability of these four plants, other than the failure of B. juncea to 
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accumulate more cadmium in the shoot tissue compared to B. napus.  However, previous 

research has shown that some cultivars of B. juncea accumulate metals in the roots but 

fail to translocate these metals to the shoots (Kumar et al. 1995).  It is also possible that 

28 d was insufficient time for B. juncea to accumulate the expected higher amounts of 

cadmium in aboveground tissues. 

3.4.3 TRFLP Microbial Community Analysis of Similarity 

3.4.3.1 Bacterial Communities 

Fragment richness was greater in the bacterial communities in fertilized compared 

to unfertilized soil, and seed endophytes and some rhizosphere soil had greater fragment 

richness than the bulk soil (Table 3-5).  It is not surprising that the greatest fragment 

richness was in the rhizosphere communities.  This could be due to the increase in 

nutrition sources, such as carbon, supplied by the plant to the soil environment.  Between 

5 and 21% of all photosynthetically fixed carbon is transferred to the rhizosphere through 

root exudates (Marschner, 1995).  There does not appear to be any clear pattern in which 

plant types or plant-soil matches have affected fragment richness. 

Assuming there was no major source of bacterial contamination in the growth 

chamber, all bacterial species found in the rhizosphere had to be present in either the bulk 

soil or endophyte communities.  Therefore, increases in richness do not represent the 

appearance of new species, they are simply increases in fragment abundance above the 

fluorescence threshold used to differentiate ‘true peaks’ from background noise (Culman 

et al. 2008).   

After plotting the TRFLP binary matrix as a series of NMDS ordinations it was 

determined that the following factors were not a source of the differences among bacteria 

communities found in the soil: soil type, time (Figure 3-1 A,B), genus, species, and 

cadmium-accumulating ability (not shown).  The lack of difference between the soil 

types suggests that the concentration of cadmium in the fertilized soil was not high 

enough to select against any bacteria found in the unfertilized soil: however, one might 

expect a greater number of bacterial species in a non-contaminated soil.  Any differences 
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that were seen in the experimental treatments must come from either seed endophytes or 

be the result of the interactions of plants with the soil.   

The endophytic bacteria communities were different between the two plant genera 

(Figure 3-1 C).  Ahlholm et al. (2002) found that host genetic variation can affect 

endophyte genetic variation in fungi and Manter et al. (2010) have shown cultivar-

specific bacterial endophyte communities in potato.  Additionally, it has been shown that 

the environmental conditions of the host plant, such as microclimate and biotic 

interactions, can influence the makeup of the endophyte community in corn (Pan et al. 

2008).  It is possible that if the parent plant were grown in contaminated soil the 

endophytes in the seed would be more likely to benefit the seedling if it germinated in a 

similarly contaminated environment, and vice versa.  This could result in the greatest 

similarity in the rhizosphere bacterial communities being between the pairs of high- and 

low-accumulating plants.  Kyle and B. juncea were more likely to have been previously 

grown in a contaminated soil, and might be expected to have similar endophytes.  

Similarly, the low-accumulating plants, Arcola and B. napus, might be expected to share 

endophytes characteristic of non-contaminated sites.  However, when the endophyte 

community profile was plotted with bulk soil and matched and unmatched rhizosphere 

communities it was found that both matched and unmatched rhizosphere communities 

were significantly different than the endophytes for all plant types (Figure 3-2). 

The bacteria communities in the rhizosphere of plant types that were grown in soil 

that matched their accumulating ability were different than those of plant types grown in 

unmatched soils (Figure 3-1 D).  The dissimilarity between the matched and unmatched 

soil types suggests that the plant interaction with the soil is essential to forming the 

bacterial community in the rhizosphere.   

The bacterial communities in the rhizosphere of the unmatched plants were the 

same as the communities in the bulk soil, while the bacterial communities in the 

rhizosphere of matched plants were significantly different (Figure 3-2) for all plant types.  

The plants grown in unmatched soil do not appear to influence the soil environment in a 

way that would allow new or different bacteria to colonize the rhizosphere.  Additionally, 
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the communities are closely clustered in the NMDS plot suggesting very little variation in 

the bacteria community among samples. 

  The fact that the bacteria communities in the matched plant/soil rhizosphere are 

different than either the endophyte or bulk soil bacteria communities suggests that the 

matched plants have a greater ability to change their soil environment, which resulted in a 

shift in the bacterial community.  This is also reflected in the number of unique fragments 

detected in the matched rhizosphere compared to either the unmatched rhizosphere or 

bulk soil samples (Figure 3-3).  It is well established that plants exude a variety of 

compounds that may influence the composition of the soil microbial community by 

promoting symbiosis, inhibiting the growth of pathogens, and changing the chemical and 

physical properties of the soil.  It has been shown that certain plant metabolites, when 

exuded into the environment, are capable of recruiting beneficial soil microbes.  For 

example, malic acid secreted from the roots of Arabidopsis acts as a signal to selectively 

recruit the beneficial Bacillus subtilis FB17 in a dose-dependent manner (Rudrappa et al. 

2008).  Conversely, secretion of defense proteins and other chemicals can protect plant 

roots from pathogenic microorganisms during development (Flores et al. 1999).  Any of 

these inputs may have lead to the proliferation of certain species to bring them above the 

TRFLP threshold and the subsequent increase in the number of fragments that were 

detected in the matched rhizosphere. 

The bacterial communities in the rhizosphere of plants grown in matched soil had 

the greatest variation among the bacteria communities compared to all other treatments.  

This increase in variation suggests that the plants in this treatment were less selective 

when recruiting soil microbes than the unmatched plants, which cluster very closely 

together.  It is possible that the beneficial input that lead to the increase in species does 

not put selective pressure on the community and allows a number of species to thirve.   

It is important to note that none of the plants grown in any of the treatments 

showed signs of cadmium-induced stress, which suggests that the resulting changes in the 

rhizosphere of matched or unmatched plants do not reflect the plant’s inability to alter the 

chemistry of their rhizosphere as a result of stress. 
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3.4.3.2 Fungal Communities 

Fungal genomic DNA was difficult to amplify.  Many samples lacked 

amplification, although positive and negative controls produced the expected results and 

bacterial genomic DNA isolated from the same soil sample amplified.  Combined with 

the non-repeatability in the sequence results for those duplicate samples in which the 

DNA did amplify, the fungal communities have been left out of further analysis.  

However, I would expect the fungal community to respond in a similar way as the 

bacterial community given the close association between plants and fungi in the 

rhizosphere. 

3.5 Conclusions and Future Directions 

Further investigation into the significance of matching plant metal-accumulating 

ability to the contamination level of the soil is needed.  Since the seed endophytes were 

ruled out as a source of this variation it is likely that the most important factor is related 

to plant exudation and recruitment of microbe colonization through changes in the soil 

immediately surrounding the plant root.  It is easy to theorize about why a plant grown in 

a matched soil type would have the greatest ability to thrive and influence its 

environment.  It is also understandable that a low-accumulating plant will not do well in a 

highly contaminated soil.  However, it is unclear why the high-accumulating plants lose 

their ability to interact with and alter the rhizosphere environment in a less contaminated 

soil.  It might help to test additional pairs of low- and high-accumulating plants within 

many other plant species to determine if this is a general phenomenon. 

Future work should follow two paths.  First, the fragments corresponding to the 

populations contributing the most to the differences between the communities should be 

identified.  These TRFLPs could then be compared to phylogenic databases in an attempt 

to identify these bacteria.  However, the fragments may not precisely match currently 

sequenced organisms since the detected fragment length can be influenced by the 

protocol (Tu et al. 1998) and sequence composition (Kaplan and Kitts, 2003), and these 

databases are limited by the small percentage of organisms that are currently sequenced 
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(Blackwood and Buyer, 2007).  However, if the bacteria can be identified then the role of 

those bacteria in the plant-microbe-metal interactions could be elucidated and might help 

to explain differential metal tolerance, or metal uptake, in plants.  Secondly, work needs 

to be done to elucidate the specific mechanism behind the influence of plants on the 

composition of the microbial community in the rhizosphere, especially the mechanisms 

that allow a plant to exert a high amount of influence over the microbes in a well matched 

soil versus an unmatched soil. 
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Chapter 4  

4 General Discussion 

4.1 Overview and Future Prospects 

The interaction between plants, microbes, and their environment continues to be 

proven a complex system to study.  Trying to document the number of ways that these 

organisms interact with one another has been described as trying to open a window into a 

‘black box’ of unknowns (Insam, 2001).  At the same time, researchers who aim to 

clarify these unknowns, usually one at a time, have been criticized for looking at a single 

tree and thus overlooking the forest.  Some have over-simplified the system by treating 

the entire soil microbial community as a single unit, allowing researchers to study the 

forest, rather than a tree (Stockdale and Brookes, 2006), but this approach fails to isolate 

subtleties behind the microbial interactions with other microbes and the environment.  

Failure to study the very complex and diverse interactions between plants, microbes, and 

the soil environment, on both the small scale and as a whole ecosystem, has not been due 

to lack of will or effort, but has been limited by the available methodology and 

technology.          

Soil microbiology has experienced major changes in methods and scope in the last 

few decades.  Early researchers used culture-based methods to enumerate bacterial and 

fungal biomass using serial dilutions on select media (reviewed in Stockdale and 

Brookes, 2006).  However, simple methods that depend on extracting soils and counting 

the microorganisms fail to fully characterize the soil microbiota due to the fact that few 

microbes can be cultured.  This type of community description also fails to identify and 

determine the relative importance of each microorganism’s function in the soil.  

Scientists, therefore, needed to develop methodology to measure and monitor major soil 

processes, especially microbial influence on major geochemical cycles and plant growth.  

Methodology that enabled characterization of biochemical processes, such as enzyme 

activity and nutrient flux, allowed for more insight into the microbial role in ecosystem 

function but still lacked insight into the microbial impact on the community as a whole 
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(reviewed in Insam, 2001).  More recently, molecular techniques have allowed for 

culture-independent analysis of the diversity of microorganisms in soil (reviewed in 

Hirsch et al. 2010).  This type of methodology is getting closer to a system that allows for 

the study of the ‘whole forest’. 

In the past, research on plant-microbe interactions has focused on characterizing 

the physiological function of microbial populations in soil and on the identification and 

isolation of microbes of interest from the rhizosphere, such as microbes that can fix 

atmospheric nitrogen (Bashan et al. 2004), produce phytohormones (Vessey, 2003), and 

aid pathogen defense (Walsh et al. 2001).  Compared to determining the functional 

role(s) of microbial communities very little research has been done to characterize 

differences in microbial communities in different environmental conditions and under 

different stresses, likely due to the lack of methodology to do so.  The lack of research at 

the ecosystem level may partially explain why microbes found to be beneficial in 

laboratory studies often fail to achieve the same level of success in field trials and why 

there is often high variability among field plot replicates.  One of many examples 

includes a study of the ability of pseudomonad strains to promote growth and yield of 

winter wheat at two field sites.  After 250 days there was no significant difference 

between the treatment and control plots despite promising lab studies (de Freitas and 

Germida, 1992). 

 In this thesis, I looked at plant-microbe interactions under cadmium stress at the 

small-scale, single bacterium (‘one tree’) level, as well as in a more complex ecosystem 

(‘whole forest’).   

 In Chapter 2, I showed that there are environmental conditions in which an 

otherwise universal PGPR can become deleterious to plant growth.  When Arabidopsis 

thaliana was inoculated with the putative PGPR Pseudomonas putida UW4 in MS 

medium there was a negative impact on plant growth compared to a no bacteria 

treatment.  I believe that this is the first time a seemingly universal PGPR has been 

shown to be deleterious.  I have expanded upon the current model of plant-PGPR 

interactions by discovering that there are environmental conditions under which bacterial 
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interactions with the environment can alter the bacterial interaction with the plant (Figure 

4-1 A).  My work shows the importance of increasing the scope of PGPR research to 

include the ways in which the microbial-environment interactions might influence the 

plant growth-promoting abilities of a single bacterium.  

 It is well established that microbes are highly influenced by the environment and 

that environmental disturbances, such as the addition of toxic metals (Sandaa et al. 2001), 

pollutants (Ovreas and Torsvik, 1998), and pesticides (El Fantroussi et al.  1999), can 

decrease the number and diversity of microbial populations in soil.  However, very little 

is known about how this change in the microbial community will, in turn, affect the 

plants.  Also, in contrast to the deleterious impact of PGPR in MS medium documented 

in Chapter 2, there has been little to no investigation of whether these microbial changes 

will have a direct negative impact on plant growth. The reduction in microbial 

populations recorded as a result of the introduction of a plant nutrient solution (MS 

medium) documented in Appendix B suggests that even seemingly positive changes in 

the environment can have negative impacts on the microbial community, which can result 

in a negative impact on the plant.     

 In Chapter 3, I analyzed the microbial community profiles of the rhizosphere 

surrounding two pairs of high- and low-cadmium accumulating plants in an attempt to 

determine whether a plant’s inherent metal-accumulating ability would influence the 

composition of the microbial community.  Unexpectedly, I found that the composition of 

the microbial community did not vary with soil type, time, plant type, or metal-

accumulating ability of the plant.  However, when a plant’s metal-accumulating ability 

was well matched to the level of metal contamination in the soil significant changes in 

the microbial community profile in the rhizosphere were seen.  More specifically, well 

matched plants appeared to exert a high amount of influence on the composition of their 

rhizosphere, resulting in microbial populations that were different than the seed 

endophytes and those in the bulk soil, while unmatched plants were unable to alter the 

composition of the rhizosphere, resulting in microbial communities identical to that of 

bulk soil (Figure 4-1 B).  This previously undocumented influence on the rhizosphere  



 

 

89 

 

 

Figure 4-1:  Proposed model for plant-microbe interactions influenced by 

environmental factors  

A) In ideal growth conditions PGPR positively impact plant growth by producing IAA and metabolizing ACC 

with ACC deaminase requiring minimal microbial interaction with the environment, or at least minimal diversion 

of microbial resources away from those required to promote plant growth.  However, under non-ideal conditions, 

the degree of microbial interaction with the environment increases, resulting in a reduction in the ability of the 

PGPR to mitigate plant stress and a subsequent reduction in plant growth.  B) When grown in soil that is well 

matched to their inherent metal-accumulating ability, plants are able to exert a high degree of influence on the 

rhizosphere (Rhizo) resulting in microbial communities (grey) that are different from the seed endophytes 

(white) or those in bulk soil (black).  However, when plants are grown in unmatched soil they are unable to 

establish a distinct rhizosphere and the resulting microbes are the same as those in bulk soil (black).  Thicknesses 

of two-way arrows indicate the relative strength of the interaction.  These figures are not to scale.   
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would not have been possible without the use of modern, molecular, culture-independent 

methodologies.    

 All of the results from this thesis show the need for more research in the field of 

plant-microbe interactions and the need to keep trying to look at the ‘whole forest’.  

Additionally, my work showcases how advancements in soil microbiological methods 

have allowed for new plant-microbe interactions to be identified.  More specifically, all 

the results from this study show how environmental factors have a strong impact on 

plant-microbe interactions and that whether this impact will be positive or negative 

cannot be predicted. 

Although the field of plant-microbe interactions is still limited by what we do not 

know, prospects for this field are bright, especially as techniques continue to be 

developed that will allow us to gain insights into this incredibly complex system.  

Developments will lead to important findings with applications in phytoremediation, 

agriculture, food safety, and climate change modeling of major nutrient cycles.         

Perhaps the most marketable application of this type of research is the 

development of commercial cultures as inoculants for application at field sites to improve 

soil function, plant growth and establishment at phytoremediation sites, agricultural yield, 

crop health, and food safety.  Some commercial cultures are already available (listed in 

Berg, 2009).  However, there are often marked differences in efficiency between 

laboratory findings and field applications, and among field sites.  Developing an 

understanding of the ways in which the soil environment might influence microbial 

impacts on the plant, such as the results presented in Chapter 2, might help to improve the 

efficiency of use of these cultures and develop new cultures that are better able to 

maintain growth-promotion under varying environmental stressors.  Additionally, 

advancements in our understanding of how environmental conditions alter the 

composition of the microbial community (Appendix B) may help to maintain the function 

of these inoculants once they are in place. 

By monitoring changes in the microbial community following environmental 

disturbance it might be possible to identify important contributors to ecosystem function 
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under the new environmental stressor.  Using molecular approaches to monitoring 

combined with genome sequencing, Ranjard et al. (2000) were able to identify two 

organisms that increased in abundance with the addition of mercury (Hg(II)) to the soil.  

The results of Chapter 3 suggest that there is a need to continue to identify changes in 

microbial communities under different conditions since it is not possible to predict what 

impact different variables will have on community composition.  As recently as 2002, 

few pollutants in soils had been examined for their effects on soil microflora in a culture-

independent manner (Kent and Triplett, 2002).  With the development of novel, high 

throughput, relatively inexpensive techniques, such as TRFLP, this trend has been 

changing.  However, researchers need to start putting more emphasis on identifying those 

organisms that appear or disappear with a given treatment.  Describing changes between 

communities should start to include probable identification of individual populations so 

that this information can be compared to the major changes in ecosystem functioning that 

correspond to the gain or loss of each organism.  Comparison of TRFLP fragments to 

DNA sequence databases can lead to identification of major contributors to the microbial 

community, although these databases are currently limited by the relatively low number 

of organisms that have been sequenced (Blackwood and Buyer, 2007).  Continuing the 

effort to identify and sequence novel strains will help to reduce this problem in the future. 

In addition to monitoring changes in species abundance and community structure 

it is possible to apply molecular tools to identify microbial genes of interest.  Some 

researchers have used TRFLP to detect functional genes of interest in microbial 

communities; for example, genes encoding for nitrogen fixation (Rosch and Bothe, 2004) 

and ammonia oxidation (Horz et al. 2000).  Development of primer sets for other genes 

known to aid in plant-growth promotion, such as ACC deaminase, could lead to the 

discovery of novel PGPR and PGPR interactions.  Given the fact that the nutrient 

solution I used in Chapter 2 and Appendix B had a strong negative impact on 1) plant 

growth in the presence of P. putida and 2) the microbial community in soil, it would be 

prudent to attempt to identify those bacterial species that were able to thrive in the MS 

medium and find other bacteria that contain beneficial genes, such as those that code for 

ACC deaminase, that may improve plant growth.  These novel PGPR might be more 

appropriate for inoculation at field settings that regularly receive nutrient applications. 
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Climate change modeling emphasizes the importance of nutrient cycles in 

predicting an ecosystem’s capacity to ameliorate excess atmospheric carbon dioxide.  

Most of these models emphasize the importance of terrestrial vegetation to sequester 

carbon dioxide.  More recent models have shown that interactions between carbon 

cycling and nitrogen cycling can dramatically alter this predicted capacity (Thornton et 

al. 2007).  What these models fail to consider is how climate change will impact the 

microbiome of these plants, and how the changes in the microbiome will also alter the 

plants’ capacity to deal with climate change.  Since nitrogen-fixing microbes have always 

been a priority for plant-microbe interaction studies I believe that there is a need to study 

climate change impacts, such as temperature and precipitation, on microbial communities 

in carbon sequestration zones, and how these impacts may alter the capacity to ameliorate 

climate change.  Since I have shown that certain environmental stressors can result in 

detrimental impacts of microbes on plant growth, this reduction in sequestration capacity 

is a real threat. 

It is my belief that any number of unknown factors can contribute to plant-

microbe interactions and result in both beneficial and detrimental impacts on plant 

growth and health.  Given that I have demonstrated that a PGPR can become deleterious 

in the presence of a plant nutrient medium, and that this medium can dramatically 

decrease the microbial fragment richness and diversity of native microbial populations in 

soil, I do not believe we can predict what environmental stressors will impact these 

interactions.  Additionally, I do not believe we can definitively say whether a 

documented response would be repeated given a different stressor or in different plant 

species.  I had originally hypothesized that a plant’s inherent metal-accumulating ability 

would influence the composition of the microbial community in the rhizosphere.  

However, when I looked at the community profiles I found that the interaction between 

metal-accumulating ability and contamination level of the soil was more important than 

any other individual factor.  This response suggests that the environmental interaction 

with plants and microbes can never be ignored.  Only with thorough experimentation can 

we make definitive statements on plant-microbe-environment interactions.   
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Appendices 

Appendix A: Arabidopsis thaliana growth under cadmium stress 

These photographs illustrate the protocol used to determine the range of CdCl2 used to 

induce sub-lethal cadmium stress in Chapter 2.  Maximum root length decreased with 

increasing CdCl2 concentration and the radicles emerged, but failed to elongate at 25 µM 

CdCl2 (Figure A-1).  Shoots were stunted and chlorotic at 10 µM CdCl2 and failed to 

develop at 25 µM CdCl2 (Figure A-2).  

 

Figure A-1: Arabidopsis thaliana vertical root growth on agar plates with increasing 

CdCl2 concentration 

Images were taken after 14 d of growth at A) 0 B) 0.1 C) 1.0 D) 10 and E) 25 µM CdCl2.  

The plate diameter was 9 cm.   

 

Figure A-2: Arabidopsis thaliana shoot growth on agar plates with increasing CdCl2 

concentration 

Images were taken after 14 d of growth at A) 0 B) 0.1 C) 1.0 and D) 10 µM CdCl2.  The 

plate diameter was 9 cm. 
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Appendix B:  A comparison of soil bacteria community profiles in soil maintained 

with distilled water or MS medium. 

Rationale 

 This study was done to determine whether the MS medium-induced inhibition of 

bacterial growth observed in Chapter 2 would occur in a natural system that included soil 

and its constituent bacterial community.  To accomplish this, soil was watered with either 

sterile distilled water (dH2O) or MS medium and the soil bacteria community profile was 

assessed using TRFLP analysis. 

Methods 

 The soil types are described in 3.2.1.  Six pots were filled with the high cadmium 

soil and another six pots were filled with the low cadmium soil.  Half of the pots within 

each soil type were watered with 10 mL dH2O daily for 28 d, the other half were watered 

with 10 mL MS medium.  Samples were taken at 0 d and 28 d to assess the bacterial 

communities.  The TRFLP analysis followed the methods described in 3.2.6 through 

2.3.9 and data and statistical analysis was performed according to 3.2.10. 

Results  

Fragment richness of bacterial communities, as assessed by TRFLP, are given in 

Table B-1.  Initially (0 d), the high cadmium soil appeared to have greater richness when 

compared to the low cadmium soil.  In both soil types, fragment richness increased from 

0 to 28 d in soil maintained with dH2O.  In the high cadmium soil maintained with MS 

medium richness remained at 0 d values.  In the low cadmium soil, the 28 d richness 

values did not differ between soil maintained with dH20 or MS medium.   

The NMDS analysis comparing overall similarity among bacterial populations 

based on TRFLP profiles is shown in Figure B-1.  The distance between points reflects 

the relative (dis)similarity of bacteria communities among samples, with greater distance 

reflecting greater dissimilarity.  Although there was no difference between communities  
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Table B-1: Bacteria fragment richness based on TRFLP presence/absence in high 

and low cadmium soil maintained for 28 days with either dH2O or MS medium 

 

 

 

Figure B-1: NMDS ordination based on Bray-Curtis similarities of soil bacteria 

community TRFLP profiles between high and low cadmium soils at time 0 d or after 

28 days maintained with either dH2O or MS medium (ANOSIM, p > 0.05) 
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maintained with dH2O and MS (ANOSIM, p > 0.05, n = 3), the communities in soil 

maintained with MS medium appear to be a nested subset of the contributors to the 

communities within soils given the dH2O treatment.  There was no difference between 

the two soil microbial community profiles at time 0 d. 

Discussion 

 These results provide further evidence that MS medium is detrimental to bacteria 

growth and survival of some species of bacteria.  In high cadmium soil, bacterial 

fragment richness was about three times higher after watering with RO water for a month 

compared to watering with MS medium.  In addition, bacterial fragment richness was 

similar for both soil types watered with MS medium for 28 d.  It is not clear why the 

bacterial richness in low cadmium soil at 28 d was not higher when given dH2O but this 

may be related to the lower initial (0 d) bacterial richness in this environment.  The 

concentration of phosphorus in the two soil types was balanced before the experiment.  

However, the difference in concentration of phosphorus in the two soils at the field site 

may have created an environment in which the low cadmium, and low phosphorus, soil 

had an impoverished microbial community compared to the soil in which phosphorus 

may have been limiting. 

It is important to note that new species, or TRFLP fragments, as seen in the 

increase in fragment richness over time is not possible as no new species could be 

introduced to the system.  However, increases in richness can be explained by the way 

fragments were analyzed.   To differentiate ‘true peaks’ from background noise in the 

TRFLP profiles a minimum fluorescence threshold was set at 50 fluorescence units 

(Culman et al. 2008).  It is possible that the environmental conditions in the growth 

chamber allowed for fragments from bacteria species that had a fluorescence signal 

below the threshold at 0 d to increase in abundance to a point where they produced a peak 

above this threshold at 28 d. 

 It can be seen in the NMDS plot that the bacteria communities maintained with 

MS medium appear to be a nested subset of the communities in the dH2O treatments 

(Figure B-1).  This most likely reflects the loss of species that are unable to grow in MS 
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medium and the corresponding loss of fragment peaks associated with those species.  The 

greater similarity among samples maintained with MS medium is indicative of the 

decrease in bacterial species that were able to survive in this environment. 

 Recent research by Lau and Lennon (2011) has shown that soil with 

experimentally simplified microbial communities produced plants that are smaller, have 

reduced chlorophyll content, and produce fewer flowers compared to plants grown in soil 

with more complex microbial communities.  This suggests that should there have been 

plants grown in the treatments described in this experiment, I would have seen reduced 

plant growth in the MS medium similar to that documented in Chapter 2. 

Conclusions 

 It is obvious that the previously discussed phenomenon of MS medium reducing 

survival of P. putida UW4 (Chapter 2) was not due to agar or hydroponic effects and that 

a variety of other bacteria also appear to be negatively affected by this nutrient medium. 

The fact that maintaining soil with MS medium results in changes to the bacteria 

community profile, and a reduction in the number of species able to grow in the soil, 

indicates that the conclusions from Chapter 2 are valid outside the system used. 
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