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Abstract 

Recent research has evidenced that nanotechnology may bring about a material revolution 

which sweeps through different scientific fields and leads to dramatic changes in the use 

of natural resources and our everyday life. Compared to their bulk counterparts, the 

nanomaterials may exhibit significantly improved physical properties by shrinking their 

size to nanometer scale. Metal silicide are distinguished by their features of combining 

advantages of both metals and semiconductors which promises superior performance 

various fields. Despite the progress in the synthesis methods of nanomaterials, it still 

remains a big challenge in controlled synthesis of 1D silicide nanostructures due to the 

difficulties of well-controlled synthesis conditions. 

In this study, synthesis process of NiSix and CoSix with different morphologies using 

CVD method have been analysed and determined. Synthesis of different structures of 

NiSix on a number of substrates has been investigated. The mechanisms behind the 

growth of these nanostructures have been studied for better understanding of the synthesis 

of these silicides. The detailed characterization techniques such as SEM, TEM and XRD 

were used. 

Keywords: Nanomaterial, Chemical Vapor deposition, Metal Silicide.  
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Chapter 2 Introduction  
 

1.1. Nanomaterials 

1.1.1. Introduction 

 

Nanomaterials are one of the building blocks of nanotechnology. Depending on the 

application and purpose of nanomaterials, they have found various definitions. But they 

can be generally defined as materials with physical structures which at least one of their 

dimensions is between 1-100 nm [1]. Nanomaterial research is one of the fastest growing 

areas in materials science and engineering [2]. These materials have distinctly different 

physical and chemical properties from those of a single atom (molecule) and bulk matter 

with the same chemical composition. This is because many properties of solids depend on 

the size range over which they are measured. Microscopic details become averaged when 

investigating bulk materials. At the macro- or large scale traditional fields of physics such 

as mechanics, electricity and optics, the sizes of the objects under study range from 

millimeters to kilometers. The properties of these materials are averaged properties, such 

as density and elastic moduli in mechanics, resistivity and magnetization in electricity and 

magnetism. When the sizes of the objects shrink to micrometer or nanometer scale, 

dramatic changes of the material properties are unveiled [1]. This is why some of the 

important issues in nanoscience relate to size effects, shape phenomena, quantum 

confinement and optical excitations of individual and coupled finite systems [3].  

Based on the above definition of nanomaterials, they can be classified into three 

major groups [4-6].  



2 
 

 
 

 

1) Zero-dimensional (0D) nanomaterials  

2) One-dimensional (1D) nanomaterials  

3) Two-dimensional (2D) nanomaterials  

Type of nanomaterial Nanostructures Size Materials 

0D 

Quantum dots 

Nanocrystals 

Nanoparticles 

Diam. 1-10 nm       

Diam. 1-100 nm 

Metals, semiconductors, 

Magnetic material , 

Ceramic oxides  

1D 

Nanowires         

Nanorods           

Nanobelts          

Nanocables        

Nanotubes 

Diam. 1-100 nm 

Metals , semiconductors 

oxides, sulfides, nitrides 

Carbon, layered metal 

chalcogenides 

2D Thin films 

Thickness 1-1000 

nm 

A variety of material 

Table 1.Typical dimensions of nanomaterials along with examples of material used in these types of 

groups for various applications [4]  

     Table 1 summarizes different types of nanomaterials in each category of these 

nanostructures. As shown, nanomaterials in each category come in wide range of 

dimensions and have numerous compositions and many studies have focused on the 

synthesis, characterization and application of these materials. In this study we will focus 

on one-dimensional nanostructures of silicide materials and their applications in Lithium 

ion batteries.  
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1.1.2. One-dimensional nanomaterials  

     One-Dimensional nanomaterials might be the latest type of nanomaterials synthesized 

and studied for various applications compared to other types of nanomaterials. These 

structures have been given a variety of names including: whiskers, fibers or fibrils, 

nanowires and nanorods. In most cases, nanotubes and nanocables are also considered as 

1D nanostructures. But generally 1D nanomaterials are divided into two major groups of 

nanotubes and nanowires. 

 

a. Nanotubes 

Nanotubes are 1D nanomaterials with hollow structures. There are many reports 

on the synthesis of organic and inorganic nanotubes [5]. Carbon nanotube is of the well 

know nanostructures in this group. Following the discovery of carbon nanotubes in 1991 

[5] synthesis of these nanostructures have attracted tremendous attention due to their 

superior mechanical properties, unique electronic behaviour and their potential 

applications in various fields. These nanotubes are unique allotropes of carbon due to 

configuration of the carbon atoms that form the nanotube structure. A SEM image of a 

large yield of carbon nanotubes is shown in Fig. 1a. A schematic diagram for carbon 

nanotubes and the arrangements of the atoms can be clearly observed in the Fig. 1b. 

Carbon nanotubes possess many desirable properties, including high mechanical strength 

and flexibility, excellent electrical and thermal conductivity. These collective set of 

properties makes carbon nanotubes potential candidates for many applications including 

high strength composite materials, nanoscale transistors and fuel cell electrodes.  
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Recently there has been many reports of synthesis of other types of inorganic 

nanotubes such as titania nanotubes [6], Fe and its oxides [7-9], Si and SiO
2 

and 

manganese oxide [10,11]. Compared to carbon nanotube studies, inorganic nanotubes 

started much later due to the difficulties in synthesizing these structures. Like carbon 

nanotubes, these inorganic nanotubes exhibit unique properties which makes them ideal 

candidates for various applications such as catalyst, energy technologies and electronics. 

 

Figure  2.1 a) SEM image of a large product of carbon nanotubes; b) schematics of a single wall 

carbon nanotube 

b. Nanowires 

Nanowires, nanorods and nanobelts constitute an important class of 1D 

nanostructures which provide models to study the relations between electrical transport, 

optical and other properties with dimensionality and size confinement. In comparison 

with quantum dots and carbon nanotubes, the advancement of these 1D nanostructures 

has been slow until very recently, as hindered by the difficulties associated with the 

synthesis of nanowires with well controlled dimension, morphology, phase purity and 

a b 
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chemical composition [12]. As an example SEM images of copper nanowires have been 

brought in Fig1.2 . As it is observed nanowires as opposed to nanotubes are not hollow 

inside. These structures can be crystalline or amorphous.  

  

Figure  2.2. SEM image of copper nanowires 

Nanowires are expected to play important roles as interconnects, functional 

components in the fabrication of nanoscale electronic and optoelectronic devices and 

electrochemical applications. Many studies have demonstrated the unique properties of 

nanowires and nanorods, such as superior mechanical toughness [13], high luminescence 

efficiency [14] and lower electrical resistance [15]. 

 

1.1.3. Synthesis methods for nanowire growth 

In order to study various properties of nanowiress and their application in different 

fields and industries several challenges have to be addressed. The main challenges in 

application of nanomaterials are controlled synthesis with controlled size, morphology, 

microstructure and chemical composition. To do so, the increased understanding of 

growth mechanisms is critical. 
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Numerous methods have been reported for the synthesis of nanowires and various 

mechanisms have been proposed for these methods. Some of these methods include:  

 Vapour deposition method 

 Physical method(E- beam)  

 Sol gel method 

 Hydrothermal method 

 Template method  

 Wet chemical reduction   

Each of these methods has some advantages and disadvantages depending on the 

composition and properties of nanomaterials, each method is used for producing certain 

types of nanowires. Among these methods, vapour deposition method is distinguished by 

its advantages such as low cost, fast synthesis, capability of mass or continuous 

production and control over certain aspects of nanomaterials synthesized. In this study we 

will focus on the synthesis method using vapour deposition method. 

1.1.4 Mechanism for vapour growth of nanowires 

Vapour phase growth is commonly used to produce nanowires, starting with 

simple evaporation technique in an appropriate atmosphere to produce elemental or oxide 

nanowires. To get insight into the growth of nanostructures via vapour phase methods and 

enhance the control over the deposited material, several mechanisms have been proposed. 

Vapour-liquid-solid (VLS), Vapour solid (VS), Solid-liquid-Solid (SLS) and Oxide 

assisted growth have been commonly recognized as the representative mechanisms. 
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a. Vapor-liquid-solid growth (VLS)  

The growth of nanowire via a gas phase reaction involving this process has been 

extensively studied. Wagner in 1960’s, during his studies on the synthesis of large single 

crystalline whiskers, proposed this mechanism. According to this mechanism, the 

anisotropic crystal growth is promoted by the presence of a liquid alloy solid interface 

[15]. This mechanism was widely accepted and applied to understand the growth of 

various nanowires, such as Si and Ge. As an example, Xia et al [16] explained the growth 

of Ge nanowires using Au clusters as solvent at high temperatures based on the Ge-Au 

binary phase diagram  (in Fig1.3).     

 

Figure  2.3 Ge-Au Binary phase diagram [15] 

The schematic diagram of Ge nanowires grown using VLS mechanism is 

illustrated in Fig. 1.4 According to this diagram and Ge-Au binary phase diagram the Ge 

and Au will form a liquid alloy when the temperature is higher than the eutectic point. 

The liquid surface has a large accommodation coefficient and is therefore a preferred 

deposition site for incoming Ge vapour. After the liquid alloy becomes supersaturated 
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with Ge, the nanowire growth occurs by precipitation at the solid-liquid surface. A real 

time observation of Ge nanowire growth conducted in an in situ high temperature 

transmission electron microscope showed a sequence of TEM images which directly 

mirrors the proposed VLS mechanism. This VLS method has been exploited in the past 

several decades to produce 1-100 μm diameter 1D structures (whiskers). By controlling 

the nucleation and growth it is possible to produce nanowires. 

 

Figure  2.4 Schematic diagram of Ge nanowire grown using VLS mechanism [15]. 

 

The synthesis of nanowires based on this mechanism requires several conditions, 

including:  

1) Catalyst and source material: by knowing the equilibrium phase diagram one can 

predict the catalyst material and growth conditions for the VLS approach.  

2) Equipment to vaporize the source material and melt the catalyst  

Nanowires grown by this method usually have certain features which help identify 

their growth mechanism. For example, most of nanowires synthesized using the VLS process 

have a catalyst droplet at their tip. But this is not always the case and depends on the 

interaction of liquid catalyst droplet with the substrate. There have been reports of nanowire 
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synthesized using VLS method with catalyst particles at the base of nanowires[17-19]. This is 

similar to growth process of carbon nanotubes. 

b. Vapor-solid growth  (VS) 

Besides VLS mechanism, the classical vapour solid method for whiskers growth 

has also been reported for the growth of 1D nanomaterials. In this process, the vapour is 

first generated by evaporation, chemical reduction or gaseous reaction. The vapour is 

subsequently transported and condensed onto a substrate. The VS method has been used 

to prepare oxide metal whiskers with micrometer diameters. Hence it is possible to 

synthesize 1D nanostructures if one can control its nucleation and subsequent growth 

process. Sears [11] ) was the first to explain the growth of mercury whiskers by axial 

screw dislocation induced anisotropic growth in 1955. The mercury whiskers or nanowire 

were grown by a simple VS method at -50 C under high vacuum. Subsequently a lot of 

research was devoted to studying the growth of nanostructures using this method and 

researchers revealed that the growth of nanorods or nanowires is not necessarily 

controlled by the presence of defects [12].  

Usually nanowires and nanorods grown by VS method are single crystals with fewer 

impurities. The formation of 1D nanostructures through this method are due to 

anisotropic growth. Several mechanisms are proposed to explain the anisotropic growth. 

For example:  

1) Different facets in a crystal have different growth rates.  

2) Presence of impurities in specific crystal directions such as screw dislocation.  

3) Preferential accumulation or poisoning by impurities on specific facets.  
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Also in case of synthesis of nanowires and nanorods, it is known that the impurities have 

differential adsorption on different crystal facets in a given crystal and the adsorption of 

impurity would retard the growth process. Impurity poisoning has often been cited as one 

of the reasons which resulted in anisotropic growth during synthesis of nanowire and 

nanorods [12].  

Using this method, nanowires for oxides of Zn [13], Sn [14], In [15], Mg [16] and Ga 

[17] has been obtained . 

c. Oxide assisted growth  

In contrast to the well-established VLS and VS mechanism, there have been 

reports of nanowire growth using different processes. One of these processes is oxide 

assisted nanowire growth. Lee et al. [30], reported the synthesis of GaAs nanowires by 

oxide assisted laser ablation of mixture of GaAs and Ga2O3. The GaAs nanowires have 

lengths up to tens of micrometers and diameter in the range 10-120 nm. The oxide 

assisted nanowire growth mechanism was further applied for production of various 

nanostructures such as Si and SiOx [31]
 
copper sulphide [18], boron [19] and MgO [20] 

nanowires. The nanowire growth via this process is not very clear and researchers have 

proposed various steps for the growth process depending on the materials. 

  

d. Solid-liquid-solid growth  

In general, a high temperature is required in the growth of nanowires by methods 

mentioned above. Recently it has been reported that at these temperatures, another growth 

process can be activated called solid-liquid-solid (SLS). This process is similar to VLS 
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mechanism but doesn’t fall in the category of vapour based approach for nanowire 

synthesis.  

 

 Figure  2.5 Schematic diagram of Si nanowire synthesized using Ni catalyst via SLS growth 

mechanism [21] 

 

There are few reports of synthesis of 1D nanostructures following SLS and mostly 

focus on silicon based material. Yan et al. [21], reported the synthesis of Si nanowires 

following this mechanism using Ni as catalyst. 
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They proposed that since the concentration of Si in the vapour phase was negligible at 

temperatures they carried out the experiments and because the substrate was covered only 

by a thin layer of Ni therefore the only possible silicon source was from the silicon 

substrate. Fig1.5 shows a schematic diagram of silicon nanowires grown using Ni as 

catalyst via SLS growth mechanism. They proved that the Ni layer reacts with Si 

substrate at high temperatures and from eutectic liquid alloy droplets and after super 

saturation of the droplets by silicon diffused through the substrate nanowires are 

synthesized [21].  

There have been reports of other vapour based synthesis mechanism, such as 

carbothermal reactions which mostly based on the type of material. In this study both SLS 

and VLS mechanism have been the cause of the growth of the produced nanostructures 

which we will discuss in the next chapter. 

 

1.2. Silicide Nanostructures  

Metal silicides, the family of refractory, intermetallic compounds between metals 

and silicon, have diverse physical properties that are both very useful and fundamentally 

significant. Metallic silicides [31,32]
 
such as NiSi, CoSi2, and TiSi2 provide ohmic 

contact, interconnect, and gate materials to CMOS microelectronic transistors. 

Semiconducting silicides have been extensively investigated for silicon-based 

optoelectronics such as LEDs and IR detectors. The narrow bandgap semiconducting 

silicides, in particular CrSi2, b-FeSi2, MnSi, and ReSi1.75, have been targeted for robust, 

stable, and inexpensive thermoelectric materials [33,34] 
 
and have shown promise for 

photovoltaic applications. In addition to finding numerous technological applications, 
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metal silicides have fascinated physicists for over 70 years and continue turning up 

surprises at the frontiers of theoretical and experimental condensed matter physics. The 

so-called B20 metal monosilicides (MSi, M= iron (Fe), cobalt (Co), manganese (Mn) are 

a group of highly correlated electron materials.
 
For example, FeSi is the only known 

transition metal Kondo insulator, a class of heavy-electron compounds exhibiting Kondo 

lattice behaviour at room temperature but having an insulating ground state with a small 

energy gap. MnSi, long thought of as a classical itinerant ferromagnet and the poster child 

of metal physics, has recently been discovered to have a quantum critical phase transition 

[22] and has been observed to exhibit non-Fermi liquid behaviour. These monosilicides 

and their alloys, Fe1_x_yCoxMnySi (0 < x, y <1) also display a myriad of magnetic 

behaviours, including unusual helical magnetic ordering, [36,37] and even more exotic 

Skyrmion magnetic phases [23]. Furthermore, FexCo1_xSi alloys were recently discovered 

to be magnetic semiconductors, bringing exciting prospects of CMOS compatible silicon-

based spintronics, a growing field that seeks to exploit the spin properties instead of or in 

addition to the charge degree of freedom in electronic and photonic devices [24].
 
 

Efforts thus far have concentrated on semiconductor channel materials, but 

metallic contact and gate materials are equally important for continued scaling of CMOS 

devices [40]. NWs of CMOS compatible metallic silicides having low resistivity and 

suitable work functions, such as nickel silicides [25], would serve as superior interconnect 

and gate contacts for nanoelectronic architectures. High quality single crystal 

semiconducting NWs, such as the half-metallic Fe1_xCoxSi alloys, will lay the 

nanomaterials foundation for the exploration of many technologically relevant fields The 

rational synthesis of NWs from the vapour phase has two fundamental challenges [41,42] 

1) delivery of source materials  
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 2) anisotropic crystal growth to form 1-D nanostructures.  

Free-standing transition metal silicide nanowire synthesis has been primarily 

limited by the lack of a general growth scheme such as in VLS grown semiconducting 

NWs (group IV elements and normal valence compounds such as the II–VI and III–V 

compounds) that exhibit simple phase behaviour with low melting eutectics that serve as 

a VLS catalytic system.  

  

General and rational chemical synthesis of silicide nanomaterials is challenging, 

due in part to the multiple stoichiometries and complex phase behaviour exhibited by 

many silicide compounds. Table 2 summarizes various silicide nanostructures 

synthesized. Up to now from the eight transition metals that have been reported for 

forming silicide NWs, four of them have more than one reported phase as shown in Table 

2. For instance, there are six known iron silicide intermetallic compounds (Fe3Si, Fe2Si, 

Fe5Si3, FeSi, a-FeSi2, b-FeSi2) only three of which are stable at room temperature [42]. 
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 Table 2 Periodic table of the transition metal silicide phases [26]  

In such complicated materials systems careful control over synthesized phases can be 

quite difficult. In the last five years, several techniques have been developed for the 

synthesis of free-standing silicide NWs, which can be conveniently categorized into four 

groups: 

1) Decomposition of silicon on metal thin films 

2) Reaction of metals with silicon substrate 

3) Simultaneous metal and silicon delivery 

4) Silicidation of silicon (Si) NWs 
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1.2.1  Synthesis of silicide nanostructures 

a. Decomposition of silicon on metal thin films 

 

One of the approaches for producing silicide nanostructure as reported in literature 

has been the delivery of one of the components of the aforementioned material (MSix) in 

the form of vapour, liquid or solid to the other element as substrate. This approach can be 

advantageous as fewer gas phase species simplifies the experiments. Since silicon has a 

melting point of over 1400 
o
C it would be impractical to deliver the silicon as single 

element vapour. Instead the use of SiCl4 and SiH4 has been reported to have successfully 

been employed for the use of Silicide synthesis at temperatures ranging from 320-600 
o
C. 

A scheme for the delivery of Si using silane precursors was easily adopted from the 

wealth of reports detailing CVD synthesis of silicon NWs [44,45]. Interestingly, to date 

this strategy has only been reported for NWs of nickel silicides: NiSi2 [27], NiSi [28,29], 

Ni2Si [30], Ni3Si2 [29] and Ni3Si [31] (all of the room temperature stable nickel silicide 

phases). Based on these reports we can conclude that the differences in the Ni content is 

associated with temperature and pressure, however, it could not be taken for granted that 

temperature is the only deciding factor in the nanowire growth though exact details of the 

experiments have not been disclosed yet. For example, it has been reported that at a 

temperature of 550 
o
C, Qi et al. have obtained [32] Ni3Si2 phase nanowires while at a 

lower temperatures there are several reports of NiSi2 and NiSi which can be related to the 

temperature dependency of diffusion process. The other important factor which affects 

the synthesis process is the partial pressure of reacting gases on the growth of these 

nanowires. Kang et al. [33] have done a detailed investigation on the effect of the 
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introduction of H2, O2 and N2 on the growth. In Fig1.6a, the schematics of the growth 

process is shown.  Primarily in all the synthesis processes of NiSi they have used an oxide 

barrier between the Ni layer and the silicon wafer so to prevent the diffusion of the Nickel 

into the silicon (Nickel is highly diffusive in silicon). Fig1.6b-d show the impact of these 

atmosphere conditions. They reported with H2 atmosphere they observed the deposition of 

only grains of NiSix and no nanowires , with N2  they had a mixed  

 

 

 

Figure  2.6 (a) The schematics of the spontaneous nanowire growth in this study. (b-d) The 

representative SEM images of the reaction products on H2-, N2-, and O2-annealed samples, 

respectively. Scale bar 1um. 

 

 production and with oxygen they successfully synthesized large amount of Ni2Si 

nanowires which is the cause of NiOx formation on the surface. Kang et al., proposed that 
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this oxide will give limited access for the diffusion of the Ni seeds underneath that 

ultimately results in the formation of nanostructures. 

  Even with reports dating back to 2004, little significant work has been done to 

uncover the mechanism behind this particular growth method. A possible reason that this 

strategy has been reported only for nickel silicides is the extremely fast diffusion of Ni in 

Si. Many transition metals can be used to catalyze Si NW growth via either the VLS 

mechanism or the vapour-solid-solid (VSS) mechanism. Ni itself is actually one of the 

earliest reported VLS catalysts for Si NW growth [34]. 

 

b. Reactions of metal sources with silicon substrates 

 

In this method, transition metal species can directly react with silicon substrates to 

make silicide NWs. While a variety of simple organometallic complexes are known to 

decompose to deliver metal [35], date only pure metal vapours and anhydrous metal 

halides have been used to yield free standing metal silicide NWs. 

 

I. Metal vapour 

Chueh and co-workers initially reported the synthesis of short (0.2–2 µm) TaSi2 

NWs via annealing silicon substrates with FeSi2 thin films or FeSi2 nanodots on their 

surface in a tantalum (Ta) atmosphere [36]. It was believed that Si atoms segregate from 

either the FeSi2 thin film or nanodots to form a Si based nano particles. Ta atoms adsorb 

onto the surface of either the FeSi2 thin films or nanodots and react with Si diffusing 

through the substrate to form TaSi2 nanocrystals. Because of the high temperatures and 
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low pressures used, oriented growth of certain facets is favoured and one-dimensional 

growth is observed. As it is apparent in Fig1.7a-b the density of the products is very low. 

One of the reasons for that is likely to be the high melting point of tantalum (3017 
o
C) 

which would give low vapour pressure of this metal. 

 

Figure  2.7. Top-view SEM image of nanowires, 950 °C, 16 h, a) FeSi2 film on Si, the dark contrast 

regions correspond to the pinholes. Upper inset shows a side-view SEM image. The bottom inset 

shows side-view SEM image of a pinhole, b) FeSi2 nanodots on Si. Upper inset shows a side-view SEM 

image. 

 The use of a different silicide film can increase the aspect ratio of generated NWs 

[37]; however, in all cases the metal impurity from the starting silicide thin film (or 

nanodots) is found in the final product, accounting for as much as 10% of the total 

elemental content. Other work reported by the same group provides more insight; 

annealing similar FeSi2 substrates in the absence of Ta vapour but under higher 

temperature conditions produces silicon NWs. This result is not surprising considering the 

well-known use of Fe and its metal silicides as VLS or VSS catalysts for the growth of Si 

NWs; Fe was one of the first VLS catalysts reported [34]. 
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II. Metal halides 

The application of anhydrous metal halides as the transition metal source for 

reaction with Si substrates has proven to be a general and popular method to grow silicide 

NWs. Ouyang and co-workers reported this technique as a facile way to produce FeSi 

nanowires using FeCl3 [38]. Varadwaj et al. further used a two zone furnace to give better 

control of the metal halide vapour pressure. Typically, a halide precursor is vaporized in 

the upstream zone of a furnace, kept around 500 
o
C, and the substrate is held at 900 

o
C 

during the course of the reaction. Interestingly, by using substrates other than Si, metal 

rich phases can be favoured (Si powder or a Si substrate is still required for NW growth) 

[39]. Using this approach, NWs of FeSi [40], TiSi2 [41], Ti5Si3 [42], Fe5Si3 [39], CoSi 

[43], Co2Si [43], CrSi2 [44], and Fe11-xCoxSi [45] have been reported. As an example, Seo 

et al. [46] showed that using CoCl2 as the Co precursor and using silicon or a sapphire 

substrate near silicon, they can achieve different compositions of CoSix. According to 

their work, when they had silicon as substrate the proposed reaction is: 

 

2CoCl2(g) + 3Si(s)              2CoSi(s) + SiCl4(g) [on a Si substrate] 

Same reaction has been proposed for other silicides that have used a halide and 

silicon as substrate[38,39]. Also in this report they have investigated the use of sapphire 

as substrate. The configuration of their experiment is illustrated in Fig1.8a and b. The 

substrate and the silicon wafer was positioned in the high temperature zone and the CoCl2 

was set at the upstream at a lower temperature. 
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Figure  2.8. Experimental setup. (a) Horizontal tube furnace with two independently controlled 

heating zones. (b) Temperature profile indicates that the center of the downstream zone is at 900 °C, 

and the substrates are at 820-890 °C. (c) Tilted view illustration of the substrate placement in panel a. 

A rectangular Si wafer (50mm-150 mm) kept at the downstream zone played a role of Si source for 

NW synthesis. Co2Si NWs are grown on the sapphire 1 substrate, CoSi NWs on the Si, and Co3Si 

NWs on the sapphire 2. 

 

According to their results the following reactions have been proposed: 

6CoCl2(g) + 3SiCl4(g)                  3Co2Si + 12Cl2(g)  [on the sapphire 1]   

6CoCl2(g) + 2SiCl4(g)                 2Co3Si + 10Cl2(g) [on the sapphire 2] 
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It was explained that the reactions differed according to the distance of substrate 

and silicon. Similar reactions have been proposed with rather similar configuration for 

other silicides [59-61]. 

Although no convincing mechanism has been reported, vapour-solid (VS) 

mechanisms are usually proposed based largely on the delicate dependence of halide 

supersaturation on the resultant silicide morphology and phase. At lower pressures, the 

halides become more volatile and metal rich phases are preferred. Metal chlorides are 

well known to react with Si to produce SiCl4, MSix, and/or Cl2. SiCl4 is likely providing 

vapour-phase Si that could decompose to form elemental silicon or silicide, releasing 

more Cl2 into the vapour phase. SiCl4 is widely used to grow silicon NWs at such high 

temperatures. 

 

c. Simultaneous metal and silicon delivery 

Simultaneous delivery of silicon and transition metal source material to a substrate to 

grow metal silicide NWs has been achieved using two different techniques: chemical 

vapour transport (CVT) and chemical vapour deposition (CVD). 

 

I. Chemical vapour transport (CVT) 

CVT, a classical crystal growth method, takes advantage of the reversible 

thermodynamic reaction between two chemical species, a source material and a transport 

agent, to in situ produce gas phase precursors. The intermediates provide the elements 

needed to synthesize the desired phase, as shown in. This technique has been widely used 

to synthesize single crystals of many of the transition metal silicides [47]. However, one-
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dimensional NW growth may be obtained by altering the process for kinetically-favoured 

growth of 1D morphologies. 

The synthesis of three distinct single crystalline silicide NW phases via 

continuous-flow CVT using iodine (I2) as the transport agent have been demonstrated. In 

each case, growth occurred on Si/SiO2 substrates, sometimes requiring a dilute metal salt 

solution of Ni(NO3)2 on the surface. Hexagonally faceted CrSi2 NWs with lengths up to a 

few hundred microns were synthesized using powdered CrSi2 as the source material. 

NWs of the d-Ni2Si [48] and b-Ni3Si [49] phases were also synthesized using Ni2Si and 

TiSi2 as source materials, respectively. For both CrSi2 and d-Ni2Si, the product 

stoichiometry was identical to the stoichiometry present in the source material. Due to the 

fact that NiSix have high melting point it would be very impractical to raise the 

temperature to their melting point. Instead the use of I2 which would react with the 

silicide in the equation below would be favourable (Fig1.9) : 

                        MSix(s)+(2x+y/2) I2(g)  MIy(g)+xSiI4(g)  

Although the exact growth mechanism has not been determined for CVT grown 

silicide NWs, the lack of a visible catalyst tip combined with the necessity of the metal 

salt solution has been used to rule out VLS-type growth and typically vapour solid or 

metal-assisted NW growth.  
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Figure  2.9 Synthesis of metal silicide NWs using chemical vapour transport (CVT). Silicides undergo 

reversible reaction with I2 at T1 to form in situ gas phase products. At T2 gas phase components 

undergo the reverse reaction to form silicide NWs. 

 

II. Chemical vapour deposition (CVD)   

Usually single source precursors are used in the CVD method for producing 

silicide nanowires. To date, the use of single source precursors (SSP) of inorganic 

complexes containing the transition metal and silicon atoms necessary for silicide 

formation has been shown to be one of the most successful and versatile transition metal 

silicide NW synthesis techniques.  SSPs have been used in MOCVD to grow transition 

metal silicide thin films. Compared with conventional multisource metal organic CVD, 

the SSP approach allows simpler and safer experimental setups due to the elimination of 

highly hazardous liquid precursors (Fe(CO)5 typically for Fe and SiCl4 for Si), easier and 

precise control over stoichiometry, and growth of higher quality materials, i.e. FeSi  
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Figure  2.10 Synthesis of metal silicide NWs using chemical vapour deposition (CVD) of single source 

precursors (SSP). Each SSP pyrolyzes to deliver metal silicide material to the growth substrate. 

 

and CoSi thin films have been deposited by the pyrolysis of  Fe(CO)4(SiCl3)2 [50] and 

Co(CO)4SiCl3 [51]. By selecting simple inorganic molecules containing metal and silicon 

that vaporize and decompose through well-known pathways, precise control of the 

product stoichiometry and reproducible growth of NWs is possible (Fig1.10). The 

production of these macro molecules have been discussed in these reports. Other 
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molecules that have been produced that subsequently were used for silicide materials are 

MnSi2-x(MnSi1.8) with the substrate being a silicon wafer covered by a cobalt film which 

was applied for the synthesis of CoSi NWs , (MnSi1.8) NWs using Mn(CO)5SiCl3 and also 

there  has been report of the use of mixture of trans-Fe(CO)4(SiCl3)2 and Co(CO)4SiCl3 as 

single source precursor which is a liquid solution. This solution can be conveniently 

evaporated for vapour phase delivery resulting in the synthesis of Fe1-xCoxSi alloy NWs. 

 

 

d. Silicidation of silicon nanowires 

Lieber and co-workers firstly reported the growth of transition metal silicide NWs by 

silicidation of silicon nanowires (Fig1.10a,b). A Si NW backbone, formed using a 

standard Au nanoparticle mediated VLS process, was covered with a thermally 

evaporated Ni thin film. Subsequent annealing in forming gas produced single-crystalline 

NiSi NWs via solid state reaction. Furthermore, epitaxial heterojunctions of NiSi and Si 

were demonstrated allowing the integration of high performance nanowire transistors 

beyond the lithographic limit. The main challenges in silicide NW formation, material 

delivery and 1-D anisotropic growth, were overcome independently using this 

methodology. This work was easily extended to other metals such as Fe to form FeSi, a-

FeSi2, and b-FeSi2 NWs. and platinum (Pt) resulting in PtSi NWs.  However, the 

nanowires produced in these latter cases were not single crystals. The stoichiometry of 

silicided NWs could likely be controlled by carefully managing the concentration of 

evaporated metal; however, certain phases will probably be unobtainable through this 

technique due to the kinetics factor of the diffusion process, while they are obtained  in 
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thin film and bulk diffusion couples. Such diffusion couples between metals and silicon 

have been widely studied [52]. 

 

Although there has many reports of experiments on the performance of nanowires 

synthesized with this method, it remains a way to understand different aspects of 

silicidation instead of a technique for mass production of NWs due to complicated nature 

of the synthesis process. 

 

 

 

Figure  2.11 Preparation of NiSi NWs by silicidation. a1) Si NWs (blue) are synthesized via VLS and 

a2) coated with Ni metal (green), a3) reacted at 550 C to form NiSi nanowires (orange). a4) Extra Ni 

metal is etched away leaving single crystalline NiSi NWs.62 b) Preparation of NiSi NWs by point 

contact silicidation to form NiSi–Si NW heterostructures. 

1.3. Applications  

  Transition metal silicides have been extensively used in a large number of 

applications owing to their diverse physical properties, such as high melting points, 

excellent chemical stability, and compatibility with silicon processing technology, which 
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make them good candidate materials for use in electronics, thermoelectrics, and 

photovoltaics. Metal silicide nanowires share these positive characteristics and their size 

may allow them to be potential candidates to improve nanoscale versions of these devices 

as well as playing new roles, such as field emission sources nanoelectronics, 

thermoelectrics, solar energy conversion and spintronics. In the following section we will 

briefly review nanoelectronics and nanoscale field emission applications and their 

concepts utilizing silicide NWs. 

 

Nanoelectronics   

Because of the ubiquity of metal silicides as interconnects and contact electrodes 

in modern microelectronics [53], silicide NWs are expected to serve a similar role in 

nanoelectronic devices. Their low resistivity and compatibility with silicon make them 

excellent candidates to continue in this role. Notably, ultra long Ni2Si NWs were made 

having an extremely low resistivity of 21 µΩ.cm and were capable of supporting 

remarkably high failure current densities >108 A/cm
2
 (Fig1.10) [54]. The difficulty of 

selective nanostructure placement for devices serves as a strong barrier against the use of 

randomly oriented free standing NWs.  
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Figure  2.12 Two-probe (1) and four-probe (2) electrical transport for single Ni2Si NWs 

 

Nanoscale field emitters 

Another commonly discussed application for metal silicide NWs is their use as 

nanoscale field emitters. Field emission occurs when an electric field between a metallic 

surface and a ground electrode allows electrons to overcome the work function potential 

that binds them on the surface of the emitter. Field emission devices are useful in wide 

ranging applications such as flat panel displays, microwave generation devices, and high 

powered vacuum microelectronic devices. Since the late 1990s there has been much 

interest in developing 1-D nanomaterials for field emission due to the enhancement of 

electric field at the high curvature tips. Attributing to their low resistivity, work function, 

high melting points, high aspect ratios, and well known compatibility with silicon-based 

microelectronics, transition metal silicide nanowires have been considered good 

candidates for future field emission devices. 
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Li-Ion Batteries  

Lithium Ion Batteries are energy storage systems that convert chemical energy 

stored in electrodes to electrical energy via electrochemical reduction-oxidation (redox) 

reactions. Due to the rapid increase in the use of portable computers, mobile phones, 

video cameras, electric vehicles, etc., there is an increasing demand for rechargeable 

batteries with larger capacity, smaller size, lighter weight and lower price. Silicide 

nanomaterials have been one of the possible candidates that can be used as anode 

materials to improve the performance of Lithium Ion Batteries.  

The most important reason for the use of silicon based materials is due to their 

highest theoretical capacity of approximately 4200 mahg
-1

 for lithium insertion at fully 

lithiated phase (Li22Si5 or Li4.4Si) among known substances [55,54]. Silicide material 

although reduce that capacity somewhat compared to the use of only silicon nanomaterial, 

nonetheless exhibit higher stability. One of the silicide materials that a number of 

previous reports have mentioned for the anode electrode in Lithium Ion Batteries is NiSix. 

Figure 1.13a,b shows an SEM image of Ni3Si nanowalls synthesized using chemical 

vapour deposition by H. Zhang et. al. [56]. The performance of the battery cell tested by 

this group as it is apparent in Fig1.13c, shows a good stability for 20 cycles.  
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Figure  2.13 (a), (b) Top-view SEM images of the Ni silicide nanosheets (c) Electrochemical 

performance of the Ni silicide nanosheets (comprising Ni3Si and Ni31Si12) grown on a Ni foil substrate 

and of the Ni silicide nanobelts (Ni3Si) grown on a Ni foam substrate. 

 

1.4.  Conclusion  

In Summary, nanomaterials have been synthesized through various methods for 

different applications. Silicide materials have proven to be great candidates for a variety 

of different applications. The number of synthesis method allows further researchers to 

find the most practical and feasible strategy for developing the desired use. Studies on the 

growth  of the nanowires NiSix and CoSix have been of particular interest to us for their 

a b 

c 
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unique properties as anode materials in Lithium Ion Batteries. The few reports of the 

applying these materials for this purpose which has led us to further improve and 

investigate this area.      

 

1.5. Outline and objectives of this thesis 

The objectives of this thesis are to synthesize nanostructures of NiSix  and CoSix  

on various substrates such as Silicon wafer, carbon paper and Ni foam using CVD 

method. This thesis includes 5 chapters ( two introductory chapters and two article 

chapters and one final chapter for conclusion and future work) which is in the format of  

“integrated article” . The thesis is submitted in accordance to the Thesis  Regulations 

Guide of Society of Graduate and Postdoctoral Studies (SGPS) . The Thesis content 

consists of :   

 

Chapter 1 gives an introduction on nanomaterials and their growth mechanism. Silicide 

nanomaterials are focused and their applications and synthesis method are discussed 

based on the reports given on this field. 

 

Chapter 2 Explains the experimental procedure carried out in the experiments. The 

devices used for this purpose are mentioned. Characterization and analysis techniques 

employed have been stated and a brief description of their mechanism has been given. 
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Chapter 3 Synthesis process of NiSix  on carbon paper, silicon wafer and Ni foam using 

Chemical Vapour Deposition method is mentioned and the parameter effects and growth 

mechanism are discussed.     

 

Chapter 4 Synthesis process of CoSix using CVD method on carbon paper were stated. 

The experiments were optimized at two different pressure levels and characterization of 

the products was performed for each. Parameter effects on the morphology and structure 

of the nanowires were investigated . 

Chapter 5 summarizes the results and contributions of the thesis work. In addition, the 

author gives some personal opinions and suggestions for future work.    

 

  

 

 

 

 

 

 

 



34 
 

 
 

References  

1. X. Wang, M. Waje and Y. Yan. 2005, Electrochemical and solid state letters, pp. 8,1,A42. 

2. S. Yao, J. Xu , Y. Wang, X. Chen , Y. Xu and S. Hu. 2006, Analytica chemical acta, pp. 

557,1-2,78. 

3. T. Kato, Y. Tanaka, T. Hirata, S. Kumamoto and K. Miyazaki. 1997, Journal of Materials 

science letters, pp. 16,21,1771. 

4. C. Shao, H. Guan, Y. Liu, X. Li and X. Yang. 2004, Journal of solid state chemistry, pp. 

177,2628. 

5. Iijima, S. 2001, Nature 1991, pp. 354,56. 

6. H. Wang, C. T. Yip, K. Y. Cheung, A. B. Djurisic, M. H. Xie, Y. H. Leung and W. K. 

Chan. 2006, Applied physics letters, pp. 89,2,23508. 

7. R. Hauschild, H. Lange, H. Priller, C. Klinshrin, R. Kling, A. Waag, H. J. Fan, M. 

Zacharias and H. Kalt. 2006, Physica status solidi B., pp. 243,4 ,853. 

8. M. Bystrzejewski, A. Huczko, P. Byszewski, M. Doman´ska, M. H. Ru¨mmeli, T. 

Gemming, and H. Lange. s.l. : Taylor and Francis, 2009. 17,298-307. 

9. N. Braidy a, M.A. El Khakani a, G.A. Botton. s.l. : Chemical Physics Letter, 2002. 354,88-

92. 

10. P. Castrucci, M. Scarselli , M. D Crescenzi , M. Diociaiuti , P S. Chaudhari. s.l. : Thin 

Solid Film, 2006. 508, 226-307. 

11. H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, 

H. Kalt, A. Krost, M. Zacharias and U. Gosele. 2006, small, pp. 4,561. 

12. Z. Wang, Z. Pan. 2002, advanced materials, pp. 14,1029. 

13. C. N. R. Rao, A. Muller, A. K. Cheetham. s.l. : Wiley-VCH, 2004, Vol. Vol.1. 

14. Effect of RuO2 in the shape selectivity of submicron-sized SnO2 structures. N. S. Ramgir, I. 

S. Mulla and K. P. Vijayamohanan. 109, 25, 12297, journal of physical chemistry B : s.n., 

2005. 

15. H. Park, R. Beresford, R. Ha, H.J. Choi , H. Shin and J. Xu. s.l. : Nanotechnology , 2005. 

23 245201. 

16. Y. Yan, Y. Zhang, H. Zeng, J. Zhang, X. Cao and L. Zhang. 18, 17|, s.l. : Nanotechnology, 

2007. 



35 
 

 
 

16. N. +G. Ma, J. Lang and D. H. L. Nq. 65,14,2167, s.l. : composite science and technology , 

2005. 

17 Wu, K. W. Chang and J. J. 20,12,3397, s.l. : journal of material research, 2005. 

18. N. Wang, K.K. Fung, S. Wang and S. Yang. 233,1-2,226, s.l. : Journal of crystal growth, 

2001. 

19. Z. Li, J. Baca and J. Wu. 254,2,633, s.l. : Applied surface science, 2007. 

20. C. Tang, Y. Bando and T. Sato. 106,30,7449, s.l. : Journal of physical Chemistry B, 2002. 

21. H.F. Yan, Y.J. Xing, Q.L. hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi and S. Q. Feng. 

323,224, s.l. : Chemical Physics letters, 2000. 

22. C. Pfleiderer, D. Reznik, L. Pintschovius, H. von Lohneysen, M. Garst and A. Rosch. 

427,227-231, s.l. : Nature , 2004. 

23. J. Derrien, J. Chevrier, V. Lethanh and J. E. Mahan. 1992, appl. surf sci., pp. 56-58, 382-

393. 

24. D. Leong, M. Harry, K. J. Reeson and K. P. Homewood. 1997, nature, pp. 387, 686-688. 

25. Mahan, M. C. Bost and J. E. 1988, appl. phys., pp. 63, 839-844. 

26. Andrew L. Schmitt, Jeremy M. Higgins, Jeannine R. Szczech and Song Jin. s.l. : Journal 

of materials chemistry, 2009, Vol. 20. 2,197–400. 

27. X. Q. Yan, H. J. Yuan, J. X. Wang, D. F. Liu, Z. P. Zhou, Y. Gao,L. Song, L. F. Liu, W. 

Y. Zhou, G. Wang and S. S. Xie,. 2004, Appl physics, pp. 76,1853-1856. 

28. Anderson, J. Kim and W. A. 2005, thin solid film, pp. 483,60-65. 

29. C.-J. Kim, K. Kang, Y.-S. Woo, K.-G. Ryu, H. Moon, J.-M. Kim, D.-S. Zang and M.-H. 

Jo. 2007, adv. mater, pp. 19,3637-3642. 

30. Z. Liu, H. Zhang, L. Wang and D. Yang,. 2009, Nanotechnology, pp. 19,375602. 

31. J. Kim, E.-S. Lee, C.-S. Han, Y. Kang, D. Kim and W. A. Anderson. 2008, Microelectron. 

Eng, pp. 1709-1712. 

32. CoO/NiSix core–shell nanowire arrays as lithium-ion anodes with high rate capabilities. Y. 

Qi, Ning Du, Hui Zhang,Xing Fan, Yang Yang and Deren Yang. 2011, Nannoscale , pp. 

4,991. 

33. K. Kang, S.-K. Kim, C.-J. Kim and M.-H. Jo. s.l. : Nano Lett. , 2008. 8, 431–436. 

34. R. S. Wagner, W. C. Ellis, Trans. Am. Inst. Min. 1965, metall. Pet. Eng, pp. 233, 1053–

1064. 



36 
 

 
 

35. A. N. Gleizes. 2000, Chem. Vap. Deposition , pp. 6, 155–173. 

36. Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, C. J. Tsai, C. M. Hsu and S. C. Kung,. 

2005, appl. phys. lett., pp. 87, 223113. 

37. Y.-L. Chueh, M.-T. Ko, L.-J. Chou, L.-J. Chen, C.-S. Wu and C.-D. Chen. 2006, Nano 

Lett., 2006, , pp. 6, 1637–1644. 

38. L. Ouyang, E. S. Thrall, M. M. Deshmukh and H. Park. 2006, adv. mater, pp. 18,1437-

1440. 

39. K. S. K. Varadwaj, K. Seo, J. In, P. Mohanty, J. Park and B. Kim. 2007, j. am. chem soc., 

pp. 129, 8594-8599. 

40. H.-K. Lin, Y.-F. Tzeng, C.-H. Wang, N.-H. Tai, I. N. Lin, C.-Y. Lee and H.-T. Chiu. 

2008, Chem. Mater., pp. 20, 2429–2431. 

41. B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu and D. P. Yu. 2005, appl. 

phys. lett, pp. 86,243103. 

42. H.-K. Lin, Y.-F. Tzeng, C.-H. Wang, N.-H. Tai, I. N. Lin, C.-Y. Lee and H.-T. Chiu. 

2008, chem matter, pp. 20,2429-2431. 

43. K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M.-H. Jung, J. Kim and B. Kim. 

2007, nano lett, pp. 7,1240-1245. 

44. K. Seo, K. S. K. Varadwaj, D. Cha, J. In, J. Kim, J. Park and B. Kim. 2007 , J. Phys. 

Chem. C, pp. 111, 9072–9076. 

45. J. In, K. S. K. Varadwaj, K. Seo, S. Lee, Y. Jo, M.-H. Jung, J. Kim and B. Kim. 2008, j. 

phys. Chem. c, pp. 112, 4748-4752. 

46. K. Seo, K. S. K. Varadwaj, D. Cha, J. In, J. Kim, J. Park and B. Kim. s.l. : J. physics 

Chem. C, 2007. 111, 9072–9076. 

47. Koukouss, J. J. Nickl and J. D. 1971, j. less common met., pp. 23,73. 

48. Y. Song, A. L. Schmitt and S. Jin. 2007, nano lett., pp. 7,965-969. 

49. Jin, Y. Song and S. 2007, appl. phys lett, pp. 90,173122. 

50. Colquhoun, B. J. Aylett and H. M. 1977, j chem soc.,dalton trans., pp. 2058–2061. 

51. I. Novak, W. Huang, L. Luo, H. H. Huang, H. G. Ang and C. E. Zybill. 1977, 

organmetallics, pp. 16, 1567–1572. 

52. F. E. Rohrer, H. Lind, L. Eriksson, A. K. Larsson and S. Lidin,Z. Kristallogr. 2000. 

215,650-660. 

53. Maszara, W. P. s.l. : J. Electrochem. Soc. , 2005. 152,G550–G555. 



37 
 

 
 

54. Y. Song, A. L. Schmitt and S. Jin. s.l. : Nano lett., 2007. 7,965-969. 

55. Okamoto, H. 1990, Journal of Phase Equilibria, pp. 11(3) 306-312. 

56. C Tsai, C Y Wang, J Tang, M H Hung, K L. Wang , and L J Chen. 2011, J. ACS Nano, 

pp. 9552-9558. 

 

 

 

 

 

 

 

 

 

 

 



38 
 

 
 

Chapter 3 Experimental and Characterization Techniques 

 

2.1. Chemical Vapor Deposition Synthesis Methods  

 Metal silicide nanostructures including NiSix and CoSix were synthesized on 

various substrates such as carbon paper and silicon wafer using a chemical vapor 

deposition method. For each metal silicide deposited on a specific substrate, the growth 

conditions were studied to obtain the optimum growth parameters for the high density 

synthesis of metal silicide nanostructures.  

 

 

Figure  3.1 Schematic diagram of CVD method used for the synthesis of NiSi nanostructures. 

 

 

2.1.1. NiSix Nanostructures  

NiSix nanowires were synthesized on carbon paper, silicon wafer , Ni foam 

substrates using a single zone chemical vapour deposition method in a horizontal quartz 
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tube furnace (LINDBERG/BLUE, Mini-Mite Tube Furnace, Model: TF55035A) system. 

Fig2.1 shows a schematic diagram of the CVD process.  

 

Carbon Paper and Silicon Substrate 

NiSix nanostructures were synthesized on carbon paper and silicon wafer in the 

absence of any external catalysts. In this process carbon paper and silicon wafer the 

substrates were cleaned with ethanol for 10 min. NiCl2.6H2O (Aldrich) and Si Powder 

(Aldrich, 99%) were used as the  Ni and Si source respectively. 

 

Figure  3.2 Schematic diagram showing the setup of substrate and the sources in Quartz tube of CVD 

process for the synthesis of NiSix nanowires 

 

The substrate and source material were put in a quartz tube and mounted on the horizontal 

electrical furnace. As shown in Fig2.2, the substrates were placed the center of the 

heating region over the silicon powder at a temperature of 900 
o
C and the  Ni source 

powder was placed at the edge of the furnace (low temperature region)  were the 

temperature was between 200 
o
C-300 

o
C.  High purity Ar (99.999%) was introduced into 

the system to purge the system from oxygen. The temperature was increased from room 

temperature to 900 
o
C at a heating rate of 18 

o
C /min and it was kept at this temperature 
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for 2 h. Ar flow of 200 sccm was maintained in the CVD chamber during the experiment 

as a carrier gas. After the furnace was cooled down to room temperature, a black layer 

was deposited on the substrates.  

Various experiments were carried out to optimize the growth parameters including 

temperature, heating rate, time, gas composition, NiCl2 and Silicon source amount. The 

effect of these parameters was studied on the morphology of the nanostructure 

synthesized on the substrates.  

Ni Foam Substrates:  

To synthesize NiSix nanostructures on Ni foam, these substrates were first treated 

with 2 mol of HCl acid (37%) for 5min and subsequently ethanol for 5 min. NiSix 

nanostructures were synthesized on Ni foam using a similar CVD method mentioned in 

the previous section. NiCl2 and silicon powder were used as the source materials. The 

temperature of the furnace was kept around 900 
o
C and the NiCl2 was positioned at the 

low temperature region of 600 
o
C.  

Effect of various growth parameters was studied on the growth of NiSix 

nanostructures deposited on Ni foam. However unlike the nanostructures synthesized on 

carbon paper and silicon wafer, experimental results indicated that the composition of the 

carrier gas (addition of H2 to the carrier gas) also plays an important role on the 

morphology of nanostructures deposited on Ni foam.  

 

 

2.1.2. CoSi Nanostructures  



41 
 

 
 

CoSi nanowires were synthesized on carbon paper using chemical vapour 

deposition method (CVD) under different working pressures: 1) Atmospheric pressure 

and 2) Low pressure. In both studies CoCl2.6H2O was used as Co source and due to their 

lower melting point, the Co sources were positioned in a lower temperature region at the 

upstream of the quartz tube (Fig2.3). Si powder (Aldrich, 99%) was used as the Si source. 

The Si powder along with carbon paper as the substrate was placed at the center of the 

heating zone (high temperature region) as seen in Fig2.3.  

 

Figure  3.3 Schematic diagram showing the setup of substrate and the sources in Quartz tube of CVD 

process for the synthesis of CoSi nanowires.  

Different parameters were investigated in order to optimize the growth conditions 

including temperature, time, configuration of the silicon and the substrate as well as 

heating rate. The optimum conditions for the growth of the nanostructures were found in 

both low pressure and atmospheric pressure. For low pressure experiments, the base 

pressure of experiment was 1 mbar and the working pressure, with a flow of Ar 

(99.999%) as carrier gas, was maintained at 10 mbar. The temperature of the furnace was 

set at 900 
o
C for 1h with a heating rate of 20

 o
C/min. For atmospheric pressure the 

temperature at the center of the heating zone was kept at 850 
o
C while CoCl2 was placed 

at a temperature zone of 550 
o
C.     
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2.2. Characterization Methods  

The morphology and structure of nanomaterial deposited on the substrate were analyzed 

using a variety of analytical methods.  

2.2.1. Scanning Electron Microscope (SEM) 

Scanning electron microscope (SEM) is type of electron microscope to obtain 

different information from nanomaterials. The SEM uses a focused beam of high-energy 

electrons to generate a variety of signals at the surface of solid specimens. The signals 

that derive from electron-sample interactions reveal information about the sample 

including external morphology (texture), chemical composition, and crystalline structure 

and orientation of materials making up the sample.  

 

Figure  3.4 A photo of our SEM (Hitachi S-4800) 

http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
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In most applications, data are collected over a selected area of the surface of the 

sample, and a 2-dimensional image is generated that displays spatial variations in these 

properties. Areas ranging from approximately 1 cm to 5 microns in width can be imaged 

in a scanning mode using conventional SEM techniques (magnification ranging from 20X 

to approximately 300,000X, spatial resolution of 50 to 100 nm). The SEM is also capable 

of performing analyses of selected point locations on the sample; this approach is 

especially useful in qualitatively or semi-quantitatively determining chemical 

compositions (using EDS) which we have been using extensively for identifying the 

impurities and initial analysis of our samples. The High Resolution SEM used in our 

group can be seen in Figure 2.4 .                      

Essential components of all SEMs include the following:  

 Electron Source ("Gun") 

 Electron Lenses 

 Sample Stage 

 Detectors for all signals of interest  

 Display / Data output devices 

 Infrastructure Requirements: 

o Power Supply 

o Vacuum System 

o Cooling system 

o Vibration-free floor 

o Room free of ambient magnetic and electric fields 

http://serc.carleton.edu/research_education/geochemsheets/eds.html


44 
 

 
 

 

Figure  3.5 A schematic drawing of the electron and X-ray optics on a combined SEM-EPMA [1]. 

 

SEMs always have at least one detector (usually a secondary electron detector), 

and most have additional detectors. The specific capabilities of a particular instrument are 

critically dependent on which detectors it accommodates.   

  The morphology and composition of NiSix nanostructures synthesized on carbon 

paper, silicon wafer and Ni foam and CoSix nanostructures on carbon paper were 

characterized by Hitachi S-4500 field-emission scanning electron microscopy (SEM) 

operated at 5.0 kV and Energy Dispersive X-ray spectroscopy (EDX) was taken at a 

voltage of 20 kV. 
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2.2.2. Transmission Electron Microscope (TEM) 

A TEM (transmission electron microscope) another type of electron microscope 

that uses a highly energetic electron beam (100 keV-1 MeV) to image and obtain 

structural information from thin film samples. The electron microscope consists of an 

electron gun, or source, and an assembly of magnetic lenses for focusing the electron 

beam. Apertures are used to select among imaging modes and to select features of interest 

for electron diffraction work.  

 

Figure  3.6  A schematic of a TEM [2].  

 

The sample is illuminated with an almost parallel electron beam, which is 

scattered by the sample. In crystalline materials, the scattering takes the form of one or 

more Bragg diffracted beams, which are used to form a transmission diffraction pattern. 

These diffraction patterns can be used to identify unknown phases in the sample. A 
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bright-field image of the sample can be formed by looking at the straight-through, non-

diffracted beam. Features in the sample that cause scattering have darker contrast in a 

bright-field image than those that cause little or no scattering. An electron diffraction 

pattern can be generated from a particular area in a bright-field image (such as a particle 

or grain) by using a selected area aperture. Dark-field images are formed from a single 

diffracted beam and are used to identify all the areas of a particular phase having the same 

crystalline orientation. Magnifications from about 100x up to several hundred thousand 

times can be achieved in the TEM. Schematic of a typical TEM can be seen in Fig2.6 [2]. 

Detailed studies and analysis of single nanowires were carried out on a transmission 

electron microscopy (TEM, Philips CM10, 80 kV). High resolution TEM was carried out on a 

JEOL 2010F at voltage 200 kV to inspect the fine nanostructure. An image of the TEM used 

in our group can be observed in Fig2.7. 

 

Figure  3.7 A photo of our TEM (Philip CM10). 
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2.2.3. X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) is a versatile, non-destructive technique that reveals detailed 

information about the phase and crystallographic structure of crystalline materials. X-ray 

diffractometers consist of three major parts: X-ray tube, sample holder and an X-ray detector. 

X-rays are generated in X-ray tube by generally by heating a filament to produce electrons 

which are accelerated toward a target by applying a high voltage. One of the results of 

bombarding the target with electrons is the generation of X-ray spectra which are a 

characteristic of the target material. Using filters a monochromatic X-ray is isolated from the 

X-ray spectra and used for X-ray diffraction. Often Cu or Co Kα is used as the probing X-ray. 

The generated X-ray is focused on the sample interacting with the material. When the  

 

Figure  3.8 A photo of Bruker D8 Advance XRD  [3]. 
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geometry of the incident X-ray impinging the sample satisfy the Bragg Equation 

constructive interference occurs and the X-ray detector records the diffracted X-ray signals 

and converts them to counts. 

The structure and phase of the NiSix  and CoSix were investigated and determined by 

analysing the XRD pattern which were recorded on a Bruker D8 Advance diffractometer (Fig2. 

7) equipped with a Co Kα radiation source.  
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Chapter 4 Controlled synthesis and growth mechanism of NiSix 

nanowires by chemical vapor deposition  

 

Abstract 

Free standing, crystalline NiSix nanostructures were fabricated using chemical vapor 

deposition method.  Silicon powder and different nickel based powders were used as 

source material. The nanostructures were characterized SEM, TEM, and XRD techniques. 

A systematic study on the growth of Ni2Si nanostructures indicates that the morphology 

and composition of the synthesized nanostructures are sensitive to growth factors such as 

substrate morphology and source material. SEM and TEM observations demonstrated the 

morphology of core shell nanowires with diameters between 50 to 300 nm on these 

substrates. Vapor-solid mechanism and vapor-liquid-solid mechanism were proposed for 

the growth of NiSix nanostructures and SiOx branched nanostructures respectively. These 

nanostructures are expected to be potential candidates in energy related applications such 

as lithium ion batteries and silicon based nanodevices.  

3.1. Introduction 

Transition metal silicides have been extensively investigated due to their 

applications in conventional integration technologies in the past decades. With the 

increasing demand for  

Note: This will be revised and submitted for publication 
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highly integrated devices, development of nanostructured metal silicides bestows a 

promising way to achieve ideal building blocks with higher device densities that the 

conventional semiconductor technology cannot provide. The bottom-up approach for 

synthesizing nanostructures provides an effective way  to grow 1D systems such as 

nanowires  (NWs) and nanorods, and transition metallic silicide nanowires obtained in 

this way have been proved as promising candidates for various future applications [1-5] 

due to their diverse properties such as low resistivity, good ohmic contacts with p- and n-

type semiconductors, high-thermal stability, low cost, and compatibility with the 

processing of Si devices. Most noted of these applications are interconnect, gate materials 

for CMOS microelectronic transistors [6], fuel cell and lithium ion batteries[7-11].  

  Among various metal silicides, nickel silicide is currently one of the most 

promising silicide materials because of its superior electrical properties and appropriate 

work function. Some Ni-rich silicides, such as Ni2Si and Ni31Si12 have gained much 

attention for use in P type MOS devices because of their higher work functions (4.8 eV 

)[12-13]. Because of these potential applications several methods have been adopted to 

synthesize metal silicide nanostructures on different substrates such as silicidation of Ni-

coated Si NWs [14], metal-induced growth [15-16], point contact reaction between Si and 

Ni NWs [17] and chemical vapor deposition [18-20]. Although many of the strategies 

used for synthesizing NiSi have had low rate of production or synthesized in a free 

standing form for silicon based devices and few have been employed for energy 

applications. In energy applications such as fuel cells and lithium ion batteries there is a 

need for a highly dense production of nanostructures  on specific substrates that can be 
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used in an industrial scale. CVD method has been proposed to obtain this goal in previous 

works [20-22]. 

     Many of these reports given for the synthesis of NiSix nanostructures have been 

carried out by delivering silicon in vapour for to the Ni substrate. The chemical 

compounds used for silicon are highly corrosive and dangerous to work with. In this 

study we have successfully synthesized NiSix using CVD method using solid based 

precursors. The growth of these nanostructures and parameters affecting their 

morphology has been systematically studied. A growth mechanism is proposed based on 

the experimental results.    

 

3.2.Experimental details 

NiSix nanowires were synthesized on different substrates using a CVD method 

Schematic diagram of the synthesis set up is shown in Fig3.1. As seen the NiCl2 was 

placed near the entrance at a temperature zone of 500 
o
C. Silicon powder (99.9%) was put 

in the alumina boat as the silicon source as opposed to other reports which use a constant 

flow of silane or SiH4 gas [22-24]. The silicon powder was positioned in the center 

section. Ni foam, silicon wafer and carbon paper have been studied as the substrates. 

Silicon wafer and Ni foam were sonicated in HCl acid and acetone for 10min, 

respectively. A  5mm × 10mm substrate was kept at a distance of 2mm over the silicon 

powder. The synthesis was carried out under 200 sccm of Ar. The temperature of the 

furnace was raised to around 900 
o
C and kept at this temperature for 1hr. At the end of 

synthesis process, a dark layer is deposited on the substrate.  
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Figure  4.1 Schematic diagram of the nickel silicide synthesis process 

 

The morphology, structure and composition of the resultant products were 

characterized by Hitachi S-4500 field-emission SEM operated at 5.0 kV and energy 

dispersive X-ray spectrometer (EDX), Rigaku–Miniflex X, using CuKa (k = 0.154 nm) 

radiation operated a  30 kV and 15 mA, Philips CM10 transmission electron microscope 

(TEM) and selected area electron diffraction (SAED) operated at 80 kV, a Jeol 2010 field 

emission gun high resolution electron microscope (HRTEM) operated at 200 kV and 

Kratos Axis Ultra Al (alpha).  

 

3.3. Results and discussion 

NiSi nanowires were synthesized using a single zone CVD method. The morphology 

of nanostructures after optimization of the growth parameters are shown in the SEM 

images of Fig3.2(a-b). The length and density of the grown nanowires are quite unique 

compared to previous reports [24-26]. As shown in Fig3.2(a) high density coverage of 

nanowires is deposited on the substrate. These nanowires have lengths up to 300 µm and 

an average diameter of 250 nm Fig3.2(b). SEM observations of the cross section view of 

the products grown on the silicon substrate reveal that the nanowires growth is after the 

formation of bundles on the substrates.  
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Figure  4.2 HRSEM image of Ni2Si nanowires. (a) low magnification (a) High magnification (b)cross 

section view. the thickness of the bundles are around 5-10 um (c) XRD pattern of these nanowires on 

a silicon substrate. 

 

EDX  indicates these bundles are composed of silicon, nickel and oxygen.  The 

thickness of these islands is around 5 to 10 µm. The main diffraction peaks in the XRD 

pattern of these nanowires shown in Fig3.2(d) can be assigned to the Ni2Si indicating that 

the nanowires have well-crystallized Ni2Si structure. In addition to Ni2Si, weaker peaks 

can be attributed to Ni3Si2.  
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TEM image of a single Ni2Si nanowire is shown in Fig. 3(a).  TEM observations 

indicate that these nanowires have a core-shell structure with a crystalline core covered 

by an amorphous layer. Detailed measurements on TEM images reveal that the nanowires 

have a core diameter of around 190 nm and the shell thickness of 60 nm. EDX analysis, 

(inset in Fig.3.3(c)) reveals that the nanowires are composed of nickel,  silicon and 

oxygen. It was found that lower working pressure has a noticeable effect on the reduction 

of the oxide shell [27]. The SAED pattern recorded from the core shown in Fig3.3(b), 

reveals a well ordered spot diffraction revealing the single crystalline nature of the core of 

these nanostructures. The SAED pattern of the core can be fully indexed to Ni2Si 

orthorhombic crystal structure confirming the results obtained from XRD pattern. Based 

on the SAED pattern and the EDX analysis of the nanowires, the amorphous layer is 

determined to be composed of silicon oxide (SiOx).  

During our experimental process we have found that the morphology and crystal 

structure of the nanowires is very sensitive to the growth parameters such as temperature, 

substrate, time and composition of the carrier gas. In order to control the morphology of 

the Ni2Si nanostructures and understand their growth mechanism, the effect of these 

growth parameters were systematically studied.  
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Figure  4.3 (a) TEM image of a single Ni2Si nanowire with a diameter of about 250 nm. ((b) 

Corresponding SAED pattern (c) HRTEM of the NW and EDX analysis of these nanowires (inset). 
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3.3.1. Temperature effect 

Temperature was found to have a significant impact on the morphology and 

composition of the nanostructures. The effect of temperature on the growth was 

investigated from 850 
o
C to 950 

o
C. As shown in Fig. 4(a), at low temperatures, 

amorphous nanowires were formed on the substrate. Small nanoparticles can be seen on 

top of these nanowires which indicate the catalyst effect of these nanoparticles. EDX 

analysis (Fig. 4(b)) reveal that there is a high amount of silicon and oxygen concentration 

compared to  nickel. Increasing the temperature to 900 
0
C resulted in the formation of 

highly dense product of Ni2Si nanowires with lower oxygen content as shown in Figure 

4(c-d). However the experimental results reveal that further increase of temperature is 

unfavorable for the formation of nickel silicide nanostructures. Figure 4(e) shows the 

SEM images of nanostructures synthesized at 950 
o
C.  EDX analysis shows a high level 

of oxidation with very low percentage of Ni as opposed to previous conditions. The 

charging effect seen in SEM image shown in Fig. 4e indicates the low conductivity of the 

products due to abundant SiOx and lack of conductive Ni. At a lower temperature of 850 

o
C, partial pressure of nickel reactive species is not high enough to trigger the nucleation 

of nickel silicide, hence, the generated nickel clusters act as catalysts for the growth of 

silicon and silicon oxide nanowires via a vapor-liquid-solid mechanism as reported 

previously [28]. This mechanism often has a characteristic catalyst nanoparticle at the tip 

of the grown nanowires as seen in Fig3.4a unlike nanostructures synthesized at higher 
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Figure  4.4 SEM and EDX spectrum of nanostructures synthesized on silicon wafer at (a, b) 850 C  (c, 

d) 900 C (e, f) 950 C.  

temperatures. At a higher temperature of 900 
o
C, partial pressure of nickel species reaches 

the level for nucleation and growth of nickel silicide thereby leads to the growth of nickel 

silicide nanowries. With further increase of the temperature to 950 
o
C, elevated partial 

pressure of oxygen inside the chamber system enhances the growth of silicon oxide which 
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inhibits the growth of nickel silicide. Therefore, the synthesis temperature has to be 

carefully controlled in a narrow range to guarantee the smooth growth of nickel silicide 

nanowires.  

 

3.3.2. Substrate effect  

In terms of practical applications, role of substrates has to be dealt with for nanowire 

growth. In our work, it was found that the morphology of Ni2Si nanowires synthesized via 

CVD method varies depending on the morphology and composition of substrates. In this 

study the effect of some substrates such as silicon wafer, carbon paper and Ni foam were 

studied.  Fig 3.5 shows the products obtained on carbon paper and nickel foam (please 

double check the caption of Fig3.5). As seen in Fig3.5(a) the nanowires grown on carbon 

paper have a similar morphology to nanostructures synthesized on silicon substrate 

(Fig3.1(a)). However these nanowires have an average diameter of 380 nm and length up 

to 100 µm, which is larger and shorter than nanowire synthesized on silicon wafer.  

Furthermore, the nanostructures synthesized on carbon paper had a higher density and 

uniform diameters. In addition, these nanowires exhibited stronger binding to the 

substrate compared to the nanowires on silicon wafer which could be detached easily. As 

shown in Fig3.5(b), XRD pattern of nanostructures synthesized on carbon paper, indicates 

that nanowires produced on both carbon and silicon substrates have similar crystal 

structure. This indicated that the silicon wafer substrate didn’t have evident influence on 

the reaction for nanowire growth. But for the Ni foam substrate, the experimental results 

were rather completely different in not only the morphology but also the crystal structure 

of the nanowires, as shown in Fig3.5(c). XRD result in Fig3.5(d) indicates the presence of 

Ni31Si12 in the products grown on the Ni foam substrate. The growth of nickel-rich nickel 
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silidice indicates the possible contribution of Ni foam to the synthesis of nickel silicide 

crystal structures. The nanostructures synthesized on Ni foam as seen in Fig. 5(c), 

although the majority of the nanowires grown on the Ni foam are silicon oxide as a result 

of the oxide layer present on the Ni foam. Compared to the nanowire on silicon and 

carbon paper substrates, these nanowires have smaller diameters of around 80 nm and 

lengths of more than 20 μm,  

 

Figure  4.5 SEM and XRD pattern of NiSix NWs growth on (a, b) carbon paper (c,d) Ni foam. 
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3.3.3. Growth mechanism 

Based on the investigation on the morphology evolution of the products, growth 

mechanism of the nickel silicide nanowires is proposed and can be divided into four 

stages as schematically shown in Fig. 6(a), and corresponding SEM morphology images 

are shown in Fig3.6(b-e). In the initial stage, as seen in Fig3.6(b), nucleation occurs in the 

form of conical shaped nano particles possibly due to fast diffusion of Ni into silicon and 

generation of initial nickel silicide nuclei. The composition of these clusters is not clear. 

However the XRD pattern shown in Fig3.1(b) reveal the presence of small amount of 

Ni3Si2 having higher silicon to nickel ratio may provide nucleation sites for Ni2Si 

nanowire growth on the silicon substrate. At the second step as observed in Fig3.6(c), rate 

of Ni deposition is comparable to rate of silicon diffusion into the clusters, creating an 

elongated structure which ultimately resulted in the appearance of nanowires on the 

conical nanoparticles. In the next stage, nanowires propagate during the growth 

(Fig3.6(d)). As the time is extended, the annealing causes the nanowires to have a finer 

structure. By comparing the two last stages, it is apparent that in some areas Ni-Si 

nanoparticles are formed due to non-uniform accumulations of the reactive species.  

The formation of nickel silicides was found to depend on the ratio of Ni and Si 

species in the CVD chamber. Ni atoms are known to be the dominant diffusing species in 

the Ni-Si reactions. It has been reported that the probability of Ni2Si phase nucleation in 

Ni-Si reactions is higher compared to other phases because it is the most 

thermodynamically stable phase [27]. In this study, NiCl2 powder was introduced in front 

of the substrate. This leads to reaction of Si vapour from the source zone with the NiCl2 
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vapour to form single-crystal Ni2Si NWs at the middle zone in the furnace. The probable 

reaction pathways are the following [27]: 

2NiCl2(g)+ Si(g)            Ni2Si(s)+SiCl4(g) (1) 

2NiCl2(g)+SiCl4(g)           Ni2Si(s)+4Cl2(g) (2) 

It is worthwhile to mention that the NiCl2 vapour plays two roles. Primarily, the 

vapour of NiCl2 can react with the Si vapour to produce NiSix nanostructures. Second, 

excessive NiCl2 can also react with the Si vapour to form SiCl4 which is a highly reactive 

compound and can promote the NiSix deposition.  

 

Figure  4.6 (a) Schematic diagram of the NW heterostructures growth. HRSEM image of time 

dependent growth of nanostructures: (b) 30min; (c) 1hr; (d) 1:15hr; (f) 1:45hr. 

 

Due to high melting point of silicon which is 1414 
o
C, the nickel-rich and silicon-

poor atmosphere tends to be created in the reaction chamber, which may explain the 

reason why nickel-rich Ni2Si nanowires were obtained.  Effect of nickel precursor amount 
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on the growth was also investigated by placing different amounts of NiCl2 powders (200-

800 mg) on the upstream of the substrates. Results show that higher amount of NiCl2 

(>300 mg) leads to predominant etching of the substrate (excess chlorine) which inhibits 

the nanowire growth on the substrate [27]. On the other hand, at lower quantities of NiCl2 

powders (<200 mg), no nanostructures were observed on the substrates. The optimal 

weight range was found to be between 200 and 400 mg. 

As discussed above, temperature plays a crucial role in dominating phase structure 

and composition of the products. At lower temperatures around 800 
o
C, Ni indeed acts as 

a catalyst to form SiOx nanowires via a vapour liquid solid mechanism based on previous 

reports on the catalytic effect of Ni for the growth of SiO2 nanostructures [28,29]. In this 

case, partial pressure of nickel reactive species is relative low and the formation of silicon 

oxide nanostructures is the consequence of a lack of appropriate activation energy for 

triggering the nucleation and growth of nickel silicide. At a higher temperature of 900 
o
C, 

partial pressure of nickel species reaches the level for nucleation and growth of nickel 

silicide thereby leads to the growth of nickel silicide nanowries. With the increase of the 

temperature over 950 
o
C, high amount of silicon oxide was grown on the substrate. (This 

can be the outcome of two factors. Firstly it can be explained by the fact that at these high 

temperatures the amount of nickel vapour deposition on the substrate is low. This can be 

confirmed by the EDX results in Fig3.4(f). Secondly With increasing temperature, partial 

pressure of oxygen was elevated, which inhibited the growth of nickel silicide while 

enhanced the growth of silicon oxide. In our experiments, it seems all three of these 

reactions (1), (2) and (3) are taking place since we have both Ni2Si component as the core 
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in the nanowires and silicon dioxide formation as the shell, while silicon vapour is 

consumed in a faster reaction which is [30]:  

Si(g)+O2 (g)           SiO2  (3) 

In all the three substrate that have been investigated the synthesis mechanism has 

been a nucleation growth and vapor solid (VS) mechanism. In silicon wafer the 

nucleation shows itself as agglomeration of Ni and silicon into al large bundle as shown 

in Fig3.1(c). In other substrates, these agglomerations are much smaller presumably due 

to the fiber structure of Ni foam and carbon paper.  

 

4. Conclusion 

In summary, high quality nickel silicide nanowires were synthesized using a CVD 

process on different substrates such as silicon, Ni foam and carbon paper with high 

density and lengths of up to 100um. XRD pattern indicated the nanostructures 

synthesized on silicon wafer and carbon paper have a Ni2Si crystal structures and 

nanostructures deposited on Ni foam have a Ni2Si3 crystal structure. TEM analysis 

revealed the core-shell morphology of these nanowires with average diameters of around 

300 nm.   EDX analysis confirmed the presence of silicon oxide shell on the nickel 

silicide nanowires. The effects of various growth parameters on the morphology of 

nanostructures deposited were systematically studied. Based on these experimental results 

VS method was proposed as the dominant growth mechanism for Ni2Si nanostructres. 

This study clarifies the important parameters for the growth of crystalline NiSix which 

may have great potential in various nanostructured system such as interconnects in 

nanodevices, as catalyst support in fuel cells and anode material in lithium Ion batteries 
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Chapter 5 Synthesis of CoSi nanowires using chemical vapor deposition 

method at different ambient pressure levels  

  

Abstract 

    With the need for higher performance and stability in energy applications there have 

been extensive studies on the use of nanomaterials in this field. We report the synthesis of 

high density CoSi nanowires using single zone CVD method on carbon paper. The use of 

separate solid precursors enabled the synthesis of NWs at different pressure levels in the 

synthesis chamber and temperatures. Optimization of the products at low pressure and 

atmospheric pressure resulted in the growth of two types of crystalline and core-shell 

nanowires. The length and diameter of the NWs synthesized at atmospheric pressure were 

relatively larger than NWs at low pressure. XRD and EDX confirm the deposition of 

CoSi nanostructures at both pressures.  

4.1. Introduction 

In recent years, one-dimensional nanocable heterostructures  have drawn much 

attention due to their unique properties which has led to extensive research on their 

synthesis, formation mechanisms, properties and applications [1-11]. Among these 

nanostructures silicide materials have attracted a great deal attention for their low 

resistivity which is   
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highly desirable for silicon based devices  and physical properties which make them 

compatible and suitable for energy application and future electronic devices [12-18].  In 

the current advancements in the study of silicide based applications, cobalt silicides have 

served essential role as ohmic contacts and interconnect materials and gates in VLSI and 

ULSI CMOS processes because of their compatibility[19,20]. Researchers have  shown 

that the resistivity of the CoSi thin film on a Si(001) substrate and the bulk single-crystal 

CoSi is 350 and 180 μΩ.cm, respectively [21,22]. On the other hand, CoSi NWs were 

found to possess a resistivity ranging from 126.5 to 510 μΩ.cm [56]. Furthermore Silicide  

nanostructures have also been studied as catalyst and anode materials fuel cell and lithium 

ion batteries respectively [24-27]. CoSi nanostructures can also be potential candidates 

for these energy based applications. 

Synthesis of CoSi nanowires have been reported using chemical vapour deposition 

(CVD) [57] and chemical vapour transport (CVT). In these methods a silicon substrate or 

a Co coated substrate chemically reacts with the metal or the silicon source [11, 28-31] . 

There have been many numbers of reports of synthesis of metal silicide using this method 

[32-36]. Lion et al. used this approach to synthesize FeSi nanowires using FeCl3 as 

precursor [58]. These methods have the disadvantage of inflexibility where the choice of 

the substrate is limited and there is less control on the ratio of the elements in the product 

nanowires.   

The use of single source precursors (SSP) have been proposed [38,39] where both 

the metal and silicon have been mixed and used as a single source large molecule. 

Although in these reports they have managed to produce desired CoSix nanostructures, 

this method adds an additional step to the synthesis process.  To achieve good chemical 
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control in the nanophase formation of CoSi, we have strived to deliver both the metal and 

silicon elements via the vapour phase separately using CVD. This method has proven to 

be very simple and inexpensive and yet allows much more control on the deposition and 

reaction of the two elements of the silicide material. 

Here we report the successful growth of CoSi nanowires in ambient and low 

pressure by optimizing the conditions of the system.   

4.2.Experimental procedure 

CoSi nanowires were synthesized in a single zone furnace through a CVD 

process. CoCl2 was used as the precursor for Co source and silicon powder (325 mesh- 

99% ) was used for silicon source.  Carbon paper with different thicknesses were used as 

the substrates.  

 

Figure  5.1 Schematic diagram showing the setup of substrate and the sources in Quartz tube of CVD 

process for the synthesis of CoSi nanowires. 

 

As shown in Fig4.1 the substrate was positioned at the center of the heating 

section with a 2 mm distance from the silicon powder. CoCl2 was situated at temperature 

zone around 450-550
o
C at upstream of the furnace according to the center heating 
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temperature and pressure of the experiments in order to achieve gradual evaporation of 

the precursor at the set condition. Initially Ar (99.99%) was introduced into the CVD 

chamber for 30 min to remove the residual oxygen in the system. To study the effect of 

CVD chamber pressure on the growth of cobalt silicide nanostructures the pressure of the 

synthesis chamber was reduced using a mechanical pump and the chamber pressure was 

adjusted by continuous flow of Ar gas which also acted as the carrier gas. The 

temperature was increased to the set temperature and held at this temperature for 2 hours. 

At the end of the experiment a dark layer was deposited on the substrates.  

 The samples were characterized by Hitachi S-4500 field-emission scanning 

electron microscope (SEM) operated at 5.0 kV and energy dispersive X-ray spectrometer 

(EDX), Bruker D8 X-ray diffractrometer using Co Ka(k = 0.154 nm) radiation operated a  

45 kV and 30 mA, Philips CM10 transmission electron microscope (TEM) and selected 

area electron diffraction(SAED) operated at 80 kV, a Jeol 2010 field emission gun high 

resolution electron microscope (HRTEM) operated at 200 kV and Kratos Axis Ultra 

Al(alpha).  

4.3 Results and discussion 

Cosi nanowires were synthesized using chemical vapour deposition. To have a 

better understanding of their growth mechanism, the effect of various growth parameters 

such as CVD chamber pressure and temperature on the morphology of the nanostructures 

deposited on the substrate were investigated.  
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CVD Chamber Pressure  

In atmospheric pressure the optimized temperature of the center furnace was 

found to be 850 
o
C with CoCl2 placed at a temperature zone of around 550 

o
C. The 

growth time was  adjusted to 2 hours which led to the formation of nanowires covering 

the entire fibers of a 1×0.5 cm×cm carbon paper substrate as shown in Fig4.2. The low 

magnification SEM image (Fig4.2a) indicate that the nanowires have a rather high 

density.  

 

Figure  5.2 (a) HRSEM at 850 C in atmospheric condition; (b) XRD pattern; (c) TEM image of single 

nanowire; (d) HRTEM of CoSi nanowire (inset is SAED pattern). 

It is also observed that the nanowires have particles on the top which suggests that 

the CoSi nanowires were grown via vapour-liquid-solid (VLS) mechanism and since no 
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additional material was used for catalyst it is apparent that it has to be a self-catalysis 

process (Fig4.2a,c). Fig4.2(b) displays the XRD pattern of the products on the carbon 

paper substrate. The main diffraction peaks are assigned to the cubic CoSi structure. 

TEM observations of a CoSi nanowire can be seen in Fig4.2c. Analysis of these 

nanowires under TEM showed that the nanowires have diameters around 150-100 nm 

with lengths up to tens of micrometers. Furthermore, the TEM images indicate that these 

nanostructures have a core shell morphology. Detailed analysis of these nanostructures 

reveal the core section to be crystalline covered by an amorphous layer with comparable 

thickness. EDX analysis on the nanostructures show the presence of oxygen in the 

nanostructures which can be the results of amorphous SiO2 formation around the CoSi 

nanowires.  

There have been a number of reports on the synthesis of CoSi nanowires using 

CVD process at pressures as low as 1×10
-3

 Torr [11,40,41]. The base pressure used in our 

experiments was kept at 1 Torr and a working pressure of 10 Torr was implemented by 

introducing Ar as the carrier gas. The study of temperature impact led to an optimized 

900 
o
C temperature with a heating time of 1h which is an improvement compared to 

atmospheric condition. Fig. 3a Shows a low magnification SEM image of the nanowires 

synthesized on carbon paper. XRD results ( Fig4.3b ) indicate that these nanowires a 

similar crystal structures as nanostructures synthesized in in atmospheric condition (Cubic 

CoSi crystal).  
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Figure  5.3 (a) HRSEM at 900 C at 10 Torr; (b) XRD pattern; (c) TEM image of single nanowire; (d) 

HRTEM of CoSi nanowire (inset is SAED pattern). 

  

However, the TEM observations (Fig4.3c) indicate that in in contrast to the core-

shell structure of the CoSi nanostructures at ambient pressure where the diameter of the 

crystalline core and amorphous shell were comparable, CoSi nanostructures synthesized 

at low pressure have a very thin layer and in some nanowires only one phase can be 

observed. TEM analysis show these nanowires have an average diameter of around 60 nm 

with lengths up to only a few micrometers.  
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4.3.1. Synthesis Temperature  

In addition to CVD chamber pressure, the synthesis temperature plays an 

important role in determining the morphology of nanostructures deposited on the 

substrate. Here we will discuss the effect of temperature at two different pressure levels, 

1. atmospheric condition 

2. pressure level of 10 Torr 

Other pressures were also investigated , though these two pressure levels were found to 

have significant impacts for base pressures above 1 Torr. 

Temperature effect at atmospheric condition   

At ambient pressure of 1bar, the effects of wide range of temperatures on the deposited 

nanostructures were studied. SEM results of temperature conditions of 850 
o
C, 900

 o
C 

and 930 
o
C  can be observed in Fig4. 4a,4b and 4c respectively. 

As previously stated, the optimum temperature was found to be 850 
o
C at the 

center of the heating zone. EDX spectrum (Fig4.4d) confirms the ratio of Co:Si  to be 1:1 

which is in agreement with the results obtained by XRD in Fig4.2. At lower temperatures 

it was found that no deposition of Co would occur on the substrate. This could be the 

result of insufficient energy for Co deposition at low temperatures.  

At high temperatures, around 900 
o
C, SEM observations (Fig4.4c) indicate the 

significant reduction in density of nanowires synthesized on the substrate. In addition 

high magnification SEM images show changes to the morphology of deposited         



74 
 

 
 

 

Figure  5.4 Representative High magnification SEM image (inset is low magnification) of CoSi 

nanowires synthesized in atmospheric condition at (a) 850 C , (b) 900 C and (c) 930C respectively. 

at 10 Torr  (b) EDX spectrum of products synthesized at (d) 850
o
C , (e)900

o
C (f) 930

o
C 

nanowires compared nanostructures deposited at optimum temperatures. This can be due 

to the high oxidation rate at higher temperatures as it can be seen in Fig4.4b. EDX results 

(Fig4.4e) illustrate the presence of higher amount of oxygen and silicon and reduction of 

Co deposition at these temperatures which confirm the higher rate of oxidation of silicon 
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and Co and the change in the morphology of products at high temperatures. Nonetheless 

the catalyst particles remain present on the top of the nanowires which conclude that the 

growth of these nanowires is through VLS process. It was found that the diameter 

increased to near 400 µm and the morphology of the nanowires had also changed. As it is 

apparent in EDX spectrum the oxidation is high as well (Fig4.4f). 

Temperature effect at low pressure condition   

In low pressure condition investigation of the temperature effect on the structure 

and the morphology of the nanowires was carried out in a temperature range of 850 to 

950 
o
C. 

The experiments were carried out using the same CVD furnace. CoCl2 was also 

used as the precursor and silicon powder as the silicon source. The pressure in the CVD 

process was lowered using a mechanical vacuum pump which brought the base pressure 

of the system to 1mbar. The working pressure was increased to 10mbar with the 

introduction of Ar as carrier gas. As a result of lower pressure the evaporation 

temperature of the precursor would change and the CoCl2 precursor was positioned at a 

lower temperature of 500
o
C. High resolution SEM images of the products obtained at 3 

different temperatures are shown in Fig4.5a, b and c. At temperatures around 850 
o
C as it 

is shown in Fig4.5a there were small depositions observed as nanoparticles and nanorods 

on the substrate which through EDX analysis (Fig4.5d) they were found to be composed 

of Co and silicon with a ratio of 2:1 . Increasing the temperature to around 900 
o
C 

resulted in large production of nanowires on the fibers of the carbon paper. These 

nanowires as mentioned before are crystalline and have a smaller diameter than the 
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nanowires produced in atmospheric condition which is due to the lower super saturation 

at low pressure. EDX results (Fig4.5e) show that the Co and Silicon ratio is 1:1 which is 

in agreement with the XRD results shown in Fig4. 3c.  

As we increase the temperature to over 930 
o
C it was observed that large cluster of 

Co and silicon was deposited on the surface over which the growth of the nanowires has 

occurred. The formation of the clusters means that there is high vapor pressure compared 

to lower temperatures around the substrate and as result of high temperature the surface 

energy is reduced which in turn leads to deposition of Co and Silicon in a bulk form on 

the carbon paper. EDX spectrum of these nanostructures shown in Fig4.5f reveals that 

they are composed of Co and silicon and oxygen. Though as observed in the spectra the 

ratio of the Co:Si is 2:1. This type of cluster formation has also been reported by Liang et 

al., [58] on silicon wafer.  They have indicated that the bulk formations of the clusters on 

the substrate are a crystalline Co2Si structure, which is in agreement with our results 

obtained through XRD and EDX analysis.  
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Figure  5.5 Representative High magnification SEM image (inset is low magnification) of CoSi 

nanowires synthesized in 1mbar ambient pressure at (a) 850oC , (b) 900oC and (c) 930oC 

respectively. at 10 Torr  (b) EDX spectrum of products synthesized at (d) 850oC , (e) 900
o
C(f)930

o
C 

 

a b 

f 

c d 

e 
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4.3.2. Growth mechanism 

Based on the results of effect of growth parameters on the morphology of 

nanostructures deposited on the substrate a growth mechanism can be proposed for the 

synthesis of CoSi nanostructures at two different synthesis pressures. At low pressure as 

observed in the SEM images the nanowires grow from the clusters formed on the 

substrate which suggest a VLS mechanism where the agglomerated particles act as the 

catalyst.  

At atmospheric pressure the particles on the tip of the nanowires were analysed 

through HRTEM and EDX spectrum. Fig4.6a,b shows the low magnification and 

HRTEM of the nanoparticle on top of a nanowire. As observed two phases are present in 

the particle as well as the nanowire itself. EDX analysis (Fig4.6.c) reveals  the ratio of 

cobalt and silicon in the particle is 2:1 which is similar to the ratio of the clusters 

observed at experiments at 1mbar , suggesting the same VLS mechanism.  

In this mechanism the CoCl2 vapour  which is transported to the high temperature 

zone chemically reacts with the silicon vapour over the substrate. The possible reaction 

pathway concluded from various experiments and also suggested in previous report 

[30,40] that leads to the formation of CoSi nanowires is as follows. 

2CoCl2(g) + 3Si(s)         2CoSi(s) + SiCl4(g) 

                                   CoCl2(g) + SiCl4(g)          CoSi(s) + 3Cl2 (g) 
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Figure  5.6 (a) low magnification TEM image of CoSi nanowire with a nanoparticle; (b) High 

Resolution TEM image of the catalyst nanoparticle; (c) EDX spectra of the nanoparticle.  

An optimum rate of reaction at 1mbar and atmospheric pressure controlled by the 

vapour pressure of the two precursors and the temperature zone of the substrate, results 

in the formation of NW with specific morphologies at each condition. At low pressure 

the reaction occur rapidly  and as a result the amount of CoCl2 and SiCl4 produce in a 

short period which is probable for these gases to enter in the reaction below forming 

Co2Si [59]. 
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6CoCl2(g) + 3SiCl4(g)        3Co2Si(s) + 12Cl2(g) 

 

As reported by Hsia et. al. [60], at temperatures above 850
o
C, the most stable phase is 

CoSi and as a result in our experiments the existence of Co2Si can only be as a catalyst 

where the Cobalt atoms diffuse into the deposited silicon elements.   

 

4.3.Conclusion 

High density CoSi nanowires were synthesized using a single zone CVD process 

on carbon paper at 1mbar and atmospheric pressure. The nanowires synthesized at high 

pressure had a core-shell structure with a crystalline CoSi core covered by amorphous 

SiO2 layer. In contrast on nanostructures synthesized at low pressures, no or very thin 

SiO2 could be found around the CoSi crystalline structures. The effect of temperature on 

the morphology nanostructures deposited in different synthesis pressures were 

investigated. Based on these results a VLS growth mechanism using Co2Si as catalysts 

was proposed for the synthesis of CoSi at different pressures.  
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Chapter 6 Conclusion and Future Work 
 

Conclusions:    

    During the nanotechnology revolution of the past decade, 1D nanowire (NW) materials 

have attracted prominent attention and gained significant success. Manipulation of size 

and morphology materials has led to dramatic changes in the way they were used in 

different applications. Silicon-based materials have been extensively used for many 

applications such as complementary metal oxide semiconductor (CMOS) devices, thin 

film coatings and energy applications. For example, a variety of metal silicide 

nanostructures have been employed for anode materials of the Li ion batteries in order to 

overcome the challenges of current lithium ion batteries and obtain high capacility.    

    The main objective of this thesis has been to synthesize two types of silicide 

nanomaterial, NiSix and CoSi, using CVD method.  

The multiple source Synthesis method carried for producing NiSix and CoSix 

using single zone chemical vapour deposition (CVD) provides a better control over the 

synthesis of nanostructured products. Previous reports have mostly grown the nanowires 

either only on silicon wafer or a substrate of the other element. Our method allows a wide 

range of substrate to be used which broadens the scope of the applications of this system. 

In addition the use of single zone CVD furnace is also favourable for industrial 

applications because of the low price as opposed to multiple zone systems.  

       A series of experiments were conducted in this study to synthesize a variety of novel 

nanostructured NiSix on silicon wafer, carbon paper and Ni foam. Analysis of the growth 

conditions required for optimization of nanowires were carried out and explored.  The 
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morphology and crystal structure of the nanowires at different temperatures and 

substrates were examined and, based on that, conclusions were made for the growth 

mechanism of the different nanowires synthesized. Ni2Si nanowires were synthesized on 

carbon paper and silicon wafer while Ni31Si12 was grown on Ni foam. The diameters of 

the nanowires for carbon paper and silicon wafer were found to be much larger than on Ni 

foam while their length were grown of smaller scale. The growth mechanisms for all the 

substrates were found to be via a vapor-solid (VS)  system.  

     Experiments were carried out to synthesize and grow CoSi nanostructures on carbon 

paper using chemical vapour deposition method at 1 mbar and atmospheric pressure. 

Optimum conditions were obtained . Effect of temperature was investigated from 800
 
 to 

950 
o
C.  At low pressure, the nanowires were crystalline with diameters of around 60 nm 

and lengths of few micro meters while at atmospheric pressure the dimensions were 

almost twice their size with diameters ranging from 100-150 nm and lengths of tens of 

micrometer. The crystal structure at low pressure and high pressure were found to be 

CoSi for both conditions. The growth mechanism of the nanowires were suggested for 

both conditions to be a VLS mechanism based on the observation of nanoparticles at the 

tip  of the nanwoires at atmospheric pressure and cluster formation at the bottom of the 

nanowires at 1mbar.       

 

Future work       

Despite the advances demonstrated in this thesis, a large number of challenges still 

remain. Future work could focus on the following aspects: 

 CVD method is a rather difficult method to achieve controlled and desired 

products.  As a result, obtaining high quality nanostructures of materials requires 
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more attention. In this thesis, we reported the synthesis of Ni2Si and Ni31Si12 

without the use of any catalyst. According to our results, there are indications of 

other minor phases such as Ni3Si2 as well as NiSi on the substrates. In order to 

grow dense single phase nanostructures, there have been a few reports recently 

given to find crystal structures of the nuclei of  the nanowires. These studies can 

further be used for growing single phase nanowires without the presence of 

additional phase on the substrate. 

 

 The CoSi and NiSix NWs that were synthesized in our experiments had a core-

shell structure where the shell was an oxide in the case of NiSi or an amorphous 

CoSi structure. In order to remove this shell, there have been a number of methods 

proposed. Some of have used lower pressures as low as 1mTorr. Other solutions 

such as using a reductive gas such as H2 or CH4 can be used during the 

experiments so as to eliminate the oxidation. We have also experimented on using 

NaOH subsequent to the growth to remove the oxide layer. These experiments are 

still on going to obtain optimum results. 

 

 Battery testing of samples should be carried out to achieve high cycle 

performance. More substrates such as stainless steel are to be tested in order to 

examine the stability of the nanowires on the substrate during cycling.    
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