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ABSTRACT 

 
Reinforced concrete highway bridge girders are regularly repaired by replacing 

deteriorated concrete with new concrete, temporarily exposing the flexural reinforcement. 

The absence of bond between the concrete and steel at this stage makes it difficult to 

compute the flexural capacity and the current code criteria provide no guidance to assist 

practitioners. 

 
The research reported in this thesis rectifies this knowledge gap. A thorough examination 

is presented of experimental and analytical investigations by others to determine the 

typical behaviour, including probable failure modes, of reinforced concrete specimens 

with exposed flexural reinforcement. Based on these findings, two analytical approaches 

are developed to predict the longest length of flexural reinforcement that could be 

exposed that ensures a girder will still exhibit a ductile failure with no reduction in yield 

capacity. The Strain Compatibility Analysis derived by Harris was enhanced to involve 

realistic concrete stress-strain relationships and was validated experimentally using five 

4-metre T-section specimens subjected to simultaneous point and uniformly distributed 

loading. A Strut-and Tie Analysis was also derived for this generic loading condition that 

could only be indirectly validated experimentally. The ratios of the test failure load to the 

failure load predicted using the Strain Compatibility Analysis had a mean value of 1.00 

and a standard deviation of 0.068. 

 
Keywords: Bridges; Girder; Exposed Reinforcement; Assessment/Repair; Rehabilitation; 

Reinforced Concrete.   
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L*   gauge length of test bar samples 

b   length of bearing at support 
c    critical length of exposed flexural reinforcement 
e   critical distance from support to end of exposed length 
e L   critical distance from left support to end of exposed length 
end   distance from support to end of exposed length 
e R   critical distance from right support to end of exposed length 
exp    length of exposed flexural reinforcement 
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MD   dead load moment  
MG   fraction of total live load moment applied to one girder 
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MT   total moment 
Mcr   cracking moment 
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Greek Symbols 
α   normalized point load location from left support 
α1  ratio of the average stress in a rectangular compression block to the 

specified concrete compressive strength 
γc   mass density of concrete (assumed 2300 kg/m3) 
Δ   displacement reading in a reinforcement tensile test 
Δb   elongation of test bar sample  
Δby   elongation of test bar sample at yield  
Δcs   elongation of the concrete at the depth of the flexural reinforcement 
Δm   displacement of Tinius-Olsen Machine  
Δmid  midspan deflection of specimen 
Δmy  displacement attributed to the Tinius-Olsen Machine at yield of test bar 

sample 
Δs   elongation of exposed flexural reinforcement 
ΔT   change of tensile force in the flexural reinforcement 
Δx   segment length 
Δy   observed displacement reading at yield in a reinforcement tensile test 
εc   compressive strain in concrete at extreme fibre 
εcs  extrapolated strain in the concrete at the depth of the exposed flexural 

reinforcement 
εcu   maximum compressive strain  at extreme fibre  
εc'  strain corresponding to the maximum compressive stress in Todeschini’s 

concrete stress-strain relationship 
εc(x)   compressive strain in concrete at extreme fibre at centre of segment at x 
εs   tensile strain in the exposed flexural reinforcement 
εy   yield strain of steel 
θL  orientation of the principal compressive strains in the concrete web at the 

left support 
θR  orientation of the principal compressive strains in the concrete web at the 

right support 
θSTA  predicted orientation of the principal compressive strains / strut in the 

concrete web at the support using the Strut-and-tie Analysis (STA) 
θs   inclination of compressive strut at support 
θsL   inclination of the compressive strut at the left support 
θsR   inclination of the compressive strut at the right support 
ρ   flexural reinforcement ratio 
ω   simulated uniformly distributed point load 
ωDL   specified uniformly distributed dead load 
ωapp  simulated distributed point load due to the weight of the testing apparatus 
ωow   simulated distributed point load due to the self- weight of the specimen 
ωs   mechanical flexural reinforcement ratio  
ωy  target simulated distributed point load causing yield of flexural 

reinforcement 
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CHAPTER 1: 

1.1 

INTRODUCTION 

Reinforced concrete highway bridge girders are susceptible to deterioration caused 

primarily by corrosion of the reinforcing steel, as shown in 

BACKGROUND 

Figure 1-1. Concrete is 

alkaline in nature and, when placed, generally has a pH value between 12 and 13 

(Bertolini et al. 2004, Nehdi 2011, Minkarah and Ringo 1982). If the concrete is 

uncracked, a passive oxide film forms around the reinforcement that prevents the 

intrusion of moisture and oxygen (Bertolini et al. 2004, Nehdi 2011, Minkarah and Ringo 

1982). In this condition, the reinforcement is stable in a high pH solution that prevents 

the initiation of corrosion.  

 

Figure 1-1: Typical Deteriorated Reinforced Concrete Bridge Girders. 

 
The passive oxide film that forms around the reinforcement can begin to deteriorate 

either by intrusion of chloride ions into the concrete or by carbonation and is referred to 
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as the process of depassivation. Once the oxide film has completely deteriorated, the 

corrosion of the reinforcement is initiated. The volume of rust created can be six times 

that of the original steel (Nehdi 2011) and so can cause the concrete cover to crack, 

delaminate, and spall. The cracks are highlighted by brown rust stains, reflecting the 

pattern of the flexural reinforcement (Unterweger et al. 2009). When the delaminated 

section spalls, the concrete cover to the reinforcement is lost, further exposing the 

flexural reinforcement and initiating the next cycle of corrosion.  

1.1.1 Chloride Intrusion 

In Ontario, deicing salts are used on highways during the winter months to melt snow and 

ice (MTO 2008). These salts mix with snow and water to form a liquid brine that 

becomes an airborne spray due to traffic movement. When this spray comes into direct 

contact with the underside of the bridge, chloride ions penetrate the cracks, voids and 

surface pores of the concrete, lowering the pH (Bertolini et al. 2004). This dissolves the 

oxide film, exposing the flexural reinforcement to the moisture and oxygen necessary for 

corrosion to occur. This type of deterioration occurs at localized sections and causes 

cracking, visible rust stains, delamination, and spalling. The depth of contamination is 

typically greatest immediately above the travelled lanes (Bertolini et al. 2004, Nehdi 

2011). 

1.1.2 Carbonation 

The flexural reinforcement can also be corroded by the carbonation process, where 

atmospheric carbon dioxide, CO2, and moisture react with the concrete to gradually lower 

its pH (Nehdi 2011). Once the carbonation front reaches the depth of the flexural 
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reinforcement a process, similar to that for chloride intrusion, occurs. This type of 

deterioration is usually more uniform over the length of the girder causing flaking rust 

(Nehdi 2011). 

1.2 

Deteriorated reinforced concrete highway bridge girders are regularly repaired using the 

patch repair process, where the flexural reinforcement must be repassivated by removing 

the existing contaminated concrete and replacing it with new concrete (Nedhi 2010, 

Bertolini et al. 2004), temporarily exposing the flexural reinforcement, as shown in 

BRIDGE REHABILITATION TECHNIQUES 

Figure 1-2. The repair of a reinforced concrete girder is typically intended to ensure the 

structure achieves at least its original service life (Nehdi 2010). The three significant 

steps in the patch repair process are: 

 
1. Removal of all contaminated concrete. 

2. Preparation of the surface of the existing concrete including cleaning and 

application of a bonding agent. 

3. Placement of the repair concrete. 

 
The first step is most pertinent to the current study and so warrants further description. It 

involves removal of all, or a significant amount, of the existing contaminated concrete to 

expose a sound concrete substrate. This reduces the risk of further deterioration caused by 

contaminated concrete remaining after the repair (Guettala et al. 2006).  

 
The perimeter of each deteriorated area is first outlined by saw-cutting through the cover 

to the first layer of flexural reinforcement without damaging it. The deteriorated concrete 
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in contact with and between the reinforcing bars is then removed using a light pneumatic 

hammer (OPSS 1994). 

 

Figure 1-2: Patch Repair Process: (a) Removal of Contaminated Concrete (b) Concrete 
Replacement (MTO 2010). 

 
The remaining contaminated concrete is removed using a smaller chipping hammer, 

which is easier to operate and reduces the possibility of damaging the uncontaminated 

concrete substrate or the flexural reinforcement. For each deteriorated area, the removal 

is preformed to a minimum of 25 mm beyond the inner surface of the first layer of 

flexural reinforcement to ensure that there is sufficient space for the repair concrete to be 

consolidated around the flexural reinforcement and to create an adequate bond (Emmons 

et al. 2003). It has been independently established (Cairns and Zhao 1993) that a removal 

of concrete to a depth of at least 20 mm behind the flexural reinforcement will result in a 

durable repair with proper bond between the new material and the flexural reinforcement. 

(a) (b) 
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1.3 

While the cause of reinforcement corrosion has been exhaustively researched, the 

strength assessment of the girders with exposed flexural reinforcement has not been so 

thoroughly investigated (Eyre et al. 1992). Rehabilitation using the patch repair process 

causes the bond between the flexural reinforcement and concrete to be, at least 

temporarily, lost. Consequently the flexural capacity of the girder is uncertain because, 

while plane sections remain plane in the concrete at each cross section, the requirement 

for compatible strains in the flexural reinforcement and the adjacent concrete no longer 

holds, as shown in 

EVALUATION OF BRIDGE GIRDERS DURING REHABILITATION 

Figure 1-3 (Bartlett 1998, Cairns and Zhao 1993). The flexural 

capacity is not easily computed because the usual provisions for design, as specified in 

Section 8.8 of the Canadian Highway Bridge Design Code (CHBDC), CAN/CSA-S6-06 

(CSA 2006) are not applicable. Sections 14 and 15 of the CHBDC outline the procedures 

for the evaluation, rehabilitation and repair of existing bridges, but provide no guidance 

to assist practitioners evaluating the capacity of reinforced concrete girders with exposed 

flexural reinforcement. 

 

Figure 1-3: Compatible Strain Requirement: (a) Satisfied for Bonded Flexural 
Reinforcement, (b) Not Satisfied when Flexural Reinforcement is Exposed. 

 

(a) (b) 
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1.4 

The objective of the research reported in this thesis is to rectify the knowledge gap in the 

current code criteria for evaluating reinforced concrete highway girders with exposed 

flexural reinforcement. The research will provide an important tool to assist practicing 

engineers in evaluating these girders safety during rehabilitation.  

OBJECTIVES 

 
The specific objectives of this research are as follows: 

  
1. Examine thoroughly previous experimental and analytical investigations to 

determine the observed behaviour and possible failure modes of reinforced 

concrete beams with exposed flexural reinforcement. 

2. Develop analytical methods that can accurately predict the maximum capacity of 

reinforced concrete highway girders with a given length of exposed flexural 

reinforcement or determine the maximum length that can be exposed that does not 

cause a reduction of the flexural capacity.  

3. Conduct an experimental investigation of reinforced concrete T-section specimens 

with exposed flexural reinforcement to validate the analytical methods developed. 

1.5 

Chapter 2 presents a literature review of previous experimental and analytical 

investigations concerning reinforced concrete specimens with exposed flexural 

reinforcement. Chapter 3 presents two analytical approaches developed to analyze 

reinforced concrete bridge T-section girders with exposed flexural reinforcement: (1) 

Strain Compatibility Analysis (SCA), and (2) Strut-and-Tie Analysis (STA). Both 

OUTLINE OF THESIS 
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approaches can be used to predict the longest length of flexural reinforcement that can be 

exposed that ensures a girder will still exhibit a ductile failure with no reduction in yield 

capacity. Chapter 4 presents a description and the results of a new experimental 

investigation of five 4-metre reinforced concrete T-section specimens with exposed 

flexural reinforcement, that was undertaken to evaluate the accuracy of the analytical 

approaches developed in Chapter 3. Chapter 5 presents a comparison of these 

experimental results with the analytical predictions to assess their validity. Finally, 

Chapter 6 presents the summary, conclusions and recommendations for future research. 
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CHAPTER 2: 

2.1 

REVIEW OF LITERATURE 

A literature review is necessary before developing analytical approaches and conducting 

an experimental study. This chapter will therefore examine previous experimental 

investigations to extract: a summary of the test specimen geometries and loading 

configurations; the findings of the studies; and, a general description of the behaviour of 

specimens with exposed flexural reinforcement.  

INTRODUCTION 

2.2 

Since 1980, eight experimental investigations on the effect of exposed flexural 

reinforcement have been conducted. A total of 219 specimens of moderate scale have 

been tested, comprising either single- or two-point loading with spans ranging from 1500 

to 4000 mm. 

SCOPE OF EXPERIMENTAL INVESTIGATIONS 

Table 2-1 summarizes the seven distinct specimen configurations tested. 

Configurations 1 - 4 all involve specimens with two-point loading. For Configuration 1, 

the exposed flexural reinforcement is located within the constant moment region between 

the applied loads and so has negligible effect. The girder behaves essentially as an intact 

girder: there would be no “tension stiffening” between flexural cracks so it would be less 

stiff and exhibit slightly larger deflections at serviceability-level loads. For Configuration 

2, the exposed flexural reinforcement will impact the response because it extends beyond 

the central constant moment region. For Configuration 3, the exposed flexural 

reinforcement is located entirely in one of the constant shear regions. Tests using 

Configuration 3 have also been conducted with the flexural reinforcement exposed in 

both shear spans. Configuration 4 is similar to Configuration 3, but the flexural 
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reinforcement is exposed in only one half of the specimen in both the constant moment 

and constant shear regions. 

Table 2-1: Test Specimens and Loading Configurations Studied by Others. 

No. Specimen Configuration Dominant 
Failure Mode Authors 

1 
 

Flexure Cairns and Zhao (1993) 

2 
 

Flexure, 
Flexure/Shear 

Nokasteh et al. (1992), 
Cairns and Zhao (1993), 
Bartlett (1998), Cairns 

(1995), Xiong et al. (2000), 
Sharaf and Soudki (2002) 

3 
 

Shear Raoof and Lin (1993, 1995, 
1997), Cairns (1995) 

4 
 

Flexure, 
Flexure/Shear 

Raoof and Lin (1993, 1995, 
1997) 

5 
 

Flexure, Shear Minkarah and Ringo (1982) 

6 
 

Shear, Flexure Raoof and Lin (1993, 1995, 
1997) 

7 
 

Shear/Flexure, 
Flexure 

Raoof and Lin (1993, 1995, 
1997) 

 

Configurations 5 - 7 involve specimens subjected to single-point loading. For 

Configuration 5, the exposed flexural reinforcement is located symmetrically about the 



10 
 

 
 

centreline of the specimen and the point load is located outside of the exposed length. For 

Configuration 6, the exposed flexural reinforcement is located in the high shear region 

near the left support with the load applied beyond the exposed length, near midspan. 

Configuration 7 is similar, but with the point load applied within the exposed length. A 

full description of all the previous investigations is presented in Appendix A. 

 
Table 2-2 outlines the important parameters, shown in Figure 2-1, identified by past 

researchers as potentially influencing the behaviour of specimens with exposed flexural 

reinforcement. It also indentifies the studies where the experimental findings were 

supplemented by structural analysis. The following parameters are deemed to be 

important: 

 
1. Length of exposed flexural reinforcement, exp  

2. Area of tensile flexural reinforcement, As 

3. Depth of concrete removed, dc 

4. Compressive strength of concrete, fc', 

5. Yield strength of flexural reinforcement, fy 

6. Presence of nominal top reinforcement, As' 

7. Position of loading: location of load from left support, αL, for a single load or 

spacing, S, for symmetric two-point loads 

8. Distance from the support to the end of the exposed length, end  
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Figure 2-1: Elevation of Specimen with Exposed Flexural Reinforcement with Important 
Parameter Identified. 

 
Table 2-3 summarizes the specimen dimensions, material properties, and loading 

configurations investigated. In addition to the variables previously defined, it indicates: 

the number of specimens tested, N; span length, L; overall height, h, and flange 

thickness, hf; overall flange width, bf; web width, bw; effective depth of flexural 

reinforcement, d; stirrup arrangement, size and centre-to-centre spacing; and, specimen 

configuration. 

 
These summaries indicate that most previous experimental investigations involved 

rectangular reinforced concrete specimens and all used either single- or two-point 

loading. Concrete bridge girders typically feature a substantial top slab and resist 

substantial uniformly distributed dead loads, so the scope of these investigations are not 

realistic. Therefore an experimental investigation of T-section specimens loaded with 

some combination of a uniformly distributed dead load and a live load is necessary to 

more accurately represent the type of girder and applied loading seen in the field. 

 

 

αL S 

exp

 

end  

dc 
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Table 2-2: Parameters Investigated in Current Literature. 

Authors 

Length of 
Exposed 
Flexural  

Reinforcement 

Area of 
Tensile 

Flexural 
Reinforcement 

Depth of 
Concrete 
Removed 

Strength of 
Concrete and 

Reinforcement 

Presence 
of Top 

Nominal 
Steel 

Loading 
Position 

Location 
of 

Exposed 
Length 

Analysis 

Minkarah and Ringo 
(1982) X - X - - - -  

Nokhasteh, Eyre, and 
McLeish (1992) X X - - - - -  

Cairns and Zhao (1993) X X - X - X - X 
Raoof and Lin (1993, 

1995, 1997)         

Small - Scale Tests X - - - - X -  
Large - Scale Tests X X X - X X X  

Zhang and Raoof (1995) X - X X X - - X 
Nemec, Harris (1996) 

and Bartlett (1998) X - - - - - - X 

Cairns (1995) X - - - - X X X 
Xiong, Liu, and Xie 

(2000)         

Short Term Tests X - - - - - - - 
Long Term Tests - - - - - - - - 

Sharaf and Soudki 
(2002) X - - - - - - - 

 

12 
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Table 2-3: Details of Specimens with Exposed Flexural Reinforcement. 

Authors N L (mm) b (mm) 
(bw/b) 

h (mm) 
(hf/h) 

fc' 
(MPa) 

Bottom 
RFT  d (mm) As 

(mm2) 
fy 

(MPa) Stirrups α (mm) Config. # Note 

Minkarah and 
Ringo (1982) 40 2900 127 254 43.8 2-12.7mm 210 258 438 9.5mm @ 

102 c/c Varies 5  

Nokhasteh et al. 
(1992) 3 2000 130 200 Varies Varies 167 Varies 365 Present 0.424 2  

Cairns and Zhao 
(1993) 19 Varies Varies Varies Varies Varies Varies Varies Varies Varies Varies 1,2  

Raoof, and Lin, 
(1993, 1995, 

1997) 
             

Small - Scale 
Tests 44 1760 75 130 29 2-10mm 110 157.1 363 N/A Varies 6,7  

Large - Scale 
Tests 88 3000 150 300 Varies Varies 279 Varies 363 Varies Varies 3(a),4(a),6,7  

Nemec, Harris 
(1996) and 

Bartlett (1998) 
2 4000 200/800 90/400 40 2-25mm 342 1000 457 10 mm @ 

200 c/c 0.4 2 T-
Section 

Cairns (1995)              

Series A 3 3000 150/230 300 37 2-25mm 257 1000 524/509 6 mm @ 
200 c/c 0.265 2,4(b)  

Series B 3 3000 160/200 400 33 2-25mm 357 1000 509 6 mm @ 
275 c/c 0.365 2,4(b)  

Series C 4 3000 180/500 95/305 29.4 2-25mm 263 1000 543 8 mm @ 
185 c/c 0.265 2,4(b) T-

Section 
Xiong, Liu, and 

Xie (2000)              

Short Term Tests 4 1800 120 200 - 2-12mm 175 226.2 548.5 6 mm @ 
150 c/c 0.25 2  

Long Term Tests 4 1800 100 150 - 2-12mm 125 226.2 548.5 6 mm @ 
150 c/c 0.25 2  

Sharaf and Soudki 
(2002) 5 1500 100 150 38 1-15mm - 176.7 400 4 mm @ 50 

c/c 0.333 2  

13 
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2.3 

Marked differences in failure mode, flexural capacity, and crack patterns were observed 

between specimens with and without exposed flexural reinforcement that were otherwise 

identical. This section will synthesize the behaviour of specimens with exposed flexural 

reinforcement. Some previous researchers (e.g., Cairns and Zhao 1993, Harris 1996) 

developed analytical models to predict these behavioural changes. The influence of the 

important parameters previously identified is also summarized. 

FINDINGS OF PREVIOUS EXPERIMENTAL INVESTIGATIONS 

2.3.1 Observed Failure Modes 

For the seven unique configurations shown in Table 2-1, the five failure modes shown in 

Figure 2-2 were observed. Ranked by frequency of occurrence, they are as follows: 

 
1. Yielding of the exposed flexural reinforcement followed by crushing of the 

concrete on the compression face of the specimen 

2. Crushing of the concrete on the compression face of the specimen before yielding 

of the exposed flexural reinforcement  

3. Compression failure in the concrete at the ends of the exposed flexural 

reinforcement length 

4. Anchorage failure at one end of the exposed flexural reinforcement 

5. Shear failure 

 
The first two modes are the most predominant for flexural failures, while the remaining 

three are most predominant for shear-flexural failures. 
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Figure 2-2: Failure Modes Observed in the Previous Experimental Investigations. 

 
The specimens with exposed flexural reinforcement that would exhibit a ductile flexural 

failure if no reinforcement was exposed generally failed by one of failure modes 1 - 4 

(e.g., Minkarah and Ringo 1982, Cairns and Zhao 1993). Failure modes 3 and 4 occurred 

only when the end of the exposed length was close to the support.  The specimens that 

would have failed in shear, a brittle mode, if no reinforcement was exposed generally 

failed by failure modes 1, 2, 4, or 5 (Cairns 1995). 

2.3.2 Flexural Capacity 

Cairns and Zhao (1993) studied the change in flexural capacity of specimens that would 

exhibit a ductile failure if no reinforcement was exposed. Figure 2-3, redrawn from their 

paper, shows measured midspan concrete strain distributions, with tensile strains positive, 

at different depths from the extreme compression fibre for a specimen with a flexural 

reinforcement ratio, ρ, of 1.64% and exp  increasing from 0 to 63% of the 3000 mm span 

length. Exposure of the flexural reinforcement from zero to 1900 mm increased the 

extreme fibre compressive strain from -0.0008 to -0.0012, and reduced the neutral axis 

depth, c, from 120 mm to 80 mm. The associated curvatures increased by a factor of 2.25. 

They also tested 17 rectangular specimens with exp  ranging from 60 to 95% of the span 

length that exhibited a reduction in flexural capacity ranging from 1 to 48%. 

4 
2 5 3 

1 
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Figure 2-3: Change in Longitudinal Strains in Concrete Section on Exposure of Flexural 
Reinforcement (Redrawn from Cairns and Zhao 1993). 

 
Bartlett (1998), Harris (1996) and Nemec (1996) tested two 4000 mm long T-section 

specimens, one a control and the second a test specimen with 2000 mm of flexural 

reinforcement exposed symmetrically about the midspan. They observed that both the 

control and test specimens behaved in a linear elastic manner until the flexural 

reinforcement yielded, but the second specimen had only 81% of the stiffness of the 

control specimen. After the flexural reinforcement yielded, the load resisted by the 

control specimen continued to increase while that resisted by the other specimen 

gradually reduced before failure. 

 
The capacity of specimens with exposed flexural reinforcement that would have failed in 

shear if no reinforcement was exposed differed markedly. Cairns and Zhao (1993) 

observed that exposure of the flexural reinforcement does not always reduce the shear 

capacity. Four specimens with exposed flexural reinforcement that would have failed in 
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shear if the flexural reinforcement was fully bonded exhibited an increased shear capacity 

and failed in flexure. 

 
Cairns (1995) performed ten additional shear tests that confirmed that exposing the 

flexural reinforcement increased the shear capacity of specimens, in some cases by a 

substantial margin, for all but lightly-reinforced specimens. The failure loads of the test 

specimens were higher, typically between the calculated shear and flexural failure loads 

of the control specimens. 

 
All remaining researchers (e.g., Minkarah and Ringo 1982, Nokasteh et al. 1992, Raoof 

and Lin 1993, 1995, 1997, Xiong et al. 2000, and Sharaf and Soudki 2002) observed 

similar findings concerning the reduction of the flexural capacity of specimens with 

exposed flexural reinforcement.  

2.3.3 Cracking Patterns 

There is a wide consensus that exposing the flexural reinforcement substantially changes 

the crack patterns (Nokhasteh et al. 1992, Cairns and Zhao 1993, Xiong et al. 2000, 

Sharaf and Soudki 2002). As shown in Figure 2-4, the specimens with exposed flexural 

reinforcement typically had: 

 
1. Fewer, wider and larger spaced flexural cracks in the high moment region 

2. Greater flexural crack heights 

3. Bifurcation at the flexural crack tips  

4. No flexural cracks at the bottom face near the supports 
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5. Flexural cracks near the ends of the exposed length at the top (i.e., ‘compression’) 

face of the specimen. 

6. Bond-splitting cracks at the ends of the exposed flexural reinforcement. 

 
The cracks in specimens with exposed flexural reinforcement within the constant moment 

region were abrupt, appeared at very low loads, and as shown in Figure 2-4(b), had 

widths 25 times greater than those in control specimens. The large crack widths were 

attributed to the lack of bonded flexural reinforcement across the crack and the increased 

midspan curvature caused by exposing the flexural reinforcement (Cairns and Zhao 

1993). These cracks, once initiated, propagated immediately to the neutral axis, where 

they typically bifurcated, often propagating horizontally in opposite directions (Minkarah 

and Ringo 1982, Cairns and Zhao 1993). 

 

Figure 2-4: Contrast in Crack Patterns between: (a) Control Specimen and (b) Specimen 
with Exposed Flexural Reinforcement (Cairns and Zhao 1993). 

 
Specimens loaded to service load levels before exposing the flexural reinforcement 

displayed only minor changes of crack patterns. The cracks were not as wide at midspan 

because numerous narrow flexural cracks already existed before the flexural 

 

 

(a) 

(b) 
4 
 

3 

1 
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5 
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reinforcement was exposed.  The crack height at service load levels increased, due again 

to the reduced neutral axis depth, c, caused by exposing the flexural reinforcement. Crack 

widths in the shear span at service load levels reduced when the flexural reinforcement 

was exposed. These crack patterns suggest that exposing the flexural reinforcement may 

cause a strain reversal to occur towards the support, with compression on the bottom face 

of the specimen. 

 
In Cairns’ (1995) ten additional shear tests, the crack patterns changed considerably if the 

flexural reinforcement was exposed. Figure 2-5 shows the crack patterns for the control 

specimen and the two specimens with exposed flexural reinforcement. The control 

specimen exhibited typical shear cracks near the left support. The specimens with 

exposed flexural reinforcement displayed critical diagonal cracks that were steeper and 

located closer to the applied point loads. The specimen in Figure 2-5(b) experienced an 

anchorage failure, while the specimen in Figure 2-5(c) experienced a shear failure at a 

cross section closer to the applied load. These crack patterns suggest that exposing the 

flexural reinforcement causes the number of diagonal cracks to reduce, and their location 

to move towards the higher moment regions (Cairns 1995). 



20 
 

 
 

 

Figure 2-5: Crack Patterns of Specimens Designed to Exhibit a Shear Failure: (a) Control, 
(b) and (c) Specimens with Exposed Flexural Reinforcement (Cairns 1995). 

 
Raoof and Lin (1993, 1995, 1997) tested specimens with Configurations 3 and 4 and 

typically observed crack patterns shown in Figure 2-6. For either configuration, the crack 

patterns from midspan to the right support, where no flexural reinforcement was exposed, 

were similar to those that would be observed if no reinforcement was exposed: vertical 

flexural cracks at the midspan that gradually change to inclined shear cracks towards the 

right support. There were two subtle differences between the crack patterns for the two 

configurations. First, Configuration 4 (Figure 2-6(b)) exhibited more shear cracks near 

the right support, likely due to the higher applied shear in this region. Second, the large 

crack within the exposed length for Configuration 4 is located directly under the left 

applied point load, while no crack occurs at the end of the exposed length. For 

Configuration 3 (Figure 2-6(a)), where the left point load is located beyond the exposed 

length, the large crack is located directly at the right end of the exposed length and no 

cracks were observed within the exposed length. 

(a) 

(c) 

(b) 
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Figure 2-6: Loading and Cracking Patterns for (a) Specimen Configuration 3, and (b) 
Specimen Configuration 4 (Raoof and Lin 1997). 

 
Minkarah and Ringo (1982) observed different crack patterns for specimens with only the 

reinforcement cover removed and specimens with both the cover removed and the 

flexural bond lost, as shown in Figure 2-7. Removal of only the cover caused behaviour 

similar to that of the fully bonded control specimen, likely because bond is partially 

maintained to help control cracking. If both the cover and the flexural bond were lost, the 

height of the cracks under the point load increased, highlighting the local decrease in the 

neutral axis depth. A flexural crack was observed at the end of the exposed length and no 

flexural cracks were observed within the exposed length likely because the exposed 

flexural reinforcement could not transfer any of the stress at this crack to the concrete in 

the exposed length. Flexural cracks reappeared to the right of the exposed length likely 

because the flexural bond was present again. 

 

Figure 2-7: Crack Patterns Observed with: (a) Loss of Cover Only, and (b) Loss of Cover 
and Flexural Bond (Minkarah and Ringo 1982). 

 

(a) 

(a) (b) 

(b) 
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2.3.4 Effective Depth of the Flexural Reinforcement 

Previous researchers (e.g., Nemec 1996, Cairns and Zhao 1993) observed that as the 

specimens deflected during testing, the gap between the bottom of the concrete web and 

the exposed flexural reinforcement reduced until the two came into contact. This reduces 

the effective depth of the flexural reinforcement, d, and so reduces the flexural capacity.  

2.4 

Reinforced concrete girders are normally designed to exhibit ductile flexural failures 

initiated by yielding of the flexural reinforcement followed by crushing of the concrete 

(e.g., MacGregor and Bartlett 2000). This “under-reinforced” condition is preferable to 

ensure warning of the imminent failure. If the girder is “over-reinforced”, the concrete 

crushes before the flexural reinforcement yields and the failure occurs suddenly, without 

visible warning. When the flexural reinforcement yields and the concrete crushes 

simultaneously, failure is referred to as “balanced”. The response of deteriorated 

reinforced concrete girders during the repair process must be analyzed because, during 

the interval when the flexural reinforcement is exposed, the flexural failure mode can 

transition from under- to over-reinforced (Cairns and Zhao 1993). 

ANALYTICAL MODEL FOR GIRDERS WITH EXPOSED FLEXURAL REINFORCEMENT 

 
The loss of the steel-concrete bond over portions of a girder causes plane sections to still 

remain plane in the concrete but invalidates the requirement of compatible strains in the 

flexural reinforcement and the adjacent concrete (Bartlett 1998, Cairns and Zhao 1993, 

Harris 1996, Zhang and Raoof 1995, Cairns 1995). The girder will act more like a tied 

arch if the ends of the flexural reinforcement remain anchored in the concrete (Bartlett 
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1998) resulting in a redistribution of stresses and strains that is unlikely to have been 

considered in the original design.  

 
Cairns and Zhao (1993) present a qualitative description of the structural behaviour of 

girders that exhibit a ductile failure if no reinforcement is exposed when concrete is 

removed. After flexural cracking, if the concrete compressive response is linear-elastic, 

horizontal force equilibrium requires that:  

[2.1]                          s s c
cA f  + f b  = 0
2

 

where fs is the tensile stress in flexural reinforcement (negative if tension), and fc is the 

concrete compressive stress in extreme fibre. 

 
Moment equilibrium requires that: 

[2.2]                    s sM = A f jd  

where M is the applied bending moment, and jd is the lever arm between the internal 

tensile and compressive force resultants, equal to d – (c/3). 

 
The new compatibility requirement is that the longitudinal deformations of concrete and 

the flexural reinforcement must be compatible at the ends of the exposed flexural 

reinforcement length, exp : 

[2.3]           
exp exp

s csε d  - ε d  = 0∫ ∫
 

 
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where εs is the tensile strain in exposed flexural reinforcement (negative if tension) and 

εcs is the extrapolated strain in the concrete at the depth of the exposed flexural 

reinforcement, computed assuming plane sections remain plane. 

 
Before concrete is removed, the girder acts as a simple beam, as shown in Figure 2-8. 

The neutral axis depth, c, and the lever arm, jd, between the tensile force in the flexural 

reinforcement and the compressive force in the concrete are both approximately constant 

over the length of the girder. The necessary assumption is that perfect bond exists 

between the flexural reinforcement and the concrete so the strains in the flexural 

reinforcement and in the concrete at the depth of the flexural reinforcement are equal, 

Eqn. [2.3].  

 
If exp  extends beyond the constant moment region of a girder subjected to symmetric 

four-point loading, Eqn. [2.3] is not automatically satisfied because the applied bending 

moment reduces in the constant-shear region between each loading point and the adjacent 

support, but εs must remain constant where the flexural reinforcement is exposed. The 

compatibility requirement can be written as: 

[2.4]                
exp

s exp csε  - ε d  = 0∫


   

To satisfy Eqn. [2.2], the lever arm, jd, must reduce at cross sections close to the 

supports, requiring an increase in the neutral axis depth, c, as shown in Figure 2-9, and so 

reducing the concrete compressive strain at the extreme compression fibre, εc. In this 

region, the neutral axis moves below the soffit of the girder and the concrete cross section 
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becomes fully stressed in compression. If exp  is long, the neutral axis then reappears 

above the cross section and moves downwards as the distance to the support reduces. The 

stresses in the concrete in this region have the opposite sense of those at midspan, with 

tension above the neutral axis and compression below it. 

 

 

Figure 2-8: Location of the Neutral Axis Depth, c, for a Girder with no Flexural 
Reinforcement Exposed (Redrawn from Cairns and Zhao 1993). 

 

 

Figure 2-9: Location of the Neutral Axis Depth, c, for a Girder with Exposed Flexural 
Reinforcement (Redrawn from Cairns and Zhao 1993). 

 
To satisfy the compatibility condition, Eqn. [2.4], the neutral axis depth at midspan must 

be reduced (Cairns 1995), as shown in Figure 2-10, to create large tensile strains in the 

concrete at the depth of the exposed flexural reinforcement. The associated increased 

curvature and extreme fibre concrete compressive strain can cause crushing of the 

concrete before the exposed flexural reinforcement yields. 
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Figure 2-10: Location of the Neutral Axis Depth, c, for a Girder with Exposed Flexural 
Reinforcement to Maintain Compatibility, Eqn. [2.4] (Redrawn from Cairns and Zhao 

1993). 

 
Tests of a reinforced concrete T-section specimen with exposed flexural reinforcement 

(Bartlett 1998, Harris 1996) displayed a similar response to that described by Cairns and 

Zhao (1993). The neutral axis location varied along the length of the specimen as shown 

in Figure 2-11, resulting in high curvatures and large extreme fibre compressive strains in 

the concrete at midspan. Failure was initiated by the tensile steel yielding, but the 

ductility at failure was limited by a local crushing failure across the width of the 

compression flange. 

 

 

Figure 2-11: Neutral Axis Depth, c, Variation Along Length of Test Specimen with 
Exposed Flexural Reinforcement (Bartlett 1998). 

 
Raoof and Lin (1993, 1995, 1997) tested specimens with Configurations 3 and 4. They 

observed similar responses as reported by Cairns and Zhao (1993) and Bartlett (1998). 
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Using the profiles of concrete strain distribution measured along the top and bottom 

surfaces of the specimen for applied loads of 20, 40, and 60 kN (Raoof and Lin 1997), the 

neutral axis depth, c, was determined. Figure 2-12 show the neutral axis location for 

Configurations 3 and 4. Near the right support of the test specimens, where no 

reinforcement was exposed, the neutral axis depth is fairly constant. Near the left support, 

at the end of the exposed flexural reinforcement, the neutral axis depth, c, increases and 

moves below the soffit of the test specimen. Within the exposed length, the neutral axis 

reappears above the test specimen and increases with a strain reversal with tensile strain 

(positive) at the top and compressive (negative) at the bottom. 

 

 

Figure 2-12: Loading and Variation of the Neutral Axis Depth for Specimens: (a) 
Configuration 3 and, (a) Configuration 4 (Redrawn from Raoof and Lin 1997). 
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This qualitative description can also be described as a transition of the behaviour from 

beam action to arching action (e.g., MacGregor and Bartlett 2000). In a reinforced 

concrete girder, shear can be carried by a combination of beam and arching action: 

[2.5]         dM d(Tjd) d(jd) d(jd)V =  =  = T  + jd
dx dx dx dx

 

where V is the applied shear force, T is the tensile force in the flexural reinforcement, and 

x is the distance along the longitudinal axis of the girder. 

 
When the flexural reinforcement is fully bonded to the concrete, the applied shear is 

resisted entirely by beam action. The resultant compressive, C, and tensile forces are 

therefore separated by a constant lever arm, jd, and so reduce as the moment reduces, as 

shown in Figure 2-13:   

[2.6]       d(jd) d(T) = 0 and V = jd
dx dx

 

 

Figure 2-13: Beam Action with Constant Lever Arm if Flexural Reinforcement is Fully 
Bonded. 
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If the flexural reinforcement is exposed, eliminating bond, the applied shear must be 

resisted entirely by arching action where the tensile force is constant and the lever arm, 

jd, must vary to satisfy the moment equilibrium over the exposed length, exp : 

[2.7]          d(T) d(jd) = 0 and V = T
dx dx

 

The lever arm, jd, reduces and an inclined concrete thrust line, or compressive strut, 

forms between the support reaction and the load point, as shown in Figure 2-14. The 

flexural stress reversal near the support, i.e., with the top fibre in tension, is consistent 

with the formation of this strut. The ends of long exposed lengths can encroach on the 

inclined compressive strut near the support, significantly limiting its area and so reducing 

its capacity. 

 

Figure 2-14: Arching Action with Varying Lever Arm if Flexural Reinforcement is 
Exposed. 

 
For specimens that exhibit a shear failure if no reinforcement is exposed, the increased 

shear capacity observed when the flexural reinforcement is exposed cannot be currently 

explained. Girders are normally designed to ensure that the shear capacity is greater than 

the flexural capacity so the girder will fail in a ductile flexural mode instead of a brittle 

shear mode (MacGregor and Bartlett 2000). The shear capacity of girders with exposed 
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flexural reinforcement is therefore also important. Conventionally (e.g., Cairns 1995), the 

shear capacity is attributed to:  

 
1. Concrete in the compression zone resisting shear 

2. Aggregate interlock 

3. Dowel action of flexural reinforcement 

4. Transverse reinforcement, typically stirrups 

 
If flexural reinforcement is exposed in a region subjected to shear, any dowel action is 

lost and the contribution of the stirrups is reduced if their bottom corner anchorages are 

exposed (Cairns 1995). 

 
In light of the findings by Cairns (1995) and the consideration that bridge girders are 

normally designed to fail in a ductile flexural mode, the shear capacity of specimens with 

exposed flexural reinforcement will not be investigated in the current study.  

 
In general, for a girder with given geometric and material properties, there exists a critical 

length of exposed flexural reinforcement, c , where the failure transitions from ductile to 

brittle. At this transition point, the flexural reinforcement will yield and the concrete will 

simultaneously crush, with little reduction in flexural capacity attributable to exposing the 

flexural reinforcement. As exp  approaches c , the flexural reinforcement strain at failure 

gradually reduces, but the girder will achieve its flexural yield capacity. Once exp  

exceeds c , the flexural reinforcement will not yield, the girder will exhibit a brittle 

failure, and the flexural capacity will reduce, sometimes substantially (Minkarah and 
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Ringo 1982, Nokhasteh et al. 1992, Cairns and Zhao 1993, Raoof and Lin 1997, Xiong et 

al. 2000, Sharaf and Soudki 2002). 

 
Based on these considerations, there are currently three different analytical models for 

predicting the flexural capacity of reinforced concrete specimens with exposed flexural 

reinforcement, based on Eqns. [2.1] to [2.4]. Cairns and Zhao (1993) and Zhang and 

Raoof (1995) independently developed two unique models for rectangular reinforced 

concrete sections that accurately predicted the reduction in flexural capacity for the 17 

specimens investigated by Cairns and Zhao (1993). Both models are only applicable to 

rectangular sections, and Cairns and Zhao (1993) do not present their model in detail. 

Harris (1996) developed an analysis for T-section beams with exposed flexural 

reinforcement that displayed a similar response to that observed by Cairns and Zhao 

(1993) and accurately predicted the flexural capacity of the one specimen investigated. 

The limitation of this model is that a linear compressive stress-strain relationship for the 

concrete is assumed, even in the high stress regions. 

2.5 

The influence of the various important parameters on the behaviour of specimens with 

exposed flexural reinforcement has been extensively investigated in the previous studies. 

This section summarizes the influence of the various parameters for each configuration 

investigated. Three of the parameters have been deemed to be particularly important: the 

length of exposed flexural reinforcement, 

INFLUENCE OF THE IMPORTANT PARAMETERS 

exp , the position and type of loading, αL, and 

the distance from the support to the end of the exposed length, end . These are the only 
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parameters that can be controlled during the rehabilitation of an existing reinforced 

concrete bridge girder.   

2.5.1 Configuration 2 

The flexural capacity and behaviour of Configuration 2 specimens with exposed flexural 

reinforcement are significantly influenced by exp . In the small-scale tests by Nokhasteh, 

Eyre and McLeish (1992), two otherwise identical specimens, with flexural 

reinforcement exposed over 25% and 85% of the 2000 mm span, were tested to failure. 

The specimen with the lesser exp  behaved as though no reinforcement had been 

exposed, showed no reduction in flexural capacity, and exhibited a ductile failure. The 

specimen with the longer exp  experienced a less ductile failure with a reduction in 

capacity of 6%. Therefore, the critical exposed length of flexural reinforcement, c , for 

this flexural reinforcement ratio, 0.93%, lies between 25 and 85% of the span length. 

 
Nokhasteh, Eyre and McLeish (1992) and Cairns and Zhao (1993) investigated the 

combined effects of the flexural reinforcement ratio, ρ, the concrete compressive 

strength, fc', and the flexural reinforcement yield strength, fy, on the behaviour of test 

specimens with exposed flexural reinforcement. The mechanical reinforcement ratio, ωs, 

is a dimensionless parameter that depends on these three variables: 

[2.8]          s y
s '

c

A f
f bd

ω =  

A girder with no exposed reinforcement will exhibit a ductile, balanced, or brittle flexural 

failure if ωs ≲ 0.3, ≈ 0.3 or ≳ 0.3, respectively (e.g. Bartlett 1982). Nokhasteh, Eyre and 
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McLeish (1992) tested two specimens with flexural reinforcement exposed over 85% of 

the span. Both exhibited brittle failures and the capacity reduced 26% as ωs increased 

from 0.092 to 0.226. Cairns and Zhao (1993) reported that residual capacity reduces as ωs 

increases, particularly for specimens with relatively long exp  as shown in Figure 2-15, 

redrawn from their paper. In particular, three specimens with flexural reinforcement 

exposed over approximately 95% of the span, corresponding to exp /d ranging from 

12.75 to 14.3, displayed a 14% capacity reduction for ωs = 0.037 and a 45% reduction for 

ωs = 0.088. They concluded that c  will be longer for lightly reinforced specimens and 

that the flexural capacity is more likely to be reduced in a heavily reinforced section. 

 

 

Figure 2-15: Reduction in Ultimate Capacity in Specimens with Exposed Flexural 
Reinforcement: Test Results (Redrawn from Cairns and Zhao 1993). 
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readily visualized. Eqn. [2.1] indicates that, for a given flexural reinforcement ratio 

As/bd, a reduction of fc' must cause a reduction in the flexural reinforcement stress, fs, and 

corresponding strain, εs, to satisfy equilibrium. Similarly, increasing fy, or flexural 

reinforcement yield strain, εy, requires an increase in the concrete strain, εc to satisfy 

equilibrium. In either case, once exp  reaches c  causing εs to reduce below εy, there must 

be a reduction in the flexural capacity to satisfy Eqn. [2.2]. This implies that a reduction 

in fc', or an increase in fy, will result in c  decreasing and vice versa. 

 
Cairns and Zhao (1993) also highlighted the importance of the applied load spacing, S, on 

the extreme compressive strains of the test specimen, as shown in Figure 2-16. They 

concluded that as S increased, the extreme compressive strains and corresponding 

midspan curvatures, for the same midspan moment decreased while still remaining in the 

linear elastic range of concrete response in compression. By increasing S, the length of 

the constant shear regions where reinforcement is exposed is reduced, so the effect of the 

exposed flexural reinforcement on the concrete compressive strains is reduced and the 

associated c  increases. Conversely, when S is decreased, reducing the length of the 

constant moment zone, c  decreases.  
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Figure 2-16: Variation in Extreme Compressive Strain in Concrete with Length of 
Exposed Flexural Reinforcement at a Given Applied Moment for Different Load 

Spacings (Redrawn from Cairns and Zhao 1993). 

 
Cairns and Zhao (1993) developed a numerical model, based on Eqns. [2.1] to [2.3], that 

accurately predicted their test results. As shown in Figure 2-17, it predicts no reduction in 

capacity or flexural reinforcement strain when exp  is contained within the constant 

moment zone, 20% of the span length for the case shown. However, when exp  extends 

past the constant moment region, εs at failure gradually reduces to εy, approximately 

0.0023 when exp /L ≈ 0.40. This corresponds to the behavioural change from under-

reinforced to balanced responses and so is the critical exposed length, c .  
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Figure 2-17: Influence of Span/Depth Ratio on Behaviour using the Numerical Model 
(Redrawn from Cairns and Zhao 1993). 
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specimens with exposed flexural reinforcement, as shown in Figure 2-18. The observed 

capacity was insensitive to the area of the top nominal reinforcement (Raoof and Lin 

1997). Effects due to the absence of nominal top reinforcement and stirrups will not be 

considered in the current study because these features are typically present in reinforced 

concrete bridge girders. 

 

 

Figure 2-18: Variation of the Reduction in Capacity with Changes in the Distance from 
the Left Support to the Left Two Point Load (Raoof and Lin 1997). 
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negligible reduction of flexural capacity. This confirms the concept of a critical exposed 

length of flexural reinforcement, c . For specimens with longer exposed flexural 

reinforcement lengths, exp , a reduction in flexural capacity with a brittle shear-

compression failure of the concrete occurring directly below the point load was observed. 

The greater exp  the greater the observed reduction in capacity with the greatest reduction 

being 21% when exp /L = 63%.  

2.5.4 Configurations 6 and 7 

Raoof and Lin (1993, 1995, 1997) also investigated the behaviour of a simply supported 

specimens with Configurations 6 and 7 using both small- and large-scale test specimens. 

They examined the influence of exp  and As on the behaviour and capacity of the test 

specimens, obtaining similar findings as others had observed for other loading 

configurations (i.e., Cairns and Zhao 1993, Nokhasteh et al. 1992). Increasing either exp  

or As caused a greater reduction in capacity.  

 
In the same tests, Raoof and Lin (1993, 1995, 1997) investigated the influence of the 

normalized loading position from the left support, α, the distance from the support to the 

end of the exposed flexural reinforcement length, end , and the depth of concrete 

removed, dc, on the behaviour of specimens with flexural reinforcement ratios of 1.6% 

for the small-scale tests and 0.75% for the large scale-tests. Their results are consistent 

with the behaviour of the inclined compressive strut previously described in the 

discussion of Figure 2-14. As α increases, the inclination of the compressive strut 

decreases, its location above the end of the exposed length reduces and its failure in 
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compression is possible. If the applied load is located closer to the end support, the 

inclined compressive strut will be more vertical and so less likely to intersect the end of 

the exposed length. If the point load is not located over the exposed length because α is 

small, the length of specimen between the support and the load behaves as a bonded 

flexural member. For Raoof and Lin’s small-scale test specimens, the capacity reduced as 

α increased from approximately 0.12 to 0.4, with a maximum reduction in capacity of 

50% and 20% when α = 0.4, as shown in Figure 2-19. For greater values of α, the 

capacities increased as shown. A similar result was observed in their large-scale test 

specimens with the maximum capacity reduction of 25% when α = 0.4. 

 

 

Figure 2-19: Variation of the Reduction in Capacity with Changes in the Position of the 
Single-point Load: Small-scale Specimens, L = 1760 mm (Redrawn from Raoof and Lin 

1997). 
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Similarly, for a given inclination and location of the compressive strut, increasing exp   

and so reducing the distance from the support to the exposed end, end , causes the end of 

the exposed length to encroach on the inclined compressive strut and could cause  failure. 

Raoof and Lin (1993, 1995, 1997) examined the importance of end  on the capacity of 

the test specimens in their large-scale tests. For an exposed length,  

exp , of 900 mm (i.e., 0.3L) and a normalized point load location, α, of 0.3 there was a 10 

% decrease in capacity when end  was reduced from 1200 mm to 100 mm.   

 
Similarly, when the depth of concrete removed, dc, increases, the distance between the 

end of the exposed length and the inclined compressive strut decreases until the two 

intersect and a compression failure of the strut occurs. Raoof and Lin (1993, 1995, 1997) 

investigated this effect while keeping all other parameters constant. There is no 

significant reduction in capacity when the concrete is removed slightly beyond the 

flexural reinforcement. Greater reductions in capacity were observed when the depth of 

concrete removed was greater than approximately 13% of the full depth of the specimen, 

depending on exp  (Raoof and Lin 1997). Current Canadian practices require the concrete 

to be removed to a clear depth of 25 mm behind the flexural reinforcement and therefore 

large dc values will not be considered in this current study. 

2.6 

Previous researchers tested, and developed models for, reinforced concrete specimens 

with exposed flexural reinforcement subjected to only single- and two-point loading. 

Seven unique combinations of specimen geometry and load location were investigated. 

Observed differences in the failure mode, flexural capacity, and crack patterns were 

SUMMARY AND CONCLUSIONS 



41 
 

 
 

attributed to exposing the flexural reinforcement. The following five distinct failure 

modes were observed: 

 
1. Yielding of the exposed flexural reinforcement followed by crushing of the 

concrete on the compression face of the specimen 

2. Crushing of the concrete on the compression face of the specimen before yielding 

of the exposed tensile flexural reinforcement  

3. Compression failure in the concrete at the ends of the exposed flexural 

reinforcement length 

4. Anchorage failure between one end of the exposed flexural reinforcement and the 

adjacent support 

5. Shear failure 

 
It can be concluded from this literature review that: 

 
1. A reinforced concrete girder with exposed flexural reinforcement and given 

dimensional and material properties can exhibit a ductile failure with no reduction 

in yield capacity if failure modes 2 - 4 are avoided. The longest exposed length 

that satisfies this requirement has been defined as the critical length of exposed 

flexural reinforcement, c .  

2. A reinforced concrete girder with exposed flexural reinforcement, that would 

exhibit a brittle shear failure if the reinforcement was not exposed, can have 

increased shear capacity. Further investigation of shear-critical members will not 

be carried out in the current study because bridge girders are normally designed to 
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fail in a ductile flexural mode and the limited experimental work shows exposing 

the flexural reinforcement increases the shear capacity. 

3. All specimens investigated were subjected to only single- and two-point loading 

and few specimens were a T-section. Therefore an experimental investigation 

involving T-section specimens loaded with a combined uniformly distributed 

dead load and live load is necessary to more accurately represent the type of 

girder and applied loading seen in the field. 

4. Closure of the gap between the bottom of the concrete web and the exposed 

flexural reinforcement causes reduction of the effective flexural reinforcement 

depth and so reduction of the flexural capacity.  

5. Of the various parameters previously identified to be important and extensively 

studied, the following three are deemed worthy of further investigation because 

they can be controlled during the rehabilitation process: the length of exposed 

flexural reinforcement, exp ; the position and type of loading, αL; and, the 

distance from the support to the end of the exposed length, end . 
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CHAPTER 3: ANALYSIS OF GIRDERS WITH EXPOSED 
FLEXURAL REINFORCEMENT 

3.1 INTRODUCTION 

It was concluded from the literature review presented in Chapter 2 that a girder can 

exhibit a ductile failure with no reduction in yield capacity (e.g., Cairns and Zhao 1993) 

if the following three conditions are satisfied: 

 
1. The flexural reinforcement yields in tension before the concrete crushes in 

compression; 

2. A concrete compression failure does not occur at the ends of the length of 

exposed flexural reinforcement; and, 

3. The bond between each end of the exposed region and the adjacent support is 

sufficient. 

 
The longest exposed length that satisfies all three conditions has been defined as the 

critical length of exposed flexural reinforcement, c .  

 
Two analytical approaches will be presented in this chapter: (1) Strain Compatibility 

Analysis (SCA), and (2) Strut-and-Tie Analysis (STA). Both satisfy horizontal force and 

moment equilibrium, Eqns. [2.1] and [2.2], respectively. The Strain Compatibility 

Analysis also satisfies strain compatibility, Eqn. [2.4] and has the capability to predict the 

stress and strain distributions at all cross sections for all applied load levels. The Strut-

and-Tie Analysis is based on the lower bound theorem of plasticity: it has less stringent 
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compatibility requirements and therefore is only appropriate to predict the behaviour at 

the ultimate limit state (ULS). 

 
The information presented in this chapter assists practitioners by developing these 

analyses for the cases where steel yield in tension precedes concrete crushing and no 

concrete failure occurs at the ends of the exposed flexural reinforcement, i.e., Conditions 

1 and 2. Chapter 4 will present an experimental investigation to validate the use of these 

analyses for determining c . 

3.2 TYPICAL T-SECTION 

The literature review presented in Chapter 2 indicated that most previous experimental 

investigations involved specimens with rectangular cross sections and all used either 

single- or two-point loading. Concrete bridge girders typically feature a substantial top 

slab and resist substantial uniformly distributed dead loads, so these experimental results 

are not representative. An experimental investigation of T-section specimens loaded with 

a combination of a uniformly distributed dead load and a point load would more 

accurately represent the type of girder and applied loading seen in the field.  The cross-

section of a typical T-section that will be used for developing the two analyses, and the 

symbols used to define its geometry, is shown in Figure 3-1. These dimensional variables 

are: overall height, h; flange width, bf; flange thickness, hf; web width, bw; reduced web 

height where concrete is removed, hw; effective depth of flexural reinforcement, d; area 

of flexural reinforcement, As; and, depth of concrete removed, dc. 
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Figure 3-1: Typical T-section Cross-section. 

 
3.3 STRAIN COMPATIBILITY ANALYSIS 

Condition 1 addresses the most predominant failure mode observed in previous 

experimental investigations (e.g., Cairns and Zhao 1993): crushing of the concrete on the 

compression face of the specimen before the exposed flexural reinforcement yields in 

tension. It has been previously observed (Harris 1996) that a strut-and-tie model, though 

simple to develop and analyze, does not accurately describe the general behaviour of a 

specimen with exposed flexural reinforcement for this particular failure mode when the 

steel yields before the concrete crushes. Cairns and Zhao (1993) and Harris (1996) 

developed strain compatibility analyses using Eqns. [2.1], [2.2] and [2.4] representing 

horizontal force equilibrium, moment equilibrium and compatibility of the elongation of 

flexural reinforcement and concrete between the ends of the exposed region to determine 

the flexural capacity of beams with a given length of exposed flexural reinforcement, 

exp . 

bf

As

d
hw 

h 

hf 

dc 

bw
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Cairns and Zhao (1993) do not present their numerical model or the equations for the 

neutral axis depth in detail. Also, their analysis only considered rectangular sections, 

whereas a typical reinforced concrete bridge girder is a T-section. Therefore Harris 

(1996) developed a detailed analysis from first principles for T-sections. His analysis 

assumed that the concrete had a linear stress-strain relationship in compression, zero 

tensile strength, and, plane sections remained plane in the concrete section.  

3.3.1 Methodology 

Eqns. [2.1], [2.2] and [2.4] were used as the basis for the Strain Compatibility Analysis 

(SCA) to predict the critical length of exposed flexural reinforcement, c . The analysis is 

an incremental procedure, as shown in Figure 3-2, consisting of incrementally increasing 

the length of exposed flexural reinforcement, exp , for a girder subjected to a given 

loading configuration until the horizontal force equilibrium, moment equilibrium and 

strain compatibility requirements are exactly satisfied. Harris (1996) started his analysis 

from the same fundamental principles but his resulting equations cannot be derived 

analytically. 

 
The cross-section, material properties (i.e., concrete strength, fc' and steel yield strength, 

fy), spans, and loadings of the girder must first be defined. The bending moment 

distribution along the length of the girder, M(x), is then computed, including the 

magnitude and location of the maximum applied moment, Mmax. In this Strain 

Compatibility Analysis, the exposed flexural reinforcement is assumed to yield at the 

location of Mmax. 
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Force from N.A., y(x) (mm) 

Compute Stress in Extreme 
Compression Fibre, fc(x) (MPa) 

Eq. [3.4] 
or [3.5] 

= 0 
Increase c(x)
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Figure 3-2: Flow Chart Depicting the Incremental Procedure of the Strain Compatibility 
Analysis (SCA). 
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The girder is then divided into small segments, of length, Δx, located at varying distances 

x from the left support. Starting from the segments located adjacent to the location of 

Mmax, the first iteration, i = 1, is performed. Based on the iteration number, i, the number 

of segments, n, is computed using the equation: 

[3.1]       n = (2i - 1)  

 
The length of exposed flexural reinforcement, exp , is computed by multiplying the 

number of segments, n, by the segment length, Δx: 

[3.2]        exp x = nΔ  

 
At each segment location, x, the bending moment at the centre of the segment, M(x), is 

determined. Rearranging Eqn. [2.2], to satisfy moment equilibrium, the corresponding 

lever arm at each segment, jd(x), is computed as: 

[3.3]                   
s y

M(x) M(x)
jd(x) =  = 

A f T
 

 
The neutral axis depth from the extreme concrete compression fibre, c(x), must be 

computed for each segment. For the specific T-section shown in Figure 3-1, six unique 

cases are possible that need to be considered when performing this analysis: either 

positive or negative curvature with the neutral axis in the flange, Cases 1 and 5, the web, 

Cases 2 and 6, or off the section, Cases 3 and 4, as shown in Figure 3-3. For positive 

curvature, Cases 1 to 3, the zone above the neutral axis is in compression and vice versa 

for Cases 4 to 6. The computation of c(x) requires equations for the depth of the centroid 

of the resultant compressive force from the neutral axis, y(x), the resultant compressive 
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force in the concrete, C(x), and the stress in the extreme compression fibre, fc(x), for 

these six cases. These are presented in Table 3-1. Setting C(x) equal to the tensile force in 

the flexural reinforcement, T, yields a rapid solution for fc(x). The complete derivation of 

these equations is presented in Appendix B. 

 
Using these equations, an iterative procedure was developed to compute c(x). Starting 

with the first case, Z = 1, a value of c(x) is assumed and the respective y(x) is computed. 

The geometric requirement of the internal forces shown in Figure 3-3 is, for the positive 

curvature cases: 

[3.4]          c(x) = d - jd(x) + y(x)  

 
and for the negative curvature cases: 
 

[3.5]             w fc(x) = h + h  - d + jd(x) + y(x)  

 
The value of c(x) is repeatedly adjusted until the equalities given by Eqns. [3.4] or [3.5] 

are satisfied. 

 
Once c(x) is determined, its location is checked for consistency with the case assumed. If 

the assumed case is correct, the respective fc(x) is computed, otherwise c(x) is 

recomputed for the next case. For example, the equations for Case 1 are used until c(x) is 

located at the flange-to-web interface, when the equations for Case 2 become relevant. 

This procedure is repeated for all remaining cases at the transition zones specified in the 

“range” column of Table 3-1. 
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Positive (+ve) Curvature: 

 

Negative (-ve) Curvature: 

 

Figure 3-3: Neutral Axis Depth, Strain Distribution, Stress Distribution and Internal Forces for both the Positive (+ve) and Negative  
(-ve) Curvatures. 
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Table 3-1: Summary of the Magnitude and Location of the Concrete Compressive Force for each Case (Compression Zone Shaded). 

Case Range Internal Compressive Force, C(x) Centroid of Compressive Force, y(x) 

 

0 ≤ c(x) ≤ 
hf 

c
f

f
b c

2
 

2
c

3
 

 

hf ≤ c(x) ≤ 
hw 

2
c f w f

f

f b c b h
1 - 1 - 1 - 

2 b c

   
   

    
 

3
w f

f

2
w f

f

b h
2c 1 - 1 - 1 - 

b c

b h
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b c

   
   
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   
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The linear stress-strain compressive relationship for the concrete, as used by Harris 

(1996), is unrealistic for Cases 1 and 6 due to the high stresses and strains present at the 

extreme compression fibre. Therefore the compressive stress-strain relationship for 

concrete developed by Todeschini (1964) outlined in MacGregor and Bartlett (2000) was 

used for these cases. Todeschini postulated that the concrete stress, fc, at a given strain, 

εc, may be computed as: 

[3.6]             c c c
c 2

c c

2f "(ε /ε ')
f  = 

1 + (ε /ε ')
 

 
In Eqn. [3.6], fc'' is the maximum compressive stress, occurring at a strain εc', and is 

usually taken to be 0.9fc' (MacGregor and Bartlett 2000) to give results similar to those 

obtained using the rectangular stress block when the maximum extreme compression 

fibre strain, εcu, equals 0.0035 (CSA 2006).  

 
The strain corresponding to the maximum compressive stress in the stress-strain 

relationship, εc', is computed (MacGregor and Bartlett 2000) as: 

[3.7]       c
c

c

1.71f '
ε ' = 

E
 

 
where Ec is the modulus of elasticity of concrete, MPa, given by (CSA 2006): 

[3.8]           
1.5

c
c c

γ
E  = (3000 f ' + 6900)

2300
 
 
 

 

 
and γc is the mass density of concrete, kg/m3, assumed to equal 2300 kg/m3 for normal 

concrete. 
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Figure 3-4 shows Todeschini’s stress-strain relationship for a concrete strength of 40 

MPa. In this case Ec = 25870 MPa and, from Eq. [3.7], εc' = 0.0026.    

 

Figure 3-4: Todeschini’s Compressive Stress-strain Relationship for a Concrete Strength, 
fc', of 40 MPa. 

 
The iterative procedure to compute c(x) changes for Cases 1 and 6 to accommodate the 

use of Todeschini’s stress-strain relationship, but remains the same for Cases 2 to 5. The 

revised section, stress and strain distributions and internal force diagram for Cases 1 and 

6 are shown in Figure 3-5. For each segment, an extreme compression fibre strain, εc(x), 

is assumed: at Mmax, the maximum value, εcu, of 0.0035 (CSA 2006) is adopted. 
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Case 1: 

 

Case 6: 

  

Figure 3-5: Revised Neutral Axis Depth, Strain Distribution, Stress Distribution and Internal Forces for Cases 1 and 6. 
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The coefficients that define the average stress and the line of action of the resultant 

compressive force, k1(x) and k2(x), respectively, are computed using the equations 

(MacGregor and Bartlett 2000): 

[3.9]              
   

 

2
c c

1
c c

ln 1 + ε (x)/ε '
k (x) = 

ε (x)/ε '
 

 

[3.10]                    
    

 

-1
c c c c

2 2
c c 1

2 ε (x)/ε '  - tan ε (x)/ε '
k (x) = 1 - 

ε (x)/ε ' k (x)
 

 
Using jd(x) and k2(x), c(x) is computed to satisfy the following geometric requirement of 

the internal forces in Figure 3-5: 

[3.11]             
 

2

d - jd(x)
c(x) = 

k (x)
 

 
To satisfy horizontal force equilibrium, the summation of the resultant compressive force 

in the concrete, C(x), and the tensile force in the exposed flexural reinforcement, T, must 

equal to zero: 

[3.12]          1 c s yk (x)f bc(x) - A f  = 0  

 
where b is the width of the compression zone (i.e., bf for Case 1 and bw for Case 6). 

 
For the segment located at Mmax, the horizontal force equilibrium requirement is satisfied 

for εcu = 0.0035, but for the remaining segments, εc(x) must be repeatedly changed until 

Eqn. [3.12] is satisfied. If the left hand side of Eqn. [3.12] exceeds zero, εc(x) is 

decreased, and vice versa. 
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Once εc(x), fc(x) and the correct c(x) are computed, the extrapolated strain in the concrete 

at the depth of the flexural reinforcement is next determined for each segment, εcs(x), 

using the strain distribution shown in Figure 3-5. For the positive curvature cases: 

[3.13]        cs c
d

ε (x) = ε (x) 1 - 
c(x)

 
 
 

 

 
and for the negative curvature cases: 

[3.14]           w f
cs c

d - (h + h )
ε (x)  =  ε (x) 1 + 

c(x)

 
 
 

 

 
where, for Cases 2 to 5: 

[3.15]     
c

c
c

f (x)
ε (x) = 

E
 

 
To satisfy the strain compatibility requirement, Eqn. [2.4], the summation of the concrete 

elongation at the depth of the flexural reinforcement, Δcs, over the length of the exposed 

flexural reinforcement, computed as:  

[3.16]               
exp n

cs cs cs x

i=1

Δ  = ε d ε (x) Δ


   

 
must equal the elongation of the exposed flexural reinforcement, Δs, computed as: 
 

[3.17]        
exp

s
s s

T
Δ  = 

A E



 

 
where Es is the modulus of elasticity of the flexural reinforcement, taken as 200000 MPa. 
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If Δcs and Δs, are not equal, the length of exposed flexural reinforcement, exp , is 

incorrect. If Δcs is greater than Δs, exp  is increased by increasing the iteration number, i, 

by one, and vice versa. Increasing i by one, increases exp  by one segment length towards 

each support as shown in Eqns. [3.1] and [3.2]. This iterative procedure is repeated until 

the values of Δcs and Δs are within 1% of one another, i.e.:  

[3.18]              s cs

s

Δ  - Δ
 0.01

Δ
  

 
The length that satisfies this requirement is defined as the critical length of exposed 

flexural reinforcement, c , and represents the longest length that can be exposed while 

ensuring that the girder will reach its yield capacity. 

3.4 STRUT-AND-TIE ANALYSIS 

Condition 2 addresses another important failure mode that was observed by others 

(Cairns and Zhao 1993): crushing of the concrete at the end of the exposed length due to 

the compressive strut intersecting the exposed end. For a given loading configuration, the 

critical distance from the support to the end of the exposed length, e , can be determined 

to ensure this failure will not occur. Harris (1996) previously developed a strut-and-tie 

model to predict the flexural capacity of a T-section specimen with exposed flexural 

reinforcement for Condition 1 but did not analyze the possibility of the ends of the 

exposed length encroaching on the inclined compressive strut, significantly reducing its 

area and possibly its capacity. 
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3.4.1 Methodology 

A strut-and-tie model was developed for the current Strut-and-Tie Analysis (STA) to 

predict the critical length of exposed flexural reinforcement, c . The analysis is a 

procedure to determine the length from the support to the point where the inclined 

compressive strut intersects the ends of the exposed length for a girder subjected to a 

given loading configuration. This distance has been defined at the critical distance from 

the support to the end of the exposed length, e . The solution requires the following 

assumptions: 

  
1. The depth of the top compressive strut or node at the location of the maximum 

moment, Mmax, must be assumed. The maximum thickness, hs, is assumed to 

equal the stress block depth at yield of the identical beam with no reinforcement 

exposed. 

2. The height of the node at both supports, ha, is assumed to be symmetric about the 

resultant of the flexural reinforcement tension. For a girder with one layer of 

flexural reinforcement, the maximum height, hamax, is 2(h – d). 

3. The deteriorated concrete is assumed to be removed to a clear depth of 25 mm 

above the exposed flexural reinforcement.  

 
For the basic geometry of the left compressive strut, as shown in Figure 3-6, the critical 

distance from the support to the end of the exposed length, e , is determined: 

[3.19]             c e s
s

w
+ d  = (h - d) + tanθ

2cosθ
  
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where w and θs are the width and inclination from the horizontal, respectively, of the 

compressive strut. 

 

 

Figure 3-6: Basic Geometry of the Left Compressive Strut. 

 
Recognizing that s a b sw/cosθ  = h + tanθ : 

[3.20]         a b
s c e s

h
tanθ  + d  = (h - d) + tanθ

2 2



          

 
Rearranging: 

[3.21]    c a b
e

s

(d + d  - h + h /2)
 = +

tanθ 2



  

 
where: 

[3.22] 
               

L max
s

max

V V R jd
tanθ  =  =  = 

H T M
 

 
and, b  is the length of the bearing at the left support, H is the horizontal component of 

the compressive strut force equal to the tensile force in the flexural reinforcement, V is 

dc 

T

V 

H

CL

b  

e  

θs

(h – d)

RL 

ha 

w

w/2cosθs
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the vertical component of the compressive strut force equal to the reaction at the left 

support, RL, and jdmax is the lever arm at the location of the maximum moment, Mmax. 

 
The length of the bearing at the left support, b , is: 

[3.23]        b swsinθ  

 
The required constant width of the compressive strut at the support, w, is: 

[3.24] 
       

L L

w cu w cu s

C R
w =  = 

b f b f sinθ
 

 
where CL is the force is the compressive strut, and fcu is the limiting compressive stress in 

the node or the strut. 

 
Since the shear reinforcement is exposed and so does not create transverse tensile strains 

in the strut, the compressive strut stress limit will be assumed to be adequate and the 

stress in the node will govern. The most critical node in this strut-and-tie model is the 

compression-compression-tension node (CCT) located at the support, with a stress limit 

of (CHBDC 8.10.5.1): 

[3.25]     cu 1 cf  = 0.88α f '  

 
where α1 is the ratio of the average stress in a rectangular compression block to the 

specific concrete strength, defined in Clause 8.8.3(f) of the CHBDC (CSA 2006) as α1 = 

0.85 – 0.015fc'. 
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By eliminating w using Eqn. [3.24], Eqn. [3.23] simplifies to: 

[3.26] 
       

s L
b

w cu s w cu

Vsinθ R
 =  = 

b f sinθ b f
  

 
The height of the node at the left support, ha, is: 
 

[3.27] s max max
a amax

w cu s w cu s max w cu max w cu

Vcosθ V VM M
h  = wcosθ = = = = h

b f sinθ b f tanθ Vjd b f jd b f


  
 

 
Eliminating tanθs, b and ha from Eqn. [3.21]: 
 

[3.28] 
      

max c max max w cu L
e

L max w cu

M (d + d - h + (M /2jd b f ) R
 =  + 

R jd 2b f
  

 
This e  value represents the minimum distance from the exposed end to the support for 

the inclined compressive strut not to interest the exposed end. 

 
To quantify the effect of different loading configurations on the critical distance from the 

support to the end of the exposed length, e , three load combinations are analyzed. They 

comprise of: (1) a point load P, located at a distance of αL from one support, where 0.1 ൑ 

α ൑ 0.9; (2) a uniformly distributed load, simulated by four equally spaced point loads, ω; 

and, (3) combined point and simulated uniformly distributed loads. For each combination 

considered, Mmax, jdmax, and RL are known and ha and b  are computed to determine e .  

3.4.2 Case 1: Point Load (ω = 0) 

The single point-load magnitude, P, causing a moment that equals the flexural capacity of 

the beam was determined for given α values, as shown in Figure 3-7. The strut is narrow 
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in the wide flange region and increases its depth in the narrower web region to maintain a 

constant cross-sectional area, as shown. 

 

Figure 3-7: Loading for Case 1 (α = 0.375 shown). 

 
For a known value of α, simple moment equilibrium requires that the applied load, P, 

satisfy: 

[3.29]                
2

M
P = 

L(α - α )
 

where M is the moment capacity of the cross section.  

The reaction at the left support is: 

[3.30] 
     LR  = P(1 - α)  

Using Eqn. [3.22]:

    

 

[3.31]             L max max max
s

max

R jd jd 1 - α jd
tanθ  =  =  = 

M L α(1 - α) αL

 
 
 

 

 
The width of the compressive strut can be assumed to be constant and therefore e  is: 

[3.32]    
  2

c max w cu
L

e
max w cu

αL d + d  - h + PL(α - α )/2jd b f R
 = +

jd 2b f


 

αL 

RL RR

L 

ce

P 
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Rearranging: 

[3.33]                   
2

e c
max max w cu w cu

αL PL(α - α ) P(1 - α)
 = d + d  - h + +

jd 2jd b f 2b f

  
     

  

 
The critical exposed length, c , is: 
 
 

[3.34]             c e e = L - @(α)  + @(1 - α)      

 
Where e  (@(α)) is the value of e  computed using Eqn. [3.33] for the given α value. 
 
 
Eqn. [3.33] defines the critical distance e  in terms of the normalized point load location, 

α. As shown in Figure 3-8 for the beam tested by Harris (1996), as α increases, moving 

the load away from the left support, e  increases linearly, demonstrating that the flatter 

struts carrying shear to the lesser reaction are the most critical. 

 

 

Figure 3-8: Effect of the Location of the Point Load on the Critical Distance to the End of 
the Exposed Length, e , at Yield. 
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3.4.3 Case 2: Uniformly Distributed Load (ω ് 0, P = 0) 

For this case, P = 0 and the four equal point loads, each ω, causing a moment due to a 

simulated uniformly distributed load that equals the flexural capacity of the beam were 

determined, as shown in Figure 3-9. Since the locations of the point loads are constant as 

shown, the profile of the strut centerline is constant at all load levels. Again, the width of 

the strut varies to maintain a constant strut cross-sectional area. 

 

 
Figure 3-9: Loading for Case 2. 

 
The shear force, V, and bending moment, M, diagrams, as shown in Figure 3-10 are first 

determined. 

 
The moment at the midspan is set equal to M: 

[3.35]        
2ωL ωL 2M

M =  = 
8 4 L

  

 
The reaction at the left support at yield is: 

[3.36]         L
ωL

R  = 
2

 

ω 

L/8 

RL RR

L 

ce

ω ω ω 

L/8L/4 L/4L/4 



65 
 

 
 

 
 

 

Figure 3-10: Load Case 2: (a) Shear Force Diagram, (b) Bending Moment Diagram. 

 
Using Eqn. [3.22]: 

[3.37]            
L max max

s max 2
max

R jd ωL 8 4jd
tanθ  =  = jd  = 

M 2 LωL

 
 
 

 

 
The width of the compression strut can be assumed to be constant and therefore  e is: 

[3.38]        
 2

c max w cu
e

max w cu

L d + d  - h + (ωL /16jd b f ) ωL
 =  + 

4jd 4b f


 

 
Rearranging: 

[3.39]         
2

e c
max max w cu w cu

L ωL ωL
 = d + d  - h + +

4jd 16jd b f 4b f

 
 
 

  

 

(+) 

ωL2/8 

ωL2/16ωL2/16 

(b) 

ωL/2 

ωL/4 

ωL/2 

ωL/4 

0 

(-) 

(+) 

(a) 
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For this single loading configuration, the critical distance from the support to the end of 

the exposed length, e , to equilibrate the yield flexural capacity of the beam tested by 

Harris (1996) is 264.2 mm. The critical exposed length, c , is: 

[3.40]       c e= L - 2   

 
giving values at yield of 3472 mm. In Load Case 1, the least severe case occurs with the 

point load at midspan, α = 0.5, for which the critical exposed length, c , is 2985 mm at 

yield. The critical exposed length, c , for Load Case 2 exceeds this value but the critical 

distance e  is shorter for Load Case 1 if 0.25 ≳ α ≳ 0.75. 

3.4.4 Case 3: Both Point and Uniformly Distributed Loads (ω ് 0, P ് 0) 

Different combinations of a simulated uniformly distributed load, ω, and a point load P 

located at 0.1 ൑ α ൑ 0.9, as shown in Figure 3-11, were determined that would cause the 

maximum applied moment to be equal to the flexural capacity of the beam.  The ratio of 

the point load to the total distributed load is denoted as K, i.e., K = P/ωL. Because a 

uniformly distributed dead load is assumed always present, K ൒ 0. 

 
A typical reinforced concrete bridge, consisting of reinforced concrete girders and slab, 

was analyzed to determine that the ratio of the live load moment to the total moment was 

approximately 0.5 ൑ ML/MT ൑ 0.8. The analysis is presented in Appendix C. Therefore 

the moment due to the point load would be 1 to 4 times that due to the simulated 

uniformly distributed load, Mω: 

[3.41]           P ωM  = (1.0 to 4.0)M  



67 
 

 
 

 

Figure 3-11: Loading for Case 3 (α = 0.25 Shown). 

 
Substituting in the maximum moment equations for ML and MD: 

[3.42]          
2PL ωL

 = (1.0 to 4.0)
4 8

 

 
From Eqn. [3.42], for P = KωL: 

[3.43]       
2

2 ωL
ωL K = 4(1.0 to 4.0)

8
 

 
which simplifies to, K = 0.5 to 2.0.  

 
The maximum moment (i.e., V = 0) can occur in one of the following three regions (for α 
൑ 0.5): 
 
 
Region 1: 0 to L/8 (from the left support) 
 
Region 2: L/8 to 3L/8 (from the left support) 
 
Region 3: 3L/8 to L/2 (from the left support) 

 
 
  

ω 

αL 

RL RR

L 

ceL

 

ω ω ω 

Region 1Region 2 

KωL

eR

Region 3
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The procedure to determine the maximum moment, Mmax, and its location in each region 

is as follows: 

 
1. The normalized location, α, of the point load KωL is known. 

2. Limits for K are determined for each possible location of Mmax by assuming that 

the shear force, V, is 0. 

3. The reaction at the left support, RL, is calculated: 

[3.44]              L
ωL

R  =  + KωL(1 - α) = ωL 0.5 + K(1 - α)
2

 

 
4. The method of sections is used to calculate the moment at L/8, 3L/8 and αL and 

Mmax is defined as the greatest of these values. 

5. The inclination of the compressive strut at the left support, θsL, is calculated using 

Eqn. [3.22]. 

6. The width of the compressive strut is assumed to be constant and the critical 

distance from the support to the left end of the exposed length, eL , is: 

[3.45]          
 c max max w cu L

eL
sL w cu

d + d  - h + (M /2jd b f ) R
 = +

tanθ 2b f
  

 
7. A similar procedure is used to calculate θsR and eR  for the compressive strut at 

the right support. 

8. The critical exposed length, c , is: 
 

[3.46]              c eL eR= L - -     
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The procedure outlined in Steps 1 - 5 was performed for the three regions, yielding the 

results shown in Table 3-2. The procedures for determining tanθsL and tanθsR and the 

location of the maximum moment, Mmax, both depend on the normalized location of the 

point load, α, and the ratio of the point load to the total distributed load, K, as shown 

Table 3-2. The detailed calculations for this procedure are presented in Appendix B. 

 
Table 3-2: Summary of Critical Values for Load Case 3. 

α K tanθsL tanθsR Mmax 

at

≤ 0.125 

≥ 
0.5

α
 ൬

jd

αL
൰ ቆ

ሾ0.5+Kαሿ
αሾ0.5+Kሺ1-αሻሿ

jd

L
ቇ αL 

0.25

α
≤ K≤

0.5

α
 ቆ

8ሾ0.5+Kሺ1-αሻሿ
ሾ0.5+7Kαሿ

jd

L
ቇ ቆ

8ሾ0.5+Kαሿ
ሾ0.5+7Kαሿ

jd

L
ቇ 

L

8
 

≤
0.25

α
 ቆ

8ሾ0.5+Kሺ1-αሻሿ
ሾ1.0+5Kαሿ

jd

L
ቇ ቆ

8ሾ0.5+Kαሿ
ሾ1.0+5Kαሿ

jd

L
ቇ 

3L

8
 

0.125 ≤ α 
≤ 0.375 

≥
0.25

α
 ቆ

8ሾ0.5+Kሺ1-αሻሿ
ሾ2α+8αKሺ1-αሻ+0.25ሿ

jd

L
ቇ ቆ

8ሾ0.5+Kαሿ
ሾ2α+8αKሺ1-αሻ+0.25ሿ

jd

L
ቇ αL 

≤
0.25

α
 ቆ

8ሾ0.5+Kሺ1-αሻሿ
ሾ1.0+5Kαሿ

jd

L
ቇ ቆ

8ሾ0.5+Kαሿ
ሾ1.0+5Kαሿ

jd

L
ቇ 

3L

8
 

≥ 0.375 - ቆ
8ሾ0.5+Kሺ1-αሻሿ
ሾ1.0+8Kα(1-α)ሿ

jd

L
ቇ ቆ

8ሾ0.5+Kαሿ
ሾ1.0+8Kα(1-α)ሿ

jd

L
ቇ αL 

 
 
The equations shown in Table 3-2 were used to determine eL  for all three regions. 

Figure 3-12 show the resulting relation between the normalized location of the point load, 

α, and the critical distance eL , for specific values of K ranging from 0.5 to 2.0, at yield 

for the beam tested by Harris (1996). As α increases, eL  also increases, reaching a 

maximum value at yield at approximately α ≈ 0.625, indicating the critical case occurs at 
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the left support when the point load is slightly to the right of midspan. For α ≳ 0.625, eL

begins to decrease, demonstrating the affect of the distributed load on the critical distance 

eL .  

 

Figure 3-12: Effect of the Location of the Point Load on the Critical Distance to the End 
of the Exposed Length, eL , for Different Values of K at Yield. 

 
The results also show that as the relative contribution of the point load to the total load, 

K, increases, eL  decreases for α ≲ 0.25, and increases for α ≳ 0.25 because, as shown in 

Table 3-2, for α ≲ 0.25, an increase in K will increase the moment at αL, increasing the 

inclination of the compressive strut at the left support, and subsequently decreasing eL .  

Similarly, for α ≳ 0.25, an increase in K will increase the moment at αL, but will also 

decrease the moment at L/8. This reduces the inclination of the compressive strut at the 

left support, θsL, and therefore increases eL . The maximum eL  observed at yield was 

465 mm when K = 2. 
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3.4.5 Comparisons 

Figure 3-13 show the relationship between α and eL  at yield for all three load cases. The 

simulated uniformly distributed load, ω, significantly affects the critical distance eL . If a 

distributed load is present, as is typical, eL  is reduced. As α reduces below 

approximately 0.25, Case 3 approaches Case 1 with eL  reducing linearly with α. As α 

approaches 0.1, eL  for Case 3 begins to levels out and approach Case 2.  For α > 0.625, 

a similar result is seen where Case 3 approaches Case 2 with eL  decreasing towards  

α = 1. 

 

Figure 3-13: Effect of the Location of the Point Load on the Critical Distance to the End 
of the Exposed Length, eL , at Yield for Load Cases 1, 2 and 3. 
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3.5 SUMMARY AND CONCLUSIONS 

In this chapter, two analytical approaches have been developed to assist practitioners 

evaluating typical reinforced concrete bridge girders with exposed flexural 

reinforcement: (1) Strain Compatibility Analysis (SCA), and (2) Strut-and-Tie Analysis 

(STA). Both were based on the horizontal force and moment equilibrium, and the Strain 

Compatibility Analysis also satisfies strain compatibility requirements, Eqns. [2.1], [2.2] 

and [2.4], respectively. The analyses can be used for any length and location of exposed 

flexural reinforcement, moment distribution or cross section. The longest exposed length 

that satisfies both analyses has been defined as the critical length of exposed flexural 

reinforcement, c . 

 
The Strain Compatibility Analysis (SCA), using an accurate stress-strain concrete 

relationship, addressed the most predominant failure mode observed in previous 

experimental investigations (e.g., Cairns and Zhao 1993): crushing of the concrete on the 

compression face of the specimen before the exposed flexural reinforcement yields in 

tension.  

 
The Strut-and-Tie Analysis (STA) addressed another important failure mode that was 

observed by others (Cairns and Zhao 1993): crushing of the concrete at the end of the 

exposed length due to the compressive strut intersecting the exposed end. The Strut-and-

Tie Analysis was also used to analyze the critical distance from the support to the end of 

the exposed length, e , where the compressive strut would intersect the exposed length 

for three cases: 1) point load only, 2) uniformly distributed load only, and 3) both point 

and uniformly distributed loads.  
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It can be concluded from the research presented in this chapter that: 

 
1. A T-section specimen loaded with a combination of a uniformly distributed dead 

load and a point load would more accurately represent the type of girder and 

applied loading seen in the field because reinforced concrete bridge girders 

typically feature a substantial top slab and resist substantial uniformly distributed 

dead loads.    

2. Both the Strain Compatibility Analysis (SCA) and Strut-and-Tie Analysis (STA) 

are important tools to assist practitioners evaluating reinforced concrete bridge 

girders with exposed flexural reinforcement. 

3. The Strut-and-Tie Analysis results show that as the distance of the point load to 

the support increases the critical distance, e , from the support to the end of the 

exposed length also increases. 

4. The simulated uniformly distributed load significantly affects the critical distance 

from the support to the end of the exposed length, e , computed using the Strut-

and-Tie Analysis. Thus loading specimens using Case 3, with a combination of a 

point load and a simulated uniformly distributed load, will result in more realistic 

findings.   
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CHAPTER 4: 

4.1 

EXPERIMENTAL INVESTIGATION 

To evaluate the accuracy of the analytical approaches developed in Chapter 3, T-section 

specimens with exposed flexural reinforcement were tested at the UWO Structures 

Laboratory. This chapter will describe the experimental test procedures and the design 

and construction of: the Control Specimen; the five specimens with exposed flexural 

reinforcement; and, the testing apparatus. The chapter will also describe how the effective 

depth of the exposed flexural reinforcement can be preserved by the insertion of steel 

spacers between it and the soffit of the concrete web and the effect of unsymmetrical 

loading configurations. The chapter will conclude with the results of the experimental 

investigation. Related detailed calculations are presented in Appendix C. 

INTRODUCTION 

4.2 

The objectives of the experimental investigation reported in this chapter are: 

OBJECTIVES 

 
1. To design a testing apparatus capable of the simultaneous application of a 

simulated uniformly distributed load and a point load. 

2. To test a Control Specimen to assess the performance of the testing apparatus and 

to provide a baseline for comparison with specimens with exposed flexural 

reinforcement. 

3. To determine the flexural behaviour of the specimens with exposed flexural 

reinforcement including quantification of the yield and ultimate moment 
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capacities, deflections and cracking patterns and to collect the data (e.g. strains, 

displacements, etc.) to help validate the two analytical approaches developed. 

4. To study the effect of unsymmetrical loading configurations on the behaviour of 

specimens with exposed flexural reinforcement. 

5. To study the impact of including steel spacers between the exposed flexural 

reinforcement and the underside of the concrete specimen web. 

4.3 

The Control Specimen was designed as an under-reinforced T-section in accordance with 

the Canadian Highway Bridge Design Code (CHBDC), CAN/CSA-S6-06 (CSA 2006), 

with a flexural reinforcement ratio, ρ, of 0.37%, as shown in 

CONTROL SPECIMEN 

Figure 4-1. The Control 

Specimen has a total length, LT, of 4400 mm, a simply supported span length, L, of 4000 

mm, an overall height, h, of 400 mm, overall flange width, bf, of 800 mm, a flange 

thickness, hf, of 90 mm, and a web width, bw, of 200 mm. The specified concrete 

strength, fc', is 40 MPa and the actual strength, based on eight cylinders tested 

immediately before and after the test, is 43.6 MPa (ASTM 2012).  
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Figure 4-1: Control Specimen with Reinforcement Details: (a) Plan (Note: Web Reinforcement not Shown for Clarity), (b) Elevation, 
(c) Cross-section and (d) 180⁰ Standard Hook Detail for Flexural Reinforcement (All Dimensions in mm). 
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The main flexural reinforcement consists of two 25M bars (As = 500 mm2/bar) at an 

effective flexural reinforcement depth, d, of 342 mm. The yield and ultimate strengths of 

the Grade 400 flexural reinforcement, fy and fu, are 456 MPa and 669 MPa, respectively, 

based on tests of samples obtained from the bars. The stress-strain relationship for the 

flexural reinforcement is presented in Appendix C. Anchorage of the flexural 

reinforcement at the support was ensured using a 180⁰ standard hook (CSA 2006), as 

shown in Figure 4-1(d), which is capable of developing the yield strength of the bar at 

365 mm from the end of the hook, or 210 mm from the support. The nominal top 

reinforcement, two 10M bars, at an effective depth, d', of 56 mm, was provided primarily 

to anchor the stirrups. Lifting hooks consisting of 6 mm diameter undeformed steel 

hangers were embedded in the middle of the top flange at 910 mm from each end of the 

specimen. 

 
The yield and ultimate moment capacities of the Control Specimen were computed to be 

152.3 and 200.9 kN.m, respectively, using the actual material strengths. The associated 

shear forces were then computed and used to determine the required shear reinforcement. 

To avoid a premature shear failure, factored material strengths were used to determine the 

shear reinforcement spacing of 200 mm and so provide sufficient factored shear 

resistance of 220 kN that corresponds to a maximum midspan moment of 220 kN.m.  

 
Nemec’s (1996) Control Specimen failed due to a longitudinal crack in the compression 

flange adjacent to the flange/web junction at midspan. This failure mode is unlikely to 

occur in the field because transverse reinforcement is typically present in the concrete 

flange. A simple strut-and tie analysis (MacGregor and Bartlett 2000), indicated that this 
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failure could be prevented by adding 10M transverse reinforcement placed at a depth of 

45 mm and spaced at a maximum distance of 400 mm throughout the compression 

flange. To accommodate for the flange block outs necessary to achieve the desired 

loading configuration, some bars were spaced at 200 mm.  

 
The fabrication of the flexural reinforcement and formwork and casting of the Control 

Specimen, shown in Figure 4-2, took place the week of 30 January 2012 and on 15 

February 2012, respectively. 

 

 

Figure 4-2: Control Specimen: (a) Reinforcement and Formwork (b) Casting. 

 
4.4 

Reinforced concrete bridge girders resist substantial uniformly distributed dead loads, 

and therefore an experimental investigation involving a combination of a uniformly 

distributed dead load and a live load more accurately represents the applied loading 

observed in the field. A representative reinforced concrete bridge was analyzed to 

TESTING APPARATUS 

(a) (b) 
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determine the typical ratios of dead-to-total-load bending moments. It was concluded that 

the maximum dead load moment was 40% of the total moment at a critical section near 

the midspan, so the applied uniformly distributed load was computed to achieve this 

fraction. The live load was represented by a single-point load, P, and the uniformly 

distributed dead load was simulated using four equal point loads, ω, applied at the quarter 

points of the specimens. A slight error exists between the bending moment diagrams of 

the actual uniformly distributed load and the 4-point simulated uniformly distributed 

load. The 4-point simulated distributed load overestimates the bending moments at the 

exterior and interior point loads by 12 and 6%, respectively. Details of the loading 

analysis are presented in Appendix C.  

 
An innovative testing apparatus was designed to apply the combination of the applied 

point load and simulated uniformly distributed load simultaneously, as shown in Figure 

4-3. The point load was applied by the 1500 kN-MTS actuator to the top of the specimen 

along its centre axis. Four equal point loads were simultaneously applied by a system of 

whiffle trees to simulate the distributed load. To allow the point load to be applied at 

different locations along the length of the specimen, the whiffle tree system was designed 

to be mounted beneath the top flange. 
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Figure 4-3: Testing Apparatus: (a) Plan, (b) Partial Elevations Showing Unloaded (Left) and Loaded (Right) Control Specimen and (c) 
End Elevation (All Dimensions in mm). 
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The whiffle tree system consisted of hydraulic jacks, spreader beams, steel rods and 

fabricated end joints, described in Table 4-1, designed in accordance with CSA-S16-09 

“Design of Steel Structures” (CSA 2009). The system was designed to transfer the load 

from the hydraulic jacks bearing against the underside of the strongfloor to the bearing 

plates on top of the specimen to a maximum load of 50 kN at each quarter point. The two 

hydraulic jacks beneath the strongfloor were attached to the manual pump by a common 

hydraulic line. This ensured that the loads applied by each hydraulic jack were 

approximately equal. 

 
A geometric analysis was performed to ensure that the testing apparatus did not interfere 

with the deformed specimen during the experiment, as shown in Figure 4-3(b). Nemec 

(1996) observed that a similar T-section control specimen had a maximum deflection of 

approximately 116 mm. Therefore, the testing apparatus was designed to accommodate a 

parabolic deflected shape with a maximum deflection of 150 mm at the centerline of the 

specimen. 
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Table 4-1: Whiffle Tree System Components. 

Component Classification Length 
(mm) Qty. Weight 

(kN) Notes 

Beam 1 C100x11 @  
22 mm b/b 760 4 1.025  

Beam 2 W150x18 2743 1 0.483 Bearing stiffeners at 
the load location 

Beam 3 C150x12 1372 2 0.648  

Rod 1 38 mm 
threaded rod ≈ 2100 4 0.926 

Normal 
Steel/Accompanied 

by 2 appropriate nuts 
and washers 

Rod 2 19.05 mm 
threaded rod ≈ 500 4 0.059 

Medium-Strength 
Alloy Steel, ASTM 

A193 Grade B7, 
Fy = 860 MPa 

Rod 3 19.05 mm 
threaded rod ≈ 600 8 0.144 

Medium-Strength 
Alloy Steel, ASTM 

A193 Grade B7, 
Fy = 860 MPa 

Joint 1   4  

 

Steel Bars 19.05 mm 300 4 0.026 
Steel Ball 
Joint Rod 

End 
19.05 mm - 8 - 

Plate 25 mm 300x 
150 4 0.326 

Joint 2   8  

 

Steel Bars 19.05 mm 400 8 0.070 
Steel Ball 
Joint Rod 

End 
19.05 mm - 16 - 

Plate 25 mm 400x 
150 8 0.879 

Hydraulic 
Jack 

89 kN 
Capacity ≈ 500 

2 
0.497 Secured together by 

thread adapter Load Cells 222.2 kN 
Capacity 2 

MTS 
Actuator 

1500 kN 
Capacity - 1   

Strongfloor - 915 1   

Rubber Pads 19.05 mm 400x 
150 4 0.039  

 

Total 5.12 kN 

 Equivalent 
Quarter Point 

Load, ωow 

1.28 kN 
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Joints 1 and 2 had to accommodate rotation, as shown Figure 4-3(b), and so were 

designed using 400 mm x 150 mm steel plates, 19.05 mm diameter rods and steel ball 

joints, as shown in Figure 4-4. Each steel plate had two 30 x 60 mm slots to allow 

clearance for the vertical tie rod to rotate. A circular groove was cut in the top of the plate 

to seat the transverse rod. This assembly created a pin joint that allowed the ball joints 

and the vertical tie rods to remain vertical while the steel plate and transverse bar could 

rotate up to 9⁰ to accommodate the anticipated deflection of the specimens. 

 

  

Figure 4-4: End Joint to Accommodate Rotation: (a) Unassembled, and (b) Installed. 

 
Holes were necessary in the concrete specimen flange on either side of the web at its 

quarter points to accommodate the eight uppermost vertical tie rods. The required hole 

diameters and associated spreader beam clearances were determined by analysis of the 

deformed specimen, as shown in Figure 4-3(b). Holes with 70 mm diameters ensured 

sufficient clearance for the 6.5⁰ rotation anticipated at the joint nearest the support. The 

minimum necessary initial vertical clearances of 10 and 105 mm were provided between 

the top of the ball joint of Joint 1 on Beam 3 and the soffit of the specimen and between 

the bottom of the ball joint of Joint 1 beneath Beam 2 and the top of the strongfloor, 

respectively. 

Steel Ball Joints  

Circular Groove 

Slot 

Steel Plate 

19 mm Bar 
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The holes were formed using 75 mm PVC piping held in place by a circular wood cap 

that was secured beneath the flange formwork by a bolt and a wing nut, as shown in 

Figure 4-5. The circular wood cap prevented concrete from filling in the hole during 

casting and was removed after curing. 

 

 

Figure 4-5: Flange Void Forms (a) 75 mm PVC Piping, (b) Bolt and Wing Nut 
Underneath Formwork. 

 
Analysis of the deformed specimen was also used to determine the anticipated horizontal 

end movements at the supports during testing. Steel rollers with 19.05 mm diameters 

were provided at both supports to facilitate the expected horizontal end movement of 

approximately 25 mm and so ensure that the specimen would remain symmetric about its 

midspan during the test. The end movements also ensured that the vertical loading rods 

stayed vertical and so the flange hole clearances were not impacted. A 325 mm x 100 mm 

x 6.5 mm steel plate was placed above each steel roller to prevent local crushing of the 

concrete web at the support. 
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4.5 

Rehabilitation standards for deteriorated reinforced concrete bridge girders require 

concrete removal to a depth of 25 mm behind the first layer of flexural reinforcement 

(OPSS 1994). Five specimens were therefore designed and constructed in the same 

manner as the Control Specimen, but with various lengths of the bottom of the concrete 

web blocked out to expose the flexural reinforcement. The elevations of the five 

specimens, showing the loading configuration, point load location from the left support, 

αL, length of exposed flexural reinforcement, 

SPECIMENS WITH EXPOSED FLEXURAL REINFORCEMENT 

exp , distance from the supports to the end 

of the exposed length, end , and the steel spacer locations are shown in Figure 4-6. Table 

4-2 summarizes, for each specimen, the measured flange and web widths, bf and bw, 

respectively, the concrete and steel material strengths, and the dates of casting and 

testing. 

Table 4-2: Properties of Specimens with Exposed Flexural Reinforcement 

Specimen bf 
(mm) 

bw 
(mm) 

fc' 
(MPa) 

fy 
(MPa) 

fu 
(MPa) Cast Test 

1 810 202 43.6 456 669 15 Feb  26 Apr  
2 812 205 44.0 402 612 31 June  31 July 
3 820 203 44.0 402 612 31 June  2 Aug 
4 814 206 33.9 402 612 10 July  7 Aug 
5 812 202 33.9 402 612 10 July  8 Aug 

 

Specimens 1, 4 and 5 had the same loading configuration as the Control Specimen with 

lengths of exposed flexural reinforcement of 3300 mm, 3600 mm and 3600 mm, 

respectively, symmetrical about the midspan. Specimen 1 was used as a pilot test to 

observe the behavioural characteristics of a specimen with exposed flexural 

reinforcement compared to the Control Specimen and to confirm the effectiveness of the 
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testing apparatus. Specimens 2 and 3 had the same loading configurations, with the point 

load located at approximately 780 mm from the left support, to observe the effect of an 

unsymmetrical loading configuration on the bahaviour of the specimens. 

 
(a) 
 

Specimen 1: 

 
 
(b) 
 

Specimens 2 and 3: 

 
 
(c) 
 

Specimens 4 and 5: 

 

Figure 4-6: Elevations of Test Specimens with Loading Configuration, Void Location 
and Steel Spacer Locations. 
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As outlined in Chapter 2, previous researchers (e.g., Nemec 1996) observed that during 

testing the gap between the bottom of the concrete web and the exposed flexural 

reinforcement reduced until the two came into contact. This reduces the lever arm 

between the flexural reinforcement and the resultant concrete compressive force and so 

reduces the flexural capacity. To try to prevent this occurrence, each specimen had steel 

spacers placed in the gap between the concrete and exposed flexural reinforcement at the 

location of the maximum moment to preserve the lever arm, as shown in Figure 4-6. 

 
Additional steel spacers were placed at the ω point load locations for Specimens 3, 4 and 

5 to determine if they would facilitate load transfer to the stirrups, which are otherwise 

ineffective while the flexural reinforcement is exposed. Installation of these spacers could 

create a plastic truss with several interior panels that could enhance the shear strength 

while the flexural reinforcement is exposed, as shown in Figure 4-7. The spacer can 

potentially facilitate the transfer of the compressive strut force, C, in the concrete web to 

be resolved as tension in the stirrup, Ts, and a change of tension in the flexural 

reinforcement, ΔT. If this occurs, there will be a reduction in tensile force in the flexural 

reinforcement to the left of the stirrup, and the behaviour will be similar to that of the 

Control Specimen. Specimens 2, 3 and 4 were reinforced with 25 mm x 25 mm steel 

spacers, while Specimen 5 had 50 mm x 25 mm steel spacers to observe if the wider 

spacer increased the load transferred. 
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Figure 4-7: Steel Spacer: (a) Illustration of the Load Transfer through the Steel Spacer 
and (b) Steel Spacer In-situ. 

 
Strain gauges were strategically placed on the specimens to facilitate validation of the 

two analytical approaches developed. Rosette strain gauges were placed on the side of the 

concrete web directly above the end of the exposed length where the anticipated inclined 

compressive strut would be located. For Specimen 1, 45 degree rosette strain gauges with 

a gauge length of 2 mm, type N31-FA-2-120-11, were used, as shown in Figure 4-8(a). 

The subsequent test indicated that these gauges were too small to record accurate strain 

readings in the concrete web. A rosette strain gauge was therefore constructed using 

gauges with lengths of 30 mm, type N11-FA-30-120-11, as shown in Figure 4-8(b). The 
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same strain gauges were placed on the top surface of the concrete flange for Specimens 2 

through 5, as shown in Figure 4-8(c), to record the compressive strain at the extreme fibre 

of the top flange. Steel strain gauges, type CEA-06-250UW-120, were placed on the 

exposed flexural reinforcement to identify yield and to record any change of stress at 

each side of the stirrups, as shown in Figure 4-8(d). The same strain gauges were placed 

on the exposed portion of stirrups to determine any load transfer that may have occurred 

through the steel spacers, as shown in Figure 4-8(d). 

 

 

Figure 4-8: Strain Gauges used in the Experimental Investigation: (a) Small 45 Degree 
Rosette Strain Gauges, (b) Constructed 45 Degree Rosette Strain Gauge, (c) Strain Gauge 

on Concrete Flange, and (d) Strain Gauges on Flexural Reinforcement and Stirrups. 

 

(a) 

(d) (c) 
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Gauge on Stirrup 
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To simulate concrete removal to a depth of approximately 100 mm, i.e., removal to a 

depth of 25 mm behind the first layer of flexural reinforcement, a void comprised of four 

25 mm layers of foam insulation glued together was designed and constructed to enclose 

the flexural reinforcement, as shown in Figure 4-9. A full description of the void design, 

construction and installation is presented in Appendix C. 

 

 

Figure 4-9: Foam Insulation Void Enclosing the Flexural Reinforcement. 

 
4.6 

Identical testing procedures used for each specimen consisted of three stages, as shown in 

TESTING PROCEDURE 

Figure 4-10. In the first stage, the specimens were loaded using the hydraulic jacks 

underneath the strongfloor to the target simulated distributed yield load, ωy, at the quarter 

points. Before testing, the equivalent quarter point load of the self-weights of the 



91 
 

 
 

specimen and testing apparatus, ωow and ωapp, respectively, were calculated and deducted 

from the target distributed load value to determine the applied loads ω. 

 
 

  

Figure 4-10: Designed Testing Procedure for Specimens. 

 
In the second stage, the specimens were then loaded by the MTS actuator at a rate of 4 

mm/min to the anticipated point yield load, Py. The actuator was set to stroke control 

rather than load control to avoid a brittle failure. Deflection of the specimen due to the 

actuator load decreased the jack pressure, which was therefore manually increased to 

maintain the target simulated distributed yield load, ωy.  

 
In the third, and final stage, once the load in the actuator reached Py, the simulated 

distributed load, ω, was manually increased to ensure that the actuator and hydraulic jack 

loads increased proportionally, at a ratio of Py/4ωy, until failure. Failure was defined as 
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the maximum load the specimen was able to resist, as determined using the moment-

deflection relationship. 

 
The specific loads applied to each specimen, predicted for the yielding states, are shown 

in Table 4-3. The procedures for determining these values for the Control Specimen and 

Specimen 1 are presented in Appendix C. 

 
Instrumentation readings were recorded and archived using the UWO data acquisition 

system at one second intervals. The load cell, actuator and strain gauge readings were 

also continually recorded. Cracks were monitored visually and the loads, location, width 

and length were recorded.  

 
A Linear Voltage Displacement Transducer (LVDT) was positioned at the midspan of the 

specimens to continually measure the centerline vertical deflection, Δmid. LVDTs were 

also positioned at the supports of the Control Specimen and Specimen 1 to measure the 

horizontal end movements and so verify that the specimen was translating symmetrically 

about the midspan. 

Table 4-3: Testing Loads for each Specimen. 

Specimen ωow 
(kN) 

ωapp 
(kN) 

ωy  
(kN) 

Py  
(kN) 

Control 3.26 1.28 26.0 91.3 
1 2.85 1.28 26.3 91.3 
2 2.85 1.28 22.8 80.7 
3 2.85 1.28 22.8 80.7 
4 2.85 1.28 22.7 80.3 
5 2.81 1.28 22.7 80.3 
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4.7 

All specimens were tested using the three-stage testing procedure outlined in Section 4.6. 

Detailed loading histories for each specimen are presented in Appendix C. The crack 

locations and deflected shapes of all specimens are shown in 

RESULTS  

Figure 4-11. The moment-

deflection relationships for the Control Specimen and Specimens 1 to 5 and the predicted 

cracking, Mcr, yield, My, and ultimate, Mu, moments for an identical beam with no 

exposed reinforcement, calculated in accordance with the CHBDC (CSA 2006) are 

shown in Figure 4-12. The key results are shown in Table 4-4.  

4.7.1 Control Specimen 

The observed and predicted behaviour of the Control Specimen agree very closely. 

Cracking initiated when the deflection reached 2 mm and the moment was approximately 

27 kN.m, close to the predicted value of 22.5 kN.m. The flexural reinforcement yielded at 

a moment of 153.5 kN.m when the centreline deflection was 16.2 mm, and strain 

hardening commenced immediately thereafter. The failure moment, corresponding to 

crushing of the concrete compression flange, was 201.5 kN.m at a centreline deflection of 

108.4 mm. Upon unloading, the elastic recovery of the Control Specimen was 

approximately 20 mm. 
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(a) 

 

Control Specimen: 

(b) 

 

Specimen 1: 

(c) 

 

Specimen 2: 

(d) 

 

Specimen 3: 

(e) 

 

Specimen 4: 

(f) 

 

Specimen 5: 

Figure 4-11: Elevations of Specimens with Crack Locations and Deflected Shapes (   = ω 
and   = P). 
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Figure 4-12(a): Moment-deflection Relationships: Control Specimen and Specimen 1; 

 

 

Figure 4-12(b): Moment-deflection Relationships: Specimens 2 and 3; 
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Figure 4-12(c): Moment-deflection Relationships: Specimens 4 and 5. 

 

Table 4-4: Predicted and Observed Test Results. 

Specimen 

Predicted-No Exposed  
Flexural Reinforcement 

 Observed 

Mcr 
(kN.m) 

My 
(kN.m) 

Mu 
(kN.m) 

 My 
(kN.m) 

Mu 
(kN.m) 

Control 22.5 152.3 200.9  153.5 201.5 

1 10.2 152.2 203.3  152.9 158.4 

2 10.2 134.6 190.5  135.2 142.5 

3 10.2 134.6 192.5  133.6 143.7 

4 9.4 133.9 184.2  142.8 149.9 

5 9.4 133.8 184.2  137.8 149.0 
 

Figure 4-11(a) shows the crack location and deflected shape of the Control Specimen 

near failure. Vertical flexural cracks initially formed near midspan and spread over the 

full length of the tension side of the specimen with increased loading. The crack spacing, 
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approximately 200 mm, was the same as the stirrup spacing. The cracks propagated up 

the web and into the concrete flange and bifurcated at the neutral axis at a depth of 

approximately 20 mm. The vertical cracks gradually became more inclined closer 

towards the supports, turning into shear cracks.  

 
Longitudinal cracks due to transverse tensile stresses were observed along the centerline 

on top of the flange of the Control Specimen. The transverse flange reinforcement was 

sufficient to prevent the splitting failure mode observed in Nemec’s (1996) Control 

Specimen, which had no transverse reinforcement in the compression flange. 

 
The Control Specimen accurately demonstrated the behaviour of a T-section beam with 

no reinforcement exposed and provided a baseline for comparison with the five 

specimens with exposed flexural reinforcement.  

4.7.2 Specimens with Exposed Flexural Reinforcement 

All the specimens with exposed flexural reinforcement exhibited very similar behaviour. 

As shown in Figure 4-11, cracking initiated with one or two cracks near the midspan 

when the moments due to simulated uniformly distributed load, ω, and the self-weights of 

the specimen and testing apparatus reached approximately 10 kN.m. As summarized in 

Table 4-4, these observed values agree closely with that predicted for an identical beam 

with reduced web depth, hw, as shown in Appendix C. The observed yield moments were 

between 0.8% less and 6.6% greater than the yield moment computed for an identical 

beam without exposed reinforcement. After yielding, the flexural resistance increased 

only slightly and ductile behaviour with no strain hardening was observed as shown in 

Figure 4-12. All specimens failed by the crushing of the concrete compression region at 
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moments of 75% to 81% of that predicted for an otherwise identical beam with no 

exposed reinforcement. 

 
The observed crack patterns and deflected shapes were, in general, similar to those 

observed by previous researchers (e.g., Cairns and Zhao 1993), as shown in Figure 4-11. 

Unlike the Control Specimen, only one or two vertical flexural cracks formed near the 

midspan before or soon after the simulated uniformly distributed load, ω, was applied, 

propagating up the web into the concrete flange and bifurcating at the neutral axis. The 

widths of these vertical cracks were significant because the exposed flexural 

reinforcement was ineffective in providing crack control. Inclined cracks appeared above 

the ends of the exposed length that are consistent with the inclination of the compressive 

strut in this region. Bond-splitting cracks also appeared at the re-entry point of the 

flexural reinforcement, particularly in Specimens 2, 3 and 5.  

 
There were slight differences in the crack patterns observed. For Specimens 2 and 3, two 

large cracks appeared near midspan after the simulated uniformly distributed load, ω, was 

applied. After the unsymmetrical point load, P, was applied, the crack at the lesser-loaded 

side of the midspan closed, the crack at the greater-loaded side opened and more cracks 

appeared under the point load. The concrete in the flange crushed above the largest crack 

observed: under the interior load ω for Specimen 2 and under P for Specimen 3. For 

Specimen 3, long parallel inclined shear cracks also appeared at the high-shear region in 

the concrete web between P and the left support. For Specimen 4, flexural tensile cracks 

appeared in the top concrete flange near the supports, likely due to the stress reversal that 
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occurs in this region, as described by Cairns and Zhao (1993), with concrete in flexural 

tension above the neutral axis. 

4.7.3 Effectiveness of Testing Apparatus 

The testing apparatus essentially behaved as anticipated, as shown in Figure 4-13 for the 

Control Specimen. The spreader beams deflected as the specimens were loaded and the 

steel rods remained vertical, showing the effectiveness of their fabricated end joints. The 

spreader beam clearances and concrete flange void diameters were sufficient to prevent 

interference between the testing apparatus and the specimens during testing. The testing 

apparatus also effectively simulated the uniformly distributed load on the specimens: in 

particular, the hydraulic jacks beneath the strongfloor successfully applied equal loads at 

the specimen quarter points. The steel rollers at both supports effectively facilitated the 

horizontal movement of each end of the specimen, allowing symmetric translations about 

the midspan during testing. 

4.7.4 Impact of Steel Spacers 

As described in Section 4.5, steel spacers were placed in the gap between the concrete 

and exposed flexural reinforcement to: (1) maintain the effective depth of the flexural 

reinforcement, d, by preventing the gap above the reinforcement from closing, as had 

been observed by Nemec (1996); and, (2) facilitate load transfer through bearing to 

develop a plastic truss to resist shear in the exposed reinforcement region. 
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Figure 4-13: Testing Apparatus: Partial Elevations Showing Unloaded (Left) and Loaded (Right) for Control Specimen, (a) Predicted 
and, (b) Observed.

(a) 

(b) 

100 



101 
 

 
 

The steel spacers were successful in maintaining the depth of the flexural reinforcement, 

d, and subsequently the lever arm, jd, where they were placed. They allowed the 

specimens to reach and surpass their yield capacities, exhibiting a ductile behaviour until 

failure. The significance of the spacer location is demonstrated by the response of 

Specimens 2 and 3, which were otherwise identical. As shown in Figure 4-11, Specimen 

2 had a steel spacer placed at the location of the maximum moment, Mmax, while 

Specimen 3 had four steel spacers spaced equally along the exposed length. Specimen 2 

exhibited a slightly higher yield moment than Specimen 3, Figure 4-12(b), but its 

ultimate moment was slightly lower because the gap between the concrete and the 

flexural reinforcement reduced, as shown in Figure 4-14, reducing jd. As shown in Figure 

4-11, Specimen 3 failed at the location of the maximum moment, under the applied point 

load, whereas Specimen 2 failed closer to midspan where the gap had reduced. Therefore, 

steel spacers can be effective in maintaining the depth of the flexural reinforcement, 

particularly if they are spaced uniformly along the exposed length of the flexural 

reinforcement and so are located at, or near, the locations of the maximum applied 

moment and the maximum deflection. 

 
The steel spacers did not facilitate load transfer from the concrete web to the exposed 

stirrups, as theorized in the discussion concerning Figure 4-7. Tensile strains in the 

stirrups along the length of exposed flexural reinforcement were negligible. Also, the 

measured strains in the exposed flexural reinforcement on either side of the stirrups 

revealed little or no change. Therefore, even with steel spacers inserted, the stirrups were 

ineffective in the region where the flexural reinforcement is exposed.  
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Figure 4-14: Impact of Steel Spacer under the Interior Load ω Near the Left Support: (a) 
Specimen 2 and, (b) Specimen 3. 

 
4.7.5 Effect of Unsymmetrical Loading Configurations 

Unsymmetrical loading configurations were studied to assess the typical reinforced 

concrete bridge conditions, i.e., uniformly distributed dead load and a live load moving 

along the length of the bridge. The unsymmetrical loading applied to Specimens 2 and 3 

were compared to the symmetrical loading applied to Specimens 1, 4, and 5 to examine 

its effect on the inclination of the compressive strut near the ends of the exposed length. 

Strain rosettes were placed directly above the ends of the exposed lengths, to investigate 

the orientation and, for Specimen 2 and 3, change in orientation of the principal 

compressive strains at this location, as shown in Figure 4-8. Using these data, the 

orientation of the principal strains in the concrete web at the left and right supports, θL 

and θR from the horizontal, respectively, are shown for Specimen 1 in Figure 4-15, for 

Specimen 2 in Figure 4-16, and for Specimen 3 in Figure 4-17. 
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Figure 4-15: Orientation of the Principal Compressive Strains at the End of the Exposed 
Length for Specimen 1 (Symmetrical Loading Configuration). 

 
Specimen 1 was subjected to symmetrical loading so the variation of θL and θR with the 

maximum applied moment should be similar. The simulated uniformly distributed load, 

ω, caused the principal compressive strains near both supports to be steep, between 40 to 

50 degrees initially but the application of the point load, P, at midspan at a moment of 

approximately 62 kN.m, caused both θL and θR to decrease.  

 
Specimens 2 and 3 were subjected to unsymmetrical loading so the variations of θL and 

θR with the maximum applied moment are different. Application of the point load, P, near 

the left support caused the principal compressive strains near the left support to become 

steeper and those near the right support to become more horizontal. In the interval when 

only ω was applied, to a moment of 63 kN.m, θL and θR were fairly constant but once P 

was applied, the values of θL and θR changed significantly.  
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Figure 4-16: Orientation of the Principal Compressive Strains at the End of the Exposed 
Length for Specimen 2 (Unsymmetrical Loading Configuration). 

 

 

Figure 4-17: Orientation of the Principal Compressive Strains at the End of the Exposed 
Length for Specimen 3 (Unsymmetrical Loading Configuration). 
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4.8 

This chapter has presented the experimental investigation of reinforced concrete T-

section specimens with exposed flexural reinforcement including descriptions of: the 

design, construction and test procedure of the Control Specimen, the five specimens with 

exposed flexural reinforcement and testing apparatus; the impact of preserving the 

effective depth of the exposed flexural reinforcement by the insertion of steel spacers 

between the it and the soffit of the concrete web. This chapter also presented the results 

of the experimental investigation. 

SUMMARY AND CONCLUSIONS 

 
The Control Specimen accurately demonstrated the behaviour of a T-section beam with 

no reinforcement exposed and provided a baseline for comparison with the five 

specimens with exposed flexural reinforcement. The behaviour of the specimens with 

exposed flexural reinforcement was drastically different. All failed by crushing of the 

concrete flange at a moment greater than the yield moment, My, and less than the ultimate 

moment, Mu, of the same beam with no exposed reinforcement. With the flexural 

reinforcement exposed, strain hardening did not occur and so the capacity did not 

increase significantly beyond the yield moment. 

 
An innovative testing apparatus was designed using an actuator and a system of whiffle 

trees to represent the concurrent point and uniformly distributed loads that more 

accurately represents typical loadings in the field. The testing apparatus effectively 

simulated a uniformly distributed load applied to the specimens, applying equal loads at 

the specimen quarter points without interfering with the specimens during testing. The 
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steel rollers at both supports effectively facilitated the horizontal movement of each end 

of the specimen, allowing symmetric translations about the midspan during testing. 

 
Steel spacers were inserted in the gap between the exposed flexural reinforcement and the 

soffit of the concrete web to preserve the effective depth of the flexural reinforcement, d, 

and to observe the possibility of the steel spacers facilitating load transfer to the stirrups 

and create a plastic truss. Unsymmetrical loading configurations were also studied to 

examine their effect on the inclination of the compressive strut near the ends of the 

exposed length.  

 
The results of the experimental investigation have yielded the following conclusions: 

 
1. Reinforced concrete T-section specimens, having a flexural reinforcement ratio, ρ, 

of 0.37%, with their flexural reinforcement exposed over 82.5 to 90% of the span 

length can reach the flexural capacity of the original beam and exhibit a ductile 

failure. 

2. Steel spacers placed in the gap between the concrete and exposed flexural 

reinforcement can be effective in maintaining the depth of the flexural 

reinforcement, particularly if they are spaced uniformly along the exposed length 

of the flexural reinforcement and so are located at, or near, the locations of the 

maximum applied moment and the maximum deflection. Even with steel spacers 

inserted, however, the stirrups are ineffective in the region where the flexural 

reinforcement is exposed.  

3. The loading configuration can significantly impact the inclination of the 

compressive strut near the ends of the exposed length. When a specimen is 
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subjected to symmetrical loading the variation of the orientation of the 

compressive strut at the left and right supports are similar. The application of 

unsymmetrical loading can cause the compressive strut near the support with the 

greater reaction to become steeper and the compressive strut near the support with 

the lesser reaction to become more horizontal.  
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CHAPTER 5: 

5.1 

COMPARISON OF EXPERIMENTAL AND 
PREDICTED RESULTS 

Experimental testing of the reinforced concrete T-section specimens with exposed 

flexural reinforcement was carried out in the UWO Structures Laboratory. This chapter 

includes a comparison of these experimental test results with those predicted to 

investigate the validity of the two analytical approaches developed in Chapter 3. Related 

detailed calculations are presented in Appendix D.  

INTRODUCTION 

5.2 

The Strain Compatibility Analysis (SCA) described in Section 3.3 was used to analyze 

the five specimens with exposed flexural reinforcement. The incremental procedure could 

not be used directly because the exposed length of flexural reinforcement, 

COMPARISON TO STRAIN COMPATIBILITY ANALYSIS PREDICTIONS 

exp , for each 

specimen was predetermined and therefore the number of segments, n, was constant. The 

procedure was therefore altered slightly by incrementally changing the lever arm, jd(x), at 

the location of the maximum moment, Mmax, until the horizontal force and moment 

equilibrium and the strain compatibility requirements outlined in Eqns. [2.1] to [2.4] were 

exactly satisfied. The initial lever arm at this location was taken equal to that at yield of 

the identical beam with no exposed reinforcement according to the CHBDC (CSA 2006). 

If Eqn. [2.4] was not satisfied, jd(x) at the location of Mmax was incorrect and so was 

increased by 0.1 mm. This iterative procedure was repeated until Eqn. [3.18] was 

satisfied. The resulting Mmax was the predicted ultimate moment using the Strain 
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Compatibility Analysis, MSCA, corresponding to a crushing failure of the concrete 

compression flange. The following assumptions were adopted: 

 
• The maximum compressive stress, fc'' in Eqn. [3.6], was assumed equal to fc';  

• The stresses in the exposed flexural reinforcement, fs, were calculated using the 

stress-strain approximations obtained from tensile tests;  

• The maximum compressive strain, εcu, was taken as the greater of the compressive 

strain recorded at failure by the strain gauges on the top surface of the concrete 

compression flange or 0.0035 (CSA 2006);  

• The moment was assumed to be constant under the actuator head due to its 

rigidity; and, 

• A segment length of Δx = 10 mm was used. 

5.2.1 Ultimate Flexural Capacity 

As shown in Table 5-1, the predicted ultimate moments for each specimen correlate well 

with the observed values. The test-to-predicted ratios average 1.00 and have a standard 

deviation of 0.068. The failure modes for all five specimens were also consistent with 

those predicted: crushing of the concrete compression flange after yielding of the exposed 

flexural reinforcement. The higher predicted ultimate moments for Specimens 2 and 3 are 

attributed to the observed reduction of the gap between the exposed flexural 

reinforcement and the bottom of the concrete web, which was not accounted for in the 

analysis. The predicted ultimate moments were computed for εcu equal to the compressive 

strain recorded at failure and 0.0035: the observed difference was negligible. Details of 
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the prediction of the ultimate moment using the Strain Compatibility Analysis for 

Specimen 1 are presented in Appendix D. 

Table 5-1: Predicted Strain Compatibility Analysis and Test Results. 

 
 
The Strain Compatibility Analysis was also used to analyze Specimen 4 at a concrete 

compressive strain at midspan below the strain at failure. For an assumed concrete 

compressive strain value at midspan of 0.00179 the predicted and observed maximum 

moments were comparable, with values of 112.5 kN.m and 109.0 kN.m, respectively. 

The predicted and observed strain in the exposed flexural reinforcement were also similar 

with values of 0.00172 and 0.00168, respectively. This demonstrates that the current 

analysis can be used to accurately predict the maximum moment for any given concrete 

compressive strain. 

Specimen 
Observed Predicted  

-(SCA) 
Observed / 
Predicted 

Reinforcement Strain at 
Failure 

Mu 
(kN.m) 

MSCA 
(kN.m)  Obs. Bonded 

Pred. 
SCA 
Pred. 

Control 201.5 - - - 0.044 - 

1 158.4 157.2 1.01 0.0048 0.0446 0.0037 

2 142.5 152.7 0.93 0.0146 0.0502 0.0136 

3 143.7 157.1 0.92 0.0117 0.0531 0.0151 

4 146.6 134.4 1.09 0.0030 0.0446 0.0032 

5 145.8 134.3 1.08 0.0058 0.0446 0.0038 

   Mean 1.00    

   Std Dev. 0.068    
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5.2.2 Neutral Axis Depth 

The variation of the neutral axis depth, c(x), and location of the centroid of the 

compressive force, y(x), at failure predicted using the Strain Compatibility Analysis 

correlates well with the observed cracking patterns, as shown in Figure 5-1. Flexural 

cracks were only observed in the tension zone near the location of Mmax. The neutral axis 

depth variation along the specimen length is similar to that observed by Cairns and Zhao 

(1993) and Harris (1996), described in Section 2.4. The neutral axis depth increases away 

from the location of Mmax moving below the soffit of the specimen and subsequently 

reemerging above the specimen causing concrete stresses of the opposite sense of those at 

Mmax (i.e., tensile above the neutral axis and compressive below it).  

 
5.2.3 Reinforcement Strain at Failure 

Marked differences in the flexural reinforcement strain at failure were observed, as also 

shown in Table 5-1. The predicted strain values shown are for an otherwise identical 

beam without exposed reinforcement, and for the specimen with exposed flexural 

reinforcement as computed using SCA. The observed strains are consistently 

significantly lower than those predicted assuming no exposed reinforcement. This 

phenomenon was cited by Cairns and Zhao (1993) as a cause of the reduced ductility of 

the observed response. The SCA-predicted strains are, in contrast, similar to those 

observed. The larger differences for Specimens 1, 2 and 3 are attributed to the assumption 

of εcu of 0.0035, necessary because the actual extreme compression fibre strains were not 

measured for these specimens. 
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Figure 5-1: Variation of the SCA-predicted Neutral Axis Depth and Compressive Force Centroid at Failure and Observed 
Cracking Patterns. 
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5.3 

The Strut-and-Tie Analysis (STA) was also used to predict the capacity of the five 

specimens with exposed flexural reinforcement. The procedure described in Section 3.4 

again could not be used directly because the length and position of the exposed flexural 

reinforcement, 

COMPARISON TO STRUT-AND-TIE ANALYSIS PREDICTIONS 

exp , for each specimen was predetermined and so was altered slightly by 

rearranging Eqn. [3.45] to solve for the maximum moment. This predicted value, MSTA, 

corresponds to a crushing failure of the concrete web at the ends of the exposed length. 

Also, because α1 is included in Eqn. [3.25] it is appropriate for comparison with 

experimental observed values to divide the concrete compressive strength value used in 

this equation by 0.90 in accordance with the note to Clause 10.1.6 in A23.3-04 (CSA 

2004). 

 
The STA-predicted ultimate moments are shown in Table 5-2, and can be only compared 

indirectly with the observed capacities because the associated predicted failure mode was 

not the failure mode observed. For Specimens 1, 2 and 3, the predicted MSTA exceed both 

the predicted MSCA and observed Mu. For these specimens, the crushing failure of the 

web is not expected before the crushing in the compression flange predicted using the 

Strain Compatibility Analysis. This is consistent with what was observed. For Specimens 

4 and 5, with greater lengths of exposed flexural reinforcement, web crushing failure at 

the ends of the exposed flexural reinforcement was predicted at loads that are a fraction 

of the observed ultimate loads. The crushing failure of the web was expected and not 

consistent with the failure observed. There is currently no proven explanation of this 

discrepancy, but possible explanations include: the simplification of the applied loading 
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(i.e., representing the load applied through the 150 mm diameter actuator head as a single 

point); small variations in the assumed and actual depths of the flexural reinforcement, 

depths of concrete removed and location of the exposed length; differences in the 

assumed and actual concrete strengths; and, strut confinement provided by the first fully 

enclosed stirrup between the support and the end of the exposed length.  

Table 5-2: Predicted Strut-and-Tie Analysis and Test Results. 

* Bond issue with strain gauge. 
 
  

Specimen 

Observed Predicted
- (STA) 

Observed / 
Predicted 

Orientation of Principal 
Compressive Strains at Failure 

Mu 
(kN.m) 

MSTA 
(kN.m) - 

Obs. θ (⁰) θSTA (⁰) 

θL          θR θL        θR   

Control 201.5 - - - - 

1 158.4 179.6 0.88 14.9 13.5 12.7 

2 142.5 173.5 0.82 27.9 12.6 24.9 12.1 

3 143.7 169.2 0.85 22.2 11.5 24.6 12.4 

4 146.6 37.0 3.96 -* 13.4 

5 145.8 35.8 4.07 14.4 13.4 
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5.3.1 Orientation of Principal Compressive Strains 

Table 5-2 also indicates the predicted orientation of the principal compressive strains 

computed from the equations in Table 3-2. The STA-predicted orientations computed, 

θSTA, are similar to those observed. The predicted and observed orientations at the left 

and right supports during testing of Specimen 3 are shown in Figure 5-2. The predicted 

θSTA closely agree with those observed, the orientation remained fairly constant while the 

simulated uniformly distributed load, ω, was applied and began to increases at the left 

support and decrease at the right support as the point load, P, increased. The differences 

between the predicted and observed orientations may be due to the inherent difficulty of 

accurately measuring strains on the surface of the concrete web rather than the centre of 

the compressive strut within the web. The predicted and observed orientations of the 

principal compressive strains for the other specimens are presented in Appendix D.  
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(a) 

 
(b) 

Figure 5-2: Orientation of the Predicted and Observed Principal Compressive Strains at 
the Supports of Specimen 3: (a) Left, (b) Right. 
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5.4 

This chapter has presented a comparison of the experimental test results of the T-section 

specimens with exposed flexural reinforcement to predictions made using the two 

analytical approaches developed in Chapter 3. 

SUMMARY AND CONCLUSIONS 

 
The Strain Compatibility Analysis was validated by the experimental test results. The 

predicted ultimate moments computed using the Strain Compatibility Analysis for each 

specimen correlated well with the observed values with test-to-predicted ratios that 

averaged 1.00 and had a standard deviation of 0.068. The failure modes for all five 

specimens were also consistent with those predicted: crushing of the concrete 

compression flange after yielding of the exposed flexural reinforcement. The variation of 

the neutral axis depth and location of the centroid of the compressive force at failure 

predicted using the Strain Compatibility Analysis correlate well with the observed 

cracking patterns. Marked differences in the flexural reinforcement strain at failure were 

observed. The observed strains were consistently significantly lower than those predicted 

assuming no exposed reinforcement and were similar the SCA-predicted strains.  

 
The Strut-and-Tie Analysis could only be indirectly validated by the experimental test 

results because the associated failure modes were not the failure modes observed. For 

specimens with shorter lengths of exposed flexural reinforcement, the predicted ultimate 

moments exceeded both the predicted ultimate moment from the Strain Compatibility 

Analysis and observed ultimate moment. For specimens with greater lengths of exposed 

flexural reinforcement, the predicted ultimate moments were significantly lower than 

those observed. There is currently no explanation for this discrepancy. The orientation of 
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the principal compressive strains predicted using the Strut-and-Tie Analysis were similar 

to those observed.  

 
The results of the experimental investigation have yielded the following conclusions: 

 
1. The Strain Compatibility Analysis accurately predicts the ultimate moment of a 

T-section beam with exposed flexural reinforcement for the failure modes 

corresponding to a crushing of the concrete compression flange either before or 

after yielding of the exposed flexural reinforcement. 

2. The Strut-and-Tie Analysis gives a conservative predicted ultimate moment for a 

T-sections beam with exposed flexural reinforcement for the failure mode 

corresponding to a web crushing failure at the ends of the exposed flexural 

reinforcement.  The Strut-and-Tie Analysis did, however, accurately predict the 

orientation of the principal compressive strains at the supports.  
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CHAPTER 6: 

6.1 

SUMMARY, CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE RESEARCH 

Reinforced concrete highway bridge girders are susceptible to deterioration caused 

primarily by corrosion of the reinforcing steel from the use of deicing salts. These bridge 

girders are repaired using the patch repair process, where the contaminated concrete is 

removed and replaced with new concrete, temporarily exposing the flexural 

reinforcement (e.g., Bertolini et al. 2004, Nehdi 2010). In this state, the flexural capacity 

is not easily computed because the usual provisions for design, as specified in Section 8.8 

of the CHBDC (CSA 2006), are not applicable and no guidance is provided to assist 

practitioners. Thus, the focus of this research was to rectify this knowledge gap in the 

current code criteria by developing and validating new tools to assist practicing engineers 

wishing to quantify the safety of such girders during rehabilitation. 

SUMMARY 

 
Chapter 2 presented a literature review of previous experimental and analytical 

investigations concerning reinforced concrete specimens with exposed flexural 

reinforcement. Seven unique combinations of specimen geometry and load location have 

been investigated by others comprising a total of 219 specimens subjected to only single- 

or two-point loading, with only one specimen having a T-cross section. Reinforced 

concrete bridge girders typically feature a substantial top slab and resist substantial 

uniformly distributed dead loads, so these loading configurations and specimens are not 

realistic. The marked differences in the failure mode, flexural capacity, and crack patterns 

were attributed to exposing the flexural reinforcement. Typically (e.g., Cairns and Zhao 
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1993) the following five distinct failure modes are observed: (1) Yielding of the exposed 

flexural reinforcement followed by crushing of the concrete on the compression face of 

the specimen; (2) Crushing of the concrete on the compression face of the specimen 

before yielding of the exposed tension flexural reinforcement; (3) Compression failure in 

the concrete at the ends of the exposed flexural reinforcement length; (4) Anchorage 

failure between one end of the exposed flexural reinforcement and the adjacent support; 

and, (5) Shear failure. It was concluded from this review that a reinforced concrete girder 

with exposed flexural reinforcement with given dimensional and material properties 

could exhibit the ductile failure it was originally designed to display with no reduction in 

yield capacity if the exposed length was not excessive or the flexural reinforcement ratio 

too large.  

 
Chapter 3 presented two analytical approaches that were developed based on the findings 

of the literature review to assist practitioners in evaluating typical reinforced concrete 

bridge girders with exposed flexural reinforcement. The Strain Compatibility Analysis 

(SCA), using an accurate stress-strain concrete relationship, addressed the most 

predominant failure mode observed in previous experimental investigations (e.g., Cairns 

and Zhao 1993): crushing of the concrete on the compression face of the specimen before 

the exposed flexural reinforcement yields in tension. The Strut-and-Tie Analysis (STA) 

addressed another important failure mode that was observed by others (Cairns and Zhao 

1993): crushing of the concrete at the end of the exposed length due to the inclined 

concrete compression strut intersecting the exposed end. The longest exposed length that 

ensured that a girder still exhibits a ductile failure with no reduction in yield capacity 

according to both analyses was defined as the critical length of exposed flexural 



121 
 

 
 

reinforcement, c . The Strut-and-Tie Analysis was used to analyze the critical distance 

from the support the end of the exposed length where the compressive strut would 

interest the exposed length, e , for a typical T-section beam with: (1) point load only; (2) 

simulated uniformly distributed load only; and, (3) both point and simulated uniformly 

distributed loads.  

 
Chapter 4 described the new experimental investigation of T-section specimens with 

exposed flexural reinforcement undertaken to observe the effect of exposing the flexural 

reinforcement and to evaluate the accuracy of the analytical approaches developed in 

Chapter 3. A Control Specimen and five specimens with exposed flexural reinforcement 

were designed, constructed and tested in the Structures Laboratory at the University of 

Western Ontario. An innovative testing apparatus was designed using an actuator and a 

system of whiffle trees to apply concurrent point and uniformly distributed loads that 

more accurately represents typical loadings in the field. Steel spacers were inserted 

between the exposed flexural reinforcement and the soffit of the concrete web to preserve 

the effective depth of the flexural reinforcement and to facilitate load transfer to the 

stirrups and create a plastic truss. Unsymmetrical loading configurations were applied to 

two specimens with exposed flexural reinforcement to facilitate comparison of the 

behaviour with symmetrically loaded specimens. The application of unsymmetrical 

loading caused the compressive strut near the support with the greater reaction to become 

steeper and the compressive strut near the support with the lesser reaction to become 

more horizontal. The chapter concluded with the results of the experimental 

investigation. 
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Chapter 5 presented a comparison of the experimental test results with analytical 

predictions to assess the validity of the two analytical approaches developed in Chapter 3.  

6.2 

The major conclusions of this study are as follows: 

CONCLUSIONS 

 
 

1. Comparing the results from the Strut-and-Tie Analysis for three loading cases, a 

simulated uniformly distributed load significantly affects the critical distance 

from the support to the end of the exposed length,  e. Thus an experimental 

investigation of T-section specimens loaded with a combination of a point load 

and a simulated uniformly distributed load would result in more realistic findings. 

2. Reinforced concrete T-section specimens, having a flexural reinforcement ratio, ρ, 

of 0.37%, with their flexural reinforcement exposed over 82.5 to 90% of the span 

length can reach the flexural capacity of the original beam and exhibit a ductile 

failure. All test specimens failed by crushing of the concrete flange at a moment 

greater than the yield moment, My, and less than the ultimate moment, Mu, of the 

identical beam with no exposed reinforcement. With the flexural reinforcement 

exposed, strain hardening does not occur and so the capacity does not increase 

significantly beyond My. 

3. Steel spacers placed in the gap between the concrete and exposed flexural 

reinforcement were effective in maintaining the depth of the flexural 

reinforcement, particularly if spaced uniformly along the exposed length of the 

flexural reinforcement and so are located at, or near, the locations of the 

maximum applied moment and the maximum deflection. Even with steel spacers 
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inserted, however, the stirrups are ineffective in the region where the flexural 

reinforcement is exposed.  

4. The Strain Compatibility Analysis accurately predicts the ultimate moment of T-

section beams with exposed flexural reinforcement for the failure modes 

corresponding to a crushing of the concrete compression flange either before or 

after yielding of the exposed flexural reinforcement. The test-to-predicted ratios 

for the five test specimens averaged 1.00 and with a standard deviation of 0.068. 

The failure modes in all cases were consistent with those predicted.  

5. The Strut-and-Tie Analysis gives a conservative predicted ultimate moment for T-

section beams with exposed flexural reinforcement for the failure mode 

corresponding to a web crushing failure at the ends of the exposed flexural 

reinforcement.  The Strut-and-Tie Analysis could only be indirectly validated by 

the experimental test results because the associated failure modes were not 

consistent with the failure mode observed. For specimens with 82.5 to 86.5% of 

flexural reinforcement exposed, the Strut-and-Tie Analysis predicted correctly 

that web crushing failure at the ends of the exposed flexural reinforcement would 

not occur. For the two specimens with 90% of the flexural reinforcement exposed, 

web crushing failure was not observed even though it was predicted according to 

the Strut-and-Tie Analysis. There is currently no explanation for this discrepancy. 

The Strut-and-Tie Analysis did, however, accurately predict the orientation of the 

inclined compressive struts at the supports.  

6. Both the Strain Compatibility Analysis (SCA) and Strut-and-Tie Analysis (STA) 

can be used for any length and location of exposed flexural reinforcement, 
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moment distribution or cross-section. They are important tools to assist 

practitioners evaluating reinforced concrete bridge girders with exposed flexural 

reinforcement. 

6.3 

Recommendations for future work are as follows: 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 
1. To validate the Strut-and-Tie Analysis further an experimental investigation to 

explain the discrepancy observed in this current study is needed. The investigation 

should include specimens with shorter lengths of exposed flexural reinforcement 

located close to the supports. The length of exposed flexural reinforcement would 

be selected to prevent the failure mode predicted by the Strain Compatibility 

Analysis and so ensure the specimens would exhibit a compression failure at the 

end of the exposed length. 

2. To expand the scope of these analytical approaches, more experimental 

investigations should be performed. In particular multi-span bridges comprised of 

both positive and negative moment regions should be investigated. The 

investigations would have to consist of two-span specimens with the flexural 

reinforcement exposed in one of three locations: (1) positive moment region; (2) 

spanning both the positive and negative moment regions; and, (3) entirely in the 

negative moment region near the centre support. 

3. To expand the scope of the experimental investigations to include cyclic loading. 

This would examine potential fatigue damage of the specimens with exposed 

flexural reinforcement and would account for the typical loading combination of a 
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uniformly distributed dead load and repeated moving traffic live loads applied to a 

reinforced concrete bridge girder.  

4. To investigate the effect of removing the deteriorated concrete and subsequently 

replacing it with new concrete while the uniformly distributed dead load is still 

applied with more experimental investigations. The investigations would involve 

repairing specimens with exposed flexural reinforcement using the current 

standards while the simulated uniformly distributed dead load is applied. Once the 

concrete has cured the specimens would then be tested and compared to a control 

specimen. 

5. To assist practitioners evaluating a reinforced concrete bridge with exposed 

flexural reinforcement develop design guidelines, based on the research findings. 

The guidelines would require the practitioner to input the geometric and material 

properties of the girder, the general shape of the moment distribution and the 

length and location of the exposed flexural reinforcement to predict the maximum 

moment that could be applied. The guidelines would also be able to predict the 

maximum length of flexural reinforcement that could be exposed that would 

ensure the girder would still exhibit a ductile flexural failure and exhibit no 

reduction in its flexural capacity.  
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A.1 

This appendix presents summarizes of the eight previous experimental investigations on 

the effect of exposed flexural reinforcement that have been conducted since 1980. The 

investigations involve a total of 219 specimens subjected to either single- or two-point 

loading. The descriptions include the number of specimens tested, specimen dimensions, 

loading configurations, testing procedures and measurements taken. 

INTRODUCTION 

A.2 

Minkarah and Ringo (1982) investigated the effect of both cover and flexural bond 

losses, located symmetrically about midspan, on 40 reduced scale (127 mm x 254 mm x 

2900 mm) simply supported specimens, shown in 

MINKARAH AND RINGO (1982) 

Figure A-1, including 5 control 

specimens, on the behaviour and capacity of specimens. All the specimens were designed 

to exhibit a ductile failure, where the concrete crushes after the flexural reinforcement has 

yielded, if no reinforcement was exposed. To simulate a loss of cover only, the concrete 

was blocked out from the bottom of the flexural reinforcement, whereas to simulate loss 

of both cover and bond, the concrete was blocked out to the top of the flexural 

reinforcement. The specimens, with various lengths of exposed flexural reinforcement,  

exp , were subjected to single-point loads at two distances, αL, of 900 mm and 460 mm 

from the left support, to avoid applying the point load within the exposed length. The 

specimens were loaded in 2.23 kN increments, at a rate of 0.088 kN/sec at 3 minute 

intervals. Before and after each load increment, deflection measurements and strain 

gauge readings were recorded to failure (Minkarah and Ringo 1982). 
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Figure A-1: Details of: (a) Control Specimen (b) Test Specimen with Loss of Only Cover 
(c) Test Specimen with Loss of Cover and Flexural Bond (Minkarah and Ringo 1982). 

 
A.3 

Nokhasteh, Eyre and McLeish (1992) tested three specimens, with spans of 2000 mm and 

cross sections 130 mm wide by 200 mm deep, as shown in 

NOKHASTEH, EYRE AND MCLEISH (1992) 

Figure A-2. The specimens 

were subjected to two equal point loads, placed symmetrically about the midspan. Both 

would exhibit a ductile failure if no reinforcement was exposed. No control specimen was 

tested; rather the test specimens were compared to theoretical load capacities for a beam 

with fully bonded flexural reinforcement. The test objective was to investigate the effects 

of the exposed flexural reinforcement length, exp , and flexural reinforcement ratio, ρ, 

response. Two specimens had exposed flexural reinforcement for 85% of the span length, 

one containing 0.93% flexural reinforcement and the other 1.85%. The third specimen 

(a) (b) (c) 
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contained 0.93% flexural reinforcement exposed over 25% of the span. The loading was 

applied in three cycles, removing the load between cycles, until failure. 

 

Figure A-2: Dimensions for a Typical Specimen with Exposed Flexural Reinforcement 
(Nokhasteh, Eyre and McLeish 1992). 

 
A.4 

Cairns and Zhao (1993) tested 19 simply supported specimens, subjected to two equal 

point loads placed symmetrically about the midspan, as shown in 

CAIRNS AND ZHAO (1993) 

Figure A-3. Their study 

focused on the ratio of exposed flexural reinforcement length to span of specimens,  

exp /L, spacing of the two loads, S, the flexural reinforcement ratio, ρ, and the 

span/effective depth ratio, L/d (Cairns and Zhao 1993).  
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Figure A-3: Details of Test Specimens, all Dimensions in mm (Cairns and Zhao 1993). 

 
In the first part of their study, two concrete specimens were investigated, one designed to 

fail in shear and the other to fail in flexure, to study the changing patterns of strains in the 

specimens. The concrete strain distribution over the beam depth was recorded for 

increased lengths of exposed flexural reinforcement, exp . The test specimens were 

subjected to two-point loading, as shown in Figure A-4(a), to initiate cracking at service 

loads, and then the load was reduced to represent the dead load present during the repair 

process.  Next, concrete surrounding the flexural reinforcement was removed over a 

length of 200 mm to either side of the centerline of the specimen and the concrete surface 

strains were again measured. After that, the spacing between the two loads was increased, 

Figure A-4(b), and then reduced, Figure A-4(c) and the concrete surface strain 

distributions were measured for both loading conditions, at applied loads that cause the 

same midspan moment as occurred for the loading condition in Figure A-4(a). The load 

was then relocated to the original position, an additional 150 mm of concrete was 
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removed at both ends of the exposed length, and the loading was reapplied at each of the 

three load spacings. This process was repeated until the exposed flexural reinforcement 

length, exp , was equal to 1900 mm. 

  

 

Figure A-4: Loading Configuration for the First Part of Study (Cairns and Zhao 1993). 

 
In the second part of their investigation, 17 test specimens were tested to failure to 

examine the effect of the exposed length of flexural reinforcement, shown in Figure A-3. 

Three specimens were controls with no exposed reinforcement; five of the specimens 

with exposed flexural reinforcement were designed to fail in shear if the flexural 

reinforcement is fully bonded, while the nine remaining specimens were designed to fail 

in flexure. The specimens were incrementally loaded using the loading configuration 

shown in Figure A-4(a) at a constant rate of deflection to failure, defined as the maximum 

load applied to the specimen and when crushing of concrete became visible. The concrete 

(a) 

(b) 

(c) 
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strain distribution was recorded at each load increment and midspan deflection and 

reinforcement strains were continuously recorded. 

 
Cairns (1995) performed further tests to investigate the shear capacity of concrete 

specimens with exposed flexural reinforcement as an extension of his previous study. 

Three series of tests were conducted involving a total of ten specimens with 3000 mm 

spans, as shown in Figure A-5. Each series included one control specimen, with no 

exposed reinforcement, while the remaining specimens had portions of one of the two 

flexural reinforcing bars exposed. The control specimens in each series were designed to 

fail in shear before the flexural capacity was reached. The test specimens were 

continuously loaded at 20 kN increments to failure. The concrete strain distributions, 

midspan deflections and crack development were recorded. Failure was defined as a rapid 

drop of load or the appearance of a large inclined crack in the shear span. 

 

 

Figure A-5: Details of Test Series Specimens A, B, and C (Cairns 1995). 

 

A B C 
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A.5 

Raoof and Lin (1993, 1995, 1997) performed 132 tests of both small and large-scale test 

on simply supported specimens subjected to single-point loading with various lengths of 

exposed flexural reinforcement, 

RAOOF AND LIN (1993, 1995, 1997) 

exp . The specimens were designed to exhibit either a 

ductile failure or a shear failure if no reinforcement was exposed. The parameters 

investigated in the tests were; length of exposed flexural reinforcement, exp , location of 

the exposed flexural reinforcement with respect to the nearest support, end , load 

position(s) relative to the support, αL, flexural reinforcement ratio, ρ, depth of concrete 

removal, dc, inclusion of compression reinforcement, As', effect of stirrups.  

 
Their small-scale tests consisted of 44 specimens with spans of 1760 mm and overall 

depths of 130 mm, shown in Figure A-6. Eleven sets of four specimens each were tested: 

three specimens had exposed flexural reinforcement near one support and the fourth was 

a control specimen with no exposed reinforcement. None of the specimens contained 

shear or top flexural (i.e., compression) reinforcement. The exposed length of flexural 

reinforcement was either 300 mm or 400 mm and the concrete removal depth was 35 

mm. The position of single point load from the left support was varied between 12 and 

70% of the span length. The load was increased incrementally until the specimen failed, 

with the centre-span displacement, crack patterns and concrete strains over the full depth 

of the specimens recorded. 
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Figure A-6: Details of Small-scale Test Specimens with Width = 75 mm (Raoof and Lin 
1997). 

 
Their large-scale tests consisted of 88 specimens with spans of 3000 mm and overall 

depths of 150 mm, shown in Figure A-7.  These tests were similar to the small-scale tests, 

but explored a much larger number of parameters. Raoof and Lin (1997) tested simply 

supported specimens loaded by single and two-point loads at located α = 0.3 from the left 

support and exposed flexural reinforcement lengths of 0.1, 0.2 and 0.3L starting at the left 

support. They tested specimens with and without shear and top (compression) 

reinforcement. The load deflection curves for the test specimens were recorded and used 

to determine the type of failure. 

 

 

Figure A-7: Details of Large-scale Test Specimens (Raoof and Lin 1997). 
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A.6 

Nemec (1996) tested two 4000 mm long T-section specimens subjected to two equal 

point loads placed symmetrically about the midspan with an overall depth of 400 mm, an 

overall width of 800 mm, a flange thickness of 90 mm, a web thickness of 200 mm, and 

an effective flexural reinforcement depth of 342 mm, as shown in 

NEMEC (1996) 

Figure A-8. The first 

was the control specimen and the second was the test specimen with 2000 mm of the 

flexural reinforcement exposed symmetrical about the midspan to simulate the effect of 

concrete removal during repair procedures. Both were designed to exhibit a flexural 

failure and had sufficient shear capacity to prevent a premature shear failure. Both were 

tested to failure using a constant rate of deflection, during which the crack patterns, 

centerline deflection, crack widths and the load applied were measured and recorded. 

 

 

Figure A-8: Details of Test Specimens and Loading Configuration (Bartlett 1998). 

 
A.7 

Xoing, Liu and Xie (2000) tested eight simply supported reinforced concrete specimens, 

with spans of 1800 mm, subjected to two equal point loads to determine their flexural 

capacity. The specimens subjected to short-term loads are shown in 

XOING, LIU AND XIE (2000) 

Figure A-9 and the 

specimens subjected to long-term loads are shown in Figure A-10. There were four 
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control specimens and four specimens with exposed flexural reinforcement over 50% of 

the span. For the short-term tests, the load was incrementally increased by 5 kN. At each 

increment, the deflections at the midspan and under the point loads, crack widths and 

patterns, concrete strain distributions and reinforcement strains were measured. For the 

long-term tests, the specimens were loaded to 45% of the short-term ultimate load-

carrying capacity of the control specimens and the midspan deflections were measured 

over 150 days. 

 

 

Figure A-9: Details of Short-term Test Specimens (Xiong, Liu and Xie 2000). 

 

 

Figure A-10: Details of Long-term Test Specimens (Xiong, Liu and Xie 2000). 
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A.8 

Sharaf and Soudki (2002) investigated the flexural capacity of five reinforced concrete 

specimens with varying lengths of debonded (or exposed) flexural reinforcement, 

SHARAF AND SOUDKI (2002) 

exp , 

subjected to two point loads located symmetrically about the midspan, as shown in Figure 

A-11. The specimens had spans of 1500 mm, 100 x 150 mm cross-section and were 

designed to fail in flexure. One specimen was a control and the other four had the flexural 

reinforcement exposed over 50, 70, 80, and 90% of the span. The end of the exposed 

lengths extended beyond the constant moment region, into the constant shear region. 

During the tests the crack formations, ultimate capacity and deformations were recorded. 

 

 

Figure A-11: Details of Test Specimens (Sharaf and Soudki 2002). 
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APPENDIX B:  
ANALYSIS OF SPECIMENS WITH EXPOSED 

FLEXURAL REINFORCEMENT 
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B.1 

This appendix presented complete derivations of equations relating to both the Strain 

Compatibility Analysis and the Strut-and-Tie Analysis. The derivation of the equations 

for each case of the neutral axis depth location, Z, used in the Strain Compatibility 

Analysis for a linear concrete stress-strain relationship is presented, as shown in 

INTRODUCTION 

Table 3-

1. The equations include: the location of the compressive force from the neutral axis 

depth, y(x); resultant compressive force in the concrete, C(x); extreme concrete 

compression fibre stress, fc(x); and, the extrapolated strain in the concrete at the depth of 

the exposed flexural reinforcement, εcs. The derivations for the equations tanθsL and 

tanθsR, as shown in Table 3-2, as part of the process of determining the critical distance 

from the support to the end of the exposed length, e , for the Strut-and-Tie-Analysis 

subjected to a combination of a concurrent point and simulated distributed load (i.e., 

Load Case 3) are also presented. The derivations are completed for the point load 

locations regions 1 to 3. 
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B.2 

 

STRAIN COMPATIBILITY ANALYSIS (SCA) DERIVATION 
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B.3 

 

STRUT-AND-TIE ANALYSIS (STA) DERIVATION 
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APPENDIX C:  
EXPERIMENTAL INVESTIGATION 
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C.1 

This appendix presents the mechanical properties of the 25M flexural reinforcement used 

in the experimental investigation presented in Chapter 4. Test Bar Sample 1 was obtained 

from the flexural reinforcement for the Control Specimen and Specimen 1 and Test Bar 

Sample 2 was obtained from the flexural reinforcement for Specimens 2 through 5. 

Approximate stress-strain relationships were developed from the observed load-

displacement data. Test Bar Samples 1 and 2 exhibited different behaviour and therefore 

unique stress-strain approximations were necessary.  

STRESS-STRAIN RELATIONSHIP FOR REINFORCEMENT 

 
Figure C-1 shows the tensile test data, in the form of load-displacement data corrected for 

the initial slip in the grips at low loads. The tests were done using the Tinius-Olsen 

Machine in the UWO Structures Laboratory. The samples were loaded to failure at a 

constant rate of approximately 1kN/minute. The load-displacement data were corrected 

for the displacement exhibited during the loading initiation for the Tinius-Olsen Machine 

to properly grip the bar at both hold points: the associated hand calculations are shown on 

the subsequent pages. 

 
For Test Bar Sample 1, the yield and ultimate loads, Pby and Pbu, were approximately 228 

and 335 kN, respectively. For Test Bar Sample 2, the yield and ultimate loads, Pby and 

Pbu, were approximately 201 and 306 kN, respectively. 
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Similarly, for Test Bar Sample 2: 

 

 
 

 

Figure C-1: Tensile Test for Bar Samples 1 and 2. 

 
Approximations of the stress-strain relationship were developed from the observed load-

displacement data. The displacement readings from a Linear Voltage Displacement 

Transducer (LVDT) attached to the moving crosshead of the Tinius-Olsen Machine could 

not be used directly to calculate the strains in the test bar samples because the 

displacement readings, Δ, were comprised of both the elongation of the bar, Δb, and the 

displacement of the Tinius-Olsen Machine, Δm. Therefore the following procedure was 
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used to rectify displacement readings from the Tinius-Olsen Machine and develop a 

stress-strain approximation: 

 
1. The loads from the load-displacement data were converted to stresses, fs, as: 

[C1-1]          b
s

b

Pf
A

=  

 where Ab = 500 mm2 for a 25M bar. 
 
 

2.  The yield and ultimate strengths, fy and fu, respectively, were computed from 

Eqn. [C1-1] using the yield and ultimate loads observed in the load-displacement 

data. 

3. The stress-strain approximation was divided into elastic and plastic ranges, with 

the elastic range corresponding to loads up to yielding.  

4. In the elastic range, the stress-strain relationship for the test bar sample was 

assumed linear with a slope equal to the elastic modulus of steel, Es = 200000 

MPa. The strain in the bar sample at yield, εy, was computed as: 

 

[C1-2]           y
y

s

f
E

ε =  

  
5. The elongation of the test bar sample at yield was computed as: 

[C1-3]         *
by yL∆ = ε  

where L* was the gauge length of the test bar sample, assumed to be the distance between 

the centre of the grips. 
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6. The displacement attributed to the Tinius-Olsen Machine at yield was computed 

as: 

[C1-4]                my y by∆ = ∆ −∆  

where Δy is the observed displacement reading at yield.  

 
7. The stress-strain relationship of the Tinius-Olsen Machine was also assumed to be 

linear and the corrected elongation of the test bar sample in the elastic range was 

computed as: 

[C1-5]        my
b m b

by
P

P
∆

∆ = ∆ −∆ = ∆ −  

8. In the plastic range, the stress-strain relationship of the Tinius-Olsen Machine was 

assumed to remain linear and the elongation of the test bar sample was computed 

using Eqn. [C1-5]. 

9. The strain in the test bar sample, εs, was computed as: 
 

[C1-6]           b
s *L

∆
ε =  

The stress-strain approximations for Test Bar Samples 1 and 2 are shown in Figure C-2. 

For Test Bar Sample 1, fy and fu were approximately 456 and 669 kN, respectively. For 

Test Bar Sample 2, fy and fu were approximately 402 and 612 kN, respectively. 
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Figure C-2: Stress-strain Approximations for Test Bar Samples 1 and 2. 
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C.2 

This appendix presents the analysis to determine representative ratios of dead-to-live load 

bending moments for the Waterloo Regional Road #97, or Cedar Creek Road Underpass 

Bridge, shown in 

DEAD-TO-LIVE LOAD MOMENT RATIO FOR A TYPICAL REINFORCED CONCRETE 
BRIDGE 

Figure C-3, which crosses Highway 401 at km 268. This bridge was 

chosen because it is representative of a large portion of aging reinforced concrete bridges 

in Ontario. 

 

 

Figure C-3: Cedar Creek Road Underpass Bridge (MTO 2010). 

 
The bridge was designed in 1960 by A.M. Lount and Associates and is currently owned 

and maintained by the Ministry of Transportation of Ontario (MTO). It has an overall 

length of 79.8 m, consisting of four spans of 14.9 m, 26.2 m, 26.2 m, and 12.5 m, and a 

skew of 45⁰, as shown in Figure C-4. The two interior spans accommodate six vehicle 

lanes beneath them. The cross-section, shown in Figure C-5, comprises six reinforced 

cast-in-place continuous concrete T-section girders running the entire length of the 

bridge. The girders have a height of 1500 mm, a top flange thickness of 200 mm, a web 

width of 460 mm, and a clear cover of only 25.4 mm to the first layer of reinforcement. 
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The original concrete had a specified minimum compressive strength at 28 days of 20.9 

MPa.  

 

 

Figure C-4: Elevation of Cedar Creek Road Underpass (Dillon Consulting 2001). 

 

 

Figure C-5: Typical Cross-section of Cedar Creek Road Underpass (Dillon Consulting 
2001). 

 
The Cedar Creek Road Underpass was analyzed using the design provisions of the 

Canadian Highway Bridge Design Code (CHBDC) (CSA 2006). The dead load consisted 

of the girders own weight, the concrete deck, concrete parapet walls, and asphalt topping. 

For simplicity, the total dead load was assumed shared equally between the girders 

resulting in specified dead loads, ωDL, of 33.1 kN/m per girders. 

 
Both CL-625-ONT Truck and Lane Loads were considered as live loads in accordance 

with the CHBDC. The bridge consists of two lanes and therefore has a modification 

factor for multi-lane loading, RL, equal to 0.9. A dynamic load allowance, DLA, of 0.25 
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was applied to the Truck Load, but as defined in the CHBDC is already included in the 

Lane Load. The Simplified Method given in Clause 5.7.1, was used to determine the 

fraction of the total live load shear, VT, and moment, ML, applied to each girder VG and 

MG, respectively, yielding: 

 
MG=0.548MT 

 
and 

 
VG=0.615VT 

 
The ratio of the specified dead load moment, MD, to the total specified moment, MT, for 

the positive moment region of a typical interior span is shown in Figure C-6. The 

maximum value of 0.399 is governed by the Truck Load and occurs at approximately 0.4 

times the length of the positive moment region from the left dead load point of 

contraflexure. The figure is not symmetric because the analysis has been carried out for 

the truck moving in on direction only. These results are very similar to the findings by 

Buckland et al. (1988) where the ratio of the specified dead load moment to total moment 

of concrete T-section bridge girders was approximately 0.422. With this information the 

relative magnitudes of the uniformly distributed dead load and the live load can be 

proportioned to reflect realistic loading conditions. 
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Figure C-6: The Ratio of Dead Load Moment, MD, to Total Load Moment, MT, over the 
Positive Moment Region of the Cedar Creek Road Underpass Bridge. 
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C.3 

This appendix presents the design, construction and installation of the foam block out that 

surrounds the flexural reinforcement during casting to ensure that it is exposed once the 

concrete is cured. Rehabilitation of deteriorated reinforced concrete bridge girders 

requires concrete removal to a depth of 25.4 mm behind the first layer of flexural 

reinforcement (OPSS 1994). To simulate the concrete removal, a void of foam insulation 

100 mm thick was designed and constructed to enclose the flexural reinforcement as 

shown in 

DESIGN, CONSTRUCTION AND INSTALLATION OF FOAM VOID 

Figure C-7.  

 
The void design was comprised of four 25.4 mm layers that had a constant width of 200 

mm and a length equal to the exp  of each specimen. Layer 1 was an unaltered layer of 

foam insulation, as shown in Figure C-8(a). Layer 2 had two sets of sections removed in 

the longitudinal and transverse directions, using a router. The two longitudinal sections 

were located at the flexural reinforcement and the transverse sections, spaced at 200 mm 

intervals, were located at the stirrups to ensure proper depth and placement, as shown in 

Figure C-8(b). Layer 3 consisted of three individual sections to allow space for both the 

flexural reinforcement and stirrups, as shown in Figure C-8(c). Layer 4 consisted of three 

sections with 12 mm holes drilled at the stirrup locations to completely surround them 

and enclose the flexural reinforcement, as shown in Figure C-8(d). 
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Figure C-7: Foam Insulation Void: (a) Plan of Individual Layers, (b) Section A-A at Stirrups, and (c) Section B-B between Stirrups 
(All Dimensions in mm). 
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Figure C-8: Foam Insulation Void: (a) Layer 1, (b) Layer 2, (c) Layer 3 and (d) Layer 4. 
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A procedure for the placement of the foam insulation and the reinforcement was 

developed to block out the concrete. Layers 1, 2 and 3 were cut to size, routered, glued 

together and positioned in the formwork. The stirrups and flexural reinforcement were 

placed into the foam and adjusted to align with their respective slots, as shown in Figure 

C-9(a). The nominal top reinforcement was placed to secure the stirrups in position. The 

middle section of Layer 3 was glued to the middle of Layer 2, enclosing the bottom of the 

stirrups, as shown in Figure C-9(b). 12 mm holes were drilled at the stirrup locations in 

Layer 4 which was then cut and glued to Layer 3, completely enclosing the flexural 

reinforcement and the bottom portion of the stirrups, as shown in Figure C-9(c). Once the 

adhesive dried, the end edges of Layer 4 were beveled at a 45⁰ angle, 20 mm x 20 mm, to 

remove a potential stress raiser at the re-entrant corner of the concrete, as shown in 

Figure C-9(d). Finally, the remaining formwork, transverse reinforcement, and steel 

hangers were placed and the specimen was cast. 
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Figure C-9: Foam Insulation Void Placement: (a) Stirrups and Flexural Reinforcement 
Placement, (b) Layer 3 Placement, (c) Layer 4 Placement, (d) Beveled Edge of Layer 4. 
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C.4 

This appendix presents the method used to determine the loads that were applied during 

the experimental testing of the specimens. This includes calculating the required point 

and simulated distributed point loads that would result in the specimen to yield and fail 

using the moment contribution ratio determined in the loading analysis of a typical 

reinforced concrete bridge girder. It also includes the calculations of the own weight of 

the specimens and the testing apparatus, which are then deducted from the simulated 

distributed point loads. The sample hand calculations for the Control Specimen and 

Specimen 1are presented in the subsequent pages. 

TESTING PROCEDURE 
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C.5 

The loading histories for the Control Specimen and Specimens 1 to 5 are shown in 

LOADING HISTORIES OF SPECIMENS 

Figure 

C-10 to C-15, respectively. All specimens were tested using the three-stage testing 

procedure to apply the simulated uniformly distributed load, ω, and point load, P. As 

outlined in Section 4.6: 

 
1. In Stage 1, the simulated uniformly distributed load, including the specimen self 

weight, was increased to a value approximating the service load. 

2. In Stage, the point load was increased to a value approximating the service live 

load, while the simulated uniformly distributed load was maintained. 

3. In Stage 3, both the simulated uniformly distributed load and the point load were 

simultaneously increased proportionally until failure. 

 
 There was an initial simulated uniformly distributed load, ω, caused by the self-weight of 

the specimen and the testing apparatus as shown at t = 0.  
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Figure C-10: Loading History for Control Specimen. 

 

Figure C-11: Loading History for Specimen 1. 

 

Figure C-12: Loading History for Specimen 2. 

-120 
-100 
-80 
-60 
-40 
-20 

0 
0 200 400 600 800 1000 1200 1400 1600 

L
oa

d 
(k

N
) 

Time, t (secs) 

Stage 1 Stage 3 Stage 2 

ω 

ωy 
ωu 

P 

Py 

Pu 

-120 
-100 
-80 
-60 
-40 
-20 

0 
0 200 400 600 800 1000 1200 

L
oa

d 
(k

N
) 

Time, t (secs) 

Stage 1 Stage 3 Stage 2 

ω 

ωy 

P 

Py 

-160 

-130 

-100 

-70 

-40 

-10 

0 100 200 300 400 500 600 700 800 

L
oa

d 
(k

N
) 

Time, t (secs) 

Stage 1 Stage 3 Stage 2 

ω 

ωy 

P 

Py 



189 
 

 

 
 

 

Figure C-13: Loading History for Specimen 3. 

 

Figure C-14: Loading History for Specimen 4. 

 

Figure C-15: Loading History for Specimen 5. 
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C.6 

The predicted cracking moment, Mcr, for the Control Specimen and Specimen 1 are 

presented in the following hand calculations. The predicted cracking moments, Mcr, for 

the remaining specimens were computed in the same manner as Specimen 1. 

CRACKING MOMENT, MCR 
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APPENDIX D:  
COMPARISON OF EXPERIMENTAL AND PREDICTED 

RESULTS 
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D.1 

This appendix presents the results of the procedure for predicted the ultimate moment 

using the Strain Compatibility Analysis, described in Section 3.3, for Specimen 1. It also 

presents the orientation of principal strain figures for Specimens 1, 2, and 5.  

INTRODUCTION 

D.2 

First, the cross-section, material properties, spans, loading configuration and length and 

location of the exposed length of Specimen 1 were defined. The pertinent given 

information needed to perform the Strain Compatibility Analysis are as follows: 

STRAIN COMPATIBILITY ANALYSIS RESULTS FOR SPECIMEN 1 

 
Geometric Properties: Material Properties: 

Span Length, L = 4000 mm Concrete Strength, fc’ = 43.65 MPa 
Overall Height, h = 400 mm RFT Yield Strength, fy = 456 MPa 
Flange Width, bf = 810 mm RFT Ultimate Strength, fu = 669 MPa 
Web Width, bw = 202 mm Young’s Modulus of Steel, Es = 200000 MPa 
Flange Thickness, hf = 90 mm Young’s Modulus of Concrete, Ec = 26720 MPa 
Reduced Web Height, hw = 210 mm Ultimate Compressive Strain, εcu = 0.0035 
Effective Depth of RFT, d = 342 mm Strain at Maximum Compressive Stress, εc’ = 0.00279 
Area of Flexural RFT, As = 1000 mm2  
Exposed Length, exp  = 3300 mm  

Critical Distance, e L = e R =350 mm  

Loading Configuration Properties (Shown in Figure D-1): 

Normalized Location of Point Load from Left Support, α = 0.5 
Point Load Moment Contribution, Mp/MT = 0.616 
Ratio of Point Load to Total Simulated Distributed Load at Failure, K (P/4ω) = 0.8 
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Figure D-1: Loading Configuration for Specimen 1 (All Dimension in mm). 

 
Specimen 1 was divided into 10 mm segment lengths, Δx, for a total of 330 segments, n. 

The maximum moment, Mmax, under the actuator head was assumed to be constant due to 

its large diameter (150 mm) and rigidity. The constant moment was taken as the moment 

at the edge of the actuator head, at distance of 75 mm from the centre of the specimen. 

 
The Moment Distribution Equations for each region are as follows: 
 
Region (1) (0 mm ≤ x ≤ 500 mm): M = RLx 
 
Region (2) (500 mm ≤ x ≤ 1500 mm): M = RLx – ω(x – 500 mm) 
 
Region (3) (1500 mm ≤ x ≤ 1925 mm): M = RLx – ω(2x – 2000 mm) 
 
Region (4) (1925 mm ≤ x ≤ 2000 mm): M = (1925 mm)RL – ω(1850 mm) 
 
 
where RL is the reaction at the left support, x is the distance from the support to the centre 

of a segment, and ω is the simulated distribute point load. 

 
Since the loading is symmetrical, the analysis was completed to only one side of the 

specimen and then doubled. 

 
 
  

1000 
P/2 ω ω ω ω 

500 425 
(1) (2) (3) Regions: 

P/2 

(4) 
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Case 1 (0 ≤ c(x) ≤ hf): 
 
 
Region (4) (1925 mm ≤ x ≤ 2000 mm): 
 
The incremental procedure starts for Case 1 at the segment at the location of Mmax, within 

Region (4). 

 
First, the extreme compression fibre strain, εc(x), at the location of Mmax was assumed 

equals to εcu = 0.0035 (CSA 2006). 

 
Next, the depth of the lever arm at the location of Mmax was assumed as: 
 
jd(x) = 334.98 mm 

 
The depth of the neutral axis, c(x), is computed as for this case: 
 

 
2

d - jd(x)
c(x) = 

k (x)
 

 
where k2(x) is the coefficient that define the line of action of the resultant compression 

force and is computed as: 

    
 

-1
c c c c

2 2
c c 1

2 ε (x)/ε '  - tan ε (x)/ε '
k (x) = 1 - 

ε (x)/ε ' k (x)  
 
Where k1(x) is the coefficient of the average compressive stress, computed as: 
 

   
 

2
c c

1
c c

ln 1 + ε (x)/ε '
k (x) = 

ε (x)/ε '
 

 
From these calculation, c(x) = 17.62 mm  for entire region. 
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The resultant compressive force was calculated: 
 

 
 
C(x) = 469210 N  for entire region 
 
The tensile force in the exposed flexural reinforcement, T, was set equal to the C(x) 

computed and the Mmax was computed as: 

 M(x) = Tjd(x)  
 
Mmax = 157176655 N.mm  for entire region 
 
The left support reaction, RL is specified in terms of ω is: 
 
RL = 2ω + 0.5P (where P = 4Kω) 
 
RL = 2ω + 0.5(0.8)(4ω) = 3.6ω 
 
Therefore the maximum moment, Mmax, at x = 1925 mm, in terms of ω is: 

Mmax = 5080ω 

Therefore: 
 
ω = 30940 N 
RL = 111385 N 
P = 99009 N 
 
The extrapolated strain in the concrete at the depth of the flexural reinforcement is: 
 

cs c
dε (x) = ε (x) 1 - 

c(x)
 
 
 

 

 
εcs(x) = 0.0644  for entire region 

1 cC(x) = k (x)f bc(x)
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Region (3) (1500 mm ≤ x ≤ 1925 mm): 
 
The moment, M(x), and lever arm, jd(x), at the centre of each segment now change and 

now the incremental procedure is used as described in Chapter 3. 

x(mm) M(x) 
(M.mm) 

jd(x) 
(mm) 

Eqn. [3.3] 

εc(x) 
(Assumed) 

k1(x) 
Eqn. 
[3.9] 

k2(x) 
Eqn. 

[3.10] 

c(x)  
(mm) 
Eqn. 

[3.11] 

C(x) –  
T (N) 
Eqn. 

[3.12] 

εcs(x)  
Eqn. 

[3.13] 

1920 156929133 334.45 0.00249 0.6566 0.3733 20.21 0.00 0.03972 
1910 156434088 333.40 0.00186 0.5530 0.3584 24.00 0.00 0.02477 
1900 155939044 332.34 0.00154 0.4829 0.3514 27.48 0.00 0.01770 
1890 155443999 331.29 0.00133 0.4301 0.3472 30.85 0.00 0.01345 
1880 154948955 330.23 0.00117 0.3884 0.3443 34.17 0.00 0.01062 
1870 154453910 329.18 0.00105 0.3544 0.3423 37.45 0.00 0.00862 
1860 153958866 328.12 0.00096 0.3260 0.3409 40.71 0.00 0.00713 
1850 153463821 327.07 0.00088 0.3020 0.3397 43.95 0.00 0.00600 
1840 152968776 326.01 0.00081 0.2813 0.3389 47.18 0.00 0.00512 
1830 152473732 324.96 0.00076 0.2633 0.3381 50.40 0.00 0.00441 
1820 151978687 323.90 0.00071 0.2476 0.3376 53.61 0.00 0.00384 
1810 151483643 322.85 0.00067 0.2336 0.3371 56.81 0.00 0.00337 
1800 150988598 321.79 0.00063 0.2211 0.3367 60.02 0.00 0.00298 
1790 150493553 320.74 0.00060 0.2099 0.3363 63.21 0.00 0.00265 
1780 149998509 319.68 0.00057 0.1998 0.3361 66.41 0.00 0.00236 
1770 149503464 318.63 0.00054 0.1907 0.3358 69.60 0.00 0.00212 
1760 149008420 317.57 0.00051 0.1823 0.3356 72.79 0.00 0.00192 
1750 148513375 316.52 0.00049 0.1747 0.3354 75.97 0.00 0.00174 
1740 148018331 315.46 0.00047 0.1676 0.3352 79.16 0.00 0.00158 
1730 147523286 314.41 0.00045 0.1612 0.3351 82.34 0.00 0.00144 
1720 147028241 313.35 0.00043 0.1552 0.3350 85.52 0.00 0.00132 
1710 146533197 312.30 0.00042 0.1496 0.3348 88.70 0.00 0.00121 
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Case 2 (hf ≤ c(x) ≤ hw): 
 
Now the neutral axis is located in the web and the depth of the neutral axis c(x) is 

repeatedly adjusted until:  

[ ]
3 2

w f w f

f f

b h b h2c 1 - 1 - 1 -  - 3 c - d + jd 1 - 1 - 1 -  = 0
b c b c

        
        

           
 

 

x(mm) M(x) 
(M.mm) 

jd(x) (mm) 
Eqn. [3.3] 

c(x) (mm) 
(Assumed) Eqn. [3.4] fc(x) (MPa) 

εcs(x)  
Eqn. 

[3.13] 
1700 146038152 311.24 92.36 0.00 12.55 0.00127 
1690 145543108 310.19 95.96 0.00 12.11 0.00116 
1680 145048063 309.13 99.95 0.00 11.68 0.00106 
1670 144553018 308.08 104.36 0.00 11.26 0.00096 
1660 144057974 307.02 109.21 0.00 10.86 0.00087 
1650 143562929 305.97 114.50 0.00 10.48 0.00078 
1640 143067885 304.91 120.23 0.00 10.12 0.00070 
1630 142572840 303.86 126.35 0.00 9.78 0.00062 
1620 142077796 302.80 132.83 0.00 9.46 0.00056 
1610 141582751 301.75 139.60 0.00 9.17 0.00050 
1600 141087706 300.69 146.60 0.00 8.90 0.00044 
1590 140592662 299.64 153.77 0.00 8.65 0.00040 
1580 140097617 298.58 161.05 0.00 8.42 0.00035 
1570 139602573 297.53 168.38 0.00 8.22 0.00032 
1560 139107528 296.47 175.74 0.00 8.03 0.00028 
1550 138612483 295.42 183.08 0.00 7.85 0.00026 
1540 138117439 294.36 190.38 0.00 7.69 0.00023 
1530 137622394 293.31 197.63 0.00 7.54 0.00021 
1520 137127350 292.25 204.80 0.00 7.40 0.00019 
1510 136632305 291.20 211.90 0.00 7.27 0.00017 
1500 136137261 290.14 218.92 0.00 7.15 0.00015 
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Region (2) (500 mm ≤ x ≤ 1500 mm): 

 
Case 2 (hf ≤ c(x) ≤ hf+hw): 

The segments are now located in moment region 2, but the neutral axis is still located in 

the web. 

x(mm) M(x) 
(M.mm) 

jd(x) (mm) 
Eqn. [3.3] 

c(x) (mm) 
(Assumed) Eqn. [3.4] fc(x) (MPa) 

εcs(x)  
Eqn.  

[3.13] 
1490 135332813 288.43 230.13 0.00 6.98 0.00013 
1480 134528366 286.71 241.13 0.00 6.81 0.00011 
1470 133723918 285.00 251.89 0.00 6.67 0.00009 
1460 132919471 283.28 262.45 0.00 6.53 0.00007 
1450 132115023 281.57 272.80 0.00 6.41 0.00006 
1440 131310576 279.86 282.95 0.00 6.29 0.00005 
1430 130506128 278.14 292.93 0.00 6.18 0.00004 
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Case 3 (hf+hw ≤ c(x) ≤ ∞): 

Now the neutral axis is located below the soffit of the concrete web and the depth of the 

neutral axis c(x) is repeatedly adjusted until:  

[ ]

3 3
w f w f w

f f

2 2
w f w f w

f f

b h b h h2c 1 - 1 - 1 - - 1 -  -  
b c b c c

b h b h h- 3 c  -d + jd 1 - 1 - 1 - - 1 -  -  = 0
b c b c c

      
      

       
      
      

       

  

 

x(mm) M(x) 
(M.mm) 

jd(x) (mm) 
Eqn. [3.3] 

c(x) (mm) 
(Assumed) Eqn. [3.4] fc(x) (MPa) 

εcs(x)  
Eqn. 

[3.13] 
1420 129701681 276.43 302.78 0.00 6.08 0.00003 
1410 128897233 274.71 313.34 0.00 5.98 0.00002 
1400 128092786 273.00 325.06 0.00 5.88 0.00001 
1390 127288339 271.28 338.15 0.00 5.78 0.00000 
1380 126483891 269.57 352.86 0.00 5.68 -0.00001 
1370 125679444 267.85 369.50 0.00 5.58 -0.00002 
1360 124874996 266.14 388.49 0.00 5.48 -0.00002 
1350 124070549 264.42 410.36 0.00 5.38 -0.00003 
1340 123266101 262.71 435.82 0.00 5.28 -0.00004 
1330 122461654 261.00 465.83 0.00 5.18 -0.00005 
1320 121657206 259.28 501.74 0.00 5.08 -0.00006 
1310 120852759 257.57 545.47 0.00 4.98 -0.00007 
1300 120048312 255.85 599.89 0.00 4.88 -0.00008 
1290 119243864 254.14 669.46 0.00 4.78 -0.00009 
1280 118439417 252.42 761.53 0.00 4.69 -0.00010 
1270 117634969 250.71 889.14 0.00 4.59 -0.00011 
1260 116830522 248.99 1077.76 0.00 4.49 -0.00011 
1250 116026074 247.28 1385.27 0.00 4.39 -0.00012 
1240 115221627 245.57 1974.23 0.00 4.29 -0.00013 
1230 114417179 243.85 3559.77 0.00 4.19 -0.00014 
1220 113612732 242.14 755774.37 0.00 4.07 -0.00015 
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Case 4 (hf+hw ≤ c(x) ≤ ∞): 

Now the neutral axis is located above the concrete flange of the specimen and the stresses 

have reversed (i.e., tension above the neutral axis and compression below). The depth of 

the neutral axis c(x) is repeatedly adjusted until:  

[ ]

3 3
w w w f w

f f

2 2
w w w f w

w f
f f

b b h h h2c  + 1 - 1 - - 1 -  -  
b b c c c

b b h h h- 3 c + d - (h  + h ) - jd  + 1 - 1 - - 1 -  -  = 0
b b c c c

     
     

      
     
     

      

 

x(mm) M(x) 
(M.mm) 

jd(x) (mm) 
Eqn. [3.3] 

c(x) (mm) 
(Assumed) Eqn. [3.5] fc(x) (MPa) 

εcs(x)  
Eqn. 

[3.14] 
1210 112808285 240.42 5199.02 0.00 4.23 -0.00016 
1200 112003837 238.71 2449.14 0.00 4.43 -0.00017 
1190 111199390 236.99 1650.92 0.00 4.63 -0.00018 
1180 110394942 235.28 1270.85 0.00 4.83 -0.00019 
1170 109590495 233.56 1048.55 0.00 5.03 -0.00020 
1160 108786047 231.85 902.67 0.00 5.23 -0.00020 
1150 107981600 230.14 799.58 0.00 5.42 -0.00021 
1140 107177152 228.42 722.91 0.00 5.62 -0.00022 
1130 106372705 226.71 663.59 0.00 5.82 -0.00023 
1120 105568257 224.99 616.35 0.00 6.02 -0.00024 
1110 104763810 223.28 577.84 0.00 6.22 -0.00025 
1100 103959363 221.56 545.85 0.00 6.42 -0.00026 
1090 103154915 219.85 518.85 0.00 6.62 -0.00027 
1080 102350468 218.13 495.76 0.00 6.82 -0.00028 
1070 101546020 216.42 475.79 0.00 7.01 -0.00029 
1060 100741573 214.70 458.34 0.00 7.21 -0.00029 
1050 99937125 212.99 442.97 0.00 7.41 -0.00030 
1040 99132678 211.28 429.32 0.00 7.61 -0.00031 
1030 98328230 209.56 417.13 0.00 7.81 -0.00032 
1020 97523783 207.85 406.16 0.00 8.01 -0.00033 
1010 96719336 206.13 396.25 0.00 8.21 -0.00034 
1000 95914888 204.42 387.25 0.00 8.41 -0.00035 
990 95110441 202.70 379.03 0.00 8.61 -0.00036 
980 94305993 200.99 371.51 0.00 8.80 -0.00037 
970 93501546 199.27 364.59 0.00 9.00 -0.00038 
960 92697098 197.56 358.21 0.00 9.20 -0.00038 
950 91892651 195.85 352.30 0.00 9.40 -0.00039 
940 91088203 194.13 346.82 0.00 9.60 -0.00040 
930 90283756 192.42 341.72 0.00 9.80 -0.00041 
920 89479309 190.70 336.96 0.00 10.00 -0.00042 
910 88674861 188.99 332.51 0.00 10.20 -0.00043 
900 87870414 187.27 328.34 0.00 10.39 -0.00044 
890 87065966 185.56 324.42 0.00 10.59 -0.00045 
880 86261519 183.84 320.74 0.00 10.79 -0.00046 
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870 85457071 182.13 317.26 0.00 10.99 -0.00047 
860 84652624 180.42 313.99 0.00 11.19 -0.00047 
850 83848176 178.70 310.89 0.00 11.39 -0.00048 
840 83043729 176.99 307.95 0.00 11.59 -0.00049 
830 82239281 175.27 305.16 0.00 11.79 -0.00050 
820 81434834 173.56 302.52 0.00 11.99 -0.00051 
810 80630387 171.84 300.00 0.00 12.18 -0.00052 

 

Case 5 (hw ≤ c(x) ≤ hf+hw): 

Now the neutral axis is located in the concrete flange of the specimen with the stresses 

reversed (i.e., tension above the neutral axis and compression below). The depth of the 

neutral axis c(x) is repeatedly adjusted until:  

[ ]
3 2

w f w f
w f

f f

b h b h2c 1 - 1 - 1 -  - 3 c  -d - (h  + h ) - jd 1 - 1 - 1 - 0
b c b c

         =        
           

 

 

x(mm) M(x) 
(M.mm) 

jd(x) (mm) 
Eqn. [3.3] 

c(x) (mm) 
(Assumed) Eqn. [3.5] fc(x) (MPa) 

εcs(x)  
Eqn. 

[3.14] 
800 79825939 170.13 297.56 0.00 12.39 -0.00053 
790 79021492 168.41 295.13 0.00 12.59 -0.00054 
780 78217044 166.70 292.71 0.00 12.80 -0.00055 
770 77412597 164.99 290.32 0.00 13.01 -0.00056 
760 76608149 163.27 287.93 0.00 13.22 -0.00057 
750 75803702 161.56 285.56 0.00 13.44 -0.00058 
740 74999254 159.84 283.20 0.00 13.66 -0.00059 
730 74194807 158.13 280.86 0.00 13.88 -0.00060 
720 73390360 156.41 278.52 0.00 14.11 -0.00061 
710 72585912 154.70 276.19 0.00 14.34 -0.00062 
700 71781465 152.98 273.87 0.00 14.58 -0.00063 
690 70977017 151.27 271.55 0.00 14.82 -0.00064 
680 70172570 149.55 269.24 0.00 15.06 -0.00065 
670 69368122 147.84 266.93 0.00 15.31 -0.00066 
660 68563675 146.13 264.63 0.00 15.56 -0.00067 
650 67759227 144.41 262.32 0.00 15.82 -0.00069 
640 66954780 142.70 260.01 0.00 16.08 -0.00070 
630 66150333 140.98 257.69 0.00 16.34 -0.00071 
620 65345885 139.27 255.37 0.00 16.61 -0.00072 
610 64541438 137.55 253.03 0.00 16.89 -0.00074 
600 63736990 135.84 250.67 0.00 17.17 -0.00075 
590 62932543 134.12 248.30 0.00 17.46 -0.00076 
580 62128095 132.41 245.90 0.00 17.75 -0.00078 
570 61323648 130.70 243.47 0.00 18.05 -0.00079 
560 60519200 128.98 241.01 0.00 18.36 -0.00081 
550 59714753 127.27 238.50 0.00 18.68 -0.00082 
540 58910305 125.55 235.93 0.00 19.00 -0.00084 
530 58105858 123.84 233.28 0.00 19.33 -0.00085 
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520 57301411 122.12 230.55 0.00 19.68 -0.00087 
510 56496963 120.41 227.71 0.00 20.04 -0.00089 
500 55692516 118.69 224.72 0.00 20.41 -0.00091 

 
 
Region (1) (0 mm ≤ x ≤ 500 mm): 
 
 
Case 5 (hw ≤ c(x) ≤ hf+hw): 

The segments are now located in moment region 1, but the neutral axis is still located in 

the concrete flange. 

x(mm) M(x) 
(M.mm) 

jd(x) (mm) 
Eqn. [3.3] 

c(x) (mm) 
(Assumed) Eqn. [3.5] fc(x) (MPa) 

εcs(x)  
Eqn. 

[3.14] 
490 54578665 116.32 220.24 0.00 20.96 -0.00093 
480 53464815 113.95 215.12 0.00 21.56 -0.00096 

 
 
Case 6 (0 ≤ c(x) ≤ hw): 

Now the neutral axis is located in the concrete web of the specimen with the stresses 

reversed (i.e., tension above the neutral axis and compression below). The depth of the 

neutral axis c(x) is computed using the same procedure as Case 1.  

x(mm) M(x) 
(M.mm) 

jd(x) 
(mm) 

Eqn. [3.3] 

εc(x) 
(Assumed) 

k1(x) 
Eqn. 
[3.9] 

k2(x) 
Eqn. 

[3.10] 

c(x) 
(mm) 
Eqn. 

[3.11] 

C(x) – 
T (N) 
Eqn. 

[3.12] 

εcs(x)  
Eqn. 

[3.13] 

470 52350965 111.57 0.000748 0.2585 0.3380 205.86 0.00 -0.00090 
460 51237114 109.20 0.000777 0.2679 0.3383 198.63 0.00 -0.00094 
450 50123264 106.82 0.000809 0.2781 0.3387 191.38 0.00 -0.00099 
440 49009414 104.45 0.000844 0.2890 0.3392 184.13 0.00 -0.00104 
430 47895563 102.08 0.000882 0.3009 0.3397 176.86 0.00 -0.00109 
420 46781713 99.70 0.000924 0.3138 0.3403 169.57 0.00 -0.00115 
410 45667863 97.33 0.000970 0.3279 0.3410 162.27 0.00 -0.00122 
400 44554013 94.96 0.001022 0.3434 0.3418 154.95 0.00 -0.00130 
390 43440162 92.58 0.001081 0.3605 0.3427 147.60 0.00 -0.00139 
380 42326312 90.21 0.001147 0.3795 0.3438 140.22 0.00 -0.00149 
370 41212462 87.83 0.001224 0.4007 0.3451 132.80 0.00 -0.00161 
360 40098611 85.46 0.001313 0.4246 0.3468 125.33 0.00 -0.00175 
350 38984761 83.09 0.001418 0.4517 0.3488 117.80 0.00 -0.00192 
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Now the summation of the concrete elongation at the depth of the flexural reinforcement, 

Δcs, over the length of the exposed flexural reinforcement is computed: 

expl n

cs cs cs x
i=1

Δ  = ε d ε (x) Δ∑∫    

Δcs = 12.078 mm 
 
 
The stress in the flexural reinforcement is determined using the tensile force computed in 

Case 1 and the stress-strain approximation derived from the reinforcement tensile tests. 

T = 469210 N 

fs = T / As = 469.21 MPa 

From the stress-strain approximation for test bar sample 1 shown in Figure C-2: 

εs = 0.00368 

The elongation of the exposed flexural reinforcement, Δs, is computed as: 
 

s s expε∆ =   

Δs = 12.147 mm 
 
 

s cs

s

Δ  - Δ
  0.0057

Δ
≤  

 

Therefore, the predicted ultimate moment using the Strain Compatibility Analysis is: 

MSCA = 157.2 kN.m
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D.3 

The predicted and observed orientations of the principal compressive strains for 

Specimens 1, 2, 4, and 5 are shown in 

ORIENTATION OF PRINCIPAL COMPRESSIVE STRAINS 

Figure D-2 to D-4. 
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(a) 

 
(b) 

Figure D-2: Orientation of the Predicted and Observed Principal Compressive Strains at 
the Supports of Specimen 1: (a) Left, (b) Right. 
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(a) 

 
(b) 

Figure D-3: Orientation of the Predicted and Observed Principal Compressive Strains at 
the Supports of Specimen 2: (a) Left, (b) Right. 
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Figure D-4: Orientation of the Predicted and Observed Principal Compressive Strains at 

the Left Support of Specimen 5. 
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