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Abstract 

It is often useful to predict contaminant migration from waste containment systems, such as 

landfills, as part of the assessment of the overall impact of such systems on the receptor 

environment. In many instances, material properties, for example, those of the liner, are assumed 

to be constant. This study was conducted to evaluate the accuracy of considering constant 

material and transport parameters in the modelling of sodium and chloride breakthrough curves 

through a compacted soil layer using the commercial software, Pollute v.7. Experiments were 

conducted with three different mixtures of glass beads and varying amounts of kaolinite (30, 40 

and 50% by weight). The base line hydraulic conductivity K of the samples was established 

using distilled water as permeant. The observed values of K were 8.2X10
-11

 m/s, 1.28X10
-10

 m/s 

and 1.48X10
-10

 m/s for the 30, 40 and 50% kaolinite, respectively. These values did not change 

when the permeant was changed from distilled water to 0.04 M NaCl Effective diffusion 

coefficient of 3.5-8.5 x 10
-10

 m
2
/s was obtained for sodium and 1.9-4 x 10

-10
 m

2
/s for chloride. 

These results also showed that diffusion of both ions in the soils was affected by the percentage 

of clay fraction. The greater the amount of clay, the lower the diffusion coefficient obtained. 

Moreover, the diffusion coefficient of sodium was approximately two times that of chloride and 

this trend was visually apparent from the shape of the breakthrough curves for Na
+
 and Cl

-
. 

Modelling with constant porosity overestimated the concentration of both ions. The pore size 

distribution of each mixture was determined from mercury intrusion porosimetry testing before 

and after hydraulic conductivity test. The results showed a decrease of 24%, 13% and 12% in the 

porosity of the 30, 40 and 50% kaolinite mixture. Sensitivity analysis carried out by decreasing 

the porosity of the mixture by these percentages did not alter breakthrough curves noticeably. On 

the other hand, sensitivity analysis based on changes in the distribution coefficient and diffusion 

coefficient showed a considerable change in model outputs. It was concluded that although the 

porosity changed during hydraulic conductivity test, it did not eliminate the discrepancy between 

experimental results and modelling results, In fact, the model was found to be more sensitive to 

change in diffusion coefficient and distribution coefficient. Therefore, more studies are required 

to monitor these parameters during hydraulic conductivity testing. 

Keywords: diffusion coefficient, distribution coefficient, porosity, breakthrough curve, pore size 

distribution, mercury intrusion porosimetry  
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Chapter1 

Introduction 

1.1. Problem Definition 

Our society consumes and discards a diverse range of materials in the course of a wide range of 

activities. The processes of accelerated population growth and urbanization translate into a 

greater volume of wastes generated since urban population tends to have higher incomes, so 

there will be higher rate of goods consumption and eventually higher generation of waste 

compared to rural populations (OECD 2004).  

In the past the waste used to be disposed of by dumping in uncontrolled landfills which had 

adverse impact on local environment and human health. These damages include methane 

production and greenhouse gas emission through anaerobic decaying of waste which can reach 

explosive concentration and release to the atmosphere, leading to global warming problems and 

threat to human health. Landfill leachate generation is another environmental hazard. Leachate 

may form from moisture within the landfill itself, but the main source of landfill leachate is 

natural precipitation, which filters down through the landfill and aids bacteria in the 

decomposition process. Depending on what is in the landfill, this liquid (leachate) can carry with 

it metals, alkaline, acid and organic materials and may be dangerously toxic. In the past, this 

contaminated water was not well managed and was allowed to leak into the adjacent 

environments and threatened groundwater and surface streams, making water supplies unsafe for 

human and wildlife. Some of these older sites are still in use and are sources of pollution. 

However currently the 3Rs concept – Reduce, Reuse, and Recycle – are being employed in 

municipal solid waste management, but there are often still residual materials left over requiring 
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treatment or disposal. Internationally, about 70% of MSW is disposed of in landfills (OECD, 

2001; Zacarias-Farah and Geyer-Allely, 2003). At this point, it is important to minimize the 

human health and environmental effects by managing waste in an environmentally sound 

manner. Sanitary landfilling is a preferred management option for the disposal of solid urban 

waste. The use of sanitary landfills is widely accepted in many parts of the world because based 

on comparative studies completed in some countries; it is the most economical option among the 

various alternative disposal methods (Lema et al., 1988). Moreover, sanitary landfills allow 

decomposition of  most solid wastes under more or less controlled conditions, until their final 

transformation into relatively inert, stabilized materials (Tatsi et al., 2002). Modern landfills are 

often designed to prevent liquid from leaching out and entering the environment. In addition, 

many new landfills collect harmful landfill gas emissions and convert them to energy (USEPA 

2012). In fact, they are designed and located in a way to minimize both social and environmental 

impacts. To achieve this goal, a waste containment system which acts as a barrier to the outside 

environment is required. The top barrier in the containment system is the landfill cover which 

will not be discussed here as it is outside the scope of this study. The other barrier is the landfill 

liner located at the base and sides which should have a minimum permeability and thickness, 

depending on the type of the waste allowed to be deposited in the site. Liners are constructed 

from natural clay or composite materials that have some important advantages over natural liners 

(Giroud and Bonaparte 1989; Giroud et al. 1992; Daniel 1993; Rowe et al. 1995; Van Impe 

1998). However, the use of these kinds of liners has several problems such as long-term 

durability and compatibility and sensitivity to stress cracking failure. The other problem is the 

high cost of geosynthetic materials procurement, especially for most developing countries that 

http://www.sciencedirect.com/science/article/pii/S0048969704005017#bib82
http://www.sciencedirect.com/science/article/pii/S0048969704005017#bib82
http://www.sciencedirect.com/science/article/pii/S0048969704005017#bib115
http://www.sciencedirect.com/science/article/pii/S1093019101000521#BIB14
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DTatsi,%2520A.A%26authorID%3D55193917600%26md5%3D386f47f4b01402fcc1c03cbba3fbc59c&_acct=C000048763&_version=1&_userid=940030&md5=5e963897105bbffddd15a58cfa88eb03
http://www.wisegeek.com/what-is-the-methane-potential-of-landfills.htm
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have to import these materials. So, natural clayey soils are more cost-effective but need to be 

assessed adequately to make sure they are safe. 

The compatibility of different types of clayey soil and municipal solid waste has been studied 

over the past years (Fernandez and Quigley 1985; Rowe et al. 1995; Thorton et al. 2000; 

Frempong et al. 2008) and there is a large database in the literature about it. Although sanitary 

landfills help to reduce the adverse impacts of leachate, the long-term performance operation of 

liners is still matter of concern. As stated in the USEPA Solid Waste Disposal Criteria (August 

30, 1988a), the release of contaminants to the environment may be delayed but even the best 

liner and leachate collection system will eventually fail and the waste will represent a threat as 

long as it is in the landfill. Hence, future concerns of landfills should be taken into consideration 

to the greatest possible extent during the design of landfills. Soil and leachate properties, as well 

as soil-leachate interaction are used for modelling of contaminant transport through landfill liners 

to evaluate their long-term performance and efficiency. Although there are published data on 

modelling of solute breakthrough curves from different methods and their comparison with 

laboratory experiments in the literature, they all assume that soil properties are constant during 

the life of the landfill and none of them considers variable soil properties over time. The present 

study was undertaken to fill part of this gap and try to interpret the discrepancy between 

experimental breakthrough curves and model predictions observed in previous studies 

(Frempong and Yanful 2006). 
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1.2. Objectives of Study 

As stated above, input data are considered constant during breakthrough curve modelling 

which may not be true and this assumption may result in underestimation or overestimation 

of the flux of contaminant that enters the environment in the long term and can considerably 

affect the landfill design consideration. In this study, the effective porosity as an effective 

parameter in breakthrough curve modelling is assessed; thus the objectives of study are to: 

1) Establish experimental breakthrough curves of sodium and chloride through glass beads 

samples mixed with different amounts of kaolinite. 

2) Model breakthrough curves of sodium and chloride with the commercial software, 

Pollute7 and compare with the experimental results. 

3) Develop the pore size distribution graph versus time during the experiments and assess its 

effect on discrepancy between the experiment and modelling. 

4) Assess the overall accuracy of maintaining constant properties over time during 

modelling. 

 

1.3. Scope of Thesis 

The following tasks were performed in the research: 

1) Determination of soil properties before and after permeation with permeant 

2) Determination of hydraulic conductivity of soils when permeated with sodium chloride 

solution 

3) Performance of batch sorption and column diffusion tests to determine distribution 

coefficient and diffusion coefficient 

4) Chemical analysis of effluents from permeation experiments 
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5) Modelling of sodium and chloride breakthrough curves obtained during hydraulic 

conductivity test 

 

1.4. Thesis Outline 

This thesis is divided into five chapters and two appendices. Chapter 1 is an introduction to 

this study which highlights its necessity and also includes its objectives and scope. Literature 

relevant to the research is reviewed and summarized in Chapter 2. A review is carried out on 

waste generation and disposal. Problems arising from landfilling as a common way of 

disposing of generated municipal solid waste are described and Contaminant transport 

mechanisms and factors that influence them are also discussed.  

Chapter 3 deals with materials and methods adopted in the experiment and covers procedures 

for batch sorption, column diffusion and hydraulic conductivity tests and pore size 

distribution determination. The experimental results analysis, details of breakthrough curves 

modelling using Pollute7 and their comparison with experimental results are discussed in 

chapter 4. Chapter 5 (last chapter) presents the study conclusion and recommendations for 

future studies. 

 

 

 

 

  



6 
 

Chapter 2 

Literature Review 

2.1. Waste Generation 

Municipal solid waste, commonly known as trash or garbage, is defined as material thrown 

away as unusable which originate from agricultural, commercial, domestic, industrial and 

institutional solid wastes (Ramachandra, 2009). As shown in Figure 2.1, waste composition 

varies widely in various regions and countries as it is very dependent on local condition such 

as socio-economic factors, geographic location and climate, level of industrialisation and also 

on method of reporting, classification and degree of recycling (OECD 2008). The global 

generated waste is about 1636 million tonnes per year and it continues to rise (OECD 2008; 

UNEP 2004) which can be partly related to changing patterns of consumption and population 

increase. In this regard, high-income countries also have higher waste production per capita 

compared to poorer countries.  Lacoste and Chalmin (2006) showed that the United States of 

America generated the highest quantity of waste per capita among all western countries in 

2004. This volume of waste is a major challenge for any society and proper management, 

which includes collection, transport, treatment and disposal, is required to handle it. Proper 

management is also important because It is also crucial as it reduces public safety risks, 

contributes to sustained economic activity, and enhances public welfare (United Nations 

Publication, 2011).  
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2.2. Waste Management 

Nowadays, solid waste management is focused on developing environmentally sound 

methods of getting rid of trash. For example, solid waste is no longer dumped into oceans or 

in unlined landfills as it used to be the case.  The main operating philosophy in most existing 

waste management programs is waste reduction, reusing, recycling and safe disposal (Fifth 

Environmental Action Programme, 1993-2000); however, management practices can differ 

for developed and developing countries and they also depend on waste composition. Figure 

2.2 shows the contribution of different waste management methods in some countries around 

the world (European Commission 1997-2010; EPA 2009).  

Waste reduction is defined as any process or techniques that result in preventing or reducing 

waste at its source (Crittenden and Kolaczkowski 1995) and it is both environmentally and 

economically beneficial. Reusing a product more than once or reusing it in another 

application extends its lifespan and therefore reduces the quantity of waste requiring 

treatment and disposal. So, there will be a saving in raw material and energy costs. 

Collection, separation, clean-up and processing of waste material to produce a new 

marketable product is recycling and can be done in the manufacturing process or at the 

consumer stage. According to OECD 2004, there has been a remarkable increase in the level 

of recycling throughout the world. Although these 3Rs have reduced the amount of waste, 

there are still some residuals that need to be disposed and the majority of them end up in 

landfills as a controlled system. Landfills are still widely accepted and used in many parts of 

the world because of financial advantages (Lema et al. 1988; El-fadel 1997) and suitability 

for a wide variety of wastes, especially in developing countries that do not have sufficient 

money to employ new costly methods. In spite of these advantages, sanitary landfill sites are 

http://www.sciencedirect.com/science/article/pii/S1093019101000521#BIB14
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a source of some environmental concerns, such as greenhouse gas emissions, leaching of 

toxic compounds and land use pressures. To minimize the side effects of landfills, some 

regulation in their design and construction is generally imposed and the operation is 

controlled during the life of the landfill. 

 

2.3. Modern Landfill 

 Landfills were built without engineering considerations, such as use of liners and leachate 

collection systems. During this period, the practice was to cover the waste in open dumps 

with soil to control negative consequences, such as vermin growth and odour.  However, 

there were still two other main complications: first methane gas production through 

anaerobic decomposition of waste which leads to global warming and, also, the production of 

toxic leachate that threatened groundwater and surface water resources. Therefore, new 

standards and regulations for landfills operation were enacted in the United States of 

America in the 1970s leading to the development of sanitary landfills (United Nations 

Publication 2011).  Modern engineered landfills are designed based on two basic principles, 

containment and attenuation. The protective lining have a minimum thickness and a 

maximum permeability in order to prevent leachate leakage and piping at the bottom of the 

landfill as leachate collection was part of the requirement of the enhanced design elements 

(Porter, 2002). Further engineering elements included the construction of collection ponds 

for the leachate treatment to remove pollutants to environmentally acceptable levels, 

installation of venting tubes to extract generated methane gas and waste burial on a daily 

basis.  More recently, regulations in many countries have required these elements. A cross 
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section of a typical sanitary landfill is illustrated in Figure 2.3 (Environmentalists Every Day, 

2012). 

The construction and operational costs of sanitary landfills increased because of all these 

regulations and caused significant reduction of the total number of landfills in many 

countries. For example, in the United States the number of landfills reduced from about 

20,000 in the early 1970s to barely 2,000 by 1998 (Porter, 2002).  The high costs of modern 

landfills also meant open-dumps remained the main waste-disposal methods in some 

developing countries. Older landfill sites must be dug up, and a new impermeable liner must 

be installed, or the material must be moved to another site. However, even if this is done, the 

damage would have already been done and it may take a long time before the area can fully 

recover. 

 

2.4. Waste Stabilization 

The deposited waste undergoes a series of biological, physical and chemical processes as it 

decomposes and waste stabilization occurs in the following four phases (Christensen and 

Kjeldsen, 1995; Bozkurt et al., 2000):  

(1) An initial aerobic phase 

(2) An anaerobic acid phase 

(3) An initial methanogenic phase 

(4) A stable methanogenic phase  

Also, an additional aerobic phase of decomposition was proposed by Bozkurt et al. ( 2000). 

Once the waste is very well decomposed, the diffusion rate of oxygen into the landfill may be 
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more than the depletion rate of microbial oxygen. Therefore, over time the anaerobic landfill 

is hypothesized to become an aerobic ecosystem. 

During the aerobic phase, the oxygen present in the void space of buried waste is consumed 

rapidly and this results in carbon dioxide production. This reaction is exothermic and can 

result in waste temperature of up to 60°C (Farquhar and Rovers 1973). The waste typically is 

not at field capacity during the aerobic phase (Barlaz and Ham, 1993) and most produced 

leachate is from released moisture during compaction and also short-circuiting of 

precipitation through the buried refuse. Field capacity is the maximum moisture content that 

can be retained without downward percolation. As oxygen is not replenished once the refuse 

is covered, the aerobic phase lasts a few days. Due to the depletion of oxygen within the 

landfill, the waste becomes anaerobic and fermentation reactions occur. The major 

biodegradable constituents of MSW are cellulose and hemicellulose (Barlaz et al., 1989b) 

and their biodegradation is carried out by three groups of bacteria, these compounds are 

decomposed to methane and carbon dioxide in landfills under anaerobic conditions (Barlaz et 

al., 1990; Pohland and Harper, 1986; Bookter and Ham, 1982). In this phase the hydrolytic, 

fermentative, and acetogenic bacteria dominate and result in carboxylic acids accumulation, 

and pH decrease. The highest concentration of BOD and COD in the leachate is generally 

observed during the second phase (Barlaz and Ham, 1993; Reinhart and Grosh, 1998). The 

reported value for BOD:COD ratio in the acid phase is above 0.4 (Ehrig,1988) or 0.7 

(Robinson, 1995). The leachate in this phase is chemically aggressive because of the acidic 

pH and will increase the solubility of many compounds (Kjeldsen 2002). 

The third phase, initial methanogenic phase, starts when measurable amounts of methane are 

generated. During this phase, the accumulated acids in the previous phase are converted to 
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methane and carbon dioxide and the methane production rate increases (Christensen and 

Kjeldsen, 1989, Barlaz et al., 1989a). As acids are consumed, BOD 

and COD concentrations will decrease and pH will increase. The consumption of carboxylic 

acids causes a decrease in BOD to COD ratios. Methane production rate reaches its 

maximum and then drops after as carboxylic acids decrease and because carboxylic acids 

consumption is as rapid as their production, the BOD:COD ratio generally will fall below 

0.1. In theory, after this phase, refuse decomposition will continue until no more degradation 

occurs and the landfill becomes aerobic. 

The progress rate through these phases is dependent on the existing physical, chemical and 

microbiological conditions within the landfill (Pohland and Harper 1985; Reinhart and Grosh 

1998). Some of the factors affecting refuse decomposition have been summarized in earlier 

studies (Barlaz et al., 1990; Christensen et al., 1992) and moisture content has most 

consistently been shown to affect the waste decomposition rate. It is generally accepted that 

refuse decomposition in arid climates progresses much slower than in regions that receive 

more than 50 to 100 cm of annual infiltration into the waste. As waste burial in landfills takes 

place over many years, different parts of the landfill can be in different decomposition stages. 

Therefore, leachate composition can vary throughout a landfill because of a strong 

relationship between the state of refuse decomposition and its associated leachate properties. 

An understanding of leachate composition is crucial for predictions of the long-term impacts 

of landfills (Kjeldsen et al. 2002). 
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2.5. Leachate Generation and Composition 

Leachate is generated when the waste moisture content exceeds its field capacity and the 

magnitude of gravitational forces exceeds moisture holding forces which are surface tension 

and capillary pressure (El-Fadel et al. 1997). In leachate formation, soluble compounds 

which are generally encountered in the refuse at emplacement, or are formed in chemical and 

biological processes, are removed by the non-uniform and intermittent percolation of water 

through the refuse mass. Precipitation, irrigation and runoff are the primary sources of 

percolating water and cause infiltration through the landfill cover. Ground water intrusion, 

and to a lesser extent, the initial refuse moisture content can be sources of this free water as 

well and in smaller amount, waste decomposition due to microbial activity may also 

contribute to leachate formation (Public administration service 1970; El-Fadel et al. 1995). 

The factors that influence leachate generation can be divided in two groups. Those that 

contribute landfill moisture directly such as precipitation, irrigation, initial moisture content, 

groundwater intrusion, recirculation and refuse decomposition and other factors such as 

waste age, particle size distribution of waste, refuse density, settlement, cover and liner 

material affect moisture and leachate distribution within the landfill. Leachate generation 

prediction based on the knowledge of basic hydrological factors has been mathematically 

modelled. (Lema et al., 1988) 

It has been shown that there is a large variation in leachate composition for different landfills 

and even for different parts of the same landfill (Robinson and Luo, 1991). There is a 

comprehensive discussion about controlling factors on leachate composition in the literature 

(Lu et al. 1985, Reinhart 1993, Qasim and Chiang 1994, Britz 1995, Robinson 1995, 

Reinhart and Grosh 1998 and Blight et al. 1999). Factors that are commonly known to affect 

http://www.sciencedirect.com/science/article/pii/S1093019101000521#BIB14
http://www.sciencedirect.com/science/article/pii/S1093019101000521#BIB22
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landfill leachate composition are site management and operational procedures such as refuse 

pre-treatment, irrigation, recirculation and liquid waste disposal; refuse characteristics such 

as waste age, waste composition and degree of waste stabilization Other factors include 

internal reactions such as biodegradation, speciation, dissolution, ion exchange, contact time, 

gas and heat generation and transportation (Hoeks and Harmsen, 1980; Parker and Williams, 

1981; Harmen, 1983; Pohland et al., 1983, El-fadel et al. 1997). However, in particular, the 

leachate composition varies greatly depending on landfill age (Baig et al. 1999).  MSW 

landfill leachate constituents can be divided into four groups: 

 Dissolved organic matter, quantified as COD (Chemical Oxygen Demand) or TOC (Total 

Organic Carbon), volatile fatty acids (that accumulate during the acid phase of the waste 

stabilization, Christensen and Kjeldsen, 2002) and more refractory compounds such as 

fulvic-like and humic-like compounds. 

  Inorganic macro-components: calcium (Ca
2+

), magnesium (Mg
2+

), sodium(Na
+
), 

potassium (K
+
), ammonium (NH4

+
), iron (Fe

2+
), manganese (Mn

2+
), chloride (Cl

–
), 

sulfate ( SO4
2–

) and bicarbonate (HCO3
–
). 

 Heavy metals: cadmium (Cd
2+

), chromium (Cr
3+

), copper (Cu
2+

), lead (Pb
2+

), nickel 

(Ni
2+

) and zinc (Zn
2+

). 

  Xenobiotic organic compounds (XOCs) originating from domestic or industrial 

chemicals and present in relatively low concentrations (usually less than 1 mg/L of 

individual compounds). Other compounds such as borate, sulfide, arsenate, selenate, 

barium, lithium, mercury, and cobalt may also be found in leachate at very low 

concentrations and are only of secondary importance (Kjeldsen et al. 1997). 
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Basic parameters like COD, BOD, the ratio BOD/COD, pH, suspended solids (SS), 

ammonium nitrogen (NH3-N), total Kjeldahl nitrogen (TKN) and heavy metals can 

usually represent the leachate characteristics (Renou et al. 2008). Tables 1 and 2 

summarize the range of these parameters in landfill leachate. Although leachate 

composition may vary widely within four phases of waste evolution, three types of 

leachates- recent, intermediate and old- have been defined based on landfill age (Table 3, 

Chian, and DeWalle 1976). Dramatic change occurs in several parameters as the landfill 

stabilizes. For example, the pH value is low during the acid phase and the concentrations 

of many compounds are high, specifically easily degradable organic compounds, such  as 

volatile fatty acids. However, in the stable methanogenic phase, the pH increases and the 

biological oxygen demand measured over 5 days divided by chemical oxygen demand 

(BOD5/COD) which reflects the organic carbon degradability is lowered significantly 

(Ehrig, 1988). Hazardous constituents, such as volatile organic compounds and heavy 

metals are present in MSW leachate and the release of leachate to the groundwater can 

pose several risks to human health and to the environment.  

 

2.6. Effects of Leachates  

      2.6.1. Clayey Soil 

Various complex interactions can occur between clay minerals and landfill leachate 

constituents (Rowe, 1987) which are dependent on physical and chemical properties of both 

of them. The performance of clayey soils as liners can be affected by these interactions. The 

processes involved in these interactions include clay mineral transformations, cation 

exchange, adsorption and desorption. It has been shown that the crystal structure of smectitic 
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clays collapse and change to that of illite because of cation exchange with leachate 

constituents (Batchelder et al. 1996, 1997a & b). The illitic clay agglomeration and decrease 

in double layer thickness lead to an increase in clay hydraulic conductivity up to three orders 

of magnitude (Quigley et al. 1988). Batchelder et al (1997b) reported that the rate of 

structural change is dependent on the leachate ionic strength and reaction temperature. 

Solutions with relatively high ionic concentrations of landfill leachate cause crystals collapse 

in a few seconds and higher temperature also result in increase in the rate of reactions. 

Weaker solutions have a slower influence but they still run to completion.  However, 

previously it was assumed that illitic clays did not react with leachates; more recent studies 

suggest that illitic and kaolinitic clays may also undergo structural changes such as 

fluctuation and dispersion at a slower pace (Joseph et al. 2001). There is a well-documented 

study of landfill leachate impacts on clayey soils in the literature (Mitchell 1993; Cancelli et 

al. 1995; Rowe et al. 1995; Batchelder et al. 1997). 

      2.6.2. Groundwater 

Once leachate is formed and reaches the bottom of landfill it can move through the liner to 

subsurface formation. Groundwater is a main source of drinking water in many countries and 

the release of pollutants from landfill leachate poses a risk to groundwater if not controlled 

adequately (Ikem et al. 2002). Additionally, the contamination can continue to move through 

the groundwater and finally reach where it discharges (streams, wetlands and lakes) and may 

lead to loss of aquatic life and change in local ecosystem. Leachate impacts on groundwater 

continue to raise concern and have been widely investigated (Kjelsen et al., 2002; Ahmed 

and Sulaiman, 2001; Fatta et al., 1999; Bjerg et al., 1995; Robinson and Gronow, 1992; 
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Cariera and Masciopinto, 1998; Loizidou and Kapetanios, 1993; Gallorini et al., 1993; Khan 

et al., 1990; Kunkle and Shade, 1976).  

Municipal solid waste leachates contain a wide range of inorganic compounds and also 

volatile organic compounds (VOCs) at lower concentrations (Rowe, 1998; Foose 1997). It 

has been shown that the transport of volatile organic compounds generally is more critical 

than the transport of inorganic compounds (e.g. toxic heavy metals) as VOCs are generally 

toxic at lower concentrations than many inorganic compounds and they diffuse readily 

through geomembrane polymers (Park & Nibras, 1993, Park et al., 1996, Brown & Thomas, 

1998, Haxo & Lahey, 1988, Mueller et al., 1998, Friedman, 1988, Foose et al., 2001 and Kile 

et al., 1995). Moreover, the organic compounds and heavy metals may be toxic, corrosive, 

flammable, reactive and carcinogenic (Slack et al.2005). Accordingly, the liner system is one 

of the most crucial elements of a modern engineered landfill which should prevent or 

minimize the migration of contaminants into surrounding soil and groundwater. 

 

2.7. Contaminant Transport Mechanism through a Liner 

The movement of contaminants through a porous medium occurs through three mechanisms. 

Advection is the transportation of dissolved contaminants by flowing groundwater at its 

average linear velocity and is governed by Darcy’s Law, with the Darcy flux, va, given by:  

va = -ki                         (2.1) 

Where k is the hydraulic conductivity (permeability coefficient) and i is the hydraulic 

gradient, which is often controlled by the level of mounded leachate on the landfill liner 

(Rowe 2005). As the mass of contaminant flows through the medium, the solute spreads due 

to variation in magnitude and direction of local velocity and this movement away from the 

http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB51
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB21
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB45
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB46
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB9
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB9
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB28
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB40
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB20
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB22
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB32
http://www.sciencedirect.com/science/article/pii/S0956053X03001016#BIB32
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mass because of the deflection is dispersion. The second mechanism, diffusion, is the 

movement of contaminants from an area of high concentration to one of low concentration 

and can happen in the absence of any bulk air or water movement. Diffusive transport is 

generally governed by Fick’s laws, with the diffusive flux f given by: 

f = - Ddc/dz                 (2.2) 

Where D is the diffusion coefficient and dc/dz is the concentration gradient. The apparent 

contaminant diffusion through a porous media is a complicated process that involves 

molecular diffusion because of concentration gradient. However, it is also influenced by 

other parameters such as the complex tortuosity of the porous media, osmotic flow, electrical 

imbalance, and possible anion exclusion (Rowe et al. 2004). Although early concerns about 

clay liners focused on their hydraulic conductivity and their ability to limit contaminant 

migration by advection (Daniel, 1984; Anderson et al., 1985, Fernandez and Quigley, 1988), 

later research showed that a clay liner with acceptable hydraulic conductivity can be 

constructed if construction is done carefully. Some previous studies have suggested that 

municipal solid waste landfill leachate does not influence the hydraulic conductivity of 

clayey liners detrimentally (Bowders and Daniel, 1987; Yanful et al., 1990; Kim et al., 2001; 

Berger et al., 2002; Kalbe et al., 2002). It has also been shown that in well-built liner 

systems, the dominant contaminant transport mode is via diffusion and considering the 

leakage rate as the only mode of migration may be misleading (Crooks and Quigley, 1984; 

Shackelford, 1990; Rowe et al., 1995; Kim et al., 2001; Foose et al., 2002; Kalbe et al., 

2002). In many practical situations, the one dimensional contaminant transport of a single 

reactive solute in a porous medium involves solving the following equation by applying 

appropriate boundary and initial conditions (Rowe et al., 2004): 



18 
 

 
  

  
    

   

   
      

  

  
                  (2.3) 

Where c is the contaminant concentration at depth z and time t, n is the effective porosity, De 

is the effective diffusion coefficient, ρd is the dry density, and Kd is the partitioning 

coefficient. Biodegradation of organic wastes generate heat which can influence the liner 

temperature and consequently the contaminant transport as both Kd and De are dependent on 

temperature. 

In addition, retardation mechanisms that include dilution, sorption, precipitation, 

volatilization, radioactive and biological decay, may affect contaminant transport through a 

clay liner. Sorption is defined as contaminant removal from solution by solid matter (e.g. 

clay particles or organic matter) and can be further divided into adsorption and absorption.  

The former refers to adhesion of contaminant to the surface of a solid while the latter implies 

a more or less uniform penetration of the solid by a contaminant. As discharged leachate 

from landfills is the primary source of the organic and inorganic contaminants release to 

surrounding environment, an understanding of processes and factors controlling the release 

and migration of these contaminants in the landfill is essential. 

 

      2.8. Contaminant Transport Modelling Approach 

Transport mechanisms of contaminants through a liner are individually well understood and 

can be reasonably modelled in a laboratory but their interactions in a landfill are still not well 

understood (El-Fadel et al. 1997b) and are associated with a high degree of uncertainty (Bou-

Zeid 2004). Numerous studies have been conducted to investigate pollutant mobility through 

landfill liners (Foose et al., 2002; Kalbe et al., 2002; Baun et al., 2003; Edil, 2003; Lo et al., 

2004; Haijian et al., 2009; Chalermtanant et al., 2009; Lu et al., 2011) and the analytical 
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solution for the transport equation based on the modelled system properties for a wide range 

of flow and transport problems such as one, two or three dimensional, transient and steady  

state transport, saturated or non-saturated state in a fractured or non-fractured medium have 

been developed, however, none of them can simulate these processes in a reasonable degree 

of scientific certainty because of inadequate field data and, also, because of insufficient 

understanding of the biochemical transformation and biodegradation processes. Numerical 

methods based on the finite difference or finite element techniques are commonly used to 

solve the transport equations, especially for non-homogenous systems with complicated 

geologic properties; descriptive summary of selected models is presented in Table 2.4.  

 An inherent assumption in these models is that landfill condition and input parameters 

remain uniformly constant which is unlikely as landfill undergoes physical, chemical and 

biological interactions during its operation and after closure (El-Fadel 1997).  Developing a 

comprehensive, integrated model would lead to a better understanding of a landfill 

environment and consequently a better control of its negative environmental effects can be 

achieved. Several software packages, such as EnviroScape, Migrate and Multimed for 

Windows, have been developed which simulate contaminant migration in a porous medium 

based on properties of leachate and ecosystem. The software used in the current study was 

Pollute which has been utilized in landfill design and remediation industry for over fifteen 

years and the designs that can be considered range from simple systems on a natural clayey 

aquitard to composite liners, multiple barriers and multiple aquifers. This program 

implements a one and a half dimensional solution to the advection-dispersion 

equation. Unlike finite element and finite difference formulations, POLLUTEv7 does not 

require a time-marching procedure, and thus involves relatively little computational effort 
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while also avoiding the numerical problems of alternate approaches. In addition to advective-

dispersive transport, POLLUTEv7 can consider non-linear sorption, radioactive and 

biological decay, transport through fractures, passive sinks, phase changes and time-varying 

properties. 

 

 

 

 
 

Figure 2.1: Composition of solid waste in different countries (OECD 2008) 
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Figure 2.2: Different methods contribution to municipal solid waste disposal in different 

countries (European commission 1997-2010; EPA 2009). 

 

 

 

Figure 2.3: Typical modern sanitary landfill cross section 
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Table 2.1: Range of concentration of Basic parameters in MSW landfill leachate (Adopted       

from Renou 2008) 

Age 
Landfill 

site 
COD BOD BOD/COD pH SS TKN NH3-N Reference 

Y Canada 13,800 9660 0.7 5.8 – 212 42 Henry et al.1987 

Y Canada 1870 90 0.05 6.58 – 75 10 
 

Y 

China, 

Hong 

Kong 

15,700 4200 0.27 7.7 – – 2,260 Lau et al. 2001 

Y 

China, 

Hong 

Kong 

17,000 7300 0.43 
7.0–

8.3 
>5000 3,200 3,000 Lo 1996 

Y 
 

13,000 5000 0.38 
6.8–

9.1 
2000 11,000 11,000 

 

Y 
 

50,000 22,000 0.44 
7.8–

9.0 
2000 13,000 13,000 

 

Y 
China, 

Mainland 

1900–

3180 

3700–

8890 
0.36–0.51 

7.4–

8.5 
– – 

630–

1,800 
Wang and Shen 2000 

Y Greece 70,900 26,800 0.38 6.2 950 3,400 3,100 Tatsi et al. 2003 

Y Italy 19,900 4000 0.2 8 – – 3,917 Palma et al. 2002 

Y Italy 10,540 2300 0.22 8.2 1666 – 5,210 Lopez et al.2004 

Y 
South 

Korea 
24,400 10,800 0.44 7.3 2400 1,766 1,682 J.-H. Im et al. 2001  

Y Turkey 
16,200–

20,000 

10,800–

11,000 
0.55–0.67 

7.3–

7.8 
– – 

1,120–

2,500 

Timur and Ozturk 

1999 

  

35,000–

50,000 

21,000–

25,000 
0.5–0.6 

5.6–

7.0 
– – 2,020 

 

Y Turkey 
35,000–

50,000 

21,000–

25,000 
0.5–0.6 

5.6–

7.0 

2630–

3930 
2,370 2,020 Ozturk et al. 2003 

Y Turkey 
10,750–

18,420 

6380–

9660 
0.52–0.59 

7.7–

8.2 

1013–

1540 
– 

1,946–

2,002 
Ceçen and Aktas 2004  

MA Canada 
3210–

9190 
– – 

6.9–

9.0 
– – – 

Kennedy and Lentz 

2000 

MA China 5800 430 0.07 7.6 – – – Wang et al. 2002  

MA 

China, 

Hong 

Kong 

7439 1436 0.19 8.22 784 – – Li and Zhao 2001  

MA Germany 3180 1060 0.33 – – 1,135 884 
Baumgarten and 

Seyfried 1996 

http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib3
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib22
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib25
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib27
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib28
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Age 
Landfill 

site 
COD BOD BOD/COD pH SS TKN NH3-N Reference 

MA Germany 4000 800 0.2 – – – 800 
Dijk and Roncken 

1997 

MA Greece 5350 1050 0.2 7.9 480 1,100 940 Tatsi et al. 2003 

MA Italy 5050 1270 0.25 8.38 – 1,670 1,330 Frascari et al. 2004 

MA Italy 3840 1200 0.31 8 – – – Chianese et al. 1999 

MA Poland 1180 331 0.28 8 – – 743 
Bohdziewicz et al. 

2001 

MA Taiwan 6500 500 0.08 8.1 – – 5,500 Wu et al. 2004 

MA Turkey 9500 – – 8.15 – 1,450 1,270 
Kargi and Pamukoglu 

2003 

O Brazil 3460 150 0.04 8.2 – – 800 Silva et al. 2004 

O Estonia 2170 800 0.37 11.5 – – – Orupold et al. 2000 

O Finland 556 62 0.11 – – 192 159 Hoilijoki et al. 2000 

O Finland 
340–

920 
84 0.09–0.25 

7.1–

7.6 
– – 

330–

560 
 Marttinen et al. 2002  

O France 500 7.1 0.01 7.5 130 540 430 Trebouet et al. 1999 

O France 100 3 0.03 7.7 
13–

1480 
5–960 0.2 Tabet et al. 2002  

O France 1930 – – 7 – – 295 Gourdon et al. 1989  

O Malaysia 
1533–

2580 
48–105 0.03–0.04 

7.5–

9.4 

159–

233 
– – Aziz et al. 2004 

O 
South 

Korea 
1409 62 0.04 8.57 404 141 1,522 Cho et al. 2002 

O Turkey 10,000 – – 8.6 1600 1,680 1,590 Uygur and Kargi 2004 

Y: young; MA: medium age; O: old; all values except pH and BOD/COD are in mg L
−1

 

 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib34
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib7
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib5
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib39
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib40
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib41
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib42
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Table 2.2: Heavy metals concentration in landfill leachate (Adopted from Renou 2008) 

Age 
Landfill 

site 
Fe Mn Ba Cu Al Si Reference 

Y Italy 2.7 0.04 – – – – Lopez et al. 2004  

MA Canada 
1.28–

4.90 

0.028–

1.541 

0.006–

0.164 
– 

<0.02–

0.92 

3.72–

10.48 
Kennedy and Lentz 2000 

MA 
Hong 

Kong 
3.811 0.182 – 0.12 – – Li and Zhao 2001 

MA 
South 

Korea 
76 16.4 – 0.78 – – J.-H. Im et al. 2001 

MA Spain 7.45 0.17 – 0.26 – – Rivas et al. 2003  

O Brazil 5.5 0.2 – 0.08 <1 – Silva et al. 2004  

O France 26 0.13 0.15 
0.005–

0.04 
2 <5 Tabet et al. 2009  

O Malaysia 
4.1–

19.5 
15.5 – – – – Aziz et al. 2004 

O 
South 

Korea 
– 0.298 – 0.031 – – Cho et al. 2002  

Y: young; MA: medium age; O: old; all values are in mg L−1. 

 

 

 

Table 2.3: Landfill leachate classification based on age (Adopted from Renou 2008) 

 

Recent Intermediate Old 

Age (years) <5 5–10 >10 

pH 6.5 6.5–7.5 >7.5 

COD (mg L
−1

) >10,000 4000–10,000 <4000 

BOD5/COD >0.3 0.1–0.3 <0.1 

Organic compounds 
80% volatile fat 

acids (VFA) 

5–30% VFA + humic and 

fulvic acids 

Humic and fulvic 

acids 

Heavy metals Low–medium   Low 

Biodegradability Important Medium Low 

 

 

http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib21
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib44
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib7
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib39
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib41
http://www.sciencedirect.com/science/article/pii/S0304389407013593#bib42
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Table 2.4: Selected leachate flow and transport models within landfills 

Reference Model Description 

Fuller et al. 1979 

 

Adopted an existing analytical solution to predict the movement of Cd, Ni 

and Zn using parameters from disturbed soil columns and municipal solid 

waste leachate. The model described the effect of longitudinal diffusion 

in labarotary columns where, unlike in landfills, chemical and physical 

parameters are well controlled. 

Straub, 1980; Strub 

and Lynch, 1982 

 

Applied numerical models to water flow and contaminant transport, 

dissolution and decay in unsaturated sanitary landfills. The model 

application is limited to simulating the production and removal of organic 

substrates. 

Bernades, 1984 

 

Developed a model describing fixation of heavy metals in the co-disposal 

of industrial sludge with domestic solid waste. The model suffers from a 

lack of real values for its inputs parameters. 

Korfiatis, 1984 

Korfiatis et al., 1984 

 

Analyzed leachate flow through refuse of a laboratory column using the 

theory of unsaturated flow through porous media. Leachate quality and 

solute transport were not modelled.  

Demetracopoulos 

et al., 

1982, 1984, 1986, 

1987 

 

Based on the work of Korfiatis et al. and Erdogan, they improved 

numerical techniques to simulate leachate generation and transport 

through solid waste landfills. No comparison with actual field data was 

presented. 

Papadopulos, 1988 

 

Developed a mathematical model to simulate the transport of a single 

chemical species in solid waste to the landfill boundary based on the 

simultaneous flow of gas and water in unsaturated porous media. 

Development of this model discontinued prior to complete validation and 

no results simulating field or laboratory data were reported. 

Noble et al., 1989 

 

Developed a one-dimensional finite difference model (FULLFILL) to 

evaluate moisture transport and distribution in landfills. Experiments 

were conducted in conjunction with this modelling effort to obtain 

calibration data. 

Lu and Bai, 1991 

 

Developed a mathematical model to simulate leaching from solid waste 

landfills. The model suffers from need of many parameters that are 

usually are not readily available at landfill sites. Indeed, a sensitivity 

analysis showed that at least eight parameters strongly affect the model 

simulations. 

Al-soufi, 1991 

 

Developed a three-dimensional model to simulate water and solute 

movement through the soil and applied the model at a landfill site. 

Although the model provides a comprehensive framework to model 

leachate behaviour in landfills, it suffers from the need of many 

parameters that are not usually readily available at landfill sites. 

Findikakis and Ng, 

1991  

Combined the HELP model with the three-dimensional ground water 

flow and transport model, and a tidal circulation model to estimate 

percolation rates in a landfill, analyze subsurface flow and contaminant 

transport under the landfill and its immediate vicinity, and simulate the 
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Reference Model Description 

transport and dilution of leachate discharge from the landfill in the 

harbour due to tidal circulation and dispersion. The application of this 

model is site specific and depends on the estimation of many parameters. 

It illustrates however, the usefulness of combining existing models to 

simulate leachate behaviour. 

Reinhart et al., 1991 

 

Used the Vadose Zone interactive processes (VIP) model to simulate the 

fate of organic constituents co-disposed in municipal refuse landfill. 

Although the model reportedly provided a good fit with column data, its 

application is limited due to the uncertainty associated with its input 

parameters, particularly at actual landfill sites. 

Krom et al., 1991 

 

Applied the model VS2D to help explain observed measurements and 

simulate the effect of proposed waste disposal solutions. The model does 

not account for leachate quality. 

Vincent et al., 1991 

 

Presented a model to describe the leachate flow, chemical transport and 

biodegradation in landfills. The model was used to simulate experimental 

data. The authors recommended the incorporation of additional processes 

to describe physcio-chemical reactions in landfill. Additional experiment 

work was being pursued to refine the basic biological and physcio-

chemical components of the model 

Batchelor, 1992 

 

Developed a numerical model that describes leaching from 

solidified/stabilized wastes by simulating chemical and physical 

mechanisms. The model addresses only leachate quality. It does not 

simulate leachate quantity or moisture routing. The model was applied to 

simulate data from laboratory leach tests. 

Al-Yousfi, 1992 

 

Developed a model (PITTLEACH-2) to simulate leachate quantity and 

quality, as well as biogas generation, at sanitary landfills. The uncertainty 

associated with parameter estimation was not addressed.  

Ahmed, 1992 

Ahmed et al., 1990 

 

Presented two-dimensional unsteady state Flow Investigation for Landfill 

Leachate (FILL) to describe the leachate flow process in a landfill. 

Although the model reportedly provided a good simulate with field data, 

its application is limited to quantifying the amount of the leachate and 

does not address leachate quality. 

Ballestero and de 

Castro, 1993 

 

Presented a one-dimensional model that simulates the generation of 

landfill leachate due to large precipitation events. Although the model 

reportedly provides good predictions of landfill leachate behaviour, the 

authors recognized the limitations and the difficulty in obtaining the 

hydraulic properties of the landfill layers. The uncertainty associated with 

estimating other model parameters was not addressed. Leachate quality 

was also not simulated in this modelling effort. 

Khanbilvardi and 

Ahmed, 1993; 

Khanbilvardi et al., 

1992, 1995 

 

Compare results obtained by the FILL model with other models; HELP, 

EPA water-balance model, and Darcy’s law. The FILL model reportedly 

indicated a lower value of leachate outflow compared to the values 

obtained by the other models. Although the FILL model may better 

represent the field conditions, it is not clear which model provides better 

estimates because of the uncertainties associated in its parameters. 
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Reference Model Description 

Leachate quality was not addressed in this modelling effort. 

Riester, 1994 

 

Presented a numerical model that includes three-dimensional moisture 

transport coupled with two-dimensional surface runoff and one-

dimensional liner flow. The model was used to simulate leachate 

production and contaminant transport, and gas generations at existing 

landfills.  

Gonullu, 1994 

 

Presented analytical models of organic and inorganic contaminants in 

leachate. The models were used to simulate experimental data form 

laboratory columns. The parameters for the analytical solutions were 

estimated by simulating experimental data. Moisture routing was not 

modelled.  

Piotrowski, J. J., 

1995 

 

Developed a two dimensional finite element model to examine the effects 

of anisotropic conditions on moisture distribution within a landfill. 

Leachate flow was simulated as unsaturated flow in porous media. The 

model consistently underestimated peak leachate generation 

measurements which were attributed to the smoothing of the input 

precipitation data were conducted to eliminate numerical oscillations. 

 Adopted from: : M. El-Fadel, A. N. Findikakis & J. O. Leckie, “Modeling Leachate 

Generation and Transport in Solid Waste Landfills”,  , Environmental Technology, 18:7, 

669-686 (1997) 
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Chapter 3 

Materials and Methods 

3.1. Materials 

The tested specimens in this study included different mixtures of glass beads and kaolinite. The 

glass beads were obtained from Jaygo Incorporated (Union, New Jersey). Approximately 93% of 

the particles was in the range of 100 to 200 (µm), 5% was larger than 200 µm and 2% smaller 

than 90 (µm). The bulk density was 1519 (kg/m
3
). The physical characteristics and chemical 

composition of the glass beads provided by the manufacturer are presented in Tables 3.1 and 3.2. 

The powdered kaolinite (Al2Si2O5(OH)4) was purchased from Ward’s Natural Science 

Establishment Incorporated (St. Catharines, Ontario). Kaolinite commonly forms as a secondary 

product of the weathering or hydrothermal alteration of aluminum silicates, particularly feldspar, 

and it is a main constituent of kaolin. According to the manufacturer, the specific gravity of the 

kaolinite is 2.6.The as-received product was white with brown or grey staining likely due to the 

presence of minor impurities. 

Sodium chloride which was used to make the sodium chloride solutions was reagent grade a 

purity of at least 99% and met the American Chemical Society (ACS) specification. Its 

constituents are presented in Table 3.3. 

 

3.2. Methods 

Standard geotechnical methods were used to characterize the samples for water content, particle 

size distribution, Atterberg limits, specific gravity and compaction parameters (maximum dry 
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density and optimum water content) according to American Society for Testing and Materials 

(ASTM). The as-received soluble salt concentrations of glass beads and kaolinite were 

determined by washing the samples with deionized, dstilled or mega pure water with a 1:100 

soil:water ratio.  

 

3.2.1 Cation Exchange Capacity (CEC) 

The C.E.C of kaolinite was determined using the potassium and ammonium acetate exchange 

method. To prepare ammonium acetate solution, 10 g of ammonium acetate was dissolved in 500 

mL of mega pure water to give a concentration of approximately 0.12 mol/L. The measured pH 

of this solution was 7 to 8 which ensured enough ammonium (NH4
+
) existed to displace ions held 

in the exchange sites. Potassium solution was made by dissolving 9.5 g of potassium chloride in 

500 mL of mega pure water to make a 0.12 mol/L solution. For the extraction of exchangeable 

cations, exactly150 mL of ammonium acetate solution was added to 1.5 g of air-dried soil in a 

plastic centrifuge bottle. The bottles were then capped and shaken overnight using the wrist-

action shaker. After 24 hours of shaking, the bottles were centrifuged at 5000 rpm for 20 mins to 

separate solid particles from solution. The supernatant was filtered through a 0.45 micron syringe 

filter into a Nalgene sample bottle for storage and subsequent determination of cation 

concentration using inductively-coupled plasma-optical emission spectroscopy (ICP-OES). A 

similar procedure was followed for the extraction of cations by the potassium solution. The 

following equation was used to calculate the CEC value of the four major cations which are 

sodium, calcium, potassium and magnesium: 
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CEC = [(cation concentration in ppm) x (volume of extract g) x 100 g of soil]/[(cation molecular 

weight/cation valence x 1000) x (soil dry weight in g)]               (3.1) 

The four calculated values were added together and the soluble salt concentrations were 

subtracted from this value to determine the exchangeable cation concentrations. 

 

3.2.2 Hydraulic Conductivity Test 

There are several variations of hydraulic conductivity test cells available for laboratory testing of 

soil samples which can be divided into two main categories, rigid-wall permeameters and 

flexible-wall cells. The advantages and disadvantages of each group are discussed in the 

literature (Zimmie, 198; Daniel et al. 1986). Rigid-wall cells are easier to use and less expensive 

than flexible-wall cells but on the other hand it is always possible to have sidewall leakage as a 

result of reduction in boundary stress and this leakage is difficult to quantify. Therefore an 

increase in hydraulic conductivity due to side-wall leakage cannot be determined and there will 

be overestimation in hydraulic conductivity. The flexible-wall permeameter virtually eliminates 

this problem; it also decreases testing time as fairly rapid saturation of samples is possible by 

applying back pressure and the saturation of sample can be confirmed by measuring the B value. 

However, high cost of flexible-wall equipment, complexity of the test and membrane integrity in 

sample permeation with special chemicals or waste liquid is three main disadvantages of this 

device. The importance of the project that hydraulic conductivity is desired for, best simulation 

of field condition, time and budget limitation are some of the factors that must be considered 

before choosing the appropriate laboratory device.  
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In the present study, a constant-flow permeameter was used to permeate different mixture of 

kaolinite and glass beads with three pore volumes of distilled water and subsequently with 

several pore volumes of sodium chloride solutions. The fixed-wall, constant- flow rate 

permeameter generates a constant flow rate through all specimens by a triaxial loading frame 

driving four piston-syringes system containing permeant. The main components of the 

compression machine are a gear box, a motor and two stainless steel syringes holder.  Each 

syringe has a capacity of 65 mL and can travel at velocities within the range 1.48 x 10
-2

 mL/s to 

5.92 x 10
-6

 mL/s.  This wide range is possible due to the possibility of selecting different size of 

gears in two gear locations and controlling the motor speed at each selected position. Prior to the 

test, an estimate of soil hydraulic conductivity was made according to Kozeny-Carman formula 

(Carrier W.D., 2003). 

           
 

  
   

  

   
                                                            (3.2) 

Where, 

S0= specific surface area per unit volume of particles (1/cm); and  

e= void ratio. 

Based on the estimated hydraulic conductivity, the speed of the flow pump motor was selected so 

that the flow pump could deliver permeant at the desirable flow rate and generate the acceptable 

head difference. The constant flow rate induces head drop across the sample used along with 

flow rate and sample area to calculate the hydraulic conductivity of the soil sample according to 

Darcy’s law; this procedure is extensively described by Olsen (1966). Pressure transducers were 

used to measure the pressure in permeant influent and the effluent pressure was kept at 

atmospheric pressure. The equipment consisted of eight cylindrical stainless steel moulds with 
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5.38 cm inner diameter and 7 cm height. To seal the contact between the cylinders and aluminum 

plates, both ends of the cylinder are machined to contain Viton O-rings. The fluid outlet which is 

connected to the cell base is for collection of effluent for chemical analysis. There are two ports 

on the top of the cell, one for fluid inlet which is also used as the pressure transducer mount and 

the other one for escape of air during filling of the fluid chamber. Appropriate spring and 

supporting ring assembly are placed on top of the sample to prevent swelling of specimen during 

permeation. The assembled cell is held together by four threaded and sleeved rods which are 

attached to the lower stainless steel plate. Filter papers are placed between soil sample and 

porous stones. A photo of the assembled device showing the various parts of the equipment are 

illustrated in Figure 3.1 and Figure 3.2, respectively. Figure 3.3 shows a cross-section of the cell 

assembly. 

Four different mixtures were prepared by mixing sufficient air-dried glass beads with different 

amounts of powdered kaolinite. The samples were named G80K20, G70K30, G60K40, G50K50 

while G stands for glass beads and K for kaolinite and the following numbers denote their 

percentage portion. In accordance with standard procedure for construction of compacted clay 

liners for waste containment (Shackelford and Redmond, 1995; Steiakakis et al., 2012), each 

sample was mixed with water to achieve a water content of approximately 2% wet of optimum in 

order to minimize the hydraulic conductivity and obtain a fairly homogeneous distribution of 

voids within the material. After wetting and mixing the samples to the desired water content, the 

soils were placed in double-sealed plastic bags and were allowed to hydrate for several days in 

order to promote uniform water content before compaction. O-rings were added to the cell body 

and the cell was placed on a Plexiglas plate, a fine porous stone with 0.2 cm thickness was 

placed in the cell bottom and a filter paper was added on top of the disk. The hydrated samples 
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were removed from the plastic bags and compacted in fixed-wall permeameter cells in three 

equal layers by tamping each layer with 30 blows. According to the test instruction the 

compaction should be done by Harvard miniature test but the mixture of 20% kaolinite and 80% 

glass beads was too loose, the foot penetrated through the soil layer resulting in excessive 

penetration and displacing the soil upward around the spring loaded tamping foot and 

compaction by this method was impossible. Therefore, hand tamping was used instead. 

 After compacting the final layer, the thickness of the sample was reduced to approximately 2 cm 

by trimming the soil with a T-shaped trimmer and the trimming was used to determine the 

moisture content. A short sample length was desired in order to reduce both testing time and 

volume changes of sample during permeation. The compacted soil was weighed with the porous 

stone and filter paper to calculate the degree of saturation, dry density and porosity. Another 

filter paper was placed on top of the sample and a coarse porous stone was added to it.  

The cell base was located on aluminum A frame support and the assembled cell was placed on 

the base. The compacted soil was then confined under a vertical stress of 42.5 kPa to simulate 

the static stress on a liner below a landfill with an approximate waste height of 10 m and waste 

density of 482 kg/m
3
. The bulk density of municipal solid waste is highly variable depending on 

the applied pressure. If a final soil cover is considered, the range of total landfill density can 

change from about 420 kg/m
3
 for a poorly compacted landfill to as high as 1000 kg/m

3
 for a 

landfill where thin layers of waste are compacted (Vesilind et al., 2002). This stress was applied 

by using two 40mm length spring with 3.0 mm porous stone. The spring constant produces a 

stress of 2.36 kPa per spring per millimetre of spring compression. To ensure that there will be 

no air trapped in the cell after tightening the cell top, the cell was filled to the brim with distilled 

water. A dial gauge was adjusted on the top center of the sample to measure the consolidation 
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due to the static stress caused by spring-loading device. Dial gauge readings were recorded at 

specific time intervals to generate a consolidation graph. The cell was left to sit overnight and the 

final dial gauge reading was taken before starting the permeation. The syringes filled with 

distilled water were located in the compression machine and the pressure transducers were 

connected to them. Details of pressure transducers calibration are presented in Appendix A. As 

air bubbles reduce hydraulic conductivity and cause error in the measured value, they should be 

completely removed from the syringes and also from the cylindrical cells. By driving the 

plungers, all attached lines to the syringes bled permeant at the outlet and all the air was 

expelled. After connecting the lines to the inlet port on top of the cell, the samples were loaded 

by hand loading until permeant overflowed from the measuring rod port which ensured no air 

bubble was in the fluid chamber. After finger tightening of the nuts around the measuring rods, 

the test was started.  

Each test specimen was permeated with distilled water for three days in order to obtain the base 

hydraulic conductivity of each sample and also flush excess soluble salts from the samples in 

order to minimize background concentration effect on the result. Permeating with distilled water 

helped to minimize the introduction of additional ions into the soil pore water. After about 3 pore 

volumes the test was stopped, the solution in the syringes were refilled with 0.04 M sodium 

chloride solution and then the test was continued.  

The imposed flow rate of permeation was 1.18×10
-4 

mL/s for both distilled water and sodium 

chloride solution. The identical volumetric flow rate for flushing with distilled water minimized 

the differences between sample properties before NaCl permeation. The produced pressures of 

this flow rate were lower than the maximum reading of the pressure transducers (600 kPa) while 

the gradients were high enough to pass a reasonable number of pore volumes of the permeant in 
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a reasonable time frame. The hydraulic head, hydraulic gradient and hydraulic conductivity were 

calculated based on following equations.         


u

p

P
h                                           (3.3) 

Where, 

Δhp = Differential pressure head across soil sample 

Pu= Differential pressure across soil measured by the pressure transducer which were acquired 

continuously with GEN2000 Version 1.45, data acquisition and control software for Microsoft 

Windows (Sciemetric Instruments Inc. 1996).   

γ = Unit weight of permeant. 

The hydraulic gradient, i, was calculated from the relationship: 

L

h
i

p
         (3.4) 

Where,  

i = hydraulic gradient; and  

L = Length of compacted soil sample. 

The pore volumes of permeant passed, PV, during the hydraulic conductivity test was 

determined as follows: 

vV

qt
PV                                                 (3.5) 
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PV = Number of pore volumes of permeant flow;  

q = Volumetric flow rate; 

t = time of flow; and  

Vv = Volume of voids in compacted soil sample 

The hydraulic conductivity of the compacted soil sample, k, was computed from the well-known 

Darcy’s law: 

iA

q
k    (3.6) 

Where, 

q = Volumetric flow rate, mL/s; 

A = Cross sectional area of the sample (cm
2
) 

i= Hydraulic gradient; 

High-density polyethylene bottles were sealed to the outlet tube of each cell to collect the 

effluent. These bottles were periodically replaced with new ones to collect effluent for analysis.  

During the test room temperature, effluent pH and electrical conductivity were monitored 

simultaneously to assist in the result interpretation. Room temperature was measured by an 

OMEGA temperature data logger (OM-EL-USB-1-LCD). The pH of solutions was determined 

with an Orion Model 410A pH meter with a gel electrode and a HACH conductivity meter (HQ 

30d) was used to measure the conductivity of them. 
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3.2.3 Batch Sorption Tests 

Sorption testing may be conducted either as a column test or as a batch operation. In the batch 

test, a quantity of adsorbent is mixed with a specific amount of solution and the mixture is kept 

for agitating for a convenient period of time and the separation of the supernant is accomplished 

by filtering, centrifuging or decanting. In a column test, however, the solution is allowed to 

percolate through a column of soil, so transient flow takes place and porosity and density of 

compacted soils are more representative of field conditions. Although column testing is 

considered to simulate field conditions better; the batch test is usually adopted to determine 

distribution coefficient of species because of the relatively short time involved in the test 

procedure (Shackelford 1994). 

Different parameters such as soil: solution ratio, the moisture content of the adsorbent, method of 

mixing, contact time, and the composition and concentration of competitive specimen in the 

solution can affect the capacity of a soil to adsorb an inorganic specimen from an aqueous 

solution (Barrow 1978; Barrow and Shaw 1979; Roy et al. 1991). 

In the present study, batch sorption test was performed according to the specified procedure in 

ASTM D4646-03 (2008) to determine the sorption affinity of sodium chloride by unconsolidated 

kaolinite-glass beads mixtures. This test method allows a rapid index of a geomedium’s sorption 

affinity for given specimen. Duration of this test is 24 hours which is used to make the test 

convenient and to minimize microbial degradation that can be a problem in longer time 

procedures. It is believed that this method is useful for all stable and non-volatile inorganic and 

organic constituents. The distribution coefficient, Kd, is the ratio of the concentration of sodium 

and chloride sorbed on the soil from the sodium chloride solutions to its concentration in 

solution. The dissolution degree, So, is a measure of the extent to which sodium and chloride 
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were dissolved from each of the soils by the sodium chloride permeant. Depending on the solute 

sorption behaviour and geomedia characteristics, dissimilar Kd value smay be obtained when 

different initial solute concentrations are used and this results in a nonlinear sorption curve but if 

solute concentrations are sufficiently low or properties of particular solute-sorbent combination 

result in Kd values independent of the solute concentration, linear sorption curve may be 

obtained. 

Prior to the sorption tests, representative samples of each mixture were air-dried. Four different 

initial concentrations of sodium chloride, 0.04, 0.03, 0.02 and 0.01 molar, were prepared to see 

how the distribution coefficient of sodium and chloride changed based on initial solute 

concentration. Exactly 10 (g) of air-dried soil was placed in 250 mL wide-mouth centrifuge 

bottles and 200 millilitres of sodium chloride solution was added to obtain a soil: solution ratio 

of 1:20. The bottles were placed in a wrist-action shaker and agitated continuously for 24 hours 

at 160 r/min at room temperature (22±5 °C). At the end of shaking, the bottles were removed 

from the shaker and were centrifuged at 7000 rpm for 20 minutes to separate the solution phase 

from the solid phase. Sufficient amount of the supernatant from each bottle was filtered through 

a 0.45- µm pore size filter into high density polyethylene bottle. The bottles were kept in a cold 

room at 4±2 °C for inductively coupled plasma (ICP) and ion chromatography analysis (IC). 

Three replicates were prepared for each sample. Samples of blank (solute solution without a 

geomedium) were taken through all steps to check the initial concentrations of source solutions 

and to assess the compatibility of this method and the solute of interest.  

The distribution coefficient, Kd in mg/L, and dissolution degree, S0 in mL/g, of each chemical 

species of interest was calculated as follow: 
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        (3.7) 

   
          

      
                                                                                       (3.8) 

Where, 

Ci= Initial concentration of species in solution (mg/L); 

Cf= Concentration of species in decanted solution at the end of test (mg/L); 

V= Volume of solution used (mL); and  

M= Mass of soil expressed on an oven-dried basis (g). 

As contaminants are percolating through porous media, some of the chemical species in soil have 

the potential to retard or even immobilize the solutes (Domenico and Schwartz 1998). The 

retardation factor, a dimensionless number, provides a measure of the capacity of a particular 

adsorbent to sorb solutes that yield in solute attenuation during contaminant movement, 

    
   

 
                                                             (3.9) 

Where, 

 

R = Retardation factor of contaminant species 

  = Density of the soil (g/cm3); 

n = Porosity of the soil; and 

kd= Distribution coefficient (mL/g). 
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For non-reactive or non-adsorbing solutes, kd=0, therefore R=1, while for reactive (adsorbing) 

solutes, kd>0, hence R>1.  The sorption parameters including distribution coefficient, kd, and 

retardation factor, R, for ionic species of interest are used as input parameters for contaminant 

migration modelling. 

 

3.2.4 Diffusion Tests 

Where the hydraulic conductivity of a barrier is very low and (or) the hydraulic gradient is 

negligible, diffusion which is movement of contaminants from points of high chemical 

concentration to points of low chemical concentration, is the dominant contaminant transport 

mechanism. The diffusion coefficient (D) and distribution coefficient become the controlling 

parameters. These two parameters are generally determined by doing column test in which a 

source solution containing single salt is placed on top of a soil layer and the source constituents 

are allowed to migrate through the soil by diffusion. According to Freeze and Cherry (1979), the 

following one-dimensional equation can be used to predict the diffusive transport of a single 

solute in a saturated porous medium: 

  

  
  

   

   
 

  

 

  

  
                                                          (3.10) 

Where, 

C= Solute concentration in depth z (mg/L); 

t= Time of flow (s) 

z= Distance from contaminant source in direction of flow (m); 
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K= Distribution coefficient of the solute (mL/g); 

 = Dry density of the soil (gr/cm
3
); 

D = Coefficient of hydrodynamic dispersion (m
2
/s); 

n = Porosity of soil (-)  

Hydrodynamic dispersion is due to the combination of mechanical dispersion which is a physical 

mechanism and effective diffusion as a chemical mechanism.  

D= De+ Dm                                       (3.11) 

The mechanical dispersion is a function of seepage velocity and can be expressed by the 

following equation: 

Dm= αν                                  (3.12) 

Where, 

α= Dispersivity (m) 

ν= Seepage or groundwater velocity (m/s) 

Hydraulic conductivity is low in most liners and hydraulic gradient in a diffusion test is also 

negligible because of the small height of solution on top of the soil liner, so mechanical 

dispersion can be ignored and the hydrodynamic dispersion is essentially equal to the effective 

molecular diffusion: 

D= De                         (3.13) 
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In this study, the diffusion test was conducted to determine the diffusion coefficient and 

distribution coefficient of sodium and chloride. The test apparatus used to perform the test were 

the same cells used in the hydraulic conductivity test. They consisted of cylindrical stainless-

steel cells with inside diameter of 5.4 cm and height of 7 cm, which were placed on a stainless-

steel base and had a top cap with two ports on it. One port, 6 mm in diameter, was located in the 

center of the cap and was for holding a stainless steel rod with a triangular paddle attached to it. 

The rod was attached to a low RPM hobby gear motors which rotated the stirrer at 7 rpm when it 

was connected to a 12-volt battery. Continuous mixing of the solution at this low speed was in 

order to maintain a uniform concentration throughout the source reservoir. The other port, 9 mm 

in diameter, was for interval sampling of 0.1 mL of source solution to monitor solute 

concentration during the test. This port was closed with a screwed cap except for periodic 

sampling. A schematic diagram and a photo of whole assembly are shown in Figure 3.4 and 

Figure 3.5, respectively. 

The soil samples were mixed to a water content of 2% above the optimum moisture content and 

were allowed to cure for 24 hours in sealed plastic bags, and were then compacted in diffusion 

cells in three layers. They were trimmed to height of 4 cm and a 3 cm height of 0.04 M sodium 

chloride solution was placed on top of the soil. Prior to the start of the test, the test duration was 

estimated approximately using POLLUTEv7, a commercial computer program that implements a 

solution to the one-dimensional advection-dispersion equation (Rowe et al. 1994), along with 

relevant soil parameters and published values of diffusion coefficient and distribution coefficient 

of sodium and chloride. 

During the test, 0.1 mL of the solutions from different cells were taken by pipette and as this 

volume was not sufficient for analysis, it was first diluted and stored in high-density 
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polyethylene bottles. The measured data were corrected for dilution. At the end of the tests, the 

cells were disassembled and the solution was carefully poured out, and a sample was taken for 

ion analysis. The samples were extruded and cut to 4 layers of equal thickness. Part of each soil 

slice was sampled for moisture content determination and the other part was squeezed with a 

pneumatic porewater squeezer to obtain soil porewater for chemical analysis. Graphs of source 

solution concentration versus time and pore water concentration versus depth were established 

from the experimental data. POLLUTEv7 was used to best-fit a theoretical curve to the 

experimental graphs by and it was done through changing both diffusion coefficient and 

distribution coefficient while keeping other parameters constant. The combination of diffusion 

coefficient and distribution coefficient that gave the best fit was chosen as the experimentally 

determined values for these two parameters. 

 

3.2.5 Water Samples Analysis 

3.2.5.1 Solution Analysis for Cations 

The concentrations of four major cations including, sodium, calcium, potassium and magnesium 

in permeants, effluents were measured using Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES). All the samples were filtered through 0.45 µm Acrodisc syringe filters 

and where their volumes were not enough for analysis, they were diluted with deionized, distilled 

water and the dilution factor was considered in calculation. 

3.2.5.2 Solution Analysis for Chloride 

Chloride (Cl
-
), the only anion that was considered in the study, was measured by ion 

chromatography using a Waters 430 Conductivity detector, Waters IC-Pak A Column and a 
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Borate/Glauconate eluent.  This consisted of stainless steel anion columns that separate and 

quantify ions at ppb levels.  Before starting the analysis, the samples were filtered and then 

diluted with de-ionized distilled (mega pure) water (18 mega ohm), which was drawn and used in 

the preparation of standards as well.  This was done to minimize accidental contamination.  

Appropriate sample dilution, prior to injection into the column, was undertaken with fresh mega 

pure (18 mega ohm) water to prevent the salt precipitation in the column due to the injection of 

samples with high concentrations of ions.  Filtration was undertaken to prevent clogging of the 

analytical column system or its peripherals and excessive pressure build-up due to the 

particulates in the samples.  The samples were introduced into the IC-Pak A via VISP sample 

injector.  The recommended flow rate of 1.2mL/min was used to inject the samples and the 

pressure was 2413 kPa, which did not exceed the recommended pressure of 6894 kPa. A 

schematic of instrumentation of this method is illustrated in Figure 3.6. 

 

3.2.6 Mercury Porosimetery Test  

Mercury intrusion porosimetery (MIP) testing was done on specimens before and after the 

hydraulic conductivity tests to see how the pore distribution changed during the permeation. As 

it was impossible to perform the pre-hydraulic conductivity MIP test on the main samples, the 

same procedure described in section 3.2.2 was followed to prepare identical samples. Soil 

mixtures prepared at 2% above the optimum water content were compacted in conductivity cells 

and trimmed to obtain a 2-cm thick soil layer. The sample was confined under a vertical stress of 

42.5 kPa for 24 hours. After one day, the distilled water was poured out and the sample was 

carefully extruded from the cell and part of it was taken for porosimetry testing. 
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3.2.6.1 Freeze Drying 

Prior to MIP test, all moisture must be removed from the soil as the soil moisture can produce 

errors in the pore size measurement since it is incompressible even at the high pressures applied 

for mercury porosimetry. One of the requirements for mercury porosimetry is a constant volume 

drying process. Among air-drying, oven-drying and freeze-drying procedures, freeze drying is 

the best practical method as it causes the least amount of soil shrinkage and minimizes the soil 

structure disturbance (Zimmie and Almaleh, 1976). Vacuum freeze drying, which includes rapid 

freezing of specimen and subsequent application of vacuum, removes the moisture by the 

process of sublimation and elimination of the surface tension forces caused by air-water menisci.  

Wet soil samples were cut into 1 cm cubes and were placed in a special cage consisting of 

stainless steel wire and aluminum screen. Three cubes of each mixture were prepared because of 

possible problems with sample cracking during freeze drying. To avoid formation of ice crystals 

that can disturb the soil structure, the samples should freeze rapidly at a temperature below -130 

°C (Gillott 1969). Liquefied gases, usually liquid nitrogen, must be used to attain the low 

temperature. A Dewar flask, suitable for cryogenic liquids, was filled with the liquid nitrogen 

provided from Physics Department at the University and was placed under a fume hood. If the 

samples are placed in nitrogen directly, bubbling may occur as a result of heat transfer; hence the 

samples become surrounded by a thermally insulating layer of gas and the freezing process may 

be retarded. Samples can be immersed directly in an intermediate cooling liquid like iso-pentane 

cooled by liquid nitrogen (Rowe, 1960). Therefore, another appropriate container was immersed 

in liquid nitrogen to be cooled. The container was filled with pentane to about 3/4 full and was 

re-immersed in liquid nitrogen. Once the pentane was cooled, the sample holder assembly was 

placed in it for about one minute and it was continuously moved during immersion to prevent it 
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from freezing to the pentane container. After freezing, the samples were quickly placed in a 

vacuum desiccator and the desiccator was attached to a vacuum pump for 24 hours. After 

disconnecting the desiccator from pump, the samples were removed and were stored in small 

glass jars containing a few grams of silica gel desiccant in the bottom to prevent them from 

absorbing moisture from air. 

 

3.2.6.2 Mercury Intrusion 

The mercury porosimery test was performed with AutoPore IV 9500 Mercury Porosimeter, a 

227527 kPa a porosimeter, which covers the pore diameter range from approximately 360 to 

0.005 µm and has four built-in low-pressure ports and two high-pressure chambers.  

Prior to analyzing the samples, the freeze-dried samples were weighed and then loaded in the 

appropriate penetrometer. To start the test, a sample information file including sample 

information, analysis conditions and penetrometer properties was created using the relevant 

software. The loaded penetrometer was installed in the low pressure port. The first phase of low 

pressure analysis is the gas evacuation from the penetrometer and after that the penetrometer is 

backfilled automatically with mercury. The second phase of low-pressure analysis is data 

collection at pressures up to 345 kPa. The pore diameter in this stage is in range of 360 to 3.6 

µm. Once the low pressure analysis is complete, the penetrometer is removed from the low 

pressure port and is installed in a high pressure port which collects the data at pressures up to 

227527 kPa.  

The volume of mercury which remains in the penetrometer is used in the calculation of pore 

volume. This volume is measured by the determination of the penetrometer’s electrical 
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capacitance which changes with length of mercury in the penetrometer. First, the penetrometer is 

full of mercury because of initial backfill but mercury moves into the sample’s pores as pressure 

increases and vacates the stem (intrusion), in fact intrusion of different size pores occurs at 

different pressures, the smaller the pore, the greater pressure is required to move mercury in it. 

The decrease of mercury length in the stem of the penetrometer causes reduction in the 

penetrometer’s capacitance reduction. Auto Pore IV software converts the measurements of 

penetrometer’s capacitance to intruded volume of mercury. The basis of mercury porosimetry is 

capillary law, governing liquid penetration into small pores, which is expressed by the Washburn 

equation. As mercury has high surface tension and is also non-wetting to most materials, this 

equation can be used to calculate the pore diameter into which mercury intrudes at a given 

pressure.  

    
 

 
                            (3.14) 

Where, 

D= Pore diameter; 

P= Applied pressure; 

ɣ= Surface tension; 

φ= Contact angel 

The value of surface tension of mercury which was used in this experiment is 485 dynes/cm, 

however in general it varies with purity. In the present study, the contact angle between mercury 

and soil pore was considered to be 130 degrees. 
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3.2.7 Computer Modelling 

The hydraulic conductivity testing was modelled by Pollute v.7 which provides a solution to the 

advection–dispersion equation for solutes: 
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C se
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  (3.15) 

The top boundary condition in the hydraulic conductivity test was modelled as a constant 

concentration and the bottom boundary was modelled as fixed outflow velocity, since the sample 

was placed on a porous stone as a permeable layer (aquifer) with a fixed outflow velocity.  The 

other software inputs were:  

1. Darcy velocity; 

2. One 0.02m- thick soil layer with 4 soil sub-layers; 

3. Soil porosity and dry density; 

4. Initial trial effective diffusion and dispersion coefficients for sodium and chloride, 

subsequently varied until the best value for the experimental data was obtained; 

5. Constant concentration in the source solution; 

6. Base outflow velocity;  

7. Background concentration throughout the sample thickness for the solute of interest; and 

8. Depth and time of interest at which solute concentrations were required. 
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Figure 3.2: Set up of hydraulic conductivity test 

 

Figure 3.1: Different part of the fixed-wall hydraulic conductivity cell 
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Figure 3.3: Schematic of hydraulic conductivity cell cross-section 
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Figure 3.4: Schematic of diffusion cell 

 

 

Figure 3.5: Diffusion test set up 
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Figure 3.6: Schematic of IC instrumentation 

 

Table 3.1: Physical data of glass Beads 

Property Value Unit 

Melting point 1446 °C 

Softening point (Littleton point)  734 °C 

Transformation temperature 549 °C 

Specific thermal conductivity 1.129 W/Km 

Coefficient of expansion 9.05 10
6
 (1/K) 

Specific thermal capacity 1.329 KJ/Kg K 

Refractive index 1.5188  - 

Young’s-Modulus 63 Gpa 

Hardness according to Mohs ≥ 6 -  

Specific weight* 2.5 Kg/dm
3
 

Roundness (ratio of axis) ≥ 80 % 

* Test with pyknometer according DIN ISO 787-10 
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Table 3.2: Chemical composition/heavy metal content of glass beads 

Property Value Unit 

SiO2 72.5 MA.- % 

Al2O3 0.58 MA.- % 

Fe2O3 0.11 MA.- % 

TiO2 0.04 MA.- % 

K2O 0.21 MA.- % 

Na2O 13 MA.- % 

CaO 9.06 MA.- % 

MgO 4.22 MA.- % 

PbO < 0.01 MA.- % 

BaO < 0.01 MA.- % 

ZnO < 0.01 MA.- % 

As2O3 < 0.01 MA.- % 

Sb2O3 0.02 MA.- % 

SO3 0.12 MA.- % 

SrO < 0.01 MA.- % 

ZrO2 0.01 MA.- % 

B2O3 < 0.01 MA.- % 

 

Table 3. 3: Sodium-Chloride specifications 

Property Value 

Assay 99.0% NaCl min 

pH of 5% solution at 25 °C 5.0- 9.0 

Insoluble matter 0.005% max 

Iodide (I) 0.002% max 

Bromide (B) 0.01% max 

Chlorate and Nitrate (as NO3) 0.003% max 

Phosphate (PO4) 5 ppm max 

Sulfate (SO4) 0.004% max 

Barium (Ba) Passes test 

Heavy metals (as Pb) 5 ppm max 

Iron (Fe) 2 ppm max 

Calcium (Ca) 0.002% max 

Magnesium (Mg) 0.001% max 

Potassium (K) 0.005% max 
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Chapter 4 

Results AND Discussion 

4.1. Soil Properties 

The physical properties of the different glass beads-kaolinite mixtures are presented in Table 4.1. 

The Casagrande device was used to determine the liquid limit of the soil samples by means of 

the flow curve method. Plasticity index was determined as the difference between the liquid and 

plastic limits. The liquid limit of the mixtures increases from 11.9% for a mixture with 20 

percent clay to approximately 30% as the weight concentration of clay reaches 50 percent but, as 

evident from Figure 4.1 it does not increase exactly proportionally with the addition of clay 

which is consistent with previous research (Sivapullaiah and Sridharan, 1985). Moreover, the 

addition of clay shows an increase in plasticity index, that is, the range of moisture content over 

which the soil is in a plastic condition.  

Compaction curves for the mixtures are presented in Figure 4.2. As expected, on the dry side of 

the optimum moisture content, density increases with adding water due to particles lubrication 

with a larger water film around them resulting in a denser configuration (Holtz and Kovacs, 

1981) while in the wet side of the optimum moisture content, the water particles replace soil 

particles. Therefore, the density will decrease. The maximum dry density decreases from 2.01 

g/cm
3 

to 1.78 g/cm
3 

as the kaolinite amount increases from 20 to 50 percent as a result of lower 

particle density of water compared to soil particles. The specific gravity of G80K20 was 

measured to be 2.52 and there was no notable increase in this parameter due to the addition of 

kaolinite to mixtures.  
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The hydrometer analysis for kaolinite is presented in Figure 4.3. The data show that 60 percent 

of the kaolinite used in this research is finer than 0.002 mm. Therefore the clay size percentage 

in G80K20, G70K30, G60K40, G50K50 were 12%, 18%, 24% and 30% respectively. From the 

classification scheme for soil activity proposed by Head (1980), all four mixtures may be 

classified as inactive soils since their activity is less than 0.75. 

Table 4.2 shows the soluble salts and exchangeable cations of glass beads and kaolinite. As it can 

be concluded the glass beads would not generally contribute to the cation exchange capacity of 

the mixture. Moreover, the cation exchange capacity of kaolinite was measured to be 2.46 

meq/100g, which is close to the published value of 2.62 meq/100 g for pure kaolin (Ghosh and 

Bhattacharyya, 2002). 

 

Table 4.1: Physical properties of glass beads-kaoline mixtures used in study 

Property Reference 
Value 

G80K20 G70K30 G60K40 G50K50 

Specific Gravity ASTM D 854 2.52 2.53 2.54 2.55 

Liquid Limit (%) ASTM D 4318 11.9 17.2 25.1 29.7 

Plastic Limit (%) ASTM D 4318 10.6 12.6 15.3 16.6 

Plasticity Index (%) ASTM D 4318 1.3 4.6 9.8 13.1 

Kaolinite Particle Sizes: 

%Silt (0.002 to 0.074 mm) 

%Clay (Clay < 0.002 mm) 

 

ASTM D 422 

ASTM D 422 

 

8 

12 

 

12 

18 

 

16 

24 

 

20 

30 

Activity 
 

0.11 0.26 0.41 0.44 

Maximum Dry Unit Weight (g/cm
3
) ASTM D 698(A) 2.01 1.98 1.86 1.78 

Optimum Water Content (%.) ASTM D 698(A) 8.5 11.5 14.8 17.8 
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Figure 4.1: Atterberg limits for different glass beads-Kaolinite mixtures 

 

Figure 4.2: Compaction curves for glass beads-Kaolinite mixtures 
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Figure 4.3: Hydrometer analysis for kaolinite  

 

Table 4.2: Chemical properties of soils in this study  

  Soluble Salts Exchangeable Cations 

Species 
Glass Beads Kaolinite Glass Beads Kaolinite 

mg/L (meq/100g) meq/100g 

Barium < 0.01 (<0.01) 0.035 (<0.01) < 0.01 < 0.01 

Calcium 0.89 (0.45) 1.07 (0.53) < 0.01 1.59 

Iron 0.022 (<0.01) 0.22 (0.077) < 0.01 < 0.01 

Potassium 0.062 (0. 016) 0.4 (0.10) < 0.01 <0.01 

Magnesium 0.31 (0.25) 0.30 (0.25) < 0.01 0.72 

Manganese <0.01 (<0.01) 0.02 (<0.01) < 0.01 <0.01 

Sodium 1.91 (0.83) 0.82 (0.36) < 0.01 0.14 

Cation Exchange Capacity, CEC (meq/100 g) 2.45 
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4.2. Column Diffusion Test 

The diffusion test ran for 10 days but as the pore water which was squeezed from four different 

sections of the soil sample at the end of the test was not enough for determination of sodium and 

chloride concentrations, establishing of concentration graph versus depth of the soil was 

impossible. Therefore, the diffusion coefficient and distribution coefficient were determined 

based on literature values and on solute breakthrough curves obtained from hydraulic 

conductivity test. The final selected values of the two parameters were within the range of 

previously reported values (D. shackelford and L. Redmond, 1995) and they provided a good fit 

to the experimental curves.  

 

4.3. Batch Sorption Studies 

Distribution coefficient obtained from batch tests and other soil parameters used in retardation 

factor calculation are presented in Table 4.3. According to Figure 4.4 and Figure 4.5, the sorption 

of solutes follows a linear isotherm in the range of concentrations considered in the present 

study, so the retardation factors were calculated from following equation: 

    
   

 
 

Where; 

 = Dry density of the soil (g/cm
3
) 

n= Soil porosity 

Kd= Distribution coefficient (mL/g) 
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The data indicate that the measured distribution coefficients from batch tests are lower than those 

back calculated using the commercial software POLLUTE (Rowe and Booker, 1975). This is 

consistent with results of earlier studies which found that experimental distribution coefficients 

obtained from batch tests in clayey soils were lower than values determined from diffusion tests 

(Barone et al. 1992; Myrand et al. 1992). This can be attributed to the lower ratio of soil to 

solution in batch test and, also, to the difference between no flow condition in batch test relative 

to transient condition in column test (Cherry et al. 1984). As the dry density and porosity of the 

samples were not similar, it was not expected to see same trend in distribution coefficients and 

retardation factors calculated from distribution coefficients. Moreover, adding kaolinite to the 

mixture resulted in an increase in the distribution coefficient of sodium as a result of increase in 

soil cation exchange capacity. However, the distribution coefficient of chloride was not affected 

by the addition of clay. The retardation factors for sodium and chloride are greater than one in all 

three samples which was expected for sodium because of cation exchange capacity (CEC) of the 

kaolinite but generally the chloride ion is assumed to be non-adsorbing solute which implies a 

distribution coefficient equal to zero and a retardation factor of 1. However, there is another 

study in the literature which found retardation factor greater than 1 for chloride, but the reason 

has not yet been investigated. The retardation factor of chloride is smaller than sodium which is 

consistent with preferential adsorption of Na
+
 relative to Cl

¯
 (Shackelford and Redmond, 1995). 

The observed diffusion coefficients for sodium and chloride in the present study were in the 

range of 1.9x10
-10 

m
2
/s to 8.5x10

-10 
m

2
/s for the different glass beads-kaolinite mixtures. These 

observations suggest diffusion of both ions in the soils was affected by the percentage of clay 

fraction. The greater the amount of clay, the lower the diffusion coefficient obtained, which is 

consistent with classical advection-dispersion theory showing that diffusion coefficient increases 
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as the seepage velocity increases (Freeze and Cherry 1979). Moreover, the diffusion coefficient 

of sodium is approximately two times that of chloride. This trend is visually apparent from the 

shape of the breakthrough curves for Na
+
 and Cl

-
 presented later in this chapter which shows 

greater dispersion of sodium relative to chloride. Cherry et al. (1984) that the dispersion of 

reactive solutes (R>1) is generally greater than that of nonreactive solutes (R=1) but as both 

sodium and chloride were determined to be reactive in this study, this reason probably cannot 

account for the observed discrepancy in ions dispersion. 

Table 4.3: Distribution coefficient, diffusion coefficient and retardation factor of solutes 

Soil 
Solute 

 Kd (mL/g) 
R De (*10

-10 
m

2
/s) 

    Batch Test Model 

G70K30 

 

Na 0.56 1.08 9.4 8.5 

 

 = 1.91(g/cm
3
) Cl 0.06 0.4 4.1 4 

 

n= 0.247 
     

G60K40 

 

Na 0.68 1.23 8.9 6.26 

 

 = 1.82 (g/cm
3
) Cl 0.1 0.4 3.6 3.5 

 

n= 0.282 
     

G50K50 

 

Na 0.77 1.31 7.8 3.5 

 

 = 1.71 (g/cm
3
) Cl 0.12 0.4 3.1 1.9 

  n= 0.328           
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Figure 4.4: Batch equilibrium test results for Sodium 

 

Figure 4.5: Batch equilibrium test results for Chloride 
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4.4. Hydraulic Conductivity 

 

The hydraulic conductivity of different mixtures as well as temperature versus net pore volume 

of soils is shown in Figure 4.6 to Figure 4.9. It is clear from Figure 4.6, that for the soil 

containing 80 percent glass beads and 20 percent kaolinite, there was fluctuation in hydraulic 

conductivity up to approximately 6 pore volumes due likely to the segregation of kaolinite and 

glass beads, which was confirmed by the presence of kaolinite particles in the effluent during this 

period, as illustrated in the photographs in Figures 4.10 and 4.11 taken at the end of the hydraulic 

conductivity tests.  The rather murky colour of the effluent in the middle bottle of Figure 4.10 

shows dispersion and removal of kaolinite particles from the mixture likely via side-wall 

leakage. Figure 4.11 shows clear separation of kaolinite particles and glass beads. An attempt 

was made to minimize or prevent sidewall leaking by lightly greasing inside of the cell on top of 

the soil sample with vacuum grease, but this did not prevent the leaching of clay particles from 

the 80% glass beads-20% kaolinite mixture (G80K20) under the imposed hydraulic gradient. 

After several trials, it was concluded that it was not possible to obtain a mixture that was 

homogeneous enough to yield a reliable hydraulic conductivity value for G80K20; this mixture 

was therefore eliminated from the study and no further measurements were carried out.  

The test results from the other mixtures show a slight decrease in hydraulic conductivity from the 

beginning to the point of distilled water permeation, which is likely because of seepage 

settlement and subsequent consolidation of samples. As shown in the settlement-pore volume 

graphs in Figures 4.12 (a) to 4.12 (c), during flushing stage there was 0.23 mm, 0.15 mm and 

0.15 mm settlement in G70K30, G60K40 and G50K50, respectively. The measuring rods were 

tightened during permeation to prevent leakage and dial gauge readings were taken only during 

refilling of syringes. The total measured settlements of samples were 0.21 to 0.29 mm. 



63 
 

From the experimental results it can be concluded that the introduction of sodium chloride 

solution did not change the measured hydraulic conductivity of the three glass beads-kaolinite 

mixtures. Apparently the higher ionic strength of the 0.04 M NaCl relative to distilled water was 

not large enough to result in particle rearrangement, flocculation and ultimately higher hydraulic 

conductivity in the presence of induced effective stresses in the soil samples (Mitchell 1993; 

Shackelford 1994a). However, the hydraulic conductivity of all samples increased after the third 

refill of syringes as a result of higher temperature. Increase in temperature results in decrease in 

viscosity of water, which can contribute greatly to an increase in hydraulic conductivity of soil 

(Cho et al., 1999). 

 

After passing approximately 17 pore volumes of NaCl solution through G70K30, its final 

hydraulic conductivity was 8.2 x10
-11

 m/s at a hydraulic gradient equal of 628 whereas passing 

15 pore volumes of the solution through G60K40 and G50K50 resulted in final hydraulic 

conductivity of 1.28*10
-10

 m/s and 1.48*10
-10

 m/s at a hydraulic gradient of 408 and 347, 

respectively. The higher hydraulic conductivity in the mixture with 50 percent kaolinite relative 

to the two other samples may be partly explained by the lower dry density and larger porosity of 

this mixture. The properties of the samples obtained at the start of the hydraulic conductivity 

tests are presented in Table 4.4. 
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Table 4.4: Soil samples properties in hydraulic conductivity test 

Property Unit 
Value 

G70K30 G60K40 G50K50 

Sample thickness (cm) 2 2 2 

Sample volume (cm
3
) 45.8 45.8 45.8 

Volume of solid (cm
3
) 34.5 32.9 30.8 

Volume of pore (cm
3
) 11.3 12.9 15.0 

Void ratio (-) 0.33 0.39 0.49 

Porosity (-) 0.25 0.28 0.33 

Water Content (%) 13.4 16.5 19.5 

Dry density (g/cm
3
) 1.91 1.82 1.71 

Degree of saturation (%) 100.0 100.0 95.8 

 

 

Figure 4.6: Variation in hydraulic conductivity of G80K20 
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Figure 4.7: Variation in hydraulic conductivity of G70K30 
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Figure 4.8: Variation in hydraulic conductivity of G60K40 
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Figure 4.9: Variation in hydraulic conductivity of G50K50 
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Figure 4.10: Turbidity in G80K20 effluent 

 

 

Figure 4.11: Segregation of kaolinite and glass beads in G80K20 
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(a) 

 

(b) 

 

(c) 

Figure 4.12: Settlement versus pore volumes during testing 
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4.5. Effluent pH 

The measured pH of the effluents from the hydraulic conductivity cells is illustrated in Figure 

4.13 (a) to (c). Although there are some differences in the results, the general trend is 

approximately the same. The pH values stabilized after a few pore volumes and decreased 

slightly, in comparison to the pH observed during the distilled water permeation stage. A 

decrease in pH following NaCl permeation may be attributed to the replacement of hydrogen 

ions (H
+
) attached to exposed hydroxyls on the kaolinite clay particle surface by sodium ions 

(Na
+
) present in the permeant. Ion exchange likely did not occur during permeation with distilled 

water because very few ions are present in distilled water (Shackelford and Redmond, 1995). 

There was no subsequent increase in pH which indicated minimal ion exchange during the test. 

4.6. Effluent Electrical Conductivity 

Figure 4.14 shows a plot of the measured electrical conductivity of the effluent relative to the 

initial conductivity of the sodium chloride solution. As indicated by the graphs, the general trend 

is the same for all three specimens: a decrease in electrical conductivity during distlled water 

permeation and an increase following the introduction of NaCl solution. The initial decrease is 

because of the reduction of soluble salts concentration in the samples pore water. But, as the 

concentration of ions, specifically Na
+
 and Cl¯, increased in the effluent, the EC/EC0 increased 

and finally reached a value of unity after 17 pore volumes of permeation of G70K30 with NaCl 

solution and passing of approximately 15 pore volumes of solution through the other two 

samples. Shackelford and Redmond (1995) reported that electrical conductivity of the effluent 

reaches half of the initial value (EC/EC0= 0.5) usually after about one pore volume of permeant 

flow but this was not observed in the present study.  No definite conclusions regarding the 

migration of nonreactive and reactive solutes may be drawn from the electrical conductivity 
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measurements. However, the trend in solute breakthrough curves is expected to be similar to that 

of electricial conductivity (EC). 

 

Figure 4.13: pH curves versus net pore volumes 
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Figure 4.14: Variation in relative effluent electrical conductivity (EC) during permeation of soils    

with NaCl solution 
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4.7. Solute Breakthrough Curves 

The measured sodium and chloride concentrations in the effluent from the three cells are 

presented in Figures 4.15 (a) to 4.15 (c) and Figures 4.16 (a) to 4.16 (c). There was a significant 

decrease in sodium concentration in all samples during permeation with water which was 

reflected in the measured electrical conductivity noted in the previous section. The as- received 

glass beads was found to contain sodium ions. During the permeation of the compacted samples 

with distilled water, sodium was washed out and its concentration reached 69.9 mg/L, 112.7 

mg/L and 98.6 mg/L for G70K30, G60K40 and G50K50, respectively. A decrease in chloride 

concentration likely occurred, however, as the initial value in the samples were not high, the 

decrease was not noticeable.  

 

The best-fit values of distribution coefficient and diffusion coefficient along with other soil 

parameters were used as input in the commercial software Pollute7 (Rowe and Booker, 1995) to 

model the breakthrough curves for sodium and chloride. The results show that there is a good 

agreement between modelling and experimental results during early stages of hydraulic 

conductivity testing with NaCl solution for sodium. However, after a few pore volumes (5 PV) 

of permeation with NaCl solution, the predicted concentrations for sodium exceeded the 

experimental values for a considerable number of pore volumes. 

Moreover, regardless of the soil mixture, the effluent chloride concentration was overestimated 

by the model after approximately three pore volumes of sodium chloride permeation. The 

difference between the experimental and modelling results may be attributed to processes that 
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may have occurred during the hydraulic conductivity tests and were likely not considered in the 

modelling.  

One of the possibilities could be a change in soil pore size distribution and porosity during 

permeation, which results in a different Darcy velocity. In this study, the pore size distribution of 

compacted samples were determined by mercury intrusion porosimetry (MIP) test at the start and 

end of the hydraulic conductivity tests, to evaluate how permeation affected the pore structure of 

the mixtures.  
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Figure 4.15: Sodium breakthrough curves 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.0 5.0 10.0 15.0 20.0 

C
e/

C
0

 

Pore Volume 

(b) G60K40 

Sodium (Experiment) 

Sodium (Model) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.0 5.0 10.0 15.0 20.0 

C
e/

C
0

 

Pore Volume 

(c) G50K50 

Sodium (Experiment) 

Sodium (Model) 



76 
 

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 

C
e/

C
0

 

Pore Volume 

(a) G70K30 

Chloride (Experiment) 

Chloride (Model) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 

C
e/

C
0

 

Pore Volume 

(b) G60K40 

Chloride (Experiment) 

Chloride (Model) 



77 
 

 

Figure 4.16: Chloride breakthrough curves 
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4.8. Mercury Porosimetry Analysis 

 

The cumulative intrusion versus pore diameter is presented in Figures 4.17 (a) to 4.17 (c) and the 

detailed MIP test results are in Appendix B.  

According to the results, the total intrusion of mercury in G70K30 decreased from 0.1124 mL/g 

to 0.0847 mL/g after permeation and the measured porosity decreased from 29.3% to 22.2%. The 

same trend was observed for G60K40 and G50K50 with initial intrusions of 0.1230 mL/g and 

0.1379 mL/g relative to final values of 0.1087 mL/g and 0.1239 mL/g, respectively. The porosity 

of these two samples also decreased from 31.9% to 27.7% for G60K40 and from 35% to 30.7% 

for G50K50.  Figures 4.18 (a) to 4.18 (c) show the modelling based on the adjusted porosity, as it 

can be observed change in porosity value did not affect the breakthrough curves considerably. 

While these results do not directly indicate a specific change in Darcy velocity or other 

controlling parameters in the model, they definitely suggest a decrease in Darcy velocity. 

Therefore, to evaluate how it could affect the model output, the same reduction in intruded 

mercury volume, 25%, 12% and 10% for G70K30, G60K40 and G50K50 respectively, was 

applied to the Darcy velocity. Two time periods were considered in re-modelling of the 

breakthrough curves; the initial Darcy velocity was assigned to the first period, while the 

decreased Darcy velocity (for the afore mentioned percentage change) was considered to be the 

value for the second period. The results for sodium are illustrated in Figures 4.19 (a) to 4.19 (c).  

As change in Darcy velocity value did not affect the chloride breakthrough curves noticeably, 

they are not shown. The modelling with a constant Darcy velocity is also shown on the same 

graphs.  
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Figure 4.17: Cumulative Intrusion versus Pore size 
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Figure 4.18: Sodium breakthrough curves (Adjusted porosity) 

  

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 

C
e/

C
0

 

Pore Volume 

(b) G60K40 

Experiment 

Model (Constant porosity) 

Model (Adjusted porosity) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 

C
e/

C
0

 

Pore Volume 

(c) G50K50 

Experiment 

Model (constant porosity) 

Model (Adjusted porosity) 



82 
 

The results indicate that the discrepancy between experimental relative concentrations and model 

output decreased by considering variable Darcy velocity but they still did not match perfectly, 

suggesting that there could be some other parameters besides porosity and hence Darcy velocity 

governing the model results. These parameters may include change in the diffusion coefficient 

and distribution coefficient or the existence of different diffusion coefficient or distribution 

coefficient in different soil layers, which were considered constant throughout the sample 

thickness and test duration. Figure 4.20 shows sensitivity analysis based on change in diffusion 

coefficient and distribution coefficient; according to the result the model is noticeably sensitive 

to these two parameters. Further studies may be required to determine if each effective parameter 

used in the modelling remains constant during landfill operation or it changes and if it changes, 

how the model can be affected by variability in this parameter. It is very important to consider 

the field condition as much as possible in modelling to have a good estimation of contaminant 

concentration as the overestimation of solute loadings could result in a costly design. On the 

other hand, the effects of under estimation could have greater consequences beyond financial 

issues and can have serious effect on local environment and human health.  
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Figure 4.19: Sodium Breakthrough Curves (Adjusted Darcy velocity) 

 

 

Figure 4. 20: Sodium breakthrough curves (Sensitivity analysis) 
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Chapter 5 

Conclusion and Recommendations 

5.1. Conclusion 

This study aimed to evaluate the porosity of compacted glass beads-kaolinite soil samples before 

and after hydraulic conductivity testing. Hydraulic conductivity was considered to be one of the 

effective parameters used in modelling of solute breakthrough curves in an attempt order to 

assess part of the discrepancy between experimental results and modelling outputs observed in 

previous studies. 

The results of mercury intrusion porosimetry (MIP) tests showed a decrease in the porosity of 

soil samples after permeation with sodium chloride solution. Initial porosity obtained from the 

MIP test was also less than calculated values from samples, properties which were probably as a 

result of voids that were totally enclosed within solid materials and had no exchange with the 

pore space that had continuity to boundaries of the medium. These kinds of pores were not 

accounted for in the MIP result since no mercury was intruded into them. Three different 

mixtures of glass beads and kaolinite were tested to evaluate the effect of clay size percentage in 

the pore size distribution change but according to the results, no clear relationship was found 

between the fraction of clay and change in porosity. In other words, more clay did not lead to a 

greater decrease in porosity. The decrease in porosity results in less pores available for solution 

flow and, therefore, in a lower Darcy velocity; therefore, additional modelling was performed 

using a variable Darcy velocity instead of a constant value and the output was found to be closer 

to experimental results. It can be concluded from the results that the Darcy velocity should not be 

considered to be constant and that a proper time period must be defined with different Darcy 
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velocity values specified for various times. However, there was still an overestimation of solute 

concentrations by the model showing that there were other processes that occurred during testing 

that were not accounted for in the model. 

More studies are required to monitor other effective parameters that could influence the 

modelling, such as distribution coefficient and diffusion coefficient of the solutes during test and 

throughout the sample thickness. 

It is very important to select the input parameters that are as close to real-life conditions as 

possible in order to approximate field values to prevent unrealistic predictions of contaminant 

concentrations and loadings, which could lead to costly monitoring and remediation. 

5.2. Recommendations for Future Studies 

Modelling of solute breakthrough curves with variable properties is an evolving concept and 

more research needed to improve applications for industry application. The following 

recommendations may be considered in future studies: 

1) Hydraulic conductivity tests can be run on the same samples in different cells and mercury 

intrusion porosimetry test may be performed at different times to monitor changes in the pore 

size distribution structure. 

2) The distribution coefficient and diffusion coefficient of solutes during hydraulic conductivity 

testing and in different layers of compacted samples should be monitored. 

3) Perform tests with natural soil and real leachate to evaluate the effect of processes such as 

mineral dissolution, chemical and mineral precipitation. 
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Appendix A 

Pressure Transducer Calibration 

 

A.1.  

Date: Feb 20/2008 

Model No: Dynisco APT311JA-1C   Serial No: 230426 

Range: 0-689.5 kPa  Inventory No 017-310 

Volts.Exec.: 10  Output: 3.959 mV/V 

Offset: 344 
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Notes: Calibrated using Chandler Deadweight Tester (017-95) Transducer read on KTest 

Sciemetrics DA Serial No G8098 
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A.2.  

Date: Feb 20/2008 

Model No: Dynisco APT311JA-1C   Serial No: 279498 

Range: 0-689.5 kPa  Inventory No 017-351 

Volts.Exec.: 10  Output: 3.453 mV/V 

Offset: 1190 

 

Deadweight Tester Reading Transducer Reading 
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Notes: Calibrated using Chandler Deadweight Tester (017-95) Transducer read on KTest 

Sciemetrics DA Serial No G8098 
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A.3.  

Date: Feb 20/2008 

Model No: Dynisco APT311JA-1C   Serial No: 230428 

Range: 0-689.5 kPa  Inventory No 017-312 

Volts.Exec.: 10  Output: 3.898 mV/V 

Offset: 202 
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0 

22 

100 

200 

400 

600 

 

0 

22 

101 

201 

401 

600 

 

Notes: Calibrated using Chandler Deadweight Tester (017-95) Transducer read on KTest 

Sciemetrics DA Serial No G8098 
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A.4.  

Date: Feb 20/2008 

Model No: Dynisco APT311JA-1C   Serial No: 461719 

Range: 0-689.5 kPa  Inventory No 017-429 

Volts.Exec.: 10  Output: 3.555 mV/V 

Offset: 98 
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Notes: Calibrated using Chandler Deadweight Tester (017-95) Transducer read on KTest 

Sciemetrics DA Serial No G8098 
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Appendix B 

Mercury Intrusion Porosimetry Report 

 



100 
 



101 
 



102 
 

 



103 
 

 

Figure A.1: Cumulative Intrusion vs Pore Size (G70K30) 
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Figure A.2: Log Differential Intrusion vs Pore Size (G70K30) 

 



105 
 



106 
 



107 
 



108 
 

 



109 
 

 

Figure A.3: Cumulative Intrusion vs Pore Size (G70K30-Final) 
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Figure A. 4: Log Differential Intrusion vs Pore Size (G70K30-Final) 
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Figure A.5: Cumulative Intrusion vs Pore Size (G60K40) 
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Figure A.6: Log Differential Intrusion vs Pore Size (G60K40) 
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Figure A.7: Cumulative Intrusion vs Pore Size (G60K40-Final) 
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Figure A.8: Log Differential Intrusion vs Pore Size (G60K40-Final) 
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Figure A.9: Cumulative Intrusion vs Pore Size (G50K50) 
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Figure A.10: Log Differential Intrusion vs Pore Size (G50K50) 
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Figure A.11: Cumulative Intrusion vs Pore Size (G50K50-Final) 
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Figure A.12: Log Differential Intrusion vs Pore Size (G50K50-Final) 
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