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Abstract 

Troponin is known as a type of reliable biomarker for the detection of cardiac disorders. 

Cardiac troponin I (cTnI), as a subunit of troponin, is highly sensitive to cardiac injury; 

therefore, the cTnI level is used as an index to diagnose myocardial damage, particularly 

acute myocardial infarction. It can be also used in cardiospecific diagnosis, risk stratification 

therapeutic treatment and post risk management.  In this research, an amperometric 

immunosensor was developed based on planar electrode and sandwich ELISA format. The 

electrical response corresponding to biological information was obtained via four main 

procedures, including electrode modification, immunoreaction, signal amplifications and 

amperometric detection. Enzyme labels such as horseradish peroxide (HRP) and alkaline 

phosphatase (ALP) were used for signals amplification. Since alkaline phosphatase works 

better in low background current levels and has great reproducibility, it was used for 

nanomaterials, chitosan, gold nanoparticle, carbon nanotube as electrode modification 

investigation. The anti-cTnI antibody is detectable by electrochemical technology. Necessary 

conditions and interferences of the experiment were examined. Detection range was from 

0.001 ng ml-
1
 to 300 ng ml-

1
 on PDDA-MWCNT sensor, and from 0.02 ng ml-

1
 to 200 ng 

ml-
1
 on chitosan-AuNPs sensor. The detection range was investigated using cyclic 

voltammetry. The signal behavior recorded was linear to cTnI concentration. This behavior 

makes the developed biosensor be able to widely use in clinical practice. Likewise, two 

liquid substrates were catalyzed by hydroquinone and 3, 3’, 5, 5’-teteramethylbenzidine 

respectively. Hydrogen peroxide (H2O2) is a product of glucose oxidizes catalyzing the 

oxidation of β-D-glucose by oxygen. It is also used as an oxidizing agent in catalyzing HRP. 

Hence, an HRP-based immunosensor is important in integrating an immunosensor and an 

enzyme sensor for the purpose of achieving multianalyte detection compacted on one chip. 

The cTnI immunosensor developed here is rapid, easy-to-use, cost-efficient and robust. 

Keywords 

Cardiac biomarkers, cardiac troponin I (cTnI), point-of-care, electrochemical immunosensor, 

amperometric, sandwich ELISA, Horseradish peroxide, alkaline phosphatase. 
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Chapter 1  

1 Introduction 

This chapter will introduce the background knowledge about cardiovascular disease, 

various cardiac biomarkers and their clinical applications.  Motivation, objective, and 

outline of the thesis have also been addressed. 

 

1.1 Cardiovascular disease  

Regardless of enormous efforts and significant achievements in the precaution and 

treatment of cardiovascular disease (CVD), a severe medical condition, it still accounts 

for the majority of  adult mortality in the present western world (McDonnell et al., 2009).  

The data and statistics from America’s 2009 Centers for Disease Control and Prevention 

(CDC) showed that 599,413 Americans died from heart disease (195.2 deaths in every 

100,000 people), over 30 million times visit to clinic, hospital or emergency department 

due to heart disease including primary diagnosis of ischemia heat disease, and up to 

42.6% (635,000) cardiac condition patients residing in the nursing homes (CDC Home, 

2009). In the European Union, the expense on cardiac condition is roughly 192 billion 

Euro annually (Allender S, 2008). Each year, countless patients pour in the emergency 

departments for medical care owning to chest pain syndrome or other forms of acute 

coronary syndrome (ACS), among which less than 10% are finally diagnosed as acute 

myocardial infarction (AMI) (Collinson PO, 1999; Lewandrowski et al., 2002). Through 

the ages, CVD conditions have crippled our human society in terms of health care 

services, medication and lost productivity. 

The challenge is that symptoms, including chest pain, pressure, tightness, dyspnoea and 

heartburn sensations, are not adequate for correct diagnosis in primary medical clinic. 

Generally, panic disorder, stable angina, gastrointestinal disease, musculoskeletal pain 

and viral infection all can cause chest pain syndromes; however the critical suspects 

would be more severe cardiac conditions: heart failure (HF), thromboembolic events (TE) 
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and acute coronary syndromes (ACS), especially myocardial infarction (MI) (Brieger et 

al., 2004; Godfrey et al., 2006; Punukollu et al., 2005; Tomonaga et al., 2011). Figure 1.1 

indicates the pathophysiology progression of acute coronary syndromes (ACS).  

When the fatty streaks accumulated to a certain extent to form plaques, the rupture of 

plaques and the thrombus will result in gradual deterioration, from unstable angina to 

heart failure (Azzazy and Christenson, 2002). Myocardial infarction (MI) can be defined 

as the non-reversible damage of cardiac myocytes caused by sustaining ischemia, 

resulting in necrosis of myocardial cells. Therefore, MI is recognized as the most life 

threatening cardiac condition requiring comprehensive, correct and quick diagnosis 

(Mohammed and Desmulliez, 2011). 

 

 

Figure 1.1: Cardiac injury: the pathophysiology of acute coronary syndromes 

(ACS).  Adapted from Ref. (Azzazy and Christenson, 2002). 
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In 2002, the European Society of Cardiology (ESC) and the American College of 

Cardiology (ACC) reached consensus and redefined the diagnosis criteria of myocardial 

infarction: to conform or exclude AMI, it should meet no less than 2 conditions out of 

chest pain (typical and most common symptoms), elevation of cardiac biomarkers, or 

abnormal electrocardiogram (ECG) (Alpert et al., 2001; Lewandrowski et al., 2002). 

Figure 2.2 classifies the ASC patients on their ECG reading. The ECG is vital for 

treatment decision because patients with ST elevation usually have fibrin rich thrombus. 

On the other hand, most patients with non-ST elevation myocardial infarction have clots 

with abundant platelet (Azzazy and Christenson, 2002; Mizuno et al., 1992). Up to 50-

70% hospital admissions with chest pain syndromes present normal or ambiguous ECG 

reading (Brogan and Bock, 1998; Morrow et al., 2007); thus, correct appraisal of elevated 

cardiac biomarkers is a reliable approach to a proper treatment for patients. Furthermore, 

the elevation of cardiac markers can indicate the type of ACS, the basic timeline since the 

initial onset, and even the location of damaged cells (Mohammed and Desmulliez, 2011). 

 

Figure 1.2: ACS clinical classification regarding electrocardiogram. Adapted from 

Ref. (Azzazy and Christenson, 2002). 
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1.1.1 Cardiac biomarker detection: immunoassay  

Immunoassay is the interaction between antibody and antigen. Antibodies (Abs) are 

proteins generated by immune system of animals and human bodies in order to response 

to antigens (Ags), allochthonous substances.  Every Ab has a unique structure to bind 

with the corresponding Ag in a "lock and key mechanism"; therefore, the binding 

between Ab and Ag is highly specific. To better utilize the benefits of antibody and 

antigen interaction, especially the sensitivity and specificity, immunoassays possess 

various formats. It provides the quantification and monitoring of the protein or 

biomolecules, for example nucleic acids, protein molecules, drugs and metabolites, and 

the pathogens (Lin et al., 2010b). Nowadays, immunoassay is a prevalent detection 

method used in food safety, environmental monitoring, biotechnological investigation, 

and clinical analysis. For cardiac biomarker determination and other biomarkers 

detection, immunoassay is believed to be the gold-standard technique (Lin et al., 2010b; 

Mohammed and Desmulliez, 2011).  More details of immunoassay will be further 

discussed in Chapter 3. 

 

1.2 Cardiac biomarkers and application 

The history of cardiac biomarkers can be traced back to 1954; Ladue JS et al. reported the 

unusual elevation of glutamate oxaloacetic in serum after a few hours of acute 

myocardial infarction (AMI), the duration lasting for 4 to 6 days with a peak in 2 to 3 day 

(Ladue JS et al., 1954). An ideal biomarker would possess the following properties 

(Azzazy and Mansour, 2009; Braunwald, 2008): 

 Small size: quick releasing from injured tissues 

 Tissue specificity: exclusive in cardiac muscle 

 High sensitivity: abundant in cardiac tissue 

 Release: the concentration in plasma proportion to infarct sizing 

 Stability: reach peak immediately after the injury and maintain for hours 

 Clearance: cleared rapidly for recurrent injury diagnostic 

 Application: Suitable for different stage of cardiac injury and cost effective 
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Even though, the parameters mentioned above are critical for monitoring ACS potential 

patients, there is no cardiac biomarker can meet all the requirements. Therefore, the 

knowledge regarding characteristics of biomarkers is vital for both research and clinical 

applications. Details about several cardiac biomarkers are discussed below. 

1.2.1  Biomarkers of cardiac injury 

1.2.1.1 Myoglobin 

Myoglobin (MYO) (17.8kDa) is a small and single-chain hemeprotein of 153 amino 

acids, presenting high concentration in cardiac and red muscle tissue and playing a role as 

a storage site for transporting oxygen to various tissues or organs (Panteghini et al., 2004). 

Due to the small molecular size and weight, myoglobin will quickly release into the 

blood stream through cytoderm (cell wall), an hour or so after the onset of AMI, and then 

is elevated to the peak value in 4 to 12 hours, followed by a subsequent drop to baseline 

in 12 more hours (Adams et al., 1993; Gibler et al., 1990; Mair et al., 1992). Since 

Myoglobin distributed in almost all the tissues, the baseline value is measured over  

30 ng/ml in peripheral circulation, normally. Either cardiac or skeletal damage will cause 

serum myoglobin elevated; therefore, myoglobin are used by hospitals as a negative 

predictive value (rule out the diagnosis of AMI) instead of conforming the diagnosis of 

AMI condition. (Lewandrowski et al., 2002; Sluss, 2006) 

1.2.1.2 Creatine Kinases 

Another well-known cardiac biomarker is Creatine Kinases. The measurements of CK 

(molecular weight 87kDa) and CK-MB (86kDa) for diagnosing AMI have a long history. 

Furthermore, the elevation of CK-MB was regarded as the traditional “gold standard” in 

1980s for over two decades. CK has three subunits (three different types based on 

locating organs) including MM, MB, and BB, which present in both myocardium and 

skeletal tissues (Christenson and Azzazy, 1998; Lewandrowski et al., 2002).  The 

concentration of CK-MM is dominant in skeletal muscle, 98% over total muscle CK. CK-

MB presents only 2% to 5% in healthy skeletal muscle and higher level in patients with 

chronic myopathic injury and renal failure. Even though, CK-MB occupies over 20% in 

the myocardium over the total myocardial CK, still less than the concentration of CK-
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MM in myocardial muscle. Therefore, the CK total elevation can be clinically applied in 

diagnosing skeletal muscle injury or disorders but not cardiac specific conditions 

(Lewandrowski et al., 2002). After cardiac injury, CK-MB starts to release into the 

bloodstream from the injured tissue in 4 to 9 hours of the occurrence of chest pain, 

reaches the peak at 24 hours and returns to normal value in 48 to 72 hours (Males et al., 

2001).  Therefore, CK-MB would not be a good candidate for AMI early stage, but be 

suitable for reinfarction diagnosis and critical aid tool in multimarker panel (Panteghini, 

1998).  

Since both myocardial and skeletal injury will cause total CK and CK-MB elevated, the 

ratio of CK-MB to total CK can be calculated for distinguishing cardiac specific 

conditions. Mostly, in the lab-based testing, when CK-MB is more than 5% of the total, it 

can be called as suggestive AMI (Lewandrowski et al., 2002).  Furthermore, regardless of 

the emergence of troponin I, CK-MB remains high value in clinical application, such as 

decision making in ED department (Young et al., 1991),  guidance of disposition 

decisions (Hedges et al., 1996), prognosis in patients with AMI symptoms and non-

diagnostic ECGs (Hoekstra et al., 1994), and a valuable indicator in multiplex assays 

(Galla et al., 2006). 

1.2.1.3 Cardiac Troponins 

Cardiac troponins (low molecular weight 20- 25kDa) have significant sensitivity and 

specificity for myocardial muscle damage; therefore, they have been regarded as the 

“gold standard” for acute myocardial infarction diagnosis (Alpert et al., 2000; Martins et 

al., 1996). Even though, cardiac troponins only have been measurable for three decades, 

cTnT in 1989 (Katus et al., 1989) and cTnI in 1991(Bodor et al., 1992), the influence 

boosted tremendous advancement of the cardiac marker measurements. Troponin, as a 

regulatory complex, has three subunits on the thin filament combined with myocardial 

contractile muscle to control the calcium ions bindings:  troponin C (the component for 

calcium binding), TnT (the tropomyosin-binding) and cTnI (the inhibitory component). 

The majority of troponins were stored in the sarcomeres; both TnI and TnT present in 

compartment distribution in the myocytes along with small trace in cytosolic pool (4%- 

6%). Therefore, both troponins have the analogous releasing kinetics after myocardial 
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damage: serum TnI and TnT elevated within 4 to 9 hours, reached the peak in 12 to 24 

hours and remaining high level for up to 2 weeks. Besides the specificity and wide 

diagnostic window, the amino acid sequences of both TnI and TnT are suitable for 

monoclonal antibody-based immunoassay overcoming the cross-reactivity of similar 

proteins. Moreover, serum TnI and TnT are rarely presenting in peripheral circulation in 

healthy peoples; traditionally, both troponins are less than 0.1 and 0.4 ng/ml, respectively. 

Thus, tremendously rising troponin level will highly possibly indicate myocardial 

necrosis (Bertinchant et al., 1996; Lewandrowski et al., 2002; Sluss, 2006; Wu et al., 

1999).  

It takes several hours, similar to CK-MB, from the onset of AMI to serum troponins can 

be detectable, so TnI and TnT are not ideal candidates for early AMI assessment. While, 

among all the cardiac biomarkers, the superiority of cardiac TnI and TnT has been 

foreground by the highest cardiac-specific, the longest diagnostic window time (Martins 

et al., 1996), and the correlation is proximately proportional between peak values and the 

infarct size (Licka et al., 2002; Panteghini et al., 2002).  Therefore, the evaluations of 

cardiac troponins have been crucial in cardiospecific diagnosis, risk stratification, 

prognostic risk assessment, and therapeutic choices (Babuin and Jaffe, 2005; Newby et 

al., 2003). Meanwhile, the reliability of troponins for diagnosing ACS has been 

constantly questioned as well, because of the false positive troponin level caused by other 

clinical situation instead of ACS, such like sepsis, renal failure, hypovolemia (severe 

blood loss) , and etc(Jeremias and Gibson, 2005; Yang and Zhou, 2006), which will need 

further investigation about the releasing mechanism. 

1.2.1.4 Heart-type Fatty Acid Binding Protein (H-FABP) 

Heart-type fatty acid binding protein (H-FABP) shares substantial similarity to 

myoglobin. In releasing kinetics (Table 1.1) perspective, the low molecular weight (15 

kDa) makes H-FABP possible to release rapidly into the blood stream circulation right 

after (1 hour or so) myocardial infarction (Glatz et al., 2002). In terms of specificity and 

sensitivity of AMI diagnosis, plasma H-FABP has been proved to be more effective over 

myoglobin and equivalent potential in exclusion diagnosis (Chan et al., 2004; Pelsers et 

al., 2005). Furthermore, HFABP is expected to replace myoglobin to become a clinical 
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routine due to its performance in clinical application such as minor myocardial injury 

detection of heart failure and unstable angina, infarct size estimation, the success or 

failure of coronary reperfusion in AMI patients, and in-time detection of post-surgery 

myocardial tissue monitoring, especially patients through coronary bypass operation  

(Pelsers et al., 2005; Yang and Zhou, 2006). 

1.2.1.5 C - reactive Protein  

C-reactive protein (CRP) is an acute phase protein reactant, the release of which is 

corresponding to acute injury, infection, or inflammation stimuli, like hypersensitivity 

causes, inflammatory disease allograft rejection, necrosis, trauma, and malignancy. The 

elevated CRP could demonstrate inflammation instead of erythrocyte sedimentation rate, 

and respond to hormone change caused by pregnancy (Du Clos, 2000).  The 

measurement of CRP at the hospital admission can be an independent predictor for 

diagnosing lately coronary events;  AMI and mortality caused by ischemic heart disease  

were included as well (Liuzzo et al., 1994).  Troponin and CRP can provide relatively 

effective treatment suggestion for patients with unstable angina and non-Q–wave AMI; 

the statistics indicated that the risk is only 1% for that patient presenting negative or 

ultralow levels of CRP died in 14 days. In contrast, for elevated CRP level over than 15 

mg/L, the risk will increase up to 9% and remain the same in the following periods. Even 

though, it is still lack of consensuses in the right time to take CRP measurement and the 

CRP potential in emergency department(Liuzzo et al., 1994). 

1.2.1.6 B-type Natriuretic Peptides (BNP) and NT-proBNP 

Natriuretic peptides are small signal chain proteins, presenting in the cell of the 

cardiovascular system, including brain, heart and blood vessels. There are three types of 

natriuretic peptides: A, B, and C natriuretic peptides. B-type natriuretic peptide (BNP) is 

mainly synthesized in ventricular myocardium or arterial. 

There have been fact proved that myocardial ischemia would cause BNP and NT-proBNP  

released into the blood stream circulation (Wu, 2005).  
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According to the American and European Cardiological Societies, the latest guidelines 

regarded that BNP is a valuable serum marker for diagnosing heart failure. De Lemos 

highlighted the prognostic value (de Lemos et al., 2001; Hunt et al., 2001; Remme et al., 

2001). Even though, the clearance characteristics do not reach the agreement, the clinical 

data trials (FAST, GUSTO IV, and FRISC II) have strongly revealed the connection 

between patients’ death with unstable coronary artery disease and the NT-proBNP level 

(Jernberg et al., 2004). Since both BNP and NT-proBNP have demonstrate clearly that 

their clinical value is precious in diagnosing and taking care of cardiac disease, BNP and 

NT-proBNP elevation testing should be added in the menu of clinical practice routine 

(Penney, 2005; Pfister and Schneider, 2004; Sluss, 2006).  

1.2.2  Clinical application of cardiac biomarkers 

The detection of cardiac markers elevated level is the fundamental procedure for patient 

with suspect ACS, which is critical for the following medical intervention such as 

assessment, diagnosis, risk stratification, status monitoring, decision making and 

prognosis. Generally, to rule in the AMI or a certain type of ACS, it may take the 

combination of various cardiac biomarkers; while, to rule out the AMI, one biomarker 

test present negative might be enough. For example, cTnT and cTnI have been the 

surrogates for cardiac necrosis: the data showed that cTnT and cTnI are the most 

convincing indicators of myocardial cell damage among all the current available cardiac 

biomarkers (Alpert et al., 2000).  On the other hand, all the cardiac markers of various 

processes of the acute coronary syndromes are useful as well. For example, one of the 

common physiologic syndromes of ACS is plaque instability or disruption and platelet 

activation, the marker (still under investigation) corresponding to plaque stability will 

indicate such interruption.  C-reactive protein, as discussed before, is the foremost 

biomarker demonstrating inflammation for assessment for quite long period risk 

evaluation along with auxiliary reference of ACS (Christenson and Azzazy, 1998).  

Cardiac ischemia and unstable angina are the initial physiologic process of ACS; 

therefore, the marker such as H-FABP would also be engaged in clinical evolution. Since 

the characteristics and releasing kinetics of troponin, CK-MB, and myoglobin have been 
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well established(Alpert et al., 2000; Christenson and Azzazy, 1998; Christenson et al., 

2001), they are currently the core of clinical detection subjects. 

 

Table 1.1: Clinical utilized cardiac biomarkers for diagnosing CVD. Adapted from 

(Mohammed and Desmulliez, 2011) 

Cardiac 

biomarker 

Clinical cut-off 

levels 

Clinical cut-

off (h) 

Peak 

elevation (h) 
Duration CVD indicator type 

Troponin I 0.01-0.1 ng ml-1 4-6 18-24 4-7 days 
Detection of MI and tool for 

risk stratification 

Troponin T 0.05-0.1ng ml-1 3-4 18-24 
10-14 

days 

Detection of MI and tool for 

risk stratification 

Myoglobin 70-200 ng ml-1 1-3 6-12 12-24 h 
Early detection of MI and 

reperfusion 

CK-MB mass 

assay 10 U L-1 3-4 12-24 24-36 h Early detection of MI 

H-FABP 6 ng ml-1 1-3 6-8 24-36 h Early detection of MI 

C-Reactive 

Protein 

No definitive or clinical consensus 

CVD  inflammatory 

NT-proBNP Ventricular overload or 

ischemia or necrosis 

 

1.3 Objective and outline of thesis 

The ultimate goal of this project is to develop a compact multiplex cardiac condition 

diagnostic panel for point-of-care testing based on electrochemical immunoassay 

technology. As discussed before, the combination of myoglobin, CK-MB and troponin I 

will help diagnose the exact stage of myocardial infarction; while the grouping of H-

FABP, CRP and Troponin will define the certain type of cardiac condition, and more. As 

the first step of the whole project, we developed a highly sensitive immunosensor for 

Troponin I and investigated the related experimental condition. So, this dissertation is 

comprised of six chapters in the following orders: 
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Chapter 1, background introduction, covers the information of cardiovascular disease 

diagnostic and clinically utilized cardiac biomarkers. The research motivation, objective 

and outline are also presented.   

Chapter 2, literature review, provides a review on the current situation of point-of-care 

diagnostics, update the study of nanomaterial-based electrochemical immunosensor, and 

present technology for cardiac biomarker detection from laboratory and clinical 

perspective.  

Chapter 3, sensor fabrication and bio-detection, presents the principle and procedure of 

immunosensor fabrication and configuration. Photolithography in cleanroom using the 

lift-off technique, e-beam metallization, and sandwich enzyme-linked immunosorbent 

assay are described in detail. 

Chapter 4, electrode modification, describes the electrochemistry of the biosensor 

enhanced by three nanomaterials, carbon nanotube, golden nanoparticle, and chitosan. As 

a promoter for signal amplification and electro transferring, the response signals of three 

nanomaterials biosensor are investigated and discussed. 

Chapter 5, enzyme label and substrate comparison study and system optimization, 

compares the activities of two commonly used enzyme label, HRP (horseradish 

peroxidase) and ALP (Alkaline phosphatase) in different substrates. A concept of 

developing GOD biosensor and cTnI immunosensor, also the feasibility is investigated. 

 

Chapter 6, conclusion and outlook, summarizes all the chapters of the thesis and 

emphasizes the contribution of this research project. Also, a few recommendations for 

future research have been addressed.  
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Chapter 2  

2 Literature review 

This chapter reviews the current status of point-of-care (POC) immunoassay testing, 

advanced nanomaterial technology for biosensor application, and up-to-date development 

of cardiac biomarker detection. The core of this project is to develop high-performance 

cardiac biomarker transducer for POC application based on electrochemical enzyme-

linked immunosorbent assay (ELISA); thus, the review includes discussion of clinical 

application of innovative biosensor, the prospects and challenges in terms of point-of-

care cardiac condition diagnostics. 

2.1  Point-of-care immunoassay 

Diagnostics is indispensable in health care for both developed word and the developing 

world. Accurate diagnostics can provide proper and timely care to patient, guarantee the 

safety of blood banking, surveil emergency public health intervention and evaluate long-

term health strategies (Sluss, 2006; Yager et al., 2008). Nowadays, clinical diagnostics 

heads towards two opposite directions: consolidation and automation of testing in 

centralized laboratories (Blick, 1999) and near patient testing in decentralized format (St-

Louis, 2000). Even though, the cost and the time involving have been reduced 

tremendously (Blick, 1999); in poor setting environment, the laboratories are not only 

hindered by physical constrains (including limited power supply, inconsistent 

refrigeration status, and poor water quality), but also be challenged by the following 

factors (Ridderhof et al., 2007; Stedtfeld et al., 2012): 

 Laboratory facilities and capacities vary among countries and within one country 

 Irregularly laboratory quality and management control 

 Deficient fundamental equipment and unreliable experiment supplies 

 Shortage of proficient personnel and restricted training occasions 

Therefore, under the lack of financial and technical support circumstance, point-of-care 

(POC) platform has more significant utility potential for performing diagnostic due to its 

merits in clinical application over traditional lab-based procedures. For example, timely 
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diagnostic information provided by POC testing ensures the correct and proper treatment, 

shorten the duration of hospitalization and improve the quality of patient cares (Birkhahn 

et al., 2011). (Figure 2.1) 

 

Figure 2.1: Central laboratories testing versus point-of-care testing in the clinical 

situation. 

Generally, the definition of POCT is the testing performed near by the patients (St-Louis, 

2000; von Lode, 2005), the performing location of which includes primary care facilities, 

hospital units, emergency department, mobile nursing practices, homes even peculiar 

situation like military or space shuttles etc. (von Lode, 2005). Even if the first rapid and 

easy-to-use immunoassay technology was realized by the pregnancy test over 43 years 

ago (Cabrera, 1969), the majority of present POCT applies to non-immunoassay analytes, 
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say glucose measurement. The perfection of POC technology allowed the immunoassay 

POCT for rapid growth within the last two decades. 

In 2004, the World Health Organization (WHO) proposed an elemental guideline for the 

desirable POC device in less-developed areas, addressing from the cost, accuracy and 

feasibility perspective: (Mabey et al., 2004) 

 Affordable for the high risk group and equipment-free 

 Sensitivity (minimal falsely positive) 

 Specificity (minimal falsely negative) 

 User- Friendly (easy to operate and requiring little training program) 

 Rapid (to ensure proper treatment at the initial visit) and robust 

 Delivered to those who need it 

However, for individual clinical applications, there are detailed, thorough, extensive and 

extraordinary requirements and specifications. The analytical performance requirements 

manifest two characteristics: practicability (as sample type, turn-around times, and 

operating skills) and reliability (e.g., limit of detection, interference, precision, accuracy, 

linearity and the measurement range) (Fraser, 2001). Differing from laboratory testing 

procedures, the main focus is on the practicability characteristic since the tests performed 

by unskilled personnel. Nevertheless, the accuracy of POCT is critical due to the closely 

connection to medical decision. In principle, the basic imprecision of a methodology 

cannot exceed fifteen percent for crucial treatment decision (Alpert et al., 2001).    

Actually, the diagnostic situation in the physician’s offices in a developed country is 

correspondent with the method utilized in limited resource environment. Under both 

circumstance, lateral-flow immunochromatographic immunoassay strip test is the 

absolutely dominant format, regardless of the low sensitivity levels (around 70%). In 

higher-income countries, the physician chose “simple” test over highly complicated but 

precise diagnostic based on clinical and social consideration: on the one hand, short turn-

around times (TATs) about 15 to 20 min is desirable for timely medical decision; on the 

other hand, for the regulation of quality-control, only certain performing testts are 

approved by the Recommendations for Clinical Laboratory Improvement Amendments of 
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1988. The US Food and Drug Administration (FDA) describes the certain testing method 

“simple” with an “insignificant risk of an erroneous result.” 

According to the FDA, an ideal patient onsite diagnostic should have the following 

features:  (Yager et al., 2008) 

 Completely automated instrument or unitized, self-packed testing 

 Utilize unprocessed specimens or capillary blood, nasal swabs, or urine 

 No sophisticated operation requirement  

 No intervention between analysis steps 

 No equipment maintenance, calibration, interpretation or calculations 

 No results analysis including data interpretation  

With all the guidelines and regulations, POC immunotesting not only provides a 

multimillion dollars market but also is the fast growth part in the in-vitro diagnostics 

(IVD) business (Rosen S, 2004). Since then, great amounts of improvement in 

developing POC diagnostic platforms have been accomplished for both automated and 

manual approaches, which boost the introduction of POC diagnostic into the developing 

world.  

Conventional straightforward manual assay has three primary assay formats, including 

agglutination assays, microscopy for direct detection of the analyte, and lateral flow tests 

(rapid diagnostic tests or RDTs) for detecting pathogen specific antigen or antibodies. 

(Figure 2.2) Even though the well-done performance of these tests can benefit both 

patients and health care resource, the quality will be considerably compromised by the 

poor source environmental setting. For instance, to a great extent, the accuracy of 

microscopes is influenced by high quality supplies, skilled staff, and the data 

interpretation. To solve this problem, scientists and researchers put enormous effort in 

investigating disease pathogenesis at a molecular level along with biomarker discovery 

and identification. The distinct benefits brought by molecular diagnostics (for example 

microfluidic technology and nanostructures sensing) can be summarized as: portability, 

the possible lowest detection limits, sensitivity improvement, and parallel recognition for 

multiplexing approach and etc. (Nam et al., 2004; Nam et al., 2003).  All the benefits 
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coupled with small sample volumes contribute to a rising impact of micro-diagnostic 

technology in both the clinical and academic department.  

Even though, great amount of papers published regarding POC device research, the POC 

device integrated using daily media (e.g mobile phones, mp4, and cameras) and paper-

based microfluidic are the most creative and attractive for the widespread application. 

Stedtfeld et al. successfully developed genetic fluorescent microfluidic chip, called Gene-

Z, for rapid quantitative detection of various biomarkers. This fully automated design 

featured in low cost, easy-to-operate, high sensitivity and specificity. The prototype 

(Figure 2.3) was connected with an iPod Touch for data reception and analysis, and then 

reported the result through Wi-Fi immediately.(Stedtfeld et al., 2012) 

 

Figure 2.2: Schematics of typical POC testing. (a) An agglutination for HIV serology 

test. (b) Steps in rapid diagnostic test (lateral-flow test) for malaria antigen 

detection. (c) Classic light microscopy using Giemsa stain, results shown in both the 

thick and the thin smear. Figures adapted from Ref (Buhrer-Sekula et al., 2003; 

Kemp et al., 1988; Payne, 1988) 
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In addition, adding the attractiveness, Liu et al. and Ge et al. reported a three-dimensional 

paper microfluidic device based on origami principle. Liu et al. (Liu and Crooks, 2011) 

reported using classic lithography to create channels and reservoirs based on origami 

principle. (Figure 2.4(a)) Ge et al. (Ge et al., 2012) developed sandwich-type 

chemiluminescence immunosensor integrating with blood separation, automated rinsing 

and parallel immunoassay. For integrating ELISA with paper-based micro-sensor, Zang 

and Cheng approached in a different perspective. Zang et al (Zang et al., 2012) designed 

two pieces of paper, one fabricated with electrode pattern, the other immobilized with 

nanomaterials and antibody, and then overlapping to assemble the sensor. (Figure 2.4 

(b))Cheng et al. (Cheng et al., 2010) fabricate the 96-microzone plate on paper for ELISA 

detection, high sensitivity, high specificity and less complexity(Figure 2.4 (c)). Lately, 

Delaney et al. (Delaney et al., 2011) constructed electrochemiluminescence detection on 

paper microfluidics utilizing cell phone camera for chemiluminescence emission. (Figure 

2.5)  

 

Figure 2.3: Gene-Z schematics and prototype. (a) An empty chip with four parallel 

reaction arrays. (b) Working principle and decomposition structure of the Gene-Z 

chip (c) Gene-Z prototype operated by an iPod set on the recharge port and the chip 

insertion door. Figures reprinted from Ref (Stedtfeld et al., 2012) 
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Figure 2.4: Schematics of various paper-based devices.  Adapter from Ref (Zang, Ge 

et al., 2012; Cheng, Martinez et al., 2010; Ge, Wang et al., 2012) 

 

 

Figure 2.5: Schematics of paper-based microfluidic electrochemiluminescence: 

fabrication and analysis. Figure adapted from Ref (Delaney et al., 2011)  
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2.2 Immunosensor and nanomaterial enhancement 

The device designed to qualify or quantify a certain biochemical molecule, say DNA 

sequence or protein molecule, is defined as biosensor. One of the most popular format 

biosensor is affinity-based biosensor, standing for using an immobilized capture probe to 

selectively bind the target molecule or analyte, the antigen in our case. Instead of sensing 

certain molecule in solution, affinity-based biosensor transfers the difficulty into 

detection a variation on the localized surface, which can be read out in various ways. 

Based on the detection methodology, the biosensor can be classified into optical, 

electrochemical, magnetical, and mass-loading immunosensor. (Bakker, 2004; Daniels 

and Pourmand, 2007; Drummond et al., 2003; Thevenot et al., 2001) 

2.2.1  Nanomaterials: classification and application 

The measureable size is less than 100 nm in any dimension; then this material can be 

defined as nanostructure. Based on the various dimensions, the materials can be divided 

into zero- (0D), one- (1D), and two-(2D) dimensional nanomaterials. Since we utilized 

zero- (0D), one- (1D), and two-(2D) dimensional nanomaterials in the electrodes surfaces 

modification, more details about zero- (0D), one- (1D), dimensional nanomaterials will 

be discussed later. Generally, in a diagnostic sensor requires one or multiple receptors for 

binding analytes along with signal generation function group, saying, a detectable label in 

the reacting event.  The function of nanostructures in the molecules reaction can be 

varying with the physical, mechanical, or chemical properties.  As a label of any 

biomolecules, it requires that the nanomaterials to meet these following criterias: stable in 

the corresponding buffer or fluids, detectable in the existence of required circumstance, 

and capable of conjugating the molecules with the functional groups. To achieve this 

objective, the surface usually is functionalized with ligands before spreading the 

dispersion of the nanoparticles aqueous on. As shown in Figure 2.6 illustrates the mainly 

applied nanostructures in the diagnostic assay device or technology development. In 

addation, a review about the properties, application and detection principles of the 

nanostructures are addressed as follows (Kurkina and Balasubramanian, 2012). 
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Figure 2.6: An overview of various nanostructures (NSs) that are used in diagnostic 

assays. Reproduced from Ref. (Kurkina and Balasubramanian, 2012) 

2.2.1.1   0D nanostructures  

As shown in Figure 2.6 -0D, the sizes of three dimensions are all less than 100 nm, then 

the materials are called as 0D nanostructure. A few classic representatives as shown in 

Figure 2.6-0D, includes nanoparticles and nanospheres, which can be divided into 

magnetic, metallic, semiconducting, or insulating  nanoparticles based on the 

conductivity, saying, electrical properties. The basic function of nanoparticles can be 

essentially summarized as follows: immobilizing the biomolecules on certain surface, 

catalyzing electrochemical reaction, enhancing electron transferring,  acting as a reactant 

or labelling biomolecules for further experiments, and etc.(Luo et al., 2006). 

Speaking of nanoparticles for immobilizing biomolecules, gold nanoparticles (AuNPs), 

one of the most frequently used nanoparticles, can be utilized for  both immobilization 

promoter and labels reactor in electrochemical immunosensing platforms, which has 

illustrating distinguish results in enhancing the signal response, lowering the detection 

limits in enzyme-based electrochemical biosensors, immunosensors, and DNA 
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hybridization detection (Kerman et al., 2008; Liu and Lin, 2007).  AuNPs can be strongly 

attached to electrode surfaces through self assembled monolayer (SAM) of alkanethiol 

molecules due to the firm S–Au bonding, which creates plenty area for immobilizing 

biomolecules proximate to the surface of electrodes or biosensors (D'Orazio, 2011; 

Merkoci, 2007).  

2.2.1.2 1D nanostructures 

As shown in Figure 2.6––1D, 1D nanostructures stand for the size of these materials less 

than 100 nm in two dimensions, which can be considered as elongated version of 

nanoparticles, saying, tubes. Carbon nanotubes (CNTs), nanopores, nanowires and 

waveguides are all considered as 1D nanostructure.     

Carbon nanotubes (CNTs), formed by rolling a thin layer of graphite to cylindrical 

structure, has the unique electrical properties such like metallic, semiconducting or 

superconducting electron transporting capability. CNTs, either single-wall carbon 

nanotubes (SWCNT) or multi-wall carbon nanotubes (MWCNT), can be produced in 

various synthesis ways, namely, chemical vapour deposition, laser evaporation, or carbon 

arc methods and most commercially available CNTs are in powder form (Kurkina and 

Balasubramanian, 2012). The average diameter of SWCNT is approximately 1 nm 

leading to high surface-to-volume ratio of such materials.  Therefore, the unique 

electrical properties such like resistance display extremely high sensitivity in responding 

to the environmental changes in terms of chemical or biological variables. Furthermore, 

high surface-to-volume ratio and the indefinite conductivity contributes one of the most 

prevalent applications of CNTs to being the functional supporters electrical detectors in 

the label-free heterogeneous assays (Balasubramanian and Burghard, 2006; Kurkina and 

Balasubramanian, 2012; Wanekaya et al., 2006). Furthermore, CNTs can play a role in 

being utilized as optical labels, such like characterizing Raman signal, and being a carrier 

of payload labels (Duan and Lieber, 2000) such like the case of silica nanospheres 

(Kurkina and Balasubramanian, 2012). 

Another extraordinary advantages of CNTs are acting as an immobilization matrix for 

biosensors, either biocatalytic or affinity biosensors, which are owing to the existence of 
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reactive groups on the surface, fast electron transfer kinetics (particularly beneficial for 

electrochemical biosensors) and the high surface to volume ratio (D'Orazio, 2011; Rivas 

et al., 2007).  

The application of CNTs can enhance electron transferring of electrochemical biosensors, 

because the electron communication between immobilized proteins, mediators will lead 

to strong and sound signal response and lower the case of overpotentials to overcome the 

corresponding inference, which has been reported in the amperometric glucose biosensor 

applications (more discussion is in Chapter 5). Furthermore, the value of CNTs in 

electrochemical biosensor can also display by promoting sensitivity, shortening the assay 

time and elevating the clinical or analytical performance in terms of stability and 

precision and etc.(Justino et al., 2010).  

2.2.2 State-of-the-art nanomaterials for cardiac immunosensors 

Numerous literature manifest the benefit of utilizing nanotechnology in biosensors, for 

instance the ultrasensitive detection of cardiac biomarkers can be tremendous helping in 

provide accurate and timely information of diagnosis of acute myocardial infarction. 

Meanwhile, the present biomarker study has explored to unstable angina, coronary plaque 

and other types of cardiac disorder conditions.  Lin’s group has successfully developed 

deluxe cardiac biomarkers array of the nanostructure in the form of nanowells which 

were formed by biogenic nanoporous silica on the top of gold electrode.  The silica was 

derived from Coscinodiscus wailesii, the eukaryotic unicellular photosynthetic algae,  and 

then was overlayed on the top of gold substrate to form the structure of nanowells for 

detecting C-reactive protein (CRP) and myeloperoxidase (MPO), both of which are 

highly relevant to risk of coronary plaque rupture.  The general diameter of each 

nanowell is 40 nm with a bottom of gold substrate electrode. The protein detection was 

implemented by quantifying the immunoreaction, namely the interaction between 

antibody and antigen, the affinity of which will disturb the regular charge distribution of 

the interface of the electrode and liquid.  The shifted resistance can be measured by 

impedance spectroscopy and is proportional to the concentration of CRP and MPO. 

Compare to planar gold electrodes, the signal was cumulated and enhanced by the 

nanowells nanostructure with an exceedingly low limit of detection  10 pg mL
-1

 of CRP 
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and MPO in serum samples(Lin et al., 2010c). Chua et al succeeded in developing a real 

time, label-free, highly sensitive human cardiac troponin-T (cTnT) electrochemical 

immunosensor (Figure 2.7) by fabrication of oriented silicon nanowires (SiNW) clusters. 

The immunosensor utilizes the properties of complementary metal-oxide semiconductor 

(CMOS) and field effect transistor-compatible detection principle to characterize cTnT 

both in buffer solution or undiluted serum. The anti-cTnI antibody was immobilized on 

the functionalized nanowires on the surface, the conductivity of which will increase along 

with the amount of cTnT antigen binding to the antibody.  This phenomena was based on 

the n-type semiconductor characterizations, namely, the impurity will results in free 

electron then increase the conductivity.  The cTnT level can be detected as low as 30 fg 

mL
-1

 in undiluted serum and 1 fg mL
-1

 in buffer dilutes (Chua et al., 2009).  

 

Figure 2.7: SiNW  device demonstration: (a) SiNW microfluidics chip; (b) the layout 

of the SiNW device array; (c) SEM image of nanowires clusters. Adapted from 

(Chua et al., 2009).  
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The significance of CRP has been realized recently. Many literature published various 

novel CRP detection immunosensors for clinical application. An acoustic, highly 

sensitive immunosensor for the detection of CRP was presented by McBride JD, which 

testified the competitive sensitivity of CRP sandwich ELISA assay by the Resonant 

Acoustic Profiling (RAP™) biosensor (Akubio Ltd., Cambridge, UK).  Applying a high 

frequency voltage on the piezoelectric crystal, it will induce oscillation and be monitoring 

the resonance frequency instantly. The immunosensor was operated on two different 

modes, direct and sandwich, on which the antibody along with the corresponding antigen 

bonded to the reading crystal by classic covalent bond and on the other crystal IgG 

immobilized as the control set to eliminate background signal. The specific binding 

reaction, immunoreaction between antibody and antigen, on the testing crystal will lead 

to a reduction of the frequency of  the oscillation. The serum CRP detection limit of such 

immunosensor is 13 ng mL
-1

 of the direct mode and 3 ng mL
-1

 of the sandwich type, 

respectively. According to the statement of this literature, this immunosensor has 

immense potential for clinical application as the monitor for prediagnosis of 

cardiovascular disease, since the CRP assay requires the maximum low detection limit is 

300 ng mL
-1

 (McBride JD, 2008). 

Meanwhile, cardiac troponin-I (cTnI) remains the most popular biomarkers study 

projects. Both Wei’s group and Masson’s group developed a cTnI immunosensor based 

on s surface plasmon resonance technology. Wei et al can monitor the real time action of 

several and constant monoclonal antibodies and antigen cTnI, such as association, 

dissociation and affinity. The experimental system was build on a gold SPR chip  for 

sandwich ELISA detection, and the optimized system has a low detection limit of 0.25 ng 

mL
-1

, which is less than almost 90% of that of  the direct SPR assay (Wei et al., 2003).  

Even though, the sensitivity of this immunosensor can be satisfy the practical standard for 

detecting sera cTnI from patients with suspect AMI. Still, the shortcoming of this 

immunosensor is low sensitivity and long processing time. Namely, nonspecific protein 

adsorption causing low sensitivity which can be solved by washing after each incubation, 

which calls for 40 minutes for the assay.  Masson et al. tried to solve the same problem in 

their research. They used a self assembled monolayer, which is comprised of N-

hydroxysuccinimide activated 16-mercaptohexadecanoic acid, to remove the nonspecific 
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binding responding of the serum protein for cTnI immunosensor utlizing SPR 

technology. However, it still needs more optimization or improvements before the 

application of AMI diagnosing since the detection limit is 0.7 ng mL
-1

 in undiluted serum 

in direct mode of immunoassay.  

As discussed before, gold nanoparticles (AuNPs) show appreciable enhancement in 

fluorescence based biosensor. Hong and Kang reported a fiber optic based cTnI 

immunosensor by establishing- a self assembled monolayer through nanoparticles 

immobilization at a mediate distance from fluorophore. The immunosensor based on the 

sandwich type immunosensing using a second antibody labelled with a fluorescence 

enzyme. Because of the existence of AuNP, the quantitation of cTnI with a fairly low 

detection limit, down to several picomolar concentration (approximately 0.2 ng mL
-1

). It 

can be explained by that free or self-quenching electron was  attracted by  AuNP and 

transfer to working zone, surface Plasmon polariton filed, and then the signal was 

significantly improved. This immunosensor still needs the washing steps to remove the 

nonspecific binding, which is the similar case with most optical based immunosensor 

(Hong and Kang, 2006).  

 

2.3 Current commercialized cardiac point-of-care assays 

The POCT devices for cardiac biomarkers are fundamentally based on immunoassay 

detection methods. A general principle of measuring various kinds of analytes using 

antibodies can be summarized in the following prospects: antibody binding to the analyte 

or antibody-antigen connection, isolation antibody-antigen complexes from excess 

regents or antibodies for the signal measuring, and calibration the corresponding 

relationship between signal response and the mass of analyte-antibody to establish 

standard curve. Currently, the commercialized cardiac POCT devices for clinical 

utilization can be divided into three categories:  lateral–flow technology (LFT), flow-

through immunoassay device, and sandwich immunometric methods (Sluss, 2006). 

Among all the analytes of POC immunotesing, the immunoassay for cardiac biomarkers, 

troponins in particular, grows the fastest, with an approximately 15-20% annual growth 
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(von Lode, 2005).  In the current market, the qualitative and quantitative POCT devices 

are successfully commercialized for myoglobin, CK-MB, cTnT, and cTnI, as shown in 

Table 2.1.  

All the assays shown in Table 2.1 are utilizing whole blood or anti-coagulated plasma 

within 20 minutes to generating results, which is portable, convenient, and rapid 

(Christenson and Azzazy, 2009; Di Serio et al., 2006; Kost and Tran, 2005; Lee-

Lewandrowski et al., 2003; Storrow and Gibler, 1999).  Comparing to qualitative testing, 

under the guidance  from NACB POC, test results in quantitative ways offer unique 

power in risk stratification and ultralow sensitivity (Morrow, 2004; Pham et al., 2004). 

The 2-site antibody immunometric assays, also called sandwich immunometric assays, 

are suitable for highly specific protein level measurement, which is the dominant 

technology in measuring biomarkers in multimarkers assays, fully-automated and 

centralized laboratory instruments. Therefore, sandwich type immunoassay is the leading 

format of the detection method of the cardiac markers since they process various 

independent antigenic epitopes. Comparing to single antibody immunoassays, one of the 

most merits of the 2-site antibody immunometric assays are the degree of analyte 

specificity achieved by targeting 2 antigenic sites then along with high accuracy and 

precision of the test results. Miniaturization is the current trend for both centralized 

laboratory analysis and decentralized POC device (POCT device). A few POCT devices 

for cardiac detection are depicted in detail as follows. 
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Table 2.1: Current Cardiac point-of-care available device. Adapted from 

(Christenson and Azzazy, 1998) 

Device 
Cardiac 

marker 
Suggested cut-off 

Manufacture’s  

claim 

Assay Time 

(min) 
Specimen (type and volume) 

Roche cardiac T® 

rapid assay 
cTnT 0.1 ng mL-1* 

Myocardial 

damage is 
detected 

12 150 μL heparin whole blood 

Nanogen cardiac 

STATusTM panel 

CK-MB 
 

 

Myoglobin 
 

 

cTnl 

5 ng mL-1 

(Abbott method) 

 
50 ng mL-1 (Behring 

Diagnostics method) 

 

1.5 ng mL-1 (Dade 

Stratus method) 

Aid in the 
diagnosis of 

cardiac 

ischemia 

15 
200 μL serum or heparinized 

whole blood or plasma 

Stratus® CS 

STAT 

fluorometric 
analyzer (Dade 

Behring Inc) 

CK-MB 
 

Myoglobin 

 
 

cTnl 

 

3.5 ng mL-1 
 

Male: 98 ng mL-1 

Female: 56 ng mL-1 
 

0.06 ng mL-1 

 

All makers: Aid 

in the diagnosis 

of AMI 
cTnl: Risk 

stratification 

14 min to the 

first result, 4 

min for each 
additional 

result 

Whole blood (lithium or sodium 

heparin): 3 mL-1 

Plasma (lithium or sodium 
heparin): 200 μL for the first test, 

100 μL for each additional test 

Triage® cardiac 

panel (Biosite 

Diagnostics) 

CK-MB 
 

Myoglobin 

 
cTnl 

10.0 ng mL-1 
 

170.0 ng mL-1 

 
1.0 ng mL-1 

Aid in the 
diagnosis of MI 

~15 
250 μL heparinized whole blood 

or plasma 

Response 
biomedical 

corporation 

Myoglobin 

 
CK-MB 

 

cTnl 

LLD 2.4 ng mL-1 

(range 0~400 ng mL-

1) 
LLD 0.32 ng mL-1 

(range 0-80 ng mL-1) 

LLD 0.03 ng mL-1 
(range 0-32 ng mL-1) 

Aid in diagnosis 

of AMI 
~15 

Heparinized whole blood or 

plasma 

iSTAT (Abbott 

Diagnostics) 
cTnl 

0.08 ng mL-1 

(reportable range: 0-
50 ng mL-1) 

Help diagnose 

AMI 
~10 16 μL whole blood 

* TnT values indicating: <0.05 ng mL
-1

, negative; between 0.05 to <0.1 ng mL
-1

, low and repeat 

testing within one hour with freshly collected blood; between 0.1 and 2.0 ng mL
-1

, myocardial 

damage; >2.0 ng mL
-1

, massive myocardial damage. 
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2.3.1.1 Cardiac STATus™ device (Nanogen Inc., San Diego, CA)  

The STATus™ assay system based on the principle of immunochromatographic solid-

phase immunoassay; therefore, it can only provide the semi-quantitative results. For the 

accurate or precise reading of cTnI or CK-MB, it has a different device also 

commercially available. As shown in Figure 2.8, the testing panel includes myoglobin, 

CK-MB mass, and cTnI and the results were read and processed by LifeSign DXpress™ 

Reader. The device can be suitable for whole blood (heparinized), plasma or serum. The 

principle of the working schematics has shown in Figure 2.8 as well, which is the classic 

pregnancy testing style. After the sample was dispensed into the entrance well and was 

driven by the diffusion force to the testing zone. The sample was first mixed with the 

mouse monoclonal antibodies with a colour label and the complex react with the second 

antibody conjugated with a biotin. Then the sandwich complex flow through the display 

zone to react with the streptavidin, then the LifeSign DXpress™Reader can convert the 

intensity to a concentration (Christenson and Azzazy, 2009; Sluss, 2006).  

 

Figure 2.8: Cardiac STATus™ Kit- Triple markers testing. Adapted with 

permission from Nanogen Inc. 
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2.3.1.2 Stratus® CS STAT fluorometric analyzer (Siemens Medical 
Diagnostics, Glasgow, DE)  

The Stratus CS (Figure 2.9) bases on sandwich immunoassay technology and 

fluorometric detection technology provides quantitative results of CK-MB, myoglobin, 

and cTnI, which can be suited for lithium heparin whole blood or plasma. The whole 

blood was processed first, centrifuging on-board to separate the blood cells from the 

plasma, and then the plasma was driven by centrifuge force to the capture antibody which 

were immobilized on a solid-phase glass fibre matrix.  Like the i-STAT system, (details 

in section 2.3.1.6), then the second antibody conjugated with alkaline phosphatase reacts 

with the antigen to form a sandwich complex. To remove the nonspecific binding, the 

instrument followed by adding the washing buffer and clean the sample matrix, at the 

same time, there is a substrate can by catalyzed by alkaline phosphatase to generate a 

fluorescent signal which is proportional  to the exist amount of myoglobin, cTnI and CK-

MB (Christenson and Azzazy, 2009; Sluss, 2006). 

 

Figure 2.9: Stratus
®
 CS STAT fluorometric analyzer. Reprinted with permission 

from Siemens Medical Diagnostics. 
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2.3.1.3 Triage® system for cardiac marker measurement (Biosite 
Diagnostics Inc., San Diego, CA) 

 The Triage® Cardiac system (Figure 2.10), based on microfluidics structure and 

immuno-fluorescence technology, has two basic components for detection triple cardiac 

markers at one reading, a cartridge containing all the structure and reagents and the data 

analyzer, the Triage® meter. The whole blood with anti-coagulation and plasma can be 

applied on the cartridge. When the sample enter the port, the blood cells were removed 

by filtration and the plasma flows through to the reaction well and reaction with the 

detection antibody labelled by fluorescent enzyme. When the complex (detection 

antibody- antigen) flows through the whole cartridge, the corresponding antibody can 

capture the specific complex, in this case are myoglobin, CK-MB, and cTnI, will “grab 

their owns complex” complex. Therefore, the three sandwich complexes were located in 

different zones, and detected by the Triage meter to get the fluorescent signal response 

(Christenson and Azzazy, 2009; Sluss, 2006). 

 

Figure 2.10: Biosite’s Triage flow-through detection technology.  Reprinted with 

permission from Biosite.  
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2.3.1.4 RAMP™ cardiac marker testing (Response Biomedical 
Inc., Burnaby, B.C., Canada)  

RAMP stands for the Rapid Analyte Measurement Platform (RAMP) (Figure 2.11) is 

based on quantitative immunochromatographic assay for cTnI and CK-MB detection.  

EDTA whole blood is the only specimen for this immunosensor, and must be combine 

with buffer to dilute before enter the analyzer. The analyzer contains capture and 

detection antibody is both monoclonal, indication this device has lightly robust but strong 

sensitivity.  Like the rest of cardiac detecting devices, the antigen combining with 

detection antibody and the complex react with the capture antibody. Partial fluorescent-

labelled latex particles were coated on the detection antibody to generate signal response 

in the working zone. The excess fluorescent-labelled were moved and immobilized in the 

other zone as the blank experiment. Then two working zones have been detected by the 

RAMP Clinical Reader, the differences between the two values are used to calculate the 

concentration of each analyte (Christenson and Azzazy, 2009; Sluss, 2006).          

                

 

Figure 2.11: RAMP cardiac marker system. Reprinted with permission from 

Response Biomedical Corporation. 
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2.3.1.5 STAT® system cardiac Troponin I (Abbott Point of Care 
Inc., East Windsor, NJ)  

CTnI test cartridge of i-STAT (Figure 2.12) is based on classic sandwich ELISA 

detection method, which can be utilized for whole blood (either lithium or sodium 

heparinized), plasma or non-anticoagulated whole blood (freshly drawn blood samples 

with any anticoagulated treatment). Because the cartridge itself contains all necessary and 

sufficient reagent to dilute, capture, wash or conjugate the blood sample; however, for the 

freshly drawn blood, it requires to apply in the cartridge before the blood started to clot 

(usually 1 minute). I-STAT cardiac system can also be called as a simultaneous detection 

system, since the capture and detection antibody was forming as a complex at the same 

time and the washing buffer also plays a role of detection substrates.  The anti-cTnI 

human antibody (monoclonal capture antibody) was immobilized on the silicon based 

electrochemical sensor surface during the fabrication. A polyclonal second antibody is 

firstly conjugated with alkaline phosphatase (ALP) and reacts with antigen (cTnI) when 

the sample was added in the cartridge, since the conjugated detection antibody was 

placed closed to the sample entry well. Then the complex of antigen-antibody-alkaline 

phosphatase label was driven by capillary force and pneumatic pressure flowing through 

within the cartridge to the surface of the electrochemical sensor coated with capture 

antibody.  Then a washing buffer remove all the unbinding enzyme conjugate, non-

specific binding, which is the biggest influence in the sandwich ELISA type 

immunoassay. This washing buffer also contains liquid substrate which can be catalyzed 

by alkaline phosphatase to generate an electrochemically detectable substrate and then 

generate proportional response (current) to the amount of the cTnI within the sample, 

which was processed by a hand-hold analyser to generate the critical analysis results. 

The i-STAT cardiac marker detection system (cTnI in particular) has a low detection 

limit of 0.02ng mL
-1

, and a relative narrow linear range between 1ng mL
-1

 to 50ng mL
-1

. 

However, the design of the i-STAT is one of the most successful examples and the only 

electrochemical based POCT cardiac device (Christenson and Azzazy, 2009; Sluss, 

2006).  
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Figure 2.12: i-STAT
®
 system Portable cardiac analyzer and the explode view of the 

cartridge. Reprinted with permission from Abbott Point of Care Inc. 

2.3.1.6 Roche cardiac reader (Roche Diagnostics, Indianapolis) 

The cartridge of Roche Cardiac Reader (Figure 2.13) is based sandwich type ELISA and  

immunochromatography for measuring cTnT or myoglobin. EDTA whole blood or 

plasma can be used in the cartridge.  The principle of Roche Cartridge has many 

similarities with Biosite’s Triage. The blood cells were removed by filtration before the 

reaction starts. Both the antibodies were solubilised by the sample: the capture antibody 

was bound with biotin, and the detection antibody was bound with gold particles. The 

complex flow to the streptavidin immobilized zone, detection zone, the gold-label 

sandwich complex will concentrate to be visibly observed. The excess labelled antibody 

will bind with anti- IgG as a control. Then the cartridge can read visibly for qualification 

measurement or use cardiac reader analyzer for quantities measurement. 



34 

 

 

Figure 2.13 : Roche Cardiac Reader system and principle schematic.  Reprinted 

with permission from Roche Diagnostics and Ref. (Collinson et al., 2001) 

2.4 Summary  

We have reviewed the update developments in diagnosing criteria and device innovation 

in cardiovascular disease, AMI in particular.  The proposed research information from 

various laboratory groups not only offers critical research perspectives, but still many 

challenges remain to be solved. The current commercialized available cardiac detection 

kit, the majority of which is based on the optical detection methodology, can provide 

results within 20 minutes near the patients with satisfying accuracy and sensitivity. 

However, the apparatus for optical detection kit is expensive and hulking, which can not 

realize portable then will not be suitable for frequently mobile circumstances. While, 

comparing to the majority, i-STAT is the sole electrochemical based immunosensor with 

excellent portability, but with narrow detection range (0 to 50 ng/ml) and less rebuts. 
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Chapter 3  

3 Sensor fabrication and biodetection 

This chapter will present the principle and procedure of immunosensor fabrication and 

configuration. A particular description includes photolithography in cleanroom using the 

lift-off technique, e-beam metallization, and sandwich enzyme-linked immunosorbent 

assay (ELISA). 

 

3.1 Introduction 

In the early 1990s, microfluidic technology was successfully developed and introduce to 

the world, since then, countless attentions and efforts were poured into this novel and 

promising technology. Particularly, to integrate immunoassay with microfluidic 

technology to realize high specific antibody-antigen reaction comes with great benefits 

along with substantial challenges. The on-chip devices can ameliorate the 

immunosensing performance through the automated operation significantly in terms of 

shortening the assay time, economising the consumption of reagents and sample, 

improving the reliability and sensitivity, and coordinating parallel or sequential  assays in 

one platform (Bange et al., 2007; Kurita et al., 2006; Zaytseva et al., 2005).  Basically, 

the critical aspects to construct a microfluidic immunosensor include device 

microfabrication, capture antibody (probe) immobilization, immunoreaction, and signal 

detection scheme (Dong et al., 2007). 

Lift-off and etching are the most common approach to fabricate metal or oxide 

microstructures the surface of semiconductors. Lift-off performs as an additive process 

during the microstructure fabrication, in contrast, the etching presents subtractive 

process. During the etching process, firstly fabricate a metallic pattern directly coating on 

the substrate with metal or oxide surface, followed by using photoresist to overlay the 

desired pattern of the mask, and then, the etching process will remove the metal or oxide 

which is not being covered by the photoresist, which can be classified as wet chemical 

etching or dry etching. Wet chemical etching is the more popular in the etching process, 
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but it will cause the isotropy of the whole process and or overcut/undercut the 

photoresist. On the other hand, dry etching is an optional choice but requires 

sophisticated and expensive machine to generate reactive ion plasma. The post-etching 

process usually involves residue removing in a solvent bath (Golden et al., 2009). 

During the lift-off process, it requires an inverse mask pattern to print a sacrificial 

photoresist layer.  The pattern of the substrate, metallic or oxide, is generated by blanked 

coating by the photoresist and the sacrificial layer was washed off as well. Meanwhile, 

the materials deposited on the top of the sacrificial layer was washed off which has been 

indirectly contacted with the substrate surface.  The lift-off technique can be classified 

into many types, all of which will be suitable for metallization by e-beam and sputtering 

techniques. But there are several defects will occur during the process, such as retention, 

“tails”, “tears”, “flagging” or “fencing”, which is not quite relevant to the types of the 

materials.  Retention stands for the pattern of the substrate showing undesired and residue 

metal pattern, which might be caused by the insufficient lifting time or solution resulting 

in the excess metal left on the substrate. The circumstances mostly happened when the 

metal coved the photoresist thoroughly and without any gaps during the metal deposition 

during the photoresist being penetrated and dissolved by the solvent. Flagging or fencing 

presents the defect in the certain gap happening between the metal layer and the 

photoresist top surface with a extremely thinner metallization layer (Carpenter et al., 

2004).  When the situation happened, the metal will dissolve along with the photoresist 

and leaving a “flag” behind, a ragged pattern, which will cause uneven surface and the 

failure of device fabrication  (Golden et al., 2009; Roesch and Hamada, 2004).   

In this chapter, we will describe the procedures for obtaining gold electrodes or 

interconnects in detail. These electrodes can be used for electrokinetic manipulation, 

local application of voltage or current, DNA immobilization, and so on. (benjamin Y. 

part) 
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3.2 Sensor fabrication 

3.2.1  Materials and supplies 

Ultraviolet (UV) flood exposure machine, evaporation machine, photoresist spinner, two 

hot plates. Thermal Oxide coated (1 micron) silicon [Si] wafer, Lift-off Resist (LOR-5a), 

Shipley 1827 positive photoresist, photoresist developer Microposit MF 319, Remover 

PG,  and Nano-Strip were used as receive in cleanroom. 

3.2.2  Fabrication procedure 

To fabricate the biosensor utilizing lift-off techniques, traditionally, the lift-off resist 

(LOR) will be coated on the surface of the wafer firstly, and then the photoresist is spread 

on. The chemical properties of LOR lead to no interacting or intermixing between these 

two layers, LOR and photoresist.  After exposed for patterning, the wafer coated with 

both LOR and photoresist is immersed in develop solution. When the photoresist is 

thoroughly developed, the developer will keep on dissolve off the LOR layer at the open 

area. Thus, a small amount of standard photoresist developing time increase will 

contribute to the LOR undercut properly for the following steps. The process of 

developer dissolving LOR can be both isotropical and well-controled, which attributes 

the high standard of precise undercut control of lift-off techniques (Golden et al., 2009). 

The procedures and apparatus of fabricating electrodes can be summarized as Figure 3.1 

and Figure 3.2, respectively. 

 

Figure 3.1: Schematic of the electrode layer structures. 
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Figure 3.2: Apparatus of main procedures for photolithography and metallization. 

 

3.2.2.1 Substrate pretreatment 

Before applying lift off resist (LOR) and photoresist, the substrate was clean and dried in 

order to maximize process reliability. The wafer cleaning began with Nano-strip solvent 

to wash off surface organic material, followed by de-ionized (DI) water rinse, and then 

nitrogen blow dry. Afterwards, to completely dehydrate surface, the wafer was baking on 

a hotplate at 200⁰C for 5 minutes. Due to outstanding adhesion of LOR to most 

semiconductors (SiO2 in our case), HMDS (hexamethyldisilazane) primer is not 

necessarily applied as adhesion promoter (MicroChem Corp, 2001). 
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3.2.2.2 Lift-off resist coating 

According to the data sheet of LOR resists,  LOR resists is a great candidate for 

producing various film thicknesses with different spin-coat condition with minimum 

defect generating. The dependence of the film thickness on spin speed is displayed in 

Figure 3.3, which provides necessary information about the LOR spin-coating conditions. 

For better lift-off results, the thickness of the LOR film should be thicker than the metal 

deposition thickness; typically the thickness of the metal film is about 1.33 to 1.5 times. 

The range of LOR spin speed is between 2,500 and 4,500 rpm without coating defect 

generation but statistic uniformity.  The spin-coating speed will adjust along with the area 

of the substrates such as higher speeds suitable for smaller substrate and vice versa. The 

coating parameter suited for LOR 5a best is listed in Table 3.1(MicroChem Corp, 2001).  

 

Figure 3.3: Spin speed versus thickness for Lift-off resist series. 
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Table 3.1: Recommended coating parameters for LOR 5A (MicroChem Corp, 2001) 

Process Step Process Parameters 

Dispense volume 3ml (100-mm Si wafer) 

Dispense mode Dynamic 3-5 seconds 

Dispense spin speed 200-500 rpm 

Acceleration 10,000 (rpm) per second 

Terminal spin speed 3,000 (rpm) 

Spin time 45 seconds 

Edge bead remover EBR PG 

 

3.2.2.3 Soft bake 

The primary purpose of the soft is to remove the solvent and dehydrated the LOR film 

and control the undercut rate during the development process. In this process, 

temperature and bake time is critical. As shown in Figure 3.4 (a) and (b), the temperature 

shows greater influences over the baking time. The parameters in our experiment are 

bake at 160°C for 5mins. 

 

Figure 3.4:  The influence of soft bake time and temperature. 
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3.2.2.4 Development process 

In our case, we chose MF-319 for the developing solution. The experimental condition 

was listed in Table 3.2. The whole process was performed on the automated machine set 

the parameter as follow: rinsing for 30s, develop for 6 mins and rinsing and blow dry.  

Table 3.2: Undercut size versus developing time. 

Develop Time 1.5 – 2 mins 2 – 3 mins 3 – 4 mins 

Undercut (2000 rpm and 200⁰C soft bake) 0 -2µm 2 -5µm 5 -7µm 

 

3.2.2.5 O2 Descum 

In order to get the best experimental results, before metal deposition, the wafer is optional 

to clean by oxygen plasma etch, which is call oxygen plasma de-scum. The de-scum is a 

short-time (2-3 minutes) etching by oxygen plasma to eliminate residue photoresist 

leading to poor metal contact or adhesion. 

3.2.2.6 Lift-off Process 

The bottom layer is LOR, then it will require sufficient time to stripping of the LOR layer 

and soaking in Remover PG overnight has the best results.  

3.3 Biodetection 

3.3.1 Immunoassay  

As introduced in Chapter 1, immunoassay is the interaction between antibody and 

antigen, which is the gold standard technique for cardiac biomarker detection and 

determination, and is one of the most prevalent detection methods used in food safety, 

environmental monitoring, biotechnological investigation, and clinical analysis (Lin et 

al., 2010b; Mohammed and Desmulliez, 2011) .  
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3.3.2 Working principle and classification 

One of the immunoassay formats is that divided into heterogeneous and homogeneous 

type. (Ha et al., 2009)  When the antibody and antigen are immobilized on a solid 

substrate forming the complex without further separation, the immunoassay is called 

heterogeneous format. Because the immunoreaction happens on the surface of the 

substrate, heterogeneous immunoassay has high surface area/volume ratio and excellent 

analytical sensitivity.  But immobilizing antibody or antigen on the solid substrate is 

inextricable and sophisticated, for instance, hydrophilic protein molecules are difficult to 

absorb on the hydrophobic polymer substrate without pretreatment. In contrast, when the 

conjugation of antibody and antigen happens in the solution, the immunoassay is the 

homogeneous format. Homogeneous style brings the multiplexing and fast 

electrophoretic separations up to immunoassay, but being constrained by antibody or 

antigen solution preconcentration (Lin et al., 2010a).  

Traditional ELISA usually takes several hours and complicated process to get the final 

results. As shown in Figure 3.10. However, the one-step electrochemical ELISA (Figure 

3.11) can be simplifies the whole process into four steps without comprising the benefits 

of the ELISA. Both detection systems are classic sandwich immunoassay principle, 

which includes the following steps: monoclonal antibody coating on the surface and 

antigen–detection antibody complex react with the capture antibody with a detectable 

label. 
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Figure 3.5: Working schematics of the traditional ELISA. 

 

Figure 3.6: Schematics of the one-step electrochemical ELISA. 
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3.3.3 Procedures 

3.3.3.1 Immobilization of cTnI capture antibody 

One of the most critical steps is to immobilize the capture antibody on the surface of the 

immunosensor.  The response may present high background noise or poorly reactive of 

the reaction of the probe, which will result in decreasing significantly the sensitivity or 

the ratio of signal to noise of the immunosensor, due to the inappropriate binding of the 

capture antibody (Corgier et al., 2005; Corgier et al., 2007; Lahann et al., 2003; Mao et 

al., 2002).  

3.3.3.2 Configuration of the immunosensor 

As shown in Figure 3.12, the configuration of the immunosensor can be divvied into 

base, which including the substrate, metal layer, and the mediator; immunoreaction, BSA, 

capture antibody and detection antibody labeled with enzyme; and the signal generation, 

which was catalyzed by the enzyme and generation free electron to obtain the 

amperometric response.  
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Figure 3.7: Configuration of cardiac troponin I immunosensor. 

 

3.4 Conclusion  

In this chapter, we have discussed about the fabrication process and configuration of the 

immunosensor. The pattern from the mask was transferred to the substrate by lift-off 

technique, in which lift-off resist and positive photoresist Shipley1827 was involved in 

the photolithography process.  Shipley1827 as the sacrificial layer was indirect contacted 

with the substrate. Meanwhile, the fabrication process was being controlled by 

temperature, developing time, exposing dose and other factor.  The immunosensor was 

constructed by classic sandwich ELISA: the complex of antigen and detection antibody 

labeled with signal generating enzyme was captured by immobilized first antibody, and 

BSA acting as a blocking membrane to eliminating non-specific binding interference. 
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Chapter 4  

4 Electrode modification and optimization 

Electrochemical immunosensor brought tremendous interest for point-of-care diagnostics, 

such as small sample volume, high sensitivity, and time efficiency. In this chapter, 

nanomaterials modified immunosensor, carbon nanotube, and gold nanoparticles, were 

designed, investigated, and optimized.   

 

4.1 Introduction 

As discussed before, troponin I (cTnI) plays a critical role in diagnosis and management, 

prognosis of myocardial infarction. It is well known that electrochemical immunosensor 

possesses tremendous promising properties such like specificity and detection simplicity, 

cost efficiency, short assay time, and highly adaptable for miniaturization, has recently 

drawn considerable attention. Various format immunosensors combined with 

electrochemical techniques such as potentiometry, amperometry, or piezoelectry,  have 

been developed for electrochemical assays of the cTnI level (Ahammad et al., 2011; 

Kurkina and Balasubramanian, 2012; Lin et al., 2011; Tang et al., 2011; Zhou et al., 

2010).  For example, a multiplex cancer electrochemical immunosensor was recently 

reported by Guo et al., which was a flow injection device as the screen-printed glassy 

carbon electrode modified chitosan matrix to enhance molecular immobilization. The 

cancer biomarker arrays were developed to determine several tumor markers 

simultaneously without comprising experimental performance such as low detection limit 

and high throughput (Guo et al., 2010). 

Lately, the development of advanced materials and the utilization of nanomaterials in 

biosensor gain more and more attentions from various research groups. Carbon nanotube 

(CNT) possesses unique properties in terms of remarkable mechanical, electrical, 

chemical and structural performance. CNT, the largest elastic materials among the world, 

can play as metallic ions, semi-conductive materials with excellent electron 
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transportation, and be suitable as a host for storing guest biomolecules as well (Davis et 

al., 2003; Wang, 2005).  Furthermore, CNT demonstrates substantial prospects in sensor 

fabrication, both biosensor and immunosensor, in terms of excellent chemical stability, 

extraordinary electronic
 
properties, strong mechanical performance, and high surface-

area-to volume ratio(Lin et al., 2011).  However, the CNT application was constrained by 

the poor liquid dispersibility, particularly in DI water; therefore, introducing Poly 

(diallydimethylammonium) chloride, a water-soluble quaternary ammonium 

polyelectrolyte, also called PDDA is used to improve the dispersibility of  CNT. PDDA 

was commonly used in water treatment, the mining industry operation, paper 

manufacturing process and biological application (Rochette et al., 2005), and was found 

to be capable of improving the homogeneity of CNT film by helping CNT disperse in the 

water(Kim et al., 2003; Kim and Sigmund, 2003; Wen et al., 2007). There are two types 

of CNT based on the production process: single-wall carbon nanotube (SWCNT) and 

multi-wall carbon nanotube (SWCNT). We use MWCNT in all the following 

experiments. 

In electrochemical application, gold nanoparticles (AuNPs)  can have various functions, 

which can be classifies as: biomolecules immobilization, electron transfer enhancement, 

catalyzing the reaction, function as biomolecules label and even act as a reactant (Luo et 

al., 2006).  Furthermore, AuNPs is also  notable biocompatible materials, which can 

create a native environment for bioconjugates or biomolecules. Therefore, AuNPs can be 

the perfect candidate for the immobilization matrix because it can absorb biomolecules 

firmly due to its large specific surface area along with high surface free energy without 

destroying the biological activity of the antibody or antigens (Luckham and Brennan, 

2010; Luo et al., 2006).  However, the absorption capacity of AuNPs on the electrode 

surface is not sufficient. Therefore, we introduce AuNPs doped with chitosan for electro 

modification. On the one hand, chitosan is a natural biopolymer comprised of rich 

hydroxyl function groups and active amino, which is one of the most popular candidates 

for immobilization matrix (Cavalcanti et al., 2012).  On the other hand, the poor 

conductivity leads chitosan to combining with other materials such like CNT, metal 

nanoparticles, or redox mediators for biosensing in electrochemical platforms (Yang et 

al., 2011). 
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In this current work, we using PDDA-MWCNT and chitosan- AuNPs as the electrode 

modification, for capture antibody immobilization and electron transfer enhancement to 

construct a sensitive immunosensor for cTnI determination. In addition, based on such a 

configuration, the experimental conditions were optimized and the linearity and 

sensitivity were investigated. 

 

4.2 Experimental 

4.2.1 Chemicals 

Troponin I from the human heart, the rabbit anti-human cTnI polyclonal antibody, and 

the mouse anti-human cTnI monoclonal antibody were purchased from Sigma-Aldrich. 4-

Aminophenyl phosphate monosodium salt hydrate was obtained from Gold 

Biotechnology (St. Louis, USA). Maleimide alkaline phosphatase and maleimide 

horseradish peroxide were received from Innova Bioscience (Cambridge, UK). N-

Succinimidyl S-acetylthioacetate (SATA), alkaline phosphatase stabilizing buffer, 

sodium aside, diethanolamine (DEA), dimethylsufoxide (DMSO),  bovine serum albumin 

(BSA), p-nitrophenyl phosphate (p-NPP) liquid substrate, Trizma
®

 base (tris-

(hydroxylmethyl)-aminomethane(Tris)), hydroquinone, potassium ferricyanide (III), 

polyoxyethylenesorbitan manolaurate (Tween
TM

 20), and PDDA (20 wt % in water) were 

all purchased from Sigma-Aldrich.   

All these buffers. such like phosphate buffer solution (PBS), blocking buffer (1% BSA in 

PBS) and etc., were prepared every week. The MWCNT (cylindrical with diameter range 

in 5-15nm) with 95% purity was purchased from US Research Nanomaterials, Inc.  

All the reagents and chemicals were analytical-reagent grade or better without any further 

purification. Deionized (DI) water, with resistivity higher than 18 M (Milli-Q, USA), 

was used throughout.  
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4.2.2 Apparatus 

Hitachi S-4500 field emission scanning electron microscope (SEM) along with the 

energy dispersive X-ray spectroscope (EDX) was the equipment performed to 

characterize the microstructure of the modified electrodes and all images were taken at 5 

kV. The Varian UV-visible spectrophotometer were engaged to provide the control 

experiment reference of cTnI in serum using a standard troponin I kit purchased from 

GenWay  Biotech, San Diego.  

All electrochemical experiments were performed by a computer-interfaced CHI1200a 

(CHI Instruments, Inc., USA). For traditional electrochemical cell, the bulk gold working 

electrode (2 mm diameter), a platinum wire counter electrode, Ag/AgCl reference 

electrode immersed in saturated KCl solution were incorporated into a classic three-

electrode electrochemical cell. All the electrodes and cell stand were all obtained from 

CHI instruments, Inc., USA.  For the planar electrode, as mention in chapter 3, three 

electrodes along with leads and contact pads were fabricated on the silicon wafer with 

100 nm silicon oxide layer. All the modifications only were applied on working electrode 

(diameter 3mm). A dot of Ag/AgCl ink (AG-500, conductive compounds) was dropped 

on the reference electrode, as shown in Figure 4.1. 

 

Figure 4.1: Planar electrode and preliminary design for immunosensor embedded in 

a microfluidic chip. 
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4.2.2.1 Carbon nanotube preparation 

In general, carbon nanotube needs to be immersed in strong acids, e.g. HNO3 or H2SO4, 

to functionalize and purify. Hydrogen ion (H
+
) will cause carbon nanotubes rich in 

carboxyl group (-COOH), which are vital for not only conjugate with biomolecules but 

also absorb in the hydrophilic surface. Therefore, the MWCNT was firstly added into the 

mixture of H2SO4 (98%) and HNO3 (60%) (3:1 (v/v)) for hydrophilic treatment for eight 

hours (Kannan et al., 2009; Piao et al., 2009; Saito et al., 2002). Then the acid mixture 

solution was removed from the supernatant and adds NaOH into MWCNT solution till 

pH value reach 7 to neutralize the solution. Then to remove the residue NaNO3 and 

Na2SO4 the following procedures were repeated several times: adding DI water to the 

MWCNT solution, centrifugation the mixture and removing the supernatant.  To form 

MWCNT-PDDA composite, in 10 ml vial, adding 2 ml 8% PDDA and 2 mg MWCNT, 

and the mixture was ultrasonicated for 1.5 h. The excess PDDA was removed by 

centrifugation (higher speed) and washed with DI water till the mixture is stable. Then 

the MWCNT-PDDA was ready for the following experiments. (Bi et al., 2009; Manesh et 

al., 2008; Wang et al., 2011).  

4.2.2.2 Preparation of chitosan-AuNPs 

The gold nanoparticles were prepared using the protocols according to the literature 

(Doron et al., 1995; Xue et al., 2006), by adding 2.5 mL of 1.0% trisodium citrate to the 

100 mL of boiling HAuCl4, the concentration of which is 0.01 % (w/w). Keep the 

mixture boiling and stirring for 10 minutes. Then pour the solution into a dark glass bottle 

and use it in a week to prevent the AuNPs from agglomerating.  

1% (wt%) chitosan solution was prepared, in a 15 mL vial, by adding chitosan powder 

into 0.05 M acetic acid solution, and then ultrasonicated until the chitosan powder was 

completely dissolved (Xue et al., 2006). Then mix the AuNPs solution with chitosan 

solution together in volume ratio 1:1 to form the chitosan-AuNPs composite.  
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4.2.3 Electrode preparation and pretreatment 

For the bulk electrode, the Au electrode was polished with 0.1 and 0.1 m alumina slurry 

on microcloth pads sequentially to physically remove the oxide layer, followed by rinsing 

with double dilute water. Then the electrode was immersed in freshly prepared Piranha 

solution (30% H2O2: H2SO4 = 1:3 (v/v)) to remove organic residue. Then the electrode 

was ultrasonicated in DI water, acetone, and DI water for 5 minutes, respectively. To 

further clean and activation, the electrode was immersed in 0.1 M sulfuric acid under a 

cyclic voltage from 0.6 to 1.5 V with the scan rate of 50 mV s
-1

 till a stable 

voltammogram established (Figure 4.1), then the electrode has been fully ready for 

further electrochemical experiments (Elliott et al., 1999). For planar electrode, it will only 

require the last step for cleaning and activating the working electrode. 

 

Figure 4.2: Electrochemical cleaning and activation of electrodes in 0. 1 M sulfuric 

acid by cycling between 0.6 V and 1.5 V at a sweep rate of 50 mV s-1. 
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4.2.4 Electrode modification and characterization 

To modify the electrodes, spread 5 L of the MWCNT-PDDA solution or chitosan-

AuNPs solution over the Au electrode surface, and then set it at the room temperature to 

evaporate the solvent. After that, on the surface of the electrode, a film will form, which 

can be visually observed.  

4.2.5 Preparation of antibody-enzyme conjugates 

The process was established through SATA as a crosslink to form a thiol function group 

and then react with maleimide activated alkaline phosphatase (ALP). The schematic is 

shown in Figure 4.2. The antibody-enzyme conjugation process is depicted as follows 

(O'Regan et al., 2003; O'Regan et al., 2002).  

(1) Prepare antibody stock solution. In 2 mL vial, adding 100 µL anti-cTnI polyclonal 

antibody (1 mg/mL) and then adding 100 µL sodium phosphate buffer (50 mM 

NaH2PO4 and 1mM EDTA, pH 7.5). 

(2) Prepare SATA stock solution (1.5 mg/mL in DMSO).  

(3) Add 5 µL SATA stock solution to antibody stock solution, and then gently shake the 

vial and set at room temperature for 45 min. 

(4) To remove the by-product (residue SATA) by centrifugation using a 30 kDa cut-off 

ultracentrifuge filter (Sigma) against sodium phosphate buffer.  

(5) Prepare deacetylation solution, 20 mL (50 mM NaH2PO4, 25 mM EDTA, 0.5 M 

hydroxylamine– HCl, pH 7.5).  

(6) Add to the antibody mixture and let it incubate for 2 hours at room temperature to 

reveal the thoil group. 

(7) Dialyse the solution against DPBS (137 mM NaCl, 2.6 mM KCl, 8 mM Na2HPO4, 1.5 

mM NaH2PO4, 1 mM EDTA, pH 6.6) at room temperature for 12 h/ overnight. 

(8) Add maleimide activated ALP to antibody solution based on molar ration 2:1 

(1:1(w/w)) and then left in 4 ⁰C for 12 hours. 

(9) Dialyze conjugates against Tris buffer (50 mM Trizma base, 50 mM NaCl, 1 mM 

MgCl2, pH 7.4) for overnight at room temperature. 

(10) Add ALP stabilizing buffer (Tris buffer, pH 8.0, 1% (w/v) BSA and 0.05% (w/v) 

sodium azide) to adjusted to a final volume of 500 mL. Then store the conjugates at 4 ⁰C.  
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Figure 4.2: Illustration of antibody-ALP conjugates: (a) Attachment to antibody, (b) 

deprotection, and (c) reaction with ALP, (d) Conjugates. Adapted from (Life 

Technologies) 

4.2.6 Immunoassay protocols 

The immunoassay utilized in the current work is 2-site enzyme-linked-immunosorbent 

serologic assay (ELISA), also called as sandwich type ELISA. Therefore, the 

immunoassay protocols include three principal procedures:  incubate first antibody, 

blocking, and incubation antigen-antibody-ALP. First, incubate the capture antibody. 

Add 5 µL capture antibody solution (anti-cTnI monoclonal in carbonate buffer, pH 9.5) 

and incubate for 60 minutes at 37 ⁰C, and then rinsing thoroughly with washing buffer 

(0.05% Tween
® 

in PBS, pH 7.4) to remove the unbound antibodies. Then add a drop of 5 

µL 10% (w/v) BSA in PBS (pH 7.4) and incubate for 60 minutes at 37 ⁰C, to block the 

non-specific bounding. Afterwards, repeat washing by 0.05% Tween
® 

in PBS. Finally, 

incubate the premixed antigen-antibody-ALP a drop of 5 µL, incubate for 60 minutes at 

37 ⁰C.  Then the electrode would be ready to move on the electrochemical experiments. 

For the bulk electrodes, after each immunoassay run, immerse the electrode into 0.1 M 

glycine-HCl (pH 2.0) for 5 min and rinse by double dilute water. Then start from 

electrode pre-treatment to carry out another sensing cycle (Gao et al., 2003).  
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4.2.7 Electrochemical detection 

Electrochemical measurements were done in a conventional electrochemical cell or on a 

flat chip, which is the macroscale prototype of at the room temperature. Firstly, Cyclic 

voltammograms (CVs) were performed 2 mM PBS (pH 6.5) containing 5.0 mM 

K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) mixture and 0.1 M KCl from 0.6 to −0.2 V (vs. Ag/ 

AgCl) at the scan rate of 50 mV s
−1

 to monitor the current variation (∆I) before or after 

nanomaterial modification because PDDA-MWCNT and chitosan-AuNPs will increase 

the electron transferring and lead to current response enlarged (Gao et al., 2003). 

Secondly, the immunoreaction was monitored by cyclic voltammograms performed in 

PNPP (p-nitrophenyl phosphate) liquid substrate (pH 9.0) purchased from Sigma. When 

the antigen has bound with both antibodies: capture antibody helping coated on the 

surface of the electrode and the second antibody (labelled with ALP) catalyzing the 

substrate to generating current response, then there is current response of the 

immunoreactions. All the electrochemical experiments were carried at the room 

temperature. 

 

4.3 Results and discussion 

4.3.1 Electrochemical characteristics of bare electrode 

After polished, ultrasound, and strong acid clean, to clarify that the electrode is ready for 

experiment: Cyclic voltammograms (CVs) were performed in 0.02 M PBS (pH 6.5) 

containing 5.0 mM K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) mixture and 0.1 M KCl from 0.6 to 

−0.2 V. The ideal difference between redox peak should be 67 mV (Tang et al., 1988), 

which is barely happening in the realistic. As long as the difference ranges between                    

60 mV to 100 mV, then the electrode can perform well.  If the potential difference of the 

peak of redox current is over 100 mV, then the electrode needs further clean which may 

start from the electrode pre-treatment. Here, Figure 4.2 shows the cleaned electrode with 

71 mV difference, indicating the electrode been cleaned, activated and ready  for the 

following experiments. 
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Figure 4.3: Electrochemical indication in 0.02 M PBS (pH 6.5) containing 5.0 mM 

K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) mixture and 0.1 M KCl from 0.6 to −0.2 V. 

4.3.2 Characteristics of CNT, AuNP 

Adding PDDA into MWCNT solution leads to phenomenal improvement of the 

dispersibility of MWCNT in water. In addition, the stability has been remarkably 

enhanced, for example the homogeneous, well-soluble suspension of PDDA-MWCNT 

could be stored stably for months.  The characterization of the PDDA-MWCNT 

composite, morphology and structure were shown in Figure 4.4.  Figure 4.4 (a) shows the 

homogeneous and porous film comprised of PDDA-MWCNT (Suprun et al., 2011), 

which is evenly spread on the surface of the working electrode.  On the contrary, Figure 

4.4 (b), the inset of Figure 4.4 (a), demonstrated conglobation comprised by MWCNT 

without treatment, ending up with a uniform surface, indicating the enormous value of 

PDDA in dispersing MWCNT (Wen et al., 2007). Figure 4.4 (c) displays the 

characterization of gold nanoparticles (AuNPs), which would significantly increase the 

coverage of capture antibody anti-cTnI   due to large surface-to-volume ration of the 

nanospheres structure (Suprun et al., 2010). 
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Figure 4.4: SEM images of (a) PDDA-MWCNT composite; (b) MWCNT without 

any treatment; (c) AuNP composite on the surfaces of gold electrodes. 

4.3.3 Cyclic voltammetry characterization of PDDA-MWCNT modified 
electrodes 

The cyclic voltammetry in various scan rates was shown in Figure 4.5. It can be observed 

that both the peak currents of anode and cathode were increased with the scan rate. In 

addition, the difference between peak currents of anode and cathode was enlarged as 

well. Both the anodic and cathodic currents were proportional to the square roots of scan 

rate, from 10 mV s
-1

 to 500 mV s
-1

 , indicating that the redox process is diffusion 

controllable.  
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Figure 4.5 (a) The cyclic voltammograms of PDDA-MWCNT-Au electrode at 

various scan rates from 10 to 500 mV s
-1 

in 0.02 M PBS (pH 6.5) containing 5.0 mM 

K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) mixture and 0.1 M KCl from 0.6 to −0.2 V. (b) The 

dependence the redox peak current over the square root of the various scan rates. 
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4.3.4 Cyclic voltammetry characterization of PDDA-MWCNT and 
AuNPs modified electrodes 

Utilizing cyclic voltammetry (CV) to characterize the modified PDDA-MWCNT and 

chitosan-AuNPs electrodes are based on the redox reaction of ferricyanide, as shown in 

equation (4.1). Herein, we choose 5 mM K3Fe(CN)6 along with 0.1M KCl solution to 

probe the reduction or oxidation on the surface of the electrodes. Figure 4.6 shows 

various modifications of the electrodes in the probing solution. 

Fe(CN)6
4-

 ↔ Fe(CN)6
3-

+ e
-                                                             

(4.1) 

In figure 4.6, curve a stands for the PDDA-NWCNT, which we can observe a smooth 

curve with a couple of well-formed redox peaks and compare with the rest three curves, 

the redox peaks are the largest, indication that the  PDDA- MWCNT has the strongest 

ability of  enhancing electron transfer among the other three. Curve c shows the bare 

electrode response of ferricyanide redox reation. Curve d displays the electrode after 

modified by chitosan without AuNPs, both the peaks shrunk dramatically suggesting that 

the chitosan molecules act as a blocking layer for the electron and mass transfer and stop 

the diffusion of ferricyanide (Wen et al., 2007). The blocking effect of the film can be 

caused by the poor conductivity of pure chitosan, the result of which agrees with the 

insulation of curve b.  As curve b shows, the current response (curve b) increases 

significantly when the AuNPs were entrapped with chitosan. That is might be the AuNPs 

increase the conductivity of the film by facilitating the electron transferring. However, 

the result of electron transfer enhancement is not as good as PDDA-MWCNT, which may 

cause by the poor conductivity of pure chitosan as well. 

Accordingly, the cyclic voltammetry (CV) characterization confirms the theory that  

modifying the electrode surface by PDDA-MWCNT and chitosan-AuNPs could 

facilitating the electro transfer for better electrochemical performance. 
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Figure 4.6: CVs of different modified electrodes in a 5 mM K3Fe(CN)6 solution 

containing 0.1M KCl (pH 6.5): (a) PDDA- MWCNT; (b) Chitosan- AuNP; (c) Bare 

electrode; (d) Chitosan. 

4.3.5 CV characterization of cTnI immunosensor 

To investigate the PDDA-MWCNT and chitosan-AuNPs electrochemical behaviour in 

the immunosensors, modified electrode along with bare electrode followed the 

immunoassay protocol to incubate with cTnI antigen (50 ng/mL) and alkaline 

phosphatase (ALP) labelled second antibody. Then all the sensors were characterized by 

CV scan in PNPP liquid substrate (5mM, pH 9.0).  Since the existence of antibody label 

ALP in the solution, it will catalyze the PNPP hydrolyzing into PNP, which leads to tense 

electron transferring to form a well-defined oxidation peak.  The scan potential range is 

from -0.8 to 1.2 V, and the current peak appears at about 1.0V.  The amperometric 

response should be proportional to the amount of ALP, which were labelled with the 

second antibody.  Since sandwich ELISA is highly sensitive and specific reaction, 

theoretically, the current response would be proportionally related to the antigen 

concentration, saying, cTnI. Figure 4.9(a), 4.10 (a) and 4.11(a) display the various current 

response of different concentration of the cardiac troponin I. 
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As shown in figure 4.7, various modifications have distinct peak value of the oxidation. 

Curve (a) stands for blank curve: No cTnI involved in the immunoreaction, therefore, no 

current response or peak value. Curve (b) indicates the bare electrode current varies on 

potential shifts. Curve (c) and (d) demonstrate the bare electrode current varies on 

potential shifts on chitosan-AuNPs and PDDA-MWCNT.  As shown in figures, the peak 

current value of  PDDA-MWCNT is twice larger than chitosan-AuNPs, and three times 

bigger than bare electrode, which can be explained by the following causes: First, the 

roughness on the electrode surface is from high to low: PDDA-MWCNT, chitosan-

AuNPs, bare electrode. The rougher surface and the easier to immobilize the capture 

antibody, which is a key step for signal generation.  Second, as discussed before, the poor 

conductivity of pure chitosan hinders the electron transfer to a certain extent, especially 

compared to the great electron transfer prompter, PDDA-MWCNT. 

 

Figure 4.7: Electrochemical behavior of various modified electrodes in 

immunoassay: (a) blank, (b) bare electrode, (c) chitosan-AuNPs electrode, (d) 

PDDA-MWCNT modified surface. 
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4.3.6 Optimization of immunoassay procedure 

There have been many factors capable of obstructing the performance of the 

immunosensor such like the pH value of the liquid substrate, the amount of immobilized 

cTnI antibody, the temperature and the incubation time etc.. Herein, the experimental 

condition optimization was implemented on unmodified electrodes. The amount of the 

capture antibody on the immunosensor to grab antigen-antibody-ALP is critical and 

influential for the overall performance of either PDDA-MWCNT or chitosan-AuNPs 

immunosensor.  Then, all the experiments of optimizing experimental conditions were 

carried on bare electrode except other specifically addressed. The influence caused by 

different substrates will be addressed in the next chapter. Herein, the substrate, PNPP 

liquid substrate, was used as directly purchased from sigma.  The concentration of the 

analyte, cTnI, is 30 ng ml
−1

. Figure 4.8 (a) illustrates that the relationship between the pH 

value and the sensitivity. The results the sensitivity increases along with the elevated pH 

value from 6.1 to 10.0,  and then followed by a significant drop. Therefore, take both 

stability and bioactivity into consideration, the pH value 9.0 was used in the following 

experiments.  Figure 4.8 (b) presents the capture antibody concentration influence of the 

experiment results. As shown in the figure, the currents response increases sharply before 

the immobilized antibody concentration reached 20 µg ml
−1

 and then the rate of increased 

has been slowing down. After 40 µg ml
−1

 the response tends to be decreased, which 

might be caused the blocking effect of excess antibody. Therefore, the antibody 

concentration was as 20 µg ml
−1 

due the cost and the sensitivity. Figure 4.8 (c) 

demonstrates that the temperature effect on the immunosensor performance. Herein, we 

only take four different temperatures tested in the identical experiments: 4⁰C, 20⁰C, 

37⁰C, and 50⁰C, due to the limit of the experiment conditions. The experiment response 

reached the peak when the temperature was 37⁰C, which is consisted with most literature, 

it might be caused by the protein reaction, antigen and antibody, reached the high 

bioactivity leads to the better conjugates. Figure 4.8 (d) incubation time stands for 

different incubation time for two different concentrations of cTnI, 10ng ml
−1

 and 50ng 

ml
−1

. When the incubating time reached 20 minutes, the reaction was almost 70% 

finished and reached the stable till 45 min. Therefore, the incubation time was set as 20 

mins.  
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Figure 4.8: Influence of  (a) pH value; (b) capture antibody concentration;  

(c) temperature; (d) incubation time on the immunosensor. 
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4.3.7 Calibration curve of the cTnI immunosensor 

After the optimization experiments, the calibration curves were established under the 

optimized conditions to determine cTnI using PDDA-MWCNT and chitosan-AuNPs 

modified electrodes.  The oxidation peak currents occur between 0.9 to 1.0 V, as shown 

in Figure 4.9 (a), 4.10 (a) , and 4.11 (a). The reaction between antibody and antigen was 

based on sandwich ELISA mechanism. The antigen first react with detection antibody 

conjugated with ALP label, and then react with immobilized capture antibody. The ALP 

label increase will lead to current response elevated which is owing to the increasing 

amount of antigen, cTnI. As shown in Figure 4.9 (a), 4.10 (a) , and 4.11 (a), the peak 

current increases along with the concentration increasing.  Then the dependence of the 

CV oxidation peak current on the cTnI concentration is linear ranging from 1.0 ng ml
−1

 to 

100ng ml
−1

 on bare gold electrode, 0.01 to 300 ng /ml on PDDA-MWCNT electrode, and 

0.02 to 200 ng ml
−1

 on chitosan-AuNPs electrode, with a correlation coefficient of 0.978, 

0.983, and 0.971 respectively.  

In terms of detection linear range and the correlation coefficient, the PDDA-MWCNT 

electrodes have the widest range comparing to chitosan-AuNPs electrodes and bare 

electrodes. It can be caused by the unique properties of carbon nanotube such as chemical 

stability, high surface-volume ratio, capacity of electron transferring and etc. 

Furthermore, speaking to the AuNPs modified electrodes, comparing to bare electrodes, 

with relatively low r
2
 (correlation coefficient), it might be explained by the 

biocompatibility of chitosan and AuNPs, which can help absorb more capture antibody 

and more non-specific binding, which further indication the non-selective properties 

between chitosan and AuNPs to biomolecules. The sensitivity of three electrodes will be 

discussed in the following session.  
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Figure 4.9: (a) The current-voltage response curves (b) calibration curve of bare 

gold electrodes. 
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Figure 4.10: (a) The current-voltage response curves (b) calibration curve of 

chitosan-AuNPs modified gold electrodes. 
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Figure 4.11: (a) The current-voltage response curves (b) calibration curve of PDDA-

MWCNT modified gold electrodes. 
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Figure 4.12: Calibration curve of PDDA-MWCNT, AuNPs, and bare electrode. 

 

The detection limits were obtained by triplicate measurements of blank detection and 

then was calculated to be 0.1 ng ml
−1

on bare gold, 0.001 ng ml
−1 

on PDDA-MWCNT, 

and 0.003 on chitosan-AuNP respectively, which was compared with current POCT 

device detection limit as shown in the Table 4.1. The sensitivity stands for the slope of 

the calibration curve, (Katus et al., 1989), in our case, the sensitivity is 18.32 µA mg
-1

mL
-

1
 on bare gold, 32.17 µA mg

-1
mL

-1
 on PDDA-MWCNT, and 40.15 µA mg

-1
mL

-1
 on 

chitosan-AuNP respectively (Figure 4.12).  When the concentration of cTnI reached over 

the range higher limits, then it will need to be diluted prior to the experiments.  It consists 

with the relative literature indicated that the application of AuNP and CNT can enhance 

the catalytic reaction and enhance the sensitivity (Burlina et al., 1994). The enhanced 

sensitivity is perhaps due to the synergistic effect of AuNP or CNT. 
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Table 4.1: Characteristics of current cTnI POC assays. Adapted from (Christenson 

and Azzazy, 2009) 

Assay 
Lower detection 

limit(ng ml
−1

) 

99
th

 percentile cutoff 

value (ng ml
−1

) 

Receiver- operating 

characteristic curve cutoff 

Abbott i-STAT 0.02 0.08 — 

Dade CS 0.03 0.07 0.6-1.5 

Response 0.03 < 0.05 — 

Biosite Triage 0.19 <0.19 0.4 

 

4.3.8 Stability and reproducibility of the cTnI immunosensor 

We investigated the storage stability of the current project. The electrodes were stored in 

the refrigerator at 4 °C and then examined every day for the activity. The electrodes 

include PDDA-MWCNT, AuNPs, and bare electrodes. The results as shown in Figure 

4.12, for all the three electrodes, there were no significant signal decrease being observed 

before first 20 days. However, the bare electrodes started to decrease immediately after 

20 days. The activities of PDDA-MWCNT and AuNPs remained the same response with 

a few fluctuations between day 20 till day 27, then both of responses of the PDDA-

MWCNT and AuNPs drop sharply. 

 

Besides the stability of storage, the stability of operation, the interassay variation 

coefficient is critical as well.  We investigated the interassay variation coefficient by 

measuring the same sample by five sets of PDDA-MWCNT and AuNPs electrodes, 

respectively. The results illustrated that the interassay variation coefficient was 

20 ng ml
−1

 was 5.8% of PDDA-MWCNT and 20 ng ml
−1

 was 6.4 % AuNPs, which 

indicating both PDDA-MWCNT and AuNPs has considerable potential for fabrication 

stability and enduring storage stability.  
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Figure 4.13:  Storage stability of the PDDA-MWCNT, AuNPs and bare electrodes. 

 

4.3.9 Accuracy and clinical application 

Herein, we study the accuracy of the cTnI immunosensor by comparing the results by 

determining cTnI in human serum (diluted by PBS buffer pH 7.4 (v: v=1:10)) with 

PDDA-MWCNT electrochemical immunoassay (EIA) and with spectrophotometric 

ELISA.  As presented in Figure 4.14, the mean values of evaluations in 5 serum samples 

were performed at five different concentrations, and the error bar stands for the degree of 

the measurement uncertainty. In addition, as shown in Table 4.2, the relative standard 

deviation (%), square root of the variances, of PDDA-MWCNT is in the range of 2.94 to 

8.56%, and the difference between Chitosan-AuNPs is from 3.92 to 6.86% in extent. 

Both the figure and the data demonstrated that the measured value of cTnI concentration 

by spectrophotometric methods shows satisfying agreements with both modified 

immunosensor based electrochemical methods. 
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Figure 4.14: Measurement of cTnI with spectrophotometric, the electrochemical 

with chitosan-AuNPs, PDDA-MWCNT methods in various concentration: 0, 1, 10, 

20, 50 ng ml
-1

. 

 

Table  4.2: Comparison of Measured cTnI levels between two methods.  

Samples 

(ng ml
-

1
) 

Spectrophotometric 

(ng ml
-1

) 

PDDA-MWCNT 

Electrochemical 

(ng ml
-1

) 

RSD 

(%) 

Chitosan-

AuNPs 

Electrochemical 

(ng ml
-1

) 

RSD 

(%) 

0 0.01±0.02 0.06±0.03 - 0.04±0.02 - 

1 1.02±0.15 0.99±0.15 2.94 1.09±0.16 6.86 

10 10.04±0.70 10.9± 5.50 8.56 10.7±2.51 6.57 

20 20.40±1.02 19.2±7.96 5.88 19.6±5.01 3.92 

50 50.7±2.54 47.7±4.89 5.92 48.1±5.51 5.13 
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4.4 Conclusions 

We designed and developed an amperometric cardiac Troponin I immunosensor based on 

PDDA-MWCNT and AuNPs, respectively. The electrochemical immunosensor was 

based on sandwich type ELISA, which employs two antibodies and leads to high 

sensitivity.  The substrate utilizing in the experiment is commercially available and have 

relatively high stability. The immunosensor presents good sensitivity, positive 

bioactivity, low detection limit and quick response time and tolerable stability.  The 

immunosensor not only can be utilized on serum to determine cTnI values but also can be 

applied of different protein molecules.  
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Chapter 5  

5 HRP- and ALP-label enzyme comparison study 

This chapter will study characteristic of two enzyme label and various liquid substrate for 

electrochemical signal response. TMB and HQ for horseradish peroxide enzyme was 

studies in pH value 5.0 and 7.4, respectively; PNPP and PAPP in Tris buffer and DEA 

buffer was investigated in alkaline system. HRP-based electrochemical biosensor along 

with glucose biosensor can be integrated together to accomplish a cardiac-blood 

chemistry sensor in POCT device. Also, a concept of multiplex cardiac biomarker 

detection was presented.   

 

5.1  Introduction 

As discussed before, the immunoassay herein is to detect the antigen (cTnI) between two 

antibodies. One of the antibodies was labeled with certain enzyme, which can catalyze 

redox reaction of the corresponding substrates. Among all the enzyme-based 

electrochemical biosensor, there are two most commonly used as the enzyme label for 

signal amplification and catalytic reactions: horseradish peroxidase (HRP) and alkaline 

phosphatase (ALP).  In general, as in HRP-based biosensors (Crew et al., 2007; Fanjul-

Bolado et al., 2005; Ionescu et al., 2005; Ionescu et al., 2004; Sun et al., 2001; Volpe et 

al., 1998), the signal responses generate by substrates electroreduced by the existence  

HRP. In contrast, in  ALP-based biosensors (Aziz et al., 2007; Aziz et al., 2008; Das et 

al., 2007; Fanjul-Bolado et al., 2007; Hwang et al., 2005; Kwon et al., 2008; 

Preechaworapun et al., 2008; Wilson and Rauh, 2004), the electrochemical responses 

were induced by the electrooxidation of the ALP. 

Since both HRP-based biosensor and ALP-based biosensors have quite long history as 

the catalyzing label in ELISA immunoreaction, the overall performance of HRP-based 

sensors have distinguishable disadvantages from the ALP-based sensors during the 

electrochemical detections.  Comparing to the ALP-based sensors, most HRP-based 



74 

 

sensors have higher background-current levels and less reproducible, which contributes 

to more difficulty in achieving low detection limits. One the one hand, the majority of the 

liquid substrates of HRP (such like hydroquinone (HQ)) is unstable and highly 

electroactive under an narrow electrochemical potential window (Crew et al., 2007; 

Fanjul-Bolado et al., 2005; Ionescu et al., 2005; Ionescu et al., 2004; Sun et al., 2001; 

Volpe et al., 1998), while the substrate for ALP is less electroactive (Gyurcsanyi et al., 

2002; Preechaworapun et al., 2008), for instance, the PNPP liquid substrates discussed in 

Chapter 4.  Therefore, the interference caused by electroactive substrates will 

dramatically elevated the background-current level of the HRP-based sensors. On the 

other hand, the hydrogen peroxide (H2O2) is the critical and necessary oxidizing element 

in HRP catalysis sensor, which is prone to be electroreduced under a certain level of 

electrochemical potential window. Consequently, the presence of H2O2 electroreduction 

will potentially enhancing the background-current levels. 

However, the relatively poor performance of HRP can be overcome by electrochemical 

strategy in terms of lowing the background-current (Kang et al., 2009).  In addition, the 

unique merit of HRP-based biosensor instead of ALP-based biosensor is the great 

potential to combine with Glucose or other blood chemistry biosensor (applicable to all 

the analytes share with the same detection principle with glucose), using hydrogen 

peroxide (H2O2) as the bridge. Over the past several decades, the enzymatic 

amperometric glucose biosensor has drawn significant from the merchants and scholars 

owing to the significant sensitivity,  robust, and cost-efficient (Heller and Feldman, 

2008).  Regardless of the various formats or detection methodology, the fundamental 

format of the glucose biosensor is that the glucose biosensor is using the enzyme glucose 

oxidise (GOx) immobilization to catalyze the reaction between oxygen and of β-D-

glucose, which will generate hydrogen peroxide (H2O2) and by-product gluconolactone  

(Weibel and Bright, 1971).  Therefore, in theory, the hydrogen peroxide (H2O2) generated 

by glucose biosensor can be utilized as the oxidizing element in HRP catalysis sensor. 

Then the investigation and discussion about the cTnI-glucose biosensor is depicted as 

follows. 
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5.2  Experimental 

5.2.1 Materials and reagents 

All the reagents and chemicals are or high than analytical grade without further 

purification.  All the buffers and solution were prepared with deionized water (DI), with 

resistivity over 18MΏ. 

Troponin I from human heart, the rabbit anti-human cTnI polyclonal antibody, and the 

mouse anti-human cTnI monoclonal antibody were purchased from Sigma-Aldrich. 4-

Aminophenyl phosphate monosodium salt hydrate was obtained from Gold 

Biotechnology (St. Louis, USA). Maleimide alkaline phosphatase and maleimide 

horseradish peroxide were received from Innova Bioscience (Cambridge, UK). N-

Succinimidyl S-acetylthioacetate (SATA), horseradish enzyme stabilizing buffer, sodium 

aside, diethanolamine (DEA), dimethylsufoxide (DMSO),  bovine serum albumin (BSA), 

p-nitrophenyl phosphate(p-NPP) liquid substrate, Trizma
®
 base (tris-(hydroxylmethyl)-

aminomethane(Tris)), TMB liquid substrate, hydroquinone, potassium ferricyanide (III), 

polyoxyethylenesorbitan manolaurate (Tween
TM

 20), β-D-glucose, glutaraldehyde and 

PDDA (20 wt % in water) were all purchased from Sigma-Aldrich.   

All these buffers. such like phosphate buffer solution (PBS), blocking buffer (1% BSA in 

PBS) and etc., were prepared every week. The MWCNT (cylindrical with diameter range 

in 5-15nm) with 95% purity was purchased from US Research Nanomaterials, Inc.  

5.2.2 Preparation of antibody-enzyme conjugates 

HRP conjugating with antibody is extremely familiar with the ALP procedures. The 

process was established through SATA as a crosslink to form a thiol function group and 

then react with maleimide activated horseradish peroxide (HRP). The antibody-enzyme 

conjugation process is depicted as follows (Fragoso et al., 2011; O'Regan et al., 2003) 

(1) Prepare antibody stock solution. In 2 mL vial, adding 100 µL anti-cTnI polyclonal 

antibody (1 mg/mL) and then adding 100 µL sodium phosphate buffer (50mM 

NaH2PO4 and 1mM EDTA, pH 7.5). 

(2) Prepare SATA stock solution (1.5 mg/mL in DMSO).  
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(3) Add 5 µL SATA stock solution to antibody stock solution. Then gently shake the vial 

and set at room temperature for 45 min. 

(4) To remove the by-product (residue SATA) by centrifugation using a 30 kDa cut-off 

ultracentrifuge filter (Sigma) against sodium phosphate buffer.  

(5) Prepare deacetylation solution, 20 mL (50 mM NaH2PO4, 25  mM EDTA, 0.5M 

hydroxylamine– HCl, pH 7.5).  

(6) Add to the antibody mixture and let it incubate for 2 hours at room temperature to 

reveal the thoil group. 

(7) Dialyse the solution against DPBS (137 mM NaCl, 2.6 mM KCl, 8mM Na2HPO4, 1.5 

mM NaH2PO4, 1 mM EDTA, pH 6.6) at room temperature for 12 h/ overnight. 

(8) Add maleimide activated HRP to antibody solution based on molar ration 2:1 

(1:1(w/w)) and then left in 4 ⁰C for 12 hours. 

(9) Dialyze conjugates against Tris buffer (50 mM Trizma base, 50 mM NaCl, 1 mM 

MgCl2, pH 7.4) for overnight at room temperature. 

(10) Add HRP stabilizing buffer (Tris buffer, pH 8.0, 1% (w/v) BSA and 0.05% (w/v) 

sodium azide) to adjusted to a final volume of 500 mL. Then store the conjugates at 4 ⁰C.  

5.2.3 Construction of PB-PDDA-MWCNT Glucose Biosensor 

To construct the PB-PDDA-MWCNT glucose biosensor includes the following steps: 

(1) Electrodes pretreatment and activated and construct PDDA-MWCNT sensor: follow 

the same procedures in Chapter 4, as shown in Figure 5.1 (a). 

(2) PB film deposition: to electropolymerize PB by immersing the electrodes in a  

solution comprised of 5 mM K3[Fe(CN)6], 5 mM FeCl3, 0.01 M HCl and 0.1 M KCl, 

and scan from -0.1 to 0.4 V at 20 mV/s  for 20 cycles (Figure 5.2 (b)) (Karyakin, 

2001; Karyakin et al., 1995; Karyakin et al., 1996, 2000; Karyakin et al., 2004), and 

then washed with double diluted water. 

(3) PB activation: immerse the electrode into a solution with 0.1 M KCl and 0.01 M HCl 

as the support electrolyte solution and activated by scan from -0.1 to 0.4 V at 50 mV/s 

till the CV curve stable (Figure 5.1 (c)) (de Mattos et al., 2003; MATTOS et al., 2000; 

Ricci et al., 2003). Then the electrode was cleaned by deionized and heated at 110 C 

for 1 h. 
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(4) Glucose biosensor: this step is to immobilize enzyme GOx on the electrodes, which 

can be immobilized in two different ways. In order to be a control experiment for 

cTnI-glucose sensor, the electrodes was with the presence of capture antibody. 

Namely, combine L GOx (10 mg/mL) with 10 L chitosan (0.5%) to obtain the  

GOx-chitosan mixture  and then drop 5 L mixture on the surface of PB-PDDA-

MWCNT electrode, wait till the mixture evaporate at room temperature. As shown in 

Figure 5.1 (d), the CV difference between with or without glucose presence.  

(5) Immobilization of GOx: besides immobilizing with chitosan, also the GOx can be 

mix with BSA solution (1%, w/V) first, and dropped the mixture on the surface of 

working electrode and then immerse into 0.25% glutaraldehyde for 10 minutes to 

generate a cross-link. 

 

Figure 5.1:  Cyclic voltammograms of the electrode pretreatment and PB-glucose 

sensor construction. (a)Electrode cleaned and activated in 0.5M sulfuric acid; (b) Pb 

electropolymerization; (c) Pb activation; (d) Biosensor in the null and 5mM glucose. 
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5.2.4 Electrochemical and immunosensing experiments 

The immunoassay utilised in the current work is 2-site enzyme-linked-immunosorbent 

serologic assay (ELISA), also called as sandwich type ELISA. Therefore, the 

immunoassay protocol includes three major procedures:  incubate first antibody, 

blocking, and incubation antigen-antibody-HRP. First, incubate the capture antibody. 

Add 5 µL capture antibody solution (anti-cTnI monoclonal in PBS solution, pH 6.0) and 

incubate for 60 minutes at 37 ⁰C. Then rinsing thoroughly with washing buffer (0.05% 

Tween
® 

in PBS, pH 6.4) to remove the unbound antibodies, and add a drop of 5 µL 10% 

(w/v) BSA-GOx in PBS (pH 6.0) and incubate for 60 minutes at 37 ⁰C, to block the non-

specific bounding. Afterwards, repeat washing by 0.05% Tween
® 

in PBS. Finally, 

incubate the premixed antigen-antibody-HRP a drop of 5 µL, incubate for 60 minutes at 

37 ⁰C.  Then the electrode would be ready to move on the electrochemical experiments. 

For the bulk electrodes, after each immunoassay run, immerse the electrode into 0.1 M 

glycine-HCl (pH 2.0) for 5 min and rinse by double dilute water. Then start from 

electrode pre-treatment to carry out another sensing cycle (Gao et al., 2003).   

All electrochemical experiments were performed by a computer- interfaced CHI1200a 

(CHI Instruments, Inc., USA). Electrochemical measurements were done in a 

conventional electrochemical cell or on a flat chip, which is the macroscale prototype of 

at the room temperature. Firstly, Cyclic voltammograms (CVs) were performed 2 mM 

PBS (pH 6.5) containing 5.0 mM K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) mixture and 0.1 M KCl 

from 0.6 to −0.2 V (vs. Ag/ AgCl) at the scan rate of 50 mV s
−1

 to monitor the current 

variation (∆I) before or after nanomaterial modification because PDDA-MWCNT and 

chitosan-AuNPs will increase the electron transferring and lead to current response 

enlarged (Gao et al., 2003). Secondly, the immunoreaction was monitored by cyclic 

voltammograms performed in TMB liquid substrate (pH 5.0) or HQ in PBS (pH 7.4) 

along with a small concentration of H2O2 purchased from Sigma. When the antigen was 

bound with both antibodies: capture antibody coated on the surface of the electrode and 

the second antibody (labelled with HRP) catalyzing the substrate to generating current 

response, then there was current response of the immunoreactions. All the 

electrochemical experiment was carried at the room temperature. 
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5.3 Results and discussion 

5.3.1 Principle of the glucose- cTnI immunosensor 

As shown in Figure 5.2, schematics indicate the concept of the glucose-cTnI 

immunosensor with the surface modified electrodes. In the scenario of without antigen, 

the sensor was modified by PDDA-MWCNT, Prussian blue, monoclonal anti-cTnI 

antibody and BSA-GOx with glutaraldehyde as the cross-link, from the bottom (the bare 

electrode surface) to the top. When the solution without cTnI was added in the reaction 

chambers, the glucose oxidize will catalyze the reaction of glucose and oxygen, 

generation hydrogen peroxide (H2O2) and gluconolactone.  The product H2O2 will be 

detectable by Prussian blue, which is the quantization of the amount of glucose. While, in 

the scenario of with antigen cTnI,   the glucose oxide (GOx) will first catalyze the 

reaction of glucose and oxygen  to generate hydrogen peroxide (H2O2). Subsequently, the 

hydrogen peroxide will participate in the immunoassay reaction, acting as the oxidizing 

reagent to electrooxidized the horseradish peroxide (HRP) substrate under the 

canalization of HRP. Then the results will be used to calculate the amount of cTnI. 

The reaction happened in chambers without antigen is shown as follows: 

GOD

2 2 2Glucose O Gluconolactone H O  
                  

Besides the glucose reaction with oxygen, the following reaction can be happening 

depending on the adding substrates: 

 

or
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Figure 5.2: Schematics and principle of the cTnI- glucose biosensor. Reprinted with 

permission from (Henares et al., 2010) 

5.3.2 Glucose deterimination 

5.3.2.1 Electrochemical behavior of PB-PDDA-MWCNT electrode 

Cyclic voltammograms of PB-PDDA-MWCNT electrode in PBS (pH 6.78) illustrates 

that the existent of PB introduced a standard redox peaks at the potential 0.27 and 0.2 V 

respectively, which was generated by the redox reaction from PB to Prussian white (PW) 

(Zeng et al., 2008).  Figure 5.3 (a) displays the CV response of PB electrode under 

increasing scan rate. When the value of scan rate increases, the anodic, cathodic peak 

currents, and the difference value between peak currents rise. Figure 5.3 (b) presents that 

the redox peak current is linear to the square root of the scan rate from from 30 mV/s to 

300 mV/s. It demonstrates that the redox reaction of PB on PDDA-MWCNT electrodes is 

a diffusion controllable redox process.  
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Figure 5.3: (a)Cyclic voltammograms of PB-PDDA-MWCNT electrodes at various 

scan rates from 30  to 300 Mv S in PBS (pH 6.78). (b) The dependence of the current 

of redox peaks over the square root of the scan rate. 
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5.3.2.2 GOx immobilization 

Immobilization of glucose oxidize is a critical step in the experiments.  Two different 

methods were used in this case to investigate the influence of GOx immobilization in 

terms of sensitivity and the dynamic range of the linearity. First, the GOx was mixed with 

chitosan immobilization matrix and dropped on the electrode surface by physical 

adsorption, and then coated with capture antibody. Even though, the matrix of chitosan- 

GOx only being attached on the electrode surface by non-specific physical interaction, 

but the surface tension of chitosan is strong enough to hold the matrix with the electrode 

surface. That is also explained the superiority of chitosan in molecule immobilization.  

But in this scenario, the electron transfer will be hindered by the antibody coverage, since 

the chitosan- GOx was constructed beneath the capture antibody layer. 

Another method to immobilized GOx is to mix with BSA first and then use 

glutaraldehyde as the cross-link to form a gel texture increasing the surface tension, 

which will proving stable and insoluble binding.  

As shown in Figure 5.4 (a), the current and time response curves of chitosan- GOx and 

GOx-BSA. Chitosan- GOx has high sensitivity and larger range of detection linearity, 

which can be cause by the amount of GOx, since the GOx-BSA only exists in the 

blocking buffer. 
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Figure 5.4 (a) Glucose current-time current response curves (b) standard 

calibration curve. 
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5.3.3 Feasibility study: HRP determination 

5.3.3.1 Cyclic voltammetry study of TMB and HQ for HRP 

As shown in Figure 5.5, HRP catalyze the reaction between TMB and H2O2 will consume 

H2O2 and Hydrogen ions. The same theory of HQ based immunoassay. However, as 

shown in the Figure 5.6 and Figure 5.7, there is not obvious current change in peak 

current when adding glucose in the immunosensor. It might be caused by the following 

possible reason: First, the pH range may not suitable for both GOx and HRP, either of 

them lost bioactivity can cause no response. Secondly, the sandwich type of antibody-

antigen-antibody complex will hinder the electron transferring, which will cause the 

blank response.  

 

Figure 5.5: Schematic of Horseradish peroxidase catalysis TMB. 
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Figure 5.6 : Cyclic voltammograms of 0.2 Mm TMB in citrate-phosphatase buffer 

(pH 5.0). (a) 10 mM glucose; (b) 5 mM glucose; (C) 0 mM glucose. 

 

Figure 5.7: Cyclic voltammograms of 0.3 Mm HQ in PBS buffer (pH 7.0) + 0.1 M 

KCl. (a) PBS-KCl; (b) PBS-KCl-HQ; (c) PBS-KCl-HQ- glucose (5mM). 
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A preliminary calibration plot was established of HRP-based immunosensor in TMB 

liquid substrate (pH 5.3) purchased form Sigma. The triangle and dot stands for adding 

H2O2 instead of glucose and the square is the signal generated by adding glucose. The 

triangle also without any GOx coating involved, and presents the best sensitivity among 

all the three.  Therefore, to combine with glucose sensor and immunosensor will need 

further discussion or improvements. 

 

Figure 5.4: HRP-labeled enzyme in HQ-PBS liquid substrate. (Triangle) H2O2 of 

TMB reaction detection cTnI PDDA-MWCNT (Dot) ) H2O2 of TMB reaction 

detection cTnI on chitosan-GOx. (Square) Glucose in immunoassay. 
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5.3.4 Multimarker concept 

Multianalyte is the new trend in diagnostic technology development due to the 

comprehensive results, cost effective (comparing to several consumable in one package), 

ease-to-use, and labor efficiency.  

Simultaneously immunoassay, the multianalyte immunoassay uses arrays of 

immunosensing electrodes, each capable of performing an independent electrochemical 

immunoassay for a specific analyte. Each electrode contains immobilized antibodies and 

uses an AP-based enzyme-linked immunosorbent assay (ELISA) to measure analyte 

concentration. Amperometric responses are produced at the electrodes due to the 

electrochemical oxidization of redox mediator, and the size of the response enables the 

quantification of analytes. (Wilson, 2005). 

Successively assay, the multianalyte assay uses arrays of immunosensing electrodes and 

enzyme sensor, the electroactive substrate produced by enzyme sensor can be utilized in 

immunoassay. For example, the HRP-based immunosensor can the integrated with 

glucose sensor or lactase sensor, which relying on detection H2O2 concentration to 

establish linear proportional relationship between electrochemical signal and glucose 

concentration. However, H2O2 also plays a significant role in immunoassay for HRP-

based biosensor: neither TMB nor HQ detecting systems can be functional without H2O2. 

 

5.4 Conclusion 

Based on sandwich ELISA and glucose biosensor, we tried to integrate these enzyme 

biosensors into one chip. But the results may not show as promising as expected; the 

sensitivity was limited by the electron transferring by the inactive layer. In order to 

improvement the experiments, we design to utilize high concentration of the glucose 

oxidize along with the spatial arrangement of the immunosensor. 
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Chapter 6  

6 Summary and outlook 

6.1  Summary 

The object of this thesis is to design and develop an electrochemical immunosensor for 

the specific and sensitive detection of cardiac troponin I with low cost, robustness, time-

efficiency and easy-to-operate.  

Because amperometric response was obtained through four critical procedures including 

electrode modification, immunoreaction, signal amplification and amperometric 

detection, then the immunosensor was investigated by procedures.  

First, carbon nanotube (CNT), chitosan and gold nanoparticle (AuNP) were used to 

modify electrode and to explore the variation in electrochemical behaviors. Experiment 

conditions were optimized and interferences were investigated. The detection range 

investigated using cyclic voltammetry (CV) was 0.01 ng/ml to 300 ng/ml on PDDA-

MWCNT sensor, 0.001 ng/ml to 500 ng/ml on chitosan-AuNP sensor, respectively.  

Also, the recorded behavior was linear in the signal versus cTnI concentration, indicating 

great potential for clinical application.  

Second, enzyme labels for signal amplification, ALP and HRP, were studied respectively. 

Hydrogen peroxide (H2O2) is not only the product of glucose oxidize (GOx) catalyzing 

the oxidation of β-D-glucose by oxygen, but also the needful oxidizing agent in HRP 

catalysis. Therefore, potentially, HRP-based immunosensor is suitable to integrate 

immunosensor and enzyme sensor to realize multianalyte detection compacted on one 

chip. The feasibility was verified by the influence of H2O2 concentration of HRP-based 

biosensor and H2O2 quantification on immunosensor with blocking by GOx-BSA. 
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6.2 Thesis contributions 

The immunosensor developed here is an cost-effective, robust and simple-to-use 

approach to detect cardiac troponin I concentration for cardiac condition diagnostics, 

especially for point-of-care settings.   

A comprehensive investigation has been carried out for experimental variables including 

nanomaterials modification, experimental condition (temperature, incubation time, pH 

value and etc.), labeled enzyme, signal generating substrates, and simplifying the 

detection procedures. 

In addition, a concept has been proposed for simultaneously and successively multiplex 

platform immunosensor. The feasibility was investigated by cTnI immunosensor blocked 

by GOx-BSA   

6.3  Recommendation for future work 

One of the most critical objects of this research is to design and develop a CD-platform 

electrochemical immunosensor for the multiple cardiac biomarkers detection over a wide 

concentration range along with low detection limits and high sensitivity.  

The work showed cTnI immunosensor to be ready for further integrating: Firstly, it can 

be adapted cTnI immunosensor with blood separation device for an automated whole 

cardiac diagnostic chip. Secondly, it can be combined with other cardiac biomarkers, 

such like myoglobin, C - reactive protein (CRP), CK-MB and etc., for diagnosing certain 

type or stage of cardiac conditions. Thirdly, it can be processed together with glucose, 

carbamide or lactose sensor for cardiac postoperative vital signs monitoring.   

  



90 

 

Reference 

Adams, J.E., Bodor, G.S., Davilaroman, V.G., Delmez, J.A., Apple, F.S., Ladenson, J.H., 

and Jaffe, A.S. (1993). Cardiac Troponin I: a marker with high specificity for cardiac 

injury. Circulation 88, 101-106. 

Ahammad, A.J.S., Choi, Y.H., Koh, K., Kim, J.H., Lee, J.J., and Lee, M. (2011). 

Electrochemical Detection of Cardiac Biomarker Troponin I at Gold Nanoparticle-

Modified ITO Electrode by Using Open Circuit Potential. International Journal of 

Electrochemical Science 6, 1906-1916. 

Allender S, S.P., Peto V, Raymer M, Leal J, Luengo-Fernandez R. (2008). European 

cardiovascular disease statistic, 2008 edition. London British Heart Foundation. 

Alpert, J.S., Antman, E., Apple, F., Armstrong, P.W., Bassand, J.P., de Luna, A.B., 

Beller, G., Breithardt, G., Chaitman, B.R., Clemmensen, P., et al. (2000). Myocardial 

infarction redefined - A consensus Document of the Joint European Society of 

Cardiology/American College of Cardiology Committee for the Redefinition of 

Myocardial Infarction. Journal of the American College of Cardiology 36, 959-969. 

Alpert, J.S., Thygesen, K., Antman, E., Bassand, J.P., Apple, F., Armstrong, P.W., de 

Luna, A.B., Beller, G., Breithardt, G., Chaitman, B.R., et al. (2001). Myocardial 

infarction redefined - A consensus document of the joint European Society of 

Cardiology/American College of Cardiology Committee for the redefinition of 

myocardial infarction (Reprinted from J Am Coll Cardiol, vol 36, pg 959-69, 2000). 

Clinical Chemistry 47, 382-392. 

Aziz, M.A., Park, S., Jon, S., and Yang, H. (2007). Amperometric immunosensing using 

an indium tin oxide electrode modified with multi-walled carbon nanotube and 

poly(ethylene glycol)-silane copolymer. Chemical Communications, 2610-2612. 

Aziz, M.A., Patra, S., and Yang, H. (2008). A facile method of achieving low surface 

coverage of Au nanoparticles on an indium tin oxide electrode and its application to 

protein detection. Chemical Communications, 4607-4609. 

Azzazy, H.M.E., and Christenson, R.H. (2002). Cardiac markers of acute coronary 

syndromes: is there a case for point-of-care testing? Clinical Biochemistry 35, 13-27. 

Azzazy, H.M.E., and Mansour, M.M.H. (2009). In vitro diagnostic prospects of 

nanoparticles. Clinica Chimica Acta 403, 1-8. 

Babuin, L., and Jaffe, A.S. (2005). Troponin: the biomarker of choice for the detection of 

cardiac injury. Can. Med. Assoc. J. 173, 1191-1202. 

Bakker, E. (2004). Electrochemical sensors. Analytical Chemistry 76, 3285-3298. 

Balasubramanian, K., and Burghard, M. (2006). Biosensors based on carbon nanotubes. 

Analytical and Bioanalytical Chemistry 385, 452-468. 



91 

 

Bange, A., Tu, J., Zhu, X., Ahn, C., Halsall, H.B., and Heineman, W.R. (2007). 

Electrochemical detection of MS2 age using a bead-based immunoassay and a NanoIDA. 

Electroanalysis 19, 2202-2207. 

benjamin Y. part, R.Z., and Marc J. Madou Fabrication of Microelectrode using the lift-

off technique. Methods in Molecular Biology 321, 23-26. 

Bertinchant, J.P., Larue, C., Pernel, I., Ledermann, B., FabbroPeray, P., Beck, L., 

Calzolari, C., Trinquier, S., Nigond, J., and Pau, B. (1996). Release kinetics of serum 

cardiac troponin I in ischemic myocardial injury. Clinical Biochemistry 29, 587-594. 

Bi, S., Zhou, H., and Zhang, S. (2009). Multilayers enzyme-coated carbon nanotubes as 

biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. 

Biosensors and Bioelectronics 24, 2961-2966. 

Birkhahn, R.H., Haines, E., Wen, W.D., Reddy, L., Briggs, W.M., and Datillo, P.A. 

(2011). Estimating the clinical impact of bringing a multimarker cardiac panel to the 

bedside in the ED. American Journal of Emergency Medicine 29, 304-308. 

Blick, K.E. (1999). Current trends in automation of immunoassays. Journal of Clinical 

Ligand Assay 22, 6-12. 

Bodor, G.S., Porter, S., Landt, Y., and Ladenson, J.H. (1992). Development of 

Monoclonal- antibodies for An Assay of Cardiac Troponin I and Preliminary Results in 

Suspected Cases of Mypcardial Infarction. Clinical Chemistry 38, 2203-2214. 

Braunwald, E. (2008). Biomarkers in heart failure. New England Journal of Medicine 

358, 2148-2159. 

Brieger, D., Eagle, K.A., Goodman, S.G., Steg, P.G., Budaj, A., White, K., Montalescot, 

G., and Investigators, G. (2004). Acute coronary syndromes without chest pain, an 

underdiagnosed and undertreated high-risk group - Insights from the Global Registry of 

Acute Coronary Events. Chest 126, 461-469. 

Brogan, G.X., and Bock, J.L. (1998). Cardiac marker point-of-care testing in the 

Emergency Department and Cardiac Care Unit. Clinical Chemistry 44, 1865-1869. 

Buhrer-Sekula, S., Smits, H.L., Gussenhoven, G.C., van Leeuwen, J., Amador, S., 

Fujiwara, T., Klatser, P.R., and Oskam, L. (2003). Simple and fast lateral flow test for 

classification of leprosy patients and identification of contacts with high risk of 

developing leprosy. Journal of Clinical Microbiology 41, 1991-1995. 

Burlina, A., Zaninotto, M., Secchiero, S., Rubin, D., and Accorsi, F. (1994). Troponin T- 

as a marker of ischemic myocardial injury. Clinical Biochemistry 27, 113-121. 

Cabrera, H.A. (1969).A comprehensive evaluation of pregnancy test. American Journal 

of Obstetrics and Gynecology 103, 32-&. 



92 

 

Carpenter, C., Shepard, C., and Stevenson, M. (2004). Gate Electrode Formation Process 

Optimization in a GaAs FET Device. 

Cavalcanti, I.T., Silva, B.V.M., Peres, N.G., Moura, P., Sotomayor, M.D.P.T., Guedes, 

M.I.F., and Dutra, R.F. (2012). A disposable chitosan-modified carbon fiber electrode for 

dengue virus envelope protein detection. Talanta 91, 41-46. 

CDC Home (2009). Center for disease control and prevention faststats: Heart Disease. 

http://www.cdc.gov/nchs/fastats/heart.htm. 

Chan, C.P.Y., Sanderson, J.E., Glatz, J.F.C., Cheng, W.S., Hempel, A., and Renneberg, 

R. (2004). A superior early myocardial infarction marker - Human heart-type fatty acid-

binding protein. Zeitschrift Fur Kardiologie 93, 388-397. 

Cheng, C.M., Martinez, A.W., Gong, J.L., Mace, C.R., Phillips, S.T., Carrilho, E., 

Mirica, K.A., and Whitesides, G.M. (2010). Paper-Based ELISA. Angewandte Chemie-

International Edition 49, 4771-4774. 

Christenson, R.H., and Azzazy, H.M.E. (1998). Biochemical markers of the acute 

coronary syndromes. Clinical Chemistry 44, 1855-1864. 

Christenson, R.H., and Azzazy, H.M.E. (2009). Cardiac point of care testing: A focused 

review of current National Academy of Clinical Biochemistry guidelines and 

measurement platforms. Clinical Biochemistry 42, 150-157. 

Christenson, R.H., Duh, S.H., Sanhai, W.R., Wu, A.H.B., Holtman, V., Painter, P., 

Branham, E., Apple, F.S., Murakami, M., and Morris, D.L. (2001). Characteristics of an 

albumin cobalt binding test for assessment of acute coronary syndrome patients: A 

multicenter study. Clinical Chemistry 47, 464-470. 

Chua, J.H., Chee, R.-E., Agarwal, A., Wong, S.M., and Zhang, G.-J. (2009). Label-Free 

Electrical Detection of Cardiac Biomarker with Complementary Metal-Oxide 

Semiconductor-Compatible Silicon Nanowire Sensor Arrays. Analytical Chemistry 81, 

6266-6271. 

Collinson PO (1999). The need for point of care testing: an evidence-based appraisal. 

Scand J Clin Lab Invest Suppl 230, 67-73. 

Collinson, P.O., Jorgensen, B., Sylven, C., Haass, M., Chwallek, F., Katus, H.A., Muller-

Bardorff, M., Derhaschnig, U., Hirschl, M.M., and Zerback, R. (2001). Recalibration of 

the point-of-care test for CARDIAC T Quantitative with Elecsys Troponin T 3rd 

generation. Clinica Chimica Acta 307, 197-203. 

Corgier, B.P., Marquette, C.A., and Blum, L.J. (2005). Diazonium-protein adducts for 

graphite electrode microarrays modification: Direct and addressed electrochemical 

immobilization. Journal of the American Chemical Society 127, 18328-18332. 

http://www.cdc.gov/nchs/fastats/heart.htm


93 

 

Corgier, B.P., Marquette, C.A., and Blum, L.J. (2007). Direct electrochemical addressing 

of immunoglobulins: Immuno-chip on screen-printed microarray. Biosensors & 

Bioelectronics 22, 1522-1526. 

Crew, A., Alford, C., Cowell, D.C.C., and Hart, J.P. (2007). Development of a novel 

electrochemical immuno-assay using a screen printed electrode for the determination of 

secretory immunoglobulin A in human sweat. Electrochimica Acta 52, 5232-5237. 

D'Orazio, P. (2011). Biosensors in clinical chemistry-2011 update. Clinica Chimica Acta 

412, 1749-1761. 

Daniels, J.S., and Pourmand, N. (2007). Label-free impedance biosensors: Opportunities 

and challenges. Electroanalysis 19, 1239-1257. 

Das, J., Jo, K., Lee, J.W., and Yang, H. (2007). Electrochemical immunosensor using p-

aminophenol redox cycling by hydrazine combined with a low background current. 

Analytical Chemistry 79, 2790-2796. 

Davis, J.J., Coleman, K.S., Azamian, B.R., Bagshaw, C.B., and Green, M.L.H. (2003). 

Chemical and biochemical sensing with modified single walled carbon nanotubes. 

Chemistry-a European Journal 9, 3732-3739. 

de Lemos, J.A., Morrow, D.A., Bentley, J.H., Omland, T., Sabatine, M.S., McCabe, C.H., 

Hall, C., Cannon, C.P., and Braunwald, E. (2001). The prognostic value of B-type 

natriuretic peptide in patients with acute coronary syndromes. New England Journal of 

Medicine 345, 1014-1021. 

de Mattos, I.L., Gorton, L., and Ruzgas, T. (2003). Sensor and biosensor based on 

Prussian Blue modified gold and platinum screen printed electrodes. Biosensors and 

Bioelectronics 18, 193-200. 

Delaney, J.L., Hogan, C.F., Tian, J., and Shen, W. (2011). Electrogenerated 

Chemiluminescence Detection in Paper-Based Microfluidic Sensors. Analytical 

Chemistry 83, 1300-1306. 

Di Serio, F., Lovero, R., Leone, M., De Sario, R., Ruggieri, V., Varraso, L., and Pansini, 

N. (2006). Integration between the Tele-Cardiology Unit and the central laboratory: 

methodological and clinical evaluation of point-of-care testing cardiac marker in the 

ambulance. Clinical Chemistry and Laboratory Medicine 44, 768-773. 

Dong, H., Li, C.M., Zhang, Y.F., Cao, X.D., and Gan, Y. (2007). Screen-printed 

microfluidic device for electrochemical immunoassay. Lab on a Chip 7, 1752-1758. 

Doron, A., Katz, E., and Willner, I. (1995). Organization of Au colloids as monolayer 

films onto ITO glass surfaces- application of the metal colloid films as base  interfaces to 

construct redox-active monolayers. Langmuir 11, 1313-1317. 



94 

 

Drummond, T.G., Hill, M.G., and Barton, J.K. (2003). Electrochemical DNA sensors. 

Nature Biotechnology 21, 1192-1199. 

Du Clos, T.W. (2000). Function of C-reactive protein. Annals of Medicine 32, 274-278. 

Duan, X.F., and Lieber, C.M. (2000). General synthesis of compound semiconductor 

nanowires. Advanced Materials 12, 298-302. 

Elliott, J.M., Birkin, P.R., Bartlett, P.N., and Attard, G.S. (1999). Platinum 

microelectrodes with unique high surface areas. Langmuir 15, 7411-7415. 

Fanjul-Bolado, P., Gonzalez-Garia, M.B., and Costa-Garcia, A. (2005). Amperometric 

detection in TMB/HRP-based assays. Analytical and Bioanalytical Chemistry 382, 297-

302. 

Fanjul-Bolado, P., Hernandez-Santos, D., Gonzalez-Garcia, M.B., and Costa-Garcia, A. 

(2007). Alkaline phosphatase-catalyzed silver deposition for electrochemical detection. 

Analytical Chemistry 79, 5272-5277. 

Fragoso, A., Latta, D., Laboria, N., von Germar, F., Hansen-Hagge, T.E., Kemmner, W., 

Gartner, C., Klemm, R., Drese, K.S., and O'Sullivan, C.K. (2011). Integrated microfluidic 

platform for the electrochemical detection of breast cancer markers in patient serum 

samples. Lab on a Chip 11, 625-631. 

Fraser, C.G. (2001). Optimal analytical performance for point of care testing. Clinica 

Chimica Acta 307, 37-43. 

Galla, J.M., Mahaffey, K.W., Sapp, S.K., Alexander, J.H., Roe, M.T., Ohman, E.M., 

Granger, C.B., Armstrong, P.W., Harrington, R.A., White, H.D., et al. (2006). Elevated 

creatine kinase-MB with normal creatine kinase predicts worse outcomes in patients with 

acute coronary syndromes: Results from 4 large clinical trials. American Heart Journal 

151, 16-24. 

Gao, M., Dai, L., and Wallace, G.G. (2003). Glucose sensors based on glucose-oxidase-

containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes. Synthetic 

Metals 137, 1393-1394. 

Ge, L., Wang, S.M., Song, X.R., Ge, S.G., and Yu, J.H. (2012). 3D Origami-based 

multifunction-integrated immunodevice: low-cost and multiplexed sandwich 

chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab on 

a Chip 12, 3150-3158. 

Gibler, W.B., Lewis, L.M., Erb, R.E., Makens, P.K., Kaplan, B.C., Vaughn, R.H., 

Biagini, A.V., Blanton, J.D., and Campbell, W.B. (1990). Early detection of acute 

myocardial infarction in patients presenting with chest pain and nondiagnostic ECGs - 

serial CK-MB sampling in the emergency department. Annals of Emergency Medicine 

19, 1359-1366. 



95 

 

Glatz, J.F.C., van der Voort, D., and Hermens, W.T. (2002). Fatty acid-binding protein as 

the earliest available plasma marker of acute myocardial injury. Journal of Clinical 

Ligand Assay 25, 167-177. 

Godfrey, C., Harrison, M.B., Medves, J., and Tranmer, J.E. (2006). The symptom of pain 

with heart failure: A systematic review. Journal of Cardiac Failure 12, 307-313. 

Golden, J., Miller, H., Nawrocki, D., and Ross, J. (2009). Optimization of Bi-layer Lift-

Off Resist Process. CS Mantech Technical Digest. 

Guo, Z., Fan, X., Liu, L., Bian, Z., Gu, C., Zhang, Y., Gu, N., Yang, D., and Zhang, J. 

(2010). Achieving high-purity colloidal gold nanoprisms and their application as 

biosensing platforms. Journal of Colloid and Interface Science 348, 29-36. 

Gyurcsanyi, R.E., Bereczki, A., Nagy, G., Neuman, M.R., and Lindner, E. (2002). 

Amperometric microcells for alkaline phosphatase assay. Analyst 127, 235-240. 

Ha, S.-M., Cho, W., and Ahn, Y. (2009). Disposable thermo-pneumatic micropurnp for 

bio lab-on-a-chip application. Microelectronic Engineering 86, 1337-1339. 

Hedges, J.R., Gibler, W.B., Young, G.P., Hoekstra, J.W., Slovis, C., Aghababian, R., 

Smith, M., and Rubison, M. (1996). Multicenter study of creatine kinase-MB use: Effect 

on chest pain clinical decision making. Acad. Emerg. Med. 3, 7-15. 

Heller, A., and Feldman, B. (2008). Electrochemical glucose sensors and their 

applications in diabetes management. Chemical reviews 108, 2482-2505. 

Henares, T.G., Tsutsumi, E., Yoshimura, H., Kawamura, K., Yao, T., and Hisamoto, H. 

(2010). Single-step ELISA capillary sensor based on surface-bonded glucose oxidase, 

antibody, and physically-adsorbed PEG membrane containing peroxidase-labeled 

antibody. Sensors and Actuators B: Chemical 149, 319-324. 

Hoekstra, J.W., Hedges, J.R., Gibler, W.B., Rubison, R.M., and Christensen, R.A. 

(1994). Emergency department CK-MB: a predictor of ischemic complications. National 

cooperative CK-MB project group. Academic emergency medicine : official journal of 

the Society for Academic Emergency Medicine 1, 17-27. 

Hong, B., and Kang, K.A. (2006). Biocompatible, nanogold-particle fluorescence 

enhancer for fluorophore mediated, optical immunosensor. Biosensors & Bioelectronics 

21, 1333-1338. 

Hunt, S.A., Baker, D.W., Chin, M.H., Cinquegrani, M.P., Feldman, A.M., Francis, G.S., 

Ganiats, T.G., Goldstein, S., Gregoratos, G., Jessup, M.L., et al. (2001). ACC/AHA 

guidelines for the evaluation and management of chronic heart failure in the adult: 

Executive summary - A report of the American College of Cardiology/American Heart 

Association Task Force on Practice Guidelines (Committee to revise the 1995 Guidelines 

for the Evaluation and Management of Heart Failure). Journal of the American College of 

Cardiology 38, 2101-2113. 



96 

 

Hwang, S., Kim, E., and Kwak, J. (2005). Electrochemical detection of DNA 

hybridization using biometallization. Analytical Chemistry 77, 579-584. 

Ionescu, R.E., Gondran, C., Cosnier, S., Gheber, L.A., and Marks, R.S. (2005). 

Comparison between the performances of amperometric immunosensors for cholera 

antitoxin based on three enzyme markers. Talanta 66, 15-20. 

Ionescu, R.E., Gondran, C., Gheber, L.A., Cosnier, S., and Marks, R.S. (2004). 

Construction of amperometric immunosensors based on the electrogeneration of a 

permeable biotinylated polypyrrole film. Analytical Chemistry 76, 6808-6813. 

Jeremias, A., and Gibson, C.M. (2005). Narrative review: Alternative causes for elevated 

cardiac troponin levels when acute coronary syndromes are excluded. Annals of Internal 

Medicine 142, 786-791. 

Jernberg, T., James, S., Lindahl, B., Stridsberg, M., Venge, P., and Wallentin, L. (2004). 

NT-proBNP in unstable coronary artery disease - experiences from the FAST, GUSTO 

IV and FRISC II trials. European Journal of Heart Failure 6, 319-325. 

Justino, C.I.L., Rocha-Santos, T.A., and Duarte, A.C. (2010). Review of analytical 

figures of merit of sensors and biosensors in clinical applications. Trac-Trends in 

Analytical Chemistry 29, 1172-1183. 

Kang, H.J., Aziz, M.A., Jeon, B., Jo, K., and Yang, H. (2009). Strategy for Low 

Background-Current Levels in the Electrochemical Biosensors Using Horse-Radish 

Peroxidase Labels. Electroanalysis 21, 2647-2652. 

Kannan, R., Parthasarathy, M., Maraveedu, S.U., Kurungot, S., and Pillai, V.K. (2009). 

Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-

functionalized MWCNTs to enhance fuel cell performance. Langmuir 25, 8299-8305. 

Karyakin, A.A. (2001). Prussian blue and its analogues: electrochemistry and analytical 

applications. Electroanalysis 13, 813-819. 

Karyakin, A.A., Gitelmacher, O.V., and Karyakina, E.E. (1995). Prussian Blue-based 

first-generation biosensor. A sensitive amperometric electrode for glucose. Analytical 

Chemistry 67, 2419-2423. 

Karyakin, A.A., Karyakina, E.E., and Gorton, L. (1996). Prussian-Blue-based 

amperometric biosensors in flow-injection analysis. Talanta 43, 1597-1606. 

Karyakin, A.A., Karyakina, E.E., and Gorton, L. (2000). Amperometric biosensor for 

glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen 

peroxide. Analytical Chemistry 72, 1720-1723. 

Karyakin, A.A., Puganova, E.A., Budashov, I.A., Kurochkin, I.N., Karyakina, E.E., 

Levchenko, V.A., Matveyenko, V.N., and Varfolomeyev, S.D. (2004). Prussian blue 

based nanoelectrode arrays for H2O2 detection. Analytical Chemistry 76, 474-478. 



97 

 

Katus, H.A., Remppis, A., Looser, S., Hallermeier, K., Scheffold, T., and Kubler, W. 

(1989). Enzyme Linked Immunoassay of Cardiac Troponin T for the Detection of Acute 

Myocardial Infarction in Patients. Journal of Molecular and Cellular Cardiology 21, 

1349-1353. 

Kemp, B.E., Rylatt, D.B., Bundesen, P.G., Doherty, R.R., McPhee, D.A., Stapleton, D., 

Cottis, L.E., Wilson, K., John, M.A., Khan, J.M., et al. (1988). Autologous red-cell 

agglutination assay for HIV-1 antibodies-simplified test with whole blood. Science 241, 

1352-1354. 

Kerman, K., Saito, M., Yamamura, S., Takamura, Y., and Tamiya, E. (2008). 

Nanomaterial-based electrochemical biosensors for medical applications. Trac-Trends in 

Analytical Chemistry 27, 585-592. 

Kim, B., Park, H., and Sigmund, W.M. (2003). Electrostatic interactions between 

shortened multiwall carbon nanotubes and polyelectrolytes. Langmuir 19, 2525-2527. 

Kim, B., and Sigmund, W.M. (2003). Self-alignment of shortened multiwall carbon 

nanotubes on polyelectrolyte layers. Langmuir 19, 4848-4851. 

Kost, G.J., and Tran, N.K. (2005). Point-of-care testing and cardiac biomarkers: The 

standard of care and vision for chest pain centers. Cardiology Clinics 23, 467-+. 

Kurita, R., Yokota, Y., Sato, Y., Mizutani, F., and Niwa, O. (2006). On-chip enzyme 

immunoassay of a cardiac marker using a microfluidic device combined with a portable 

surface plasmon resonance system. Analytical Chemistry 78, 5525-5531. 

Kurkina, T., and Balasubramanian, K. (2012). Towards in vitro molecular diagnostics 

using nanostructures. Cell. Mol. Life Sci. 69, 373-388. 

Kwon, S.J., Yang, H., Jo, K., and Kwak, J. (2008). An electrochemical immunosensor 

using p-aminophenol redox cycling by NADH on a self-assembled monolayer and 

ferrocene-modified Au electrodes. Analyst 133, 1599-1604. 

Ladue JS, Wroblewski F, and Karmen A (1954). Serum glutamic xoaloacetic 

transaminase activity in human acute transmural mypcardial infarction. Science 120, 497-

499. 

Lahann, J., Balcells, M., Lu, H., Rodon, T., Jensen, K.F., and Langer, R. (2003). Reactive 

polymer coatings: A first step toward surface engineering of microfluidic devices. 

Analytical Chemistry 75, 2117-2122. 

Lee-Lewandrowski, E., Corboy, D., Lewandrowski, K., Sinclair, J., McDermot, S., and 

Benzer, T.I. (2003). Implementation of a point-of-care satellite laboratory in the 

emergency department of an academic medical center - Impact on test turnaround time 

and patient emergency department length of stay. Archives of Pathology & Laboratory 

Medicine 127, 456-460. 



98 

 

Lewandrowski, K., Chen, A., and Januzzi, J. (2002). Cardiac markers for myocardial 

infarction. A brief review. American journal of clinical pathology 118 Suppl, S93-99. 

Licka, M., Zimmermann, R., Zehelein, J., Dengler, T.J., Katus, H.A., and Kubler, W. 

(2002). Troponin T concentrations 72 hours after myocardial infarction as a serological 

estimate of infarct size. Heart 87, 520-524. 

Life Technologies Chemical Crosslinking Reagents- Section 5.2. 

http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-

Handbook/Crosslinking-and-Photoactivatable-Reagents/Chemical-Crosslinking-

Reagents.html. 

Lin, C.-C., Wang, J.-H., Wu, H.-W., and Lee, G.-B. (2010a). Microfluidic 

Immunoassays. Jala 15, 253-274. 

Lin, C.C., Wang, J.H., Wu, H.W., and Lee, G.B. (2010b). Microfluidic Immunoassays. 

Jala 15, 253-274. 

Lin, D.H., Taylor, C.R., Anderson, W.F., Scherer, A., and Kartalov, E.P. (2010c). 

Internally calibrated quantification of VEGF in human plasma by fluorescence 

immunoassays in disposable elastomeric microfluidic devices*. Journal of 

Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 878, 

258-263. 

Lin, J., He, C., Pang, X., and Hu, K. (2011). Amperometric Immunosensor for Prostate 

Specific Antigen Based on Gold Nanoparticles Ionic Liquid Chitosan Hybrid Film. 

Analytical Letters 44, 908-921. 

Liu, G., and Lin, Y. (2007). Nanomaterial labels in electrochemical immunosensors and 

immunoassays. Talanta 74, 308-317. 

Liu, H., and Crooks, R.M. (2011). Three-Dimensional Paper Microfluidic Devices 

Assembled Using the Principles of Origami. Journal of the American Chemical Society 

133, 17564-17566. 

Liuzzo, G., Biasucci, L.M., Gallimore, J.R., Grillo, R.L., Rebuzzi, A.G., Pepys, M.B., 

and Maseri, A. (1994). The prognostic value of C-reaction protein and serum amyloid- a 

protein in servere unstable angina. New England Journal of Medicine 331, 417-424. 

Luckham, R.E., and Brennan, J.D. (2010). Bioactive paper dipstick sensors for 

acetylcholinesterase inhibitors based on sol-gel/enzyme/gold nanoparticle composites. 

Analyst 135, 2028-2035. 

Luo, X.L., Morrin, A., Killard, A.J., and Smyth, M.R. (2006). Application of 

nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18, 319-326. 

Mabey, D., Peeling, R.W., Ustianowski, A., and Perkins, M.D. (2004). Diagnostics for 

the developing world. Nature Reviews Microbiology 2, 231-240. 

http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Crosslinking-and-Photoactivatable-Reagents/Chemical-Crosslinking-Reagents.html
http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Crosslinking-and-Photoactivatable-Reagents/Chemical-Crosslinking-Reagents.html
http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Crosslinking-and-Photoactivatable-Reagents/Chemical-Crosslinking-Reagents.html


99 

 

Mair, J., Artnerdworzak, E., Lechleitner, P., Morass, B., Smidt, J., Wagner, I., Dienstl, F., 

and Puschendorf, B. (1992). Early diagnosis of acute myocardial infarction by a newly 

developed rapid immunoturbidimetric assay for myoglobin. British Heart Journal 68, 

462-468. 

Males, R.G., Stephenson, J., and Harris, P. (2001). Cardiac markers and point-of-care 

testing: a perfect fit. Critical care nursing quarterly 24, 54-61. 

Manesh, K., Kim, H.T., Santhosh, P., Gopalan, A., and Lee, K.P. (2008). A novel glucose 

biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes–

polyelectrolyte-loaded electrospun nanofibrous membrane. Biosensors and Bioelectronics 

23, 771-779. 

Mao, H.B., Yang, T.L., and Cremer, P.S. (2002). Design and characterization of 

immobilized enzymes in microfluidic systems. Analytical Chemistry 74, 379-385. 

Martins, J.T., Li, D.J., Baskin, L.B., Jialal, I., and Keffer, J.H. (1996). Comparison of 

cardiac troponin I and lactate dehydrogenase isoenzymes for the late diagnosis of 

myocardial injury. American journal of clinical pathology 106, 705-708. 

MATTOS, I.L., Gorton, L., Ruzgas, T., and Karyakin, A.A. (2000). Sensor for hydrogen 

peroxide based on Prussian Blue modified electrode: improvement of the operational 

stability. Analytical Sciences 16, 795-798. 

McBride JD, C.M., . (2008). A high sensitivity assay for the inflammatory marker C-

reactive protein employing acoustic biosensing. J Nanobiotechnol 6. 

McDonnell, B., Hearty, S., Leonard, P., and O'Kennedy, R. (2009). Cardiac biomarkers 

and the case for point-of-care testing. Clinical Biochemistry 42, 549-561. 

Merkoci, A. (2007). Electrochemical biosensing with nanoparticles. Febs Journal 274, 

310-316. 

MicroChem Corp (2001). MicroChem LOR Lift-off Resist 

http://microchem.com/pdf/PMGI-Resists-data-sheetV-rhcedit-102206.pdf. 

Mizuno, K., Satomura, K., Miyamoto, A., Arakawa, K., Shibuya, T., Arai, T., Kurita, A., 

Nakamura, H., and Ambrose, J.A. (1992). Angioscopic Evaluation of Coronary- artery 

Thrombi in Acute Coronary Syndromes. New England Journal of Medicine 326, 287-

291. 

Mohammed, M.I., and Desmulliez, M.P.Y. (2011). Lab-on-a-chip based immunosensor 

principles and technologies for the detection of cardiac biomarkers: a review. Lab on a 

Chip 11, 569-595. 

Morrow, D.A. (2004). Evidence-based decision limits for cardiac troponin: Low-level 

elevation and prognosis. American Heart Journal 148, 739-742. 

http://microchem.com/pdf/PMGI-Resists-data-sheetV-rhcedit-102206.pdf


100 

 

Morrow, D.A., Cannon, C.P., Jesse, R.L., Newby, L.K., Ravkilde, J., Storrow, A.B., Wu, 

A.H.B., Christenson, R.H., Apple, F.S., Francis, G., et al. (2007). National Academy of 

Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical characteristics 

and utilization of biochemical markers in acute coronary syndromes. Clinical Chemistry 

53, 552-574. 

Nam, J.M., Stoeva, S.I., and Mirkin, C.A. (2004). Bio-bar-code-based DNA detection 

with PCR-like sensitivity. Journal of the American Chemical Society 126, 5932-5933. 

Nam, J.M., Thaxton, C.S., and Mirkin, C.A. (2003). Nanoparticle-based bio-bar codes for 

the ultrasensitive detection of proteins. Science 301, 1884-1886. 

Newby, L.K., Goldmann, B.U., and Ohman, E.M. (2003). Troponin: An important 

prognostic marker and risk-stratification tool in non-ST-segment elevation acute coronary 

syndromes. Journal of the American College of Cardiology 41, 31S-36S. 

O'Regan, T., Pravda, M., O'Sullivan, C.K., and Guilbault, G.G. (2003). Development of 

biosensor array for rapid detection of cardiac markers: Immunosensor for detection of 

free cardiac troponin I. Analytical Letters 36, 1903-1920. 

O'Regan, T.M., Pravda, M., O'Sullivan, C.K., and Guilbault, G.G. (2002). Development 

of a disposable immunosensor for the detection of human heart fatty-acid binding protein 

in human whole blood using screen-printed carbon electrodes. Talanta 57, 501-510. 

Panteghini, M. (1998). Diagnostic application of CK-MB mass determination. Clinica 

Chimica Acta 272, 23-31. 

Panteghini, M., Cuccia, C., Bonetti, G., Giubbini, R., Pagani, F., and Bonini, E. (2002). 

Single-point cardiac troponin T at coronary care unit discharge after myocardial 

infarction correlates with infarct size and ejection fraction. Clinical Chemistry 48, 1432-

1436. 

Panteghini, M., Pagani, F., Yeo, K.T.J., Apple, F.S., Christenson, R.H., Dati, F., Mair, J., 

Ravkilde, J., Wu, A.H.B., and Comm Standardization Markers, C. (2004). Evaluation of 

imprecision for cardiac troponin assays at low-range concentrations. Clinical Chemistry 

50, 327-332. 

Payne, D. (1988). Use and limitations of light-microscopy for diagnosing malaria at the 

primary health-care level. Bulletin of the World Health Organization 66, 621-626. 

Pelsers, M., Hermens, W.T., and Glatz, J.F.C. (2005). Fatty acid-binding proteins as 

plasma markers of tissue injury. Clinica Chimica Acta 352, 15-35. 

Penney, M.D. (2005). Natriuretic peptides and the heart: current and future implications 

for clinical biochemistry. Annals of Clinical Biochemistry 42, 432-440. 



101 

 

Pfister, R., and Schneider, C.A. (2004). Natriuretic peptides BNP and NT-pro-BNP: 

established laboratory markers in clinical practice or just perspectives? Clinica Chimica 

Acta 349, 25-38. 

Pham, M.X., Whooley, M.A., Evans, G.T., Liu, C., Emadi, H., Tong, W., Murphy, M.C., 

and Fleischmann, K.E. (2004). Prognostic value of low-level cardiac troponin-1 

elevations in patients without definite acute coronary syndromes. American Heart Journal 

148, 776-782. 

Piao, M.H., Yang, D.S., Yoon, K.R., Lee, S.H., and Choi, S.H. (2009). Development of 

an Electrogenerated Chemiluminescence Biosensor using Carboxylic acid-functionalized 

MWCNT and Au Nanoparticles. Sensors 9, 1662-1677. 

Preechaworapun, A., Dai, Z., Xiang, Y., Chailapakul, O., and Wang, J. (2008). 

Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase 

in electrochemical immunosensing. Talanta 76, 424-431. 

Punukollu, H., Khan, I.A., Punukollu, G., Gowda, R.M., Mendoza, C., and Sacchi, T.J. 

(2005). Acute pulmonary embolism in elderly: clinical characteristics and outcome. 

International Journal of Cardiology 99, 213-216. 

Remme, W.J., Swedberg, K., and European Soc, C. (2001). Guidelines for the diagnosis 

and treatment of chronic heart failure. European Heart Journal 22, 1527-1560. 

Ricci, F., Amine, A., Tuta, C.S., Ciucu, A.A., Lucarelli, F., Palleschi, G., and Moscone, 

D. (2003). Prussian Blue and enzyme bulk-modified screen-printed electrodes for 

hydrogen peroxide and glucose determination with improved storage and operational 

stability. Analytica chimica acta 485, 111-120. 

Ridderhof, J.C., van Deun, A., Kam, K.M., Narayanan, P.R., and Aziz, M.A. (2007). 

Roles of laboratories and laboratory systems in effective tuberculosis programmes. 

Bulletin of the World Health Organization 85, 354-359. 

Rivas, G.A., Rubianes, M.D., Rodriguez, M.C., Ferreyra, N.E., Luque, G.L., Pedano, 

M.L., Miscoria, S.A., and Parrado, C. (2007). Carbon nanotubes for electrochemical 

biosensing. Talanta 74, 291-307. 

Rochette, J.F., Sacher, E., Meunier, M., and Luong, J.H.T. (2005). A mediatorless 

biosensor for putrescine using multiwalled carbon nanotubes. Analytical Biochemistry 

336, 305-311. 

Roesch, W.J., and Hamada, D.J.M. (2004). Studying yield and reliability relationships for 

metal defects. In ROCS Workshop, 2004.[Reliability of Compound Semiconductors] 

(IEEE), pp. 121-133. 

Rosen S (2004). Market outlook for IVDs. IVD Tech 10, 39-43. 



102 

 

Saito, T., Matsushige, K., and Tanaka, K. (2002). Chemical treatment and modification 

of multi-walled carbon nanotubes. Physica B: Condensed Matter 323, 280-283. 

Sluss, P.M. (2006). Cardiac Markers: Current Technologies for Their Measurement at 

Points of Care. Point of Care 5, 38-46. 

St-Louis, P. (2000). Status of point-of-care testing: Promise, realities, and possibilities. 

Clinical Biochemistry 33, 427-440. 

Stedtfeld, R.D., Tourlousse, D.M., Seyrig, G., Stedtfeld, T.M., Kronlein, M., Price, S., 

Ahmad, F., Gulari, E., Tiedje, J.M., and Hashsham, S.A. (2012). Gene-Z: a device for 

point of care genetic testing using a smartphone. Lab on a Chip 12, 1454-1462. 

Storrow, A.B., and Gibler, W.B. (1999). The role of cardiac markers in the emergency 

department. Clinica Chimica Acta 284, 187-196. 

Sun, W., Jiao, K., Zhang, S.S., Zhang, C.L., and Zhang, Z.F. (2001). Electrochemical 

detection for horseradish peroxidase-based enzyme immunoassay using p-aminophenol 

as substrate and its application in detection of plant virus. Analytica Chimica Acta 434, 

43-50. 

Suprun, E., Bulko, T., Lisitsa, A., Gnedenko, O., Ivanov, A., Shumyantseva, V., and 

Archakov, A. (2010). Electrochemical nanobiosensor for express diagnosis of acute 

myocardial infarction in undiluted plasma. Biosensors & Bioelectronics 25, 1694-1698. 

Suprun, E.V., Shilovskaya, A.L., Lisitsa, A.V., Bulko, T.V., Shumyantseva, V.V., and 

Archakov, A.I. (2011). Electrochemical Immunosensor Based on Metal Nanoparticles for 

Cardiac Myoglobin Detection in Human Blood Plasma. Electroanalysis 23, 1051-1057. 

Tang, H.T., Lunte, C.E., Halsall, H.B., and Heineman, W.R. (1988). P-Aminophenyl 

Phosphate- An Improved Substrate for Electrochemical Enzyme Immunoassay. Analytica 

Chimica Acta 214, 187-195. 

Tang, J., Tang, D., Su, B., Huang, J., Qiu, B., and Chen, G. (2011). Enzyme-free 

electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of 

p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts. 

Biosensors & Bioelectronics 26, 3219-3226. 

Thevenot, D.R., Toth, K., Durst, R.A., and Wilson, G.S. (2001). Electrochemical 

biosensors: recommended definitions and classification. Biosensors & Bioelectronics 16, 

121-131. 

Tomonaga, Y., Gutzwiller, F., Luscher, T.F., Riesen, W.F., Hug, M., Diemand, A., 

Schwenkglenks, M., and Szucs, T.D. (2011). Diagnostic accuracy of point-of-care testing 

for acute coronary syndromes, heart failure and thromboembolic events in primary care: a 

cluster-randomised controlled trial. Bmc Family Practice 12. 



103 

 

Volpe, G., Compagnone, D., Draisci, R., and Palleschi, G. (1998). 3,3 ',5,5 '-

tetramethylbenzidine as electrochemical substrate for horseradish peroxidase based 

enzyme immunoassays. A comparative study. Analyst 123, 1303-1307. 

von Lode, P. (2005). Point-of-care immunotesting: Approaching the analytical 

performance of central laboratory methods. Clinical Biochemistry 38, 591-606. 

Wanekaya, A.K., Chen, W., Myung, N.V., and Mulchandani, A. (2006). Nanowire-based 

electrochemical biosensors. Electroanalysis 18, 533-550. 

Wang, C., Chen, S., Xiang, Y., Li, W., Zhong, X., Che, X., and Li, J. (2011). Glucose 

biosensor based on the highly efficient immobilization of glucose oxidase on Prussian 

blue-gold nanocomposite films. Journal of Molecular Catalysis B: Enzymatic 69, 1-7. 

Wang, J. (2005). Carbon-nanotube based electrochemical biosensors: A review. 

Electroanalysis 17, 7-14. 

Wei, J.Y., Mu, Y., Song, D.Q., Fang, X.X., Liu, X., Bu, L.S., Zhang, H.Q., Zhang, G.Z., 

Ding, J.H., Wang, W.Z., et al. (2003). A novel sandwich immunosensing method for 

measuring cardiac troponin I in sera. Analytical Biochemistry 321, 209-216. 

Weibel, M.K., and Bright, H.J. (1971). Glucose oxidase mechanism- interpretation of Ph 

dependence. Journal of Biological Chemistry 246, 2734-&. 

Wen, D., Liu, Y., Yang, G.C., and Dong, S.J. (2007). Electrochemistry of glucose 

oxidase immobilized on the carbon nanotube wrapped by polyelectrolyte. Electrochimica 

Acta 52, 5312-5317. 

Wilson, M.S. (2005). Electrochemical immunosensors for the simultaneous detection of 

two tumor markers. Analytical Chemistry 77, 1496-1502. 

Wilson, M.S., and Rauh, R.D. (2004). Hydroquinone diphosphate: an alkaline 

phosphatase substrate that does not produce electrode fouling in electrochemical 

immunoassays. Biosensors & Bioelectronics 20, 276-283. 

Wu, A.H.B. (2005). Markers for early detection of cardiac diseases. Scandinavian Journal 

of Clinical & Laboratory Investigation 65, 112-121. 

Wu, A.H.B., Apple, F.S., Gibler, W.B., Jesse, R.L., Warshaw, M.M., and Valdes, R. 

(1999). National Academy of Clinical Biochemistry standards of laboratory practice: 

Recommendations for the use of cardiac markers in coronary artery diseases. Clinical 

Chemistry 45, 1104-1121. 

Xue, M.H., Xu, Q., Zhou, M., and Zhu, J.J. (2006). In situ immobilization of glucose 

oxidase in chitosan-gold nanoparticle hybrid film on Prussian Blue modified electrode for 

high-sensitivity glucose detection. Electrochemistry Communications 8, 1468-1474. 



104 

 

Yager, P., Domingo, G.J., and Gerdes, J. (2008). Point-of-care diagnostics for global 

health. In Annual Review of Biomedical Engineering (Palo Alto: Annual Reviews), pp. 

107-144. 

Yang, H., Yuan, R., Chai, Y., and Zhuo, Y. (2011). Electrochemically deposited 

nanocomposite of chitosan and carbon nanotubes for detection of human chorionic 

gonadotrophin. Colloids and Surfaces B-Biointerfaces 82, 463-469. 

Yang, Z., and Zhou, D.M. (2006). Cardiac markers and their point-of-care testing for 

diagnosis of acute myocardial infarction. Clinical Biochemistry 39, 771-780. 

Young, G.P., Hedges, J.R., Gibler, W.B., Green, T.R., and Swanson, R. (1991). Do CK-

MB Results Affect Chest Pain Decision- making in the Emergency Department. Annals 

of Emergency Medicine 20, 1220-1228. 

Zang, D.J., Ge, L., Yan, M., Song, X.R., and Yu, J.H. (2012). Electrochemical 

immunoassay on a 3D microfluidic paper-based device. Chemical Communications 48, 

4683-4685. 

Zaytseva, N.V., Goral, V.N., Montagna, R.A., and Baeumner, A.J. (2005). Development 

of a microfluidic biosensor module for pathogen detection. Lab on a Chip 5, 805-811. 

Zeng, J.X., Wei, W.Z., Liu, X.Y., Wang, Y., and Luo, G.M. (2008). A simple method to 

fabricate a Prussian Blue nanoparticles/carbon nanotubes/poly(1,2-diaminobenzene) 

based glucose biosensor. Microchimica Acta 160, 261-267. 

Zhou, F., Lu, M., Wang, W., Bian, Z.P., Zhang, J.R., and Zhu, J.J. (2010). 

Electrochemical Immunosensor for Simultaneous Detection of Dual Cardiac Markers 

Based on a Poly(Dimethylsiloxane)-Gold Nanoparticles Composite Microfluidic Chip: A 

Proof of Principle. Clinical Chemistry 56, 1701-1707. 

 

 
  



105 

 

Curriculum Vitae 

 

Name:   Yang Cheng  

 

Post-secondary  Donghua University 

Education and  Shanghai, China 

Degrees:   2004-2008 B.Sc. 

 

The University of Western Ontario 

London, Ontario, Canada 

2010-2012  M.Sc 

. 

 

Honours and   Western Graduate Research Scholarship  

Awards:              The University of Western Ontario, Canada 2011-2012 

                                       

   Undergraduate Student Scholarship 

Donghua University 

        Shanghai, China 

 

 

Related Work  Teaching Assistant 

Experience   The University of Western Ontario 

2011-2012 

 

 

 


	Developing Electrochemical Biosensors for Point-of-care Diagnostics of Cardiovascular Biomarkers
	Recommended Citation

	Developing Electrochemical Biosensors for Point-of-care Diagnostics of Cardiovascular Biomarkers

