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ABSTRACT 

 
Group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) are G-protein coupled 

receptors (GPCRs) activated by glutamate. mGluR1/5 couples to Gαq/11 and releases Ca2+ 

from the endoplasmic reticulum. Ca2+/calmodulin-dependent protein kinase II alpha 

(CaMKIIα) can be activated by Gαq/11-mediated Ca2+ release through binding of 

Ca2+/calmodulin. Results from a proteomic screen identified CaMKII as a novel mGluR-

interacting protein. Therefore, we hypothesized that CaMKIIα associates with group 1 

mGluRs and this association alters mGluR1/5 signalling and internalization. Firstly, we 

demonstrated the novel association between CaMKIIα and mGluR1/5 by co-

immunoprecipitation of transiently transfected proteins in HEK293 cells and of 

endogenous proteins in mouse hippocampal tissue. Next, we showed that the second 

intracellular loop of the mGluR1a receptor is sufficient for this association. Furthermore, 

CaMKIIα significantly enhances agonist-induced internalization of group 1 mGluRs. Yet, 

it does not appear that CaMKIIα plays a significant role in receptor signalling by either 

ERK1/2 phosphorylation or inositol phosphosphate formation. Both CaMKIIα and 

mGluR1/5 play an important role in memory, learning and synaptic transmission. 

Understanding how these two players work together could provide a mechanism for 

reducing excitotoxicity through desensitization of mGluR1/5 by CaMKIIα. 

 

KEYWORDS: G protein-coupled receptor, metabotropic glutamate receptor, 

Ca2+/calmodulin dependent protein kinase II alpha, endocytosis, extracellular signal-

regulated kinase, inositol phosphate formation  
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CHAPTER 1 

INTRODUCTION 

 

1.1 G protein-coupled receptors  

 G protein-coupled receptors (GPCRs) are seven transmembrane (7TM) embedded 

receptors that respond to a wide variety of stimuli: odor, taste, light, hormones and 

neurotransmitters. These extracellular signals are relayed by coupling of GPCRs to 

heterotrimeric guanine nucleotide-binding proteins (G proteins). Activated G proteins then 

mediate downstream effector pathways through second messengers. GPCRs are the target 

of over 50% of all prescription drugs and yet only approximately 4% of GPCRs are 

currently targeted (Tyndall Jd and Sandilya R, 2005). Therefore, GPCRs are a key area of 

research for expanding the understanding and treatment of diseases. There are six 

subfamilies within the GPCR superfamily: Class A of rhodopsin-like receptors; Class B 

includes secretin receptors; Class C, also called glutamate family, includes metabotoropic 

glutamate receptors (mGluR), GABAB and Ca2+ sensing receptors; Class D of pheromone 

receptors; Class E of cAMP receptors and Class F of frizzled and smoothened receptors 

(Kolakowski; Lagerström and Schiöth, 2008). Class C receptors and specifically mGluRs 

will be the focus of this thesis. This class of receptors bears little sequence homology and 

is structurally distinct from prototypic GPCRs (Chun et al., 2012). 
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1.2 Metabotropic glutamate receptors 

Glutamate is the major excitatory neurotransmitter in the central nervous system 

(CNS). It functions in learning and memory as well as neurodegenerative disorders 

(Fonnum, 1984; Lau and Tymianski, 2010; Nakanishi, 1992). Glutamate signals are 

received at the post-synaptic membrane by two types of receptors: ionotropic and 

metabotropic. N-methyl-D-aspartate receptor (NMDAR), α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR), and kainate receptors are all ionotropic 

receptors, which respond to agonist stimulation by opening cation channels. mGluRs are 

GPCRs that mediate changes in the post-synaptic cell through second messenger signalling 

pathways (Figure1.1) (Conn and Pin, 1997; Nakanishi, 1992).  

There are eight mGluRs, which are grouped into three subclassifications by 

sequence homology and G protein coupling (Conn and Pin, 1997; Ferraguti and 

Shigemoto, 2006). Group 1 mGluRs (mGluRs 1 and 5) activate phospholipase Cβ through 

coupling to Gαq/11, while groups 2 and 3 mGluRs (mGluRs 2 and 3; mGluRs 4,6,7, and 8 

respectively) negatively regulate adenylyl cyclase though coupling to Gαi/o. It is group 1 

mGluRs, which will be the focus of this project. mGluR5 was discovered and characterized 

after mGluR1 (Abe et al., 1992). At this time, it was grouped together with mGluR1 

because of its similarities in sequences and ligand specificity. These receptors are 

endogenously activated by glutamate or synthetic analog quisqualate and are specifically 

activated by (S)-3,5-dihydroxyphenylglycine (DHPG). Agonist activation of group 1 

mGluRs signals through Gαq/11 to mediate intracellular Ca2+ release (Mizuno and Itoh, 

2009). 
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Figure 1.1. Glutamate receptor-mediated calcium release at the synapse. Glutamate 

interacts with both ionotropic glutamate receptors (iGluRs), NMDAR, AMPAR and 

Kainite-R, as well as group 1 metabotropic glutamate receptors (mGluRs), mGluR1 and 

mGluR5, to mediate increased intracellular Ca2+ upon glutamate stimulation. iGluRs 

respond to agonist stimulation through the opening of cation channels. Extracellular Ca2+ 

then flows according to its gradient into the cell through these channels. mGluR1/5 couples 

to Gαq/11, which stimulates phospholipase Cβ to hydrolyze phophatydylinositol 

bisphosphate into second messengers: diacylglyceral (DAG) and inositol-1,4,5-

trisphosphate (IP3). IP3 releases Ca2+ from endoplasmic reticulum by activating the IP3 

receptor. (Dhami and Ferguson, 2006) 
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1.2.1 Structure and functional domains  

There are four known splice variants of mGluR1 (a, b, c, and d) and two known of 

mGluR5 (a and b). mGluR1a has the longest carboxyl-terminal tail (318 amino acids), 

while mGluR1b, 1c, and 1d have shorter tails (20, 11 and 26 amino acids in length) (Conn 

and Pin, 1997; Pin et al., 1992; Tanabe et al., 1992). Therefore, mGluR1a is more efficient 

in coupling with Gαq/11 as compared to the shorter carboxyl-terminal tail variants (Pin et 

al., 1992; Prézeau et al., 1996). mGluR5 variants also vary in C-terminal tail length 5a with 

32 amino acids and 5b with 50 amino acids (Joly et al., 1995). My project focuses on 

mGluR1a and mGluR5a.  

Unlike prototypic GPCR agonists, glutamate, is not bound in a pocket formed by 

the 7TMs, but instead by the extracellular N-terminal domain, which makes a ‘clam-shell’ 

like shape, also known as the venus fly trap model (Kunishima et al., 2000; Niswender and 

Conn, 2010). This large extracellular domain is also required for receptor dimerization 

(Beqollari and Kammermeier, 2010). More specifically, the receptors form a homodimer 

through covalent linkage at the receptor’s Cys 140 residue. Group 1 mGluRs, especially 

mGluR1a, have a large intracellular C-terminal tail domain important for receptor 

scaffolding as it contains the Homer binding domain and the PDZ binding domain 

(reviewed in (Enz, 2012; Magalhaes et al., 2012; Ritter and Hall, 2009). 

For prototypic GPCRs, the third intracellular loop (IL-3) is important for G protein 

selectivity (Blüml et al., 1994). However, the IL-3 region of mGluRs is highly conserved 

and, therefore, not likely responsible for G protein selectivity. Instead, the IL-2 has been 

implicated as a key player in G protein selectivity because it is highly variable among 

subtypes of mGluRs, thus allowing for different G protein selectivity among subtypes 
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(Gomeza et al., 1996; Niswender and Conn, 2010). Furthermore, experimental evidence 

has confirmed that the IL-2 of the mGluR1/5 is involved in G protein coupling (along with 

the IL-3 and C-terminal tail) (Francesconi and Duvoisin, 1998; Hermans and Challiss, 

2001). Francesconi and Duvoisin (1998) isolated specific domains in the IL-2 that were 

important for Gαq selectivity (Thr 695, Lys 697 and Ser 702) and Gαs selectivity (Pro 698, 

Cys 694-Thr 695). Our lab has also shown that the IL-2 interacts with CAIN (Ferreira et 

al., 2009), Pyk2 (Nicodemo et al., 2010) and is also the primary binding site of GRK2 

(Dhami et al., 2004).  

1.2.2 Cellular and subcellular distribution 

Group 1 mGluRs, mGluR1 and mGluR5, have distinct expression patterns in the 

CNS, which yields an anatomical basis for their divergent functions (see Ferraguti and 

Shigemoto (2006) for a review). mGluR5 is highly expressed throughout the hippocampus, 

especially in the CA1 and CA3 pyramidal cells and the granular cells of the dentate gyrus 

(Shigemoto et al., 1997). Some isoforms of mGluR1 are expressed in the CA3 pyramidal 

cells and the granular cells of the dentate gyrus. However, mGluR1a is expressed mostly in 

the CA1 interneurons of the hippocampus (Shigemoto et al., 1997) and is essential for 

long-term potentiation initiation in these interneurons (Lapointe et al., 2004; Perez et al., 

2001). mGluR1a is highly expressed in the Purkinje cells of the cerebellar cortex, where 

mGluR1a is required for long-term depression (LTD) and motor coordination (Ichise et al., 

2000). Comparatively, mGluR5 is not expressed in the Purkinje cells and is expressed only 

in a small portion of the Golgi cells in the cerebellar cortex (Négyessy et al., 1997). 

Expression of mGluR5 is much higher than mGluR1 in both the cortex (Romano et al., 

1995) and the striatum (Ribeiro et al., 2010). Research from our lab suggested that 
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mGluR5 desensitization in the striatum plays a neuroprotective role in the early, 

asymptomatic phase of Huntington’s disease and a neurotoxic role in later stages of the 

disease (Ribeiro et al., 2010; Ribeiro et al., 2011). In general, mGluRs are expressed in the 

neuronal cells of the CNS, however some expression of mGluR5 has been found in 

astrocytes (Balázs et al., 1997).  

At the synapse, group 1 mGluRs are located predominately post-synaptic just 

outside of the post-synaptic density (López-Bendito et al., 2002; Lujan R., 1996; 

Shigemoto et al., 1997). This makes mGluR1/5 particularly attractive for the study of post-

synaptic modification and synaptic plasticity. Overall, group 1 mGluRs are usually 

localized to somatodendritic regions of neurons. However, this expression pattern is altered 

in multiple sclerosis (MS) (Geurts et al., 2003). Geurts et al. revealed heightened mGluR1a 

expression in neuronal axons both in lesions and in normal appearing white matter of MS 

brains, suggesting a possible role for mGluRs in MS pathology. Localization of mGluRs in 

the CNS is important for understanding their role in normal neuronal functioning as well as 

the aberrant localization that can contribute to disease pathology.  

1.2.3 G protein coupling and effector signalling  

Group 1 mGluRs are coupled predominately to Gαq/11, which will be the focus of 

this thesis (Gαq/11 signalling is reviewed in Mizuno and Itoh (2009)). mGluR1a can also 

couple to other G proteins (Gαs and Gαi/o) and stimulate adenylate cyclase, which catalyzes 

the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate 

(cAMP) (Francesconi and Duvoisin, 1998); conversely, mGluR5a does not stimulate the 

cAMP pathway (Abe et al., 1992). Agonist binding to mGluR1/5 stabilizes the receptor 

conformation that promotes the exchange of GDP to GTP on the Gα subunit of the 
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heterotrimeric G protein. This allows Gα-GTP and Gβγ subunits to dissociate and activate 

effector enzymes. Gαq/11 activates phospholipase Cβ (PLC-β) to hydrolyze 

phosphatidylinositol 4,5-bisphosphate (PIP2) producing two second messengers: 

diacylglyceral (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates protein kinase 

C (PKC) and IP3 releases Ca2+ from the IP3-regulated intracellular stores such as the 

endoplasmic reticulum. Group 1 mGluR coupling to heterotrimeric Gαq/11 activates effector 

proteins such as protein kinase C (PKC), Ca2+/calmodulin-dependent protein kinase II 

(CaMKII), extracellular signal-regulated kinase (ERK), and proline-rich tyrosine kinase 2 

(Pyk2) (Choe and Wang, 2001; Mockett et al., 2011; Nicodemo et al., 2010).  

Receptor subtypes express different signal patterning, which can lead to divergent 

downstream signalling of mGluR-1 and -5. Oscillatory mGluR1/5 coupling to Gαq/11 and 

activation of PLC causes oscillations in IP formation, Ca2+, and PKC activation (Dale et 

al., 2001a; Kawabata et al., 1998). Both Ca2+ and PKC oscillations are distinct between 

mGluR1 and mGluR5. mGluR1a-mediated Ca2+ oscillations are lower in frequency when 

compared to mGluR5a oscillations (Kawabata et al., 1998). Oscillations of Ca2+ are 

important for activation of downstream effector proteins such as CaMKII (Bayer et al., 

2002; Chao et al., 2011; Koninck, 1998) and PKC. PKC oscillations are distinct between 

receptor subtypes mGluR1a and -5a. A single residue in the G protein-coupling domain 

regulates this receptor subtype specific pattern of PKC oscillation (Dale et al., 2001a).  

1.2.4 Activation of mitogen-activated protein kinases 

Activation of group 1 mGluRs stimulates the mitogen-activated protein kinase 

(MAPK) pathway specifically the phosphorylation of extracellular regulated kinase 1 and 2 

(ERK1/2) (Choe and Wang, 2001; Ferraguti et al., 1999; Karim et al., 2001). Once 
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activated, EKR1/2 translocates to the nucleus where it facilitates gene expression through 

regulation of specific transcription factors, thereby effecting long-term changes in the CNS 

at the cellular level. ERK1/2 activation can promote cell protection or cell death pathways 

depending on the level and duration of stimulation (reviewed in (Agell et al., 2002; 

Mebratu and Tesfaigzi, 2009). There is still much to discover about mGluR-mediated 

ERK1/2 phosphorylation. To date there are a number of molecular pathways that have 

been shown to contribute to mGluR-mediated ERK1/2 phosphorylation (reviewed in Wang 

et al. (2007)). mGluR-mediated activation can occur via by both G protein-dependent and -

independent mechanisms. In terms of G protein-dependent mechanism, studies have found 

that mGluR1a (Ferraguti et al., 1999) and mGluR5 (Chen et al., 2012) activate ERK in a 

PKC dependent manner. Conversely, Mao et al. (2005) found that IP3 and Ca2+ and not 

DAG and PKC were important for some forms of ERK activation by mGluR5. In addition 

to this G protein-dependent mechanism, Mao et al. goes on to describe a second 

mechanism that accounts for a greater amount of ERK1/2 activation. This mechanism is G 

protein-independent and requires Homer1b/c (Mao et al., 2005). In addition, mGluRs 

appear to signal through receptor tyrosine kinases as well as non-receptor tyrosine kinases 

(reviewed in Wang et al. (2007)). Our lab found that Pyk2, a non-receptor tyrosine kinase, 

associates with mGluR1a’s second intracellular loop and facilitates ERK1/2 

phosphorylation (Nicodemo et al., 2010). Pyk2 activates ERK1/2 in a PKC-, calmodulin- 

and Src-dependent manner. Emery et al. (2010) described a G protein- and PLC-

independent mechanism of ERK phosphorylation by mGluR1a. This requires β-arrestin-1 

and Dynamin, which suggests there may be a role for the internalization of mGluR1 by β-

arrestin in ERK activation. This mechanism produces sustained ERK phosphorylation, 
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compared to a transient form accounted for by G protein-dependent mechanisms. 

Furthermore, this group elucidated a ligand bias whereby glutamate, not quisqualate nor 

DHPG, activates the G protein-independent ERK activation pathway (Emery et al., 2012; 

Emery et al., 2010). Emery suggests that it is this sustained ERK activation and not the 

transient G protein-dependent ERK activation that has a neuroprotective quality. 

Moreover, ERK1/2 activation is required for mGluR-mediated LTD. ERK1/2 regulates the 

initiation of protein translation in many cell types and is thus thought to play a central role 

in expression of mGluR-mediated LTD through protein translation (Gallagher et al., 2004; 

Volk et al., 2006).  

1.3 GPCR desensitization and endocytosis 

Receptor desensitization is a protective mechanism from over stimulation and 

potential neuronal death by excitotoxicity. Neurodegenerative diseases such as 

Amyotrophic Lateral Sclerosis, Alzheimer’s Disease, Multiple Sclerosis and Huntinton’s 

Disease are all mediated in part by excitotoxicity (D'Antoni et al., 2011; Geurts et al., 

2003; Ribeiro et al., 2010). That desensitization is a naturally occurring neuroprotective 

mechanism makes it an exciting field of study for development of disease treatment. 

Desensitization is a feedback mechanism whereby excessive acute or chronic over 

stimulation leads to a reduced receptor response over time. The mechanism of GPCR 

desensitization can occur within seconds of agonist stimulation beginning with 

phosphorylation of the receptor, within minutes the receptor can internalize and within 

hours it can be down regulated. The extent of receptor desensitization depends on the level 

and duration of agonist stimulation as well as fine-tuning by receptor interacting proteins 

(reviewed in Ferguson, 2001; Kelly et al., 2008).  
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The prototypic model of GPCR desensitization (Figure 1.2) begins with receptor 

phosphorylation, which promotes uncoupling of the G protein from the receptor. Serine 

and threonine residues within the intracellular loops and C-terminal tail are 

phosphorylated. This receptor phosphorylation can be accomplished by second messenger-

dependent protein kinases, protein kinase C (PKC) and cAMP-dependent protein kinase 

(PKA), or G protein-coupled receptor kinases (GRKs) (Benovic et al., 1985; Benovic et al., 

1986). Homologous (agonist-dependent) desensitization refers to reduced response from 

the stimulated receptor, whereas heterologous (agonist-independent) desensitization occurs 

when the stimulation of one receptor leads to the reduced response in another receptor. 

Second messenger-dependent protein kinases phosphorylate receptors regardless of 

receptor conformation and can contribute to both agonist-dependent and -independent 

desensitization (Clark et al., 1988; Kelly et al., 2008). Conversely, GRKs selectively 

phosphorylate receptors in the agonist-activated conformation, and are implicated in 

homologous desensitization (Benovic et al., 1986). β-arrestins preferentially bind to GRK-

phosphorylated receptors more so than unphosphorylated or second messenger 

phosphorylated (Ferguson et al., 1996; Lohse et al., 1992). Binding of β-arrestins furthers 

desensitization in two main ways: it sterically uncouples the receptor from the G protein 

and promotes internalization by recruiting clathrin and β2-adaptin, which facilitates 

endocytosis by clathrin-coated pits (Zhang et al., 1996). Internalized receptors then 

undergo resensitization or down regulation. Resensitized receptors are dephosphorylated 

and recycled back to the cell surface. Down regulation involves the reduction of the cell’s 

receptor inventory through proteolytic degradation of existing receptors and reduced gene 

expression (Ferguson, 2001; Kelly et al., 2008; Ritter and Hall, 2009).  
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Figure 1.2. Prototypic model of GPCR desensitization. Receptor desensitization begins 

when the receptor is phosphorylated by second messenger dependent protein kinases, like 

protein kinase C (PKC), or G protein-coupled Receptor Kinases (GRKs). This is followed 

by β-arrestin binding, which promotes G protein uncoupling. β-arrestin recruits clathrin 

and β2-adaptin, facilitating endocytosis by clathrin coated pits. (Ferguson, 2001; Dhami 

and Ferguson, 2006; Ritter and Hall, 2009)  
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1.3.1 Group 1 mGluR desensitization and endocytosis 

mGluRs are structurally and functionally distinct from other GPCRs. Likewise, the 

mechanism of mGluR desensitization and endocytosis is also distinct. mGluRs are able to 

undergo both phosphorylation-dependent and -independent desensitization (reviewed in 

Dhami and Ferguson (2006)). PKC contributes to desensitization of group 1 mGluRs by 

direct phosphorylation of the receptor (Gereau and Heinemann, 1998; Herrero et al., 1994; 

Mundell et al., 2002). For mGluR5, two residues in the C-terminal tail, Ser 881 and Ser 

890, seem to be especially important for PKC-mediated desensitization (Gereau and 

Heinemann, 1998). For mGluR1, PKC-mediated desensitization occurs by phosphorylation 

of Thr 695 in the second intracellular loop, which disrupts the Gαq/11 pathway while having 

no effect on the Gαi/o (Francesconi and Duvoisin, 2000). In addition to PKC, Optineuron 

(Anborgh et al., 2005), PKA (Mundell et al., 2004) and CaMKIIα (Mundell et al., 2002) 

have been shown to contribute to mGluR desensitization and internalization. Furthermore, 

many GRK isoforms have been shown to mediate desensitization of mGluR1 (Dale et al., 

2000; Sallese et al., 2000). Sallese et al. 2000 found that GRK4 contributed to mGluR1a 

desensitization and internalization in HEK293 cells and cultured Purkinje cells. Dale et al. 

(2000) found that in HEK293 cells GRK2 and 5 contributed to mGluR1a desensitization 

and internalization and that this process can protect against cell death.  

GRK2-mediated mGluR1 desensitization departs from the prototypic model of 

receptor desensitization as it can be mediated via a β-arrestin and phosphorylation 

independent mechanism. β-arrestin is not required for mGluR1a desensitization; however, 

it is required for mGluR1a agonist-dependent internalization (Dale et al., 2001b). 

Phosphorylation-independent desensitization of mGluR1 was demonstrated in our lab by 
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multiple experimental methods. Expression of a catalytically inactivate mutant of GRK2-

K220R still attenuated mGluR1 signalling (Dale et al., 2000). Furthermore, Dhami et al. 

(2002) used an mGluR1 mutant with a truncated C-terminal tail, which prevented GRK2 

phosphorylation but not desensitization. These findings suggest that it is the regulators of 

G protein signaling (RGS) homology (RH) domain of GRK2 and not the catalytic domain 

that mediates mGluR-Gαq/11 uncoupling. GRK2 attenuates receptor signalling by binding 

the receptor, Gαq/11 and Gβγ simultaneously (Ferguson, 2007; Tesmer et al., 2005). GRK2 

interacts with mGluR1 at the second intracellular loop and the C-terminal tail. Mutation of 

either amino acid residues Lys 691 and Lys 692 within the second intracellular loop 

disrupts interaction as well as desensitization of the receptor by GRK2 (Dhami et al., 

2005). However, GRK2 regulation of mGluR5a appears to be phosphorylation dependent 

and that a residue in the C-terminal tail T840 seems to be important for the interaction 

(Sorensen and Conn, 2003). Phosphorylation-independent desensitization, although not 

prototypic, is possible for other GPCRs such as follicle-stimulating hormone receptor, 

5HT1b receptor and the parathyroid hormone receptor (reviewed in Ferguson, 2007).  

1.3.2 Constitutive internalization of mGluRs 

Group 1 mGluRs constitutively internalize in an agonist, phosphorylation, and 

GRK2-independent manner (reviewed in Dhami et al., (2006)). There is some conflict in 

the literature about whether β-arrestin is required for this constitutive internalization. Dale 

et al. (2001a, b) reported β-arrestin- and dynamin-independent constitutive internalization, 

whereas Pula et al. (2004) reported a β-arrestin-dependent mechanism. However, both 

groups agree that constitutive internalization of mGluR1a occurs through clathrin-coated 

vesicles. The role of clathrin in mGluR5 constitutive internalization is unclear. Fourgeaud 
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et al. (2003) reported that mGluR5a internalizes in a clathrin-independent mechanism. 

However, Dale et al. (2001a,b) and Bhattacharya et al. (2004) found significant 

colocalization of mGluR1a and 5a with clathrin in endocytic vesicles. Together these 

findings suggest that both clathrin-dependent and -independent mechanism contribute to 

mGluR1/5 internalization. Bhattacharya et al. (2004) found that Ral (small GTP-binding 

protein), Ral guanine nucleotide dissociation stimulator (RalGDS) and PLD2 play a role in 

mGluR1/5 constitutive internalization. RalGDS is common to both agonist-dependent and 

-independent internalization (Bhattacharya et al., 2002; Bhattacharya et al., 2004). 

Ral/PLD2 act as an adaptor for constitutive internalization, whereas β-arrestin acts as an 

adaptor for agonist-stimulated internalization. Recruitment of β-arrestin by Ral-GDS in 

agonist-independent endocytosis may explain the finding of Pula et al. (2004) of β-arrestin-

dependent constitutive internalization. Moreover, group 1 mGluRs can undergo multiple 

mechanisms of endocytosis, each contributing to the complex role that mGluRs play 

receptor signalling.   

1.4 Regulation of mGluRs by interacting proteins 

In addition to proteins that contribute to receptor endocytosis, receptor interaction 

with regulatory molecules further tunes the complex process of receptor signalling 

(reviewed in Magalhaes et al. (2012); Ritter and Hall (2009)). RGS proteins increase the 

GTP hydrolysis rate on the Gαi/o and Gαq/11 subunits of the heterotrimeric G protein 

complex. This diminishes the signalling capacity of these G protein-regulated signalling 

pathways (reviewed in Hollinger and Hepler (2002)). More specifically, RGS2 and RGS4 

have been implicated in regulation of group 1 mGluRs. RGS2 alters mGluR1a-mediated 

inhibition of Ca2+ currents and M-type potassium currents (Kammermeier and Ikeda, 
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1999). RGS4 inhibits receptor-mediated ion currents by blocking mGluR1a and mGluR5a-

mediated activation of PLCB by Gαq/11 (Saugstad et al., 1998).  

G protein-independent interacting proteins 

Scaffolding proteins play an indirect role in GPCR signalling. They facilitate 

protein-signalling pathways by tethering interacting proteins in close proximity to one 

another thereby increasing the chances of interaction. Many GPCRs are considered to play 

a role as scaffolding proteins forming agonist-independent signal transduction complexes, 

termed ‘signalsomes’. mGluR interacting proteins include Homer, calmodulin, PDZ 

proteins (Tamalin, NHERF-1, NHERF-2, and CAL) (Brakeman et al., 1997; Kitano et al., 

2002; Paquet et al., 2006; Ting et al., 2012).  

Perhaps the best characterized scaffolding complex for mGluRs is that of Homer, 

IP3R and Shank. The Homer protein family is encoded by 3 genes (Homer1, Homer2 and 

Homer3), which yield many Homer isoforms (reviewed in Shiraishi-Yamaguchi and 

Furuichi (2007)). All Homer isoforms share an N-terminal EVHI domain, which 

recognizes and binds the mGluR as well as the IP3R. Homer1a is the short-protein form; 

Homer1b/c, Homer2a/b, Homer3a/b are long-protein forms. Long proteins refer to those 

who have a C-terminal coiled-coil domain, which is required for multimerization of 

Homers into tetramers. Only long Homer proteins possess the ability to link proteins, such 

as mGluR to IP3R. Homer1b proteins bind to mGluR1/5 and IP3R, structurally linking the 

two proteins together by Homer multimerization (Tu et al., 1998). Homer 1a protein lacks 

the coiled-coil domain and therefore acts as a dominant negative protein to uncouple 

mGluR1/5 from the IP3R (Kammermeier, 2008; Kammermeier et al., 2000; Tu et al., 

1998). Homer 1a is an activity-induced isoform that is rapidly up regulated following 
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seizure (Brakeman et al., 1997; Ting et al., 2012). Shank proteins coordinate with Homer 

proteins to facilitate mGluR1/5 signalling. Shanks crosslink Homer and PSD-95 to cluster 

mGluR5 at the PSD (Tu et al., 1999). Shank1b and Homer1b facilitate mGluR1/5-

mediated Ca2+ signalling (Sala et al., 2005) and induce spine maturation and enlargement 

as well as translocation of IP3R to the PSD (Sala et al., 2001). Homer1a reverses these 

spine maturation effects (Sala et al., 2003) and also down regulates synaptic AMPARs (Hu 

et al., 2010). The Homer-Shank complex provides an example whereby scaffolding 

proteins coordinate signalling in a G protein-independent manner.  

1.5 Physiological role of group 1 mGluRs 

Group 1 mGluRs are mediators of synaptic plasticity as they contribute to both 

long-term potentiation (LTP) and LTD by regulation of protein synthesis (Neyman and 

Manahan-Vaughan, 2008; Pfeiffer and Huber, 2006). mGluRs play an important role in the 

synaptic plasticity that leads to learning and memory, yet dysregulation of these processes 

can be manifested as memory related diseases or cognitive impairment. Likewise, these 

receptors are implicated in neurodegeneration characteristic of Alzheimer’s Disease (Lee et 

al., 2004), excitotoxicity in Huntington’s Disease (Ribeiro et al., 2010), and excessive LTD 

characteristic of Fragile X mental retardation syndrome (Bear et al., 2004).  

Long-term potentiation 

Lomo (1966) first proposed LTP as a mechanism behind learning, acquisition of 

new information, and memory, retention of this information. LTP is defined as an activity-

dependent long lasting increase in synaptic efficacy (reviewed in Lynch, 2004; Malenka 

and Bear, 2004). Simply put, LTP is a mechanism of strengthening an active synaptic 

connection, thus potentiating future signal transmission at this synapse. There are two 
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phases of LTP: Early LTP (E-LTP), which lasts for hours, and long lasting (L-LTP), which 

can last for weeks. The basic mechanism of E-LTP is that the activation of NMDAR 

increases intracellular Ca2+, leads to CaMKII phosphorylation and the insertion of AMPAR 

receptors thereby strengthening the synapse. L-LTP mediates longer-term changes to 

synaptic activity through local protein translation and gene regulation. Ionotropic 

glutamate receptors (NMDAR and AMPAR) tend to be the focus of much LTP research. 

However, mGluRs play an important role in LTP as well and more specifically in the 

protein translation required of L-LTP (reviewed in Anwyl (2009)).   

mGluR-mediated LTP is generally believed to be ionotropic receptor-dependent. 

Recent findings have unearthed ionotropic receptor-independent mGluR-LTP in 

interneurons of the hippocampus (Le Duigou and Kullmann, 2011). Here, postsynaptic 

mGluR1a activation is necessary for interneuron LTP induction (Lapointe et al., 2004; 

Perez et al., 2001). Potentiation of interneurons increases inhibition on pyramidal neurons, 

thus providing an adaptive mechanism for regulation of the CA1 pyramidal neurons 

(Lapointe et al., 2004). When group 1 mGluRs are activated together with ionotropic 

receptors, a higher level of LTP is achieved as compared to ionotropic receptors alone. 

Group 1 mGluR’s contribution to LTP is only triggered with prolonged high frequency 

stimulation (Wu et al., 2008). This finding together with the perisynaptic localization of 

group 1 mGluRs suggests that these receptors are activated by excessive glutamate release 

causing spillover to innervate these receptors located outside of the PSD. mGluRs are of 

particular importance for late phase and persistence of LTP, whereby mGluRs trigger local, 

transcription-independent protein synthesis (Raymond et al., 2000). Furthermore, Job and 
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Eberwine (2001) demonstrated that DHPG stimulation could trigger protein synthesis in 

dendrites that were isolated from the soma. 

Long-term depression 

LTD is defined as an activity-dependent long lasting decrease in synaptic efficacy 

(reviewed in Bellone et al., 2008; Collingridge et al., 2010; Ito, 1989; Malenka and Bear, 

2004). This can include reduced post-synaptic sensitivity to glutamate, reduced synaptic 

conductance by internalization of AMPA receptors and reduced individual channel 

conductance. There are multiple mechanisms for LTD induction. The two main 

mechanisms are NMDA-mediated and mGluR-mediated LTD. These two forms of LTD 

can coexist in the same neurons and have specifically been observed together in CA1 

pyramidal neurons (Oliet et al., 1997). Unlike NMDAR-mediated LTD, mGluR-mediated 

LTD is not easily reversible and may be a precursor to synapse elimination (Bear et al., 

2004; Oliet et al., 1997). Group 1 mGluR-mediated LTD decreases synaptic efficacy 

through redistribution and internalization of AMPAR (Snyder et al., 2001). mGluR-LTD 

mediates these effects through alterations in local protein translation of pre-existing mRNA 

in the dendrites (Huber et al., 2000). A proposed mechanism for translation initiation 

requires activation of PI3K, Akt, and mTor (Hou and Klann, 2004). Gallagher et al. 2004 

suggests that ERK may play a role the mGluR1/5-mediated alterations in protein synthesis. 

Stimulation of either mGluR1 or mGluR5 is sufficient to induce LTD, including reduced 

synaptic strength and ERK activation. However, mGluR1 and not mGluR5 is required for 

LTD expression and its associated decrease in AMPA receptor expression (Volk et al., 

2006). 
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Aberrant mGluR-mediated LTD has been implicated in the pathology of Fragile X 

syndrome. Experimentally, mGluR5 knockdown in Fragile X mouse model can reduce 

Fragile X phenotypes (Dölen et al., 2007). Additionally, there is currently a phase III 

clinical trial underway for the use of an mGluR5 antagonist as treatment for Fragile X (for 

results from phase II trials see Jacquemont et al. (2011). In Fragile X syndrome, Fragile X 

mental retardation protein (FMRP), which usually represses mRNA translation of specific 

proteins, is lost leading to exaggerated LTD in CNS development, specifically in the 

hippocampus. Fragile X syndrome is characterized by developmental delay and cognitive 

impairment and is a known cause of autism spectrum disorders.  

NMDAR-mediated LTD is unaffected in Fragile X mice; however, mGluR-

mediated LTD is exaggerated. Under normal conditions, mGluR stimulation initiates a 

feedback loop that stimulates FMRP translation, which inhibits further mGluR-mediated 

protein translation (reviewed Dölen and Bear (2008)). Without FMRP, mGluR signalling is 

unchecked, resulting in increased translation of pre-existing mRNA leading to the 

exaggerated mGluR-LTD found in Fragile X syndrome. This is supported by Nakamoto et 

al. (2007), who described an excessive mGluR5-mediated internalization of AMPAR in 

Fragile X. 

1.6 Ca
2+

/calmodulin-dependent protein kinase II 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a Ca2+-activated enzyme 

that has been extensively studied in context with learning and memory since its discovery 

(Schulman and Greengard, 1978a, b). Although initially extracted from membranes of 

nerve terminals it has since been deemed ubiquitously expressed. It is, however, enriched 

in the brain and specifically at the synapses. CaMKII is a serine/threonine kinase whose 
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substrates contribute to a wide variety of cellular processes including metabolism, gene 

expression, neurotransmitter synthesis and release, cytoskeletal organization, intracellular 

Ca2+ homeostasis, membrane current as well as synaptic plasticity by way of long-term 

potentiation and long-term depression (Hudmon and Schulman, 2002).  

CaMKII is a well-established player in some processes that contribute to learning 

and memory. For example, CaMKII is required and sufficient for LTP induction and 

spatial learning tasks. CaMKIIα mutant mice were impaired in LTP formation as well as 

spatial learning tasks such as Morris Water Maze (Silva et al., 1992a; Silva et al., 1992b). 

Furthermore, CaMKII is emerging as a player in LTD. It has recently been implicated in 

the protein translation required of mGluR-LTD (Mockett et al., 2011). All together 

CaMKII plays a significant role in plasticity of the glutaminergic synapse. It is well 

established to regulate ionotropic glutamate signalling and is just starting to be studied in 

the context of metabotropic glutamate receptor signalling. Furthermore, CaMKII is 

suspected to be a so-called memory molecule. That is, it has been suggested as a molecular 

mechanism behind neuronal memory because it possesses a unique ability to 

autophosphorylate. Autophosphorylated CaMKII, or autonomous CaMKII, remains 

persistently activated after a transient Ca2+ signal. Likewise, CaMKII autophosphorylation 

is essential for LTP initiation as NMDA-LTP was abolished in mice expressing mutant 

CaMKIIα lacking the ability to be autophosphorylated (Giese et al., 1998).  

1.6.1 Distribution and expression  

There are 4 genes that express CaMKII (α, β, γ, and δ), which yields 28 similar 

isoforms. All isoforms of CaMKII are expressed in the brain; however, α and β are the 

predominate isoforms in the brain, while β and δ are predominate in the cerebellum. It is 
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the α isoform that will be the focus of this thesis. CaMKIIα constitutes 2% of total protein 

in the hippocampus, 1.3% of total cortical protein and 0.7% of total striatal protein 

(Coultrap and Bayer, 2012; Erondu and Kennedy, 1985; Hudmon and Schulman, 2002; 

Lisman et al., 2002). Within the brain, CaMKII is highly expressed at the synapse and 

specifically at the Post Synaptic Density (PSD). CaMKII was initially discovered as a 

membrane protein (Schulman and Greengard, 1978a, b), but is now known to be present in 

the cytosol as well. Upon activation, CaMKII translocates from the cytosol to the PSD 

where it can coordinate processes linked to synaptic plasticity (Hudmon et al., 2005; Strack 

et al., 1997). The translocation and activation of CaMKII is specific to the synapse that is 

activated (Lee et al., 2009; Zhang et al., 2008). 

1.6.2 Structure and functional domains  

Each CaMKII subunit is composed of three domains: 1) the N-terminal kinase 

domain; 2) the regulatory domain, which contains the autoinhibitory domain, 

Ca2+/calmodulin binding domain and important phosphorylation residues Thr 286, Thr 305 

and Thr 306; and 3) the C-terminal self-association domain (reviewed in (Coultrap and 

Bayer, 2012; Hudmon and Schulman, 2002; Lisman et al., 2002)). Twelve individual 

subunits associate to form a dodecomeric holoenzyme. The holoenzyme structure has most 

simply been compared to the spokes in a wheel. The self-association domains gather at the 

wheel’s hub and the N-terminal catalytic domains of each subunit radiate outwards like 

spokes. Recently, the crystal structure of CaMKII was published, this confirms and builds 

upon the currently understanding of holoenzyme organization (Chao et al., 2011) (Figure 

1.3b). Inactivated CaMKII is in equilibrium between two conformations: compact and 

extended. In the compact state the kinase domain folds back on the self-association domain 
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Figure 1.3. CaMKII regulation. A, Above depicts a single subunit of CaMKII. A 

CaMKII subunit is inactivated as the autoinhibitory domain binds and inactivates the active 

site of the catalytic domain. Ca2+/Calmodulin binds and activates CaMKII. Its binding 

region overlaps the psuedosubstrate region and thus releases the active site allowing 

substrate phosphorylation. Additionally, binding of Ca2+/Calmodulin exposes the 

autophosphorylation domain located in the autoinhibitory domain (Thr 286 in the alpha 

isoform and Thr 287 in other isoforms). Neighboring subunits can phosphorylate CaMKII. 

Once autophosphorylated this residue results in a persistently activated CaMKII molecule 

(reviewed in Hudmon and Schulman, 2002). B, 12 CaMKII subunits join together to form 

a dodecomeric holoenzyme. This enzyme cycles between its extended and compact 

conformation. Only in its extended conformation is it accessable to CaM binding and 

subsequent autophosphorylation (Lisman et al., 2012). 
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yielding the regulatory (CaM-binding) domain inaccessible. In the extended conformation, 

the kinase domain is stretched out, no longer blocking the regulatory domain, thus 

allowing Ca2+/calmodulin to bind. Within the dodecomeric holoenzyme each subunit 

individually moves between compact and extended, but a subunit in the extended 

conformation that is bound to Ca2+/calmodulin influences the neighboring subunits to also 

move into the extended conformation allowing Ca2+/calmodulin to bind. Only when two 

subunits are bound to Ca2+/calmodulin can autophosphorylation occur.   

Within each subunit, the autoinhibitory domain acts as a psuedosubstrate by 

binding and inactivating the active site of the catalytic domain (reviewed in Hudmon and 

Schulman (2002)). Upon activation, Ca2+/calmodulin binds overlapping the 

psuedosubstrate region and thus releases the active site allowing substrate phosphorylation. 

Additionally, binding of Ca2+/calmodulin exposes the autophosphorylation domain, Thr 

286 in CaMKIIα isoform and Thr 287 in other CaMKII isoforms, located in the 

autoinhibitory domain, which can be phosphorylated by neighboring subunits (Bradshaw et 

al., 2002). Once this residue is phosphorylated, CaMKII is persistently activated, termed 

autonomous (Figure 1.3a). After Thr 286 phosphorylation, residues Thr 305, Thr 306 

residues within the calmodulin-binding domain can be phosphorylated. Phosphorylation at 

either site prevents reactivation of CaMKII by blocking the calmodulin-binding domain. 

This phosphorylation opposes the effects of Thr 286 phosphorylation by reducing the 

autonomous activity (Pi et al., 2010). Phosphorylation at Thr 305 and 306 are important to 

determine if CaMKII contributes to LTD or LTP (see below).  
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1.6.3 Regulation of CaMKII activity 

 CaMKIIα responds to increases in intracellular Ca2+ as it is activated by the 

Ca2+/calmodulin complex. Activating increases in intracellular Ca2+ can be achieved at the 

glutamatergic synapse by activation of ionotropic receptors, which allows the influx of 

extracellular Ca2+. Additionally, CaMKIIα can be activated through Gq-coupled GPCR-

mediated Ca2+ release (Ng et al., 2010).  Once activated CaMKII is free to phosphorylate 

downstream substrate targets, some of which will further affect CaMKII activation by 

regulating Ca2+ concentrations (IP3R, Ca2+/ATPase, AMPAR and NMDAR) (Hudmon and 

Schulman, 2002). 

 Activated CaMKIIα undergoes autophosphorylation, which can both increase and 

decrease CaMKII activity. Autophosphorylation at the Thr 286 residue allows CaMKII to 

retain some level of activation after the Ca2+ spike (Colbran and Brown, 2004). Thr 286 

phosphorylated CaMKII has been implicated in long-term potentiation and neuronal 

plasticity as it triggers translocation to the PSD where it phosphorylates PSD proteins such 

as AMPA receptors (Strack et al., 1997). Autophosphorylation at Thr 305 and Thr 306 

reduces autonomous activity of CaMKII. It also inhibits binding to PSD and weakens 

synapses it could provide a mechanism for LTD regulation by CaMKII (Pi et al., 2010). 

Within the PSD, CaMKII binds directly to the NMDA receptor subunit NR2B.  The NR2B 

subunit binds in the catalytic domain of CaMKII and potentiates CaMKII signalling in two 

main ways (Bayer et al., 2001). First, it keeps the enzymatic active site exposed and able to 

bind to substrates for phosphorylation. Secondly, it keeps the Thr 286 residue exposed so 

that it can be autophosphorylated and thus maintained in its Ca2+/calmodulin-independent 
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activated state. The CaMKII-NMDA complex is important for LTP induction and learning 

as reviewed in Lisman et al. (2012). 

 CaMKII is also regulated by endogenous proteins, which negatively regulate its 

activity.  CaM-KIIN is a naturally expressed CaMKII inhibitor found in the brain. It binds 

to the catalytic site of activated or autophosphorylated CaMKII with a high degree of 

specificity. It binds in the same location as NR2B, but unlike NR2B it blocks the active site 

and prevents substrate phosphorylation (Chang et al., 1998; Coultrap and Bayer, 2011; 

Lucchesi et al., 2011). Another protein, α-actinin, also contributes to the regulation of 

CaMKII. It mimics calmodulin as it binds to the regulator domain. CaMKII bound to α-

actinin has limited activity and is Ca2+-independent; however, the α-actinin binding 

represses some of the functions of CaMKII and also inhibits activation by Ca2+/calmodulin 

(Jalan-Sakrikar et al., 2012). For experimental purposes, specific pharmacological 

inhibitors have been developed to inhibit CaMKII activity. Both KN-62 and KN-93 inhibit 

Ca2+-dependent activity of CaMKII by blocking calmondulin binding (Sumi et al., 1991) 

(Tokumitsu et al., 1990). Autocamtide-2-related inhibitory peptide (AIP) is another 

CaMKII inhibitor that is 500 times more potent than KN-93 and, unlike KN-93 or KN-62, 

it also inhibits automomously active CaMKII in addition to Ca2+-dependent CaMKII 

activity (Ishida et al., 1995).  

1.6.4 CaMKIIα regulation of glutamate receptors 

CaMKIIα plays a significant role in the regulation of the glutamatergic synapse.  

Most studied is the relationship between CaMKIIα and the ionotropic glutamate receptors. 

However, emerging studies have implicated CaMKII in the regulation of metabotropic 

receptors as well. It is well established that CaMKII is required for LTP initiation and 
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plays a significant role in its expression. Activated CaMKII translocates from the 

cytoplasm to activated synapses (Zhang et al., 2008). Specifically, CaMKIIα has been 

shown to translocate in response to NMDAR activation (Hudmon et al., 2005). This 

translocation is partially driven by diffusion and by binding to PSD proteins such as the 

NR2B subunit of NMDAR (Strack et al., 2000). The direct binding of CaMKII to the 

NR2B subunit of the NMDA receptor holds CaMKII in its constitutively active form 

(Bayer et al., 2001). This CaMKII-NMDA complex is important for LTP induction as 

transgenic mice expressing mutant NR2B subunits, block the CaMKII interaction, and 

have impaired LTP (Barria and Malinow, 2005). CaMKII then facilitates synaptic 

strengthening by increasing individual AMPA receptor channel conductance by 

phosphorylating Ser 831 on the AMPAR GluR1 subunit (Derkach et al., 1999; Lee et al., 

2000). Trafficking of AMPAR to the synapse is positively regulated by the AMPAR-

associating protein complex Stargazin-PSD95 (Bats et al., 2007). Phosphorylation of 

Stargazin triggers AMPAR capture at the synapse (Tomita et al., 2005). CaMKII is shown 

to phosphorylate Stargazin in synapses of cultured neurons and may be responsible for 

triggering the AMPAR capture characteristic of LTP (Opazo et al., 2010; Tsui and 

Malenka, 2006).  

Little is known about the role of CaMKII in regulation of mGluR activity. 

However, there is mounting evidence that suggests CaMKII may play a significant role in 

metabotropic glutamate receptor regulation in addition to ionotropic glutamate receptor 

regulation. Mundell et al. 2002 elucidated a novel role for CaMKIIα in activation of 

mGluR1 internalization. They found that CaMKII inhibition significantly attenuated 

carbachol-induced heterologous mGluR1a internalization. In addition, they found that 
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CaMKII inhibition significantly attenuated glutamate-induced homologous internalization 

of mGluR1c. Very recently group 1 mGluR activation by DHPG was shown to cause a 

transient increase in phosphorylation of CaMKIIα (Mockett et al., 2011). Mockett et al. 

also found that CaMKII inhibitors (KN-62, KN-93 and AIP) attenuate DHPG-mediated 

LTD and protein synthesis. This suggests a role for CaMKII in group 1 mGluR-dependent 

LTD by regulating protein translation.  

1.7 Hypothesis 

 CaMKIIα associates with group 1 mGluRs and this association alters mGluR1/5 

signalling and internalization.   

1.8 Specific questions 

This present thesis builds on preliminary results from a proteomic screen that 

elucidated a potential association between group 1 mGluRs and CaMKIIα. We set out to 

explore these specific questions to better understand the relationship between group 1 

mGluRs and CaMKIIα: 1) Confirm the association between group 1 mGluRs and CaMKII; 

2) Examine the effect of CaMKII on group 1 mGluR trafficking; 3) Examine the effect of 

CaMKII on mGluR1a signalling.  

1.9 Relevance 

As discussed previously, CaMKIIα can be phosphorylated by mGluR1/5 

stimulation and plays a role in mGluR-LTD, likely through mGluR-mediated protein 

translation (Mockett et al., 2011). It is also known that CaMKIIα can alter heterologous 

mGluR internalization. However, it is not yet known whether or not mGluR1/5 can 

associate with CaMKIIα and if CaMKIIα plays a significant role in receptor signalling and 
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homologous internalization. Both CaMKIIα and group 1 mGluRs play an important role in 

the maintenance of memory, learning and synaptic transmission. Understanding how these 

two players work together is an important bridge to further our current understanding of 

post-synaptic modification. This study could also have important implications for 

neurodegenerative diseases providing a potential mechanism for reducing excitotoxicity 

through desensitization of mGluR1/5 by CaMKII.  
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Materials  

Adult CD-1 mice were from Charles River (Wilmington, MA). Human Embryonic 

Kidney (HEK293) Cells were from American Type Culture Collection (Manassas, VA). 

Cell culture reagents were from Invitrogen (Burlington, ON): Minimal Essential Media 

(MEM), Dulbecco’s Modified Eagle Medium (DMEM), Fetal Bovine Serum (FBS) and 

0.25% Trypsin-EDTA. OmniPur Bovine Serum Albumin (BSA) was from VWR 

(Mississauga, ON). L-Quisqualic Acid and KN-93 were from Tocris Bioscience 

(Minneapolis, MN). Biotinylation reagents EZ-Link Sulfo-NHS-SS-Biotin and 

NeutrAvidin Agarose Resin as well as Pierce ECL Western Blotting Substrate and 

SuperSignal West Dura Chemiluminescent Substrate were purchased from Thermo 

Scientific (Rockford, IL). Myo-[3H]Inositol and Phosphorus-32 Radionuclide were from 

Perkin Elmer (Waltham, MA). Protein G Sepharose beads were from GE Healthcare 

(Oakville, ON). ANTI-FLAG M2 Affinity Gel and Dowex 1X8 formate 200-400 mesh 

resin were from Sigma-Aldrich (St. Louis, MO). DC Protein Assay Kit was from BioRad 

Laboratories (Mississauga, ON). Kodak X-Omat Blue Film was from Fisher Scientific 

(Ottawa, ON).  

Primary Antibodies: CaMKII (G-1) [Santa Cruz Biotechnology (Santa Cruz, CA): 

sc-5306]; CaMKII (pan), Phospho-CaMKII (Thr286), CaMKIIα, Phospho-p44/42 MAPK, 

p44/42 MAPK [Cell Signaling Technology (Danvers, MA): 3362S, 3361S, 3357S, 9101S, 

9102S]; mGluR1 and mGluR5 [Millipore (Billerica, MA): 07-617, AB5675]; GFP 
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(Invitrogen: A-6455). Secondary Antibodies: Mouse (GE Healthcare) and Rabbit 

(BioRad).  

GFP-CaMKIIα construct was from Dr. Paul De Koninck (Laval University, 

Quebec, Canada). CaMKIIα shRNA was from Dr. Kenichi Okamoto (Mount Sinai, 

Toronto, Canada).  

2.2 Cell culturing and transfections 

HEK293 cells were used in our investigation because they express a number of 

proteins required for mGluR receptor signaling and endocytosis. Specifically they express 

GRKs, Arrestins and PKC, which are proteins involved in endocytosis (Atwood, B., 2011). 

HEK293 cells were cultured in MEM with 8% FBS. Cells were plated on 100 mm dishes 

and transfected using a modified Ca2+ phosphate method (Ferguson and Caron, 2004) with 

cDNA amounts indicated in Figure Legends. For transfection, cDNA was diluted to 450 

µL in sterile distilled water, 50 µL 2.5 M CaCl2 added, 500 µL 2X HEPES-Buffered Saline 

(0.38 M NaCl, 0.05 M HEPES, 1.5 mM Na2HPO4, pH 7.05) added drop-wise and mixed 

gently before transfection mixture was added to cells. Cells were washed 16-20 hours post 

transfection and then allowed to recover in new media before experimentation. For co-

immunoprecipitation, cells recovered for 24 hours. For all other experiments, cells 

recovered for 6-8 hours and then were reseeded into 6-well dishes and allowed to recover 

for 18 hours. 

2.3 Immunoblotting 

Acrylamide gels (10%) were run using a Hoefer gel system, and then transferred to 

0.45 µM nitrocellulose membrane using a semidry transfer apparatus. Membranes were 

blocked for 1 hour in Tris-Buffered Saline and Tween-20 (TBS-T) with 10% milk, and 
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then incubated with primary antibody as described, later in the methods, in TBS-T with 5% 

milk overnight. Blots were washed with TBS-T, incubated with secondary antibody 

(BioRad, Rabbit 1:10,000 and GE Healthcare, Mouse 1:2500) in TBS-T with 5% milk for 

1 hour, washed again, treated with ECL Western Blotting Substrate and exposed on film.  

2.4 HEK293 cell co-immunoprecipitation  

HEK293 cells were transiently transfected with cDNA of FLAG tagged receptor 

(mGluR1a or mGluR5a) and either pEGFP (control) or GFP-CaMKIIα (3 µg of receptor 

and 0.5 µg of GFP constructs). Cells were stimulated for 0, 2 and 10 minutes with 50 µM 

quisqualate in HEPES-Balanced Salt Solution (HBSS: 1.2 mM KH2PO4, 5 mM NaHCO3, 

20 mM Hepes, 11 mM Glucose, 116 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 2.5 mM 

CaCl2, pH 7.4) at 37°C. Cells were washed on ice with cold Phosphate-Buffered Saline 

(PBS: 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.2) and then 

lysed on a rocking platform for 15 minutes at 4˚C for using 0.1% Triton-X 100 lysis buffer 

(0.025 M Hepes, 300 mM NaCl, 1.5 mM MgCl, 0.2 mM EDTA, 0.1% Triton-X) with 

added protease inhibitors: 1 mM AEBSF, 10 µg/ml leupeptin, and 5 µg/ml aprotinin. 

Lysate was collected and centrifuged at 15,000 RPM for 15 minutes at 4˚C.  250 µg of 

each lysate was incubated with FLAG-agarose beads (50 µl bead slurry) for 1 - 2 hours. 

Beads were washed three times with cold PBS. Samples were eluted using 3x SDS sample 

buffer with 2-mercaptoethanol and separated by SDS-PAGE. Membranes were blotted for 

GFP (1:1000) to test co-immunoprecipitation of GFP-CaMKIIα with FLAG-mGluR1/5, 

and then immunoblotted for mGluR1 (Millipore, 1:1000) and mGluR5 (Millipore, 1:1000).    
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2.5 Hippocampus co-immunoprecipitation 

The hippocampus was removed from CD-1 adult mice and placed in 0.5% Triton-X 

100 lysis buffer with protease inhibitors. It was then homogenized using a Polytron and 

allowed to solubilize for 2 hours while rotating at 4˚C. Lysate was then centrifuged at 

15,000 RPM for 15 minutes at 4˚C and 1 mg of protein was incubated with protein G-

Sepharose with mGluR5 antibody (Millipore, 1.5 µg) or Rab11 antibody (control) to 

immunoprecipitate mGluR5.  Samples were eluted using 3x SDS sample buffer with 2-

mercaptoethanol and separated by SDS-PAGE.  Membranes were immunoblotted for 

immunoprecipitated mGluR5 (Millipore, 1:1000) and co-immunoprecipitated CaMKII 

(Santa Cruz, 1:250).  

2.6 GST-mGluR1a fusion protein purification and pull-down assay 

GST-Fusion protein purification and pull-down assay was conducted similarly to 

Dhami et al. (2005). GST-mGluR1a-IL-2 and GST control peptide was generated in E. coli 

recombinant bacteria grown at 37°C until OD600 was 0.6-1.0. Cultures were then induced 

with 1mM isopropyl 1-thio-β-D-galactopyranoside at 15°C for 2 hours. Cells were pelleted 

and resuspended in PBS with (1mM AEBSF, 25 µg/ml Aprotinin, 10 µg/ml Leupeptin, 10 

µg/ml Pepstatin A). Sonication (3 times for 30 seconds) at 4°C was then used to lyse the 

cells. 1% Triton X-100 was added to the lysate and incubated with rocking at 4°C for 30 

minutes. Insoluble materials were pelleted at 12,000 g for 10 minutes at 4°C and the 

supernatant containing proteins was aliquoted and stored at -80°C. 50 µl of Glutathione-

Sepharose bead slurry was incubated overnight with 1 ml of solubilized protein to purify 

GST-Fusion constructs. Beads were then washed and resuspended in 100 µl of lysis buffer. 

HEK293 cells transiently transfected with GFP-CaMKIIα (0.5 µg cDNA) was lysed and 
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centrifuged. For the pull-down assay, GST-Fusion peptide bound to matrix was incubated 

with 500 µg of GFP-CaMKIIα HEK293 cell lysate at 4°C for 2-4 hours. Samples were 

then washed extensively and eluted using 3x SDS sample buffer containing 2-

mercaptoethanol. Analysis was done by SDS-PAGE and immunoblotted for CaMKII 

(Santa Cruz, 1:250) to determine if GFP-CaMKIIα was pulled down with the GST-

mGluR1a peptides.  

2.7 Biotinylation internalization assay 

Biotinylation internalization assay was conducted similarly to Ferreira et al. (2009). 

HEK293 cells were transiently transfected with receptor (FLAG-mGluR1a and FLAG-

mGluR5a) and either pEGFP (control) or GFP-CaMKIIα (3 µg of receptor and 0.5 µg of 

GFP constructs). Cells were serum starved for 1 hour in HBSS at 37°C on the morning of 

the experiment. Cells were washed and incubated on ice for 20 minutes in HBSS. Plasma 

membrane proteins were biotinylated at 4°C with EZ-Link Sulfo-NHS-SS-Biotin in HBSS 

and then incubated at 4°C in 100mM glycine in HBSS for 30 minutes to quench 

biotinylation. Cells were then stimulated with 50 µM quisqualate for 0, 5 and 15 minutes, 

which allowed the receptor to internalize. Remaining cell surface biotin was stripped using 

100 mM sodium 2-mercaptoethanesulfonate (MesNa) in TE Buffer (150 mM NaCl, 1 mM 

EDTA, 20 mM Tris, pH 8.6) with 0.2% BSA. A control without stimulation or stripping 

was kept on ice and used to assess amount of total cell surface receptor. Cells were lysed, 

biotinylated protein pulled down with NeutrAvidin agarose resin (50 µl bead slurry), eluted 

with 3x SDS sample buffer containing 2-mercaptoethanol, separated by SDS-PAGE and 

immunoblotted for receptors, mGluR1 and mGluR5 (Millipore, 1:1000). Internalization of 

the receptor at various time points with and without the presence of over expressed 
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CaMKIIα was compared to control. Results expressed as percent cell surface 

internalization.   

Biotinylation internalization assay was modified slightly for mGluR1a experiments. 

Following serum starving, cells were pretreated for 1 hour with or without 1.0 µM KN-93 

in HBSS. For stimulation, cells were stimulated with 50 µM quisqualate for 0 and 15 

minutes.  

2.8 mGluR1/5 ERK1/2 activation 

ERK activation assay was conducted similarly to Esseltine et al. (2011). HEK293 

cells were transiently transfected with receptor (FLAG-mGluR1a and FLAG-mGluR5a) 

and either pEGFP (control) or GFP-CaMKIIα (3 µg of receptor and 0.5 µg of GFP 

constructs). Cells were first serum starved overnight in DMEM supplemented with 0.1% 

BSA and then serum starved for an additional hour in HBSS on the morning of the 

experiment. Cells were stimulated with quisqualate (50 µM) in HBSS at 37°C for 0 or 5 

minutes. Samples were washed with cold HBSS and lysed using 1% Triton-X 100 lysis 

buffer with protease inhibitors plus phosphatase inhibitors (1 M NaF and 100 µM 

Na3VO4). Next, 30-50 µg of each sample were separated by SDS-PAGE. ERK1/2 

phosphorylation was determined by immunoblotting for phosphorylated ERK and 

compared to total ERK (Cell Signaling, 1:000).  

2.9 Inositol phosphate formation  

Inositol phosphate formation assay was conducted similarly to Dale et al. (2001b). 

HEK293 cells were transiently transfected with FLAG-mGluR1a and either pEGFP 

(control) or GFP-CaMKIIα (3 µg of receptor and 0.5 µg of GFP constructs). Cell were 

incubated overnight with 1 µCi/ml myo-[3H]inositol in DMEM to radiolabel inositol lipids. 
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Cells were washed, and then preincubated in HBSS at 37°C for 1 hour. Cells were then 

incubated for an additional 10 minutes at 37°C with 500 µl of HBSS with 10mM LiCl. 

Next, cells were incubated with or without quisqualate at increasing concentrations (0-100 

µM) for 30 minutes. After stimulation, the reaction was stopped by placing samples on ice 

and adding 500 µl 0.8 M perchloric acid, which was neutralized with 400 µl of 7.2 M KOH 

and 0.6 M KHCO3. The radioactivity of a 50 µl sample of cell lysate was counted by liquid 

scintillation using a Beckman LS 6500 scintillation system to determine the total myo-

[3H]inositol incorporated into the cells. Anion exchange chromatography, using Dowex 

1X8 formate 200-400 mesh resin, was used to extract total inositol phosphate from cells. 

[3H]Inositol Phosphate formation was then determined by liquid scintillation using a 

Beckman LS 6500 scintillation system.    

2.10 Statistical analysis 

Immunoblots were quantified using Scion Imaging software. Densitometry values 

were normalized for protein expression. GraphPad Prism software was used for statistics 

and graph generation. Statistical analysis was performed using a One-way Analysis of 

Variance followed by a Tukey’s post hoc test to determine which means were significantly 

different (p< 0.05) from one another.  
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CHAPTER 3 

RESULTS 
 

3.1 CaMKIIα identified as a novel group 1 mGluR associating protein  

The intracellular loop (IL) 2 domain of mGluR1a is known to contain a critical 

residue for G protein selectivity (Hermans and Challiss, 2001). Our lab has previously 

studied CAIN (Ferreira et al., 2009), Pyk2 (Nicodemo et al., 2010) and GRK2 (Dhami et 

al., 2004) interactions with this domain. Therefore, we wanted to continue our study of IL-

2 binding proteins by screening for novel associating proteins to suggest new potential 

functions of this important domain. In collaboration with Dr. Stephane Angers, we utilized 

a membrane permeant Tat-IL2-FLAG peptide to treat 100 x 108 mouse cortical neurons for 

1 hour following which the neurons were solublized, the Tat-IL2-FLAG peptide was 

immunoprecipated with FLAG sepharose beads, immunoprecipitates trypsinized and 

analyzed by Maldi-TOF Mass Spectroscopy. mGluR1 IL2 interacting proteins identified in 

the screen included CaMKII isoforms α, β, γ, and δ as well as other kinases (including 

MAPK)  and components of endocytotic machinery (including clathrin heavy chain and 

dynactin1/2).  

Our initial experiments were focused on validating the potential interaction 

between CaMKIIα and group 1 mGluRs (mGluR1a and mGluR5a). First, we assessed 

whether GFP-CaMKIIα could be co-immunoprecipitated from HEK 293 cells that were 

co-transfected to overexpress either FLAG-mGluR1a or FLAG-mGluR5. We found that 

GFP-CaMKIIα could be co-immunoprecipitated with FLAG-mGluR1a in the absence of 

agonist stimulation (Fig. 3.1A). Moreover, the treatment of the cells with 50 µM 
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quisqualate for either 2 or 10 min did not increase the association of GFP-CaMKIIα with 

the receptor (Fig. 3.1A). Similarly, GFP-CaMKIIα could be co-immunoprecipitated with 

FLAG-mGluR5 in the absence of agonist and agonist treatment did not increase GFP-

CaMKIIα interactions with FLAG-mGluR5 (Fig. 3.1B). To assess whether endogenous 

CaMKII interacts with endogenous mGluR5, we immunoprecipitated CaMKII with a 

CaMKII-specific antibody from mouse hippocampal tissue lysates and blotted for 

mGluR5.  We found that mGluR5 was effectively co-immunoprecipitated with CaMKII 

from hippocampal tissue (Fig. 3.2). To confirm that the interaction between CaMKIIα and 

mGluR1a/5 was mediated by IL2 we used purified GST-Fusion protein containing the IL-2 

portion of mGluR1a and incubated this with HEK293 cell lysate expressing GFP-

CaMKIIα. We found that GST-IL2, but not GST alone effectively precipitated CaMKIIα 

from HEK 293 cell lysates (Fig. 3.3). As a positive control we assessed whether GRK2 

could also be precipitated with GST-IL2 and found that similar to that reported by Dhami 

et al., (2005) GST-IL2 also precipitates GRK2 from HEK 293 cell lysates (Fig. 3.3). Taken 

together these experiments confirm a novel interaction between CaMKIIα and group I 

mGluRs, which is mediated by the receptor IL2.  

3.2 Role of CaMKIIα in group 1 mGluR internalization 

CaMKII regulates heterologous internalization of mGluR1a in response to 

activation of the m1 muscarinic acetylcholine receptor (Mundell et al., 2002). Specifically, 

Mundell demonstrated that CaMKII inhibition prevented heterologous-stimulated 

mGluR1a internalization, but they were unable to demonstrate a significant regulatory role 

for CaMKIIα in homologous mGluR1a internalization. In continuation of this work, we 

investigated the role of CaMKIIα in homologous internalization of group 1 mGluRs.
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Figure 3.1. Co-immunoprecipitation of GFP-CaMKIIα with FLAG-mGluR1a and 

FLAG-mGluR5a. HEK293 cells were transiently transfected as labeled with 0.5 µg of 

cDNA mGFP encoding CaMKIIα or pEGFP and 3 µg of pcDNA3.1 encoding (A) FLAG-

mGluR1a or (C) FLAG-mGluR5a. Cells were stimulated with 50 µM quisqualate then 

lysed. Lysates were incubated with mouse FLAG-agarose to immunoprecipitate FLAG-

tagged receptor. Shown are representative immunoblots for immunoprecipitated receptor 

with rabbit anti-mGluR1 or rabbit anti-mGluR5 and for GFP to assess if GFP-CaMKIIα 

was co-immunoprecipitated with the receptor. B, D) Immunoblots for co-

immunoprecipitated CaMKII were analyzed by densitometry. Agonist treatments were 

compared to unstimulated. p > 0.05. Data are averaged means ± S.E.M. of six independent 

experiments.  
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Figure 3.2. Co-immunoprecipitation of endogenous CaMKII with mGluR5a in mouse 

hippocampal tissue. 1 mg of adult CD-1 mouse hippocampal tissue lysate was incubated 

with Protein G-Sepharose and rabbit anti-mGluR5. Samples were analyzed by western 

blot. Shown are representative immunoblotted for immunoprecipitated receptor with rabbit 

anti-mGluR5 and co-immunoprecipitated CaMKII with mouse anti-CaMKII. 

Representative immunoblots of four independent experiments. 
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Figure 3.3. Purified GST-fusion mGluR1a IL-2 peptide precipitates GFP-CaMKIIα. 

Protein purification and lysate preparation: GST-fusion peptides were generated in E. coli 

recombinant bacteria, induced with isopropyl 1-thio-β-D-galactopyranoside, sonicated, 

centrifuged and purified using Glutathione-Sepharose. HEK293 cells were transiently 

transfected with 0.5µg of cDNA mGFP encoding GFP-CaMKIIα. Cells were lysed and 

centrifuged. Affinity pull-down assay: GST-Fusion peptides GST-mGluR1a IL-2 and GST 

control were each incubated with 500 µg of GFP-CaMKIIα lysate. GRK2 is known to bind 

to the IL-2 and is used here as a positive control for IL-2 binding. Samples were analyzed 

by western blot. Shown are representative immunoblotted with mouse anti-CaMKII and 

rabbit anti-GRK2 to determine if GFP-CaMKIIα and GRK2 was pulled down with the 

purified GST-mGluR1a peptide. Representative immunoblots of three independent 

experiments. 
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3.2.1 CaMKIIα enhances agonist-stimulated mGluR5a internalization  

Our initial studies examined whether quisqualate-mediated internalization of 

mGluR5a was altered following GFP-CaMKIIα overexpression using a biotinylation 

internalization assay. Cell surface proteins were biotinylated on ice, and then warmed to 

37°C and stimulated with 50 µM quisqualate for 0, 5 and 15 minutes of stimulation in the 

presence or absence of ectopically expressed GFP-CaMKIIα. Internalized mGluR5 

following stimulation was compared to total cell surface mGluR5 expression. CaMKIIα 

co-expression significantly increased mGluR5a internalization at 15 minutes of agonist 

stimulation (Fig. 3.4). mGluR5a co-expressed with GFP-CaMKIIα exhibited a five-fold 

increase of agonist-induced loss of cell surface receptor as compared to mGluR5a co-

expressed with GFP-control.  

3.2.2 CaMKIIα enhances agonist-stimulated mGluR1a internalization 

As an extension of our work examining mGluR5a internalization, we tested 

whether the CaMKII inhibitor KN-93 would inhibit mGluR1a internalization following 15 

min of agonist activation. A biotinylation internalization assay was conducted as described 

above except that cells were pretreated with either 1 µM KN-93 or HBSS as a control. 

Figure 3.5 shows mGluR1a internalization was increased two fold in the presence of 

overexpressed CaMKIIα and this increased internalization was attenuated following KN-

93 treatment, although the attenuation did not reach a statistically significant value.  

Overall, the data supports the conclusion that CaMKIIα overexpression enhances group 1 

mGluR internalization and suggests that this may be dependent upon CaMKII catalytic 

activity.  
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Figure 3.4. CaMKIIα significantly enhances of mGluR5a internalization at 15 

minutes of quisqualate stimulation. A, shown are representative immunoblots for rabbit 

anti-mGluR5. HEK293 cells were transiently transfected with 0.5 µg of cDNA mGFP 

encoding CaMKIIα or pEGFP and 3 µg of pcDNA3.1 encoding FLAG-mGluR5a. Cell 

surface proteins were biotinylated. Cells were stimulated (50 µM quisqualate) and then 

biotin was stripped from the cell surface with MesNa (100 mM). Lysates were incubated 

with NeutrAvidin-agarose to pull out biotin and associated proteins. B, Immunoblots were 

analyzed by densitometry. Internalized mGluR5 was compared to total cell surface 

receptor. *, p < 0.05. Data are averaged means ± S.E.M. of four independent experiments 

completed in duplicate.  
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Figure 3.5. CaMKIIα does not significantly enhance agonist-stimulated mGluR1a 

internalization.  A, shown are representative immunoblots for rabbit anti-mGluR1a. 

HEK293 cells were transiently transfected with 0.5 µg of cDNA mGFP encoding 

CaMKIIα or pEGFP and 3 µg of pcDNA3.1 encoding FLAG-mGluR1a. Cells were 

pretreated with or without 1 µM KN-93 for 1 hour. Cell surface proteins were biotinylated. 

Cells were stimulated with 50 µM quisqualate for 15 minutes and then biotin was stripped 

from the cell surface with MesNa (100 mM). Lysates were incubated with NeutrAvidin-

agarose to pull out biotin and associated proteins. B, Immunoblots were analyzed by 

densitometry. Internalized mGluR1 was compared to total cell surface receptor. p > 0.05. 

Data are mean ± S.E.M. of seven independent experiments.  
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3.3 Effect of CaMKIIα on mGluR1a signalling 

Group I mGluRs are coupled via Gαq/11 to the activation of phospholipase C and 

the generation of diacylglycerol and inositol phosphate (IP).  CaMKIIα is a kinase that 

could contribute to the phosphorylation and desensitization of group I mGluR G protein 

coupling. We focused our investigation into mGluR signalling on mGluR1a. Signalling for 

this receptor is better established in this lab and therefore allowed us to compare these 

results with previous lab data. Therefore, we assessed the role of CaMKIIα in FLAG-

mGluR1a-stimulated IP formation in HEK 293 cells.  We found that the overexpression of 

GFP-CaMKII resulted in a statistically insignificant trend of increase in FLAG-mGluR1a-

stimulated IP formation in response to increasing concentrations of quisqualate (Fig. 3.6A), 

without affecting basal IP formation in FLAG-mGluR1a expressing cells (Fig. 3.6B).  The 

treatment of cells with shRNA to knockdown endogenous CaMKIIα expression (Fig. 

3.6C) did not result in an alteration in the dose-response curve for quisqualate-stimulated 

IP formation in HEK 293 cells transfected to express FLAG-mGluR1a (Fig. 3.6D), and did 

not affect basal IP formation (Fig. 3.6E).  Furthermore, CaMKIIα shRNA treatment did 

not significantly alter FLAG-mGluR1a expression (Fig. 3.6F).  Taken together, these 

results indicate that CaMKIIα does not contribute to the regulation of mGluR1a G protein 

coupling. 

To assess whether CaMKIIα interactions with mGluR1a might alter signalling via 

alternative cell signalling pathways, we investigated whether CaMKIIα overexpression 

might alter FLAG-mGluR1a-stimulated ERK1/2 phosphorylation.  We found that the 

overexpression of GFP-CaMKIIα did not alter FLAG-mGluR1a-mediated ERK1/2 
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phosphorylation in response to the treatment of cells with 50 µM quisqualate for 5 min 

(Fig. 3.7).  Furthermore, treatment of cells with 1 µM KN-93 had no effect on the extent of 

FLAG-mGluR1a-stimulated ERK1/2 phosphorylation in either the absence or presence of 

overexpressed GFP-CaMKIIα (Fig. 3.7).  These results suggest that, similar to G protein 

coupling, CaMKIIα does not contribute to the regulation of mGluR1a-mediated ERK1/2 

phosphorylation. 
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Figure 3.6. CaMKIIα does not have a significant effect on mGluR1a-mediated inositol 

phosphate (IP) formation. A, shown is FLAG-mGluR1a-induced IP formation stimulated 

with increasing concentrations of quisqualate (0–30 µM) for 30 minutes in the presence of 

either GFP (control) or GFP-CaMKIIα. B, shown is basal IP formation without quisqualate 

stimulation. HEK293 cells were transiently transfected with 0.5 µg of cDNA mGFP 

encoding CaMKIIα or pEGFP and 3 µg of pcDNA3.1 encoding FLAG-mGluR1a. p > 0.05. 

Values expressed at mean ± S.E.M. for four-seven independent experiments. C, 

representative immunoblots for mouse anti-CaMKII confirms shRNA knockdown of 

CaMKII. HEK293 cells were transiently transfected with 3 µg of pcDNA3.1 encoding 

FLAG-mGluR1a and with 1 µg of either scramble control or CaMKIIα shRNA 72 hours 

before experiment. D, shown is FLAG-mGluR1a-induced IP formation stimulated with 

increasing concentrations of quisqualate (0–30 µM) for 30 minutes with or without 

CaMKIIα knock down by shRNA. E, shown is basal IP formation without quisqualate 

stimulation. F, receptor cell surface expression was analyzed by flow cytometry to confirm 

that shRNA treatment did not alter receptor cell surface expression. p > 0.05. Values 

expressed at mean ± S.E.M. for four independent experiments.    
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Figure 3.7. CaMKIIα does not have a significant effect on mGluR1a-mediated 

ERK1/2 phosphorylation. A, shown are representative immunoblots for rabbit anti-ph-

ERK1/2 and rabbit anti-total-ERK1/2. HEK293 cells were transiently transfected with 0.5 

µg of cDNA mGFP encoding CaMKIIα or pEGFP and 3 µg of pcDNA3.1 encoding 

FLAG-mGluR1a. After transfection, cells were serum starved in DMEM overnight and for 

an additional hour on the morning of the experiment in HBSS. Cells were stimulated with 

50 µM quisqualate for 5 minutes. B, immunoblots were analyzed by densitometry. 

Phospho-ERK1/2 compared to total ERK1/2. p > 0.05. C, receptor cell surface expression 

was analyzed by flow cytometry to confirm that GFP-CaMKIIα expression did not alter 

receptor cell surface expression. Data are mean ± S.E.M. of five independent experiments. 
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CHAPTER 4 

DISCUSSION 
 

 The complex and sometimes controversial relationship between CaMKIIα and 

mGluRs is important for the better understanding of mGluR-mediated LTD and related 

plasticity. We first identified CaMKIIα as a potential mGluR interacting protein through a 

proteomic screen for novel mGluR associating proteins. We hypothesized that CaMKIIα 

associates with group 1 mGluRs and this association would alter mGluR1/5 signalling and 

internalization. Our studies have revealed several key findings: 1) CaMKIIα associates 

with both mGluR-1a and -5a in an agonist independent manner, 2) CaMKIIα enhances 

agonist-stimulated internalization of group 1 mGluRs, 3) CaMKIIα does not play a 

significant role in group 1 mGluR signalling through either IP3 or ERK1/2 

phosphorylation.  

4.1 Association between CaMKIIα and group 1 mGluRs 

This present thesis demonstrates the novel association of CaMKIIα with group 1 

mGluRs. First, we confirmed this association in HEK293 cells (Figure 3.1). We next 

replicated this experiment in adult mouse hippocampal tissue (Figure 3.2). This second 

experiment showed that the interaction could take place with endogenously expressed 

proteins in physiologically relevant tissue. Finally, we confirmed that the second 

intracellular loop of mGluR1a is sufficient for the interaction - that it does not require the 

full-length receptor (Figure 3.3). This last finding provides new functional significance for 

the IL-2 domain. Beyond the bounds of this current thesis we would like to further 

characterize this novel interaction. We would localize the specific binding domain within 
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the IL-2 required for CaMKIIα association by using four alanine scanning GST-Fusion IL-

2 peptides similar to that performed in Dhami et al. (2005).  

The data suggests that the association between CaMKIIα and mGluRs is agonist 

independent, which means that CaMKIIα binds to both the agonist bound and unbound 

receptor conformation. Similarly, this brings one to question if the receptor binds 

preferentially to activated CaMKIIα. Furthermore, does this interaction have significant 

implications for the regulation of CaMKIIα? We know that the interaction of CaMKIIα 

with NR2B enhances the autonomously active state of CaMKIIα (Bayer et al., 2001) and 

that this CaMKII-NR2B complex is essential for LTP (Barria and Malinow, 2005; Lisman 

et al. 2012). Could it be possible that CaMKIIα’s interaction with metabotropic glutamate 

receptors could also hold CaMKIIα in a persistently activated state? Mockett et al. (2011) 

discussed that CaMKIIα phosphorylation is dynamically regulated by mGluRs. That 

mGluRs associate with CaMKIIα could suggest a direct regulation of CaMKIIα activity 

and phosphorylation beyond activation by mGluR-mediated Ca2+ release.  

4.2 Role of CaMKII in group 1 mGluR internalization  

CaMKIIα is known to associate with and contribute to desensitization of ionotropic 

glutamate receptors, NMDAR and AMPAR (Colbran and Brown, 2004) and Gαq/11 

coupled GPCRs, D1/D2-R (So et al., 2007) and D3-R (Liu et al., 2009). Together, these 

findings allow us to reasonably suspect that the association of CaMKIIα with mGluRs 

could have similar implications for the mGluR family of receptors. The next goal of this 

current thesis was to investigate the role of CaMKIIα in mGluR desensitization.  

Our results show that CaMKIIα plays a significant role in agonist-induced mGluR 

internalization (Figures 3.4 and 3.5). These results are similar to those found by (Guetg et 
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al., 2010) that CaMKIIα significantly enhances agonist-induced internalization of another 

class C GPCR, the GABAB receptor. In our results, a more exaggerated enhancement of 

receptor internalization was observed for mGluR5a as compared to mGuR1a. This result 

for mGluR1a is congruent with previously published findings. Mundell et al. (2002) did 

not find a significant difference in glutamate-induced internalization of mGluR1a with 

treatment of KN-93, a CaMKII inhibitor; however, he did find significance in the 

internalization of the mGluR1c variant. Perhaps this receptor variant dependent difference 

could be explained by their structural differences - specifically the length of their C-

terminal tail. Mundell et al. (2002) observed that mGluR-1a internalized more slowly than 

shorter C-tail splice variants (mGluR-1b and -1c). He did, however, find significant 

heterologous internalization for all tested mGluR1 splice variants (mGluR-1a, -1b, and -

1c), which he suggested may have to do with a more drastic increase in intracellular Ca2+ to 

activate CaMKIIα. Together, these findings suggest that CaMKIIα plays a significant role 

in group 1 mGluR internalization; however, this role is more pronounced for shorter tail 

variants (mGluR-1c and mGluR-5a). It would be interesting to study the effect of 

CaMKIIα on mGluR-1b and -1c variants using a co-expression model compared to 

Mundell’s KN-93 inhibition. We predict that the agonist-induced internalization of 

mGluR1c would be enhanced by CaMKIIα similarly to our results for mGluR5a.  

4.3 Role of CaMKIIα in group 1 mGluR signalling  

We moved on to explore the effects of CaMKIIα on mGluR signalling because of 

the potential role for CaMKIIα in mGluR signalling attenuation through desensitization. 

We also wanted to see if overexpression of CaMKIIα could decrease inositol phosphate 

formation because CaMKIIα is known to promote mGluR-IP3R uncoupling by 
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phosphorylation of Homer3. CaMKIIα phosphorylates Homer3, which reduced Homer3’s 

affinity for its substrates including mGluR1a, phosphorylation of Homer3 changes mGluR 

initiated Ca2+ signalling pattern by uncoupling of mGluR1a from the IP3R (Mizutani et al., 

2008). However, we did not find a significant difference between IP3 formation with co-

expression of GFP-CaMKIIα compared to GFP control (Figure 3.7).  

Furthermore, we found no significant change in ERK1/2 phosphorylation with co-

expression of CaMKIIα or with pretreatment by KN-93 (Figure 3.8). Our findings in this 

study are contradictory to earlier findings, which state that CaMKIIα inhibitor, KN-62, 

decreased DHPG-mediated ERK phosphorylation (Choe and Wang, 2001). It should be 

pointed out that we used a different inhibitor KN-93 compared to KN-62. They also used 

immunoreactive imaging in rat striatal neurons and we used quantitative western blotting 

in HEK293 cell lysates. However, it still remains unclear if CaMKIIα plays a role in 

mGluR-mediated ERK signalling and if this is the route to protein synthesis required for 

expression of mGluR-LTD. Based on our findings it does not appear that CaMKIIα plays a 

significant role in mGluR signalling through either ERK or IP3. Therefore, it would be 

interesting to determine whether AKT or mTOR signalling pathways play a role in 

mGluR1/5-mediated protein transcription and LTD.  

4.4 A potential physiological role of CaMKII in mGluR1a LTD 

The relationship between CaMKIIα and mGluR1a-mediated signalling has been 

hinted at for sometime; however, conflicting results have delayed its full knowledge 

coming to fruition. Choe et al. (2001) published that CaMKIIα mediates DHPG-stimulated 

phosphorylation of Elk-1, ERK and CREB. Yet, Schnabel et al. (1999) published that 

treatment of CaMKII inhibitor, KN-62, facilitates mGluR-LTD. These two studies are 
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contradictory because phosphorylation of Elk-1, ERK and CREB are required for receptor 

mGluR-LTD but KN-62 blocks CaMKII’s ability to phosphorylate its substrates. This 

topic was further clouded by the larger discussion of the role of Ca2+, an indirect activator 

of CaMKII, in mGluR-LTD. Schnabel et al. (1999) went on to rule out Ca2+ as a mediator 

of LTD. This was supported by Fitzjohn et al. (2001) and again by Kasten et al. (2012). 

Another study showed evidence of Ca2+-dependent mGluR-LTD (Holbro et al., 2009). 

Connelly et al. (2011) suggested two forms of mGluR-LTD that are distinctly regulated: 

agonist and synaptic. Agonist mGLuR-LTD was regulated by Ca2+ whereas synaptic 

mGluR-LTD was not. This could help to explain why sometimes mGluR-LTD is 

dependent on Ca2+ and other times it is not. Moreover, mGluR-mediated Ca2+ release is 

required for some forms of LTD and also has been shown to activate CaMKIIα. CaMKIIα 

is known to be activated by other Gαq/11 coupled GPCRs via IP3-mediated Ca2+ release: 

D1/D2-R (Ng et al., 2010). Furthermore, it has recently been found to be activated by 

group 1 mGluRs (Mockett et al., 2011) and again through mGluR5 (Moriguchi et al., 

2009).  

CaMKIIα plays a role in mediating group 1 mGluR internalization and 

desensitization (Mundell et al., 2002). This was again confirmed in our results. In addition, 

there is now mounting evidence that implicates CaMKIIα in mGluR1a-mediated protein 

translation and eventual expression of synaptic specific LTD (Mockett et al., 2011; Park et 

al., 2008). Mockett suggested a role for CaMKIIα in mGluR-mediated protein synthesis 

required by LTD through regulating phosphorylation of initiation factor (elF4E). Park 

suggested it works through and elongation factor (eEF2). Other studies have suggested that 

CaMKIIα plays a role in mGluR-mediated ERK activation in LTD (Choe and Wang, 



 

 53 

2001). Our results showed no CaMKII-mediated change in ERK1/2 phosphorylation. It 

remains unclear if CaMKII plays a role in mGluR-mediated LTD through regulation of 

protein synthesis. Further studies are required to better understand the relationship between 

these two important regulators of synaptic plasticity.    

4.5 Summary 

This thesis elucidates the novel association between CaMKIIα and group 1 

mGluRs. More specifically CaMKIIα interacts within the second intracellular loop of 

mGluRs this opens up potential regulatory and functional significance for this domain 

among class C GPCRs. From our results it seems that CaMKIIα plays an important role in 

receptor internalization. This effect appears to be enhanced in shorter tail variants such as 

mGluR5a as compared to mGluR1a.  
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