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Abstract 
The resonant vibration motion of tall buildings due to dynamic loading, such as wind 

storms and earthquakes, can be reduced by adding passive dynamic vibration absorbers 

(DVAs). A single sway mode of vibration is usually considered, however, for certain 

structures, multiple modes may need to be suppressed. Furthermore, the location of the TLD 

on the floor plate is important for certain modes, such as the torsional mode. As a result, a 

three dimensional finite element structure-TLD system model capable of dynamically 

analyzing a 3D structure is developed and validated. Two different nonlinear TLD models 

are considered. A full dynamic analysis of a 3D single-story structure-TLD system is carried 

out utilizing the two TLD models and results under harmonic and random excitation are 

compared with experimental values. The three dimensional finite element structure-tuned 

liquid damper system model (3D-Structure-TLD) is expanded to include multiple tuned 

liquid dampers (3D-Structure-MTLD) and employed to estimate the response of a full-scale 

model of a 38-story multi-modal high-rise building subjected to wind tunnel loads recorded 

at different locations along the building’s width and height.  

To further improve TLD effectiveness, the nonlinear TLD fluid model is modified in 

order to simulate the influence of inclined damping screens. The updated passive TLD model 

is used to investigate the performance of both a single-story structure-TLD system and a 38-

story structure-MTLD system with inclined damping screens over a range of structural 

response amplitudes utilizing random excitation and wind tunnel loads, respectively. Thus, 

the methodology to optimize the effective damping provided by the TLD over a range of 

structural responses is addressed. 

Finally, a control strategy based on gain scheduling scheme is developed, by actively 

controlling the damping screen inclination angle. The updated nonlinear fluid model of a 

TLD equipped with inclined damping screens is used to determine the resulting TLD base 

shear force and free surface response of a novel semi-active (SA) TLD. The semi-active TLD 

control technique is also expanded to include semi-active multiple TLDs (3D-Structure-SA-

MTLD) and employed to analyze a 38-story building over a range of wind angles and return 

periods. The improved performance of a semi-active TLD system over a passive TLD system 

is addressed. 
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1 

Chapter 1: Introduction 

1.1. General Overview 
Implementation of supplemental damping systems (i.e. the dynamic vibration absorbers, 

DVAs) to mitigate excessive building vibrations induced by external dynamic loads (i.e. 

wind storms and earthquakes) has increased over the last several decades. A DVA increases 

the effective damping of a structure by dissipating a portion of the energy when it is 

subjected to movement, thus a portion of the energy transmitted to the primary structure by 

the external forces is dissipated. Considerations when designing high-rise structures are the 

utilization of space, prevention of urban sprawl and an efficient use of resources, especially 

when buildings are often built to accommodate the urban economic core. Therefore, as new 

structures become taller, lighter, more flexible and lightly damped, which magnifies their 

sensitivity to dynamic excitation, this leads to additional design considerations in order to 

satisfy both strength and serviceability requirements. 

1.2. Categorization of Structural Response Mitigation Systems 
Soong and Dargush 1997 divided structural response mitigation systems into three main 

categories; isolation, passive and semi-active/active systems. Table 1.1 shows examples of 

systems that belong to each of these categories. Isolation systems isolate the structure from 

input excitation (i.e. earthquake) and are typically located at the foundation level. The first 

four systems listed in the middle column of Table 1.1 represent direct passive energy 

dissipation systems. Direct energy dissipation mechanisms include the flow of a highly 

viscous fluid through an orifice and the shearing action of a polymeric/rubber-like material in 

viscoelastic dampers (Kareem et al. 1999). Indirect energy dissipation mechanisms consist of 

a secondary auxiliary system that provides effective damping by modifying the frequency 

response characteristics of the structure (Kareem 1983). Semi-active and active control 

systems offer improved performance over traditional passive systems. 

Housner et al. (1997) described different energy dissipation systems utilized for structural 

control including active, semi-active, passive and hybrid systems. Kareem et al. (1999) 

described different control systems installed in various buildings around the globe. Soong 

and Spencer (2002) summarized the state of the art of different energy dissipation systems 

and their structural applications. The main reason to implement a control system in a building 

is to improve its serviceability and/or its safety against natural hazards, which are mainly 
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wind and earthquakes. Schematic diagrams of various energy dissipation systems are shown 

in Figure 1.1 and discussed briefly in the following sections. 

1.2.1 Active Control Systems 
An active control system is one that uses an external power source to drive actuator(s) 

that apply forces to the structure in a prescribed manner. These forces can be used to both 

add and dissipate energy (Housner et al. 1997). In an active feedback control system, the 

signals sent to the control actuators, which are measured with physical sensors (optical, 

mechanical, electrical, chemical, etc.), are a function of the response of the structure. The 

effectiveness of an active control system could be compromised due to a loss of power 

during the loading event. As shown in Figure 1.1a, based on the measured excitation, the 

controller introduces a control force to the secondary mass through the actuator to counteract 

the structure’s motion. Although, active control systems have been implemented in the fields 

of mechanical and electrical engineering for a considerable period of time, applications in 

civil engineering are much more recent. Soong (1988) and Housner et al. (1996) describe the 

development of various active control systems and their uses in civil engineering.  

1.2.2 Passive Control Systems 
A passive control system does not require an external power source, which is the main 

advantage of this system type relative to an active control system (see Figure 1.1b). Passive 

control systems impart forces that develop in response to the motion of the structure. The 

main function of a passive control system is to alter the characteristics of the structure such 

as its damping and/or stiffness. Tuned mass dampers (TMD), tuned liquid column dampers 

(TLCD) and tuned liquid dampers (TLD) represent common dynamic vibration absorber 

passive control systems. Due to their simplicity and efficiency in reducing structural 

response, these passive control systems are commonly used in civil engineering applications. 

TMD, TLCD and TLD involve adding an auxiliary system to the primary system. Their basic 

function is to dissipate a portion of the input energy from the external excitation source (i.e. 

wind or earthquake), thereby, reducing the energy dissipation demand on the primary 

structure (Soong and Dargush 1997). 
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1.2.3 Hybrid Control Systems 
The hybrid control system typically implies the combined use of active and passive 

control systems. For example, a structure equipped with distributed viscoelastic damping 

supplemented with an active mass damper on or near the top of the structure, or a base 

isolated structure with actively controlled actuators to enhance performance (Housner et al. 

1997). As shown in Figure 1.1c, a tertiary mass is connected to the auxiliary secondary mass 

using a spring, damper and actuator. The motion of the secondary mass system is set and 

magnified by the active tertiary mass, making it more efficient. In this system, the active 

control is used only during large amplitude structural excitation. In the event of power 

failure, or extreme excitation, the system automatically switches to a passive control system, 

thus eliminating the risk of total system failure. Most of the applications of hybrid control 

systems have been in Japan (see Section 1.8 for full-scale application examples). A reduction 

of about 50% of uncontrolled structural response due to the addition of the hybrid control 

systems was reported in Kareem et al. (1999). 

1.2.4 Semi-Active Control Systems 
Semi-active control systems are a class of control systems for which the external energy 

requirements are typically orders of magnitude smaller than that of active control systems. 

Semi-active control systems do not add significant amounts of mechanical energy to the 

structural system (including the structure and the control actuators), therefore bounded-input 

bounded-output stability is guaranteed (Housner et al. 1997). Semi-active control systems are 

often viewed as controllable passive systems. Researchers have developed this control 

system by combining the best features of active and passive control systems. For a semi-

active control system, the properties of the auxiliary system are altered and optimized during 

the time history to achieve improved efficiency of the semi-active system leading to 

maximum structural response reduction. Examples of such semi-active systems include 

variable-orifice fluid dampers, variable-stiffness systems, controllable friction systems, 

controllable fluid dampers and controllable impact dampers (see Section 1.8 for full-scale 

application examples). 

Spencer and Soong (1999) describe structures with various control schemes as shown in 

Figure 1.2. When only the structural response variables are measured, the control 

configuration is referred to as feedback control since the structural response is continually 
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monitored and this information is used to make continual corrections to the applied control 

forces. A feedforward control results when the control forces are regulated only by the 

measured excitation, which can be achieved, for example, for earthquake inputs by 

measuring structural base accelerations. In cases where both the response quantities and 

excitation are utilized for control, the term feedback-feedforward control is used (Suhardjo et 

al. 1990). For example, an active structural control system has the basic configuration as 

shown schematically in Figure 1.2c. It consists of (a) sensors located about the structure to 

measure either external excitations, or structural response variables, or both; (b) devices to 

process the measured information and to compute the necessary control force needed based 

on a given control algorithm; and (c) actuators, usually powered by external sources, to 

produce the required forces.  

1.3. Passive/Active/Semi-Active TMD 
Mitigation of the induced vibration caused by external dynamic excitation, such as wind 

and earthquake, by employing supplemental damping systems has been widely investigated. 

Among passive control systems, tuned mass dampers (TMDs) have been widely used in 

engineering practice for wind and earthquake induced vibration mitigation of high-rise 

buildings (McNamara 1977; Kwok 1984; Kowk and Samali 1995; Kitagawa and Midorikawa 

1998; Breukelman and Haskett 2001; Soong 2002). By installing a TMD system in the 

primary structure, a secondary mass system is utilized to reduce accelerations. A TMD 

consists of a mass (𝑚𝑎), a spring (stiffness, 𝑘𝑎), and a dashpot (damping, 𝑐𝑎) as shown in 

Figure 1.3. The structure is represented similarly utilizing the generalized parameters of the 

target mode of vibration to be suppressed, where 𝑀∗, 𝐾∗ and 𝐶∗ are the generalized mass, 

stiffness and viscous damping, respectively. The simple mechanism of reducing building 

vibration is the inertial force from the TMD being exerted back onto the primary structure 

and applied anti-phase to the excitation force. 

In a TMD system, the secondary mass is attached to the main structure through a spring 

and a dashpot, where the dynamic characteristics of the secondary mass are related to those 

of the primary structure. The objective is to optimize the transfer of the vibration energy from 

the building to the damper by considering the resonant frequency of the damper. Therefore, 

three important characteristics should be considered. These characteristics are, the mass ratio 

of the secondary mass to the mass of the main system (𝜇), the frequency ratio of the two 
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systems (tuning ratio, 𝛺) and the damping ratio of the secondary system (𝜁𝑇𝑀𝐷). The TMD 

parameters are tuned to the selected mode of vibration to be suppressed. By selecting the 

appropriate values of these ratios, the dynamic response of the main system can be 

significantly reduced.  

The drawbacks of the above approach is that a TMD system provides protection against 

external dynamic loads with a frequency only near the natural frequency of the structure, 

which the TMD is tuned to. However, for certain types of excitation, wind for example, a 

range of frequencies or bandwidth usually exist. In other words, the TMD system reduces the 

resonant response values of the structure, in contrast with the mean or background response 

values. In fact, the fluctuations in the wind can be thought of as resulting from a composite of 

sinusoidally varying winds superimposed on the mean steady wind, which varies along the 

building’s height (see Figure 1.4). These sinusoidal variations have a variety of frequencies, 

amplitudes and phases that change with the wind speed (van der Tempel 2006; Manwell et al. 

2010). In addition, the optimal values of the TMD parameters depend on the type of external 

excitation (i.e. sinusoidal or random) and the dynamic properties of the structure (i.e. the 

natural frequency and the damping ratio), which can be response-amplitude-dependent 

(Tamura and Suganuma 1996). 

To improve the robustness of a TMD system, active and semi-active TMD systems have 

been investigated by several researchers, where values of the TMD system parameters are 

changed based on the frequency and the amplitude of excitation in real time (Hrovat et 

al.1983; Kim and Adeli 2005a; Kim and Adeli 2005b). In an actively or semi-actively 

controlled TMD system, the efficiency of the TMD system is improved by retuning its 

frequency (Varadarajan and Nagarajaiah 2004; Hazra et al. 2010; Roffel et al. 2011) or by 

adjusting the TMD damping ratio (Abé and Igusa 1996; Roffel et al. 2011). On the other 

hand, multiple TMD systems, where more than one TMD system is designed and distributed 

within the structure to cover a range of dominant frequencies, have been proposed to further 

enhance robustness (Kareem and Kline 1995). 

The semi-active concept has been successfully applied to a broad class of vehicle 

vibration isolation problems, ranging from tractors and other farm vehicles to high speed 

ground transportation vehicles (Margolis et al. 1975; Hrovat and Margolis 1981). The 

extension of the semi-active concept from the vehicle vibration isolation field to a structural 
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control of buildings was proposed in Hrovat et al. 1983. They indicated that employing the 

semi-active concept in buildings appears to be quite natural and extremely promising in view 

of the relatively low bandwidth requirements (less than ≈ 5 Hz), which compares favourably 

with bandwidth requirements for vehicle suspension (up to ≈ 50 Hz). 

The semi-active control is promising as an effective method of mitigating structural 

damage from large environmental loads, with two main benefits over active and passive 

control solutions. First, for semi-active control systems, a large power supply is not required 

to have a significant impact on the response. Therefore, a broad feedback adaptive range of 

control can be provided. Second, semi-active control systems are also strictly dissipative and 

do not add energy into the system, ensuring stability. Thus, semi-active control over time 

should be better able to respond to changes in structural behaviour, particularly due to 

nonlinearities, damage or degradation of both systems (i.e. the semi-active and active) (Chey 

et al. 2010). 

1.4. Passive TLCD/TLD 
The tuned liquid damper (TLD) has been utilized in the shipping industry since the 

beginning of the 20th century to prevent the rolling motion of large ships (Den Hartog 1985). 

Figure 1.5b shows the Frahm anti-rolling tank used in large ships. It consists of two tanks 

half filled with water, communicating through a water pipe below and through an air pipe 

above (Den Hartog 1985). Thus, the anti-rolling tanks were possibly the first use of tuned 

liquid column dampers (TLCD) as shown in Figure 1.5a. Sakai et al. (1989) proposed the 

TLCD to be used as a new type of DVA in structural applications (cable-stayed bridge 

towers). Similar to TLCD, TLDs were applied as vibration absorbers to reduce the 

oscillations of space satellites (Carrier and Mills 1960) and were called nutation dampers. 

Figure 1.5c shows the nutation damper, which consists of a ring of liquid around the satellite 

to reduce its rotation about the cylindrical principle axis. 

Tuned liquid dampers (TLD) and tuned liquid column dampers (TLCD) have been 

investigated by several researchers as another type of secondary mass system for structural 

application (Sakai et al. 1989; Wakahara et al. 1992; Kareem 1994; Won et al. 1996; Kareem 

et al. 1999; Tamura et al. 1996; Soong and Dargush 1997; Kareem et al. 1999; Yalla et al. 

2001; Tait et al. 2004a; Tait et al. 2005a). A TLD is a special type of TMD that consists of a 

rigid tank which is partially filled with a liquid, usually water. The sloshing liquid inside the 
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tank provides inertia forces that counteract the forces acting on the structure, thus reducing 

the building motion. A TLCD is a special type of TLD that relies on the motion of liquid 

column in a U-tube container to counteract the action of external forces acting on the 

structure, with inherent damping typically being introduced in the oscillating liquid column 

through an orifice. 

1.5. TLD Modelling Techniques 

1.5.1 Equivalent Mechanical Models 
As the same basic principles are applied in implementing a TLD to reduce the vibration 

motions of structures as a TMD, a TLD is often modelled as an equivalent mechanical 

system, allowing well established TMD theory to be implemented (see Figure 1.6). However, 

the primary difference from a TMD is the amplitude dependent (nonlinear) nature of the fluid 

response. Figure 1.7 shows a number of different proposed TLD equivalent mechanical 

models. The properties of the linear lumped mass system shown in Figure 1.7a can be 

derived using potential flow theory (Graham and Rodriguez 1952). This particular equivalent 

linear mechanical model allows a TLD to be modelled as an equivalent linear TMD (Kareem 

and Sun 1987). Sun et al. (1995) experimentally estimated amplitude dependent TMD 

parameters by matching the virtual mass and damping values of a TLD to that of a TMD at 

different excitation amplitudes (see Figure 1.7b). An extensive experimental program 

conducted by Yu et al. (1999) resulted in the development of an equivalent nonlinear TMD 

model (see Figure 1.7c). The model assumes the entire water mass participates in the 

response along with the non-linear stiffness hardening parameter and the non-linear damping 

based on the excitation amplitude. The model utilizes experimentally calibrated energy 

equivalent amplitude dependent stiffness and damping parameters. Tait (2004) expanded on 

Yu et al. (1999) by considering only the participating portion of the fluid (𝑚𝑎) in a TLD 

contributes to the inertial force, while the non-participating portion of the fluid (𝑚∘) is added 

to the primary mass of the structure (see Figure 1.6c). The dynamic characteristics of the 

equivalent TMD model, in terms of mass, stiffness and damping parameters were determined 

by energy equivalence from a series of shake table tests (Tait et al. 2004a) and the validity of 

the nonlinear TLD model was examined (Tait et al. 2004b). A sloshing-slamming model has 

been introduced by Yalla (2001), which accounts for the impact forces that develop from the 

sloshing water slamming on the container walls at higher response levels (see Figure 1.7d). 
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1.5.2 Fluid Models and Energy Dissipating Devices 
The main source of damping for a TLD without additional damping devices arises from 

viscous dissipation in the boundary layers at the walls and bottom of the tank and from free 

surface contamination (Miles 1967). The inherent damping (𝜁𝑇𝐿𝐷) for a TLD without 

additional energy dissipating devices is usually significantly less than optimal, resulting in a 

less effective vibration absorber. Additionally, the response of an under-damped TLD is 

more nonlinear and less controllable, reducing its reliability. Often, poles, screens, and other 

objects are submerged in the water to provide additional energy dissipating mechanisms as 

the damping provided by the water alone is often insufficient. Usually, the TLD is used as a 

water storage tank preventing the use of a higher-viscosity liquid. Several approaches have 

been implemented to increase the energy dissipated by the sloshing fluid, including 

roughness elements (Fujino et al. 1988), surface contaminants (Tamura et al. 1995), wave 

breaking in shallow water TLDs (Sun et al. 1995), and nets or screens (Welt 1983; Noji et al. 

1998; Warnitchai and Pinkaew 1998; Kaneko and Ishikawa 1999). Warnitchai and Pinkaew 

(1998) developed a mathematical model based on potential flow theory and determined the 

damping characteristics of poles and wire-mesh screens. In this section, several fluid 

numerical models of TLDs without/with screens are briefly introduced. 

1.5.2.1 TLD Modelling with No Screens 
A nonlinear TLD numerical model, based on shallow water wave theory, was developed 

by Lepelletier and Raichlen (1988). Sun et al. (1992) developed a nonlinear model for a 

rectangular TLD, which utilized the shallow water wave theory with consideration of wave 

breaking. Faltinsen et al. (2000) developed a method, which included the coupling of 

sloshing modes through the nonlinear free surface boundary conditions. Bulian et al. (2010) 

studied the roll motion response of a single degree of freedom (SDOF) structural system 

connected to a rigid rectangular partially filled liquid tank. The TLD wave breaking effects 

on the response curves were characterised by performing tests on liquids of different 

viscosity and the capabilities of smoothed-particle hydrodynamics (SPH) to treat this 

coupling problem were assessed. Marsh et al. (2010) demonstrated the stability of the SPH 

method to numerically model the sloshing dynamics in an egg-shaped shell. 

http://www.sciencedirect.com/science/article/pii/S002074621100093X#bib21
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1.5.2.2 TLD Modelling with Screens 
The addition of damping screens, installed inside the tank to increase the amount of 

energy dissipated by the sloshing water motion, was studied (Noji et al. 1998; Fediw et al. 

1995; Tait et al. 2005b). A linear fluid model (Fediw et al. 1995) and a nonlinear fluid model 

(Kaneko and Ishikawa 1999) that simulate the sloshing fluid of a TLD equipped with 

damping screens are examined by Tait et al. (2005b). In both models, it is assumed that the 

liquid is inviscid, irrotational and incompressible; the pressure is constant on the free surface; 

the quiescent water depth is constant; and the tank walls are rigid. In addition, it is assumed 

that the water depth to tank length ratio (ℎ/𝐿) for a TLD equipped with damping screens, 

satisfies the shallow water wave theory limitations. The effect of the screens is simulated in 

both models through a loss coefficient (𝐶𝑙). Findings from Tait et al. (2005b) indicate that a 

linear fluid model is capable of providing a first estimate of the energy dissipation 

characteristics of a TLD. However, a linear model does not provide realistic estimates of the 

free surface response amplitude. A nonlinear fluid model can accurately describe the free 

surface motion, the resulting base shear forces and the energy dissipated over a range of 

excitation amplitudes.  

Fediw (1992) and Tait (2004) tested and modelled screens in a TLD showing that their 

drag characteristics can often be considered independent of the sloshing fluid inside a TLD 

with wire-mesh and thin-sharp-edged-horizontal-slat screens, respectively. Both studies 

utilized a linearized velocity loss coefficient. Cassolato (2007) experimentally studied thin 

sharp-edged-horizontal slat screens held at various fixed angles in a tuned liquid damper. 

Also, Cassolato (2007) employed two existing formulations of the pressure loss coefficient 

for inclined screens (𝐶𝜃) and developed a new one, using results from the study, to 

theoretically investigate the effect of fixed inclined damping screens using two linear 

numerical models. The two linear flow models were based on shallow water wave theory and 

potential flow theory. The linear model calculations were found to deviate from the 

experimental test results at high screen inclination values (i.e. 𝜃 > 45.0∘), as the linear 

models could not capture the actual response of the nonlinear free-surface elevation (Fediw 

1992; Tait 2004; Tait et al. 2004a; Tait et al. 2004b). Love and Tait (2011) developed a non-

linear multimodal model, which describes the sloshing behaviour of a fluid in a flat-bottom 

tank of arbitrary geometry. In that model, the mode shapes of the sloshing fluid were found 

by solving the Helmholtz equation over the tank domain using the finite element method, 
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while the Bateman-Luke variational principle was used to develop a system of ordinary 

differential equations which account for the coupling of the sloshing modes through the non-

linear free surface boundary conditions. Also, damping was incorporated into the model by 

considering the drag produced on a set of damping screens inserted in the fluid. 

1.6. Advantages and Disadvantages of TLCD/TLD 
Similar to a TMD system, TLD and TLCD systems can reduce the response of the main 

system by modifying its frequency response function. In both systems (i.e. TLD and TLCD), 

the secondary mass is liquid and the damping forces are established through the motion of 

liquid through viscosity, wave breaking and/or damping screens in the TLD (Kaneko and 

Ishikawa 1999; Tait et al. 2004a; Tait et al. 2004b; Tait et al. 2005a; Tait et al. 2005b), while 

the motion of liquid in a U-shape tube container through an orifice in the TLCD (Kareem et 

al. 1999; Yalla et al. 2001). It has been reported from an investigation on vibration control of 

a 76-story benchmark building that the performance of a passive TLCD is similar to that of a 

passive TMD system for (Samali et al. 1998). 

Several advantages of using TLCD/TLD have been found over the more popular TMD 

system. These advantages include low construction costs, installation and maintenance costs, 

ease of tuning to the desired frequency and ability to apply as a simple retrofitting tool to 

existing structures, such as in Yokohama marine tower (Tamura et al. 1995). In addition, 

TLD/TLCD systems can provide dual-function capability to be used as emergency fire water 

storage. Using a liquid in the TLCD/TLD systems can be effectively mobilized at all levels 

of structural motion, thereby eliminating the activation required in conventional TMD 

systems, where a certain level of threshold excitation is required to activate the TMD system.  

Bi-directional TLDs, which act as two independent TLDs, can be used to control two 

vibration modes of the structure in two orthogonal directions, simultaneously (Tait 2004; Tait 

et al. 2005a; Tait et al. 2008). Circular tanks have been used to mitigate resonant motions in 

axis-symmetric structures (Tamura et al. 1995). A bi-directional tuned liquid column damper 

with period adjustment (LCD-PA) was experimentally investigated and installed in a 

structure (Shimizu and Teramura 1994). Soong and Dargush (1997) indicated that 

rectangular tanks may be used to mitigate the motions of a structure with different 

fundamental frequencies in two major directions.  
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Utilizing TLD devices to suppress bi-directional (2D) resonant structural motions, such 

as two fundamental sway modes of a structure simultaneously was studied by Tait et al. 

(2007). The study experimentally examined 2D structure-TLD behavior over a range of 

excitation amplitude values covering the practical range of serviceability accelerations for 

buildings subjected to wind loads. Experimental results were used to verify the applicability 

of a uni-directional structure-TLD numerical model to 2D structure-TLD analysis. Findings 

indicated that the structure-TLD model was capable of describing the structure-TLD 

response within the range of system response amplitudes experimentally tested. Also, the 

study indicated that by choosing the appropriate aspect ratio for the TLD it can be used to 

reduce structural responses in two modes of vibration simultaneously with no penalty on its 

performance. 

The full scale installation of a bi-directional passive tuned liquid column damper (TLCD) 

on a 67 m steel communications tower has been reported by Hitchcock et al. (1999). The 

device did not include an orifice to dissipate energy, as such; it was not possible to control 

the damping ratio of the TLCD. It was acknowledged that due to the absence of an orifice, 

the damping ratio of the TLCD was not expected to be the optimum. It was also observed 

that TLCD did not perform optimally at various wind speeds. 

Furthermore, the ability dictate the shape of the TLD tank provides an additional space 

flexibility feature. In other words, simple TLD tank geometries may not always be feasible 

due to space limitations. While the non-linear modelling of sloshing fluid was limited to 

tanks of simple geometries, Love and Tait (2011) developed a non-linear multimodal model, 

which describes the sloshing behaviour of a fluid in a flat-bottom tank of arbitrary geometry. 

In addition, TLCD/TLD system parameters can be easily tuned, when there are changes in 

the dynamic characteristics of the primary structure after construction. Meanwhile, 

TLCD/TLD systems have some disadvantages due to their nonlinear amplitude dependent 

response behaviour, and only a portion of the water mass participates, thus a relatively larger 

space (particularly height) is required to achieve the desired mass ratio compared to a TMD. 

The performance of a TLD for a given mass ratio (𝜇) is a function of the tuning ratio (𝛺) 

and the inherent TLD damping ratio (𝜁𝑇𝐿𝐷) (Tait et al. 2004b). The damping ratio of a TLD 

equipped with fixed vertical damping screens is related to the screen pressure loss coefficient 

(𝐶𝑙) and the square of the fluid velocity at the screen location (Tait 2004). Therefore, the 
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inherent damping ratio that develops due to the screen is amplitude dependent. As a result, a 

TLD equipped with damping screens may only operate at maximum efficiency at a single 

excitation amplitude, unless the screen angle is adjusted (Cassolato 2007). 

1.7. Adjustable Inherent Absorber Damping Ratio 
The required level of damping can be rapidly achieved and controlled through the 

damping screen inclination in a TLD system (Cassolato and Tait 2005), or through an orifice 

in a TLCD system (Yalla et al. 2001) making both systems suitable for semi-active control 

applications. As a result, a number of studies focused on overcoming limitations of 

conventional passive TLCD systems have been carried out. Haroun et al. (1994 and 1995) 

introduced the concept of a hybrid liquid column damper by actively controlling the orifice 

opening ratio. Yalla et al. (2001) introduced a semi-active TLCD that achieves variable 

damping by using a controllable valve to adjust the orifice opening. They also studied the 

effectiveness of different control algorithms for a TLCD for structural control applications. 

Yalla and Kareem (2003) examined the performance of a prototype semi-active TLCD. In 

addition, they verified a control strategy, based on gain scheduling, with experimental results. 

Kim and Adeli (2005) proposed wind-induced motion control of 76-story benchmark 

building using a hybrid damper-TLCD system. Wang et al. (2005) introduced a semi-active 

TLCD using magneto-rheological fluid (MR-TLCD) for wind-induced vibration mitigation 

of tall building structures. 

A new type of actively tuned liquid damper to reduce vibrations in large civil structures, 

which may be induced by earthquake or high winds, was suggested by Lou (1996). The 

effective length of the liquid damper tank determines the natural frequency of the liquid, and 

thus the effectiveness of the damper at particular excitation frequencies. The liquid damper 

was tuned by rotating baffles to regulate the effective length of the damper tank. In addition, 

a TLD equipped with rotatable baffles (see Figure 1.8) was studied experimentally by Zahrai 

et al. (2012). The main idea behind the baffles was to compensate the effects of probable 

mistuning of the TLD. By observing the performance of TLD with baffles, the study 

investigated the influence of a number of parameters, which included the following: baffle 

angle, frequency ratio, mass ratio and the effect of probable mistuning by varying the depth 

of water and orientation of the baffles. Results from the study indicated that the displacement 

http://sfx.scholarsportal.info/?ctx_ver=Z39.88-2004&url_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&ctx_id=10_1&rft.auinit=H&rft.volume=131&rft.issn=0733-9445&rft.genre=article&rft.issue=12&rft.eissn=1943-541X&rfr_id=info%3Asid%2Fwww.exlibrisgroup.com%3Abx-menu&rft.stitle=JOURNAL%20OF%20STRUCTURAL%20ENGINEERING%20RESTON&rft.aufirst=Hongjin&rft_id=urn%3Abx%3A10891101&rft.atitle=Wind-Induced%20Motion%20Control%20of%2076-Story%20Benchmark%20Building%20Using%20the%20Hybrid%20Damper-TLCD%20System&rft.aulast=Kim&rft.jtitle=Journal%20of%20structural%20engineering&rft.date=2005&rft.au=Kim%2C%20Hongjin&rft.epage=1802&rft.spage=1794&rft.auinit1=H&rft.object_id=954925234021&rft_dat=urn%3Abx%3A10891101&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&sfx.previous_request_id=915035&svc.fulltext=yes&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc
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and acceleration responses of a five story benchmark problem under scaled down 

earthquakes decreased up to 24.1% and 27.2%, respectively.  

Few studies have focused on structural control of tall buildings using semi-active 

single/multiple TLDs. Thus, it is important to further investigate TLDs with variable 

damping that can be adjusted through various mechanisms to achieve optimal control 

performance for a wide range of loading conditions and structural uncertainties in a semi-

active mode of control. The ability to passively control the inherent damping ratio of a TLD 

(𝜁𝑇𝐿𝐷) over a range of excitation amplitudes was first introduced theoretically in Cassolato 

and Tait (2005). The modification of 𝜁𝑇𝐿𝐷 by adjusting the screen angle, which alters the 

screen loss coefficient (𝐶𝜃), has been experimentally investigated (Cassolato 2007; Cassolato 

et al. 2011). Results indicated that rotating the damping screens inside the TLD to adjust the 

screen loss coefficient (𝐶𝜃) is a plausible method to maintain a constant level of 𝜁𝑇𝐿𝐷 over a 

range of excitation amplitudes. 

Thus, the semi-active TLD operating principle can be achieved through the ability to vary 

the inclination angle (𝜃) of adjustable damping screens. A semi-active TLD is a consequence 

of the fact that the control of the damping screen inclination angle requires a small amount of 

input energy, as opposed to a fully conventional passive TLD. However, the required amount 

of energy to change the inclination angle is expected to be small in comparison with the total 

energy dissipated by the damping screens. In this study, the semi-active TLD is essentially a 

time-varying damper in which the damper parameter (𝜁𝑇𝐿𝐷) is varied with time and requires 

only a small amount of energy to modulate the damping. In contrast with the fully active 

TMD control system, it is expected that the semi-active TLD actuator will require very low 

input power, basic control hardware/software and low construction costs. 

1.8. Full-Scale Damper Applications 

1.8.1 Example TMD Applications 
The following provides examples of TMD applications. Two TMDs were installed in the 

244 m tall Hancock Tower in Boston, NA, USA at opposite ends of the 58th floor to 

counteract wind-induced torsional motions (Kareem et al. 1999). Each TMD is essentially a 

steel box filled with lead weighing 300 tons that is activated at 3 milli-g of motion. Another 

TMD system, consisting of a 410 ton concrete block with two-spring damping mechanisms, 

was installed in the 278 m high Citicorp Building in New York, NY, USA. One spring- 
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damping mechanisms was installed for the north-south motion and the other for east-west 

motion on the 63rd floor (Kareem et al. 1999). The block motion is arrested by 2 pneumatic 

springs tuned to the natural period of the building. A series of 12 hydraulic pressure-balanced 

bearings have been used to balance the concrete block. A 40% reduction of the wind-induced 

response in both directions simultaneously has been achieved (Wiesner 1979). In Canada, the 

554 m high CN tower in Toronto, ON (see Figure 1.9) has 20 ton donut-shaped lead 

pendulum TMDs installed during the construction in 1975 (Kareem et al. 1999). A 

pendulum-type TMD is utilized in Taipei 101 in Taipei, Taiwan. It consists of a 680 ton steel 

ball suspended from cables at the 92nd floor and visible from observation decks and a 

restaurant (see Figure 1.10). It represents the largest anti-sway system in the world (Hadenius 

2004). The pendulum-type TMD, which works on the same principle as a typical 

translational TMD, uses swinging motion to exert its inertial restoring force onto the 

structure (Gerges and Vickery 2003). 

1.8.2 Example HMD/AMD Applications 
The hybrid mass damper (HMD) is a common control device employed in full-scale civil 

engineering applications (Spencer and Nagarajaiah 1999). An HMD is a combination of a 

passive tuned mass damper (TMD) and an active control actuator. The ability of this device 

to reduce structural response relies primarily on the natural motion of the TMD. The forces 

from the control actuator are employed to increase the efficiency of the HMD and to increase 

its robustness to changes in the dynamic characteristics of the structure. The energy and 

forces required to operate a typical HMD are far less than those associated with a fully active 

mass damper system of comparable performance. 

An example of such an application is the HMD system installed in the Sendagaya INTES 

building in Tokyo in 1991 (see Figures 1.11a and 1.11b). The HMD was installed at the 11th 

floor and consists of two masses to control transverse and torsional motions of the structure, 

while hydraulic actuators provide the active control capabilities. The top view of the control 

system is shown in Figure 1.11c, where ice thermal storage tanks are used as mass blocks so 

that no extra mass was introduced. The masses are supported by multi-stage rubber bearings 

intended for reducing the control energy consumed in the HMD and for ensuring smooth 

mass movements (Higashino and Aizawa 1993; Soong et al. 1994). 
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Variations of such an HMD configuration include multi-step pendulum HMDs (see 

Figure 1.12b), which have been installed in, for example, the Yokohama Landmark Tower in 

Yokohama, Japan (see Figure 1.12a) (Yamazaki et al. 1992) and in the TC Tower in 

Kaohsiung, Taiwan. Additionally, the DUOX HMD system, which consists of a TMD 

actively controlled by an auxiliary mass, has been installed in the Ando Nishikicho Building 

in Tokyo (see Figure 1.12c). Design constraints, such as severe space limitations, can prevent 

the use of an HMD system. Thus, the active mass damper (AMD) system was designed and 

installed in the Kyobashi Seiwa building in Tokyo and the Nanjing Communication Tower in 

Nanjing, China (Spencer and Nagarajaiah 2003). The Kyobashi Seiwa building, the first full-

scale implementation of active control technology, is an 11-story building with a total floor 

area of 423 m2 (see Figure 1.13a). The control system consists of two AMDs where the 

primary AMD is used for transverse motion and has a weight of 4 tons, while the secondary 

AMD has a weight of 1 ton and is employed to reduce torsional motion (see Figure 1.13b). 

The role of the active system is to reduce building vibration under strong winds and moderate 

earthquake excitations and consequently to increase occupant comfort. 

In the case of the Nanjing Communication Tower (See Figure 1.14a), numerous physical 

constraints had to be accounted for the system design of the mass damper (Spencer and 

Nagarajaiah 1999). The physical size of the damper was constrained to a ring-shaped floor 

area with inner and outer radii of 3 m and 6.1 m, respectively. In addition, the damper was by 

necessity elevated off the floor on steel supports with Teflon bearings to allow free access to 

the floor area. The final ring design allowed the damper to move ± 750 mm from its rest 

position. Simulations indicate that this stroke is sufficient to control the tower; however, a 

greater stroke would allow substantially more improvement in the response. The strength of 

the observation deck limited the weight of the damper to 60 tons. Lack of sufficient lateral 

space made the use of mechanical springs impractical for restoring forces. Thus the active 

control actuators provide restoring force as well as the damping control forces.  The final 

design of the active mass damper is shown in Figure 1.14b, which uses three servo-controlled 

hydraulic actuators, each with a total stroke of ±1.50 m and a peak control force of 50 kN. 

These actuators are arranged 120∘ apart around the circumference of the ring. The actuators 

control three degrees of freedom: two orthogonal lateral directions of motion and torsional 

rotation, which is held to zero. Since the frictional force between the Teflon bearings and 

mass can have a critical influence on the response of the system, a detailed analysis was 
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performed to verify the system performance in the presence of this friction (Reinhorn et al. 

1998). 

1.8.3 Example TLCD/TLD Applications 
The use of TLCD/TLDs has gradually increased as alternative systems to mitigate 

structural response since their initial applications in civil engineering in the late 1980s. TLDs 

were first installed in Japan, where most of the initial research and development initiated 

(Tamura et al. 1995; Kaneko and Ishikawa1999). Full-scale experiments on the effectiveness 

of TLDs in buildings under wind excitations have been conducted on four buildings that are 

frequently referenced as outlined in Tamura et al. 1995. Multi cylindrical TLDs were 

installed in all four structures: the Nagasaki Airport Tower, the Yokohama Marine Tower, 

the Shin-Yokohama Prince Hotel (SYPH) and the Tokyo International Airport Tower. A 

TLD system consists of a multi-layer stack of 9 circular containers each 2 m in diameter and 

22 cm high, yielding to a total height of 2 m was installed in the SYPH (see Figure 1.15). As 

a result, the root-mean-square (RMS) accelerations in each direction were reduced in the 

range between 50% and 70% at wind speeds over 20 m/s. Extra reduction was achieved at 

higher wind speeds when TLDs achieving their optimal damping (Tamura et al. 1995).  

Two more recent applications of TLD and TLCD that have been installed in Canada are 

One King West in Toronto, ON and One Wall Centre in Vancouver, BC (see Figure 1.16). 

One King West in Toronto has a height of 176 m and a slenderness ratio of 1:11 

(SkyscraperPage.com). Two insulated rectangular concrete TLDs equipped with damping 

screens were installed on the fifty first floor on each side of the building. The 12x9x2 size 

tanks were divided into 5 chambers by cross-walls causing predominate water flow in the 

East-West direction, which is the critical direction for the One King West (Discovery 2005). 

One Wall Centre is the tallest building in Vancouver with a 150 m high, a 21.3 m wide 

elliptical footprint and 7:1 slenderness ratio. Two TLCDs were installed that consist of a 4-

story high, 189000 Liter U-shaped water tank oriented across the narrow aspect of the 

building. An estimated $2M in construction costs were saved compared to alternative 

conventional damping systems. Additional overall cost savings were achieved by using water 

in TLCD tanks to meet fire suppression water storage requirements (Motioneering 2004). 

This solution was the first of its kind and size in the world. 
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1.9. Impetus of Study 
i. The resonant vibration motion of tall buildings due to dynamic loadings, such as wind 

and earthquake, can be reduced by adding passive dynamic vibration absorbers 

(DVAs). The inertia forces, which develop from the DVA motion, modify the 

frequency response of the primary structure’s mode to which the DVA is tuned. A 

single sway mode of vibration is usually considered, however, for certain structures, 

multiple modes may need to be suppressed. In addition, the location of the TLD on 

the floor plate is important for certain modes, such as the torsional mode. Adding 

TLDs to suppress modes of interest may lead to the excitation of higher structural 

modes. These are important issues to be investigated using the proposed three 

dimensional finite element model, which considers exact locations of TLDs, multiple 

building modes of vibration and distribution of load over the entire building width and 

height. 

ii. Full-scale implementation of active control systems have been realized in several 

structures, mainly in Japan; however, cost effectiveness and reliability considerations 

have limited their wide spread acceptance (Spencer and Nagarajaiah 2003). Thus, 

there is a growing need for innovative and effective techniques to reduce the vibration 

responses of increasingly taller, lighter, and more flexible buildings. Because of their 

mechanical simplicity, low power requirements, and large controllable force capacity, 

semi-active control systems provide an attractive alternative to active and hybrid 

control systems for structural vibration reduction. The implementation of passive 

TLDs in real buildings has shown the benefits and effectiveness of using this cost 

effective control system. Therefore, developing a novel semi-active TLD control 

system is of significant interest. In addition, implementing the novel semi-active TLD 

control technique in the proposed three dimensional finite element model will provide 

an important tool to build better performing and more economical high-rise buildings.  

1.10. Research Objectives 
The main objectives of this research are: 

i. Develop and validate a three dimensional finite element structure-tuned liquid damper 

system model (3D-Structure-TLD) employing two nonlinear TLD models. The first, a 
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nonlinear TLD fluid model; and the second, an equivalent amplitude dependent TMD 

model. 

ii. Expand the 3D-Structure-TLD system model to a multiple TLD system model (3D-

Structure-MTLD) and employ it to evaluate the dynamic response of an actual multi-

modal high-rise building utilizing wind tunnel loading data with TLDs to suppress the 

first two and the first three modes of vibration, respectively. 

iii. Update and validate the nonlinear TLD fluid model to simulate TLDs equipped with 

inclined damping screens. 

iv. Investigate the performance of an actual multi-modal high-rise building with TLDs 

equipped with inclined damping screens over a wide range of return period wind 

speeds from 1 month to 50 years. 

v. Develop and validate a novel semi-active TLD control technique based on a gain 

scheduling scheme and implement the novel control technique in a three dimensional 

finite element model (3D-Structure-SA-TLD). 

vi. Expand the novel control technique to semi-active multiple TLD system model (3D-

Structure-SA-MTLD) for multi-modal high-rise building applications. 

vii. Investigate the applicability of utilizing the semi-active multiple TLD control 

technique to enhance structural responses of an actual multi-modal high-rise building 

subjected to wind tunnel loading data at: 

a. Different loading directions from 0∘ to 360∘. 

b. Different loading return period wind speeds from 1 month to 50 years. 

1.11. Organization of Thesis 
This thesis uses the Integrated-Article format. As a result, each chapter includes its own 

bibliography. As the chapters are discrete but related, overlaps occur in the introduction of 

each of the chapters, allowing the chapters to become stand-alone documents. 

Chapter 2 presents a three dimensional finite element model capable of simulating the 

behaviour of a 3D structure, using 3D beam elements under a source of dynamic loading (i.e. 

wind or earthquake). The finite element model is used to estimate the response of a structure 

outfitted with TLDs (3D-Structure-TLD). The base shear force resulting from the TLD is 

estimated using two nonlinear TLD models; a nonlinear TLD fluid model that simulates the 

TLD sloshing force and an equivalent amplitude dependent TMD model. Numerical 
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simulations from the finite element model utilizing both nonlinear TLD models are compared 

to shake table experimental results found in the literature. 

Chapter 3 presents a full dynamic analysis of an actual 38-story high-rise building 

(Indianapolis building) equipped with TLDs to suppress the first two and the first three 

modes of vibration, respectively, employing the 3D finite element structure-multiple tuned 

liquid damper system model (3D-Structure-MTLD). A total of 36 numerical simulations 

utilizing different wind tunnel loading directions in the range between 0∘ and 360∘ are 

conducted.  

Chapter 4 describes the steps employed to update the nonlinear TLD fluid model to 

simulate TLDs fitted with inclined damping screens and compares the numerical simulation 

of the updated model with experimental results found in the literature. The updated nonlinear 

TLD fluid model is implemented in the 3D finite element model, developed in Chapter 2, and 

employed to examine the enhanced efficiency of a TLD fitted with inclined damping screens 

utilizing a 3D single-story structure. Full dynamic analysis is conducted utilizing the updated 

numerical simulation to investigate the behaviour of an actual 38-story high-rise building 

equipped with TLDs fitted with inclined damping screens to suppress the first three modes of 

vibration over a wide range of return period wind speeds between 1 month and 50 years. 

Chapter 5 presents the steps followed to develop and validate a novel semi-active TLD 

control system based on a gain scheduling scheme (3D-Structure-SA-TLD). The goal of this 

semi-active system is to achieve optimal passive performance over a range of excitation 

amplitudes and wind angles. The semi-active TLD control technique is implemented in the 

3D finite element model, developed in Chapter 2, and employed to conduct a performance 

comparison between the conventional passive and semi-active TLD control systems utilizing 

a 3D single-story structure. 

Chapter 6 describes the steps followed to expand the novel semi-active TLD control 

system (3D-Structure-SA-TLD) to a semi-active multiple TLD control system (3D-Structure-

SA-MTLD). The expanded control system is subsequently implemented in a three 

dimensional finite element model developed in Chapter 2. A full dynamic analysis is 

conducted to investigate the applicability of utilizing the expanded semi-active multiple TLD 

control technique to enhance structural responses of an actual 38-story multi-modal high-rise 

building subjected to wind tunnel loading data at different directions in the range between 0∘ 
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and 360∘ and at different return period wind speeds in the range between 1 month and 50 

years. 

Chapter 7 reviews and discusses some of the important research contributions and 

conclusions drawn from the presented research and highlights areas of future work. 
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Table 1.1. Structural Response Mitigation Systems (from Soong and Dargush 1997) 

Seismic Isolation Passive Energy Dissipation Semi-Active and Active 
Control 

Elastomeric Bearings Metallic Dampers Active Bracing Systems 

 Friction Dampers Active Mass Dampers 

Lead Rubber Bearings Viscoelastic Dampers  

 Viscous Fluid Dampers Variable Stiffness or Damping 
Systems 

Sliding Friction Pendulum Tuned Mass Dampers  

 Tuned Liquid Dampers Smart Materials 
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           (a) (b) (c)             (d) 

Fig. 1.1. Schematic of Various Control Systems (a: actuator, Con: control, Ex: excitation, S: sensor) 
(from Kareem et al. 1999) 

 
 

 
(a) Conventional Structure 

 

 
(b) Structure with Passive Energy Dissipation  

 

 
(c) Structure with Active Control 

Fig. 1.2. Structures with Various Control Schemes (from Spencer and Soong 1999) 
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(d) Structure with Hybrid Control 

 

 
(e) Structures with Semi-Active Control 

Fig. 1.2.    (cont.) 
 
 
 

 
Fig. 1.3. Theoretical Representation of a Structure-DVA System (form Cassolato 2007) 
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Fig. 1.4. Experimental Speed Profile (from van der Tempel 2006) 

   
(a) (b) (c) 

Fig. 1.5. (a) TLCD; (b) Frahm’s Anti-Rolling Tank; and (c) Nutation Damper in Satellite (form 
Cassolato 2007) 

 
 

   
(a) (b) (c) 

Fig. 1.6. (a) Structure-TLD System; (b) Theoretical Representation; and (c) TMD Analogy (form 
Cassolato 2007) 
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(a) Equivalent Linear Model  

(Kareem and Sun 1986) 
(b) Virtual Mass and Damping 

(Sun et al. 1995) 

  
(c) Nonlinear Equivalent TMD 

(Yu et al. 1999) 
(d) Sloshing-Slamming Model 

(Yalla 2001) 

Fig. 1.7. Various Proposed Mechanical Models for Tuned Liquid Damper 

 

(a) 

 

  
(b) (c) 

Fig. 1.8. (a) TLD with Standing Rotatable Baffles; (b) Five-Story Building Model Equipped with 
TLD with Baffles on the Top and Located on the UTS Shaking Table; and (c) Schematic 
of Experimental Set-up and Instrumentation (from Zahari et al. 2012) 
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Fig. 1.9. CN Tower, Toronto, Canada  

(from http://en.wikipedia.org/wiki/File:Toronto's_CN_Tower) 
 
 

 
Fig. 1.10. Pendulum-Type TMD Utilized in Taipei 101 in Taipei, Taiwan 

(from http://en.wikipedia.org/wiki/File:Taipei_101_Tuned_Mass_Damper) 
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(a) (b) 

 
(c) 

 
Fig. 1.11. (a) Sendagaya INTES Building; (b) Elevation View; and (c) Top View of the HMD 

Control System (from Spencer and Nagarajaiah 1999) 

 

 
 

 
(a) (b) 

 
Fig. 1.12. (a) Yokohama Landmark Tower; (b) Schematic View of HMD; and (c) Principle of 

DUOX System (from Yamazaki et al. 1992) 
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(c) 

 
Fig. 1.12.  (Cont.) 
 

  
(a) (b) 

Fig. 1.13. (a) Kyobashi Seiwa Building; and (b) Schematic View of AMD Control System (from 
Spencer and Nagarajaiah 1999) 

 

(a) 

 

(b) 

 
 

Fig. 1.14. Nanjing Communication Tower (a) Elevation View; and (b) AMD Design (from Spencer 
and Nagarajaiah 1999) 
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Fig. 1.15. Stacks of Cylindrical-TLD MMDs Installed in SYPH (from Tamura et al. 1995) 

 
 

  
 

(a) 
 

(b) 

Fig. 1.16. (a) 1 King West, Toronto, Canada; and (b) 1 Wall Centre, Vancouver, Canada 

[(a) from http://www.onekingwest.com/hotel/history/; and (b) from 

http://www.affordableapartmentaccommodationsinvancouver.com/WallCentre-1.jpg] 
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Chapter 2: Development and Validation of Finite Element Structure-Tuned Liquid 

Damper System Models 

2.1. Introduction 
Resonant vibration motions in tall buildings due to dynamic loads, including wind and 

seismic, can be reduced by adding passive dynamic vibration absorbers (DVAs). The inertial 

forces, which develop from the DVA motion, modify the frequency response of the 

structure’s mode of vibration to which the DVA is tuned to (Kareem et al. 1999). A tuned 

liquid damper (TLD) is a special type of DVA that consists of a rigid tank that is partially 

filled with a liquid, usually water. The TLDs are attached to the building at selected 

locations. The resulting inertia forces, developed from the sloshing liquid inside the tank, 

improve the dynamic response characteristics of the building. These forces are approximately 

anti-phase, when tuned properly, to the dynamic forces exciting the structure, thus reducing 

building motion. 

Despite the simplicity of a TLD, its nonlinear dynamic characteristics are challenging to 

model. In an effort to validate various numerical models and to confirm the applicability of a 

TLD as DVA, experimental studies have been conducted on TLDs and Structure-TLD 

systems (Sun et al. 1989; Modi et al. 1990; Sun et al. 1992; Koh et al. 1994; Soong and 

Dargush 1997; Tait 2004; Tait et al. 2008). In addition to comprising of simple components, 

the TLD has a number of other advantages over the more traditional tuned mass damper 

(TMD). These include operation under small and large amplitude vibrations, ease of tuning, 

low probability of failure and relatively low manufacturing, installation and maintenance 

costs. 

Typically a single sway mode of vibration is usually considered, however, multiple 

modes may need to be suppressed in a structure. In addition, a mode could be three 

dimensional in nature, such as a coupled sway-torsional mode, thus the location of a TLD on 

the floor plate is important parameter. Tait et al. (2005a) presented an example case where 

the dynamic response of a structure corresponding to two fundamental perpendicular sway 

modes is to be suppressed (see Figure 2.1a). Figure 2.1b shows where the dynamic response 

of the structure’s torsional mode is to be suppressed. Finally, the case where the tanks are 

designed and arranged to suppress both a sway mode and a torsional mode is shown in Figure 

2.1(c).  
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Finite element (FE) modelling can be efficiently employed to investigate structures where 

structural irregularities exist, torsionally sensitive structures (eccentric structures), or when 

the applied excitation results in torsional loading on the structure. Adding TLDs to suppress 

certain targeted modes may lead to the unexpected excitation of higher structural modes 

resulting in greater than anticipated structural dynamic response values. This has been 

observed to occur for the case of structures subjected to base excitation. The above cases can 

be investigated using the proposed finite element model, which considers distribution of load 

over the building’s width and height. Furthermore, TLD placement and detailed modelling of 

the structural system and resulting induced force effects can be carried out. 

In addition to reducing the response to an acceptable serviceability level using a TLD 

system, Ross (2009) demonstrated that the reduction in wind induced force effects 

experienced by a building led to a 16.9% reduction in the cost of steel reinforcement in the 

concrete shear walls. The structure-TLD system was modelled using generalized properties 

permitting the structure-TLD system to be represented by a two degree of freedom model 

(see Figure 2.2). Consequently, an accurate prediction of the straining actions in the vertical 

elements of the structure (normal force, shear force and bending moment), particularly the 

lateral load resisting system was not determined. However, these force effects, which must be 

evaluated for design purposes, can be determined using the finite element model outlined in 

this chapter. 

In the proposed finite element model, the tanks can be placed at any location on the 

structure allowing the most effective positions in reducing the structure’s dynamic response 

to be determined. This is particularly useful for situations where limited floor space is 

available for the tanks. The finite element model can be used to predict the response of a 

three dimensional structure (high-rise building, bridge, tower, etc.) fitted with multiple TLDs 

under a predetermined source of dynamic excitation (wind or earthquake) by considering the 

combined response from multiple modes. This type of three dimensional numerical analysis 

is recommended for torsionally sensitive structures (eccentric/irregular structures). In 

addition, three dimensional analysis of a structure fitted with TLD(s) and subjected to wind 

loads from different angles permits the response at any wind angle to be evaluated. To the 

best of the author’s knowledge, no previous study has considered the simulation of a 3D-



38 

 
Structure-TLD system model taking into account the response of higher modes using wind 

tunnel loading data. 

The focus of this study is to investigate the response behaviour of three dimensional 

structures fitted with TLDs. The TLD base shear force is evaluated using two different 

numerical models. The first is a nonlinear fluid model of a TLD equipped with damping 

screens developed by Kaneko and Ishikawa (1999) and assessed by Tait et al. (2005b); and 

the second is an equivalent amplitude dependent tuned mass damper (EADTMD) model (Tait 

et al. 2004a; Tait et al. 2004b). 

In this chapter, the development and validation of a finite element model, consisting of 

three dimensional beam elements (frame elements), capable of simulating the response of a 

three dimensional structure both with TLDs and without TLDs under dynamic excitation is 

presented. Two different nonlinear numerical models are used to evaluate the TLD base shear 

force and both are implemented into the finite element model. A full dynamic analysis of the 

coupled 3D-Structure-TLD system is carried out utilizing the two proposed TLD models. 

Results of the finite element model, under harmonic and random excitation, are compared 

with experimentally obtained values in order to evaluate both models. 

2.2. Description of the Finite Element Model 
This section presents the steps followed to develop a finite element model that can be 

employed to conduct a dynamic analysis of a three dimensional structure and the subsequent 

validation of results using the commercial finite element package, SAP2000 (CSI 2004). 

Implementing two nonlinear TLD models (presented in Section 2.4.2) in open-source 

software (in-house software) is of interest compared to utilizing commercial software, 

particularly at an early-phase of the research study. In-house developed software permits the 

use of user defined error tracking features during the implementation and validation process 

of the nonlinear TLD numerical model, flexibility of modelling and updating the structure-

TLD interaction process (presented in Section 2.5), and reduced computational effort. A 

user-defined TLD module can be implemented, at a later date, in commercial finite element 

software for analysis and design purposes. 
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2.2.1 Three Dimensional Beam Element 
The general three dimensional elastic beam element (frame element) used in the finite 

element model is a straight line element formulated, which is based on continuum mechanics 

theory. A detailed derivation can be found in Bathe and Bolourchi (1979) and Bathe (2003). 

The element has two nodes, a start node and an end node, with 6 degrees of freedom (DOF) 

per node and can transmit axial force, shear forces, bending moments and torque (see Figure 

2.3). The element is assumed to be straight and of constant cross section. It is assumed that 

plane sections of the beam element remain plane during deformation, but not necessarily 

perpendicular to the neutral axis, i.e. a constant shear is allowed. The principal moment of 

inertia axes of the beam element, which define the local co-ordinate system 𝑟, 𝑠, 𝑡, are shown 

in Figure 2.3. The two end nodes of the element, 1 and 2, plus a third secondary node, 3, can 

be used to define these axes. In the developed finite element model, nodes 1 and 2 are used to 

define the longitudinal local axis, while the moments of inertias about the other two axes are 

set in accordance with the right-hand role; hence it is not necessary to define the third node. 

Nodes 1 and 2 have three translational and three rotational degrees of freedom, in the 

local and global coordinate systems. Either nodal forces or displacements can be applied to 

the element. This type of element is commonly used to model space frame members. By 

setting different frame element properties, the frame element can then be used to represent 

vertical structural components, i.e. columns and shear walls, and the horizontal structural 

components such as beams and slabs. These properties include: the two perpendicular 

moments of inertias (𝐼𝑥 and 𝐼𝑦, 𝐼𝑥 and 𝐼𝑧 or  𝐼𝑦 and 𝐼𝑧); the cross sectional area (𝐴𝑐𝑠); the 

torsional rigidity (𝐽); the modulus of elasticity (𝐸); and the element connectivity. Details of 

the frame element’s shape functions, stiffness matrix, mass matrix, and damping matrix can 

be found elsewhere (Bathe 2003). 

In this study, the element capabilities are extended to include the dynamic analysis of 

three dimensional structures, both with and without TLDs installed, using Newmark’s 

method (Chopra 2001; Bathe 2003). A total of 18 response components have been obtained 

from this analysis at each 3D frame element node; i.e. 3 translational components [𝑥(𝑡), 

𝑦(𝑡), 𝑧(𝑡)], 3 velocity components [𝑥̇(𝑡), 𝑦̇(𝑡), 𝑧̇(𝑡)], 3 acceleration components [𝑥̈(𝑡), 𝑦̈(𝑡), 

𝑧̈(𝑡)], 3 rotational components [𝜃𝑥(𝑡), 𝜃𝑦(𝑡), 𝜃𝑧(𝑡)], 3 torsional velocity components [𝜃̇𝑥(𝑡), 
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𝜃̇𝑦(𝑡), 𝜃̇𝑧(𝑡)] and 3 torsional acceleration components [𝜃̈𝑥(𝑡), 𝜃̈𝑦(𝑡), 𝜃̈𝑧(𝑡)] in addition to the 

element straining actions, i.e. axial force, shear force, bending moment and torque. 

2.2.2 Direct Integration Methods: Background 
For the dynamic analysis to be performed, a direct integration method is used (Chopra 

2001; Bathe 2003). In this method, the equations of motion of the system are integrated 

numerically through a step-by-step procedure providing a solution at discrete time 

intervals ∆𝑡. Initial values of displacements, velocities and accelerations must be specified. 

Numerous step-by-step direct integration methods exist. These methods vary in terms of the 

accuracy of the results and the stability of the analysis process itself. A direct integration 

method is said to be conditionally stable if the solution is stable. This can be achieved only 

when the value of ∆𝑡/𝑇 is selected to remain less than a specific value, denoted the stability 

limit, where 𝑇 is the smallest of the natural period of the highest mode of interest or the 

period of loading.  If the value of ∆𝑡/𝑇 exceeds this stability limit, the solution will not 

converge. A time step of 0.01 second, which satisfies the stability condition, is selected to 

perform the numerical analysis of the structure carried out in this chapter. 

2.2.3 Explicit and Implicit Methods 
Explicit methods, such as the central difference method, do not involve the solution of a 

set of linear equations at each step. These methods use the differential equation at time 𝑡 to 

predict a solution at time 𝑡 + ∆𝑡. For most real structures, which contain stiff elements, a 

very small time step is required in order to obtain a stable solution. Therefore, all explicit 

methods are conditionally stable with respect to the size of the time step. For this reason it is 

not recommended to use such type of methods for multi-degree of freedom systems (MDOF) 

(Chopra 2001).  

Implicit methods, such as the Wilson-𝜃 and Newmark method, attempt to satisfy the 

differential equation at time 𝑡 when the solution at time 𝑡 − ∆𝑡 is found (Bathe 2003). These 

methods require the solution of a set of linear equations at each time step; however, larger 

time steps may be used. Implicit methods can be conditionally or unconditionally stable 

depending on the parameters set in each of these methods. 
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In this study, the constant-average-acceleration method developed by Newmark (Chopra 

2001; Bathe 2003) has been used to perform the dynamic analysis. This method was selected 

as it was found to provide good accuracy and stability. 

2.3. Validation of the Finite Element Model  
To validate the finite element model, a 3D single-story structure, consisting of four 

columns and a slab 3.0 m × 3.0 m with a depth of 0.18 m (see Figure 2.4) is modelled using 

a general purpose finite element package (SAP2000). The generalized properties of this 

building are given in Table 2.1 along with the vertical element (columns) properties. In order 

to simulate the 3D structure using the finite element model shown in Figure 2.5, the vertical 

elements are modelled using frame elements with the same number of elements, properties 

and boundary conditions (i.e. fixed at the base and free at the roof) as their counterpart 

modelled in SAP2000. The horizontal slab is modelled using horizontal fame elements that 

are sufficiently rigid in plane (𝑥-𝑦 plane) and flexible out of plane. This is accomplished by 

specifying a frame element width  ≥ 0.25 span length and a depth equal to that of the real 

slab. A rigid diaphragm for all nodes at the same floor level is then achieved. 

To check the selected dimensions of the horizontal and vertical elements, a second model, 

shown in Figure 2.6, is developed using SAP2000 with all specified dimensions in the finite 

model. The mass of the slab and the columns were lumped at the structural joints (nodes) 

located in the horizontal plane using the tributary area method. A mass of 1010 kg was 

lumped at the four corners, to be considered in the modal analysis. A damping ratio (𝜁) of 

0.1% is assumed. A modal analysis is then performed for the two models and their periods 

compared. The second SAP2000 frame model, shown in Figure 2.6, is found to simulate the 

behaviour of the real slab shown in Figure 2.4. Both SAP2000 models predicted similar 

structural periods and mode shapes with a percentage difference of less than 0.5% found to 

occur between the two SAP2000 models and the finite element model. 

A time history analysis is subsequently conducted using the 3 models described above 

namely; SAP2000 with a real slab, SAP2000 with horizontal elements representing the slab 

and the 3D finite element model, which are denoted as Model 1, Model 2 and Model 3, 

respectively. Figure 2.7 shows the displacement, velocity and acceleration of the three 

models at the centre of the slab. For the results shown here, all models are excited by a 

sinusoidal force, having an amplitude (𝑃∘) of 23 N; a frequency (𝑓𝑒𝑥) equals 0.50 Hz (𝑓𝑒𝑥 ≈
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0.9 𝑓𝑠) and a point of application coinciding with the slab centre. Excellent agreement is 

found between all model responses with a maximum variation in the response values of less 

than 2%. 

2.4. 3D-Structure-TLD System Model 
In this section, the finite element model, validated in the previous section, is used to 

estimate the response of a three dimensional structure outfitted with TLDs (3D-Structure-

TLD). The sloshing TLD force resulting from the interaction of the combined system is 

estimated using two numerical models found in the literature; a nonlinear TLD fluid model 

(Kaneko and Ishikawa 1999; Tait et al. 2005b) and an equivalent amplitude dependent tuned 

mass damper (EADTMD) model (Tait et al. 2004a; Tait et al. 2004b). Both TLD models are 

implemented in the finite element model in this section and subsequently validated in the 

following section. 

2.4.1 TLD/TMD Background 
Figure 2.8 shows the dimensions of the tank used by Tait (2004), which is modelled and 

subsequently used in the validation part of the 3D-Structure-TLD system model subjected to 

harmonic excitation. Results of this numerical model are compared to experimental test 

results from BM4-A building as reported on by Tait (2004). The dimensions 𝐿, 𝑏 and ℎ 

represent the tank length (in the direction of excitation), the tank width (perpendicular to the 

excitation) and the still water depth, respectively. The fundamental sloshing frequency (𝑓𝑤) 

for the water inside this tank using the linear wave theory (Lamb 1932) can be estimated as  

𝑓𝑤 =
1

2𝜋
�𝜋𝑔
𝐿

tanh (
𝜋ℎ
𝐿

) (2.1) 

where 𝑔 is the gravitational acceleration. Substituting 𝐿 and ℎ from Figure 2.8 into the above 

equation, leads to a value of 𝑓𝑤 ≈ 0.546 Hz. The TLD represents a 1:10 scale model of one 

of the prototype multiple tanks designed to be used in a full-scale high-rise building with a 

fundamental frequency of approximately 0.172 Hz.  

The tuning ratio, which influences the performance of the TLD, is defined by 

𝛺 =
𝑓𝑇𝐿𝐷
𝑓s

 (2.2) 
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where 𝑓𝑇𝐿𝐷 is the natural frequency of the TLD; and 𝑓s is the natural frequency of the 

generalized structure having generalized mass, stiffness and damping values of 𝑀∗, 𝐾∗ and 

𝐶∗, respectively. An estimate of the natural frequency of the TLD (𝑓𝑇𝐿𝐷) for a small sloshing 

fluid response amplitude is approximately equal to 𝑓w (Warnitchai and Pinkaew 1998; Ju et 

al. 2004; Tait et al. 2004a). Table 2.1 shows the generalized properties of the building used in 

the experimental test as well as the equivalent properties of the 3D single-story building used 

in the validation of the developed finite element model with and without a TLD installed. 

Another factor affecting the response of the structure-TLD system is the mass ratio (𝜇), 

which is given by 

𝜇 =
𝜙2𝑚𝑇𝐿𝐷

𝑀∗  (2.3) 

where 𝑀∗ is the generalized mass of the primary structure corresponding to the vibration 

mode being suppressed; and 𝜙 is the normalized modal deflection value of the structure at 

the TLD location. The absorber mass (𝑚𝑇𝐿𝐷), for a TLD with damping screens can be 

approximated using potential flow theory (i.e. 𝑚𝑇𝐿𝐷 ≈ 𝑚1). The value 𝑚1 is calculated using 

the following equation (Graham and Rodriguez 1952) 

𝑚1 =
8 𝑡𝑎𝑛ℎ �𝜋ℎ𝐿 �

�𝜋
3ℎ
𝐿 �

𝑚𝑤  (2.4) 

where 𝑚𝑤 is the total mass of the contained water, ℎ is the quiescent water depth; and 𝐿 is 

the tank length in the direction of the fundamental sloshing mode of interest. A value of 

 𝑚1 = 0.77𝑚𝑤 is obtained using the dimensions of the TLD considered in this study. A 

target value of 𝜇 equal to 2.5% is used to validate the numerical model, which matches that 

used in the experimental work of a structure-TLD system subjected to harmonic and random 

excitations (Tait 2004). Table 2.2 shows the properties of the TLD used in the model 

validation. 

One more important parameter affecting the response of a structure-TLD system is the 

inherent damping ratio (𝜁𝑇𝐿𝐷) of the sloshing fluid inside the tank. The inherent damping for 

the TLD used in the model validation is 5.7%. This is significantly greater than the damping 

related to the sloshing liquid inside the tank without the presence of additional energy 

dissipating devices, which is estimated to be 0.45% from the following equation (Sun 1991) 
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𝜁𝑇𝐿𝐷 =
1

2𝜋�
𝑣𝑤
𝜋𝑓𝑤

�1 +
ℎ
𝑏
� (2.5) 

where 𝑣𝑤 is the kinematic viscosity of water. 

The optimum inherent damping value for a linear tuned mass damper (TMD) as a 

function of the mass ratio (𝜇) can be obtained (Warburton 1982). Due to the analogy between 

the TMD and TLD devices, Warburton’s formula is used to calculate the target value of 

𝜁𝑇𝐿𝐷 = 5.7%. Two screens formed by horizontal slats were used by Tait (2004a and 2004b) 

to increase 𝜁𝑇𝐿𝐷 as shown in Figure 2.9. A solidity ratio (𝑆) equal to 0.42 was used to achieve 

the targeted optimum inherent damping ratio of 5.7% at a particular response amplitude. In 

the numerical model, a loss coefficient parameter (𝐶𝑙) equal to 2.16 is used to model the 

damping screens inside the tank. The loss coefficient (𝐶𝑙), which is a function of the screen 

solidity ratio, is introduced and presented in detail elsewhere (Tait et al. 2005b). In order to 

achieve different values of 𝜁𝑇𝐿𝐷, the damping screens can be altered by adjusting the space 

between the slats shown in Figure 2.10. 

2.4.2 Tuned Liquid Damper Models 
A number of equivalent mechanical models capable of simulating the forces that develop 

in a TLD with screens resulting from the sloshing fluid exist (Noji et al. 1988; Warnitchai 

and Pinkaew; Tait et al. 2004a). Both a linear model (Fediw et al. 1995) and a nonlinear fluid 

model (Kaneko and Ishikawa 1999) that simulate the sloshing fluid of a TLD equipped with 

damping screens are examined by Tait et al. (2005b). In both models it is assumed that the 

liquid is inviscid, irrotational and incompressible, the pressure is constant on the free surface, 

the quiescent water depth is constant and the tank walls are rigid. In addition, it is assumed 

that the water depth to tank length ratio (ℎ/𝐿) for a TLD equipped with damping screens, 

satisfies shallow water wave theory limitations. Dean and Dalrymple (1984) suggest ℎ/𝐿 <

0.1, but recognize that this limitation can be relaxed for particular applications. This has been 

verified by test results from Tait et al. (2007). The effect of the screens is simulated in both 

models through a loss coefficient (𝐶𝑙). Findings from Tait et al. (2005b) indicate that the 

linear model is capable of providing a first estimate of the energy dissipation characteristics 

of a TLD. However, the linear model does not provide realistic estimates of the free surface 

response amplitude. The nonlinear model can accurately describe the free surface motion, the 
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resulting base shear forces and the energy dissipated over a range of excitation amplitudes. 

Therefore, a nonlinear numerical model based on shallow water wave theory (Lepelletier and 

Raichlen 1988) with damping screens (Kaneko and Ishikawa 1999; Tait et al. 2005b) is 

selected for this study and results from previous experimental studies are compared to verify 

the results of the 3D-Structure-TLD system model under both harmonic and random 

excitation (Tait 2004).  

2.4.2.1 Nonlinear Shallow Water Fluid Model (TLD Model 1) 
The nonlinear numerical model is briefly described below. Additional details can be 

found elsewhere (Kaneko and Ishikawa 1999; Tait et al. 2005b). Considering the tank, shown 

in Figure 2.11, is excited in a unidirectional motion, the nonlinear sloshing response can be 

expressed using shallow water theory as (Lepelletier and Raichlen 1988) 

𝜕𝜂
𝜕𝑡

+
𝜕
𝜕𝑥

[(ℎ + 𝜂)𝑢] = 0 (2.6) 

𝜕𝑢
𝜕𝑡

+ 𝑢
𝜕𝑢
𝜕𝑥

+ 𝑔
𝜕𝜂
𝜕𝑥

−
1
3

(ℎ + 𝜂)2
𝜕3𝑢
𝜕𝑡𝜕𝑥2

+ 𝜁𝑤𝑢 + 𝑋̈ = 0 (2.7) 

where 𝜂(𝑥, 𝑡) is the free surface elevation, 𝑢 (𝑥, 𝑡) is the horizontal velocity averaged through 

the liquid depth, 𝐿 is the tank length, ℎ is still liquid depth, 𝑔 is the gravitational acceleration, 

𝑋̈ is the horizontal base excitation acceleration of the tank, which is equal to that of the nodal 

acceleration at the TLD location and in the direction of the tank placement (𝑥̈𝑠), and 𝜁𝑤 is a 

damping coefficient, introduced by Miles (1967) to account for the viscous dissipation.  

The above set of nonlinear shallow water equations can be solved numerically once the 

initial state of the liquid is prescribed, i.e. the values of 𝜂 and ℎ are given at time 𝑡 = 0. A 

one-dimensional finite difference discretization scheme is applied for both 𝜂 and ℎ as shown 

in Figure 2.12. The grid for 𝑢 is staggered in a nonoverlapping fashion downstream to the 𝜂 

grid. The boundary conditions on the end walls of the tank are given as 𝑢(−𝐿/2, 𝑡) =

𝑢(𝐿/2, 𝑡) = 0. For a certain excitation amplitude, Equations 2.6 and 2.7 are integrated 

numerically using the Runge-Kutta-Fehlberg method after assigning the initial conditions for 

𝜂(𝑥, 0) = 0 and 𝑢(𝑥, 0) = 0.  

Using the method outlined by Kaneko and Ishikawa (1999) at locations where a damping 

screen is inserted as shown in Figure 2.13, the velocity at a particular screen (𝑈𝐷𝑆𝑖) can be 

expressed as 
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𝑈𝐷𝑠𝑖 =
𝑢𝑖 + 𝑢𝑖+1

2
 (2.8) 

The pressure drop (∆𝑝) caused by the screen can be expressed as  

∆𝑝 = 𝐶𝑙
𝜌𝑈𝐷𝑆𝑖2

2
 (2.9) 

where 𝐶𝑙 is defined as the pressure loss coefficient. A significant reduction in the dynamic 

response of a high-rise building can be achieved if the TLD has sufficient inherent damping. 

A preliminary design procedure outlined by Tait (2008) can be used to estimate the initial 

damping screen requirements; therefore an optimum inherent damping for the TLD can be 

achieved. 

The relationship between the pressure loss coefficient and the free surface height 

difference across the screen is given by 

|𝜂𝐿 − 𝜂𝑅| = ∆𝜂 = 𝐶𝑙
𝑈𝐷𝑆𝑖2

2𝑔
 (2.10) 

Upon integrating the discretized continuity and momentum equations with respect to 

time, the values of free surface on the left (𝜂𝐿) and right (𝜂𝑅) sides of the screen can be 

determined by 

𝜂𝐿 = 𝜂𝑖 + sign[𝑈𝐷𝑆𝑖]
∆𝜂
2

 (2.11) 

𝜂𝑅 = 𝜂𝑖 − sign[𝑈𝐷𝑆𝑖]
∆𝜂
2

 (2.12) 

Subsequently, the velocity and the wave height can be determined with the influence of 

the damping screen taken into consideration.  

The base shear force that develops when the TLD is forced to move can be separated into 

the following three components: first, the inertial force due to the container (𝑓1); second, the 

inertial force due to the dead weight of the contained liquid (𝑓2); and third, fluid force 

generated by sloshing (𝑓3). Therefore, the TLD base shear force caused by the liquid motion 

is denoted by 𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 1 = 𝑓2 + 𝑓3. Applying momentum theory to calculate the TLD 

base shear force, the mass of the 𝑖th element is given by the following equation (Kaneko and 

Ishikawa 1999) 
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𝑚𝑖 = 𝜌 ×
𝐿
𝑛𝑒

× 𝑏 × �
𝜂𝑖−1 + 𝜂𝑖

2
+ ℎ� (2.13) 

where 𝑛𝑒 is the total number of elements, 𝐿 is the tank length, 𝑏 is the tank width and 𝜌 is the 

liquid unit weight. 

Consequently, the momentum of the 𝑖th element can be described as follows 

𝑃 = �𝑚𝑖𝑢𝑖

𝑛𝑒

𝑖=1

=
𝜌𝐿𝑏
𝑛𝑒

��
𝜂𝑖−1 + 𝜂𝑖

2
+ ℎ�

𝑛𝑒

𝑖=1

𝑢𝑖 (2.14) 

The TLD base shear force (𝐹𝑇𝐿𝐷𝑥−𝑚𝑜𝑑𝑒𝑙 1) can be determined by the following equation  

𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 1 =
1
𝛥𝑡

(𝑃(𝑡) − 𝑃(𝑡 + 𝛥𝑡)) (2.15) 

2.4.2.2 Equivalent Amplitude Dependent Tuned Mass Damper (EADTMD) Model 
(TLD Model 2) 

In order to perform a dynamic analysis on a high-rise building equipped with TLDs 

employing the 3D-Structure-TLD system model, the equations of motion for the building 

must be solved according to the time step dictated by the fluid model. This time step is often 

considerably less than that required to perform a dynamic analysis on the building without 

TLDs. The computational time needed for the sloshing fluid model is approximately 18 times 

greater than the time needed for the equivalent amplitude dependent tuned mass damper 

(EADTMD) model. The time step (∆𝑡1) used by the fluid model is about 1/180 of the 

structure’s time period as recommended by Kaneko and Ishikawa (1999) in order to solve for 

the one-dimensional finite difference scheme, while the time step (∆𝑡2) needed for the 

EADTMD model is about 1/10 of the structure’s time period to achieve good accuracy from 

the numerical integration process as recommended by Chopra (2001). Therefore, 

significantly greater computational effort is required to conduct dynamic analysis using the 

nonlinear fluid model. SHARCNET ™ (Shared Hierarchical Academic Research Computing 

Network, www.sharcnet.ca) can be used to perform such analysis. Alternatively, a more 

rapid analysis can be conducted utilizing the EADTMD model. 

Yu et al. (1999) experimentally evaluated equivalent TMD stiffness and damping 

properties to represent a TLD using the concept of equivalent energy dissipation. The model 

assumed full participation of the fluid mass, which is valid for large excitation amplitudes. 
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However, the calculated properties did not account for the presence of any additional energy 

dissipating mechanisms. As previously mentioned, the inherent damping of the sloshing fluid 

is usually significantly lower than the value required for the TLD to perform efficiently. An 

increase in the inherent damping can be achieved by installing a number of screens or baffles 

inside the tank (Noji et al. 1988; Fediw 1992; Warnitchai and Pinkaew 1998; Kaneko and 

Ishikawa 1999; Tait et al. 2005a; Tait et al. 2005b). As a result, a technique that utilizes the 

nonlinear fluid model to evaluate the properties of an EADTMD, which considers the 

presence of damping screens inside the tanks and treats the percentage of fluid mass that 

participates in the sloshing motion as a variable parameter, is demonstrated in this section. 

The steps followed to evaluate the properties of an EADTMD model are discussed in Section 

2.4.2.2.2 and a validation example is provided in Section 2.4.2.2.3.  

2.4.2.2.1. Equivalent TMD Analogy 
An equivalent amplitude dependent tuned mass damper (EADTMD) representing a 

partially fluid tank containing screens (TLD) can be determined based on experimental shake 

table results. The dynamic characteristics of the equivalent TMD model, in terms of mass, 

stiffness and damping parameters can be determined by energy equivalence from a series of 

shake table tests (Tait et al. 2004a). The validity of this nonlinear TLD model has been 

examined (Tait et al. 2004b). The energy dissipated by the equivalent TMD (𝐸𝑑) shown in 

Figure 2.14 can be expressed in terms of the excitation amplitude, as 

𝐸𝑑 = 𝑚𝑇𝐿𝐷(2𝜋𝑓)2𝐴2𝜋�𝐻𝑧 𝑥⁄ (𝑓)� �
𝑓

𝑓𝑇𝐿𝐷
�
2

sin (𝜃𝑧/𝑥) (2.16) 

Normalizing this expression by 1 2⁄ 𝑚𝑤(𝐴2𝜋𝑓)2, results in 

𝐸𝑑′ =
𝑚𝑇𝐿𝐷

𝑚𝑤
�𝐻𝑧 𝑥⁄ (𝑓)� �

𝑓
𝑓𝑇𝐿𝐷

� 2𝜋 sin (𝜃𝑧/𝑥) (2.17) 

where �𝐻𝑧 𝑥⁄ (𝑓)� is the frequency response function, referred to the modulus of the 

mechanical admittance function, between the TMD relative response motion and the shake 

table input motion 

�𝐻𝑧 𝑥⁄ (𝑓)� =
1

��1 − � 𝑓
𝑓𝑇𝐿𝐷

�
2
�
2

+ �2𝜁𝑇𝐿𝐷 �
𝑓

𝑓𝑇𝐿𝐷
��

2
 

(2.18) 

and (𝜃𝑧/𝑥) is the corresponding phase angle given by 
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𝜃𝑧/𝑥 = 𝑡𝑎𝑛−1

⎝

⎛
2𝜁𝑇𝐿𝐷 �

𝑓
𝑓𝑇𝐿𝐷

�

1 − � 𝑓
𝑓𝑇𝐿𝐷

�
2

⎠

⎞ (2.19) 

A curve fitting procedure with constraints forcing the theoretical expression 𝐸𝑑′  to match 

both the maximum value of the energy dissipated and the total energy dissipated over the 

range of frequencies tested is applied. This procedure is used to estimate the EADTMD 

parameters 𝑚𝑇𝐿𝐷, 𝑓𝑇𝐿𝐷 and 𝜁𝑇𝐿𝐷 for all amplitudes of excitation (Tait et al. 2004a; Tait et al. 

2004b).  

The equation of motion of the equivalent TMD system, for a given excitation amplitude, 

can be written as 

𝑀𝑇𝐿𝐷. 𝑥̈𝑇𝐿𝐷 + 𝐶𝑇𝐿𝐷. 𝑥̇𝑇𝐿𝐷 + 𝐾𝑇𝐿𝐷. 𝑥𝑇𝐿𝐷 = − 𝑀𝑇𝐿𝐷. 𝑥̈𝑠 (2.20) 

Hence, the TLD force 𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 2 can be estimated as 

𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 2 = −𝑀𝑇𝐿𝐷(𝑥̈𝑠+ 𝑥̈𝑇𝐿𝐷) (2.21) 

where 𝑥𝑠 and 𝑥𝑇𝐿𝐷 are the structure displacement and the relative displacement between the 

TLD and the structure, respectively (see Figure 2.2).  

2.4.2.2.2. Construction of TLD Energy Dissipation Frequency Response Curves  
The nonlinear TLD fluid model, described in Section 2.4.2.1, is employed to generate the 

required energy dissipation frequency response curves. Energy dissipation curves can be 

generated using the nonlinear TLD fluid model under both small and large excitation 

amplitudes making them suitable for small motions associated with wind loads and large 

motions more representative of earthquake excitation. Thus, the nonlinear fluid model can be 

used to produce the required dissipation energy curves required to evaluate the equivalent 

TMD parameters (𝑚𝑇𝐿𝐷; 𝑓𝑇𝐿𝐷; 𝜁𝑇𝐿𝐷) without the need to conduct shake table tests. 

2.4.2.2.3. Model Validation 
In this section, the nonlinear shallow water fluid model is used to construct the energy 

dissipation frequency response curves at different excitation amplitude ratios listed in Table 

2.3 for the TLD shown in Figure 2.8. The structural displacement response results are then 

compared to that produced by a series of shake table tests conducted and reported on by Tait 

et al. (2004a). 
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Figure 2.15 compares the numerically obtained energy dissipation curves with the fitted 

equivalent TMD curves determined by regression analysis. Excellent agreement is found 

between the two curves for 𝐴/𝐿 = 0.0026.  This indicates that under low sloshing response 

amplitudes, the energy dissipation characteristics of the TLD can be matched with an 

equivalent SDOF system (i.e. wind excitation). As a result of the nonlinear response 

characteristics, which increase with larger sloshing response amplitudes, the equivalent TMD 

fit for 𝐴/𝐿 = 0.0129 energy dissipation curve shows greater deviation with experimentally 

generated curve (see Figure 2.15b). 

The influence of the excitation amplitude on the estimated equivalent mass, damping and 

frequency are shown in Figures 2.16a to 2.16c, respectively. Trend lines are fit to each of the 

parameters in order to estimate the parameter values between the data points and to obtain 

the equations used by the finite element model in the simulation process. Excellent 

agreement is found between the experimentally obtained EADTMD parameters shown in 

Figure 2.16 and those reported by Tait et al. (2004a).  

2.5. Structure-TLD Interaction (Numerical Simulation) 
This section presents the implementation approach of both nonlinear TLD models, 

described in this chapter, in the finite element model. Both models are capable of simulating 

the TLD behaviour under any source of dynamic loading (i.e. wind and earthquake) by 

accurately predicting its resulting base shear force.  

The assumption that the fundamental sloshing water response remains uncoupled in the 

two principal directions of motion under both 1D and 2D excitation was confirmed by Tait et 

al. (2005a). In addition, two other important findings from the shake table experiments are 

briefly mentioned here. First, although the free surface response profile were affected by 2D 

excitations applied to the tank, the base shear force that develop in the principal tank axes as 

a result of the sloshing water motion were not. Second, no degradation in the amount of 

energy dissipated by the sloshing water was found to occur under 2D excitation. 

Subsequently, this indicates that by selecting the appropriate aspect ratio for the TLD it 

can be used to reduce structural response motion in two modes of vibration simultaneously 

with no penalty on its performance. Thus, the effectiveness of the sloshing water is increased 

when it is used in both directions, simultaneously, by providing additional effective damping 

to the structure at no additional cost. Therefore, the developed 3D-Structure-TLD system 
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model uses the same concept for bi-directional tanks by representing them as two different 

unidirectional tanks predicting their resulting shear forces by the nonlinear TLD models 

(Model 1 or Model 2) at each time step independently. Consequently, the two orthogonal 

structural acceleration components resulting at the TLD location are used by the nonlinear 

TLD models as input excitations for the bi-directional tank.  

The equation of motion of the combined system can be written as 

[𝑀]{𝑥̈} + [𝐶]{𝑥̇} + [𝐾]{𝑥} = {𝐹𝑒𝑥𝑡(𝑡)} + [𝐻]{𝐹𝑇𝐿𝐷(𝑡)} (2.22) 

where [𝑀], [𝐶] and [𝐾] are the mass, damping and stiffness matrices of the building (i.e. 

primary structure), {𝑥}, {𝑥̇} and {𝑥̈} represent the structural displacement, velocity and 

acceleration vectors, {𝐹𝑒𝑥𝑡(𝑡)} is the external load acting on the structure, {𝐹𝑇𝐿𝐷(𝑡)} is 

control force vector of the TLD (i.e. base shear forces), and [𝐻] is the position matrix of the 

TLD in which its 𝑖th column vector {𝐻}𝑖 = [0 … 0 1 0 … 0]1×𝑛
𝑇  (1 is in the 𝑗th column) is the 

𝑖th group of TLDs that are installed on the 𝑗th story.  

In the sloshing direction, the non-participating portion of the liquid is considered in the 

TLD base shear force values (𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 1) using the fluid model. As a result, 𝑚𝑥−𝑛𝑜𝑛 𝑝. has 

not been added to the primary structure mass (i.e. 𝑚𝑥−𝑠𝑙𝑜𝑠ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1 = 0), while 𝑚𝑥−𝑛𝑜𝑛 𝑝. has 

been added to the primary structure mass using the EADTMD model (i.e. 𝑚𝑥−𝑠𝑙𝑜𝑠ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2 =

𝑚𝑥−𝑛𝑜𝑛 𝑝.) (see Equations 2.23 and 2.24).  

In the orthogonal direction to the tank placement (i.e. out of plane), the non-participating 

portion of the liquid is assumed to be equal to the total mass of the contained water and is 

added to the attached TLD node in both TLD models for uni-directional tanks 

(𝑚𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1 = 𝑚𝑦−𝑜𝑟𝑡ℎ.

𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2 = 𝑚𝑤). For a bi-directional tank, the non-participating 

portion of the liquid is not considered in the TLD base shear force in the orthogonal direction 

(𝐹𝑇𝐿𝐷𝑦−𝑀𝑜𝑑𝑒𝑙 1) using the fluid model (i.e.𝑚𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1 = 0), while it is added to the 

attached TLD node using the EADTMD model (i.e. 𝑚𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2 = 𝑚𝑦−𝑛𝑜𝑛 𝑝.). 

In the vertical direction, the non-participating portion of the liquid is assumed to be equal 

to the total mass of the contained water and is added to the attached TLD node in both TLD 

models for uni- and bi-directional tanks (i.e. 𝑚𝑧
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1 = 𝑚𝑧

𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2 = 𝑚𝑤). 
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Therefore, the mass matrix of the combined system, [𝑀], using the fluid model is given 

by 

[𝑀] = [𝑀𝑆] + [𝐻]�𝑀𝑓𝑙𝑢𝑖𝑑
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑚1𝑥

𝑚1𝑦

𝑚1𝑧

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑚𝑛𝑥

𝑚𝑛𝑦

𝑚𝑛𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 + 

[𝐻]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑚1𝑥−𝑠𝑙𝑜𝑠ℎ.

𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

𝑚1𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

𝑚1𝑧
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑚𝑛𝑥−𝑠𝑙𝑜𝑠ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

𝑚𝑛𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

𝑚𝑛𝑧
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(2.23) 

where [𝑀𝑆] is the stiffness matrix of the primary system and �𝑀𝑓𝑙𝑢𝑖𝑑
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1� is the added 

mass to the primary structure at the TLD locations in the 𝑥,𝑦 and 𝑧 directions considering the 

fluid model (TLD Model 1). 

The following equation represents the mass matrix of the combined systems using the 

EADTMD model 

[𝑀] = [𝑀𝑆] + [𝐻]�𝑀𝑓𝑙𝑢𝑖𝑑
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑚1𝑥

𝑚1𝑦

𝑚1𝑧

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑚𝑛𝑥

𝑚𝑛𝑦

𝑚𝑛𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 + 

[𝐻]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑚1𝑥−𝑠𝑙𝑜𝑠ℎ.

𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

𝑚1𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

𝑚1𝑧
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑚𝑛𝑥−𝑠𝑙𝑜𝑠ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

𝑚1𝑛−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

𝑚𝑛𝑧
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(2.24) 
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where �𝑀𝑓𝑙𝑢𝑖𝑑

𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2� is the added mass to the primary structure at the TLD locations in the 

𝑥,𝑦 and 𝑧 directions considering the amplitude dependent TMD model (TLD Model 2). 

From the analysis, the influence of adding the out-of-plane mass to the primary structure 

mass is found to have a negligible effect due to the small percentage ratio of the secondary 

system to the primary system. 

2.5.1 Numerical Simulation Utilizing the Fluid Model (TLD Model 1) 
The interaction between the TLD and the structure is captured by applying the resulting 

TLD base shear force (𝐹𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1) on the structure at every time step at the TLD location 

and in its placement direction. The TLD base shear force is calculated utilizing the nonlinear 

TLD fluid model, which simulates the sloshing behaviour of a TLD subjected to a 

unidirectional excitation. The resulting structural acceleration at the TLD location is then 

used as the input excitation for the TLD in the following time step. This is accomplished 

employing Newmark’s method for solving the equations of motion of the 3D structure (see 

Equation 2.22), while the TLD is modelled as a one-dimensional finite difference problem 

and solved employing Runge-Kutta-Fehlberg method at each time step (∆𝑡1) (see Equations 

2.6-2.15). The developed 3D-Structure-TLD system model allows any number of TLDs to be 

placed at any location in the building. As a result, an accurate prediction of the response of 

the combined system (i.e. structural responses and TLD base shear forces) and applicability 

of using different dimensions of TLDs designed to suppress different modes of vibrations is 

achieved. 

2.5.2 Numerical Simulation Utilizing the EADTMD Model (TLD Model 2) 
Figure 2.5 shows the three dimensional finite element structure, which is investigated in 

this section. The TLD is simulated as a nonlinear tuned mass damper (TMD). The 

parameters 𝑚𝑇𝐿𝐷, 𝑘𝑇𝐿𝐷 and 𝜁𝑇𝐿𝐷 represent the mass, stiffness and damping of the equivalent 

TMD system, respectively (See Figure 2.14). These parameters are amplitude dependent; 

thus they vary with the excitation level experienced by the TLD (see Figure 2.16). It is 

assumed that 𝑥𝑠, 𝑥̇𝑠 and 𝑥̈𝑠 are the instantaneous values of the displacement, velocity and 

acceleration at the TLD node at a certain time (𝑡 = 𝑖) resulting from the dynamic analysis of 

the structure. The base of the TLD, which is rigidly attached to the structure, experiences a 

displacement, velocity and acceleration equal to that of the TLD location. These structural 
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response components are used to calculate the instantaneous force exerted by the TLD on the 

structure at the TLD location (𝐹𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2) using Equation 2.21. This force is equal in 

magnitude and opposite in direction to the shear force acting at the base of the TLD. Treating 

the structure as multi-degree-of-freedom (MDOF), the equation of motion of the 3D-

Structure-TLD system model (i.e. Equation 2.22) can be used. 

The equations of motion are integrated numerically employing the constant-average-

acceleration method developed by Newmark (Chopra 2001; Bathe 2003) to solve the 

equations of motion at every time step (∆𝑡2), while taking into consideration the added 

instantaneous value of the TLD force (𝐹𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2). This force depends on two important 

components; the maximum structural displacement amplitude (𝐴𝑐𝑦𝑐𝑙𝑒) experienced during its 

response cycle and the instantaneous structural acceleration response (𝑥̈𝑠), both at the TLD 

location and in its placement direction. The maximum displacement amplitude is used to 

estimate the EADTMD properties (𝑚𝑇𝐿𝐷; 𝑘𝑇𝐿𝐷; 𝜁𝑇𝐿𝐷), which remain constant during the 

calculations of the TLD force in the current cycle. The instantaneous acceleration at the TLD 

location is required to solve the equivalent TMD system as an independent single-degree-of-

freedom (SDOF) to instantaneously evaluate the TLD force (𝐹𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2) at each time step. 

The steps calculations are described, in detail, in the following section. 

An EADTMD model has been implemented in a two dimensional finite element model to 

predict the response of a structure-TLD system under large amplitude transient type 

excitation (Mizan 2007). A displacement dependent method of adding the TLD force, as 

outlined by Mizan (2007), was not applicable for the case of wind excitation as the structure 

oscillates around a mean value. This shift in the displacement response of the structure must 

be considered to capture the maximum amplitude value for different structural response 

cycles. As a result, a velocity dependent method is introduced in the next section as an 

alternative method. 

2.5.2.1 Velocity Dependent Method for EADTMD Model 
In the velocity dependent method, the velocity in the direction of the TLD placement at 

the TLD location is used as a sensor to capture the time step where a peak displacement 

occurs every half cycle of the response during the entire response history. By checking the 

sign of the structural velocity response at the TLD location and in its placement direction 

every time step (𝛥𝑡2), the peak displacement response value achieved in the first half of the 
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response cycle is captured when the velocity sign changes (i.e. from positive to negative or 

vice versa), which is recorded as 𝑃1. The iteration proceeds throughout the second half of the 

response cycle until the velocity sign again changes. Therefore, the peak displacement 

response is recorded as 𝑃2. The maximum structural response amplitude throughout a 

complete response cycle (𝐴𝑐𝑦𝑐𝑙𝑒) can be estimated as |𝑃1 − 𝑃2|/2. The velocity dependent 

method provides the ability to capture the peak response value despite the mean value of the 

response. Consequently, predictions of the maximum response amplitudes, used to update the 

EADTMD model properties throughout different response cycles, can be estimated. 

The following steps are carried out to obtain the response time history of the 3D-

Structure-TLD system model subjected to an external dynamic loading: 

1. At time 𝑡 = 0, Equation 2.22 is first solved without considering the force resulting from 

the TLD (i.e. 𝐹𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2 = 0) using Newmark’s method as the numerical integration 

technique (Chopra 2001; Bathe 2003). The values of the displacements, velocities and 

accelerations are obtained at the TLD locations from the solution output. The assumption 

of zero force added by the TLDs is applied during all time steps until the structural 

response at each TLD location undergoes a complete cycle of vibration by checking its 

velocity sign at every increment. It should be noted that the structure may undergo 

different cycles in each of the two perpendicular axes at a particular TLD location. 

Therefore, the maximum displacement amplitude (𝐴𝑐𝑦𝑐𝑙𝑒) experienced at each TLD 

location during the first cycle of vibration is determined. 

2. At every remaining time step, the TLD force (𝐹𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2) is calculated and included in 

the analysis using the instantaneous acceleration of TLD location (𝑥̈𝑠) as the input 

excitation of the equivalent TMD system. The maximum amplitude from the previous 

cycle is used for each TLD to update the amplitude dependent parameters (𝑚𝑇𝐿𝐷; 𝑘𝑇𝐿𝐷; 

𝜁𝑇𝐿𝐷) using amplitude dependent equations obtained from charts prepared following the 

procedure outlined in Section 2.4.2.2 (see Figure 2.16). Charts need to be prepared and a 

best fit of the data should be used to implement the three equations required to estimate 

the equivalent TMD properties at each cycle for each TLD.  

To achieve this, the equation of motion of the equivalent TMD system at each TLD 

location 𝑖, and during every time step (𝛥𝑡2) throughout the different response cycles can 

be written as 
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(𝑀𝑇𝐿𝐷)𝑖  . �𝑥̈𝑇𝐿𝐷(𝑡)�𝑖 + (𝐶𝑇𝐿𝐷)𝑖  . �𝑥̇𝑇𝐿𝐷(𝑡)�𝑖 + (𝐾𝑇𝐿𝐷)𝑖  . �𝑥𝑇𝐿𝐷(𝑡)�𝑖

= −(𝑀𝑇𝐿𝐷)𝑖  . �𝑥̈𝑠(𝑡)�𝑖 
(2.25) 

hence, the TLD force at each TLD location 𝑖, �𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 2�𝑖 can be estimated as 

�𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 2�𝑖 = −(𝑀𝑇𝐿𝐷)𝑖 ��𝑥̈𝑠(𝑡)�𝑖 + �𝑥̈𝑇𝐿𝐷(𝑡)�𝑖� (2.26) 

3. Equations 2.22, 2.25 and 2.26 are solved simultaneously, while employing Newmark’s 

numerical integration method to obtain different structural response component values 

(i.e. displacements {𝑥𝑠(𝑡)}, velocities {𝑥̇𝑠(𝑡)} and accelerations {𝑥̈𝑠(𝑡)}). 

4. Step 2 is repeated during the third cycle and the subsequent cycles of vibration of the 

structure. During any given cycle, the properties of the equivalent TMD parameters are 

being updated based on the maximum amplitude experienced at the TLD location during 

the previous cycle. 

2.6. Validation of 3D FE-Structure-TLD System Model  
In this section, the effect of a TLD on the response of a three dimensional single-story 

structure is investigated using the two algorithms described above under harmonic and 

random excitation. The natural frequency of the TLD used in the experimental test is equal to 

that of the TLD investigated in Section 2.4.2.2. Therefore, the charts and fitted equations, 

which are previously constructed (see Figure 2.16), are employed in the 3D-Structure-TLD 

system model to update the EADTMD model. 

2.6.1 Validation Under Sinusoidal Excitation 
A TLD is attached to the centre of the floor slab of a single-story building previously 

described in Section 2.3. The 3D-Structure-TLD system model is excited by steady-state 

sinusoidal excitation over a wide range of frequencies. The generalized characteristics of this 

system are listed in Tables 2.1 and 2.2. These values match those in the experimental study 

carried out by Tait (2004) using an amplitude force (𝑃∘) of 23 N, mass ratio (𝜇) of 2.5% and 

tuning ratio (𝛺) of 0.98. As observed from the frequency response curves plotted in Figure 

2.17, the RMS structural displacement values predicted by both TLD models are found in 

close agreement with a variation of only 2%. Excellent agreement of the results obtained by 

the two nonlinear TLD models is achieved compared to experimental test results from BM4-

A building as reported on by Tait (2004). 
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2.6.2 Validation Under Random Excitation 
A time history analysis using the two nonlinear TLD models to simulate the resulted base 

shear force is carried out and compared to experimental test results reported on by Tait 

(2004). In that study, a two degree of freedom tests apparatus was designed to model the 

behaviour of a structure-TLD system excited by a four-hour duration random force time 

history, where the value of the amplitude excitation is 𝐹𝑚𝑎𝑥 equal to 150 N. Thirty-cycles 

(i.e. 30𝑇 ≈ 54 seconds) duration portion of the random excitation, selected at the 31st minute 

of the 4-hour time history, are shown in Figure 2.18a. Numerical simulations of the 

developed 3D-Structure-TLD system model are carried out using the two proposed TLD 

models (TLD Model 1 and TLD Model 2). The natural frequency of the TLD used in the 

experimental test subjected to random excitation force is equal to that used in the 

experimental program subjected to harmonic excitation force. Therefore, the same charts and 

their fitted data equations, previously used, are employed to update the EADTMD model. 

The RMS structural displacement values of the 3D-Structure-TLD system model utilizing the 

EADTMD model (TLD Model 2) is found to be within 2% of the experimentally recorded 

RMS values (see Figure 2.18b). The nonlinear fluid model (TLD Model 1) gives an accurate 

prediction of the structural RMS response with less than 0.5% discrepancy with experimental 

results. 

The root-mean-square (RMS) provides insight into the degree of fluctuation of the 

response. The RMS and peak values of a 3D-Structure-TLD system model are calculated for 

both nonlinear TLD models during the entire 4-hour time history and compared to the 

experimental results reported on by Tait (2004). RMS structural displacement response 

values of 3.40 mm, 3.45 mm and 3.38 mm are obtained for the nonlinear fluid model (TLD 

Model 1), the EADTMD model (TLD Model 2) and the experimental results, respectively. In 

contrast, an RMS structural displacement response value of 24.7 mm is obtained for the 

structure under random excitation without TLD attached. Figures 2.18c shows the 

displacement response time history of the structure with and without TLD demonstrating the 

ability of the TLD to control structural responses.  

As noted above, the structural response is well predicted. The maximum error between 

the numerical and experimental values is found to be sufficiently accurate for the presented 

nonlinear TLD models, which are implemented in the finite element model. 
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2.7. Conclusions 
A finite element model capable of simulating the behaviour of a 3D structure, using 3D 

beam elements, is developed and validated under dynamic excitation. The validated finite 

element model is employed to estimate the response of a 3D structure outfitted with a TLD 

(3D-Structure-TLD). The interaction base shear force resulting from the TLD has been 

estimated using two nonlinear TLD models; the nonlinear fluid model that simulates the TLD 

sloshing force (TLD Model 1) and the EADTMD model (TLD Model 2). The numerical 

simulations of both nonlinear TLD models and their implementation in the developed finite 

element model are described through time history analysis. 

A significant reduction in the computational effort to conduct dynamic analysis of a finite 

element 3D-Structure-TLD system model is achieved employing the EADTMD model as the 

computational time needed for the sloshing fluid model is approximately 20 times greater 

than the time needed for the EADTMD model. Therefore, two important steps are introduced 

to achieve this goal. First, an extension of the work done by the nonlinear TLD fluid model 

to produce the required energy dissipation curves to evaluate the EADTMD parameters 

(𝑚𝑇𝐿𝐷; 𝑓𝑇𝐿𝐷; 𝜁𝑇𝐿𝐷) for the TLD without shake table testing is demonstrated. Consequently, 

the nonlinear TLD fluid model is used to generate the required energy dissipation frequency 

response curves in the range of excitation amplitude ratios that are suitable for small motions 

associated with wind loads and large motions more representative of earthquake excitation. 

Thus, designing different tank geometries to be implemented in the developed finite element 

model is achieved. Second, a modified implementation method of the EADTMD model in 

the finite element model utilizing the velocity tracking technique, which is applicable for 

various type of loading, is presented. 

Finally, the developed finite element model has been validated under harmonic and 

random excitation with the experimental results using the two nonlinear TLD models 

simulating the resulting TLD base shear force. Good agreement is found using both TLD 

models and the experimental values. As a result, both validated numerical models can be 

employed to estimate the response of a full-scale multi-modal high-rise building subjected to 

wind tunnel data recorded at different locations on a building. Therefore, the wind-induced 

serviceability levels of accelerations can be estimated using the results obtained from the 

developed models. 
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Table 2.1. Building Properties 

     
Generalized 

Model 
Frame Element 

Model 

Excitation 
Type 

Excitation 
Amplitude 

(N) 

𝒇𝒔 
(Hz) 

𝜴 
 

𝝁 
(%) 

𝑴∗ 
(kg) 

𝑲∗ 
(N/m) 

𝑪∗ 
(kg/sec) 

𝜻𝒔 
(%) 

𝑳𝒄 
(m) 

𝑬𝑰𝒄 
(N.m2) 

Harmonic 23 
0.558 0.98 2.50 4040 49,656 28.33 0.10 3.0 446,904 

Random 150 

 

Table 2.2. TLD Properties 

Excitation Type 
𝒇𝑻𝑳𝑫 
(Hz) 

𝒉 
(m) 

𝑳 
(m) 

𝒃 
(m) 

𝒎𝒘 
(kg) 

𝒎𝑻𝑳𝑫 
(kg) 

𝑺 

Harmonic / Random 0.546 0.119 0.966 0.874 100.5 77.6 0.42 

 

Table 2.3. Fluid Model Excitation Amplitudes 

Excitation Amplitude 

𝑨 (𝒎𝒎) 𝑨/𝑳 

2.5 0.0026 

5.0 0.0052 

7.5 0.0078 

10.0 0.0100 

12.5 0.0129 

15.0 0.0155 

20.0 0.0207 

30.0 0.0311 

40.0 0.0414 
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(a) (b) (c) 

Fig. 2.1. Example of Bi-Directional TLD Configurations to Suppress: (a) Perpendicular Sway 
Modes, (b) a Pure Torsion Mode, and (c) Combined Sway and Torsion (from Tait et al. 
2005) 

 

 

Fig. 2.2. The Evolution of (a) a Structure-TLD System into (b) a Generalized Structural System 
with TLDs then into (c) a System with Equivalent TMD Representation (after Ross 2009) 
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Fig. 2.3. Schematic View of the Three Dimensional Beam Element and Local Co-ordinate Axes 
(from Bathe and Bolourchi 1979) 
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Fig. 2.4. 3D View of a Single-Story Structure Modelled with a Slab (SAP2000-Model 1) 

 
Fig. 2.5. A Schematic Diagram for the Frame Element Model Indicating Numbering and Lumped 

Mass Locations. 

 
Fig. 2.6. A 3D Single-Story Structure Modelled with Horizontal Frame Elements to Simulate the 

Slab (SAP2000-Model 2) 
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(a) 

 

(b) 

 

(c) 

 

Fig. 2.7. 3D-Structure Responses for Harmonic Excitation (a) Displacement, (b) Velocity, and (c) 
Acceleration 
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Fig. 2.8. Schematic of a TLD and its Dimensions (from Tait et al. 2004a) 

 

 

Fig. 2.9. Photograph of a TLD Equipped with Internal Damping Screens (from Tait et al. 2004a) 

 

 

Fig. 2.10. View of the Tank Set-up End View and Enlarged View of the Screen (from Tait et al. 
2004a) 
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Fig. 2.11. Coordinate System for Nonlinear Shallow Water System (from Tait et al. 2005b) 

 

 

Fig. 2.12. Discretization of the Tank Length with Respect to x (from Tait et al. 2005b) 

 

 

Fig. 2.13. Discretization and Modelling of the Screen (from Tait et al. 2005b) 
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(a) (b) 

Fig. 2.14. TLD and EADTMD Model (a) TLD Equipped with Damping Screens, and (b) EADTMD 
Model (from Tait et al. 2004a) 

(a) 

 

(b) 

 

Fig. 2.15. Normalized Energy Dissipation Frequency Response Curves from the Nonlinear TLD 
Fluid Model and the EADTMD Model for (a) 𝐴/𝐿=0.0026, and (b) 𝐴/𝐿=0.0129 
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(a) 

 

(b) 

 

(c) 

 
 

 

Fig. 2.16. Equivalent Amplitude Dependent Tuned Mass Damper (EADTMD) Properties 

 

 

Fig. 2.17. Frequency Response Curves For the 3D-Structure-TLD System Model 
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(a) 

 

(b) 

 

(c) 

 

Fig. 2.18. For Minute 31 (a) Time History of the Random Excitation Force with 𝐹𝑚𝑎𝑥=150 N, (b) 
Displacement Response Comparison of 3D-Structure-TLD System Model Employing Two 
Nonlinear TLD Models, and (c) Structural Displacement Response with/without TLD 
Attached 
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Chapter 3: Three Dimensional Analysis of a High-Rise Building Equipped with 
Multiple Tuned Liquid Dampers Using Wind Tunnel Loads 

3.1. Introduction 
A dynamic vibration absorber (DVA) can be used to reduce excessive resonant 

vibrations to acceptable levels by adding effective damping to a structure (Sun et al. 1989; 

Modi et al. 1990; Sun et al. 1992; Koh et al. 1994; Soong and Dargush 1997; Tait 2004). A 

tuned liquid damper (TLD) is a special type of passive DVA that consists of a rigid tank, 

which is partially filled with a liquid (usually water). The TLD is attached to the building at 

selected locations. The resulting inertia forces, which develop from the sloshing liquid 

motion inside the tank, modify the dynamic response of the building. These forces are 

approximately anti-phase to the excitation forces acting on the structure, resulting in a 

reduction in resonant motions (Kareem et al. 1999; Tait et al. 2004a; Tait et al. 2005a). The 

TLD has a number of potential advantages over the more commonly employed tuned mass 

damper (TMD). These advantages include: operation under small and large amplitude 

vibrations, ease of tuning, a low probability of failure and relatively low manufacturing, 

installation and maintenance costs.  

Adding TLDs to suppress a particular mode of vibration, for example a sway mode, 

could result in increased excitation of other modes of vibration, such as a torsional mode. 

Accordingly, torsional response motions may result not only from the geometry of the 

structure itself and wind loading on the building at certain angles, but may also be amplified 

by the addition of TLDs. As a result, it is prudent to conduct a full three dimensional (3D) 

dynamic analysis of the building equipped with tuned liquid dampers, which captures the 

interaction of different modes of the building and the nonlinear behaviour of the TLD(s). 

Consequently, the 3D-Structure-TLD system model, developed and validated in Chapter 2, is 

expanded to a multiple 3D-Structure-TLD system model (3D-Structure-MTLD). This model 

is employed to estimate the response of a multi-modal full-scale high-rise building subjected 

to wind tunnel time history loads recorded at different locations on the building’s width and 

height (i.e. surface). 

Criteria for acceptable wind-induced motions are related to human perception thresholds, 

which are calculated using a probabilistic approach and experimental evaluation. Based on 

this concept, the BLWTL has recommended the following criteria for acceptable 



73 

accelerations for a 10-year return period, 10 to 15 milli-g for residential buildings, 15 to 20 

milli-g for hotels and 20 to 25 milli-g for office buildings (Isyumov 1994). The serviceability 

criteria in the National Building Code of Canada (NBC) only addresses inter-story drift; 

therefore, serviceability criteria dictated by the BLWTL are taken as the acceptable limits. 

A 38-story reinforced concrete building (Indianapolis building, Indianapolis, Indiana, 

USA) with a height of 154.6 m and plan dimensions of 32 m by 54 m is considered in this 

study, and is an actual structure tested previously in the Boundary Layer Wind Tunnel 

Laboratory (BLWTL) at the University of Western Ontario, London, Ontario, Canada. The 

lateral load resisting elements of the building are shear walls. The stiffness disparity and non-

coinciding centre of mass (𝐶𝑀) and centre of twist (𝐶𝑇) (i.e. centre of rigidity), lead to a 

coupled lateral and torsional response. In addition, the applied wind loads from different 

directions causes a high torsional action at some specific wind loading angles (𝜃𝑤). Recorded 

wind loading information and structural response characteristics were considered when this 

particular building was selected. 

In this chapter, the building described above is analyzed using recorded wind tunnel data, 

with and without TLDs placed at specified locations on the top of the building. The 3D-

Structure-MTLD system model is used to conduct this analysis. TLDs to suppress the first 

two modes of vibration of the building are designed and placed at the centre of mass (𝐶𝑀) of 

the uppermost floor (𝑧 = 154.6 m). Subsequently, an additional set of TLDs is placed at 

selected corners of the building to achieve the target structural response values at both the 

centre and the four corners of the building. 

3.2. Details of the Wind Climate Used in the Study (BLWT-SS3-2007) 

3.2.1 Meteorological Data 
The wind climate model has been developed using the meteorological data from the 

Indianapolis International Airport (Station 724380, period of record: Jan. 1973- Oct. 2006), 

obtained from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of 

Western Ontario. The methodology used for its development is detailed in BLWTL (1999). 

From this model, predicted wind speeds, regardless of wind direction, for various return 

periods can be derived. The record of annual extremes was used to predict wind speeds at 

various return periods. Based on the analysis of the hourly records, the predicted hourly-

mean wind speed at 10 m, corrected for a standard open exposure definition, is 20.0 m/s 
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(45.0 mph) for a return period of 50 years, equivalent to a 3 seconds gust speed of 30.7 m/s 

(69.0 mph). Analysis of the annual extremes gives a 50-year return period hourly mean speed 

of approximately 24.0 m/s (54.0 mph). 

3.2.2 Statistical Wind Climate Model 
The predicted wind speeds have been determined using the up-crossing method as 

described in BLWTL (1999). A design probability distribution of upper level (at 500 m 

height) wind speed and direction representing the extra-tropical wind climate of Indianapolis 

was developed for the area on the basis of full-scale meteorological records. The directional 

characteristics of the wind events are indicated by the probability distributions discussed in 

detail elsewhere (BLWT-SS3-2007). Results from the wind tunnel study show that for strong 

winds, the southwest angle directions of the Indianapolis building are the most important, 

which is found to be in agreement with the results obtained in this study (see Section 3.4.2). 

ASCE 7-05 recommended design wind speed in the Indianapolis area is specified as 40 

m/s (90 mph, 3-seconds gust) at 10 m in open terrain for a return period of 50 years. This is 

equivalent to an hourly mean wind speed of 26.2 m/s (59 mph) at 10 m height. This is higher 

than the predicted wind speed from the annual extreme wind records of 24.0 m/s (54 mph). 

As such, for strength-related issues such as cladding pressures and loads, the wind climate 

model is scaled to match the wind speed requirement in ASCE 7-05. Therefore, the 3D-

Structure-MTLD system model can be used to estimate different straining actions (i.e. 

normal force, shear force, bending moment and torque) for the lateral structural resisting 

elements (i.e. shear walls) utilizing the extreme mean hourly wind speed. 

The wind speed at 10 m is converted to a mean hourly wind speed at a reference height 

of 500 m using a standard open exposure wind profile. Predictions of extreme and mean 

hourly wind speeds for various return periods are shown in Figure 3.1. The 10-year return 

period mean hourly wind speed at 500 m is 44 m/s (99 mph) for the code-matched model (i.e. 

strength-related issues) and 34 m/s (76.5 mph) for the unscaled wind climate model, which is 

used in this study for serviceability considerations. 
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3.3. The Modelling of the Site and the Wind 

3.3.1 Overall Approach 
The basic tool used in BLWT-SS3-2007 is the boundary layer wind tunnel laboratory. 

The tunnel is designed with a long test section that allows extended models of upstream 

terrain to be placed in front of the model of the building under test. The modelling is done in 

more detail close to the site. The wind flow then develops characteristics, which are similar 

to the wind over the terrain approaching the actual site. This methodology is highly 

developed (Davenport and Isyumov 1968; Surry and Isyumov 1975; BLWT-SS3-2007) and 

is described below  

3.3.2 Model Design 
Close-up views of the 1:400 scale pressure model are shown in Figure 3.2. The main 

components of the model are: 

1. The pressure model built in detail from ABS plastic and equipped with pressure 

measurement instrumentation (see Figure 3.2). 

2. A detailed proximity model of the surrounding city built in block outline from 

Styrofoam for a radius of approximately 487.7 m (1600 ft) (see Figure 3.3). 

3. Generic models of upstream terrain are detailed below (see Figure 3.3). 

The building model and the proximity model are rotated to simulate different wind 

directions (𝜃𝑤) between 0° and 360° with the upstream terrain being appropriately changed. 

The upstream terrain was modelled using generic roughness blocks to produce wind 

characteristics representative of those at the project site. Three different exposures were used. 

They are shown in Figure 3.3 and the azimuth ranges, over which they were employed, are 

shown in Figure 3.4. 

3.3.3 Characteristics of the Modelled Wind 
The vertical profiles of the mean speed and the intensity of the longitudinal component 

of turbulence, measured just upstream of the centre of the turntable each upstream terrain 

exposure, are good representations of the expected full-scale wind speed variation with 

height but deviate somewhat from that expected in full-scale. To account for this, the 

reference wind speed measured in the wind tunnel has been adjusted to ensure that the roof 

height wind speed match the expected full-scale values (BLWT-SS3-2007). 
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3.4. Response of the Indianapolis Building with No-TLDs 

3.4.1 Validation of a 3D Finite Element Model 
The 38-story Indianapolis building is modelled using the commercial software package 

SAP2000 to compare its dynamic characteristics with that obtained from the 3D finite 

element model described in Chapter 2. Two techniques are employed to model the structure 

using the commercial software. The first technique models the slabs “as real slabs” including 

actual thickness and the mass distribution. The second technique uses beams that are rigid in 

plane, and sufficiently flexible out-of plane to represent the real action of the slabs in the 

building. These two techniques have been discussed and verified in Chapter 2. 

A modal analysis is conducted on the building to investigate its fundamental vibration 

characteristics and to determine its mode shapes. Figure 3.5 displays the first three mode 

shapes, which correspond to natural periods of 7.31, 6.18 and 3.01 seconds. The torsional 

component of the mode shapes are multiplied by the overall radius of gyration (18.8 m) of 

the building to maintain dimensional consistency prior to being normalized. This technique 

allows for relative comparison of the mode shapes to be made in the three principles 

directions. It can be observed from Figure 3.5 that the structure has a dominate translational 

mode in the 𝑥-direction, a dominate translational mode in the 𝑦-direction and dominate 

torsional mode in the 𝜃-direction with minor coupling action between 𝑥- and 𝑦-directions. 

Figure 3.6 shows a typical floor plan of the building, modelled using the two different 

techniques discussed previously (i.e. Model 1: real slabs and shear walls using SAP2000; 

Model 2: slab beams and lumped mass using SAP2000). A modal analysis is carried out 

using both models and good agreement for the first three building periods and mode shapes 

are obtained with a maximum difference of less than 3% found. The shear walls are 

represented in the second model using frame elements with a box section having the same 

wall thickness and other dimensions. The shear walls that are connected together to make an 

L-shape or composed of two boxes adjacent to each other are joined by a rigid arm at the 

floor levels passing between their centres in order to behave as one unit. Each shear wall 

centre is then connected to nearby columns using beam elements, which are also used to 

connect the columns and act as the slabs. The second model is used to generate an input data 

file for the 3D finite element model (Model 3) to ensure the static and dynamic 

characteristics are matched. 
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Figures 3.7a and 3.7b show a 300-second time history of the structural displacement 

responses in the 𝑥- and 𝑦-directions, respectively, of the centre of mass (𝐶𝑀) at the 

uppermost floor (𝑧 = 154.6 m) corresponding to the critical wind loading angle (𝜃𝑤) of 210∘ 

(Section 3.4.2 further shows the critical wind loading angle). A 300-second time history of 

the structural velocity and acceleration responses in the 𝑥- and 𝑦-directions of 𝐶𝑀 at 

𝑧 = 154.6 m and 𝜃𝑤 = 210∘ are presented in Figures A1 and A2 (Appendix-A), 

respectively. The wind forces are applied to the structure as three different components, i.e. 

force in the 𝑥-direction, force in the 𝑦-direction and a moment that is transformed to an 

equivalent torque caused by two opposing forces separated by a distance. The forces are 

applied to the structure at 14 different elevations along its height as recorded by the pressure 

taps in the wind tunnel test model (BLWT-SS3-2007). Good agreement is found in the 𝑥- and 

𝑦-directions between the different response histories for the three types of models, i.e. real 

slabs and shear walls using SAP2000, slab beams and lumped mass using SAP2000 and the 

3D finite element model. The models are denoted as Model 1, Model 2 and Model 3 in 

Figures 3.7a and 3.7b, respectively. 

3.4.2 Response of a 3D-FE Model Utilizing Excitation from Wind Tunnel Data 
In this section, a dynamic analysis of a full-scale multi-modal 38-story high-rise building 

(Indianapolis building) is carried out using recorded wind tunnel loads as the applied 

excitation. A total of 36 tests are solved to represent different wind loading angles (𝜃𝑤) 

ranging between 0∘ and 360∘. The wind data includes the response-specific factors. These 

factors describe the relative importance of each wind loading angle tested (𝜃𝑤) and are 

calculated from the site-specific wind climate model obtained from the BLWTL (BLWT-

SS3-2007). The response-specific factors are included in the wind tunnel loading data used in 

the dynamic analysis conducted in this study. The result is an average peak hourly 

acceleration response (𝑥̈; 𝑦̈) and root-mean-square (RMS) acceleration response (𝜎𝑥̈; 𝜎𝑦̈) of 

the centre of mass (𝐶𝑀) and the four corners (𝐶1; 𝐶2; 𝐶3; 𝐶4) of the structure, in both 𝑥- and 

𝑦-directions, at the uppermost floor (𝑧 = 156.4 m) to evaluate the building’s serviceability 

conditions. The acceleration response values are expressed in terms of gravitational 

acceleration (milli-g). A response history analysis utilizing a 4-hour recorded wind loading 

event is carried out for each wind loading angle. 
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Figures 3.8 and 3.9 show the RMS acceleration responses of the structure in the 𝑥- and 

𝑦-directions, respectively, for all wind loading angles. In the 𝑥-direction, the responses of the 

four corners and the structure’s centre have similar values with the same trend. A peak RMS 

value (𝜎𝑥̈) of 6.3 milli-g occurs at wind loading angle (𝜃𝑤) of 210∘. In contrast with the 𝑥-

direction, the building responses at the centre of mass and the four corners display the same 

trend but have different values in the 𝑦-direction. A peak RMS value (𝜎𝑦̈) of 5.1 milli-g 

occurs at wind loading angle (𝜃𝑤) of 260∘ at 𝐶1 and 𝐶4, 4.3 milli-g at 𝐶2 and 𝐶3, and 4.6 

milli-g at the 𝐶𝑀. These results are in agreement with the BLWTL report (BLWT-SS3-

2007), which stated that for strong winds, the southwest directions are the most important 

(180∘ ≤ 𝜃𝑤 ≤ 270∘), where 𝜃𝑤 equals 0∘ facing the north direction and increases in the 

clock-wise direction. 

A maximum average peak hourly resultant acceleration response value (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) of 

28.2 milli-g is calculated at 𝜃𝑤 = 210∘ as shown in Figure 3.10. This acceleration response 

value exceeds acceptable acceleration limits from wind-induced motion for residential 

buildings, hotels and office buildings. As described before, recommended limits for a 10-year 

return period were found to be 10 to 15 milli-g for residential buildings, 15 to 20 milli-g for 

hotels and 20 to 25 milli-g for office buildings (Isyumov 1994). Thus, the use of TLDs to 

reduce the Indianapolis building response accelerations to an acceptable perception level by 

adding effective damping to the system will be investigated. 

3.5. TLD/TMD Background Information 
Figure 3.11a shows a schematic of the TLD tank, which was used in the validation part 

of the 3D finite element model employed in this study and described in detail elsewhere 

(Chapter 2). Results of the 3D-Structure-TLD system model were compared to experimental 

work reported by Tait et al. (2004a and 2004b) and found to be in excellent agreement. The 

dimensions 𝐿, 𝑏 and ℎ represent the tank length (in the direction of excitation), the tank width 

(perpendicular to the excitation) and the still water depth, respectively. The fundamental 

sloshing frequency (𝑓𝑤) for the water inside this tank using linear wave theory (Lamb 1932) 

can be estimated as  

𝑓𝑤 =
1

2𝜋
�𝜋𝑔
𝐿

tanh �
𝜋ℎ
𝐿
� (3.1) 
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where 𝑔 is the gravitational acceleration. An estimate of the natural frequency of the TLD 

(𝑓𝑇𝐿𝐷) for small sloshing fluid response amplitudes, is approximately equal to 𝑓𝑤 (Warnitchai 

and Pinkaew 1998; Ju et al. 2004; Tait et al. 2004a). 

The tuning ratio, which influences the performance of the TLD, is defined as 

𝛺 =
𝑓𝑇𝐿𝐷
𝑓𝑠

 (3.2) 

where 𝑓𝑇𝐿𝐷 is the natural frequency of the TLD; and 𝑓𝑠 is the natural frequency of the 

generalized structure having generalized mass, stiffness and damping values of 𝑀∗, 𝐾∗ and 

𝐶∗, respectively. 

An important factor affecting the response of the system with TLD attached is the mass 

ratio (𝜇) which is given by 

𝜇 =
𝜙2𝑚𝑇𝐿𝐷

𝑀∗  (3.3) 

where 𝑀∗ is the generalized mass of the primary structure corresponding to the vibration 

mode being suppressed and 𝜙 is the normalized modal deflection value of the structure at the 

TLD location. The absorber mass (𝑚𝑇𝐿𝐷), for a TLD with damping screens can be 

approximated using potential flow theory (i.e. 𝑚𝑇𝐿𝐷 ≈ 𝑚1), where 𝑚1 is calculated using the 

following equation (Graham and Rodriguez 1952) 

𝑚1 =
8 𝑡𝑎𝑛ℎ �𝜋ℎ𝐿 �

𝜋3ℎ
𝐿

𝑚𝑤 (3.4) 

where 𝑚𝑤 is the total mass of the contained water. 

Another parameter affecting the response of a structure-TLD system is the inherent 

damping ratio (𝜁𝑇𝐿𝐷) of the sloshing fluid inside the tank. The inherent damping for sloshing 

liquid inside a rectangular TLD tank, without any additional devices inside, can be estimated 

by Sun (1992) using the following equation 

𝜁𝑇𝐿𝐷 =
1

2𝜋�
𝑣𝑤
𝜋𝑓𝑤

�1 +
ℎ
𝑏
� (3.5) 

where 𝑣𝑤 is the kinematic viscosity of water. An optimum inherent damping value for a 

linear tuned mass damper (TMD) as a function of the mass ratio (𝜇) can be obtained 

(Warburton 1982). Due to the analogy between the TMD and TLD devices, this formula can 
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be used to determine the target value of 𝜁𝑇𝐿𝐷. Screens formed by horizontal slats can be used 

as in the experimental work reported by Fediw (1992), Fediw et al. (1995) and Tait (2004) to 

increase 𝜁𝑇𝐿𝐷 as shown in Figure 3.11b.  

3.6. TLD Design Procedure to Suppress the First Two Modes of the 
Indianapolis Building 

This section describes, in detail, the steps followed for the TLD design procedure to 

suppress the first mode of vibration of the building in one direction (𝑥-direction) that can be 

repeated to suppress the second mode of vibration in the other direction (𝑦-direction). 

3.6.1 TLD Design Procedure 
A TLD must be properly tuned and damped in order to perform effectively. While it is a 

straight forward procedure to optimally tune and damp a linear TMD to a linear structure, the 

process for a nonlinear TLD is more involved and requires knowledge of the target structural 

response amplitude to damp a TLD (Tait 2008) or to damp and tune a TLD (Love et al. 

2011). The response of a TLD is amplitude dependent; therefore, it is necessary to establish 

the target RMS structural acceleration response value (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡). A reduction in the initial 

average peak hourly acceleration response value (𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙) to a target average peak hourly 

value (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) utilizing a TLD has been achieved for a 2 DOF structure-TLD system model 

(i.e. generalized properties) by calculating the required mass ratio (𝜇) and the optimal TLD 

properties that satisfy the required level of effective damping (𝜁𝑒𝑓𝑓−𝑜𝑝𝑡) (Tait 2008). In this 

study, a mass ratio value (𝜇) is selected, hence, the target average peak hourly acceleration 

response value utilizing a TLD is estimated (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) from the initial average peak hourly 

acceleration response (𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙) occurring at the critical wind loading direction.  

3.6.2 Modal Contribution Response Components (Modal Factors, 𝑴𝑭) 
To expand the applicability of using the preliminary TLD design procedure to a multi-

modal high-rise building, which is the general case of the actual existing buildings; TLDs to 

suppress the first two modes of vibration of the Indianapolis building are designed utilizing 

the modal contribution response components following the preliminary TLD design 

procedure (Tait 2008). As a result, a spectral analysis is employed, using MATLAB®, to the 

uncontrolled response time history series of the centre and the four corners located at the 

uppermost floor (𝑧 = 154.6 m) obtained from the dynamic analysis in Section 3.5. 
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Consequently, the TLDs are designed according to the target modal RMS acceleration 

response component values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2) determined from the initial modal 

RMS values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2) at the TLD location and in its placement direction. 

Therefore, the modal contribution factors (𝑀𝐹) corresponding to each structural mode of 

vibration to be suppressed utilizing the TLDs must be determined. 

Tables 3.1 and 3.2 show the initial RMS acceleration response values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙; 

𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙) of the Indianapolis building and their corresponding modal response component 

values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2). The TLDs, which are placed at the centre of mass of 

the uppermost floor (𝐶𝑀), are designed to suppress the first two modes (i.e. 𝑚1 and 𝑚2) that 

are mainly translational in the 𝑥- and 𝑦-directions. Spectral analysis results show that the 𝐶𝑀 

response values in the 𝑥- and 𝑦-directions are mainly produced by the first two modes of the 

building where 𝑀𝐹 > 94%. Therefore, the centre of mass (𝐶𝑀) is considered to be a suitable 

location for the TLDs. It should be noted that optimization of the TLD placement has not 

been considered in this study. 

3.6.3 TLD Parameter Calculations 

The assumed mass ratio for mode 1 in the 𝑥-direction (𝜇𝑥) enables the optimal structure-

DVA tuning ratio (𝛺𝑜𝑝𝑡𝑥), the optimal DVA damping ratio (𝜁𝑜𝑝𝑡𝑥) and the optimal structure-

DVA response ratio (𝑅𝑜𝑝𝑡𝑥) to be calculated for an undamped structure (Warburton 1982; 

Tait 2008; Love et al. 2011) 

𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  (3.6) 

𝜁𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  (3.7) 

𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  (3.8) 

The effective damping provided by an optimally designed DVA (𝜁𝑒𝑓𝑓−𝑜𝑝𝑡𝑥) is estimated 

using (Vickery and Davenport 1970; McNamara 1977; Gerges and Vickery 2003; Tait 2008; 

Love et al. 2011) 

𝜁𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1
4�

𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
  (3.9) 
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The total damping (𝜁𝑡𝑜𝑡−𝑥) of a structure-DVA system consists of structural damping (𝜁𝑠) 

and effective damping (𝜁𝑒𝑓𝑓−𝑜𝑝𝑡𝑥) added by the optimally designed DVA can be obtained by 

(Luft 1979; Love et al. 2011) 

𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 (3.10) 

Since the TLD is the DVA used in this study, therefore, the effective damping that must 

be added by the TLD to achieve the target modal RMS displacement response 

(𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1) can be calculated by (Love et al. 2011) 

𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 𝜁𝑡𝑜𝑡−𝑥 − 0.8𝜁𝑠 = 𝜁𝑠
𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚12

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚12  − 0.8𝜁𝑠  
 

(3.11) 

The initial modal peak hourly acceleration response value of the structure (𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1) 

can be related to the initial modal RMS acceleration response value (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1) using the 

peak factor (𝑃𝐹𝑚1) (Davenport 1964) 

𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1
𝑃𝐹𝑚1

 , where 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1 = 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 (3.12) 

Thus, the initial modal RMS displacement response value (𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚) can be 

estimated using  

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1
𝜔𝑠−𝑚1
2   (3.13) 

Therefore, the target modal peak hourly RMS displacement response values 

(𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1) can be estimated using Equation 3.11 assuming that 𝜁𝑠 is equal to 2% in this 

study. 

The target modal RMS displacement response (𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1) enables the target modal 

RMS acceleration response (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1) and the target RMS fluid response amplitude 

(TLD response, 𝜎𝑟−𝑥) to be determined by 

𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1 = 𝜔𝑠−𝑚1
2  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1  (3.14) 

𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1  (3.15) 

Knowledge of the optimal TLD natural frequency in the 𝑥-direction corresponding to 

mode 1 (𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥) using the calculated optimal tuning ratio (𝛺𝑜𝑝𝑡𝑥) allows the dimensions 

of the TLD to be estimated by 

𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh �𝜋ℎ
𝐿𝑥
�  (3.16) 
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where g is the gravitational acceleration. 

The TLD damping ratio (𝜁𝑇𝐿𝐷−𝑥) is a function of the fluid viscosity, the target RMS fluid 

response amplitude (𝜎𝑟−𝑥 ), the screen loss coefficient (𝐶𝑙−𝑥) and the location of the damping 

screen(s) (𝑥𝑗) (Tait 2008) 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2 �𝜋ℎ

𝐿𝑥
� 𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  (3.17) 

where 

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2�𝜋ℎ𝐿𝑥
�
�  (3.18) 

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   (3.19) 

where 𝑛𝑠𝑥 is the number of damping screen(s) inside the tank in the x-direction.  

Bi-directional TLDs, which act as two independent TLDs, can be used to control the first 

two sway modes of the structure in the 𝑥- and 𝑦-directions, simultaneously (Tait 2004; Tait 

et al. 2005a; Tait et al. 2008). To design a bi-directional TLD, the previous procedure is 

repeated considering the same fluid height obtained previously (ℎ) and the assumed mass 

ratio for the second mode of vibration in the 𝑦-direction (𝜇𝑦). The calculation steps and the 

equations used in the TLD design to suppress the second mode of vibration the 𝑦-direction 

are shown in Table A1 (Appendix-A). The above design calculations in the 𝑥- and 𝑦-

directions may have to be repeated in an iterative manner to achieve the selected mass ratio 

in both directions (𝜇𝑥; 𝜇𝑦) as 𝐿𝑥 represents the width of the tank in the 𝑦-direction and 𝐿𝑦 

represents the width of the tank in the 𝑥-direction. This is necessary when the water mass 

calculations, mentioned in detail in the next section, result in a different numbers of tanks in 

the 𝑥- and 𝑦-directions based on the chosen lengths of 𝐿𝑥 and 𝐿𝑦 to satisfy the selected mass 

ratios in both directions (𝜇𝑥; 𝜇𝑦). It should be noted that an increased number of multiple 

tanks can be used to satisfy space restrictions. Section 3.6.5 presents a TLD design example 

to suppress the first two vibration modes of the Indianapolis building. 

3.6.4 TLD Water Mass Calculations 

The mass of water in a bi-directional TLD, 𝑚𝑤(1𝑡𝑎𝑛𝑘) can be calculated using 

 𝑚𝑤(1𝑡𝑎𝑛𝑘) = 𝜌𝑤. 𝐿. 𝑏. ℎ  (3.20) 
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where 𝜌𝑤 is the density of water, 𝐿 is tank length, 𝑏 is the tank width and ℎ is the water 

depth. 

By placing the TLD at the top of the building and for a pure translational mode shapes, 

the TLD mass ratio values for the first two mode shapes in the 𝑥- and 𝑦-directions, 

respectively (𝜇𝑥; 𝜇𝑦) are defined as 

𝜇𝑥 = 𝑚𝑇𝐿𝐷−𝑥
𝑀𝑥
∗ 𝜙𝑇𝐿𝐷−𝑥2   (3.21) 

𝜇𝑦 = 𝑚𝑇𝐿𝐷−𝑦

𝑀𝑦
∗ 𝜙𝑇𝐿𝐷−𝑦2   (3.22) 

where 𝜙𝑇𝐿𝐷−𝑥 and 𝜙𝑇𝐿𝐷−𝑦 are the mode shape values at the TLDs locations in both 𝑥- and 𝑦-

directions, respectively. 

In general, the mode shapes have both translational and torsional components. Thus, the 

resulting mass coupling terms introduced by the TLD must be considered. The generalized 

mass of the TLD(s) corresponding to the 𝑛𝑡ℎ structural mode can be obtained using the 

following relationship 

𝑚𝑇𝐿𝐷𝑛 = {𝜙𝑛}𝑇[𝑀𝑇𝐿𝐷]{𝜙𝑛} (3.23) 

where [𝑀𝑇𝐿𝐷] is the TLD mass matrix and can be determined by transferring the mass of the 

TLDs back to the centre of mass of the structure (𝐶𝑀). 

The TLD mass matrix can be determined by direct force equilibrium method. Thus, a 

unit acceleration is imposed on each degree-of-freedom (DOF) and the resulting mass 

influence coefficients can be determined. The derivation of the tuned mass damper (TMD) 

mass matrix, [𝑀𝑇𝑀𝐷], for a 3-dimensional mode shape was introduced by Yat (2009) (see 

Figure 3.12) and expressed as  

[𝑀𝑇𝑀𝐷] = �
𝑚1 + 𝑚2 0 𝑚2𝑒𝑦2 − 𝑚1𝑒𝑦1

0 𝑚1 + 𝑚2 𝑚2𝑒𝑥2 − 𝑚1𝑒𝑥1

𝑚2𝑒𝑦2 − 𝑚1𝑒𝑦1 𝑚2𝑒𝑥2 − 𝑚1𝑒𝑥1 𝑚1�𝑒𝑥1
2 + 𝑒𝑦1

2� + 𝑚2(𝑒𝑥2
2 + 𝑒𝑦2

2)
� (3.24) 

Due to the analogy between the TLD and the TMD, Equation 3.24 (Yat 2009) can be 

used to estimate the tuned liquid damper (TLD) mass matrix, [𝑀𝑇𝐿𝐷], for a 3-dimensional 

mode shape. The TLD tanks to suppress the first two modes of the Indianapolis building are 

placed at the centre of mass (𝐶𝑀), thus 𝑒𝑥1 = 𝑒𝑥2 = 𝑒𝑦1 = 𝑒𝑦2 = 0 leading to 𝑚𝑇𝐿𝐷𝑛 equal 

to the summation of the participating water mass in these tanks (i.e. 𝑚𝑇𝐿𝐷−𝑥;𝑚𝑇𝐿𝐷−𝑦), where 
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the participating water mass can be estimated using Equations 3.29 and 3.30 in the 𝑥- and 𝑦-

directions, respectively. Consequently, Equations 3.21 and 3.22 can be used to determine the 

TLD mass ratio values for the first and second mode shapes in the 𝑥- and 𝑦-directions, 

respectively.  

Thus, the required TLD mass in the 𝑥- and 𝑦-directions can be evaluated where 𝑀𝑥
∗ and 

𝑀𝑦
∗  are the generalized mass of the structure in the 𝑥- and 𝑦-directions, respectively, 

corresponding to the structure’s modes of vibration to be suppressed. The generalized mass 

values of the structure can be determined by 

𝑀𝑥
∗ = ∑ �𝑚𝑓�𝑖

𝑖=𝑁𝑓
𝑖=1 (𝜙𝑇𝐿𝐷−𝑥2 )𝑖  (3.25) 

𝑀𝑦
∗ = ∑ �𝑚𝑓�𝑖

𝑖=𝑁𝑓
𝑖=1 �𝜙𝑇𝐿𝐷−𝑦2 �

𝑖
  (3.26) 

where 𝑁𝑓 is the total floor numbers, 𝑚𝑓 is the mass of each floor. 

The number of TLDs required in both directions (𝑁𝑇𝐿𝐷−𝑥; 𝑁𝑇𝐿𝐷−𝑦) is calculated using 

the following equations 

𝑁𝑇𝐿𝐷−𝑥 = 𝑚𝑇𝐿𝐷−𝑥
𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘)

  (3.27) 

𝑁𝑇𝐿𝐷−𝑦 = 𝑚𝑇𝐿𝐷−𝑦

𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘)
  (3.28) 

where 𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘) and 𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘) are the participating mass of the sloshing fluid 

corresponding to the fundamental sloshing mode (Graham and Rodriguez 1952) and can be 

estimated in both directions by 

𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝑥 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑥
�

𝜋3� ℎ𝐿𝑥
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)  (3.29) 

𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝑦 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑦
�

𝜋3� ℎ𝐿𝑦
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)   (3.30) 

The actual mass ratio values (𝜇𝑥−𝑎𝑐𝑡𝑢𝑎𝑙; 𝜇𝑦−𝑎𝑐𝑡𝑢𝑎𝑙) as well as the total mass ratio of 

contained water (𝜇𝑤) can be calculated after the same numbers of tanks (𝑁𝑇𝐿𝐷−𝑥𝑦) are 

determined for both directions of the bi-directional TLD tanks 

𝜇𝑥−𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑁𝑇𝐿𝐷−𝑥𝑦𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘)

𝑀𝑥
∗    (3.31) 

𝜇𝑦−𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑁𝑇𝐿𝐷−𝑥𝑦𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘)

𝑀𝑦
∗    (3.32) 
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𝜇𝑤 = 𝑁𝑇𝐿𝐷−𝑥𝑦𝑚𝑤(1𝑡𝑎𝑛𝑘)

𝑀𝑠
  (3.33) 

where 𝑀𝑠 is the total structure mass given by 

𝑀𝑠 = ∑ �𝑚𝑓�𝑖
𝑖=𝑁𝑓
𝑖=1   (3.34) 

3.7. Modelling and Response of the Indianapolis Building Equipped with Bi-
Directional TLDs to Suppress the First Two Modes of Vibration 

This section considers designing and adding bi-directional TLDs to reduce structural 

response levels to acceptable wind-induced motion criteria (Isyumov 1994) in two directions, 

simultaneously. For a bi-directional TLD (2D-TLD), a one-directional (1D) nonlinear TLD 

fluid model capable of simulating a TLD equipped with damping screens is employed to 

model a 2D-TLD. Application of this particular model requires the assumption that the 

response is decoupled and can be treated as the summation of two independent 1D-TLDs. 

Tait et al. (2005b) compared results from the nonlinear fluid model with 2D experimental 

shake table test values leading to a validation of the decoupled response assumption. 

Moreover, a structure-2D-TLD behaviour was experimentally examined over a range of 

excitation amplitude values covering the practical range of serviceability accelerations for 

buildings subjected to wind loads (Tait et al. 2007). Therefore, 2D-TLDs to suppress the first 

two modes of vibration are designed and installed in the Indianapolis building. Also, an 

evaluation of the two nonlinear TLD models, introduced in Chapter 2, and model selection 

are conducted. 

3.7.1 TLD Models 
This section presents briefly the two nonlinear TLD models, the nonlinear fluid model 

and the equivalent amplitude dependent tuned mass damper (EADTMD) model, which are 

used to simulate the TLD sloshing force in Section 3.7.2. Consequently, a TLD design 

example for a bi-directional TLD to suppress the first two modes of the Indianapolis building 

is presented using both nonlinear TLD models  

3.7.1.1 Fluid Model (TLD Model 1) 
A nonlinear numerical model of a TLD equipped with damping screens, developed by 

Kaneko and Ishikawa (1999) and assessed by Tait et al. (2005b). The nonlinear numerical 

model is briefly described below. Considering the tank, shown in Figure 3.11c, is excited in a 
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uni-directional motion, the nonlinear sloshing response can be expressed using shallow water 

theory as (Lepelletier and Raichlen 1988) 

𝜕𝜂
𝜕𝑡

+
𝜕
𝜕𝑥

[(ℎ + 𝜂)𝑢] = 0 (3.35) 

𝜕𝑢
𝜕𝑡

+ 𝑢
𝜕𝑢
𝜕𝑥

+ 𝑔
𝜕𝜂
𝜕𝑥

−
1
3

(ℎ + 𝜂)2
𝜕3𝑢
𝜕𝑡𝜕𝑥2

+ 𝜁𝑤𝑢 + 𝑋̈ = 0 (3.36) 

where 𝜂(𝑥, 𝑡) is the free surface elevation, 𝑢 (𝑥, 𝑡) is the horizontal velocity averaged through 

the liquid depth, 𝐿 is the tank length, ℎ is still liquid depth, 𝑔 is the gravitational acceleration, 

𝑋̈ is the horizontal base excitation acceleration of the tank, which is equal to that of the nodal 

acceleration at the TLD location and in the direction of the tank placement (𝑥̈𝑠), and 𝜁𝑤 is a 

damping coefficient, introduced by Miles (1967) to account for the viscous dissipation.  

The above set of nonlinear shallow water equations can be solved numerically once the 

initial state of the liquid is prescribed, i.e. the values of 𝜂 and ℎ are given at time 𝑡 = 0. A 

one-dimensional finite difference discretization scheme is applied for both 𝜂 and ℎ. The 

boundary conditions on the end walls of the tank are given as 𝑢(−𝐿/2, 𝑡) = 𝑢(𝐿/2, 𝑡) = 0. 

For a certain excitation amplitude, Equations 3.35 and 3.36 are integrated numerically using 

the Runge-Kutta-Fehlberg method after assigning the initial conditions for 𝜂(𝑥, 0) = 0 

and 𝑢(𝑥, 0) = 0. The influence of the damping screens is modelled using a screen loss 

coefficient (𝐶𝑙).  

As described in Chapter 2, momentum theory to calculate the TLD base shear force, the 

mass of the 𝑖th element can be given by the following equation (Kaneko and Ishikawa 1999) 

𝑚𝑖 = 𝜌 ×
𝐿
𝑛𝑒

× 𝑏 × �
𝜂𝑖−1 + 𝜂𝑖

2
+ ℎ� (3.37) 

where 𝑛𝑒 is the total number of elements, 𝐿 is the tank length, 𝑏 is the tank width and 𝜌 is the 

liquid unit weight. 

Consequently, the momentum of the 𝑖th element can be described as follows 

𝑃 = �𝑚𝑖𝑢𝑖

𝑛𝑒

𝑖=1

=
𝜌𝐿𝑏
𝑛𝑒

��
𝜂𝑖−1 + 𝜂𝑖

2
+ ℎ�

𝑛𝑒

𝑖=1

𝑢𝑖 (3.38) 

The TLD base shear force (𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 1) can be determined by the following equation  
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𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 1 =
1
𝛥𝑡

(𝑃(𝑡) − 𝑃(𝑡 + 𝛥𝑡)) (3.39) 

A significant reduction in the dynamic response of a high-rise building can be achieved if 

the TLD has sufficient inherent damping. The design procedure, outlined in Section 3.6.3, is 

used to estimate the initial damping screen requirements. Consequently, two different initial 

modal RMS acceleration response values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2) of 6.0 milli-g and 3.4 

milli-g lead to two different target modal RMS acceleration values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 

𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2) of 3.1 milli-g and 1.8 milli-g in the 𝑥- and 𝑦-directions, respectively, for a 

selected mass ratio value of 6% (𝜇𝑥 = 𝜇𝑦 = 6%). It should be noted that the generalized 

mass ratio is equal to 6% (𝜇𝑥∗ = 𝜇𝑦∗ = 6%), where 𝑒𝑥 = 𝑒𝑦 = 0 for the TLDs placed at the 

𝐶𝑀. As a result, total target RMS acceleration response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡) of 

3.2 milli-g and 2.0 milli-g in the 𝑥- and 𝑦-directions, respectively, can be estimated using 

(see Tables 3.1 and 3.2) 

(𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡)𝑖 = (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙)𝑖 − (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 )𝑖 + (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 )𝑖 (3.40) 

(𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡)𝑖 = (𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙)𝑖 − (𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 )𝑖 + (𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 )𝑖 (3.41) 

where 𝑖 is the vibration mode number. 

The screens are designed to achieve the optimal damping ratio (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥; 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑦) at 

the above target modal RMS acceleration response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2) 

(Tait 2004; Tait 2008; Cassolato et al. 2011). Table 3.3 shows the calculation steps used in 

the design procedure of the first mode tanks in the 𝑥-direction, while the same steps are 

repeated in the 𝑦-direction and are presented in Table A1 (Appendix-A). The screens are 

located at 40% and 60% of the tank length in both directions with loss coefficient values of 

𝐶𝑙−𝑥 = 9.8 and 𝐶𝑙−𝑦 = 20.3, respectively. TLD tank dimensions are established as 𝐿𝑥 =

16.0 m, 𝐿𝑦 = 13.4 m, and ℎ = 1.9 m. A total of 2 tanks are required to satisfy the selected 

mass ratio values following the water mass calculations found in Table 3.4. 

3.7.1.2 EADTMD Model (TLD Model 2) 
An equivalent amplitude dependent tuned mass damper (EADTMD) representing a 

partially fluid tank containing screens (TLD) can be determined based on either experimental 

results or using the nonlinear fluid model as described in Chapter 2. The dynamic 

characteristics of the equivalent TMD model, in terms of mass, stiffness and damping 
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parameters can be determined by energy equivalence. The validity of this nonlinear TLD 

model has been examined (Tait et al. 2004b). The energy dissipated by the equivalent TMD 

(𝐸𝑑) shown in Figure 3.11d can be expressed in terms of the excitation amplitude, as 

𝐸𝑑 = 𝑚𝑇𝐿𝐷(2𝜋𝑓)2𝐴2𝜋�𝐻𝑧 𝑥⁄ (𝑓)� �
𝑓
𝑓𝑇𝐿𝐷

�
2

sin (𝜃𝑧/𝑥) (3.42) 

Normalizing this expression by 1 2⁄ 𝑚𝑤(𝐴2𝜋𝑓)2, results in 

𝐸𝑑′ =
𝑚𝑇𝐿𝐷

𝑚𝑤
�𝐻𝑧 𝑥⁄ (𝑓)� �

𝑓
𝑓𝑇𝐿𝐷

�2𝜋 sin (𝜃𝑧/𝑥) (3.43) 

where �𝐻𝑧 𝑥⁄ (𝑓)� is the frequency response function, referred to the modulus of the 

mechanical admittance function, between the TMD relative response motion and the shake 

table input motion 

�𝐻𝑧 𝑥⁄ (𝑓)� =
1

��1 − � 𝑓
𝑓𝑇𝐿𝐷

�
2
�
2

+ �2𝜁𝑇𝐿𝐷 �
𝑓
𝑓𝑇𝐿𝐷

��
2

 
(3.44) 

and (𝜃𝑧/𝑥) is the corresponding phase angle given by 

𝜃𝑧/𝑥 = 𝑡𝑎𝑛−1

⎝

⎛
2𝜁𝑇𝐿𝐷 �

𝑓
𝑓𝑇𝐿𝐷

�

1 − � 𝑓
𝑓𝑇𝐿𝐷

�
2

⎠

⎞ (3.45) 

A curve fitting procedure with constraints forcing the theoretical expression 𝐸𝑑′  to match 

both the maximum value of the energy dissipated and the total energy dissipated over the 

range of frequencies tested is employed. This procedure is used to estimate the EADTMD 

parameters 𝑚𝑇𝐿𝐷, 𝑓𝑇𝐿𝐷 and 𝜁𝑇𝐿𝐷 (Tait et al. 2004a; Tait et al. 2004b). 

The equation of motion of the equivalent TMD system can be written as 

𝑀𝑇𝐿𝐷. 𝑥̈𝑇𝐿𝐷 + 𝐶𝑇𝐿𝐷. 𝑥̇𝑇𝐿𝐷 + 𝐾𝑇𝐿𝐷. 𝑥𝑇𝐿𝐷 = − 𝑀𝑇𝐿𝐷. 𝑥̈𝑠 (3.46) 

Hence, the TLD force 𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 2 can be expressed as 

𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 2 = −𝑀𝑇𝐿𝐷(𝑥̈𝑠+ 𝑥̈𝑇𝐿𝐷) (3.47) 

where 𝑥𝑠 and 𝑥𝑇𝐿𝐷 are the structure displacement and the relative displacement between the 

TLD and the structure, respectively.  

The nonlinear TLD fluid model, using the tank properties obtained in Section 3.7.1.1, is 

employed to design the first mode (i.e. 𝐿𝑥; ℎ; 𝐶𝑙−𝑥) and the second mode (i.e. 𝐿𝑦; ℎ; 𝐶𝑙−𝑦) 
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tanks, respectively, by sinusoidal discrete frequency sweep analysis on the TLD at selected 

amplitudes of excitation (𝐴). Consequently, an equivalent TMD mass (𝑚𝑇𝐿𝐷), frequency 

(𝑓𝑇𝐿𝐷) and damping ratio (𝜁𝑇𝐿𝐷) can be produced. A least squares fit is carried out to 

determine the amplitude dependent properties of the TLDs for mode 1 as shown in Figure 

3.12. The same steps are repeated for mode two tanks in the 𝑦-direction and are presented in 

Figure A3 (Appendix-A). A unique set of these properties are determined for each mode to 

be suppressed and are used in the response evaluation of the Indianapolis building using the 

3D-Structure-MTLD system model. 

3.7.2 Modelling of Structure-TLD Systems 
The high-rise building (i.e. primary system) is modelled as a discrete lumped mass 

system consisting of 𝑛 lumped masses (see Figure 3.6b). The tuned liquid dampers (i.e. 

secondary system) can be attached to any level of the primary system and at any location on 

the floor plate.  

The equation of motion of the combined system can be written as 

[𝑀]{𝑥̈} + [𝐶]{𝑥̇} + [𝐾]{𝑥} = {𝐹𝑒𝑥𝑡(𝑡)} + [𝐻]{𝐹𝑇𝐿𝐷(𝑡)} (3.48) 

where [𝑀], [𝐶] and [𝐾] are the mass, damping and stiffness matrices of the building (i.e. 

primary structure), {𝑥}, {𝑥̇} and {𝑥̈} represent the structural displacement, velocity and 

acceleration vectors, {𝐹𝑒𝑥𝑡(𝑡)} is the external load acting on the structure, {𝐹𝑇𝐿𝐷(𝑡)} is 

control force vector of the TLD (i.e. base shear forces), and [𝐻] is the position matrix of the 

TLD in which its 𝑖th column vector {𝐻}𝑖 = [0 … 0 1 0 … 0]1×𝑛
𝑇  (1 is in the 𝑗th column) 

indicates the 𝑖th group TLDs that are installed on the 𝑗th story.  

Consideration of the non-participating mass component for both TLD Model 1 and 

Model 2 is described, in detail, in Chapter 2 for uni- and bi-directional tanks. The resulting 

mass matrix of the combined system, [𝑀], for TLD Model 1 is expressed as 

[𝑀] = [𝑀𝑆] + [𝐻]�𝑀𝑓𝑙𝑢𝑖𝑑
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑚1𝑥

𝑚1𝑦

𝑚1𝑧

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑚𝑛𝑥

𝑚𝑛𝑦

𝑚𝑛𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 + 
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[𝐻]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑚1𝑥−𝑠𝑙𝑜𝑠ℎ.

𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

𝑚1𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

𝑚1𝑧
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑚𝑛𝑥−𝑠𝑙𝑜𝑠ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

𝑚𝑛𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1

𝑚𝑛𝑧
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(3.49) 

where [𝑀𝑆] is the stiffness matrix of the primary system and �M�luid
TLD−Model 1� is the added 

mass to the primary structure at the TLD locations in the 𝑥,𝑦 and 𝑧 directions considering the 

fluid model (TLD Model 1). 

The following equation represents the mass matrix of the combined systems using the 

EADTMD model 

[𝑀] = [𝑀𝑆] + [𝐻]�𝑀𝑓𝑙𝑢𝑖𝑑
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑚1𝑥

𝑚1𝑦

𝑚1𝑧

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑚𝑛𝑥

𝑚𝑛𝑦

𝑚𝑛𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 + 

[𝐻]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑚1𝑥−𝑠𝑙𝑜𝑠ℎ.

𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

𝑚1𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

𝑚1𝑧
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑚𝑛𝑥−𝑠𝑙𝑜𝑠ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

𝑚𝑛𝑦−𝑜𝑟𝑡ℎ.
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2

𝑚𝑛𝑧
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(3.50) 

where �𝑀𝑓𝑙𝑢𝑖𝑑
𝑇𝐿𝐷−𝑀𝑜𝑑𝑒𝑙 2� is the added mass to the primary structure at the TLD locations in the 

𝑥,𝑦 and 𝑧 directions considering the amplitude dependent TMD model (TLD Model 2). 

In cases where the secondary system has a considerable mass ratio value, the updated 

mode shapes of the primary structure can be determined and utilized in the design process. 

For example, Roffel et al. (2011) used the updated mode shapes to re-tune the DVA and 

better control the structural response to achieve improved performance. In this study, it was 

determined that the added mass had a negligible effect and as a result the original mode 

shapes and the natural frequencies were used in the TLD design. 
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3.7.3 Evaluation of Improved Performance Using TLDs (2 Modes) 
The Indianapolis building is analyzed using measured wind loads from wind tunnel tests 

at 14 different heights to produce a time history of four hours duration. The computational 

time required for the nonlinear TLD fluid model is approximately 20 times greater than the 

time required for the EADTMD model. As previously mentioned in Chapter 2, the time step 

(∆𝑡1) used in TLD fluid model is less than 1/180 of the structure’s time period as 

recommended by Kaneko and Ishikawa (1999) in order to solve for the one-dimensional 

finite difference scheme. The time step (∆𝑡2) used for the EADTMD model is about 1/10 of 

the structure’s period to which the damper is tuned too in order to achieve suitable accuracy 

(Chopra 2001). In addition, a total of 4902 three dimensional beam elements are used to 

model the Indianapolis building, which must be updated and solved every time step during 

the entire numerical simulation process. Each simulation requires approximately 1.5 million 

time steps to complete and takes more than 75 hours of run time/hour time history using an 

Intel® Core™2 Quad processor 2.4 GHz. 

Powerful computational machines with high capacity storage capabilities are essential to 

carrying out the dynamic analysis using the nonlinear TLD fluid model. SHARCNET™ 

(Shared Hierarchical Academic Research Computing Network) has been used to perform the 

analysis, as the building must be solved according to the time step dictated by the nonlinear 

TLD fluid model. SHARCNET™ is one of seven “HPC” (High Performance Computing) 

consortia in Canada that operates under the umbrella of Compute Canada. SHARCNET™ is 

a consortium of Canadian academic institutions who share a network of high performance 

computers. [“HPC” is the use of high-end computing resources (computers, storage, 

networking and visualization) to help solve highly complex problems, perform business 

critical analyses, or to run computationally intensive workloads that are in scale far beyond 

the tasks that could be achieved on today’s leading desktop systems (www.sharcnet.ca)]. 

Figures 3.14a and 3.14b show a 300-second duration time history of the structural 

displacement response of the centre of mass (𝐶𝑀) of the building at the uppermost floor 

(𝑧 = 154.6 m) at the critical wind loading angle (𝜃𝑤) of 210∘ in the 𝑥- and 𝑦-directions, 

respectively. The nonlinear fluid model is denoted as TLD Model 1, while the EADTMD 

model is denoted as TLD Model 2. Structural velocity and acceleration responses, in the 𝑥- 

and 𝑦-directions, are shown in Figures A4 and A5 (Appendix-A), respectively. 

http://www.computecanada.org/
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As can be observed from Figures 3.14a and 3.14b, excellent agreement is found between 

the results obtained from the two models with a maximum percentage difference of 2% found 

between the RMS response values of the displacement, velocity and acceleration in both 𝑥- 

and 𝑦-directions. As a result, the TLD Model 2 is selected to be used for the rest of the study 

reported on in this chapter as it is found to achieve sufficient accuracy.  

The effect of adding TLDs to suppress the first two modes of the building is shown in 

Figures 3.15 and 3.16 by comparing the response histories of displacement, velocity and 

acceleration with and without TLDs installed in the 𝑥- and 𝑦-directions, respectively. The 

response time histories are taken at the centre of mass (𝐶𝑀) of the uppermost floor for the 

first 300 seconds of the applied wind excitation. As can be seen from Figures 3.15 and 3.16, 

all response values are reduced. 

3.7.4 Response Evaluation of the Indianapolis Building  
In this section, a total of 36-time history analyses, corresponding to wind loading angles 

(𝜃𝑤) between 0∘ and 360∘, are carried out utilizing the 3D-Structure-MTLD system model 

implemented with bi-directional TLDs to suppress the first two modes of vibration of the 

Indianapolis building.  

It can be observed from Figure 3.8 that all corners have nearly the same RMS structural 

acceleration response values (𝜎𝑥̈) as that of the centre of mass (𝐶𝑀) in the 𝑥-direction for the 

No-TLD case. This can be attributed to the fact that centre of twist (𝐶𝑇) is located close to 

the 𝑥-axis (see Figure 3.6a). Due to the location of 𝐶𝑇 in (+)𝑦-direction, a small increase in 

the RMS acceleration response values for corners 𝐶1 and 𝐶2 occurs. Figure 3.17 shows an 

RMS structural acceleration response value of 3.1 milli-g at the critical wind loading angle 

(𝜃𝑤) of 210∘ at the centre of mass (𝐶𝑀) in the 𝑥-direction, which is approximately 3% less 

than the calculated total target response value (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡) of 3.2 milli-g. The initial modal 

RMS acceleration (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1) has been reduced from an original value of 6.0 milli-g to 

2.8 milli-g. 

Figure 3.18 shows that the resulting RMS structural acceleration response value of 2.2 

milli-g in the 𝑦-direction at the centre of mass (𝐶𝑀) exceeded the total target RMS structural 

acceleration response value (𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡) of 2.0 milli-g by less than 10%. However, the 
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initial modal RMS acceleration (𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2) has been reduced from an original value of 

3.4 milli-g to 1.4 milli-g, which is 0.4 milli-g less than the target value.  

Changes have also occurred in the percentage contribution to the total structural response 

from the uncontrolled structural modes. For example, the modal factor value (𝑀𝐹) of the 

third mode has increased from 0.4% to 2.4%, while the modal factor value (𝑀𝐹) for the 

remaining higher modes has increased from a value of 0.5% to 3.2% at the 𝐶𝑀 location in 

the 𝑥-direction. In the 𝑦-direction at the 𝐶𝑀 location, the modal factor value (𝑀𝐹) of the 

third mode has increased from 1.2% to 9.2%, while the modal factor value (𝑀𝐹) for the 

remaining higher modes has increased from a value of 0.9% to 7.4%. The first modal RMS 

response component values at the four corners of the building in the 𝑥-direction are reduced 

by 59.1% to 62.3% compared to a percentage reduction value of 54.0% at the centre of mass 

(𝐶𝑀) (see Table 3.5). In the 𝑦-direction, percentage reduction values of the second modal 

RMS response component at the corners of the building are found to range between 75.3% 

and 76.0% compared to 60% reduction at the centre of mass (𝐶𝑀) (see Table 3.6). 

 In contrast, an amplification of the third mode 𝑥- and 𝑦-structural acceleration response 

values has occurred. In the 𝑥-direction, the modal factor values (𝑀𝐹) of the third mode 

ranged between 0.4%, at the 𝐶𝑀, and 2.3%, at 𝐶3 and 𝐶4, for the uncontrolled structure, 

while the range has been amplified from 2.4% (at 𝐶𝑀) to 37.3% (at 𝐶3 and 𝐶4) after 

installation of the TLDs. Therefore, the third mode structural response component values are 

increased from 0.1 milli-g to 1.5 milli-g. Although, an amplification of the third modal 

response components has occurred, a percentage reduction value of the total structural 

acceleration response of 49.8% is achieved at the 𝐶𝑀, while values of 40.4% and 31.9% are 

achieved at 𝐶1, 𝐶2 and 𝐶3, 𝐶4, respectively (see Table 3.5). 

The third modal factor values (𝑀𝐹) of the structural response components, in the 𝑦-

direction, are nearly doubled compared to the amplification values found in the 𝑥-direction. 

The modal factor values, which ranged between 1.2% (at 𝐶𝑀) and 17.9% (at 𝐶2 and 𝐶3) for 

the uncontrolled structural responses, are increased by 9.2% at the 𝐶𝑀 and 74.0% at 𝐶2 and 

𝐶3. As a result, the third mode structural response component values are increased from 0.6 

milli-g to 3.8 milli-g. Furthermore, an increase in the total structural response in the 𝑦-

direction at the corners of the building has occurred. However, at the 𝐶𝑀, a response 
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reduction of 39.3% is achieved as mode 3 only contributes 9.2% to the total structural 

acceleration response in the 𝑦-direction at this location (see Table 3.6). 

Overall, positive percentage reduction values of the average peak hourly resultant 

acceleration (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) are achieved at the centre of mass and the corners at the critical wind 

loading angle (𝜃𝑤) of 210∘ (see Table 3.9 and Figure 3.20). Table 3.9 shows that percentage 

response reduction values range between 6.4% and 24.7% at the four corners, while a 

reduction response value of 47.1% is achieved at the centre of mass (see Figure 3.18). The 

resultant acceleration is the acceleration felt by the occupants in the building and is related to 

human perception thresholds (Isyumov 1994). Hence, the average peak hourly resultant 

acceleration response values (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) presented in Figure 3.17 are used to compare with 

the acceptable wind-induced motions in Section 3.7.5.   

3.7.5 Serviceability Check of the Indianapolis Building 
Figure 3.10 shows that the maximum average peak hourly resultant acceleration response 

values (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) occurred at the corner and at the centre of mass (𝐶𝑀) of the uppermost 

floor of the Indianapolis building at the critical wind loading angle (𝜃𝑤) of 210∘. For the No-

TLDs case, the maximum corner and 𝐶𝑀 accelerations are 28.2 milli-g and 26.4 milli-g 

compared to values of 24.6 milli-g and 13.9 milli-g for the case of TLDs installed, 

respectively, as shown in Figure 3.19. Therefore, the TLD system installed to suppress the 

first two modes of vibration of the Indianapolis building is found to reduce the maximum 

average peak resultant acceleration to the acceptable level for office buildings, i.e. 20 milli-g 

≤ 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 ≤ 25 milli-g (Isyumov 1994). 

Figure 3.20 shows the percentage response reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) of the average 

peak hourly resultant accelerations (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) for the centre of mass (𝐶𝑀) and the four 

corners of the Indianapolis building. 𝛹𝑝𝑒𝑎𝑘−ℎ𝑟 is expressed as  

𝛹𝑝𝑒𝑎𝑘−ℎ𝑟 = �𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 (𝑁𝑜− 𝑇𝐿𝐷)−𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 (𝑤𝑖𝑡ℎ 𝑇𝐿𝐷)

𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 (𝑁𝑜−𝑇𝐿𝐷)
� . 100  (3.51) 

where 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 (𝑤𝑖𝑡ℎ 𝑇𝐿𝐷) and  𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 (𝑁𝑜−𝑇𝐿𝐷) are the structural acceleration responses 

with and without TLDs installed, respectively. 

Figure 3.20 shows that the reduction values at the 𝐶𝑀 are significantly greater than at the 

corners and show less variation with wind angle. The reduction values are found to vary in 
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the range of 10% and a maximum percentage reduction value (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) of 50% is achieved 

at the 𝐶𝑀. The response reduction values at the corners (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) range between -2% and 

36% and are found to vary in the range of 20%. 

At the critical wind loading angle (𝜃𝑤) of 210∘, 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 value at the centre of mass 

(𝐶𝑀) is reduced by 47.1%, while the acceleration response values of the corners are reduced 

by 6.4% to 24.7% (see Table 3.9). The reduction in RMS acceleration response values (𝜎𝑥̈) in 

the 𝑥-direction at building’s corners (see Figure 3.17) exceeds the amplified RMS values 

(𝜎𝑦̈) in the 𝑦-direction. It can be observed that the resultant acceleration response value 

(𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) at 𝐶3 increased with the addition of TLDs by only 2% at two wind loading angles 

(220∘; 340∘) as shown in Figure 3.20. However, the maximum 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 value is found to 

remain at the critical wind loading angle (𝜃𝑤) of 210∘.   

3.8. Response of the Indianapolis Building Equipped with Uni/Bi-Directional 
TLDs to Suppress the First Three Modes of Vibration 

By inspecting Figures 3.10 and 3.19, it can be noticed that after the installation of the 

TLDs, the differences in peak resultant acceleration response values between the centre of 

mass and the four corners are found to increase significantly (see Figure 3.19). While the first 

two modes of the building are primarily translation modes in the 𝑥- and 𝑦-directions, the 

TLDs, which are designed to suppress these translation modes, are not capable of reducing 

the structural response resulting from the excitation of higher modes of vibration. 

To further reduce structural peak acceleration response values, this section considers 

adding an additional set of TLDs to achieve acceptable response level for hotels, i.e. 15 milli-

g ≤ 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 ≤ 20 milli-g (Isyumov 1994). Therefore, TLDs to suppress the third mode of 

vibration are designed and installed in the Indianapolis building, in addition to the TLDs 

previously provided to suppress the first two translational modes of vibration. This step is 

important, as adding TLDs to suppress the first two modes of vibration has influenced the 

total response of the building by increasing the contribution of the torsional vibration mode 

of the structure under certain wind loading angles. 

3.8.1 TLD Design Procedure for the Third Mode of Vibration 

In this section, a mass ratio value (𝜇) of 5.0% is selected for TLDs to be installed to 

suppress the torsional mode (mode 3) of vibration of the building. As all third mode tanks are 
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placed at the corners of the building, the distance from the 𝐶𝑀 and the TLDs in the 𝑥- and 𝑦-

directions is the same. This leads to a generalized mass ratio value (𝜇∗ ≈ 𝜇) (see Equation 

3.24). The target modal RMS acceleration response values in both 𝑥- and 𝑦-directions 

(𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚3; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚3), used in the TLD design process, are determined based on the 

initial modal RMS acceleration response values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚3; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚3) at the corners 

in both 𝑥- and 𝑦-directions, respectively (see Tables 3.5 and 3.6). 

Initial third mode RMS acceleration response values in the 𝑥-direction (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚3) of 

0.9 milli-g and 1.5 milli-g are obtained from spectral analysis of the time history series at 

each corner (see Table 3.5). Therefore, tanks are selected to be placed at 𝐶3 and 𝐶4 to 

maximize the TLD resulting shear force due to the amplitude dependent properties of the 

device (Tait et al. 2004a; Tait et al. 2004b). Consequently, third mode tanks in the 𝑦-

direction are selected to be placed at 𝐶2 and 𝐶3, where the initial RMS acceleration response 

value of the third mode (𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚3) is 3.8 milli-g compared to 2.5 milli-g at 𝐶1 and 𝐶4 

(see Table 3.6). Thus, the initial RMS acceleration response values of the third mode 

(𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚3; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚3) of 1.5 milli-g and 3.9 milli-g lead to target modal values 

(𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚3; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚3) of 0.8 milli-g and 2.0 milli-g in the 𝑥- and 𝑦-directions, 

respectively. Total target RMS acceleration response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡) of 3.4 

milli-g and 3.4 milli-g are estimated using Equations 3.35 and 3.36 in the 𝑥- and 𝑦-directions, 

respectively (see Tables 3.5 and 3.6). 

The target modal RMS acceleration response values of the third mode (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚3; 

𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚3) are used to determine the required damping ratio of the screens (𝜁𝑇𝐿𝐷), which 

are designed to achieve an optimal inherent damping ratio (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) for a particular 

amplitude of excitation at the critical wind loading angle (𝜃𝑤) of 210∘ (Tait 2008). The 

calculation steps used to design the TLDs to suppress the first two modes of vibration are 

presented in Tables A2 and A3 (Appendix-A) and TLD water mass calculations are 

presented in Table A4 (Appendix-A). The screens are located at 40% and 60% of the tank 

length in both directions with calculated loss coefficient values of 𝐶𝑙−𝑥 = 35.3 and 𝐶𝑙−𝑦 =

14.1 in the 𝑥- and 𝑦-directions, respectively. Figures A6 and A7 (Appendix-A) show the 

amplitude dependent properties for the tanks used to suppress the third mode of vibration of 

the building. 
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Square tanks, which act as two independent 1D-TLDs, are selected to be placed at 𝐶3 

employing the design procedure described in Section 3.6. The tank dimensions are 

established as 𝐿𝑥 = 𝐿𝑦 = 3.0 m and ℎ = 0.4 m. A total of 111 bi-directional tanks are used 

to achieve half of the specified mass ratio values in both the 𝑥- and 𝑦-directions. In contrast, 

25 uni-directional TLDs are placed at the 𝐶4 and 𝐶2 to suppress the third mode of vibration. 

The tank length and water depth value match those for the bi-directional TLDs, however, a 

different width is selected in order to satisfy the remaining required mass ratio in both 𝑥- and 

𝑦-directions (see Table A4 Appendix-A). It is common to utilize dozens or even hundreds of 

small TLD tanks to satisfy the required mass ratio (Tamura et al. 1995; Love et al. 2011). 

The tanks can be placed and arranged to keep space requirements to a minimum. 

3.8.2 Response Evaluation of the Indianapolis Building 
In this section, a total number of 36-time history analyses, corresponding to wind loading 

angles from 0∘ and 360∘, are carried out utilizing wind tunnel data provided by the BLWTL 

and employing the 3D-Structure-MTLD system model implemented with TLDs designed to 

suppress the first three modes of vibration. 

In the 𝑥-direction, Figure 3.21 shows that a RMS acceleration response value of 3.4 

milli-g at the critical wind loading angle (𝜃𝑤) of 210∘ at 𝐶3 and 𝐶4 (𝑧 = 154.6 m), matches 

the predicted total target response value (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡). The initial modal component of the 

third mode (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚) is reduced from 1.5 milli-g to 0.8 milli-g resulting in a percentage 

reduction of 46.3%, while a percentage reduction value of 36.2% is obtained at 𝐶1 and 𝐶2 

(see Tables 3.5 and 3.7). 

In the 𝑦-direction, Figure 3.22 shows that the total RMS acceleration response of 3.8 

milli-g at 𝐶2 and 𝐶3 (𝑧 = 154.6 m) exceeded the total target RMS acceleration response 

value (𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡) of 3.4 milli-g. However, the modal RMS acceleration of 2.1 milli-g is 

only 3% greater than the target modal value (𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚) of 2.0 milli-g (see Tables 3.6 and 

3.8). The larger discrepancy in the total RMS values to modal RMS values is attributed to 

changes in the percentage contribution of higher uncontrolled modes. The modal factor value 

(𝑀𝐹) for the higher modes has increased from 9.0% to 13.2% as a result of the contribution 

from uncontrolled modes in the y-direction, which are not suppressed by the TLDs. It can be 

observed that the third modal RMS response is reduced from an initial modal value 
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(𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚) of 3.8 milli-g to 2.1 milli-g resulting in a percentage reduction value of 45.9% 

at 𝐶2 and 𝐶3, while a percentage reduction value of 35.5% is achieved at 𝐶1 and 𝐶4 (see 

Table 3.8). Additionally, due to the installation of the third mode tanks, the first two modal 

RMS acceleration response values at the centre of mass (𝐶𝑀) are further reduced with 

percentage reduction values of 5.1% and 14.0% in the 𝑥- and 𝑦-directions, respectively.  

Therefore, the percentage reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) of the average peak hourly 

resultant acceleration response (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) at the critical wind loading angle of (𝜃𝑤) 210∘ are 

considerably improved compared to the case where TLDs were installed to suppress the first 

two modes of vibration. It can be observed that 𝛹𝑝𝑒𝑎𝑘−ℎ𝑟 increases from 24.7% and 12.2% to 

40.4% and 32.3% at 𝐶1 and 𝐶2, respectively, and from 6.4% and 19.2% to 27.9% and 36.4% 

at 𝐶3 and 𝐶4, respectively. Also, the percentage reduction (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) at the centre of mass 

(𝐶𝑀) increases from 47.1% milli-g to 53.7% (see Figures 3.20, 3.24 and Table 3.9). 

3.8.3 Serviceability Check of the Indianapolis Building 

The calculated average peak hourly resultant acceleration response values (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) are 

compared with acceptable wind-induced motion values set by the wind tunnel (BLWTL). 

Figure 3.23 shows that the maximum average peak hourly resultant acceleration response 

value (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟), which occurs at the critical wind loading angle (𝜃𝑤) of 210∘, is reduced 

from an uncontrolled value of 28.2 milli-g to 18.9 milli-g (see Table 3.9) that satisfies the 

criteria of the acceptable acceleration response level for hotels, i.e. 15 milli-g ≤ 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 ≤ 

20 milli-g (Isyumov 1994). 

Figure 3.24 shows that the centre of mass (𝐶𝑀) has greater percentage response 

reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) than at the corners with less variation (in the range of 8.0%) and 

achieves a maximum response reduction value (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) of 56.0%. In contrast, the corners 

experience lower 𝛹𝑝𝑒𝑎𝑘−ℎ𝑟 values (maximum 48%) with higher variations (in the range of 

12.0%). It can be observed from Figure 3.24 that maximum percentage response reduction 

values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) at the corners of the building, which range between 40.0% and 48.0%, are 

achieved at wind loading angles of 230∘ and 270∘, while minimum values of 𝛹𝑝𝑒𝑎𝑘−ℎ𝑟, 

ranging from 22.0% to 35.0% are found to occur at wind loading angles of 30∘ and 340∘, 

where the 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 values are less than the maximum values at the critical wind loading 
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angle of 210∘ (see Figure 3.23). However, serviceability requirements, which satisfy hotel 

level requirements, are satisfied at all wind angles. 

3.9. Conclusions 
A 3D-Structure-TLD system model, developed and validated in Chapter 2, has been 

expanded to multiple TLDs (3D-Structure-MTLD) and employed to study the response of the 

38-story Indianapolis building equipped with TLDs. Two nonlinear TLD models; a nonlinear 

fluid model (TLD Model 1) and an EADTMD model (TLD Model 2) were investigated. 

Results of the 3D-Structure-MTLD system model have shown good agreement between both 

TLD models. Therefore, TLD Model 2 has been selected to carry out the analysis resulting in 

a significant reduction in computational effort. 

TLDs to suppress the first three modes of vibration of the building have been designed, 

utilizing a preliminary TLD design procedure (Tait 2008). The modal contribution response 

components have been used to determine the TLD parameters at the critical wind loading 

angle. A step-by-step TLD design technique has been employed, permitting the influence of 

the first and second mode tanks and the third mode tanks to be studied. 

It was found that the centre of mass (𝐶𝑀) of the Indianapolis building was a suitable 

location for the first two mode tanks to be placed, where modal factor values in both 𝑥- and 

𝑦-directions are larger than at the corners for uncontrolled structure case. Also, the centre of 

mass (𝐶𝑀) maintained modal factor values above 91% for modes 1 and 2 in the 𝑥- and 𝑦-

directions, respectively, compared to the corner modal factor values, which reduced due to 

amplification of higher modal component values. Moreover, the step-by-step TLD design 

procedure has been used to assess the decision of adding an extra set of tanks, to suppress 

mode of vibration, and the selection of TLD locations and placement directions. 

Accordingly, 𝐶3 and 𝐶4 have been found suitable for third mode tanks to be placed in the 𝑥-

direction, while 𝐶2 and 𝐶3 have been found suitable for third mode tanks to be placed in the 

𝑦-direction, due to the amplitude dependent properties of the TLD device. 

The ability to capture the contribution of higher modes of vibration on the structure-TLD 

system using this model has been demonstrated. The wind-induced serviceability levels of 

accelerations of the Indianapolis building have been evaluated using TLDs to suppress the 

first two and the first three modes of vibration satisfying the office building and the hotel 
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level requirements, respectively. As a result of using this particular scheme, the maximum 

average peak hourly resultant acceleration response value (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) of the Indianapolis 

building of 28.2 milli-g at the critical wind loading angle of (𝜃𝑤) 210∘ has been reduced to a 

value of 18.9 milli-g. 
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Table 3.1. Modal Acceleration Response Components in the 𝑥-direction for the Indianapolis 
Building with No-TLDs  

 
 

Results of the Indianapolis Building with No-TLDs 
 

Design of TLDs 

 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) Modal Factor, 𝑴𝑭 (%) 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 

(milli-g) 
𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 

(milli-g) 
𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒕 

(milli-g) 

Node Total Mode 
1 

Mode 
2 

Mode 
3 

Higher 
Modes 

Mode 
1 

Mode 
2 

Mode 
3 

Mode 
1 Total 

Corner 1 6.3 96.9 0.8 1.5 0.8 6.1 0.1 0.1 - - 

Corner 2 6.3 96.9 0.8 1.5 0.8 6.1 0.1 0.1 - - 

Corner 3 6.1 96.3 1.0 2.3 0.4 5.8 0.1 0.1 - - 

Corner 4 6.1 96.3 1.0 2.3 0.4 5.8 0.1 0.1 - - 

Centre 6.1 98.3 0.9 0.4 0.5 6.0 0.1 0.0 3.1 3.2 

Table 3.2. Modal Acceleration Response Components in the 𝑦-direction for the Indianapolis 
Building with No-TLDs 

 
 

Results of the Indianapolis Building with No-TLDs 
 

Design of TLDs 

 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) Modal Factor, 𝑴𝑭 (%) 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 

(milli-g) 
𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 

(milli-g) 
𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒕 

(milli-g) 

Node Total Mode 
1 

Mode 
2 

Mode 
3 

Higher 
Modes 

Mode 
1 

Mode 
2 

Mode 
3 

Mode 
2 Total 

Corner 1 4.2 3.5 85.3 8.4 2.7 0.2 3.6 0.4 - - 

Corner 2 3.7 3.4 77.7 17.9 1.0 0.1 2.8 0.7 - - 

Corner 3 3.7 3.4 77.7 17.9 1.0 0.1 2.8 0.7 - - 

Corner 4 4.2 3.5 85.3 8.4 2.7 0.2 3.6 0.4 - - 

Centre 3.6 3.8 94.1 1.2 0.9 0.1 3.4 0.0 1.8 2.0 
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Table 3.3. TLD Design for Mode 1 (𝑥-direction) for the Indianapolis Building  

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  22.52 milli-g 
Modal Factor, 𝑴𝑭  98.30 % 
Initial modal peak hourly acceleration, 
𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 22.37 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑥  0.14 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   7.31 sec 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   0.86 rad/sec 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(573𝜔𝑠−𝑥) + 0.577

�2 ln(573𝜔𝑠−𝑥)
  3.69  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑥

  6.01 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚

𝜔𝑠−𝑥
2

𝑔
1000

  0.08 m 
Assumed mass ratio, 𝜇  0.06 (6.0%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   

0.06 
(6.2%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  

0.12 
(12.0%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.96 

(95.7%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.13 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  

2.99  

Structure damping ratio, 𝜁𝑠  0.02 (2.0%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.08 (7.8%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.04 m 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  3.08 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑥
  11.35 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.12 m 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 16.0  m 
𝒉 = 1.87   m 

Shallow water theory check, ℎ/𝐿𝑥  0.12 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟗.𝟕𝟔 
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Table 3.4. Water Mass Calculations for TLDs to Suppress Modes 1 and 2 for the Indianapolis 
Building 

Quantity Equation(s)  Value 

Selected tank dimensions, 𝐿𝑥, 𝐿𝑦,ℎ  
𝐿𝑥 = 16.00 m 
𝐿𝑦 = 13.41 m 
ℎ = 1.87      m 

Water height to tanks length ratio in 𝑥-dir ℎ/𝐿𝑥  0.12 
Water height to tanks length ratio in 𝑦-dir ℎ/𝐿𝑦  0.14 
Water mass of 1 tank, 𝑚𝑤(1𝑡𝑎𝑛𝑘) 𝑚𝑤(1𝑡𝑎𝑛𝑘) = 𝐿𝑥𝐿𝑦ℎ  401255 kg 
   

TLD mass of 1 tank in 𝑥-dir, 𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘) 
𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝑥 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑥
�

𝜋3� ℎ𝐿𝑥
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)  
0.77 𝑚𝑤(1𝑡𝑎𝑛𝑘) =
311370 kg  

   

TLD mass of 1 tank in 𝑦-dir, 𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘) 
𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝑦 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑦
�

𝜋3� ℎ𝐿𝑦
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)  
0.76 𝑚𝑤(1𝑡𝑎𝑛𝑘) =
305904 kg 

   
Total building mass, 𝑀𝑠 𝑀𝑠 = ∑ 𝑚𝑓

𝑖=𝑁𝑓
𝑖=1    36412955 kg 

Generalized building mass in 𝑥-dir, 𝑀𝑥
∗ 𝑀𝑥

∗ = ∑ �𝑚𝑓�𝑖
𝑖=𝑁𝑓
𝑖=1 (𝜙𝑥2)𝑖  10523344 kg 

Generalized building mass in 𝑦-dir, 𝑀𝑦
∗  𝑀𝑦

∗ = ∑ �𝑚𝑓�𝑖
𝑖=𝑁𝑓
𝑖=1 �𝜙𝑦2�𝑖  10013563 kg 

Required TLD mass in 𝑥-dir, 𝑚𝑇𝐿𝐷−𝑥 𝑚𝑇𝐿𝐷−𝑥 = 𝜇𝑥𝑀𝑥
∗  631401 kg 

Required TLD mass in 𝑦-dir, 𝑚𝑇𝐿𝐷−𝑦 𝑚𝑇𝐿𝐷−𝑦 = 𝜇𝑦𝑀𝑦
∗   600814 kg 

No. of Tanks required in 𝑥-dir, 𝑁𝑇𝐿𝐷−𝑥 𝑁𝑇𝐿𝐷−𝑥 = 𝑚𝑇𝐿𝐷−𝑥/𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘)  2.03 
No. of Tanks required in 𝑦-dir, 𝑁𝑇𝐿𝐷−𝑦 𝑁𝑇𝐿𝐷−𝑦 = 𝑚𝑇𝐿𝐷−𝑦/𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘)  1.96 
   
   
Chosen No. of tanks for modes 1 and 2, 𝑵𝑻𝑳𝑫−𝒙𝒚  (Bi-directional tanks) 2 
Actual mass ratio in 𝒙-dir, 𝝁𝒙−𝒂𝒄𝒕𝒖𝒂𝒍 𝜇𝑥−𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑁𝑇𝐿𝐷−𝑥𝑦𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘)/𝑀𝑥

∗  5.92 % 
Actual mass ratio in 𝒚-dir, 𝝁𝒚−𝒂𝒄𝒕𝒖𝒂𝒍 𝜇𝑦−𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑁𝑇𝐿𝐷−𝑥𝑦𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘)/𝑀𝑦

∗   6.11 % 
Mass ratio of contained water, 𝝁𝒘 𝜇𝑤 = 𝑁𝑇𝐿𝐷−𝑥𝑦𝑚𝑤(1𝑡𝑎𝑛𝑘)/𝑀𝑠  2.20 % 
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Table 3.5. Modal Acceleration Response Components in the 𝑥-direction for the Indianapolis 
Building with TLDs to Suppress the First Two Modes of Vibration 

 
 

Results of the Indianapolis Building Equipped with 2 Modes TLDs (1 & 2) 
 

Design of TLDs 

 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) Modal Factor, 𝑴𝑭 (%) 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 

(milli-g) 

% Reduction 
w.r.t. 

No-TLD Case 

𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝛔𝐱̈−𝐭𝐚𝐫𝐠𝐞𝐭−𝐭 
(milli-g) 

Node Total Mode 
1 

Mode 
2 

Mode 
3 

Higher 
Modes 

Mode 
1 

Mode 
2 

Mode 
3 

Mode 
1 

Mode 
3 Total Mode 

3 Total 

Corner 1 3.8 67.2 2.0 22.6 8.3 2.5 0.1 0.9 59.1 -870 40.4 - - 

Corner 2 3.8 67.2 2.0 22.6 8.3 2.5 0.1 0.9 59.1 -870 40.4 - - 

Corner 3 4.1 54.0 4.0 37.3 4.7 2.2 0.2 1.5 62.3 -1170 31.9 0.8 3.4 

Corner 4 4.1 54.0 4.0 37.3 4.7 2.2 0.2 1.5 62.3 -1170 31.9 0.8 3.4 

Centre 3.1 91.0 3.5 2.4 3.2 2.8 0.1 0.1 54.0 -413 49.8 - - 

 

Table 3.6. Modal Acceleration Response Components in the 𝑦-direction for the Indianapolis 
Building with TLDs to Suppress the First Two Modes of Vibration 

 
 

Results of the Indianapolis Building Equipped with 2 Modes TLDs (1 & 2) 
 

Design of TLDs 

 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) Modal Factor, 𝑴𝑭 (%) 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 

(milli-g) 

% Reduction 
w.r.t. 

No-TLD case 

𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒕 
(milli-g) 

Node Total Mode 
1 

Mode 
2 

Mode 
3 

Higher 
Modes 

Mode 
1 

Mode 
2 

Mode 
3 

Mode 
2 

Mode 
3 Total Mode 

3 Total 

Corner 1 4.3 6.8 21.5 57.3 14.5 0.3 0.9 2.5 75.3 -616 -2.6 - - 

Corner 2 5.2 2.9 14.0 74.0 9.0 0.2 0.7 3.8 76.0 -554 -42.2 2.0 3.4 

Corner 3 5.2 2.9 14.0 74.0 9.0 0.2 0.7 3.8 76.0 -554 -42.2 2.0 3.4 

Corner 4 4.3 6.8 21.5 57.3 14.5 0.3 0.9 2.5 75.3 -616 -2.6 - - 

Centre 2.2 18.8 64.6 9.2 7.4 0.4 1.4 0.2 60.1 -589 39.3 - - 
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Table 3.7. Modal Acceleration Response Components in the 𝑥-direction for the Indianapolis 
Building with TLDs to Suppress the First Three Modes of Vibration 

 
 

Results of the Indianapolis Building Equipped with 3 Modes TLDs (1, 2 & 3) 
 

 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) Modal Factor, 𝑴𝑭 (%) 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 

(milli-g) 

% Reduction 
w.r.t. 

2 Modes TLDs 
Case 

% Reduction 
w.r.t. 

No-TLD Case 

Node Total Mode 
1 

Mode 
2 

Mode 
3 

Higher 
Modes 

Mode 
1 

Mode 
2 

Mode 
3 

Mode 
3 

Mode 
1 

Mode 
3 Total 

Corner 
1 3.1 70.6 1.4 17.3 10.8 2.2 0.0 0.5 36.2 63.7 -489.0 50.2 

Corner 
2 3.1 70.6 1.4 17.3 10.8 2.2 0.0 0.5 36.2 63.7 -489.0 50.2 

Corner 
3 3.4 57.2 12.4 24.4 6.1 1.9 0.4 0.8 46.3 66.8 -485.1 44.0 

Corner 
4 3.4 57.2 12.4 24.4 6.1 1.9 0.4 0.8 46.3 66.8 -485.1 44.0 

Centre 2.8 89.6 3.5 2.7 4.2 2.5 0.1 0.1 -2.0 59.0 -244.1 55.1 

 

Table 3.8. Modal Acceleration Response Components in the 𝑦-direction for the Indianapolis 
Building with TLDs to Suppress the First Three Modes of Vibration 

 
 

Results of the Indianapolis Building Equipped with 3 Modes TLDs (1, 2 & 3) 
 

 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) Modal Factor, 𝑴𝑭 (%) 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 

(milli-g) 

% Reduction 
w.r.t. 

2 Modes TLDs 

% Reduction 
w.r.t. 

No-TLD case 

Node Total Mode 
1 

Mode 
2 

Mode 
3 

Higher 
Modes 

Mode 
1 

Mode 
2 

Mode 
3 

Mode 
3 

Mode 
2 

Mode 
3 Total 

Corner 1 3.3 13.1 18.1 48.9 20.0 0.4 0.6 1.6 35.5 83.6 -349.2 22.4 

Corner 2 3.8 6.2 26.2 54.5 13.2 0.2 1.0 2.1 45.9 64.7 -217.7 -4.7 

Corner 3 3.8 6.2 26.2 54.5 13.2 0.2 1.0 2.1 45.9 64.7 -217.7 -4.7 

Corner 4 3.3 13.1 18.1 48.9 20.0 0.4 0.6 1.6 35.5 83.6 -349.2 22.4 

Centre 1.8 33.3 47.7 9.2 9.8 0.6 0.9 0.2 16.4 74.1 -282.3 49.0 

 

Table 3.9. Percentage Reductions of the Average Peak Hourly Resultant Acceleration Responses 
for the Indianapolis Building Utilizing 2 and 3 Mode TLDs 

Node 
𝑹𝒑𝒆𝒂𝒌−𝒉𝒓 (milli-g) 𝜳𝒑𝒆𝒂𝒌−𝒉𝒓 (%) 

No-TLD 2 Mode-TLDs 3 Mode-TLDs 2 Mode-TLDs 3 Mode-TLDs 

Corner 1 28.2 21.2 16.8 24.7 40.4 

Corner 2 27.1 23.8 18.4 12.2 32.3 

Corner 3 26.3 24.6 18.9 6.4 27.9 

Corner 4 27.3 22.1 17.4 19.2 36.4 

Centre 26.4 14.0 12.2 47.1 53.7 
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Fig. 3.1. Predicted Annual Extreme Upper Level (500 m) Wind Speed for Various Return Periods 

(from BLWT-SS3-2007) 

 

  
 

Fig. 3.2. Close up Views of the Pressure Model (from BLWT-SS3-2007) 
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Fig. 3.3. Photographs of the High-Rise Building Model in the Wind Tunnel Showing the Upstream 

Terrain Models for Different Exposures (from BLWT-SS3-2007) 

 

 
Fig. 3.4. Azimuth Ranges Over Which the Upstream Terrain Models were Used (from BLWT-SS3-

2007) 
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(a) 𝑇 = 7.31 s 

 
(b) 𝑇 = 6.18 s 

 
(c) 𝑇 = 3.01 s 

Fig. 3.5. Mode Shapes of the Indianapolis Building for (a) Mode 1, (b) Mode 2, and (c) Mode 3 

 

(a) 

 

     

(b) 

     
Fig. 3.6. Floor Plan of the Indianapolis Building Showing the Statical System Consists of (a) Real 

Slabs and Shear Walls, and (b) Frame Elements and Slab Beams Installed with Lumped 
Masses (kg) 
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(a) 

 

(b) 

 
Fig. 3.7. Displacement Time History of the Indianapolis Building at the 𝐶𝑀 with No-TLD Installed 

in the (a) 𝑥-direction, (b) 𝑦-direction (𝑧 = 154.6 m; 𝜃𝑤 = 210∘) 
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Fig. 3.8. RMS Acceleration Responses of the Indianapolis Building in the 𝑥-direction with No-

TLDs Installed 

 

 
Fig. 3.9. RMS Acceleration Responses of the Indianapolis Building in the 𝑦-direction with No-

TLDs Installed 

 

 
Fig. 3.10. Average Peak Hourly Resultant Acceleration Responses of the Indianapolis Building with 

No-TLDs Installed 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 3.11.  (a) Schematic of a TLD and Its Dimensions; (b) Photo of a TLD Equipped with Internal 
Damping Screens; (c) Coordinate System for Nonlinear Shallow Water System; and (d) 
EADTMD Model (from Tait 2004) 
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(a) 

 

(b) 

 

(c) 

 
Fig. 3.12. TLD (a) Mass Ratio, (b) Frequency Ratio, and (c) Damping Ratio with respect to the 

Normalized Amplitude of Excitation for Mode 1 tanks in the 𝑥-direction of the 
Indianapolis Building 
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Fig. 3.13. Development of TMD Mass Matrix (from Yat 2009) 
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(a) 

 

(b) 

 
Fig. 3.14. Displacement Time History of the Indianapolis Building with TLDs Installed to Suppress 

the First two Modes at the 𝐶𝑀 in the (a) 𝑥-direction, (b) 𝑦-direction (𝑧 = 154.6 m; 
𝜃𝑤 = 210∘) 
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(a) 

 

(b) 

 

(c) 

 
Fig. 3.15. A Comparison Time History of the Indianapolis Building at 𝐶𝑀 with/without TLDs 

Installed to Suppress the First two Modes for the (a) Displacement, (b) Velocity, and (c) 
Acceleration in the 𝑥-direction (𝑧 = 154.6 m, 𝜃𝑤 = 210∘) 
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(a) 

 

(b) 

 

(c) 

 
Fig. 3.16. A Comparison Time History of the Indianapolis Building at 𝐶𝑀 with/without TLDs 

Installed to Suppress the First two Modes for the (a) Displacement, (b) Velocity, and (c) 
Acceleration in the 𝑦-direction (𝑧 = 154.6 m, 𝜃𝑤 = 210∘) 
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Fig. 3.17. RMS Acceleration Responses of the Indianapolis Building in the 𝑥-direction with TLDs 

Installed to Suppress the First Two Modes 

 
Fig. 3.18. RMS Acceleration Responses of the Indianapolis Building in the 𝑦-direction with TLDs 

Installed to Suppress the First Two Modes 

 
Fig. 3.19. Average Peak Hourly Resultant Acceleration Responses of the Indianapolis Building with 

TLDs Installed to Suppress the First Two Modes 

 
Fig. 3.20. Percentage Response Reductions of the Average Peak Hourly Resultant Accelerations of 

the Indianapolis Building with TLDs Installed to Suppress the First Two Modes 
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Fig. 3.21. RMS Acceleration Responses of the Indianapolis Building in the 𝑥-direction with TLDs 

Installed to Suppress the First Three Modes  

 
Fig. 3.22. RMS Acceleration Responses of the Indianapolis Building in the 𝑦-direction with TLDs 

Installed to Suppress the First Three Modes 

 
Fig. 3.23. Average Peak Hourly Resultant Acceleration Responses of the Indianapolis Building with 

TLDs Installed to Suppress the First Three Modes 

 
Fig. 3.24. Percentage Response Reductions of the Average Peak Hourly Resultant Accelerations of 

the Indianapolis Building with TLDs Installed to Suppress the First Three Modes 
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Chapter 4: Finite Element Modelling of Structure-MTLD Systems with Inclined 
Damping Screens 

4.1. Introduction 
Current trends in high-rise structures include increased heights and the use of lightweight 

and high-strength materials, which has led to very flexible and lightly damped structures. As 

a result, structures of this type can display increased sensitivity to external dynamic 

excitation (i.e. wind and earthquake). Among the different solutions considered to control 

their response, dynamic vibration absorbers (DVA) have been introduced and found to be 

very effective. A tuned liquid damper (TLD) is one of the more commonly employed 

dynamic vibration absorbers. It is a special type of dynamic vibration absorber (DVA) that 

consists of a rigid tank which is partially filled with a liquid, usually water. The sloshing 

liquid inside the tank creates inertia forces, which counteract the forces acting on the 

structure, thus reducing the building motion (Soong and Dargush 1997; Kareem et al. 1999; 

Yalla and Kareem 2003; Tait et al. 2004a; Tait et al. 2005a). 

The performance of a TLD for a given mass ratio (𝜇) is a function of the tuning ratio (𝛺) 

and the inherent TLD damping ratio (𝜁𝑇𝐿𝐷) (Tait et al. 2004b). The damping ratio of a TLD 

equipped with fixed vertical damping screens is related to the screen pressure loss coefficient 

(𝐶𝑙) and the square of the fluid velocity at the screen location (Tait 2004). Therefore, the 

inherent damping ratio that develops due to the screen is amplitude dependent. As a result, a 

TLD equipped with damping screens may only operate optimally at a single excitation 

amplitude, unless the screen angle is adjusted (Cassolato 2007). The ability to control the 

inherent damping ratio in a tuned liquid damper (𝜁𝑇𝐿𝐷) over a range of excitation amplitudes 

was first introduced theoretically by Cassolato and Tait (2005). Cassolato et al. (2011) 

experimentally investigated the modification of 𝜁𝑇𝐿𝐷 by adjusting the screen angle (𝜃), which 

alters the screen loss coefficient (𝐶𝑙). Results from this work indicated that rotating the 

damping screens inside the TLD to adjust their loss coefficient values (𝐶𝜃) is a plausible 

method to maintain a constant level of 𝜁𝑇𝐿𝐷 over a range of excitation amplitudes. 

Cassolato (2007) experimentally studied thin sharp-edged-horizontal slat screens held at 

various fixed angles in a tuned liquid damper. Also, Cassolato (2007) employed two existing 

formulations of the pressure loss coefficient for inclined screens (𝐶𝜃) and developed a new 

one, using results from the study, to theoretically investigate the effect of fixed inclined 
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damping screens using two linear fluid models. The linear flow models were based on 

shallow water wave theory and potential flow theory, respectively. The linear model results 

were found to deviate from the experimental test results at higher screen inclination values 

(i.e. 𝜃 > 45.0∘), and could not simulate the actual response of the nonlinear free-surface 

elevation (Fediw 1992; Tait 2004; Tait et al. 2004a; Tait et al. 2004b; Fediw et al. 1995). In 

addition, the shift in resonant frequency values (amplitude dependent hardening), which was 

observed to occur at high response amplitudes and high screen inclination angles was not 

captured by the two linear models as no amplitude dependent hardening characteristic were 

considered. 

In order to include the hardening behaviour and accurately predict the free surface 

response, a nonlinear TLD fluid model capable of simulating the inclined damping screens is 

required. Accordingly, the robustness of a structure-TLD system model due to mistuning can 

be addressed as the nonlinear TLD fluid model captures the shift in the tuning ratio (𝛺) from 

its original value at high response amplitudes and high screen inclination angles. 

Furthermore, an increase in the efficiency of a TLD equipped with screens over a range of 

amplitudes can be achieved if the screens can provide constant damping to control the 

response. 

As a result, a nonlinear TLD fluid model, developed by Kaneko and Ishikawa (1999), is 

updated and validated with experimental results (Cassolato 2007; Cassolato et al. 2011) to 

simulate the effect of inclined damping screens. A single pressure loss coefficient (𝐶𝜃) is 

utilized for the damping effect of the angled screens based on the inclination angle (𝜃). 

Consequently, the updated nonlinear TLD fluid model is implemented in a three dimensional 

finite element system model (3D-Structure-TLD), developed and validated in Chapter 2 and 

expanded for multiple TLDs system model (3D-Structure-MTLD) in Chapter 3. Both 

structure-TLD system models (i.e. 3D-Structure-TLD and 3D-Structure-MTLD) are 

employed in this chapter, utilizing the updated nonlinear TLD fluid model, to investigate 

TLD performance over a range of structural response amplitudes.  

4.2. Damping Screens (Background) 

4.2.1 Slat Screens 
Often, poles, screens, and other objects are submerged in the water to provide additional 

energy dissipating mechanisms as the damping provided by the water alone is often 
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insufficient (Warnitchai and Pinkaew 1998). Warnitchai and Pinkaew (1998) developed a 

mathematical model based on potential flow theory and determined the damping 

characteristics of poles and wire-mesh screens. Ju (2004) performed experiments and created 

an equivalent mechanical model for a WSDE (water sloshing damper with embossments). 

Fediw (1992) and Tait (2004) successfully tested and modelled screens in a TLD showing 

that their drag characteristics can often be considered independent of the sloshing fluid inside 

a TLD with mesh and thin-sharp-edged-horizontal-slat screens, respectively. Both studies 

utilized a linearized velocity loss coefficient.  

The fundamental damping characteristics of screens are related to the square of the 

velocity given by the well-known relationship  

𝐶𝑙 =
∆𝑝

1
2𝜌𝑈∘

2
 (4.1) 

where ∆𝑝 is the pressure drop across the screen and 𝐶𝑙 is the resulting pressure loss 

coefficient of the screen. A loss coefficient independent of the sloshing fluid simplifies the 

design process of TLDs equipped with damping screens. Ultimately, screens (or any motion 

control device) can be optimally designed to achieve the optimum damping ratio (𝜁𝑜𝑝𝑡) for a 

particular amplitude of excitation. The efficiency of TLDs equipped with damping screens 

reduces, if the amplitude of excitation increases or decreases from the optimized target 

amplitude (Tait 2004; Tait et al. 2004b; Tait 2008).  

An important parameter that determines the primary influence of the screens in fluid flow 

is the solidity ratio (𝑆), which is a characteristic of the screen and defined as the ratio of the 

slat width to the slat spacing 

𝑆 =
𝑑
𝑏𝑠

 (4.2) 

where 𝑑 is the slat width and 𝑏𝑠 is the slat spacing as shown in Figure 4.1b. Figures 4.1a and 

4.1c show a schematic of a TLD and a photograph of a TLD equipped with internal inclined 

damping screens, respectively. The solidity ratio can be used to estimate the vertical loss 

coefficient of sharp-edged slat screens (𝐶𝑙) as suggested by Tait (2004) and described later in 

Section 4.3.1. 
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4.2.2 Smart Screens 
Smart screens was the name given to the concept of a self-adjusting set of screens with 

important characteristics. First, they change angle to vary the loss coefficient (𝐶𝑙) to control 

the inherent damping ratio (𝜁𝑇𝐿𝐷). Second, they change their orientation in the flow 

automatically amidst the sloshing liquid motion if the excitation amplitude increases or 

decreases (Cassolato 2007). 

Many studies have reported on the pressure drop characteristics of angled screens in open 

channel steady flow (Schubauer et al. 1950; Baines and Peterson 1951; Cornell 1957; 

Hoerner 1964; Carrothers and Baines 1965; Laws and Livesey 1978; Blevins 1984; Garrison 

1985; Idelehik 1986; Yeh and Shrestha’s 1989; Brundrett 1993; Richards and Robinson 

1999; Reuter et al. 2001). For oscillatory flow, little work exists on the nature of inclined 

screens. Badr 1994 studied the fluid losses of inclined elliptic cylinders with flat plates as a 

special case. Badr’s drag coefficient formulation (1994) for an inclined flat plate was reduced 

from an elliptic cylinder as a function of the angle inclination and Strouhal number. No 

experimental support was given in Badr (1994) and no applicable ranges of Reynolds or 

Strouhal numbers were given. Okajima et al. (1998) examined the drag coefficients (pressure 

loss) versus the Keulegan-Carpenter number for oscillatory flow. Although their 

experimental study was insightful, no clear theoretical formulation was created. 

To the best of the author’s knowledge, the only extensive experimental and linear 

numerical studies on the orientation of the damping screens submerged in a TLD at various 

angles have been reported in Cassolato and Tait (2005), Cassolato (2007), and Cassolato et 

al. (2011) in order to change the pressure loss coefficient (𝐶𝑙), which altered the absorber 

damping, intending to optimize the TLD at different excitation amplitudes. 

4.3. Loss Coefficient for Damping Screens in a TLD 

The pressure loss coefficient (𝐶𝑙) is important to be evaluated in order to correctly 

describe the influence of damping screens in oscillating fluid flow. In this section, a brief 

description of existing methods used to determine the pressure loss coefficient for vertical 

and inclined damping screens (𝐶𝑙 and 𝐶𝜃 ), is presented. 
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4.3.1 Pressure Loss Coefficient for Vertical Damping Screen (𝑪𝒍) 
Baines and Peterson (1951) suggest using the following equation to estimate 𝐶𝑙 in steady 

flow 

𝐶𝑙 = �
1

𝐶𝑐(1 − 𝑆)
− 1�

2
 (4.3) 

where 𝑆 is the solidity ratio and 𝐶𝑐 is the contraction coefficient for the screen type. A 

contraction coefficient suggested by Tait (2004) as a function of 𝑆 can be used for sharp-

edged slat-screens based on the experimental work by Weisbach (1855) 

𝐶𝑐 = 0.405𝑒−𝜋𝑆 + 0.595 (4.4) 

The drag coefficient (𝐶𝐷) is related to the loss coefficient (𝐶𝑙) by the following equation 

𝐶𝐷 =
𝐶𝑙
𝑆

 (4.5) 

For solidity ratio (𝑆) higher than 0.30, Equations 4.3 and 4.5 can be used to estimate the 

coefficients 𝐶𝑙 and 𝐶𝐷 without using the modified curves presented in Baines and Peterson 

(1951). Consequently, the drag force (𝐹𝐷) being exerted on the screen, normal to the screen 

plane can be evaluated by 

𝐹𝐷 =
1
2
𝜌𝐶𝐷𝑢2𝐴𝑠 (4.6) 

where 𝜌 is the density of water and 𝑢 is the fluid velocity at the screen location inside the 

tank. 

4.3.2 Pressure Loss Coefficient for Inclined Damping Screen (𝑪𝜽) 
The pressure loss coefficient for inclined slat-screens depends on the normal component 

of fluid flow through the screen; even though the flow approaches with an angle of incidence 

assumed to be equivalent to the screen angle (𝜃) and leaves with the deflection angle (𝛹) on 

the leeward side of the screen (Schubauer et al. 1950). Cassolato (2007) presented and 

evaluated three different 𝐶𝜃 values. The values of 𝐶𝜃 were determined based on the 

following: 

● First, a common description of the oblique fluid flow on any object or structure. 

Schubauer et al. (1950) reported the pressure drop to be proportional to the square of 

component of the average fluid velocity throughout the depth (𝑈∘) normal to the screen for 
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screens whose normal direction vector (i.e. perpendicular to the plane of the screen) is at an 

angle (0∘ ≤ 𝜃 ≤ 45∘) to the incident flow using the relation 

𝛥𝑃 =
1
2
𝜌𝐶𝜃(𝑈∘𝑐𝑜𝑠𝜃)2 (4.7) 

Equation 4.7 combined with the well-known Equation 4.1 for the pressure drop coefficient 

yields  

𝐶𝜃1 = 𝐶𝑙 𝑐𝑜𝑠2𝜃 (4.8) 

Therefore, 𝐶𝑙  equals 𝐶𝜃  at a vertical screen position (𝜃 = 0∘). Laws and Livesey (1978) and 

Richards and Robinson (1999) found the pressure loss through a screen to be proportional to 

the square of the cosines of the angle of incidence. However, at angles greater than 45∘, it has 

been found that this relationship underpredicts fluid losses as examined by Cassolato (2007) 

● Second, an empirical method based on experimental findings attempting to capture the 

overall losses found at low and very high screen angles. Cassolato (2007) provided a 3rd 

order polynomial using the regression analysis for the results provided in Table 4.1 by 

Blevins (1984) to correct for the under prediction of losses at angles greater than 45∘. Blevins 

provided a table of reduction in losses (𝛾𝜃) as a fraction of the losses for a vertical screen 

at 0∘ and his values selected from experimental results by Carrothers and Baines (1965). The 

values in Table 4.1 from 0∘ to 40∘ are exactly 𝑐𝑜𝑠2𝜃, whereas values from 50∘ to 85∘ are 

from the experimental results and deviate from the 𝑐𝑜𝑠2𝜃 trend. Therefore, the second 

estimated angled screen loss coefficient is 

𝐶𝜃2 = 𝐶𝑙 𝛾𝜃 (4.9) 

where 

𝛾𝜃 = 0.46𝜃3 − 1.05𝜃2 − 0.06𝜃 + 1 (4.10) 

and 𝜃 is expressed in radians. 

● Third, an estimate of the loss coefficient developed by Cassolato (2007), based on the 

well established use of 𝐶𝑙 by Baines and Peterson (1951) with modifications based on the 

analytical and experimental work of Yeh and Shrestha (1989), can be determined using 

𝐶𝜃3 = �
𝑐𝑜𝑠𝜃
𝐶. 𝑐𝑜𝑠𝜓

− 1�
2

 (4.11) 
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where 

𝐶 = 𝐶𝑐(1 − 𝑆) (4.12) 

Equations 4.8, 4.9 and 4.11 were plotted by Cassolato (2007) as shown in Figure 4.2. As 

can be seen in the figure, 𝐶𝜃2 reflects the curve of 𝐶𝜃1 except for 𝜃 > 45∘. 𝐶𝜃3 plotted for 

various 𝛹/𝜃 values, with 0.6 selected as the lowest bound essentially limited by the 𝑐𝑜𝑠𝜃2 

losses and 0.9 selected as the upper bound since theoretically, 𝛹 ≠ 𝜃 or 𝛹/𝜃 ≠ 1. 𝐶𝜃2 

and 𝐶𝜃3 appeared to estimate the pressure loss coefficient more accurately as 𝐶𝜃1 

underestimates the pressure loss at high screen angles (45∘ ≤ 𝜃 ≤ 70∘). From experimental 

observations, Cassolato (2007) selected a value of  𝛹/𝜃 = 0.8 for 𝜃 ≤ 45∘, 𝛹/𝜃 = 0.9 at 

𝜃 = 60∘ for 𝑆 = 42%, and 𝛹/𝜃 = 0.85 at 𝜃 = 60∘ for 𝑆 = 52%. 

𝐶𝜃2 and 𝐶𝜃3 were used to estimate the pressure loss coefficients of angled screens in two 

linear TLD models, one based on shallow water wave theory (Cassolato and Tait 2005), and 

the other based on potential flow theory (Cassolato 2007; Cassolato et al. 2011). Results from 

both linear models were compared to experimental values. The primary difference between 

the two linear models was that the potential flow model more accurately captures the 

influence of the screen losses over the height and length of the screen. 

4.4. Nonlinear Simulation and Validation of a TLD Equipped with Inclined 
Damping Screens 

The nonlinear simulation of inclined damping screens in a TLD using a nonlinear fluid 

model was beyond the scope of previous studies (Cassolato and Tait 2005; Cassolato 2007; 

Cassolato et al. 2011). Thus in this section, the nonlinear simulation of inclined damping 

screens submerged in a TLD is addressed to overcome linear fluid model limitations. 

4.4.1 Nonlinear Fluid Model of a TLD Equipped with Inclined Damping Screens 
The nonlinear numerical model of a TLD equipped with damping screens, described in 

detail in Chapter 2, is utilized in this study. The liquid is assumed to be inviscid, irrotational 

and incompressible. Considering the tank, shown in Figure 4.3, is excited in a unidirectional 

motion, the nonlinear sloshing response can be expressed using shallow water theory as 

(Lepelletier and Raichlen 1988) 

𝜕𝜂
𝜕𝑡

+
𝜕
𝜕𝑥

[(ℎ + 𝜂)𝑢] = 0 (4.13) 
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𝜕𝑢
𝜕𝑡

+ 𝑢
𝜕𝑢
𝜕𝑥

+ 𝑔
𝜕𝜂
𝜕𝑥

−
1
3

(ℎ + 𝜂)2
𝜕3𝑢
𝜕𝑡𝜕𝑥2

+ 𝜁𝑤𝑢 + 𝑋̈ = 0 (4.14) 

where 𝜂(𝑥, 𝑡) is the free-surface elevation, 𝑢 (𝑥, 𝑡) is the horizontal velocity averaged through 

the liquid depth, 𝐿 is the tank length, ℎ is still liquid depth, 𝑔 is the gravitational acceleration, 

𝑋̈ is the horizontal base excitation acceleration of the tank and 𝜁𝑤 is a damping coefficient 

(Miles 1967) to account for viscous dissipation. The set of nonlinear shallow water equations 

can be solved numerically once the initial state of the liquid is prescribed, i.e. the values of 𝜂 

and ℎ are given at time 𝑡 = 0. A one-dimensional finite difference discretization scheme is 

applied for both 𝜂 and ℎ as shown in Figure 4.4. 

Using the method outlined by Kaneko and Ishikawa (1999) at locations where a damping 

screens is inserted as shown in Figure 4.5, the velocity at a particular screen (𝑈𝐷𝑆𝑖) can be 

expressed as 

𝑈𝐷𝑠𝑖 =
𝑢𝑖 + 𝑢𝑖+1

2
 (4.15) 

The pressure drop (∆𝑝) caused by the screen can be expressed as  

∆𝑝 = 𝐶𝑙
𝜌𝑈𝐷𝑆𝑖2

2
 (4.16) 

where 𝐶𝑙 is the pressure loss coefficient for vertical screens (𝜃 = 0∘).  

The relationship between the pressure loss coefficient and the free-surface height 

difference across the screen is given by 

|𝜂𝐿 − 𝜂𝑅| = ∆𝜂 = 𝐶𝑙
𝑈𝐷𝑆𝑖2

2𝑔
 (4.17) 

To incorporate the influence of screen angle on fluid response, 𝐶𝑙 in Equations 4.16 and 

4.17 is replaced by 𝐶𝜃. Consequently, Equations 4.16 and 4.17 can be written as 

∆𝑝 = 𝐶𝜃
𝜌𝑈𝐷𝑆𝑖2

2
 (4.18) 

|𝜂𝐿 − 𝜂𝑅| = ∆𝜂 = 𝐶𝜃
𝑈𝐷𝑆𝑖2

2𝑔
 (4.19) 
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Upon integrating the discretized continuity and momentum equations with respect to 

time, the values of free-surface on the left (𝜂𝐿) and right (𝜂𝑅) sides of the screen can be 

determined by 

𝜂𝐿 = 𝜂𝑖 + sign[𝑈𝐷𝑆𝑖]
∆𝜂
2

 (4.20) 

𝜂𝑅 = 𝜂𝑖 − sign[𝑈𝐷𝑆𝑖]
∆𝜂
2

 (4.21) 

Subsequently, the velocity, the base shear force and the wave height can be determined. 

Cassolato (2007) presented and evaluated three different 𝐶𝜃 values, which are summarized as 

follows (see Section 4.2.4.2): 

𝐶𝜃1 = 𝐶𝑙 𝑐𝑜𝑠2𝜃 (a)  

𝐶𝜃2 = 𝐶𝑙 (0.46𝜃3 − 1.05𝜃2 − 0.06𝜃 + 1) (b) (4.22) 

𝐶𝜃3 = ���𝐶𝑙 + 1�
𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜓

− 1�
2

 (c)  

Due to the similarity between pressure loss coefficients 𝐶𝜃1 and 𝐶𝜃2 and the knowledge 

that 𝐶𝜃1 underestimates fluid losses at practical high screen angles (45∘ ≤ 𝜃 ≤ 70∘), 𝐶𝜃1 is 

not considered. In the current study, 𝐶𝜃2 is found to better simulate the loss coefficient of 

inclined damping screens compared to 𝐶𝜃3. Thus, 𝐶𝜃2 is used in the nonlinear simulation of a 

TLD equipped with inclined damping screens and results are compared with experimental 

values (Cassolato 2007; Cassolato et al. 2011) in the next section. 

The base shear force that develops when the TLD is forced to move can be separated into 

the following three components: first, the inertial force due to the container (𝑓1); second, the 

inertial force due to the dead weight of the contained liquid (𝑓2); and third, fluid force 

generated by sloshing (𝑓3). Therefore, the TLD base shear force caused by the liquid motion 

is denoted by 𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 1 = 𝑓2 + 𝑓3. Applying momentum theory to calculate the TLD 

base shear force, the mass of the 𝑖th element can be expressed as follows (Kaneko and 

Ishikawa 1999) 

𝑚𝑖 = 𝜌 ×
𝐿
𝑛𝑒

× 𝑏 × �
𝜂𝑖−1 + 𝜂𝑖

2
+ ℎ� (4.23) 
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where 𝑛𝑒 is the total number of elements, 𝐿 is the tank length, 𝑏 is the tank width and 𝜌 is the 

liquid unit weight. 

Consequently, the momentum of the 𝑖th element can be described as follows 

𝑃 = �𝑚𝑖𝑢𝑖

𝑛𝑒

𝑖=1

=
𝜌𝐿𝑏
𝑛𝑒

��
𝜂𝑖−1 + 𝜂𝑖

2
+ ℎ�

𝑛𝑒

𝑖=1

𝑢𝑖 (4.24) 

The TLD base shear force (𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 1) can be determined by the following equation  

𝐹𝑇𝐿𝐷𝑥−𝑀𝑜𝑑𝑒𝑙 1 =
1
𝛥𝑡

(𝑃(𝑡) − 𝑃(𝑡 + 𝛥𝑡)) (4.25) 

4.4.2 Nonlinear Simulation of a TLD Equipped with Inclined Damping Screens 
Comparisons between the updated nonlinear fluid model and experimental results found 

in the literature are presented in this section for damping screens, with different inclination 

angles (𝜃). Three key TLD response parameters are compared: the free-surface response, the 

base shear force and the overall average energy dissipated per cycle of excitation. The 

following definitions are used in the verification study presented in this section. 

i. Non-dimensional free-surface amplitude (𝜂′) determined as 

𝜂′ =
𝜂
ℎ

 (4.26) 

where 𝜂 is the free-surface response amplitude and ℎ is the quiescent water depth. 

ii. Non-dimensional excitation amplitude (𝛬) determined as 

𝛬 =
𝐴
𝐿

 (4.27) 

where 𝐴 is the applied excitation amplitude  

iii. Excitation frequency ratio (𝛽) determined as 

𝛽 =
𝑓
𝑓𝑛

 (4.28) 

where 𝑓𝑛 is the natural sloshing frequency (𝑓) is the forcing frequency  

iv. Non-dimensional base shear force [𝐹𝑤′ (𝑡)] determined as 

𝐹𝑤′ (𝑡) =
𝐹𝑤(𝑡)
𝑚𝑤𝐴𝜔2 (4.29) 

where 𝐹𝑤(𝑡) is the base shear force produced by the nonlinear TLD fluid model and 

the denominator is the maximum inertial force of the entire water mass (𝑚𝑤) treated 

as a solid mass. 
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v. The non-dimensional energy dissipation per cycle (𝐸𝑤′ ) determined as 

𝐸𝑤′ =
𝐸𝑤

1
2𝑚𝑤(𝐴𝜔)2

 (4.30) 

where the denominator is the maximum kinetic energy of the entire water mass (𝑚𝑤) 

treated as a solid mass and the numerator represents the energy dissipated per cycle  

𝐸𝑤 = � 𝐹𝑤(𝑡)𝑑𝑥
𝑇

 (4.31) 

where 𝑇 is the applied excitation period. 

4.4.2.1 Frequency Response Comparison 

Figures 4.6 and 4.7 show the non-dimensional energy dissipation (𝐸𝑤′ ) frequency 

response curves produced using the nonlinear fluid model for one of two sets of slat screens 

(used in experimental tests Cassolato 2007 and Cassolato et al. 2011) at normalized 

excitation amplitude values (𝛬) of 0.005 and 0.021, respectively, for angles of 0∘, 30∘ and 

60∘. Figures B1 and B2 (Appendix-B) show 𝐸𝑤′  frequency response curves for the second set 

of slat screens. Cassolato (2007) conducted a series of shake table tests on a tank of length 

(𝐿) equal to 0.966 m, width (𝑏) equal to 0.360 m and mean water depth (ℎ) equal to 0.019 m 

with damping screens inserted at distances of 0.4𝐿 and 0.6𝐿 from the tank end wall as shown 

in Figures 4.1a and 4.1c. The vertical loss coefficients (𝐶𝑙) for the damping screens used in 

the tests were 3.53 and 5.69. For both amplitudes, a discrete frequency sweep test was 

experimentally conducted to obtain frequency response curves. The updated nonlinear fluid 

model is found to be in good agreement with the experimental test values for both sets of 

screens at all inclination angles (𝜃), with a maximum percentage difference of 2.5% over the 

entire excitation frequency ratio values (𝛽). The presence of higher harmonics and the 

hardening behaviour are captured by the nonlinear fluid model, which are clearly shown at an 

excitation frequency ratio (𝛽) equal to 0.93 and the increased frequency peak values for cases 

of high screen inclination angles, respectively. 

Figure 4.8 shows that increasing the screen inclination angle (𝜃) has resulted in a 

decreased in damping ratio (𝜁𝑇𝐿𝐷) for a given excitation amplitude (𝛬 = 0.010). The 

maximum difference between the updated nonlinear fluid model results and the experimental 

test results is found to be less than 2.3% over the entire range of excitation frequency ratio  

values (𝛽). Figure 4.8 clearly shows that screen angle values directly affect the normalized 
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energy dissipated by the TLD, which is demonstrated by the change in the frequency 

response curves. The level of non-dimensional energy dissipation (𝐸𝑤′ ) is found to increase 

with increasing screen angle (𝜃).  

Furthermore, the nonlinear fluid model is used to simulate experimental results 

(Cassolato 2007; Cassolato et al. 2011) demonstrating a level of peak response that was 

nearly constant over a range of excitation amplitude ratio values from 𝛬 =  0.005  to 0.016 

at different screen angle values from 𝜃 = 0∘ to 60∘ as shown in Figure 4.9. The near constant 

peak response values indicates that a near constant damping value is being maintained. The 

maximum difference between the updated nonlinear fluid model results and the experimental 

test results is found to be less than 2.7%. Therefore, the concept of altering the screen 

inclination angle to provide constant damping (𝜁𝑇𝐿𝐷) if the correct screen angle (𝜃) is 

selected can be applied utilizing the updated nonlinear fluid model. 

4.4.2.2 Time History Comparison 

Time history simulations of the normalized free-surface motion (𝜂′) and the normalized 

base shear forces [𝐹𝑤′ (𝑡)] are presented in Figures 4.10 and 4.11, respectively. The screens 

have a vertical pressure loss coefficient (𝐶𝑙) equal to 3.53 and are subjected to a normalized 

excitation amplitude (𝛬) of 0.021 at screen angles of 0∘, 30∘ and 60∘. Figures B3 and B4 

(Appendix-B) present 𝜂′ and 𝐹𝑤′ (𝑡), respectively, for the second set of screens having 

𝐶𝑙 = 5.69 and subjected to 𝛬 = 0.005. Excellent agreement is found between the 

experimental test results and the nonlinear simulations for both sets of screens at all angles 

for both wave height and base shear force time histories with maximum percentage 

differences of 1.8% and 2.0%, respectively. Therefore, the updated model is able to 

accurately estimate the resultant base shear force for practical inclination angles of screens 

(𝜃) at low and high excitation amplitude ratio values (𝛬). This is in contrast with linear 

simulation results that deviated from experimental test values at 𝜃 = 60∘ and 𝛬 = 0.021 

(Cassolato 2007).  

4.5. Performance of a 3D-Structure-TLD System Model Equipped with Inclined 
Damping Screens 

The updated nonlinear TLD fluid model is implemented into both the 3D-Structure-TLD 

and 3D-Structure-MTLD system models to investigate the performance of a 3D single-story 

structure (see Section 4.6) and a high-rise building (see Sections 4.7 and 4.8) with TLDs 
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equipped with inclined damping screens over a range of structural response amplitudes. First, 

the main parameters, which affect the response and efficiency of a structure-TLD system, are 

briefly described in this section. Second, the ability of the updated nonlinear fluid model to 

simulate near constant damping if a correct screen angle is selected is examined. 

4.5.1 Response/Efficiency of a 3D-Structure-TLD System Model 
The response of a structure equipped with a TLD is a function of three main parameters 

(Tait 2004; Tait et al. 2004a; Tait et al. 2007). 

i. The tuning ratio, which influences the performance of the TLD, is defined by 

𝛺 =
𝑓𝑇𝐿𝐷
𝑓𝑠

 (4.32) 

where 𝑓𝑇𝐿𝐷 is the natural frequency of the TLD; and 𝑓𝑠 is the natural frequency of the 3D 

structure. An estimate of the natural frequency of the TLD, 𝑓𝑇𝐿𝐷 for small sloshing fluid 

response amplitude is approximately equal to 𝑓𝑤 (Warnitchai and Pinkaew 1998; Ju et al. 

2004; Tait et al. 2004a). The fundamental sloshing frequency (𝑓𝑤) for the water inside a 

TLD using the linear wave theory (Lamb 1932) can be estimated as  

𝑓𝑤 =
1

2𝜋
�𝜋𝑔
𝐿
𝑡𝑎𝑛ℎ �

𝜋ℎ
𝐿
� (4.33) 

where 𝑔 is the gravitational acceleration and 𝐿 is the tank length in the direction of the 

fundamental sloshing mode of interest. 

ii. The mass ratio (𝜇) which is given by 

𝜇 =
𝜙2𝑚𝑇𝐿𝐷

𝑀∗  (4.34) 

where 𝑀∗ is the generalized mass of the primary structure corresponding to the vibration 

mode being suppressed; and 𝜙 is the normalized modal deflection value of the structure at 

the TLD location. The absorber mass (𝑚𝑇𝐿𝐷) for a TLD with damping screens can be 

approximated using potential flow theory (i.e. 𝑚𝑇𝐿𝐷 ≈ 𝑚1). The value 𝑚1 is calculated 

using the following equation (Graham and Rodriguez 1952) 

𝑚1 =
8 𝑡𝑎𝑛ℎ �𝜋ℎ𝐿 �

𝜋3ℎ
𝐿

𝑚𝑤 (4.35) 

where 𝑚𝑤 is the total mass of the contained water. 
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iii. The inherent damping ratio (𝜁𝑇𝐿𝐷) of the sloshing fluid inside the tank. The damping 

related to the sloshing liquid inside the tank without the presence of additional energy 

dissipating devices can be estimated by Sun (1991) using the following equation 

𝜁𝑇𝐿𝐷 =
1

2𝜋�
𝑣𝑤
𝜋𝑓𝑤

�1 +
ℎ
𝑏
� (4.36) 

where 𝑣𝑤 is the kinematic viscosity of water. 

Optimum inherent damping (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) and optimum tunning ratio (𝛺𝑜𝑝𝑡) values for a 

linear structure-tuned mass damper (TMD) as a function of the mass ratio (𝜇) can be 

obtained for the special case of zero structural damping (𝜁𝑠 = 0) based on the derivation 

presented by Warburton (1982). Due to the analogy between the TMD and TLD devices, 

Warburton’s solutions based on 𝐻2 optimization, are used to calculate the target values of 

𝜁𝑇𝐿𝐷−𝑜𝑝𝑡 and 𝛺𝑜𝑝𝑡  

𝜁𝑇𝐿𝐷−𝑜𝑝𝑡 = �
𝜇(1 + 3𝜇/4)

4(1 + 𝜇)(1 + 𝜇/2)
 (4.37) 

And  

𝛺𝑜𝑝𝑡 =
�1 + 𝜇/2

1 + 𝜇
 (4.38) 

On the other hand, three important parameters, commonly used to evaluate the 

performance of a structure-TLD system, are the efficiency, effectiveness and robustness (Tait 

2004; Tait et al. 2004a; Tait et al. 2007). These parameters are briefly discussed in this 

section to study the performance of a 3D-Structure-TLD system model equipped with 

inclined damping screens  

i. The effectiveness of a TMD can be expressed in terms of the amount of additional 

effective viscous damping that it adds to the primary structure (Vickery and Davenport 

1970), denoted by the effective viscous damping ratio (𝜁𝑒𝑓𝑓). This can be accomplished by 

equating the area under the frequency response of the combined system to that of a single 

degree of freedom system (SDOF) with the same frequency and solving for the effective 

damping (𝜁𝑒𝑓𝑓) (McNamara 1977). 

For a special case of zero structural damping (i.e. 𝜁𝑠 = 0), 𝜁𝑒𝑓𝑓 can be obtained using 

Gerges and Vickery (2003) formula as 
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𝜁𝑒𝑓𝑓 =
𝛺𝜇𝜁𝑇𝐿𝐷

(1 + 𝜇)2𝛺4 + (1 + 𝜇)2𝛺2(2𝜁𝑇𝐿𝐷2 − 1) + 𝛺2𝜇 + 1
 (4.39) 

The optimal parameter for the effective damping (𝜁𝑒𝑓𝑓−𝑜𝑝𝑡) can be obtained by substituting 

Equations 4.37 and 4.38 into Equation 4.39, leading to 

𝜁𝑒𝑓𝑓−𝑜𝑝𝑡 =
1
4
�
𝜇(1 + 𝜇)
1 + 3𝜇/4

 (4.40) 

ii. The efficiency (𝜓) of a TLD is defined as the amount of effective damping that a TLD 

provides, compared to an optimal equivalent TMD with equivalent TMD mass, and 

expressed as a percentage using 

𝜓 =
𝜁𝑒𝑓𝑓

𝜁𝑒𝑓𝑓−𝑜𝑝𝑡
. 100 (4.41) 

iii. Robustness is defined as the change in effectiveness with changes in the tuning ratio (𝛺), 

TLD damping ratio (𝜁𝑇𝐿𝐷) and the structural response amplitude. The TLD is modelled 

using the nonlinear fluid model, based on shallow water theory. Thus, in addition to the 

amplitude dependent damping ratio, the amplitude dependent hardening characteristics are 

also considered. 

4.6. Investigation of a Single-Story Structure with TLD Equipped with 
Vertical/Inclined Damping Screens under Random Excitation 

Previous sections focused on the impact of inclined damping screens on the dynamic 

response behaviour of a TLD under sinusoidal excitation. Wind excitation is often modelled 

as a random (white noise) excitation since a typical wind spectrum is nearly constant over the 

resonant domain of the frequency response of the structure. This section demonstrates the 

ability of an idealized TLD equipped with angled screens to operate optimally over a range 

of structural response amplitudes. Consequently, the updated 3D-Structure-TLD system 

model is employed to conduct a parametric study on a single-story structure utilizing 

practical mass ratio values (𝜇). 

4.6.1 Efficiency of a Structure-TLD System Model Equipped with Vertical 
Damping Screens  

A 3D single-story structure shown in Figure 4.12, whose generalized properties match 

those used in experimental work reported on by Tait (2004) and subjected to random 

excitation, are listed in Table 4.2. The 3D-Structure-TLD system model is excited by a 

number of 3.7-hour duration random force excitation time histories having increasing 
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excitation amplitude values (𝐹𝑚𝑎𝑥). A one-minute duration portion of the random excitation 

selected at the 1st minute of the time history is shown in Figure 4.13. A tank length (𝐿) equal 

to 0.966 m is selected to match that used in the experimental work reported by Tait (2004). 

The water depth (ℎ) is selected to achieve the optimal tuning ratio (𝛺) according to the 

selected mass ratio (𝜇). The tank width (𝑏) is then selected to achieve the selected mass ratio 

(𝜇). The mass ratio values (𝜇) for the parametric study are 1.0%, 2.5%, 3.5% and 5.0%. 

Table 4.3 shows the properties of the TLDs used in the parametric study. Equations 4.37 and 

4.38 are used to calculate the optimum TLD damping ratio (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) and the optimal 

tunning ratio (𝛺𝑜𝑝𝑡 ) values for each selected mass ratio (𝜇). 

A set of damping screens, which have a solidity ratio value (𝑆) equal to 60% and 

corresponding vertical loss coefficient value (𝐶𝑙) of 8.17, are placed at 0.4𝐿 and 0.6𝐿. In the 

case of normal vertical damping screens (𝜃 = 0∘) and in an iterative manner, the 3D single-

story structure is analyzed under the random excitation force time history with increasing 

values of excitation amplitude (𝐹𝑚𝑎𝑥) during each iteration. This leads to increasing values of 

the root-mean-square (RMS) structural response acceleration (𝜎𝑥̈), which are determined 

from the dynamic analysis. Consequently, the average peak hourly structural acceleration 

response (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) is calculated using the RMS structural acceleration response (𝜎𝑥̈) and the 

peak factor (𝑃𝐹) (Davenport 1964). The following equation is used to determine the average 

peak hourly structural acceleration responses (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) 

𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟 = 𝜎𝑥̈𝑃𝐹𝑥   (4.42) 

A peak factor value (𝑃𝐹) of 3.75 is determined for the single-story structure using 

(Davenport 1964) 

𝑃𝐹𝑥 = �2ln �𝑇𝑑
2𝜋
𝜔𝑠−𝑥� + 0.577

�2ln �𝑇𝑑2𝜋𝜔𝑠−𝑥�
    (4.43) 

where 𝜔𝑠−𝑥 is the structure’s natural frequency in the 𝑥-directions, which is the direction of 

the applied external random excitation, and 𝑇𝑑 is the duration time in seconds used to 

calculate the average peak factor value, which is an hour in this study. The model tested by 

Tait (2004) was a 1/10 scaled model, therefore, 𝑇𝑑 = 3600
√𝑆𝐹

= 3600
√10

= 1138 seconds is used in 

the peak factor calculation, where 𝑆𝐹 is the scale factor.  
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The selected vertical damping screens (𝜃 = 0∘) are found to provide 100% TLD 

efficiency (𝜓) for the mass ratio values (𝜇) of 1.0%, 2.5%, 3.5% and 5.0% at peak hourly 

structural acceleration response values of 2.7 milli-g, 6.5 milli-g, 9.0 milli-g and 12.5 milli-g, 

respectively (see Figure 4.14). These structural response values represent the target response 

of the structure-TLD system (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) at different mass ratio values (𝜇) for the case of 

vertical screens. 

4.6.2 Procedure to Estimate Damping Screen Angle for Improved TLD 
Efficiency  

A preliminary TLD design procedure (Tait 2008), which is discussed in detail in Chapter 

3, is employed in this section to determine the inclined damping screen properties [i.e. the 

inclined screen loss coefficient values (𝐶𝜃) required to achieve 100% TLD efficiency (𝜓) at 

different selected target peak hourly acceleration response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) and mass ratio 

values (𝜇)]. Consequently, the required inclination angles for the damping screens (𝜃) can be 

determined using Equation 4.22-b. 

First, the accuracy of the TLD design procedure is checked by determining the required 

vertical screen loss coefficient values (𝐶𝑙), which achieve various target peak hourly 

acceleration response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) at 100% TLD efficiency (𝜓), obtained previously from 

Figure 4.14 for different selected mass ratio values (𝜇). Excellent agreement is obtained 

between the calculated vertical loss coefficient values (𝐶𝑙) and the value of 8.17 utilized in 

the numerical analysis (i.e. 3D-Structure-TLD) with a maximum percentage difference value 

of 2.4% (see Section 4.6.1). Table 4.4 shows the calculation steps followed utilizing the 

preliminary TLD design procedure at mass ratio value (𝜇) of 1.0%, while Tables B1-B3 

(Appendix-B) show the calculation steps at mass ratio values (𝜇) equal to 2.5%, 3.5% and 

5.0%, respectively (see also Table 4.5 at 𝜃 = 0∘). 

Subsequently, the preliminary TLD design procedure is employed to determine the 

required inclined damping screen properties (𝐶𝜃), to achieve different target structural 

acceleration response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) at 100% TLD efficiency (𝜓) for practical limits of 

screen rotation (see Table 4.5). In the following section, the resulting 𝐶𝜃 values, listed in 

Table 4.5 are used to analyze the single-story structure-TLD system, shown in Figure 4.12, 

under increasing excitation amplitudes (𝐹𝑚𝑎𝑥) to determine TLD efficiency (𝜓).  
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4.6.3 Improved Efficiency of a Structure-TLD System Model Equipped with 
Inclined Damping Screens 

The dynamic analysis proceeds in an iterative manner resulting in incremental values of 

the peak hourly structural acceleration response (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) of the single-story structure-TLD 

system utilizing inclined screen loss coefficient values (𝐶𝜃) from Table 4.5. Results from the 

structure-TLD system model are shown in Figures 4.14a-4.14d for mass ratio values (𝜇) of 

1.0%, 2.5%, 3.5% and 5.0%, respectively. As the maximum allowable acceleration set by the 

wind tunnel for criteria of wind-induced motion is 30.0 milli-g for office buildings (Isyumov 

1994), the incremental iterations for different dynamic analysis of the 3D-Structure-TLD 

system model are stopped when the peak hourly structural acceleration value (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) 

reaches 40.0 milli-g. 

As can be observed from Figure 4.14, vertical screens (i.e. 𝜃 = 0.0∘) can be designed to 

operate optimally for only one particular structural acceleration response value 

(i.e. 𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟 = 𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡). Throughout different screen angles (𝜃), an envelope is drawn 

capturing 100% TLD efficiency (𝜓) over a range of structural response accelerations as 

shown in each figure. The general trends of the results are found to be in good agreement 

with those obtained by Cassolato (2007) from his study on a theoretical single degree of 

freedom system model (SDOF) employing a linear TLD numerical model. The envelope 

curves show that angled screens are able to maintain 100% TLD efficiency (𝜓) over a range 

of structural response accelerations (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) in contrast with the vertical screens. 

To investigate the general trends obtained using different mass ratio values (𝜇) in Figure 

4.14, the mass ratio value (𝜇) of 2.5% is first selected. Figure 4.14b shows that for 𝜇=2.5%, 

the vertical screens operate optimally [i.e. achieving 100% TLD efficiency (𝜓)] at 6.50 milli-

g, while an efficiency value (𝜓) of 75% is achieved at a structural response acceleration 

value (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) of 30.0 milli-g. The angled screens, which are tilted according to results 

from Table 4.5, cover a range of 𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟 values between 6.5 milli-g at 𝜃 = 0.0∘ and 20.0 

milli-g at 𝜃 = 59.0∘ at 𝜓=100%. The use of angled screens is shown to maintain an 

efficiency value (𝜓) of 95% at a large structural response value of 30.0 milli-g compared to 

an efficiency value (𝜓) of 75% utilizing vertical damping screens. 

For a mass ratio value (𝜇) of 1.0%, Figure 4.14a shows that an extension over the peak 

hourly structural response acceleration (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) is achieved using a three-position range of 
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the angled screens. For 100% TLD efficiency (𝜓), target structural response acceleration 

values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) are found to be 4.5 milli-g, 6.5 milli-g and 9.0 milli-g, corresponding to 

screen angle values (𝜃) equal to 41.0∘, 53.5∘, and 61.5∘, respectively. For 100% TLD 

efficiency (𝜓) and at a mass ratio value (𝜇) of 3.5%, the structural response acceleration is 

extended from a value of 9.0 milli-g at a vertical screen angle to values of 𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡 equal to 

15.0 milli-g, 20.0 milli-g, 25.0 milli-g and 30.0 milli-g corresponding to screen angle values 

(𝜃) of 40.0∘, 50.5∘, 56.5∘ and 61.0∘, respectively, as shown in Figure 4.14c. Finally, for a 

mass ratio value (𝜇) of 5.0%, 100% TLD efficiency (𝜓) is maintained over a range of 

structural response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) between 12.5 milli-g and 30.0 milli-g using a four-

position range of the angled screens as shown in Figure 4.14d. Therefore, the suitability of 

using 𝐶𝜃 values from the preliminary TLD design procedure to achieve 100% TLD efficiency 

(𝜓) over a range of structural amplitudes (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) and for different mass ratios (𝜇) is 

confirmed. 

4.7. Response of a High-Rise Building-MTLD-System with Inclined Damping 
Screens at Various Serviceability Return Periods 

In this section, a study on an actual high-rise building equipped with TLDs utilizing 

inclined damping screens is conducted employing the 3D-Structure-MTLD system model. 

The building is subjected to recorded wind tunnel loads and analyzed without and with TLDs 

at the critical wind loading angle (𝜃𝑤 = 210∘) over a range of return periods. The TLD 

design procedure, utilized above in Section 4.6.2, which has shown excellent accuracy to 

predict the required inclination angle (𝜃) of the inclined damping screens to achieve 100% 

TLD efficiency (𝜓), is updated in this section to be used in a multi-modal high-rise building. 

Also, TLDs with inclined damping screens are designed to cover a wide range of 

serviceability return from 1 month to 50 years. Wind speed values between 23 and 34 m/s, 

listed in Table 4.6, are selected from the lower curve in Figure 4.15, which represents 

recommended serviceability wind speeds (BLWT-SS3-2007). Finally, a comparison of 

percentage response reduction values (𝜓𝑝𝑒𝑎𝑘−ℎ𝑟) of the average peak hourly resultant 

accelerations (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) is presented utilizing TLDs equipped with inclined and vertical 

damping screens.  
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4.7.1 Brief Description of the Indianapolis Building and Its Dynamic 
Characteristics 

A 38-story reinforced concrete building with a height of 154.6 m and plan dimensions of 

32.0 m by 54.0 m, which is discussed in detail elsewhere (Chapter 3), is considered in this 

study (see Figure 4.16). Figure 4.17 displays the first three mode shapes, which correspond to 

natural periods of 7.31, 6.18 and 3.01 seconds. The torsional component of the mode shapes 

is multiplied by the overall radius of gyration 18.8 m of the building to maintain dimensional 

consistency. It can be observed from Figure 4.17 that the structure has a dominate 

translational mode in the 𝑥-direction, a dominate translational mode in the 𝑦-direction and 

dominate torsional mode in the 𝜃-direction with a small coupling action between the 𝑥- and 

𝑦-directions. 

4.7.2 Response of the Indianapolis Building with No-TLDs 
A dynamic analysis of the 38-story high-rise building is carried out using wind tunnel 

loads recorded at the critical wind loading angle (𝜃𝑤) of 210∘. Consequently, a time history 

analysis utilizing a number of 4-hour recorded wind tunnel loads is conducted at the selected 

return periods employing the 3D finite element model (developed and validated in Chapter 

2). Result includes average peak hourly resultant acceleration response values (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) and 

RMS structural acceleration response values (𝜎𝑥̈; 𝜎𝑦̈) at the centre of mass (𝐶𝑀) and the four 

corners (𝐶1; 𝐶2; 𝐶3; 𝐶4) of the building in the 𝑥- and 𝑦- directions, respectively, at the 

uppermost floor (𝑧 = 154.6 m). These results are utilized to investigate the building’s 

serviceability conditions. Figure 4.18 shows the uncontrolled average peak hourly resultant 

acceleration response (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) values resulting from different serviceability return periods. 

A range of 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 values between 8.0 and 34.0 milli-g is found from the dynamic analysis 

corresponding to return period wind speeds between 23 m/s (1 month) and 37 m/s (50 years), 

respectively. 

4.7.3 Placement Selection and Design of TLDs 
TLDs to suppress the first three modes of vibration of the Indianapolis building are 

designed and their locations selected utilizing the modal contribution response components 

[modal factors (𝑀𝐹)] discussed in Chapter 3. The preliminary TLD design procedure (Tait 

2008), which has been expanded in Chapter 3 to determine the parameters of multiple TLDs 
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equipped in a multi-modal high-rise building utilizing the structural modal response 

components (𝑀𝐹), is employed in this section. 

Following the procedure used in Chapter 3, the first two mode tanks are designed 

according to the target modal structural acceleration response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 

𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2) of the first two modes determined from the uncontrolled modal response 

values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2) at the TLD locations and in their placement directions. 

Subsequently, TLDs to suppress the third mode of vibration are designed according to the 

target modal structural response acceleration values of the third mode. 

To achieve the optimal inherent damping in a multiple TLD system located in a multi-

modal high-rise building, the loss coefficients are selected based on the target modal 

acceleration response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2) at the TLD locations. Therefore, 

the modal contribution factor values (𝑀𝐹) corresponding to each structural mode of vibration 

to be suppressed must be determined. Table 4.7 shows the initial RMS acceleration response 

values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙) of the Indianapolis building and their corresponding modal 

response values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2) in the 𝑥- and 𝑦-directions, respectively. The 

target modal RMS acceleration response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2) are evaluated 

at different serviceability return periods (see Table 4.7) for a selected mass ratio value of 2%. 

A detailed TLD design example is presented in the following section considering a 

serviceability return period of 50 years. 

4.7.3.1 TLD Design Procedure (50-Year Serviceability Return Period) 
The TLD design procedure, outlined in Chapter 3, is used to design uni-directional tanks 

to suppress the first and second modes of vibration in the 𝑥- and 𝑦-directions, respectively, at 

the 50-year serviceability return period.  

Employing the TLD design procedure, tank dimensions are established as 𝐿𝑥 = 16.0 m, 

𝑏𝑥 = 4.3 m and ℎ𝑥 = 2.0 m, while 𝐿𝑦 = 12.0 m, 𝑏𝑦 = 3.4 m and ℎ𝑦 = 1.9 m. The initial 

modal RMS acceleration response values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2) at the centre of mass 

(𝐶𝑀) of 6.9 milli-g and 4.7 milli-g lead to modal target RMS response values of  4.3 milli-g 

for 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1 and 2.9 milli-g for 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2. The modal target RMS acceleration 

response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2) are used to determine the screen loss 

coefficients (Tait 2004; Cassolato et al. 2011). Table 4.9 shows the steps employed to 
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complete the expanded TLD design procedure (Chapter 3; Tait 2008) for the first mode tanks 

in the 𝑥-direction, while Table 4.10 presents TLD water mass calculations. Tables B4 and B5 

(Appendix-B) show the calculation steps to design the second mode tanks in the 𝑦-direction 

and TLD water mass calculations, respectively. 

The modal RMS acceleration values for the third mode at the four corners show high 

modal factor values (𝑀𝐹) in the 𝑦-direction compared to the 𝑥-direction (see Table 4.8). 

Moreover, corners 𝐶2 and 𝐶3 have modal factor values (𝑀𝐹), in the 𝑦-direction, between 

40.6% and 57.1%, while corners 𝐶1 and 𝐶4 have modal factor values (𝑀𝐹) between 24.1% 

and 34.0%. Therefore, TLDs are installed at 𝐶2 and 𝐶3 and oriented in the 𝑦-direction. In 

contrast, the four corners have modal factor values (𝑀𝐹) in the range between 7.4% and 

18.1%, in the 𝑥-direction, for all return periods. Consequently, the TLD design procedure is 

employed and the modal target RMS acceleration response values (𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2), presented 

in Table 4.8, are used to determine the optimal TLD design parameters to suppress the third 

vibration mode of the structure.  

With location and orientation determined, the TLDs are designed to suppress the first 

three modes of vibration of the Indianapolis building, at four selected values of serviceability 

return periods. The TLD design procedure described in Section 4.6.2 is utilized (12 times) to 

determine the required inclination angle values (𝜃) at a selected mass ratio value (𝜇) equal to 

2.0% as listed in Table 4.11. The table represents a design summary sheet for different return 

period wind speeds and vibration modes to be suppressed. It also contains the optimal 

tunning ratio and tank frequency values, tank dimensions and water heights, optimal damping 

screen properties and corresponding inclination angles.  

The maximum optimal loss coefficient values, for different mode tanks determined at the 

minimum return period wind speed of 1 month, are utilized as the vertical loss coefficient 

values (𝐶𝑙) for each mode tank. Therefore, with increasing wind speed values, the damping 

screens are tilted at an angle (𝜃) to reduce their loss coefficients to values that match the 

optimal 𝐶𝜃 values listed in Table 4.11. Consequently, Equation 4.22-b is used to determine 

the required inclination angle values (𝜃) of the damping screens shown in Table 4.11.  
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4.7.4 Response of the Indianapolis Building with TLDs to Suppress the First 
Three Modes 

A dynamic analysis of the 38-story Indianapolis building is carried out at the critical wind 

loading angle (𝜃𝑤) of 210∘ with TLDs equipped with inclined damping screens (i.e. rotatable 

damping screens). The TLD damping screens are set to the desired inclination angle values 

(𝜃), shown in Table 4.11, corresponding to the serviceability return periods. 

Figures 4.18 and 4.19 show the average peak resultant accelerations (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) at the 

centre of mass (𝐶𝑀) and the four corners (𝐶1; 𝐶2; 𝐶3; 𝐶4) at 𝑧 = 154.6 m for different 

serviceability return periods with no-TLDs and with TLDs equipped with inclined damping 

screens, respectively. Results from the dynamic analysis show that average peak resultant 

acceleration response values of the Indianapolis building (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) range between 8.0 to 

34.5 milli-g for the uncontrolled case compared with 6.0 to 22.5 milli-g for the controlled 

cases, respectively. Figure 4.18 shows that the maximum uncontrolled response (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) 

of 28.2 milli-g, at a serviceability return period of a 10-year exceeds the criteria 

recommended by the wind tunnel (BLWTL). Acceptable wind-induced motions for a 10-year 

return period, recommended by the BLWTL, range between 10 and 15 milli-g for residential 

buildings, 15 and 20 milli-g for hotels, 20 to 25 milli-g for office buildings (Isyumov 1994). 

To evaluate the performance and robustness of the TLD systems (i.e. TLDs with screens 

fixed at a single angle and TLDs with screens set at different angles), the dynamic analysis of 

the Indianapolis building is repeated at lower return periods of 1 month, 1 year and 10 years 

utilizing the same TLD properties (i.e. fixed angle of the damping screens) obtained at a 50-

year return period. Consequently, the percentage response reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) of the 

average peak hourly resultant accelerations (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) of the Indianapolis building with 

TLDs to suppress the first three modes equipped with inclined and fixed (single angle) 

damping screens are evaluated using Equation 4.44 and presented in Figures 4.20a and 4.20b, 

respectively. 

The percentage response reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) of the average peak hourly resultant 

accelerations (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) can be calculated by 

𝛹𝑝𝑒𝑎𝑘−ℎ𝑟 = �𝑅𝑝𝑒𝑎𝑘−ℎ𝑟(𝑁𝑜− 𝑇𝐿𝐷)−𝑅𝑝𝑒𝑎𝑘−ℎ𝑟(𝑤𝑖𝑡ℎ 𝑇𝐿𝐷)

𝑅𝑝𝑒𝑎𝑘−ℎ𝑟(𝑁𝑜−𝑇𝐿𝐷)
� . 100  (4.44) 
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where 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟(𝑤𝑖𝑡ℎ 𝑇𝐿𝐷) and 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟(𝑁𝑜−𝑇𝐿𝐷) are the resultant acceleration responses with 

and without TLDs installed, respectively. 

Utilizing the inclined damping screen approach, percentage response reduction values 

(𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) between 32% and 37% are achieved at a 50-year return period, while values 

(𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) in the range between 29% and 34% are achieved at a 1-month return period (see 

Figure 4.20a). Employing the inclined damping screens leads to approximately constant 

percentage response reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟), i.e. nearly constant TLD efficiency, over 

the considered range of serviceability return periods with a maximum difference of 5%. It 

can be noticed that the controlled structural responses achieve the wind-induced motion 

criteria for hotels (i.e. 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟10−𝑦𝑒𝑎𝑟𝑠< 20 milli-g). 

These results demonstrate the ability of inclined damping screens, installed in the TLDs, 

to control the response of an actual structure subjected to a range of return periods that 

produce wind loads with variable speeds. Thus, overall performance of a structure-TLD 

system, under simulated natural events, is improved at no additional cost utilizing inclined 

damping screens (i.e. TLDs could be designed to cover a range of return periods utilizing the 

same sets of damping screens).  

4.8. Response of a High-Rise Building-MTLD-System over a Range of Mixed 
Return Periods (Dual Design Approach) 

A novel dual design approach for TLDs be installed in structures is introduced in this 

section. TLDs are primarily used for serviceability related issues. Results from the above 

section show structural response improvements over a wide range of serviceability return 

periods with TLDs equipped with inclined damping screens. In this section, TLDs equipped 

with inclined damping screens are designed and installed in the Indianapolis building to 

check their efficiency under design level wind loads. 

For strength related issues such as loads and building cladding pressure, the BLWTL 

wind climate model (BLWT-SS3-2007) is scaled to match wind speed requirements in 

ASCE-7-05 (see the upper curve in Figure 4.15) considering a 50-year strength return period 

(see Chapter 3). The TLDs are subsequently designed for a 50-year strength return period. 

Furthermore, the inclined damping screens are employed to extend the ability of TLD 

installation to cover serviceability return periods. As a result, criteria set by the wind tunnel 
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for wind-induced motions at a 10-year serviceability return period (Isyumov 1994) can also 

be achieved. 

4.8.1 Response of the Indianapolis Building with No-TLDs  
A wind speed value of 47.5 m/s is selected for a 50-year strength return period using the 

upper curve plotted in Figure 4.15. This curve represents the design wind speeds in the 

Indianapolis area as recommended by the wind tunnel study (BLWT-SS3-2007) and ASCE 

7-05. Figure 4.21 shows the uncontrolled 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 values of the centre of mass (𝐶𝑀) and the 

four corners at the uppermost floor (𝑧 = 154.6 m), at the critical wind loading angle (𝜃𝑤) of 

210∘ utilizing mixed return period wind speeds, listed in Table 4.12. It can be noticed from 

the figure that uncontrolled 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 values, ranging between 16.0 to 70.0 milli-g are 

obtained from the dynamic analysis. 

4.8.2 Placement Selection and Design of TLDs 

A mass ratio (𝜇) of 2.0% is selected for TLDs installed to suppress the first three modes 

of the Indianapolis building over the selected range of mixed return periods. Tables 4.13 and 

4.14 show the target modal acceleration response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2), in 

the 𝑥- and 𝑦-directions, at the selected range of mixed return periods for TLDs to suppress 

the first two and the first three modes of vibration. TLDs are selected to be installed at the 

centre of mass (𝐶𝑀) to suppress the first two vibration modes, in the 𝑥- and 𝑦-directions, 

respectively, while at corners 𝐶2 and 𝐶3 in the 𝑦-direction to suppress the third mode of 

vibration. The TLD design procedure is repeated (12 times) and results are listed in Table 

4.15.  

4.8.3 Response of the Indianapolis Building with TLDs to Suppress the First 
Three Modes Including the Design Level Wind Speed 

Results from the dynamic analysis utilizing the inclination angles, listed in Table 4.15 

over the selected range of mixed return periods, are shown in Figure 4.22. The figure shows 

that average peak hourly resultant acceleration response values (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) of the centre of 

mass (𝐶𝑀) and the four corners are found to range between 10.0 and 41.0 milli-g. Figure 

4.23a shows percentage response reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) at the centre of mass (𝐶𝑀) and 

the four corners range between 38% and 41% at a 50-year strength return period, while 

𝛹𝑝𝑒𝑎𝑘−ℎ𝑟 values are found in the range between 32% and 37% at a 1-year serviceability 
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return period. In other words, using TLDs equipped with inclined damping screens leads to 

approximately constant percentage response reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟), i.e. nearly constant 

TLD efficiency (𝜓), over the range of mixed return periods considered in this study. 

The dynamic analysis of the Indianapolis building is repeated at lower serviceability 

return periods of 1 and 10 years utilizing the TLD designed for the 50-year strength return 

period. Figure 4.23b shows the percentage response reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) of the 

average peak hourly resultant acceleration responses (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) of the centre of mass (𝐶𝑀) 

and the four corners. It can be observed that lower response reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) are 

obtained compared to their counterpart values, shown in Figure 4.23a, utilizing TLDs 

equipped with inclined damping screens.  

4.9. Conclusions 
A nonlinear TLD fluid model of a TLD equipped with inclined damping screens has been 

extended and validated. The updated TLD fluid model has been found to be in excellent 

agreement with experimental test values obtained from a previously reported shake table 

testing program. Also, unlike linear fluid models, the updated nonlinear TLD fluid model can 

capture the effect of higher harmonics and the amplitude dependent hardening behaviour.  

The ability to passively control the inherent damping ratio in a tuned liquid damper 

(𝜁𝑇𝐿𝐷) over a range of excitation amplitudes has been demonstrated utilizing a 3D finite 

element structure-tuned liquid damper system model in the following two cases: 

i. A dynamic analysis of a 3D single-story structure has been carried out employing the 3D-

Structure-TLD system model, under random excitation for different mass ratios (𝜇). The 

vertical screens have been found to operate optimally at only one particular structural 

response acceleration. For different screen angles (𝜃), an envelope has been drawn 

capturing 100% TLD efficiency (𝜓) over a range of structural response accelerations. The 

envelope curves have shown that angled screens are able to maintain 100% TLD efficiency 

(𝜓) over a range of structural response accelerations, in contrast with conventional vertical 

screens. 

ii. A dynamic analysis of a 38-story high-rise building has been carried out utilizing recorded 

wind tunnel loads at the critical wind loading angle (𝜃𝑤 = 210∘) employing the 3D-

Structure-MTLD system model. The response of the building has been determined over a 
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range of serviceability and strength-serviceability (mixed) return period wind speeds 

without and with TLDs equipped with inclined and fixed (single angle) damping screens. 

Results have shown that employing inclined damping screens in the TLDs has led to 

approximately constant TLD performance over the selected serviceability and mixed return 

periods. 

The Indianapolis building response values obtained for a 50-year return period wind 

speed, which is used in the design requirements as suggested by ASCE 7-05, have shown 

percentage response reduction values (𝛹𝑝𝑒𝑎𝑘−ℎ𝑟) ranging between 38% and 41%. Therefore, 

the study indicates the potential of using TLDs to reduce the force effects in members (i.e. 

normal force, shear force, bending moment and torque).  Consequently, cost savings could be 

achieved if the reduced loads are used in the design process. 

Finally, the ability to adjust the inherent damping ratios (𝜁𝑇𝐿𝐷) of the TLDs has been 

demonstrated utilizing inclined damping screens. Thus, by monitoring the structural 

responses, inherent damping ratio values of the TLDs could be adjusted if required. 
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Table 4.1. Fraction of 𝐶𝑙 with Angle (from Cassolato 2007) 

𝜽 (degrees) 0 10 20 30 40 50 60 70 80 80 

𝜸𝜽  1.00 0.97 0.88 0.75 0.59 0.45 0.3 0.23 0.15 0.09 

 
 

Table 4.2. Building Properties 

   Generalized 
 Model 

Frame Element 
 Model 

Excitation Type 𝒇𝒔 
(Hz) 

𝑴∗ 
(kg) 

𝑲∗ 
(N/m) 

𝑪∗ 
(kg/s) 

𝜻𝒔 
(%) 

𝑳𝒄 
(m) 

𝑬𝑰𝒄 
(N.m2) 

Random 0.558 4040 49,656 17.00 0. 06 3.0 446,904 

 
 

Table 4.3. TLD Properties 

Excitation 
Type 

𝝁 
(%) 

𝜴𝒐𝒑𝒕 
(%) 

𝒇𝑻𝑳𝑫−𝒐𝒑𝒕 
(Hz) 

𝒉 
(m) 

𝑳 
(m) 

𝒃 
(m) 

𝒎𝑻𝑳𝑫 
(kg) 

𝒎𝒘 
(kg) 

𝑺 
(%) 

𝑪𝒍 

Random 

1.0 99.26 0.554 0.123 0.966 0.442 040.4 052.5 

60 8.17 
2.5 98.17 0.547 0.120 0.966 1.129 101.0 130.9 

3.5 97.46 0.543 0.118 0.966 1.605 141.4 182.9 

5.0 96.42 0.538 0.115 0.966 2.342 260.8 202.0 
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Table 4.4. TLD Design for Vertical Damping Screens (𝜇 = 1.0%) 

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  13.57 milli-g 
Structure cyclic frequency, 𝑓𝑠−𝑥  0.558 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   1.792 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   3.507 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(181𝜔𝑠−𝑥) + 0.577

�2 ln(181𝜔𝑠−𝑥)
  3.753  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑃𝐹𝑥

  3.620 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜔𝑠−𝑥
2

𝑔
1000

  2.890 mm 
Assumed water mass ratio, 𝜇𝑤  0.010 (1.00%) 
Assumed mass ratio, 𝜇  0.077 (0.77%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.025 (2.50%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.049 (4.98%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.992 (99.2%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.554 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  7.115  

Structure damping ratio, 𝜁𝑠  0.0006 (0.06%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.0255 (2.55%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡2   0.440 mm 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  0.71 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝐹𝑥
  2.65 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  3.150 mm 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 0.966  m 
𝒉 = 0.123   m 

Shallow water theory check, ℎ/𝐿𝑥  0.127 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟖.𝟐𝟏 
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Table 4.5. Inclined Damping Screen Loss Coefficient values (𝐶𝜃) Used in the Parametric Study for 
the Single-Story Structure-TLD System 

Excitation 
Type 

𝑺 
(%) 

𝝁 
(%) 

𝜽 
(Degree) 

𝑪𝜽 
(Inclined) 

 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 
(milli-g) 

Random 60 

1 

0 8.2 2.7 

41.0 4.8 4.5 

53.5 3.3 6.5 

61.5 2.4 9.0 

2.5 

0.0 8.3 6.5 

37.0 5.3 10.0 

51.5 3.5 15.0 

59.0 2.7 20.0 

3.5 

0 8.3 9.0 

40.0 4.9 15.0 

50.5 3.7 20.0 

56.5 2.9 25.0 

61.0 2.5 30.0 

5.0 

0 8.4 12.5 

22.5 6.9 15.0 

38.0 5.2 20.0 

46.5 4.1 25.0 

52.5 3.4 30.0 
 

Table 4.6. Serviceability Return Periods and Wind Speeds 

 
 Return Period 

(year) 
Wind Speed 

(m/s) 

Se
rv

ic
ea

bi
lit

y 50 37 

10 34 

1 29 

1/12 23 
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Table 4.7. Modal Acceleration Response Components in the 𝑥- and 𝑦-directions at the Centre of 
Mass with No-TLDs over a Range of Serviceability Return Period Wind Speeds 
(𝜃𝑤 = 210∘, 𝑧 = 154.6 m) 

    Mode 1  Mode 2 

Node 
Return 
Period 
(years) 

Wind 
Speed 
(m/s) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) 

𝑴𝑭 
(%) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎𝟏 
(milli-g) 

𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎𝟐 
(milli-g) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
𝑴𝑭 
(%) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 
(milli-g) 

𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝐶𝑀 

50 37 7.1 97.4 6.9 4.3 5.0 94.7 4.7 2.9 

10 34 6.1 98.3 6.0 3.8 3.6 94.1 3.4 2.3 

1 29 3.5 98.7 3.4 2.2 2.5 95.5 2.4 1.5 

1/12 23 1.6 98.3 1.6 1.0 1.5 96.4 1.5 0.9 

 
 

Table 4.8. Modal Acceleration Response Components in the 𝑥- and 𝑦-directions at the Four 
Corners Equipped with TLDs to Suppress the First Two Modes over a Range of 
Serviceability Return Period Wind Speeds (𝜇 = 2%, 𝜃𝑤 = 210∘, 𝑧 = 154.6 m) 

    Mode 3  Mode 3 

Node 
Return 
Period 
(years) 

Wind 
Speed 
(m/s) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) 

𝑴𝑭 
(%) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 
(milli-g) 

𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
𝑴𝑭 
(%) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 
(milli-g) 

𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝐶1 

50 37 

4.0 9.3 0.4 - 5.5 30.7 1.7 - 

𝐶2 4.0 9.3 0.4 - 4.6 53.8 2.5 1.6 

𝐶3 4.4 18.1 0.8 - 4.6 53.8 2.5 1.6 

𝐶4 4.4 18.1 0.8 - 5.5 30.7 1.7 - 

𝐶1 

10 34 

3.8 7.4 0.3 - 4.2 34.0 1.4 - 

𝐶2 3.8 7.4 0.3 - 3.7 57.1 2.1 1.3 

𝐶3 4.1 14.9 0.6 - 3.7 57.1 2.1 1.3 

𝐶4 4.1 14.9 0.6 - 4.2 34.0 1.4 - 

𝐶1 

1 29 

2.3 7.8 0.2 - 2.8 30.4 0.9 - 

𝐶2 2.3 7.8 0.2 - 2.4 50.5 1.2 0.8 

𝐶3 2.5 14.3 0.4 - 2.4 50.5 1.2 0.8 

𝐶4 2.5 14.3 0.4 - 2.8 30.4 0.9 - 

𝐶1 

1/12 23 

1.1 9.4 0.1 - 1.6 24.1 0.4 - 

𝐶2 1.1 9.4 0.1 - 1.4 44.6 0.6 0.4 

𝐶3 1.2 16.4 0.2 - 1.4 44.6 0.6 0.4 

𝐶4 1.2 16.4 0.2 - 1.6 24.1 0.4 - 
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Table 4.9. TLD Design for Mode 1 in the 𝑥-direction  (𝜇 = 2.0%, Serviceability Return Period 
= 50 years) 

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  25.979 milli-g 
Modal Factor, 𝑴𝑭  97.380 % 
Initial modal peak hourly acceleration, 
𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 25.298 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑥  0.136 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   7.310 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   0.853 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(573𝜔𝑠−𝑥) + 0.577

�2 ln(573𝜔𝑠−𝑥)
  3.685  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑥

  6.870 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚

𝜔𝑠−𝑥
2

𝑔
1000

  0.091 m 
Assumed mass ratio, 𝜇  0.020 (2.0%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.035 (3.5%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.072 (7.2%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.985 (98.5%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.135 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  5.062  

Structure damping ratio, 𝜁𝑠  0.020 (2.0%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.051 (5.1%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.057 M 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  4.284 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑥
  15.786 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.288 M 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 16.00  m 
𝒉 =  1.99   m 

Shallow water theory check, ℎ/𝐿𝑥  0.125 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟐.𝟒𝟔 
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Table 4.10. Water Mass Calculations for TLDs to Suppress Mode 1 (𝜇 = 2.0%) 

Quantity Equation(s)  Value 

Selected tank dimensions, 𝐿𝑥,𝐵𝑥,ℎ𝑥  
𝐿𝑥 = 16.00 m 
𝐵𝑥 = 4.30 m 
ℎ𝑥 = 1.99 m 

Water height to tanks length ratio in 𝑥-dir ℎ𝑥/𝐿𝑥 0.125 
Water mass of 1 tank, 𝑚𝑤(1𝑡𝑎𝑛𝑘) 𝑚𝑤(1𝑡𝑎𝑛𝑘) = 𝐿𝑥𝐵𝑥ℎ𝑥 137055.4 kg 
   

TLD mass of 1 tank in 𝑥-dir, 𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘) 
 𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝑥 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑥
�

𝜋3� ℎ𝐿𝑥
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)  
0.77 𝑚𝑤(1𝑡𝑎𝑛𝑘) =
105753.9 kg 

   

Total building mass, 𝑀𝑠 𝑀𝑠 = ∑ 𝑚𝑓
𝑖=𝑁𝑓
𝑖=1   

 
36412955 kg 

Generalized building mass in 𝑥-dir, 𝑀𝑥
∗ 𝑀𝑥

∗ = ∑ �𝑚𝑓�𝑖
𝑖=𝑁𝑓
𝑖=1 (𝜙𝑡2)𝑖  10523344 kg 

Required TLD mass in 𝑥-dir, 𝑚𝑇𝐿𝐷−𝑥 𝑚𝑇𝐿𝐷−𝑥 = 𝜇𝑇𝐿𝐷−𝑥𝑀𝑥
∗ 210467 kg 

No. of Tanks required in 𝑥-dir, 𝑁𝑇𝐿𝐷−𝑥 𝑁𝑇𝐿𝐷−𝑥 = 𝑚𝑇𝐿𝐷−𝑥/𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘) 1.99 
   
   
Chosen No. of tanks for mode 1, 𝑵𝑻𝑳𝑫−𝒙   2 
Actual mass ratio in 𝒙-dir, 𝝁𝒙−𝒂𝒄𝒕𝒖𝒂𝒍 𝜇𝑥−𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑁𝑇𝐿𝐷−𝑥𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘)/𝑀𝑥

∗  2.01 % 
Mass ratio of contained water, 𝝁𝒘 𝜇𝑤 = 𝑁𝑇𝐿𝐷−𝑥𝑚𝑤(1𝑡𝑎𝑛𝑘)/𝑀𝑠 0.75 % 
 

Table 4.11. Properties of TLDs Equipped with Inclined Damping Screens to Suppress the First Three 
Modes of Vibration over a Range of Serviceability Return Period Wind Speeds (𝜇 =
2.0%, 𝜃𝑤 = 210∘) 

         Return Period 

         1 month 
serviceability 

1 year 
serviceability 

10 years 
serviceability 

50 years 
serviceability 

𝜴𝒐𝒑𝒕 

M
od

e 
N

um
be

r 

𝒇𝒔 𝒇𝑻𝑳𝑫 𝑳 𝒃 𝒉 

N
um

be
r 

of
 

T
an

ks
 

𝑺 𝑪𝒍 𝜽∘ 𝑪𝜽 𝜽∘ 𝑪𝜽 𝜽∘ 𝑪𝜽 𝜽∘ 

0.985 

1 0.137 0.135 16.00 4.30 1.99 2 0.64 10.62 0 4.91 49.41 2.98 62.63 2.46 66.83 

2 6.180 0.159 12.00 3.40 1.58 4 0.66 12.35 0 7.62 39.05 4.92 53.83 3.81 60.40 

3 3.013 0.327 2.75 2.75 0.34 120 0.71 19.92 0 9.85 47.26 5.83 61.67 3.20 65.68 

 

Table 4.12. Mixed Return Periods and Wind Speeds 
 
 Return Period 

(year) 
Wind Speed 

(m/s) 

Strength 50 47.5 

Serviceability 
10 34.0 

1 29.0 
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Table 4.13. Modal Factors in the 𝑥- and 𝑦-directions at the Centre of Mass with No-TLDs at Mixed 
Return Period Wind Speeds (𝜃𝑤 = 210∘, 𝑧 = 154.6 m) 

    Mode 1  Mode 2 

Node 
Return 
Period 
(years) 

Wind 
Speed 
(m/s) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) 

𝑴𝑭 
(%) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 
(milli-g) 

𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
𝑴𝑭 
(%) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 
(milli-g) 

𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝐶𝑀 

50 
(Str.) 47.5 12.4 97.6 12.1 7.5 11.0 96.5 10.6 6.6 

10 
(Ser.) 34.0 6.1 98.3 6.0 3.8 3.6 94.1 3.4 2.3 

1 
(Ser.) 29.0 3.5 98.7 3.4 2.2 2.5 95.5 2.4 1.5 

Table 4.14. Modal Factors in the 𝑥- and 𝑦-directions at the Four Corners with TLDs to Suppress the 
First Two Modes of Vibration over a Range of Mixed Return Period Wind Speeds 
(𝜇 = 2.0%, 𝜃𝑤 = 210∘, 𝑧 = 154.6 m) 

    Mode 3  Mode 3 

Node 
Return 
Period 
(years) 

Wind 
Speed 
(m/sec) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) 

𝑴𝑭 
(%) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 
(milli-g) 

𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
𝑴𝑭 
(%) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 
(milli-g) 

𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝐶1 

50 
(Str.) 47.5 

8.1 6.8 0.6 - 11.6 19.5 2.3 - 

𝐶2 8.1 6.8 0.6 - 9.3 40.9 3.8 2.4 

𝐶3 8.9 15.6 1.4 - 9.3 40.9 3.8 2.4 

𝐶4 8.9 15.6 1.4 - 11.6 19.5 2.3 - 

𝐶1 

10 
(Ser.) 34.0 

3.8 7.4 0.3 - 4.2 34.0 1.4 - 

𝐶2 3.8 7.4 0.3 - 3.7 57.1 2.1 1.3 

𝐶3 4.1 14.9 0.6 - 3.7 57.1 2.1 1.3 

𝐶4 4.1 14.9 0.6 - 4.2 34.0 1.4 - 

𝐶1 

1 
(Ser.) 29.0 

2.3 7.8 0.2 - 2.8 30.4 0.9 - 

𝐶2 2.3 7.8 0.2 - 2.4 50.5 1.2 0.8 

𝐶3 2.5 14.3 0.4 - 2.4 50.5 1.2 0.8 

𝐶4 2.5 14.3 0.4 - 2.8 30.4 0.9 - 

Table 4.15. Optimal Properties of TLDs Equipped with Inclined Damping Screens to Suppress the 
First Three Modes of Vibration over a Range of Mixed Return Period Wind Speeds 
(𝜇 = 2.0%, 𝜃𝑤 = 210∘) 

         Return Period 

         1 year 
serviceability 

10 years 
serviceability 

50 years 
strength 

𝜴𝒐𝒑𝒕 
Mode 

Number 𝒇𝒔 𝒇𝑻𝑳𝑫 𝑳 𝒃 𝒉 
Number 

of 
Tanks 

𝑺 𝑪𝒍 𝜽∘ 𝑪𝜽 𝜽∘ 𝑪𝜽 𝜽∘ 

0.985 

1 0.137 0.135 16.00 4.30 1.99 2 0.54 4.91 0 2.98 39.67 1.40 62.24 

2 6.180 0.159 12.00 3.40 1.58 4 0.60 7.62 0 4.92 37.11 1.69 67.67 

3 3.013 0.327 2.75 2.75 0.34 120 0.63 9.85 0 5.83 40.74 3.20 59.12 
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(a) 

 

(b) 

 

(c) 

Fig. 4.1. TLD Equipped with Inclined Screens: (a) Schematic of a TLD Showing the Location of 
Screens and Wave Probes; (b) Enlarged View of the Screen; and (c) Photo of TLD 
Equipped with Internal Inclined Damping Screens (from Cassolato 2007)  
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𝜃(°) 𝜃(°) 

Fig. 4.2. Normalized Various 𝐶𝜃 from Equation 4.22 for Two Different Screens (from Cassolato 
2007)  

 
Fig. 4.3. Coordinate System for Nonlinear Shallow Water System (from Tait et al. 2005b) 

 
Fig. 4.4. Discretization of the Tank Length with Respect to x (from Tait et al. 2005b) 

 
Fig. 4.5. Discretization and Modelling of the Screen (from Tait et al. 2005b) 
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Fig. 4.6. Energy Dissipation Frequency Response Curves for 𝐶𝑙 = 3.53 and 𝛬 = 0.005  

 
Fig. 4.7. Energy Dissipation Frequency Response Curves for 𝐶𝑙 = 3.53 and 𝛬 = 0.021 

 
Fig. 4.8. Non-Dimensional Energy Dissipation for Various Screen Angles (𝛬 = 0.010, 𝐶𝑙 = 5.69) 

 
Fig. 4.9. Constant Normalized Energy Dissipation through Inclined Screens (𝐶𝑙 = 5.69) 

0 

10 

20 

30 

40 

50 

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 

E'
w
 

β 

0   deg (Num) 
30 deg (Num) 
60 deg (Num) 
0   deg (Exp) 
30 deg (Exp) 
60 deg (Exp) 

0 

10 

20 

30 

40 

50 

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 

E'
w
 

β 

0   deg (Num) 
30 deg (Num) 
60 deg (Num) 
0   deg (Exp) 
30 deg (Exp) 
60 deg (Exp) 

0 

5 

10 

15 

20 

25 

30 

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 

E'
w
 

β 

0   deg (Num) 
15 deg (Num) 
30 deg (Num) 
45 deg (Num) 
60 deg (Num) 
0   deg (Exp) 
15 deg (Exp) 
30 deg (Exp) 
45 deg (Exp) 
60 deg (Exp) 

0 

5 

10 

15 

20 

25 

30 

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 

E'
w

 

β 

A/L=0.005, 0   deg (Num) 

A/L=0.008, 30 deg (Num) 

A/L=0.010, 45 deg (Num) 

A/L=0.016, 60 deg (Num) 

A/L=0.005, 0   deg (Exp) 

A/L=0.008, 30 deg (Exp) 

A/L=0.010, 45 deg (Exp) 

A/L=0.016, 60 deg (Exp) 



163 

 

 
Fig. 4.10. Time Histories of 𝜂′ for 𝜃 = 0∘, 30∘ and 60∘ at 𝛽 = 1.01 for 𝐶𝑙 = 3.53  

 
Fig. 4.11. Time Histories of 𝐹𝑤′  for 𝜃 = 0∘, 30∘ and 60∘ at 𝛽 = 1.01 for 𝐶𝑙 = 3.53  

 

  
                         (a)                             (b) 

Fig. 4.12. 3D Single-Story Structure Used in the Parametric Analysis (a) A Schematic Diagram, and 
(b) 3D View 
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Fig. 4.13. One Minute Portion of a 3.7-Hour Time History of Random Excitation Force 

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Fig. 4.14. Efficiency over Range of Structural Responses (a) 𝜇 = 1.0%, (b) 𝜇 = 2.5%, (c) 𝜇 = 3.5%, 
and (d) 𝜇 = 5.0% (𝑆 = 60%) 

 

 
Fig. 4.15. Predicted Annual Extreme Upper Level (500 m) Wind Speed for Various Return Periods 

(BLWT-SS3-2007) 
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(a) 

 

     

(b) 

     
Fig. 4.16. Floor Plan of the Indianapolis Building Showing the Statical System Consists of (a) Real 

Slabs and Shear Walls, and (b) Frame Elements and Slab Beams Installed with Lumped 
Masses (kg) 

 
(a) 𝑇 = 7.31 s 

 
(b) 𝑇 = 6.18 s 

 
(c) 𝑇 = 3.01 s 

 

  

Fig. 4.17. Mode Shapes of the Indianapolis Building for (a) Mode 1, (b) Mode 2, and (c) Mode 3 
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Fig. 4.18. Average Peak Hourly Resultant Accelerations with No-TLDs Installed (𝜃𝑤 = 210∘, 

𝑧 = 154.6 m) 

 
Fig. 4.19. Average Peak Hourly Resultant Accelerations with TLDs to Suppress the First 3 Modes 

Equipped with Inclined Damping Screens (𝜇 = 2.0%, 𝜃𝑤 = 210∘, 𝑧 = 154.6 m) 

(a) 
 

 

(b) 
 

 
Fig. 4.20. Percentage Response Reductions of the Average Peak Hourly Resultant Accelerations with 

TLDs to Suppress the First 3 Modes Equipped with (a) Inclined Damping Screens; and (b) 
Fixed (Single Angle) Damping Screens (𝜇 = 2.0%, 𝜃𝑤 = 210∘, 𝑧 = 154.6 m) 
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Fig. 4.21. Average Peak Hourly Resultant Accelerations for Mixed Return Periods with No-TLDs 

Installed (𝜃𝑤 = 210∘, 𝑧 = 154.6 m) 

 
Fig. 4.22. Average Peak Hourly Resultant Accelerations for Mixed Return Periods with TLDs to 

Suppress the First 3 Modes Equipped with Inclined Damping Screens (𝜇 = 2.0%, 𝜃𝑤 =
210∘, 𝑧 = 154.6 m) 

(a) 
 

 

(b) 
 

 
Fig. 4.23. Percentage Response Reductions of the Average Peak Hourly Resultant Accelerations for 

Mixed Return Periods with TLDs to Suppress the First 3 Modes Equipped with (a) 
Inclined Damping Screens; and (b) Fixed (Single Angle) Damping Screens (𝜇 = 2.0%, 
𝜃𝑤 = 210∘, 𝑧 = 154.6 m)  
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Chapter 5: Development and Validation of a Finite Element Structure Semi-Active 
Tuned Liquid Damper System Model 

5.1. Introduction 
Similar to a tuned mass damper (TMD) device, tuned liquid damper (TLD) and tuned 

liquid column damper (TLCD) devices can reduce resonant vibrations of a structure by 

modifying its frequency response function. In both systems (i.e. structure-TLD and structure-

TLCD), the secondary mass is liquid and the damping forces primarily result from the 

motion of liquid through energy dissipating device such as damping screens in a TLD 

(Kaneko and Ishikawa 1999; Tait et al. 2004a; Tait et al. 2004b; Tait et al. 2005a; Tait et al. 

2005b), or through an orifice in a TLCD (Kareem et al. 1999; Yalla et al. 2001). If the 

effective mass of liquid in a TLD or TLCD is equal to the mass of a TMD, then the same 

level of performance can be achieved if the system properties are properly selected. 

However, the primary difference from a TMD is the amplitude dependent (nonlinear) nature 

of a TLD/TLCD (Sun et al. 1995; Tait 2004). In particular, the damping introduced by 

energy dissipating mechanisms can be highly amplitude dependent (Tait 2008). Additionally, 

not all the fluid in a TLD/TLCD tank participates in the sloshing motion of the water. The 

non-participating portion of the water is essentially added to the primary mass of the 

structure, while only the participating mass in the TLD/TLCD only contributes to the 

dynamic vibration absorber (DVA) inertial forces (Yu et al. 1999; Tait 2004). 

Studies on passive tuned liquid column damper (TLCD) include a full scale installation of 

a bidirectional TLCD on a 67 m steel communications tower by Hitchcock et al. (1999). The 

device did not include an orifice and hence, it was not possible to control the damping in the 

TLCD. It was acknowledged that due to the absence of an orifice, the damping ratio of the 

TLCD was not expected to be optimal. It was also observed that TLCD did not perform 

optimally at all wind speeds. Similar observations were made concerning tuned liquid 

dampers (TLD), both involving scaled experiments and full-scale studies (Tamura et 

al.1996). 

Studies have also focused on improving the performance of the fully conventional 

passive TLCD. Haroun et al. (1994 and 1995) introduced the concept of a hybrid liquid 

column damper by actively controlling the orifice opening ratio. Yalla et al. (2001) 

introduced a semi-active (SA) TLCD that achieves variable damping by using a controllable 



170 

  

valve to adjust the orifice opening. The effectiveness of different control algorithms for the 

TLCD for structural control applications was also investigated. Yalla and Kareem (2003) 

examined the performance of a prototype semi-active TLCD. In addition, they verified a 

control strategy based on gain scheduling with experimental results. Kim and Adeli (2005a; 

2005b) proposed wind-induced motion control of 76-story benchmark building using hybrid 

damper-TLCD system. Wang et al. (2005) introduced a semi-active TLCD using magneto-

rheological fluid (MR-TLCD) for wind induced vibration mitigation of tall building 

structures. 

To the best of the author’s knowledge, no previous study has considered structural 

control of tall buildings using multiple semi-active TLDs. It would be beneficial to provide 

TLDs with variable damping that can be adjusted through a certain mechanism to achieve an 

optimal control performance over a wide range of loading conditions in a semi-active mode 

of control (i.e. different wind loading angles and return period wind speeds). The ability to 

control the inherent damping ratio of a TLD (𝜁𝑇𝐿𝐷) was first introduced, theoretically, by 

Cassolato and Tait (2005). The modification of 𝜁𝑇𝐿𝐷 by adjusting the screen angle, which 

alters the screen loss coefficient (𝐶𝜃), has also been experimentally investigated (Cassolato 

2007; Cassolato et al. 2011). Results from that work indicated that rotating the damping 

screen(s) inside the TLD to adjust the screen loss coefficient (𝐶𝜃) is a plausible method to 

maintain a constant 𝜁𝑇𝐿𝐷 value over a range of excitation amplitudes. 

Therefore, the semi-active TLD operational principle can be achieved by adjusting the 

damping screen(s) inclination angle (𝜃). The semi-active TLD is a consequence of the fact 

that the control of the damping screen inclination angle requires a small amount of input 

energy, as opposed to a fully-conventional passive TLD. However, the required amount of 

energy to change the damping screen inclination angle is expected to be small in comparison 

with the total energy dissipated by the damping screen(s). In contrast with the fully-active 

TMD control system, the semi-active TLD system has low power requirements, hardware 

simplicity, low construction cost, robustness and reliability. Therefore, the semi-active TLD 

is considered to be a promising alternative to both fully-passive TLD and fully-active TMD. 

The aim of this study is to develop a three dimensional finite element structure semi-

active TLD system model (3D-Structure-SA-TLD). Installing a TLD permits the suppression 

of a particular vibration mode of the structure, while the semi-active control strategy 
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171 

  

maintains the inherent damping ratio (𝜁𝑇𝐿𝐷) of the TLD at its optimal value (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡). The 

nonlinear TLD fluid model, updated and validated in Chapter 4, is used to simulate the 

damping screen(s) at different inclination angles (𝜃), while the three dimensional finite 

element structure-TLD system model, developed and validated in Chapter 2, is used to 

conduct the structural response analysis for a single-story structure equipped with a semi-

active TLD.  

Most semi-active (SA) devices (for e.g., MR and ER dampers, semi-active TLCDs, etc.) 

are intrinsically non-linear, which makes it challenging to develop control strategies to 

optimally exploit their unique features (Yalla et al. 2001). Some of the common examples of 

such algorithms are sliding mode control and non-linear 𝐻∞ strategies (Yoshida et al. 1998). 

Another innovative algorithm, which focuses on the shaping of the force-deformation loop in 

a variable damper, is reported by Kurino and Kobori (1998). Other researchers have used 

fuzzy control schemes to effectively implement semi-active control (Sun and Goto 1994; 

Symans and Kelly 1999). Kim and Adeli (2005a; 2005b) calculated TLCD head loss 

coefficients for the semi-active control system using the wavelet-based optimal control 

algorithm to control wind-induced motion of a 76-story benchmark building. Also, 

Djajakesukma et al. (2002) reported semi-active stiffness damper systems with various 

control laws, such as resetting control, switching control, linear-quadratic regulator (LQR) 

and modified LQR systems, while Chase et al. (2003; 2004) proposed a series of SA control 

laws based on optimal control design. Chey et al. (2010) used SA resetable devices to 

mitigate structural response due to seismic loads, where the reset criteria were determined to 

be the point of zero velocity at displacement peaks.  

From the above, it can be seen that different complex semi-active algorithms can be used 

to optimize the screen(s) inclination angle values and thus minimize an objective function 

such as structural displacement response, velocity response, or acceleration response values, 

which is not the goal of this study. The objective of this study is to employ a simple 

technique to achieve the same optimal passive TLD performance at different wind loading 

directions and return period wind speeds, which is not possible using conventional passive 

TLDs, due to the amplitude properties of the device (Tait 2004).  

In this chapter, a control strategy based on a gain scheduling scheme (see Figure 5.1c), 

which was introduced and verified experimentally by Yalla and Kareem (2003) (see Figures 
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5.1a and 5.1b), is utilized by controlling the inclination angle (𝜃) of the damping screen(s) 

and consequently the screen loss coefficient value(s) (𝐶𝜃). The gain scheduling control 

strategy is employed on a three dimensional single-story structure equipped with a semi-

active TLD in order to maintain the optimal damping value (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) based on a prescribed 

look-up table. Results are assessed with scaled experimental values for conventional passive 

TLDs. Finally, a performance comparison between the semi-active TLD control system and 

the conventional passive TLD control system is performed. 

5.2. Response/Efficiency of a Structure-TLD System Model  
The response of a structure equipped with a TLD is a function of three main parameters 

(Tait 2004; Tait et al. 2004a; Tait et al. 2007): 

i. The tuning ratio (𝛺), which influences the performance of the TLD, is defined by 

𝛺 =
𝑓𝑇𝐿𝐷
𝑓𝑠

 (5.1) 

where 𝑓𝑇𝐿𝐷 is the natural frequency of the TLD; and 𝑓s is the natural frequency of the 

3D-structure. For small response amplitudes, the natural frequency of the TLD (𝑓𝑇𝐿𝐷) 

is approximately equal to 𝑓w (Warnitchai and Pinkaew 1998; Ju et al. 2004; Tait et al. 

2004a). The fundamental sloshing frequency (𝑓𝑤) for the water inside a TLD can be 

estimated using the linear wave theory (Lamb 1932)  

𝑓𝑤 =
1

2𝜋
�𝜋𝑔
𝐿

tanh (
𝜋ℎ
𝐿

) (5.2) 

where 𝑔 is the gravitational acceleration and 𝐿 is the tank length in the direction of 

the fundamental sloshing mode of interest. 

ii. The mass ratio (𝜇), which is given by 

𝜇 =
𝜙2𝑚𝑇𝐿𝐷

𝑀∗  (5.3) 

where 𝑀∗ is the generalized mass of the primary structure corresponding to the 

vibration mode being suppressed; and ϕ is the normalized modal deflection value of 

the structure at the TLD location. The absorber mass (𝑚𝑇𝐿𝐷) for a TLD with damping 

screen(s) can be approximated using potential flow theory (i.e. 𝑚TLD ≈ 𝑚1). The 

value 𝑚1 is calculated using the following equation (Graham and Rodriguez 1952) 
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𝑚1 =
8 𝑡𝑎𝑛ℎ �𝜋ℎ𝐿 �

𝜋3ℎ
𝐿

𝑚𝑤 (5.4) 

where 𝑚w is the total mass of the contained water. 

iii. The inherent damping ratio (𝜁𝑇𝐿𝐷) of the sloshing fluid inside the tank. The damping 

related to the sloshing liquid inside the tank without the presence of additional energy 

dissipating devices, which can be estimated by Sun (1991) using the following 

equation 

𝜁𝑇𝐿𝐷 =
1

2𝜋�
𝑣𝑤
𝜋𝑓𝑤

�1 +
ℎ
𝑏
� (5.5) 

where 𝑣𝑤 is the kinematic viscosity of water. 

An optimum inherent damping ratio (𝜁𝑜𝑝𝑡) and optimum tuning ratio (𝛺𝑜𝑝𝑡) for a 

linear structure-tuned mass damper (TMD) as a function of the mass ratio (𝜇) can be 

obtained for the special case of zero structural damping (𝜁𝑠 = 0) (Warburton 1982). 

Due to the analogy between TMD and TLD devices, the 𝐻2 optimized value are used 

to calculate 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡 and 𝛺𝑜𝑝𝑡 

𝜁𝑇𝐿𝐷−𝑜𝑝𝑡 = �
𝜇(1 + 3𝜇/4)

4(1 + 𝜇)(1 + 𝜇/2)
 (5.6) 

and 

𝛺𝑜𝑝𝑡 =
�1 + 𝜇/2

1 + 𝜇
 (5.7) 

Furthermore, three important parameters, commonly used to evaluate the performance of 

a structure-TLD system, are the efficiency, effectiveness and robustness (Tait 2004; Tait et 

al. 2004a; Tait et al. 2007). These parameters are utilized in this section to study the 

performance of a 3D-Structure-TLD system model equipped with inclined damping screen(s)  

i. The effectiveness of a TMD can be expressed in terms of the amount of additional 

effective viscous damping, which is added to the primary structure (Vickery and 

Davenport 1970), denoted by the effective viscous damping ratio (𝜁𝑒𝑓𝑓). This can be 

accomplished by equating the area under the frequency response curve of the 

combined system to that of a single degree of freedom system (SDOF) with the same 

frequency and solving for the effective damping (𝜁𝑒𝑓𝑓) (McNamara 1977). 
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For a special case of zero structural damping (i.e. 𝜁𝑠 = 0), 𝜁𝑒𝑓𝑓 can be obtained using 

Gerges and Vickery (2003) formula as 

𝜁𝑒𝑓𝑓 =
𝛺𝜇𝜁𝑇𝐿𝐷

(1 + 𝜇)2𝛺4 + (1 + 𝜇)2𝛺2(2𝜁𝑇𝐿𝐷2 − 1) + 𝛺2𝜇 + 1
 (5.8) 

The optimal parameter for the effective damping (𝜁𝑒𝑓𝑓−𝑜𝑝𝑡) can be obtained by 

substituting Equations 5.6 and 5.7 into Equation 5.8, leading to 

𝜁𝑒𝑓𝑓−𝑜𝑝𝑡 =
1
4
�
𝜇(1 + 𝜇)
1 + 3𝜇/4

 (5.9) 

ii. The efficiency (𝜓) of a TLD is defined as the amount of effective damping the TLD 

provides, compared to an optimal TMD with the same equivalent mass, expressed as 

a percentage using 

𝜓 =
𝜁𝑒𝑓𝑓

𝜁𝑒𝑓𝑓−𝑜𝑝𝑡
. 100 (5.10) 

iii. The robustness is defined as the changes in the effectiveness with changes in the 

tuning ratio (𝛺), TLD damping ratio (𝜁𝑇𝐿𝐷), and the structural response amplitude. 

The robustness of a TLD is dependent on tuning ratio (𝛺) and the structural response 

amplitude as the TLD inherent damping ratio is found amplitude dependent (Sun et 

al. 1995; Reed et al. 1998a; Reed et al. 1998b;  Tait 2004; Tait et al. 2004a; Tait et al. 

2007). 

The TLD is modelled using a nonlinear fluid model; therefore, the amplitude dependent 

hardening characteristics are also considered, in contrast with the two linear models proposed 

by Cassolato (2007). In other words, the nonlinear simulation considers the tuning ratio (𝛺). 

Therefore, the robustness due to TLD mistuning is also considered. 

5.3. Modelling of a Three Dimensional Finite Element Structure Semi-Active 
Tuned Liquid Damper System (3D-Structure-SA-TLD) 

5.3.1 Gain Scheduling Method for Semi-Active TLD Mode of Control 
Yalla and Kareem (2003) describe the procedure of using a look-up table for a semi-

active mode of control. The look-up table permits the range of the inclination angles (𝜃) of 

the damping screens, resulting in 100% TLD efficiency (𝜓), to be identified at a selected 

mass ratio (𝜇). Gain scheduling is an open-loop control scheme with a nonlinear regulator 

whose parameters are modified as a function of the operating conditions in a pre-
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programmed way (Astrom and Wittenmark 1989). This kind of gain scheduled control is 

commonly used in aerospace and process control applications.  

In this chapter, a modified gain scheduling procedure is employed in a semi-active 

control scheme (see Figure 5.1c), described by Yalla and Kareem (2003) and shown in 

Figures 5.1a and 5.1b. In gain scheduling, the regulator parameters can be changed rapidly in 

response to process dynamics, the process dynamics is the combined 3D-Structure-SA-TLD 

system model employed to evaluate the acceleration of the building at the semi-active TLD 

location. The look-up table, which is constructed in the next section, is the gain scheduler, 

the regulator is the controllable inclination angle of the damping screens, the external 

environment is the applied external load on the building (i.e. wind or earthquake) and the 

pressure loss coefficient (𝐶𝜃) is the parameter being changed. Gain scheduling is an efficient 

control scheme for maintaining the TLD inherent damping ratio (𝜁𝑇𝐿𝐷) at its optimum value 

(𝜁𝑇𝐿𝐷−𝑜𝑝𝑡). As shown in Figure 5.1c, for a given structural acceleration response, the pressure 

loss coefficient (𝐶𝜃) is modified in accordance with the look-up table. The study assumes that 

a mechanism exists to adjust the damping screens to the desired symmetric screen inclination 

(𝜃). 

5.3.2 Look-Up Tables for Semi-Active TLD Mode of Control  
To feedback the semi-active TLD control algorithm (i.e. gain scheduling control scheme) 

with the optimal inclination angles (𝜃) that achieve the optimal TLD inherent damping ratios 

(𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) corresponding to structural response values in real time, construction of the look-

up table is required. Therefore, the section describes, in detail, the necessary steps required to 

the construct a look-up table.  

A 3D single-story structure (see Figure 5.2) whose generalized properties match that used 

in an experimental study by Tait (2004) and are listed in Table 5.1, is modelled and analyzed 

utilizing the 3D-Structure-TLD system model that simulates inclined damping screens, which 

was developed and validated in Chapter 4. As a result, the 3D single-story structure is excited 

by a number of random excitation force time history records, where the values of the 

excitation amplitude (𝐹𝑚𝑎𝑥) are varied to achieve different structural response values. A TLD 

length (𝐿) equal to 0.966 m is selected to match that used in the experimental work. The TLD 

water depth (ℎ) is selected to achieve the optimal tuning ratio (𝛺) according to the chosen 

mass ratio (𝜇). The TLD width (𝑏) is then selected to achieve the assumed mass ratio (𝜇). 
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The mass ratio values (𝜇) selected for the construction of the look-up tables are 1.0%, 2.5%, 

3.5% and 5.0%. Table 5.2 shows the properties of TLDs used in the construction of the look-

up tables. Subsequently, Equations 5.6 and 5.7 are used to calculate different values of the 

optimum TLD damping ratios (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) and the optimum tuning ratios (𝛺𝑜𝑝𝑡), respectively, 

according to the selected mass ratio (𝜇). 

Damping screens, having a solidity ratio (𝑆) equal to 60% and corresponding vertical loss 

coefficient (𝐶𝑙) equal to 8.17, are placed inside the tank at 0.4𝐿 and 0.6𝐿. For vertical 

damping screens (i.e. 𝜃 = 0.0∘) and in an iterative manner, the 3D single-story, structure 

shown in Figure 5.2, is analyzed employing the 3D-Structure-TLD system model under 

random excitation with incremental values of amplitude (𝐹𝑚𝑎𝑥) during each iteration. As a 

result, RMS structural acceleration response values (𝜎𝑥̈) are obtained from the dynamic 

analysis for each 𝐹𝑚𝑎𝑥 value. Consequently, average peak hourly structural acceleration 

response values (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) are calculated utilizing the resulting RMS structural acceleration 

response values (𝜎𝑥̈) and the modal peak factor value (𝑃𝐹) (Davenport 1964). The following 

equation is used to determine the average peak hourly structural acceleration response values 

(𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟 ) 

𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟 = 𝜎𝑥̈  𝑃𝐹   (5.11) 

A full-scale peak factor value (𝑃𝐹) of 3.75 is determined for the 3D single-story structure 

utilized in the 3D-Structure-TLD system model by (Davenport 1964) 

𝑃𝐹 = �2ln (𝑇𝑑
2𝜋
𝜔𝑠−𝑥) + 0.577

�2ln (𝑇𝑑2𝜋𝜔𝑠−𝑥)
   (5.12) 

where 𝜔𝑠−𝑥 is the structure’s natural frequency in the 𝑥-direction, which is the direction of 

the applied external random excitation, and 𝑇𝑑 is the duration time in seconds used to 

calculate the average peak factor value over the desired time, which is an hour in this study.  

The selected damping screen characteristics are found to provide 100% TLD efficiency 

(𝜓) according to the mass ratio values (𝜇) selected for the construction of the look-up tables 

of 1.0%, 2.5%, 3.5% and 5.0% with corresponding optimum average peak hourly structural 

acceleration response values of 2.65 milli-g, 6.50 milli-g, 9.00 milli-g and 12.50 milli-g, 

respectively, at vertical inclination angle (i.e. 𝜃 = 0.0∘). These structural response values 
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represent the target response values of the 3D-Structure-TLD system model (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) at 

different mass ratio values (𝜇) and can be obtained from Figures 5.3 to 5.6, respectively. 

5.3.2.1 Preliminary TLD Design Procedure to Estimate the Required Inclination 
Angle of the Damping Screens for 100% TLD Efficiency 

The preliminary TLD design procedure (Tait 2008), which was discussed in detail and 

expanded for multiple TLDs in Chapter 3, is employed in this section to determine the 

inclined damping screen properties, i.e. the inclined screen loss coefficient values (𝐶𝜃) 

required to achieve 100% TLD efficiency (𝜓) at different selected target peak hourly 

structural acceleration response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) and mass ratio values (𝜇). Consequently, the 

required inclination angles for the damping screens (𝜃) can be determined using Equation 

5.13 (Cassolato 2007), which was validated in Chapter 4 with experimental values from 

Cassolato et al. (2011) 

𝐶𝜃 = 𝐶𝑙 (0.46𝜃3 − 1.05𝜃2 − 0.06𝜃 + 1) (5.13) 

First, the accuracy of the preliminary TLD design procedure is checked by determining 

the required vertical screen loss coefficient values (𝐶𝑙) that achieve the target acceleration 

response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) at 100% TLD efficiency (𝜓) obtained previously from Figures 5.3 

to 5.6 for different mass ratios (𝜇). Excellent agreement is obtained for the predicted vertical 

loss coefficient values (𝐶𝑙) and the actual value utilized in the numerical analysis (i.e. 3D-

Structure-TLD) that equal to 8.17. By utilizing the preliminary TLD design procedure (Tait 

2008), the calculated vertical 𝐶𝑙 value of 8.21 is determined in Table 5.3 at a mass ratio value 

(𝜇) equal to 1.0%. The TLD design procedure is repeated in Tables C1-C3 (Appendix-C) to 

determine vertical 𝐶𝑙 values of 8.27, 8.31 and 8.35 at mass ratio values (𝜇) of 2.5%, 3.5% and 

5.0%, respectively. 

As a result, the preliminary TLD design procedure is used to determine the required 

inclined damping screen properties (𝐶𝜃) that achieve different target structural acceleration 

response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) at 100% TLD efficiency (𝜓) according to selected mass ratio 

values (𝜇) and considering the practical limit of screen rotation (i.e. 𝜃 ≤ 65.0∘). Table 5.4 

shows different inclined damping screen loss coefficient values (𝐶𝜃) and their corresponding 

inclination angle values (𝜃), resulting from the preliminary TLD design procedure according 

to selected target peak hourly structural acceleration response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡).  
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Therefore, in the next section, the resulting 𝐶𝜃 values are utilized in the 3D-Structure-

TLD system model to analyze the scaled 3D single-story structure shown in Figure 5.2. The 

single-story structure is subjected to a random excitation time history with incremental 

amplitude values (𝐹𝑚𝑎𝑥) to confirm the predicted values of the inclined damping screens (𝜃) 

and to produce the envelope of the improved TLD efficiency (𝜓) with their corresponding 

target structural acceleration response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) in the practical range of damping 

screen inclination angles. 

5.3.2.2 Construction of 100% TLD Efficiency Envelope Curves  
The dynamic analysis proceeds in an iterative manner resulting in increasing values of the 

average peak hourly structural acceleration response (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) utilizing the inclined screen 

loss coefficient values (𝐶𝜃) obtained from Table 5.4 for the selected mass ratio values (𝜇). 

Results are shown in Figures 5.3 to 5.6 for mass ratio values (𝜇) of 1.0%, 2.5%, 3.5% and 

5.0%, respectively. As the maximum allowable acceleration set by the wind tunnel criteria 

(Isyumov 1994) for wind-induced acceleration is 30.0 milli-g for the office buildings, the 

incremental iterations are stopped when the average peak hourly structural acceleration 

response values (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) exceeded 40.0 milli-g. 

As can be observed from Figures 5.3 to 5.6, normal vertical screens (i.e. 𝜃 = 0.0∘) can be 

designed to operate optimally for only one particular structural acceleration response 

value, 𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟 (i.e. 𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟 = 𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡). Throughout different screen inclination angles (𝜃), 

an envelope is drawn capturing 100% TLD efficiency (𝜓) over a range of structural 

acceleration responses as shown in each figure. The general trends of the results are found to 

be in good agreement with those obtained by Cassolato (2007) from his study on a theoretical 

single degree of freedom system model (SDOF) using a linear TLD numerical model. The 

envelope curves show that adjustable screens are able to maintain 100% TLD efficiency (𝜓) 

over a range of structural acceleration responses (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟), in contrast with the normal 

vertical screens. 

For a mass ratio value (𝜇) of 1.0%, Figure 5.3 shows that an extension of 100% 

efficiency over the average peak hourly structural acceleration response (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) is 

achieved utilizing three different values of the angled screens (𝜃). Therefore, for 100% TLD 

efficiency (𝜓), target structural response values (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) are found to be 4.5 milli-g, 6.5 
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milli-g and 9.0 milli-g corresponding to screen angle values (𝜃) equal to 41.0∘, 53.5∘, and 

61.5∘, respectively. Figure 5.4 shows that for 𝜇 = 2.5%, the angled screens, which are 

optimally set to different inclination angles utilizing results from the preliminary TLD design 

procedure mentioned previously, can cover a range of peak structural acceleration response 

values (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) in the range between 6.5 milli-g at 𝜃 = 0.0∘ and 20.0 milli-g at 𝜃 = 59.0∘ 

for 100% TLD efficiency (𝜓). Similar trends can be observed in Figures 5.5 and 5.6 for mass 

ratio values (𝜇) of 3.5 and 5.0%, respectively. 

5.3.2.3 Construction and Discussion of the Look-Up Tables 
Figure 5.7 shows a summary for the data presented in Figures 5.3 to 5.6 and represents 

the look-up table for various mass ratio values (𝜇) of 1.0%, 2.5%, 3.5% and 5.0%. The figure 

shows the extent of screen rotation (𝜃) at various mass ratio values (𝜇) of 1.0%, 2.5%, 3.5% 

and 5.0% that maintains 100% TLD efficiency (𝜓). As the mass ratio value (𝜇) increases, a 

greater level of the TLD inherent damping ratio (𝜁𝑇𝐿𝐷) is required. Therefore, the start values 

of the structural response acceleration (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟), which provide 100% TLD efficiency (𝜓) 

are found higher than their counterpart values for lower mass ratio values (𝜇). For example, 

at the highest mass ratio value (𝜇) of 5.0% and at target structural acceleration response value 

(𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡) equal to 8.0 milli-g, the damping screens can not provide sufficient TLD inherent 

damping ratio (𝜁𝑇𝐿𝐷), even in their upright position (i.e. 𝜃 = 0.0∘). Figure 5.7 shows that a 

mass ratio value (𝜇) of 3.5% at a vertical screen position or at a mass ratio value (𝜇) of 2.5% 

at an inclination angle of screens equal to 𝜃 = 30.0∘ can provide the required TLD inherent 

damping ratio (𝜁𝑇𝐿𝐷) to operate at 100% efficiency (𝜓). This emphasizes the importance of 

constructing the look-up table, which permits the ability of a selected mass ratio value (𝜇) to 

achieve 100% TLD efficiency (𝜓) at lower structural response values. Figure 5.7 also shows 

the largest angle (𝜃) needed to maintain the TLD inherent damping ratio (𝜁𝑇𝐿𝐷) at its 

optimum value (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) throughout different structural acceleration response values 

(𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) for the selected mass ratios (𝜇). 

Reduced TLD efficiency (𝜓) as a function of structural response acceleration is found to 

be less noticeable for high mass ratio values (𝜇). For a mass ratio value (𝜇) of 2.5%, 100% 

TLD efficiency (𝜓) is achieved in the range of acceleration response values between 6.5 

milli-g and 20.0 milli-g that corresponds to a range of screen angles between 0∘ and 59.0∘, 
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respectively (see Figure 5.4). Also, it can be observed that at high structural response values 

ranging between 20.0 milli-g to 40.0 milli-g, the TLD inherent damping ratio (𝜁𝑇𝐿𝐷) exceeds 

its optimal (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡), since 𝜁𝑇𝐿𝐷 is amplitude dependent due to the velocity squared losses 

introduced by the damping screens, resulting in a reduction in the effectiveness of the TLD 

(Tait et al. 2008). Similarly, if the response acceleration is less than the target level, 𝜁𝑇𝐿𝐷 is 

found to be less than the optimal value 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡 and the effectiveness of the TLD decreases. 

This is observed for the envelope curve for peak structural acceleration response values 

(𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) less than 6.5 milli-g (i.e. 𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟 < 𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚𝑖𝑛). 

The above findings are found to be in agreement with results obtained from the 

performance charts developed by Tait et al. (2008) for a linear structure-TMD system (see 

Figure 5.8). The effectiveness of a linear TMD can be expressed in terms of the amount of 

effective viscous damping 𝜁𝑒𝑓𝑓 (see Equation 5.8) that it adds to the primary structure 

(Vickery and Davenport 1970). The value of 𝜁𝑒𝑓𝑓 is determined by equating the variance of 

the response of a structure-TLD or structure-TMD system (see Figures 5.9a and 5.9b) to that 

of a single degree of freedom (SDOF) structure with an equivalent viscous damper (see 

Figure 5.9c). A performance diagram for a linear TMD provides a measure of 𝜁𝑒𝑓𝑓 (see 

Figure 5.8a) and the corresponding displacement ratio of RMS relative motion between the 

absorber and the primary structure (𝑥𝑟) (see Figure 5.8b) as a function of the tuning ratio (𝛺) 

and the absorber damping ratio (𝜁𝐴) for a specified value of the mass ratio (𝜇). In case of a 

TLD, the relative motion corresponds to the free surface motion. For the above optimal 

parameters, the resulting optimal effective damping (𝜁𝑒𝑓𝑓−𝑜𝑝𝑡) and the corresponding 

displacement ratio (𝑥𝑟−𝑜𝑝𝑡) between the absorber and the primary structure (assuming 𝜁𝑠 =

0) are given by Equations 5.9 and 5.14, respectively 

𝑥𝑟−𝑜𝑝𝑡 =
1 + 𝜇

�2𝜇 + 3𝜇2
2

 (5.14) 

It can be observed from Figure 5.8a that at the optimal tuning ratio (𝛺𝑜𝑝𝑡), the reduction 

in system efficiency is significantly less for an over-damped TLD (i.e. 𝜁𝑇𝐿𝐷 > 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) 

compared to an under-damped TLD (i.e. 𝜁𝑇𝐿𝐷 < 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡), which agrees with results 

obtained in Figure 5.4. Fortunately, the performance of a TLD is less critical at accelerations 

that are below serviceability limit requirements. In addition, the over-damped system is 
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found to better control the fluid response height as smaller 𝑥𝑟 values are obtained at 𝜁𝑇𝐿𝐷 >

𝜁𝑇𝐿𝐷−𝑜𝑝𝑡 compared to an under-damped system (see Figure 5.8b). 

5.3.3 Averaging Time (𝑨𝑻), Updating Time (𝑼𝑻) and Initial Time (𝑰𝑻) 
Parameters for a 3D-Structure-SA-TLD System Model and Sensitivity 
Analysis of 𝑨𝑻 and 𝑼𝑻 

To implement the gain scheduling scheme in a 3D-Structure-TLD system model, two 

parameters must be defined and added to the semi-active TLD system model (3D-Structure-

SA-TLD), in addition to the fitted equation of the look-up table. These two parameters are 

the averaging time (𝐴𝑇) and the updating time (𝑈𝑇). The averaging time (𝐴𝑇) is the time 

used to calculate the acceleration root-mean-square (RMS) response value at the TLD 

location and placement direction (𝜎𝑥̈𝐴𝑇 (𝑖)) over a time history prior to the time step (𝑖), 

selected to update the screen loss coefficient value (𝐶𝜃𝐴𝑇 (𝑖)). As a result, the average peak 

hourly structural acceleration response value (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟𝐴𝑇 (𝑖)) is evaluated using Equation 

5.11. The optimal inclination angle value of the damping screen (𝜃𝐴𝑇 (𝑖)) is then evaluated 

using 𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟𝐴𝑇 (𝑖) value and the look-up table. Consequently, the loss coefficient value 

(𝐶𝜃𝐴𝑇 (𝑖)) is evaluated using Equation 5.13. The numerical simulation proceeds with the 

updated 𝐶𝜃𝐴𝑇 (𝑖) value over a period of time equal to the updating time (𝑈𝑇). Therefore, at the 

end of the updating time (𝑈𝑇), a new 𝐶𝜃𝐴𝑇 (𝑖+𝑈𝑇) value is determined and used as the 

feedback value in the semi-active simulation process over the next 𝑈𝑇 period utilizing the 

updated value of 𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟𝐴𝑇 (𝑖+𝑈𝑇). 

The initial time (𝐼𝑇) is an extra time parameter that controls the start time of the semi-

active control mode. The numerical analysis initially operates under the passive control mode 

(i.e. conventional passive TLDs with vertical damping screens) during the selected initial 

time period value (𝐼𝑇). An initial time value (𝐼𝑇) of 15 minutes (full-scale) is selected as it is 

considered a sufficient period of time for the activation of the semi-active control system. In 

fact, semi-active control systems are usually designed to act as fully passive systems below a 

predetermined structural response threshold. Therefore, the 𝐼𝑇 value allows the simulation of 

the transition from a passive mode of control to a semi-active mode of control. Hence, all 

time history figures in this chapter show the simulation results for a scaled time ≥ 15 

minutes. 
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With the aim of selecting the first two parameter values, 𝐴𝑇 and 𝑈𝑇, a sensitivity study is 

performed utilizing the 3D single-story structure shown in Figure 5.2 equipped with a TLD 

with a mass ratio value (𝜇) equal to 3.5%. An updating time value (𝑈𝑇) is selected to 

be 1.0 𝑇, where 𝑇 is the natural period of the structure. Different values of the averaging time 

period values (𝐴𝑇) ranging between 5 and 60 minutes (full-scale) are selected for the 

sensitivity analysis. The 3D single-story structure is subjected to a random excitation S7, 

listed in Table 5.5 (Section 5.4 provides additional details on the applied forces), and 

analyzed employing the 3D-Structure-SA-TLD system model. The random excitation force 

S7 produces an uncontrolled RMS structural response value (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙) equal to 40.0 milli-g. 

Figure 5.10 shows the time history of RMS acceleration response values (𝜎𝑥̈) of the 3D 

single-story structure calculated every updating time (𝑈𝑇) equal 1.0 𝑇 for various averaging 

time values (𝐴𝑇) during the entire time history. For a given averaging time value (𝐴𝑇), the 

resulting 𝜎𝑥̈𝐴𝑇 (𝑖) value is used to evaluate the screen loss coefficient value (𝐶𝜃𝐴𝑇 (𝑖)) to 

feedback to the semi-active control strategy over the time history 𝑖 + 𝑈𝑇 (see Figure 5.11).  

It can be observed from Figure 5.10 that for small 𝐴𝑇 values (i.e. 𝐴𝑇 ≤ 10 minutes), 

higher fluctuations in RMS structural acceleration values (𝜎𝑥̈) occur compared to 𝜎𝑥̈ values 

that converge rapidly to a near constant value utilizing high 𝐴𝑇 values. It can also be 

observed that all selected 𝐴𝑇 values have achieved lower RMS structural response values 

than the target RMS response value (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡) of 4.5 milli-g predicted for a passive TLD 

control system with the same tank properties and mass ratio value used in the semi-active 

control system. 

Figure 5.11 shows that averaging time values, 𝐴𝑇 ≥ 15 minutes result in reduced 

fluctuation of 𝐶𝜃 values that lead to a suitable rotation of the damping screens. It can be 

observed that the best performance of the semi-active TLD system model is achieved for an 

averaging time value (𝐴𝑇) of 5 minutes (see Figure 5.10), however this requires higher 

fluctuating damping screen(s) motions (see Figure 5.11). 

By selecting an averaging time value (𝐴𝑇) equal to 60 minutes, good performance is 

achieved with minor adjustments to the damping screen inclination angle (see Figure 5.11). 

By selecting a 60-minute averaging time value (𝐴𝑇), the rotational motion of the damping 

screens will not alter the overall flow pattern inside the tank. Also, a long damping screen 

system life cycle is expected as the damping screens are subjected to reduced wear and tear 
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resulting in low maintenance costs over its operating life. Moreover, a small actuator 

capacity and power supply are needed to achieve the required rotational motion of the 

damping screens in real time. Finally, only basic monitoring and control system components 

are required compared to more expensive and highly sophisticated control components 

needed in a fully-active control system. 

A second sensitivity study is performed to investigate the updating time value (𝑈𝑇). 

Different 𝑈𝑇 values ranging between 0.25 𝑇 and 32.00 𝑇 (i.e. 0.5 < 𝑈𝑇 < 60.0 seconds) are 

selected to conduct the sensitivity analysis with the averaging time value (𝐴𝑇) held constant 

at 60 minutes. Figures 5.12 and 5.13 show that constant acceleration (𝜎𝑥̈) and damping 

screen loss coefficient (𝐶𝜃) values are obtained. This can be attributed to the nature of the 

wind excitation and the selected value of 𝐴𝑇. In an earthquake excitation scenario, where the 

time scale of the applied load is in a scale of seconds compared to a scale of hours, a small 

𝑈𝑇 value would be required to capture the instantaneous structural response variation 

allowing the TLDs to counteract the applied load more efficiently. Therefore, the updating 

time value (𝑈𝑇) is considered less sensitive for the wind loading case and the selected 𝐴𝑇 

value. As such, a 𝑈𝑇 value equal to 1.0 𝑇 is selected. 

5.4. Influence of Excitation Amplitude on the Response of a 3D-Structure-SA-
TLD System Model 

The 3D-Structure-SA-TLD system model is employed to analyze a 3D single-story 

structure equipped with a SA-TLD with a mass ratio value (𝜇) of 3.5% (see Table 5.2). The 

system is subjected to random excitation forces scaled from S1 to S13 (see Table 5.5) 

utilizing an averaging time value (𝐴𝑇) equal to 60 minutes and an updating time (𝑈𝑇) equal 

to 1.0 𝑇.  

The look-up table presented in Figure 5.7 shows that for a mass ratio value (𝜇) of 3.5%, 

the minimum average peak hourly structural acceleration response value (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚𝑖𝑛) that 

achieves 100% TLD efficiency is 9.0 milli-g (i.e. 𝜎𝑥̈ ≈ 2.4 milli-g), which corresponds to a 

vertical screen position (i.e. 𝜃 = 0.0∘). Applying random forces S1 to S3, listed in Table 5.5, 

results in controlled RMS structural acceleration response values (𝜎𝑥̈) lower than 2.4 milli-g, 

as shown in Figure 5.14. Consequently, the semi-active TLD algorithm sets the screen loss 

coefficient value (𝐶𝜃) to the maximum value of 8.17 (𝐶𝑙−𝑚𝑎𝑥) as shown in Figure 5.15. 
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Applying the scaled random excitations S4-S10 results in different screen angles and 

corresponding damping screen loss coefficient values (𝐶𝜃) in order to achieve the optimal 

TLD damping ratio (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡). In addition, a slight change of the screen loss coefficient 

value (𝐶𝜃) is found to occur every updating time (𝑈𝑇). The change of 𝐶𝜃, in real time, is a 

direct results of changing the screen inclination angle value (𝜃) (see Equation 5.13). In 

contrast, applying random excitation forces S11-S13 results in maximum allowable rotation 

of the damping screens (𝐶𝜃−𝑚𝑎𝑥) and corresponding minimum damping screen loss 

coefficient value (𝐶𝑙−𝑚𝑖𝑛) being selected by the semi-active TLD control algorithm.  

It must be recognized that a trade off exists between the maximum damping screen loss 

coefficient value (𝐶𝑙−𝑚𝑎𝑥), which is related to the damping screen solidity ratio (𝑆) at the 

vertical position, and the maximum structural response value (𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚𝑎𝑥) that achieves 

100% TLD efficiency (𝜓). Therefore, it is recommended that the vertical damping screen 

loss coefficient value (𝐶𝑙−𝑚𝑎𝑥) be able to achieve 100% TLD efficiency (𝜓) for an average 

peak hourly structural acceleration response value, 𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚𝑖𝑛 ≤ 10.0 milli-g, for example, 

for residential buildings (Isyumov 1994). As a result, an over-damped system at response 

amplitudes higher than 𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚𝑎𝑥, utilizing the maximum allowable inclination angle 

(𝜃𝑚𝑎𝑥) of the damping screens will occur. As mentioned above in Section 5.3.2.3, an over-

damped system is more robust than an under-damped system (see Figure 5.8a). In addition, 

the over-damped system is found to better control the fluid response height at large excitation 

amplitudes (see Figure 5.8b). 

5.5. Performance Semi-Active TLD Control System versus the Passive TLD 
Control System 

In this a section, a comparison between the semi-active TLD control system and the 

passive TLD control system is made, when both systems are subjected to a particular scaled 

random excitation force (S7 listed in Table 5.5). The comparison investigates the additional 

reduction achieved, in terms of RMS (𝜎𝑥̈) and average peak hourly (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) structural 

acceleration response values, utilizing the semi-active TLD control system. 

Figure 5.16 shows that for a particular applied random force (S7), the semi-active TLD 

control system provides lower RMS structural acceleration response values ranging between 

12.7% at 𝐴𝑇 = 5 minutes to 5.9% at 𝐴𝑇 = 60 minutes compared to the passive TLD control 

system. In contrast, negligible difference in the hourly peak structural acceleration response 
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values is observed in Figure 5.17 between the passive and semi-active TLD control systems. 

In addition, the calculated average hourly peak factor values (𝑃𝐹) 

𝑃𝐹 =
1
𝑛
�

𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟𝑖
𝜎𝑥̈𝑖

𝑛

𝑖=1

 (5.15) 

where n is the number of hours are found to be in good agreement with that obtained using 

Equation 5.12 (see Figure 5.18)  

The negligible reduction in the peak hourly structural acceleration response values is 

attributed to the selected values of the semi-active control technique parameters, which are 

utilized in the numerical simulations. The selected parameter values used in the semi-active 

control technique, which consider suitable motions of the damping screen, monitoring and 

computational system requirements, prevent the SA-TLD from responding efficiently to 

instantaneous changes in structural accelerations. In order to provide an instantaneous 

feedback at every time step (𝛥𝑡), 𝐴𝑇 and 𝑈𝑇 are set equal to 𝛥𝑡, where 𝛥𝑡 = 0.019 seconds 

(full-scale) in order to calculate optimal angle values (𝜃) in response to instantaneous 

changes in structural accelerations. It can be observed from Figure 5.19 that extremely high 

fluctuating screen motions occur compared to moderate and low fluctuating motions at 

𝐴𝑇 = 5 minutes and 𝐴𝑇 = 60 minutes, respectively.  

RMS and peak hourly structural acceleration response values are presented in Figures 

5.20 and 5.21 for the instantaneous (𝐴𝑇 = 𝛥𝑡), 𝐴𝑇 = 5 minutes, 𝐴𝑇 = 60 minutes and the 

passive systems, respectively. While percentage reduction values of 5.9% and 12.7% in the 

RMS structural acceleration response are achieved employing the semi-active TLD control 

system utilizing 𝐴𝑇 values of 60 and 5 minutes, respectively, compared to the passive TLD 

control system, a 17.6% percentage response reduction is achieved utilizing the instantaneous 

semi-active TLD control strategy (see Figure 5.20).  

An average peak hourly structural acceleration response value (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) of 13.2 milli-g 

is obtained using the instantaneous semi-active TLD control strategy compared to values of 

15.7 milli-g and 15.9 milli-g obtained utilizing the semi-active (𝐴𝑇 = 60 minutes; 𝑈𝑇 =

1.0 𝑇) and the passive TLD control systems, respectively (see Figure 5.21). Finally, the 

evaluated average peak factor values (𝑃𝐹), using Equation 5.15, for the instantaneous semi-

active TLD control strategy (𝐴𝑇 = 𝑈𝑇 = 𝛥𝑇), semi-active TLD control strategy (𝐴𝑇 = 60 
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minutes; 𝑈𝑇 = 1.0 𝑇), and the passive TLD control system are found to be in good 

agreement with the value predicted by Davenport (1964), using Equation 5.12, with a 

minimum accuracy of 97% (see Figure 5.22). 

5.6. Influence of Semi-Active Control on Fluid Response 

Figure 5.23 shows that the normalized peak hourly fluid response ratio values (𝜂/ℎ where 

𝜂 is the free surface height and ℎ is the water height inside the TLD) at the TLD end wall are 

higher for the semi-active control strategy. It can be observed that utilizing the averaging 

time values (𝐴𝑇) of 5 minutes and 60 minutes lead to similar peak hourly fluid response ratio 

values, while utilizing the instantaneous averaging time value (𝐴𝑇 = 𝛥𝑇) leads to values that 

are nearly double the passive values. 

Figures 5.24 and 5.25 show the peak hourly fluid response ratio values using random 

forces S4, S7 and S10 excitation amplitudes utilizing the passive and semi-active control 

strategies, respectively. An averaging time (𝐴𝑇) and updating time (𝑈𝑇) values of 60 minutes 

and 1.0 𝑇, respectively, are used for the semi-active control strategy. By comparing Figures 

5.24 and 5.25, it can be observed that using the semi-active control strategy leads to higher 

peak hourly fluid response ratio values with a maximum ratio value of 0.57 compared to the 

passive control counterpart value of 0.26 for all excitation amplitudes. Although higher peak 

hourly fluid response ratio values are obtained using the semi-active control strategy, they 

remain within the recommended free board allowance value in the range of 1.5 ℎ to 2.0 ℎ 

(Tait 2004). 

5.7. Conclusions 
In this study, a control strategy based on gain scheduling, which was previously 

employed and verified experimentally by Yalla and Kareem (2003), has been utilized by 

actively controlling the damping screen inclination angle (𝜃) and consequently the 

corresponding loss coefficient (𝐶𝜃). Gain scheduling is an efficient control scheme to 

maintain the inherent damping ratios of the TLDs (𝜁𝑇𝐿𝐷) at their optimal values (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡). 

For a given structural response acceleration, the pressure loss coefficient (𝐶𝜃) has been 

modified in accordance with the look-up table. 

The nonlinear fluid model of a TLD equipped with damping screens, which was updated 

and validated with experimental results to simulate inclined damping screens in Chapter 4, 
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has been used in this chapter to determine the resulting TLD base shear force and fluid 

response amplitude in real time. The robustness of a structure-TLD system model due to 

mistuning has been addressed in all simulations conducted in this chapter due to the ability of 

the updated nonlinear TLD fluid model to capture the resulting shift in the tuning ratio 

(hardening) from its optimal value at high response amplitudes and high screen inclination 

values. 

A 3D single-story structure has been modelled and analyzed utilizing the 3D-Structure-

SA-TLD system model. As a result, the TLD inherent damping ratio (𝜁𝑇𝐿𝐷) maintained its 

optimal damping value (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) based on a prescribed look-up table and results have been 

assessed under scaled random excitation force time histories. 

The necessary steps toward the construction of the look-up table have been described, in 

detail, and practical mass ratio values (𝜇) have been selected to construct look-up tables, 

which fall within a typical range 𝜇 used in most TMD/TLD applications for tall structures. 

Therefore, the feedback process of the semi-active TLD control strategy with the optimal 

inclination values of the damping screens (𝜃), which result in the optimal TLD inherent 

damping ratio (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) corresponding to structural response values, has been achieved in 

real time. 

Three parameters have been defined and were added in the semi-active TLD system 

model (3D-Structure-SA-TLD), in addition to the fitted equation of the look-up table in order 

to implement the gain scheduling scheme in a 3D-Structure-TLD system model. These 

parameters are, the averaging time (𝐴𝑇), the updating time (𝑈𝑇) and the initial time (𝐼𝑇). 

A sensitivity study has been performed utilizing the 3D single-story structure equipped 

with a TLD with the aim of selecting the first two parameter values (𝐴𝑇; 𝑈𝑇). The following 

important findings have been drawn:  

1. The semi-active TLD control system with practical control parameters (𝐴𝑇; 𝑈𝑇) 

exceeds the efficiency (𝜓) of the passive TLD control system for additional reduction 

of the RMS structural acceleration response value (𝜎𝑥̈) of up to 12.7%. 

2. The semi-active TLD control system with practical control parameters (𝐴𝑇;𝑈𝑇) 

matches the efficiency (𝜓) of the passive TLD control system in reducing the average 

peak hourly structural acceleration response values (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟).  
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3. The semi-active TLD control system with instantaneous control parameters (𝐴𝑇 =

𝑈𝑇 = 𝛥𝑡) exceeds the efficiency (𝜓) of the passive TLD control system for additional 

reduction of the RMS (𝜎𝑥̈) and the average peak hourly (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) structural 

acceleration response values of 17.6% and 16.9%, respectively.  

4. As for overall performance, the semi-active TLD control system provides the 

aforementioned three findings over a wide range of applied excitations (i.e. wide 

range of structural response amplitudes) compared to the passive TLD control system.  

5. Although the fluid response amplitude for a SA-TLD was found to exceed that of a 

passive TLD, it did not exceed free board limits recommended for passive TLDs. 

As a result, 𝐴𝑇 equal to 60 minutes, which is quite achievable with a simple controller, 

has been selected for the rest of the study to provide the lowest variation in the loss 

coefficient values (𝐶𝜃) and consequently, the damping screen inclination angle values (𝜃). 

This choice has led to practical and economical benefits such as: 

i. Reasonable rotation of the damping screens inside the TLD during excitation events. 

ii. A long life cycle of the damping screen system is expected as the damping screens 

are subjected to reduced wear and tear, which should lower the maintenance costs 

over the SA-TLD operating life. 

iii. A small actuator capacity and low power requirements are needed to rotate the 

damping screens in real time. 

iv. Only basic monitoring and control components are required for the SA-TLD 

compared to expensive and sophisticated control components needed in a fully-active 

control system. 
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Table 5.1. Building Properties 

   Generalized 
 Model 

Frame Element 
 Model 

Excitation Type 𝒇𝒔 
(Hz) 

𝑴∗ 
(kg) 

𝑲∗ 
(N/m) 

𝑪∗ 
(kg/s) 

𝜻𝒔 
(%) 

𝑳𝒄 
(m) 

𝑬𝑰𝒄 
(N.m2) 

Random 0.558 4040 49,656 17.00 0.06 3.0 446,904 

 

Table 5.2. TLD Properties 

Excitation 
Type 

𝝁 
(%) 

𝜴𝒐𝒑𝒕 
(%) 

𝒇𝑻𝑳𝑫−𝒐𝒑𝒕 
(Hz) 

𝒉 
(m) 

𝑳 
(m) 

𝒃 
(m) 

𝒎𝑻𝑳𝑫 
(kg) 

𝒎𝒘 
(kg) 

𝑺 
(%) 

𝑪𝒍 

Random 

1.0 99.3 0.554 0.123 0.966 0.442 40.4 52.5 

60 8.17 
2.5 98.2 0.547 0.120 0.966 1.129 101.0 130.9 

3.5 97.5 0.543 0.118 0.966 1.605 141.4 182.9 

5.0 96.4 0.538 0.115 0.966 2.342 260.8 202.0 
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Table 5.3. Preliminary TLD Design for Vertical Damping Screens (𝜇 =1.0%) 

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  13.57 milli-g 
Structure cyclic frequency, 𝑓𝑠−𝑥  0.56 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   1.79 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   3.51 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(181𝜔𝑠−𝑥) + 0.577

�2 ln(181𝜔𝑠−𝑥)
  3.75  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑃𝐹𝑥

  3.62 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜔𝑠−𝑥
2

𝑔
1000

  2.89 mm 
Assumed mass ratio, 𝜇  0.010 (1.00%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.025 (2.50%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.049 (4.98%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.992 (99.2%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.554 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  7.115  

Structure damping ratio, 𝜁𝑠  0.0006 (0.06%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.0255 (2.55%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡2   0.440 mm 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  0.71 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝐹𝑥
  2.65 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  3.15 mm 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 0.966  m 
𝒉 = 0.123   m 

Shallow water theory check, ℎ/𝐿𝑥  0.127 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟖.𝟐𝟏 
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Table 5.4. Inclined Damping Screens Loss Coefficient values (𝐶𝜃) Used in the Validation Study 

Excitation 
Type 

𝑺 
(%) 

𝝁 
(%) 

𝜽 
(Degree) 

𝑪𝜽 
(Inclined) 

 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 
(milli-g) 

Random 60 

1 

0 8.2 2.7 

41.0 4.8 4.5 

53.5 3.3 6.5 

61.5 2.4 9.0 

2.5 

0 8.3 6.5 

37.0 5.3 10.0 

51.5 3.5 15.0 

59.0 2.7 20.0 

3.5 

0 8.3 9.0 

40.0 4.9 15.0 

50.5 3.7 20.0 

56.5 2.9 25.0 

61.0 2.5 30.0 

5.0 

0 8.4 12.5 

22.5 6.9 15.0 

38.0 5.2 20.0 

46.5 4.1 25.0 

52.5 3.4 30.0 
 

Table 5.5. Scaled Random Forces Used in the Validation Study 

Excitation Type 𝑺 
(%) 

𝝁 
(%) Scaled Force  𝝈𝒙̈(𝑵𝒐−𝑻𝑳𝑫)  

(milli-g) 

Random 60 3.5 

S1 10 

S2 15 

S3 20 

S4 25 

S5 30 

S6 35 

S7 40 

S8 45 

S9 50 

S10 55 

S11 60 

S12 65 

S13 70 
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(c) 

Fig. 5.1. (a) Gain Scheduling Concept; (b) Semi-Active Control Strategy in Tall Buildings (Yalla 
and Kareem 2003); and (c) Semi-Active Control Strategy Used in This Study 
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                         (a)                             (b) 

Fig. 5.2. 3D Single-Story Structure Used in the Semi-Active Control Strategy Validation (a) A 
Schematic Diagram; and (b) 3D View 

 
Fig. 5.3. Efficiency over Range of Structural Responses  for µ = 1.0% (S = 60%) 

 

 
Fig. 5.4. Efficiency over Range of Structural Responses for 𝜇 = 2.5% (𝑆 = 60%) 
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Fig. 5.5. Efficiency over Range of Structural Responses for 𝜇 = 3.5% (𝑆 = 60%) 

 

 
Fig. 5.6. Efficiency over Range of Structural Responses for 𝜇 = 5.0% (𝑆 = 60%) 

 

 
Fig. 5.7. Look-Up Table for Semi-Active Control Strategy at Various Mass Ratios 
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    (a)     (b) 

Fig. 5.8. Performance Charts Showing Values of (a) 𝜁𝑒𝑓𝑓 (%); (b) 𝑥𝑟 for 𝜇 = 2.5%, 0.5 < 𝛺 < 1.5, 
and 0 < 𝜁𝐴(%) < 100 (from Tait et al. 2008) 

   
(a) Structure-TLD System (b) Structure-TMD System (c) Equivalent SDOF System 
  

Fig. 5.9. Modeling of Structure with TLD/TMD Vibration Absorber and Equivalent SDOF System 
(from Tait et al. 2008) 
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Fig. 5.10. RMS Structural Acceleration Response Values Resulting from the Semi-Active Control 

Strategy Utilizing Various Averaging Time Values, 𝐴𝑇 (S7-Random Force, 𝜇 =
3.5%, 𝑈𝑇 = 1.0 𝑇) 

 

 
Fig. 5.11. Screen Loss Coefficient Values Resulting from the Semi-Active Control Strategy Utilizing 

Various Averaging Time Values, 𝐴𝑇 (S7-Random Force, 𝜇 = 3.5%, 𝑈𝑇 = 1.0 𝑇) 
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Fig. 5.12. Average Peak Hourly Structural Acceleration Response Values Resulting from the Semi-

Active Control Strategy for Various Updating Time Values, 𝑈𝑇 (S7-Random Force, 𝜇 =
3.5%, 𝐴𝑇 = 60 min) 

 

 
Fig. 5.13. Screen Loss Coefficient Values Resulting from the Semi-Active Control Strategy for 

Various Updating Time Values, 𝑈𝑇 (S7-Random Force, 𝜇 = 3.5%, 𝐴𝑇 = 60 min) 
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Fig. 5.14. RMS Structural Acceleration Response Values Resulting from the Semi-Active Control 

Strategy Subjected to Various Random Forces S1-S13 (𝜇 = 3.5%, 𝐴𝑇 = 60 min, 𝑈𝑇 =
1.0 𝑇) 

 

 
Fig. 5.15. Screen Loss Coefficient Values Resulting from the Semi-Active Control Strategy 

Subjected to Various Random Forces S1-S13 (𝜇 = 3.5%, 𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇) 
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Fig. 5.16. RMS Hourly Structural Acceleration Response Values Resulting from the Passive and the 

Semi-Active Control Strategy for Various Averaging Time Values (𝐴𝑇) (S7-Random 
Force, 𝜇 = 3.5%, 𝑈𝑇 = 1.0 𝑇) 

 
Fig. 5.17. Peak Hourly Structural Acceleration Response Values Resulting from the Passive and the 

Semi-Active Control Strategy for Various Averaging Time Values (𝐴𝑇) (S7-Random 
Force, 𝜇 = 3.5%, 𝑈𝑇 = 1.0 𝑇) 

 
Fig. 5.18. Hourly and Average Peak Factor Values Resulting from the Passive and the Semi-Active 

Control Strategy (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇) 
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Fig. 5.19. Screen Loss Coefficient Values Resulting from the Passive and Semi-Active Control 

Strategy for Minimum and Maximum Studied Averaging Time Values (𝐴𝑇) Compared to 
the Instantaneous Control Case (S7-Random Force, 𝜇 = 3.5%) 

 

 
Fig. 5.20. RMS Hourly Structural Acceleration Response Values Using Passive and Semi-Active 

Control Strategies (S7-Random Force, 𝜇 = 3.5%) 
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Fig. 5.21. Peak Hourly Structural Acceleration Response Values Using Passive and Semi-Active 

Control Strategies (S7-Random Force, 𝜇 = 3.5%) 

 
Fig. 5.22. Average Hourly and Peak Factor Values from the Passive and Semi-Active Control 

Strategy [(𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇) & (𝐴𝑇 =  𝑈𝑇 = 𝑇/296)] (S7-Random Force, 𝜇 =
3.5%) 

 
Fig. 5.23. Peak Hourly Fluid Response Ratio at the TLD End Wall Resulting Using Passive and 

Semi-Active Control Strategies (S7-Random Force, 𝜇 = 3.5%) 
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Fig. 5.24. Peak Hourly Fluid Response Ratio at the TLD End Wall Resulting from the Passive 

Control Strategy for Various Random Forces (𝜇 = 3.5%) 

 
Fig. 5.25. Peak Hourly Fluid Response Ratio at the TLD End Wall Resulting from the Semi-Active 

Control Strategy for Various Random Forces (𝜇 = 3.5%, 𝐴𝑇 = 60 min,  𝑈𝑇 = 1.0 𝑇) 
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Chapter 6: Applications of Multiple Semi-Active TLDs for Structural Control of 
Three Dimensional High-Rise Buildings Using Wind Tunnel Loads  

6.1. Introduction 
Wind induced resonant vibration motions in tall buildings can be reduced using dynamic 

vibration absorbers (DVAs). The inertial forces, which develop from the DVA motion, 

modify the frequency response of the primary structure’s mode to which the DVA is tuned to 

(Kareem et al. 1999; Tait et al. 2008). Housner et al. (1997) described different DVA systems 

utilized for structural control including active, semi-active, passive and hybrid systems. 

Full-scale active control systems have been installed in several structures, mainly in 

Japan; however, cost effectiveness and reliability considerations have limited their wide 

spread acceptance (Spencer and Nagarajaiah 2003). Thus, there is a growing need for 

innovative and effective techniques to reduce the resonant vibration response of increasingly 

taller, lighter, and more flexible buildings. Due to their mechanical simplicity, low power 

requirements, and large controllable force capacity, semi-active control systems provide an 

attractive alternative to active and hybrid control systems. The use of tuned liquid dampers 

(TLDs) is still a relatively new concept compared to tuned mass dampers (TMD); however, 

they are a promising device for controlling the dynamic response of high-rise buildings 

(Kareem et al. 1999; Tait 2004). The implementation of passive TLDs in buildings has 

confirmed the benefits and effectiveness of this cost effective type of absorber. Therefore, 

expanding the novel semi-active TLD control system, developed and assessed in Chapter 5, 

to multiple semi-active TLDs for multi-modal high-rise building applications is of significant 

interest. 

The aim of this study is to develop a three dimensional finite element structure semi-

active multiple tuned liquid damper system model (3D-Structure-SA-MTLD) equipped with 

adjustable damping screen(s). Multiple TLDs provide the ability to suppress different critical 

vibration modes of the structure, while the semi-active control strategy keeps the inherent 

damping ratios (𝜁𝑇𝐿𝐷) of all TLDs at a near optimal value (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡). 

The nonlinear fluid model, updated in Chapter 4, is used to simulate the damping 

screen(s) at different inclination angles (𝜃). Subsequently, the three dimensional finite 

element structure-TLD system model is used to conduct analyses on a high-rise building 

equipped with multiple semi-active TLDs. 
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The updated 3D-Structure-SA-MTLD system model is employed to investigate the 

response improvement of a high-rise building compared to a conventional passive TLD 

control system, studied in detail elsewhere (Chapter 3), over (1) a wide range of wind loading 

directions (𝜃𝑤) between 0∘ and 360∘ (see Section 6.5); (2) a wide range of serviceability and 

strength return period wind speeds between 1 month and 50 years (see Section 6.6). 

To the best of the author’s knowledge, no previous study has considered the simulation of 

a 3D-Structure-SA-MTLD system model accounting for the coupling of higher structural 

modes, utilizing wind tunnel loads, equipped with multiple TLDs operating efficiently over 

abroad range of wind loading angles and return period wind speeds.  

In order to expand the use of the gain scheduling control strategy in a three dimensional 

high-rise building equipped with multiple semi-active TLDs (3D-Structure-SA-MTLD), the 

development of an alternative to the standard look-up table is desirable (see Figure 6.1). A 

TLD design procedure introduced by Tait (2008) allows a direct relationship between 

structural response acceleration and optimal screen angle value to be determined. This 

relationship, based on an 𝐻2 optimized passive TLD, is employed to evaluate the required 

damping screen loss coefficient values (𝐶𝜃) for a multiple SA TLD system. 

6.2. A Brief Description of the High-Rise Building and Its Dynamic 
Characteristics 

The Indianapolis building is a 38-story (154.6 m tall) reinforced concrete building with 

outer plan dimensions of 32 m by 54 m. This building was modelled and studied in Chapter 3 

utilizing conventional passive TLDs. The lateral load resisting elements of the building are 

concrete shear walls. The stiffness disparity and non-coinciding centre of mass (𝐶𝑀) and 

centre of twist (𝐶𝑇) (see Figure 6.2) lead to a coupled lateral and torsional response. In 

addition, the applied wind loads from different directions cause high torsional action at 

certain wind angles (𝜃𝑤).  

Figure 6.3 displays the first three mode shapes, which correspond to natural periods of 

7.31, 6.18 and 3.01 seconds. The torsional component of the mode shapes is multiplied by 

the overall radius of gyration 18.8 m of the building to maintain dimensional consistency. It 

can be observed from Figure 6.3 that the structure has a dominate translational mode in the 

𝑥-direction, a dominate translational mode in the 𝑦-direction and dominate torsional mode in 

the 𝜃-direction with a small coupling action between the 𝑥- and 𝑦-directions. 
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6.3. Response Evaluation High-Rise Building with No-TLDs 
A dynamic analysis of the 38-story Indianapolis building was carried out employing the 

3D-Structure-MTLD system model in Chapter 3 using recorded wind tunnel loads 

corresponding to a 10-year serviceability return period (see Figure 6.4 and Table 6.1). A total 

of 36 numerical simulation were conducted in order to cover different wind loading angles 

(𝜃𝑤) ranging from 0∘ to 360∘. The root-mean-square (RMS) structural acceleration at the 

centre of mass (𝐶𝑀) and the four corners (𝐶1;𝐶2;𝐶3;𝐶4) of the building in the 𝑥- and 𝑦-

directions (𝜎𝑥̈;𝜎𝑦̈) at the uppermost floor (𝑧 = 154.6 m) are determined. In addition, the 

RMS and average peak hourly resultant acceleration values (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) are calculated and 

compared to the acceptable serviceability limits. Both the RMS and 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 values are 

expressed in terms of gravitational acceleration (milli-g). 

Figures 6.5a and 6.5b show the RMS structural acceleration response values of the 

Indianapolis building in the 𝑥- and 𝑦-directions (𝜎𝑥̈;𝜎𝑦̈), respectively, for all wind loading 

angles (𝜃𝑤). In the 𝑥-direction, 𝜎𝑥̈ values at the four corners and the centre of mass (𝐶𝑀) of 

the uppermost occupied floor of the building (𝑧 = 154.6 m) have both similar values and 

trends. A maximum 𝜎𝑥̈ value of 6.31 milli-g is found to occur at a wind loading angle (𝜃𝑤) 

equal to 210∘. In the 𝑦-direction, a maximum 𝜎𝑦̈ value of 5.19 milli-g occurs at a 260∘ wind 

loading angle at corners 1 and 4 (𝐶1;𝐶4). These results are in agreement with the BLWTL 

report (BLWT-SS3-2007), which states that for strong winds, southwest directions are the 

most critical, i.e. 180∘ ≤ 𝜃𝑤 ≤ 270∘ as 𝜃𝑤 equals 0∘ facing the north direction and increases 

in the clock-wise direction. The maximum calculated average peak hourly resultant 

acceleration response value (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) of 28.15 milli-g is found to occur at 210∘, which is 

displayed in Figure 6.14a for comparative purposes with results of the controlled structural 

responses in Figure 6.14b. The calculated 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 value is found to exceed the acceptable 

limits for wind-induced motion for a 10-year serviceability return period for residential 

buildings, hotels and office buildings. Acceptable limits corresponding to a 10-year 

serviceability return period are 10 to 15 milli-g for residential buildings, 15 to 20 milli-g for 

hotels and 20 to 25 milli-g for office buildings (Isyumov 1994). 
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6.4. Implementation of an Alternative to Look-Up Tables for Semi-Active 
Control Strategy 

Yalla and Kareem (2003) described using a look-up table for a semi-active mode of 

control. The look-up table permits the range of the inclination angles (𝜃) of the damping 

screens, resulting in 100% TLD efficiency (𝜓), to be identified for a selected mass ratio (𝜇). 

Gain scheduling is an open-loop control scheme with a nonlinear regulator whose parameters 

are modified as a function of the operating conditions in a pre-programmed way (Astrom and 

Wittenmark 1989). This type of control is commonly used in aerospace and process control 

applications. In Chapter 5, a modified gain scheduling technique, described by Yalla and 

Kareem (2003) and shown in Figure 6.1, was employed in a semi-active control scheme. In 

gain scheduling, the regulator parameters can be varied quickly in response to process 

dynamics. The process dynamics is the combined 3D-Structure-SA-TLD system model 

employed to evaluate the acceleration of the building at the semi-active TLD locations, the 

look-up table is the gain scheduler, the regulator is the controllable inclination of the inclined 

damping screen angles (𝜃) and the pressure loss coefficient (𝐶𝜃) is the parameter being 

changed.  

In order to expand the use of the gain scheduling control strategy in a three dimensional 

high-rise building equipped with semi-active multiple TLDs (3D-Structure-SA-MTLD), an 

alternative to construction of look-up tables is investigated. The relationship between 

structural response acceleration and optimal screen loss coefficient for a TLD (Tait 2008) is 

employed in the semi-active control strategy in this section. 

Using 𝐻2 optimization, the optimal absorber damping ratio (for undamped primary 

structure) is expressed as  

𝜁𝑎−𝑜𝑝𝑡 = � 𝜇+34𝜇
2

4+6𝜇+2𝜇2
  (6.1) 

where 𝜇 is the mass ratio. 

The ratio of the relative motion between the absorber (𝜎𝑟) and the structure (𝜎𝑥) is 

defined as 

𝑅 = 𝜎𝑟
𝜎𝑥

  (6.2) 

For an optimally designed absorber, the relative motion ratio is given as 



211 

𝑅𝑜𝑝𝑡 = 1+𝜇

�2𝜇+32𝜇
2
  (6.3) 

For a TLD equipped with screens, the generalized damping ratio (𝜁𝑇𝐿𝐷) is given by (Tait 

2008) 

𝜁𝑇𝐿𝐷 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2 �𝜋ℎ

𝐿𝑥
� 𝛥𝛯 𝜎𝑟

𝐿
  (6.4) 

Relating the modal acceleration to displacement  

𝜎𝑥 = 𝜎𝑥̈
𝜔𝑥
2  (6.5) 

and substituting Equation 6.5 into Equation 6.2, the following relationship is obtained  

𝜎𝑟 = 𝑅𝑜𝑝𝑡
𝜎𝑥̈
𝜔𝑥
2  (6.6) 

Thus, the optimal screen loss coefficient (𝐶𝑙−𝑜𝑝𝑡) can be determined setting Equation 6.4 

equal to Equation 6.1. 

Finally, once 𝐶𝑙−𝑜𝑝𝑡 has been determined, the corresponding screen angle (𝐶𝑙−𝑜𝑝𝑡) can be 

calculated using the following relationship 

𝐶𝜃 = 𝐶𝑙 (0.46𝜃3 − 1.05𝜃2 − 0.06𝜃 + 1) (6.7) 

where 𝐶𝑙 is the loss coefficient corresponding to the screen in its vertical position and 𝐶𝜃 is 

set equal to 𝐶𝑙−𝑜𝑝𝑡. 

As a result, gain scheduling becomes an efficient control scheme for maintaining the 

TLD inherent damping ratios (𝜁𝑇𝐿𝐷) at near optimum values (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) for multiple semi-

active TLDs. As a result, for given structural acceleration responses at the semi-active TLD 

locations, the pressure loss coefficients (𝐶𝜃) are changed in accordance with the expanded 

TLD design procedure. The study assumes that mechanisms exist to adjust the damping 

screens to the desired screen inclination values (𝜃). 

Modal factor values (𝑀𝐹) presented in Chapter 3 are used to evaluate the target modal 

RMS acceleration response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2) utilizing the initial modal 

RMS acceleration response values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2), which are calculated during 

the numerical simulation in real time. This procedure was selected in order to maintain 

consistency with the process employed in Chapter 3. It is recognized that filtering techniques 
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could be employed to extract the modal response contributions (𝑀𝐹); however, this is 

beyond the scope of this study. 

Consequently, at every updating time step (𝑈𝑇) during the entire time history, 

𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1 and 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2 are calculated simultaneously for all installed TLDs utilizing 

the 3D-Structure-SA-MTLD system model over a selected averaging time period (𝐴𝑇) at all 

TLD locations (see Table 6.3) and used as feedback in the numerical simulation over a 

selected updating time period (𝑈𝑇). Subsequently, the optimal inclination angle values (𝜃) of 

the damping screens are updated using Equation 6.7. These steps are repeated, and updated 

screen loss coefficient values (𝐶𝜃) are evaluated during the entire time history keeping the 

TLD inherent damping ratios (𝜁𝑇𝐿𝐷) for all TLDs at their optimal values (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡). A 

detailed example for designing semi-active TLDs to suppress the first three modes of the 

Indianapolis building is presented in the next section utilizing the modal contribution 

response components (𝑀𝐹) and the expanded TLD design procedure (Chapter 3). 

6.4.1 Design Procedure and Damping Screen Loss Coefficient Range Selection 
for a Semi-Active TLD Control Strategy 

In this section, TLDs are initially designed according to structural response values 

occurring at the critical wind loading direction (𝜃𝑤) of 210∘ for a 10-year serviceability 

return period wind speed. A mass ratio value (𝜇) of 6% is selected for the first and second 

modes of vibration, while a mass ratio value (𝜇) of 5% is selected for the third mode of 

vibration in this study. This permits direct comparisons between the semi-active TLD control 

system, utilized in this chapter, and the conventional passive TLD control system, utilized in 

Chapter 3, to be made. 

It is recommended that for semi-active TLDs to suppress different building vibration 

modes, TLD damping screens be designed and constructed [i.e. the selection of screen 

solidity ratio (S)] to achieve their initially evaluated 𝐶𝜃 values (see Sections 6.4.1.1 and 

6.4.1.2) at the mid-range between the minimum and maximum damping screen loss 

coefficient values (𝐶𝑙−𝑚𝑖𝑛; 𝐶𝑙−𝑚𝑎𝑥). Therefore, for reduced structural response amplitudes 

either produced at different wind loading angles (𝜃𝑤) or at lower return period wind speeds, 

the damping screens are rotated to lower inclination angle values (𝜃) to increase their loss 

coefficient values (𝐶𝜃) until the damping screens reach a vertical position, where 𝜃 = 0∘ and 

𝐶𝜃 = 𝐶𝑙−𝑚𝑎𝑥. In contrast, for increased structural response amplitudes due to higher return 
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period wind speeds, the damping screens are rotated to higher inclination angle values (𝜃) to 

decrease their loss coefficient values (𝐶𝜃) until the damping screens reach their maximum 

inclination position, where 𝜃𝑚𝑎𝑥 ≈ 65∘ and 𝐶𝜃 = 𝐶𝑙−𝑚𝑖𝑛. Accordingly, TLD inherent 

damping ratio values (𝜁𝑇𝐿𝐷) can be kept at their optimal values (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡) over a wide range 

of structural response amplitudes.  

6.4.1.1 Semi-Active TLD Design Procedure for the First Two Modes of Vibration  

The TLDs placed at the centre of mass (𝐶𝑀) of the uppermost occupied floor of the 

Indianapolis building (𝑧 = 154.6 m) are designed to suppress the first two vibration modes 

that are translational in the 𝑥- and 𝑦-directions. This is consistent with the TLD design layout 

used in Chapter 3. However, uni-directional tanks are employed to allow straight forward 

implementation of the adjustable screens. 

Initial modal RMS structural accelerations response values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚1; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚2 ) 

of 6.0 milli-g and 3.4 milli-g at 𝐶𝑀 at the critical wind loading angle (𝜃𝑤) of 210∘ lead to 

target RMS structural acceleration response values (𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚1; 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2) of 3.1 

milli-g and 1.8 milli-g for a selected mass ratio value (𝜇𝑥; 𝜇𝑦) of 6% in the 𝑥- and 𝑦-

directions, respectively. Since the target modal response values are based on an optimal 

passive TLD design procedure, TLDs target values match the target values presented in 

Chapter 3. The total target RMS acceleration response values are estimated to be 

𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡 = 3.2 milli-g and 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑡 = 2.0 milli-g in the 𝑥- and 𝑦-directions and are 

presented in Figures 6.5a and 6.5b, respectively. 

The screens loss coefficient values (𝐶𝑙−𝑥; 𝐶𝑙−𝑦) are evaluated to achieve the optimal 

damping ratio values (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥; 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑦). Table 6.4 shows the calculation steps utilized in 

the preliminary TLD design procedure (Tait 2008) of the uni-directional tanks aligned in the 

𝑥-direction, while the same procedure is repeated for the TLDs in the 𝑦-direction and is listed 

in Table D1 (Appendix-D). The screens are located at 40% and 60% of the tank length with 

loss coefficient values of 𝐶𝑙−𝑥 = 9.8 and 𝐶𝑙−𝑦 = 20.3. The uni-directional tank length 

dimensions are established as 𝐿𝑥 = 16.0 m, 𝐿𝑦 = 13.4 m with a water depth ℎ = 1.9 m. 

Equation 6.7 is used to evaluate the screen loss coefficient range and subsequently the 

solidity ratio, by setting the calculated 𝐶𝑙−𝑥 and 𝐶𝑙−𝑦 values near to the average value of 
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𝐶𝑙−𝑚𝑖𝑛 and 𝐶𝑙−𝑚𝑎𝑥. As a result, screen loss coefficient values of 𝐶𝑙𝑥−𝑚𝑖𝑛1 = 5.0 and 

𝐶𝑙𝑥−𝑚𝑎𝑥1 = 15.0 are calculated for the 𝑥-direction, which correspond to damping screen 

inclination angle values (𝜃𝑥1) of 𝜃𝑥−𝑚𝑎𝑥1 = 58.5∘ and 𝜃𝑥−𝑚𝑖𝑛1 = 0∘. Also, screen loss 

coefficient values of 𝐶𝑙𝑦−𝑚𝑖𝑛2 = 10.0 and 𝐶𝑙𝑦−𝑚𝑎𝑥2 = 30.0 are determined in the 𝑦-

direction, which correspond to inclination angle values (𝜃𝑦2) of 𝜃𝑦−𝑚𝑎𝑥2 = 58.5∘ and 

𝜃𝑦−𝑚𝑖𝑛2 = 0∘. As a result, the screen loss coefficient values (𝐶𝜃𝑥1; 𝐶𝜃𝑦2) of 9.8 and 20.3 

occur at screen inclination angle values (𝜃𝑥1;𝜃𝑦2) of 36.7∘ and 35.1∘, respectively. 

6.4.1.2 Semi-Active TLD Design Procedure for the Third Mode of Vibration 
In this section, TLDs to suppress the third mode of vibration of the Indianapolis building 

are designed and installed in the building utilizing a mass ratio value (𝜇) of 5%. As improved 

performance is the focus of this study, design parameters consistent with those in Chapter 3 

resulting from adjustable damping screens, such as TLD placement and initial and target 

response values, are used. 

Hence, TLDs to suppress the third mode of the Indianapolis building are installed at 

corners 𝐶3 and 𝐶4 in the 𝑥-direction and corners 𝐶2 and 𝐶3 in the 𝑦-direction. The 

procedure followed to design the uni-directional tanks to suppress the third vibration mode in 

the 𝑥- and 𝑦-directions is presented in Tables D2 and D3 (Appendix-D), respectively. A total 

of 4 sets of 11 uni-directional tanks with dimensions of 𝐿𝑥 = 𝐿𝑦 = 3 m and ℎ = 0.4 m are 

required to satisfy the mass ratio value (𝜇) using the water mass calculations presented in 

Table D4 (Appendix-D). It is common to utilize dozens or even hundreds of small TLD tanks 

to satisfy the required mass ratio (Tamura et al. 1995; Love et al. 2011). The tanks can be 

placed and arranged to keep space requirements to a minimum. 

Based on the modal target RMS acceleration values 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚3 = 0.8 milli-g and 

𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚3 = 2.0 milli-g, screen loss coefficient values of 𝐶𝜃𝑥3 = 35.3 and  𝐶𝜃𝑦3 = 14.1 

are required. The screens are located at 40% and 60% of the tank length. Equation 6.7 is used 

to evaluate the screen loss coefficient range for the semi-active TLD control strategy. This 

results in screen loss coefficient values (𝐶𝜃𝑥3) ranging between 𝐶𝑙𝑥−𝑚𝑖𝑛3 = 15.0 and 

𝐶𝑙𝑥−𝑚𝑎𝑥3 = 55.0 for the third mode tanks placed in the 𝑥-direction and corresponding to 

damping screen inclination angle values (𝜃𝑥3) between 𝜃𝑥−𝑚𝑎𝑥3 = 63.3∘ and 𝜃𝑥−𝑚𝑖𝑛3 = 0∘, 

respectively. Consequently, 𝐶𝜃𝑦3 values between 𝐶𝑙𝑦−𝑚𝑖𝑛3 = 7.0 and 𝐶𝑙𝑦−𝑚𝑎𝑥3 = 22.0 are 
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established for the third mode tanks placed in the 𝑦-direction, which correspond to 𝜃𝑦3 values 

between 𝜃𝑦−𝑚𝑎𝑥3 = 59.6∘ and 𝜃𝑦−𝑚𝑖𝑛3 = 0∘, respectively. Therefore, screen loss coefficient 

values (𝐶𝜃𝑥3; 𝐶𝜃𝑦3) of 35.3 and 14.1, obtained above from the initial TLD design, occur at 

screen inclination angle values (𝜃𝑥3; 𝜃𝑦3) of 37.4∘ and 37.3∘, respectively. 

6.4.2 Sensitivity Analysis for Averaging Time (𝑨𝑻) and Updating Time (𝑼𝑻) and 
Damping Screen Loss Coefficient Range Selection Checks   

With the aim of selecting the two parameter values, the averaging time (𝐴𝑇) and the 

updating time (𝑈𝑇), a sensitivity analysis is performed in this section. The Indianapolis 

building is equipped with semi-active TLDs to suppress the first three modes of vibration, 

designed in Section 6.4.1, and subjected to the wind tunnel loading history recorded at the 

critical wind loading angle (𝜃𝑤) of 210∘ utilizing a 10-year serviceability return period wind 

speed. Consequently, the 3D-Structure-SA-MTLD is employed to conduct the dynamic 

analysis of the Indianapolis building considering an updating time value, 𝑈𝑇 = 1.0 𝑇 (i.e. 

𝑈𝑇 = 7.31 seconds) and utilizing different averaging time values (𝐴𝑇) equal to 15, 30 and 

60 minutes. 

Figure 6.6 shows the variation of the modal RMS structural acceleration response 

calculated every updating time period (𝑈𝑇) and over different selected averaging time values 

(𝐴𝑇) at the TLD location to suppress mode 1 in the 𝑥-direction. Employing the preliminary 

TLD design procedure at every updating time period (𝑈𝑇), 𝐶𝜃 values for TLDs installed to 

suppress first structural vibration mode are evaluated based on the modal RMS acceleration 

values and used in the numerical simulation, in real time, as shown in Figure 6.7. 

It can be observed from Figure 6.6 that for all selected averaging time values (𝐴𝑇), lower 

modal RMS structural acceleration response values, utilizing the semi-active TLD control 

system, are achieved compared to that predicated for the passive TLD control system 

employed in Chapter 3. This can be attributed to the differences found between the constant 

and updated damping screen loss coefficient values utilized to feedback the numerical 

simulation of the conventional passive and semi-active TLD control systems, respectively, 

during the entire time history as shown in Figure 6.7.   

Also, Figure 6.6 shows that utilizing small 𝐴𝑇 values lead to low total and modal RMS 

structural acceleration response values with maximum percentage difference found equal to 
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10% at minutes 22 and 25 of the time history for TLDs installed in the 𝑥- and 𝑦-directions, 

respectively, while small percentage differences in the range between 1% and 5% are found 

for the remaining of the time history. These results are in agreement with those obtained in 

Section 5.3.3 utilizing a 3D single-story structure. In contrast, utilizing high 𝐴𝑇 values result 

in a reduction in the modal structural response values and the damping screen loss coefficient 

values (see Figure 6.7). In addition, Figure 6.7 shows that the selected range of 𝐶𝜃 values for 

the first TLD mode tanks are valid as all 𝐶𝜃 values are found in the range between 𝐶𝑙−𝑚𝑖𝑛 

and 𝐶𝑙−𝑚𝑎𝑥 at the critical wind loading direction (𝜃𝑤) of 210∘. The same trend and behaviour 

are obtained for the tanks installed to suppress mode 2 in the 𝑦-direction and mode 3 in the 

𝑥- and 𝑦-directions (see Figures D1-D6 Appendix-D). Therefore, a 60-minute 𝐴𝑇 value is 

selected for use in the remainder of this study.  

A second sensitivity analysis is performed utilizing the 3D-Structure-SA-MTLD system 

model to study the effect of various updating time value (𝑈𝑇) on the RMS structural response 

results. Different 𝑈𝑇 values of 0.25 𝑇, 1.00 𝑇 and 8.00 𝑇 (i.e. 1.8 < 𝑈𝑇 < 58.5 seconds) are 

selected to conduct the sensitivity analysis setting the averaging time value (𝐴𝑇) equal to 60 

minutes. Figure 6.8 shows the modal RMS structural acceleration response values remain 

constant for different selected 𝑈𝑇 values at the location of TLDs to suppress mode 1 in the 𝑥-

direction. The same trend and behaviour are obtained for mode 2 in the 𝑦-direction and mode 

3 in the 𝑥- and 𝑦-directions (see Figures D7-D12 Appendix-D). Results for the high-rise 

building are found to be in agreement with that obtained for the single-story structure studied 

in Chapter 5 (see Section 5.3.3). Therefore a 𝑈𝑇 value equal to 1.00 𝑇 is selected to be used 

for the remainder of this study. 

6.5. Improved Responses of an Actual High-Rise Building Utilizing Multiple 
SA-TLDs Over a Range of Wind Loading Directions 

This section investigates the potential of improved efficiency by employing the semi-

active TLD control system to control the high-rise building responses subjected to a wide 

range of wind loading directions (𝜃𝑤) compared to the conventional passive TLD control 

system in Chapter 3.  

A total of 36 two-hour numerical simulations are conducted in this section by employing 

the 3D-Structure-SA-MTLD system model with selected 𝐴𝑇 and 𝑈𝑇 values equal to 60 

minutes and 1.0 𝑇, respectively, utilizing the recorded wind loading directions in the range 
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between 0∘ and 360∘. The semi-active TLD tank geometries for the first three modes of 

vibration to be suppressed, which have been presented in Section 6.4.1, match those of the 

conventional passive TLD tanks utilized in Chapter 3 (i.e. 𝐿, 𝑏, ℎ, damping screens properties 

(𝑆), TLD locations, and the mass ratios (𝜇) for all mode tanks). The damping screen loss 

coefficient values 𝐶𝜃𝑥1, 𝐶𝜃𝑦2, 𝐶𝜃𝑥3 and 𝐶𝜃𝑥3 for mode 1 in the 𝑥-direction, mode 2 in the 𝑦-

direction, mode 3 in the 𝑥-direction and mode 3 in the 𝑦-direction, respectively, are set by the 

semi-active TLD control strategy to be within the ranges selected in Section 6.4.1 as follows 

𝐶𝑙𝑥−𝑚𝑖𝑛1 ≤ 𝐶𝜃𝑥1 ≤ 𝐶𝑙𝑥−𝑚𝑎𝑥1 ; i.e. 5 ≤ 𝐶𝜃𝑥1 ≤ 15 (6.8) 

𝐶𝑙𝑦−𝑚𝑖𝑛2 ≤ 𝐶𝜃𝑦2 ≤ 𝐶𝑙𝑦−𝑚𝑎𝑥2 ; i.e. 10 ≤ 𝐶𝜃𝑦2 ≤ 30 (6.9) 

𝐶𝑙𝑥−𝑚𝑖𝑛3 ≤ 𝐶𝜃𝑥3 ≤ 𝐶𝑙𝑥−𝑚𝑎𝑥3 ; i.e. 15 ≤ 𝐶𝜃𝑥3 ≤ 55 (6.10) 

𝐶𝑙𝑦−𝑚𝑖𝑛3 ≤ 𝐶𝜃𝑦3 ≤ 𝐶𝑙𝑦−𝑚𝑎𝑥3 ; i.e. 7 ≤ 𝐶𝜃𝑦3 ≤ 22 (6.11) 

Results from the numerical simulations show that the maximum uncontrolled RMS 

structural acceleration response values (𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙; 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙) of 6.3 milli-g and 4.2 milli-g 

(see Figures 6.5a and 6.5b) at the critical wind loading direction (𝜃𝑤) of 210∘ are reduced to 

values of 3.4 milli-g and 3.8 milli-g, utilizing the conventional passive TLD control system 

(see Figures 6.10a and 6.11a), compared to values of 2.9 milli-g and 2.6 milli-g, utilizing the 

semi-active TLD control system, respectively (see Figures 6.10b and 6.11b).  

In addition, at different wind loading angles (𝜃𝑤), it can be observed that further 

reductions in the structural accelerations are achieved utilizing the semi-active TLD control 

system compared to the conventional passive TLD control system in the 𝑥- and 𝑦-directions 

as shown in Figures 6.10 and 6.11, respectively (note that all conventional passive TLDs 

were designed to achieve their optimal design parameters according to the critical wind 

loading angle of 210∘). As a result, RMS resultant acceleration response values (𝑅𝑅𝑀𝑆), 

calculated using Equation 6.12 and presented in Figure 6.12, are reduced by a nearly constant 

percentage range between 40-50% ∓5%, calculated using Equation 6.13 and presented in 

Figure 6.13 

𝑅𝑅𝑀𝑆 = �(𝜎𝑥̈)2 + (𝜎𝑦̈)2  (6.12) 

% 𝛹𝑅𝑀𝑆 = �𝑅𝑅𝑀𝑆(𝑁𝑜− 𝑇𝐿𝐷)−𝑅𝑅𝑀𝑆(𝑤𝑖𝑡ℎ 𝑇𝐿𝐷)

𝑅𝑅𝑀𝑆(𝑁𝑜−𝑇𝐿𝐷)
� . 100  (6.13) 
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where 𝑅𝑅𝑀𝑆(𝑤𝑖𝑡ℎ 𝑇𝐿𝐷) and 𝑅𝑅𝑀𝑆(𝑁𝑜−𝑇𝐿𝐷) are the RMS resultant acceleration response values 

with and without TLDs installed, respectively. 

Criteria for acceptable wind-induced motions are related to human perception thresholds, 

which are calculated using a probabilistic approach and experimental evaluation. Based on 

this concept, the Boundary Layer Wind Tunnel Laboratory (BLWTL) has recommended the 

following criteria for acceptable accelerations in a 10-year serviceability return period: 10 to 

15 milli-g for residential buildings, 15 to 20 milli-g for hotels and 20 to 25 milli-g for office 

buildings (Isyumov 1994). The serviceability criteria in the National Building Code of 

Canada (NBC) only address inter-story drift; therefore, serviceability criteria dictated by the 

BLWTL are taken as the acceptable limits. Hence, for all wind loading angles (𝜃𝑤), the 

controlled average peak hourly resultant acceleration response values (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) are 

presented compared to the uncontrolled responses in Figures 6.14c and 6.14a, respectively. It 

can be noticed that the maximum uncontrolled 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 value is reduced from a value of 

28.2 milli-g to a value of 13.6 milli-g at the critical wind loading angle (𝜃𝑤) of 210∘ 

achieving a percentage response reduction value (𝛹𝑅𝑀𝑆) of 51%. This is also a significant 

improvement over the passive system peak response acceleration of 18.9 milli-g as shown in 

Figure 6.14b. As a result, utilizing the semi-active TLD control system is found to satisfy 

wind-induced serviceability levels for residential buildings compared to the hotel 

serviceability requirements achieved utilizing conventional passive TLDs (Chapter 3). 

6.5.1 Investigation of SA-TLDs Response History Over a Range of Wind 
Loading Directions 

In this section, the semi-active TLD response histories at selected wind loading directions 

(𝜃𝑤), which produce various average peak hourly resultant acceleration response levels 

(𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) of the Indianapolis building, are studied. This allows a detailed picture of the 

semi-active TLD response behaviour over a wide range of wind loading directions (𝜃𝑤) to be 

examined. As the SA-TLDs are placed either in the 𝑥- or 𝑦-direction, therefore, their 

responses are controlled by the modal structural response component in these directions. As a 

result, criteria for selecting wind loading directions to be studied in this section are set as the 

wind loading angles (𝜃𝑤) that produce the minimum, maximum and approximately mid-

range RMS structural acceleration response values in the 𝑥- and 𝑦-directions (𝜎𝑥̈; 𝜎𝑦̈). 

Consequently, wind loading angle values (𝜃𝑤) of 60∘, 150∘ and 210∘ are selected from 
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Figure 6.5a, while wind loading angle values (𝜃𝑤) of 60∘, 180∘ and 260∘ are selected from 

Figure 6.5b. These selected wind loading angles produce different peak levels of 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 in 

the range between the upper and lower 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 values. 

6.5.1.1 Response History of SA-TLDs for Mode 1 in the 𝒙-Direction 
Figure 6.15 shows the first modal RMS acceleration response component values used to 

evaluate the damping screen loss coefficient values (𝐶𝜃𝑥1). Figure 6.16 shows the evaluated 

screen loss coefficient values (𝐶𝜃𝑥1) utilized in the numerical simulation during the entire 

time history. It can be noticed from Figure 6.16 that at critical wind loading angle (𝜃𝑤) of 

210∘, the semi-active TLDs are fully-efficient [i.e. the damping screen loss coefficient value 

(𝐶𝜃𝑥1) remains within the 𝐶𝑙𝑥−𝑚𝑖𝑛1to 𝐶𝑙𝑥−𝑚𝑎𝑥1 range]. 

The constant damping screen loss coefficient value (𝐶𝑙𝑥−𝑝𝑎𝑠𝑠𝑖𝑣𝑒1) of 9.8 is near the 𝐶𝜃𝑥1 

values obtained for the first 10 minutes of the response history, while a difference if 

approximately 20% is found throughout the rest of the time history. This is attributed to the 

reduced modal RMS structural response at the TLD location due to higher efficiency (𝜓) of 

the installed semi-active TLDs compared to the conventional passive TLDs. This is found to 

be in agreement with the study utilizing a single-story structure studied in Chapter 5 (see 

Section 5.5). Therefore, good agreement was found between both 𝐶𝜃𝑥1 and 𝐶𝑙𝑥−𝑝𝑎𝑠𝑠𝑖𝑣𝑒1 

during the first 10 minutes of the response history before further structural response 

reduction is achieved leading to higher 𝐶𝜃𝑥1 values. 

For the wind loading angle (𝜃) of 180∘, the semi-active TLDs are found to remain fully-

efficient except a during few time periods (between 5-10 minutes, 25-30 minutes and 95-100 

minutes) as shown in Figure 6.16, where the structural response values are found to be small. 

Although, all screen loss coefficient values (𝐶𝜃𝑥1) are set by the semi-active control strategy 

to their maximum values (𝐶𝑙𝑥−𝑚𝑎𝑥1) of 15.0 at wind loading angles (𝜃) of 60∘, 150∘ and 

260∘, the semi-active TLDs efficiency (𝜓) is found higher than its counterpart value of the 

conventional passive TLDs due to a significant difference between damping screen loss 

coefficient value (𝐶𝑙𝑥−𝑝𝑎𝑠𝑠𝑖𝑣𝑒1) of 9.8 of the conventional passive TLD and its semi-active 

counterpart value (𝐶𝜃𝑥1 = 𝐶𝑙𝑥−𝑚𝑎𝑥1) of 15. 0.  
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By shifting the selected damping screen loss coefficient range higher in order to include 

the 𝐶𝜃𝑥1 values at wind loading angles of 60∘, 150∘ and 260∘, higher TLD efficiency (𝜓) 

could be obtained. However, there are two important reasons to maintain the selected range 

of 𝐶𝜃𝑥1 values. First, the structural acceleration response values at these wind loading angles 

are small and, therefore, do not require the semi-active TLDs to be fully-efficient (i.e. 

achieving an efficiency value (𝜓) of 100%). Secondly, in order for the semi-active TLDs to 

be fully-efficient at higher structural acceleration response values considering higher return 

period wind speeds, low 𝐶𝜃𝑥1 values are required (see Section 6.6). 

6.5.1.2 Response History of SA-TLDs for Mode 2 in the 𝒚-Direction 
The semi-active TLDs to suppress the second mode of vibration are found to be fully-

efficient during the entire 2-hour time history at all wind loading angles (𝜃𝑤) considered, 

except at wind loading angle (𝜃𝑤) equal to 60∘. Fluctuations in the screen loss coefficient 

values for mode 2 tanks (𝐶𝜃𝑦2) in Figure 6.17 is found to be higher than for mode 1 tanks 

(𝐶𝜃𝑥1) in Figure 6.16. This is attributed to the higher fluctuations in modal RMS structural 

acceleration response values in the 𝑦-direction (see Figure D13 Appendix-D) compared to 

the 𝑥-direction (see Figure 6.15).  

6.5.1.3 Response History of SA-TLDs for Mode 3 in the 𝒙- and 𝒚-Directions 

The semi-active TLDs placed at corners 𝐶3 and 𝐶4 in the 𝑥-direction are fully-efficient at 

wind loading angels of 150∘, 180∘, 210∘ and 260∘ as shown Figure 6.18. In contrast, upright 

position of the damping screens is set by the semi-active TLD control strategy for the TLDs 

at wind loading angle of 60∘ (i.e. 𝐶𝜃𝑥3 = 𝐶𝑙𝑥−𝑚𝑎𝑥3). Also, it can be observed that 𝐶𝜃𝑥3 values 

resulting from the semi-active TLD control strategy (see Figure 6.18) are higher than their 

counterpart values resulting in the 𝑦-direction (𝐶𝜃𝑦3) (see Figure 6.19). In the 𝑦-direction, the 

semi-active TLDs placed at corners 𝐶2 and 𝐶3 are fully-efficient during the entire time 

history at wind loading angles of 180∘, 210∘ and 260∘, while damping screens are set to their 

vertical position at wind loading angles of 60∘ and 150∘. As a result, a maximum damping 

screen loss coefficient value of 22.0 (i.e. 𝐶𝜃𝑦3 = 𝐶𝑙𝑦−𝑚𝑎𝑥3) is utilized at these wind angles 

compared to its counterpart value of 14.1 utilized in the conventional passive TLD control 

system, which was designed for a different wind loading angle (𝜃𝑤) equal to 210∘ (see 

Figure 6.19).  
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6.6. Improved Responses of an Actual High-Rise Building Utilizing Multiple 
SA-TLDs Over a Range of Mixed Return Periods 

In this section, a study on an actual high-rise building (Indianapolis building) both 

without and with TLDs utilizing the semi-active TLD control strategy is conducted over a 

wide range of serviceability and strength (mixed) return period wind speeds at the critical 

wind loading direction (𝜃𝑤) of 210∘ employing the 3D-Structure-SA-MTLD system model. 

This allows the semi-active TLD efficiency to be examined for both strength and 

serviceability wind speeds. Also, a performance comparison between the conventional 

passive and semi-active TLD control systems is conducted over the considered range of 

return periods. 

For strength related issues, such as design loads and cladding pressure zones, the 

boundary layer wind tunnel laboratory (BLWTL) wind climate model is scaled (see Figure 

6.4) to match the wind speed requirement in ASCE-7-05 (see Chapter 3 for additional 

details). Therefore, a 50-year strength return period is found equal to 47.5 m/s using the 

upper curve plotted in Figure 6.4. This curve represents the design wind speeds in the 

Indianapolis area as recommended by the wind tunnel study (BLWT-SS3-2007) and ASCE 

7-05. Table 6.1 shows different wind speed values corresponding to different return period 

wind speeds utilized in this study. 

For serviceability related issues, the semi-active TLDs, which were originally designed 

for a serviceability return period of 10 years (see Section 6.4.1), are employed in this section 

to examine their efficiency at serviceability return periods ranging from 1 month to 50 years, 

in addition to an extreme wind speed value that is equivalent to a strength related return 

period wind speed of 50 years, which exceeds a 1000-year serviceability return period (see 

Figure 6.4).  

In addition, a dynamic analysis of the Indianapolis building is conducted over the same 

selected range of mixed return periods utilizing the conventional passive TLD control 

system, which was designed at the critical wind loading angle (𝜃𝑤) of 210∘ at the 10-year 

serviceability return period with tanks of the same geometries (i.e. 𝐿, 𝑏,ℎ), damping screens 

properties (𝑆) and mass ratio values (𝜇) for the first three modes as of the semi-active TLD 

control system. Consequently, percentage response reduction values of the resultant RMS 

and average peak hourly structural acceleration response values (𝑅𝑅𝑀𝑆; 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) are 
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determined to permit a direct comparison between both TLD control systems. Finally, the 

response behaviour of the semi-active TLDs over the studied range of return period wind 

speeds is investigated for each mode tank during the entire time history. 

6.6.1 Response Evaluation with No-TLDs 
The 3D finite element model is employed in this section to conduct a dynamic analysis of 

the Indianapolis building utilizing mixed return period wind speeds (see Table 6.1) recorded 

at the BLWTL (BLWT-SS3-2007) at the critical wind loading angle (𝜃𝑤) of 210∘. The result 

is RMS and average peak hourly resultant acceleration response values (𝑅𝑅𝑀𝑆; 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) of 

the centre of mass (𝐶𝑀) and the four corners (𝐶1; 𝐶2; 𝐶3; 𝐶4) at the uppermost floor 

(𝑧 = 154.6 m) of the Indianapolis building. Consequently, ranges of uncontrolled 𝑅𝑅𝑀𝑆 and 

𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 values between 2.5-17.0 milli-g and 9.5-62.0 milli-g are determined from the 

dynamic analysis and presented in Figures 6.20a and 6.22a, respectively. It can be noticed 

that a nonlinear increase of the building responses is found to occur and is related to the 

increase in wind speed, especially when a linear elastic 3D structure model is considered in 

all simulations as recommended in wind-type analyses. This can be attributed to the change 

of the frequency content of the wind, which is accompanied by the change of the wind 

speeds. In fact, the fluctuations in the wind can be thought of as resulting from a composite 

of sinusoidally varying winds superimposed on the mean steady wind, which varies along the 

building’s height (see Figure 6.23). Theses sinusoidal variations have a variety of 

frequencies, amplitudes and phases that change with the wind speed (van der Tempel 2006; 

Manwell et al. 2010). The resulting structural acceleration response values are found to 

increase by nearly an order of magnitude at the 50-year strength return period compared to 

the 50-year serviceability return period achieving 𝑅𝑅𝑀𝑆 values of 17.0 and 8.0 milli-g, and 

𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 values of 62.0 milli-g and 32.5 milli-g, which correspond to wind speed values of 

47.5 m/s and 34.0 m/s, respectively.  

6.6.2 Response Evaluation Utilizing Semi-Active and Conventional Passive TLD 
Control Systems 

In this section, two sets of analyses are conducted on the Indianapolis building over a 

range of mixed return period wind speeds, listed in Table 6.1, at the critical wind loading 

angle (𝜃𝑤) of 210∘ utilizing the conventional passive and semi-active TLD control systems. 

Subsequently, the 3D-Structure-MTLD and 3D-Structure-SA-MTLD system models are used 
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to conduct this analysis, where the first 3 modes of vibration are suppressed. The result is 

resultant RMS structural acceleration response values (𝑅𝑅𝑀𝑆) for the centre of mass (𝐶𝑀) 

and the four corners (𝐶1; 𝐶2; 𝐶3; 𝐶4) at the uppermost floor (𝑧 = 154.6 m) of the 

Indianapolis building, using Equation 6.11, equipped with both TLD control systems 

separately. Consequently, percentage response reduction values (𝛹𝑅𝑀𝑆) of 𝑅𝑅𝑀𝑆 are 

determined, using Equation 6.12. Therefore, a direct comparison between both TLD control 

systems is conducted in the next section.  

It can be seen that uncontrolled resultant RMS acceleration response values in the range 

of 2.5 milli-g to 17.0 milli-g (see Figure 6.20a) are reduced to values between 1.2 milli-g and 

8.0 milli-g (see Figure 6.20b) utilizing the semi-active TLD control system. As a result, 

minimum percentage response reduction values (𝛹𝑅𝑀𝑆) of 𝑅𝑅𝑀𝑆 ranging between 46% and 

50% are achieved at the 1-month serviceability return period, while maximum percentage 

response reduction values (𝛹𝑅𝑀𝑆) ranging between 50% and 53% are observed at the 10-year 

serviceability return period. This leads to nearly constant percentage response reduction 

values (𝛹𝑅𝑀𝑆) of 𝑅𝑅𝑀𝑆 over the considered mixed return periods utilizing the semi-active 

TLD control system (i.e. variation range ≈ 3-4%, see Figure 6.21b) compared to 

considerable differences of 𝛹𝑅𝑀𝑆 values (i.e. variation range ≈ 18-19%, see Figure 6.21a) 

utilizing the conventional passive TLD control system. Also, the calculated uncontrolled 

average peak hourly resultant acceleration response values (𝑅𝑝𝑒𝑎𝑘−ℎ𝑟), calculated using 

Equation 6.1, which are found to range between 9.5 milli-g to 62.0 milli-g (see Figure 6.22a) 

are reduced to values in the range between 5.0 milli-g and 30.5 milli-g utilizing the semi-

active TLD control system (see Figure 6.22b). It can be noticed that the maximum 

uncontrolled 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 value is reduced from a value of 28.2 milli-g to a value of 13.6 milli-g 

at the 10-year return period wind speed.  

6.6.3 Investigation of SA-TLDs Response History and Performance Comparison 
with Passive TLDs 

In this section, the behaviour of semi-active TLDs, installed to suppress the first three 

modes of vibration, is investigated in detail at selected values of serviceability and strength 

return period wind speeds. Performance comparisons in terms of response reduction of 𝑅𝑅𝑀𝑆 

and 𝑅𝑝𝑒𝑎𝑘−ℎ𝑟 values are also made. 
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6.6.3.1 Response History of SA-TLDs for Different Return Periods 
At the 1-month return period wind speed, Figure 6.24 shows that low first modal RMS 

structural acceleration response values are achieved for TLDs to suppress mode 1 in the 𝑥-

direction. Similar observations are found for mode 2 in the 𝑦-direction and mode 3 in the 𝑥- 

and 𝑦-directions (see Figures D16-D18 Appendix-D). As a result, all damping screens are set 

by the semi-active TLD control strategy to the upright position to achieve their maximum 

screen loss coefficient values (i.e. 𝐶𝜃𝑥1 = 𝐶𝑙𝑥−𝑚𝑎𝑥1 = 15.0, 𝐶𝜃𝑦2 = 𝐶𝑙𝑦−𝑚𝑎𝑥2 = 30.0, 

𝐶𝜃𝑥3 = 𝐶𝑙𝑥−𝑚𝑎𝑥3 = 55.0 and 𝐶𝜃𝑦3 = 𝐶𝑙𝑦−𝑚𝑎𝑥3 = 22.0 compared to 𝐶𝜃𝑥1 = 9.8, 𝐶𝜃𝑦2 =

20.3, 𝐶𝜃𝑥3 = 35.3 and 𝐶𝜃𝑦3 = 14.1 for the conventional passive TLDs, designed at the 10-

year serviceability return period, as shown Figures 6.25-6.28, respectively. Therefore, higher 

percentage response reduction values (𝛹𝑅𝑀𝑆) of 𝑅𝑅𝑀𝑆 in the range between 45% and 49% are 

achieved utilizing the semi-active TLDs, while percentage response reduction values (𝛹𝑅𝑀𝑆) 

in the range between 28% and 31% are achieved utilizing the conventional passive TLDs 

(see Figure 6.21). This can be attributed to the fact that the conventional passive TLDs are 

highly under-damped compared to the semi-active TLDs, which leads to a significant 

decrease in the TLD efficiency (𝜓𝑇𝐿𝐷) of the passive system (Tait et al. 2008) compared to 

the semi-active system (see Chapter 5 - Figure 9a). Therefore, a percentage response 

reduction improvement (𝛹𝑅𝑀𝑆) equal to 19% is achieved at the 1-month serviceability return 

period utilizing the semi-active TLD control system. Similar results are found for the 1-year 

serviceability return period. However, a lower percentage response reduction value of 11% is 

achieved. 

At the 10-year serviceability return period wind speed, maximum percentage response 

reduction values (𝛹𝑅𝑀𝑆) are found to range between 50% and 53% and between 45% and 

48% utilizing the semi-active TLDs and the conventional passive TLDs as shown in Figure 

6.21, respectively. The maximum 𝛹𝑅𝑀𝑆 values achieved at this particular return period can 

be attributed to the fact that the passive TLDs are designed to 10-year serviceability return 

period. However, the percentage response reduction values (𝛹𝑅𝑀𝑆) achieved utilizing the 

semi-active TLDs are found 5% higher than their counterpart values utilizing the 

conventional passive TLD control system as all semi-active TLDs are found to be fully-

efficient during the entire time history (see Figures 6.25-6.28). These results are in agreement 
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with those obtained from a single-story structure, discussed in detail in Chapter 5 (Section 

3.5). 

At the 50-year serviceability return period wind speed, Figure 6.21 shows that percentage 

response reduction values (𝛹𝑅𝑀𝑆) range between 50% and 52% utilizing semi-active TLDs 

compared to 𝛹𝑅𝑀𝑆 values between 42% to 44% utilizing conventional passive TLDs, 

respectively. It can be noticed that the percentage response reduction values (𝛹𝑅𝑀𝑆) utilizing 

the conventional passive TLDs are only 8% less than their counterpart values for the semi-

active TLDs, although all semi-active TLDs are found to remain found fully-efficient during 

the entire time history (see Figures 6.25-6.28).  

Due to the amplitude dependent properties of the TLDs (Tait et al. 2004a; Tait et al. 

2004b), the conventional passive TLDs experience high response amplitudes and as a result, 

the inherent damping ratio values of the conventional passive TLDs exceed their design 

values (i.e. 𝜁𝑇𝐿𝐷 > 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡). Consequently, the conventional passive TLD control system is 

over-damped compared to the under-damped cases at the 1 month and 1year return periods. 

As a result, the increased system efficiency (𝜓) using the semi-active control is lower. This is 

in agreement with that observed in the efficiency chart for an over-damped TLD system (see 

Chapter 5 - Figure 9a). 

It is also observed that damping screen loss coefficient values of the conventional passive 

TLDs are found to be similar to the average values of their counterparts utilizing the semi-

active TLDs to suppress mode 1 in the 𝑥-direction (i.e. 𝐶𝑙𝑥−𝑝𝑎𝑠𝑠𝑖𝑣𝑒1 ≈ 𝐶𝜃𝑥1−𝑎𝑣𝑒𝑟𝑎𝑔𝑒), mode 2 

in the 𝑦-direction (i.e. 𝐶𝑙𝑦−𝑝𝑎𝑠𝑠𝑖𝑣𝑒2 ≈ 𝐶𝜃𝑦2−𝑎𝑣𝑒𝑟𝑎𝑔𝑒) and mode 3 in the 𝑦-direction 

(i.e. 𝐶𝑙𝑦−𝑝𝑎𝑠𝑠𝑖𝑣𝑒3 ≈ 𝐶𝜃𝑦3−𝑎𝑣𝑒𝑟𝑎𝑔𝑒) as shown in Figures 6.25, 6.26 and 6.28, respectively. 

Although, significant discrepancy is found between 𝐶𝑙𝑥−𝑝𝑎𝑠𝑠𝑖𝑣𝑒3 and 𝐶𝜃𝑥3−𝑎𝑣𝑒𝑟𝑎𝑔𝑒 for mode 3 

tanks in the 𝑥-direction, it has insignificant effect on the percentage response reduction 

values (𝛹𝑅𝑀𝑆) of 𝑅𝑅𝑀𝑆 due to the small contribution of the third modal RMS acceleration 

response component in the 𝑥-direction at corners 𝐶3 and 𝐶4 (see Table 6.3, Figure D17 

Appendix-D). 

Figure 6.21 shows that percentage response reduction values (𝛹𝑅𝑀𝑆) range between 48% 

and 50% utilizing semi-active TLDs compared to 37% to 38% utilizing conventional passive 

TLDs. The percentage response reduction values (𝛹𝑅𝑀𝑆) achieved utilizing the conventional 
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passive TLDs are 11% less than their counterpart values achieved utilizing the semi-active 

TLDs. This can be attributed to the fact that all passive TLDs are over-damped due to the 

high response amplitude values at the 50-year strength return period. It can be observed that 

only the semi-active TLDs to suppress mode 1 in the 𝑥-direction are found fully-efficient 

during the entire time history (see Figure 6.25), while semi-active TLDs to suppress mode 3 

in the 𝑦-direction are found to be partially-efficient (see Figure 6.28) as the semi-active 

TLDs to suppress mode 3 in the 𝑦-direction are found to be fully-efficient starting at minute 

25 of the time history (see Figure D18 Appendix-D). The damping screen loss coefficient 

values for semi-active TLDs to suppress mode 2 in the 𝑦-direction and mode 3 in the 𝑥-

direction are set by the semi-active TLD control strategy to their minimum values (i.e. 

𝐶𝜃𝑦2 = 𝐶𝑙𝑦−𝑚𝑖𝑛2 = 10.0; 𝐶𝜃𝑥3 = 𝐶𝑙𝑥−𝑚𝑖𝑛3 = 15.0) compared to higher damping screen loss 

coefficient values utilized for the conventional passive TLDs (i.e. 𝐶𝑙𝑦−𝑝𝑎𝑠𝑠𝑖𝑣𝑒2 = 20.3; 

𝐶𝑙𝑥−𝑝𝑎𝑠𝑠𝑖𝑣𝑒3 = 35.3) as shown in Figures 6.26 and 6.27, respectively. Consequently, the 

semi-active TLDs to suppress mode 2 in the 𝑦-direction and mode 3 in the 𝑥-direction are 

over-damped resulting in a reduction in TLD efficiency. 

6.7. Conclusions 
In this chapter, a control strategy based on gain scheduling, which was introduced and 

verified experimentally by Yalla and Kareem (2003), has been incorporated into a multi 

semi-active TLD model. The developed 3D-Structure-SA-MTLD system model has been 

employed to analyze a multi-modal high-rise building subjected to recorded wind tunnel 

loads. A preliminary TLD design procedure has been expanded for use on a multi-modal 

high-rise building utilizing modal structural response components. It has been implemented 

in a programmable way in the 3D-Structure-SA-MTLD system model as an alternative to 

look-up tables. A detailed example of designing multiple semi-active TLDs to suppress the 

first three modes of vibration of an actual multi-modal high-rise building (Indianapolis 

building) has been described. Also, a suggested procedure for the damping screen loss 

coefficient range selection has been presented and evaluated. 

Gain scheduling has been found to be an efficient control scheme to maintain the inherent 

damping ratios of the TLDs (𝜁𝑇𝐿𝐷) at their selected values (𝜁𝑇𝐿𝐷−𝑜𝑝𝑡). For given structural 

response accelerations at the multiple SA-TLD locations, the pressure loss coefficients (𝐶𝜃) 

for the multiple SA-TLDs to suppress different structural vibration modes have been changed 
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in accordance with the expanded preliminary TLD design procedure. The use of practical 

parameter values of averaging time (𝐴𝑇 = 60 minutes) and updating time (𝑈𝑇 = 1.0𝑇) has 

also been confirmed utilizing the sensitivity analysis conducted in this chapter.  

Employing the preliminary TLD design procedure for multiple TLDs to suppress the first 

three modes of vibration of the Indianapolis building, subjected to recorded wind tunnel 

loads, has led to the evaluation of the required damping screen loss coefficient values (𝐶𝜃) 

that maintain the TLD inherent damping ratios (𝜁𝑇𝐿𝐷) during the entire time history as 

feedback to the numerical simulation. Consequently, two significant improvements have 

been gained: 

i. Employing the semi-active TLD control strategy has improved the response of an actual 

high-rise building over a wide range of wind loading directions (0∘ − 360∘), where nearly 

constant percentage response reduction values (𝛹𝑅𝑀𝑆) ranging between 40% and 50% 

have been achieved. In additions, a performance comparison between the semi-active and 

the conventional passive TLD control systems has been conducted at the critical wind 

loading angle, and at the return period wind speed utilized to design the conventional 

passive TLD control system. 

ii. Employing the semi-active TLD control strategy has shown the efficiency of multiple 

SA-TLDs to provide control at both serviceability and strength wind speed levels. In 

other words, results over a wide range of serviceability and strength return period wind 

speeds at the critical wind loading angle (𝜃𝑤) of 210∘ have indicated nearly constant 

percentage response reduction values (𝛹𝑅𝑀𝑆) with a maximum percentage difference 

value of 4% found utilizing the semi-active TLD control system compared to 19% 

utilizing the conventional passive TLD control system. 

Therefore, improved performance of the semi-active TLD control system compared to the 

conventional passive TLD control system has been demonstrated. 
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Table 6.1. Serviceability and Strength (Mixed) Return Periods and Wind Speeds 

 
 Return Period 

(year) 
Wind Speed 

(m/s) 

Serviceability 

50 37.0 

10 34.0 

1 29.0 

1/12 23.0 

Strength 50 47.5 

Table 6.2. Modal Acceleration Response Components in the 𝑥- and 𝑦-directions at the Centre of 
Mass with No-TLDs (𝜃𝑤 = 210∘, 𝑧 = 154.6 m) 

    Mode 1 

Node 
Return 
Period 
(years) 

Wind 
Speed 
(m/s) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) 

𝑴𝑭 
(%) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 
(milli-g) 

𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒕 
(milli-g) 

Centre 10 34 6.1 98.3 6.0 3.1 3.2 

 
    Mode 2 

Node 
Return 
Period 
(years) 

Wind 
Speed 
(m/s) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
𝑴𝑭 
(%) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 
(milli-g) 

𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 
(milli-g) 

𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒕 
(milli-g) 

Centre 10 34 3.6 94.1 3.4 1.8 2.0 

Table 6.3. Modal Acceleration Response Components in the 𝑥- and 𝑦-directions at the Four Corners 
with TLDs to Suppress the First Two Modes (𝜇 =6%, 𝜃𝑤 = 210∘, 𝑧 = 154.6 m) 

    Mode 3 

Node 
Return 
Period 
(years) 

Wind 
Speed 
(m/s) 

𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) 𝑴𝑭 (%) 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 

(milli-g) 
𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 

(milli-g) 
𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒕 

(milli-g) 

Corner 1 

10 34 

3.8 22.6 0.9 - - 

Corner 2 3.8 22.6 0.9 - - 

Corner 3 4.1 37.3 1.5 0.8 3.4 

Corner 4 4.1 37.3 1.5 0.8 3.4 

 
    Mode 3 

Node 
Return 
Period 
(years) 

Wind 
Speed 
(m/s) 

𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 
(milli-g) 𝑴𝑭 (%) 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 

(milli-g) 
𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 

(milli-g) 
𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒕 

(milli-g) 

Corner 1 

10 34 

4.3 57.3 2.5 - - 

Corner 2 5.2 74.0 3.8 2.0 3.4 

Corner 3 5.2 74.0 3.8 2.0 3.4 

Corner 4 4.3 57.3 2.5 - - 
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Table 6.4. Preliminary TLD Design for Mode 1 in the 𝑥-direction  (𝜇 = 6.0%, Serviceability Return 
Period = 10 years)  

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  22.516 milli-g 
Modal Factor, 𝑴𝑭  98.300 % 
Initial modal peak hourly acceleration, 
𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 22.368 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑥  0.137 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   7.310 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   0.860 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(573𝜔𝑠−𝑥) + 0.577

�2 ln(573𝜔𝑠−𝑥)
  3.685  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑥

  6.010 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚

𝜔𝑠−𝑥
2

𝑔
1000

  0.081 m 
Assumed mass ratio, 𝜇  0.060 (6.00%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.062 (6.20%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.120 (12.0%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.957 (95.7%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.131 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  2.993  

Structure damping ratio, 𝜁𝑠  0.020 (2.00%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.078 (7.80%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.043 m 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  3.080 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑥
  11.350 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.122 m 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 16.0   m 
𝒉 = 1.87   m 

Shallow water theory check, ℎ/𝐿𝑥  0.12 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟗.𝟕𝟔 
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Table 6.5. Water Mass Calculations for TLDs to Suppress Modes 1 and 2 (𝜇 = 6.0%) 

Quantity Equation(s)  Value 

Selected tank dimensions, 𝐿𝑥,𝐵𝑥, 𝐿𝑦,𝐵𝑦,ℎ  

𝐿𝑥 = 16.00 m 
𝐵𝑥 = 13.41 m 
 
𝐿𝑦 = 13.41 m 
𝐵𝑦 = 16.00 m 
 
ℎ = 1.87      m 

Water height to tanks length ratio in 𝑥-dir ℎ/𝐿𝑥   
0.12 

Water height to tanks length ratio in 𝑦-dir ℎ/𝐿𝑦  0.14 
Water mass of 1 tank, 𝑚𝑤(1𝑡𝑎𝑛𝑘) 𝑚𝑤(1𝑡𝑎𝑛𝑘) = 𝐿𝑥𝐵𝑥ℎ = 𝐿𝑦𝐵𝑦ℎ  401255 kg 
   

TLD mass of 1 tank in 𝑥-dir, 
𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘) 

𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝑥 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑥
�

𝜋3� ℎ𝐿𝑥
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)  
0.776 𝑚𝑤(1𝑡𝑎𝑛𝑘) =
311370 kg  

   

TLD mass of 1 tank in 𝑦-dir, 
𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘) 

𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝑦 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑦
�

𝜋3� ℎ𝐿𝑦
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)  
0.762 𝑚𝑤(1𝑡𝑎𝑛𝑘) =
305904 kg 

   
Total building mass, 𝑀𝑠 𝑀𝑠 = ∑ 𝑚𝑓

𝑖=𝑁𝑓
𝑖=1    36412955 kg 

Generalized building mass in 𝑥-dir, 𝑀𝑥
∗ 𝑀𝑥

∗ = ∑ �𝑚𝑓�𝑖
𝑖=𝑁𝑓
𝑖=1 (𝜙𝑥2)𝑖  10523344 kg 

Generalized building mass in 𝑦-dir, 𝑀𝑦
∗  𝑀𝑦

∗ = ∑ �𝑚𝑓�𝑖
𝑖=𝑁𝑓
𝑖=1 �𝜙𝑦2�𝑖  10013563 kg 

Required TLD mass in 𝑥-dir, 𝑚𝑇𝐿𝐷−𝑥 𝑚𝑇𝐿𝐷−𝑥 = 𝜇𝑥𝑀𝑥
∗  631401 kg 

Required TLD mass in 𝑦-dir, 𝑚𝑇𝐿𝐷−𝑦 𝑚𝑇𝐿𝐷−𝑦 = 𝜇𝑦𝑀𝑦
∗   600814 kg 

No. of Tanks required in 𝑥-dir, 𝑁𝑇𝐿𝐷−𝑥 𝑁𝑇𝐿𝐷−𝑥 = 𝑚𝑇𝐿𝐷−𝑥/𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘)  2.03 
No. of Tanks required in 𝑦-dir, 𝑁𝑇𝐿𝐷−𝑦 𝑁𝑇𝐿𝐷−𝑦 = 𝑚𝑇𝐿𝐷−𝑦/𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘)  1.96 
   
   
Chosen No. of tanks for modes 1 and 2, 
𝑵𝑻𝑳𝑫−𝒙𝒚  (Uni-directional tanks) 2 sets of 2 tanks 

Actual mass ratio in 𝒙-dir, 𝝁𝒙−𝒂𝒄𝒕𝒖𝒂𝒍 
𝜇𝑥−𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑁𝑇𝐿𝐷−𝑥𝑦𝑚𝑇𝐿𝐷−𝑥(1𝑡𝑎𝑛𝑘)/
𝑀𝑥
∗  5.92 % 

Actual mass ratio in 𝒚-dir, 𝝁𝒚−𝒂𝒄𝒕𝒖𝒂𝒍 
𝜇𝑦−𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑁𝑇𝐿𝐷−𝑥𝑦𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘)/
𝑀𝑦
∗   6.11 % 

Mass ratio of contained water, 𝝁𝒘 𝜇𝑤 = 𝑁𝑇𝐿𝐷−𝑥𝑦𝑚𝑤(1𝑡𝑎𝑛𝑘)/𝑀𝑠  4.40 % 
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(c) 

Fig. 6.1. (a) Gain Scheduling Concept; (b) Semi-Active Control Strategy in Tall Buildings (from 
Yalla and Kareem 2003); and (c) Semi-Active Control Strategy Updated in This Study 
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(a) 

 

     

(b) 

     
Fig. 6.2. Floor Plan of the Indianapolis Building Showing the Statical System Consists of (a) Real 

Slabs and Shear Walls; and (b) Frame Elements and Slab Beams Installed with Lumped 
Masses (kg) 

 
(a) 𝑇 = 7.31 s 

 
(b) 𝑇 = 6.18 s 

 
(c) 𝑇 = 3.01 s 

Fig. 6.3. Mode Shapes of the Indianapolis Building for (a) Mode 1; (b) Mode 2; and (c) Mode 3 
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Fig. 6.4. Predicted Annual Extreme Upper Level (500 m) Wind Speed for Various Return Periods 

(from BLWT-SS3-2007) 

 

 
 (a) 

 
(b) 

Fig. 6.5. RMS Structural Accelerations of the Indianapolis Building with No-TLDs Installed in (a) 
the 𝑥-direction; and (b) in the 𝑦-direction (Return Period=10 Years) 

[Note: 2M-TLDs indicates TLDs to Suppress the First 2 Modes] 
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Fig. 6.6. Influence of Averaging Time (𝐴𝑇) on RMS Structural Accelerations at the 𝐶𝑀 in the 𝑥-

direction (𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘, Return Period=10 Years) 

 
Fig. 6.7. Influence of Averaging Time (𝐴𝑇) on Screen Loss Coefficient Values of Mode 1 Tanks 

Placed at the 𝐶𝑀 in the 𝑥-direction (𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘, Return Period=10 Years) 

 
Fig. 6.8. Influence of Updating Time (𝑈𝑇) on RMS Structural Accelerations at the 𝐶𝑀 in the 𝑥-

direction (𝐴𝑇 = 60 min, 𝜃𝑤 = 210∘, Return Period=10 Years) 

 
Fig. 6.9. Influence of Updating Time (𝑈𝑇) on Screen Loss Coefficient Values of Mode 1 Tanks 

Placed at the 𝐶𝑀 in the 𝑥-direction (𝐴𝑇 = 60 min, 𝜃𝑤 = 210∘, Return Period=10 Years) 
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(a) 

 
(b) 

Fig. 6.10. RMS Structural Accelerations in the 𝑥-direction of the Indianapolis Building Using (a) 
Passive TLD System; and (b) Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 
Return Period=10 Years)  

 
(a) 

 
(b) 

Fig. 6.11. RMS Structural Accelerations in the 𝑦-direction of the Indianapolis Building Using (a) 
Passive TLD System; and (b) Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇; 
Return Period=10 Years) 
[Note: 2M-TLDs and 3M-TLDs indicate TLDs to Suppress the First 2 and 3 Modes, respectively] 
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Fig. 6.12. RMS Resultant Accelerations of the Indianapolis Building Using Semi-Active TLD 
System to Suppress the First 3 Modes (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, Return Period=10 
Years) 

 
Fig. 6.13. Percentage Reduction of RMS Resultant Accelerations of the Indianapolis Building Using 

Semi-Active TLD System to Suppress the First 3 Modes (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 
Return Period=10 Years) 
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(a) 

 
(b) 

 
(c) 

Fig. 6.14. Average Peak Hourly Resultant Accelerations Using (a) No-TLDs; (b) Passive TLD 
System; and (c) Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, Return Period=10 
Years) 
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Fig. 6.15. Influence of Wind Loading Direction on RMS Structural Acceleration at the 𝐶𝑀 in the 𝑥-

direction Using Semi-Active TLD System  (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, Return Period=10 
Years) 

 
Fig. 6.16. Influence of Wind Loading Direction on Screen Loss Coefficient of Mode 1 Tanks Placed 

at the 𝐶𝑀 in the 𝑥-direction Using Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 
Return Period=10 Years) 

 
Fig. 6.17. Influence of Wind Loading Direction on Screen Loss Coefficient of Mode 2 Tanks Placed 

at the 𝐶𝑀 in the 𝑦-direction Using Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 
Return Period=10 Years) 
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Fig. 6.18. Influence of Wind Loading Direction on Screen Loss Coefficient of Mode 3 Tanks Placed 

at 𝐶3 and 𝐶4 in the 𝑥-direction Using Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 =
1.0 𝑇, Return Period=10 Years) 

 
Fig. 6.19. Influence of Wind Loading Direction on Screen Loss Coefficient of Mode 3 Tanks Placed 

at 𝐶3 and 𝐶4 in the 𝑦-direction Using Semi-Active TLD Ssytem (𝐴𝑇 = 60 min, 𝑈𝑇 =
1.0 𝑇, Return Period=10 Years) 
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(a) 

 
(b) 

Fig. 6.20. RMS Resultant Accelerations (𝜃𝑤 = 210∘) over a Range of Serviceability (black) and 
Strength (red) Return Periods Using (a) No-TLDs; and (b) Semi-Active TLD System 
(𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇) 

 
          (a) 

 
         (b) 

Fig. 6.21. Percentage Reduction of RMS Resultant Accelerations (𝜃𝑤 = 210∘) over a Range of 
Serviceability (black) and Strength (red) Return Periods Using (a) Passive TLD System; 
and (b) Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇) 
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(a) 

 
(b) 

 
(c) 

Fig. 6.22. Average Peak Hourly Resultant Accelerations (𝜃𝑤 = 210∘) over a Range of Serviceability 
(black) and Strength (red) Return Periods Using (a) No-TLDs; (b) Passive TLD System; 
and (c) Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇) 

 
Fig. 6.23. Experimental Speed Profile (from van der Tempel 2006) 
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Fig. 6.24. Influence of Return Period on RMS Structural Acceleration at the 𝐶𝑀 of the Indianapolis 

Building in the 𝑥-direction Using Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 =
1.0 𝑇, 𝜃𝑤 = 210∘) 

 

 
Fig. 6.25. Influence of Return Period on Screen Loss Coefficient of Mode 1 Tanks Placed at the 𝐶𝑀 

in the 𝑥-direction Using Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 =
210∘) 

 
Fig. 6.26. Influence of Return Period on Screen Loss Coefficient of Mode 2 Tanks Placed at the 𝐶𝑀 

in the 𝑦-direction Using Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 =
210∘) 
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Fig. 6.27. Influence of Return Period on Screen Loss Coefficient of Mode 3 Tanks Placed at 𝐶3 and 

𝐶4 in the 𝑥-direction Using Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 =
210∘) 

 
Fig. 6.28. Influence of Return Period on Screen Loss Coefficient of Mode 3 Tanks Placed at 𝐶2 and 

𝐶3 in the 𝑦-direction Using Semi-Active TLD System (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 =
210∘) 
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Chapter 7: Conclusions and Recommendations 

7.1. Summary and Conclusions 
The research presented in this thesis has focussed on two major areas. First, on the ability 

to evaluate the dynamic response behaviour of single and 3D multi-degree-of-freedom 

structures equipped with single and multiple passive tuned liquid dampers. Research work 

completed includes developing and validating a 3D finite element model coupled with two 

different nonlinear TLD models to evaluate the resulting TLD base shear forces. TLD 

systems were designed to suppress two and subsequently three modes of vibration, 

respectively. In this study, the structural response behaviour at different wind loading 

directions (between 0∘ and 360∘) and at different return period wind speeds (1 month to 50 

years) was evaluated. The second area of focus was on the development and validation of a 

novel semi-active TLD system based on a gain scheduling technique (3D-Structure-SA-

TLD). This included updating and validating the nonlinear TLD fluid model to simulate the 

TLD equipped with fixed inclined and adjustable damping screens, constructing required 

look-up tables and implementing the novel control technique in the proposed 3D finite 

element model. This novel technique was expanded to semi-active multiple TLDs (3D-

Structure-SA-MTLD) for multi-modal high-rise building applications. Different wind 

loading directions and different return period wind speeds were considered. Conclusions 

pertaining to the research presented in the five main chapters conducted in this thesis 

(Chapters 2-6) are presented below. 

7.1.1 Development and Validation of Finite Element Structure-Tuned Liquid 
Damper System Models 

A finite element model capable of simulating the behaviour of a 3D-Structure, using 3D-

beam elements, is developed and validated under dynamic loading. The validated finite 

element model is used to estimate the response of a 3D-Structure outfitted with TLDs (3D-

Structure-TLD). The interaction base shear force resulting from the TLD is estimated using 

two nonlinear TLD models; a nonlinear fluid model that simulates the TLD sloshing force 

(TLD Model 1) and an equivalent amplitude dependent TMD model (TLD Model 2). 

Numerical simulations are carried out using both nonlinear TLD models and both models are 

subsequently coupled with the finite element model. 

The following points summarize the main findings in this chapter: 
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• A significant reduction in the computational effort to a conduct dynamic analysis of a 

3D-Structure-TLD system model is achieved utilizing the equivalent amplitude 

dependent tuned mass damper (EADTMD) model (TLD Model 2).  The computational 

time required for the EADTMD model is approximately 18 times less than that required 

for the nonlinear fluid model. In order to use this particular model, two important steps 

are introduced. 

o First, the nonlinear fluid model is used to generate TLD energy dissipation curves 

(instead of using shake table test data). Theses curves are required to evaluate 

equivalent TMD parameters (𝑚𝑇𝐿𝐷, 𝑓𝑇𝐿𝐷, 𝜁𝑇𝐿𝐷) for the EADTMD model. 

o Second, a modified implementation method of the EADTMD model in the finite 

element model using the velocity tracking technique is presented. This method, 

which is applicable for any type of loading (i.e. wind or earthquake), is introduced 

to allow for mean structural displacements. 

• The developed finite element model is validated under harmonic and random excitation 

forces with experimental values utilizing both nonlinear TLD models.  

7.1.2 Three Dimensional Analysis of a High-Rise Building Equipped with 
Multiple Tuned Liquid Dampers Using Wind Tunnel Loads 

In this chapter, a 38-story high-rise building (Indianapolis building) is modelled using the 

3D finite element model, developed and validated in Chapter 2. The 3D-Strucutre-TLD 

system model is expanded to consider multiple TLDs (3D-Strucutre-MTLD) and used to 

conduct time history analyses on a high-rise building equipped with multiple TLDs to 

suppress either the first two or the first three structural modes of vibration, respectively. 

Recorded wind tunnel data is used as the excitation input over a range of wind loading 

directions (0∘ and 360∘). An existing TLD design procedure (Tait 2008) is expanded, using 

modal factors (𝑀𝐹), to design multiple TLDs utilized to suppress selected structural modes 

of vibration. A spectral analysis is employed using MATLAB® and the modal factors are 

evaluated (𝑀𝐹) for the uncontrolled and controlled structural time history responses.  

The major findings from this study are: 

• Excellent agreement is observed between both nonlinear TLD models, the TLD fluid 

model and the EADTMD model. Therefore, the second TLD model (i.e. EADTMD 
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model) has been used to carry out the remaining analyses resulting in a significant 

reduction in computational time. 

• A two-step TLD design procedure provides the ability to assess the decision of installing 

extra sets of TLD tanks to suppress higher modes of the building. This design procedure 

also allows the selected TLD tank locations and placement directions to be evaluated. By 

employing the two-step TLD design procedure, the following findings are observed: 

o The floor centre of the Indianapolis building is found to be an ideal location for the 

first two mode tanks to be installed, where the modal factor values at the floor 

centre in both 𝑥- and 𝑦-directions have higher values than the corners for the 

uncontrolled structural responses. 

o The maximum average peak hourly resultant acceleration response value 

(𝑅𝑝𝑒𝑎𝑘−ℎ𝑟) of the Indianapolis building at the critical wind loading angle of 210∘ is 

reduced by minimum values of 32% and 53% at the centre of mass and the four 

corners, respectively. As a result, the Indianapolis building is found to satisfy 

acceptable acceleration response level criteria for office buildings using TLDs to 

suppress the first two modes of vibration compared to acceptable criteria for hotels 

with TLDs installed to suppress the first three modes of vibration. 

7.1.3 Finite Element Modelling of Structure-MTLD Systems with Inclined 
Damping Screens 

In the first part of this chapter, the nonlinear TLD fluid model is updated and validated 

with experimental values found in the literature to simulate inclined damping screens in a 

TLD by reproducing the non-dimensional energy (𝐸𝑤′ ) and the frequency response curves for 

two sets of slat screens, at different normalized excitation amplitudes 

The main findings from this part of the study include: 

• The updated fluid model is found to be in excellent agreement with the experimental test 

values obtained from a shake table testing program found in the literature. 

• The updated TLD fluid model is found to overcome the limitations of existing linear 

models as following: 

o The robustness of a structure-TLD system model due to mistuning is addressed 

utilizing the updated nonlinear TLD fluid model as it captures the hardening 

behaviour. 



249 

o The updated TLD fluid model provides an accurate estimation for the resultant 

base shear forces at higher screen inclination angles (𝜃) compared to existed linear 

models. In addition, the nonlinear response of free-surface is also simulated. 

In the second part of this chapter, the updated nonlinear TLD fluid model is implemented 

into a 3D finite element model (3D-Structure-TLD) and expanded to model multiple TLDs 

(3D-Structure-MTLD). The ability to passively control the inherent damping ratio in a tuned 

liquid damper (𝜁𝑇𝐿𝐷) over a range of excitation amplitudes is demonstrated. 

The main findings from the second part of this study include: 

• The vertical screens are found to operate optimally for only one particular structural 

response acceleration. Throughout different screen angles (𝜃) an envelope is drawn 

capturing 100% TLD efficiency (𝜓) over a range of structural response accelerations. The 

envelope curves show that angled screens are able to maintain 100% TLD efficiency (𝜓) 

over a range of structural response accelerations. 

• The use of the preliminary TLD design procedure (Tait 2008) to estimate the damping 

screen properties to achieve 100% TLD efficiency (𝜓) at different selected target peak 

hourly acceleration responses and mass ratios is investigated. Results are found to be in 

agreement with nonlinear numerical results. Thus, the preliminary TLD design procedure 

is employed to estimate the required inclination angle values (𝜃) for the damping screens. 

• Dynamic analysis of a 38-story high-rise building is carried out utilizing a 4-hour 

duration recorded wind tunnel loading time history at the critical wind loading direction 

of 210∘ at different return period wind speeds ranging between 1 month and 50 years. 

The results show that employing inclined damping screens in the TLDs leads to 

approximately constant TLD inherent damping ratio values (𝜁𝑇𝐿𝐷) over the selected 

return periods. 

7.1.4 Development and Validation of a Finite Element Structure Semi-Active 
Tuned Liquid Damper System Model 

A control strategy based on the gain scheduling scheme is developed, by actively 

controlling the damping screen inclination angles (𝜃) and their resulting loss coefficient 

values (𝐶𝜃). Results from the semi-active TLD numerical simulation for a 3D single-story 

structure subjected to random excitation are compared with values from manually adjusted 

damping screen inclination angles. An updated nonlinear fluid model of a TLD equipped 
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with inclined damping screens, developed and validated in Chapter 4, is used to determine 

the resulting TLD base shear force in real time. The necessary steps for constructing the 

look-up table are described in detail. To implement the gain scheduling scheme in the 

numerical simulation, three parameters are added in the semi-active TLD control technique 

(3D-Structure-SA-TLD), in addition to the fitted equation of the look-up table. These 

parameter are, the averaging time (𝐴𝑇), the updating time (𝑈𝑇) and the initial time (𝐼𝑇). A 

sensitivity study is performed utilizing a 3D single-story structure equipped with a TLD with 

the aim of selecting the first two parameter values (𝐴𝑇 and 𝑈𝑇). 

Important findings that can be drawn from this chapter include: 

• The semi-active TLD control system with practical control parameters (i.e.5 ≤ 𝐴𝑇 ≤ 60 

min, 𝑈𝑇 = 𝑇) exceeds the efficiency (𝜓) of the passive TLD control system in further 

reduction of the RMS structural acceleration response value (𝜎𝑥̈) up to 11.7% and 

matches the efficiency of the passive TLD control system in reducing the peak hourly 

structural response values (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟). 

• The semi-active TLD control system with instantaneous control parameters (i.e. 𝐴𝑇 =

𝑈𝑇 = 𝛥𝑡) exceeds the efficiency (𝜓) of the passive TLD control system; both in a 

reduction of the average peak hourly (𝑥̈𝑝𝑒𝑎𝑘−ℎ𝑟) and RMS (𝜎𝑥̈) structural acceleration 

response values. 

• The semi-active TLD control system provides the ability to achieve the above three 

results over a wide range of applied excitations compared to the passive TLD control 

system. 

7.1.5 Applications of Multiple Semi-Active TLDs for Structural Control of Three 
Dimensional High-Rise Buildings Using Wind Tunnel Loads 

In this chapter, the semi-active TLD control technique is expanded to semi-active 

multiple TLDs (3D-Structre-SA-MTLD) and employed to analyze a multi-modal high-rise 

building subjected to recorded wind tunnel data (0∘ − 360∘) at a 10 year serviceability return 

period; and at the critical wind loading angle of 210∘ for return periods from 1 month to 50 

years. A proposed procedure for selecting the damping screen loss coefficient range is 

presented and evaluated. An alternative procedure to the look-up table is developed and 

implemented in the numerical simulation based on the preliminary TLD design procedure, 

which was introduced by Tait (2008) and expanded for a multi-modal high-rise building in 
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Chapter 3. As a result, TLD inherent damping ratios (𝜁𝑇𝐿𝐷) are maintained in real time by 

evaluating the required damping screen loss coefficient values (𝐶𝜃).  

The main findings from this chapter are: 

• A nearly constant percentage response reduction values of the resultant RMS structural 

acceleration responses (𝑅𝑅𝑀𝑆) between 40% and 50% at the centre of mass (𝐶𝑀) and the 

four corners (𝐶1; 𝐶2; 𝐶3; 𝐶4) is achieved over a wide range of wind loading directions 

(0∘ − 360∘) employing the semi-active control technique. 

• At the critical wind loading angle of 210∘ and at a 10-year serviceability return period, 

used for the design of the conventional passive TLD system, the semi-active TLD control 

system attains a 5% greater RMS acceleration percentage response reduction value. 

• At the critical wind loading angle of 210∘ and at return periods ranging from 1 month to 

50 years, the semi-active control system provides nearly constant percentage response 

reduction with maximum percentage difference of 4% compared to 19% for the 

conventional passive TLD control system. As a result, improved overall performance of 

the semi-active TLD control system, over a wide range of wind loading angles and return 

periods, is demonstrated compared to the conventional passive TLD control system. 

7.2. Recommendations for Future Study 
This section presents recommendations for future work 

[1] Model scale testing of a structure-SA-TLD system subjected to random and earthquake 

excitation is highly recommended, allowing the numerical simulation results to be 

compared with experimental values. A particularly interesting case to experimentally 

investigate is the SA-TLD control technique with instantaneous control parameters 

(i.e. 𝐴𝑇 = 𝑈𝑇 = 𝛥𝑡), which responds instantaneously to highly fluctuated structural 

response values of a structure under random forces. 

[2] Full-scale implementation and monitoring of structures equipped with semi-active 

multiple TLDs (SA-MTLD) should be conducted and compared with numerical 

simulations of the 3D-Structure-SA-MTLD system model. 

[3] The three dimensional finite element model in conjunction with single/multiple 

conventional passive/SA-TLD system models provides the ability to accurately predict 

the reduced straining actions in the lateral load resisting elements of full-scale structures 

(i.e. normal force, shear force and bending moment). The following question arises. Can 
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the SA-TLD control technique be relied upon for strength consideration and wind related 

serviceability issues at the same time? 
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Table 1. TLD Design for Mode 2 (𝑦-direction) for the Indianapolis Building  

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  14.14 milli-g 
Modal Factor, 𝑴𝑭  94.08 % 
Initial modal peak hourly acceleration, 
𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 13.24 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑦  0.16 Hz 
Structure time period, 𝑇𝑠−𝑦 𝑇𝑠−𝑦 = 1 𝑓𝑠−𝑦⁄   6.18 sec 
Structure natural frequency, 𝜔𝑠−𝑦 𝜔𝑠−𝑦 = 2𝜋 𝑇𝑠−𝑦⁄   1.02 rad/sec 

Peak factor, 𝑃𝐹𝑦 𝑃𝐹𝑦 = �2 ln�573𝜔𝑠−𝑦� + 0.577

�2 ln�573𝜔𝑠−𝑦�
  

3.73 
 

Initial RMS acceleration, 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑦

  3.40 milli-g 

Initial RMS displacement, 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝜔𝑠−𝑦
2

𝑔
1000

  0.03 m 
Assumed mass ratio, 𝜇  0.06 (6.0%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 = 1

4�
𝜇𝑦+𝜇𝑦2

1+34𝜇𝑦
   

0.06 
(6.2%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  

0.12 
(12.0%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
�1+12𝜇𝑦

1+𝜇𝑦
  0.96 

(95.7%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦

𝑓𝑠−𝑦
  0.16 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑦 𝑅𝑜𝑝𝑡𝑦 = 𝜎𝑟−𝑦
𝜎𝑦

= 1+𝜇𝑦

�2𝜇𝑦+
3
2𝜇𝑦

2
  

2.99  

Structure damping ratio, 𝜁𝑠  0.02 (2.0%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑦 𝜁𝑡𝑜𝑡−𝑦 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦     0.08 (7.8%) 
Target RMS displacement, 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑦 = 𝜁𝑠

𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.02 m 
Target RMS acceleration, 𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  1.80 milli-g 
Target peak hourly acceleration, 𝒚̈𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑦̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑦
  6.72 milli-g 

TLD response, 𝜎𝑟−𝑦 𝜎𝑟−𝑦 = 𝑅𝑜𝑝𝑡𝑦  𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.05 m 
   

Select tank dimensions, 𝑳𝒚, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 = 1
2𝜋 �

𝜋𝑔
𝐿𝑦

tanh (𝜋ℎ
𝐿𝑦

)  𝑳𝒚 = 13.41 m 
𝒉 = 1.87     m 

Shallow water theory check, ℎ/𝐿𝑦  0.14 
   
   

Select screen properties, 𝒚𝟏,𝒚𝟐,𝑪𝒍−𝒚 

𝜁𝑇𝐿𝐷−𝑦 = 𝐶𝑙−𝑦�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑦
)𝛥𝑦𝛯𝑦

𝜎𝑟−𝑦
𝐿𝑦

  

𝛥𝑦 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑦
)
�  

𝛯𝑦 = ∑ �𝑠𝑖𝑛3 �𝜋𝑦𝑗
𝐿𝑦
��𝑛𝑠𝑦

𝑗=1   

𝒚𝟏 = 𝟎.𝟒 𝑳𝒚 
𝒚𝟐 = 𝟎.𝟔 𝑳𝒚 
𝑪𝒍−𝒚 = 𝟐𝟎.𝟐𝟔 
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Table 2. Preliminary TLD Design for Mode 3 (𝑥-direction) for the Indianapolis Building  

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  16.14 milli-g 
Modal Factor, 𝑴𝑭  37.31 % 
Initial modal peak hourly acceleration, 
𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 6.03 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑥  0.33 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   3.01 sec 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   2.09 rad/sec 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(573𝜔𝑠−𝑥) + 0.577

�2 ln(573𝜔𝑠−𝑥)
  3.92  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑥

  1.54 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚

𝜔𝑠−𝑥
2

𝑔
1000

  0.00 m 
Assumed mass ratio, 𝜇  0.05 (5.0%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   

0.06 
(5.6%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  

0.11 
(11.0%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.96 

(96.4%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.32 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  

3.26  

Structure damping ratio, 𝜁𝑠  0.02 (2.0%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.07 (7.2%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.01 m 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝑚 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.81 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕−𝑚 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑥
  3.18 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.01 m 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙 =3.00   m 
𝒉 = 0.40    m 

Shallow water theory check, ℎ/𝐿𝑥  0.13 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟑𝟓.𝟐𝟔 
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Table 3. Preliminary TLD Design for Mode 3 (𝑦-direction) for the Indianapolis Building 

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  20.33 milli-g 
Modal Factor, 𝑴𝑭  74.01 % 
Initial modal peak hourly acceleration, 
𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 15.04 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑦  0.33 Hz 
Structure time period, 𝑇𝑠−𝑦 𝑇𝑠−𝑦 = 1 𝑓𝑠−𝑦⁄   3.01 sec 
Structure natural frequency, 𝜔𝑠−𝑦 𝜔𝑠−𝑦 = 2𝜋 𝑇𝑠−𝑦⁄   2.09 rad/sec 

Peak factor, 𝑃𝐹𝑦 𝑃𝐹𝑦 = �2 ln�573𝜔𝑠−𝑦� + 0.577

�2 ln�573𝜔𝑠−𝑦�
  

3.92 
 

Initial RMS acceleration, 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑦

  3.84 milli-g 

Initial RMS displacement, 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝜔𝑠−𝑦
2

𝑔
1000

  0.01 m 
Assumed mass ratio, 𝜇  0.05 (5.0%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 = 1

4�
𝜇𝑦+𝜇𝑦2

1+34𝜇𝑦
   

0.06 
(5.6%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  

0.11 
(11.0%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
�1+12𝜇𝑦

1+𝜇𝑦
  0.96 

(96.4%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦

𝑓𝑠−𝑦
  0.32 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑦 𝑅𝑜𝑝𝑡𝑦 = 𝜎𝑟−𝑦
𝜎𝑦

= 1+𝜇𝑦

�2𝜇𝑦+
3
2𝜇𝑦

2
  

3.26  

Structure damping ratio, 𝜁𝑠  0.02 (2.0%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑦 𝜁𝑡𝑜𝑡−𝑦 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦     0.07 (7.2%) 
Target RMS displacement, 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑦 = 𝜁𝑠

𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.01 m 
Target RMS acceleration, 𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  2.02 milli-g 
Target peak hourly acceleration, 𝒚̈𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑦̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑦
  7.92 milli-g 

TLD response, 𝜎𝑟−𝑦 𝜎𝑟−𝑦 = 𝑅𝑜𝑝𝑡𝑦  𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡  0.02 m 
   

Select tank dimensions, 𝑳𝒚, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 = 1
2𝜋 �

𝜋𝑔
𝐿𝑦

tanh (𝜋ℎ
𝐿𝑦

)  𝑳𝒚 =3.00   m 
𝒉 = 0.40    m 

Shallow water theory check, ℎ/𝐿𝑦  0.13 
   
   

Select screen properties, 𝒚𝟏,𝒚𝟐,𝑪𝒍−𝒚 

𝜁𝑇𝐿𝐷−𝑦 = 𝐶𝑙−𝑦�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑦
)𝛥𝑦𝛯𝑦

𝜎𝑟−𝑦
𝐿𝑦

  

𝛥𝑦 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑦
)
�  

𝛯𝑦 = ∑ �𝑠𝑖𝑛3 �𝜋𝑦𝑗
𝐿𝑦
��𝑛𝑠𝑦

𝑗=1   

𝒚𝟏 = 𝟎.𝟒 𝑳𝒚 
𝒚𝟐 = 𝟎.𝟔 𝑳𝒚 
𝑪𝒍−𝒚 = 𝟏𝟒.𝟏𝟒 
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Table 4. Water Mass Calculations for TLDs to Suppress Mode 3 for the Indianapolis Building 

 Quantity Equation(s) Value 
C

or
ne

r 
3 

Selected tank dimensions, 𝐿𝑥, 𝐿𝑦,ℎ  
𝐿𝑥 = 3.00 m 
𝐿𝑦 = 3.00 m 
ℎ = 0.40 m 

Water height to tanks length ratio in 𝑥-dir ℎ/𝐿𝑥 0.13 
Water height to tanks length ratio in 𝑦-dir ℎ/𝐿𝑦 0.13 
Water mass of 1 tank, 𝑚𝑤(1𝑡𝑎𝑛𝑘) 𝑚𝑤(1𝑡𝑎𝑛𝑘) = 𝐿𝑥𝐿𝑦ℎ 3575.4 kg 
   

TLD mass of 1 tank in 𝜃-dir, 𝑚𝑇𝐿𝐷−𝜃(1𝑡𝑎𝑛𝑘) 
 𝑚𝑇𝐿𝐷−𝜃(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝜃 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑥
�

𝜋3� ℎ𝐿𝑥
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)  
0.77 𝑚𝑤(1𝑡𝑎𝑛𝑘) =
2741.7 kg 

   

Total building mass, 𝑀𝑠 𝑀𝑠 = ∑ 𝑚𝑓
𝑖=𝑁𝑓
𝑖=1   

 
36412955 kg 

Generalized building mass in 𝜃-dir, 𝑀𝜃
∗  𝑀𝜃

∗ = ∑ �𝑚𝑓�𝑖
𝑖=𝑁𝑓
𝑖=1 (𝜙𝑡2)𝑖  12198340 kg 

Required TLD mass in 𝜃-dir, 𝑚𝑇𝐿𝐷−𝜃 𝑚𝑇𝐿𝐷−𝜃 = 𝜇𝑇𝐿𝐷−𝜃𝑀𝜃
∗  609917 kg 

No. of Tanks required in 𝜃-dir, 𝑁𝑇𝐿𝐷−𝜃 𝑁𝑇𝐿𝐷−𝜃
= 𝑚𝑇𝐿𝐷−𝜃/𝑚𝑇𝐿𝐷−𝜃(1𝑡𝑎𝑛𝑘) 

222.46 

   
   
Chosen No. of tanks for mode 3, 𝑵𝑻𝑳𝑫−𝜽  (Bi-directional tanks) 111 

Actual mass ratio in 𝜽-dir, 𝝁𝜽−𝒂𝒄𝒕𝒖𝒂𝒍 
𝜇𝜃−𝑎𝑐𝑡𝑢𝑎𝑙 =
𝑁𝑇𝐿𝐷−𝜃𝑚𝑇𝐿𝐷−𝜃(1𝑡𝑎𝑛𝑘)/𝑀𝜃

∗   2.49 % 

Mass ratio of contained water, 𝝁𝒘 (Bi-
directional) 𝜇𝑤 = 𝑁𝑇𝐿𝐷−𝜃𝑚𝑤(1𝑡𝑎𝑛𝑘)/𝑀𝑠 1.09 % 

   

C
or

ne
rs

 2
 a

nd
 4

 

   
Selected tank dimensions, 𝐿𝑥,𝐵𝑥, 𝐿𝑦,𝐵𝑦,ℎ  𝐿𝑥 = 3.00 m 

𝐵𝑥 = 13.32 m 
 
𝐿𝑦 = 3.00 m 
𝐵𝑦 = 13.32 m 
 
ℎ = 0.40 m 

Chosen No. of tanks for mode 3, 𝑵𝑻𝑳𝑫−𝜽  (Uni-directional tanks) 25*2 
Actual mass ratio in 𝜽-dir, 𝝁𝜽−𝒂𝒄𝒕𝒖𝒂𝒍 𝜇𝜃−𝑎𝑐𝑡𝑢𝑎𝑙 =

𝑁𝑇𝐿𝐷−𝜃𝑚𝑇𝐿𝐷−𝜃(1𝑡𝑎𝑛𝑘)/𝑀𝜃
∗   

2.49 % 

Mass ratio of contained water, 𝝁𝒘 (Uni-
directional) 

𝜇𝑤 = 𝑁𝑇𝐿𝐷−𝜃𝑚𝑤(1𝑡𝑎𝑛𝑘)/𝑀𝑠 1.09 % 

  
Mass ratio of contained water, 𝝁𝒘 (Bi/Uni-directional) 
 

 
2.18 % 
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(a) 

 

(b) 

 
Fig. 1. Time History of the Indianapolis Building at 𝐶𝑀 with No-TLD Installed for the (a) 

Velocity and (b) Acceleration in the 𝑥-direction (𝑧 = 154.6 m; 𝜃𝑤 = 210∘) 
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(a) 

 

(b) 

 
Fig. 2. Time History of the Indianapolis Building at 𝐶𝑀 with No-TLD Installed for the (a) 

Velocity and (b) Acceleration in the 𝑦-direction (𝑧 = 154.6 m; 𝜃𝑤 = 210∘) 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 3. TLD (a) Mass Ratio, (b) Frequency Ratio, and (c) Damping Ratio with respect to the 
Normalized Amplitude of Excitation for Mode 2 tanks in the 𝑦-direction of the 
Indianapolis Building 
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(a) 

 

(b) 

 
Fig. 4. Time Histories of the Indianapolis Building at the 𝐶𝑀 with TLDs Installed to Suppress the 

First two Modes for the (a) Velocity, and (c) Acceleration in the 𝑥-direction (𝑧 = 154.6 m; 
𝜃𝑤 = 210∘) 
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(a) 

 

(b) 

 
Fig. 5. Time Histories of the Indianapolis Building at the 𝐶𝑀 with TLDs Installed to Suppress the 

First two Modes for the (a) Velocity, and (b) Acceleration in the 𝑦-direction (𝑧 = 154.6 m; 
𝜃𝑤 = 210∘) 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6. TLD (a) Mass Ratio, (b) Frequency Ratio, and (c) Damping Ratio with respect to the 

Normalized Amplitude of Excitation for Mode 3 tanks in the 𝑥-direction of the 
Indianapolis Building 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 7. TLD (a) Mass Ratio, (b) Frequency Ratio, and (c) Damping Ratio with respect to the 

Normalized Amplitude of Excitation for Mode 3 tanks in 𝑦-direction of the Indianapolis 
Building 
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Table 1. TLD Design for Vertical Damping Screens (𝜇 = 2.5%) 

Quantity Equation(s) Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  45.56 milli-g 
Structure cyclic frequency, 𝑓𝑠−𝑥  0.558 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   1.792 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   3.507 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(181𝜔𝑠−𝑥) + 0.577

�2 ln(181𝜔𝑠−𝑥)
  3.753  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑃𝐹𝑥

  12.15 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜔𝑠−𝑥
2

𝑔
1000

  9.700 mm 
Assumed water mass ratio, 𝜇𝑤  0.035 (3.50%) 
Assumed mass ratio, 𝜇  0.027 (2.69%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.039 (3.96%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.078 (7.83%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.981 (98.1%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.547 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  4.541  

Structure damping ratio, 𝜁𝑠  0.0006 (0.06%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.0401 (4.01%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡2   1.190 mm 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  01.73 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝐹𝑥
  06.50 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  5.380 mm 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 0.966  m 
𝒉 = 0.120   m 

Shallow water theory check, ℎ/𝐿𝑥  0.124 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟖.𝟐𝟕 
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Table 2. TLD Design for Vertical Damping Screens (µ =3.5%) 

Quantity Equation(s) Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  65.81 milli-g 
Structure cyclic frequency, 𝑓𝑠−𝑥  0.558 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   1.792 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   3.507 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(181𝜔𝑠−𝑥) + 0.577

�2 ln(181𝜔𝑠−𝑥)
  3.753  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑃𝐹𝑥

  17.55 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜔𝑠−𝑥
2

𝑔
1000

  14.01 mm 
Assumed water mass ratio, 𝜇𝑤  0.035 (3.50%) 
Assumed mass ratio, 𝜇  0.027 (2.69%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.046 (4.69%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.092 (9.23%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.974 (97.4%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.543 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  3.861  

Structure damping ratio, 𝜁𝑠  0.0006 (0.06%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.0047 (4.74%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡2   1.570 mm 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  02.40 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝐹𝑥
  09.00 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  6.080 mm 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 0.966  m 
𝒉 = 0.118   m 

Shallow water theory check, ℎ/𝐿𝑥  0.122 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟖.𝟑𝟏 
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Table 3. TLD Design for Vertical Damping Screens (𝜇 = 5.0%) 

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  90.00 milli-g 
Structure cyclic frequency, 𝑓𝑠−𝑥  0.558 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   1.792 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   3.507 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(181𝜔𝑠−𝑥) + 0.577

�2 ln(181𝜔𝑠−𝑥)
  3.753  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑃𝐹𝑥

  24.00 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜔𝑠−𝑥
2

𝑔
1000

  19.15 mm 
Assumed water mass ratio, 𝜇𝑤  0.050 (3.50%) 
Assumed mass ratio, 𝜇  0.039 (3.85%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.056 (5.62%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.011 (10.98%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.964 (96.42%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.538 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  3.259  

Structure damping ratio, 𝜁𝑠  0.0006 (0.06%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.0057 (5.67%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡2   1.970 mm 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  03.33 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝐹𝑥
  12.50 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  6.420 mm 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 0.966  m 
𝒉 = 0.115   m 

Shallow water theory check, ℎ/𝐿𝑥  0.119 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟖.𝟑𝟓 
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Table 4. TLD Design for Mode 2 of the Indianapolis Building in the y-direction (µ = 2.0%, 
Serviceability Return Period = 50 years) 

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  18.501 milli-g 
Modal Factor, 𝑴𝑭  94.670 % 
Initial modal peak hourly acceleration, 
𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 17.515 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑦  0.162 Hz 
Structure time period, 𝑇𝑠−𝑦 𝑇𝑠−𝑦 = 1 𝑓𝑠−𝑦⁄   6.180 s 
Structure natural frequency, 𝜔𝑠−𝑦 𝜔𝑠−𝑦 = 2𝜋 𝑇𝑠−𝑦⁄   1.017 rad/s 

Peak factor, 𝑃𝐹𝑦 𝑃𝐹𝑦 = �2 ln�573𝜔𝑠−𝑦� + 0.577

�2 ln�573𝜔𝑠−𝑦�
  3.730  

Initial RMS acceleration, 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑦

  4.700 milli-g 

Initial RMS displacement, 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝜔𝑠−𝑦
2

𝑔
1000

  0.045 m 
Assumed mass ratio, 𝜇  0.020 (2.00%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 = 1

4�
𝜇𝑦+𝜇𝑦2

1+34𝜇𝑦
   0.035 (3.50%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.070 (7.02%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
�1+12𝜇𝑦

1+𝜇𝑦
  0.985 (98.53%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦

𝑓𝑠−𝑦
  0.159 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑦 𝑅𝑜𝑝𝑡𝑦 = 𝜎𝑟−𝑦
𝜎𝑦

= 1+𝜇𝑦

�2𝜇𝑦+
3
2𝜇𝑦

2
  5.062  

Structure damping ratio, 𝜁𝑠  0.020 (2.00%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑦 𝜁𝑡𝑜𝑡−𝑦 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦     0.051 (5.14%) 
Target RMS displacement, 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑦 = 𝜁𝑠

𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.028 m 
Target RMS acceleration, 𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  2.930 milli-g 
Target peak hourly acceleration, 𝒚̈𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑦̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑦
  10.921 milli-g 

TLD response, 𝜎𝑟−𝑦 𝜎𝑟−𝑦 = 𝑅𝑜𝑝𝑡𝑦  𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.141 m 
   

Select tank dimensions, 𝑳𝒚, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 = 1
2𝜋 �

𝜋𝑔
𝐿𝑦

tanh (𝜋ℎ
𝐿𝑦

)  𝑳𝒚= 12.00  m 
𝒉 =  1.58   m 

Shallow water theory check, ℎ/𝐿𝑦  0.131 
   
   

Select screen properties, 𝒚𝟏,𝒚𝟐,𝑪𝒍−𝒚 

𝜁𝑇𝐿𝐷−𝑦 = 𝐶𝑙−𝑦�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑦
)𝛥𝑦𝛯𝑦

𝜎𝑟−𝑦
𝐿𝑦

  

𝛥𝑦 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑦
)
�  

𝛯𝑦 = ∑ �𝑠𝑖𝑛3 �𝜋𝑦𝑗
𝐿𝑦
��𝑛𝑠𝑦

𝑗=1   

𝒚𝟏 = 𝟎.𝟒 𝑳𝒚 
𝒚𝟐 = 𝟎.𝟔 𝑳𝒚 
𝑪𝒍−𝒚 = 𝟑.𝟖𝟏 
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Table 5. Water Mass Calculations for TLDs to Suppress Mode 2 for the Indianapolis Building 
(𝜇 = 2.0%) 

Quantity Equation(s) Value 

Selected tank dimensions, 𝐿𝑦,𝐵𝑦,ℎ𝑦  
𝐿𝑦 = 12.00 m 
𝐵𝑦 = 3.40 m 
ℎ𝑦 = 1.58 m 

Water height to tanks length ratio in 𝑦-dir ℎ𝑦/𝐿𝑦 0.13 
Water mass of 1 tank, 𝑚𝑤(1𝑡𝑎𝑛𝑘) 𝑚𝑤(1𝑡𝑎𝑛𝑘) = 𝐿𝑦𝐵𝑦ℎ𝑦 64309.3 kg 
   

TLD mass of 1 tank in 𝑦-dir, 𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘) 
 𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝑦 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑦
�

𝜋3� ℎ𝐿𝑦
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)  
0.77 𝑚𝑤(1𝑡𝑎𝑛𝑘) =
49357.0 kg 

   

Total building mass, 𝑀𝑠 𝑀𝑠 = ∑ 𝑚𝑓
𝑖=𝑁𝑓
𝑖=1   

 
36412955 kg 

Generalized building mass in 𝑦-dir, 𝑀𝑦
∗  𝑀𝑦

∗ = ∑ �𝑚𝑓�𝑖
𝑖=𝑁𝑓
𝑖=1 (𝜙𝑡2)𝑖  10013563 kg 

Required TLD mass in 𝑦-dir, 𝑚𝑇𝐿𝐷−𝑦 𝑚𝑇𝐿𝐷−𝑦 = 𝜇𝑇𝐿𝐷−𝑦𝑀𝑦
∗  100136 kg 

No. of Tanks required in 𝑦-dir, 𝑁𝑇𝐿𝐷−𝑦 𝑁𝑇𝐿𝐷−𝑦 = 𝑚𝑇𝐿𝐷−𝑦/𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘) 4.058 
   
   
Chosen No. of tanks for mode 2, 𝑵𝑻𝑳𝑫−𝒚   4 
Actual mass ratio in 𝒚-dir, 𝝁𝒚−𝒂𝒄𝒕𝒖𝒂𝒍 𝜇𝑦−𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑁𝑇𝐿𝐷−𝑦𝑚𝑇𝐿𝐷−𝑦(1𝑡𝑎𝑛𝑘)/𝑀𝑦

∗   1.97 % 
Mass ratio of contained water, 𝝁𝒘 𝜇𝑤 = 𝑁𝑇𝐿𝐷−𝑦𝑚𝑤(1𝑡𝑎𝑛𝑘)/𝑀𝑠 0.71 % 
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Fig. 1. Energy Dissipation Frequency Response Curves for 𝐶𝑙 = 5.69 and 𝛬 = 0.005  

 
Fig. 2. Energy Dissipation Frequency Response Curves for 𝐶𝑙 = 5.69 and 𝛬 = 0.021  

 
Fig. 3. Time Histories of 𝜂′ for 𝜃 = 0∘, 30∘ and 60∘ at 𝛽 = 1.01 for 𝐶𝑙 = 5.69  

 
Fig. 4. Time Histories of 𝐹𝑤′  for 𝜃 = 0∘, 30∘ and 60∘ at 𝛽 = 1.01 for 𝐶𝑙 = 5.69  
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Table 1. Preliminary TLD Design for Vertical Damping Screens (𝜇 =2.5%) 

Quantity Equation(s) Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  45.56 milli-g 
Structure cyclic frequency, 𝑓𝑠−𝑥  0.59 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   1.79 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   3.51 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(181𝜔𝑠−𝑥) + 0.577

�2 ln(181𝜔𝑠−𝑥)
  3.75  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑃𝐹𝑥

  12.15 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜔𝑠−𝑥
2

𝑔
1000

  9.70 mm 
Assumed mass ratio, 𝜇  0.025 (2.50%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.039 (3.96%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.078 (7.83%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.981 (98.1%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.547 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  4.541  

Structure damping ratio, 𝜁𝑠  0.0006 (0.06%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.0401 (4.01%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡2   1.190 mm 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  01.73 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝐹𝑥
  06.50 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  5.380 mm 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 0.966  m 
𝒉 = 0.120   m 

Shallow water theory check, ℎ/𝐿𝑥  0.124 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟖.𝟐𝟕 
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Table 2. Preliminary TLD Design for Vertical Damping Screens (𝜇 =3.5%) 

Quantity Equation(s) Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  65.81 milli-g 
Structure cyclic frequency, 𝑓𝑠−𝑥  0.558 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   1.792 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   3.507 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(181𝜔𝑠−𝑥) + 0.577

�2 ln(181𝜔𝑠−𝑥)
  3.753  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑃𝐹𝑥

  17.55 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜔𝑠−𝑥
2

𝑔
1000

  14.01 mm 
Assumed mass ratio, 𝜇  0.035 (3.50%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.046 (4.69%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.092 (9.23%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.974 (97.4%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.543 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  3.861  

Structure damping ratio, 𝜁𝑠  0.0006 (0.06%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.0047 (4.74%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡2   1.570 mm 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  02.40 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝐹𝑥
  09.00 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  6.080 mm 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 0.966  m 
𝒉 = 0.118   m 

Shallow water theory check, ℎ/𝐿𝑥  0.122 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟖.𝟑𝟏 
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Table 3. Preliminary TLD Design for Vertical Damping Screens (𝜇 =5.0%) 

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  90.00 milli-g 
Structure cyclic frequency, 𝑓𝑠−𝑥  0.59 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   1.79 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   3.51 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(181𝜔𝑠−𝑥) + 0.577

�2 ln(181𝜔𝑠−𝑥)
  3.75  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑃𝐹𝑥

  24.00 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝜔𝑠−𝑥
2

𝑔
1000

  19.15 mm 
Assumed mass ratio, 𝜇  0.050 (5.00%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.056 (5.62%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.011 (10.98%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.964 (96.42%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.538 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  3.259  

Structure damping ratio, 𝜁𝑠  0.0006 (0.06%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.0057 (5.67%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡2   1.970 mm 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  03.33 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝐹𝑥
  12.50 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡  6.420 mm 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙= 0.966  m 
𝒉 = 0.115   m 

Shallow water theory check, ℎ/𝐿𝑥  0.119 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟖.𝟑𝟓 
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Table 1. Preliminary TLD Design for Mode 2 of the Indianapolis Building in the 𝑦-direction  
(𝜇 = 6.0%, Serviceability Return Period = 10 years)  

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  14.138 milli-g 
Modal Factor, 𝑴𝑭  94.080 % 
Initial modal peak hourly acceleration, 
𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 13.243 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑦  0.162 Hz 
Structure time period, 𝑇𝑠−𝑦 𝑇𝑠−𝑦 = 1 𝑓𝑠−𝑦⁄   6.180 s 
Structure natural frequency, 𝜔𝑠−𝑦 𝜔𝑠−𝑦 = 2𝜋 𝑇𝑠−𝑦⁄   1.017 rad/s 

Peak factor, 𝑃𝐹𝑦 𝑃𝐹𝑦 = �2 ln�573𝜔𝑠−𝑦� + 0.577

�2 ln�573𝜔𝑠−𝑦�
  3.730  

Initial RMS acceleration, 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑦

  3.400 milli-g 

Initial RMS displacement, 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝜔𝑠−𝑦
2

𝑔
1000

  0.034 M 
Assumed mass ratio, 𝜇  0.060 (6.00%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 = 1

4�
𝜇𝑦+𝜇𝑦2

1+34𝜇𝑦
   0.062 (6.20%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.120 (12.0%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
�1+12𝜇𝑦

1+𝜇𝑦
  0.957 (95.7%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦

𝑓𝑠−𝑦
  0.155 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑦 𝑅𝑜𝑝𝑡𝑦 = 𝜎𝑟−𝑦
𝜎𝑦

= 1+𝜇𝑦

�2𝜇𝑦+
3
2𝜇𝑦

2
  2.993  

Structure damping ratio, 𝜁𝑠  0.020 (2.00%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑦 𝜁𝑡𝑜𝑡−𝑦 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦     0.078 (7.80%) 
Target RMS displacement, 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑦 = 𝜁𝑠

𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.017 m 
Target RMS acceleration, 𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  1.801 milli-g 
Target peak hourly acceleration, 𝒚̈𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑦̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑦
  6.720 milli-g 

TLD response, 𝜎𝑟−𝑦 𝜎𝑟−𝑦 = 𝑅𝑜𝑝𝑡𝑦  𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.051 m 
   

Select tank dimensions, 𝑳𝒚, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 = 1
2𝜋 �

𝜋𝑔
𝐿𝑦

tanh (𝜋ℎ
𝐿𝑦

)  𝑳𝒚 = 13.41 m 
𝒉 = 1.87     m 

Shallow water theory check, ℎ/𝐿𝑦  0.14 
   
   

Select screen properties, 𝒚𝟏,𝒚𝟐,𝑪𝒍−𝒚 

𝜁𝑇𝐿𝐷−𝑦 = 𝐶𝑙−𝑦�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑦
)𝛥𝑦𝛯𝑦

𝜎𝑟−𝑦
𝐿𝑦

  

𝛥𝑦 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑦
)
�  

𝛯𝑦 = ∑ �𝑠𝑖𝑛3 �𝜋𝑦𝑗
𝐿𝑦
��𝑛𝑠𝑦

𝑗=1   

𝒚𝟏 = 𝟎.𝟒 𝑳𝒚 
𝒚𝟐 = 𝟎.𝟔 𝑳𝒚 
𝑪𝒍−𝒚 = 𝟐𝟎.𝟐𝟔 

  



Appendix-D 274 
 

Table 2. Preliminary TLD Design for Mode 3 (𝑥-direction) for the Indianapolis Building (𝜇 =
5.0%, Serviceability Return Period = 10 years) 

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  16.141 milli-g 
Modal Factor, 𝑴𝑭  37.310 % 
Initial modal peak hourly acceleration, 
𝒙̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 6.033 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑥  0.332 Hz 
Structure time period, 𝑇𝑠−𝑥 𝑇𝑠−𝑥 = 1 𝑓𝑠−𝑥⁄   3.013 s 
Structure natural frequency, 𝜔𝑠−𝑥 𝜔𝑠−𝑥 = 2𝜋 𝑇𝑠−𝑥⁄   2.085 rad/s 
Peak factor, 𝑃𝐹𝑥 𝑃𝐹𝑥 = �2 ln(573𝜔𝑠−𝑥) + 0.577

�2 ln(573𝜔𝑠−𝑥)
  3.918  

Initial RMS acceleration, 𝝈𝒙̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑥̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑥

  1.540 milli-g 
Initial RMS displacement, 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑥̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚

𝜔𝑠−𝑥
2

𝑔
1000

  0.003 m 
Assumed mass ratio, 𝜇  0.050 (5.00%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥 = 1

4�
𝜇𝑥+𝜇𝑥2

1+34𝜇𝑥
   0.056 (5.60%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.110 (11.0%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 =
�1+12𝜇𝑥

1+𝜇𝑥
  0.964 (96.4%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 𝛺𝑜𝑝𝑡𝑥 = 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥
𝑓𝑠−𝑥

  0.320 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑥 𝑅𝑜𝑝𝑡𝑥 = 𝜎𝑟−𝑥
𝜎𝑥

= 1+𝜇𝑥

�2𝜇𝑥+
3
2𝜇𝑥

2
  3.260  

Structure damping ratio, 𝜁𝑠  0.020 (2.00%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑥 𝜁𝑡𝑜𝑡−𝑥 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑥     0.072 (7.20%) 
Target RMS displacement, 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑥 = 𝜁𝑠

𝜎𝑥−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.007 m 
Target RMS acceleration, 𝝈𝒙̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝑚 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.810 milli-g 
Target peak hourly acceleration, 𝒙̈𝒕𝒂𝒓𝒈𝒆𝒕−𝑚 𝜎𝑥̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑥̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑥
  3.175 milli-g 

TLD response, 𝜎𝑟−𝑥 𝜎𝑟−𝑥 = 𝑅𝑜𝑝𝑡𝑥  𝜎𝑥−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  0.006 m 
   

Select tank dimensions, 𝑳𝒙, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = 1
2𝜋 �

𝜋𝑔
𝐿𝑥

tanh (𝜋ℎ
𝐿𝑥

)  𝑳𝒙 =3.00   m 
𝒉 = 0.40    m 

Shallow water theory check, ℎ/𝐿𝑥  0.13 
   
   

Select screen properties, 𝒙𝟏,𝒙𝟐,𝑪𝒍−𝒙 

𝜁𝑇𝐿𝐷−𝑥 = 𝐶𝑙−𝑥�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑥
)𝛥𝑥𝛯𝑥

𝜎𝑟−𝑥
𝐿𝑥

  

𝛥𝑥 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑥
)
�  

𝛯𝑥 = ∑ �𝑠𝑖𝑛3 �𝜋𝑥𝑗
𝐿𝑥
��𝑛𝑠𝑥

𝑗=1   

𝒙𝟏 = 𝟎.𝟒 𝑳𝒙 
𝒙𝟐 = 𝟎.𝟔 𝑳𝒙 
𝑪𝒍−𝒙 = 𝟑𝟓.𝟐𝟔 
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Table 3. Preliminary TLD Design for Mode 3 (𝑦-direction) for the Indianapolis Building (𝜇 =
5.0%, Serviceability Return Period = 10 years) 

Quantity Equation(s)  Value  
Initial peak hourly acceleration, 𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍  20.333 milli-g 
Modal Factor, 𝑴𝑭  74.010 % 
Initial modal peak hourly acceleration, 
𝒚̈𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .𝑀𝐹 15.044 milli-g 

Structure cyclic frequency, 𝑓𝑠−𝑦  0.332 Hz 
Structure time period, 𝑇𝑠−𝑦 𝑇𝑠−𝑦 = 1 𝑓𝑠−𝑦⁄   3.013 s 
Structure natural frequency, 𝜔𝑠−𝑦 𝜔𝑠−𝑦 = 2𝜋 𝑇𝑠−𝑦⁄   2.085 rad/s 

Peak factor, 𝑃𝐹𝑦 𝑃𝐹𝑦 = �2 ln�573𝜔𝑠−𝑦� + 0.577

�2 ln�573𝜔𝑠−𝑦�
  3.918  

Initial RMS acceleration, 𝝈𝒚̈−𝒊𝒏𝒊𝒕𝒊𝒂𝒍−𝒎 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 =  𝑦̈𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝑃𝐹𝑦

  3.840 milli-g 

Initial RMS displacement, 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚 = 𝜎𝑦̈−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
𝜔𝑠−𝑦
2

𝑔
1000

  0.009 m 
Assumed mass ratio, 𝜇  0.050 (5.00%) 
Effective damping provided by TLD, 
𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦 = 1

4�
𝜇𝑦+𝜇𝑦2

1+34𝜇𝑦
   0.056 (5.60%) 

Optimal damping ratio, 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝜁𝑇𝐿𝐷−𝑜𝑝𝑡𝑥 = � 𝜇𝑥+
3
4𝜇𝑥

2

4+6𝜇𝑥+2𝜇𝑥2
  0.110 (11.0%) 

Optimal tuning ratio, 𝛺𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
�1+12𝜇𝑦

1+𝜇𝑦
  0.964 (96.4%) 

Optimal TLD cyclic frequency, 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 𝛺𝑜𝑝𝑡𝑦 =
𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦

𝑓𝑠−𝑦
  0.320 Hz 

Optimal response ratio, 𝑅𝑜𝑝𝑡𝑦 𝑅𝑜𝑝𝑡𝑦 = 𝜎𝑟−𝑦
𝜎𝑦

= 1+𝜇𝑦

�2𝜇𝑦+
3
2𝜇𝑦

2
  3.260  

Structure damping ratio, 𝜁𝑠  0.020 (2.00%) 
Total structure damping, 𝜁𝑡𝑜𝑡−𝑦 𝜁𝑡𝑜𝑡−𝑦 = 0.8𝜁𝑠 + 𝜁𝑇𝐿𝐷−𝑒𝑓𝑓−𝑜𝑝𝑡𝑦     0.072 (7.20%) 
Target RMS displacement, 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 𝜁𝑡𝑜𝑡−𝑦 = 𝜁𝑠

𝜎𝑦−𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑚
2

𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚2   0.006 m 
Target RMS acceleration, 𝝈𝒚̈−𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 = 𝜔𝑠2 𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚  2.020 milli-g 
Target peak hourly acceleration, 𝒚̈𝒕𝒂𝒓𝒈𝒆𝒕−𝒎 𝜎𝑦̈−𝑡𝑎𝑟𝑔𝑒𝑡−𝑚 =  𝑦̈𝑡𝑎𝑟𝑔𝑒𝑡−𝑚

𝑃𝐹𝑦
  7.916 milli-g 

TLD response, 𝜎𝑟−𝑦 𝜎𝑟−𝑦 = 𝑅𝑜𝑝𝑡𝑦  𝜎𝑦−𝑡𝑎𝑟𝑔𝑒𝑡  0.015 m 
   

Select tank dimensions, 𝑳𝒚, 𝒉 𝑓𝑇𝐿𝐷−𝑜𝑝𝑡𝑦 = 1
2𝜋 �

𝜋𝑔
𝐿𝑦

tanh (𝜋ℎ
𝐿𝑦

)  𝑳𝒚 =3.00   m 
𝒉 = 0.40    m 

Shallow water theory check, ℎ/𝐿𝑦  0.13 
   
   

Select screen properties, 𝒚𝟏,𝒚𝟐,𝑪𝒍−𝒚 

𝜁𝑇𝐿𝐷−𝑦 = 𝐶𝑙−𝑦�
32
𝜋3
𝑡𝑎𝑛ℎ2(𝜋ℎ

𝐿𝑦
)𝛥𝑦𝛯𝑦

𝜎𝑟−𝑦
𝐿𝑦

  

𝛥𝑦 = �1
3

+ 1

𝑠𝑖𝑛ℎ2(𝜋ℎ𝐿𝑦
)
�  

𝛯𝑦 = ∑ �𝑠𝑖𝑛3 �𝜋𝑦𝑗
𝐿𝑦
��𝑛𝑠𝑦

𝑗=1   

𝒚𝟏 = 𝟎.𝟒 𝑳𝒚 
𝒚𝟐 = 𝟎.𝟔 𝑳𝒚 
𝑪𝒍−𝒚 = 𝟏𝟒.𝟏𝟒 
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Table 4. Water Mass Calculations for TLDs to Suppress Mode 3 for the Indianapolis Building 
(𝜇 = 5.0%) 

Quantity Equation(s) Value 

Selected tank dimensions, 𝐿𝑥,𝐵𝑥 𝐿𝑦,𝐵𝑦,ℎ𝑥,ℎ𝑦  

𝐿𝑥 = 𝐿𝑦 = 3.00 m 
 
𝐵𝑥 = 𝐵𝑦 = 15.00 m 
 
ℎ𝑥 = ℎ𝑦 = 0.40 m 

Water height to tanks length ratio in 𝑥-dir ℎ𝑥/𝐿𝑥  
0.13 

Water height to tanks length ratio in 𝑦-dir ℎ𝑦/𝐿𝑦 0.13 
Water mass of 1 tank, 𝑚𝑤(1𝑡𝑎𝑛𝑘) 𝑚𝑤(1𝑡𝑎𝑛𝑘) = 𝐿𝑥𝐵𝑥ℎ𝑥 = 𝐿𝑦𝐵𝑦ℎ𝑦 18000 kg 
   

TLD mass of 1 tank in 𝜃-dir, 𝑚𝑇𝐿𝐷−𝜃(1𝑡𝑎𝑛𝑘) 
 𝑚𝑇𝐿𝐷−𝜃(1𝑡𝑎𝑛𝑘) ≈ 𝑚1−𝜃 =
8 𝑡𝑎𝑛ℎ�𝜋 ℎ

𝐿𝑥
�

𝜋3� ℎ𝐿𝑥
�

𝑚𝑤(1𝑡𝑎𝑛𝑘)  
0.767 𝑚𝑤(1𝑡𝑎𝑛𝑘) =
13806 kg 

   

Total building mass, 𝑀𝑠 𝑀𝑠 = ∑ 𝑚𝑓
𝑖=𝑁𝑓
𝑖=1   

 
36412955 kg 

Generalized building mass in 𝜃-dir, 𝑀𝜃
∗  𝑀𝜃

∗ = ∑ �𝑚𝑓�𝑖
𝑖=𝑁𝑓
𝑖=1 (𝜙𝑡2)𝑖  12198340 kg 

Required TLD mass in 𝜃-dir, 𝑚𝑇𝐿𝐷−𝜃 𝑚𝑇𝐿𝐷−𝜃 = 𝜇𝑇𝐿𝐷−𝜃𝑀𝜃
∗  609917 kg 

No. of Tanks required in 𝜃-dir, 𝑁𝑇𝐿𝐷−𝜃 𝑁𝑇𝐿𝐷−𝜃
= 𝑚𝑇𝐿𝐷−𝜃/𝑚𝑇𝐿𝐷−𝜃(1𝑡𝑎𝑛𝑘) 

44.17 

   
   
Chosen No. of tanks for mode 3, 𝑵𝑻𝑳𝑫−𝜽  (Uni-directional tanks) 4 sets of 11 tanks 

Actual mass ratio in 𝜽-dir, 𝝁𝜽−𝒂𝒄𝒕𝒖𝒂𝒍 
𝜇𝜃−𝑎𝑐𝑡𝑢𝑎𝑙 =
𝑁𝑇𝐿𝐷−𝜃𝑚𝑇𝐿𝐷−𝜃(1𝑡𝑎𝑛𝑘)/𝑀𝜃

∗   4.98 % 

Mass ratio of contained water, 𝝁𝒘  𝜇𝑤 = 𝑁𝑇𝐿𝐷−𝜃𝑚𝑤(1𝑡𝑎𝑛𝑘)/𝑀𝑠 4.35 % 
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Fig. 1. Second Modal RMS Structural Accelerations at the 𝐶𝑀 of the Indianapolis Building in the 

𝑦-direction (𝑧 =154.6 m) Employing Semi-Active TLDs Utilizing Various Averaging 
Time (𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘, Return Period=10 Years) 

 
Fig. 2. Screen Loss Coefficient Values of Semi-Active TLDs Installed to Suppress Mode 2 of the 

Indianapolis Building Placed at the 𝐶𝑀 in the 𝑦-direction (𝑧 =154.6 m) Utilizing Various 
Averaging Time (𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘, Return Period=10 Years) 
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Fig. 3. Third Modal RMS Structural Accelerations at Corners 3 and 4 of the Indianapolis Building 

in the 𝑥-direction (𝑧 =154.6 m) Employing Semi-Active TLDs Utilizing Various 
Averaging Time (𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘, Return Period=10 Years) 

 
Fig. 4. Screen Loss Coefficient Values of Semi-Active TLDs Installed to Suppress Mode 3 of the 

Indianapolis Building Placed at Corners 3 and 4 in the 𝑥-direction (𝑧 =154.6 m) Utilizing 
Various Averaging Time (𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘, Return Period=10 Years) 
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Fig. 5. Third Modal RMS Structural Accelerations at Corners 2 and 3 of the Indianapolis Building 

in the 𝑦-direction (𝑧 =154.6 m) Employing Semi-Active TLDs Utilizing Various 
Averaging Time (𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘, Return Period=10 Years) 

 
Fig. 6. Screen Loss Coefficient Values of Semi-Active TLDs Installed to Suppress Mode 3 of the 

Indianapolis Building Placed at Corners 2 and 3 in the 𝑦-direction (𝑧 =154.6 m) Utilizing 
Various Averaging Time (𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘, Return Period=10 Years) 
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Fig. 7. Second Modal RMS Structural Accelerations at the 𝐶𝑀 of the Indianapolis Building in the 

𝑦-direction (𝑧 =154.6 m) Employing Semi-Active TLDs Utilizing Various Updating Time 
(𝐴𝑇 = 60 min, 𝜃𝑤 = 210∘, Return Period=10 Years) 

 
Fig. 8. Screen Loss Coefficient Values of Semi-Active TLDs Installed to Suppress Mode 2 of the 

Indianapolis Building Placed at the 𝐶𝑀 in the 𝑦-direction (𝑧 =154.6 m) Utilizing Various 
Updating Time (𝐴𝑇 = 60 min, 𝜃𝑤 = 210∘, Return Period=10 Years) 
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Fig. 9. Third Modal RMS Structural Accelerations at Corners 3 and 4 of the Indianapolis Building 

in the 𝑥-direction (𝑧 =154.6 m) Employing Semi-Active TLDs Utilizing Various Updating 
Time (𝐴𝑇 = 60 min, 𝜃𝑤 = 210∘, Return Period=10 Years) 

 
Fig. 10. Screen Loss Coefficient Values of Semi-Active TLDs Installed to Suppress Mode 3 of the 

Indianapolis Building Placed at Corners 3 and 4 in the 𝑥-direction (𝑧 =154.6 m) Utilizing 
Various Updating Time (𝐴𝑇 = 60 min, 𝜃𝑤 = 210∘, Return Period=10 Years) 
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Fig. 11. Third Modal RMS Structural Accelerations at Corners 2 and 3 of the Indianapolis Building 

in the 𝑦-direction (𝑧 =154.6 m) Employing Semi-Active TLDs Utilizing Various Updating 
Time (𝐴𝑇 = 60 min, 𝜃𝑤 = 210∘, Return Period=10 Years) 

 
Fig. 12. Screen Loss Coefficient Values of Semi-Active TLDs Installed to Suppress Mode 3 of the 

Indianapolis Building Placed at Corners 2 and 3 in the 𝑦-direction (𝑧 =154.6 m) Utilizing 
Various Updating Time (𝐴𝑇 = 60 min, 𝜃𝑤 = 210∘, Return Period=10 Years) 
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Fig. 13. Second Modal RMS Structural Accelerations at the 𝐶𝑀 of the Indianapolis Building in the 
𝑦-direction (𝑧 =154.6 m) Employing the Semi-Active TLDs Utilizing Various Wind 
Loading Directions (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, Return Period=10 Years) 

 
Fig. 14. Third Modal RMS Structural Accelerations at Corners 3 and 4 of the Indianapolis Building 

in the 𝑥-direction (𝑧 =154.6 m) Employing Semi-Active TLDs Utilizing Various Wind 
Loading Directions (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, Return Period=10 Years) 

 
Fig. 15. Third Modal RMS Structural Accelerations at Corners 2 and 3 of the Indianapolis Building 

in the 𝑦-direction (𝑧 =154.6 m) Employing Semi-Active TLDs Utilizing Various Wind 
Loading Directions (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, Return Period=10 Years)  
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Fig. 16. Second Modal RMS Structural Accelerations at the 𝐶𝑀 of the Indianapolis Building in the 

𝑦-direction (𝑧 =154.6 m) Employing the Semi-Active Control Strategy Utilizing Various 
Return Periods (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘) 

 
Fig. 17. Third Modal RMS Structural Accelerations at Corners 3 and 4 of the Indianapolis Building 

in the 𝑥-direction (𝑧 =154.6 m) Employing the Semi-Active Control Strategy Utilizing 
Various Return Periods (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘) 

 
Fig. 18. Third Modal RMS Structural Accelerations at Corners 2 and 3 of the Indianapolis Building 

in the 𝑦-direction (𝑧 =154.6 m) Employing Semi-Active Control Strategy Utilizing 
Various Return Periods (𝐴𝑇 = 60 min, 𝑈𝑇 = 1.0 𝑇, 𝜃𝑤 = 210∘) 
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