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Abstract 

Quantitative water fat imaging offers a non-invasive method for monitoring and staging 

diseases associated with changes in either water or fat content in tissue. In this work absolute 

water and fat mass density measurement with in vivo Magnetic Resonance Imaging (MRI) is 

demonstrated. T1 independent, T2
* corrected chemical shift based water-fat separated images 

are acquired. By placing a phantom with known mass density in the field of view for signal 

intensity calibration, absolute water or fat mass density can be computed, assuming the B1
+ 

(transmit) and B1
- (receive) fields can be measured. Phantom experiments with known water 

fat concentration were conducted to validate the feasibility of proposed method and in vivo 

data was collected from healthy volunteers. Results show good agreement with known values 

of in vivo water density. Each measurement was within one breath hold. Fast absolute 

quantification of water and fat with MRI is feasible in the abdomen. 
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Chapter 1  

1 Introduction 

In this thesis, a new method for fast absolute quantification of water and fat content in 

vivo is introduced. A series of corrections were combined to correct Magnetic Imaging 

Resonance (MRI) images so that absolute water and fat mass density maps can be 

generated. Each measurement is under one breath hold. In this chapter, a brief 

introduction to background of each of these correction methods is provided to help 

explain the experimental method for absolute water and fat quantification. 
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1.1 Non-Alcoholic Fatty Liver Disease (NAFLD) 

Nonalcoholic fatty liver disease (NAFLD), which is characterized by fat accumulation in 

the liver, is commonly seen in the clinic. NAFLD affects 10-24% of the population 

worldwide (1). NAFLD is considered to be the most common liver disease in the western 

world, regardless of racial and ethnic group. In the United States, NAFLD affects over 

75% of the obese individuals (2,3). Most alarmingly, 2.6% of children are affected by 

NAFLD, and this portion includes 22.5-52.8% of obese children (4). Nonalcoholic 

steatohepatitis (NASH), which is the more advanced form of NAFLD, is estimated to 

affect 20% of the obese population (3). NAFLD can be found in all age groups and the 

prevalence appears to increase with age (3). 

NAFLD has hepatic pathology similar to liver diseases induced by alcohol, but it 

develops in individuals who have no history of excessive alcohol intake. NAFLD has a 

wide spectrum of liver damage, progressing from hepatic steatosis (accumulation of fat in 

liver cells), through steatohepatitis (NASH, accompanied by liver cell injury and death) 

to cirrhosis and consequent liver-related morbidity and mortality (5). Though macro-

vesicles and micro-vesicles of fat accumulate in the hepatocytes, hepatic steatosis alone 

does not tend to cause hepatic inflammation or liver cell death. Steatohepatitis is 

considered the middle stage of liver damage. Focal hepatic inflammation occurs and the 

hepatocytes start to die with steatohepatitis. Cirrhosis sits on the end of the spectrum. It is 

scarring of the liver and poor liver function. Scar tissue replaces normal parenchyma, 

blocking the portal flow of blood through the organ. In this stage, architectural distortion 

has developed, but hepatic steatosis has often disappeared (1). 
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NAFLD leads to NASH, which can be fatal. If caught early, NAFLD can be reversed 

before irreversible liver damage due to NASH occurs. Thus early detection and diagnosis 

of NAFLD is necessary.  

Liver biopsy is currently considered the gold standard for the diagnosis of NAFLD. A 

piece of hepatic tissue is taken out of the patient and examined in the pathology lab in 

order to stage the disease progress. Biopsy is an invasive method where a needle is 

inserted into the organ, and a tiny small portion of tissue is taken out and then examined 

in a laboratory. This procedure is painful and has some inherent risks. Life-threatening 

situations and prolonged hospitalization is reported in 3 out of 1000 cases, and death is 

reported in 3 out of 10000 cases (6,7).  Furthermore, the sample that is only 1/50000 of 

the entire liver is used to represent the liver. Several studies have been published showing 

sampling variability when more than one sample is obtained (8). Studies show that the 

possibility of finding fatty cells on a second liver biopsy when the first biopsy showed 

nothing is as high as 22 % (8). As is shown in figure 1-1, the inhomogeneous distribution 

of steatosis makes sampling variability inevitable and unreliable.  
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Figure 1-1: Abdominal opposed phase MRI image of a patient with NAFLD. Visible 

non-uniform distribution of fat content shows the possible sampling error when 

performing conventional liver biopsy. Arrow ‘a’ points to normal tissue, while 

arrow ‘b’ points to a region of steatosis. Steatotic regions appear dark because the 

water and fat signals have opposite phase and therefore the signal from fat partly 

cancels out the signal from water. 
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Thus the sampling error might lead to misdiagnosis and is not appropriate for evaluating 

treatment response. In longitudinal monitoring, samples are supposed to be taken from 

the same location. However even the biopsies were obtained by experienced doctors, 

locations tend to vary from time to time. In this case, the non-uniform fat distributions 

may lead to misdiagnoses. 

A non-invasive method that can accurately detect and quantify liver steatosis is an unmet 

need for the diagnosis of NAFLD. Magnetic Resonance Imaging (MRI) techniques have 

been shown to be a promising diagnostic method to replace the current gold standard 

liver biopsy. A recent study has shown that chemical shift based MRI measurement of fat 

correlates well with Magnetic Resonance Spectroscopy (MRS) (9), while MRS result has 

already been demonstrated to have excellent correlation with the gold standard biopsy 

measurement of liver fat (10). 

MRI has many advantages over biopsy in measuring fat content in the liver. First it is a 

non-invasive method so that patients can be examined much more frequently. This could 

make it possible for closer monitoring of the disease progression. In addition, doctors 

would be able to get an accurate measurement of the spatial distribution of fat content 

over the entire liver, which is crucial to avoid sampling errors. Furthermore, MRI would 

significantly lower the risk of complications compared with liver biopsy, thus leading to a 

safe painless test. 
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1.2 MRI Physics 

1.2.1 Spin, Properties of Spin 

All atoms have the nuclei-electron structure. Spin (or formally called spin angular 

momentum), which is one of the intrinsic properties of nuclei, can be probed with an 

external magnetic field using a technique named nuclear magnetic resonance (NMR).  

Nuclei with spin can be considered as a charged ball rotating about an axis with constant 

angular velocity. Spin is quantized to certain discrete values, and the number of spin 

values, I, is found to have limited numbers in nature. Among several different nuclei that 

can be used in human imaging, nucleus of 1H atom (commonly referred to as proton) is 

the natural choice for most applications. Tissue in the body is mostly composed of water 

and fat. Water and fat contains hydrogen atoms, the nucleus of which provides NMR 

signal. 

Though an accurate description of the magnetic resonance (MR) phenomenon requires 

quantum mechanics, a classical model can be used to describe MR experiments. The 

classical model ultimately gives the same result as the quantum mechanical model. A 

spinning proton will induce a magnetic field known as a magnetic moment that is 

oriented parallel to the axis of rotation. The concept of magnetic moment is fundamental 

to MR. Just like a bar magnet, the magnetic moment can be described as a vector with 

magnitude and a certain direction.  

In the absence of an external magnetic field, spins have their orientation randomly 

distributed. The vector sum of a bulk of spins generates zero net magnetic field (Figure1-

2).  However, when an external magnetic field B0 is applied, the protons start to precess 
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about the direction of magnetic field. The frequency of precession is proportional to the 

strength of B0, which can be described by the Larmor equation: 

 0 0Bω γ= . Eq. 1-1 

  

 



8 

 

Figure 1-2: For a collection of a large number of protons at thermal equilibrium, 

individual magnetization orients randomly, resulting in zero net magnetization. 

 

Figure 1-3: In the presence of a B0 external magnetic field, there are only two 

orientations for protons, parallel or anti-parallel to B0. The number of protons in 

those two states is different, according to the Boltzmann distribution, and forms the 

net longitudinal magnetization M0.
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Where ω0 is the Larmor angular frequency in rad/s, B0 is the field strength in Tesla (T) 

that the protons are experiencing, and γ is the gyromagnetic ratio, a constant for each 

particular nucleus in 1 1rad s T− −⋅ ⋅ . 

Since each individual proton precesses about the B0 field independently, if we consider 

the vector sum of a collection of many protons, the transverse components of the 

individual spins will still be randomly oriented. Thus, the net transverse magnetization is 

zero. However, the z (longitudinal) component parallel to B0 is different. For protons, 

there are only two possible values for the z component: parallel or anti-parallel to B0 

(often referred to as spin up and down). According to the Boltzmann distribution, the 

number of protons in those two states is different, and those numbers of protons up and 

down obeys the following: 

 
/E kTdown

up

N e
N

−∆= , Eq. 1-2 

where k is Boltzmann’s constant, Nup and Ndown are the number of protons aligning and 

anti-aligning with the B0 field, E∆  is the energy different between two different energy 

levels, T is the temperature in Kelvin temperature scale. When tissue with large amounts 

of protons is put in an external magnetic field, the tissue will be polarized with a net 

magnetization 0M


, which is visualized in Figure 1-3. At thermal equilibrium, 0M


 has 

the same direction as B0 and the magnitude of 0M


does not change with time. For the rest 

of this section, we are going to talk about behavior of 0M


 and how to measure it. 
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1.2.2 RF Excitation, Bloch Equations, T1 and T2 Relaxation 

As discussed above, 0M


will precess in an external magnetic field. Thus, we can use 

another field to manipulate 0M


. The magnetic field used is often derived from a narrow 

bandwidth, radio-frequency pulse (RF pulse). If the frequency of the RF pulse matches 

the resonant frequency (Larmor frequency) of the protons, 0M


, and the effective field 

(referred to as B1) stays stationary in a rotating reference frame, which is rotating about 

the z direction with Larmor frequency. In the rotating reference frame, 0M


will precess 

about the B1 field. The duration of the B1 field can be manipulated so that 0M


is tipped 

off the longitudinal axis by any desired degree, see Figure 1-4. 
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Figure 1-4: In the rotating reference frame, the can be tipped off the z axis by any 

desired degree by manipulating the strength or duration of the 1B


 field. 
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After the RF pulse, the magnetization 0M


is no longer along the z longitudinal axis. The 

magnetization then can be decomposed into two components: zM  and xyM


. After the 1B


field is turned off, the transverse component xyM


, which is perpendicular to the 0B


field, 

starts to precess about 0B


. This precession induces a voltage that can be detected by a 

coil of wire. The induced voltage is actually the signal that we use to get our image, and it 

is known as free induction decay (FID). 

1.2.2.1 Bloch Equation 

The differential equations of longitudinal and transverse magnetization can be combined 

into vector form as follows: 

 0 0
1 2

1 1ˆ( )z xy
dM M B M M z M
dt T T

γ= × + − −


  

, Eq. 1-3 

where M


 is the net magnetization, zM  is its longitudinal component, xyM


 is its 

transverse component, 0B


 is the external magnetic field, 0M  is the magnitude of net 

magnetization at thermal equilibrium, T1 and T2 are constant values. 

This equation is known as the Bloch equation; it describes the behavior of the 

magnetization in an external magnetic field . This equation can be separated into 

three component equations: 

 , Eq. 1-4 

zBB ˆ00 =


1

0

T
MM

dt
dM zz −

=
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 , Eq. 1-5 

 . Eq. 1-6 

 

Solutions of each component can be found by solving these equations as: 

 , Eq. 1-7 

 , Eq. 1-8 

 . Eq. 1-9 

From this solution set, the transverse magnetization xyM


 is rotating in x-y plane while 

decaying away.  The circular motion will induce a current in the detecting coil, which is 

the signal we use to get the image. 

1.2.2.2 T1 and T2 Relaxation 

While M


 is precessing, the magnitude of xyM


decays away exponentially. At the same 

time, the longitudinal magnetization Mz starts to recover to its original value. These 

changes in magnetization are known as relaxation. This is a time dependent process, 

which can be characterized by the relaxation times T1 and T2.  

The relaxation time T1 represents the rate of change of the longitudinal magnetization 

(Mz ). Both theoretical and experimental results show that the rate of the growth of 

longitudinal magnetization, , is proportional to the difference . The 

2
0 T

MM
dt

dM x
y

x −= ω

2
0 T

M
M

dt
dM y

x
y −= ω

)sin)0(cos)0(()( 00
/ 2 tMtMetM yx
Tt

x ωω += −

)sin)0(cos)0(()( 00
/ 2 tMtMetM xy
Tt

y ωω −= −

)1()0()( 11 /
0

/ TtTt
zz eMeMtM −− −+=

dttdM z /)( zMM −0
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rate is just inverse of T1 and determined by experiments. The equation of Mz can be 

written as: 

 0
1

1 ( )z
z

dM M M
dt T

= − , Eq. 1-10 

where T1 is the ‘spin-lattice relaxation time’ and the direction of the external B0 field is 

along the z axis. The solution to this equation is: 

 0 1 0 1( )/ ( )/
0 0( ) ( ) (1 )t t T t t T

z zM t M t e M e− − − −= + − , Eq. 1-11 

where is the initial z component of magnetization at time point t0. 

The actual external field that each individual spin experiences is actually a vector sum of 

the external field B0 and the magnetic field of neighboring spins. Thus, each spin 

experiences a slightly different local field, which leads to a slightly different resonance 

frequency. This leads to the direction of the transvers magnetization of each spin tending 

to change relative to the other spins with time. Since the spins are pointing in different 

directions, the vector sum of their signals results in reducing the overall magnitude of

xyM


. This is referred to as dephasing. The relaxation T2 represents the rate of decay of 

the transverse magnetization xyM


. T2 is an experimental parameter. The equation that 

describes transverse magnetization is: 

 0
2

1xy
xy xy

dM
M B M

dt T
γ= × −



  

. Eq. 1-12 

In the rotational reference frame, it is easier to see its decay form: 

)( 0tM z
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2

1( ) 'xy
xy

dM
M

dt T
= −





. Eq. 1-13 

In practice, there are some other factors, such as inhomogeneous B0 field or iron overload 

in liver, that would contribute to the decay of transverse magnetization, such as the. If we 

use T2
’ to characterize those extra dephasing factors, a new relaxation time constant 

T2
*can be defined as follows: 

 
. 

Eq. 1-14 

In gradient echo, those extra dephasing will not be reverted, and the decay of transverse 

magnetization is characterized by T2
*. Thus T2

* is especially important in gradient echo 

experiments. 

1.2.3 Faraday Induction and Signal from Precession 

According to Faraday’s law, a change of magnetic flux (Φ) due to the precession of 

transverse magnetization xyM


 will induce an electromotive force (EMF)in the detection 

coil: 

 
demf
dt
Φ

= − , Eq. 1-15 

where Φ is the flux through the coil: 

 
coilarea

B dSΦ = ⋅∫


, Eq. 1-16 

where dS


 is the vector area element, the direction of which is perpendicular to its surface. 

'
22

*
2

111
TTT

+=

 



16 

Since the magnetization of the protons in our sample is precessing at the Larmor 

frequency, the current induced in the coil will also be oscillating at that frequency.  

1.2.4 Slice Selection 

In order to excite a particular region of interest in the sample, a frequency selective RF 

pulse is applied with a magnetic field gradient known as slice-selection gradient, Gss 

(mT/m). The slice orientation depends on the gradient direction, and the amplitude of the 

gradient along with the frequency of the RF pulse determines the thickness and location 

of the slice. The slice selective pulse usually has a central frequency ω0 and a narrow 

frequency range or bandwidth Δωss. With the presence of the gradient, the central 

frequency determines the location of the slice, while the bandwidth determines its 

thickness: 

 ( )
2ss ssG thicknessγω
π

∆ = ×  . Eq. 1-17 

Typically the bandwidth of the RF pulse is fixed and the slice thickness is adjusted by 

changing the strength of gradient (Figure 1-5). 
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Figure 1-5: Demonstration of slice thickness. With the same bandwidth, different 

gradient results in different slice thickness. 
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1.2.5 Frequency Encoding 

If a magnetic field ( ), which is linearly varying along the x axis, is added to the 

static magnetic field B0, then the z component of the field is going to be: 

 . Eq. 1-18 

Thus Larmor equation will then be: 

 0( )x x Gω ω γ= + ⋅ . Eq. 1-19 

Extra phase accumulated due to the presence of gradient can be calculated as: 

 
0 0

( , ) ' ( ) '
t t

G Gx t dt x x dt Gφ ω γ= − = −∫ ∫ . Eq. 1-20 

The signal at time t, after demodulating frequency Ω=ω0, is given by: 

 ( , )( ) ( ) Gi x ts t dx x e φρ= ∫ . Eq. 1-21 

where the phase, after demodulation is determined by gradient field. 

If the time dependence term is implicitly included in spatial frequency k with: 

 
0

( ') '
2

t

xk G t dtγ
π

= ∫ . Eq. 1-22 

the signal at time t can be expressed as: 

 2( ) ( ) xi xk
xs k dx x e πρ −= ∫ . Eq. 1-23 

xGB ='

xGBxB += 00 )(
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This means if a gradient along certain direction is applied during the signal acquisition, 

the proton density along that direction can be recovered by simply taking the inverse 

Fourier transform of the signal: 

 . Eq. 1-24 

In MRI, this is always referred to as frequency encoding and the direction is referred to as 

the readout direction. 

1.2.6 Phase Encoding 

Similarly as frequency encoding, if a magnetic field ( ), which is linearly varying 

along the y axis, is added to the static magnetic field B0, then the z component of the field 

is going to be: 

 . Eq. 1-25 

Thus Larmor equation will then be: 

 . Eq. 1-26 

If the phase encoding gradient is turned on for a short period of time and then turned 

off, extra phase accumulated due to the presence of this momentary gradient can be 

calculated as: 

 ( ) ( )G Gy t y y G tφ ω γ= −∆ ⋅ = − ⋅ ∆  . Eq. 1-27 

If the time dependence term is implicitly included in spatial frequency k with: 

 
2yk t Gγ
π

= ∆ ⋅  , Eq. 1-28 

2( ) ( ) xi xk
x xx dk k e πρ ρ += ∫

'B yG=

0 0( )B y B yG= +

0( )y y Gω ω γ= + ⋅

t∆
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the signal along phase encoding direction in k space can be expressed as: 

 2( ) ( ) yi yk
ys k dy y e πρ −= ∫  . Eq. 1-29 

This means if a phase encoding gradient increment is added each time when we acquire a 

line in k space along frequency encoding direction, the proton density along the phase 

encoding direction can be recovered by simply taking the inverse Fourier transform of the 

signal: 

 2( ) ( ) yi yk
y yy dk s k e πρ += ∫ . Eq. 1-30 

1.2.7 3D Spatial Encoding 

Consider an extension of the one dimensional imaging equation to the three dimensional 

case. With three orthogonal gradients the signal from a single RF excitation can be 

expressed as a 3D Fourier transformation: 

 2 ( )( , , ) ( , , ) x y zi k x k y k z
x y zs k k k dxdydz x y z e πρ − + += ∫∫∫ , Eq. 1-31 

where the three implicitly time-dependent components are defined as 

 
0

( ') '
2

t

x xk G t dtγ
π

= ∫ , Eq. 1-32 

 
0

( ') '
2

t

y yk G t dtγ
π

= ∫ ,
 Eq. 1-33 

 
0

( ') '
2

t

z zk G t dtγ
π

= ∫ .
 Eq. 1-34 

If 3D k-space is sufficiently sampled, the reconstructed image by taking the inverse 

Fourier transform of the signal should be an accurate estimate of the physical density: 
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 3 2ˆ ( ) ( ) i k rr d k s k e πρ ⋅= ⋅∫






 . Eq. 1-35 

In the 3D experiment, a thicker slice is always excited and then phase encoded in the y 

and z directions. By convention, x direction is always the readout direction. A readout 

gradient is applied when signal is detected by the receiving coil. This gives a line along x 

axis in k-space. By momentarily adding gradient in y and z direction, we can move to a 

particular ky and kz position in k-space. 

In the x direction (readout direction), sampling can be carried out by measuring signal 

with time interval Δt during continuous application of a gradient Gx. Thus in the kx 

direction: 

 / 2x xk G tγ π∆ = ∆ . Eq. 1-36 

However in ky and kz directions, gradients Gy and Gz are turned off during the data 

reading out, in order to keep each line parallel to the x direction. Before data is taken, the 

ky and kz position in each line is determined by applying Gy and Gz for short time τy and τz. 

The corresponding shifts in k-space are: 

 , Eq. 1-37 

 / 2z z zk Gγ τ π∆ = ∆ ,  Eq. 1-38 

where the y and z axes are referred as phase encoding directions in a 3D imaging 

experiment. This is illustrated in the sequence diagram in Figure 1-6.  

πτγ 2/yyy Gk ∆=∆
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Figure 1-6: A sequence diagram for a 3D coverage and data collection. Gradients 

are applied along read out direction and y z phase encoding directions. The role 

each gradient plays is indicated in the figure.   
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1.3 Fat Water Separation 

Even if a perfectly uniform external static field could be achieved, the local field 

experienced by each molecule can still be different. For instance, the local magnetic field 

experienced by a proton on water molecule is slightly different from that experienced by 

protons in a fat compound. Because of the structure of fat molecule, the magnetic field 

produced by surrounding electrons will affect the net magnetic field that protons are 

experiencing. The term chemical shift refers to the difference in the resonance frequency 

between two proton MR signals, expressed in parts per million of the resonance 

frequency of the static magnetic field B0. Chemical shift imaging is the process of 

imaging the different spatial distributions of the same nuclei that are resonating at 

different frequencies because of their different local environment (e.g. 1H nuclei in water 

vs. fat molecules).   

When a nonselective radiofrequency pulse is applied, protons in both water and fat 

molecules are excited. However, due to the chemical shift effect, protons in water precess 

faster than those in fat by approximately 3.5 parts per million (ppm). The difference 

between their precession frequencies Δfwf is given by: 

 , Eq. 1-39 

where the suffix w stands for water, f for fat,  is the chemical shift between fat and 

water expressed in ppm. The absolute difference in the resonant frequencies between the 

two species is about 224Hz at 1.5T, and 447Hz at 3.0T. There are many ways to image 

πγσ 2/0Bfff wffwwf −=−=∆

wfσ
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fat and water separately, which are described as ‘selective excitation’, ‘T1 nulling’ and 

using chemical shift to generate additional phase encoding information.  

A variety of methods can be used to separate the signals from water and fat. Selective 

excitation uses a RF pulse with a specific bandwidth that selectively excites protons in fat 

(or water) molecules only. However, the downside of this method is that a perfectly 

homogeneous main magnetic field is required. In Short TI Inversion Recovery (STIR), 

after an inversion recovery preparation, signal is collected at the time point when the 

undesired fat magnetization has recovered to the point where it is crossing Mz=0, thus 

eliminating any fat signal. But this inversion recovery sequence requires long repetition 

time (TR) to allow the longitudinal signal to recover to M0 before the next inversion 

pulse. For this reason, the acquisition time is rather long. Because of these reasons, 

chemical shift based imaging techniques described below are used in this thesis work for 

the separation of water and fat signals. 

1.3.1 Two Point Dixon Method 

If the precession frequencies of water and fat are taken as priori knowledge, the imaging 

scheme to separate those two species can be much simplified. 

Assuming the tissue only consists of water and fat, the complex (real and imaginary) 

signal from a particular pixel can be expressed as: 

 ( ) w fs TE ρ ρ= + , Eq. 1-40 

where ( )s TE  represents the complex signal obtained at echo time TE, wρ and fρ are the 

intensity of water and fat that we are interested in (11). If it is assumed that the static field 
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is homogeneous throughout the whole volume imaged, the phase accumulated in water 

and fat at echo time t’ are: 

 , Eq. 1-41 

 . Eq. 1-42 

The additional accumulated phase in the fat signal can be used to separate the water and 

fat signals. Two complex signals are acquired with different TEs that make ΔωwfTE equal 

 

(a) 

 
(b) 

Figure 1-7: Two point Dixon method. Two images are acquired at different TEs 

when water and fat signal are in-phase and out-of-phase. By adding (a) and 

subtracting (b) these two images, water and fat images can be generated. This 

assumes a perfectly uniform B0 magnetic field. 

xkxtGt xxw πγϕ 2')'( −=−=

TEGBxkTEBtBxGt wfxwfxwfwfxf ωπγγϕ ∆−∆+−=∆−∆+−= )/(2')()'(
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Figure 1-8: With non-uniform B0 field, additional phase will accumulate. Simply 

adding and subtracting is not going to generate water and fat separated images. 
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to 0 and π. These two images are called in-phase (0) and opposed-phase (π) images. Since 

a homogeneous static field is assumed, the complex signals in a certain voxel are: 

 in w fs ρ ρ= +  , Eq. 1-43 

 op w fs ρ ρ= − . Eq. 1-44 

Then water and fat images can be solved easily: 

 
1 ( )
2w in ops sρ = +  , Eq. 1-45 

 
1 ( )
2f in ops sρ = − . Eq. 1-46 

Thus, by adding and subtracting in-phase and opposed-phase images, water only and fat 

only images are easily calculated. This is referred to as the two-point Dixon method, 

which is demonstrated in Figure 1-6. 

1.3.2 Three Point Dixon Method 

In the two-point Dixon method, a perfectly homogeneous main magnetic field is 

assumed; however, this is never the case in practice. Inhomogeneity of the main magnetic 

field can lead to water signal contaminating the “fat-only” image and fat signal 

contaminating the “water-only” image. At the point where there is main magnetic field 

offset, additional frequency from the magnetic field offset make water or fat protons not 

actually in-phase and out-of-phase when collected as seen in Figure 1-7. Adding and 

Subtracting in and out of phase images will not generate the correct answer. For this 

reason, a modified Dixon method was introduced that uses images acquired at three 
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different TEs to better estimate B0 main field inhomogeneities (12). The signal can be 

modeled as below: 

 2( ) ( )j ft j
w fs t e eπ ψρ ρ= + ⋅ ⋅ , Eq. 1-47 

where f is the resonant frequency of fat relative to water described in Eq. 1-38, and ψ is 

the additional phase accumulation introduced in the water and fat signals by the B0 field 

offset 0B∆ . If a group of 3 different echoes are measured at specific TEs (Figure 1-8), 

which make the relative phases between water and fat (–π, 0, π), then we can write the 

signals as: 

 1 ( ) j
w fs e ψρ ρ −

− = − ⋅  , Eq. 1-48 

 0 ( )w fs ρ ρ= + , Eq. 1-49 

 1 ( ) j
w fs e ψρ ρ += + ⋅ . Eq. 1-50 

From these equations, ρw, ρf and ψ can be determined. For those voxels where the phase 

offset ψ is greater than , ψ might be ambiguous and the fat and water signals can be 

swapped incorrectly.  

The three-point Dixon method has shown unambiguous separation of water and fat 

components in the presence of B0 field offsets greater than the chemical shift between 

water and fat two species (12). However, there might be places where the local field 

offset is so large that the unwrapping algorithm fails. The T2
* decay effect between 

images collected at different TE is neglected; this causes problems in water and fat 

quantification (13,14).  Also in this three point Dixon model, a relatively simple signal 

π±
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model is used. It assumes that both water and fat have a single resonant frequency 

separated exactly by 3.5ppm. For most applications this is a satisfactory model and 

excellent qualitative water-fat separation can be achieved. However, it is well known that 

fat has a number of spectral peaks, as shown in Figure 1-9 (13,15). Thus more accurate 

fat water separation can be accomplished by correcting these confounding factors. 

 

 

Figure 1-9: Three-point Dixon method. Images are collected at three different 

echoes, with the relative phases between water and fat are (–π, 0, π). 
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Figure 1-10: A representative spectrum collected in knee subcutaneous fat at 3T 

showing multi-peak pattern. Six peaks can be recognized and their relative chemical 

shift and amplitude can be calculated (13). 
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1.3.3 Multi-peak T2
* Corrected IDEAL 

The method used in this work to separate water from fat is called Iterative Decomposition 

of Water and Fat with Echo Asymmetric and Least-Squares Estimation (IDEAL) (16). 

This method is developed to implement Dixon water-fat separation utilizing an iterative 

least-squares method that reconstructs data acquired at short echo time (TE) increments 

(16,17). 

The signal is modeled as before: 

 2( ) ( )j ft j
w fs t e eπ ψρ ρ= + ⋅ ⋅ , Eq. 1-51 

where wρ  and fρ  are the signal intensity of the water and fat,  f is the resonant frequency 

relative to water, ψ is the additional phase accumulation introduced by B0 field 

inhomogeneity. If data are taken at discrete echo times, tn (n=1,…, N), then 

 2( )nj ft j
n w fs e eπ ψρ ρ= + ⋅ ⋅   Eq. 1-52 

represents the signal in a specific pixel at echo time tn. If an initial guess of ψ0 is known, 

then the signal equation can be written as: 

 0 2ˆ( ) nj j ft
n w fs t s e eψ πρ ρ−= ⋅ = + ⋅ . Eq. 1-53 

ρw and ρf can be solved in an iterative manner described as below: 

1. Estimate the signal from each chemical species and an initial guess for the field map, 

ψ0. A useful initial guess for ψ0 is zero (Hz). 

2. Calculate the error to the field map, Δψ. 
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3. Recalculate ψ = ψ0 + Δψ. 

4. Recalculate  with the new estimate of ψ. 

5. Repeat the preceding three steps until Δψ is small. 

6. Spatially filter (smooth) the final field map, ψ, with a low-pass filter. 

7. Recalculate the final estimate of each chemical species image. 

Note that in order to solve water and fat, it requires at least 3 images with different TE. 

All the previous methods mentioned above are based on a relatively simple assumption 

that both water and fat have a single resonant frequency. Although for most applications 

this is a satisfactory model, it is not strictly true for fat. In general, fat has a number of 

spectral peaks as shown on Figure1-9 (13,15,18). In particular, the peak from olefinic 

proton (5.3 ppm) is fairly close to the water peak. In the cases where accurate 

quantification of fat is desirable, the multiple peaks of fat must be considered (13). 

The T2
* decay of signal is also neglected in conventional two-point or three-point water 

fat separation techniques since T2
* is much longer than TEs in most applications. 

However, in some cases, especially liver with iron overload, T2
* is much shortened. It is 

important to take T2
* into account as well (14). Neglecting T2

*decay will affect fat 

quantification even with long T2
* (13,14). In the IDEAL iterative algorithm, T2

* and fat 

signal interfere are addressed with the estimation of each other (8,13), as explained below.   

A modified signal model that accounts for the multiple peaks of fat and T2
*decay in the 

IDEAL reconstruction scheme was proposed by Yu et al (13).  

nŝ
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In this proposed algorithm, signal from a single voxel containing water and fat can be 

modeled as: 

 ˆ2

1
( ) ( )n

P
j ft j

w f p
p

s t e eπ ψρ ρ α
=

= + ⋅ ⋅∑ , Eq. 1-54 

where fp is the resonant frequency of the pth fat peak (p = 1, … , P) relative to water, and 

αp  the relative amplitude of the pth peak, such that
1

1
p

p
p

α
=

=∑  , ψ̂   is the complex field 

map term, *
2ˆ / ( 2 )j Tψ ψ π= + ⋅  , enabling estimation of T2

* in addition to water and fat . 

By collecting 6 points instead of 3 points, ρW, ρF (six different peaks are assumed) T2
*and 

B0
* can be all solved for using the iterative algorithm (13). 

1.3.4 Multi-peak T2
* IDEAL Fat Fraction 

A quantitative description of the fat distribution is of great importance in the progression 

of Non-alcoholic Fatty Liver Disease as mentioned above. From the IDEAL technique, 

images containing only water and images containing only fat are generated. After water 

fat separation, a voxel by voxel fat signal fraction is computed as the quantitative 

endpoint, which will be given in the following content. 

Let Sw and Sf denote the signal intensity in a pixel from the water and fat image 

respectively, fat signal fraction is defined as: 

 100%f

f w

S
FF

S S
= ×

+
 . Eq. 1-55 

Using this definition, the fat fraction provides a useful scale between 0% and 100%, 

which gives guidance in clinic application. Accurate fat fraction determination is only 
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possible with the consideration with multi-peak of fat spectrum as well as T2
* correction 

(13).  

However, fat fraction is a ratio on a voxel by voxel basis, which only provides a relative 

rather than an absolute measure in the tissue. This causes ambiguity when longitudinal 

monitoring of disease is necessary. In longitudinal study, when fat faction changes, for 

example increases, fat fraction cannot distinguish whether the increase in fat fraction is 

caused by an increase in fat content, or a decrease in water content, or both. This issue is 

settled in chapter two where the absolute quantification is introduced. 

1.4 Coil Sensitivity 

Arrays of surface coils offer advantages in MRI: higher SNR and shorter data acquisition 

time through the use of parallel imaging (19-21).  However, each surface coil has an 

inhomogeneous receiving sensitivity profile, referred to as its coil sensitivity, which 

results in pixel signal intensity variation across the field of view. The resulting surface 

coil signal intensities at any pixel position can be described as the product of the 

true image and its coil sensitivity profile at the same corresponding position  

  Eq. 1-56 

Given the coil sensitivities, Roemer et al. described a way to combine images from 

surface coils in such a way that SNR is optimized(21). In this algorithm, signal intensity 

for each voxel is calculated by combining coil data in the corresponding voxel using coil 

)(rS r

)(rI )(rC

)()()( rIrCrS ⋅=
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sensitivity profiles. For a certain pixel, the expression for an SNR optimal combination of 

the coils with uniform signal intensity is as follows: 

 , Eq. 1-57 

where P is the complex signal after coil combination, p is a complex column vector of 

signal intensity at each position, R-1 is the inverse of the noise correlation matrix, c is the 

column vector of coil sensitivity profile from each coil, and λ is a constant as a scaling 

factor (21). The noise correlation matrix can be calculated from noise recorded 

simultaneously from each coil in the array. Thus, getting accurate coil sensitivity profiles 

plays a key role in image reconstruction and must be carefully investigated. 

Several approaches exist to measure coil sensitivity profiles, including direct calculation 

using the Biot-Savart law, estimation using root sum-of squares of individual coil images, 

and estimation using volume coil images.  However, all of these methods have limitations 

outlined below.  

Coil sensitivities can be calculated from the Biot-Savart law using the knowledge of 

geometry of the coil, object characteristics, and the resonant frequency (22). However, 

multiple limitations prevent practical use of this method.  First, calculations are 

computationally intensive making efficient calculations for large coil arrays (8 or 32 

channel) unfeasible.  Second, the position of surface coils would depend on the patient 

anatomy thus requiring these calculations to be made for each scan individually (23).  

Coil sensitivities can also be estimated using the root sum-of-squares (SoS) algorithm 

(21).  Here, coil sensitivities are estimated by taking the ratio of the surface coil images to 

1

1 *

T

T

p R cP
c R c

λ
−

−=
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the root sum-of-squares of the individual coil images.  The SoS reconstructed image is 

modulated by a spatially varying function due to the non-uniformity of coil sensitivities 

(24). In absolute quantification applications, the ratio of signal in the pixel to be 

quantified and signal in a reference pixel is used for calibration of the measured signal 

intensity. Therefore, any spatially varying modulation of signal intensity is undesirable as 

it will introduce bias into the signal calibration. 

Coil sensitivities can also be measured using an additional image acquisition of the 

patient using a volume coil. This volume coil can be used both to transmit the RF pulse 

used to produce the excitation flip angle and to receive the resulting signal. It is most 

often assumed that both the flip angle produced by the volume coil and its sensitivity to 

the received signal is uniform throughout its volume (i.e. it has a uniform transmit field 

and receive sensitivity). Here, coil sensitivities are estimated by taking the ratio of the 

surface coil images to the volume coil image (23,25), with the assumption that the receive 

sensitivity of the volume coil is constant throughout the field of view.   In addition to 

equation Eq. 1-56, signal from acquisitions with the volume coil can be written as:  

 ( ) ( )V r I r=
  , Eq. 1-58 

provided there is a uniform volume coil sensitivity profile. 

Combining Eq. 1-56 with Eq. 1-58, coil sensitivity profile can be solved as: 

 ( ) ( ) / ( )C r S r V r=
   . Eq. 1-59 

This coil sensitivity profile then can be used in the coil combination process described in 

Eq. 1-57. 

 



37 

Even though one more acquisition with the volume coil is needed than for the SoS 

method, this method produces a much more accurate estimation of the true coil sensitivity 

than the other methods. However, the additional scan does bring some downsides. Patient 

motion between scans, as well as increased scan time, limits the potential application of 

this technique. 

1.5 Flip Angle Mapping 

1.5.1 Overview on Flip Angle Mapping 

The knowledge of the B1
+ field is crucial in quantitative imaging. The accuracy of these 

quantitative methods depends on accurate knowledge of the true flip angle. However, in 

high magnetic fields, 3T and above, the B1
+ field of the volume coil cannot be assumed to 

be uniform any more. The wavelength of the B1 field decreases linearly as the magnetic 

field strength increases. At 3T or above, the B1
+ wavelength is getting close to the size of 

object being imaged, at which point it becomes impossible to avoid the destructive 

interference of the B1
+ field (26). 

Several methods exist for measuring the B1
+ field, or the flip angle map. Many of these 

methods are based on the double angle method (DAM) (27). DAM based methods often 

require long repetition times and therefore long acquisition times. This makes them 

unsuitable for 3D abdominal experiments where short (<25s) acquisitions are required so 

that imaging can be completed within a single breath hold, thus avoiding motion artefacts 

caused by breathing. This acquisition time requirement drove us to choose the 3D Double 

Angle Look-Locker method proposed by Wade et al (28).Since it is the only flip angle 
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mapping method currently capable of mapping the 3D flip angle distribution in the 

abdomen rapidly enough to be acquired in a single breath hold. 

1.5.2 Double Angle Method 

If two images are acquired that differ only by their flip angle, and in particular if one flip 

angle is double the other, then the trigonometric double angle formula can be used to 

solve for the true flip angle. This is known as the double angle method  (DAM) (27) and 

works as follows. 

For a signal taken with unknown flip angle α, if the magnetization is fully relaxed, the 

signal is given by: 

 . Eq. 1-60 

If the same experiment is repeated with twice the flip angle, α2=2α, the signal in the 

second experiment is given by: 

 . Eq. 1-61 

Using the double angle formula, α can be derived: 

 2

1

arccos( )
2
S
S

α =  . Eq. 1-62 

Assuming relative image phase is maintained, the technique is valid for flip angles 

ranging from 0 to π. However the apparent downside of this application is the lack of 

acquisition time efficiency. The requirement that the magnetization should be fully 

recovered before each RF pulse requires that the interval between acquisitions of each RF 

pulse (the repetition time (TR)) must be at least five times T1. Abdominal T1 values are 

 

S1 ∝ M0 sinα

 

S2 ∝ M0 sin2α
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on the order of 1s so the TR must be approximately 5s. Since acquisition of an image 

requires many signal excitations (typically one excitation per phase encode), the lengthy 

TR makes the DAM time consuming and not applicable to 3D abdominal flip angle 

measurements. 

1.5.3 Look-Locker Sequence 

The Look-Locker method was first developed as a time efficient method to measure the 

longitudinal recovery constant T1 (29). This experiment is shown in Figure 1-10 (28).

 

Figure 1-11: Conventional Look-Locker sequence. An image is created for each α 

sampling pulse, and td and tr are the time delays before and after the α-pulse train, 

τ is the repetition time. 

The small α pulses that follow the inversion pulse (π) cause the recovery of the 

longitudinal magnetization to occur with an apparent rate T1
* instead of T1. Under the 

small flip angle assumption, this new longitudinal relaxation constant can be defined: 

 
, 

Eq. 1-63 

 

1
T1

* =
1
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where α is the flip angle of the RF pulse, τ is the repetition time of the α pulse, and T1 is 

the true longitudinal recovery constant. Since T1 is related to T1* through known 

variables (α and τ), it is possible to calculate T1 easily after fitting the recovery curve for 

T1*. Because multiple points can be sampled along the recovery curve, the data for 

calculating T1 can be acquired far more efficiently than with standard inversion recovery 

methods(28). These methods have been extended to 3D volume acquisition (30).  

1.5.4 Flip Angle Measurement with the Double Angle Look-Locker 
Sequence 

Using the Look- Locker sequence, two measurements with low flip angles α and 2α are 

taken. Recovery constants can be described as below: 

 , Eq. 1-64 

 . Eq. 1-65 

This equation set can be solved for the true flip angle αDALLtrue in the double angle Look-

Locker (DALL) sequence. The following content gives a detailed solution. 

T1 can be removed by combining Eq. 1-64 and Eq. 1-65, leaving: 

 * *
1,1 1,2

1 (cos ) 1 (cos 2 )In In
T T

α α
τ τ

+ = +  . Eq. 1-66 

Rearrange this equation we can get: 

 . Eq. 1-67 

τ
α)(cos11

1
*
1,1

In
TT

−=

τ
α)2(cos11

1
*
2,1

In
TT

−=

)
cos

2cos(*
2,1

*
1,1 α

αττ In
TT

=−

 



41 

This gives us: 

 . Eq. 1-68 

Let  and using the double angle formula  

we get: 

 22cos ( ) cos( ) 1 0Eα α∆− − = . Eq. 1-69 

and the actual flip angle is: 

 , Eq. 1-70 

where . Eq. 1-71 

In this thesis, I am going to implement a combination of those methods mentioned above, 

to generate a mass density map in the abdomen. I am going to use Multi-peak T2
* IDEAL 

sequence to separate water fat signal. A phantom with known mass density will be used 

to calibrate the conversion for signal intensity to mass density. In order to do an accurate 

conversion, coil sensitivity and flip angle are going to be corrected using those method 

described above. The objective of this thesis is to demonstrate the feasibility of using 

these methods to quantify fat and water mass density in the liver. 
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Chapter 2  

2 Absolute Water and Fat Quantification Using MRI  
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2.1 Introduction 

Absolute quantification of fat in mass density is of great value for a variety of 

applications. Such applications could include but not be limited to the evaluation of 

progression and monitoring the effectiveness of treatment of diseases like obesity, or 

non-alcoholic fatty liver disease (NAFLD).  

Obesity is increasingly affecting Western world. It causes the accumulation of adipose 

tissue and can lead to increased fat content in organs like skeletal muscles and liver. In 

children, it is the major risk for developing Metabolic Syndrome (MetS) (4). NAFLD is 

the hepatic manifestation of syndrome MetS (31) and is characterized by the 

accumulation of fat in the liver cells. Invasive needle biopsy of the liver is the current 

gold standard for diagnosis of NAFLD. However, in addition to its inherent risks, it 

suffers from considerable potential sampling error (8,32). Therefore, there is considerable 

interest in developing non-invasive methods to measure the distribution of fat content in 

the liver.  

Quantitative water-fat MRI has been investigated as a non-invasive alternative to biopsy. 

The current biomarker typically reported for quantitative MRI is the relative fat signal 

fraction. Accurate 3D measurement of fat signal fraction (fat signal intensity as a fraction 

of the sum of fat and water signal intensity) on pixel-by-pixel basis has been 

demonstrated with IDEAL (Iterative Decomposition with Echo Asymmetric and Least 

square estimation) (9,16). However, in longitudinal studies, knowing only the change in 

fat fraction is not enough to tell whether the change is caused by changes in the absolute 
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amount of fat or of water, or both. In this work we demonstrate a fast absolute 

quantitative approach to overcome this weakness. 

Several absolute quantitative MRI methods have been proposed by Shah et al. for water 

content (33,34) and Hu et al. for water and fat content (35) . The basic idea of their 

experiments is to combine in vivo proton density weighted imaging with a reference 

signal from phantom with known mass density. By calibrating signal intensity with 

known mass density of the phantom, absolute fat and water in unit of mass (e.g. grams) 

can be calculated. However, each of their methods has some limitations.  

Shah et al. managed to quantitatively map cerebral water content with full brain coverage 

in 10 min. (34). Multi-echo gradient echo Quantitative T2
*Image(QUTE) sequences and 

echo planar imaging (EPI) were used to acquire images (33). After collecting data with 

different repetition times and/or flip angles, T1, T2
* and the transmit B1

+ field (excitation 

flip angle) were calculated and corrected. This method was capable of using coil arrays 

for signal reception, once appropriate corrections for receive coil sensitivity were made 

(34). However, because this method had been applied primarily in the brain where there 

was very little fat content, no attempt was made to distinguish between water and fat 

signal. The implicit assumption that all signal comes from water would lead to error 

when fat was present, as would be the case when evaluating NAFLD. Moreover, this 

method would be challenging to apply in the abdomen due to the lengthy acquisition 

time. 

Hu et al. used the IDEAL sequence to separate water and fat on a voxel by voxel basis. 

Low flip angles were used to minimize T1 effects so that proton density weighted images 
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were produced (35). However T2
* relaxation is not considered in their work, even though 

it has been shown to be essential for accurate water-fat separation (13). To minimize the 

RF non-uniformity, a single-channel transmit and receive birdcage coil was used, 

severely limiting the SNR of the method. Also, B1
+excitation flip angle distributions were 

measured by the saturated double-angle method (SDAM) (35) which is neither time 

efficient nor accurate enough for  B1
+ measurement in the abdomen. This inability to 

perform flip angle calibration quickly enough for breath hold imaging limited this method 

to only phantom experiments and ex vivo swine experiments. 

To avoid the limitations mentioned above in absolute quantification of water and fat 

content, we propose an extension of the works of Shah et al. and Hu et al. In this 

proposed method, the IDEAL sequence is used to acquire fat and water separated images. 

By using receiver coil arrays and parallel imaging reconstruction, the data acquisition 

time is shortened to be compatible with imaging during a ~20 s breath hold, allowing 

applications in the human abdomen. The individual coil sensitivity profiles are calculated 

and signal-to-noise ratio (SNR) optimal receive sensitivity corrected images are 

reconstructed. Rapid 3D B1
+ transmit field measurement is accomplished in a breath hold 

acquisition, allowing flip angle correction to be performed in the abdomen. After all 

those corrections, absolute fat and water mass density is computed with the phantom as a 

reference. The feasibility of simultaneous quantification of water and fat is demonstrated 

in phantoms and in the human abdomen.  
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2.2 Theory 

T1 independent, T2
* corrected chemical shift based water-fat separation methods with 

accurate spectral modeling of fat can be used to produce water-only and fat-only images 

where signal intensity is proportional to proton density (36); however,  the 

proportionality constant is usually unknown so signal intensity can’t be converted 

directly to absolute mass density. 

Placing a reference phantom (e.g. pure water), whose mass density is known a priori, in 

the field of view during the measurement allows calibration of the signal intensity so it 

can be converted to absolute mass concentration. The absolute mass of water mw and fat 

mf can be calculated on a voxel by voxel basis as below: 

 ,
,

( )
( ) ( )w f

w f ref
ref

r
D r D

ρ
ρ

= ⋅


 , Eq. 2-1 

where , ( )w f rρ  denotes the water or fat proton density weighted signal at voxel r , refρ is 

the proton density weighted signal of pure water or fat phantom, refD  is the mass density 

of the reference phantom and ,w fD  is the water or fat mass density (33-35). 

Absolute quantification is not accurate unless all the sources of bias are considered and 

properly corrected. These corrections include: B1
+ transmit field inhomogeneity of the 

Volume transmit Coil (
1

vc
B

k + ), B1
- receive inhomogeneity of the Phased array (

1

p
B

k − ) used 

for signal acquisition and T1 and T2
* relaxation in the tissues being measured. In IDEAL 

acquisitions, low flip angles are used to minimize the T1 effect (36) and T2
* is corrected 
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in the IDEAL reconstruction (13), so we only need to deal with transmit and receive 

inhomogeneity here. Let , ( )w fS r and denote the original signal from IDEAL (T1 

effect minimized, T2
*corrected) at voxel r and the pure water reference phantoms. Then 

we have: 

 1 1

, 1 1
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, Eq. 2-2 

where refS< > is the average signal intensity over all voxels contained in the reference 

phantom (34), 
1

vc
B

k +  is the correction factor for B1
+ transmit field inhomogeneity and 

1

p
B

k −  is 

the correction factor forB1
- receive field inhomogeneity. By inserting Eq. 2-2 to Eq. 2-1, 

the absolute mass of water and fat can be shown to be:  

 1 1

, 1 1

,
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( )

w f

vc p
w f B B

w f refvc p
ref ref B ref B

S r k r k r
D r D

S k k
+ −

+ −

⋅ ⋅
= ⋅

< ⋅ ⋅ >

  

 , Eq. 2-3 

where refD  is the mass density of the reference phantom and ,w fD  is the water or fat 

mass density. 

2.2.1 B1
+ Transmit Field Inhomogeneity Factor 

1

vc
B

k +  

The flip angle we request in the IDEAL experiment (αIDEALnom) will not be the true flip 

angle actually seen by the sample (αIDEALtrue) due to the B1
+ transmit field inhomogeneity 

of the volume coil. Therefore, we need to map the B1
+ excitation profile of the volume 

coil and get the correction factor
1

vc
B

k + .The flip angle distribution is measured using the 

fwrefS
,
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double angle Look-Locker technique (DALL) (28). The flip angle measured using DALL 

(αDALLtrue) is compared to the nominal flip angle prescribed in the DALL experiment 

(αDALLnom) to correct the nominal flip angle prescribed in the IDEAL acquisition 

(αIDEALnom): 

 DALLtrue
IDEALtrue IDEALnom

DALLnom

αα α
α

= ⋅ . Eq. 2-4 

Based on Eq. 2-4, 
1

vc
B

k + can be determined as: 

 
1

1
sin( )

vc
B

IDEALtrue

k
α+ = . Eq. 2-5 

2.2.2 B1
-  Phased Array Receive Field Sensitivity Profile c  

The sensitivity profile of the receive phased array can be calculated if another volume 

coil receiving experiment is added. In the phased array experiment, the flip angle is 

produced with the volume coil and signal is received with surface coils. Therefore, in 

order to recover proton densityρ, signal pS should be corrected by transmit 
1

vc
B

k + correction 

factor and receive correction factor
1

p
B

k − : 

 
1 1

p vc
p B B

S k kρ − += ⋅ ⋅ , Eq. 2-6 

where ρ is the proton density in a certain voxel.  

In the volume coil experiment, the same coil is used to produce the flip angle and receive 

the resulting signal. Therefore the proton density we get from the same voxel will be : 

 
1 1

vc vc
vc B B

S k kρ − += ⋅ ⋅ . Eq. 2-7 
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Combining equations Eq. 2-6 and Eq. 2-7, we can get: 

 1

1

vc
vc Bp

B
p

S k
k

S
−

−

⋅
= . Eq. 2-8 

This is problematic as we have not measured the receive field of the volume coil. At low 

values for B0 (≤  1.5 T) it is reasonable to assume that 
1

vc
B

k −  is a constant, and can 

therefore be safely ignored. This is precisely the assumption made in coil array sensitivity 

measurement in parallel imaging methods like SENSE (37). However, at higher field 

strengths, such as the 3.0 T field we used for our measurements, it is no longer safe to 

assume that 
1

vc
B

k −  is a constant. 

However, we have measured 
1

vc
B

k + in the previous flip angle calibration step. If we assume 

that the volume coil receiving profile is approximately equal to its transmitting profile, 

(i.e. 
1 1

vc vc
B B

k k− += ) then we finally get: 
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1
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S k
k

S
+

−
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= . Eq. 2-9 

Our coil sensitivity map is just the reciprocal of 
1

p
B

k − :  
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. Eq. 2-10 
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The assumption that 
1 1

vc vc
B B

k k− +=  is reasonable at intermediate B0 field strengths, but will 

break down at higher fields like 7.0 T where 
1

p
B

k −  and 
1

p
B

k +  become significantly different 

(32). 

2.2.3 Image Reconstruction 

To acquire all the data necessary to produce fat-water separated images corrected for B1
+ 

and B1
- inhomogeneity we follow the following procedure:  

1) Acquire data suitable for IDEAL fat-water separation using a phased array coil (

pS ). 

2) Repeat step 1, except acquire data with a volume coil ( vcS ).  

3) Obtain a pixel by pixel B1
+ transmit correction factor

1

vc
B

k + by flip angle maps over 

the volume imaged in Step 1 using double angle Look-Locker technique (28). 

4) Generate B1
- (coil sensitivity) maps were generated using the method described as 

Eq. 2-10 (37). 

5) Combine the IDEAL data from the phased array using Roemer’s uniform 

sensitivity SNR optimal method that corrects for the non-uniform coil sensitivity

c  (21). 

6) Reconstruct the B1
- corrected, coil combined IDEAL data with T2

* IDEAL to 

produce fat-water separated images that were corrected for T2
* variations.  

7) Correct the T2
* corrected IDEAL images for flip angle variations using the B1

+ 

map from step 4 (apply correction factor 
1

vc
B

k + ) (34). 
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8) Finally, use the signal intensity of pure water phantom (which has a known proton 

density) calibrate the signal intensities of the water-only and fat-only images 

produced in step 7 and convert the signal intensity to units of density or mass 

(34). 

This procedure is summarized graphically in Figure 2-1. 

 

Figure 2-1: Flow chart of image acquisition and reconstruction. Flip angle maps 

were acquired for both 
1

vc
B

k + and c  correction. The volume coil image was first 

corrected for B1
- using flip angle map as an approximation. Images from phased 

array were divided by the volume coil image to generate the phased array surface 

coil sensitivity maps. With these maps, coil by coil images were combined. Then 

those corrected images were run through the IDEAL reconstruction to get water 
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and fat separated images with arbitrary units. By calibrating with a phantom with 

known proton density, water and fat mass maps were generated. 
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2.3 Methods 

All the experiments were conducted on 3.0 T MRI system (Discovery MR 750, GE 

Healthcare, Waukesha, WI) using 6 echo Multi-peak T2
* corrected IDEAL sequence. The 

phantoms were at room temperature.  

2.3.1 Phantom Experiments 

Eight vials of homogeneous emulsions of different concentrations of peanut oil and water 

(0%, 5.0%, 10.0%, 15.0%, 20.0%, 30.0%, 40.0%, and 100% volume fraction of fat) were 

used in this experiment. The emulsions were prepared with sodium dodecyl sulfate and 

agar to stabilize the emulsions (38). Images were acquired with an eight-channel head 

array and a volume coil. IDEAL imaging parameters were: Flip angle = 3 degree, 

TR=6.3215ms, six echoes at TE= = [0.768 1.364 1.960 2.556 3.152 3.548] ms, Echo 

Train Length (ETL)=2, Nx=128, Ny=128, FOV=24cm x 24cm, 16 slices at thickness=5 

mm. A 3D double angle Look-Locker sequence was used to generate a B1
+ (flip angle) 

map, which was acquired with the following parameters: TR=minimum, Nx=32, Ny=32, 

FOV=26cm×26cm, 16 slices at thickness=5 mm. The IDEAL images were corrected for 

B1
+ and B1

- inhomogeneity as described above, then calibrated with the 0% (pure water) 

and 100% (pure peanut oil) fat fraction phantoms.  

2.3.2 In Vivo Experiments 

Following REB approval and obtaining informed consent, in vivo IDEAL data were 

collected from the calf and abdomen of a healthy volunteer.  
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In the calf experiment, an 8-coil abdominal array and volume coil were used. IDEAL 

imaging parameters were: Flip angle = 3 degree, TR=6.3215ms, six echoes at TE= [0.768 

1.364 1.960 2.556 3.152 3.548] ms, Echo Train Length (ETL)=3, Nx=192, Ny=192, 

FOV=38cm × 28.5cm, 16 slices at thickness=5 mm. A 3D double angle Look-Locker 

sequence was used to generate B1
+ (flip angle) map, which was acquired with the 

following parameters: TR=minimum, Nx=32, Ny=32, FOV=38cm x 28.5cm, 16 slices at 

thickness=5 mm. 

In the abdomen experiment, 32-channel abdominal array and volume coil were used. 

IDEAL imaging parameters were: Flip angle = 3 degree, TR=5.8080ms, six echoes at 

TE= [0.768 1.364 1.960 2.556 3.152 3.548] ms, Echo Train Length (ETL)=3, Nx=128, 

Ny=128, FOV=46cm×34.5cm, 16 slices at thickness=3mm. A 3D double angle Look-

Locker sequence was used to generate B1
+ (flip angle) map, which was acquired with the 

following parameters: TR=minimum, Nx=32, Ny=32, FOV=46cm x 46cm, 16 slices at 

thickness=3 mm. 

2.4 Result 

2.4.1 Phantom Experiments 

Figure 2-2 shows the water and fat mass density maps for a slice through the water-fat 

phantoms set. The top two images are water and fat mass density maps without flip angle 

(B1
+) correction. A sum of squares coil combination that was automatically applied in the 

parallel MRI reconstruction process partially addressed the receiving field (B1
-) 

inhomogeneity in the uncorrected images. It can be seen that the bottom part of the 

uncorrected water image appears brighter than the top part. This is expected, as the 
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bottom part is closer to the receive coils, leading to higher signal intensity. The bottom 

two images are the water and fat images after flip angle (B1
+) and coil sensitivity (B1

-) 

correction. Signal intensity is more uniform across the whole volume after correction. 

Regions of interest (ROI) were taken from the uncorrected images and corrected mass 

density maps on each individual vial. Figure 2-3 plots the calibrated water and fat mass 

density in each vial against the known water and fat mass density. Differences between 

the measured mass densities to the actual mass density were dramatically reduced when 

both flip angle and coil sensitivity were properly corrected. A linear fit to the fat mass 

density data demonstrates excellent agreement and validates the accuracy of correction 

factors applied to data. The line of best fit has a slope of 0.99, and intercept of 0.02 

mg/ml and a correlation coefficient of R2 = 0.99.  
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Figure 2-2: Phantom result. Top two images are water and fat mass density map 

before all the correction, bottom two images are water and fat mass density map. 

 

Figure 2-3: Calibrated water and fat mass density in each vial against the known 

water and fat mass density. Linear regression shows slope of 0.99, and intercept of 

0.002 g/ml and a correlation coefficient of R2 = 0.99. 
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2.4.2 In Vivo Experiments 

Figure 2-4 shows a water and mass density map of a volunteer’s calves. A bottle of pure 

peanut oil was placed between calves in the field of view as proton density reference. The 

corrected water and fat images are noticeably more uniform than the uncorrected images, 

particularly at the periphery. A ROI was taken in the muscle and the mass density of 

water content was determined to be 0.80 g/ml, with a standard deviation of 0.08 g/ml. 

This result is an excellent match with the literature value of 0.78 g/ml (39). 

Figure 2-5 gives the result of reconstructed mass density map of an axial slice in the 

abdomen of the human. Again, ROIs were placed in different tissues. MRI measured 

water mass density of the right lobe of the liver is0.79 g/ml, with a standard deviation 

0.09g/ml, which is a good match for the expected value of 0.72 g/ml (40). 

  

 



58 

 

Figure 2-4: In vivo images of a volunteer’s calves. (The object between the calves is a 

pure fat mass density reference.) The corrected water and fat images are noticeably 

more uniform than the uncorrected images, particularly at the periphery. The circle 

in the corrected water image indicates the ROI in which muscle density was 

measured. 

 
Figure 2-5: In vivo images of a volunteer’s liver. (The object beside the abdomen is a 

bottle of water as mass density reference.) The corrected water and fat images are 

noticeably more uniform than the uncorrected images across the liver. The circle on 

the corrected water image indicated the liver density measurement location. 
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2.5 Discussion 

We have demonstrated the feasibility of absolute quantification of water and fat in 

abdomen. Phantom experiments showed that after correction and calibration, the result 

from MRI measured absolute fat and water content agreed vey will with the true fat and 

water concentration. In the in vivo experiment, MRI measurement of the fat and water 

densities of calf, liver and other tissues also agreed with literature values. 

The use of a rapid B1
+ transmit field mapping sequence made it possible to map the flip 

angle profile within one breath hold, which was crucial to allowing these measurements 

to be made in the abdomen. The use of a phased array for data acquisition enabled the use 

of parallel imaging to accelerate IDEAL data acquisition sufficiently to allow imaging in 

the abdomen. Multi-peak T2
* IDEAL sequence gave us perfectly separated water fat 

images without T2
* bias (13,38). It provides a more accurate water fat separation from the 

old version IDEAL which is using in previous work (35). Previous approaches to 

absolute water and fat quantification have used some subset of these corrections, but this 

is the first time all of these corrections have been used in combination to allow absolute 

quantification in the human abdomen. 

In traditional determination of phased array coil sensitivity c , images from each single 

coil are directly divided by the volume coil image. The procedure assumes the volume 

coil has uniform B1 transmit and receive field (23,25,37). This is a good approximation at 

low main magnetic field strengths. However, when the field strength increases above 3T, 

identical excitation and reception profiles are not an acceptable assumption anymore, 

especially in quantitative imaging techniques. In this work, instead of assuming a uniform 
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volume coil profile, we made the assumption that the receiving profile of volume coil is 

the same as its transmitting profile (flip angle map), which can be measured by DALL 

(28). By correcting for the receiving profile by flip angle map, result is improved as we 

see in Figure 2. At very high field strengths (7T or above) where the assumption that B1
- 

equals B1
+ is no longer true(32), this reconstruction scheme might fail. At these higher 

field strengths it would be necessary to separately measure theB1
-and B1

+fields. 

After inhomogeneous intensity of surface coil being carefully corrected, phased array can 

be used for data acquisition. This benefits us with not only higher SNR but also the 

capability of parallel imaging. The data acquisition time is significantly shortened with 

parallel imaging, which enables the technique applicable to in vivo abdominal 

applications.  

We did not attempt to correct our calibration for the effects of temperature on the density 

of the reference phantom. Since the reference phantom was at room temperature, which is 

different from the temperature in tissue, some bias may have been introduced by the 

higher density of water in the room temperature phantom. This source of bias could be 

corrected by pre-heating the reference phantom to body temperature, or by explicitly 

compensating for the effect of temperature on water density. However, given the 

excellent match between our in vivo density measurements and the expected values, we 

feel that the effect of temperature on our density calibration was minimal. 

Water and fat have different T1 values both in phantoms and in vivo, and this could bias 

our results. In this work, all experiments were using low flip angle (1 or 3 degrees) to 

minimize T1 bias, by ensuring all our images were proton density weighted. The effect of 
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T1 bias correlates with the flip angle used for data acquisition, with bigger flip angles 

introducing more T1 bias (36). The price paid for reducing T1 bias using small flip angle 

acquisitions is a reduction in image SNR, thus resulting in poor precision in the 

quantitative measurements. Methods to eliminate T1 bias while still using higher flip 

angles to improve SNR are being investigated(41). Should these methods prove 

successful, they could be integrated with the method we have described here to further 

improve the precision of these measurements. 

2.6 Conclusion 

In conclusion, the accurate estimation of water and fat content in vivo has been 

demonstrated and validated. Using this method, absolute water and fat content can be 

computed and visualized as a mass density map. Future application of this method to 

cardiac imaging remains to be investigated. 
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Chapter 3  

3 Summary and Future Work 
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3.1 Summary 

Quantitative MRI is playing a more and more important role in diagnosing and 

staging diseases in the clinic. Quantitative water and fat imaging is especially attractive 

as many diseases, such as Non-Alcoholic Fatty Liver Disease (NAFLD), brain edema, 

brain tumors and metastases, are associated with changing in either water or fat content in 

tissue. Quantitative MRI offers a non-invasive method to track those changes in disease 

progression. The current endpoint reported is to use fat-water signal fraction as a 

biomarker for fatty liver disease. In this work, the end point for quantitative water and fat 

imaging has been refined one step further, so that absolute water or fat mass can be 

reported. 

By carefully considering and correcting all the relevant confounding factors, a fast 

accurate absolute quantification of water and fat content was demonstrated to be feasible 

in vivo. In the following subsections, I will summarize all the fundamental modifications 

that have been made and how they relate to obtain an accurate absolute map of water and 

fat content over the liver or leg.  

In order to validate the image reconstruction algorithm, a phantom study with 8 channel 

head coil was performed. Phantoms with known water and fat concentration were imaged 

with IDEAL sequence. A pure phantom with known proton density was put in the field of 

view as a calibration reference. Volume coil image was taken at the same TE as reference 

to calculate surface coil sensitivity. Separate acquisition with Double Angle Look-Locker 

was collected for the flip angle map. After coil combination and flip angle correction, 

images were run though IDEAL reconstruction algorithm to get water and fat separated 
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images. Final step was to convert those water fat images with arbitrary units in to images 

with unit of mass density. The regression line of experimental result to actual mass 

density has a slope of 0.99, which validated the feasibility of this method. 

In vivo experiments were done on a healthy volunteer. Following the same procedure 

with the phantom study described as above, absolute water and fat distributions were 

acquired. Water densities measured from regions of interest in the calf muscle and the 

liver agreed with previously reported literature values. 

Comparing to existing methods for absolute water and fat quantification, several 

improvements have been made in this work which have made absolute fat and water 

quantification in the abdomen possible for the first time. These include modified coil 

sensitivity correction and fast 3D flip angle mapping (DALL).I modified the standard coil 

sensitivity calibration methods to account for volume coil receive inhomogeneity. This 

resulted in more accurate measurement of phased array coil sensitivity, thereby allowing 

IDEAL acquisition with phased arrays. This increased the SNR of my measurements and 

made it possible to use parallel imaging to accelerate data acquisition. This accelerated 

data acquisition was critical for making it possible to acquire the data needed for 

quantitative measurement of water and fat in the abdomen where it is necessary to 

acquire the images within a short breath hold. 

With the DALL method, it was possible to measure the flip angle distribution over the 

entire 3D volume that was also imaged in the IDEAL acquisition. The accurate flip angle 

map enabled correction of B1
+ non-uniformity in the reconstructed IDEAL images. By 

assuming
1 1

vc vc
B B

k k− += , the accuracy of the phased array coil sensitivity estimation was also 
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improved. Because DALL data acquisition time was as short as 20 seconds, it was 

possible to map the flip angle distribution within a breath hold, thus allowing application 

of flip angle mapping to abdominal imaging. 

3.2 Future work 

3.2.1 T1 Correction 

Signals acquired from the SPGR sequence depend on the proton density ρ, relaxation 

time T1 and T2
*, repetition time TR, echo time TE and the true flip angle α. Since TR and 

TE and be measured accurately, the confounding factors comes down to T1, T2
* and α. In 

this work, corrections on T2
* and flip angle α have already been carefully considered. In 

terms of the relaxation parameter T1, since extremely small flip angles were used (3°), the 

confounding effect from T1bias was assumed to be negligible.  However, it is known that 

water and fat have different T1 values (36). According to simulations in a previous study 

(36), at a 10 degree flip angle, the signal from fat can be as much as 30% higher than that 

from water. Using low flip angle can minimize this effect, but the trade-off is relatively 

low SNR.  

T1 correction could be added to improve the algorithm presented in this thesis. One 

possible option is to use estimated T1 values to correct for the T1 difference between 

water and fat (41). By using literature values, T1 bias can be significantly reduced. Thus, 

a high flip angle can be used to increase SNR. Another alternative is to add another 

measurement to get the actual T1 values. Multiple methods are reported previously, such 

as traditional inversion recovery pulse (42), 3D MAPSS (43) or other T1 mapping 

methods (44,45). However, these methods are time consuming due to the need to invert 

 



66 

the longitudinal magnetization and then allow it to recover. Even accelerated T1 

measurement methods, such as DESPOT and Look-Locker are not fast enough to be 

feasible in abdominal imaging (46-48). With future work on time efficient T1 correction, 

larger flip angles could be used in this experiment to increase SNR. 

3.2.2 Flip Angle Map Correction on Volume Coil 

In previous work, coil sensitivity calculations were based on assuming a uniform B1- 

receiving magnetic field for the volume coil. In this work, the assumption of a uniform 

B1
- in volume coil is loosened. In order to correct for the receive inhomogeneity of the 

volume coil, I instead assumed that the receive inhomogeneity factor VC
BC −

1
 is equivalent to 

the transmit inhomogeneity factor VC
BC +

1
. With this assumption VC

B
VC
B CC +− =

11 ,
 the B1

+transmit 

inhomogeneity measured by DALL sequence can be used to correct for the B1
- 

inhomogeneity. 

This assumption is valid at magnetic fields of 3.0 T and below. However, in MRI, higher 

field strength is always desired for SNR consideration. However, at high field (7T and 

above), this assumption VC
B

VC
B CC +− =

11
is no longer valid anymore(32). In order to get to 

compensate the B1
- receiving field inhomogeneity of volume coil, a new method of 

accurate and rapid measurement of volume coil B1
- receive field will be needed in order 

to implement absolute water and fat quantification at high field. 

3.2.3 Temperature Correction 

In the in vivo experiments I presented here, the temperature difference between human 

tissue and the phantom is not taken into account. Differences in temperature will lead to 

slight changes in the density of water in our reference phantom, thus confounding our 
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measurement. Although this effect did not appear to affect our results, it can be corrected 

by using an insulated reference with the same temperature as body tissue. 

3.2.4 Cardiac Application 

Many cardiac diseases are related to changing water or fat content. Imaging techniques 

has been investigated on myocardial edema, which is believed relevant to acute coronary 

syndromes (ACS) and myocardial infarction (49,50). Other possible applications of water 

fat separation techniques are found in characterizing cardiac masses, evaluating for 

myocardial lipomatous infiltration, and diagnosing pericarditis (51).Extending this 

absolute quantification technique to applications of cardiac imaging is promising. 

In cardiac IDEAL imaging, one problem is that with low flip angles, is very difficult to 

get reasonable SNR in the volume coil reference image. This is partly because the cardiac 

experiments were only conducted for 2D imaging so far. Different from 3D experiment, 

2D imaging experiment has only one shot per slice thus lack the extra SNR enhancement 

benefited from multiple shots z phased encoding. Methods to improve SNR in single slice 

cardiac volume coil image need to be investigated in the future. 

To make the Double Angle Look-Locker (DALL) sequence transferable to cardiac 

applications, several issues need to be carefully considered and resolved. First, DALL is a 

3D sequence, thus it takes longer to run comparing to the 2D single slice cardiac 

application. Parallel imaging might be used to speed up the data acquisition. Second is 

that the current version of DALL is not capable of ECG gating for cardiac imaging yet. 

The influence of motion artifacts prevents us from getting accurate measurement the B1
+ 

transmitting magnetic field. The DALL sequence will need to be modified in the future in 

order to make it suitable for cardiac quantitative IDEAL measurement. Lowering 

 



68 

resolution of flip angle map might be helpful in reducing the effect of motion. Besides, 

motion artifact can be reduced by multiple identical acquisitions and then take the 

average of them. 

3.2.5 Application in Hyperpolarized Imaging 

In hyperpolarized imaging, nuclei such as 129Xe or 13C are used to label various low 

concentrations of compounds. Through the hyperpolarization process, signal can be 

dramatically enhanced up to tens of thousands of folds. The frequencies of 129Xe or 13C 

also change with different molecular environments in a manner similar to the proton 

resonance frequency change between water and fat. By applying the same algorithm as 

we used in water fat separation, least-squares chemical shift imaging (LSCSI) can be 

generalized to separate signals from different molecules in hyperpolarized 129Xe or 13C 

experiments. This will allow functional imaging of metabolism. For example, molecules 

like pyruvate can be labeled by 13C. After injected into an animal, their frequency will 

change when a metabolic process converts the labeled molecule to a different metabolite. 

The techniques developed in this thesis have the potential to be applicable to the absolute 

quantification of hyperpolarized species. Quantitative functional measurement of 

metabolism in vivo will provide an alternative powerful tool in physiological studies. The 

IDEAL method used for water and fat separation in this study (16), can be modified to 

monitor 13C labeled pyruvate as it is metabolized to products such as lactate. These 

experiments are directly analogous to the water and fat separation performed with IDEAL 

in this study (16). Just like fat fraction is a biomarker in NAFLD diagnosis, lactate to 

pyruvate ratio is reported to be useful in diagnosing diseases like congenital lactic 

acidosis (40). Thus, chemical shift based absolute quantification techniques like the ones 
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reported in this thesis would be transferable to hyperpolarized 13C imaging, and would 

allow absolute, rather than relative, quantification of metabolites.  

3.3 Conclusion 

In order to accurately measure the mass density of water and fat in abdomen, water and 

fat signals must be separated into water only and fat only images. Coil sensitivity 

inhomogeneity, flip angle inhomogeneity, and T1 and T2
* bias need to be corrected for in 

those images and then the corrected signal intensity must be calibrated to units of mass 

density. For abdominal imaging, which was the objective of this work, all of these 

corrections must be performed with measurements rapid enough to be acquired in a 

single 20 s breath hold. In this thesis, I corrected flip angle variations by measuring flip 

angle maps with the Double Angle Look-Locker sequence, which is the only flip angle 

measurement method fast enough to use in a breath hold. I corrected coil sensitivity 

variations by using a volume coil reference image, after correcting the volume coil 

images for flip angle variation. Small flip angles were used in data acquisition to 

minimize any T1 bias. Finally, multi-peak T2
* IDEAL acquisitions were used to separate 

fat from water and correct for T2
* effects at the same time. The IDEAL acquisitions were 

accelerated with parallel MRI to allow acquisition of IDEAL data rapid enough to cover 

the entire liver in a single breath hold.  I developed a method to combine all the necessary 

corrections and mass density calibration and demonstrated the feasibility of absolute 

quantification of water and fat mass density in abdomen. 
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