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Abstract

Automating global and segmental (regional) assessments ofcardiac Left Ventricle (LV)

function in Magnetic Resonance Images (MRI) has recently sparked an impressive research ef-

fort, which has resulted a number of techniques delivering promising performances. However,

despite such an effort, the problem is still acknowledged to be challenging, with substantial

room for improvements in regard to accuracy. Furthermore, most of the existing techniques are

labour intensive, requiring delineations of the endo- and/or epi-cardial boundaries in all frames

of a cardiac sequence.

On the one hand, global assessments of LV function focus on estimation of the Ejection

Fraction (EF), which quantifies how much blood the heart is pumping within each beat. On the

other hand, regional assessments focus on comprehensive analysis of the wall motions within

each of the standardized segments of the myocardium, the muscle which contracts and sends

the blood out of the LV.

In clinical practice, the EF is often estimated via manual segmentation of several images in a

cardiac sequence which is prohibitively time consuming, orvia automatic segmentation, which

is a challenging and computationally expensive task that may result in high estimation errors.

Additionally, the diagnosis of the segmental dysfunction is based on visual LV assessment,

which is subject to high inter-observer variability.

In this thesis, we propose accurate methods to estimate bothglobal and regional LV func-

tion with minimal user inputs in real-time from statistics estimated in MRI. From a simple user

input, we build image statistics for all the images in a subject dataset. We demonstrate that

these statistics are correlated with regional as well as global LV function. Different machine

learning techniques have been employed to find these correlations. The regional dysfunction is

investigated in terms of a binary/multi-classification problem.

A comprehensive evaluation over 20 subjects demonstrated that the estimated EFs corre-

lated very well with those obtained from independent manualsegmentations. Furthermore,

comparisons with estimating EF based on recent segmentation algorithms showed that the pro-
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posed method yielded a very competitive performance. For regional binary classification, we

report a comprehensive experimental evaluation of the proposed algorithm over 928 cardiac

segments obtained from 58 subjects. Compared against ground-truth evaluations by experi-

enced radiologists, the proposed algorithm performed competitively, with an overall classifi-

cation accuracy of 86.09% and a kappa measure of 0.73. We also report a comprehensive

experimental evaluation of the proposed multi-classification algorithm over the same dataset.

Compared against ground-truth labels assessed by experienced radiologists, the proposed al-

gorithm yielded an overall 4-class accuracy of 74.14%.
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Chapter 1

Introduction

Cardiovascular disease in general is the leading cause of death worldwide [17], and Heart Fail-

ure (HF), in particular is a prevalent disease that can be caused by various heart conditions [9].

Clinically, HF has a poor prognosis and its early stage diagnosis can play an essential role for

radiologists in planning the stages of the treatment. Sincesome patients require specific treat-

ment, early and accurate diagnosis of HF is very important. Approximately 25% of patients

with HF diagnosis are re-admitted to hospitals and 40% of them die within one year following

the first hospitalization. Furthermore, early and accuratediagnosis can lead to more effec-

tive treatment, reducing the re-hospitalization rate and,consequently, decrease the associated

financial burden on the public healthcare system [17].

1.1 Heart Failure

The heart is considered as the engine of the body that continuously pumps oxygenated blood

to the cells (Fig. 1.1)1. Body cells function properly when they receive sufficient nutrient-rich

blood. When a patient suffers from a serious HF condition, his heart may not be able to provide

the required nutrition for the cells to function properly.

The heart consists of four chambers: the left and right ventricles and the left and right atria.

1please refer to: http://lsa.colorado.edu/essence/texts/heart.html
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HF occurs under one or a combination of the following conditions:

• The Left Ventricle (LV) muscle, the myocardium, is too weak to pump an adequate

amount of blood (systolic heart failure) in each heart beat;

• The LV is not sufficiently filled with blood (diastolic heart failure) in each cycle;

• An insufficient amount of blood is supplied to the heart as a result of coronary artery

disease, particularly due to a narrowing of coronary arteries; and

• An infection weakens the heart muscle (cardiomayopathy).

There are also less common situations such as congenital heart disease, heart valve disease

and some types of abnormal heart rhythms (arrhythmia) that may lead to HF2.

2Please refer to: http://www.nlm.nih.gov/medlineplus/ency/article/000158.htm
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Figure 1.1: Blood Circulation. The figure is adopted from:
http://en.wikipedia.org/wiki/Circulatory_system

1.2 Blood Circulation

The heart is slightly larger than a fist, continuously pumping the blood through out the body.

The ventricles are the two main chambers of the heart that receive and send blood. The Right

Ventricle (RV) pumps the blood to the lungs and the left ventricle (LV), pumps the blood to

the whole body in each heart beat. The ventricles have thicker walls and generate higher blood

pressures comparing to the atria. Since the LV is required topump the blood to the whole body,

its wall is thicker compared to the RV. Therefore, early and precise diagnosis of left ventricular

abnormalities plays an essential role in taking the treatment steps following prognosis.

When the heart contracts, it pushes the blood out into two major loops: a systemic loop

happens when oxygenated blood is circulated into the body and wasted carbon dioxide is col-

lected from cells; pulmonary loop happens when the blood circulates to and from the lungs in

order to release the carbon dioxide and pick up new oxygen. The systemic loop is controlled

by the left side of the heart where the pulmonary loop is controlled by the right side.
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The systemic loop begins when oxygenated blood from the lungs enters the the upper left

chamber, called the Left Atrium (LA). When the LA is filled, themitral valve is opened by

high blood pressure and blood flows down into the LV. When the LVcontracts in each heart

beat, it pushes the blood into the aorta, the largest artery of the body (usually 2 to 3cm wide).

The oxygenated blood leaving the aorta brings oxygen to the body cells through a network of

arteries and capillaries. The de-oxygenated blood from body cells returns to the heart via the

venous system. All de-oxygenated blood from the body returns to the heart by two large veins

called superior and inferior vena cavae. The superior vena cava receives blood from upper

organs of the body, while the inferior vena cava receives blood from the lower ones. Both of

these veins fill the blood into the Right Atrium (RA). The pulmonary loop begins by sending

the blood from the RA to the RV through the tricuspid valve. Whenthe RV contracts, blood is

pushed into the pulmonary artery. The fresh, oxygen-rich blood returns to the LA of the heart

through the pulmonary veins (refer to Fig. 1.1).

Both of the circulatory system loops occur simultaneously. The contraction of the heart

muscle begins from the two atria, which forces the blood intothe ventricles. Then the walls of

the ventricles contract together at the same time, pumping the blood out into the arteries. The

aorta delivers the oxygenated blood to the body, and the pulmonary artery sends the blood to

the lungs to be oxygenated. Afterwards, the heart muscle relaxes, allowing the blood to flow

in from the veins, filling the atria again for the next cycle. The heart rate is about 72 beats per

minute in a healthy individual, but can be increased or decreased in different situations. It takes

about 30 seconds for each portion of the blood to complete a full cycle (from lungs to the heart

and the heart to the body, from body back to the heart and out tothe lungs again).
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1.3 Cardiovascular Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that plays an es-

sential role assessing heart conditions before and following a HF by providing accurate and

reproducible diagnostic information. It is therefore considered as the gold-standard imaging

modality for comprehensive assessments of regional and global dysfunctions of the heart [6].

Cardiac Magnetic Resonance (CMR) Images are commonly acquired at a magnetic field

strength of 1.5 T (3.0 T in some centers) [6]. This strong constant magnetic field is applied to

align the magnetization of hydrogen atoms of the organ beingscanned. The hydrogen nuclei are

then excited by applying another magnetic field at a certain frequency (RF field) that deflects

their magnetization from this alignment. The signal emitted from these excited nuclei, when

they realign to their initial configuration, is measured by RFsensors and used to form an

image. In MR imaging, signals received from a particular tissue (e.g., heart muscle, fat, etc)

are determined by the density of hydrogen atoms (proton density), and by two distinct MR

relaxation parameters, longitudinal relaxation time (T1)and transverse relaxation time (T2).

Proton density, T1, and T2 are significantly varied for different tissue types, and are used to

generate contrast in MR images. Also, image contrast can be modified by modulating the way

the radiofrequency signals are applied (the MR sequence) [6].

An MR Imaging sequence refers to a specific combination of radiofrequency pulses, mag-

netic gradient field switches, and timed data acquisitions,all used to generate the MRI im-

age. In CMR, for anatomic imaging and tissue characterization, spin echo sequences are used,

whereas gradient echo sequences are used to acquire cine images which depict fat and blood

with high signal intensities. The most recent standard protocol for cardiac MR employs the

Steady-State Free Precession (SSFP) sequence. This sequence provides the best contrast be-

tween myocardium (dark) and the blood in the chamber (white)for imaging cardiac function.

For a better visualization, fat suppression sequences may be applied to allow signal from fat to

be specifically suppressed with special pre-pulses [6].

To assess heart function, a full cardiac cycle is divided into 20-30 frames, each consisting of
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10-12 slices corresponding to a specific plane of the heart. The standard imaging plane (short

axis view) used for LV assessments is perpendicular to the long axis of the heart (apex-base).

A single cardiac MRI can therefore consist of around 200-250 short axis images, making the

analysis of such a volume of data quite challenging [6].

1.3.1 Clinical significance of using Cardiovascular Magnetic Resonance

Imaging

Cardiac MRI can image in any desired plane and with a nearly unrestricted field of view,

allowing the flexibility to evaluate abnormal structure of ventricles with different sizes and

shapes, even those that have been extensively remodeled [22, 19]. The inherent 3-dimensional

nature of CMR makes it suitable for studying the RV, which is challenging to assess due to

its complex and variable morphology. Moreover, using steady-state free-precession sequences,

CMR is suitable for regional assessments of the LV because it provides excellent intensity

contrast between blood and myocardium [18]. With regard to regional ventricular function,

CMR enables accurate assessments of regional wall motion abnormalities [18].

Since CMR is accurate and reproducible [7, 12, 8] patients can undergo several CMR scans

without being exposed to ionizing radiation [20], making it an ideal technique for monitoring

disease treatment and progression.

It is predicted that the application of CMR imaging for patients with HF will be substan-

tially developed in the coming years [20]. Furthermore, improvements in developing CMR

software and hardware will lead to shorter scan time and, eventually, allow the use of real-time

imaging with higher spatial and temporal resolution [20].

1.3.2 Cardiovascular Magnetic Resonance Imaging Safety

In CMR scanning, the patient is not exposed to ionizing radiation, and there are no other harm-

ful side effects reported. However, there are certain safety protocolsto be followed regarding
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to the proximity of a strong magnetic field. Items with ferromagnetic materials can be pulled

into the magnet’s core with high speed, and cause serious damage that restricts application of

some equipments. However, the majority of medical implantsare safe for MR scans, includ-

ing orthopedic implants, coronary and vascular stents, andprosthetic cardiac valves. Patients

with embedded ferromagnet implants such as pacemakers or defibrillators cannot be admitted

for MR scanning [20]. Currently, there are many researches on MR compatible implants and

devices that can change the development of MR machines in thefuture. However, when MR

compatibility of a certain device is not clear, its safety status needs to be checked by referring

to the information provided by the corresponding manufacture [6].
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1.4 Diagnosis of Cardiovascular disease

The diagnosis, treatment and follow-up of LV pathologies can rely on numerous cardiac imag-

ing modalities, which include echography, CT (Computed Tomography), coronary angiogra-

phy and MRI (cardiac Magnetic Resonance Imaging). Among others, MRI provides precise

information on morphology, tissue viability, muscle perfusion and blood flow, using suitable

protocols [13].

In clinical practice, however, assessment of the LV relies mainly on manual segmentations

as well as visual analysis and interpretations of wall motion. Several clinical studies have

shown that visual assessments are inaccurate and subject-dependent [11]. Manual segmenta-

tion of the LV is prone to intra- and inter-observer variability, therefore, automatic assessment

methods have become a major area of research [13].

Assessment of the LV includes three main steps:

1. Global assessment of the LV:This performed by estimating the cardiac Ejection Frac-

tion (EF), which is the most important observations in diagnosing cardiovascular diseases

because it is an important indicator of long-term prognosisfor patients with coronary

artery disease. Since the LV is the main pumping chamber of the heart, the EF is usually

measured using information from the LV [20].

In current clinical practice, the EF is often estimated fromseveral images in a cardiac

sequence using manual segmentation of the LV cavity, which is time consuming. Auto-

matic LV segmentation can also be used to compute the EF, however, the automatic LV

segmentation techniques are challenging and computationally expensive.

2. Regional assessment of the LV:This is scored following the American Heart Associa-

tion (AHA) Standard. Heart failure is a prevalent disease that can be caused by various

heart conditions, in particular, Ischemic Heart Disease (IHD) [6]. The decrease of blood

supply produced by coronary artery stenosis impairs the contractile properties of specific

myocardial areas. This causes a deviation from the normal regional wall motion and con-
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tractility patterns of the myocardium, especially the LV. Early and accurate detection of

LV regional wall motion abnormalities significantly helps in the diagnosis and follow-up

of IHD [1].

In routine clinical use, cardiac function is estimated by visual assessment of the LV

motion and, therefore, it is highly observer-dependent. Alternatively, computer-aided

detection systems have been attempted in recent years in order to automatically analyze

LV myocardial function quantitatively [20], and to classify cardiac function into normal

or abnormal groups [51]. The regional myocardial function is commonly scored by

following AHA standards [2], where the LV is divided into 17 segments.

3. Classification of regional LV dysfunction: Segmental classification of the LV is widely

accepted as a predictor of cardiac disease [1]. Clinically, the regional myocardial func-

tion is also scored using AHA standards [2]. Representative 2D cardiac slices are se-

lected to generate 17 standard LV regional segments. Each ofthe regional segments

are assessed individually and characterized as:normal, hypokinesia, akinesia or dyski-

nesia. Distinguishing these conditions from each other is often challenging as manual

delineation of regional segments or visual assessment is used in clinical routine which is

highly subject dependent and non-reproducible [53, 5]. Functional images are subject to

noise, therefore LV segmentation and regional assessment are acknowledged as difficult

problems. The difficulties come from the subtle visual differences between normal- and

abnormal-segment motions.

In this project, we propose novel methods to diagnose globaland regional dysfunction of

cardiac LV using MR images, to provide a framework that will assist the radiologists in the

diagnosis of LV dysfunction in early stages.
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1.5 Global Assessment of Cardiac Left Ventricular Function

During the cardiac cycle, the heart contracts (systole) andrelaxes (diastole). When the heart

contracts, it pushes the blood out of the ventricles and whenit relaxes, the ventricles are refilled

with blood. Ejection Fraction (EF) is a measure of how much blood pumps out of the LV with

each heart beat.

Left ventricular Ejection Fraction (LVEF) is an important prognostic marker used to eval-

uate cardiac function globally [20]. Cardiac Magnetic Resonance (CMR) imaging provides

accurate and reproducible methods to perform physiological studies such as EF estimation. EF

is often estimated using multiple cine short -axis MR imagesthat embrace the LV. Currently in

clinical practice, EF is estimated from several images in a cardiac sequence using manual seg-

mentation, i.e., manual delineation of the LV cavity. This is a time consuming process, which

requires about 20 to 40 min per ventricle by a clinician and isprone to intra- and inter-observer

variability. Automatic LV segmentation techniques for computing the EF has been the subject

of significant research. In particular, commercial software packages such as MASS (Medis,

Leiden, The Netherlands) [17] and Argus (Siemens Medical Systems, Germany) [46] are to-

day available for automatic ventricle delineation. Although processing time has been greatly

reduced, the provided contour detection still needs improvement compared to equal manual

contour delineation. Existing LV segmentation algorithmscan be divided into the following

two main categories based on prior art [13].

1.5.1 Left Ventricle segmentation based on no or weak priors:

In general, LV segmentation approaches with no or weak priors are image-driven. Existing

algorithms are based on thresholding [18, 29, 62, 45, 28, 35], dynamic programming [15,

64, 17], shortest path algorithms [23], pixel classification via Gaussian Mixture Models [48]

or clustering [10], and deformable models which evolve and regularize a curvefollowing

the minimization of a functional [24, 63, 41, 3]. Based mainly on image information, these
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approaches do not require intensive training. However, in order to compensate the lack of

spatial information, they generally resort to user interventions or several pre- or post-processing

steps to localize the LV. This section summarizes segmentation methods with weak or no prior,

including image-based, pixel classification-based and deformable models.

Image-Based Methods

The majority of the image-based methods involve a two-stepsprocess to individually segment

the endo and epicardium [13]. The first step focuses on detecting the endocardial boundary us-

ing thresholding [18, 29, 62, 45, 28, 35] or dynamic programming [17, 19, 32]. The epicardial

boundary is delineated during the second step, often based on the endocardium boundary using

a spatial model. The model utilizes information about myocardial thickness or mathematical

morphology operators.

Pixel Classification

Pixel classification methods are often used when multiple images of the same organ are avail-

able, e.g., multiple MRI or multi-modality images. The imageis divided into different regions

or classes that have similar feature values. Segmentation can be performed using either su-

pervised (with learning datasets) or unsupervised techniques (without training datasets). In

[48], Pednekaret al. used Gaussian Mixture Model (GMM), to fit the image histogram, and

clustering.

Deformable Models

Segmentation methods based on deformable models use activecontours or snakes [27], and

are based on deforming a curve iteratively to minimize an energy function. The energy func-

tion consists of two main components; a regularization termcontrolling the smoothness of the

curve and a data term that includes information about objectboundary. The curve evolution

equation is obtained by the Euler-Lagrange descent minimization of energy function. For im-
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plementation of curve evolution, the level-set framework is widely used in medical imaging

because of its flexibility regarding topological changes. The level-set method facilitates seg-

mentation of multiple objects. Deformable models have beenused widely for LV segmentation

[24, 63, 41, 3].

Almost all of the methods using weak priors or none at all require user intervention. In

order to fully automate the process, incorporating strong spatial priors (e.g. relating to the the

shape of the target region) has been researched for LV segmentation. Section 1.5.2. discusses

some of the existing methods within this direction.

1.5.2 Left Ventricle segmentation based on strong priors

Automatic LV segmentation is generally based on strong spatial priors such as statistical shape

models or atlases. This is especially true if the shape of thetarget region does not change

significantly from one subject to another, which is a reasonable assumption for the LV. Such

strong priors can relax the need for user intervention, but at the expense of manually building a

large training set. Methods falling within this category are based on shape-driven deformable

models [47, 36, 39, 40], Active Shape Models (ASM) [66, 65], and atlas based models [37,

68].

Shape-driven Deformable Models

Shape-driven deformable models evolve an active curve/surface according to the minimization

of an energy functional, comprising a set of template shapeslearneda priori. The evolution

equation is computed by minimization of the functional, which contains a statistical shape

constraint. The principle is to modify the energy functional by adding a new term that embeds

a shape constraint, such as a distance to a reference shape model, e.g., the mean signed distance

map as used by Paragios et al. to build a reference shape [47, 36]. A Probability Density

Function (PDF) or probabilistic map can be estimated by using manual LV segmentations, and

can be used in the evolution equation [39].
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Active Shape Models

The Active Shape Model (ASM) consists of two steps: (1) building a statistical shape model

following a Principal Component Analysis (PCA) of a set of aligned training shapes, and (2)

finding a segmentation in the current image by fitting the solution to the learned model and

estimating rotation, translation and scaling parameters [66, 65, 4]. Active Appearance Models

(AAM) are an extension of ASM by modeling gray levels [13] that include both shape and

texture variability in the training set.

Atlas Based models

In atlas based methods, an image is segmented by mapping its coordinate space to that of an at-

las, often following a registration process. This technique has been used for heart segmentation

[37, 67, 11]; the principle is to register the labeled atlas onto the image to be segmented, and

then apply the obtained transformation to the atlas, thereby obtaining the final result. The result

can then be propagated over time throughout the cardiac cycle following the same principle.

1.5.3 The Proposed Method

In this project, we propose estimating the EF without segmentation in real-time directly from

image statistics using machine learning techniques. From asimple user input in only one

image, we build a statistic based on the Bhattacharyya coefficient [14] of similarity between

image distributions for all the images in a subject dataset .We demonstrate that these statistics

are non-linearly related to the LV cavity areas and, therefore, can be used to estimate the EF

via an Artificial Neural Network (ANN) directly. The proposed method consists of four main

steps:

1. Image acquisition

2. Building Image Statistics

14



3. Applying Artificial Neural Networks

4. Estimating Ejection Fraction
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1.6 Regional Assessment of Cardiac Left Ventricular Func-

tion

Accurate detection of segmental (regional) LV abnormalities in MRI is accepted as a predictor

of cardiac diseases, the leading cause of death worldwide [6]. In clinical practice, segmen-

tal cardiac function (Fig. 1.2) is considered an essential diagnosis and follow-up component

[1]. It is often assessedvisually following the AHA standard [2], which prescribes selecting

representative 2D cardiac slices used to generate 17 standardized LV segments. Currently radi-

ologists visually assess the 17 segments together. These practices, along with being subject to

high inter-observer variability [5, 53], and are subjective and non-reproducible. For instance,

the clinical study in [5] showed that the mean kappa measure of detecting regional wall mo-

tion abnormalities by three different radiologists could be as low as 0.43, the difficulties coming

from the subtle visual differences between normal- and abnormal-segment motions. Automatic

diagnosis of LV regional dysfunction has attracted significant research [15, 11, 21, 4, 14, 10].

Regardless of promising performances of the applied techniques, the results can still be im-

proved in terms of accuracy. For instance, the recent publication in [21] reports an accuracy of

63.70% (base), 67.41% (middle), and 66.67% (apex) when visual wall motion scoring is used

as reference.

1.6.1 Prior art

Echocardiography Based Methods

Most of the pioneering studies of wall motion abnormality detection targeted echocardiography

[3, 9, 12], using concepts from shape statistics [3, 9] and Hidden Markov Models (HMM) [12],

among others. In [3], model-based shape analysis is used to automatically classify wall motion

abnormalities in echocardiograms. The shape model is obtained using Principle Component

Analysis (PCA), which quantifies the components of the variability within a large data set.
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Figure 1.2: AHA standard for LV regional segments.

In this particular example, they used PCA to find the average endocardial shape and large

eigenvectors representing the main modes of variations. Any shape in the testing dataset can

be represented by a combination of average shapes and a specific linear combination of these

eigenvectors. The eigenvectors correspond to regional wall motion abnormality. Multivariate

linear regression was then applied to differentiate normality and abnormality of the regional

segments.

In [9], the authors built sparse shape models with localized variations from four- and

two-chamber echocardiographic sequences using principalcomponent analysis and orthomax

rotations. Then, the ensuing shape parameters were used to assess local wall motion.

In [12], Mansor et.al. investigated a HMM as a tool for regional stress cardiography wall

motion abnormality detection. HMM are especially known fortheir application in temporal

pattern recognition [22] because of their ability to successfully learn the time-varying char-

acteristics of signals. HMM were used so that the cardiac data inherits the time-varying and
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sequential properties. First, the myocardial contour was semi-automatically delineated using

Quamus software. Next, each contour was divided into six parts, and several features were

extracted to evaluate the wall motion. The data was then separated into two groups of normal

and abnormal subjects. Two HMMs were then developed for eachsegment. Finally, the trained

HMM was used to evaluate regional wall motion for the new dataset.

Magnetic Resonance Imaging Based Methods

More recently, MRI-based wall motion abnormality detectionhas been studied [15, 11, 21, 4,

14, 10]. In [14], Punithakumar et al. characterized myocardial-segment motions via a nonlin-

ear dynamic model, and used the Shannon’s differential entropies of various segment features

(e.g., areas and radial distances) as inputs of a naive Bayes classifier. They investigated the

problem with a global measure based on the Shannon’s Differential Entropy (SDE) of distri-

butions of normalized radial distances, radial velocitiesand segment areas. As discussed in

[14], SDE measures global distribution information, and is more discriminative in classify-

ing distributions compared to the methods that rely on elementary measures or a fixed set of

moments.

In [21, 19], Suinesiaputra et al. built normokinetic myocardial shape models using short-

axis MR images acquired from healthy volunteers. They proposed using an Independent Com-

ponent Analysis (ICA) classifier that detects and localizes abnormally contracting segments,

via a characterization of local shape variations.

Lekadir et al. [10] focused on statistical modeling based on spatio-temporalinter-landmark

relationships.

In [11], Lu et al. proposed a pattern recognition technique built upon intra-segment corre-

lation, using a normalization scheme which maps each LV slice to polar coordinates with fixed

size, intensity level, and position.

The study in [4] proposed a differentiable-manifold analysis, following differential geome-

try concepts to define a parameterization of the LV domain, which is considered as a deforming
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manifold.

The authors of [15] investigated a tensor-based Linear Discriminant Analysis (LDA) clas-

sification that conserves the spatio-temporal structure ofthe myocardial function. Radial and

circumferential strain as well as tissue-rotation angle were used as features to train and test a

classifier via manual segmentations of the myocardium.

Most of the existing methods require delineations of the endo- and/or epi-cardial bound-

aries in all frames of a cardiac sequence, using either a manual time-consuming process [4,

21, 11, 15] or an automatic/semi-automatic segmentation (delineation) algorithm [14]. As

discussed in section 1.5. segmentation algorithms are either sensitive to user inputs and/or are

computationally expensive and may result in high estimation errors [13]. Furthermore, the

segmentation results often depends on the choice of parameters and training dataset. These

difficulties inherent to segmentation algorithms prevent theirclinical adoption for segmental

motion abnormality detection. Moreover, some of the existing algorithms, e.g., those based on

shape analysis techniques [21], require such delineations in the training phase, which increases

the amount of manual input and training complexity.

1.6.2 The Proposed Method

In this thesis, we propose a regional myocardial abnormality detection framework based on

image statistics. The proposed framework requires minimaluser interaction, with the clinician

only needing to specify initial delineation and anatomicallandmarks on the first frame. Ap-

proximations of regional myocardial segments in subsequent frames were systematically ob-

tained by superimposing the initial delineation on the restof the frames. The proposed method

exploits the Bhattacharyya coefficient to measure the similarity between the image distribution

within each segment approximation and the distribution of the corresponding user-provided

segment. Linear Discriminant Analysis (LDA) is applied to find the optimal direction along

which the projected features are the most descriptive. Thena Linear Support Vector Machine

(LSVM) classifier is employed for each of the regional myocardial segments to automatically
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detect abnormally contracting regions of the myocardium. Based on a clinical dataset of 58

subjects, the evaluation demonstrates that the proposed method can be used as a promising

diagnostic support tool to assist clinicians. The proposedmethod consists of four main steps:

1. Image acquisition

2. Building Image Statistics

3. Applying Linear Discriminant Analysis

4. Detecting Abnormality of Regional Segments
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1.7 Multi-Class Segmental Cardiac Dysfunction Classifica-

tion of Cardiac Left Ventricular Function

In routine clinical procedures, segmental cardiac function is considered an essential diagno-

sis and follow-up component [1]. It is commonly scored following the AHA standard [2]

which prescribes dividing the LV into 16 regional segments,each assessed individually and

characterized as:

• normal

• hypokinesia: reduced LV contraction

• akinesia: absence of contraction

• dyskinesia : bulging out in systole

Current radiologic practices rely on visual assessment, which is subject to a high inter-

observer variability, while being subjective and non-reproducible [53, 5]. Furthermore, visual

assessment requires either manual delineation of the segments in all the frames of a subject

dataset, which is prohibitively time-consuming, or automatic delineation, which is a challeng-

ing computational problem [13].

1.7.1 Prior Art

Automating LV abnormality scoring has been the subject of numerous recent studies as dis-

cussed in section 1.6 [19, 4, 14, 2, 21, 15, 12]. Earlier studies of wall motion abnormality

detection used various approaches including differentiable manifolds [4], independent compo-

nent analysis classification [21], information-theoretic techniques [14], tensor-based classifi-

cation [12], and image statistics based classification [2].

Unfortunately, to the best of our knowledge, all existing algorithms address abinary clas-

sification problem, where each cardiac segment is characterized as normal or abnormal. Fur-
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thermore, most of the existing methods require LV segmentation in all frames of a cardiac

sequence. As noted earlier, this is either done manually which is time consuming or automati-

cally with its associated drawbacks [4, 21, 15]).

1.7.2 The Proposed Method

We propose a method to solve this problem using image statistics from MR images. The pro-

posed method requires minimal user-interaction with the clinicians only needing to delineate

the inner and outer boundary and two anatomical landmarks ofthe LV in one single frame of

cine MRI sequence. The obtained outer boundary is then systematically superimposed to all

other corresponding frames with no changes. The amount of blood inside the regional LV cav-

ity is modeled by Bhattacharyya statistics between distribution estimated inside the LV cavity

of first frame and regional segments in the rest of the frames.The muscle inside the regional LV

is modeled using the same idea from Bhattacharyya statisticsbetween distributions estimated

inside the LV myocardium of the first frame and regional segments in the rest of the frames.

A Support Vector Machine (SVM), is then used to find the correlation between the estimated

image statistics and different regional abnormalities of the LV. The results show that the image

statistics can be used to differentiate among various LV abnormalities. The algorithm shows

comprehensive results on 174∗20 short axis segments, obtained from 58 subjects. The method

diagnoses the condition of LV regional segments with 74.14% accuracy. The proposed method

consists of four main steps:

1. Image acquisition

2. Building Image Statistics

3. Applying Support Vector Machine

4. Classifying LV Regional Segment Dysfunction
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1.8 Thesis Objectives

The main objective of this work is to provide a platform to assist radiologists in diagnosis

of LV abnormalities. We developed a new automated tool to mimic the different steps of

the diagnostic procedures, to automatically assess cardiac function. This platform has the

potential to be further developed into a product for diagnosis of cardiac dysfunction, providing

radiologists with an accurate and fast system that can be integrated with MRI scanners.

Specific research objectives are listed below:

• Develop a software system for the diagnosis of LV dysfunction that would be compatible

with MRI scanners.

• Provide clinicians with a fast and accurate diagnostic toolthat assesses the LV function

globally with a minimal user input.

• Presenting MRI features that could be used to directly assesscardiac functions in terms

of global dysfunction without the need for segmentation.

• Develop a tool to estimate the regional cardiac function automatically with a minimum

user-intervention.

• Speed up the procedure of automatically assessing segmental LV by removing the need

for segmentation while exceeding the accuracy of current systems.

• Classify LV segmental dysfunction to diagnose abnormality.
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1.9 Thesis Outline

1.9.1 Chapter 2: Global Assessment of Cardiac Left Ventricle Function

Using Estimation of Ejection Fraction

This chapter describes how we design a diagnostic tool for global assessment of cardiac func-

tion using estimation of EF. In clinical routine, EF is oftenestimated by either manual or auto-

matic segmentation of the LV in number of short axis CMR Images. In general, the segmen-

tation algorithms discussed in section 1.5 require carefuluser interventions and/or intensive

manual training, along with a heavy computational load. Furthermore, the ensuing segmenta-

tion results depend significantly on the choice of a set of parameters and training data, causing

high errors in the EF estimation. These difficulties inherent to segmentation algorithms limit

the automatic estimation of the EF in routine clinical use.

While existing techniques are labour intensive, we believe that there are other character-

istics of the images that can be computed with less effort, but that nevertheless correlate with

the EF. One such technique that we describe in chapter two is based on machine learning tech-

nique, which removes the need for image segmentation. We build an image statistic for every

image in a subject dataset using a simple user input in a single image. We show that there

is a non-linear relation between these statistics and the LVcavity areas (cf. Figs. 2.7 -2.12).

Therefore the EF can directly be estimated using the statistics in real-time via an Artificial

Neural Network (ANN). We Perform a comprehensive evaluation on 20 subject datasets and

demonstrate that the estimated EFs are very well correlatedwith those obtained from manual

segmentations.
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1.9.2 Chapter 3: Regional Assessment of Cardiac Left Ventricle Func-

tion

Regional assessment of cardiac LV function is based on the segmentation of the LV in either

the entire cardiac cycle or several frames. Indeed, there are other image characteristics that can

be estimated with minimum user interaction. These characteristics correlate with segmental

cardiac dysfunction. One such technique that we describe inchapter three is based on image

features and machine learning, which removes the need for delineating the endo- and epi-

cardial boundaries in all the images of a cardiac sequence. Starting from a minimum user input

in only one frame in a subject dataset, we build, for all the regional segments and all subsequent

frames, a set of statistical MRI features based on a measure ofsimilarity between distributions.

We demonstrate that, over a cardiac cycle, the statistical features are related to the proportion

of blood within each segment. Therefore, they can characterize segmental contraction without

the need for delineating the LV boundaries in all the frames.We first find the optimal direction

along which the proposed image features are most descriptive via Linear Discriminate Analysis

(LDA). Then, using these results as inputs to a Linear Support Vector Machine (LSVM) clas-

sifier, we obtain an abnormality assessment (normal/abnormal) of each of the standard cardiac

segments in real-time. We report a comprehensive experimental evaluation of the proposed

algorithm over 928 cardiac segments obtained from 58 subjects. Compared against ground-

truth evaluations by experienced radiologists, the proposed algorithm yielded a competitive

performance, with an overall classification accuracy of 86.08% and a kappa measure of 0.73.

1.9.3 Chapter 4: Multi-Class Segmental Cardiac Dysfunction Classifica-

tion

The purpose of this chapter is to investigate the more general and challengingmulti-classprob-

lem, where each regional segment is classified into one of four classes: (1) normal; (2) hypoki-

netic; (3) akinetic; and (4) dyskinetic. We obtain a simple user input from a single frame for
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the given subject. Using this input we build for all the regional segments and all subsequent

frames a set of statistical MRI features based on a measure of similarity between distributions.

Over a cardiac cycle, these statistical features are related to the proportion of blood and my-

ocardium within each segment, and can therefore characterize segmental cavity/myocardium

contraction without the need for delineating the LV boundaries in all the frames. Finally, using

these features as inputs to a multi-class Support Vector Machine (SVM) classifier, we obtain

a 4-class assessment of each segment. We report a comprehensive experimental evaluation of

the proposed algorithm over 928 cardiac segments obtained from 58 subjects. Compared to

ground-truth labels assessed by an experienced radiologist, the proposed algorithm yielded an

overall 4-class accuracy of 74.14%.

1.9.4 Chapter 5: Summary, Contribution and Future Directions

This chapter summarizes the contribution of this project, and discusses the limitations were

faced at different stages. Suggestions and future directions are included to extend this project

to be improved and applied as a clinical diagnostic tool to help clinicians.
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Chapter 2

Global Assessment of Cardiac Left

Ventricle Function Using Estimation of

Ejection Fraction

2.1 Estimation of the Cardiac Ejection Fraction From Mag-

netic Resonance Image Statistics

The cardiac ejection fraction (EF) depends on the volume variation of the left ventricle (LV)

cavity during a cardiac cycle, and is an essential measure inthe diagnosis of cardiovascular

diseases .

In routine clinical use, EF is often estimated from the manual segmentation of several im-

ages in a cardiac sequence, which is a time consuming procedure. As discussed in section. 1.5,

1This chapter is based on three papers:
1) Afshin, M., Ben Ayed, I., Punithakumar, P., Islam, A., Goela, A., Ross, I., Peters, T., Li, S., “Global Assess-
ment of Cardiac Function using Image Statistics in MRI”, Medical Image Computing and Computer Assisted
Interventions ( MICCAI 2012), Vol 7511, pp. 535-545 (2012).
2) Afshin, M., Ben Ayed, I., Islam, A., Goela, A., Ross, I., Peters, T., Li, S, “Estimation Of The Ejection Fraction
From Image Statistics”, IEEE International Symposium on Biomedical Imaging (ISBI), pp. 824-827 (2012).
3) Afshin, M., Ben Ayed, I., Islam, A., Goela, A., Ross, I., Peters, T., Li, Sh., “ Estimation of the Cardiac Ejection
Fraction From Magnetic Resonance Image Statistics”, undersecond revision in IEEE Transaction on Biomedical
Engineering.
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in recent years automatic LV segmentation techniques are used to compute the EF. Existing

LV segmentation algorithms are based on traditional techniques, such as thresholding, region-

growing, edge detection and clustering [7, 10, 8], and energy minimization techniques such

as graph cuts [2, 13], active contours/level-sets [6, 3], as well as active appearance and shape

models [1]. A recent comprehensive review of cardiac image segmentation can be found in

[13]. Segmentation algorithms generally require a careful user initialization, intensive training,

and a heavy computational load. The segmentation results depend significantly on the choice

of a set ofad hocparameters and training data, which may yield high errors inthe computation

of the EF. These difficulties inherent to segmentation algorithms prevent the automatic segmen-

tation methods from being used in routine clinical practice. As most of the existing techniques

require intensive user interaction, we believe that there are other image characteristics that are

computationally less expensive but correlate strongly with the EF.

In this chapter, we propose a technique to estimate the EF directly from image statistics

via machine learning in MRI. From a simple user input in one single image, we build a statis-

tic based on the Bhattacharyya coefficient [14] of similarity between image distributions for

all the images in a subject dataset (200 images). We demonstrate that these statistics are non-

linearly but monotonically related to the LV cavity areas and, therefore, can be used to estimate

the EF via an Artificial Neural Network (ANN) directly. A comprehensive evaluation over 20

subjects demonstrates that the estimated EFs correlated very well with those obtained from

independent manual segmentations. Furthermore, comparisons with estimating EF with recent

segmentation algorithms show that the proposed method can yield a very competitive perfor-

mance.
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2.2 Estimating Left Ventricle Volumes from Image Statistics

2.2.1 Building Image Statistics

Let I be a cardiac MRI sequence containingJ frames1, each comprisingI slices2, Ii, j : Ω ⊂

ℜ2→ℜ+ with (i, j) ∈ [1 . . . I] × [1 . . .J]. To introduce how we build an image statistic related

to the LV cavity area for each imageIi, j , (i, j) ∈ [1 . . . I] × [1 . . .J], let us consider the following

definitions.

• Let I be a reference image which we use for a simple user input (refer to the middle

image in Fig. 2.1 b). For instance, in the experiments of thisstudy, we used imageI7,1 in each

subject dataset.

• Let Γin,Γout : [0,1]→ Ω denote two simple planar closed curves (e.g. squares) super-

imposed by the user on the reference imageI (refer to the middle image in Fig. 2.1 b), one

placed within the cavity (the blue curve in Fig. 2.1 b) and theother enclosing the cavity (the

red curve) which are identical for each patient.

Let us now superimpose systematically (without additionaluser effort)Γout onto each of the

images in the subject dataset, as shown in Fig. 2.1, Fig. 2.2 and Fig. 2.3. Then, we compute

for each image a statistic based on the Bhattacharyya coefficient of similarity between image

distributions (refer to Fig. 2.5, Fig. 2.4, and Fig. 2.6), and demonstrate thatthe obtained

statistics are related to the areas of the LV.

Let RΓ ⊂ Ω be the region enclosed withinΓ, Γ ∈ {Γin,Γout}, andPRΓ,I the kernel density

estimate of the distribution of an imageI ∈ Ii, j , (i, j) ∈ [1 . . . I] × [1 . . .J], within regionRΓ:

PRΓ,I (z) =

∫

RΓ
K(z− I )dx

aRΓ
(2.1)

1The number of framesJ is typically equal to 20 or 25.
2The number of slicesI is typically equal to 10.
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(a) (b)

Figure 2.1: User input: (a) frame 1 (slices 1,7, and 10); (b)Γin (the blue curve within the cavity)
andΓout (the red curve enclosing the cavity) are given by the user in the reference image (the
middle image).Γin is used solely in the reference image to computePRΓin ,I

, whereasΓout is
superimposed systematically (without additional user effort) to all the other images (refer to
Figs. 2.2 and 2.3) to computePRΓout,Ii, j .

(a) (b)

Figure 2.2: Superimposing red curve in End-systole: frame 7(slices 1,7, and 10):Γout is
superimposed systematically (without additional user effort) to all the slices in the 7th frame.

WhereaRΓ is the area inside regionRΓ

aRΓ =

∫

RΓ
dx (2.2)
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(a) (b)

Figure 2.3: Superimposing red curve in End-diastole: frame20 (slices 1,7, and 10):Γout is
superimposed systematically (without additional user effort) to all the slices in the 20th frame.

K is the Gaussian kernel [14]:

K(y) =
1√

2πσ2
exp−

y2

2σ2 (2.3)

We consider the distribution of the image within the region enclosed by the blue curve in

the reference image (PRΓin ,I
) as an approximation of the distribution within the cavity,and the

distribution of the region enclosed by the red curve in each imageIi, j (PRΓout,Ii, j ) as an approx-

imation of the distribution of the entire left ventricle. Now consider the following measure of

similarity between these two distributions in each imageIi, j , (i, j) ∈ [1 . . . I] × [1 . . .J]:

βi, j = B(PRΓin ,I
,PRΓout,Ii, j ), (2.4)

where the Bhattacharyya coefficient B( f ,g) measures the amount of overlap (similarity) be-

tween two distributionsf andg:

B( f ,g) =
∫

ℜ+

√

f gdz (2.5)
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There are different choices for estimating the similarity measurement between two distributions

e.g.Bhattacharyya coefficient, Kullback-Leibler, Hellinger distance and Mahalanobis distance.

Among others, Bhattacharyya coefficient has been chosen as the range of the Bhattacharyya

coefficient is [0; 1], with 0 indicating no overlap between the distributions and 1 being perfect

match. The fixed [0; 1] range of the Bhattacharyya coefficient affords a conveniently practical

appraisal of the similarity.

More importantly, we expect that measureβi, j is related to the cavity area in the correspond-

ing imageIi, j . This is demonstrated experimentally by the typical example in Figs. 2.4-2.6,

the corresponding variations of the cavity areas in Figs. 2.7, 2.9, 2.11, and the Bhattacharyya

statistics in Figs. 2.8, 2.10, 2.12.Note the strong similarity between the variations of the cavity

areas (Figs. 2.7, 2.9, 2.11) and those of the Bhattacharyya statistics (Figs. 2.8, 2.10, 2.12).

Such similarity is reasonable since the more the distributions of the cavity and the LV overlap,

the higher the cavity area.
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I = I7,1 . . . I7,7 (End-systolic) . . . I7,19 (End-diastolic) . . .

. . . . . . . . .
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(d) . . . (e) . . . (f) . . .
β7,1 = 0.9188 . . . β7,7 = 0.8754 . . . β7,19= 0.9609 . . .

Figure 2.4: Computing image statistics for the frames of slice 7 (middle slice): (a) reference
image (red curve:Γout, blue curve:Γin); (b): frame 7 (end-systolic) and (c) frame 19 (end-
diastolic); (d), (e), and (f) the corresponding intensity distributions and Bhattacharyya mea-
sures (βi j ). We observe that the variations ofβi j are similar to the variations of the LV cavity
areas. For instance at the end of systole (the middle column), the smallest cavity area coincides
with the lowest Bhattacharyya measure.
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I1,1 . . . I1,7 . . . I1,19
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(d) . . . (e) . . . (f)
β1,1 = 0.8443 . . . β1,7 = 0.7998 . . . β1,19= 0.8100

Figure 2.5: Computing image statistics for the frames of slice 1 (apical slice): (a) frame 1
(the red curve,Γout, is superimposed systematically to all the images without additional user
effort); (b): frame 7 and (c) frame 19; (d), (e), and (f) the corresponding intensity distributions
and Bhattacharyya measures (βi j ). Again, we observe that the variations ofβi j are similar to
the variations of the LV cavity areas.
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(d) . . . (e) . . . (f)
β10,1 = 0.4339 . . . β10,7 = 0.4588 . . . β10,19= 0.4168

Figure 2.6: Computing image statistics for all the images of slice 10 (basal slice): (a) frame
1; (b) frame 7 and (c) frame 19; (d), (e), and (f) the corresponding intensity distributions and
Bhattacharyya measures (βi j ).

45



2.2.2 Training Phase: A Statistical Bhattacharyya Coefficient Model

To compute the area inside the LV cavity for each single 2D image in the cardiac MR sequence,

we map each imageIi, j to a Bhattacharyya statisticβi, j. Let Pm be a 200-dimensional row

matrix containing the Bhattacharyya statistics for a training subjectm∈ M (M is the number

of training subjects):

Pm = [Pm
1, ...,Pm

j , ...,Pm
10] with

Pm
j =

[

β1, j . . . βi, j . . . β20, j
]

m ∈ {1, ...,M} . (2.6)

Thus, the Bhattacharyya statistics fromM training subjects can be viewed as a cloud ofM

points in a 200-dimensional space. Following a principal component PCA analysis [4], one

can assume that these points lie within a lower-dimensionalspace. This amounts to mapping

eachPm,m= 1. . .M, to a lower-dimensional pointrm as follows:

Pm= Pmean+Qrm= Pmean+

t
∑

i=1

r i
mQi , (2.7)

wherePmean, Q = (Q1 Q2 ...Qt), rm= (r1
m r2

m, ..., r
t
m)T andt are defined as follows:

• Pmeanis the mean of Bhattacharyya row matrices:

Pmean=
1
M

M
∑

m=1

Pm (2.8)

• Q= (Q1 Q2 ...Qt) is the matrix of the firstt unit eigenvectors of the following 200×200

covariance matrixSP (how to fix t will be discussed later):

SP =
1
M

M
∑

m=1

dPm dPm
T , (2.9)
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wheredPm = Pm−Pmean is a vector measuring the deviation of each patient’s Bhattacharyya

matrix from the mean.

• Vectorrm= (r1
m r2

m, ..., r
t
m)T contains scalars weighting the contribution of each of thet

eigenvectors in (2.7).rm is obtained by the closed-form solution of the following least-square-

error minimization:

rm= argmin
r
‖Qr − (Pm−Pmean)‖2 (2.10)

This yields:

rm=Q+(Pm−Pmean) (2.11)

whereQ+ is the pseudo inverse matrix ofQ.

• How to choose t: The eigenvectors ofSP are the orthogonal components that span the

200-dimensional training space and their corresponding eigenvaluesλi , i = 1. . .200, measure

how significant these components are. The larger the eigenvalue, the more significant the

corresponding eigenvector. To obtain thet most significant eigenvectors, we need to find a

t < 200. A common method for calculatingt is to choose the smallest number of eigenvectors,

so that the ratio of the sum of the correspondingt eigenvalues to the sum of all eigenvalues,

∑t
i=1λi
∑200

i=1 λi
, (2.12)

is sufficiently close to one [4]. This means that the sum of the variances along thet most

significant eigenvectors corresponds to a sufficiently large proportion of the total variance of

all the data. In this study, we obtaint by satisfying the following condition:

∑t
i=1λi
∑200

i=1 λi
≥ 0.95. (2.13)

The choice oft and its effect on the results will be further discussed in the experiments.
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2.2.3 Training Phase: Statistical Area Model

Now assume the LV cavity areas in each cardiac MR sequence of the training set are computed

using manual segmentation obtained by an expert. Let us express the areas of each training

subject as a point in a 200-dimensional space:

Tm = [Tm
1, ...,Tm

j , ...,Tm
10] with

Tm
j =

[

a1, j . . . ai, j . . . a20, j
]

m ∈ {1, ...,M} . (2.14)

Following a PCA analysis similar to that used for the Bhattacharyya statistics, we map each

pointTm,m= 1. . .M, to a lower-dimensional pointbm as follows:

Tm= Tmean+Cbm, (2.15)

whereTmeanis the mean of area row matrices:

Tmean=
1
M

M
∑

m=1

Tm, (2.16)

C = (C1 C2 ...Ct) is the matrix of the firstt unit eigenvectorsCi of the following 200× 200

covariance matrix (the value oft is similar to the one obtained for the Bhattacharyya statistics):

ST =
1
M

M
∑

m=1

dTm dTm
T , (2.17)

with dTm = Tm−Tmean is a vector measuring the deviation of each matrix of areas from the

mean, andbm= (b1
m b2

m, ...,b
t
m)T a weighting vector given by:

bm= C+(Tm−Tmean), (2.18)
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with C+ denoting the pseudo inverse ofC.
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2.2.4 Procedure

The proposed technique involves two stages, one corresponding to training and the other to

testing. The principle steps of each stage are as follows:

Training Stage:

This stage consists of the following steps.

• Following a PCA analysis over the Bhattacharyya statistics from M training subjects,

we computerm according to equation (2.11) for each training subjectm∈ [1 . . .M].

• Using manual segmentations of theM training subjects and following a PCA analysis

of the ensuing LV cavity areas, we computebm according to equation (2.18) for each subject

m∈ [1 . . .M].

• Using an Artificial Neural Network (ANN) [12] and vectorsrm andbm (m∈ [1 . . .M])

as training data for the ANN, we learn a non-linear relationship between the Bhattacharyya

statistics and the LV cavity areas. This amounts to finding a fitting functionF that verifies:

bm= F(rm) ∀m∈ [1 . . .M] (2.19)

Further details on the estimation of the fitting function will be given in the next section.

Testing Stage:

The purpose of this stage is to estimate the LV cavity area fora new testing subject not included

in the training set. This stage consists of the following steps.

• Let Pnewa single row matrix containing the Bhattacharyya statisticsfor the new subject:

Pnew = [Pnew
1, ...,Pnew

j , ...,Pnew
10] with

Pnew
j =

[

β
1, j
new . . . β

i, j
new . . . β

20, j
new

]

(2.20)
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with βi, jnew denoting the Bhattacharyya statistic corresponding to imageIi, j of the new sub-

ject. FromPnew, we compute the following vector:

rnew=Q+(Pnew−Pmean) (2.21)

• From rnew, we infer the following vector using fitting functionF (further details on

estimatingF will be described in section 2.2.5):

bnew= F(rnew) (2.22)

• Finally, the matrix of estimated LV cavity areas for the new subject is obtained from

rnew as follows:

Tnew= Tmean+Cbnew, (2.23)

where

Tnew = [Tnew
1, ...,Tnew

j , ...,Tnew
10] with

Tnew
j =

[

a1, j
new . . . ai, j

new . . . a20, j
new

]

(2.24)

andai, j
new denotes the computed area of the cavity corresponding to imageIi, j of the new sub-

ject.
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2.2.5 Fitting Function Approaches

The key point in the proposed technique is finding a relationship between the compact repre-

sentation of image features (rm) and the compact representation of LV cavity areas (bm). While

various technique exist for such data fitting, we used Artificial Neural Network (ANN).

Artificial Neural Network Estimation of Left Ventricle Cavity Areas

We constructed an ANN to determine the nonlinear relationship between the Bhattacharyya

coefficients (refer to Figs. 2.8, 2.10, 2.12) and the corresponding LV cavity areas (refer to Fig.

2.7, 2.9, 2.11). Following a back propagation ANN, a powerful machine learning technique

[5], our feed-forward network consists of five layers, three hidden, one input, and one output

(refer to Fig.2.13 for an illustration).
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Figure 2.7: A sample example which shows the variations of the LV cavity areas of apical slice
obtained from manual segmentations.

Our network estimates the non-linear mappingF, which we used in equation (2.19). We

assumeF is a nonlinear transfer function consisting of two hyperbolic tangent functions and

a linear function, a common choice in the neural network literature [5]. As illustrated in

Fig. 2.13, the resulting network consists of five layers, oneinput and one output containing

5 neurons each, both based on the linear function (f (x) = x), as well as three hidden layers
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Figure 2.8: A sample example which shows the variations of the Bhattacharyya image statistics
of apical slice. We observe that these statistics are non-linearly related to the manually obtained
LV cavity areas depicted in Fig. 2.7.
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Figure 2.9: A sample example which shows the variations of the LV cavity areas of a midcavity
slice obtained from manual segmentations.

containing 50, 25 and 50 neurons and based on the hyperbolic tangent, hyperbolic tangent and

linear functions respectively [5].

Let INPUT andOUTPUT denote the training input and output of the neural network re-

spectively:

INPUT = [(r1)−1, ..., (rm)−1, ..., (r M)−1] (2.25)
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Figure 2.10: A sample example which shows the variations of the Bhattacharyya image statis-
tics of a midcavity slice. We observe that these statistics are non-linearly related to the manually
obtained LV cavity areas depicted in Fig. 2.9.
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Figure 2.11: A sample example which shows the variations of the LV cavity areas of basal slice
obtained from manual segmentations.

OUTPUT = [(b1)−1, ..., (bm)−1, ..., (bM)−1] (2.26)

To validate this procedure we employ a leave-one-out approach, where the test dataset was

excluded from the training data. For the current testing subject dataset, transferred subject area

statistics (bnew) were estimated from equation (2.22) using the learned non-linear mappingF
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Figure 2.12: A sample example which shows the variations of the Bhattacharyya image statis-
tics of basal slice. We observe that these statistics are non-linearly related to the manually
obtained LV cavity areas depicted in Fig. 2.11.

(refer to the illustration in Fig. 2.15). The matrixTnew, representing the areas of the LV cavities,

was estimated from equation (2.23).
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Figure 2.13: The ANN consists of one input layer, three hidden layers, and one output layer.
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Figure 2.14: The training phase.
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Testing Phase
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Figure 2.15: The testing phase: the estimated Bhattacharyyastatistics are fed to the network
and the corresponding LV cavity areas are predicted.
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Figure 2.16: Variation of the volume of the LV cavity in each heart beat.

2.3 Estimating the Cardiac Ejection Fraction From Image

Statistics

Let Vs andVd denote the smallest (end-systolic) and largest (end-diastolic) volumes of the LV

in a cardiac cycle, respectively ( Fig. 2.16). The cardiac ejection fraction,EF, is given by:

EF =
Vd−Vs

Vd
(2.27)

The difference in the numerator in equation (2.27) measures the blood volume pumped by the

left ventricle. We computedVs andVd by integrating the computed LV cavity areas in the

sagittal direction.
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2.4 Experimental Evaluations and Comparisons

2.4.1 Image Acquisition

A set of 2D short-axis cine Magnetic Resonance (MR) images of 20subjects was acquired

through the cardiac cycle on a 1.5T scanner with fast-imaging employing steady-state acquisi-

tion (FIESTA) image sequence mode. The acquisition parameters were as follows: TR=2.98

ms, TE=1.2 ms, flip angle=30 degree, and slice thickness=10 mm. Each subject’s dataset

consisted of 20 frames, each comprising 10 slices.

2.4.2 Experimental Results

We used the proposed method to automatically compute the LV cavity areas, thereby estimating

the LV cavity volumes and ejection fractions of 20 subjects.Each subject’s dataset contains

20 frames, each comprising 10 slices. We proceeded to a leave-one-out validation approach,

where the training used to compute the LV cavity areas of eachsubject is based on the other

19 subjects (M = 19). Estimated areas were used to compute the LV cavity volumes of each

subject. Then, the obtained volumes and ejection fractionswere evaluated quantitatively by

comparing them with those obtained from independent manualsegmentation by an expert.

In Fig. 2.17, we plotted the computed LV cavity areas (all frames and slices) for all 20 pa-

tients versus those obtained from independent manual segmentations. We included the identity

line, which indicates an excellent correlation between manually and automatically computed

areas.

Fig. 2.18 depicts the computed LV cavity volumes for all 20 patients versus those obtained

from the independent manual segmentations, as well as the identity line, which indicates an

excellent correlation between manually and automaticallycomputed volumes.

We used several statistics to evaluate the conformity between the manually and automat-

ically computed Areas and Volumes (the results are listed inTable. 2.1). First we estimated

the correlation coefficient, R, which measures the correlation betweene and f ; e is a vector
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Figure 2.17: Automatic versus manual cavity areas.
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Figure 2.18: Automatic versus manual cavity volumes.

containing the manual estimations of areas (or volumes) andf is the corresponding automatic

estimation. The range ofR is [0,1], where 1 indicates a perfect fit between the vectors. The

proposed method yielded correlation coefficients of 0.8930 and 0.91258 for the LV cavity ar-

eas and volumes, respectively, indicating a high conformity between manual and automatic

estimations.

We used a two-tailed t-test to estimate the conformity between e and f , which yielded a

non-significantP−values of 0.22834 and 0.1943, indicating that automatic estimations of areas

and volumes are not significantly different from those obtained from manual segmentation.
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R(e, f ) P−value(t− test)
Area 0.8930 0.2834

Volume 0.91258 0.1943

Table 2.1: Statistical measures of the conformity between automatically and manually com-
puted areas and volumes.

In the next step, the estimated cavity volumes were used to estimate theEFs for all 20

subjects. LetEFA be a vector containing the 20 automatically estimatedEFs, andEFM be a

vector of the same size containing theEFs obtained form manual segmentations. Fig. 2.19

depictsEFA and EFM, and confirms that theEFs computed with the proposed method are

very close to those obtained from independent manual segmentations.

We evaluated the conformity between the manually and automatically computedEFs (the

results are listed in Table. 2.2). First we evaluated the correlation coefficient,R(EFA,EFM).

The proposed method yielded a correlation coefficient of 0.9635, which indicates a high con-

formity between manual and automatic ejection fractions.

We used a two-tailed t-test to estimate the conformity between manually and automatically

estimated ejection fraction, which yielded a non-significant P−valueof 0.1778.
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Figure 2.19: Automatic and manualEFs in 20 subjects.

We then evaluated the error quantitatively and comparatively by computing the norm of the
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R(EFA, EFM) P−value(t− test)
0.9635 0.1778

Table 2.2: Statistical measures of the conformity between automatically and manually com-
putedEFs.

method mean(Di f f EF) std(Di f f EF) CPU(s)
The proposed method 0.0160 0.0163 0.2087

graph-cut segmentation 0.0965 0.0922 9.62
level-set segmentation 0.1095 0.1253 494.45

Table 2.3: Errors (std and mean) and computation time (in seconds) with the proposed method
and with graph-cut and level-set estimation of the EF based on the recent segmentation algo-
rithms in [2, 3].

difference betweenEFA andEFM:

Di f f EF = ‖EFA−EFM‖ (2.28)

Furthermore, the proposed method was compared with computing theEF obtained based

on the graph-cut and level-set segmentation algorithms in [2, 3]. Table. 2.3 reports the mean

and standard deviation of the error as well as the computation time for the proposed method

and the segmentation algorithms in [2, 3], demonstrating thatEFs obtained with the proposed

method are more accurate and computationally less expensive than those obtained with graph-

cut and level-set segmentation [2, 3]. The proposed method estimated theEF in real-time

taking 0.209s per subject using a non-optimized MATLAB code on a 2.2 GHz machine.

Fig. 2.20 depicts the errors (20 subjects) obtained with theproposed method (red curve),

the graph-cut segmentation (blue curve), and the level-setsegmentation (green curve). The

results are based on non-optimized 2D segmentation techniques and we assume that error has

been integrated in the estimation of the EF . The proposed method yielded a much lower curve

and, therefore, a significant improvement in accuracy.
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Figure 2.20: Errors (20 subjects) obtained with the proposed automatic method (red curve),
the graph-cut segmentation (blue curve), and the level-setsegmentation (green curve). The
proposed method yielded a much lower curve and, therefore, asignificant improvement in
accuracy.

2.4.3 Effect of the choice of the number of the most significant eigenvec-

tors (t) on the results

In this study, we computed the number of the most significant eigenvectors (t) by satisfying

condition (2.13). In our experiments, this condition yieldedt = 5. To further evaluate the effect

of t on the results and confirm the relevance of condition (2.13),we ran the algorithm over 29

uniformly-spaced values oft in the interval [2; 30]. Fig. 2.21 depicts the mean error as a func-

tion of t. We observe that starting fromt = 5, the mean error does not change significantly. This

means that the five most important eigenvectors carry the information we need, and confirms

the relevance of condition (2.13).

2.4.4 Effect of the choice of the number of neurons on the results

The proposed ANN consists of three hidden layers. The examine the effect of the choice of

the number of neurons on the results, we proceeded to three different sets of comprehensive

experiments, each corresponding to varying the number of neurons in one hidden layer and

fixing the number of neurons in the two other layers.

In the first set of experiments, we ran the algorithm over 11 uniformly-spaced values of
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Figure 2.21: Mean error as a function of the number of most significant eigenvectors.

the number of neurons in the first layer. The values are in the interval [5;60]. For this set of

experiments, the number of neurons was fixed equal to 25 in thesecond layer and to 50 in

the third layer. Fig. 2.22 depicts the mean error as a function of the number of neurons in

the first layer, showing that a choice of value of this number equal to 50 or 40 yields the best

performance.

Fig. 2.23 illustrates the second set of experiments, depicting the mean error as a function

of the number of neurons in the second hidden layer, which we varied over 6 uniformly-spaced

values in the interval [5; 30]. We fixed the number of neurons in the first and last layers equal

to 50. This set of experiments showed that choosing the number of neurons in the second layer

equal to 25 led to the best performance.

The same procedure was followed for the last hidden layer. Wefixed the number of neurons

in the first and second layers equal to 50 and 25, respectively. Then, the number of neurons in

the third layer was varied over 11 uniformly-spaced values in the interval [5; 60]. Fig. 2.24

demonstrates that the best performance is reached by choosing the number of neurons in the

last layer equal to 50.
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Figure 2.22: Mean error as a function of the number of neuronsin the first hidden layer.
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Figure 2.23: Mean error as a function of the number of neuronsin the second hidden layer.

2.4.5 Effect of the user-provided input on the results

The proposed method relies on an approximate user-providedlocalization of the LV cavity

(refer to the red curves in Fig. 2.4). Our method assumes the user provides an initial box close

to the LV in a single 2D image. Such localization plays a essential role in estimating the image

features. We evaluated the robustness of the proposed method with respect to variations in the

user-provided input. Fig. 2.25 depicts the mean error obtained with the proposed method as

a function of the size of the region (the box) enclosed withinthe user-provided red curve. We

started with an initial box which has approximately the samearea as the LV cavity. Then, we

evaluated the algorithm by rescaling the box from 1 to 5 timesof the initial size. Fig. 2.25

depicts the mean error as a function of the size of the region of interest. The bigger the size of
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Figure 2.24: Mean error as a function of the number of neuronsin the third hidden layer.

the box, the higher the error.
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Figure 2.25: Mean error as a function of the size of the user-provided region of interest.

2.4.6 Typical examples

Figs. 2.26 - 2.28 show automatically and manually computed areas for apical, basal and mid-

cavity slices of a single object as a function of the frame number.

Figs 2.29-2.31 depict automatically and manually computedvolumes for three subjects as a

function of frame number. Fig. 2.29 shows the best estimation in the 20 subjects, which corre-

sponds to the lowest error, i.e., the lowest absolute difference between manually and automat-

ically computed volumes. Fig. 2.30 corresponds to the medium error (the medium estimation
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Figure 2.26: Automatic versus manual cavity areas for an apical slice of a single subject.
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Figure 2.27: Automatic versus manual cavity areas for a mid-cavity slice of a single subject.

in the 20 subjects), and Fig. 2.31 to the highest error (the worst estimation in the 20 subjects).
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Figure 2.28: Automatic versus manual cavity areas for a basal slice of a single subject.
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Figure 2.29: Automatic versus manual cavity volumes: the best case in the 20 subjects.
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Figure 2.30: Automatic versus manual cavity volumes: the median case in the 20 subjects.
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Figure 2.31: Automatic versus manual cavity volumes: the worst case in the 20 subjects.
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2.5 Conclusion

This study investigated a real-time method for computing the cardiacEF directly (without seg-

mentation) from image statistics via machine learning. These image statistics were based on

the Bhattacharyya coefficients of similarity between image distributions, which were shown to

be non-linearly related to the LV cavity areas. An ANN was used to find the relation between

the image statistics and the corresponding LV cavity areas in each subject dataset. A com-

prehensive experimental evaluation over 20 subjects demonstrated an excellent conformity of

the automatically estimatedEFs to those computed from manual segmentations. Furthermore,

comparison with graph-cut and level-set estimation of theEF based on recent segmentation

algorithms confirmed that the proposed method can yield a competitive performance while

reducing significantly the computational load.

Further future work includes application of the proposed method to the estimation of other

cardiac functions such as muscle thickening and to the detection of cardiac abnormalities.

Also, it is worth noting that the proposed method is based on the consistency of the image

distributions within the cavity across different frames. Therefore, it can readily extend to other

modalities where such consistency is verified as is the case for CT, for instance. It would be

interesting to assess the applicability of the method to modalities other than MRI.
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Chapter 3

Regional Assessment of Cardiac Left

Ventricle Function

3.1 Regional Assessment of Cardiac Left Ventricular My-

ocardial Function via MRI Statistical Features

Early and accurate detection of segmental (regional) Left Ventricle (LV) abnormalities in Mag-

netic Resonance Imaging (MRI) is important for diagnosing cardiac disease as discussed in

chapter 1. In routine clinical use, cardiac function is estimated by visual assessment of the LV

function, therefore it is observer-dependent and non-repeatable. Alternatively, an automatic,

fast and accurate diagnosis method of the LV function is desired. Computer-aided detection

systems have been attempted in recent years in order to automatically analyze the LV my-

ocardial function quantitatively [20], and to classify cardiac function into normal or abnormal

1This chapter is based on three papers:
1) Afshin, M., Ben Ayed, I., Punithakumar, P., Law, Max W. K.,Islam, A., Ross, I., Peters, T., Li, S., “Assessment
of Regional Myocardial Function via Statistical Features in MR Images”, Medical Image Computing and Com-
puter Assisted Interventions (MICCAI), Vol 6893, pp.107-114 (2011).
2) Afshin, M., Neshat, H.R., Islam, A., Goela, A., Ross, I., Li, S., “Regional Assessment of Cardiac Left Ventricle
from MRI with Minimum User Interaction”, Radiological Society of North America ( accepted in RSNA 2012).
3) Afshin, M., Ben Ayed, I., Punithakumar, P., Islam, A., Goela, A., Ross, I., Peters, T., Li, S., “ Regional As-
sessment of Cardiac Left Ventricular Myocardial Function via MRI Statistical Features”, under revision in IEEE
Transaction on Medical Imaging.
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[51]. In clinical practice, the regional myocardial function is commonly scored by following

AHA standards [2], where the LV is divided into 17 segments. Therefore, regional LV ab-

normality analysis is desirable for clinical purposes. As discussed in section 1.6, the existing

regional heart function analysis methods are based on information theoretic measures and an

unscented Kalman filter [14], shape models with localized variations [9] or using differen-

tiable manifolds [4], an independent component analysis classifier [21], a pattern recognition

method based on intra-segment correlation [11], a hidden Markov model for local wall motion

classification based on stress echocardiography [15], and a tensor-based classification to con-

serve the spatio-temporal structure of the myocardium deformation [12]. Most of the existing

methods require either extensive user interaction or computationally expensive segmentation

algorithms. However, despite such an effort, the problem is still challenging, with a large room

for improvements in regard to accuracy.

The purpose of this chapter is to investigate a real-time machine-learning approach which

uses image features that can be easily computed, but that nevertheless correlate well with the

segmental cardiac function. We build image features for allthe regional segments in a dataset

from a simple user input in only one frame. The MR image features are based on a measure

of similarity between distributions . We determine that, these statistical features are correlated

to the segmental blood pool, the portion of blood within eachsegment, and can therefore be

used to describe segmental contraction without requiring the LV segmentation in all frames.

We find the optimal direction along which the estimated imagefeatures are most descriptive

using Linear Discriminate Analysis (LDA). Then, a Linear Support Vector Machine (LSVM)

classifier is used to assess abnormality dysfunction of eachof the LV regional segments in

real-time. We demonstrate a comprehensive evaluation of the proposed method over cardiac

segments obtained from 58 subjects. The proposed algorithmresults in an overall accuracy of

86.08% compared to ground-truths obtained by expert radiologists.
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3.2 Identifying 16 Segments in Only One Frame

This step requires a user-provided delineation of the endo-and epicardium boundaries in only

a single frame, which we refer to as thereferenceframe. Following the AHA standard [2],

we use such a simple user input to divide the heart into 16 standard segments. Then, we

superimpose the obtained segments systematically (without additional user effort) to all the

other frames.

Constructing the 16 segments follows standard AHA prescriptions [2], and is based on the

following steps:

• Dividing the LV into equal thirds perpendicular to the long axis of the heart, thereby

generating three circular LV sections: apical (Fig. 3.1 a),mid-cavity (Fig. 3.1 b), and

basal (Fig. 3.1 c). As prescribed in [2], we use only three representative slices containing

the myocardium in all 360◦;

• Dividing the basal part into six segments of 60◦ each, as shown in Fig. 3.2(c). We

used the attachment of the right ventricular wall to the LV (septal wall) as anatomical

landmark to identify the septum.

• Dividing the apical part into four segments of 90◦ each, as shown in Fig. 3.2(a).

• Dividing the mid-cavity part is into six segments of 60◦ each, as shown in Fig. 3.2(b).
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endo−cardium

epi−cardium

(a): apical (b): mid-cavity (c): basal

Figure 3.1: User-provided delineation in one single frame (reference imageI s) for three repre-
sentative slices: (a) apical, (b) mid-cavity and (c).

(a): apical (b): mid-cavity (c): basal

Figure 3.2: The regional segments superimposed on reference imageI s.
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3.3 Constructing Statistical Features from MRI Images:

We propose to use image statistics as input features to classify regional myocardial segments

into normal and abnormal.

3.3.1 A synthetic Example:

Let us first describe the concept for the simple synthetic-motion example in Fig. 3.3, which

depicts several frames, each containing two regions, a white disc (which we denote regionxi)

and a black ring enclosingxi (which we denote regionyi); i is an integer denoting the frame

number (i ≥ 1).

During a simulated cardiac cycle, regionxi is shrinking and expanding, mimicking the LV

blood cavity during a cardiac cycle, whereas regionxi∪yi remains constant (xi∪yi corresponds

to the whole image domain∀i). Let Qi denotes the intensity within framei:

Qi(p) = 1 ∀p ∈ xi

Qi(p) = 0 ∀p ∈ yi (3.1)

Let P(./xi) andP(./xi ∪yi) denote respectively the probability distributions of intensity within

regionsxi andxi ∪yi:

P(Qi = 1/xi) = P(Q1 = 1/x1) = 1 ∀i

P(Qi = 0/xi) = P(Q1 = 1/x1) = 0 ∀i

P(Qi = 1/xi ∪yi) =
ai

A
∀i

P(Qi = 0/xi ∪yi) =
A−ai

A
∀i (3.2)

whereai denote the area of regionxi within time framei, andA the area of the image domain.
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Now let us consider the Bhattacharyya coefficient introduced in the previous chapter that

measures the amount of overlap (similarity) between two distributions f andg:

BZ( f ,g) =
∑

z∈Z

√

f (z)g(z) (3.3)

whereZ is the set of values over which the distributions are defined.For this synthetic example,

Z = {0,1}. Note that the range of the Bhattacharyya coefficient is [0,1], with 0 indicating no

overlap between the distributions and 1 indicating a perfect match.

Let us assume that we have a segmentation (delineation) of region x in only the first frame,

i.e., only x1 is known (for i ≥ 2, xi is not segmented). For eachi ≥ 2, we can show that the

following image statistic is directly related to the area ofregionxi :

B{0,1}(P(./x1),P(./xi ∪yi)) =
√

0×P(0/xi ∪yi)+1×P(1/xi ∪yi) =

√

ai

A
(3.4)

Notice that computation of the image statistic in the right-hand side of (3.4) does not need a

segmentation ofxi for i ≥ 2; it depends only onx1 and the whole image in the subsequent time

steps. Nonetheless, it is related to the areas of regionsxi and, therefore, contains information

about the dynamics of these regions. This makes sense because the more overlap between the

distribution of regionxi and the whole image, the larger the proportion of pixels within region

xi .

We will use this concept to build cardiac-segment statistics that correlate well with regional

LV function, while removing the need for comprehensive segmentations of all the images in a

cardiac sequence.
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A

a

Figure 3.3: A simple synthetic example which demonstrates how some segmentation-free im-
age statistics correlate with the dynamics of a moving region. The larger circle is a fixed region
while the size of the smaller circle varies. The smaller circle illustrates the cavity motion.

3.3.2 Building Segmental Image Statistics for Cardiac MRI Images:

Let I be a cardiac MRI sequence containingJ frames1, each comprisingS slices2 Is, j : Ω ⊂

ℜ2→ℜ+ with (s, j) ∈ [1 . . .S] × [1 . . .J]. For each frame, we haveI regional segments3 Ki, j ,

with (i, j) ∈ [1 . . . I] × [1 . . .J].

Let us first consider the following basic definitions and notations:

• I is the reference frame, which consists of three 2D images,I s, s= 1, . . . ,3, each asso-

ciated with a different slice level (apical, basal, and mid-cavity). The reference frame

corresponds to the end-diastolic phase.

• Let Γs
in,Γ

s
out : [0,1]→ Ω denote respectively the endo and epi-cardial boundaries inI s

(refer to Fig. 3.4.a).

• LetΓi : [0,1]→Ω denote the boundary of regional segmenti in the reference frame (refer

to Fig. 3.5 for an illustration).

Now, for eachi, let us superimpose systematically (i.e., without additional user effort)

segment boundaryΓi : [0,1]→Ω onto the rest of the frames as shown in Fig. 3.4, and compute

the corresponding image statistics (Figs. 3.6, 4.2, 3.8).

1J is typically equal to 20 or 25.
2S is equal to 3; we used 3 representative slices following the AHA standard [2].
3The number of regional segments (I ) per subject is equal to 16.
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(a) (b): frame1 (c): frame7 (d): frame19

Figure 3.4: (a): Manual segmentation of the reference (end-diastolic) frame. (b): Regional
segments of the reference frame. (c-d): regional segments of the reference frame superimposed
systematically (without additional user effort) onto the rest of the frames.

To formally introduce the expression of the image statisticfor each regional segment at

each time step, let us consider the following general definitions:

• Let RΓ ⊂Ω denote the region enclosed within curveΓ, Γ ∈ {Γs
in,Γ

s
out,Γ

i}

• Let PR,A denote the kernel density estimate of the distribution of animageA within

regionR:

PR,A(z) =

∫

R K(z−A(x))dx

aR
∀A ∈ {Is, j}, (s, j) ∈ [1 . . .S] × [1 . . .J] (3.5)

whereaR is the area of regionR

aR =

∫

ℜ+
dx (3.6)

andK is the Gaussian kernel [1]:

K(y) =
1√

2πσ2
exp−

y2

2σ2 . (3.7)
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(c)

Γs
in

Γi

Γs
out

(b)(a)

Figure 3.5: (a) Reference imageI s; (b) Endo and epi-cardial boundaries inI s; (c) boundary of
regional segmenti in the reference frame.
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Figure 3.6: (a-c): Regional myocardial segments of an apicalslice superimposed on subsequent
frames. (d-f): The corresponding image statistics.

We assume the following:

• The reference-image distribution within the region insideΓin (PRΓin ,I s) approximates the

cavity distribution;

• The distribution of each imageIs, j within Γi approximates the image distribution within
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Figure 3.7: (a-c): Regional myocardial segments of a mid-cavity slice superimposed on subse-
quent frames. (d-f): The corresponding image statistics.

K1,1 . . . K1,7 . . . K1,19 . . .

. . . . . . . . .
(a) . . . (b) . . . (c) . . .

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

intensity

d
is

tr
ib

u
tio

n

 

 

cavity
regional segment1

. . . 0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

intensity

di
st

rib
ut

io
n

 

 

cavity
frame7

. . . 0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

intensity

d
is

tr
ib

u
tio

n

 

 

cavity
frame19

. . .
(d) . . . (e) . . . (f) . . .

β1,1 = 0.91593 . . . β1,7 = 0.76843 . . . β1,19= 0.80551 . . .

Figure 3.8: (a-c): Regional myocardial segments of a basal slice superimposed on subsequent
frames. (d-f): The corresponding image statistics.
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regional segmentKi, j , i.e.,

PRΓi ,Is, j
≈ PKi, j ,Is, j (3.8)

As we shall see shortly, this approximation can be effectively used to compute, without

the need for segmentation, an image statistic that correlates well with the amount of

blood within segmentKi, j .

Now, as a statistical feature for each regional segmentKi, j , we consider the following

Bhattacharyya similarity measure between distributions:

βi, j = Bℜ+(PRΓin ,I s,PRΓi ,Is, j
), (3.9)

In a way conceptually similar to the synthetic example we discussed earlier, we expect that fea-

tureβi, j is related to the proportion of blood within regional segment Ki, j . We further demon-

strate experimentally such a relationship by the typical examples in Figs. 3.6, 4.2, 3.8, which

show that the more overlap (similarity) between the distributions of the cavity and regional

segmentKi, j , the larger the proportion of blood within the segment. Therefore, we anticipate

that over a cardiac cycle, the set of featuresβi, j, j ∈ [1 . . . J], can characterize segmental cavity

contraction. Another way to see how featuresβi, j can describe segmental function is to con-

sider the extreme case where the regional segment does not move. In such case, the proportions

of blood is constant over a cardiac cycle, and so are the features.

Fig. 3.9 summarizes the procedure of estimating the statistical image-based features.

83



insideΓi

of reference image Is

Γin, Γout, Γi

Image acquisition

SuperimposingΓi systematically

(without segmentation) onIs, j

Image features βi, j

Distribution of Is, jDistribution of I s insideΓin

Manual segmentation

Figure 3.9: The procedure of estimating the statistical image-based features.
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3.4 Dimensionality Reduction via Linear Discriminant Anal-

ysis

The Bhattacharyya statistics fromM training subjects can be viewed as a cloud ofM points

in theJ-dimensional Euclidian space. We proceeded to a Linear Discriminant Analysis (LDA)

[23, 8, 22, 24] to reduce the dimensionality of the image features. Following LDA [23], one

can assume that these points lie within a lower-dimensionalspace. Consider the following

definitions and notations:

• Let feature vector~βim = [βi,1, . . . ,βi, j , . . . ,βi,J] be aJ-dimensional row matrix containing

the Bhattacharrya statistics for a given training subjectm,m∈ {1, ...M}.

• Assume that each feature vector (~βim) belongs to one of two classesC1 andC2, whereC1

andC2 represent respectively normality and abnormality condition of the corresponding

regional segment.

• Let µe be the mean of feature vectors in classCe, e∈ {1,2}:

µe=
1
Ne

∑

~βim∈Ce

~βim, (3.10)

whereNe is the number of the feature vectors in classCe.

• Let µ be the mean of all feature vectors:

µ =
1
M

M
∑

m=1

~βim. (3.11)

The between-class scatter matrixSb [6] is defined as:

Sb =
1
N

2
∑

e=1

Ne (µe−µ) (µe−µ)T , (3.12)
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and the within-class scatter matrix [6] Sw is defined as:

Sw =
1
N

2
∑

e=1

∑

~βim∈Ce

(~βim−µe)(~β
i
m−µe)

T , (3.13)

whereN is the number of the feature vectors in both classes.

In LDA [ 6], a projection vectorG is chosen so as to maximize the following ratio:

Gopt = argmaxG
GT Sb G

GT Sw G
(3.14)

Maximizing such a ratio seeks to reduce dimensionality while preserving as much of the class

discriminatory information as possible. In the 2-class case, LDA finds a vectorGopt ∈ ℜJ×1

(1≤ J) that maps original data~βim to a scalar ~βimp:

Gopt : ~βim ∈ℜJ→ ~βimp∈ ℜ1

~βimp=GT
opt
~βim (3.15)

Equation (3.15) is equivalent to projecting the data onto a line that maximizes the class sepa-

rability of the scalars.

In the next step, we use a Linear Support Vector Machine (LSVM) classifier to classify the

projected features ensuing from a given testing subject into normal or abnormal. Fig. 3.10

summarizes the overall classification procedure.
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image features ground−truth

LDA

linear SVM

Figure 3.10: Overview of the training phase.
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3.5 Linear Support Vector Machine Classification of Regional

Segments

This step consists of classifying regional myocardial segments with a Linear Support Vector

Machine (LSVM), given projected features~βimp (refer to Fig. 3.11). Let (~βimp, tm), m= 1, ...,M,

be an annotated training set, withtm denoting the labels associated with~βimp. Variabletm has

two possible values (tm∈ {−1,1}), 1 corresponding to the abnormal-segment class and−1 to the

normal-segment class. The two-class LSVM classifier evaluates the sign of a linear function

the form [13, 10, 16, 15, 2]:

y(x) = wTφ(x)+b, (3.16)

whereφ(x) denotes a fixed feature space, andb indicates a bias parameter. The sign ofy(x)

indicates the class of inputx. We assume that the training features are linearly separable, i.e.,

there exists at least one choice ofb that satisfiesy( ~βimp) ≥ 0 for features havingtm = +1 and

y( ~βimp) ≤ 0 for features havingtm = −1. SVM approaches this problem through the concept of

the margin, which is defined to be the smallest distance between the decision boundary and any

of the features (for an illustration, refer to Fig. 7.1 in [2]). To find the decision boundary, we

need to maximize the margin, i.e., the perpendicular distance characterizing the feature-point

that is closest to the decision boundary [2]. Thus, the maximum-margin solution is sought by

solving (for further details, refer to [2], page 327):

argmaxw,b

{

1
||w||minm

[

tm
(

wTφ
(

~βimp

)

+b
)]

}

(3.17)

The direct solution to this optimization problem is quite challenging. However, one can resort

to some assumptions and modifications so as to convert (3.17)into minimizing a quadratic

function subject to a set of linear inequality constraints,which can be solved via a standard

Lagrangian-multiplier method. Further details can be found in [2] (chapter 7).

We trained the LSVM classifier by providing the training-setfeatures (~βimp) and the cor-
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responding ground-truth annotationstm (Fig. 3.10 depicts an illustration). Then, the optimal

hyperplane is computed by solving (3.17), and is used as a decision boundary to classify new

(testing-subject) features into normal or abnormal segments.

normality/abnormality

image features

LDA

projected features

trained 

Linear SVM

Estimation of LV

Figure 3.11: Overview of the testing phase.
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3.6 Experiments

3.6.1 Data Acquisition:

The data contain 58×3 short-axis image datasets (i.e., apical, mid-cavity and basal), each con-

sisting of 20 functional 2D images acquired from 21 normal and 37 abnormal hearts, using

1.5T MRI scanners with fast imaging employing steady state acquisition (FIESTA) mode. The

details of the datasets are presented in Table. 3.1. The dataconsist of images from 41 male

and 17 female subjects, and the average age of subjects is 52.3± 15.0 years. The temporal

resolution (∆T) is 45.1±8.8 ms.

Table 3.1: Details of the datasets used in the evaluation of the proposed method.

Description Value

Number of subjects 58
Scanner protocol FIESTA
Patient ages 16 – 79 years
Short-axis image resolution (256×256) or (512×512) pixels
Number of frames (K) 20
Temporal resolution (∆T) 29 – 76 ms
Pixel spacing (0.7×0.7×10.0) – (1.7×1.7×12.0) mm

Endocardial wall

Epicardial wall

Insertion Points

Figure 3.12: User input to specify initial segmentation andanatomical landmarks on the first
frame.
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For each subject, three slices were respectively chosen from apical, mid-cavity and basal

frames, andanatomical landmarkswere identified manually on the first frame4 (see Fig. 4.3 for

an illustration). A cubic spline interpolation was used to sampleN points along each endo- and

epi-cardial boundary. The higher the value ofN, the better the estimation accuracy. However,

the computational complexity of the algorithm increases with N. The apical, mid-cavity and

basal slices were automatically partitioned, respectively, into 4, 6 and 6 segments following

the standard in [2], which results in 16 segments per subject. The 17th segment, apex, was not

analyzed.

The results of 928 myocardial segments (58 subjects× 16 segments) were compared with

a single ground truth classification5. We classify a segment as abnormal if that segment is

hypokinetic, akinetic or diskinetic. Among the 37 abnormalsubjects, 12 were diagnosed with

infarction, 10 with dilated cardiomyopathy and 15 with various heart diseases including resus-

citated cardiac arrest, coronary artery occlusion, cardioembolic cerebrovascular accident and

pseudo-aneurysm.

3.6.2 Linear Discriminant Analysis:

Figs. 3.13, 3.14 and 3.15 show the projected features~βimp obtained following the LDA trans-

formation for apical, mid-cavity and basal segments. Fig. 3.13 demonstrates that the apical-

segment transformation is more discriminative than those obtained for basal and mid-cavity

segments, which can be explained by the fact that the image-distribution estimation within

apical segments is not affected by the occurrences of papillary muscles in the blood pool.

4As suggested by [2], the attachment of the right ventricular wall to the LV is used to identify and separate
the septum from the LV anterior and inferior free walls.

5Each myocardial segment was marked following a binary score, either normal or abnormal. The ground truth
was built by three experienced radiologists, each of whom annotated a different portion of the data set. Among
the 928 segments, 579 segments were marked as normal and 349 as abnormal.

91



−0.1

0

0.1

0.2

0.25
 Apical Segment:1

p
ro

je
c
te

d
 f

e
a

tu
re

s

 

 

Normal
Abnormal

−0.05

0.05

0.15

0.2
 Apical Segment:2

p
ro

je
c
te

d
 f
e

a
tu

re
s

 

 

Normal
Abnormal

(a) (b)

−0.2

−0.1

0

0.1

0.15
 Apical Segment:3

p
ro

je
c
te

d
 f
e

a
tu

re
s

 

 

Normal
Abnormal

−0.1

0

0.1

0.2

0.3
 Apical Segment:4

p
ro

je
c
te

d
 f
e

a
tu

re
s

 

 

Normal
Abnormal

(c) (d)

Figure 3.13: Projected apical features (~βimp) obtained following the LDA transformation.

3.6.3 Linear SVM Classifier:

We used 16 LSVM classifiers, each assessing one of the 16 standard segments (normal/abnormal).

Figs. 3.16, 3.17 and 3.18 show the decision boundaries that separate normal and abnormal

classes. Fig. 3.16 depicts the projected features of four apical segments for each of the 58

subjects; the total number of apical segments is 232 (129 normal and 103 abnormal). Fig. 3.17

shows the projected features of a total number of 348 mid-cavity segments (209 normal and

139 abnormal); each of the 58 subjects has six mid-cavity segments. Fig 3.18 depicts the pro-

jected features of 348 basal segments (221 normal and 127 abnormal). The larger the distance

between the support vectors of normal and abnormal classes,the more reliable the decision

92



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
 mid−cavity segment:1

p
ro

je
c
te

d
 f

e
a

tu
re

s

 

 

Normal
Abnormal

−0.05

0

0.05

0.1

0.15

0.2
 mid−cavity segment:2

p
ro

je
c
te

d
 f
e

a
tu

re
s

 

 

Normal
Abnormal

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
 mid−cavity segment:3

p
ro

je
c
te

d
 f
e

a
tu

re
s

 

 

Normal
Abnormal

(a) (b) (c)

−0.15

−0.1

−0.05

0

0.05

0.1
 mid−cavity segment:4

p
ro

je
c
te

d
 f
e

a
tu

re
s

 

 

Normal
Abnormal

0.15

0.2

0.25

0.3

0.35

0.4
 mid−cavity segment:5

p
ro

je
c
te

d
 f

e
a

tu
re

s

 

 

Normal
Abnormal

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
 mid−cavity segment:6

p
ro

je
c
te

d
 f
e

a
tu

re
s

 

 

Normal
Abnormal

(d) (e) (f)

Figure 3.14: Projected mid-cavity features (~βimp) obtained following the LDA transformation.

boundary. The decision boundary obtained for apical segments is more reliable than those ob-

tained for mid-cavity and basal slices, which is expected, given the fact that the image features

within the apical segments are not affected by the papillary muscles.

3.6.4 Classification Performance:

We used two criteria to measure the performance of each classifier: (1) the ROC (Receiver

Operating Characteristic) curves with the corresponding AUCs (Area Under the Curve) and (2)

the Bhattacharyya measure [3] to assess the discriminative power of the features. Furthermore,

we assessed the classifier performance with a leave-one-third-of-the-subjects-out approach,
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Figure 3.15: Projected basal features (~βimp) obtained following the LDA transformation.

i.e., by training our algorithm using 2/3 of the dataset and testing on the remaining data.

ROC/AUC

The ROC curves depicted in Figs. 3.19, 3.20, 3.21 demonstrate the performances of the pro-

posed method, with the best performance being obtained for apical segments. Table 3.2 reports

the corresponding AUCs.
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Figure 3.16: Decision boundaries and support vectors for the apical segments.

Bhattacharyya measure

We used the Bhattacharyya distance metric to evaluate the overlap between the distributions of

features over normal and abnormal classes:

B =
√

1−
∑

√

fN(y) fA(y), (3.18)

where fN(y) and fA(y) are the distributions over normal and abnormal hearts, respectively. The

higherB, the more discriminative the classifier. The Bhattacharyya distances obtained in Table

3.2 are consistent with the ROC/AUC evaluations.
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Figure 3.17: Decision boundaries and support vectors for the mid-cavity segments.

Bhattacharyya distance
AUC metric (B)

Apical 0.9571 0.7776
Mid-cavity 0.9368 0.6882
Basal 0.9152 0.6336

Table 3.2: The AUCs corresponding to Figs. 3.19, 3.20, 3.21 and the corresponding Bhat-
tacharyya distance metrics (B) of normal/abnormal distributions. The higher the values, the
more discriminative the ability of the classifier.
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Figure 3.18: Decision boundaries and support vectors for the basal segments.
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Figure 3.19: ROCs for apical segments: The closer the curve tothe left-hand top corner, the
better the classification performance.
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Figure 3.20: ROCs for mid-cavity segments: The closer the curve to the left-hand top corner,
the better the classification performance.
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Figure 3.21: ROCs for basal segments: The closer the curve to the left-hand top corner, the
better the classification performance.
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Classification Accuracy

We evaluated the classifier performance by computing the accuracy, specificity and sensitivity

over all the datasets:

accuracy=
TP+TN

P+N
, specificity=

TN

N
, sensitivity=

TP

P
(3.19)

whereTP denote true positives (number of segments correctly classified as“Abnormal” ),

andTN true negatives (number of segments correctly classified as“Normal” ). The total num-

ber of“Abnormal” and“Normal” segments areP andN, respectively.

Table 3.3 reports an overall classification accuracy of 86.01%, with a sensitivity of 93.96%

and a specificity of 81.82%. The highest performance was achieved for apical slices with

89.75% for accuracy, 94.10% for sensitivity, and 86.29% forspecificity.

Sensitivity (%) Specificity (%) Accuracy (%)

Apex 94.10 86.29 89.75
Mid-cavity 94.07 80.16 85.72
Base 93.72 78.45 84.02
Overall 93.96 81.82 86.09

Table 3.3: Classification accuracy using a leave-one-third-of-the-subjects-out approach. The
proposed method achieved an overall classification accuracy of 86.09%.

Visual assessment by radiologists

Abnormal detection Normal detection Total

The proposed method
Abnormal detection 348 89 437
Normal detection 33 458 491
Total 381 547 928

Table 3.4: Comparisons between the proposed method and visual assessment scoring by ex-
perienced radiologists. The proposed method yielded a kappa measure of 0.73, asubstantial
agreementwith radiologists’ results.

Table 3.4 reports comparisons of the obtained results to visual scores by experienced radiol-

ogists. We computed the Kappa statistics [21] between the proposed method and radiologists’
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findings as follows. The observed percentage agreement is:

p(a) =
348+458

928
= 0.87, (3.20)

while the overall probability of random agreement is:

p(e) =
381
928
· 437
928
+

547
928
· 491
928
= 0.51 (3.21)

Therefore, the Cohen’s kappa is:

κ =
p(a)− p(e)
1− p(e)

= 0.73, (3.22)

a value which indicates a substantial agreement [21] between the proposed method and visual

scoring.

3.6.5 Comparison with other methods

Method User-input/Reg Accuracy Time Dataset slice
Proposed method mnl-first 0.86 real-time 58 subj cine MRI A,B,M

Punithakumaret.al. [14] mnl-first+ Reg 0.87 62 sec 58 subj cine MRI A,B,M
Suinesiaputraet.al. [19] mnl-first+ Reg 0.78 N/A 53 subj CE MRI A,B,M
Garcia-Barneset.al.[4] mnl-first+Reg 0.85 N/A 28 subj Tagged MR A,B,M
Suinesiaputraet.al. [21] mnl-all 0.77 N/A 89 subj cine MRI A,B,M

Lu et.al. [11] mnl-all 0.86 N/A 17 subj cine MRI B
Qianet.al. [15] mnl-all 0.87 N/A 22 subj Tagged MR A,B,M

Table 3.5: Comparisons of the proposed method with recent existing methods of regional my-
ocardial abnormality detection. All the existing methods require either manual or automatic
(registration-based) segmentations of several frames in acardiac sequence.

Table. 3.5 compares the proposed method with several other recent methods with respect to

the user-input/segmentation requirements, accuracy, processing time, size of the used data sets

and types of the processed slices. In the second column, the acronym “manual-first” means that

the corresponding method requires a manual segmentation ofthe first frame, and “manual-all”

means that manual segmentations are required for all frames. Acronym “Reg” means that the
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corresponding method requires an inter-frame registration process to find the LV boundaries

in all the frames of a sequence. In the last column, A, B and M denote apical, basal and mid-

cavity respectively. All the methods in Table. 3.5 analyze apical, basal and midcavity slices

except the method proposed by Luet. al. [11] which shows preliminary results only for basal

slices.

User-inputs/Segmentations:The proposed method requires manual segmentation of a sin-

gle frame as user input. On the contrary, Punithakumaret. al. [14] use a manual segmentation

of the first frame, and propagate such a manual input via a registration algorithm to obtain the

epicardial boundaries in all the remaining frames. Similarly, Suinesiaputraet. al. [19] use

manual segmentations in end-diastolic and end-systolic frames followed by a registration algo-

rithm to find the myocardium boundaries in the remaining frames. Garcia-Barneset. al. [4]

use manual segmentation of the first frame followed by a B-spline registration applied the the

myocardium boundaries in all frames. Luet. al. [11] show preliminary results for only basal

slices; in this method, each of the epicardial boundaries isobtained from manual mouse clicks

and spline interpolation. Similarly, the approaches in [21, 15] need manual segmentations of

all the frames as user inputs.

Accuracy/speed:The meta-analysis of accuracy in table 3.5 shows that the proposed method

can yield a competitive performance while reducing significantly the computational load and

user efforts.

102



3.7 Conclusions

We proposed a real-time machine-learning and image-statistic based approach to automating

the detection and localization of segmental (regional) myocardial abnormalities in MRI. Un-

like the existing techniques, the proposed method did not require delineations of the endo-

and/or epi-cardial boundaries in all the frames of a cardiac sequence. Starting from a mini-

mum user input in only one frame in a subject image, for all theregional segments and all

subsequent frames we built a set of statistical MRI features based on the Bhattacharyya mea-

sure of similarity between distributions. We demonstratedvia synthetic and real examples

that, over a cardiac cycle, such statistical features are related to the proportion of blood within

each segment. Therefore, they can characterize segmental contraction with significantly less

computation and user input. We sought the optimal directionalong which the proposed im-

age features are most descriptive via a Linear DiscriminantAnalysis. Then, using the LDA

results as inputs to a Linear Support Vector Machine classifier, we obtained an abnormality as-

sessment of each of the standard cardiac segments in real-time. We reported a comprehensive

experimental evaluation of the proposed algorithm over 928cardiac segments obtained from 58

subjects. Compared against ground-truth evaluations by experienced radiologists, the proposed

algorithm yielded an overall classification accuracy of 86.09% and a kappa measure of 0.73.

We further reported meta-analysis comparisons with several recent methods, which showed

that the proposed method can yield a competitive performance while significantly reducing the

computational load and user efforts.
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Chapter 4

Multi-Class Segmental Cardiac

Dysfunction Classification

4.1 Multi-Class Segmental Cardiac Dysfunction Classifica-

tion via Statistical MRI Features

Automatic detection of regional cardiac abnormality has recently sparked an impressive re-

search effort as discussed in chapter 1. Furthermore, most of existingmethods require de-

lineations of the endo- and/or epi-cardial boundaries in all the frames of a cardiac sequence.

Former investigation of regional abnormality detection used echocardiography [3, 9, 12], us-

ing different techniques including shape statistics [3, 9] or hidden Markov models [12]. Re-

cently, MRI modality based techniques have been used as ground-truths for cardiac regional

assessment and therefore have attracted research attention [15, 11, 21, 4, 10, 14]. Cardiac

MR imaging has great potential for diagnosis of the LV function as examination is not limited

by an acoustic window, and cardiac MR imaging allows an exhaustive myocardial evaluation

1This chapter is based on the paper:
1) Afshin, M., Ben Ayed, I., Islam, A., Goela, A., Ross, I., Peters, T., Li, S., “Automatic Diagnosis of Seg-
mental Cardiac Dysfunction via Statistical Features in Short-axis MRI ”, under revision in IEEE Transaction on
Biomedical Engineering.
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with excellent spatial resolution [4]. As discussed in section 1.7.1, all existing algorithms ad-

dressed abinaryclassification problem, where each cardiac segment is characterized as normal

or abnormal.

The purpose of this study is to investigate more the general problem, where each regional

segment is classified into one of four classes: (1)normal (2) hypokinetic(3) akineticand (4)

dyskinetic. Starting from a simple user input in only one frame in the sequence, we build a set

of statistical MRI features based on a measure of similarity between distributions for all the

regional segments and all subsequent frames. We demonstrate that over a cardiac cycle, the

statistical features are related to the blood and myocardium proportion within each segment,

and can therefore characterize segmental cavity/myocardium contraction without the need for

LV segmentation in all the frames. We use these features as inputs for multi-class Support

Vector Machine (SVM) classifier, and obtain a 4-class assessment of each segment. We report

a comprehensive experimental evaluation of the proposed algorithm over 928 cardiac segments

obtained from 58 subjects. These results are compared to ground-truth labels obtained by

experienced radiologists with an overall 4-class accuracyof 74.14%.
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4.2 Methods

The proposed method consists of three main steps:

• Identifying 16 regional segments in one single frame, usinguser-provided inner and outer

LV boundaries.

• Computing image statistics as input features to a multi-class SVM classifier for each of

the 16 segments of a given subject.

• Classifying regional segments into 4 classes: (1) normal; (2) hypokinetic; (3) akinetic;

and (4) dyskinetic.

4.2.1 Identifying 16 Segments in Only One Frame:

This step constructs the regional segments following the regulations that have already been

discussed in section 3.2.

4.2.2 Building Segmental Statistical Features from MRI Images

We propose to use image statistics as input features for the diagnosis of regional myocardial

segment dysfunction.

Let I be a cardiac MRI sequence containingJ frames1, each comprisingS slices2 Is, j :

Ω ⊂ R2→ R+ with (s, j) ∈ [1 . . .S] × [1 . . .J].

For each frame, we haveI regional segments3 Ki, j , (i, j) ∈ [1 . . . I] × [1 . . .J].

Consider the following definitions and notations:

• I is the reference frame, which consists of 3 reference images, I s, each associated with a

different slice level (apical, basal, and mid-cavity).

1J is typically equal to 20 -25.
2S is typically equal to 10.
3The number of segments per subject (I ) is equal to 16.
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• Let Γs
in andΓs

out denote the endo- and epi-cardial boundaries inI s respectively (refer to

Fig. 4.2.b).

• Let Γi : [0,1]→Ω denote the boundary of segmenti. (refer to Fig. 4.2.c).

Now, let us systematically superimpose segment boundaryΓi onto the remaining frames as

shown in Fig. 4.1 (b-d), and compute the corresponding imagestatistics. Here, we describe the

method in detail for one mid-cavity segment (Fig. 5). However, the procedure is the same for

all the others.

... ...
(a) (b): frame1 (c): frame7 (d): frame19

Figure 4.1: Identifying 16 regional segments in the reference frame. (a): user-provided seg-
mentation of the reference frame. (b): 16 regional segmentsof the reference frame. (c-d):
regional segments of the reference frame superimposed systematically to the rest of the frames.

Let RΓ ⊂ Ω be the region withinΓ, Γ ∈ {Γs
in,Γ

s
out,Γ

i}, andPRΓ,A the kernel density estimate

of the distribution of an imageA ∈ Is, j within regionRΓ [1]:

PRΓ,A(z) =

∫

RΓ
K(z−A(x))dx

aRΓ
, (4.1)

with K the Gaussian Kernel:

K(y) =
1√

2πσ2
exp−

y2

2σ2 , (4.2)
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Figure 4.2: (a-c): mid-cavity regional segments superimposed on subsequent frames. (d-f): the
similarity measures between the cavity region in the first frame and the regional segments in all
other frames. (g-i): the similarity measures between the myocardium region in the first frame
and regional segments in all other frames.

andaR the area of regionR:

aR =

∫

R
dx (4.3)

We assume the following:

• The reference-image distribution within the region insideΓs
in (PRΓs

in
,I s) approximates the

cavity distribution;
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Endocardial wall

Epicardial wall

Insertion Points

Figure 4.3: User input to specify initial segmentation and anatomical landmarks on the first
frame.

• The reference-image distribution of the region betweenΓs
in andΓs

out (PRΓs
btwn
,I s s.t.RΓs

btwn=

RΓs
out
−RΓs

in
) approximates the myocardium distribution.

Now, as features for each regional segmentKi, j , we consider the following similarity

measures between the distribution of thej − th frame (Is, j) within the segment and the cav-

ity/myocardium distributions:

β
i, j
c = B(PRΓs

in
,I s,PR

Γi ,Is, j ), (4.4)

β
i, j
m = B(PRΓs

btwn
,I s,PR

Γi ,Is, j ), (4.5)

where:

B( f ,g) =
∫

R+

√

f (z)g(z)dz, (4.6)

B is the Bhattacharyya coefficient [14] whose range is [0,1], with 0 indicating no overlap

between the distributions and 1 indicating a perfect match.

Featuresβi, jc andβi, jm are related to the proportion of blood and myocardium withinregional

segmentKi, j . We illustrate such a relationship experimentally by the typical example pro-
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vided by Fig. 5, which shows that the more overlap between thedistributions of the cavity (or

myocardium) and regional segmentKi, j , the larger the proportion of blood (or myocardium)

within the segment. Therefore, we anticipate that over a cardiac cycle, the set of featuresβi, jc

andβi, jm , j ∈ [1 . . . J], can characterize segmental cavity/myocardium contraction. Another way

to see how featuresβi, jc andβi, jm can describe segmental function is to consider the extreme case

where the regional myocardium does not move. In such case, the proportions of blood and

myocardium are constant over a cardiac cycle, and so are the features.

4.2.3 Assessment of Regional Segment Dysfunction Using Multi-Class

Support Vector Machine

We used the well-known one-versus-all multi-class SVM [6, 13, 10, 16, 15, 2] to classify each

regional segmenti, i ∈ [1 . . . I ],into four classes:

1. normal

2. hypokinetic

3. akinetic

4. dyskinetic.

For each segmenti, the input of the SVM classifier is a feature vector of the formvi =

[ui
c;u

i
m], whereui

c andui
m are twoJ-dimensional row matrices containing the Bhattacharrya

statistics:ui
c =
{

β
i, j
c

}

andui
m =
{

β
i, j
m

}

. The output is a labell ∈ {1,2,3,4}, which corresponds to

one of the four classes. In the training phase, we proceeded to a leave one-subject-out approach.

We used the standard parameters of the multi-class SVM [6], and a radial-basis function as a

kernel type.
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4.3 Results and Discussion

4.3.1 Data Acquisition

The data comprise 58×3 short-axis image datasets (i.e., apical, mid-cavity and basal), each

consisting of 20 functional 2D images acquired from 21 normal and 37 abnormal hearts, ac-

quired on a 1.5T MRI scanners with fast imaging employing steady state acquisition (FIESTA)

mode. The details of the datasets are presented in Table. 3.1. The data consists of images

from 41 male and 17 female subjects, and the average age of subjects is 52.3±15.0 years. The

temporal resolution (∆T) is equal to 45.1±8.8 ms.

For each subject, three slices were respectively chosen from apical, mid-cavity and basal

frames, andanatomical landmarkswere identified manually on the first frame4(refer to Fig.

4.3). The apical, mid-cavity and basal slices were automatically partitioned, into 4, 6 and

6 segments respectively, following the AHA standard [2], which results in 16 segments per

subject. The 17th segment, apex, was not analyzed.

The results of 928 myocardial segments (58 subjects× 16 segments) were compared with

a single ground truth classification. The ground truth was built by three experienced radiolo-

gists, each of whom annotated a different portion of the data set. Among the 928 segments,

537 segments were marked as normal, 283 segments were markedas hypokinetic, 73 segments

as akinetic and 25 as diskinetic. Among the 37 abnormal subjects, 12 were diagnosed with

infarction, 10 with dilated cardiomyopathy and 15 with various heart diseases including resus-

citated cardiac arrest, coronary artery occlusion, cardioembolic cerebrovascular accident and

pseudo-aneurysm.

4As suggested by [2], the attachment of the right ventricular wall to the LV is used to identify and separate
the septum from the LV anterior and inferior free walls.
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Figure 4.4: Accuracy(%) for each of the 16 regional segments. The average accuracy over all
16 segments is equal to 74.14%.

4.3.2 Classification Performance

We assessed the performance of the proposed algorithm with three criteria: the accuracy, con-

fusion matrix, and bull’s eye plot.

Accuracy

The accuracy for segmenti is the number of cases classified correctly divided by total number

of the cases. Fig. 4.4 reports the accuracy for each of the 16 segments (The display follows the

bull’s eye standard plot of the AHA [2]). The average accuracy over all 16 segments is equal

to 74.14%.

The clinical study in [5] showed a very high inter-observer variability for multi-class as-

sessments of regional segments. For instance, Table.2. in this paper shows the assessments of

3 radiologists, each compared to a panel ground-truth obtained by an independent consensus.
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The lowest radiologist performance is 55% and the highest is86%, indicating a substantial

inter-observer difference of 24%. Therefore, the problem is really challenging, and we believe

an algorithm performance of 74% is an acceptable rate because the inter-observer variability

can be as high as 24%.

Confusion Matrix

Table 4.1 reports the confusion matrices for basal, midcavity, and apical segments. The diago-

nal elements indicate the number of segments that were classified correctly, whereas those on

the off-diagonal indicate the number of mis-classified segments along with the corresponding

incorrect classes. Among 348 basal segments, 266 were classified correctly (76.4%); among

348 midcavity segments, 254 were classified correctly (73.0%); and among 232 apical seg-

ments, 168 were classified correctly (72.4%).

Predicted Condition
normal hypokinesia akinesia dyskinesia

Basal ground-truth

normal 193 15 1 0
hypokinesia 35 68 1 0

akinesia 9 12 5 0
dyskinesia 4 4 1 0

Mid-cavity ground-truth

normal 188 21 0 0
hypokinesia 42 62 0 0

akinesia 7 15 4 0
dyskinesia 4 5 0 0

Apical ground-truth

normal 110 19 0 0
hypokinesia 23 52 0 0

akinesia 2 14 5 0
dyskinesia 2 3 1 1

Table 4.1: Confusion matrix

Bull’s eye Plots:

Fig. 4.5 shows the results for 14 randomly selected subjects. The colours depict the four

classes: red for normal, green for hypokinetic, yellow for akinetic and white for dyskinetic.

Note that normal and hypokinetic conditions are detected inmost of the cases whereas the
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dyskinetic conditions are missed, which can be explained bythe small proportion of dyskinetic

segments in our training data.
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Ground-truth Prediction Ground-truth Prediction

Figure 4.5: Bull’s eye plot obtained from ground-truth in column 1,3. The colors depict the four
classes: red for normal, green for hypokinetic, yellow for akinetic and white for dyskinetic.
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4.4 Conclusion

This study investigated classifying regional cardiac segments into one of four classes: (1)

normal; (2) hypokinetic; (3) akinetic; and (4) dyskinetic.Starting from a minimum user input in

only one frame in a cardiac sequence, we built for all the regional segments and all subsequent

frames a set of statistical MRI features which can characterize segmental cavity/myocardium

contraction without the need for delineating the LV boundaries in all the frames. Using these

features as inputs to a multi-class support vector machine (SVM) classifier, we obtained a 4-

class assessment of each segment. A comprehensive experimental evaluation over 928 cardiac

segments obtained from 58 subjects showed a very promising performance of the algorithm,

with an overall 4-class accuracy of 74.14%.
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Chapter 5

Conclusion

5.1 General Discussion

The LV function is assessed using global indicators such as ejection fraction as well as local

indicators such as segmental wall motion. In clinical practice, evaluation of the LV function

relies on either visual assessment or manual segmentation and interpretation of global as well

as segmental LV wall motion. As discussed in chapter one, visual assessments are subject to

high inter-observer variabilities, and are inaccurate andnon-reproducible procedures [16, 5].

Manual LV segmentation is also a subject-dependent and time-consuming process. This task

is subject to intra and inter-observer variability.

We proposed accurate, real-time techniques for global and regional assessment of cardiac

LV using MR images. The proposed methods can be used as a diagnostic tool to assist the

radiologists in such assessments.

5.2 Cardiovascular Magnetic Resonance Imaging

As discussed in chapter one, CMR is an accurate and reproducible [7, 12, 8] imaging modality

and patients can undergo several CMR scans without being exposure to ionizing radiation

[20]. These features make it an ideal technique for monitoring the treatment and progression
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of cardiac disease.

In this project, a set of 2D short-axis cine MR images of subjects was acquired through the

cardiac cycle on a 1.5T scanner with fast-imaging employing steady-state acquisition (FIESTA)

image sequence mode.

The experiments in chapters two, three and four have been done on a set of 20, 58 and 58

subjects respectively. The dataset used in chapters three and four contained short-axis image

datasets (i.e., apical, mid-cavity and basal) from 21 normal and 37 abnormal hearts. The subject

population included 41 males and 17 females with the averageage of subjects being 52.3±15.0

years. More details have been provided in each chapter.

The performance of the proposed techniques were compared with ground truths built by

three experienced radiologists, each of whom annotated a different portion of the data set.

5.3 Global Assessment of Cardiac Function

We investigated a technique for global assessment of the LV in real-time by computing the

cardiac Ejection Fraction (EF) in chapter two. The EF depends on the variation in the volume

of the LV cavity during a cardiac cycle, and is an essential measure in the diagnosis of cardio-

vascular diseases. It is often estimated via manual segmentation of several images in a cardiac

sequence, which is prohibitively time consuming. Alternatively, automatic segmentation can

be used, but this is a challenging and computationally expensive task that may result in high

estimation errors .

We proposed to estimated the EF directly (without segmentation) from Magnetic Reso-

nance image statistics via machine learning. From a simple user input in a single image, we

built statistics for all the images in a subject dataset. These image statistics were based on the

Bhattacharyya coefficients of similarity between image distributions, which were shown to be

non-linearly related to the LV cavity areas. We used an ANN tofind the relation between the

image statistics and the corresponding LV cavity areas in each subject dataset.
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We estimated the LV cavity area in each single image using a trained ANN. The LV cavity

volume in each frame was estimated by integrating the corresponding areas. The EF were

estimated from the volumes in end-diastole and end-systole.

A comprehensive experimental evaluation over 20 subjects demonstrated an excellent con-

formity between the automatically estimated EFs and those computed from manual segmen-

tations. The proposed method yielded correlation coefficients of 0.89 and 0.91 for the LV

cavity areas and volumes, respectively, indicating a high correlation between manual and au-

tomatic estimations. Moreover, we performed a comprehensive evaluation on the effect of

user-provided input and ANN design. The proposed method relies on an approximate user-

provided localization of the LV cavity. We evaluated the robustness of the method with respect

to variation in user-provided input. We showed that the meanerror is significantly increased by

the size of the region enclosed within the user-provided curve. We also investigated the effect

of the choice of number of neurons on the results.

Several comparisons with graph-cut and level-set estimation of theEF based on recent

segmentation algorithms confirmed that the proposed methodcan yield a competitive perfor-

mance, while significantly reducing the computational load.

5.4 Regional Assessment of Cardiac Function

Chapter three proposed a real-time method for automating thedetection and localization of

segmental (regional) myocardial abnormalities in MRI. The method is a machine-learning and

image-statistic based approach to evaluate segmental LV function. As discussed in chapter

three, in practice, assessment of the segmental cardiac function is considered an essential diag-

nosis and follow-up component [1]. It is often assessedvisuallyfollowing the American Heart

Association (AHA) [2] standard, which prescribes selecting representative 2D cardiac slices

so as to generate 17 standardized LV segments. Alternatively, automating the detection and

localization of regional abnormality has recently been focus of research [15, 11, 21, 4, 14, 10].
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Regardless of such effort, a fast and accurate technique is still desired.

The proposed technique requires minimal user input in only one frame in a subject image

dataset. For all the regional segments and all subsequent frames we build a set of statistical

MRI features based on the Bhattacharyya measure of similaritybetween distributions. We

demonstrated that over a cardiac cycle the estimated statistical features are correlated with

the proportion of blood within each segment, and can therefore be used to describe segmental

contraction with minimal user effort. We found the optimal direction along which the proposed

image features are most descriptive via a Linear Discriminant Analysis (LDA). Then, using

the results as inputs to a Linear Support Vector Machine (LSVM) classifier, we estimated the

abnormality of each standard cardiac segments in real-time.

We showed experimental evaluations of the proposed algorithm over 928 cardiac segments

obtained from 58 subjects. We demonstrated the performanceof the LSVM using (1) the

ROC (Receiver Operating Characteristic) curves with the corresponding AUCs (Area Under

the Curve) and (2) the Bhattacharyya measure [3] to evaluate the discriminative power of the

features. Furthermore, we assessed the classifier performance with a leave-one-third-of-the-

subjects-out approach, i.e., by training our algorithm using 2/3 of the dataset and testing on the

remaining data. The proposed algorithm yielded an overall classification accuracy of 86.09%

and a kappa measure of 0.73. We further reported meta-analysis comparisons with several

recent methods, which showed that the proposed method can yield a competitive performance

while reducing the computational load and user efforts.

In chapter four we studied the more general and challenging multi-class problem, where

each regional segment is classified into one of four classes:(1) normal; (2) hypokinetic; (3)

akinetic; and (4) dyskinetic. We built a set of statistical MRI features for all of the regional

segments and subsequent frames using minimal user input in only one frame. These estimated

features could be used to characterize segmental cavity andmyocardium contraction without

requiring manual segmentation of the LV in all frames. We used these features as inputs for a

multi-class SVM classifier and obtained a 4-class assessment of each segment.
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We assessed the performance of the proposed algorithm with three criteria: the accuracy,

confusion matrix, and bulls eye plot. Experimental evaluation over 928 cardiac segments ob-

tained from 58 subjects demonstrated the strong performance of the algorithm, with an overall

4-class accuracy of 74.14%.

5.5 Future Direction

In chapter two, the estimation of the EF relies on an approximate user-provided localization of

the LV cavity, with the user being required to provide an initial box close the LV in a single 2D

image. Since, the LV localization plays an important role inestimating the image features, LV

localization has the potential to be fully automatic by applying, a localization technique. LV

localization techniques based on blob detection, optical flow and machine learning techniques

can be used to approximately find the LV location in the end-diastole frame. Such technique

would be able to reduce the error (discussed in Fig. 2.25) caused by user input.

In chapters three and four, the proposed regional myocardial abnormality detection frame-

work is based on image statistics. This framework requires user inputs, to specify an initial

delineation and several anatomical landmarks on the first frame. Again in the future it would

be interesting to fully automate the process to remove the possibilities of user bias or error.

In chapter four, we assessed the segmental cardiac dysfunction using a Support Vector Ma-

chine fed by statistical image features, based on a measure of similarity between distributions.

The accuracy of the classification technique can potentially be improved through the use of

alternative techniques:

1. The accuracy could be increased by training the SVM classifier with a large number of

abnormal datasets. The proposed method produced comprehensive results for normal

and hypokinetic segments because we had access to more dataset related to these condi-

tions. We predict that by increasing the number of datasets corresponding to the other

conditions, the accuracy for additional conditions could be improved.
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2. The image features used in the proposed method are intensity based. Other robust image

features, e.g., those based on the shape information could potentially be mixed with the

current features to increase the accuracy.

Additional future work includes application of the proposed method to estimate other car-

diac functions such as muscle thickening and right ventricle abnormality detection. The pro-

posed method is based on the consistency of the image distributions within the cavity across

different frames, and can therefore be readily extended to othermodalities where such consis-

tency is verified.
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