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Abstract 

Deposition techniques for the fabrication of metal nanostructures influence their morphological 

properties, which in turn control their optical behavior. Here, copper nanoparticles (np-Cu’s) 

were grown using a deposition system that was specifically set up during this work, and is based 

on a radio frequency (RF) sputtering source that can operate at high temperature and under bias 

voltage. The effect of deposition conditions (RF power, chamber pressure and substrate bias 

voltage) on RF sputtered np-Cu’s using RF sputtering has been studied. The study included a 

comparison between the morphological and optical properties of as-grown np-Cu’s and 

thermally treated samples. The characterization of np-Cu’s is carried out by atomic force 

microscopy, UV-visible transmission spectrophotometry, scanning electron microscopy and 

scanning near field optical microscopy (SNOM) techniques. The results of the experiment 

showed that the combined effects of low RF power (25 W – 75 W), high chamber pressure (17 

Pa – 23 Pa) and substrate DC bias voltage (300 V – 400 V) are required for obtaining dispersed 

np-Cu’s. Under these conditions, copper nanoparticles grow by aggregation of initial island 

nuclei due to a reduction in sputtering rate. Significantly, higher dispersed np-Cu’s are obtained 

when a set of samples grown at 25 W and 33 W RF power is subjected to thermal treatment in an 

oxygen-free glove box. Optical properties of np-Cu’s show improvement in the visible region 

(535nm – 580 nm) related to transmission enhancement in as-deposited samples and plasmonic 

enhancement in thermally treated ones.  Furthermore, an approach to determine the position of 

the np-Cu induced scattered wave was explored using SNOM (x, z) measurements. In bare np-

Cu’s the path length of the scattered wave is further from the np surface, measured orthogonally. 

We demonstrated experimentally a method that uses an SiO2 thin film as a spacer to broaden the 

scattered wave up to 500 nm from the np-Cu/SiO2 composite surface. The study provides an 

improved insight that helps to understand the physical mechanisms that may hinder the expected 

performance in plasmonic solar cells. With these results, the potential of incorporating np-Cu’s 

in plasmonic thin film solar cell structures looks very promising. 
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Chapter 1 

1 Optical properties and application of metallic nanoparticles 

Metal nanostructures are among the most studied nanomaterials due to their outstanding size 

dependent properties. In particular, nanoparticles of metals show an interesting optical behavior 

known as size dependent surface plasmon resonance (SPR) as the nanoparticle diameter becomes 

comparable with, or smaller than the wavelength of incident light [1,2]. Plasmon resonance is the 

collective oscillation of conduction electrons and occurs when the frequency of incident light 

matches the resonance frequency of a gas of free electrons. It is more easily observed in certain 

noble metals (such as Au) because of the relative oxide free surfaces of these which form a 

favorable environment for their observation, at a low nanoparticles dielectric constant [3]. In Cu 

and Au, the position of SPR corresponds to red and yellow photon frequency respectively, in the 

visible region. For this reason, Cu and Au are the metals of interest for a number of applications 

where SPR is used for enhancing the amount of reflected light just above the plasmon frequency, 

especially for plasmonic solar cells and optical surface plasmon sensors. In applications for 

which costs are important, copper nanoparticles (np-Cu‟s) offer unequalled advantages over 

gold. 

However, the efficient use of np-Cu‟s plasmonic solar cells and other similar devices is 

not without some challenges – stability and reactivity have to be controlled. This is because 

smaller particle diameters usually result in an increase in surface energy, which favors the 

aggregation of smaller particles into larger ones. Methods adopting chemical deposition 

techniques as means of synthesizing np-Cu‟s are more prone to these challenges, as well as 

similar challenges such as contamination by residual precursor material and, especially, 

oxidation. When np-Cu‟s are contaminated in these ways, interesting optical properties such as 

surface plasmon absorption resonance are not observed [4]. Physical methods of deposition of 

np-Cu‟s, including sputtering can offer a solution to oxidation issues, especially when they are 

integrated in protected atmosphere inside a glove box. These methods will be the main subject of 

this study and the applications of the grown nanoparticles in plasmonics will be discussed as 

well. 
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1.1 Plasmons in metals and metallic nanostructures  

Pioneered by the works of Mie [5] and Ritchie [6] for small particles and planar interfaces 

respectively, plasmonics developed into widely studied area of condensed matter physics. The 

optical properties of metallic nanostructures are determined by strong interactions between the 

incident light and the conduction electrons. Collective oscillations of the conduction electron gas 

are called plasmons. At the resonance frequency, such collective electron oscillations may result 

in the enhancement of electric fields in the vicinity of a nanostructured metallic surface [7]. 

Therefore, surface plasmons have opened an avenue towards the possibility to amplify, 

concentrate and manipulate light at nanoscale [8]. 

Plasmonic field enhancements may be highly localized if they are generated in the 

proximity of small metallic particles of the appropriate shape and size and are mainly near-field 

in nature [9]. The enhancement that is achieved when nanostructured particles scatter light into 

the photoactive region of a nearby optoelectronic device may result in a strong absorption of 

light and the subsequently enhanced generation of electron-hole pairs in such a plasmonically 

enhanced device. A variety of plasmonic devices, including solar cells, light emitting diode, 

detectors and lasers have been proposed and constructed [10-12]. Careful optimization is, 

however, required during the design and fabrication processes to ensure that the scattered light is 

optically conveyed into the active region. Such optimization forms the basis of plasmonics as we 

report it in the following sections of this chapter.  

Plasmons can exist in the bulk of metals, on thin metallic surfaces or they can be 

localized inside, or on the surface of metallic nanoparticles. Depending on the specific situation, 

we may have bulk plasmons (BP), surface plasmons (SP) or localized plasmons (LP). This 

classification is due to the different boundary conditions associated with different structures [13]. 

1.1.1 Bulk plasmons 

Bulk plasmons refer to collective modes of oscillation of the free electron gas inside a 

sufficiently large volume of bulk metal. The excitation of bulk plasmons leads to the collective 

motion of a very large number of free electrons, resulting in small density fluctuations around the 

average density n, of the unperturbed electron gas. According to the Drude-Sommerfeld free 
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electron model [14], the quantum behavior of an electron gas is determined by its frequency-

dependent complex dielectric function that can be expressed as [15]: 
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Where p   is the screening factor and the plasmon frequency is defined as   
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Here m and e are the mass and charge of the electron, εo is the permittivity of vacuum and ω is 

the frequency of the incident light. The presence of an imaginary part in εm is a consequence of 

the fact that metals can absorb light. Coherent oscillations of the free electrons are highly 

screened as long as Re(εm(ω)) > 0 and the frequency of their motion is below ωp. However, at ω 

≥ ωp, we have Re(εm) < 0, the long-range (Coulombic) forces become effective and undamped 

waves travel through the free electron gas[16]. This has very important consequences for our 

work. First, it can be observed that the bulk plasmon frequency of a metal depends via eq. (1.2), 

only on a number of universal constants and on the density of free electrons in a given metal. For 

instance, silver has a plasmon frequency of approximately ћωp = 3.7 eV, in the near ultraviolet, 

and therefore reflects and scatters all of the visible photons. This limits to ultraviolet light the 

transmittance of a plasmonic layer made out of silver. The active region of a plasmonic device 

would be poorly illuminated, with detrimental effects on the device efficiency. Instead, copper 

and gold have a plasmon frequency in the visible photon energy range. For instance, ћωp = 2.3 

eV, in the green – blue range for copper, which results in high transmittance for green, blue and 

ultra violet photons (that can be, therefore, absorbed in the active layer of an optical device) and 

high reflectance for red photons, with a possibility of plasmonic enhancement in the red region 

of the spectrum of visible light, where semiconducting materials exhibit poor absorption of light, 

which need to be enhanced. In summary, as shown in Fig. 1.1, copper and gold enhance the 

amount of light in the red and infrared where it is needed because solar cell active materials are 

poorly absorbing. Instead, copper and gold do not affect the quantity of light that is absorbed in 

the visible where, solar cells materials are highly absorbing and, there is a sufficient quantity of 

light because here is the maximum of the solar spectrum. 
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Fig. 1.1: Reflectance of selected metals as a function of wavelength. As a consequence of eq. 

(1.1) the reflectance is nearly 100% above the metal plasmon frequency, while rapidly 

decreasing below. Also indicated is a typical trend for the optical absorbance of a typical 

solar-grade semiconductor (for which the optimal energy band gap for best AM 1.5 solar 

efficiency is approx. 1.5 eV, corresponding to 0.83 um) Metals suitable for applications in 

semiconducting plasmonic devices have a plasmon energy ћωp just above the 

semiconductor band gap energy. Therefore, Au and Cu are optimized for applications in 

plasmonic solar cells, while Ag and Al (with too high plasmon energies, in the UV range) 

are not. 

 

1.1.2 Surface plasmons 

Surface plasmons are associated with coherent electron oscillations which occur at the interface 

of a sufficiently thin metallic film and a dielectric medium. Plasmons are in this case confined in 

the proximity of the metallic surface so that plasmonic waves propagate along the interface of 

the two media. The spatial and temporal dependence for the electric field of this surface wave 

can be expressed in terms of plane waves, as 

])..[exp(),( trkiErE o            (1.3) 
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Where E is the intensity of the electric field and k  is the wave vector. The planar geometry of 

the boundary conditions allows to write eq. (1.3) in a way that separates the spatial components 

of the wave in directions parallel and orthogonal to the surface with wave vectors ),( zmxm kkk 

and ),( zdxd kkk  inside the metal and the dielectric medium, respectively. The expressions for 

the spatial profile of the propagating waves inside the two media (based on the geometry 

depicted in Fig. 1.2) are then given by: 

)]..(exp[)..exp(.),( txkizkErE xzdo           (1.4)  

For this geometry, the Helmholtz equation [13, 17], describing the wave propagation at the 

interface of the metal and the dielectric medium can be written as:  

0).(.
22  EkE mx              (1.5) 

Eq. (1.5) can be solved exactly by imposing the appropriate conditions for continuity of the 

electric field at the interface [18, 19]: 
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where c is the speed of light in vacuum. In most cases of practical interest for our study, the 

dielectric material is an optically non-absorbing medium. Therefore, its dielectric constant, εd, 

that appears in eqs. (1.6) and (1.8) is real and weakly dependent on ω.  
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Fig.1.2: Propagation of electromagnetic wave at an interface between metal and dielectric 

media with relative dielectric constants εm(ω) and εd respectively.  

The dispersion relations that the surface waves must follow due to the presence of the interface 

and the dependence of εm on ω are given by: 
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The above result shows that the excitations of surface plasmons are associated with transverse 

and longitudinal electric fields that have their maxima at the surface (i.e. z = 0). The nature of eq. 

(1.4) demonstrates that the field decays exponentially with the distance from the interface as 

).exp( zkzm
 
[18]. The exponential dependence of the electric field intensity on the distance 

along z-direction is demonstrated in Fig. 1.3(a) while the subsequent oscillations and the 

associated surface wave are shown in Fig. 1.3 (b). 
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Fig. 1.3: Schematic of (a) exponential dependence of the field intensity on the distance away 

from the interface, (b) surface EM wave propagating at a metallic and dielectric interface 

with different dielectric constants. 

Fig. 1.3(a) shows that SP is an interface phenomenon that is highly sensitive to the dielectric 

function of the adjacent dielectric medium. Resonant enhancement of the electric field occurs 

when kx   and/or kzm   . According to eqs. (1.9) and (1.10) this happens when the 

denominator in such equations tends to zero and, therefore, when 

     0)(Re  dm           (1.11) 

 

Since the dielectric function of the metal is given by eq. (1.1), we can replace it in eq. (1.11) 

obtaining that collective oscillations of the electric dipoles of the surface occurs at a frequency ω 

= ωsp, satisfying the condition 
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and, inverting eq. (1.12), we obtain that surface plasmon resonance occurs at 
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Since εd ≥1 for dielectric media, eq. (1.13) indicates that SPR always occurs at smaller 

frequencies (and, therefore, larger wavelengths) than bulk plasmon resonance. Eq. (1.13) also 
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suggests that SPR cannot be observed in the visible photon energy range when metallic surfaces 

are oxidized, since metal oxides (e.g. CuOx in the case of copper thin films and np-Cu‟s) 

generally possess high dielectric constants, εd >> 1. This result in critical for our study because it 

suggests that the surface of our np-Cu‟s must be sufficiently clean from oxidation and dielectric 

impurities in order for the particles to generate a sufficient surface plasmonic enhancement. 

Therefore, eq. (1.13) recommends the use of vacuum-based physical techniques for the 

preparation of our nanoparticles and on oxygen-free, controlled, environment for their 

manipulation and, specifically, a nitrogen-purged glove box. 

 Instead, for the special case of clean metallic surfaces interfaced with vacuum (for which 

εd =1) eq. (1.1) becomes: 

2

p

ps


            (1.14) 

For the metals, the SPR frequency given by eq. (1.14) lies in the ultraviolet photon energy region 

because of the strong density of free electrons, which produces, via eq. (1.2), values of ћωp 

above 4 eV. However, copper and gold are remarkable exceptions to this rule, as their bulk 

plasmon resonance lie close to the visible region (see Fig. 1.1) which implies values of ћωsp in 

the red – yellow photon energy range and the possibility to use SPR from these metals to reflect 

light at long wavelengths without absorbing it in the central portion of the visible range. 

The surface plasmon resonant frequency given by (1.13) lies in the UV spectral region 

because of the strong negative dielectric function of metals in this region. As such momentum of 

surface plasmon ksp is longer than that of plane waves. This can be seen from the dispersion 

relation shown in Fig. 1.4. 
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Fig. 1.4: Plot of the dispersion relation for light propagating in vacuum and for plasmonic 

waves propagating along a metallic surface.  

Figure 1.4 compares the dispersion relations ω(kx) for plane electromagnetic waves in vacuum, ω 

= c.kx, and inside a free electron gas, for which eq. (1.9) can be written. For long wavelengths 

and low frequencies, the wave number of surface plasmons, is close to the wave number of 

photon in vacuum and the electric field extends over many wavelengths above the surface of the 

metals [13]. In the opposite regime of short wavelengths, the frequency of electromagnetic 

waves in the metal tends to the surface plasmon frequency eq. (1.14), kx goes to infinity and 

subsequently, the group velocity tends to zero [13]. The plasmonic mode thus acquires a 

stationary, evanescent and non-propagating character. This is a remarkable example of 

evanescent wave, with an associated near-field that is localized in the proximity of a metallic 

layer of subwavelength thickness. Since the degree of localization only depends on the specific 

geometry and optical properties of the used materials, near fields can be used to investigate small 

objects with subwavelength resolution, as we will discuss in some details in the next chapters of 

this study. 

 Figure 1.4 also shows that, due to the conservation of momentum, the condition ksp  kx 

must hold. Thus, a SP cannot be excited by using any possible plane wave and wave number for 

incident light. The wave vector necessary for SP excitation corresponds to the point on the 

dispersion curve indicated in Fig. 1.4. Experimentally, this is realized by using special matching 

techniques, such as prism coupling. These techniques are explained in details in the literature 
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[20, 21]. However, this condition is relaxed for non-planar surfaces, for instance surface 

plasmons localized in nanoparticles. 

 

1.1.3 Localized surface plasmons 

Unlike the case of a SP, in which an electromagnetic wave coupled to a free electron gas results 

in a propagating field along a metallic surface, localized plasmons (LP) involve a non-

propagating collective excitation of electrons confined in small metallic structures. A sub-

wavelength metallic particle can be treated as a spherical region in which electrons are allowed 

to move freely as shown in Fig. 1.5. Drift of conduction electrons upon excitation by an external 

electric field results in the formation of polarization charges of opposite sign on the two 

hemispheres forming the surface of the particle.   

 

 

Fig.1.5: Schematic depiction of influence of external light field on randomly oriented 

charges in a metallic nanoparticle. The incident electromagnetic wave excites charge 

separation to create an electric dipole 

In this model the total polarization P, of the two hemispheres is given by the Clausius-

Mossotti relationship [14]: 
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According to eq. (1.15) the polarization depends on the dielectric constant of the surrounding 

medium and that of the metallic sphere. Thus, it experiences a resonant enhancement under the 

Frohlich condition [22], when the denominator in eq (1.15) tends to zero: 

  0.2)(Re  dm           (1.16) 

Eq. (1.16) is qualitatively similar to eq. (1.11) that was derived for a planar metallic surface. An 

expression for the frequency of the surface plasmon resonance localized on a spherical particle 

can be determined by replacing eq. (1.1) into eq. (1.16):  
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Comparing eq. (1.17) to eq. (1.13) we can observe that plasmons confined at the surface of a 

spherical metal nanoparticle are downshifted at lower frequencies than their two-dimensional 

counterparts that are delocalized on a flat surface of the same metal. For a generic surface, and 

for non-spherical particles, it can be demonstrated [14, 23] that the plasmon resonance frequency 

always assumes intermediate values between those given by eqs. (1.13) and (1.17). Specifically, 

for nanostructures of ellipsoidal shape, it can be obtained that 
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where x is a depolarization coefficient that takes into account the shape of the specific 

nanostructure. Therefore, synthesizing metallic nanoparticles with carefully designed geometry 

is critical for their optimization for a given application requiring a well defined plasmon 

frequency. In addition, strong light scattering is associated with excitation of metal nanoparticles 

at their plasmon frequency. In the limit where the nanoparticle diameter, is small enough 

compared with the wavelength of incident light, the scattering cross-section for spherical particle 

is given by [24]: 
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where V is the volume of the spherical particle. Eq. (1.19) indicates that also Qsca is strongly 

enhanced for Re[εm(ω)] + 2.εd = 0, at the LP frequency given by eq. (1.17), because also the 

denominator of (1.19) goes to zero. 

 If the spherical nanoparticles are not much smaller than a wavelength the dipole surface 

plasmon approximation is not satisfied. In this case, the scattered electric field is not purely 

dipolar in nature, but is formed by an infinite superposition of multipoles [23]. The multipolar 

nature of the scattered field manifests itself with the fact that the field intensity undergoes a 

number of oscillations, with maxima and minima at specific distances r from the surface of the 

particles, while the dipolar field (see eg. Fig. 1.3a) follows a much simpler trend and 

exponentially decays away from the metal surface. The expression of the scattering cross section 

for a spherical particle in the more general case in which the multipolar nature of the electric 

field must be considered has been calculated by Bohren and Huffman [23] and is given by 
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Where an and bn express the contribution to the scattering process of the n-th multipole. These 

coefficients can be written in terms of first-type and second-type Bessel-Riccati functions, ψn(p) 

and ξn(p)and their first derivatives: 
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Where  /..2 rx d expresses the distance r from the centre of the particle, normalized with 

the wavelength of light, λ and the dielectric constant of the background medium, while 

dmm  / . Eq. (1.20) vanishes more rapidly, at smaller values of r, while low -n terms are 

more slowly decaying in space. Important consequences of eq. (1.20) for our work are the spatial 

oscillations of Qsca and of the intensity of the scattered electric field. These will be qualitatively 

discussed in chapter 4 of this study, in which these spatial oscillations will be experimentally 

measured.  
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1.2 Conclusions and Thesis overview 

In conclusion, from our previous considerations, copper and gold nanoparticles are found to be 

extremely promising for scattering light from the sun into the active layer of semiconductor 

devices and, especially, into solar cells that convert sunlight into electrical power. The SPR and 

localized plasmon resonances of gold and copper has been found to be just below the maximum 

peak of the AM1.5 solar spectrum, which is located in the green (λm = 550 nm, ћωm = 2.25 eV). 

This makes np-Au and np-Cu very well suited to concentrate light at λ > λm (and ω < ωm) where 

solar grade semiconductors exhibit a poor absorption coefficient, while not preventing the 

semiconductor to absorb light at λ ≤ λm (and ω ≥ ωm) the spectral range for which solar-grade 

semiconductors are generally optimized. 

 To this end np-Cu‟s are preferable over np-Au‟s because of their cost – effectiveness, but 

copper is more prone to oxidation and contamination. Therefore we have concluded that care 

will have to be exercised in the preparation and manipulation of np-Cu‟s for plasmonic solar cell 

applications, because SP and LP cannot be observed if these nanoparticles are oxidized, or 

contaminated. We have also concluded that specific experimental analysis will be required to 

understand the complicated multipolar behavior of the electric field plasmonically scattered by 

np-Cu of size comparable to the wavelength of incident light. 

 Therefore, our study will be divided as follows: in chapter 2 we discuss a physical 

process, that will be used to deposit np-Cu‟s in vacuum, preventing their oxidation, and we 

describe the radio-frequency sputtering operations we designed and built for growing np-Cu. 

Two relevant characteristics of such apparatus are in the possibility to apply a direct current (dc) 

bias voltage to the substrate (in order to limit the growth rate and obtain np-Cu‟s at the opposite 

of Cu films) and the integration of the sputtering chamber with a glove box for ensuring oxygen-

free manipulation of the nanoparticles. In chapter 3 we describe the characterization of sputtered 

np-Cu‟s with a suite of techniques, including atomic force microscopy, scanning electron 

microscopy, compositional analysis and UV – visible spectrophotometry, with the objective to 

correlate the sputter growth parameters used in chapter 2 to the nature, size, shape and density of 

the particles. In chapter 4, more detailed characterization of the particles is carried out by 

scanning near field optical microscopy (SNOM) in order to understand the multipolar behavior 

of the electric field associated to light scattered at frequencies close to the plasmon of the 
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particles. This is essential to identify what type of the np-Cu‟s we synthesized are better suited to 

be incorporated in plasmonic solar cells and to determined the best possible architecture for these 

devices. 

 In chapter 5, we demonstrate the importance of the integration of the sputtering system 

with the glove box for the incorporation of np-Cu on a number of solar grade substrates 

(including graphene layers) and the additional processing of such substrates by spin coating 

additional organic layers on them in controlled atmosphere. This work is preliminary to the 

preparation of organic solar cells incorporating np-Cu inside the glove box. Finally, in chapter 6, 

we summarize our study and suggest future research directions for our work 
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Chapter 2 

2 Sputtering operation for nanoparticles deposition 

2.1 Introduction 

Copper nanoparticles (np-Cu‟s) are generally fabricated by chemical routes, such as wet 

chemical synthesis, or by means of physical deposition processes including thermal evaporation, 

sputtering and lithographic techniques. The synthesis of np-Cu‟s by chemical methods is realized 

by the use of reducing and capping agents, an approach that reduces the effect of particle-particle 

interaction and the resultant agglomeration in colloidal suspension [1-3]. However, the end 

product is prone to contamination by the precursor residual material, their by-products or copper 

oxide [4]. When this happens, several relevant properties of np-Cu‟s, including the presence of a 

plasmonic resonance, are not observed [5].  

In view of the above, this chapter describes the physical deposition techniques developed 

in the frame work of this, including the assembling of a sputtering set-up attached to a glove box 

protected from oxygen contamination, the procedure followed to carry out the deposition of np-

Cu‟s and their preservation from both contamination and oxidation. The experimental apparatus 

has been specifically designed by us for optimizing the deposition of np-Cu‟s, followed by their 

application for the fabrication of mixed np-Cu/organic polymer nanocomposites and their 

incorporation into plasmonic solar cells.  

2.2 Sputtering deposition technique 

Sputtering is a very common technique for the preparation of thin films in vacuum [6]. In 

sputtering, the atomic precursors that will form the desired thin film are ejected from a target 

material by bombarding it by energetic ions. This technique can be used to deposit a variety of 

thin films and nanoparticles. Historically, the first recorded observation of sputtering was made 

by W.R. Grove in 1852 [7]. However, its development into a modern deposition technique for 

thin films and nanoparticles is due to Langmuir in 1920. Since then, sputtering has emerged as an 

efficient method, enabling to dispense metals and semiconductors in various forms, including Al 

and Al- based thin films, Ti, Tin, Si, SiN, nickel, cobalt, gold, etc [6]. 
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Fig.2.1: Schematic illustration of the fundamental principles of sputtering 

Deposition by sputtering can be accomplished by radio frequency (RF) and direct current 

(DC) sputtering methods. The fundamentals of this technique can be described in terms of a glow 

discharge between two plates forming a capacitor. As shown in Fig. 2.1, the target made out of 

the precursor material and the substrate for growing the thin film (or the nanoparticles) are facing 

each other and are attached to the electrodes. An inert gas, usually argon, is introduced between 

the two electrodes to serve as a medium for initiating and maintaining the glow discharge. When 

a sufficiently high DC voltage is applied between the electrodes, electrons are accelerated from 

the target, that acts as the cathode, onto the anode that bears the substrate. Electrons make 

collisions with the argon atoms, which cause them to ionize or reach a metastable state. The 

resulting positive ions (Ar
+
), are subsequently accelerated to the target where they dislodge 

neutral atoms through momentum transfer. These atoms from the target also become part of the 

discharge and deposit on the substrate, where they form a thin film or a system of nanoparticles, 

depending on the specific surface energy and temperature of the material being formed. 

2.2.1 RF Sputter Deposition from conducting target 

The standard radio frequency allowed by international communication authorities for industrial 

sputtering processes is 13.56 MHz, with the objective to prevent interference with radars, radio – 

communication and broadcasting systems. In an RF sputtering system, like the one assembled for 
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our thesis work, an AC power supply is coupled (at the above frequency)to the smallest in size of 

the two electrodes of the sputtering chamber, where gas ionization and the subsequent generation 

of the glow discharge takes place. Plasma generation is a critical step in setting up a successful 

sputtering process. In order to achieve a successful RF sputtering operation, the impedance of the 

plasma must be equal to the impedance of the power supply so that the entire power produced by 

the generator is transmitted to the glow discharge and is not dissipated in the environment or 

reflected back to the generating antenna. As shown in Fig. 2.2, a capacitance-based matching 

network is required for such operation, so that the impedance of the network minimize the losses 

in the form of power reflected of the RF generator. Such conditions ensure an efficient RF power 

transfer from the generator to the process chamber and the adequate generation of plasma needed 

for the sputtering operation to proceed stably. 

 

Fig.2.2: Schematic of RF sputtering assembly, used in our project, including RF 

power generator, capacitive matching network, coaxial cable for RF power transfer, 

sputter vacuum chamber and DC voltage power supply (used in some of the depositions) 

The plasma contains three important species, electrons, ions and neutral atoms. Since electrons 

have a relatively light weight, their velocity is significantly higher than that of the ions at a 

similar kinetic energy. Therefore the motion of the electrons occurs at time scale that is faster 

than the time scales at which ions and the neutral move and the motion of the ions in an RF glow 

discharge is determined by the mean electric field from the electrons. Highly mobile electrons 
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create a negatively charged region next to the sputtering target consisting of a glowing sheath. 

The sheath voltage depends upon the RF peak voltage Vo, the area A1 of the target and that of the 

substrate stage (A2) according to the relationship [8, 9,]: 

2

2

11. 









A

A
VV osh           (2.1) 

Equ. (2.1) indicates that a large value of A2 is essential in order to raise the target sheath voltage 

and increase the rate of bombardment of the target by positively charged argon ions, leading to 

momentum transfer dislodging the target atoms. The effectiveness of momentum transfer for the 

case of an elastic collision onto the target is described by a transfer function, given in terms of 

the mass, M1 of the impinging argon ions and the mass M2 of the stationary target atoms [6, 10-

12]: 
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Therefore, sputtering of target atoms begins at a threshold energy Eth of the argon ions that 

depends on the efficiency of momentum transfer to the target surface as well as the binding 

energy, Es, of the atoms in the target. A consequence of this process is that the ions transfer all or 

part of their energy by collisions when they are accelerated onto the target, resulting in what is 

known as a collision cascade [6]. Figure 2.3 shows the evolution of a collision cascade in a 

typical ion-target interaction. 

The onset of the collision cascade begins with the distribution of the initial energy and 

momentum of impinging energetic ions among the target atoms. In turn, recoiled target atoms 

collide with atoms at rest, to expand the collision cascade. When the kinetic energy of the 

impinging ions is larger than ~ 1 KeV, the cascade results in a series of binary collisions in a 

stationary matrix [12]. An atom is dislodged from the target if it has a sufficient kinetic energy to 

overcome the electrostatic force in moving away from the target surface during the collision 

events. At that point the atom from the target enters the plasma and the multiple collisions (with 

electrons, Ar ions, neutrals or other precursor ions) will result in a random walk ending with the 

atom depositing onto the substrate.  
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Besides sputtering of atoms from the target surface, the ion – surface  interaction may lead to 

other processes, such as ion implantation of colliding particles, enhanced chemical reaction on 

the target surface, as well as the reflection of the ions back into the plasma. Similarly, inelastic 

effects may lead to emission of uv/vis or x-rays and secondary electrons. Many of these effects 

and interaction have been described and observed by many authors [6, 12-17].  

 

Fig. 2.3: Collision event arising from ions-target atoms interaction. Onset of cascade starts 

with the near surface atoms. 

 

2.2.2 RF Sputter Deposition from insulating target 

A significant advantage of RF sputtering over DC sputtering is that it is suitable for growing 

materials from both metal and insulating targets. When an insulator is used as the sputtering 

target, the ions in the plasma bombarding the target will create charging effect on the surface of 

the insulating target. Positive charges would then accumulate on the target, resulting to a strong 

electric field in the vicinity of the target. The field strength can be very high and makes it 

impossible to sustain the plasma by an externally applied DC voltage because the required 

voltage would be impracticable to generate.  

To demonstrate this important advantage of RF sputtering, our system was also utilized 

for sputtering silicon oxide thin films as will be discussed in details in chapter 4. This was 

accomplished by attaching a 2-inch diameter silicon oxide (glass) target to our cathode electrode 

in place of the metallic target. The deposition rate is very important in determining the thickness 

of a thin film. We determined the deposition rate of SiO2 thin films grown on a Si substrate by 
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partially masking the substrate during a set of sputtering depositions at constant growth 

parameters. Figure 2.4 shows a plot of the thickness of SiO2 on a Si substrate against the 

sputtering time. The slope of this graph gives the sputtering rate as 54Å/min for RF power of 

90W. 
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Fig. 2.4: Variation of film thickness against the deposition time to determine the sputtering 

rate of our RF deposition system from an insulating target 

 

2.2.3 Nucleation of metallic nanoparticles by sputtering 

The fabrication of nanoparticles and thin films of technological importance begins with the 

nucleation of precursor species on a substrate (heterogeneous nucleation) or in the vapor phase 

(homogeneous nucleation). In heterogeneous nucleation, three different growth modes are 

involved. The three modes, which are illustrated schematically in Fig. 2.5 includes layer by layer 

growth or Frank-van der Merwe [18], island growth or Volmer-Weber (V-W) [19] and Stranski-

Krastanov, which is an intermediate combination of layer by layer and island growth [6]. As 

shown in Fig.2.5a, Frank-van der Merwe growth type involves a 2-dimentional growth of the 

nucleating particles, on a substrate, to form homogeneous and uniform film. It is an ideal growth 

mechanism when planar sheets are required and typically results from the fact that atoms are 

more strongly bound to the substrate than to each other. Example of this growth mode is the 

single crystal epitaxial growth of semiconductor films [6, 20]. 
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Fig. 2.5: Schematic diagram of three heterogeneous growth modes described as (a) 

Frankvan der Merwe (b) Volmer-Weber and (c) Stranski-Krastanov 

 In the case of Volmer-Weber growth mode, the impinging atoms nucleate and form islands on a 

substrate surface. The island formation is favored because the atoms in the deposit are more 

strongly bound to each other than to the substrate, as determined by the interfacial free energy 

and the lattice match between the substrate and the nucleating species. The Young-Dupre 

equation is used to describe the relationship between the surface energies in a heterogeneous 

mode of film formation processes [21-23]: 

)(.  Coscvcssv             (2.3) 

In lattice-matched systems, island growth is favored over planer thin films due to high substrate-

film interfacial energy, ϒcs and high film-vacuum surface energy, ϒcv. The relationship between 

these energies that favors island formation is described by an inequality equation: 

       ϒsv < ϒcs  + ϒcv        (2.4) 

where ϒsv is the substrate-vacuum surface energy.  

Equation (2.4) is satisfied when the contact angle, α in eq. (2.3) is greater than zero, at which 

condition, island growth becomes dominant.  

 

substrate substrate substrate

(a) (b) (c)
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Fig. 2.6: Schematic of the deposition system, showing the possible orientation of sample 

stage relative to the target. 

The formation of np-Cu‟s in our setup can be understood in terms of the V-W growth mode. 

Figure 2.6 shows a schematic representation of the sample stage and the sputtering cathode, 

which form part of our deposition system. Previously cleaned substrate are fastened to the 

sample holder and clamped to the sample stage. With the rotary manipulator, we can control the 

start and duration of the substrate exposure to the impinging flux of Cu atoms. We allow 10 

minutes stabilization time, after plasma is initiated. During this time, the sample stage and the 

substrate are turned face down. Evolution of nanoparticles starts as soon as we rotate the 

substrate to face the target. In the first one minute uniform distribution of high density clusters 

are formed on the substrate. In order words, when the substrate is exposed to the flux of neutral 

Cu atoms, the atoms begin to stick on the substrate by nucleation. In this early stage, the prior 

nuclei incorporate impinging atoms and grow in size. As shown in the AFM topography of Fig. 

2.7, the morphological evolution is characterized by a transition from high density but uniformly 

distributed species to multiply-connected particles to isolated, but relatively large sized, Cu 
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particles. The morphological evolution is therefore consistent with V-W mode. In this case the 

isolated particles grow in both in- and out-of-plane direction with further deposition time. The 

merging together of island by coalescence phenomenon therefore delays the formation of planar 

or continuous film. 

 

Fig. 2.7: AFM images of np-Cu’s on Si substrate showing morphological evolution for three 

different sputtering times of (a) 1 min, (b) 3 min and (c) 5 min deposited with constant RF 

power. 

2.3 Introduction of Argon in the growth chamber 

A flow of gas into the chamber is used to control the chamber pressure during RF sputtering. A 

mass flow controller is used to regulate the flow of argon gas, used as process gas for our 

deposition. The mechanism that controls the gas flow rate in a mass flow controller is described 

schematically in Fig. 2.8. 

The sensor circuit, which comprises of a solenoid valve unit, delivers an output voltage 

that depends on the amount of gas passing through the valve from the by-pass connection. The 

design of the by-pass ensures that gas flow through the solenoid valve is proportional to the total 

mass flow in the controller. The flow through the valve produces a temperature gradient that is 

proportional to the mass flow. The sensor circuit thus generates a linearized DC signals based on 

this temperature gradient. The signal ranges from 0 – 5 V, with a zero volt signifying „no flow‟ 

and 5 V, a full scale flow. A set point knob in the control unit helps to regulate the flow to the 

desired flow rate, measured in standard cubic centimeter per minute (SCCM).   
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Fig. 2.8: Schematic of the flow meter used for our experiment  

In order to control the flow of argon gas into the chamber, we connect the output of the flow 

meter (OMEGA, FMA5508, range: 0 – 100mL/min) shown in Fig. 2.9 to the chamber with a 

stainless steel pipe. Argon comes from a 50 – liter-capacity argon cylinder purchased from 

Praxair Canada Inc. 

 

Fig. 2.9: Picture of the mass flow controller used to control argon flow rate during RF 

sputter deposition 
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2.4 Substrate bias voltage 

The quality of the films and nanoparticles grown by sputtering depends on the energy of the ions 

impinging the substrate. Therefore, accelerating the precursor ions towards the substrate can 

improve/decrease the deposition rate at a constant RF power or, also, affect the density of the 

films from porous films/nanoparticles into compact films. 

 

Fig. 2.10: Schematic representation of the three regions in an RF deposition chamber and 

the voltage close to the target Vsh, self-bias voltage on the sample Vsb and the external bias 

voltage Vb. 

As shown previously in eq. (2.1) and in Fig. 2.10, the self bias voltage, Vsb is smaller than the 

sheath voltage Vsh, close to the target because the sample base is designed to have larger surface 

area compared to the target. Based on the areas of the two electrodes in our deposition system, 

the relationship between these two voltages is given by: 

shsb xVV 1.0               (2.5) 

However, Fig.2.10 shows that we can change the value of the Vsb with additional bias voltage, 

Vext,b  applied to the sample. The total bias voltage then becomes; 
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bextsbTOTb VVV ,,            (2.6) 

 The Vext,b can be positive or negative. A positive Vext,b increases the values of Vb,TOT and hence 

the energy of the precursor ions accelerating towards the substrate.  The opposite effect is 

achieved when a negative Vext,b is applied to the sample. 

2.5 Experimental facility developed for this project 

The equipment assembled for this research work is made up by an integrated system composed 

of the deposition system and the glove box. The deposition system is inside of a large cylindrical 

steel vacuum chamber. The height of chamber is about 32‟‟ and the diameter is 12‟‟. A viewport 

and a fast door, each with 4‟‟ glass windows facilitate viewing and easy access to the chamber. A 

secondary chamber hosts the diffusion pump used to evacuate the deposition chamber. The 

pictures of the deposition system and all the accessories are shown in Fig. 2.11 – Fig 2.14. 

 

Fig. 2.11 Picture showing an overview of the experimental facility used for our project 

The sputtering cathode, obtained from MicroMagnetic Inc. serves as the holder for the sputtering 

target and couples the radio frequency power to chamber. The cathode is mounted inside the 

chamber through a stainless steel hybrid adaptor by means of a conflat (CF) flange.  
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Fig. 2.12 Picture showing a close view of the deposition chamber used for our project 
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Fig. 2.13: Picture of the basic components of our sputtering system that includes the 

matching network, tuning network, RF power supply and the sputtering cathode 

A vital component of the cathode is the permanent magnet, which in this case is composed of a 

circular rare earth NdFeB permanent magnet [24]. To ensure that only the target is exposed for 

sputtering, a stainless steel collar is used to shield the edges of the cathode. Water cooling of the 

sputter-head is provided in order to prevent heating up the target as well as damaging the system. 

The cooling water is supplied through a 12‟‟ tubing connected directly to a chiller (HASKRIS, 

R300) maintained at a constant temperature of 60
o
F. The chiller itself is supplied with distilled 

water; to prevent any incidence of short circuiting that may occur while cooling the target. The 

sputtering head is interfaced with an RF generator through a standard coaxial cable of 50 Ω 

impedance. The RF generator and the matching network shown in Fig. 2.13 are mounted on a 

rack positioned very close to the chamber (Fig. 2.14) 
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In order to deposit np-Cu‟s, the substrates are mounted on a 3.5‟‟ square substrate holder, 

made of stainless steel base and brass cover. The sample stage is 6‟‟ from the sputtering cathode 

and the samples can be shaded during the transitory corresponding to the start up of the discharge 

with the aid of a rotary manipulator. The attachment to the rotary manipulator as well as the 

chamber is designed to ensure that the sample stage is electrically floating in the absence of 

additional electrical connections that are placed only when the substrate is DC – biased. This was 

realized with the aid of a Teflon rod placed in between two flanges as shown previously in the 

schematic of Fig. 2.6.  

 

Fig. 2.14: Picture of the deposition apparatus showing a close view of the DC bias power 

supply, cold cathode gauge, mechanical vacuum pump, Variac and isolation transformer 
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The sample stage can be biased positively or negatively through the biasing unit. This unit 

comprises electrical connection and the power supply. The power supply (CANBERRA, 3010 

DC power supply) is rated for 1600 V, 5 mA and is secured on the rack as shown in the upper 

pictures of Fig. 2.14. The biasing voltage is applied to the substrate through the wire attached to 

the sample stage on one side and connected with the aid of a feed through to the power supply on 

the outer side. The biasing unit was extensively used during most of the sputtering operations. In 

particular, it was used to investigate the effect of biasing on the Cu particles size and distribution. 

Though substrate heating has not been used during the current project, a substrate heater 

has also been designed and assembled on the sample stage. In order to maintain the electrical 

isolation of the sample stage during substrate heating operation, a resistive heater has been 

attached to the substrate electrode and heating power can be supplied to it through a Variac 

transformer connected to an isolation transformer. The picture of this unit is shown in Fig. 2.14, 

and a schematic of the isolation transformer in Fig. 2.15.  

 

 

Fig. 2.15: Schematic of isolation transformer showing the connection to grid power and 

resistive heater 

 

A K-type thermocouple is attached to the substrate using a stainless steel clamp. An ionization 

gauge attached to the chamber is used to monitor the chamber pressure prior and during any 

deposition operation. The deposition system is equipped with an oil diffusion pump 
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(EDWARDS, model No EO2, code No B8013) connected to the lower end of a secondary 

chamber, shown in Fig. 2.12. A valve connection between two chambers ensures that the 

deposition chamber can be vented with nitrogen to be accessed while the smaller chamber is 

constantly kept in vacuum. To reach the required base vacuum for the operation of oil diffusion 

pump, mechanical pump (ALCATEL, AM632231) is used. Base vacuum is measured with a cold 

cathode vacuum gauge (VARIAN 810 – 2). 

The greatest challenges anticipated were to prevent possible oxidation and degradation 

associated with exposure of np-Cu‟s to ambient conditions. The solution to this problem requires 

that we should be able to interact between the glove box and the deposition system without going 

through the ambient atmosphere. A high vacuum gate valve was all there is to realize this 

purpose. The gate valve is connected between the chamber and the glove box (VAC, NEXUS, 

100027 - 100062) and can easily be opened when the pressure in both ends is the same. The 

nitrogen for venting the chamber is taken from the glove box and ensures that no damage is 

sustained due to pressure imbalance. 

 

Fig. 2.16: Picture of Trace Oxygen Analyzer (left) and Computer monitor interfaced with 

the Glove box 
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In this way, samples can be taken into the chamber and back to the glove box without exposure 

to the ambient condition. The np-Cu‟s are thus stored in oxygen free glove box. As shown in 

Fig.2.16, the oxygen content in the glove box is monitored with an oxygen analyzer (DELTA 

corp. Trace Oxygen Analyzer, FA3555OSA) while other parameters such as the water pressure 

in vacuum, purity of the inert environment  are monitored through a computer interfaced with the 

glove box. 

 

2.6 Conclusion 

In this chapter, we described the equipment used for the deposition of np-Cu‟s we report in this 

project that includes the deposition chamber, RF source and control, the vacuum system, power 

supply systems, the glove box and the monitoring units. The important aspect of our system 

design includes integration of the deposition chamber with the glove box that helps to avoid 

contamination and oxidation of the deposit, control of the ion energy with a DC bias voltage and 

the installation of isolation transformer that helps to avoid grounding of the deposition chamber, 

in case of heating the substrate.  
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Chapter 3 

3 Morphological and Optical properties of copper nanoparticles 

obtained from radio frequency sputtering  

In this chapter, I will present the morphological changes of copper nanoparticles (np-Cu‟s) as a 

function of growth parameter together with their optical properties and analysis on the results. 

The optical properties of np-Cu‟s and, specifically the position of the plasmonic resonance in np-

Cu‟s can be blue – or red – shifted according to the particles sizes and distribution [1]. Hence, an 

important part of my thesis work has been committed to understanding the parameters that 

controls the size, shape and distribution of np-Cu‟s deposited by radio frequency (RF) sputtering. 

We studied the effect of process parameters such as substrate biasing, the chamber partial 

pressure (controlled by the argon flow rate) as well as the RF (source) power used during the 

sputtering process. 

3.1 Deposition and protection of copper nanoparticles 

3.1.1 Sample Stage 

The sample stage used for the growth of np-Cu‟s is a platform where the substrate holder is 

mounted inside the sputtering chamber. In Fig. 2.6, it is showed that in our apparatus, the stage is 

heed by two non-conducting Teflon rods. This arrangement is important in order to have the 

substrate that can be electrically floating or biased by a dc voltage as may be desired and not 

necessarily connected to the ground through the body of the vacuum chamber. During the course 

of this research, two different sample stages were assembled and used for the deposition of np-

Cu‟s. Each one is made of four-inch-diameter metal plate. The regular stage (used for most of the 

deposition) is made of stainless steel metal; with a clamp for attaching the substrate holder 

during deposition. A schematic of this sample stage is shown in Fig. 3.1(a). The second sample 

stage (and all of the related accessories) was fabricated out of a copper metal sheet and rods and 

is shown in Fig. 3.1(b). The circular portion of the stage is made from 99.99% copper sheet. The 

copper plate (99.99% purity) is perforated on all sides except at the central portion of about 2 by 

4 inch dimension. Substrates are mounted directly on this part, as shown in the schematic of 
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Fig.3.1 (b). This special sample stage was designed in an attempt to overcome the problem of 

high density of interconnected np-Cu ensembles while using the regular deposition stage. In this 

case, the substrate is turned upside down (backing the target) while strong bias voltage is applied 

to it during sputtering. Copper atoms accelerating through the tiny holes on the copper plate 

follow the lines of field due to the strong potential applied to the copper plate to deposit on the 

substrate. 

 

Fig.3.1: Schematic representation of (a) regular and (b) perforated sample stages that can 

be mounted in the deposition chamber 

 

3.1.2 Preparation for copper nanoparticle deposition 

The deposition was carried out on microscope glass and Si substrates. With the aid of a diamond 

cutter, the Si wafer (100)Si are cut into ½ x ½ inch square that fit into the substrate holder.  This 

is followed by ultrasonic cleaning of all of the substrate in water with detergent, acetone and 

methanol for 15 minutes each. The substrates are then exposed to UV/ozone radiation (UV3 

Novascan) for 20 minutes to get rid of any oxide residues. UV/ozone treated substrates are 

immediately introduced into the glove box through the antichamber. From the glove box, the 

substrates are placed on the deposition substrate holder and covered with a shadow mask which 

ensures that they remain in position even when turned upside down inside the chamber. To 

introduce the substrate into the chamber, the chamber pressure in first raised to the same value as 
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that of the glove box by using the venting system, whose source is also the glove box. It is only 

in this condition that the gate valve connecting the two systems can be safely opened.  

3.1.3 Variation of process parameters and deposition of copper nanoparticles 

All the sputtering operation was carried out at a base vacuum better than 5x10
-6

 torr. Sufficiently 

low vacuum is required in the deposition chamber prior to sputtering to reduce the effect of 

contamination and oxidation, especially for the case of Cu. Low pressure is also desirable during 

the actual sputtering operation in order to raise the mean free path of the sputtered species and 

increase the sputtering rate. Sputtering is initiated by allowing a flow of argon gas into the 

plasma chamber, at a flow rate determined by the mass flow controller. As previously described, 

the substrate can float, biased or connected to ground as may be desired.   

Three different set of depositions were performed: first set at varying  RF power, second 

set at increasing substrate bias voltage and a third set at increasing argon flow rate (see Tables 

3.1 – 3.3). In the set grown at different RF powers, the sputtering time was 2 minutes because of 

increased rate of sputtering at RF power greater than 75 W.  The substrates for the deposition 

were microscope glass and Si (100). In the set at varying argon flow rate, the change in gas flow 

also varied the gas pressure as shown in Fig. 3.2. 

Table 3.1: Sputtering parameters for deposition at different RF powers 

Ar flow rate 

(SCCM) 

RF power 

(W) 

Sputtering 

Time (min) 

Substrate bias  

voltage 

(V) 

Stage used 

(see Fig. 3.1) 

Substrate Temp. 

(
o
C) 

10 33 2 Float Regular 85 

10 55 2 Float Regular 122 

10 75 2 Float Regular 160 

10 100 2 Float Regular 197 

10 120 2 Float Regular 225 
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Table 3.2: Sputtering parameters for deposition at different substrate bias voltages 

Ar flow rate 

(SCCM) 

RF power 

(W) 

Sputtering 

Time (min) 

Substrate bias 

 voltage 

(V) 

Stage used 

(see Fig. 3.1) 

Substrate Temp. 

(
o
C) 

20 55 3    0 Regular 134 

20 55 3 - 100 Regular 129 

20 55 3 - 150 Regular 117 

20 55 3 - 200 Regular 105 

20 55 3 - 300 Regular 82 

20 55 3 - 400 Regular 69 

 

Table 3.3: Sputtering parameters for deposition at different argon flow rates 

Ar flow rate 

(SCCM) 

RF power 

(W) 

Sputtering 

Time (min) 

Substrate bias  

voltage 

(V) 

Stage used 

(see Fig. 3.1) 

Substrate Temp. 

(
o
C) 

6 75 3 Grounded Regular 239 

9 75 3 Grounded Regular 224 

12 75 3 Grounded Regular 208 

15 75 3 Grounded Regular 190 

18 75 3 Grounded Regular 180 

20 75 3 Grounded Regular 125 
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Fig. 3.2: Variation of sputtering chamber pressure with the argon flow rate  

 

3.1.4 Energy dispersive x-ray spectroscopy measurements 

In order to protect the deposited np-Cu‟s from oxidation due to exposure to normal atmospheric 

condition, the deposited samples were stored in the glove box after they are retrieved from the 

sputtering chamber. To verify the level of damage the exposure can cause, we carried out energy 

dispersive x-ray spectroscopy (EDX) analysis of two samples deposited under exact similar 

conditions using LEO (Zeiss) 1530 field emission scanning electron microscopy (SEM). SEM 

produces topographical information as well as providing chemical composition information near 

the surface of material. 

The first sample was taken out of the glove box immediately before being measured (with 

a dwell time no more than 10 minutes before being admitted in the SEM/EDX chamber) while 

the second sample was exposed in air for 24 hours prior to the EDX analysis. The result of these 

measurements is displayed in Fig. 3.3. The ratio of atomic content of Cu and O shows that the 

sample exposed to air for 24 hours has been severely oxidized. For the case of the sample taken 

directly from the glove box, the observed O in the EDX spectra occurs in trace quantity and 

therefore may not necessarily be associated with copper oxide. It may have come as a residual 

content of the substrate prior to sputtering. From these measurements, we conclude that the 

samples are relatively protected from oxidation as long as they remained in the glove box.  
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Fig. 3.3: EDX spectral showing the composition of np-Cu sputtered on Si substrates for the 

case of (a) sample protected in the glove box, (b) samples exposed to oxidation environment 

for 24 hours prior to the analysis. (c) Comparison of (a) and (b) 

 

3.2 Characterization equipment 

3.2.1 Atomic force microscopy  

The surface analysis and morphological mapping on the nanoscale for np-Cu‟s were studied 

using a Witec Alpha 300S atomic force microscope. The system can be used to perform a wide 

range of experiments such as Atomic Force Microscopy (AFM), Scanning Near Field Optical 

Microscopy (SNOM), Confocal Raman Imaging and Electrostatic Force Microscopy (EFM). In 

this work, the AFM and SNOM techniques were used to determine the surface topography and 

near field optical imaging of the samples.  During normal operation, an atomic force microscope 

is very sensitivity to mechanical vibrations, electromagnetic waves as well as acoustic noise. For 

this reason, the AFM is placed in an anti-damping box, with an air-pressured based and 

aluminum foil protection during all of the operations we report in this thesis.  
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Fig. 3.4: Schematic of AFM during operation, with control and feedback mechanisms 

As shown in Fig. 3.4, the basic components of AFM set up consists of probes, laser 

diode, four quadrant detector, feedback loop and piezoelectric scanner. The system is interfaced 

with a desktop computer for controlling the different parts and, for collating data. The 

investigation of sample surface topography can be performed in three different modes as shown 

in Fig. 3.5. These three modes of operation differ mainly by the amount of the interaction force 

between the probe tip and the sample surface [2].  

 

Fig. 3.5: Atomic interaction forces between the AFM tip and the sample surface, which 

define the modes of AFM operation into contact, non-contact and tapping modes. 
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As shown in Table 3.4, when an AFM tip is within a few angstrom distances from the sample 

surface a repulsive force, due to the overlap of electronic orbitals at atomic distances, appears 

between the two interacting objects (i.e. between the tip and the sample). This repulsive force 

which becomes predominant as the tip gets very close to the sample can be very strong and, the 

tip is assumed to be in contact with the sample surface. On the other hand, operation in tapping 

and non-contact modes is based on a feedback mechanism of constant oscillation amplitude with 

the tip – surface force defined as shown in Table 3.4.  

Table 3.4: Properties of contact, tapping and non –contact modes of AFM configuration 

Contact   F > 0 Decreasing with Z 

 

Tapping   F > 0 at Z < Zo 

F < 0 at Z > Zo 

Non Contact   F < 0 Increasing with Z 

 

 

 

For most of the results presented in this thesis, the AFM was operated in tapping mode. 

During a sample scan in this mode, the cantilever is oscillating at a fixed frequency, f close to the 

resonance frequency, fo (i.e. f = fo ± δf) and the amplitude set as ~ 50 – 60% of free amplitude 

Ao. The tip-sample interaction force initiate changes in the cantilever vibration amplitude A, 

which depends on the distance to the sample surface (Fig. 3.5).  The feedback mechanism 

operates in a way that adequately maintains constant cantilever vibration amplitude, by adjusting 

the vertical position of the piezo-scanner on which the sample is mounted. For each of the scans, 

the topography is mapped by maintaining a constant damping of the amplitude defined by A/Ao 

[3]. The cantilevers have to be stiff enough in order to detach the cantilever from the surface 

(cantilever spring constant kc > 1N/m) and the resonance frequency of the cantilever is selected 

to be far above the resonance frequency of any other mechanical component of the instrument (fo 

> 10kHz, typically larger than 50kHz) [3]. In order to probe the motion of the tip, the beam of a 

laser diode is aligned to the cantilever, which is then reflected to the four quadrant detector as the 

 F      0 < 
> 
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sample surface is scanned. The signal on the four quadrant detector is used for the feedback 

control of vertical position of the scanner. The driving amplitude as well as the set point is 

selected to achieve clear and noise free topographic images. The set point indicates the closeness 

of the tip to the sample surface.  

3.2.2 UV-VIS transmission spectrophotometry  

UV-VIS transmittance of our samples was measured at normal incidence in a range of 

wavelengths between 350 nm and 800 nm using a Varian DMS80 spectrophotometer. A 

schematic diagram showing the major optical components of a spectrophotometer is shown in 

Fig. 3.6. A broad spectrum of white light from a tungsten source is selectively focused on the 

rotating beam splitter by the mono-chromator. Part of the light from the beam splitter serves as 

the reference beam while the second part serves as the sample beam. The instrument records 

directly the transmittance of a test sample by measuring the percentage of light transmitted 

through the sample relative to that of a reference beam at specific wavelengths. If Io is the 

intensity of reference light beam and I the intensity of the transmitted light through the sample, 

then the transmittance T can be defined by  

oI

I
T              (3.1) 

A routine procedure is to perform a scan of the reference substrate in the range of wavelength of 

interest. Repeat measurement is then carried out with the test sample placed in the sample 

cuvette while the reference substrate remains in the reference beam.  

The transmittance data of our samples were obtained at a step scan of 10 nm per second 

in a range of wavelengths between 350 nm and 800 nm. Transmittance data is acquired with the 

use of matlab program and stored directly in the relevant folder for further analysis. 
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Fig.3.6: Schematic diagram of a spectrophotometer 

 

3.3 Results and discussion on dispersed and semi-continuous 

copper nanoparticles 

In this section the results of the morphological and optical characterization of np-Cu‟s are 

presented. AFM is used to obtain the dispersion of np-Cu‟s deposited on glass substrates for 

different parameter variations. Image J, a free program package for image processing and 

manipulation [4] was used to process the particle morphology acquired from the AFM scans to 

obtain the properties and fraction of substrate area covered by the particles. Unfortunately, it is 

more difficult to obtain the particle size distribution in the case of highly connected copper 

particles of small size. Such samples are only discussed in terms of fractional substrate area 

coverage and are called semi-continuous np-Cu‟s. 

3.3.1 Determination of mean particle size and area fraction in dispersed and semi-

continuous copper nanoparticles 

Fig. 3.7 is a representation of AFM images of np-Cu‟s deposited as in Table 3.3 for different 

pressures of the deposition chamber and treated by Image J. The variation in the chamber 

pressure affects the size and degree of dispersion of np-Cu‟s as demonstrated in Fig. 3.7.  
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Fig. 3.7: Treated AFM topographic image of np-Cu’s deposited in constant RF power at 

different chamber pressure of (a) 9, (b) 12, (c)15, (d) 17, (e) 21 and (f) 23 Pa 

 

Particles grown at higher pressures exhibit larger particle diameter and are less dense 

than those grown at lower pressures. The increase in the particles size can be explained in terms 

of the relationship between the mean free path l (cm), of gaseous Cu atoms and the sputtering 

chamber pressure P (Pa), as follows: 
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           (3.2) 

Where T is the temperature in Kelvin and δm is the molecular diameter of the clusters or 

molecules that are aggregating in the gas, expressed in cm [5]. From this equation it is clear that 

higher pressures, obtained at higher argon flow rates, result in smaller mean free path of the 

gaseous Cu atoms. Consequently the sputtered copper atoms are prone to a large number of 

collisions and have a higher probability of agglomeration before impinging the substrate. 

Besides, the mean free path of the gaseous species in the chamber influences the rate at which Cu 

target is sputtered. Argon ions lose energy by collisions when they are accelerated close to the 
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target [6]. Therefore the lower the pressure, the more particles involved in the coalescence 

phenomena that are taking place in the proximity of the substrate surface. This explains the high 

density of particles and increased growth rate for particles deposited at lower pressures. In view 

of the above argument, one can say that the size distribution of np-Cu‟s, shown in Fig. 3.7, 

results from different mean free path. The observations are summarized in Fig. 3.8. The mean 

diameter of the particles is presented in Fig. 3.9 as a function of pressure. Coalescence and 

increase in size is clearly favored at higher sputtering pressure. 

 

 

Fig.3.8: Size dispersion of np-Cu’s deposited in constant RF power at different chamber 

pressures of (a) 9, (b) 12, (c)15, (d) 17, (e) 21 and (f) 23 Pa 
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Fig. 3.9: Average diameter and out of plane growth height of np-Cu’s obtained from AFM 

images for np-Cu’s sputtered at constant RF power and different chamber pressures 

 

In order to investigate the effect of RF power on the dispersion of the np-Cu‟s, we will 

now present our results on samples grown at different RF power, namely, 33, 55, 75, 100 and 

120 W, as in Table 3.1. AFM topographic images for this set of samples are displayed in Fig. 

3.10. The particles are generally interconnected in these cases. This implies that coalescence 

prevents island formation and instead, a semi-continuous film is formed. Power is an important 

parameter that increases the sputtering rate. The sheath voltage Vsh (also know as self – bias 

voltage) close to the target electrode increases with RF power W, since Vsh ~ W/P
1/2

, where P is 

the chamber pressure [7]. Therefore, at a constant chamber pressure, the sputtering rate increases 

with RF power due to increase of the efficiency at which the argon ions bombard the target. 

More Cu atoms are subsequently dislodged at higher RF power. The topographic images 

processed using the Image J software is shown in Fig. 3.11. The figure shows that when the RF 

power increases at a constant chamber pressure, the particles become more interconnected and 

grow in size. At even higher RF power, large particles combine together to interconnect across 

the sample.  

The area fraction of the substrate that is covered by copper nanoparticles increases with 

increasing RF power. The coverage area as a function of RF power is reported in Fig. 3.12. 

Clearly, sputtering carried out at RF power of 100 W and above, results in large fraction of 

covered area and may not be suitable for applications requiring high transmission of light 

through the sample and surface plasmon enhancement. Therefore, all our future experiments will 

be restricted to 75 W RF power or below. 
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Fig. 3.10: AFM images showing semi-continuous np-Cu’s deposited with different RF 

power of (a) 33 W, (b) 55 W, (c) 75 W, (d) 100 W and (e) 120 W 
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Fig. 3.11: Processed AFM topographic images of semi-continuous np-Cu’s sputtered at 

different RF power of (a) 33 W, (b) 55 W, (c) 75 W, (d) 100 W and (e) 120 W 
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Fig. 3.12: Plot of substrate area covered by semi-continuous np-Cu’s as a function of RF 

power used for the sputtering. 
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3.3.2 Optical transmittance of semi-continuous copper nanoparticles 

The sets of samples used for these experiments are the same as the ones shown earlier in Tables 

3.1 – 3.3. For each of these sets, the transmittance of the np-Cu‟s shows a transmittance 

enhancement (i.e. a peak in transmittance) at the opposite of plasmonic enhancement (i.e. a dip 

in transmittance, corresponding to a peak in reflectance) [8, 9]. The transmittance enhancement 

corresponds to metallic behavior in these samples – the morphology of the np-Cu‟s shows that 

the nanoparticles are highly inter-connected.  

In Fig. 3.14, we show that the position of the transmittance peak (obtained from Fig. 

3.13) decreases up to 548 nm at 17 Pa and then increases for the set of np-Cu‟s deposited at 

different pressures (set 3, as in Table 3.3). However, the intensity of the peaks monotonically 

increases as the sputtering chamber pressure increases, which led to samples with lower density 

of particles. 
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Fig.3.13: Transmittance vs. wavelength for dispersed np-Cu deposited by RF sputtering at 

different chamber pressures. 
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Fig. 3.14: Position of Tmax vs. chamber pressure for np-Cu’s deposited by RF sputtering 
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Instead, in the case of samples deposited with different RF powers (Fig. 3.15, set 1 as in Table 

3.1), the transmission spectra show a change in intensity with little variation in the peak position. 

For all of the samples deposited with different RF powers, the particles are evenly spread and the 

fraction of the substrate covered with np-Cu‟s is very high; more than 0.6 (see Fig. 3.12). 

Consequently all the samples have a similar fraction of holes and voids, which are assumed to be 

responsible for the position of the transmission peak. 
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Fig.3.15: Transmittance vs. wavelength for semi-continuous np-Cu’s sputtered with 

different RF power. 

Let us now consider the set of samples grown at varying bias voltage (set 2 as in Table 

3.2). Fig. 3.16(a) shows that the transmittance peak appears at ~ 540 nm in all of these samples 

irrespective of the substrate bias voltage. This represents an early stage during the growth 

process when initial copper nuclei establish on the substrate surface. As the sputtering proceeds, 

nucleation and coalescence leads to aggregation of the clusters of copper nuclei resulting in 

morphological variations related to substrate biasing. This is responsible for the shift in the 

position of the transmittance peak as observed in Fig. 3.16(b). 

As shown in the AFM topographic images of Fig.3.18, the samples deposited with high 

value of substrate bias voltages of -300V and -400V have the highest fraction of holes and voids. 

The transmittance enhancement can be attributed to the nanoparticles morphology in a way that 

its position depends on the size of the voids and holes that appear in the samples. Since the 

samples deposited with the substrate grounded appear to have smaller voids and holes, the 

transmittance peak position shifts to smaller wavelength. The wavelength at which the 

transmittance reaches a maximum (λmax) is plotted as a function of the substrate bias voltage in 

Fig. 3.17, where it can be observed that λmax increases linearly and fast up to 548 nm for the 
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sample grown with the substrate bias voltage of -200 V and then slowly increase to 550 nm for 

the sample grown with the highest applied negative bias voltage. 

 

 

 

 

 

 

 

 

 

Fig.3.16: Transmittance vs. wavelength for np-Cu’s sputtered under (a) 1min and (b) 3 

mins at different substrate bias voltages. 
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Fig. 3.17: Variation of the position of transmittance peak with substrate bias voltages for 

np-Cu’s deposited with different bias voltages. 
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Fig. 3.18: AFM topographic images of np-Cu’s deposited by RF sputtering with the 

substrate (a) grounded and biased by (b) – 300V and (c) -400 V DC voltage. 

 

3.4 Properties of thermally treated copper nanoparticles 

3.4.1 Parametric study as a function of treatment temperature 

Thermal treatment is an efficient means to activate complete coalescence in semi-connected 

network of metallic nanoparticles and form metal islands [10 - 12]. However, annealing of np-

Cu‟s in an oxygen environment can lead to its oxidation. To overcome the problem of oxidation 

during the annealing operation we, again rely on the control of atmospheric conditions in our 

glove box. For all the heat treatments carried out inside the glove box, the oxygen content was no 

greater than 5 ppm. 

In order to make a comparison, two identical samples were annealed at 300
o
C for 1 hour, 

one in the glove box and the second in air. The morphology of the sample was first obtained with 

AFM prior to thermal treated and re-scanned after it has been annealed. As seen in Fig. 3.19 both 

samples annealed at different environment conditions show an increase in height, indicating that 

particle growth has taken place. However, the sample annealed in air did not yield the needed 

islands of particles but rather a mesh-like network, not quite different from as-grown sample. 

The sample annealed in the glove box produced significant growth in the height and well 

separated island of particles. It is evident that the aggregates and semi-connected network of np-

Cu‟s observed in Fig. 3.19(a) completely coalesce during thermal treatment in inert condition. 
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The particle coalescence has been thermally activated by annealing in oxygen free environment. 

Particle agglomeration is activated by increased temperature, so the aggregates coalesce with 

each other to grow in size.  

 

 

 

Fig. 3.19: AFM topographic images of (a) as-deposited, (b) air-annealed and (c) glove box 

annealed np-Cu’s. Thermal annealing was carried out at 300
o
C for 1 hour in each case 

In order to understand the predominant process leading to the formation of nanoparticle 

islands during thermal treatment, we carried out additional experiments by varying both the 

annealing time and the temperature. The sample used for this study was grown at the conditions 

shown in Table 3.5. Preliminary morphological study carried out on np-Cu‟s deposited with the 

perforated stage show that the sputtering rate in this case is relatively low. Unfortunately, the 

surface topography of these samples appears very flat, which implies that the deposited np-Cu‟s 

are mainly thin films. Thin films of metals can be used to study the effects of annealing 
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conditions on particle growth [13, 14].  In our case, the sample stage temperature rose 

dramatically from 28
o
C to 284

o
C during these depositions, an indication that sputtering was also 

taking place from the sample stage. The surface topography of the samples of this set annealed 

for 1 hour at different temperatures in the glove box is shown in Fig. 3.20, together with the 

topography of the as-deposited sample, showing a network of np-Cu‟s, much like a thin film.  

Table 3.5: Sputtering parameters for samples to be annealed under different environment 

Ar flow rate 

(SCCM) 

RF power 

(W) 

Sputtering time 

(min) 

Substrate bias voltage 

(V) 

Stage used 

(see Fig. 3.1) 

25 60 5 -800 perforated 

 

 

Fig.3.20: AFM topography of np-Cu’s annealed in the glove box for 1 hour at different 

temperatures. The as-grown sample has been included for reference.  

400oC300oC

200oCAs-deposited

Y 
(

m
)

5

X (m)
0

0

0 5

5

5

Y 
(

m
)

0



56 
 

The topography of the sample annealed at 200
o
C did not show any improvements towards 

formation of isolated np-Cu‟s, an indication that thermal treatment carried out at this temperature 

is inadequate to induce the formation of individual particle. However, at 300
o
C and above, 

nucleation of copper island occurs, leading to the growth of nanoparticles in both in- and out-of-

plane direction, with the subsequent formation of nano-sphere of copper as seen in Fig. 3.20. The 

AFM image of the sample annealed at 400
o
C shows an increase in the density of the 

nanoparticles and a decrease of the particle size from the sample annealed at 300
o
C. The result of 

the analysis of these two AFM images using Image J software is summarized in Table 3.6 

Table 3.6: Average particles diameter and area fraction of np- Cu’s annealed in the glove 

box at 300
o
C and 400

o
C for 1 hour 

Annealing 

temperature 

(
o
C) 

Average particle 

diameter 

(nm) 

Area fraction Plasmonic position 

(nm) 

300 84 0.35 549 

400 68 0.29 546 

 

3.4.2 Parametric study as a function of treatment time 

While keeping the treatment temperature constant, we also studied the condition of np-Cu‟s 

annealed at 300
o
C as a function of the treatment time. 

From Fig. 3.21, we observe that more dispersed np-Cu‟s are obtained when the annealing 

time is increased from 30 minutes to 120 minutes. The dependence of particle size on the 

annealing time as obtained from Image J analysis is displayed in Fig. 3.22 for np-Cu‟s annealed 

at 300
o
C. The initial stage of thermal treatment is characterized by a decrease in particles size 

while the fraction of the substrate area covered by the particles gets increased. There is limited 

particles growth in the z-direction as observed in the AFM images. 
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Fig. 3.21: AFM topographic images of np-Cu’s annealed at 300
o
C in the glove box at 

different time intervals 

 

 

 

 

 

Fig. 3.22: Plot of average particle diameter and area fraction against the annealing time for 

np-Cu’s annealed at 300
o
C  
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With increased annealing time, from 60 to 120 minutes, the size of the particles increases while 

the density of the nanoparticles decreases. These observations indicate that at the extended 

annealing time, particles coalescence is the most important mechanism of growth. This is 

consistent with the particles size distribution shown in Fig 3.23. The distribution has been fitted 

to a Gaussian function. As a conclusion, the thermal activation of particle coalescence leading to 

well dispersed np-Cu‟s is better realized within the range of temperature 300 – 400
o
C for 

annealing time, t ≥ 60 minutes. 

 

 

 

 

 

Fig.3.23: Particles size distribution of np-Cu’s obtained from AFM topographic images 

displayed in Fig. 3.21 for the samples annealed in the glove box for (a) 60 mins and (b) 120 

mins. The distribution has been fitted with a Gaussian function (solid curve). 

 

3.4.3 Transmittance of thermally treated copper nanoparticles 

In the following section, I will show the result of our optical transmittance measurement. Our 

experimental result reveals that besides a peak, it is possible to obtain also a dip in the 

transmittance spectra that is associated with plasmonic behavior [8, 15]. We present in Fig. 3.24, 

the optical transmission spectra of the sample annealed under different atmospheric conditions. 

We observe plasmonic behavior, corresponding to a peak and a dip in the transmittance spectra 

of the as-deposited and glove box annealed samples respectively. The observed maxima and 

minima are caused by resonant excitation of the particles plasmons. However, no plasmonic 

character can be associated with the sample annealed in air. In later section, I will show that 

scattered/transmitted light waves can be studied in details in the near field using the SNOM 

technique.  
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Fig.3.24: Variation of optical transmittance with wavelength for (a) as-deposited, (b) air-

annealed and (c) glove box annealed np-Cu’s. Thermal annealing was carried out at 300
o
C 

for 1 hour in each case  

The wavelength dependence of the transmittance of samples of np-Cu‟s for different 

annealing temperatures and times is shown in Fig. 3.25. In optical transmission spectra, a dip (or 

peak in case of absorption spectra) situated at around 560 – 590 nm is associated with surface 

plasmon resonance absorption of np-Cu‟s [12, 16-21]. However, the position of the plasmon 

resonance can be blue or red shifted based on the particles size distribution [12]. Here, the 

positions of the plasmonic peak were blue shifted in all the annealed islands of np-Cu ensembles. 

In Fig. 3.25(a), no transmission dip can be associated with samples annealed at 200
o
C and the as-

deposited. This is not surprising since the samples topography, as presented in Fig.3.20 shows 

mainly evidence of semi-continuous film. Analysis of np-Cu‟s obtained from the samples 

annealed at 300
o
C and 400

o
C shows that the full width at half maximum (FWHM) in the 

transmittance spectra decreased from 43.26 nm to 33.96 nm just as the average particle size 

decreased from 83.5 nm to 67.7 nm (see Table 3.5). The associated transmission dips occur at 

550 nm and 546 nm for the np-Cu island annealed at 300
o
C and 400

o
C respectively. This 

corresponds to a blue shift in the surface plasmon resonance position of 4 nm. 

It can be observed from Fig. 3.25(b) that the transmittance spectrum of np-Cu‟s depends 

on the annealing time. The transmittance decreases with the annealing time and the position of 

the dip shifts slightly. For relatively small annealing time, copper islands cover most of the 

substrate surface area and this result in broadening of the linewidth of the transmittance dip. By 

changing the annealing time, the position of the dip follows more closely the area fraction of the 
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islands of np-Cu‟s. This is summarized in Fig.3.26, where it is shown that both the full width at 

half maximum (FWHM) and the area fraction decrease with annealing time.  

 

 

 

 

 

 

 

 

Fig.3.25: Plots of transmittance against wavelength for thermally treated np-Cu’s under 

different conditions: (a) np-Cu’s annealed at different temperatures and (b) np-Cu’s 

annealed at different duration. 

20 40 60 80 100 120
38

40

42

44

46

48
 FWHM

 Area fraction

Annealing time (mins)

F
W

H
M

 (
n

m
)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
re

a
 fra

c
tio

n

 

Fig. 3.26: Full linewidth at half maximum and the area fraction of island of np-Cu’s vs. 

annealing time. 
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3.5 Properties of thermally treated copper nanoparticles grown at 

different RF power 

In section 3.3.1, we showed that particle coalescence does not result in complete island 

formation in the case of as-deposited np-Cu‟s sputtered with different RF powers at relatively 

low argon flow rate. In order to initiate further nucleation sufficient for island formation, we 

annealed a set of five samples deposited with 25, 33, 55, 75, and 100W RF powers at 20 SCCM 

argon flow rate and for 3 mins. Thermal annealing was carried out in the glove box at 400
o
C for 

two hours. The topographic images of the set of five samples are shown in Fig. 3.27. The figure 

shows that samples deposited with lower RF power have better dispersed particles after thermal 

treatment. Both the particle size and the area of the substrate that is covered by the particles 

increases with RF power. Before and after the annealing operation, the sample deposited with 25 

W of power appears plain to my visual inspection.  However, the same sample turns out to be the 

most dispersed. Implying that thinner as-deposited np-Cu‟s is essentially important in order to 

achieve well-separated and small sized Cu nanoparticles. The average size of the particles as 

estimated from image J are 46, 68 and 77 nm for the samples deposited with 25, 33 and 55 W 

respectively. Fig.3.28 shows the dispersion of np-Cu‟s obtained from the sample deposited with 

25 W of RF power. The figure shows that the particle dispersion follows a Gaussian distribution.  

The optical transmittance of the samples deposited at different RF powers is shown in 

Fig. 3.29. We observe from this figure a broadening of the spectral line width as well as a shift in 

the transmittance minimum towards larger wavelength with increasing RF power. The variation 

of the plasmonic resonance (transmittance minimum) position and the FWHM with the area 

fraction of the substrate covered with np-Cu‟s is displayed in Fig. 3.30. The variation of the 

resonance position follows more closely the area fraction but the broadening of the transmittance 

spectra, which is shown as FWHM does not follow similar trend. Though, it is not feasible to 

determine accurately the particle size and dispersion from each of the AFM images, it can be 

observed that samples deposited with higher RF power exhibit higher particles variance and 

hence broadening of the transmittance spectra. 
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Fig. 3.27: AFM topographic images of thermally treated np-Cu’s deposited with different 

RF powers. 
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Fig.3.28: Particles size distribution of np-Cu’s obtained from AFM topographic images 

displayed in Fig. 3.27 for the sample sputtered with 25 W RF power and thermally treated 

in the glove box at 400
o
C for 2 hrs. The distribution has been fitted with a Gaussian 

function (solid curve). 
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Fig. 3.29: Transmittance vs. wavelength of thermally treated np-Cu’s deposited with 

different RF powers. 

 

We can conclude that lowering the sputtering rate by using a lower power during sputtering 

operation results in a thin copper layer that can be annealed to obtain small sized and well 

dispersed np-Cu‟s. These isolated np-Cu‟s exhibit a transmission minimum corresponding to a 

plasmon resonance frequency of 553 – 580 nm. This wavelength range is optimal for the 

application of these particles in plasmonic solar cell because it approximately correspond to the 

peak of the solar spectrum under AM 1.5 conditions [22]. 
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Fig.3.30: Plots of the plasmonic resonance peak (transmittance minimum) position and the 

FWHM of transmittance spectra against the area fraction for np-Cu’s obtained from 

thermal treatment of samples deposited with different RF powers. 

 

3.6. Conclusion 

In this chapter, the influence of the deposition conditions (RF power, chamber pressure and 

substrate bias voltage) on the morphological and optical properties of np-Cu‟s has been explored 

in details. Better dispersed np-Cu‟s were obtained for deposition carried out under different 

conditions of chamber pressure with an average np-Cu diameter within 30 nm – 50 nm range. 

These np-Cu‟s exhibit enhancement of transmitted light in the spectral position corresponding to 

548 – 580 nm. The results of the experiment showed that the combined effects of low RF power 

(25 W – 75 W), high chamber pressure (17 Pa – 23 Pa) and substrate DC bias voltage (300 V – 

400 V) are required to grow dispersed np-Cu‟s. Under these conditions, copper nanoparticles 

grow by aggregation of initial island nuclei due to a reduction in sputtering rate.  

 Significantly, higher dispersed np-Cu‟s is obtained when a set of samples grown at 25 W 

and 33 W RF power is subjected to thermal treatment in oxygen-free glove box. Optical 

properties of np-Cu‟s show improvement in the visible region (535 – 580 nm) related to 

transmission enhancement in as-deposited samples and plasmonic enhancement in thermally 

treated ones. 
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Chapter 4 

4 Scanning near field optical studies of copper nanoparticles 

4.1 Scanning near field optical microscopy (SNOM) 

Resolution in conventional optical microscopes is diffraction-limited. Thus, these instruments are 

not suited for studying individual nanoparticles. This limit can be quantified by considering the 

resolving power of an optical instrument, which is given by the Rayleigh criterion [1] 

NA
R

.2


        (4.1) 

where NA is the numerical aperture of the objective used for collecting the light beam. Therefore, 

for visible light (λ = 400 – 700 nm) R is determined by the numerical aperture (that, for 

construction reasons, is generally not much larger than 1), but is rarely better than 200 nm.  

Scanning near-field optical microscopes (SNOM) circumvent the intrinsic limitations of 

the resolving power of conventional optical microscopes and, therefore, are better suited for 

high-resolution studies of individual np-Cu‟s. In SNOM, subwavelength resolution is achieved 

by using an evanescent wave, generated in the proximity of nanoholes or nanoparticles, as an 

optical probe to scan the surface of a sample. An example of evanescent field is the electric field 

exponentially decaying in a dielectric medium interfaced to a metallic thin film or a metallic 

nanoparticle, as discussed in Sect. 1.1.2 and 1.1.3, respectively.  

Fig. 4.1 (adapted from ref. 1) depicts the non-propagating and propagating electric field 

components generated as a consequence of the interaction of an incident plane wave with a 

nanoparticle of diameter d. In Sect. 1.1.3, we have discussed that the electric field scattered at a 

distances r from a particle of finite diameter is multipolar in nature, with only the dipolar 

component that is not vanishing at sufficiently large distances and results in spherical waves that 

are isotropically propagating in any direction of the free space. Such a component of the electric 

field is associated to the smallest value of n (i.e. n = 1) in the summation given by eq. (1.20) and 

corresponds to the so called „far field‟ that is generally observed by optical instruments of 

limited resolution. A number of higher-order terms of eq. (1.20) typically at small values of n, 

also correspond to propagating components of the electric field, but they are highly anisotropic 

in nature and their intensity strongly depends on the angle with respect to the direction of 
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propagation of incident light, as demonstrated in ref. [2]. These components are typically 

responsible for light diffracted by a particle (or hole) at d ~ λ. At even higher values of n in eq. 

(1.20), stationary waves strongly localized in the vicinity of a nanoparticle (or nanohole) will 

appear, if  d << λ [2]. These evanescent wave components, that form the so called „near field‟, 

exponentially decay away from the surface of the nanoparticle (or nanohole) and are uniquely 

suited for probing objects of nanometric size located near the scattering nanoparticle (or 

nanohole), because the strong localization of these modes warrants ultra-high optical resolution.    

 

Fig. 4.1: Light scattered from a particle as a source of near field. The electric field close to 

the particle is formed by evanescent (near field) and scattered propagating components. 

Far from the particle (r >> λ) the field is radiating by spherical waves. 

Near-field optical microscopes using nanoholes for generating, or collecting, the 

evanescent field are called aperture-type SNOMs, while near-field optical microscopes using 

nanoparticles for generating, or collecting, the evanescent field are denominated apertureless-

type SNOMs. An advantage of modern near-field microscopes, which brought this nano-optical 

technique to commercial maturity [3] is the possibility to integrate them into atomic force 

microscopes (Sect 3.2). For apertureless-type SNOMs, a metal nanoparticle is attached at the 

bottom of an AFM tip while, for aperture-type SNOMs, a nano-hole is drilled through the AFM 

tip using a focused ion beam (FIB) such as the one available at the Western Nanofabrication 

Facility. In this way, SNOM images can be recorded by moving the nanoparticle (or nanohole) 

relative to the sample using a computer-controlled AFM piezo-scanner. The nano-optical image 

of the sample is then formed by assigning the measured optical intensity to the corresponding 

scanning position [4]. 
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4.2 The Witec Alfa 300S SNOM system 

Figure 4.2 is a schematic of the aperture-type, AFM-integrated, SNOM instrument (Witec Alfa 

300S) that has been used for our near field optical study of np-Cu‟s. With this instrument, light 

from a 532 nm green laser operated up to 50 mW (Excelsior, Spectra Physics Inc., serial no. 

10398) is directed, by a system of optical fibers, into a high-resolution confocal optical 

microscope that focuses the laser light inside the nanohole (d   80 nm) located at the end of an 

AFM hollow tip. The sample is positioned on a 100 x 100 μm piezo-scanner that has a maximum 

excursion of 10 μm in the z-direction. All three AFM scanning operation modes (contact, non-

contact and tapping mode) are possible for recording SNOM images and, simultaneously, AFM 

topographic images of a sample. In addition, the mechanical arm on which the confocal 

microscope is mounted can also be moved in z-direction for optimizing the focal plane at the 

level of the AFM tip hole. Below the sample stage, an inverted microscope is used to collect the 

light transmitted through the sample, which is subsequently launched into an optical fiber that is 

connected to a photomultiplier tube (U-68000, Hamamatsu) operating in photon-counting mode. 

 

Fig. 4.2: Schematic of the operation configurations of the Witec Alpha 300S system that 

was used for the SNOM study of np-Cu’s: transmission mode and collection mode. 
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 In addition to the operation mode described above, that is known as „transmission mode‟ 

and is sketched in Fig. 4.2 with dotted lines, the Witec Alfa 300S can record SNOM images in 

another configuration, known as „collection mode‟, that differs in the way the sample is 

illuminated and the scattered light is collected. In collection mode (also known as back-

illumination mode) the sample is back-illuminated in the far-field, by directing the laser light 

into the inverted microscope, and the optical response of the sample is collected by the nanohole 

in the AFM cantilever. Specific tests can be performed for ensuring that subwavelength objects 

can be resolved in this configuration [3, 5]. If the hollow tip is sufficiently close to the sample 

surface, only the near-field optical response from the sample surface will be collected. However, 

if the hollow tip is lifted up at a controlled distance r from a nanoparticle that is located at the 

sample surface, all of the other normal modes shown in Fig. 4.1 (and representing, via eq. (1.2), 

the n components of the optical response of a nanoparticle) can be detected.  

 Therefore, in SNOM collection mode operation, the sample surface can be scanned along 

the (x, y) plane at z = 0, or in the (x, z) direction at y = constant, in order to obtain relevant 

information about the amount of light scattered by the particle at a distance z = r from its surface, 

as demonstrated in Fig. 4.3. With this three-dimensional optical imaging procedure, specifically 

deigned for this thesis work, the electromagnetic field around the particle can be entirely 

reconstructed. 

 

Fig. 4.3: Schematic diagram of the SNOM configuration during measurements of 

nanoparticle topography and light scattering in the near field. Collection-mode and 

topography images are obtained from an (x, y) AFM/SNOM scan at z = 0 while an (x, z) 

SNOM cross section scan at y = const. has been used to gain insight on light scattering 

processes at different heights (determined by the piezo-scanner) from the sample surface. 
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 Ultimately, SNOM is always about the electromagnetic interaction of two distinct nano-

objects, for which the principle of linear superposition can be invoked: a „probe‟ nano-object 

(that, in our case, is the nano-hole at the end of the tip) and a „sample‟ nano-object (that, in our 

case, is a np-Cu in our sample). For the np-Cu that are the subject of the present study, collection 

mode SNOM analysis is carried out first to obtain the (x, y) nano-optical and topographic 

(contact-mode AFM) images of our sample, which are recorded simultaneously. We then choose 

a line at y = const. from the (x, y) images and change the distance z from the tip to the sample 

surface. This can be done reproducibly because the piezo-scanner stage on which the sample is 

mounted allows to control the sample–tip distance with a ±1 nm reproducibility. Before each (x, 

z) scan at y = constant (see Fig. 4.3), the topographic and optical images of the sample were 

determined using 5 x 5 μm, contact mode scan in which the AFM and SNOM images are 

recorded at the sample surface. 

4.3 Role of (X, Z) SNOM images in designing np-Cu for plasmonic 

solar cell applications 

Thin film solar cells are made of doped semiconductors forming a p-n junction. In this 

architecture, (typical of a number of photovoltaic devices including organic and amorphous solar 

cells) the p-n junction where photocurrent is generated is sandwiched between two electrodes 

that help to transport the carriers to the external load (Fig.4.4). Through thinning down the active 

layer, the internal charge separation may be enhanced but not without compromising the amount 

of light that is absorbed inside the active layer. One method which has been explored for the 

development of thin film solar cells with improved performance is based on the incorporation of 

nanoparticles in the active layer of the so-called plasmonic solar cells [6]. With this method, light 

is scattered into the active layer by using nanoparticles excited at their surface plasmon 

resonances, thereby allowing light to be absorbed more directly without necessarily 

compromising the thickness of the active layer. 
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Fig. 4.4: Thin film solar cell comprising semi-transparent p-n junction sandwiched between 

two electrodes. I(Z) – Z graph on the left shows the variation of intensity of the incident 

light over the entire p-n junction that serves as the active layer of the cell. 

Fig. 4.5 shows a common design of plasmonic solar cell in which metal nanoparticles are 

deposited on the top of ITO electrode beneath the active layer of the cell. When light is incident 

on these nanoparticles at their surface plasmon resonances the dominant process induced by the 

nanoparticles is strong forward scattering of the incident radiation that results in three regions of 

scattered fields as previously mentioned.  

 

Fig. 4.5: Thin film plasmonic solar cell showing region of light scattering enhancement 

using metal nanoparticles. I(Z) – Z curve on the left represents the variation of the 

scattered wave amplitude due to the embedded np. Amplitude of the scattered wave is 

enhanced at specific position from np surface. 

Close to a nanoparticle, the scattered light is mainly evanescent in nature, which transfers non-

propagating field in the near field into scattered waves at distances near the surface plasmon 

wavelength (r ~ λ). Hence, the forward scattering increases the electromagnetic field intensity at 

a considerable distance above the particles. This effect can increase the electron-hole pair 
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generation rate in the cell when the active layer is placed in the region of maximum scattered 

light intensity. Therefore, it is extremely important to determine the positions of this scattered 

light intensity in order to maximize the benefit of light scattering enhancement from the 

nanoparticles. It is within the above consideration that this study is important.  

Our SNOM (x, z) scan are very useful to predict the amount of light that is scattered in 

waves at a distance, z from a np-Cu and by extension, which specific sets of the nanoparticles we 

have grown can be useful to convey light inside the active layer of a thin film solar cell. We have 

specifically chosen to perform our SNOM measurements at 532 nm wavelength, approximately 

corresponding to the maximum of the AM 1.5 solar spectrum [7], at which commercial solar 

cells are generally optimized, in order to make our results on the characterization of np-Cu‟s 

meaningful for solar applications. 

 

4.4 Results and Discussion 

The scattering effect associated with our np-Cu‟s was studied using SNOM measurement on a 

range of samples deposited at different chamber pressures. Deposition at different chamber 

pressure was previously shown to alter the area fraction as well as the np-Cu size. The (x, z) scan 

was employed to determine the positions of scattered waves as a series of bright regions atop the 

np-Cu surface. The bright regions are mapped on x-y plane along z-direction while the scattered 

wave intensity corresponding to the bright regions is plotted as a function of the distance from 

the sample surface, z. 

 Figs. 4.6 and 4.7 show the results from the SNOM measurements carried out on np-Cu‟s 

deposited at lower chamber pressures of 9 and 12 Pa respectively. It can be observed from these 

two figures that the scattered wave increases in intensity as the distance between the np-Cu 

scattering centre and the tip widens. The scattered wave closest to the sample surface is low in 

intensity compared to what can be observed at further distances from np-Cu surface.  However, 

for the samples deposited at relatively higher pressures of 17, 21 and 23 Pa shown respectively in 

Figs. 4.8, 4.9 and 4.10, the interaction of light with the particles result in scattered waves that 

decreases in intensity from the sample surface. Contrary to what was observed from Figs. 4.6 and 

4.7, these SNOM (x, z) measurements show that the intensity of the scattered wave has a 

maximum at position closest to the sample surface. The peak position of the scattered waves 
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closest to the np-Cu surface for all five samples has been plotted and is shown in Fig. 4.11. The 

error bars in the plot has been obtained from the standard deviation of 6 different values 

extracted from each of the (x, z) SNOM maps.  

 

Fig. 4.6: Topographic (top left) and optical (top right) images obtained from SNOM 

operation for semi-continuous np-Cu’s sputtered at chamber pressure of 9 Pa. Also 

displayed are the x – z intensity mapping (bottom left) and the intensity plot (bottom right) 

showing the positions of the scattered wave. 
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Fig. 4.7: Topographic (top left) and optical (top right) images obtained from SNOM 

measurement on np-Cu’s sputtered at chamber pressure of 12 Pa. Also displayed are the x 

– z intensity mapping (bottom left) and the intensity plot (bottom right) showing the 

positions of the scattered wave. 
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Fig. 4.8: Topographic (top left) and optical (top right) images obtained from SNOM 

measurement for semi-continuous np-Cu’s sputtered at chamber pressure of 17 Pa. Also 

displayed are the x – z intensity mapping (bottom left) and the intensity plot (bottom right) 

showing the positions of the scattered wave. 
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Fig. 4.9: Topographic (top left) and optical (top right) images obtained from SNOM 

measurement for semi-continuous np-Cu’s sputtered at chamber pressure of 21 Pa. Also 

displayed are the x – z intensity mapping (bottom left) and the intensity plot (bottom right) 

showing the positions of the scattered wave. 
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Fig. 4.10: Topographic (top left) and optical (top right) images obtained from SNOM 

measurement for semi-continuous np-Cu’s sputtered at chamber pressure of 23 Pa. Also 

displayed are the x – z intensity mapping (bottom left) and the intensity plot (bottom right) 

showing the positions of the scattered wave. 

 

 

0.0 0.5 1.0 1.5 2.0

1600

2000

2400

2800

R
e

la
ti

v
e

 i
n

te
n

s
it

y
 (

a
.u

)

z - coordinate (m)

A A’

532 nm SNOM (X-Z)
Sect AA’

X (m)

0 5
0

Z 
(

m
)

2

X (m)
0

0
0 5

5

5

Y 
(

m
)

AFM (X-Y) 532 nm SNOM (X-Y)



79 
 

 

Fig. 4.11: Variation of scattered wave peak position with the deposition chamber pressure. 

Z1-max represents the first significant peak intensity position of the scattered wave obtained 

from (x, z) SNOM map. The error bar corresponds to the standard deviation of 6 different 

intensity plots obtained from SNOM map.  

As we observe from Fig. 4.11, the scattered wave from np-Cu‟s deposited at high 

chamber pressure is more closely coupled to the np surface compared to their counterpart 

obtained from RF sputtering carried out at lower chamber pressure. For instance, np-Cu‟s 

deposited at 23 Pa chamber pressure shows scattered wave peaks at 220 and 540 ± 50 nm as 

against the observed peak position at 1490 ± 100 nm for the particles obtained at 9 Pa chamber 

pressure. This observation can be attributed to the dependence of nanoparticles cross-section for 

optical absorption (Qabs) and scattering (Qsca) on the particle size. We have previously 

demonstrated in chapter 3 that increasing the chamber pressure results in particles with larger 

size but with reduced area fraction.  Hence, for larger particles, Qsca >> Qabs since Qsca is 

proportional to the square of the nanoparticle volume (see chapter 1) and the dominant process 

induced by np-Cu‟s is strong forward scattering of incident plane waves at different positions 

from the np surface. Unfortunately, the forward scattering is observed at positions that are 

considerably inadequate for overall transmission of electromagnetic energy into the active layer 

of a photoactive device, for instance plasmonic solar cell, where the particles have potential 

application. Therefore, to use these np-Cu‟s to increase performance in a plasmonic solar cell it 

is most desirable to have the active layer of the cell formed at the observed peak intensity 

positions for efficient coupling of the scattered light into the active layer of the cell. The above 

 

8 12 16 20 24

0.4

0.8

1.2

1.6

Z
1

-m
a

x
 (


m

)

Chamber pressure (Pa)



80 
 

consideration means that it would be beneficial to employ dielectric material for which the 

desired scattering effects are still present but for which surface plasmon resonances do not occur. 

We explored the prospect of this concept, depositing SiO2 thin film on our np-Cu‟s, to be 

adapted as a spacer between the np‟s and the active layer of a plasmonic solar cell.   

4.5 Properties of np-Cu/SiO2 nanocomposites 

We obtained SiO2 by RF sputtering of a glass target. Different thicknesses of SiO2 can be 

deposited atop np-Cu‟s surface by varying the deposition time. The deposited np-Cu/SiO2 

composites were characterized using similar procedure as describe in the previous section. 

The result from the SNOM measurement is shown in Fig. 4.12. From the intensity map 

(x-z plot) of Fig. 4.12, we observed initial broadening of the scattered wave in the vicinity of np-

Cu/SiO2 composite that extend up to 550 nm from the composite surface. The first intensity peak 

from reference bare np-Cu‟s was observed at 250 nm from the sample surface, similar to what 

has previously been observed. Thus, we associate the observed broadening of the scattered wave 

in the vicinity of the composite structure with coupling of the plane wave, incident normal to the 

composite surface into lateral propagation paths (parallel to the SiO2 surface) which results from 

introduction of a lateral wave vector component [8] in the scattered wave. This concept has been 

studied using metallic nanoparticles deposited on a low-surface-energy dielectric material to 

enhance photocurrent response in silicon-on-insulator photodetectors [9]. Superposition of the 

lateral and transverse components of the wave vector can lead to increased intensity of the 

scattered light wave. 
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Fig. 4.12: x-y topographic images (top), x-y optical images (middle) and x-z intensity map 

(bottom) of np-Cu’s measured by SNOM technique. The images on the right were obtained 

from reference bare np-Cu sample on glass substrate while the images on the left are for 

the np-Cu/SiO2 composite. 
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Fig. 4.13: Plot of the scattered wave intensity as a function of the distance from the sample 

surface (out of plane) for bare np-Cu’s and np-Cu/SiO2 composite. 

 

Fig. 4.13 shows the intensity plot for the two samples as extracted from the (x-z) SNOM map. It 

is seen that, besides showing an extended scattered wave, the composite structure also exhibit 

high amplitude of the scattered light intensity along the entire 2μm-distance scanned compared to 

what can be observed from the reference sample. This effect has been extended to far field, 

observed from the UV-VIS measurement carried out on reference bare np-Cu‟s and np-Cu/SiO2 

composites. As is evident from Fig. 4.14, the incorporation of SiO2 atop np-Cu does indeed 

result in a substantially higher value of the transmitted light, even in the far field. For the 

composite formed after 6 hours sputtering of SiO2, we observe as well a dip at around 457 nm in 

the transmission spectra. The lower value of the transmitted light and the appearance of dip in 

the UV-VIS of this sample compared to the results of other composites suggest that at reasonably 

large thickness of SiO2 we can associate with the experimentally observed spectra an inter-band 

transition at higher photon energy.  
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Fig. 4.14: Plot of optical transmittance against wavelength for bare np-Cu’s and np-

Cu/SiO2 composites. The duration for sputtering of each SiO2 and the plasmon resonance 

positions are indicated on the graph. 
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Fig. 4.15: Plot of optical transmittance against wavelength for SiO2 sputtered on bare glass 

substrate for two different sputtering times.  
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On the other hand Fig. 4.15 gives the transmission spectra of SiO2 sputtered on bare microscopic 

glass substrate for different sputtering time of 2 hrs (~ 134 nm thickness) and 10 hrs ( ~ 350 nm 

thickness). The transmission spectra of the two samples did not show any substantial change in 

intensity. This observation is crucial for implementing the composite structure in plasmonic solar 

cell where is it desirable to achieve maximum coupling of light wave into the active layer of the 

cell. Besides, the fact that the optical transmittance of SiO2 does not vary appreciably with 

thickness can be viewed as experimental evidence that our RF sputtered SiO2 is low in impurity.  

 

 

Fig. 4.16: EDX spectra of SiO2 sputtered on Si (100) for two different sputtering times. The 

bare Si substrate has been included for comparison. 
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In order to verify the composition of the SiO2 obtained by RF sputtering, we carried out energy 

dispersive x-ray spectroscopy (EDX) measurements on two samples deposited for 2 hrs and 4 hrs 

respectively. The result which is shown in Fig. 4.16 gives the elemental composition of the bare 

Si substrate and those of the SiO2 deposited on it. The percentage of atomic contents obtained 

from this measurement is shown in Tables 4.2 and 4.3, where it can be seen that, although Na 

appears in the spectrum of the sample deposited for 4 hours, its content (which is in trace 

amount) may not affect the optical properties of our RF sputtered SiO2 significantly. However, 

the low oxygen content in the samples, as observed in Tables 4.1 and 4.2, may imply that the thin 

films are porous, and not completely smooth. So, part of the Si seen in the SiO2 spectra comes 

from the Si substrate. 

Table 4.1: Weight and atomic % of elements observed from the EDX for SiO2 sputtered on 

Si (100) for 2 hrs 

 

 

Table 4.2: Weight and atomic % of elements observed from the EDX spectra for SiO2 

sputtered on Si (100) for 4 hrs 

 

 

Element Weight% Atomic%

O K 5.58 9.40

Si K 94.42 90.60

Totals 100.00

Element Weight% Atomic%

O K 11.40 18.41

Na K 0.27 0.31

Si K 88.33 81.28

Totals 100.00
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Furthermore, we carried out a study to determine the effect of thermal treatment on our np-

Cu/SiO2 composite by subjecting the samples to different annealing temperatures from 200 to 

500
o
C for 1hr. The thermal treatment was carried out in the glove box. Fig 3.41 shows the 

topographic and optical images as well as the intensity map of the np-Cu/SiO2 composite 

annealed at 500
o
C for 1hr.  

 

Fig. 4.17: x-y topographic images (top left), x-y optical image (top right), x-z intensity map 

(bottom left) and scattered wave intensity as a function of the distance from the sample 

surface (bottom right) of np-Cu/SiO2 composite annealed at 500
o
C for 1 hr.  
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The intensity remains high but the position of the first peak of scattered wave has been reduced 

to 100 nm from the composite surface. The scattered wave also appears noisy and can be an 

indication that the composite structure may no longer be optically homogenous after annealing at 

500
o
C.  However, the far field UV-VIS spectra given in Fig. 4.18 shows that thermal treatment 

of the composite does not result in any significant change in the UV-VIS transmittance spectra. 

Similar to what we observed in Fig. 4.14, the peak position shifts to longer wavelength, 

compared to the reference bare np-Cu spectrum. This is an indication that np-Cu‟s may have 

grown in size as it forms a composite structure with the SiO2 during sputtering. 
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Fig. 4.18: Plot of optical transmittance against wavelength for bare np-Cu’s on glass 

substrate and np-Cu/SiO2 composite fast-annealed at different temperatures for 5 mins. 

4.6 Concluding remarks 

We explored and determined experimentally, using a collection mode SNOM technique, the 

positions of scattered light associated with the propagating component of the electric field that 

results from the interaction of plane waves with np-Cu‟s. These propagating higher order modes 

observed at position orthogonal to np-Cu‟s surface occurs at z ≥ 200 nm. In order to reduce the 

height, and, induce strong localization of these modes in the proximity of np-Cu‟s, SiO2 has been 

incorporated atop the nanoparticles. Consequently, larger amplitude and broadened scattered 

wave that extends up to z = 500 nm, was observed from the sample surface. The study provides 

an improved insight that helps to understand the physical mechanisms that may hinder the 
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expected efficiency when these particles are used to enhance performance in photoactive 

devices, for instance in plasmonic solar cells. The observed coupling of the scattered light to the 

np-Cu/SiO2 surface is a step in the right direction for gainful use of these particles in plasmonic 

thin film organic solar cell architecture. 

 

Fig. 4.19: Schematic illustration of (a) possible positions of light scattered from np-Cu and 

(b) organic solar cell architectural design aimed at maximizing the light scattered by these 

np-Cu’s. 

For this reason, we propose a new architectural design aimed at maximizing the result from this 

study. The proposed architecture shown in Fig. 4.19, is different, because the nanoparticles are 

deposited outside, and separated from the bulk layer by SiO2 spacer, from where the np-Cu‟s can 

scattered light into the active layer of the cell. Since excitons generally travel short distance 

during their lifetime in polymer semiconducting materials, the organic photoactive layer can 

therefore be made sufficiently thin, with the reduction in the thickness complemented by 

enhanced scattering cross-section of these particles. The large amplitude of the scattered light is 

absorbed in the active layer to generate excitons that can be dissociated and collected to produce 

photocurrent. 
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Chapter 5 

5 Electro-optical properties of metal- polymer and polymer-
polymer nanocomposites  

In the previous chapters we discussed in detail the properties of np-Cu‟s as they relate to the 

deposition and annealing conditions and we showed the physical mechanisms and the most 

promising structural design that will lead to plasmonic thin film solar cells with embedded np-

Cu‟s. In this chapter, we turn to a component of the architecture of a thin film solar cell, which is 

considered to be important for efficient collection of photogenerated charges and, namely, the 

transparent electrode. We explored transparent electrodes based on nanocomposites 

incorporating np-Cu‟s and fabricated on flexible polyethylene terephthalate (PET) substrates. 

In the first section of this chapter, we show that we can fabricate polymer-metal 

nanoparticle composites by incorporating np-Cu‟s on graphite nanosheets produced by vacuum 

filtration of exfoliated nanographite suspensions. In the subsequent section, we will discuss the 

fabrication and properties of nanocomposite thin films produced by spin coating   poly(3,4-

ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS), a standard solar grade material, 

on flexible plastic substrates coated by a commercial-grade transparent carbon film (TCF) based 

on multilayer graphene flakes. These substrates can also be used as transparent electrodes for 

thin film plasmonic solar cells and to incorporate np-Cu‟s. 

5.1 Graphite nanosheet with embedded copper nanoparticles 
 

5.1.1 Preparation of nanocomposite of Graphite nanosheet and copper 

nanoparticles  

Graphite nanosheets with embedded copper nanoparticles were fabricated by incorporating via 

sputtering, np-Cu‟s on solution processed graphitic nanosheets. The preparation of graphite 

nanosheet films has been carried on by means of a well established procedure that is available in 

the literature [1]. The procedure starts with the exfoliation of nanographite in a water based 

solution using sodium dodecylbenzenesulfonate (SDBS) as surfactant. The solution (Sigma-

Aldrich: Cat. # 28995-7) was prepared by dissolving 500 mg of SDBS in 1000 ml of distilled 

water, followed by 30 minutes of sonication. This is done in order to dissolve completely the 



91 
 

surfactant in distilled water and form a homogenous solution. Next, 0.1g of nanographite 

(Aldrich: lot. # 332461) was added to the surfactant solution. The top portion of the mixture is 

collected after sonication for 4 hours and allowed it to sit for 8 hours. The decanted upper part of 

the mixture is used for centrifugation (Fisher Scientific; accuSpin
TM

 400) at 6000 rpm for 1 hr. 

Graphite nanosheet film was prepared by vacuum filtration of 20 ml of suspension of exfoliated 

nanographite on a cellulose membrane. The choice of 20 ml of suspension to be filtered was 

made for optimizing the transmittance and conductivity of the films. We desire to fabricate a film 

that covers the most part of the substrate while at the same time maintaining good transmission 

of light. This will help to deposit the np-Cu‟s only on the graphite nanosheets. Reducing the 

filtration volume leads to films with high transmittance (see Fig. 5.1) but with low fraction of 

covered area. After filtration, the film on the filter membrane is transferred onto a glass substrate 

and baked in an oven at 50
o
C for 5 hrs. Etching of the sample (to eliminate the filter membrane) 

was carried out using consecutive acetone and methanol baths. The resulting graphite nanosheet 

film on glass is used as the substrate for sputtering copper to form graphite /copper 

nanocomposites. The nanocomposite sample was characterized using AFM, SEM and UV-VIS.  
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Fig. 5. 1: Transmittance spectra of graphite nanosheets obtained from vacuum filtration of 

different volumes of solution as indicated. 
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5.1.2 Morphology and composition of Graphite nanosheets with embedded 

copper nanoparticles  

The morphology of the composite structure formed by sputtering copper particles on solution 

processed graphite nanosheets was investigated with the aid of scanning electron microscope 

(SEM). We performed using a LEO (Zeiss) 1530 field emission microscope operating at 5-KV 

electron acceleration voltage. Fig. 5.2 shows the SEM images obtained after annealing our 

sample at 300
o
C for 1 hr. in the glove box. Panel (a) and (b) represent the same image at 

different magnifications. The two images were taken from a side of the sample where no graphite 

nanosheets were deposited. From Panels (a) and (b) we observe well-separated copper particles 

on glass, Panels (c) and (d) show the investigated nanocomposite, comprising homogeneous np-

Cu‟s on graphite nanosheets. The particles appear larger than the ones grown on the bare glass 

substrate.  

 

Fig. 5. 2: SEM image of thermally treated np-Cu’s on bare glass substrate at magnification 

of (a) 10K and (b) 72K and that of graphite nanosheet with embedded np-Cu’s at 

magnification of (c) 10 K and (d) 50K. The scale bar in the left images represents 1μm (a, c) 

and in the right images (b, d) 200 nm. 

(a) (b)

(c) (d)
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Similar results were obtained from AFM scans as shown in Fig. 5.3. However, what appears in 

the SEM images as np-Cu on bare glass substrate actually contains some fibrous carbon-like 

material beneath. The appearance of the fibrous carbon-like material was confirmed by the 

energy dispersive x-ray spectroscopy (EDX) analysis carried out on both sides of the sample as 

well as on plain glass substrate. The result of this analysis is shown in Fig. 5.4. Table 5.1 shows 

that carbon content of the sample is about 14% in the region occupied by graphite nanosheets 

compared to ~ 4% obtained from plain glass. The table also shows that copper nanoparticles 

obtained after thermal treatment in the glove box suffer little or no oxidation.  

 

 

Fig. 5. 3: AFM images of thermally treated (a) np-Cu’s and (b) composite of graphite 

nanosheet/np-Cu on glass substrate. Sample (b) has been scanned at higher resolutions as 

indicated in panel (c) and (d). 

(a) (b)

(c) (d)
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Fig. 5. 4: EDX spectra of (a) bare glass substrate, (b) np-Cu deposited on glass and (c) 

nanocomposite on glass composed of graphite nanosheets and np-Cu’s. The EDX analysis 

was carried out after the sample has been annealed in the glove box at 300 nm for 1 hr. 
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Table 5. 1: The elemental composition of bare glass substrate, np-Cu’s and graphite 

nanosheet/np-Cu nanocomposite obtained from EDX analysis shown in Fig. 4.2 

             Elements 

Atomic % 

Carbon Oxygen Sodium Magnesium Silicon Copper 

Bare glass substrate 3.87 55.78 3.93 2.80 33.62 - 

Copper sample 13.51 30.97 - - 15.37 40.15 

Nanocomposite 36.60 38.34 - - 18.61 6.45 

 

 

In order to obtain the size distribution of np-Cu‟s, the SEM micrograph (Fig. 5.2, panel b) was 

analyzed using Image J software and the result is given in Fig. 5.5, where it is seen that the 

particle distribution follows very closely a Gaussian function. The average particle size obtained 

from this analysis is 65 nm, with area coverage of about 20%. 
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Fig. 5. 5: Copper nanoparticle size distribution obtained from the SEM image presented in 

Fig. 4.1 (b). The distribution has been fit to a Gaussian function (solid line). 
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5.1.3 Measured Optical spectra of Graphite nanosheets with embedded copper 

nanoparticles 

In Fig. 5.6, the transmittance spectra before and after thermal annealing are plotted for the bare 

graphite nanosheet, the nanocomposite structure and bare np-Cu‟s. The spectra were measured in 

the spectra region between 375 nm and 800 nm wavelength.  
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Fig. 5. 6: Transmittance spectra of graphite nanosheets on glass, np-Cu’s on bare glass and 

graphite nanosheets with embedded copper nanoparticles before and after thermal 

treatment in the glove box. 

The transmittance spectrum of the bare graphite nanosheet did not show any evidence of 

plasmonic behavior. The inclusion of np-Cu‟s modifies the optical spectrum, which now shows 

collective resonance effects. For np-Cu‟s grown on graphite nanosheets, a shift of the resonance 

position to higher wavelengths and broadening of the spectra plasmon line were found, in 

comparison to the spectrum of bare np-Cu‟s. The resonance position in bare np-Cu‟s and the 

graphite nanosheet coated with np-Cu‟s is observed at 601 nm and 617 nm, respectively. This 

means that the resonance position shifts to longer wavelengths when np-Cu‟s are deposited on 

graphite nanosheets. According to the SEM and AFM images in Fig. 5.2 and Fig. 5.3, the particle 

sizes are bigger in the composite structure.  Therefore, we attribute the shift to large np-Cu‟s 

when they are grown on graphite nanosheets. In addition, a transmittance enhancement is 

observed in both the annealed and as-deposited composite structures. The appearance of such a 

transmittance enhancement is associated with the metallic properties of np-Cu‟s near the 
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percolation threshold [2]. The peak position shifts from 541 nm to 554 nm, representing a red 

shift of 13 nm. 

In conclusion, the observed optical behavior due to the inclusion of np-Cu‟s is critical in 

determining the optical absorption in the nanocomposite.  

 

5.1.4 Electrical characterization of Graphite nanosheets with embedded copper 

nanoparticles 

The sheet resistance of thermally treated graphite nanosheets and np-Cu/graphite nanosheets was 

measured from I-V curves recorded on a Signatone S-725 probe station using a Keithley 2400 

source meter. Voltages in the ±2 V range were applied in order to obtain the current – voltage 

curves shown in Fig. 5.7.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.7: I-V curves of graphite nanosheets and np-Cu/graphite nanosheets composite 

recorded from a probe station. 

 

We observed a three-fold increase in the measured current from ±15 A in the bare graphite 

nanosheets to ±40 mA in the nanocomposite. The associated sheet resistance dropped from ~ 140 

KΩ to ~ 46 Ω, signifying a huge enhancement in the electrical conductivity of the composite. 

This enhancement can be attributed to the deposition of the np-Cu‟s nanoparticles on the graphite 
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nanosheet, enabling the formation of conduction pathways for electron transport. The observed 

enhancement can be beneficial, for the application of these materials in organic solar cells where 

they can be used as hole collector electrodes.  

 

5.2 Properties of a Poly(3,4-thylenedioxythiophene):poly 
(styrenesulfonate) composite medium with graphene 
nanoplatelet inclusions 

Poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) is an organic polymer 

that can be used to prepare transparent and conducting thin films combining the physical 

properties of indium-tin oxide (ITO) with the advantageous properties of plastics, including low 

weight, high flexibility and ease in processability [2-4]. For these reasons, PEDOT:PSS is widely 

used as a hole-transporting layer in organic solar cells (OSC) [7, 8] and organic light-emitting 

devices (OLED) [9, 10]. In this section we present the results of our investigation on the optical 

and electrical properties of nanocomposite thin films produced by spin coating a layer of 

PEDOT:PSS on flexible plastic substrates coated by a commercial-grade transparent carbon film 

(TCF) prototyped by 3M Canada Company, which has the potential to be used as another 

substrate  for growing np-Cu‟s.  

5.2.1 The spin coating operation and sample characterization   

Transparent carbon film (TCF) on polyethylene terephthalate (PET), directly provided by 3M 

Canada Co., were filled by PEDOT:PSS in ambient conditions using a commercial spin coater 

(Laurell
 
Co.). PEDOT:PSS ink (Aldrich) was filtered through a 0.8 µm-pore filter and mixed 

with methanol at 1:1 ratio in volume prior to use. In order to promote adhesion, the TCF-coated 

PET substrate was made hydrophilic using ozone treatment (UV3 Novascan apparatus). The 

PEDOT:PSS ink was allowed to  rest on the TCF-coated PET substrate for 5 min before spinning 

for 3 min. A set of samples was made by varying the spinning speed from 500 to 2500 rpm. This 

coating stage was followed by fast spinning (8000 rpm, 1 min) in order to expedite drying of the 

samples. Reference samples were spun on bare PET under similar conditions.  
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5.2.2 Morphology characterization of PEDOT:PSS/TCF nanocomposites 

Figure 5.8 compares the thickness of our PEDOT:PSS samples grown on TCF-coated PET 

substrates with similar PEDOT:PSS samples spin-coated on bare PET. This figure shows that 

that the thicknesses of TCF coated with PEDOT:PSS are always higher than the thickness of 

bare TCF, and decreases at increasing spinning speed. Thickness control is a primary concern for 

the efficient use of PEDOT:PSS as an interlayer in organic solar cells and organic light emitting 

devices. Therefore, the possibility to tune the thicknesses of our composite films is of primary 

importance for their practical applications.  
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Fig. 5.8: Variation of the thickness of the films with the spin coating speed. The dotted line 

is the thickness of graphene based TCF on a bare PET substrate. 

On the other hand, the range of thicknesses of PEDOT:PSS films produced in this work 

exhibits a strong dependence on the spinning speed. PEDOT:PSS films spun on TCF-coated PET 

have thicknesses dtot = 2255 nm at 500 rpm and dtot = 325 nm at 2,500 rpm, respectively. Our 

data show that films spun on TCF-coated PET are slightly thinner than the sum of the 

thicknesses of bare TCF films (dTCF  225 nm) and the thickness, dbare, of PEDOT:PSS layers 

spun on bare PET. For instance, at 500 rpm, dTCF + dbare = 2375 > dtot = 2255 nm and, at 2500 

rpm, dTCF + dbare = 435 nm > dtot = 325 nm. These results elucidate the contribution of the 

substrate surface to the final film thickness and indicate that, during the spinning operation, a 

significant fraction of PEDOT:PSS penetrates in between the few-layer graphene flakes forming 

the TCF film. Accordingly to these results, we infer that, when TCF-coated PET substrates are 

spun with PEDOT:PSS, a bi-layer thin film is formed, with a bottom layer comprising a 

nanocomposite formed by graphene flakes interpenetrated by PEDOT:PSS and a top layer of 
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pure PEDOT:PSS. The fact that the top surface of our films is always formed by PEDOT:PSS 

and is completely free from floating graphite nanoplatelets is confirmed by SEM micrographs, as 

shown in Fig. 5.9.  

 

Fig 5. 9: Scanning electron micrographs of (a) Graphene based TCF on bare PET and 

PEDOT:PSS films spun at 2500 rpm on (b) Bare PET and (c) Graphene based TCF. 

In this figure, panel (a) shows the morphology of a bare TCF prior to deposition of 

PEDOT:PSS by spin coating. It can be observed that, although these industrial-grade films 

present a relatively large fraction of few-layer graphene platelets, they also contain a number of 

graphitic nanoparticles. In the same figure, panels (b) and (c) compare PEDOT:PSS films spun at 

2500 rpm on bare and TCF-coated PET substrates and demonstrate that graphitic nanoparticles 

have a quite limited effect on the surface morphology of PEDOT:PSS, which is basically the 

same in the two cases. In both panels (b) and (c), top surfaces are formed by relatively large and 

closely packed PEDOT:PSS domains, with the islands being only slightly smaller in the presence 

of an underlying TCF film. An explanation for the morphology of PEDOT:PSS in the absence of 

carbon flakes can be inferred from the model proposed by Nardes et al. [13], who suggested that 

the structure of spin-coated PEDOT:PSS thin films consists of particles containing both PEDOT 
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and PSS chains surrounded by a shell formed only by PSS. Our samples are in good agreement 

with this model, also in the case of PEDOT:PSS incorporating graphene flakes. PEDOT chains 

tend to stick to themselves, forming relatively large, electrically conducting, agglomerates and 

domains irrespectively of the presence of graphene platelets from the TCF. 

 

Fig. 5. 10: AFM micrographs of bare PET substrate (left) and Graphene based TCF on 

PET substrate (right). 

Figure 5.10 shows the AFM micrographs for the bare PET substrate (left), and a TCF-coated 

PET substrate in the absence of PEDOT:PSS (image on the right hand side). Similarly, we 

display in Fig. 5.11 our PEDOT:PSS-coated samples prepared at the two extreme spinning 

speeds, 2500 rpm (panel a and b) and 500 rpm (panels c and d). Panels a and c refer to 

PEDOT:PSS films spun on bare PET substrates, while panels b and d are micrographs from 

PEDOT:PSS spun on TCF-coated PET. Since our AFM images (1.5 x 1.5 m) are taken at larger 

magnification than the SEM images, the grain-like structures observed in figure 4.10 represent a 

distribution of the PEDOT and the PSS species within the individual domains, with a level of 

details that cannot be resolved by SEM. 
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Fig. 5. 7: AFM topography images of PEDOT:PSS spin-coated on  (a) bare PET at 2500 

rpm, (b) TCF  coated PET at 2500 rpm, (c) bare PET at 500 rpm and (d) TCF coated PET.  

From visual observations, each PEDOT:PSS film spun on TCF-coated PET substrates does not 

appear to be rougher than the corresponding film on bare PET. Only the PEDOT:PSS domains 

appear to be smaller in size in the case of TCF-coated PET substrates. Such observation 

suggested us to perform a more quantitative analysis of roughness in a larger set of micrographs 

such as those demonstrated in Figs 5.10 and 5.11. The root mean squared (RMS) roughness for 

domains of PEDOT:PSS in different samples was determined as: 
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where N = 512 x 512 is the number of pixels contained in each AFM image, zi is the topographic 

height of the i-th pixel and zav is the average height of the AFM image. The surface skewness 

(SSK) is defined as the asymmetry of the height distribution histogram by the equation: 
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where SSK = 0 indicates  a symmetric distribution of zi, with the same amount of voids and 

pinholes in the sample, while positive and negative values of SSK are indicative of  a flat surface 

with peaks or potholes, respectively. Results obtained using eqs. 1 and 2 are shown in Fig. 5.12. 

For each sample, this figure represents the average over the RMS roughness values obtained 

from ten different scanned regions. 

   

 

 

 

 

 

 

 

 

 

Fig. 5.12: Average values of (a) Surface skewness (SSK) and (b) Root mean squared 

roughness (RMS) of graphene based TCF layer and PEDOT:PSS films spin coated on bare 

PET and TCF-coated PET. Measured values of SSK and RMS for bare PET are 0.04 ± 0.01 

and 0.21 ± 0.05 nm, respectively. The error bars account for the standard deviation for 

several measurements carried out on different areas of the same sample. 
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The bare TCF layer is relatively smooth with an RMS roughness of about 0.4 nm which is nearly 

comparable to that of the PET substrate. It can be observed from Fig. 5.12(b) that the surface 

roughness of the overlying PEDOT:PSS coating increases almost linearly with the thickness of 

the film, and is less significantly influenced by the type of surfaces used during the spin coating 

process. This can be seen from the relative increase in the RMS values of the films having the 

extreme thickness values. At 2500 rpm, the increase in the surface roughness is about 10% 

between the films spin coated on bare PET and TCF-coated PET. The increase is approximately 

25% for films spun at 500 rpm. However, we observe more significant increases in RMS 

roughness, by 38% when the thickness increases from 20 to 225 nm on bare PET and by 58% 

when the thickness increases from 32 to 225 nm on TCF-coated PET, respectively. This is an 

indication of the fact that the most relevant influence factor controlling the roughness of the 

films is not the presence of graphene flakes, but the lack of coalescence of PEDOT:PSS domains 

as the thickness of the film increases. 

On the other hand, while the underlying graphene layer has a limited effects on the RMS 

roughness of the top PEDOT:PSS surface, the surface skewness is mostly determined by the 

spinning speed, irrespectively of the presence of the underlying TCF film.  This consideration 

supports the idea that, during the spin coating process, PEDOT:PSS inter-mingles with the 

underlying TCF layer and, potentially, forms a composite that does not disturb the distinct layer 

forming on top of it. We anticipate that this observation is crucial in order to understand the 

interference effects observed in the optical transmission spectra. 

 

5.2.3 Optical properties of PEDOT:PSS composite medium with graphene 

nanoplatelet inclusion 

Figure 5.13 shows the transmission spectra of PEDOT:PSS spun on bare PET and TCF-coated 

PET substrates. The range of wavelengths in this figure has been chosen in order to observe the 

presence of interference fringes. By comparison with the spectrum of bare TCF (also included in 

Fig. 5.13) it can be suspected that the differences that are noticeable in the interference fringes 

are a result of the formation of an interface between the bottom layer comprising an effective 

medium of PEDOT:PSS and graphene and the top layer of pure PEDOT:PSS (see Fig. 5.14). The 

presence of such an interface results in a significant phase shift for the light crossing the films, 



105 
 

which superimposes, resulting to an increase in the absorbance of the films as the thickness of 

the PEDOT:PSS top layer increases.   
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Fig. 5.13: Normal incidence transmission spectra of (a) bare TCF and PEDOT:PSS spun at 

varying spinning speeds on bare PET at (b) 2500 RPM and on TCF-coated PET substrates 

at (c) 2500 RPM, (d) 2000 RPM, (e) 1500 RPM, (f) 1000 RPM (g) 500 RPM. The spectral 

line labeled (h) is for PEDOT:PSS spun on bare PET at 500 RPM. These spectra were used 

to extract the optical constants of the films. 

 

Fig. 5.14: Structural diagram of our composite films showing a bottom layer formed by an 

effective medium composed by a TCF and PEDOT:PSS and a top layer of pure  

PEDOT:PSS. 
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The refractive indices of our bilayer films have been determined on the basis of the interference 

fringes observed in their transmission spectra. For these estimates, we used an empirical optical 

model based on the Swanepoel‟s method of envelopes between maxima and minima of the 

interference fringes [13]. From fringes produced by multiple reflections of light between the air–

PEDOT:PSS and PET–PEDOT:PSS interfaces, we calculated np, the refractive index of the 

PEDOT:PSS top layer. In order to determine ng, the refractive index of our bottom layer, 

comprising an effective medium of TCF and PEDOT:PSS, we assumed that such layer is 

sandwiched between PET substrate and PEDOT:PSS layers, with known refractive indices.  

The equation suitable for this laminated structure, shown in Fig. 5.14, can be obtained [15], 

assuming that:  

22

gg kn                              (5.3) 

  22

gpg knn                            (5.4) 

  22

gsg knn                        (5.5) 

where kg is the extinction coefficient of TCF and ns = 1.52 is the refractive index of the bare PET 

substrate. From the interference maxima (Tmax) and minima (Tmin), we obtained the refractive 

index of the bottom layer according to the equation  
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From these equations, the effective refractive index of the bottom layer is found to be ng = 2.02 ± 

0.06. We also determined np = 1.78 ± 0.05 for PEDOT:PSS, in good agreement with refs. 14-15 

and the value that can be inferred from interference fringes in the reference thin film prepared 
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from pure PEDOT:PSS. Fig. 5.15 confirms that the refractive index of the TCF layer only 

negligibly changes with the thickness of the PEDOT:PSS top layer.  
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Fig. 5.15: Refractive indices versus thickness of graphene-based TCF and PEDOT:PSS, 

calculated from the envelope of transmission maxima and minima. 

 

5.2.4 Electrical characterization of the nanocomposite of PEDOT:PSS and 

graphene nanoplatelet inclusion 

Fig. 5.16 compares the sheet resistance (Rsh) of PEDOT:PSS spun on bare PET and TCF-coated 

PET at different thicknesses of the top layer of pure PEDOT:PSS. As can be noticed from this 

figure, the thickness of PEDOT:PSS strongly influences the electrical properties of the films.  
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Fig. 5.16: Electrical sheet resistance vs. thickness for films spun at varying spinning speeds 

on bare PET and TCF-coated PET substrates. The sheet resistance of a bare graphene 

based TCF on PET has also been included. 
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A significant improvement is observed when the thickness of PEDOT:PSS increases from 32 nm 

to 225 nm, resulting to a drop in the value of sheet resistance from Rsh = 9.3 MΩ  to Rsh = 970 

kΩ. The highest value, Rsh = 44.4 MΩ, is observed in the thinnest PEDOT:PSS films spun on 

bare PET, with improvements of a factor 4.5 when a TCF layer is incorporated. Consequently, 

also the decrease in Rsh may be understood by adopting a bi-layer model, on the bases of a 

parallel between two resistors, where RTCF is the resistance of the bottom layer (controlled by the 

resistivity of graphene platelets) and RPEDOT is the resistance of the top layer, controlled by the 

resistivity of PEDOT. In this arrangement, the effective sheet resistance Rsh can be written as: 

PEDOTTCFeff R

1

 R

1
  

R

1
                                 (5.8) 

Since RTCF is independent of the spin coating speed and the total film thickness, the observed 

change in Rsh is mainly caused by the decrease of RPEDOT , which is proportional to the film 

thickness. This is in agreement with Fig. 5.16 that shows that the increase of Rsh becomes linear 

as the thickness of the PEDOT:PSS component of the bilayer film exceeds that of the TCF 

sublayer (i.e. for dtot ≥ 50 nm). Therefore, adding a TCF bottom layer, which was beneficial for 

improving the optical properties of the films, is found to not significantly improve the electrical 

properties. 

5.3 Conclusion 

We demonstrated methods to obtain nanocomposites with improved properties. Improvement 

was obtained in the optical transmittance of graphite nanosheet which showed resonance 

absorption at 617 nm spectral position, associated with np-Cu inclusion. Improvement was also 

recorded on the electrical properties of the nanocomposites with a reduction in the sheet 

resistance from 140 KΩ to 46 Ω as a result of np-Cu inclusion. This observation suggests to us 

that the incorporation of np-Cu‟s on the graphite nanosheets provides the interface or conduction 

pathways for improved charge transfer between the nanosheets and, together with the 

transmittance enhancement, the nanocomposite can be a good candidate as hole collector 

electrode in thin film organic solar cell. 

Furthermore, we showed that PEDOT:PSS can be used to coat commercial nanographite 

sheets on flexible substrate such as PET and provide good adhesion with thickness ranging from 
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~200 nm down to ~20-30 nm (close to the thickness of the graphene-based TCF). The coated 

films are optically homogeneous and continuous in the visible region, as witnessed by the 

interference fringes on the transmission spectra. By creating the envelope of the interference 

maxima and minima, we found the refractive indices of our graphene based TCF and 

PEDOT:PSS in the range of 2.02 ± 0.6 and 1.78 ± 0.1 respectively. We showed that the 

reduction in the optical transparency could be linked to the attenuation at the interfacial layer due 

to reflection, scattering and absorption within the PEDOT:PSS domains.  Many of the other 

properties (electrical, morphological) were also studied on the bases of  two-layer model, with 

one layer formed by an effective medium of Graphene based TCF/PEDOT:PSS and a second 

layer of pure PEDOT:PSS layer superimposed to it. There were small beneficial effects of 

having TCF underlayer on the electrical properties of the composite films. However, these 

effects are dominated by the electrical properties of PEDOT:PSS, as the thickness of the latter 

increases beyond 50 nm. The good adhesion of PEDOT:PSS on graphene and the homogeneity 

of these films suggest that they can be suitable substrates, alternative to “pure” graphene 

nanosheets, for growing np-Cu‟s for plasmonic solar cell applications. 
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Chapter 6 

6.1 Conclusions and Future work 

Copper nanoparticles are exhibiting plasmonic excitation in the visible, which is the spectral 

region of interest for their applications in plasmonic solar cells. The work completed in this 

thesis includes the identification of the parameters that are necessary to obtain solar grade copper 

nanoparticles by radio frequency sputtering. By optimizing the sputter growth parameters, we 

determined the conditions that led to the deposition of np-Cu‟s with suitable size and optimal 

substrate area coverage. Increasing the sputtering power benefits the sputtering efficiency, but 

with limited number of voids between the copper nanoparticles that are interconnected. The 

spectral maximum of the transmittance enhancement peak is therefore not significantly affected 

by varying the radio frequency power. However, both the plasma pressure and the substrate 

biasing voltage proved useful in controlling the degree of dispersion of the particles and, hence, 

the spectral position of the transmittance enhancement peak. The observed spectral position 

increased with increasing bias voltage from 547 nm – 562 nm. 

Since as-grown copper nanoparticles were interconnected, it was important to consider 

the effect of thermal treatment in promoting their isolation. It was observed that particle 

migration and coalescence enhanced the formation of isolated particles. Resonant excitation of 

plasmon modes is dependent on the nanoparticle size and the degree of isolation as seen for 

thermally annealed copper nanoparticles. Previous investigations reported surface plasmon 

absorption in copper nanoparticles in the 553 nm – 576 nm spectral range. In our case, plasmon 

resonance excitation spans from 553 nm to 608 nm. This has been assigned to the broad 

distribution of copper nanoparticles that can be obtained our method. The distribution of the 

particles follows very closely a Gaussian distribution function. 

By using collection mode (x, z) SNOM images, we observed the intensity of scattered 

light at different height from the np-Cu surface. Bright and dark regions corresponding to the 

enhancement and depletion of the scattered light intensity were obtained and mapped. No 

enhancement was observed at a distance less than 200 nm from the bare np-Cu surface. This 

position is too far away from the nanoparticles for enabling plasmonic enhancement in thin film 

solar cells and would lead to poor performance of these devices.  However, np-Cu/SiO2 

composites obtained by sputtering showed an extended electromagnetic field enhancement in the 
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vicinity of the sample surface. Such observation leads to a new form of architectural design that 

is required to obtain enhanced performance in plasmonic solar cells. 

The results from this work, provides new insight that awaits to be used to improve the 

performance of thin film cells. Plasmonic organic solar cells incorporating np-Cu‟s are being 

constructed and tested in our laboratory. 
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