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Abstract

Crosshole seismic tomography has been used by Vale to provide geophysical images of

mineralized massive sulphides in the Eastern Deeps deposit at Voisey’s Bay. High reso-

lution seismic images are presented by applying acoustic waveform tomography to these

data. In waveform tomography, an initial model is required which predicts the first arrival

traveltimes to within a half-cycle of the lowest frequency in the data. Because seismic

velocity anisotropy can be significant, the initial model must quantify the anisotropy, as

well as the velocity, in order to meet the half-cycle criterion.

In our case study, di�culties were encountered in generating an accurate anisotropy

model through traveltime tomography, and the starting model for waveform tomography

failed the half-cycle criterion. We formulate a new, semi-global approach for finding the

best-fit 1-D elliptical anisotropy model using simulated annealing, and successfully apply

this technique to the Vosiey’s Bay dataset, as well as synthetically generated datasets.

Keywords: Waveform Tomography, Simulated Annealing, Anisotropy, Inverse Meth-

ods
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Chapter 1

Introduction

We experience life as waves. Imagine sitting on the ocean’s edge, at sunset. Immediately

before us, waves are lapping at the shore. They were set in motion a great distance away,

and arrive here carrying energy, some to be transferred kinetically to the continental

bedrock, and some to be dissapated as heat, and as sound. These new forms of energy are

again, waves: minute vibrations are set up on land, the sound wave propagates through

the atmosphere, heat increases the kinetic energy of surrounding particles, altering their

wavefunctions; a wave of probabilities. We see the ocean itself as the vibrations of a sea

of electromagnetic waves: the dark blue of the water coming from high frequencies, with

the deep red of the sunset at the low frequencies. Outside this limited, visible spectrum,

low frequency radio waves are racing across the Earth, high frequency X and gamma

rays are being created as particles interact at the edge of our atmosphere, and, with a

frequency of one hundred and sixty billion cycles per second, the electromagnetic field

is vibrating more or less uniformly throughout the universe; the echo of the big bang.

Reality seems to be built on the influence of a multitude of waves, of di↵erent types and

frequencies, which are integrated over change (time) to become experience.

One of the most important properties of these waves is the fact that they carry

information. From the astronomer, studying the electromagnetic spectrum of galaxies

billions of light years away, to the physicist, studying quantum wavefunctions with a

pen and paper, to the geophysicist, studying the propagations of elastic waves through

the Earth, one of the key jobs of a scientist is to extract information from waves in a

meaningful manner, and use that information to parameterize a model of the system

under study. Fortunately, many types of waves follow a relatively simple set of rules,

which, if understood, allow the model parameters to be estimated. The focus of this

thesis is the parameterization of an Earth model through the observation of seismic

waves, which propagate elastically through the Earth.
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1.1 The Elastic Wave Equation

When discussing a given system, there are generally two properties that are used to de-

scribe any inherent symmetries: Spatial variation, and directional variation. The term

‘isotropy’ refers to systems which are directionally symmetric, and look identical no mat-

ter what rotation is applied. For example, if a system is isotropic, movement in a certain

direction will be indistinguishable to movement in any other direction, and an isotropic

system is said to have infinitely many symmetry planes and symmetry axes. Homogene-

ity refers to uniformity in composition. For example, if a system is homogenous, it will

appear the same at any position. The opposites of these properties, anisotropy, and het-

erogeneity, refer to systems with a countable number of symmetry planes, and variable

systems, respectively.

When applying the concepts of anisotropy and heterogeneity to the Earth, hetero-

geneity is likely the easiest to imagine. The uneven appearance of rocks on a beach, or

that of an exposed rock face, are good examples. As well, we know the density of rocks

ranges from 0.2 g/cc for Pumice (Whitham and Sparks, 1986) to 12.9 g/cc in the Earth’s

inner core (Smylie, 1992), and seismic wave velocities can vary from less than 1 km/s in

soils (Milsom, 2003) to over 13 km/s near the core-mantle boundary (Dziewonski and An-

derson, 1981). The identification of anisotropy is more subtle. If we are interested in the

anisotropic propagation of seismic waves through the Earth, we are looking to describe

the variation of wave velocity with angle. Thomsen (1986) gives four main factors which

influence the anisotropic propagation of seismic waves:

1. Intrinsic anisotropy, due to symmetric or preferred orientations of mineral grains;

2. The thin bedding of isotropic layers on a scale which is smaller than the seismic

wavelength;

3. The presence of fractures or microcracks, which have a preferred orientation;

4. Nonhydrostatic stresses.

Anisotropy resulting from factors 2-4 is known as extrinsic anisotropy, from the fact

that it is external to any single mineral property. It is readily apparent that extrinsic

anisotropy and heterogeneity are interchangeable in some cases; specifically, their relative

importance depends on the scale under consideration. If we consider a subsurface region

with is composed of finely bedded, isotropic layers, at short wavelengths this region will

appear isotropic and heterogeneous, but at large wavelengths, the region will appear

2



anisotropic and homogeneous (Backus, 1962). In the following discussion, we will see

how seismic anisotropy can arise from any extrinsic symmetries in the elastic tensor.

The wave equation for a general, elastic, anisotropic, heterogeneous medium is

⇢
@2u

i

@t2
� @⌧

ij

@x
j

= f
i

(1.1)

(Aki and Richards, 2002; Tsvankin, 2012), where ⌧
ij

is the stress tensor, ⇢ is the density,

u = (u1, u2, u3) is the displacement vector, f = (f1, f2, f3) is the external force per

unit volume, t is the time, and x
i

are the Cartesian coordinates. Here, the Einstein

summation convention is used, i.e. summation over repeated indices is implied. We are

usually interested in relating the displacement field u to the elastic properties of rocks.

To do this, we first relate the stress tensor to strain, and then the strain to displacement.

If the stress-strain relation is linear, as it is for a small strain (such as that induced by

the passage of a seismic wave (Aki and Richards, 2002)), the generalized Hooke’s law

gives

⌧
ij

= c
ijkl

e
kl

(1.2)

where c
ijkl

is the general fourth-order elastic tensor, and e
kl

is the strain tensor

e
kl

=
1

2

✓
@u

k

@x
l

+
@u

l

@x
k

◆
. (1.3)

Substituting equations (1.2) and (1.3) into equation (1.1) gives

⇢
@2u

i

@t2
� c

ijkl

@2u
k

@x
j

@x
l

= f
i

. (1.4)

This is the general displacement formulation of the elastic wave equation, which is valid

for anisotropic, heterogeneous media. If a trial solution of the form

u
k

= U
k

e(i!(n
j

x

j

/V �t)) (1.5)

is chosen, and we attempt to solve the homogeneous (source free) form of equation (1.4)

⇢
@2u

i

@t
� c

ijkl

@2u
k

@x
j

@x
l

= 0, (1.6)

we obtain three solutions (Tsvankin, 2012), which correspond to three modes of wave

propagation: Pressure (P-wave), horizontal shear (SH-wave), and vertical shear (SV-

wave). For the majority of this thesis, we will focus solely on P-waves. Note that so far

3



we have made a simplifying assumption, which is that the stress-strain relation is linear.

This is important, as higher order terms in equation (1.3) would lead to a nonlinear

wave equation, which is very di�cult to solve. Fortunately, this linear relationship is

appropriate for the study of seismic wave propagation (Tsvankin, 2012).

Examining equation (1.4), we see that if the source f is known, we must know the

values of c
ijkl

before solving for the displacement field u. The general tensor has 34 = 81

components, but inherent symmetries reduce the number of independent components.

First, because the stress and strain tensors are symmetric, the indices i, j, k, and l can

be interchanged in the following way

c
ijkl

= c
jikl

, c
ijkl

= c
ijlk

. (1.7)

As well, from thermodynamic considerations

c
ijkl

= c
klij

(1.8)

(Aki and Richards, 2002). These symmetries reduce the number of independent compo-

nents from 81 to 21. At this stage, it is common to write the elastic tensor as a symmetric

6 ⇥ 6 matrix by following the Voigt recipe for index pairs (i, j) and (k, l):

C
ij

⌘ C
ji

⌘ c(ij), (kl) : 11 7! 1, 22 7! 2, 33 7! 3, 23 7! 4, 13 7! 5, 12 7! 6. (1.9)

For the full, 21 independent elastic parameters, the Voigt-transformed elastic tensor can

be written as:

C
ij

=

0

BBBBBBBBB@

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

1

CCCCCCCCCA

=

0

BBBBBBBBB@

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

1

CCCCCCCCCA

, (1.10)

where the symmetries expressed in equation (1.8) have been exploited, resulting in

C
ij

= C
ji

. Materials possessing this most general of symmetries are known as ‘triclinic’.

Triclinic symmetry can result from, among other things, multiple fracture axes, with

each axis at an arbitrary angle to the others. Unfortunately, the large parameter space

of triclinic models makes any estimations of the parameters severely underdetermined,

and usually additional symmetries are assumed which allow us to decrease the number

4



of independent quantities.

Assuming monoclinic symmetry reduces the number of independent elastic parame-

ters to 13. This stems from the fact that monoclinic media possess a plane of mirror

symmetry. This behavior can result from three or more sets of identical fractures, with

each fracture set possessing a symmetry axis orientated arbitrarily with respect to other

fracture sets. Further reductions to the number of parameters are obtained in the pres-

ence of orthorhombic symmetry, which reduces the required number of parameters to 9.

Orthorhombic symmetry can result from three mutually orthogonal fracture systems, or

two identical fracture systems at an arbitrary angle to each other. One further parameter

space contraction can be made, while still respecting anisotropic behavior, and this is by

assuming transversely isotropic media.

Transversely isotropic (TI) media possess a single axis of symmetry. If the symme-

try axis is tilted at an arbitrary angle, we use the term ‘tilted transversely isotropic’

(TTI), and if the symmetry axis is aligned with vertical, we say the material is ‘vertically

transversely isotropic’ (VTI). The Voigt-transformed elastic tensor for VTI media is

C
ij

=

0

BBBBBBBBB@

c11 c11 � 2c66 c13 0 0 0

c11 � 2c66 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

1

CCCCCCCCCA

, (1.11)

and the total number of independent parameters is now 5. For more general TTI media,

there are still only 5 independent elastic parameters, but additional information on the

orientation of the symmetry axis is needed. General TI media can result from the presence

of a single fracture system. As well, Backus (1962) showed that finely layered media can

appear as e↵ectively TI in the long-wavelength limit (as mentioned above).

If the medium is assumed to be isotropic, which corresponds to the medium possessing

an infinite number of symmetry planes, the number of independent elastic parameters

reduces to 2: ⌘ (the modulus of fluid incompressibility), and µ (the shear modulus),

known as the ‘Lamé parameters’. The Voigt-transformed elastic tensor for isotropic

5



media is

C
ij

=

0

BBBBBBBBB@

⌘ + 2µ ⌘ ⌘ 0 0 0

⌘ ⌘ + 2µ ⌘ 0 0 0

⌘ ⌘ ⌘ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

1

CCCCCCCCCA

, (1.12)

and the complete isotropic elastic wave equation can be written as

⇢
@2u

i

@t2
� (⌘ + µ)

@2u
j

@x
i

@x
j

� µ
@2µ

i

@x
j

@x
j

= f
i

. (1.13)

Another way to further simplify the wave equation is to consider wave propagation

within a fluid. In this case, there is no support for shear stresses, so the shear modulus

(µ) is zero. As a result, only P-waves exist in an acoustic medium. Although the

Earth’s crust is a fully elastic medium, if one is only trying to model P-waves (as is

common in exploration seismology), then using the acoustic wave equation is a useful

approximation (due to the reduction of computational e↵ort required to model acoustic

wave propagation, when compared to the elastic case). In the isotropic approximation,

the acoustic stress tensor first introduced in equation (1.1) is simply

⌧
ij

= �P �
ij

, (1.14)

where P is the hydrostatic pressure, and �
ij

is the Kronecker delta. Substituting this

into equation (1.1) gives

⇢
@2u

i

@t2
+

@P

@x
i

= f
i

. (1.15)

Dividing this relationship by the density ⇢, and taking the divergence, gives

r · @2u
i

@t2
+ r ·

✓
1

⇢

◆
rP = r ·

✓
1

⇢

◆
f

i

. (1.16)

Using Hooke’s Law for a fluid

P ⌘ �r · u (1.17)

we define the pressure P in terms of the displacement (u) and the bulk modulus (),

resulting in 
1



@2

@t2
� r ·

✓
1

⇢

◆
r
�

P = �r ·
✓

1

⇢

◆
f . (1.18)
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This is the acoustic wave equation, which describes the propagation of a pressure wave

in medium with an (isotropic) velocity of

c =

r


⇢
. (1.19)

1.2 Thomsen’s Parameters

To assist in the interpretation of seismic anisotropy in TI media, Thomsen (1986) intro-

duced a set of parameters which are now commonly known as ‘Thomsen’s parameters’.

The purpose of these parameters is to express the influence of anisotropy in terms of the

velocities along the symmetry axes. For pressure waves in TI media, within the symmetry

plane the following parameters are defined:

V
P0 ⌘

r
c33

⇢
;

" ⌘ c11 � c33

2c33
; (1.20)

� ⌘ (c13 + c55)2 � (c33 � c55)2

2c33(c33 � c55)
.

Here, V
P0 refers to the P-wave velocity along the symmetry axis, " refers to the fractional

di↵erence in velocities between the fast and slow axes, and � defines the behavior of V
p

close to the slow (symmetry) axis. The dependence of velocity on angle, in terms of "

and �, can be approximated to first order with the equation

V
P

(✓) = V
P0(1 + � sin2 ✓ + (" � �) sin4 ✓) (1.21)

(Thomsen, 1986). By using Thomsen notation, and if the orientation of the symmetry

plane is known, the number of independent parameters is reduced to 3. Of special rel-

evance to this report is the case where " = �, which is known as elliptical anisotropy.

This case is especially important, as the anisotropic wavefield can be completely char-

acterized (kinematically) by a simple geometrical stretching along the slow axis (Helbig,

1983; Dellinger, 1991; Pratt et al., 2004), and the number of independent parameters is

reduced once again to 2.
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1.3 Seismic Tomography

In all but the simplest cases, the elastic and acoustic wave equations cannot be solved

analytically. As such, computers are used to numerically estimate solutions. These

solutions, in an abstract sense, can be considered as representing forward models. That

is, given the parameters describing a system (i.e. the elastic constants c
ijkl

, the density

⇢, or the bulk modulus, ), and a source f , they describe a physical result (i.e. the

displacement field u, or the pressure field P ). The topic of this thesis is just the opposite,

in that given a physical result, the goal is to infer information on a set of parameters

that led to that result. When the physical result is a collection of transmitted seismic

waveforms, the term ‘seismic tomography’ is used, the mechanics of which are under

the umbrella of inverse theory, which will be reviewed in Chapter 2. Before any formal

discussion of inverse theory, I will quickly introduce ‘waveform tomography’, a subset of

seismic tomography, which is the subject of this thesis.

Historically, seismic tomography has used asymptotic ray theory (ART) to approxi-

mate the propagation of elastic and acoustic waves. This approach assumes that seismic

energy propagates along infinitely thin raypaths between source and receiver locations,

and that the raypaths refract and reflect through heterogeneous media in accordance

with Fermat’s law (asymptotically correct for waves of an infinite frequency) (Červeny,

2001). ART is attractive due to the low computational cost of modelling the raypaths,

and the approximation is valid as long as any heterogeneities present are large compared

to the dominant wavelength (Červeny, 2001). The tomographic reconstruction of Earth

parameters (usually seismic velocity) through the use of ART is commonly known as

traveltime tomography. In traveltime tomography, the relative arrival times of seismic

energy, emanating from a source at time zero, are identified at a series of receivers. This

is known as ‘first arrival picking’, or ‘first break picking’. Within the assumptions of ray

theory, this traveltime T can be related to an integration over a raypath L through the

equation (Červeny, 1972; Červeny and Jech, 1982; Chapman and Pratt, 1992)

T =

ˆ
L

1

⇠(x)
dL, (1.22)

where ⇠(x) is the spatially variable velocity. For a small perturbation to the traveltime

�T , we can write

�T =

ˆ
L

1

�⇠(x)
dL. (1.23)

It is important to note that equation (1.23) is linear for small perturbations. For large

perturbations, the raypath L will itself change, and equation (1.23) will no longer be
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linear. The goal of traveltime tomography is to produce a velocity distribution ⇠(x) that

accurately predicts the traveltimes T , and we call the sum of the squared di↵erences

between the true and predicted traveltimes the ‘data misfit’, or ‘residuals’. Common

practice, which will be expanded upon in Chapter 2, is to iteratively update ⇠(x) until the

data misfit is minimized: Iterations where L is kept constant are called linear iterations;

whenever L is recalculated, we call this a nonlinear iteration.

Due to the phenomena of wavefront healing, the spatial resolution of traveltime to-

mography is limited to the Fresnel zone (Williamson and Worthington, 1993). Regardless

of this limitation, and the condition on validity discussed above, traveltime tomography

has enjoyed much success in both exploration and academic contexts (Zelt and Barton,

1998).

As the power of computers has increased, it has become feasible to move beyond

the ray approximation, and instead to numerically model wave propagation through the

Earth using the elastic or acoustic wave equations. To accomplish this, Earth properties

are usually discretisized onto a grid or mesh, and the wave equations are solved through

finite-di↵erence (Virieux, 1986; Pratt, 1990), finite-element (Shin and Cha, 2008), or

spectral-element (Komatitsch and Tromp, 2002) methods. Tomographic methods using

these techniques are commonly referred to as ‘full waveform inversion’, or ‘waveform

tomography’, and were first introduced by Lailly (1983) and Tarantola (1984). As in

traveltime tomography, waveform tomography seeks to iteratively update Earth param-

eters with the goal of producing a match between synthetically generated and observed

data. However, in waveform tomography the data are seismic waveforms, instead of first

arrival times. Unlike traveltime tomography, wave behavior in complex, heterogeneous

media can be modelled accurately, and the resolution limit of waveform tomography is

on the order of the seismic wavelengths used in the tomographic reconstruction (Wu and

Toksoz, 1987). As well, the use of the wave equation negates the need to approximate

wave propagation along an infinitely thin raypath. Waveform tomography allows the

true multipath nature of the wave equation to be realized, and the result is simulated

propagation along a spatially broad ‘wavepath’ (Woodward, 1992).

Waveform tomography is a popular tomographic method in both industrial and aca-

demic contexts. The technique has been employed successfully across a large range of

scales with both synthetically generated data (Brenders and Pratt, 2007a,b) and real

data (Pratt et al., 2004, 2008; Prieux et al., 2011; Fichtner et al., 2009; Kamei et al.,

2012). A major di�culty in waveform tomography stems from the nonlinearity of the

inverse problem, coupled with the high computational cost of numerically modelling the

wave equation. These di�culties can be mitigated by ensuring that the starting model
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for waveform tomography, commonly found through traveltime tomography (Pratt et al.,

2004; Brenders and Pratt, 2007b; Virieux and Operto, 2009), is very similar to the true

model, and is close to what we call the ‘global minimum’ of the inverse problem (Sir-

gue and Pratt, 2004). As we will see in the upcoming chapters, the degree of similarity

required is directly linked to the frequency bandwidth of the data. As well, instead of

iteratively improving the model by locally minimizing some metric of error (i.e. the dif-

ference between observed and modelled waveforms), global inverse methods may be used

(Sen and Sto↵a, 1995, 1991; Tarantola, 2005), although these methods only mitigate the

e↵ects of nonlinearity, and in fact greatly increase the computational burden. As such,

they are not widely used in the context of waveform inversion, although some examples

do exist (such as Sen and Sto↵a, 1991).

In an exploration context, waveform tomography has been applied extensively in the

oil and gas industry, but its adoption rate has been significantly slower in mineral explo-

ration. Although examples do exist (Xu and Greenhalgh, 2010), this thesis represents

one of the first applications of waveform tomography to a seismic dataset acquired for

the purposes of mineral exploration.

1.4 Objective of Thesis

In this thesis, I investigate the application of waveform tomography, based on the acous-

tic approximation given in equation (1.18) to both a real and synthetically generated

crosshole seismic dataset. In Chapter 2, a review of relevant topics in geophysical inverse

theory is given. Chapter 3 describes how waveform tomography was applied to a real

crosshole seismic dataset, collected by Vale in Voisey’s Bay, Canada. A walkthrough of

the workflow, from first-arrival picking to the completion of waveform tomography, is

given. Major challenges were faced during the processing of this dataset, and these chal-

lenges, along with their solutions, are described. In Chapter 4, I describe the creation and

processing of a synthetic crosshole seismic dataset, which was created to understand the

cause of the challenges described in Chapter 3. A physical interpretation of the cause of

these challenges is given. Finally, Chapter 5 presents some conclusions, and suggestions

for future work.

As we shall see, the generation of an appropriate starting model for use in waveform

tomography is one of the most important, and di�cult, aspects of the technique. The

original work I present here concerns a semi-global method for discovering an appropriate

starting anisotropy model; a method which requires little-to-no human intervention, and

one which blazes the trail towards a stable, automatic, and simple workflow for waveform
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tomography.
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Symbol Description
c
ijkl

Elastic tensor
⇢ Density
⌧
ij

Stress tensor
f Source field
e

kl

Strain tensor
C

ij

Voigt-transformed elastic tensor
⌘ Lamé’s modulus of fluid incompressibility
µ Lamé’s shear modulus
P Pressure
�
ij

Kronecker delta
V

P0 Thomsen’s velocity along a symmetry axis for TTI media
" Thomsen’s epsilon, the fractional velocity di↵erence for TTI media
� Thomsen’s delta, controlling the behavior of velocity close to the symmetry axis
 Bulk modulus
c Pressure wave velocity

Table 1.1: List of elastic properties discussed in this thesis.
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Symbol Description
M Model space, inhabited by elements of m
D Data space, inhabited by elements of d
d Vector of true data points
d̄ Vector of estimated data points
m True model parameters
m̄ Estimated model parameters
g Function performing the mapping M 7! D

g�1 Function performing the mapping D 7! M
P (m) Probability distribution over M, the solution to the inverse problem
E(m) Function measuring the misfit between m̄ and m, and/or d̄ and d
r

m

E Gradient of E(m) at a point m
H Hessian matrix
@T Small, traveltime perturbation
L Raypath
p Traveltime slowness vector

a
ijkl

Density normalized elastic tensor
F

kij

Fréchet derivatives for traveltime tomography
C

d

Data covariance matrix
C

m

Model covariance matrix
�

d

a priori data variance
�

m

a priori model variance
� Relative weight of �

d

and �
m

 Relative weight of isotropic vs. anisotropic parameter perturbations
✏ Weight given to roughness penalization

S(x, !) Impedance matrix
u(x, !) Wavefield
f(x, !) Source field

�d Wavefield residuals at the receiver locations
G Derivative of E(m) at a point m
F Virtual source field
↵ Gradient steplength
T ‘Temperature’ for use in simulated annealing

A(m, T ) Metropolis criterion for a model m at a ‘temperature’ T
G(m) Probability of generating model m

K Boltzmann’s constant

Table 1.2: List of some mathematical symbols
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Chapter 2

Theory

As stated in Chapter 1, one of the goals of geophysicists is to extract meaningful in-

formation from seismic waves, and use the information to parameterize a model of the

Earth. This is the subject of inverse theory. Here I provide a review of some general

concepts in inverse theory, before performing a quick review of (1) anisotropic traveltime

tomography, (2) waveform tomography, and (3) simulated annealing. Common to all

methods is the desire to find a physical model m which is related to a set of data points

d by an operator g, which can be expressed by the general equation

d = g(m). (2.1)

The concept of a model space is defined as a set M spanned by the elements of m. As

well, we say that elements of d span the data space D. Note here that D is usually a

much di↵erent (and smaller) space than M, as in most inverse problems (such as those

described in this thesis) there are usually far fewer data points than there are model

parameters. We say then that the action of g is to perform the mapping M 7! D, known

as the forward problem. Since the model m and operator g will likely not be perfect

representations of reality, the actual solution of equation (2.1) will be an estimate of the

true data, or d̄, and we need to relax the equality.

The purpose of the methods described in this chapter will be to investigate the inverse

relationship

m = g�1(d), (2.2)

which estimates a model from a set of data, or performs the mapping D 7! M. This

type of mapping is known as the inverse problem. Unfortunately, the forward mappings

discussed in this thesis are are often singular or extremely ill-conditioned, so the operator

g�1 is impossible to calculate directly. Even if we were to find g�1, the solution of the
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inverse problem would in general not capture all the details of the true model, as the

forward operator g is itself built on simplifying assumptions. This leads to a need to

relax the equality in equation (2.2) as well, and only allows us to find an estimate of the

true model, m̄. With this in mind, we must take care in our interpretation of what it

means to find a ‘solution’ to the inverse problem.

Tarantola (2005) defines the solution of the inverse problem as a probability distri-

bution over M,

P (m̄ 2 M) = exp(�1

2
E(m̄)), (2.3)

where the ‘misfit function’ E(m̄) is a quantitative measure of the quality of m̄. A common

way to define the misfit function is by the L2 (least squares) norm of the di↵erences

between observed and calculated data, combined with appropriate a priori information,

or

E(m) = (d̄�d)2 +(m̄�m0)
2 = (g(m̄)�d)TC�1

d

(g(m̄)�d)+ (m̄�m0)
TC�1

m

(m̄�m0).

(2.4)

Here we have included a measure of uncertainty by the incorporation of data and model

covariance matrices, C
d

and C
m

respectively. Note that this adoption of the least squares

function assumes a Gaussian probability distribution over the data and model spaces.

Pausing here to consider the justification of assuming Gaussian statistics, it is admitted

that there is no sound justification (Pratt and Chapman, 1992) other than historical use

and success, and the simplification that it provides to the mathematics. The probabilistic

interpretation of inverse problems implies that our goal is to find a model m̄ which is

most likely given the data, and given the prior model. To accomplish this, we can try to

maximize equation (2.3), which corresponds to minimizing E(m).

We can find the minimum of the misfit function by first expanding equation (2.4) in

a Taylor series about m̄:

E(m̄ + �m) = E(m̄) + �mtr
m

E(m̄) +
1

2
�mtH�m + O(k�mk3), (2.5)

where �m is a perturbation about the estimated model m̄, r
m

E(m̄) is the gradient of the

misfit function with respect to the model parameters, and H is the Hessian, defined as

H
ij

= @

2
E(m)

@m

i

@m

j

. We then di↵erentiate this series with respect to the model perturbations

�m, and set the result to zero, obtaining

�m = �H�1r
m

E(m̄). (2.6)
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Note that if g is a linear operator G, and all model parameters are independent, the

above equation reduces to the normal equation for the least squares solution of a linear

system m̄ = (GTG)�1GTd (if m0 = 0). Unfortunately, this reduction is not valid for

the problem presented in this thesis, so many of the powerful theorems of linear inverse

theory do not apply. In addition, for many realistic problems H is an extremely large

matrix, and is very expensive to calculate, let alone invert.

Instead of using equation (2.6), perturbations to the model are usually found by using

information on the local gradient of the misfit function, and model updates are iteratively

estimated using

m(k) = m(k�1) � ↵(k�1)r
m

E(m)(k�1), (2.7)

where k refers to the iteration number. Let us carefully interpret equation (2.7). The

location in model space of m at iteration k is equal to the location of m at the previous

iteration, minus some constant ↵ times the local gradient direction of the misfit function.

What this means is that each successive model is found by moving a distance ↵ downhill

in the misfit function. Algorithms which update models in this fashion, by exploiting

information on the local derivatives of E(m), are known as local inverse methods, or

descent methods. It is obvious that if E(m) has a definite single minimum, and rE
m

(m)

points downhill for all m 2 M, then a local inverse method will converge to the best-

fit model every time. As we will see in the upcoming sections, for problems we are

interested in this condition is never satisfied. While there are many clever variations on

equation (2.7), all local inverse methods rely on the same concept: That of successive

minimizations to the misfit function along the gradient direction, with the assumption

that the initial model is strictly ‘uphill’ from the global minimum of E(m).

An alternative to local inverse methods are global inverse methods. Global inverse

methods place little to no weight on the structure of the misfit function, and instead

try to find m̄ by ‘exploring’ the model space M. The simplest example of a global

optimization method is a grid search, which tests discrete models m
i

in M, and which

returns an ensemble of models which best fit the data (as evaluated by E(m)). A subtle,

but very important, point must be made here. In defining P (m) in equation (2.3), we

interpreted the solution of the inverse problem as a probability distribution over M. In the

local optimization routines discussed thus far, this interpretation has been suspiciously

neglected, and presented a single solution mk which best fits the data. This is because

of the deterministic nature of gradient algorithms, which in most cases sample M much

too sparsely to make any rigorous claims about P (m). Global optimization methods,

which by their nature sample the entire model space, overcome this problem, and their

solutions lead to the natural interpretation of equation (2.3) as a probability distribution.
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Similar to global inverse methods are ‘semi-global’ inverse methods, which sample a large

portion of the model space, but as well exploit information on the structure of the misfit

function. While extremely robust, global and semi-global inverse methods have not been

widely adopted in traveltime or waveform tomography. This is mainly due to the extreme

size of the parameter space, and the significant amount of time needed to perform the

forward modelling.

I have pointed out some of the strengths and weaknesses of local and global inverse

methods, and will now review three specific examples of inverse methods relevant to the

subject of this paper.

2.1 Traveltime Tomography

Chapman and Pratt (1992) and Pratt and Chapman (1992) showed that a traveltime

perturbation �T , for a qP-wave due to a small variation in background elastic proper-

ties, can be related to an integration along the corresponding seismic raypath L by the

expression

�T = �1

2

ˆ
L

1

↵3
p̂

i

p̂
l

p̂
j

p̂
k

�a
ijkl

dl, (2.8)

where ↵ represents the isotropic background velocity, p is the slowness vector in an

unperturbed, isotropic medium, and �a
ijkl

is a small perturbation to the general, density-

normalized elastic tensor. Note that this is very similar to equation (1.23), although it

is more general, as it contains contributions from the full (density-normalized) elastic

tensor a
ijkl

, not just the isotropic velocity. To examine how we might invert for the

parameter perturbations p, given a traveltime error �T , I follow the derivation of Pratt

and Chapman (1992). If, as is common in 2-D cross-borehole traveltime tomography, the

rays are assumed to be confined to the 2-D plane (x1, x3), p̂2 is always 0, and the number

of independent terms in the above integral can be reduced to 5:

�T = � 1

2↵3

ˆ
L

(p̂4
1�q1 � p̂3

1p̂3�q2 � p̂2
1p̂

2
3�q3 � p̂1p̂

3
3�q4 � p̂4

3�q5)dl, (2.9)

where

�q1 = �a1111; �q2 = 4�a1131; �q3 = 2�a1133 + 4�a3131; �q4 = 4�a3331; �q5 = �a3333. (2.10)

We discretize equation (2.9) in order to solve it in a computationally tractable manner,
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leaving us with the linear system of equations

�T
k

= F
kij

�q
ij

, or �T = F�q, (2.11)

which relate the parameter perturbations �q
ij

(the jth elastic parameter (j = 1, ..., 5) in

the ith region (grid point)) to the traveltime perturbation of the kth ray �T
k

through

a multiplication by the Fréchet derivatives F
kij

. Through discretization, we replace the

integral in equation (2.9) by a summation, and replace the variable of integration with

4l
ki

, which is the distance that ray k travels in cell i. This leaves us with a general

expression for the Fréchet derivatives (Pratt and Chapman, 1992)

F
kij

=
@T

k

@q
ij

= � 1

2↵3
p̂5�j

1 p̂j�1
3 , j = 1, ..., 5. (2.12)

Of course, in any realistic tomography experiment, it is unlikely that the isotropic

component of velocity ↵ will be exactly correct. Pratt and Chapman (1992) add an

additional parameter �q0 = �↵2 into this system of equations to represent perturbations to

the isotropic background velocity. This results in the now non-linear system of equations

�T =F�q̂, (2.13)

as the parameter update may contain a perturbation to the isotropic velocity, which

equation (2.12) is itself dependent on. As discussed in Chapter 1, the distribution of

raypaths throughout the model will change with velocity, and as such the term 4l
ki

will

also change. We handle this limitation by iteratively updating the model: after a new

↵ distribution is obtained, we relinearize equation 2.12 (by re-calculating raypaths) and

estimate a new set of parameters �q̂.

We can relate equation (2.13) to the general relationship given in equation (2.1), with

�T taking to role of the data, �q̂ taking the role of the model, and F representing the

map from M 7! D. Of course, we are interested in the inverse mapping D 7! M. This

physically describes how di↵erences in the traveltime residuals �T are related to changes

in the model. To find the best fit model, we define a misfit function similar to equation

(2.4) to quantify the data misfit

E(m) = ��2
d

(F�q̂ � �T)T (F�q̂ � �T) + �q̂TC�1
p

�q̂, (2.14)

in which we have assumed that the data are uncorrelated and have equal variance (C
d

=

�2
d

I), and that all a priori information on the model is contained completely within the
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model covariance matrix C
p

(�q̂0 is 0). If we substitute this into equation (2.6), we obtain

�q̂ =(FTF + �2
d

C�1
p

)�1FT �T, (2.15)

where the quantity within the brackets takes the place of the Hessian. As in equation

(2.6), the quantity FTF is di�cult to invert by itself, and the addition of the term �2
d

C�1
p

serves to better condition the system of equations. Pratt and Chapman (1992) construct

the model covariance matrix by making the following assumptions:

1. Each of the model parameters are uncorrelated and have an uncertain variance;

2. Variances of the anisotropic parameters are smaller than those representing isotropic

velocity;

3. The parameter perturbations are spatially smooth.

Assumption (1.) is equivalent to setting C
p

= �2
p

I, which transforms equation (2.15) to

�q̂ = (FTF + �2I), where � = �

d

�

p

. Assumption (2.) implies that more weight will be

given to the isotropic velocity than to the anisotropic components, and requires a careful

ordering of the parameters. Here we now define �q̂0 to represent the isotropic velocity,

and �q̂
j

, j = 1, ..., 5 to represent the purely anisotropic parameters. Augmenting C
p

, we

add C
p

= �2
p

�

2

�

2+

2 for parameters �q
j

, j > 0. This results in the system

�q = (FTF + �2I + 2I0)�1FT �T, (2.16)

where I0 is a modified identity matrix where the elements corresponding to �q0 are equiv-

alent to zero.

Let us interpret the roles of � and :

• If � is large, this implies that �
d

> �
p

. This means that the variance in the data

is larger than the variance in the model parameters, and results in the final model

being similar to the a priori model, at the expense of a better fit to the data.

• If � is small, this implies that �
d

< �
p

. This means that the variance in the data

is small (i.e. the first arrival picks are accurate), and the variance in the model

parameters is large (i.e. can be updated to a position far from the a priori model).

The parameter  takes the role of assigning a relative variance between the isotropic

velocity and anisotropic parameters:
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• If  is small, the variance of the anisotropic parameters will be almost completely de-

termined by the a priori model variance. This allows the introduction of anisotropy

into the model without significant increases to E(m).

• If  is large, the variance of the anisotropic parameters will be much smaller than

the a priori model variance, and perturbations to any anisotropic parameters will

significantly a↵ect the value of E(m). This penalizes any introduction of anisotropy

into the model.

The assumption (3.) that the parameter perturbations are spatially smooth is an inter-

esting one, and will be very important to the body of this thesis. Its incorporation stems

partly from the seemingly incompatible concepts of the coarse resolution of traveltime

tomography, which is theoretically limited by the size of the Fresnel zone, due to wave-

front healing, and the ray theoretical approximation, which approximates the passage

of seismic energy as being limited to infinitely thin ray paths. What we are left with

is a method which can only update the low wavenumber parameter features, but which

itself is based on a high frequency (and wavenumber) forward model. Although this

approximation is valid in the limit where the heterogeneities are much larger than the

seismic wavelength (Červeny (2001)), it will break down in areas of strong, rapidly vary-

ing heterogeneity. Some consequences of this breakdown will be presented in Chapter

4.

To incorporate the assumption of smoothness, we penalize rough solutions by modi-

fying equation (2.16):

�q = (FTF + �2I + 2I0 + ✏2RTR)�1FT �T (2.17)

(Pratt and Chapman, 1992), where " gives weight to the entries in the roughness matrix

R. In this implementation, 3 separate roughness matrices are used: R
x

, R
z

, and Rr2 .

R
x

and R
z

take the form of finite di↵erence stars, and represent the gradient of the

model in the x and z directions respectively. Rr2 is a 2-D laplacian finite di↵erence star,

which represents the magnitude of the curvature of the model.

Finally, we can incorporate all the regularization terms into the system

�q̂ = (F̂T F̂)�1F̂T �T̂ (2.18)

(Pratt et al., 1993), where F̂ = (F ✏R
x

✏R
z

✏Rr2 I0 �I)T and �T̂ = (�T 0 0 0 0 0)T ,

which gives an expression for the parameter perturbations �q̂. In practice, however, the

matrix inversion in (2.18) is almost never calculated, due to the computational expense
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of inverting the large matrix (F̂T F̂). Instead, Pratt and Chapman (1992) use the LSQR

solver (Lanczos, 1950; Paige and Saunders, 1982), which is similar in form to the gradient

algorithm given in equation (2.7), in that it searches for a best fit solution by exploiting

information from the local derivatives of the misfit function. Once the values of �q̂ are

found, it is possible to map them into the equivalent Thomsen’s parameters " and � via

a coordinate transform (Chapman and Pratt, 1992; Pratt and Chapman, 1992).

The degrees of freedom in the above regularization parameters scheme suggest that

a proper strategy is needed to choose values for �, , and ✏. Pratt and Chapman (1992)

suggested that the regularization parameters be chosen according to the appearance of

a suite of tomograms, and relaxing the constraints until a model is generated which fits

the data to within an acceptable margin of error while remaining geologically plausible.

Deciding what an ‘acceptable margin of error’ is can be somewhat ambiguous, and Pratt

and Chapman’s (1992) suggestion is to try and fit the data to within the estimated picking

error. We shall see in the next section that if the goal of traveltime tomography is the

generation of a starting model for waveform tomography, a much more quantitative and

less subjective estimate of the acceptable margin of error is provided: That the error in

the traveltime residuals be less than one-half of the period of the lowest frequency waves

present in the survey data (Sirgue and Pratt, 2004). This is known as the ‘half-cycle

criterion’.

2.2 Waveform Tomography

Waveform tomography is a form of high resolution seismic tomography (Tarantola, 1984;

Pratt et al., 1998; Virieux and Operto, 2009). In waveform tomography, we are interested

in inferring information on geological parameters by exploiting the ‘full wave equation’,

rather than basing inversions on the restrictive ray-theoretical approximation. Before

proceeding, I must clarify what is meant by the ‘full wave equation’. In reality, seismic

waves propagating through the Earth exist in several modes (pressure, shear, surface,

etc.), and dissipate energy as heat. To completely characterize seismic wave propaga-

tion, we then need a visco-elastic wave equation. If we attempt to simplify the picture

by setting the shear modulus to zero, we are left with the visco-acoustic wave equation.

Furthermore, while the true Earth is three dimensional (3-D), a common simplification in

exploration seismic tomography is made by restricting wave propagation to two dimen-

sional (2-D) slices. For the above reasons, these simplifications serve to void the use of

the ‘full wave equation’ in waveform tomography. For this thesis, the wave equation that

is adopted is the 1-D isotropic acoustic wave equation, with modifications to approximate
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elliptical VTI anisotropy.

Any discretized wave equation in the frequency domain can be represented in matrix

form as (Marfurt, 1984; Pratt et al., 1998)

S(x, !)u(x, !) = f(x, !), (2.19)

where S(x, !) is a (complex-valued) impedance matrix, u(x, !) is the wavefield, and

f(x, !) is the source term. Note that each term is dependent on both the spatial location

x (x
i

2 R3) and the frequency !. We are interested in estimating the wavefield u at any

point in the model. Accomplishing this would require us to invert the impedance matrix,

giving

u = S�1f , (2.20)

dropping the spatial and frequency dependence for sake of clarity. Comparing equation

(2.20) to equation (2.1), we see that equation (2.20) can be viewed as a forward modelling

equation, where S�1f takes the place of g(m), and u (at the receiver positions) takes

the place of d. In practice, S�1 is not calculated; instead its factorization into lower

and upper triangular matrices (LU factorization) is calculated. The LU factors can be

saved, making the solution of equation (2.20) for multiple sources very e�cient (Pratt

and Worthington, 1990).

To see how we might solve the inverse problem, let us examine the gradient of the

misfit function more closely. We choose equation (2.4), and for simplicity we do not

include a priori model constraints. As well, we set the data covariance matrix C
d

= I.

This gives:

E(m) =
1

2
⇥ (g(m) � d)t(g(m) � d)⇤, (2.21)

where the complex conjugate (⇤) is used to ensure that the misfit function is real-valued

for general, complex-valued data. Introducing the linear operator G as the derivative of

g at a point m
⇣
G = @g(m)

@m

⌘

g(m + �m) = g(m) + G�m + (k �m k2), (2.22)

we can calculate the gradient via a formal di↵erentiation

rE
m

(m)�m = lim
⌫!0

1

⌫
{E(m + ⌫�m) � E(m)}. (2.23)
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This gives the gradient in each direction �m as

r
m

E(m) = Re
�
Gt(g(m)⇤ � d⇤)

 
= Re

(✓
@g(m)

@m

◆
t

(g(m) � d)⇤

)
. (2.24)

Let us attempt to physically interpret equation (2.24). Remember that g(m) represents

our forward modeled wavefield u
est

, and that our data d are the observed wavefields, or

u
obs

. Substituting this into equation (2.24) gives

r
m

E(m) = Re

⇢✓
@u

est

@m

◆
(u

est

� u
obs

)⇤
�

. (2.25)

We now see that the gradient of the model parameters is simply the wavefield residuals

(u
est

� u
obs

) pre-multiplied by the partial derivatives of the estimated wavefield with

respect to the model parameters m, or the ‘partial derivative wavefields’ (Pratt et al.,

1998).

Let us examine how we might calculate the gradient using equation (2.25). First,

we must calculate u
est

by the application of forward modelling operator to the set of

model parameters, which corresponds to one evaluation of g(m), and is equivalent to the

evaluation of equation (2.20). We then calculate the wavefield residuals �d at the (n)

receiver positions, giving (Pratt et al., 1998)

�d
i

= u
i

� d
i

, i = (1, ..., n), (2.26)

where i is the receiver number. The wavefield residuals are then pre-multiplied by the

partial derivative wavefields to obtain the gradient. Unfortunately, the calculation of

the partial derivative wavefields in the form shown in equation (2.24) is prohibitively

expensive. We must perform one forward model for a perturbation in each direction

�m 2 M, where each time we evaluate g(m). Fortunately, there is a much more e�cient

way to calculate the gradient.

To arrive at another expression for the partial derivative wavefield from equation

(2.24), we can take the derivative with respect to the model parameters of equation

(2.19). This gives
@u

est

@m
= �S�1

✓
@S

@m
u

est

◆
. (2.27)

Here, we note that this equation is actually very similar to equation (2.20), with the
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source term f replaced with � @S

@m

u
est

. In fact, we can then rewrite equation (2.27) as

@u
est

@m
= �S�1F (2.28)

where F
i

= � @S

@m

i

u
est

, and each F
i

is known as a ‘virtual source’ (Pratt et al., 1998).

Now, we can evaluate the required partial derivative wavefields by propagating each

virtual source throughout the model. This has some e�ciency gains over the direct

implementation of equation (2.25), as S�1 only needs to be evaluated once. However,

this form is still requires the propagation of m virtual sources, and is still much too

computationally ine�cient. Fortunately, we do not need to calculate the partial derivative

wavefield explicitly, as we are interested only in the gradient of the misfit function. This

means that what we are really interested in is the action that the partial derivative

wavefield has on the wavefield residuals.

Substituting equation (2.28) into equation (2.25) gives

r
m

E(m) = Re
�
(S�1F)t�d⇤ = Re

�
Ft(S�1)t�d⇤ (2.29)

This is an important result. Now, instead of m + 1 wavefield propagations (1 to initially

calculate u
est

, and m to calculate the response of each virtual source), we now require

only one, with the complex-conjugated wavefield residuals �d taking the place of the

source term.

The gradient of E(m) can now be interpreted as follows: The time-reversed data

residuals are propagated through the model, by means of the transpose of the forward

operator. Note that for reciprocal problems, (S�1)t = S�1. At each point in the model,

the back-propagated residual wavefield is then multiplied by the corresponding virtual

source, and the complete gradient has been obtained. Note here that we have saved a

significant amount of computational e↵ort: The full calculation of the gradient direction

requires only two propagations, one to calculate u
est

, and one to calculate the residual

wavefield. With this information, we are now closer to being able to use equation (2.7).

Next we need the steplength ↵, and our initial model m0. To calculate the step

length, we use the standard linear step length estimation

↵ =
k r

m

E(m) k
k Jr

m

E(m) k (2.30)

(Pratt et al., 1998). To evaluate this expression, we perturb the model parameters by a

small amount in the gradient direction (say, 1%), and calculate J through a finite di↵er-
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ence approximation. This requires the estimation of a new wavefield, u↵, bringing the

total number of modelling steps to three. Other search techniques, such as a line search,

or a golden section search, which remain true to the nonlinear nature of the forward

problem, are applicable, although these methods require additional forward models, and

often the linear estimation is su�cient (Pratt, 1999). If desired, at each iteration the

estimated source, f(x, !), can also be updated according to the equation

f(!) =
u⇤d

u⇤u
, (2.31)

where in this case u is a delta-function source. This results in one additional modelling

step (to estimate the wavefield in the new, updated model).

We now have all the ingredients of a gradient-based inversion, save for the starting

model. In waveform tomography, it is common to obtain a starting model through trav-

eltime tomography as described in section 2.1. Inserting a starting model into equation

(2.7) as m0, we seek to iteratively improve m0 until we have decreased the wavefield

residuals by a su�cient amount, at which point we stop iterating. A quick look at what

the residual wavefield actually represents, though, gives some pause. The complex-valued

frequency domain acoustic wave equation has two defining properties at any given fre-

quency: amplitude and phase. For this project we will ignore amplitudes, and only

include the wavefield phase in our definition of the residuals due to the robustness of

phase information in highly heterogeneous media. If we consider phase, we can quickly

see that the behavior of the residuals is oscillatory. They will be at a maximum when

the real and observed wavefield are ±⇡

2 out of phase, and will decrease monotonically as

the phase error approaches either 0 or ⇡.

When coupled with a gradient-based inversion scheme, these facts are disturbing.

If the estimated wavefield through the initial model is out of phase with the observed

wavefield by more than ⇡

2 , the only way to decrease the residuals will be to move the

phase towards ⇡. This would result in an erroneous final model, which has converged to

the wrong cycle, as gradient-based optimizers will never produce model updates which

increase the value of the misfit function. This pathological behavior is the reason we

identified the half-cycle criterion in the previous section. If the initial model predicts

the first arrivals waveforms to within a half cycle of their correct arrival time, then the

gradient-based updates will perturb the model in the correct direction. Usually, we test

the half cycle criterion by visually inspecting time-domain waveforms modeled using the

starting model. If the real first break picks match the predicted waveforms to within one

half cycle, we can proceed confidently with gradient-based waveform tomography. This
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also exemplifies the importance of low frequencies in waveform tomography, as lower

frequencies will have longer cycle times, which will allow the half cycle criterion to be

more easily met (Sirgue and Pratt, 2004).

2.3 Simulated Annealing

In the previous two sections, I described the application of local inverse methods to

tomographic problems. As discussed above, an alternative to this approach is the use of

global inverse methods. Instead of trying to approximate the general inverse operator

g�1(d) : D 7! M, global inverse methods rely on repeated applications of the the forward

operator g(m) : M 7! D, and attempt to build a statistical picture of how the model

space maps into the misfit function. In this section, I give a general overview of simulated

annealing, a type of semi-global inverse method. I use the term semi-global, as simulated

annealing (SA) does not search the entire model space, but is designed to exploit some

information on the structure of the misfit function.

The concepts behind SA are taken from statistical mechanics, specifically from the

analysis of a solid cooling in a heat bath, which we refer to as the system. If the system

is in thermal equilibrium at a temperature T , the probability that the system will be

in a state i with energy E
i

is given by the Gibbs, or Boltzmann probability distribution

function (PDF)

P (E
i

) =
exp(�E

i

/KT )P
j2S

exp(�E
j

/KT )
=

1

Z(T )
exp(�E

i

/KT ), (2.32)

where S consists of all possible system configurations, K is Boltzmann’s constant, T is

the temperature, and Z(T ) is the partition function

Z(T ) =
X

j2S

exp

✓
� E

j

KT

◆
. (2.33)

The temperature is then reduced slowly, such that the system remains near equilibrium,

and as T ! 0, the probability that the system is in the ground state (in a state i where

E
i

is as low as possible, defined as E
g

) approaches 100% (Sen and Sto↵a, 1995). If the

system is cooled quickly (known as quenching), then the material may freeze in a state

where E
i

6= E
g

, forming a glass.

Re-casting the above concept using the terminology of inverse theory we have devel-

oped in the previous sections, we associate E
i

with the value of the misfit function E(m)
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at a point m 2 M. T is a control parameter with same dimensions as the misfit function,

and the constant K is set equal to 1, yielding

P (E(m)) =
1

Z(T )
exp(�E(m)/T ) (2.34)

(Sen and Sto↵a, 1995). It can be seen that if we explore the model space randomly

at a given temperature, after a suitable number of iterations, we will obtain a Gibbs

PDF over M. However, equation (2.34) does not look like a suitable inverse method yet.

In fact, it only suggests a random grid search, which we discussed earlier as being too

computationally expensive for realistic problems. In addition, it relies on the computation

of the partition function given in equation (2.33), which itself relies on the computation

of E(m) for all m 2 M. If SA is formulated as in equation (2.34), we must begin by

mapping the entirety of the misfit function, which would negate the need to use SA, or

any other inverse method.

There are several ways to simulate the evolution of a heat bath without explicitly cal-

culating the partition function (Sen and Sto↵a, 1995). The one we adopt is the Metropolis

algorithm (Metropolis et al., 1953). The algorithm proceeds as follows. First, a random

perturbation is made to a model m(k), resulting in m(k+1)
�
m(k+1) = m(k) + 4m (m(k), m(k+1) 2 M)

 
.

The misfit function E(m) is evaluated for m(k) and m(k+1). Depending on the values of

E(m(k)) and E(m(k+1)), m(k+1) is accepted with a probability A(m(k+1), T (k+1)) where

A
�
m(k+1), T (k+1)

�
=

8
>><

>>:

exp

 
�

E
�
m(k+1)

�
� E

�
m(k)

�

T (k+1)

!
if E

�
m(k+1)

�
> E

�
m(k)

�

1 if E
�
m(k+1)

�
 E

�
m(k)

�
.

(2.35)

This formula is known as the Metropolis criterion (Metropolis et al., 1953). We can write

the probability P(m
j

), of generating any model m
j

2 M as

P(m
j

) = G(m
j

) ⇥ A(m
j,

T (k))

G(m
j

) =
1

M
, (2.36)

where G(m
j

) is the generation probability of m
j

, depending inversely on the number of

elements M in M. Note that here we are assuming a finite size for M, and that the

generation probability is uniform.

Let us interpret the Metropolis criterion in terms of inverse theory. Assume that we

start from a randomly generated model m(k), and subsequently select a random model
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m(k+1), E(m(k+1))  E(m(k)
i

).

Equation (2.35) tells us that this particular m(k+1) would be accepted every time.

If this were the entire algorithm, we would essentially be using a local inverse method

(albeit a very ine�cient one), as only models which decreased the value of the misfit

function would be accepted. Topographically, this is akin to only moving downhill in the

misfit function. The semi-global characteristics of simulated annealing are brought into

play when E(m(k+1)) > E(m(k)), and the Metropolis criterion is tested. There is now

a finite probability that m(k+1) will be accepted, even though it has increased the total

misfit, and has climbed ‘uphill’ in the misfit function.

Equation (2.35) shows that this probability is a function of the di↵erence in misfit

values between m(k+1) and m(k), as well as the parameter T (k+1). For a large T , the

probability that m(k+1) will be accepted
�
E(m(k+1)) > E(m(k))

�
will be greater compared

with the same m(k+1), m(k) pair at a smaller value of T . At T = 0 the probability that

this m(k+1) is accepted drops to 0. Again, we see that SA behaves like a local inverse

method in the limit T ! 0.

To use simulated annealing with the Metropolis algorithm, we begin at iteration 0

with a high value for T 0, and slowly decrease T k over the course of the inversion. While T k

is large, most model perturbations will be accepted. As T k decreases, only perturbations

which decrease E(m), or which only increase E(m) by a small amount, are likely to be

accepted. Eventually, once T k drops to a low enough value, it will be overwhelmingly

unlikely that any model perturbations that increase the misfit will be accepted, and we

assume convergence.

Note the following limitations to simulated annealing: If any finite-time cooling sched-

ule is used, there is still a chance that the the global minimum of E(m) will not be found.

To overcome this, we should set the cooling schedule to be as slow as possible. However,

we still require that the algorithm will finish in a reasonable amount of time. As a com-

promise, the cooling schedule is usually set so that SA will be complete after a certain

amount of computer time, or after a certain number of iterations (Sen and Sto↵a, 1995).

By doing this, we trade a guarantee of convergence for the understanding that conver-

gence is overwhelmingly likely. Unfortunately, setting cooling schedules in this manner is

largely ad-hoc and problem dependent (Tarantola, 2005; Sen and Sto↵a, 1995), although

Nulton and Salamon (1988) and Mosegaard and Vestergaarad (1991) develop implemen-

tations which set the cooling schedule according to some statistical information gained

during the model search. Also, we require an estimate of the initial temperature T0. We

must ensure that at this temperature the Metropolis criterion will be passed for a large

variety of models; otherwise, the initial model will have an impact on the final result.
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The choice of the initial temperature also is problem dependent, although I suggest a

strategy in Chapter 3.

A comprehensive review of global and semi-global inverse methods within a geophys-

ical context is given by Sambridge and Mosegaard, 2002.
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Chapter 3

Results from a Real Crosshole

Dataset

Here I describe the application of the methodologies introduced in Chapter 2 to a real,

crosshole seismic dataset, which was provided to us by Vale. I will refer to this data set

as the 540-542 dataset (Perozzi et al., 2012).

3.1 Geologic Background

The Voisey’s Bay deposit, located on the East Coast of Canada in Labrador, contains sig-

nificant economic quantities of sulphide-hosted nickel, copper, and cobalt ores. Through

an exploration program funded by Diamond Field Resources, the deposit was first dis-

covered by Archean Resources in 1993. The property was purchased by Inco in August,

1996, and Inco was subsequently purchased by Vale in 2006, to form Vale-Inco. Recently,

Vale-Inco has been re-branded as simply ‘Vale’, and as such Vale is the current owner of

the Voisey’s Bay deposit (Evans-Lamswood et al., 2000).

The mineralized deposits are part of the Voisey’s Bay Intrusive Suite, which con-

sists primarily of layered troctolite-gabbros intruding into Archean quartz-feldspar-biotite

gneisses of the Nain province, and Proterozoic sulfidic garnetiferous paragneisses of the

Churchill province (Ryan et al., 1995). Part of the Nain Plutonic Suite, the intrusion is

dated between 1.34 and 1.29 Ga (Ryan, 1996). There are two magma chambers asso-

ciated with the Voisey’s Bay deposit, known as the Eastern Deeps and Western Deeps

chambers. As this project deals solely with the Eastern Deeps chamber, details of its

geology will be expanded upon.

The Eastern Deeps magmatic system consists of a feeder tube (the Eastern Deeps

Feeder), which leads into the large Easter Deeps Chamber. A geologic cross section of

30



Figure 3.1: Geological cross-section of the Eastern Deeps deposit. From Evans-
Lamswood, 2000.

the area is given in Figure 3.1. The main control on the location of mineralization is

thought to be structural, which implies that deposition is controlled by morphological

changes in the conduit geometry, and not by gravitational settling within the chamber

itself. Evidence for this can be seen in Figure 3.1, where the majority of the mas-

sive sulphide mineralization occurs where the Eastern Deeps Feeder enters the Eastern

Deeps Chamber. Outside this area of massive mineralization, the chamber is domi-

nated by troctolite-gabbros, containing a variable amount of sulphide fragments, and

granite/syenite. We were provided with data from the Eastern Deeps Chamber, in the

form of seismic waveforms obtained from a crosshole seismic survey designed to map the

continuity of the sulphide mineralization as it exited the Eastern Deeps Feeder.

A crosshole seismic survey refers to a seismic tomography experiment in which seismic

sources and receivers are inserted into two, roughly parallel boreholes (the source and

receiver holes, respectively). Seismic energy generated at the source hole through some

mechanism (either impulsively, as with a hammer source, or over time, as with a swept-

impact source), then propagates and is recorded in the receiver hole by an array (or

‘fan’) of receivers, which may consist of geophones or hydrophones. The purpose of such

a survey is to use the information carried by the received waveforms, along with the

geometry of the sources and receivers, to infer information on the geology between the
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boreholes. This information is usually presented in the form of a tomographic velocity

image of the between-hole velocity structure.

The specific boreholes in the crosshole survey of interest were drilled in 2000 by Boart

Longyear (Inco, 2000). After drilling, the borehole geometries were investigated with the

use of a north-seeking gyro, which recorded the azimuthal orientation and dip of the

holes at 30 m intervals. As expected from the geological cross section, a large portion

of the boreholes intersected troctolites containing variable amounts of sulphide, but also

intersected an approximately 60 m thick zone of dipping mineralized massive sulphides

at depth, corresponding to the location of the Eastern Deeps Feeder.

3.2 Survey Details

Since the main goal of the survey was to investigate the continuity of the massive sulphide

zone, the survey geometry was designed accordingly. In the receiver hole, a string of 29

hydrophones, spaced 2 m apart, was used. Three receiver fans were used, each spaced

60 m apart. This resulted in a total of 87 unique receiver locations. Sources were spaced

at 1 m intervals in the source hole, and 121 shots were recorded for each receiver layout.

The combination of a static receiver layout and the corresponding shots is called a panel,

and thus in total 3 panels were shot. As there was some overlap in the shot locations

after a layout change, the total number of unique shot locations was 236. The shots

thus extended for a total of 236 m, beginning approximately 100 m above the top of

the massive sulphide zone, and ending approximately 50 m below its bottom. Due to

the dip of the target zone, the first receiver was also approximately 100 m above the

top of the massive sulphide zone. Unfortunately, due to the truncation of the receiver

borehole, the final receiver was located only a few meters below the target zone. The

hole-to-hole o↵set at the survey depth was approximately 30 m, although this narrowed to

approximately 27 m near the bottom of the holes. Both the source and the hydrophones

were manufactured by Vibrometric Ltd. A schematic of the survey geometry, overlaid on

an estimated geological map (derived from Figure 3.1), can be seen in Figure 3.2.

The source was based on the Swept Impact Source Technique (SIST) (Park et al.,

1996), as opposed to a traditional impact source. In SIST, a single shot consists of a

series of relatively low amplitude pulses, generated by applying a voltage to a stack of

piezoelectric crystals. Each pulse excites an identical wavelet, in which the frequency

of excitation monotonically increases with time. After a shot is complete, the received

waveform is decoded, and represented as a single pulse. This allows an acceptable signal-

to-noise ratio to be achieved without using high energy impulsive sources (which can
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Figure 3.2: Hypothetical geological cross-section illustrating the expected geology at
survey depths. The majority of the country rock is troctolite-gabbro, which surrounds
a mineralized massive sulphide zone. Two boreholes, and an example of some seismic
raypaths are overlain. Also present are the sonic velocity logs in the receiver (left) and
source (right) holes.
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damage, and sometimes collapse, the host boreholes).

To understand how the SIST works, consider that a conventional seismic trace, record-

ing a high energy pulse source, can be written as

r
s

(t) = s(t) ⇤ e(t) + n(t) (3.1)

(Park et al., 1996), where s(t) represents the pulse source, e(t) is the impulse response

of the Earth, and n(t) is ambient seismic noise. In SIST, s(t) is not a single pulse, and

in fact we have

 (t) = y(t) ⇤ s(t). (3.2)

Now,  (t) is the complete seismic source, which is the convolution of a series of impulses

(or impacts) controlled by a binary coding sequence y(t), and the low energy wavelet

s(t). Of course, in this form the received data r
s

(t) will be very hard to interpret, as it

will consist of a long record of very low energy seismic pulses. To decode the data, Park

et al., 1996 wrote

r
d

(t) = y(t) ⌦ r
c

(t);

r
d

(t) = y(t) ⌦ {y(t) ⇤ s(t) ⇤ e(t) + n(t)}; (3.3)

r
d

(t) = {y(t) ? y(t)} ⇤ s(t) ⇤ e(t) + y(t) ⌦ n(t),

where ⌦ represents cross-correlation, and ? represents auto-correlation. From the second

equation, we can see that r
d

(t), the decoded seismic signal, can be found by cross-

correlating the recorded coding sequence with the received trace. This is equivalent to

auto-correlating the code sequence y(t), convolving this sequence with the impulse earth

response s(t)⇤e(t), and adding the cross-correlation of the code sequence with the random

seismic noise. This serves to boost the amplitude of the source signal, and, if the seismic

noise is assumed to be random, increase the signal to noise ratio (as y(t) ⌦ n(t) ! 0 as

t ! 1, if n(t) is a zero-mean Gaussian distribution). Of course, the perfect application

of equation (3.3) requires that the auto-correlation function is exactly the same as the

e↵ective source signature, something that is unlikely in practice. Nevertheless, Park et al.

(1996) and Cosma and Enescu (2003) reported a very high signal to noise ratio with a

relatively small number of impacts, compared to other coded impact techniques such as

Mini-Soise (Barbier et al., 1976).

Examples of receiver gathers from the Voisey’s Bay survey, showing the received

waveforms from 121 unique source positions, are given in Figure 3.3. For these data,

I picked the first arrival times (also known as first break times) by hand, using the
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proprietary software package PROMAX (licensed from Landmark). Where present in

Figure 3.3, first arrival times are highlighted in red. Figures 3.3a and 3.3b shows receivers

located within the high velocity troctolite zone. Here, the waveforms were well behaved,

and the data were relatively easy to pick. Figure 3.3c shows an example from within

the low velocity zone. In this case, many of the sources were also located within the low

velocity massive sulphide zone. The waveforms here were significantly more complicated

than those in the troctolite zone, due mainly to the influence of the strong velocity

contrast at the troctolite-sulphide boundary.

As well, in Figure 3.3a precursor component can be seen, visible as oscillations appear-

ing prior to the first arrival picks. These precursors, which do not represent physical data,

made picking even more di�cult, and are believed to be the result of an acausal filter

being applied to the data before we received them. Due to evidence presented in the next

few paragraphs, the filter appears to have been a high-pass filter, which removed most of

the data below 1000 Hz. As the processing software package provided by Vibrometric for

use with their swept-impact sources includes bandpass filtering capabilities (Vibrometric,

2009b), it is likely that the filtering occurred at acquisition time. Figure 3.3d shows an

example of a corrupted receiver gather. At time 0, coherent high-amplitude noise can

be seen. So as not to corrupt any further processing, data from receivers exhibiting this

signature was not included in any inversions.

Also evident in Figure 3.3 (especially in Figure 3.3c) are high amplitude arrivals

which appear to have a constant, steep slope. These are caused by the presence of tube

waves, which refer to waves propagating vertically within the water-filled boreholes (Pratt

et al., 2004). In the source hole, when these waves encounter geological discontinuities

in the borehole, such as those at the edges of the massive sulphide zone, their energy

is converted to body waves, which eventually reach the receiver hole. In addition to

vibrating the hydrophones, a portion of the transmitted energy will be transformed into

tube waves in the receiver hole as well. These receiver hole tube waves are visible in Figure

3.3, traveling through the water column at approximately 1482 m/s. As our waveform

tomography routine does not model tube waves, their presence in the data can lead to

artifacts in the final image.

Since tube waves appear at a near constant slope, it is common to remove them

from the data through frequency-wavenumber filtering (f-k filtering). A plot of the f-k

spectrum for a typical receiver gather is given in Figure 3.4. Immediately obvious are

high amplitude, steeply dipping (slow) signals. These correspond to tube waves. What

is also obvious is the complete absence of signal below 1000 Hz, a sign that the data have

been bandpass filtered. This is troublesome, because waveform tomography relies heavily
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Figure 3.3: Selected raw receiver gathers; (a) and (b) are representative examples from
the high velocity zone; (c) shows a receiver located within the low velocity massive
sulphide zone; (d) shows an example of a corrupted receiver gather (which was excluded
from the inversions).

36



on the existence of coherent, low frequency data, for reasons discussed in section 2.2. In

addition, this means that the tube waves present in Figure 3.3 can only be removed at

higher frequencies, above the Nyquist frequency, where they are aliased. Looking closely

at Figure 3.3, we see that the first aliased mode of the tube waves has an apparent dip

similar to some of the first arrivals. This echoes what we see in Figure 3.4, where the

majority of the tube wave energy is mixed in with the bulk of the data.

Due to the band limited appearance of the data, and the aliasing of the tubes waves,

they could not be removed cleanly from the data. We might therefore expect this to

result in artifacts in our final waveform tomography images. Unfortunately, we also

expect the lack of low frequency data to increase the chances of cycle skipping, as at

1000 Hz the starting model must predict the observed waveforms to within an accuracy

of 0.5 milliseconds, a level of accuracy that is hard to achieve in practice.

3.3 Traveltime Tomography

In this section, the application of traveltime tomography to the 540-542 crosshole dataset

is described. Previous examples of traveltime tomography in the Voisey’s Bay area can

be found in Enescu et al. (2002), Cosma and Enescu (2003), and Perozzi et al. (2012).

The first step in preparing the data for traveltime tomography was the assignment of

the survey geometry. Since both our traveltime and waveform tomography routines are

2-D, the inherently 3-D survey geometry was projected onto a best-fit 2-D plane. First,

the measurements from the north seeking gyro were transformed into 3-D (x, y, z)

coordinates, resulting in a cloud of points. A plane was then fit to the coordinates, based

on the L2 norm of the distance residuals. The 3-D coordinates were then projected onto

the 2-D null space of a vector normal to the plane, resulting in a set of 2-D coordinates

(x, z).

First break picking was then performed manually on the data. This was a very

labour intensive process, and one that was repeated many times. Due to the small

source-receiver distance, picking errors were very significant, and great care had to be

taken. As mentioned above, the data had been pre-filtered, resulting in an apparent

precursor in the waveforms, requiring repeated e↵orts to picks the data consistently. In

Chapter 4, synthetic data, which were generated in a model similar to the real survey, are

presented. In some areas, such as those surrounding the low velocity zone, the behavior

of the synthetic waveforms were invaluable in decision making during the picking of real

data.

Our traveltime tomography approach is based on the work of Chapman and Pratt,
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Figure 3.4: Frequency-wavenumber spectrum of a typical receiver gather.
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Iteration Constrained Model Unconstrained Model

�  ✏ E(m) (ms) �  ✏ E(m) (ms)
1 0.1 0.05 0.5 0.447 0.1 0.00 0.5 0.400
2 0.05 0.05 0.1 0.140 0.05 0.00 0.1 0.112
3 0.01 0.05 0.1 0.103 0.01 0.00 0.1 0.069
4 0.005 0.05 0.05 0.080 0.005 0.00 0.05 0.050
5 0.001 0.05 0.05 0.078 0.001 0.00 0.05 0.049

Table 3.1: Parameters for traveltime tomography.

(1992), and Pratt and Chapman, (1992); some of the theory was presented in Chapter

2. The initial results from TTI traveltime tomography are given in Figure 3.5. Two

sets of models are shown, with a velocity model (Figure 3.5(a, c)) and a corresponding

" model (Figure 3.5(b, d)) exhibited for each set. These results were obtained using

five outer (nonlinear) iterations, between each of which new raypaths were calculated by

the method of Um and Thurber (1987), and the system was re-linearized. The number

of linearized iterations was variable; they were stopped when the rate of change of the

misfit function dropped below a predefined value, dependent on the constraints used. If

perturbations to the model were heavily constrained, the reduction of the misfit function

plateaued quickly.

The major di↵erence between these two sets of models is the magnitude of the con-

straints on the perturbations to the anisotropic parameters (the magnitude of  in equa-

tion (2.18)). The models in Figure 3.5a and Figure 3.5b apply a positive , constraining

" to be close to zero, while those in Figure 3.5c and 3.5d apply no such constraint. I refer

to these pairs of models as the constrained and unconstrained inversions respectively.

The vales of �, , and " are given in Table 3.1.

Comparing the " models in the constrained and unconstrained inversions in the vicin-

ity of the low velocity zone (between approximately 690 m and 760 m in depth) we see

a curious e↵ect. If anisotropy is constrained, this zone appears to be (almost) filled

with a uniform ". However, if anisotropy is left unconstrained, the anisotropy in this

zone resolves into several lobes around the edges of the zone, suggesting the presence of

artifacts (in section 4.4 I provide a discussion and a possible explanation). Due to the

highly stressed and fractured nature of the hard rock environment, a 2-D TTI symmetry

system was assumed. As our waveform tomography routine currently assumes that the

anisotropy possesses VTI symmetry, and is elliptic (" = �), the information gained from

images of � was not included in further processing.

The values of the anisotropic coe�cients in the troctolites (Figure 3.5, " = 4 �
5%) coincides well with previous studies. In Voisey’s Bay, there have been reports by
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Figure 3.5: Traveltime velocity and anisotropy models. (a) Velocity, with a strong con-
straint on anisotropy; (b) ", with a strong constraint on anisotropy; (c) Velocity, with a
weak constraint on anisotropy; (d) ", with a weak constraint on anisotropy.
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Vibrometric (Cosma and Enescu, 2003) that place the anisotropy at approximately 3%.

Furthermore, laboratory measurements have reported on troctolite anisotropy being as

high as 12% (Babuska, 1968), with results from Iturrino et al. (1991) reporting values

as high as 8%. While these laboratory measurements are very accurate, their relevance

to true, in-situ anisotropy parameters are not known, as in-situ pressures may close

any fracture planes which are present at atmospheric pressure (Tsvankin, 2012). Our

estimated value of " at 4-5% in the troctolites is therefore not surprising, and agrees well

with previous results.

We should also note that although we assume a transversely isotropic model (with

an arbitrary axis of symmetry) in traveltime tomography, this is likely a simplification of

reality. The borehole core logs (Inco, 2000) report on highly fractured rock, with multiple

fracture symmetry axes, overprinted on local flow and shear fabrics. As well, post em-

placement serpentine metamorphism, known to be highly anisotropic (Kern, 1993), along

some cracks may add additional symmetry. To completely characterize the anisotropy

would likely require orthorhombic, monoclinic, or even triclinic symmetry systems. These

systems require the inversion of 9 elastic parameters for the orthorhombic model, 13 for

monoclinic, and the full 21 elastic parameters for triclinic media. The capability of in-

verting a system of equations which is so underdetermined is currently the subject of

leading-edge research (Grechka and Mateeva, 2007), and is beyond the scope of this the-

sis. Note, however, that these complex symmetry systems may eventually yield better

velocity inversions in the Voisey’s Bay area.

To prepare the model for waveform tomography, we created a 1-D, vertically varying

anisotropy profile by averaging the epsilon model in Figure 2.18d over horizontal layers.

The resultant profile can be seen in Figure 3.6. Synthetic waveforms were generated

through this model, to determine if the half-cycle criterion was satisfied. The resulting

synthetic receiver gathers from the traveltime model (Figure 3.11b) show a mismatch

in the first arrival times at higher o↵sets. Specifically, in Figure 3.11b, we see this for

shots deeper than 720 m. At close o↵sets, the first arrivals were consistently predicted to

within one half wavelength of the dominant frequency. The pattern of a good fit at near

o↵sets, and of cycle skipping at higher o↵sets, was observed everywhere within or near

the low velocity zone. Since an increase in o↵set corresponds to an increase in angle away

from the horizontal, it was suspected that the anisotropy model found through traveltime

tomography was insu�cient for use in waveform tomography.

A brief aside: In an attempt to manually overcome the cycle skip problem, the picking

was repeated many, many times. Early on, it was not known that the data had been

filtered (this fact came to light after a meeting with Calin Cosma, owner of Vibrometric,
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Figure 3.6: Left: Epsilon profiles for use with waveform tomography. Blue: profile
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of the absolute best fit value. Right: Objective function behavior during simulated
annealing, as a percentage of the seed model.

in Copenhagen during July, 2012), and it was ambiguous as to whether the precursor

component was signal or artifact. Many di↵erent interpretations of the first arrival times

were followed, in an e↵ort to produce a reasonable-looking anisotropy model which fit

the data, but to no avail.

The philosophy behind the traveltime inversion strategy I eventually developed was

as follows: Since an anisotropy model which fit the data to the degree required for

waveform tomography could not be found through manual picking and traveltime to-

mography, a novel method was developed to discover a ‘best fit’ 1-D anisotropy model.

The actual values of " and � imaged through traveltime tomography were ignored, and

attention was given to reducing the traveltime residuals while maintaining a geologically

reasonable horizontal velocity model. As such, I did not penalize perturbations to the

anisotropy models. Instead, I discarded the traveltime anisotropy models, and developed

an approach based on simulated annealing, to determine an " model by examining the

waveform data (see section 3.4.1 below).

3.4 Waveform Tomography

An extremely e↵ective approach to acoustic waveform tomography may be formulated

in the Laplace-Fourier domain (Shin and Cha, 2009; Kamei et al., 2012). Each trace

is transformed into the Laplace-Fourier domain via a (discrete version) of the complex-
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valued Laplace Transform:

F̂ (s) =

ˆ 1

�1
f(t)e�stdt, (3.4)

where f(t) is the (discretely sampled) time-domain trace, and F̂ (s) is the discrete Laplace

domain representation of f(t) at a single complex-valued Laplace parameter s. The

parameter s has the form

s = � + i!, (3.5)

so equation (3.4) can be expanded to give

F̂ (�, !) =

ˆ 1

�1
f(t)e��te�i!tdt. (3.6)

The parameter � represents a characteristic decay time

⌧ =
1

�
, (3.7)

so what equation (3.6) really represents is the time-damped Fourier transform of each

trace

F̂ (⌧, !) =

ˆ 1

�1
f(t)e�(t/⌧)e�i!tdt. (3.8)

The purpose of using the Laplace-Fourier domain, instead of just the Fourier domain, is

to use the Laplace transform to preferentially weight data corresponding to early arrivals.

Although the data used for waveform tomography were time-damped with ⌧ = 0.01, the

wavefield images presented here were created by setting ⌧ = 1. This results in equation

(3.6) reducing to the classic Fourier transform. To simulate anisotropy, a geometrical

stretching approach along the vertical is used to mimic the elliptic case (where " = �)

(Dellinger, 1991).

If the raw traces are transformed into the Laplace-Fourier domain without any pre-

processing, the resulting data appear as illustrated in Figure 3.7, where examples of

500 Hz, 800 Hz, 1300 Hz, and 1600 Hz frequency domain data files are presented. These

images represent the Fourier transformed waveforms from each trace. In these images,

sources increase from 1 to 236 along the x-axis, and receivers increase from 1 to 87 along

the y-axis. Three distinct blocks are visible, and each block corresponds to one survey

panel. Note that some sources are present in more than one panel, illustrating that source

positions were repeated. Due to the geometry of the survey, the source-receiver pairs with

the closest o↵sets appear approximately along the main diagonal in the images.

These data are unusable in their current form, as we expect to see some form of
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coherent pattern. In the 500 Hz and 800 Hz datafiles, no semblance of coherency can

be extracted at all. This echoes our previous observation that the data were bandpass

filtered to above 1000 Hz, and below this value we have just random noise. At 1300 Hz

and 1600 Hz, a pattern does start to emerge: that of repeating stripes parallel to the

main diagonal, at close o↵sets. However, as we move away from the main diagonal, the

pattern disappears. To properly use these data in waveform tomography, the waveforms

must be pre-processed.

In our case, pre-processing involved bandpass filtering the data to less than 2000 Hz

(to remove any high frequency data), and windowing the waveforms in the time domain.

This windowing served to mute any noise present before the first arrivals, and also to

exclude (as much as possible) late-arriving shear waves (which are not modeled by the

acoustic wave equation). We built our time window around the first break picks, choosing

to begin the window 1.5 ms before, and end the window 3.5 ms after, the picked time.

Images of selected frequency domain data files for several frequencies, after bandpass

filtering and time windowing, are given in Figure 3.8. As explained in section 3.2, the data

appear to have been filtered and bandpassed above 1000 Hz before they were passed along

to us. While our own time-windowing of the data introduced a low frequency component,

it is obvious from Figure 3.8 that most of these data are corrupted and noisy. While the

waveforms at 500 Hz seem coherent (Figure 3.8a), those between 600 Hz and 1000 Hz

are very incoherent (a representative example at 800 Hz is given in Figure 3.8b). Above

1000 Hz, the data are of good quality and coherent. Representative examples at 1300 Hz

and 1600 Hz can be seen in Figures 3.8c and 3.8d respectively. As stated in section 3.2,

the inclusion of low frequency data is essential to the success of waveform tomography,

and determines the required accuracy of the starting model.

In addition to data quality control, other relevant information can be visually ex-

tracted from Figure 3.8. For those sources and receivers in the low velocity zone (sources

130 - 180, receivers 58 - 87), we see that the apparent dip of the data changes. Outside

of this zone, a cyclical pattern is seen, parallel to the main diagonal, while inside this

zone the cyclical pattern appears perpendicular to the main diagonal. This is a sign that

the data in this region are aliased, which strongly suggests a corresponding decrease in

seismic velocity (shortening the wavelengths to below the Nyquist criterion). Disconti-

nuities parallel to the receiver axis are also apparent at several locations. As the x-axis

represents source location, these discontinuities may be related to source-borehole cou-

pling issues, as well as source misallocation issues. Finally, discontinuities parallel to the

source axis are also present. These represent deleted receivers, which were excluded due

to excessive noise (see Figure 3.3d for an example). Specifically, the 23rd receiver in the
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chain was consistently corrupted, and is absent from each panel.

From equation (2.19), we can see that the wavefield u is linear with respect to the

source f(x, !). Assuming the velocity model is exact, inverting for the source is then a

linear inverse problem. The true, complex valued source can be calculated :

f(x, !) =
utd⇤

utu⇤ . (3.9)

(Pratt et al., 1998). Equation (3.9) is exact, and requires only one forward modelling

run (to estimate u). Equation (3.9) can also be used as a convenient way to measure the

quality of the velocity model: If the source signature is identical for all shots, we should

expect to recover the same source signature for all shots (again, if the velocity model is

correct). In fact, the consistency of the estimated source signature is a good metric by

which to judge the quality of the inversions (Pratt and Symes, 2002).

An image of the estimated sources for all 236 source locations, using the traveltime

velocity and anisotropy models, is given in Figure 3.9a. We see that between source 1

46



0 50 100 150 200
Source (num)

0

5

10

15

T
im

e
(m

s)

a

0 50 100 150 200
Source (num)

b

0 50 100 150 200
Source (num)

c

Figure 3.9: Estimated source signatures: (a) using the traveltime velocity and anisotropy
models; (b) using the traveltime velocity model, and the anisotropy model found
from simulated annealing; (c) using the waveform tomography velocity model, and the
anisotropy model found from simulated annealing.

and 130, the signature is relatively consistent. This suggests that the traveltime velocity

model is reliable in the high velocity troctolites. At source numbers above 130, where

the sources are located within the low velocity zone, the signature is much less coherent.

We attribute this incoherency to errors in the traveltime velocity and anisotropy models.

In order to extract a single, useful source estimate, I isolated sources 1-130, and aver-

aged them. This average source signature was used as the initial source for waveform

tomography.

3.4.1 Anisotropy

To overcome the cycle skipping problem described above, and to allow for the proper

convergence of waveform tomography, a novel approach was developed to determine the

best-fit 1-D VTI elliptical anisotropy profile. The approach sought to minimize the

logarithm of the phase residuals (Shin and Min, 2006; Kamei et al., 2012) using the

semi-global method of simulated annealing. The setup was as follows:

• The model space M was defined as the space of all "(z) values between �0.1 and

1.0;

• M was discritized in intervals of 4" = 0.01, and assumed to be smoothly varying.

The "(z) profile was interpolated via cubic spline interpolation between tie points

spaced every 25 m;

• The seed model consisted of a constant " value of 0.1.
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At each iteration, a random model parameter, defined as a cubic spline tie point, was

perturbed to a random value in model space. Synthetic waveforms at 500 Hz, 1000 Hz,

1300 Hz, and 1600 Hz were then calculated. The L2 norm of the phase residuals was

evaluated, and this value was compared to the L2 norm of the phase residuals in the

previously accepted model. If the residuals in the current model were less than those

in the previous model, the new model was automatically accepted. If the residuals were

greater than those in the previous model, the probability of this new model being accepted

(P
accept

) was then calculated from the Metropolis criterion (equation (2.35)). A random

number R was then drawn on the interval [0, 1]. If P
accept

was greater than R, the

Metropolis criterion was satisfied, and the new model was accepted. If P
accept

< R the

new model is discarded. A flowchart illustrating this procedure is given in Figure 3.10.

The choice of a starting temperature in simulated annealing has traditionally been

problem dependent (Sen and Sto↵a, 1995). A useful suggestion is to choose a temper-

ature that allows 30% - 50% of randomly proposed models to be accepted (Tarantola,

2005). To determine our starting temperature T0, a ‘warm up’ phase was added to the

simulated annealing algorithm. Throughout this phase, all perturbations to the model

were accepted. Assuming that a random perturbation would be accepted 50% of the

time (i.e. A(m(k+1), T (k+1)) from equation (2.35) was set to 0.5), the Metropolis criterion

was used to determine the temperature of an equivalent system. This procedure was

time-invariant, i.e. the absolute values of 4E(m) were used. After 100 iterations, the

average equivalent temperature of all these perturbations was calculated, and this was

set as T0.

This warm up phase also ensured that the starting model used for the subsequent

simulated annealing, varied randomly from run to run. The cooling schedule was set to

reduce the temperature to 95% of its current value after 50 iterations, determined by trial

and error. Longer warm up periods and cooling schedules were tested, although they were

found to have a negligible e↵ect on the starting temperature. Longer cooling schedules

were also tested, although this resulted in no significant change to the final models,

and vastly increased the time needed for convergence. Shorter periods resulted in the

inversions sometimes ‘freezing’ at local minima, and converging to unrealistic results.

The results of using simulated annealing to find the best fit 1-D elliptical anisotropy

profile for the Voisey’s Bay dataset is shown in Figure 3.6. The velocity model used

is given in Figure 3.5c. In Figure 3.6a, the blue line represents the anisotropy profile

obtained by averaging the " model shown in Figure 3.5d over horizontal layers. The

black line is the ideal 1-D elliptical anisotropy profile found through simulated annealing.

Figure 3.6b shows the behavior of the value of the misfit function over the course of the
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Figure 3.10: Flowchart illustrating the steps in simulated annealing.

inversion, as a percent of the misfit evaluated for the seed model. Also shown, in grey,

is the value of the misfit function obtained by using the average " model from traveltime

tomography. The x-axis represents all accepted models: those which either pass the

Metropolis criterion, or decrease E(m). This behavior of E(m) is exactly as expected.

Early on in the routine, the value of the objective function varies wildly with subsequent

iterations. As the number of iterations increases, and the temperature T
k

decreases, the

variations become more stable.

The ideal 1-D anisotropy profile was extracted by first examining the convergence of

simulated annealing via Figure 3.6b. The dip in the error function at model 1200 was

interpreted as the point where the algorithm discovers the global minimum, and I refer

to this as the ‘phase change’ (as it is where the model ‘freezes’ close to its final state).

An ensemble of all models accepted after this phase change was then taken, and those

which lay within one standard deviation of the absolute best-fit model were averaged to

give the ideal model.
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The range of models lying within one standard deviation of the absolute best fit model

is given by the shaded area in Figure 3.6a. Note that near the edges of the model, the

variance becomes very small. This is due to the fact that limited data are available at

these locations, and the model at the final spline point was tied down to that found in

the seed model.

There are several physical explanations consistent with the values of " depicted in

Figure 3.6a. From the borehole logs, there are reports of multiple fracture symmetries

within the low velocity massive sulphide zone, specifically major fractures at 30�, 50�,

and 60� to the core axis. As the fast axis of crack induced anisotropy is usually parallel to

the fracture axis (Tsvankin, 2012), we see here that the VTI assumption may be violated,

and in fact the fast axis may be closer to the horizontal. Of course, the assumption of

a single fast axis already assumes that the anisotropy is at least TTI, which is likely

suspect. Instead, the negative values obtained for ✏ are indicative of a symmetry axis

that is far from vertical. It should also be noted that it is very likely that " 6= �. If this is

the case, the " profile found with simulated annealing has the additional responsibility of

accounting for the e↵ect of � on the slowness, and as such will di↵er from the true value

of ".

Figure 3.11c illustrates the e↵ect of the new anisotropy model derived from simulated

annealing on the synthetic time domain waveforms. Much of the misfit at larger o↵sets

has now been explained, and cycle skipping is no longer apparent. Improvements can also

be seen in the frequency domain wavefields. Figure 3.12c shows the estimated frequency

domain wavefield at 1200 Hz after simulated annealing. Comparing this with the real

data in Figure 3.12a, and that modeled with the traveltime anisotropy model in Figure

3.12b, we see some significant improvements. First, at near o↵sets (between sources 120

and 130, and receivers 40 and 50) we see that the wavefield post-simulated annealing

matches the real data more closely than it did with the traveltime anisotropy model. As

well, just above the low velocity zone (shots 120 - 140, and receivers 30 - 40) the phase

in Figure 3.12c is closer to the real data, and does not contain the rapid variations seen

in Figure 3.12b.

Figure 3.9b shows the estimated source signature, calculated using the traveltime

velocity model and the anisotropy profile found through simulated annealing. We can

see that this signature is much more coherent than that shown in Figure 3.9a.

The elimination of the majority of the cycle skipping seen prior to simulated annealing

suggested that the new anisotropy model was far more appropriate for use in waveform

tomography.
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Figure 3.11: Receiver gathers. (a) Real, unfiltered data; (b) synthetic data, modeled
using TT velocity model and TT anisotropy; (c) synthetic data, modeled using TT
velocity model and SA anisotropy; (d) synthetic data, modeled using WT velocity model
and SA anisotropy.
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Figure 3.12: A sample of the real frequency domain wavefields (Re(u)) at 1200 Hz for
the real crosshole data, zoomed in on the area surrounding the low velocity zone. (a)
Observed wavefield; (b) estimated wavefield using the traveltime velocity model, and the
anisotropy model found from traveltime tomography; (c) estimated wavefield using the
traveltime velocity model, and the anisotropy model found through simulated annealing;
(d) estimated wavefield after waveform tomography, using the anisotropy model found
through simulated annealing.
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3.4.2 Velocity

Once the initial model satisfied the half cycle criterion, I was able to proceed confidently

with waveform tomography. In order to take advantage of the robustness of phase in the

presence of elastic e↵ects, and due to the suspected low cut filtering, the residuals were

defined as the di↵erence between the synthetic and observed waveform phase, and wave

amplitudes were ignored. A sequential frequency selection strategy was employed (Sirgue

and Pratt, 2004; Kamei et al., 2012), in which blocks of four frequencies were inverted

at a time, beginning with 1000 Hz (the lowest, clean frequency), and increasing in 100

Hz intervals. After five iterations, a new block of frequencies was inverted, retaining the

highest three frequencies from the preceding block. This was continued until a block

containing 1600 Hz, the highest frequency used in the inversions, was inverted. At each

iteration, the phase and amplitude of the (averaged) source was updated according to

equation (3.9). The resultant velocity model from waveform tomography can be seen in

Figure 3.14. A synthetic receiver gather computed using this velocity model can be seen

in Figure 3.11.

When solving problems as undetermined as those explored by waveform tomography,

a correlation of results with any relevant information is essential in determining the

quality of a model. Here we compare our inversion results with borehole sonic logs, and

our predicted waveforms with waveform data in the time and frequency domain.

A comparison of the real and estimated wavefields, calculated using the final velocity

model from waveform tomography, is given in Figure 3.13. Figure 3.13a shows the real

data, Figure 3.13b gives the synthetic data modeled through the final velocity model

from waveform tomography, and Figure 3.13c gives the final wavefield residuals. Through

layouts 1 and 2, the waveform residuals are acceptable.

A significant phase error is present along the main diagonal, representing the near

o↵sets. I attribute this to the presence of tubes waves in the data, which are not modeled

in the inversions. At near o↵sets, the tubes waves are consistently mixed in with the first

arrivals. As the o↵sets increase, the slow-moving tube waves are windowed out from the

data. Also apparent in Figure 3.13c are some vertical stripes, which I attribute to misfit

introduced by source-borehole coupling, or possible source mislocations.

Finally, in these two panels, a trend in phase mismatch is present. For source re-

ceiver pairs where the source is located below the receiver, the phase error is dominantly

negative, while for pairs where the receiver is below the source, the error is dominantly

positive. This suggests that the error is dependent on angle, and that our anisotropy

model may not be entirely correct. This is expected due to the 1-D elliptical approxima-

tion of what is likely a 3-D orthorhombic or triclinic media.
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Figure 3.13: (a) Real, frequency domain wavefield (Re(u)); (b) Synthetic real-valued,
frequency domain wavefield calculated using the final velocity model from waveform
tomography; (c) wavefield phase residuals in the final model.

In the third (lower) panel, the results are less encouraging. Semi-circular rings of

constant phase mismatch are apparent, and these are indicative of cycle skipping at 1300

Hz. This is not entirely unexpected, as these particular data (shots 130 - 180, shooting

to receivers 60 - 87) are likely the most di�cult; they represent those wavepaths which

spend the longest time within the dipping low velocity zone. Since this zone is where the

1-D anisotropy assumption is most likely to be invalid, and is the region most corrupted

by tube waves, we expect these data to be the most di�cult to fit. Further work in

improving the starting model may be needed to remedy this cycle skipping issue. In

Chapter 4, I will present synthetic noise-free data, in which a similar residual pattern

emerges. Figure 3.12d shows a zoomed-in view of the estimated 1200 Hz wavefield in the

low velocity zone, calculated using the velocity model from waveform tomography.

Borehole sonic velocities were available from each of the boreholes, and are presented

along with the equivalent vertical velocities extracted from the waveform tomography

velocity model in Figure 3.14. Since the sonic velocities measure the seismic velocity along

the near vertical boreholes, a correction for anisotropy is needed to compare these data

to the horizontal velocities in Figure 3.14. Since we are assuming elliptical anisotropy, an

estimate of the vertical velocity can be obtained by multiplying the horizontal velocities

by (1+")�1. These equivalent vertical velocities are plotted in Figure 3.14. The waveform

tomography results are in blue, and the sonic velocities are plotted in green. The match

is not exact throughout the model, although this is expected. Borehole sonic velocities

are usually measured at approximately 20 kHz, while our inversions were for much lower

frequencies. As well, the 1-D elliptic VTI assumption is likely invalidated by the complex

shearing and fracturing present. This may lead to not only image distortion, but also
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to errors in calculating the equivalent vertical velocities (as the symmetry axis may be

at some other, arbitrary angle). In the source hole, an apparent static shift in vertical

velocities is apparent, where the inverted velocities are consistently faster than the sonic

velocities, although they show the same major features. This may be a result of the true,

2-D anisotropy structure. Nevertheless, some promising observations emerge.

In the receiver hole, a sharp dip is seen in the sonic velocity at approximately 675 m.

This is echoed closely by a corresponding dip in the inverted velocity. By examining the

borehole core logs, it is possible to tie these velocity anomalies to a 1 m thick massive

sulphide veinlet. Further examination of the image allows us to trace the passage of this

zone of relatively low velocity: it traverses the panel, and appears to split near the source

hole. This is also in agreement with the core logs, on which brecciated host rock in this

zone give way to local irregular massive sulphide veins.

The high velocities on either side of the vein at the receiver well exhibit a good

match between the sonic and inverted velocities, and appear to be geologically reasonable

structures, which however do not appear to extend to the source well (as was expected

from the sonic velocities). Just below 650 m, a zone of relatively low velocity can be

traced across the panel. While this agrees well with the sonic velocities, there is no

corresponding geologic signature noted in the core logs.

Finally, at the top edge of the low velocity zone, it is very apparent that the velocity

gradient in the source well is much stronger than that in the receiver well. This matches

with the sonic velocities, and also has geologic significance. In the receiver well, significant

quantities (40% - 75%) of massive sulphide are present in the troctolites beginning at

689 m, which results in a decrease in velocity. Also, between 697 m and 700 m, the

existence of a granite intrusion is noted, and this may be represented as a slight leveling

o↵ of the velocity gradient in both the sonic and inverted velocities. While the receiver

well intersects a zone where the massive sulphide content increases gradationally, the

source well experiences a much sharper geological contrast. Between 683 m and 686 m,

the sulphide content increases to 40%, with the massive sulphide zone beginning directly

below.

The match between the sonic velocities and inverted velocities within the massive

sulphide zone is slightly less promising than those outside. While the overall structure

and velocities match well, there are some discrepancies when examining fine structure.

We attribute this partially to the breakdown of the 1-D anisotropy assumption, when

combined with the 2-D massive sulphide zone. The borehole logs report on significant

o↵-axis fracture systems (30, 50, and 60 degrees to the core axis) which also likely leads

to the failure of the VTI elliptic approximation. We also expect artifacts due to the
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Figure 3.14: Final velocity model obtained from waveform tomography, using the
anisotropy profile found from simulated annealing.
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presence of tube waves in the data, which are especially apparent within the low velocity

zone.

3.5 Future Survey Design

The experience with the Voisey’s Bay crosshole dataset led to a number of suggestions

that should be considered when attempting any future seismic surveys, specifically those

designed for waveform tomography.

1. Access to the complete, unfiltered waveform data is essential. The acausal band-

pass filtering to greater than 1000 Hz may have had detrimental e↵ects on the

final inversion products, as there were no coherent low frequency data to stabilize

the inversion. In future surveys, data should be handed to those responsible for

processing in a raw, unfiltered state. Ideally, the processing geophysicists should

be involved in the data acquisition themselves, so that the processing flow of the

waveform data is completely controlled.

2. The use of a source rich in low frequencies is important for the stability of waveform

tomography. Whenever possible, a seismic source capable of producing a strong,

low frequency signal should be used. Current viable options are (a), a powerful, im-

pulsive source such as a borehole hammer (Vibrometric, 2009a), or (preferably) (b),

a modified swept impact source capable of producing low frequencies. A modified

swept impact source is preferred, as impulsive sources may damage and collapse

unstable boreholes. As well, when choosing a source, the method of borehole cou-

pling (water, clamping) and radiation pattern should be noted, as these factors may

require special attention to be paid to the estimated source signature. Finally, as

important as low frequencies are for waveform tomography, their inclusion should

not take priority over obtaining a good signal to noise ratio.

3. The source and receivers should be designed with the target in mind. In the survey

presented here, there was a discontinuity in the hydrophone chain near the top of the

low velocity massive sulphide zone. As this boundary is very challenging to image,

good data in this region is especially essential. Future survey geometries should be

designed so that the sources and receivers are continuous across discontinuities.

4. Accurate borehole location techniques should be used. Ideally, a north-seeking

instrument, as well as a gyroscopic borehole measurement tool, should be used,

and should report on the borehole location with the finest detail that is feasible.
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Accurate location estimates for sources and receivers are essential, although the

magnitude of location e↵ects should decrease as survey o↵sets are increased. If

possible, addition instrumentation (such as gamma ray detectors) should be at-

tached to the source and receiver chain, as they may help to constrain locations.

5. Larger o↵set surveys should be attempted. At small o↵sets, source-receiver mislo-

cation can be a significant issue. As well, the level of detail gained from extremely

small o↵set surveys may not be worth the e↵ort put into acquisition, as an accurate

geologic map can be constructed from the core. At larger o↵sets, the chances of

gaining valuable information through waveform tomography are increased.

6. Source and receiver intervals should be as small as possible, to prevent aliasing. In

previous sections, we remarked that tube waves were present in the data, and due

to aliasing these could not be removed cleanly. If the source and receiver locations

were close enough so that the tube waves were not aliased in the frequency range of

interest, their removal would be trivial with frequency-wavenumber filtering. The

optimal spacing will be situation-specific, as it depends on local rock velocities, but

for the Voisey’s Bay dataset, halving the receiver spacing would have allowed us to

remove tubes waves cleanly from frequencies up to 1800 Hz.

Of course, in undertaking any survey, there are practical considerations to be made (i.e.

the expense of shipping equipment, or the length of time needed to complete the survey).

The first priority should be the complete coverage of the target zone.
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Chapter 4

Results from a Synthetic Crosshole

Dataset

To test the e↵ectiveness of simulated annealing, and to understand the failure of anisotropic

traveltime tomography described in Chapter 3, synthetic velocity and anisotropy models

were created, and seismic data were numerically simulated in the resulting models. The

velocity model was based on the Voisey’s Bay 540-542 crosshole dataset processed in

Chapter 3, and the anisotropy models were designed to simulate the essential elements

of the inverted field data. Three 2-D anisotropy models were tested: (1) a VTI elliptical

model (" = �), (2) a VTI an-elliptic model (" 6= �), and (3) a TTI an-elliptic model

(" 6= �, � = 30�).

4.1 Model Details

The velocity model was constructed to be similar to that obtained from the field data

in Chapter 3. The true models for V
p

and " are given in Figure 4.1. The source-receiver

geometry was the same as that for the field data, with boreholes approximately 30 m

apart, sources spaced 1 m apart, and receivers spaced 2 m apart. The background velocity

was set to be 7500 km/s. A tilted, low velocity layer was introduced, simulating the actual

location and orientation of the massive sulphide zone, estimated from the borehole sonic

logs (see Figure 3.14). As well, a layer of slightly higher velocity was placed just above

the low velocity layer, corresponding to the slight increase in borehole sonic velocities

seen above the massive sulphide zone. Random heterogeneities were then added to the

model using the methods of Kamei et al. (2005); the magnitudes of these heterogeneities

were estimated from observed fluctuations in the borehole logs. In the high velocity

zone, the heterogeneities had a standard deviation of 300 m/s, while in the low velocity
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layer the heterogeneities had a standard deviation of 210 m/s. I used a vertical:horizontal

correlation length of 1:4 for these heterogeneities, to simulate the impact of horizontal

layering on the anisotropy inversions. Finally, the long axis of the heterogeneities added

to the low velocity zone was rotated to coincide with the dip of the zone itself. Density

values for the high and low velocity zones were chosen to correspond to the average

density of troctolite (2.7 g/cc) and pyrrhotite (4.6 g/cc) respectively. The poisson’s ratio

was set everywhere equal to 1.87.

Values for " and � were also included. For the VTI elliptic test, in the high velocity

zone, " was set to a constant 0.15, while in the low velocity layer it dropped to 0.05. For

the VTI an-elliptic test, " remained the same, but � was set to 0. The TTI an-elliptic

test also retained the value of these parameters, but the axis of symmetry was tilted 30�

from vertical.

For all 3 models, elastic time domain TTI finite di↵erence modelling was performed

using the freely available open source software package Madagascar (Yan and Sava, 2011).

The elastic parameters were discritized onto a 600 ⇥ 3125 grid, with each grid point rep-

resenting an 8 cm⇥8 cm square. An explosive, Keuper-wavelet source was modeled, with

a peak frequency of 666 Hz. The scalar curl-free (pressure) component of the wavefield

was extracted at each receiver position; this was to eliminate shear waves. The main

purpose of this experiment was to determine whether similar behavior in the traveltime

anisotropy models could be generated, and not to determine the e�cacy of acoustic wave-

form tomography in an elastic environment, as explored by Brenders and Pratt (2007b,a).

Madagascar was chosen so that a realistic, anelliptic 2-D anisotropy model could be used,

and as well to avoid the pitfalls of performing an ‘inverse crime’ (Wirgin, 2004; Colton

and Kress, 1998). An inverse crime refers to creating synthetically generated data with

the same forward modelling operator used in inverse modelling (i.e. I would have commit-

ted an inverse crime had I used the forward propagator from our waveform tomography

routine to generate the synthetic data).

4.2 Traveltime Tomography

To prepare the synthetic data for traveltime tomography, little e↵ort was required. Due

to the noise-free nature of the synthetic data, the majority of the first break picking

was very easy, and could mostly be carried out semi-automatically. This being said,

there were still significant di�culties at the edges of the low velocity zone, where manual

intervention was required.

Traveltime tomography was performed following the same philosophy given in section
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3.3. Five nonlinear inversions were carried out, during which the constraint on model

roughness was gradually relaxed. Traveltime velocity and anisotropy models can be seen

in Figure 4.2. A similar pattern to that observed in the real data can be seen in these

synthetic examples, where the " values in the low velocity zone become larger as the

constraints on anisotropy are increased. In the case of the unconstrained inversions,

the values of " in the high velocity zone are overestimated by approximately 5%. This is

attributed to the fine scale of the horizontal heterogeneities that lie outside the resolution

capability of ray tomography.

4.3 Waveform Tomography

Unlike the real data, the synthetic data were noise-free, so minimal pre-processing was

required. The time domain waveforms were simply windowed and bandpass filtered before

being transformed into the frequency domain, as input for waveform tomography. An

example of a frequency domain wavefield is given in Figure 4.3a. We can see a significant

increase in waveform complexity in the low velocity zone (sources 120 - 180; receivers 59

- 70). Also apparent is aliasing in this zone, which, as in the real data, suggests that the

velocity here is dramatically lower here than in the rest of the model. Figure 4.4a shows

the original, or ‘true’ 1600 Hz wavefield, zoomed into the vicinity of the low velocity zone.

4.3.1 Anisotropy

To prepare the anisotropy models for waveform tomography, I extracted a 1-D verti-

cally varying anisotropy profile by averaging the traveltime " model in Figure 4.2e over

horizontal layers. The resultant profile can be seen in Figure 4.5. As in the real data

example from Chapter 3, simulated annealing was run with a warm up phase consisting

of 100 iterations, during which the Metropolis criterion was used to calculate the e↵ective

temperature which would allow 50% of proposed models to be accepted. The behavior

of the objective function after the warm up phase is given in Figure 4.5. Here we see a

similar pattern to the real data, with the value of the objective function decreasing over

time. As before, a ‘phase change’ occurs around iteration 1000. As before, the best-fit

1-D " profile was calculated by examining all the models accepted after this final phase

change, and taking the average of those which lay within one standard deviation of the

absolute best fit profile. The value of the objective function decreases significantly over

the course of simulated annealing, much more so than in the real data example. This is

attributed to the noise free characteristics of this synthetic test.
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Figure 4.3: A sample of the real frequency domain wavefield (Re(u)) at 1300 Hz for
synthetic elastic data. (a) True modeled wavefield; (b) estimated wavefield after waveform
tomography, using the anisotropy profile found through simulated annealing; (c) wavefield
phase residuals after waveform tomography, using the anisotropy profile found through
simulated annealing.

Figure 4.4b and and Figure 4.4c compare the estimated frequency domain wavefields

in the vicinity of the low velocity zone before and after simulated annealing, respectively.

As in the real data, we see an improvement in waveform fit. Specifically, when comparing

with the true data in Figure 4.4a, we see that cycle skipping has been eliminated at

sources 120 - 140, between receivers 78 and 87. As well, a discontinuity at source 137 has

been partially remedied by the new anisotropy model. Note finally the dramatic change

in waveform phase around source 130 and receiver 50.

Figure 4.5a shows the " profile obtained from simulated annealing, compared to that

found with traveltime tomography, and to the true (averaged) model. We see a good

agreement between the (averaged) actual values of " (15% in the high velocity zone, and

5% in the low velocity zone) and those found from simulated annealing. As well, in the low

velocity zone, the value of 0.05 is also recovered quite well. There are some discrepancies

across the boundary, this is expected due to the 2-D nature of the anisotropy in this

location. This " profile was used for subsequent waveform tomography, as discussed in

the next section.

4.3.2 Velocity

Following the extraction of the ideal " profile from simulated annealing, waveform to-

mography was performed on the synthetic models, using the same strategy as for the real

data. A sequential frequency strategy was used, with each block of five iterations using

four frequencies, spaced at 100 Hz intervals. After five iterations, a new frequency was
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fit profile from simulated annealing was constructed by considering all models after the
‘phase change’ around iteration 1000.

added, and the lowest frequency from the previous block was dropped. The lowest fre-

quency used was 500 Hz, and the highest was 1600 Hz. At each iteration, the amplitude

and phase of the estimated source signature was updated.

Velocity models from traveltime and waveform tomography are given in Figure 4.6.

We see that the final model from waveform tomography (Figure 4.6d) matches the true

model (Figure 4.6a) very well. What is also apparent is that the waveform tomogra-

phy result using the traveltime anisotropy model (Figure 4.6c) is significantly fast. 1-D

velocity profiles extracted from the velocity models are shown in Figure 4.7, and fur-

ther support these observations. The velocities found from waveform tomography using

the " profile from traveltime tomography are significantly higher compared to the true

model, while the waveform tomography results with the anisotropy model from simulated

annealing matches the true model very well.

The geometry of the survey results in the majority of the data representing wave

propagation at non-zero horizontal angles. Since our goal in waveform tomography is the

minimization of the misfit function E(m) =k u
est

� u
obs

k, it is immediately apparent

that the value of the misfit function will be significantly a↵ected by anisotropy (as the

majority of the estimated wavefield is susceptible to anisotropy). As such, the horizontal

velocity plays a minimal role. If the estimated anisotropy is too strong, and as a result

the non-horizontal velocities are too slow, this can be compensated for by increasing the
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Figure 4.6: (a) True, horizontal velocity (as in Figure 4.1); (b) velocity model found
through anisotropic traveltime tomography; (c) velocity model found through waveform
tomography, using the anisotropy profile from traveltime tomography; (d) velocity model
found through waveform tomography, using the anisotropy profile from simulated anneal-
ing.
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Figure 4.7: Horizontal velocity profiles taken through the middle of the velocity model.

horizontal velocity. Since truly horizontally propagating waves contribute negligibly to

the misfit function, there is not much penalty in this incorrect adjustment. I believe

this is why the horizontal velocity is significantly faster when simulated annealing is not

used. Even when the anisotropy is estimated from simulated annealing, the horizontal

velocities are slightly too fast on average (Figure 4.7). This is likely due to the fact

that the ideal anisotropy profile, while good, is not perfect, and in fact is slightly too

strong. Nevertheless, the velocity model created using simulated annealing is much more

accurate than the inversion using traveltime anisotropy.

Figure 4.3b shows the final frequency domain wavefield, modeled using the results

from waveform tomography. By comparing this to Figure 4.3a, we see a good match

almost everywhere, i.e. at most sources, receivers, and o↵sets. Figure 4.3c shows the

residual phase di↵erences between the modeled and true wavefield. Again, the phase

di↵erences throughout most of the model are negligible. However, for sources and re-

ceivers near the edges of the low velocity zone, we see a significant increase in wavefield
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Figure 4.8: " profile obtained from simulated annealing for an-elliptic models: (a) � = 0�;
(b) � = 30�. The shaded area represents the range of anisotropy profiles that lay within
one standard deviation of the absolute best fit profile.

phase residuals, similar to the pattern seen in the real data. This is expected, as the

velocity contrast in this area is extremely strong, and has spatial components beyond

the resolution limit of the frequencies used. As a result, it is also in this area where the

estimated anisotropy is furthest from its true value.

4.3.3 An-elliptic VTI Media (� = 0, � = 0�)

To test the performance of simulated annealing on models with an-elliptic anisotropies,

� was set to 0 throughout the model, while " remained as in the earlier example (Figure

4.1b). As described above, the curl-free component of the elastic waveforms were numer-

ically modeled using Madagascar. First break picking was performed using PROMAX,

and the data were time-windowed and bandpass filtered before being transformed into

the Laplace-Fourier domain for use in waveform tomography.

The inverted 1-D " profile found using simulated annealing is shown in Figure 4.8a.

Note that the profile is not an exact match with the true " profile. This is expected,

as " 6= �, and the elliptical assumption made by waveform tomography is invalidated.

As such, the estimated values of " from simulated annealing will also approximate the

e↵ects of � as much as possible. The final horizontal velocity model found with waveform

tomography, using the " profile from simulated annealing, is given in Figure 4.9. We see

a relatively good match with the true model, and conclude that simple an-elliptic VTI

velocity models are resolvable using the 1-D elliptic assumption.
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Figure 4.9: An-elliptic VTI synthetic test. (a) True velocity model (as shown in Figure
(4.1)), (b) Velocity model obtained from traveltime tomography; (c) Velocity model ob-
tained from waveform tomography, using anisotropy estimated from simulated annealing.
The anisotropy was an-elliptic and VTI.
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4.3.4 An-elliptic TTI Media (� = 0, � = 30�)

To test the performance of simulated annealing on an-elliptic, TTI anisotropy systems,

� was set equal to 0 throughout the model, while the distribution of " was retained (i. e.

as in Figure 4.1). The dip angle � was set at a constant 30� from the vertical. Again, the

curl-free component of elastic waveforms were numerically modeled using Madagascar,

and first break picking was performed using PROMAX. The data were time-windowed

and bandpass filtered before being transformed into the Laplace-Fourier domain for use

in waveform tomography.

The inverted 1-D epsilon profile is shown in Figure 4.8b. The profile is significantly

di↵erent than the true value of ". Interestingly, in the low velocity zone, the value of " is

slightly negative. This is comparable to " values obtained from the real data, in a similar

environment. This lends credence to the interpretation that negative " values recovered

for the real data represent a large deviation of the symmetry axis from vertical. The

final horizontal velocity model found through waveform tomography is given in Figure

4.10. Although the velocity model from traveltime tomography succeeds in generating a

reasonable, albeit smooth, velocity model, we see that the waveform tomography result

represents a poor match with the true model, with significant image distortion present.

4.4 Discussion

It is worth delving into the question of why waveform tomography, combined with sim-

ulated annealing, succeeds in generating suitable anisotropy models, while traveltime

tomography fails. To answer this question, let us look closely at the synthetic dataset.

As seen in Figure 4.2, changing the constraints on anisotropy produce completely di↵er-

ent " models, but the resultant velocity models are qualitatively similar. This suggests

the well understood notion that some of the anisotropy parameters are within the null

space of the traveltime tomography problem, and do not have much of an e↵ect on the

traveltime fit. Nevertheless, the slight reduction in traveltime residuals, and the consis-

tent manner in which the anisotropy models behave in the presence of a strong velocity

contrast, lead us to believe that certain situations squeeze the normally vastly under-

determined anisotropy parameters into the range of the traveltime tomography inverse

problem. Pratt and Chapman (1992) achieve this squeezing by enforcing smoothness con-

straints, but here I make the case that the fundamental physical assumptions of classic

traveltime tomography make the anisotropy parameters very di�cult to estimate under

the conditions encountered with the real data.
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Figure 4.10: An-elliptic TTI synthetic test. (a) True velocity model (as shown in Figure
4.1); (b) Velocity model obtained from traveltime tomography; (c) Velocity model ob-
tained from waveform tomography, using anisotropy estimated from simulated annealing.
The anisotropy was an-elliptic and TTI, with � = 30�.
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I believe Figure 4.11 demonstrates the reason for the success of simulated annealing.

The base figure in red-white-blue is the V
true

� V
image

from Figure 4.2c, overlain with

a single, curved seismic raypath used in traveltime tomography (yellow) and the corre-

sponding wavepath from 500 Hz waveform tomography (greyscale). Note the magnitude

and sign of the velocity error sampled by either the raypath or wavepaths. Between

this specific source-receiver pair, the ray is only sensitive to velocities which are on av-

erage too fast. This is a result of the unresolvability of the sharp velocity boundary by

the ray-theoretical approximation, which stems from the fundamental resolution limit of

ray-based inversion (discussed in Chapter 2). As well, we have forced @

2
m/@x

2   where

 represents the highest wavenumber allowed, through the smoothness constraint, and

features with a wavenumber higher than  (appearing at the boundaries) go unresolved.

These two e↵ects result in the velocity residual pattern seen in Figure 4.11, as the velocity

discontinuity is smoothed out over the boundary.

Infinitely thin rays, existing within erroneous velocity models, will experience a cor-

responding increase or decrease in traveltime. In most of the model, we see that this is

not a major issue, as positive and negative errors tend to average out by the time the ray

arrives at the receiver. The ray in Figure 4.11 however, is part of a small subset of rays

which travel mostly within areas where the cumulative velocity error along the raypath

is positive, and which as a result carry large positive traveltime residuals. To remedy

this mismatch in traveltime error, either the velocity or anisotropy must be perturbed.

Since the inverted velocity in the majority of the low velocity zone is roughly correct,

perturbing velocities along these troublesome raypaths will not solve the problem, as it

will increase the residuals between other source-receiver pairs. Instead, it appears that

the traveltime tomographic algorithm resolves these errors through perturbations to the

anisotropy model.

To see what is happening, let us examine the two inverted anisotropy models closely.

In Figure 4.2b, we see that if anisotropy is constrained, parts of the low velocity zone

erroneously become anisotropic, and additional lobes of strong anisotropy appear at the

top and bottom boundaries. In Figure 4.2e, we see that if we relax the constraint on

anisotropy, the low velocity zone becomes relatively isotropic (albeit with an inaccurate

shape), but the boundary lobes acquire significantly more anisotropy.

These phenomena arise as follows: If the anisotropy is heavily constrained (i. e.

if  is large in equation 2.18), there is a significant penalty on any anisotropic model

parameters which deviate from zero (this is equivalent to assuming a priori that the

region is isotropic, and heavily weighting this information). As such, the magnitude of

the lobes do not increase to the values seen in for the unconstrained case (Figure 4.2e).
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Instead, increased anisotropy appears in the low velocity zone, corresponding with those

highly-angled raypaths. If there is no constraint on anisotropy, the lobe anisotropy is

allowed to grow arbitrarily large, and the traveltime errors can be accounted for without

invoking anisotropy in the low velocity zone.

There is another interesting feature in the traveltime anisotropy models, and that

is the di↵erence in anisotropy in the high velocity zone between Figure 4.2b and e;

specifically the anisotropy in Figure 4.2b is significantly lower than that in Figure 4.2e.

This is likely due to the presence of horizontal layering in the true velocity models, which

is not resolvable at the resolutions of traveltime tomography. Backus (1962) showed

that a horizontally layered medium is indistinguishable from a homogenous anisotropic

medium in the long wavelength limit. Since the horizontal layering in the true model is

beyond the resolution of traveltime tomography, the inverted velocity model is relatively

homogeneous compared to the true model, and thus exhibits extrinsic, or additional,

anisotropy beyond the intrinsic value of " = 15%. Pratt and Sams (1996) showed the

e↵ects of extrinsic anisotropy on traveltime tomography, and they conclude that fine

layering beyond the resolution limit may indeed appear as extrinsically anisotropic when

inverted using the ray-theoretical approach.

The question remains as to why simulated annealing, which uses a finite-di↵erence

implementation of the acoustic wave equation, succeeds in determining the correct (1-

D) anisotropy model, whereas traveltime tomography does not. On Figure 4.11, the

wavepaths for a 500 Hz wave is depicted in greyscale. Comparing this to the equivalent

raypath, we see a significant di↵erence: The multipath nature of the wave equation

allows velocities external to the raypath to be sampled. In this particular case, the wave

propagates outside the low velocity zone, experiencing areas of both positive and negative

velocity errors. I propose that by the time the wave arrives at the receiver, the cumulative

error along the wavepaths results in the predicted phase to be roughly equivalent to the

observed phase, thus negating the need to perturb any model parameters. As well, in the

high velocity zone where the anisotropy was overestimated by traveltime tomography,

information contained in the waveforms supports the fact that the medium is finely

layered, instead of being extrinsically anisotropic.
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Figure 4.11: Raypath (yellow) and 500 Hz wavepath (greyscale), for a single source-
receiver pair, superimposed on the traveltime inversion velocity error (4V = V
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Chapter 5

Conclusions

This thesis described the application of waveform tomography to a real, crosshole seis-

mic dataset, as well as a synthetically generated crosshole dataset. The bulk of the

original work presented involved the implementation of the semi-global inverse method

of simulated annealing to solve a serious problem relating to the anisotropy model.

5.1 Conclusions and Discussion

In Chapter 1, the basics of anisotropic wave propagation were discussed. We saw that

seismic anisotropy can be related to any symmetries present in rocks, and that symme-

try and anisotropy are scale dependent. Thomsen’s parameters (Thomsen, 1986) were

introduced, which parameterize transversely isotropic P-wave propagation in terms of

three parameters: V
p0, the P-wave velocity along the symmetry axis, ", the fractional

di↵erence between P-wave velocity along and perpendicular to the symmetry axis, and �,

a measure of how the velocity behaves at angles close to the symmetry axis. Traveltime

and waveform tomography were also introduced.

Chapter 2 presented a basic discussion of inverse theory, and the mechanics behind

traveltime and waveform tomography were explored. We saw that the traveltime inverse

problem requires much regularization to stabilize the problem, which was introduced in

the form of a priori data and model variances, as well as assuming that the parameters are

spatially smooth. Waveform tomography was also discussed, and we learned that by using

the back-propagation of the residual wavefield, the gradient of the misfit function could

be computed with a vast reduction in computational e↵ort. Finally, simulated annealing

was introduced as an e�cient, Monte-Carlo, semi-global inverse method, which searched

for the global minimum of a function using concepts borrowed from statistical mechanics.

In Chapter 3, the application of the three inverse methods described in Chapter 2,
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to a real, crosshole seismic dataset, was presented. We saw that, unfortunately, the data

seemed to have been pre-filtered. As well, it was clear that the anisotropy models ob-

tained from traveltime tomography were not su�cient for use in waveform tomography,

as the models failed the half-cycle criterion. The successful use of simulated annealing to

determine a new anisotropy model was described, and the final velocity inversions from

waveform tomography were interpreted, with promising results. Specifically, the identi-

fication of a 1 m thick massive sulphide vein, along with many other geological features

missing from the traveltime inversions, serve to promote the e�cacy of waveform tomog-

raphy in mineral exploration. It is hoped that these results will lead to future seismic

surveys, specifically tuned for waveform tomography, which will allow Vale to produce

high resolution wireframe models, while reducing the number of (expensive) boreholes

drilled. Finally, to help prevent many of the issues that were found to detrimentally

a↵ect waveform tomography, a ‘checklist’ of recommendations for any future crosshole

surveys was given.

Chapter 4 described the creation, modelling, and inversion of a series of synthetic

crosshole datasets, modeled after the 540-542 dataset processed in Chapter 3. For the

elliptic case, similar patterns in the traveltime anisotropy models were seen, and again

simulated annealing was successful in finding an anisotropy model which better fit the

data (and the true model). These patterns, and the general failure of traveltime tomog-

raphy to accurately resolve anisotropy models in regions of strong heterogeneity, were

explained in terms of the limitations of the ray-theoretical approximation, and we saw

how the finite-di↵erence wavepath used in waveform tomography mitigated these prob-

lems. Finally, an-elliptic VTI media were tested with the same processing flow (with

good results), as well as an-elliptic TTI media (with poor results).

The failure of waveform tomography to resolve the correct velocity structure in

severely tilted TTI media is not unexpected, but deserves some comment. The sym-

metry axis was tilted at 30� to the vertical, and throughout the majority of the model "

was set equal to 0.15 (which is large). Since, at the moment, our waveform tomography

routine can only handle elliptic, VTI anisotropy, any deviations of the symmetry axis

from vertical will corrupt the inversions. As stated in the borehole logs (Inco, 2000),

multiple fracture axes present in the 542-540 dataset indicate that the symmetry axis

may indeed not be vertical.

For several reasons, I do not think the deviation from the VTI assumption catas-

trophically corrupted the velocity inversion shown in Chapter 3. First, the traveltime

(starting) velocity model shown in Figure 3.5 is similar in structure to the final model

from waveform tomography (Figure 3.9). This is not what we see when we compare the
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initial and final models for the synthetic TTI case in Figure 4.10. The models here are

much di↵erent, which is to be expected, as the traveltime model can handle TTI media.

As well, the magnitude of the anisotropy in the real data is likely much less than that

in the synthetic data. This being said, it is obvious that the incorporation of TTI into

the next generation of our waveform tomography code is essential. Unfortunately, the

Earth is not so kind as to provide us with the simple approximations which are present

in all discrete, computational representations of reality. With each approximation that

is dropped, we inch closer to the truth.

Another point that requires attention is the state of global and semi-global inverse

methods in geophysical inversion. As I mentioned in Chapter 2, these types of methods

have not been widely adopted, and with good reason. For many interesting problems,

their computational cost is simply too high. The models presented in this thesis are

significantly smaller than most exploration scale problems, and it is this fact which

greatly assisted in the successful implementation of simulated annealing. While coding

the simulated annealing subroutine, I parallelized the forward modelling code over seismic

sources, and this cut the time per iteration by approximately half.

All simulations were run on the SharcNet (Shared Hierarchical Academic Research

Computing Network) cluster Orca, and were parallelized over 16 compute cores. Orca

has recently been expanded to include new Intel Xeon Sandy Bridge processors, and on

these processors a single iteration takes approximately four seconds. For 3-D, industrial

scale problems, the time taken for single forward modelling run is measured in terms of

hours. There is obviously much more work to be done before simulated annealing can be

feasibly used for problems of this size. If we are aiming to increase the dimensions of our

parameter space and include velocity in our parameterization, the situation seems quite

hopeless.

I would like to speculate, though, on what it might take to make these problems

feasible. First, for large-scale problems, I don’t believe it is necessary to use a global

method to determine the final distribution of P (m). A large body of very successful work

on gradient-based optimization methods has shown that this approach works well, with

some limitations. In waveform tomography, a major limitation deals with the choice of

m0, or the initial model. If, though, m0 is chosen properly, the robustness of the gradient

algorithm negates the need to include any other a priori information (Tarantola, 2005).

Following the example of Tarantola (2005) (pp. 156), I believe a global approach

may (at least currently) have a role to play in determining m0. If we are basing our

misfit function on the goodness of waveform fit (u
est

� u
obs

), then via the half-cycle

criterion we realize that our m0 needs to predict u
obs

to within one half cycle of the lowest
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usable frequency, but needs to be no better. In this case, perhaps we should design each

parameter perturbation to change u
est

by more than a half cycle at the lowest frequency.

This saves time spent searching within the vicinity of the global minimum, as our e�cient

gradient-based search will perform this task later. To accomplish this, we could choose

a random velocity parameter (and perturb a fresnel-zone sized volume centered on this

parameter) with a magnitude that ensures an incident low-frequency wave will be delayed

or advanced by at least one half cycle.

5.2 Final Remarks

Here I would like to expand on one more point. In Chapters 3 and 4, I referred to the

anisotropy profile found through simulated annealing as the ‘ideal model’. This choice

was deliberate, as it is ‘ideal’ within the restrictions introduced by all the approximations

made thus far (i.e. acoustic wave propagation, 1-D anisotropy, elliptical anisotropy, etc.).

It does not correspond to the true values of " in the Voisey’s Bay region, as it must also

account for the influence of �. Remember how this model was generated; it involved the

consideration of many models after the ‘phase change’. We did not choose the model

which simply decreased the residuals by the greatest amount, as we recognize our forward

operator is not a perfect representation of reality. In this sense, it was not the final model

obtained at the last iteration, nor was it the best fit model: it was the ideal model, under

our assumption of Gaussian statistics.

When inverting for velocity we did not have this luxury of browsing a selection of

models at leisure, due to the computational expense of waveform tomography. Here, our

ideal and final models are the same. Given enough time, it would be desirable to explore

the global minimum of this model space as well, and to construct a separate ideal model

that may help mitigate some e↵ects of the error in our forward problem. Of course, this

is not a new concept, all models are based on approximations.

I make this distinction because there is sometimes hesitation when people talk of

expensive, high resolution imaging techniques such as 3-D, elastic, or semi-global, full

waveform inversion. Why should all this computational time and e↵ort be spent on new

techniques, when the old techniques (such as traveltime tomography) give very good

results?

Sagan (1985) tells the story of Johannes Kepler, as he spent time in Prague in the

early 1600s. Working with the theory that planets orbited the sun along circular paths,

he struggled to find a model accurate enough to explain all the apparent ‘eccentricities’

of planetary motions. Using this theory, he was relatively successful, incorporating pro-

79



grade and retrograde motion about the orbital axes. Nevertheless, by examining the

observational data with the utmost accuracy, he realized that some data just did not fit

his model. In the end, the theory of circular orbits was incorrect. His complex retrograde

orbits were just an ideal model, given incorrect assumptions. The advent of more pow-

erful telescopes allowed more accurate data to be collected, and when these data were

analyzed Kepler realized that planetary orbits were, in fact, ellipses. This is perhaps one

of the earliest examples of the successes of high resolution numerical modelling. In a

geophysical context, high resolution imaging techniques, as well as the study of non-local

misfit structure, allow our ideal models to creep towards the true Earth parameters. In

the example of Kepler, we see that increasing the numerical accuracy led to a wholly new

model.

There is much more work that needs to be done, but one should not be too wary about

the current computational cost of semi-global, or highly accurate, modelling techniques.

Advances in computational power will allow the currently ine�cient to become the norm,

and the currently impossible to become... perhaps at least ine�cient. And all the while,

the Universe will hum along.
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