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Abstract
New regulatory frameworks have been developed with the aim of decreasing global greenhouse
gas emissions over both short and long time periods. Incentives must be established to encour-
age the transition to a clean energy economy. Emissions taxes represent a “price” incentive for
this transition, but economists agree this approach is suboptimal. Instead, the “quantity” in-
strument provided by cap-and-trade markets are superior from an economic point of view. This
thesis focuses on the cap-and-trade instrument. Carbon emissions markets have recently been
implemented in different countries. We summarize the state of world cap-and-trade schemes.
We also provide a literature review of existing research that offer pricing and hedging tools.

Based on the European Union Emissions Trading Scheme, we study the impact of the mar-
ket design on the observed spread between futures contracts with different maturities. More-
over we investigate the relationship between their returns. First we study the spread using a
discrete-time model. We propose a pricing procedure arising from quadratic risk minimization
hedging strategies. We suggest recommendations for both traders and the regulator in order to
efficiently encourage market participation.

We also present a continuous-time model that investigates the way in which the market
structure affects the impact of an unexpected release of information on futures returns. We pro-
pose a pricing solution based on the Föllmer-Schweizer decomposition. The optimal hedging
strategy depends on all traded futures and minimizes the mean conditional square error of the
cumulative cost process. Both discrete and continuous time model parameters are estimated to
fit real data, and economic conclusions are drawn.

Keywords: Carbon Emissions Market, Incomplete Market, Quadratic hedging, Föllmer-
Schweizer decomposition, Indifference price, Econometrics.
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Chapter 1

Introduction and Thesis Road Map

1.1 Introduction

Carbon markets were recently introduced as a policy instrument to spur the transition to a clean

energy economy. The literature that covers this kind of market is still relatively sparse. The

purpose of this thesis is to help understand detailed specific features of carbon market mech-

anisms. The work is strongly rooted in empirical evidence, but also uses modern theories of

incomplete market pricing which enter into this discussion because of a strong impact of hid-

den information in these markets. We develop models and fit their parameters to data collected

from the European market. We also present pricing and hedging strategies. The thesis ends

with conclusions and some suggestions for future work. This thesis is written in manuscript

style and it is assembled from:

1. Mnif, W. and M. Davison, 2011a, “Carbon Emissions Markets,” (D. D. Wu, ed), 95-108,

Quantitative Financial Risk Management, Springer-Verlag Berlin, Heidelberg. [Chap 1]

2. Mnif, W. and M. Davison, 2011b, “What Can We Learn from the EU ETS Experience?

Recommendations for Effective Trading and Market Design,” Working paper. (Submitted

to Journal of Derivatives on 27-10-2011) [Chap 3, 4, 5, 6]

1



2 Chapter 1. Introduction and Thesis RoadMap

3. Mnif, W. and M. Davison, 2012, “EU ETS Futures Spread Analysis and Pricing Contin-

gent Claims under Different Market Schemes”, Working paper. (Submitted to Manage-

ment Science on 11-10-2012) [Chap 7, 8, 9, 10]

The second chapter presents carbon markets and related literature review (Mnif and Davi-

son, 2011a). The remaining thesis is divided into two main parts. Because of the manuscript

format, the different papers overlap to a small degree, particularly in their introductions. As a

corresponding benefit, each paper may be read on its own.

During our investigation, we believe that discrete-time models were necessary in order

to deeply understand market specifications (Mnif and Davison, 2011b). The discrete-time

framework is very rich and sufficiently flexible to model well documented stylized features, but

it is very computationally expensive. In Mnif and Davison (2012), we propose a continuous-

time stochastic model that is coherent with the discrete-time model results.

Carbon markets have a specific feature that distinguishes them from all other commodity

markets. In fact futures with different maturities are linked through the banking and borrowing

possibilities inherent in carbon markets. This banking/borrowing is wholly under the regula-

tory control, unlike any other commodity markets. The resulting impact of regulatory decisions

makes the market very sensitive to the information possessed by the regulator. This structure

provides an additional uncertainty factor, and hence the market is incomplete. In this thesis, we

suggest mathematical models to show how this can be addressed. We believe a great deal of

hidden information related to the market design is embedded in the spread. Our discrete-time

model focuses on the excess return that quantifies the return arising from the market incom-

pleteness property. This quantity is a function of the expected market position at a future date.

We find that the excess returns dynamics of the contract with shortest maturity T1 can explain

most of the excess returns of the other contracts. Nevertheless the excess returns of other

contracts quantify the expectation and the intrinsic risk related to post-T1 trading periods. We

show how this feature could be used to reduce market position risk. Different econometric tech-

niques are used to estimate the model parameters, including the EM algorithm and instrumental
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variables.

We also study the relationship between the market design and the impact of any unexpected

release of information. We propose that futures dynamics are governed by a geometric Brow-

nian motion augmented by a Poisson process which represents the unpredictable component.

We estimate the model parameters through the maximum likelihood approach followed by a

generalized EM algorithm. Our empirical results show that most of the market uncertainty is

driven by the continuous random component of the contract with shortest maturity T1. Further-

more we find that the impact of an unexpected release of information depends on the market

design. This impact alters as the market structure changes. This provides evidence that car-

bon futures markets are mature and efficient enough to be comparable to many other futures

markets.

The Appendices to this thesis are integral to it and contain the proof of the main results.

Reading them is not optional to the serious mathematically orientated reader, although readers

seeking economic intuition and willing to take mathematical results on faith are welcome to

omit them.

The following symbols and notations are used through the thesis:

CERs Certified emission reductions

CDM Clean development mechanism

EAT Emission allowances trading

ERU Emission reduction units

EM Expectation-maximization

EU ETS European Union Emissions Trading Scheme

GEM Generalized expectation-maximization

IET International emissions trading

JI Joint implementation

tCO2e Ton of carbon dioxide equivalent

(Ω,F,P) Probability space
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L2(P) Space of P square integrable 1-dimensional random variables

L2
d(P) Space of P square integrable d-dimensional random variables

Pe Set of equivalent local martingale measures

P̃ Variance-optimal measure

P̂ Minimum martingale measure

E[.] Expectation under the historical measure P

EP̃[.] Expectation under P̃

EP̂[.] Expectation under P̂

a.s. Almost surely

T1 Compliance date

T2 Compliance date such that T2 > T1

S t Discrete-time d-dimensional vector of discounted futures allowance price pro-

cesses such that S i
t, t ≤ Ti, is used for compliance purpose at time Ti

ξi
t Discrete-time returns of S i

t

Ft Continuous-time vector of discounted futures allowance price process such that

the ith element is F(t,Ti) and is used for compliance purpose at time Ti

Xit Continuous-time return of F(t,Ti)

Wit P-Standard Brownian motion

Nit P-Poisson process

Ñit Compensated Poisson process of Nit

W P̂
it P̂-Standard Brownian motion

N P̂
it P̂-Poisson process

H Contingent claim to be priced

V0 Initial price

Pmax Ceiling price

N(.) Standard normal cumulative funciton

ψ(µ, σ) Normal probability density function with mean µ and standard deviation σ
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ζ. Hedging strategy

The market is said to be short if the number of total permits is less than the total greenhouse

gas emissions. Consequently the prices are traded at a high level. In the opposite case the

market registers low prices and is said to be long.

This thesis makes many novel contributions arranged here by category:

• Mathematical aspect: We use probability techniques to price contingent claims under

various incomplete market models. We propose the solution of a discrete-time multidi-

mensional quadratic hedging problem. Rémillard and Rubenthaler (2009) also report the

same result. However we prove it in a different way, similar to Schweizer (1996). More-

over we provide a sufficient condition that permits the reduction of unhedgeable risk by

including positions on an additional risky asset.

• Financial aspect: We show that a multiperiod pricing framework is mandatory to obtain

more significant contingent claim price signals.

• Economic aspect: We draw economic conclusions based on empirical evidences. Fur-

thermore we provide some recommendations to the regulator to efficiently participate in

current market design.

1.2 Thesis Road Map

Empirical evidence from the European Union Emissions Trading Scheme (EU ETS) experience

drove our motivation. In fact, as it will be shown later, a spread is observed between futures

discounted to an equal time value baseline. Permits are traded on a daily basis. However the

settlement is set to be once per year at which time emitters must cover their total emissions.

Consequently no “convenience yield ” or “cost of storage ” is included in the annual scale

spread. Our objective is to study this spread and understands its principal origins. Based on
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our analysis, we suggest recommendations for both participants and regulator. Furthermore,

we provide pricing tools for different contingent claims that incorporate our empirical findings.

We proceed by analyzing a two-period market model. Generalization to the multi-period case

is straightforward. Two parts are reported in this thesis, depending on whether a discrete or

continuous time framework was used.

The first part of the thesis presents an analysis based on a discrete-time model. We describe

futures allowance dynamics by a binomial tree with returns partially driven by the implied

expected market position at subsequent compliance dates. By construction, this market is in-

complete. We propose a pricing procedure and associated quadratic risk minimization hedging

strategies. We show that the best hedging strategy must include positions in futures maturing

at subsequent compliance dates. We recommend that the regulator introduce a new additional

tradable primary asset to prompt non-emitters to participate in the market in order to increase its

liquidity. We present a possible pricing framework based on the indifference pricing technique.

The second part proposes a continuous-time model that depicts the relationship assimilated

into the spread. We assume that two futures that mature at subsequent dates are traded. Their

dynamic is driven by Brownian motions augmented by two jump processes. The discontinuous

component reflects the impact of any unexpected release of information. We estimate the model

parameters and draw economic conclusions. Furthermore we present a pricing solution based

on the Föllmer-Schweizer decomposition. The optimal hedging strategy depends on all traded

futures and minimizes the mean conditional square error of the cumulative cost process. We

show how the fair price of any contingent claim can theoretically be computed in this context.

Pricing examples under different market schemes are investigated.

Principle results of the thesis are summarized in Chapter 11, together with a few suggestions

for future work.



Chapter 2

Review of Carbon Markets

In 1997, an international agreement known as the Kyoto Protocol was adopted by over 184

states with the aim of reducing global greenhouse gas emissions. Greenhouse gases (GHGs),

as defined by the World Bank, are the gases released by human activity that are responsi-

ble for climate change and global warming. The six gases listed in the Kyoto Protocol are

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), as well as hydrofluorocar-

bons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (S F6). For each gas a Global

Warming Potential (GWP) indicator is defined to measure the impact of a particular GHG on

the additional heat/energy retained in the earth’s ecosystem through an addition of an unit of

the gas given to the atmosphere. The unit of measure is ton of CO2 equivalent (tCO2e). Table

2.1 summarizes the GWP for each GHG.

GHG tCO2e
Carbon Dioxide (CO2) 1

Methane (CH4) 21
Nitrous Oxide (N2O) 310

Perflurocarbons (PFC) 6500
Hydroflurocarbons (HFC) 11700

Sulfur Fluoride (S F6) 23900

Table 2.1: Global warming potential indicator for greenhouse gas emissions. (Source: World
Bank, Sustainable Development Department)

The Kyoto Protocol defines emission caps for industrialized and transition countries with

7



8 Chapter 2. Review of CarbonMarkets

the goal of decreasing GHG emissions by 5.2% relative to 1990 levels during the commitment

period 2008-2012. The tools it provides for meeting this goal are the Clean Development

Mechanism (CDM), Joint Implementation (JI) and International Emissions Trading (IET). The

latter allows for Emission Allowances Trading (EAT) between governments. The CDM is a

mechanism designed to assist developing countries in achieving sustainable development by

permitting industrialized countries to finance projects for reducing greenhouse gas emission in

developing countries and to receive credit for doing so. The JI is a mechanism whereby an

industrialized nation as specified by Kyoto’s Annex I 1 may acquire Emission Reduction Units

(ERU) when it helps to finance projects that reduce net emissions in another industrialized

country (including countries with economies in transition). For emission reductions resulting

from JI projects, countries are granted Certified Emission Reductions (CERs). Both CER and

JI projects have a number of conditions attached to them. Each project, together with the

protocol used for measuring its emission reductions, must be approved by the executive board.

Countries may use EATs, ERUs and CERs to comply with their emission caps.

The Kyoto commitment was introduced for the period 2008-2012. The role of the post

2012 portion is to stabilize atmospheric concentrations by 40% to 45% by 2050, compared to

1990 levels. As it takes time to achieve the target of the new regulations and to put incentives

in place, companies must be confident that the system will endure in order to make decisions

that require a long time line. To create this confidence, the World Bank is already buying credit

for the post Kyoto commitment, while European policy makers are confident that 2012 will be

followed by another compliance period2.

We focus on allowances markets rather than project-based transactions and secondary Ky-

oto mechanisms, which suffer from inefficiency and unstable complex regulation. The effect of

this inefficiency can be seen in the project-based transactions where the traded volume plum-

1Industrialized countries: Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Croatia, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Liechten-
stein, Lithuania, Luxembourg, Monaco, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian
Federation, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, United States of
America.

2This was written in 2010. The post-Kyoto phase has since been set to be from 2013 to 2020.
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meted from 636 MtCO2e in 2007 to 283 MtCO2e in 2009. Little academic literature is available

on this topic.

The chapter is organized as follows. Section 2.1 summarizes the current state of world cap-

and-trade schemes. The recent literature devoted to financial quantitative modeling for these

markets is presented in Section 2.2.

2.1 Carbon Markets

The new Kyoto regulatory framework forces countries to transition into a clean energy econ-

omy. A policy instrument that could be used is a carbon emissions tax. Such a tax imposes

a price that an emitter has to pay per unit of GHG emission. Companies will have to choose

between paying the emission tax or reducing their pollution, encouraging emissions reductions

if the marginal costs of abatement is less than the imposed tax. As a consequence the optimal

tax for each company must be equal to the marginal cost of abating. This marginal abatement

cost varies across emitters and information about it is often unavailable to the regulator. As

a result, the tax instrument is suboptimal. Furthermore it will be difficult to comply with the

reduction commitment as the regulator does not directly control the emitted amount. Goers,

Wagner and Wegmayr (2010) provide more details about the inefficiency of emission taxes.

Inspired by the U.S. Acid Rain Program (1990) that was designed to control sulfur diox-

ide (S O2) and nitrogen oxides (NOx) from fossil fuel-burning power plants, some regulators

decided to implement the cap-and-trade mechanism as the most cost-efficient instrument to

comply with emission reduction target.

A cap-and-trade system is a market-based mechanism that uses market principles to achieve

emissions reduction. The government running the cap-and-trade program sets an absolute limit,

or cap, on the amount of GHG, and issues a limited number of tradable allowances which sum

to the cap and represent the right to emit a specific amount. The market is designed to provide

price signals describing the true cost of the emission of a tonne of carbon. This is a crucial
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input for planning the transition to a clean energy economy, while protecting sensitive sectors

from undue disruption and keeping local industry internationally competitive.

Higher emissions prices would induce companies with lower abatement costs to profit from

the price difference by abating more CO2 than they would need to comply with regulations,

and then to sell the spare certificates for the higher certificate price. Each company faces a

basic choice between buying or selling allowances, and reducing emissions through the use

of alternative technologies. Three general classes of techniques for the physical reduction

of emissions are available. Firstly, emissions can be reduced by lowering the output scale.

Secondly, the production process or the inputs used may be modified, for example fuels can be

switched (Gas/Coal). Finally, tail end cleaning equipment can be installed to remove pollutants

from effluent streams before they are released into the environment.

2.1.1 European Union Emissions Trading Scheme

The European Union Emissions Trading Scheme (EU ETS) market is a cap-and-trade system

limited to European industrial installations. It is the largest carbon emission market in the

world with 6.3 billion tCO2e trading volume and US$118.5 billion exchanged value in 2009.

It was established in 20053, three years before the beginning of the first Kyoto commitment

phase. It comprises combustion installations exceeding 20 MW, refineries and coke ovens as

well as the metal, pulp and paper, glass, and ceramic industries. In total more than 12,000

installations among 30 countries (27 European Union States plus Iceland, Liechtenstein and

Norway). Companies covered by the ETS receive at the end of every February a certain number

of EU allowances (EUAs). The initial allocation assigned to each company depends on the

National Allocation Plan4. Each allowance gives the right to emit one tCO2 in the current

calendar year. On April 30th of the following year, companies must submit EUAs to the national

3The first trading started in 2004 in anticipation of the formal initiation of the scheme in January 2005. The
traded volume was about 8.5 MtCO2.

4An important component of each plan is a quantity deserved aside for new installations and new companies,
known as New Entrants’ Reserve.
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surveillance authorities. If companies do not provide EUAs that cover their total emission, they

must pay a penalty5 and deliver the missing EUAs in the following year. EUAs were initially

allocated to the market participants for free with limited information during the first trading

period6. Some companies, as a consequence, made gains described as windfall profits.

In addition to using carbon trading, only CDM were considered within the phase I (2005-

2007). The JI was added during phase II (2008-2012). The contribution of CDM and JI are

limited in order to ensure local emission reduction targets.

As the EU ETS market started in 2005, there are differences between the first trading period

(2005-2007) and the first Kyoto commitment period (2008-2012). In fact, in most European

countries, the EUAs issued in the first trading period were only valid during this trading period

(although France and Poland allowed limited banking between 2007 and 2008). In France and

Poland, companies could bank at most the difference between the initially allocated allowances

and their accumulated emissions. Furthermore, companies can bank CERs from the first period,

but we highlight the fact that the use of CERs was limited during this phase.

The EU ETS allows borrowing from a future year within the same trading period. As the

compliance date is at the end of April, the company can use the received EUAs at the end

of February to comply with the preceding year. The recent global economic crisis decreased

the demand side of the market in 2009, with emissions falling by 11.2%. As a result some

companies, such as steel and cement, raised cash by taking advantage of the overlap between

the issuance of the 2009 allowances and the 2008 deadline for compliance. In fact they sold

their 2008 EUAs and borrowed the 2009 allocations to comply with their 2008 emissions. The

EUA prices dropped sharply from the e 31 reached in July 2008 to e 8 in February 2009.

This is a strong illustration of the importance of banking and borrowing rules in driving spot

prices and their volatilities. Table 2.2 summarizes some features of Phase I and II. Carbon

futures markets seem to be more liquid than the corresponding spot markets. In fact, an EUA

5The amount decided for this penalty is e 40 per metric ton of carbon equivalent above the cap in 2005-2007
period and e100 for the phase 2008-2012.

6Very limited number of EUAs were auctioned during the first phase. Referring to Article 10 of the European
Directives, auctioning will be up to 10% of total emissions in phase II (2008-2012).
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Phase I Phase II
Excessive free allocation Number of Allowances↘ 1.74% annually

No banking for next phase Intra/inter-phase Banking is allowed
Abated 3% of total emissions Intra-phase borrowing is allowed

Borrowing from Phase III is not allowed

Table 2.2: Some features of Phase I and II.

spot transaction is considered as a good so it is subjected to Value-Added Tax (VAT) while a

futures and options contracts are VAT exempt because they are treated as financial transactions

within the European Union. The largest and most liquid spot market for EUAs is the NYSE

Euronext while the key futures market is the European Climate Exchange (ECX). Not only are

companies regulated, but private or institutional investors are allowed to buy or sell allowances.

The EU ETS allows non-emitting firms or individual investors to trade to increase liquidity

and for speculation and diversification purposes. They need only establish an account in the

emission registry of an European member state. U.S. funds are responsible for 10 − 15% of

traded volume on ECX during the phase II.

Despite of the competition from NYSE Euronext, ECX does not have a spot market. They

use the EUA Futures as underlying asset to write an option. For the first period only, fu-

tures with monthly expiries were traded in ECX. In 2008, quarterly futures contracts were

introduced. These contracts are listed on an expiry cycle of: March, June, September and De-

cember contract months and they are listed up to June 2013. December annual contracts are

also traded from December 2013 to December 2020. In October 2006, European style put and

call options on EUA Futures started to be traded on ECX. In March 2009, ECX introduce EUA

Daily futures contracts which are exchange-traded cash contracts. Daily futures Contracts will

be physically delivered by the transfer of EUAs from the seller to the buyer.

Several empirical studies were completed to understand the market behavior during phase

I. They show that the EU ETS is characterized by a very high historical volatility. Referring

to Daskalakis, Psychoyios and Markellos (2009), EUA spot prices in Powernext Carbon7 and

7NYSE Euronext acquired Powernext Carbon in December 2007.



2.1. CarbonMarkets 13

Nord Pool8 moved closely with the average mean absolute difference being around 7 cents

(fixed transaction costs are on the order of 3 cents per EUA). Moreover, the correlation co-

efficient of weekly spot returns between the Powernext and Nord Pool EUA markets is very

strong, reaching almost 90%.

Daskalakis, Psychoyios and Markellos (2009) found that there is no correlation between

price returns for CO2 and power. This result conforms to that reported by Svendsen and Ves-

terdal (2003) who concluded that the largest CO2 emitters do not have enough market share

and thus all market participants are assumed to be pure price takers. At conventional signifi-

cance levels, they also show that logarithmic spot process are non stationary. Since EUAs are

considered to be commodities for consumption, this result contradicts the common findings of

mean reverting behavior observed in commodities and energy markets.

Daskalakis and Markellos (2008) examined the efficiency of EU ETS, concentrating on the

weak-form of market efficiency according to which all the information contained in historical

prices should be reflected in today’s price. They conclude that the historical prices cannot be

used to form superior forecasts or to accomplish trading profits above the level justified by the

risk assumed.

Paolella and Taschini (2008) undertook an econometric analysis of emission allowance

spot market returns and found that the unconditional tails can be well represented by a Pareto

distribution while the conditional dynamics can be approximated by GARCH-type innovation

structure.

Franke (2005) shows that if companies tacitly collude to manipulate the market, then CO2

returns should have positive autocorrelations. A brief analysis of these autocorrelations in

Seifert, Uhrig-Homburg and Wagner (2008) reveals no strong empirical evidence in favor of

this conjecture.

Ben and Trück (2009) analyze the behavior of CO2 spot prices’ log-returns over the period

starting from January 3, 2005 until December 29, 2006. They compared results from a sim-

8Nord Pool was sold entirely to NASDAQ OMX to create the NASDAQ OMX Commodities unit.
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ple normal distribution, AR(1)9, GARCH(1,1), and a Markov model switching between two

regimes, namely a base regime and a spike regime. They concluded that the GARCH(1,1)

and Markov switching models outperform both the normal and AR(1) models, and are quite

similar.

The European regulator set up the third compliance phase during 2013-2020. The emission

target is to reach, in 2020, a level of emissions 21% less than 2005. The detailed regulatory

framework remains uncertain, but two major baselines consider carbon leakage and auctioning

policy. “Carbon leakage” describes the transfer of a company to another country or state with

less stringent constraints on carbon emissions in order to survive international competition. An

auctioning policy will spur the carbon leakage as it will likely increase the production cost10.

Economists agreed that auctioning will offset the downside effect of grandfathering and allow a

more significant carbon price signal. Starting from 2013, the European regulator was engaged

to set auctioning as an alternative for allowance allocation. To fight carbon leakage, a company

in a given sector need pay for only a fraction of their allowances with companies in sector

deemed exceptionally (leaky) receiving allowances free. The assistance will decrease annually

such that in 2027 full auctioning will be applied in all sectors.

Analysts believe that the EU ETS options market is mature enough to be comparable to

other many options markets. Furthermore they expect the market to be short post 2012 which

explains the active trading of the December 2013 EUA contracts.

2.1.2 Other Emissions Trading Markets

In 2009, New Zealand (NZ) opted for a carbon trading scheme to comply with its Kyoto pro-

tocol commitment. The scheme started in July 2010. It regulates stationary energy, industrial

process and liquid fossil fuels for transport. It will progressively include some other sectors

9They studied the models AR(p), p≥1 and found only AR(1) is significant.
10European policy makers are studying the possibility of imposing carbon taxes on goods imported from foreign

countries which do not penalize emissions. Companies not exposed to foreign competition (e.g. in the electricity
sector) will presumably pass the additional marginal cost to the final consumer.
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(i.e. synthetic gas and waste on January 2013) until fully implemented by 2015. 2010-2012

is the transition period in which one NZ allowance is used to surrender two tCO2e. Within

this period, the market is a combination between a cap-and-trade and a tax system, known as

hybrid market. In fact initially the allowances are distributed for free with a possibility to pur-

chase more from the regulator at a predefined price of NZ$25. In case of non-compliance, the

company will have to cancel the allowances they failed to deliver with a penalty of NZ$30 per

unit. Borrowing from post 2012 is prohibited while unlimited banking is permitted.

In the U.S., the American Clean Energy and Security Act of 2009, known as the Waxman-

Markey Bill, was passed by the House of Representatives in June 2009. It consists of a cap-

and-trade scheme to reduce emissions by 17% from 2005 levels by 2020. The Bill still need

to be considered by the Senate, probably during the next legislative term11. Despite the federal

carbon regulation, the Regional Greenhouse Gas Initiative (RGGI) was set up in 2008 among

the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New

Jersey, New York, Rhode Island, and Vermont. It is a mandatory cap-and-trade market covering

only the power sector. It aims to reduce 10% of its emission by 2018. In 2009, 805 MtCO2

was traded for an equivalent value of US$ 2.2 billion.

Four Canadian provinces (British Columbia, Manitoba, Ontario, Quebec) have developed

the Western Climate Initiative (WCI) program together with seven U.S. states (Arizona, Cal-

ifornia, Montana, New Mexico, Oregon, Utah, Washington) to jointly implement a cap-and-

trade scheme starting in January 2012. The initiative targets 15% emissions reduction below

2005 levels by 2020.

Some voluntary markets are implemented as a domestic initiative to spur transition into

clean energy (i.e. China, Japan). Brazil intends to establish a voluntary market-based instru-

ment to reduce emissions up to 38.9% by 2020.

Several questions may arise: Is it possible to set up an international linkage between differ-

ent emissions trading schemes? If yes, is it the most cost-effective method for abatement?

11This was written in 2010. Shortly thereafter it was decided that the Bill will be considered by the Senate
during the next legislative term. The current term expires on January 3, 2013.
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2.2 Modeling and Pricing in Emission Markets

Cap-and-trade is a policy instrument to combat the climate change impact. This mechanism al-

lows avoidance of climate risk at the corporate level even though it adds some other operational

risks (see Labatt and White, 2007). As a consequence companies need a financial modeling

framework to price emission allowances and their derivatives for risk management purpose.

Several approaches to this problem were developed during the past decade. Most exist-

ing work can be divided into those involving equilibrium models and those using quantitative

finance style stochastic modeling. We now review this literature. We notice that some of

the models that deal with allowances pricing under one compliance period are not flexible

enough to take into consideration the impact of banking and borrowing possibilities under a

multi-period trading scheme on allowance price dynamics. However they allow for a good

understanding of the market mechanism.

2.2.1 Equilibrium Models

Dales (1969) was the first economist to introduce a market idea for trading the right to pollute.

Three years later, Montgomery (1972) provided a theoretical foundation of a market in licenses

and developed a decentralized system based on achieving environmental goals at a number of

different locations. These two seminal papers are the origins of the development of more recent

contributions.

Carmona, Fehr and Hinz (2009) explore the relation between the price evolution of emis-

sion allowances and the way in which a multi-agent electricity producer decides when to switch

from a hard coal power plant to a cleaner Combined Cycle Gas Turbine (CCGT). A one period

discrete time mathematical model is developed to determine the optimal switching policy that

minimizes the overall cost under zero net supply conditions. The resulting equilibrium carbon

price is equal to the marginal price of an extra allowance to lower the expected penalty payment

amount.
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Seifert, Uhrig-Homburg and Wagner (2008) assume that emission rate dynamics are given

by a stochastic process, where the uncertainty is driven by a standard Brownian process. The

existence of this term in the model is explained by a potential emission variation due to some

external randomness (e.g. weather changes and economic growth). Under the assumption of

risk-neutral market participants, the central planner choose an optimal abatement policy as

function of time and total expected accumulated emissions over the entire compliance period.

The latter variable is a controlled stochastic process with dynamics derived from the emission

rate’s stochastic differential equation with a drift controlled by the abatement policy under-

taken. The marginal abatement costs is assumed to be linearly increasing with respect to the

emissions abatement strategy. It is also defined as the spot price, and has a martingale property

under the objective probability measure. Its motion is not correlated to the specification of the

emission process rate. A logarithmic utility function was introduced to study the impact of risk

aversion on allowances price.

Chesney and Taschini (2008) deal with pricing spot allowances for a one period market

scheme and assume that the emitter releases GHG exogenously and continuously under a ge-

ometric Brownian motion. A company may trade only at an initial time in order to minimize

final costs comprising the sum of the initial trading cost12 and the expected penalty payment

applying to any future allowance shortages. The spot price obtained is equal to the discounted13

penalty price times the probability weight of non-compliance scenarios. Chesney and Taschini

(2008) extend the basic model to the case of an economy where two companies can trade at

multiple discrete times. They suppose that the allowance price is equal to the penalty level

at the compliance date when at least one company faces an allowance shortage. Companies

also trade using only information about their own pollution and the accumulated emissions

volume of their counterparty at the previous trading possibility. The equilibrium price pro-

cess for each trading time is defined as function of the traded quantity. The latter is obtained

12It can take positive values and be considered as gain when the company decides to sell allowances at the
initial time, as it can be negative and seen as cost if it buys allowances.

13The discount rate is the weighted average cost of capital.
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by solving a system of two equations, incorporating the market clearing condition. Using the

method of moments to approximate the sum of more than one geometric Brownian motion by

another geometric Brownian motion, an extension of the model to a multi company framework

is possible.

Carmona et al. (2010) propose a competitive equilibrium model under one compliance pe-

riod. The output goods are assumed to be exogenous and inelastic. A producer in the economy

has the choice between several technologies for each good characterized by different marginal

cost production, emission factor and production capacity. The stochastic properties of the de-

mand and costs are known for all firms from the beginning. The overall demand is considered

always to be satisfied. As such, overall demand must be less than the total production capacity.

To avoid paying penalties, the planner switches its production to a cleaner available technolo-

gies or has recourse to the ETS to buy allowances. The authors show the existence of market

equilibrium such that the zero net supply condition is fulfilled, the demand is covered, and the

strategies maximize the expected terminal wealth. To avoid issues with discounting, Carmona

et al. (2010) work with forward prices applying at the compliance time T . The forward al-

lowances prices in time T currency is a bounded martingale under the objective probability

measure with value less then the penalty level. Also time T spot goods prices and optimal

production strategy are merit-type equilibrium with defined adjusted costs. These properties

are necessary conditions to the existence of the equilibrium. It is shown that the market equi-

librium is equivalent to a representative agent problem where the emission is reduced in a

cost-effective way. A generalized cap-and-trade scheme is introduced by including taxes and

subsidies in the original formulated problem. Furthermore it allows the regulator to distribute

allowances dynamically and linearly in the production quantity. By assigning adequate values

to these variables, a comparative analysis is made between the standard cap-and-trade market

(a), cap-and-trade market with auctioning of allowances (b), tax scheme (c), and a cap-and-

trade scheme with relative allowance allocation (d) vis-à-vis emissions reduction, incentives

to invest in a cleaner energy, windfall profits, social cost, and end-consumer cost. Table 2.2
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reports the results.

Reduction Target Incentives Windfall Social Cost Consumer Cost
a + + - + -
b + - - + -
c - - + - -
d + + + + +

Table 2.3: Comparison of different market schemes from Carmona et al. (2009).

Hinz and Novikov (2010) solve the central planner problem treated in Seifert, Uhrig-

Homburg and Wagner (2008), Carmona, Fehr and Hinz (2009), and Carmona et al. (2010) by

including additional assumptions in the equilibrium mathematical model. Under a no-arbitrage

condition, they assume the existence of an equivalent risk neutral probability Q such that the

equilibrium price is a Q−martingale. Also the agent opts immediately to abate when allowance

prices exceed its abatement cost. At the compliance date, the spot price is zero if the market

is long and equals the penalty level otherwise. As consequence the spot price under Q will

depend only on the cumulative abatement volume and the overall allowance shortage. The

model is developed under a discrete time framework. As an illustrative example, they focus on

the martingale case with independent increments for the cumulative emissions and determinis-

tic abatement functions combined with the least-square Monte-Carlo method of Longstaff and

Schwartz (2001). An algorithm is formulated to price allowances and European calls written

on the spot allowances price.

Borovkov, Decrouez and Hinz (2010) study the continuous time version of the solution ob-

tained by Hinz and Novikov (2010). They show the existence of the allowance price when the

conditional expectation of the total cumulative emissions is a Q-martingale diffusion process

with a deterministic volatility. The allowance price is derived by solving a nonlinear partial

differential equation (PDE), while a European call option is priced by solving a linear PDE.

An extension to a jump diffusion setting is developed and the spot price is obtained by solving

a partial integro-differential equation. Borovkov, Decrouez and Hinz (2010) prove uniqueness

of the allowance price and use a numerical finite difference scheme to compute it.
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Kijima, Maeda and Nishidie (2010) extend the work of Maeda (2004). They suppose the

existence of a competitive market within a single-period economy, where the regulated emitters

must comply with emission reduction target set up by the regulatory authority at the future

time T . Two markets are available: the spot market, and the derivatives market written on the

T allowances price and assumed to be complete. Financial traders are considered in the model

and trade only in contingent claims market to hedge the risk in their exogenous income. The

authors assume that each economic agent has a negative exponential utility with an appropriate

risk-aversion coefficient. The key assumptions for their model to obtain closed-form formulas

are the following: they suppose the cost abatement function to be continuously differentiable,

increasing and strictly convex with a derivative that starts at zero when there is no abatement,

and goes to infinity asymptotically. Infinite penalties are imposed, so that the emitter must abate

emission or buy allowances at time T to comply with the regulatory emission target. The state

price density is provided for each of the cases in which banking and borrowing are allowed or

not, giving a pricing solution for any contingent claim. Moreover, the market clearing condition

when banking and borrowing are forbidden must be satisfied, otherwise being replaced by the

equality between the aggregate abatement target and the whole emission reduction over the

entire compliance period. Under a piecewise linear quadratic abatement cost function, price

spikes may occur more frequently in the forward than in the spot price (in contrast to intuition

deriving from the usual Samuelson effect for commodities). The relationship between the spot

and forward prices are analyzed. They show that when there are many financial traders the

forward price is smaller than expected future spot price. This forward curve phenomenon is

known as normal backwardation.

2.2.2 Stochastic modeling

We introduce the papers that use applied probability techniques in order to provide a pricing

and hedging solution to the market participants. These approaches offer general flexible tools

for pricing complex contingent claims.



2.2. Modeling and Pricing in EmissionMarkets 21

Çetin and Verschuere (2009) present a probabilistic pricing and hedging framework. They

assume that the market contains only two forward contracts Pt and S t with subsequent matu-

rities T1 and T2, T1 < T2, respectively. S t dynamics are modeled by a Markov process with a

drift expressed as an affine function of a right continuous with left limits Markov chain taking

values depending on the market position. Under the assumption of no banking, Pt is zero if

the market is long; otherwise taking the value of the penalty level plus S T1 . If the market is

short the investor must pay the penalty and deliver the missing allowances at later time T2. The

model framework is incomplete because there are two sources of uncertainty in the stochas-

tic differential equation for S t, and one of them is not tradable. As a result, contingent claims

have, in addition to the hedgeable risk, a relative intrinsic risk (Föllmer and Sondermann, 1986)

which cannot be covered. Çetin and Verschuere (2009) uses the Föllmer-Schweizer decompo-

sition to price Pt as an expectation under an equivalent probability measure called the minimal

martingale measure. The associated hedging strategy is a locally-risk minimizing strategy as

defined by Föllmer and Schweizer (1991). A filtration projection technique is used to price

the allowance and a digital option, which pays an unit amount of money if the market is short

at time T1, under incomplete information. The effect of intermediate announcements is also

studied.

Carmona and Hinz (2009) assume the existence of an equivalent martingale measure Q

such that the price process of a future contract At is a martingale. Within a single T compliance

period model, AT is equal to the penalty level Π when the emitted quantity is greater than

the number of allowances. Carmona and Hinz (2009) define N as a set of allowance shortage

events. N is described as the set where some positive-valued random variable Γ is located above

the boundary 1. The total normalized emission can be seen as a special choice. Carmona and

Hinz (2009) identify a class of parameterized positive Q-martingales with values less than

the penalty level. These Q-martingales satisfy the following condition: under the objective

probability measure, the probability of the events such that the limit of At equals to Π is the

same as one minus the probability of the events such that the limit of At equals to 0. For ease
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of calibration to historical data, they provide a formulation of the likelihood density under the

assumption that the market price of risk is constant over time. The model is extended to a two-

period market model without borrowing, with unlimited banking and withdrawal. The prices

of European call options written on futures contracts and maturing before the first compliance

date are derived for both models.

Grüll and Kiesel (2009) assume that the emission rate follows a geometric Brownian mo-

tion, similar to the assumption of Chesney and Taschini (2008). They use the result of Carmona

et al. (2010) and assume that the price of the futures contract maturing at the compliance date

T may be computed from the penalty price times the probability of the set of events where the

total cumulative emissions at time T exceeds the cap predetermined by the regulator. The spot

price is approximated using three different approaches which depend on the approximation

method used to compute the total cumulative emissions at time T . In the first, linear approach

cumulative time T emissions are estimated to be T times the emissions rate at time T . The sec-

ond and third approaches are a bit more sophisticated, relying on moment matching techniques

for the cumulative emissions estimate. They differ only because the second approach uses a

log-normal distribution in the matching while the third uses a reciprocal gamma distribution.

Under a risk-neutral assumption, Huang (2010) models emission rate dynamics as a stochas-

tic process. Instead of a geometric Brownian motion dynamics as in Chesney and Taschini

(2008) and Grüll and Kiesel (2009), he assumes that the process can follow either an arith-

metic Brownian motion or a mean reversion process. At the compliance date, the spot price

is zero if the aggregate emissions exceed the allocated emissions limit and equals the penalty

level otherwise. Formulas are provided for spot prices, European options prices (call and put)

as well as their Greeks. Futures prices can be derived from the spot price when the convenience

yield is neglected.



Part I

Discrete-Time Model
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Chapter 3

Discrete-Time Model Introduction

A major environmental challenge facing humanity is the problem of climate change, which

has been linked to industrial emissions of carbon dioxide and other greenhouse gases (GHGs).

As a consequence, governments around the world have joined to establish a new regulatory

framework in order to stabilize and decrease emissions. The Kyoto protocol to the United

Nations Framework Convention on Climate Change is a concrete example. Ratified by more

than 184 states, the protocol defines emission caps for industrialized and transition countries to

decrease GHGs emission by 5.2% below 1990 levels during the commitment period 2008-2012

and to stabilize atmospheric concentrations by 40% to 45% by 2050. It includes three flexible

compliance mechanisms: the Clean Development Mechanism (CDM), Joint Implementation

(JI) and International Emissions Trading (IET). Kyoto’s IET allows for emission allowances

trading between governments. The CDM is a mechanism for assisting developing countries to

achieve sustainable development by permitting industrialized countries to finance projects for

reducing GHG emission in developing countries and to receive credit for doing so. The JI is

a mechanism whereby an industrialized country may acquire emission reduction units when it

helps to finance projects that reduce net emissions in another industrialized country, including

countries with economies in transition. Given these instruments, each country must comply

with the emission reduction target by imposing national regulations on its economic agents.
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The new regulatory framework is designed to force economies to transition to a “clean

energy economy”. The regulator must protect consumers from predatory price increases and

spur energy efficiency through the development and deployment of new energy technology.

Three practical policy instruments can be used to meet these constraints: emission taxes, cap-

and-trade markets, and a hybrid of the two. An emission tax is a price that an emitter must

pay per unit of GHG emission. Under an emission tax companies must choose between paying

the emission tax or reducing their pollution. As long as the marginal costs of abatement is

less than the imposed tax, they will reduce emissions. Therefore the tax rate plays a key role

in defining corporate strategies to face the regulatory environment. A cap-and-trade market

is a quantitative instrument that uses market principles to achieve emissions reduction. The

regulatory agency sets an absolute limit, or cap, on the amount of emissions, and issues a

limited number of tradable allowances which sum to the cap and represent the right to emit a

specific amount. A hybrid safety valve system combines both the emission tax and the cap-

and-trade market. Companies may buy allowances from the national authority at a high, but

fixed, rate rather than from the market. Jacoby and Ellerman (2004) describe the origins of the

safety valve concept and trace its evolution in the climate policy context.

The European Union Emission Trading Scheme (EU ETS) established in 2005 is the largest

multi-country, multi-sector GHG cap-and-trade system. Designed to comply with Kyoto tar-

gets, it comprises combustion installations exceeding 20 MW, refineries, coke, metal, pulp and

paper, glass, and ceramic industries. The largest and most liquid spot and futures exchanges

for European emissions credits are NYSE Euronext and the European Climate Exchange. Not

only regulated companies, but also private or institutional investors are allowed to trade al-

lowances. Studies show that the EU ETS market is still illiquid and risky with a high historical

volatility. We refer the reader to Benz and Trück (2009), Daskalakis and Markellos (2008),

Daskalakis, Psychoyios and Markellos (2009), and Uhrig-Homburg and Wagner (2009) for

empirical analyses of the EU ETS market under the first commitment period 2005-2008.

Chesney and Taschini (2009), Seifert, Uhrig-Homburg and Wagner (2008), Carmona, Fehr
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and Hinz (2009), Carmona et al. (2010), Hinz and Novikov (2010), and Borovkov, Decrouez

and Hinz (2010) present emissions pricing frameworks based on equilibrium models. These

interesting papers do not offer a flexible pricing framework for complex derivatives. However,

the EU ETS experience suggests that allowance prices have a high historical volatility. There-

fore options, including exotic options, are attractive for market participants who use them to

hedge their net positions. Grüll and Kiesel (2009) and Huang (2010) present a pricing solution

by assuming that a) the emission rate follows a stochastic differential equation b) the spot price

is the penalty level if the aggregate emission exceed the allocated emissions limit and equals

zero otherwise. All of the above introduced models are difficult to extend to a multiperiod

compliance setting. Therefore, each compliance period is considered independent from the

other, in contrast to the EU ETS. In fact if companies do not deliver allowances to cover their

total emissions, they must pay a penalty and withdraw the missing allowances on the following

compliance date. Furthermore, borrowing and banking are possible in certain circumstances

and drive the spot prices and their volatilities to a great extent before compliance dates.

Kijima, Maeda and Nishidie (2010) suppose the existence of a competitive market within

a single-period economy with infinite penalties imposed for any future allowance shortages.

Under mild assumptions on the cost abatement function, they provide the state price density

for the cases in which banking and borrowing are allowed or forbidden. Carmona and Hinz

(2009) model allowance shortage events by a set,N , associated with a positive-valued random

variable when it takes values above the boundary 1. A pricing framework is provided by

assuming that the spot price at a compliance date is equal to the penalty level for all scenarios

in N , and to zero otherwise. The model is extended to a two-period market model without

borrowing, with unlimited banking and withdrawal. Hitzemann and Uhrig-Homburg (2011)

propose a multiperiod stochastic equilibrium model with banking and abatement possibilities.

Under their framework, the emission permit can be seen as a strip of binary options written on

net cumulative emissions.

Çetin and Verschuere (2009) use incomplete market results to propose a model for trad-
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ing in a cap-and-trade market under the assumption of no banking between two compliance

periods. The results which underpin their work come from a much more general incomplete

markets setting introduced by Föllmer and Sondermann (1986) and generalized by Föllmer

and Schweizer (1991). A filtration projection technique is used to price both allowances and

a digital option under incomplete information. Mnif and Davison (2011a) present a review of

the recent literature devoted to quantitative pricing and hedging tools for emissions markets as

well as the state of the world cap-and-trade schemes.

The emission market mechanism is different from all other commodity markets and is, in

some ways, more complex. On the one hand, schemes may or may not allow either banking

(carrying allowances over to subsequent commitment periods) or to borrow allowances from a

later period to comply with the current emissions cap. As consequence, any release of infor-

mation about the expected market position within a compliance period can dramatically affect

prices. Assume that the market allows banking and prices are currently low. If the market is

expected at the next subsequent date to be short, emitters behave so as to minimize their future

compliance cost. Thus, as a profitable strategy, they buy current cheap allowances and bank

them to the next commitment period. It follows that the demand for cheap allowances exceeds

their supply and therefore their prices increase. Many profitable strategies could be devised

for different combinations between current and expected market states. Hence the market ex-

pectation conditioning on the current market state deeply affects the borrowing and banking

strategies that drive price fluctuations. On the other hand, emissions trading markets are often

dysfunctional, registering only very high prices (in which case the market is said to be short) or

very low prices (in which case the market is long). In either extreme case, liquidity disappears

from the market. In order to repair this market failure, the regulator may intervene to adjust the

market parameters (i.e. initial endowment, penalty level) at the beginning of a new compliance

period to balance the desire for a functioning market with the reduction policy commitment.

The result of this manoeuvre is to make such a carbon market intrinsically incomplete. As a

consequence not only are claim payoffs affected, the price dynamics also show a jump behavior
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and a change in their structural parameters. Therefore the financial tools usually applied in the

markets (i.e. Black and Scholes, 1973, and all its many extensions) fail to give a fair price.

The relationship between information release and stock prices is among the questions that

signaling models, in particular those in which information is linked to dividend levels (Bat-

tacharya, 1979, John and Williams, 1985, Miller and Rock, 1985, and Litzenberger and Ra-

maswamy, 1982), are designed to answer. Under the asymmetric information assumption that

the firm’s manager has more information than the shareholders about the firm’s future earnings

an unexpected increase of dividends induces a positive share price movement and vice versa.

Under the carbon market framework we can match the signal of the change in unanticipated

dividends rate to the release of information about the expected market position. The allowance

prices increase if the market is expected to be short at compliance date and decrease other-

wise. As a consequence modeling the expected market position requires a model of allowance

dynamics. In this paper we proceed by an empirical investigation where the allowances re-

turns are driven by the projection on the current data’s information structure of the market

expectation at a subsequent compliance date. Furthermore we assume that the regulator has

more information than the market participants about overall market position and can identify

the market state from macro/micro parameters observable to him. We show how the regulator

can use this additional information to minimize risk associated with the traded contracts in the

market.

We present a framework to illustrate the issues described above and to show how it may be

addressed with stochastic tools. We assume that the allowance future prices follow a binomial

tree model. We model the market expectation at a subsequent compliance date by random

variables that drive the prices processes and affects their return through time. The (untraded)

market expectation is unobservable by an investor. By including it in the model, we construct

an incomplete market in which market participants trade under incomplete information. We

propose a pricing framework that provides a fair price as well as its associated strategy for

constructing a replicable portfolio that matures close to the contract written on emission per-



29

mits. Furthermore we study the relationship between the one period model and a multiperiod

one. We show that to obtain less risky hedging strategies, a multiperiod pricing framework

is essential. Traders are subjected to uncertainty in the long run regulatory environment. So

to decrease dependency between compliance periods, we suggest that the regulator should in-

tervene in the market by offering a new tradeable financial asset. However, the regulator is

not dynamically hedging this asset so its pricing procedure will be different from that of other

market participants and has different goals. We propose a pricing approach based on utility

maximization, such that the regulator evaluates the additional financial asset without affecting

the overall social wealth. This technique is known in the literature as indifference pricing. We

study the impact of such additional instruments on systematic risk.

The reminder of this part is organized as follows. Chapter 4 suggests a mathematical model

which describes the futures dynamics and calibrates it to real data. Chapter 5 presents dis-

cussions and recommendations for effective trading and market design based on the pricing

framework that we propose. Chapter 6 summarizes our discrete time results.



Chapter 4

Modeling Futures Allowance Dynamics

4.1 Futures Allowance Dynamics

Given a fixed probability space (Ω,F = (Ft)t≥0,P)1, we consider a market model where S t is a

d-dimensional vector of discounted futures allowance price processes such that the S i
t, t ≤ Ti,

are used for compliance purpose at time Ti. We choose to work with futures contracts, because

carbon futures markets are more liquid than the corresponding spot markets. An important

reason for this difference in liquidity is that an EUA spot transaction is considered as a “good”

and as such is subjected to Value-Added Tax (VAT). In contrast, futures contracts are VAT

exempt and they are treated as financial transactions within the European Union. If a financial

market is complete, the simplest discrete time model is the binomial in which:

S i
t = ξi

tS
i
t−1,∀t ≥ 1, (4.1)

where ξi
t is a Ft-measurable process that takes two possible outcomes {ξiu

t , ξ
id
t }, ξ

iu
t > 1 > ξid

t .

Define a non-observable process Yt, the fluctuations of which are generated by the implied

investors market expectation position at time t for the subsequent compliance dates. Yt is nei-

1(Ft)t≥0 is assumed to satisfy the usual conditions. In other words, (Ft)t≥0 is right continuous and every
negligible set is measurable.

30
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ther tradeable nor observable by an investor while he is trading at time t. Yt can be considered

as a hidden risky factor that exogenously affects the market behavior. As such, Yt depends on

market dynamics as well as the overall accumulated emissions up to time t, the economic busi-

ness cycle, and any previous release of information. The collection of information from the

dynamics of Yt generates the missing information needed to have a pricing framework under

the larger information set. The market can be long at time t (in which case prices are low),

even while the market is expected to be short at the end of the compliance period. The vari-

able Yt takes values on the set of events where the market ends up short and its distribution is

conditioned on the current market state, i.e. low prices. The distribution of Yt is conditioned

on the set of information available as well as that released at time t − 1 about the projected

market state. Moreover the set of Yt values (Yt > 0 if the market is expected to be short and

Yt < 0 otherwise) could be known by market participants when the regulator releases informa-

tion about the overall expected market position (for instance at compliance dates Ti). In fact

the regulator has access to more information about microeconomic2 as well as macroeconomic

variables, which allows him to predict market position given enough data. We assume that the

allowance returns are affected by the non-observable process as follows:

S i
t = f i

t−1(ξi
t,Y

i
t−1)S i

t−1,∀t ≥ 1, (4.2)

where f i
t−1 is an Ft−1-measurable return function that defines the effective return of S i

t given

the realized values of ξi
t and Y i

t−1. The condition f i
t−1(ξi

t,Y
i
t−1) ≥ ξi

t holds if, at time t − 1, the

market is expected to be short, otherwise f i
t−1(ξi

t,Y
i
t−1) ≤ ξi

t. The no-arbitrage condition imposes

that 0 < f i
t−1(ξid

t ,Y
i
t−1) < 1 < f i

t−1(ξiu
t ,Y

i
t−1). Note that within a single period, any S-contingent

claim can be replicated and we define the market to be locally complete; this is no longer the

case when we turn to a multiperiod model. Intuitively this property means that any release of

information at t stimulates a movement on the prices with a one time step lag, i.e. at time t + 1.

We now present a simple example with traded asset S under two-period market framework

2He is able to require emitters to periodically report their emissions during the compliance period.
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ωi

1

ξd
1({ω3, ω4})

ξd
2(ω4) ω4

ξu
2(ω3) ω3

ξu
1({ω1, ω2})

ξd
2(ω2) ω2

ξu
2(ω1) ω1

Figure 4.1: Returns per time step of the traded asset in absence of Yt.

in order to clarify our model. Assume a complete market with at the original time S = S 0.

At the end of each period, S can take two possible values: S t = ξtS t−1, t = 1, 2, where ξt =

ξu
t or ξd

t , ξ
u
t > 1 > ξd

t (see Figure 4.1). We therefore distinguish 4 states of nature at t =

2 and any contingent claim written on S t is totally hedged with no residual remaining risk.

Its price is then equal to the cost of the strategy that allows to replicate its payoff P − a.s3.

However a non-observable risky factor introduces incompleteness to the model by enlarging

the filtration corresponding with the more complete information set without supplying new

tradeable assets to span this uncertainty. In fact, as shown in Figure 4.2, we end up with 16

potential states of nature. Consider an agent “representative” in the sense that his market

position expectation is typical of market participants. Its market projection (short or long)

affects the dynamics of the process Yt. The latter has an impact on the time t + 1 allowance

returns by the Ft-measurable function ft that relates its outcome at time t with ξt+1. Figure

4.2 shows how the return per period evolves. For example, to obtain the final allowance price,

S 2(ω1) = f0(ξu
1(B2),Y0,F0) f1(ξu

2({ω1, ω2}),Y1(A1), A1)S 0. Thereby we provide the flexibility to

model the allowance dynamics under a discrete time framework.

3An event is P-a.s. if its probability under P measure is 1.
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1

( f0(ξd
1(B2),Y0,F0), +)

( f0(ξd
1(B2),Y0,F0), -)

( f0(ξu
1(B1),Y0,F0), +)

( f0(ξu
1(B1),Y0,F0), -)

( f1(ξu
2({ω1, ω2}),Y1(A1), A1), -) ω1

( f1(ξu
2({ω1, ω2}),Y1(A1), A1), +) ω2

( f1(ξd
2({ω3, ω4}),Y1(A1), A1), -) ω3

( f1(ξd
2({ω3, ω4}),Y1(A1), A1), +) ω4

( f1(ξu
2({ω5, ω6}),Y1(A2), A2), -) ω5

( f1(ξu
2({ω5, ω6}),Y1(A2), A2), +) ω6

( f1(ξd
2({ω7, ω8}),Y1(A2), A2), -) ω7

( f1(ξd
2({ω7, ω8}),Y1(A2), A2), +) ω8

( f1(ξu
2({ω9, ω10}),Y1(A3), A3), -) ω9

( f1(ξu
2({ω9, ω10}),Y1(A3), A3), +) ω10

( f1(ξd
2({ω11, ω12}),Y1(A3), A3), -) ω11

( f1(ξd
2({ω11, ω12}),Y1(A3), A3), +) ω12

( f1(ξu
2({ω13, ω14}),Y1(A4), A4), -) ω13

( f1(ξu
2({ω13, ω14}),Y1(A4), A4), +) ω14

( f1(ξd
2({ω15, ω16}),Y1(A4), A4), -) ω15

( f1(ξd
2({ω15, ω16}),Y1(A4), A4), +) ω16

Y0 Y1
ωi

Figure 4.2: Returns per time step of the traded asset in presence of Yt , where
A j = {ω( j−1)∗4+i, i = 1, 2, 3, 4}, j = 1, 2, 3, 4, B1 = {ωi, i = 1, ..., 8}, and B2 = {ωi, i = 9, ..., 16}.
The “-” sign indicates that the market is expected to be short, and the “+” sign denotes that
the market is anticipated to be long.
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4.2 Data Analysis and Parameter Estimation

4.2.1 Data Analysis

From the EU ETS experience, the emission market displays volatile price behavior due to the

lack of information available to the investor as well as market intrinsic features. Figures 4.3

and 4.4 show the spread between two subsequent futures contracts of Phase II discounted to

December 2009 money value using the EURIBOR futures term structure. Both backwardation

and contango forward curve behaviours are observed depending on the overall environment.

At the beginning of 2008, EURIBOR futures were high (See Figure 4.5). Moreover ana-

lysts expected the market to be long; therefore it seemed more likely that emitters would gain

windfall profits given that the allowances were initially allocated at no cost. As a result, emis-

sions prices were then relatively high, so emitters started to sell 2008 allowances to raise cash

and take advantage of the high rates, keeping in mind that 2009 allowances could be used for

2008 compliance in case of shortage. In fact, during the Kyoto period, the EU ETS allowed

borrowing from a future year within the same phase. Moreover the 2009 allowances were dis-

tributed in February 2009 while the 2008 surrender date was April 30, 2009. Consequently

many emitters purchased futures to hedge their possible 2009 shortfall position. This explains

the reason why the Dec-2009 contract is more valuable than other contracts, and Figure 4.3

shows the resulting negative spread (backwardation).

In late 2008, futures prices plummeted to about the e15 level after trading above e25 for

June and most of July. This drop was in response to the economic crisis that hurt big emitters

reducing their demand and hence the aggregate demand for emissions allowances below the

supply of allowances. Besides an expected economic stimulus beginning in 2009, emitters

were attracted to buy cheap futures for use in forthcoming compliance periods, including the

post 2012 phase III4. Unlimited banking is allowed between Phase II and III. Furthermore

auctioning will increase from 4-5% on average during Phase II to at least 50% of traded credits

4The European regulator set up 2012-2020 as the third compliance phase.
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Figure 4.3: Spread between two subsequent futures contracts of Phase II discounted to De-
cember 2009 money value using EURIBOR futures during 2008. Prices were quoted in the
European market from 02/01/2008 to 17/11/2008. (Source: Bloomberg)
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Figure 4.4: Spread between two subsequent futures contracts of Phase II discounted to De-
cember 2009 money value using EURIBOR futures during 2009. Prices were quoted in the
European market from 18/11/2008 to 14/12/2009. (Source: Bloomberg)
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Figure 4.5: EURIBOR futures rates per annum between December 2009 and December 2010-
2012. We use daily rates from 02/01/2008 to 14/12/2009. (Source: Bloomberg)
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starting with post Kyoto. Emissions credits for electricity producers will be fully auctioned

by 2013 and analysts expect the market to be short post 2012. Thus futures contracts with a

late delivery date are more valuable and have an intrinsic value that prices the expected market

position and the future change of regulatory framework, and the positive contango spread is

dominant in Figure 4.4.

Banking and borrowing have an opposite impact on the discounted futures term structure.

Banking dominates if the market is currently long and expected to be short later, while borrow-

ing prevails if the market is presently short but projected to be long later. The spread between

discounted futures contains information about future market adjustment and its expected po-

sition. This leads us to believe in the existence of a relationship that can be useful in pricing

contingent claims.

4.2.2 Parameter Estimation

Our analysis focused on Dec-2009 (S 1
t ) and Dec-2010 (S 2

t ) contracts during the trading period

from January 2008 until December 2009 (500 observations). Figure 4.6 reports price level

histograms for both contracts. The market has two dominant states: beginning with low prices

(i.e. the market was long); prices are high for the second state (i.e. the market was short). For

the Dec-2009 contract, the prices for the last trading days varied near the bottom of the e12 to

e14.5 overall trading range, which means that the 2009 compliance period ended “long”.

We suppose that ξi
t is constant over time. We estimate ξiu by taking the average of the

upward movement returns for S i
t and estimate ξid by considering only the downward movement

returns. The result is:

ξ̂1u = 1.0205 ξ̂1d = 0.9800 (4.3)

ξ̂2u = 1.0380 ξ̂2d = 0.9827. (4.4)
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Figure 4.6: Price distribution for Dec-2009 and Dec-2010 contracts. The prices were quoted
in the European market from 02/01/2008 to 14/12/2009.
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θ 0.92
µ1 1.34e-04
σ1 14.06e-03
µ2 -1.77e-03
σ2 41.70e-03

Table 4.1: Gaussian mixture parameters estimated using an Expectation Maximization algo-
rithm.

Moreover, we assume that:

S 1
t = f 1

t−1(ξ1,Y1
t−1)S 1

t−1,∀t ≥ 1, (4.5)

where f 1
t−1(ξ1,Y1

t−1) = ξ1 + Y1
t−1, and (Y1

t )t≥0 are independent and identically distributed (i.i.d)

random variables and play the role of excess returns. Y1
t−1 takes positive values if at time t − 1

the market is expected to be short and negative values otherwise. This assumption implies

that the expected market position at the end of 2009 is fully described by the Dec-2009 future

contract dynamic. We assume Y1 has a continuous distribution. As shown later, the mixture of

two univariate Gaussian distributions can be a decent fit to the Y1
t distribution. Define ϕ as the

probability density function (pdf) of Y1
t :

ϕ(x) = θψ(µ1, σ1) + (1 − θ)ψ(µ2, σ2), (4.6)

where ψ(µ, σ) is the normal pdf with mean µ and standard deviation σ. The Gaussian mixture

distribution offers a flexibility in modeling the excess return with two possible distribution

outcomes depending on the state of nature. With probability θ, the excess return has a normal

distribution with a pdf ψ(µ1, σ1) and it is normally distributed following the pdf ψ(µ2, σ2) with

a chance of 1 − θ.

We estimate the Gaussian mixture parameters using an Expectation Maximization algo-

rithm (Mclachlan and Peel, 2000). Table 4.1 reports the obtained parameters. Figure 4.7 com-

pares the empirical and the fitted Gaussian mixture cumulative distribution function (CDF).
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Figure 4.7: This figure shows that the mixture of two univariate Gaussian distributions is a
decent fit to the expected market position at the end of 2009. It reports a comparison between
the empirical CDF and the theoretical Gaussian mixture CDF. Parameters as given in Table 4.1.
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With a probability of 0.92, the market expectation has the same chance either to be long or

short. However with a probability of 0.08, the market is expected to be long 52% of the time.

At first this seems fairly uninteresting to be a minor and distinction, but recall that the other

parameters also vary between states.

After analyzing the 2009 excess return dynamics in depth, we investigate whether we can

explain the 2010 excess returns by means of the 2009 excess returns. Figure 4.8 shows that the

market reaction depends on the contract. We assume that

S 2
t = f 2

t−1(ξ2,Y2
t−1)S 2

t−1,∀t ≥ 1, (4.7)

where f 2
t−1(ξ2,Y2

t−1) = ξ2 + Y2
t−1, and (Y2

t )t≥0 are i.i.d. We suppose that Y2
t has the following

structural equation:

Y2
t = g(Y1

t ) + It + ut, (4.8)

where ut are i.i.d such that E[ut | (Y1
t , It)] = 0. The explanatory variable g(Y1

t ) represents the

causality of the Y1
t outcome on Y2

t , while It represents the component of impact of the expected

market position solely affecting Y2
t . Without lost of generality, we assume E[It] = 0 because

any constant offset can be absorbed by g. However It is an unobserved heterogeneity and we

have a correlated variable which is the market state MS t that takes the value +1 if the market

is expected to be short (Y1
t > 0), -1 otherwise. Here MS t can be a proxy for It. We assume

that MS t is exogenous and satisfies E[Y2
t | (Y1

t , It,MS t)] = E[Y2
t | (Y1

t , It)]5. In other words

conditional on (Y1
t , It), the proxy variable MS t does not provide any additional information and

is irrelevant for explaining the conditional mean of Y2
t . Furthermore we suppose that:

It = h0 + h1MS t + υt, (4.9)

5This condition is always valid as MS t is the sign of Y1
t .
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Figure 4.8: This figure shows that the market reaction depends on the contract. It reports the
excess returns for Dec-2009 and Dec-2010 contracts.
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where (υt)t≥0 are i.i.d such that E[υt] = 0, E[υtMS t] = 0 and E[υtg(Y1
t )] = 0. We obtain the

structural equation:

Y2
t = g(Y1

t ) + h0 + h1MS t + εt, (4.10)

where εt = υt + ut is the composite error, and is uncorrelated with g(Y1
t ). See Wooldridge

(2002) for a detailed development on the proxy variable technique and its properties. On the

other hand we suppose that g is a polynomial of order p so that the estimation of the partial

effect of Y1
t on Y2

t is tractable. As a consequence, we end up with the following linear equation

with high order terms:

Y2
t = (h0 + a0) +

p∑
k=1

ak(Y1
t )k + h1MS t + εt. (4.11)

We estimate the structural equation (4.11) using the ordinary least square method, which is,

under our assumptions, consistent with (h0 + a0, (ak)k≥1, h1) and is the best linear unbiased

estimator (Wooldridge, 2002). Table 4.2 reports some estimated parameters and the R2 as

function of the polynomial order p. Table 4.2 also displays some estimated parameters of the

structural equation (4.8) if we omit It. The proxy variable MS t helps to better explain the

residual, and therefore it is suitable to include It in the structural equation (4.8). The obtained

results show that about 75% of the 2010 expiry returns can be explained by the information

associated with the compliance period relative to the Dec-2009 contract. This dependency is

expected because of the continuity between compliance periods that arises from the ability to

borrow. Nevertheless about 25% of the 2010 excess return dynamics depend on the market

expectation and the intrinsic risk related to the 2010 and post-2010 trading periods. Moreover

the intercept parameter (h0 + a0) is adjusted by ±h1 depending on the market expectation.

The coefficient a1 is always positive, which leads us to think that Y1
t and Y2

t vary such that

their outcomes have the same sign. We focus on this point later after estimating the historical

probability.
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With the proxy variable It omitted
R2 h0 + a0 a1 h1 R2 a0 a1

p=0 68.21% -3.60e-03 - 2.25e-02 - - -
p=1 73.86% -3.20e-03 5.41e-01 1.52e-02 60.35% -2.40e-03 1.17
p=2 73.98% -2.81e-03 5.60e-01 1.49e-02 61.39% -1.29e-03 1.19
p=3 74.98% -2.28e-03 2.78e-01 1.77e-02 62.67% -2.05e-03 1.34
p=4 75.22% -1.56e-03 3.51e-01 1.70e-02 64.73% -5.18e-05 1.43
p=5 75.48% -1.05e-03 2.07e-01 1.81e-02 65.34% -9.16e-04 1.54
p=6 75.92% -1.09e-04 3.85e-01 1.68e-02 68.08% 1.27e-03 1.73
p=7 75.95% 9.99e-05 3.38e-01 1.71e-02 68.45% 4.34e-04 1.82
p=8 76.10% 3.62e-04 4.93e-01 1.62e-02 70.17% 1.20e-03 2.07
p=9 76.34% 1.27e-03 4.67e-01 1.63e-02 70.34% 1.98e-03 2.05

p=10 76.34% 1.27e-03 4.67e-01 1.63e-02 70.34% 1.98e-03 2.05

Table 4.2: Parameters resulting from the OLS estimator as function of the polynomial degree
p in both cases where It is omitted or approximated by a proxy variable.

Since we are working within a model for two traded allowances, each node of the tree

generates 8 (=2 contracts x 2 tree branches x 2 market states) possible states at the next time

step (See Figure 4.9). pi, i = 1, ..., 8, represents the probability, under the historical measure,

that the event i occurs. We assume that it is constant over time and we estimate it with the

unbiased estimator:

pi =
Number of times that the event i occurs

Sample size
. (4.12)

Table 4.3 reports the probability weights of the 8 states. We remark that the probability that

the returns of S 1
t and S 2

t evolve in an opposite direction is almost zero. This is consistent with

the previously obtained positive sign of a1. Thus the returns have the same dynamic pattern

for both Dec-2009 and Dec-2010 contracts. However there is a spread between the prices that

evaluates the future uncertainty of the market position as well as the market adjustment at the

compliance period. As a possible consequence, a more appropriate hedging strategy in order

to replicate a derivative written on S 1
t should incorporate a position on S 2

t . The next section

develops this statement further.

We conclude that Dec-2009 and Dec-2010 futures cannot be interpreted as two indepen-
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Figure 4.9: States of nature generated at time t + 1 by a node at time t.
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Probability Weight
p1 0.261
p2 0.205
p3 0.006
p4 0.004
p5 0
p6 0.002
p7 0.255
p8 0.267

Table 4.3: Estimated probability weights of the states of nature that are described in figure 4.9.

dent commodity contracts. Furthermore an effective market design requires a long term stable

regulatory framework as the compliance periods are mutually correlated.



Chapter 5

Recommendations for Effective Trading

and Market Design

5.1 How effective is hedging in a one period model?

The market design shows long term uncertainty such that participants cannot have a clear in-

formation signal to evaluate derivatives written on allowances. Moreover, to ensure liquidity,

private or institutional investors are encouraged to trade (which cannot be buying contracts for

fundamental reasons). For the EU ETS, U.S. funds have been responsible for 10 − 15% of

traded volume starting from 2008 on the European Climate Exchange1. On the other hand, the

spread between S 1
t and S 2

t contains information about the expected market position at the com-

pliance date as well as the expected market adjustment by the regulator for the new compliance

period. The implied volatility is strongly affected by this kind of information and consequently

the derivatives market written on allowances is also influenced. This suggests that a pricing

model should consider the existence of tradable permits that mature at subsequent dates. In the

EU ETS, contracts are traded up to Dec-2020, including the post Kyoto phase. We present a

pricing framework that considers all these features and is based on some intuitive criterion.

1According to the State and Trend of the Carbon Market 2010 World Bank report.

48
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Introduced by Schäl (1994) and developed for more general one dimensional processes by

Schweizer (1996), the quadratic criteria consists of solving an optimization problem which

defines a fair price and its associated attainable portfolio that minimizes the quadratic risk2.

More precisely, for a payoff given by a particular random variable H ∈ L2(P), the initial

capital V0 which allows the best approximation of H by the cumulative trading gains GT (ζ)

associated with the self financing portfolio determined by ζ solves:

(V0, ζ) = arg min
(c,ϑ)∈R×Θ

EP[(H − c −GT (ϑ))2], (5.1)

where

Θ := {predictable processes ϑ|ϑ′k∆S k ∈ L
2(P)}, (5.2)

GT (ϑ) :=
T∑

j=1

ϑ′j∆S j. (5.3)

Following a similar procedure to that used by Schweizer (1996) to prove the existence and

uniqueness of the similar one dimensional problem, we generalize Rémillard and Rubenthaler’s

work (Rémillard and Rubenthaler, 2009) in order to present the solution of (5.1) under very

mild technical assumptions.

Proposition 5.1.1 Assume a probability space (Ω,F,P) and stochastic process (S t)t∈T ∈ L
2
d(P)

adapted to the filtration F = (Ft)t∈T such that E[∆S 2
k |Fk−1] is invertible a.s. and satisfies the

non-degeneracy condition 3. Therefore, there exists a unique solution (V0, ζ) solving (5.1),

2We assume frictionless trading.
3See Appendix A for notations and definitions
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where:

ζk = %k − βk(V0 + Gk−1(ζ)), (5.4)

V0 = EP̃[H], (5.5)

%k =

E

∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1



−1

E

H∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1

 , (5.6)

βk =

E

∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1



−1

E

∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1

 , (5.7)

dP̃
dP

=
Z̃0

E[Z̃0]
, (5.8)

Z̃0 =

T∏
j=1

(1 − β′j∆S j). (5.9)

Furthermore, the unhedgeable risk defined by (5.1) is:

V2
0 E

[
Z̃0

]
− 2V0E

[
HZ̃0

]
+ E

(H − T∑
j=1

%′j∆S j

T∏
l= j+1

(1 − β′l∆S l))2

 (5.10)

Proof See Appendix A

With Proposition 5.1.1 in hand, we have a solution for (5.1) under very mild assumptions

that cover a wide family of discrete processes. From the perspective of market participants, a

better hedging strategy is the one that provides less risk as measured by (5.10).

To sell a contract written on S 1
t and maturing at the compliance date 4 T1, an investor needs

to hedge its associated risk and so avoid tail loss scenarios. In our case, a two-period market

design provides a choice between: strategy A where only S 1
t is traded, or a strategy B that

includes positions in both S 1
t and S 2

t . With strategy A, the investor considers only the states of

nature that are observed by S 1
t fluctuations, i.e. the S 1

t -filtration. The information provided by

S 2
t is neglected, and so is the market expectation at time T−1 and during the subsequent compli-

ance period that ends at time5 T2. In fact our empirical investigation suggests that about 25%
4Note that T1 can be any date during the earlier compliance period.
5We take T1 to be December 2009 and T2 to be December 2010.
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of S 2
t is driven by uncertainty originating from the following compliance periods. This implied

factor is very important especially when the derivative contract nears maturity at the end of the

current compliance date. The market adjustment by the regulator as well as the banking possi-

bility generates a puzzling behavior of the allowance dynamics and thus its implied volatility.

Strategy B offers more flexibility to the contract issuer and allows him to partially hedge the

regulatory uncertainty at maturity.

Our numerical examples support the statement. Assume 5 business days remain to the last

trading day of S 1
t . This last trading day is also the maturity date of the option to be priced. We

consider different possible scenarios depending on the current and expected market positions.

If the market is currently short (i.e. are high prices) we use initial prices as quoted on 4/4/2008:

S 1
0 = e23.96 and S 2

0 = e24.61. (5.11)

else, i.e. the market is long (low prices), we take the quoted prices on 26/3/2009:

S 1
0 = e10.95 and S 2

0 = e11.6. (5.12)

Using the estimated parameters from the previous section6, we compare strategies A and B.

A technical point about the filtration set size arises. More states result from generating the

(S 1
t , S

2
t ) tree than from generating the S 1

t tree. To overcome this obstacle, we compare the av-

erage of prices and unhedged risks over 1000 different scenarios. Table 5.1 reports the average

prices for call and put options for different moneyness. Define the associated risk gain factors

(GF) as the ratio of the unhedgeable risk using strategy A over the unhedgeable risk resulting

from strategy B. Table 5.2 shows the minimum, median and mean GF of the 1000 different

scenarios repeated 25 times. For both puts and calls, the unhedgeable risk does not depend

on the current market state, i.e. if allowance prices are initially low (i.e. market is currently

long) or high (i.e. market is currently short). In fact for the same generated uncertainty Y1
t

6We approximate Y2
t by E[Y2

t |Y
1
t ] = (h0 + a0) +

∑9
k=1 ak(Y1

t )k + h1MS t.
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and Y2
t , the initial price does not impact the risk as the payoff is an affine function of S 1 and

we report results in terms of moneyness. Moreover, the unhedgeable risk for the call is equal

to the unhedgeable risk for the put with the same parameters (which follows from put-call

parity). Neither the call nor the put are totally replicable. Furthermore the results strengthen

our statement that the market participant is able to construct a less risky strategy by holding

positions in both S 1
t and S 2

t (GF > 1). Strategy B outperforms strategy A for different matu-

rities with a maximum attained for at the money options, whose prices are strongly correlated

to the implied allowance volatility fluctuations at the end of the compliance period. Appendix

D presents a sufficient condition that permits the reduction of unhedgeable risk by including

positions on an additional risky asset. It can be summarized as follows: S 2
t must be correlated

close to maturity to the non-replicable payoff by hedging with S 1
t . Table 5.1 suggests that the

cost of both strategies are almost the same. A possible explanation can be provided by writing

equation (5.10) as follows:

−V2
0 +

E
[
(H −

∑T
j=1 %

′
j∆S j

∏T
l= j+1(1 − β′l∆S l))2

]
E

[
Z̃0

] (5.13)

Given constant V0, trading in both S 1
t and S 2

t provides a strategy for which (5.13) has a smaller

second term than the equivalent expression formed by trading only S 1
t . Intuitively the former

strategy allows the market participant to consider a larger set of information and hedging with

correlated primary assets that distinguish more possible scenarios.

To conclude, hedging using a multiperiod pricing framework is more efficient than hedging

in a one period model. This is a special feature of the carbon market where the compliance

periods are mutually correlated by banking and borrowing possibilities, and thus futures with

different maturities cannot be treated as completely dependent or independent contracts.



5.1. How effective is hedging in a one period model? 53

Call
Market state Strategy Moneyness .925 .95 .975 1 1.025 1.05 1.075

SL
A Price 1.8019 1.2276 0.7157 0.3285 0.1051 0.0213 0.0028

(0.12%) (0.53%) (1.36%) (2.03%) (1.86%) (0.70%) (0.14%)

B Price 1.8018 1.2270 0.7141 0.3252 0.1016 0.0195 0.0025
(0.13%) (0.53%) (1.34%) (1.97%) (1.81%) (0.65%) (0.12%)

SS
A Price 1.7989 1.2150 0.6869 0.2927 0.0834 0.0170 0.0026

(0.07%) (0.34%) (1.04%) (1.61%) (1.28%) (0.42%) (0.09%)

B Price 1.7989 1.2147 0.6848 0.2883 0.0795 0.0158 0.0024
(0.07%) (0.34%) (1.03%) (1.68%) (1.31%) (0.40%) (0.08%)

LL
A Price 0.8235 0.5610 0.3271 0.1501 0.0480 0.0097 0.0013

(0.06%) (0.24%) (0.62%) (0.93%) (0.85%) (0.32%) (0.06%)

B Price 0.8235 0.5607 0.3264 0.1486 0.0464 0.0089 0.0011
(0.06%) (0.24%) (0.61%) (0.90%) (0.83%) (0.30%) (0.05%)

LS
A Price 0.8221 0.5552 0.3139 0.1337 0.0381 0.0078 0.0012

(0.03%) (0.16%) (0.48%) (0.74%) (0.59%) (0.19%) (0.04%)

B Price 0.8221 0.5551 0.3129 0.1318 0.0363 0.0072 0.0011
(0.03%) (0.16%) (0.47%) (0.77%) (0.60%) (0.18%) (0.04%)

Put
Market state Strategy Moneyness .925 .95 .975 1 1.025 1.05 1.075

SL
A Price 0.0049 0.0295 0.1167 0.3285 0.7040 1.2193 1.7998

(0.12%) (0.53%) (1.36%) (2.03%) (1.86%) (0.70%) (0.14%)

B Price 0.0048 0.0290 0.1151 0.3253 0.7006 1.2175 1.7995
(0.13%) (0.53%) (1.34%) (1.97%) (1.81%) (0.65%) (0.12%)

SS
A Price 0.0019 0.0170 0.0879 0.2927 0.6824 1.2150 1.7996

(0.07%) (0.34%) (1.04%) (1.61%) (1.28%) (0.42%) (0.09%)

B Price 0.0019 0.0167 0.0858 0.2883 0.6785 1.2138 1.7994
(0.07%) (0.34%) (1.03%) (1.68%) (1.31%) (0.40%) (0.08%)

LL
A Price 0.0022 0.0135 0.0534 0.1501 0.3218 0.5572 0.8225

(0.06%) (0.24%) (0.62%) (0.93%) (0.85%) (0.32%) (0.06%)

B Price 0.0022 0.0132 0.0526 0.1486 0.3202 0.5564 0.8224
(0.06%) (0.24%) (0.61%) (0.90%) (0.83%) (0.30%) (0.05%)

LS
A Price 0.0008 0.0078 0.0402 0.1338 0.3119 0.5553 0.8224

(0.03%) (0.16%) (0.48%) (0.74%) (0.59%) (0.19%) (0.04%)

B Price 0.0009 0.0077 0.0392 0.1318 0.3101 0.5547 0.8223
(0.03%) (0.16%) (0.47%) (0.77%) (0.60%) (0.18%) (0.04%)

Table 5.1: Prices of strategy B with comparison to strategy A for call and put options written
on S 1

t with different strike prices. All possible initial market states are considered. The first
letter (S: short and L: long) stands for the current market position and the second letter denotes
the expected market position at the subsequent compliance date. For example, SL: Market is
short (i.e. high prices) and expected to be long (i.e. low prices).
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Call & Put
Market state Moneyness .925 .95 .975 1 1.025 1.05 1.075

SL & LL
Min 1.19 1.21 1.22 1.22 1.20 1.17 1.16

Median 1.21 1.24 1.24 1.24 1.23 1.20 1.19
Mean 1.21 1.24 1.24 1.24 1.23 1.20 1.19

SS & LS
Min 1.11 1.18 1.22 1.22 1.23 1.21 1.18

Median 1.17 1.20 1.23 1.24 1.24 1.23 1.20
Mean 1.17 1.20 1.23 1.24 1.24 1.23 1.20

Table 5.2: Gain factor (GF) of strategy B with comparison to strategy A in order to price call
and put options written on S 1

t for different strike prices. All possible initial market states are
considered. The first letter (S: short and L: long) stands for the current market position and
the second letter denotes the expected market position at the subsequent compliance date. For
example, SL: Market is short (i.e. high prices) and expected to be long.

5.2 Recommendation for Effective Market Design

The existence of an inter-dependency between compliance periods can be used to reduce the

risk for any market position. This special feature distinguishes the emission market from other

options markets. However individual investors as well as non-emitting firms, who fear long

term regulatory ambiguity, must be enticed to trade in order to increase liquidity for specu-

lation and diversification purposes. The market will attract more participants if the regulator

intervenes and reduces the dependency between compliance periods using the fact that it is the

most informed market player.

Auctioning offsets the downside effect of free allowance allocation. Economists agreed that

this policy minimizes undesirable windfall profits and allows a more relevant carbon signal

price. The European regulator is engaged in progressively establishing an auctioning policy.

This new policy is to begin in 2013 and will be extended to fully cover all sectors by 2027. The

initial funding obtained from such an allocation system can be used to finance green projects.

An additional strategy could be an intervention of the regulator in the market by offering new

additional primary trading assets. The aim of the latter solution is to offer a larger range of

available traded financial contracts that can be used for risk management objectives.

This new additional traded asset should allow some of the intrinsic market risk to be priced.

Thus the set of non-redundant financial assets will increase to span a larger set of attainable
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payoffs as well as to reduce the position risk for a general contract written on allowances.

An interesting contract for this purpose is the digital option which pays a certain amount if a

predefined event happens within a future time interval. In our model, the time t announcement

by the regulator about the expected market position makes the set of Y1
t outcomes observable

to market participants, and hence the current state of the market is identified. In this case

the regulator can offer, as a primary financial asset, the option to pay 1 currency unit if the

allowance price has just increased and he announces that the market at time Ti is expected to

be short, where Ti is the nearest compliance date. For the example presented in Figure 4.2,

the regulator will pay the amount if at the end of the second period the state of nature occurs

in {ω1, ω5, ω9, ω13}. This contract type reduces the carbon leakage challenge that faces any

regulatory framework which penalizes emissions. Carbon leakage describes the phenomenon

in which high allowance prices spur the transfer of companies to another regulatory framework

with less stringent constraints on carbon emissions. Thereby resulting in economic pain for no

environment gain. Given this traded financial asset, with almost no additional risk, the investor

could minimize the risk related to the market position dynamics.

The new additional traded asset is exogenous to the market participants. The regulator pe-

riodically updates its prices and quotes them in the market. Its pricing must consider the social

wealth of the market rules initially established to define the market parameters Γ (e.g. endow-

ments, compliance period length and penalty level) rather than dynamic hedging. Moreover

the method should use the information provided by allowance dynamics to provide a price that

is consistent with the arbitrage free theory. We propose an indifference pricing methodology to

price this new additional traded asset. This approach quantifies risk using a nonlinear transfor-

mation and derives a coherent price by solving an optimization problem based on the concept

of the expected utility of wealth.

To present the approach, we consider a single market model in which only S 1
t is traded.

Define G as the derivative depending only on Y1
t that will be offered by the regulator. Consider

U as the utility function of the representative agent (Duffie, 2001). Given Γ, the regulator is
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maximizing:

V0(x,Γ) = sup
α

EP [U(Xx,α,Γ)] , (5.14)

where Xx,α = x + α(S T1 − S 0) is the final wealth, and x represents the initial wealth. We could

interpret S 0 as the auction price and α as the initial allowance allocation that the regulator

will distribute across the economy. By introducing G, the new optimization problem replacing

(5.14) is:

VG(x,Γ) = sup
α

EP [U(Xx,α −G,Γ)] . (5.15)

The idea behind the indifference price methodology is to define a price ν(GT1) such that (5.14)

and (5.15) have the same supremum:

V0(x,Γ) = VG(x + ν(GT1),Γ) (5.16)

As an instructive example, we present the solution for the exponential utility

U(x) = −e−γx, ∀x ∈ R and γ > 0. (5.17)

Here γ is a parameter which is selected by the regulator. It looks like the risk aversion parameter

in a utility function but this may not be the best way to think of it. More discussion of γ’s

meaning is given near the end of this section. For a general utility function and setting, we

refer the reader to Elliot and Van der Hoek (2009). Let F S 1
= σ{S 1

t , t = 0,T1}. Define F1, F2

as the atoms of F S 1
. Also define for each atom Fs, 1 ≤ s ≤ 2, As = {i ∈ {1, ..., 4}|ωi ∈ Fs}.

We denote by q1 the price at time 0 of 1 currency unit that is paid at time T1 if the futures price

rises and q2 = 1 − q1 the price at time 0 of 1 unit of money time T1 if the futures price goes

down. These are Arrow-Debreu securities. It is well known that q1 and q2 can be interpreted
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as the unique equivalent risk neutral probability measure Q associated with F S 1
:

q1 =
1 − ξd

ξu − ξd (5.18)

As described in Elliot and Van der Hoek (2009), solving (5.15) is equivalent to solving:

VG(x,Γ) = sup
x1,x2

x1q1+x2q2=x

2∑
s=1

∑
l∈As

U(xs − gl)pl

 (5.19)

The Lagrange function associated to this maximization problem is defined as:

F(x1, x2) =

2∑
s=1

∑
l∈As

U(xs − gl)pl

 + λ

x −
2∑

s=1

xsqs

 , (5.20)

where GT1(ωl) = gl. The first-order conditions give:

xs =
1
γ

log

 γqs

∑
l∈As

pleγgl

 − 1
γ

log λ

= x +
1
γ

log

 γqs

∑
l∈As

pleγgl


−

1
γ

2∑
r=1

qr log

 γqr

∑
l∈Ar

pleγgl


 , (5.21)

λ =

γe−γx
2∏

s=1

(∑
l∈As

pleγgl

qs

)qs


γ
1+γ

. (5.22)

So,

VG(x) = −
1
γ

e−γx exp

 2∑
r=1

qr log

 γqr

∑
l∈Ar

pleγgl


 . (5.23)

Therefore,

ν(GT1) =
1
γ

EQ(log(EP(eγGT1 |S 1
T1

))). (5.24)
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Because of the exponential utility assumption, this indifference price 7 does not depend on

the wealth level. It is worth mentioning that (5.24) evaluates the nonhedgeable part with respect

to the risk parameter γ as well as the utility function. The adjusted payoff becomes attainable

and then the dynamic hedging principle is used to price it. This methodology combines the

utility maximization concept with the usual linear pricing approach for complete markets.

After exploring a one period pricing model, we present the approach under a multiperiod

setting. As in Musiela and Zariphopoulou (2004), we define the nonlinear operator:

E
(s,s+1)
Q (Ls+1) = EQ

(
1
γs

log
(
EP(eγsLs+1 |Fs ∨ F

S 1

s+1)
)
|Fs

)
, (5.25)

where

E
s,s
Q (Ls) = Ls, (5.26)

and γs and Ls are Fs-adapted process. Define νt(GT1) as the indifference price, which is Ft-

adapted process. Starting with the final condition

νT1(GT1) = GT1 , (5.27)

we compute νt(GT1) by moving backwards and using the following relationship:

νt(GT1) = E
(t,t+1)
Q (νt+1(GT1)). (5.28)

For a multi-traded assets framework, Lim (2006) presents a numerical algorithm to compute

νt(GT1) based on the duality between the exponential utility function and the minimum relative

entropy.

7In general ν(βGT1 ) , βν(GT1 ) for β , 1. However we ignore this property. The suboptimality can simply be
recovered by using the money obtained from the initial auction or the regulator can price the βGT1 contracts that
he has already decided to offer and present a scheme to sell them to market traders. Many other solutions for this
suboptimality could be proposed.
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The additional traded asset υt provided from the regulator uses only information with re-

spect to the market position for the current compliance period. We proceed by a numerical

investigation where the previously described digital option is considered and γs is constant

equal to γ. Its injection to the market will not affect the total social cost. However, it provides

the alternative of hedging against scenarios in which prices spike at the end of the compliance

period. Define strategy C as the strategy that allows to hold a position on υt and S 1
t . To gen-

erate the υt tree, we use the filtration generated by S 1
t . Tables 5.4 and 5.3 compare, over 1000

scenarios repeated 25 times, the minimum, median, and mean GF as described before between

A and C, and the average gain factor (AGF), which is defined as the average of the ratio of the

unhedgeable risk using strategy A over the unhedgeable risk by following strategy C for each

scenario. Table 5.5 shows that strategy C permits the construction of a portfolio that is less

risky than either strategy A or B.

Moreover, option prices are at most slightly sensitive to the regulator risk aversion pa-

rameter. However γ does impact the degree to which market risk may be mitigated through

hedging. The regulator defines his stringency constraint to reduce emissions through γ. If the

market is expected to be short at the compliance period, the regulator sets γ to a high level.

Market participants can reduce the hedging error by taking positions on υt and S 1
t while ignor-

ing the ambiguity of the long term regulatory framework because the digital option hedges this

gross market state. Therefore the interdependency between periods will be counterbalanced

by trading the additional traded asset associated with each compliance period. Unregulated

participants will in this way be encouraged to participate in the market, as the market will now

behave more like other options markets but provide some risk reduction to options trader as it

will have some idiosyncratic features related to other markets. We also believe that under this

framework the market provides more meaningful price signals.
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Put
Market state Strategy Moneyness .925 .95 .975 1 1.025 1.05 1.075

SS

A Price 0.0019 0.0170 0.0879 0.2927 0.6824 1.2150 1.7996
(0.07%) (0.34%) (1.04%) (1.61%) (1.28%) (0.42%) (0.09%)

γ = .25 Price 0.0014 0.0145 0.0805 0.2821 0.6766 1.2132 1.7993
(0.06%) (0.30%) (0.98%) (1.67%) (1.20%) (0.44%) (0.10%)

γ = 4 Price 0.0022 0.0173 0.0854 0.2866 0.6804 1.2156 1.7996
(0.09%) (0.34%) (1.02%) (1.74%) (1.26%) (0.49%) (0.14%)

γ = 16 Price 0.0030 0.0193 0.0873 0.2861 0.6805 1.2160 1.7997
(0.19%) (0.55%) (1.36%) (2.28%) (1.51%) (0.87%) (0.30%)

SL

A Price 0.0049 0.0296 0.1167 0.3285 0.7041 1.2193 1.7998
(0.12%) (0.53%) (1.36%) (2.03%) (1.86%) (0.70%) (0.14%)

γ = .25 Price 0.0041 0.0265 0.1099 0.3200 0.6970 1.2169 1.7994
(0.12%) (0.50%) (1.38%) (2.11%) (1.84%) (0.66%) (0.13%)

γ = 4 Price 0.0051 0.0292 0.1142 0.3245 0.7007 1.2194 1.8000
(0.13%) (0.53%) (1.39%) (2.13%) (1.89%) (0.67%) (0.18%)

γ = 16 Price 0.0059 0.0305 0.1151 0.3250 0.7008 1.2203 1.8001
(0.25%) (0.73%) (1.62%) (2.43%) (2.11%) (0.85%) (0.33%)

LS

A Price 0.0009 0.0078 0.0402 0.1338 0.3119 0.5553 0.8224
(0.03%) (0.16%) (0.48%) (0.74%) (0.59%) (0.19%) (0.04%)

γ = .25 Price 0.0006 0.0066 0.0368 0.1289 0.3092 0.5545 0.8223
(0.03%) (0.14%) (0.45%) (0.76%) (0.55%) (0.20%) (0.05%)

γ = 4 Price 0.0010 0.0079 0.0390 0.1310 0.3109 0.5555 0.8225
(0.04%) (0.15%) (0.47%) (0.79%) (0.58%) (0.22%) (0.06%)

γ = 16 Price 0.0014 0.0088 0.0399 0.1307 0.3110 0.5557 0.8225
(0.09%) (0.25%) (0.62%) (1.04%) (0.69%) (0.40%) (0.14%)

LL

A Price 0.0022 0.0135 0.0534 0.1501 0.3218 0.5572 0.8225
(0.06%) (0.24%) (0.62%) (0.93%) (0.85%) (0.32%) (0.06%)

γ = .25 Price 0.0019 0.0122 0.0505 0.1470 0.3197 0.5577 0.8243
(0.06%) (0.30%) (0.82%) (1.47%) (1.88%) (2.08%) (2.28%)

γ = 4 Price 0.0027 0.0148 0.0559 0.1552 0.3299 0.5684 0.8343
(0.22%) (0.80%) (1.98%) (3.52%) (4.79%) (5.34%) (5.53%)

γ = 16 Price 0.0033 0.0161 0.0581 0.1585 0.3342 0.5736 0.8393
(0.29%) (0.97%) (2.36%) (4.19%) (5.69%) (6.31%) (6.52%)

Table 5.3: Comparison between strategies A and C to price put options written on S 1
t for

different strike prices. All possible initial market states are considered. The first letter (S: short
and L: long) stands for the current market position and the second letter denotes the expected
market position at the subsequent compliance date. For example SL: Market is short (i.e. high
prices) and expected to be long (i.e. low prices).
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Call
Market state Strategy Moneyness .925 .95 .975 1 1.025 1.05 1.075

SS

A Price 1.7989 1.2150 0.6869 0.2927 0.0834 0.0170 0.0026
(0.07%) (0.34%) (1.04%) (1.61%) (1.28%) (0.42%) (0.09%)

γ = .25 Price 1.7984 1.2125 0.6795 0.2821 0.0776 0.0152 0.0023
(0.06%) (0.30%) (0.98%) (1.67%) (1.20%) (0.44%) (0.10%)

γ = 4 Price 1.7992 1.2153 0.6844 0.2866 0.0814 0.0176 0.0026
(0.09%) (0.34%) (1.02%) (1.74%) (1.26%) (0.49%) (0.14%)

γ = 16 Price 1.8000 1.2173 0.6863 0.2861 0.0815 0.0180 0.0027
(0.19%) (0.55%) (1.36%) (2.28%) (1.51%) (0.87%) (0.30%)

SL

A Price 1.8019 1.2276 0.7157 0.3285 0.1051 0.0213 0.0028
(0.12%) (0.53%) (1.36%) (2.03%) (1.86%) (0.70%) (0.14%)

γ = .25 Price 1.8011 1.2245 0.7089 0.3200 0.0980 0.0189 0.0024
(0.12%) (0.50%) (1.38%) (2.11%) (1.84%) (0.66%) (0.13%)

γ = 4 Price 1.8021 1.2272 0.7132 0.3245 0.1017 0.0214 0.0030
(0.13%) (0.53%) (1.39%) (2.13%) (1.89%) (0.67%) (0.18%)

γ = 16 Price 1.8029 1.2285 0.7141 0.3250 0.1018 0.0223 0.0031
(0.25%) (0.73%) (1.62%) (2.43%) (2.11%) (0.85%) (0.33%)

LS

A Price 0.8221 0.5553 0.3139 0.1338 0.0381 0.0078 0.0012
(0.03%) (0.16%) (0.48%) (0.74%) (0.59%) (0.19%) (0.04%)

γ = .25 Price 0.8219 0.5541 0.3106 0.1289 0.0355 0.0070 0.0011
(0.03%) (0.14%) (0.45%) (0.76%) (0.55%) (0.20%) (0.05%)

γ = 4 Price 0.8223 0.5554 0.3128 0.1310 0.0372 0.0080 0.0012
(0.04%) (0.15%) (0.47%) (0.79%) (0.58%) (0.22%) (0.06%)

γ = 16 Price 0.8226 0.5563 0.3136 0.1307 0.0373 0.0082 0.0012
(0.09%) (0.25%) (0.62%) (1.04%) (0.69%) (0.40%) (0.14%)

LL

A Price 0.8235 0.5610 0.3271 0.1501 0.0480 0.0097 0.0013
(0.06%) (0.24%) (0.62%) (0.93%) (0.85%) (0.32%) (0.06%)

γ = .25 Price 0.8231 0.5596 0.3240 0.1463 0.0448 0.0086 0.0011
(0.05%) (0.23%) (0.63%) (0.97%) (0.84%) (0.30%) (0.06%)

γ = 4 Price 0.8236 0.5608 0.3259 0.1483 0.0465 0.0098 0.0014
(0.06%) (0.24%) (0.63%) (0.97%) (0.86%) (0.31%) (0.08%)

γ = 16 Price 0.8239 0.5614 0.3264 0.1485 0.0465 0.0102 0.0001
(0.11%) (0.33%) (0.74%) (1.11%) (0.97%) (0.39%) (0.15%)

Table 5.4: Comparison between strategies A and C to price call options written on S 1
t for

different strike prices. All possible initial market states are considered. The first letter (S: short
and L: long) stands for the current market position and the second letter denotes the expected
market position at the subsequent compliance date. For example, SL: Market is short (i.e. high
prices) and expected to be long (i.e. low prices).
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The introduction of the new tradable asset discussed in this section will have little direct

impact on regulatory emitters. Rather, its benefit will be felt by speculators which will be more

likely to join the market and hence improve liquidity for all participants.
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Call & Put
Market state γ Moneyness .925 .95 .975 1 1.025 1.05 1.075

SL & LL

.25

GF
Min 1.95 1.97 1.92 1.91 1.90 1.84 1.78

Median 2.02 2.01 1.96 1.94 1.94 1.87 1.83
Mean 2.02 2.01 1.96 1.94 1.94 1.87 1.83

AGF
Min 2.28 2.08 2.01 1.98 2.04 1.95 1.95

Median 2.37 2.12 2.04 2.02 2.09 1.98 2.05
Mean 2.37 2.12 2.05 2.02 2.09 1.98 2.04

4

GF
Min 2.18 2.25 2.28 2.25 2.18 2.11 1.98

Median 2.27 2.31 2.31 2.27 2.22 2.16 2.05
Mean 2.27 2.31 2.32 2.27 2.22 2.16 2.04

AGF
Min 2.53 2.38 2.38 2.32 2.33 2.22 2.19

Median 2.65 2.44 2.42 2.35 2.39 2.27 2.27
Mean 2.65 2.44 2.42 2.35 2.38 2.27 2.27

16

GF
Min 2.48 2.65 2.73 2.67 2.54 2.40 2.19

Median 2.56 2.69 2.78 2.70 2.58 2.46 2.23
Mean 2.57 2.69 2.78 2.70 2.58 2.46 2.24

AGF
Min 2.88 2.80 2.83 2.76 2.69 2.51 2.43

Median 2.98 2.85 2.90 2.79 2.76 2.59 2.49
Mean 3.00 2.84 2.89 2.79 2.76 2.58 2.49

SS & LS

.25

GF
Min 1.93 1.96 1.97 1.94 1.92 1.92 1.85

Median 2.02 2.01 2.01 1.95 1.95 1.94 1.87
Mean 2.02 2.02 2.01 1.96 1.95 1.94 1.88

AGF
Min 3.40 2.19 2.07 2.00 1.99 1.99 1.91

Median 3.80 2.26 2.12 2.02 2.02 2.02 1.94
Mean 3.94 2.26 2.11 2.02 2.02 2.02 1.94

4

GF
Min 2.13 2.20 2.26 2.30 2.23 2.19 2.15

Median 2.23 2.25 2.30 2.32 2.27 2.22 2.18
Mean 2.23 2.25 2.30 2.32 2.27 2.22 2.18

AGF
Min 3.91 2.47 2.37 2.37 2.31 2.26 2.22

Median 4.16 2.53 2.41 2.39 2.35 2.30 2.25
Mean 4.20 2.53 2.41 2.39 2.35 2.30 2.25

16

GF
Min 2.31 2.48 2.64 2.75 2.68 2.56 2.47

Median 2.42 2.54 2.68 2.79 2.70 2.59 2.50
Mean 2.41 2.54 2.68 2.79 2.70 2.59 2.50

AGF
Min 4.07 2.77 2.76 2.83 2.76 2.63 2.55

Median 4.65 2.87 2.81 2.87 2.80 2.67 2.58
Mean 4.60 2.87 2.81 2.88 2.80 2.67 2.58

Table 5.5: Gain factor (GF) of strategy C with comparison to strategy A in order to price call
and put options written on S 1

t for different strike prices. All possible initial market states are
considered. The first letter (S: short and L: long) stands for the current market position and
the second letter denotes the expected market position at the subsequent compliance date. For
example SL: Market is short (i.e. high prices) and expected to be long.



Chapter 6

Discrete-time Model Summary

Functioning cap-and-trade mechanisms require careful attention to market design. Based on

the EU ETS experience, Section 4.2.1 provides evidence that market participants adjust their

trading strategies to profit from the expected market position. This manoeuvre is a result of

the banking and borrowing possibilities that the EU ETS scheme allowed during the Kyoto

commitment period. We describe futures allowance dynamics by a binomial tree where the

returns are partially driven by the implied expected market position at subsequent compliance

dates. Parameters have been estimated for the Dec-2009 and Dec-2010 contracts. Two major

results are interpreted: a) about 75% of Dec-2010 dynamic returns could be explained by the

Dec-2009 dynamic returns; b) Dec-2009 and Dec-2010 dynamic returns have the same dy-

namic pattern, and with probability almost zero they evolve in an opposite directions. As a

consequence, a multiperiod pricing framework is necessary to consider this feature and offer

appropriate quantitative tools to price and hedge derivatives written on allowances. We present

a pricing procedure as well as its associated risk minimizing hedging strategies, as defined by

a quadratic criteria. From the perspective of market participants, a better hedging strategy is

the one that provides less unhedgeable risk. Our numerical investigation suggests that the best

hedging strategy must include positions in futures that mature at compliance dates. However

this is not good news for non-regulated market participants, who fear long term regulatory
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ambiguity. We recommend that the regulator intervene by offering a new additional tradable

asset. A possible tradable asset is a digital option written on the regulator’s release of infor-

mation about expected market position at subsequent compliance dates. A pricing procedure

based on indifference pricing was presented to evaluate such a contract. A novel traded asset of

this type will allow the dependency between compliance periods to be reduced and encourage

non-emitters to participate in the market hence increasing its liquidity. The efficiency of the

new additional asset in reducing risk, even beyond the risk reduction which may be attributed

to trading in S 1 and S 2, has been demonstrated through numerical experiments. We believe

that market prices for the new traded asset will be efficient signals of longer term market state

and volatility.



Part II

Continuous-Time Model
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Chapter 7

Continuous-Time Model Introduction

Via the Kyoto protocol and other similar treaties, countries have committed to reduce their

emissions of carbon dioxide equivalent (CO2e) in order to stabilize pollution responsible for

climate change and global warming. To that end, different policy instruments have been im-

plemented, most of which are either cap-and-trade market schemes, emission taxes or hybrids

of these policies. An emission tax is a price that an emitter must pay per unit of emitted CO2e.

Companies will have to choose between paying the emission tax or reducing their pollution.

As long as the marginal costs of abating is less than the imposed tax, they will reduce emis-

sions. On the other hand, a cap-and-trade market is a quantitative instrument that uses market

principles to achieve emissions reduction. The regulatory agency sets an absolute limit, or cap,

on the amount of CO2e, and issues a limited number of tradable allowances which sum to the

cap and represent the right to emit a specific amount. Those who find it expensive to abate

can buy emissions rights from those who can abate more cheaply. A hybrid or “safety valve”

system combines features of both emission taxes and cap-and-trade markets. In such hybrid

schemes, companies may purchase allowances from the national authority rather than from the

market when the market price is high enough to create serious economic inefficiencies. A hy-

brid scheme may also have a floor price in addition to the ceiling price in order to avoid the

crash and collapse of the carbon market.

67
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According to Baumol and Oates (1988), marketable emission permits and emission taxes

are equivalent only if complete information is available to all participants. Moreover, Weitz-

man (1974) shows the existence of an asymmetry between taxes and emission permits when the

regulator has incomplete information about the marginal benefits and producer costs curves.

As consequence, there are no strict dominance between these instruments. In the case that

marginal costs are steeper than marginal benefits, the market price equilibrium may be ex-

tremely high, affecting the competitiveness of the local industry. Taxes are then an appropriate

policy instrument since the emission costs is predefined to the companies so they can avoid the

deadweight losses. On the other side, a tradable system is preferred if an excess of emissions

can cause an environmental disaster. Furthermore, Montero (2002) shows that the cap-and-

trade instrument is more appropriate provided both the marginal benefits and costs have the

same sensitivity with respect to the level of emission. A more detailed discussion about the

efficiency of the emission tax vis-à-vis to the cap-and-trade system is provided by Goers, Wag-

ner and Wegmayr (2010) and Taschini (2010). Economists propose the safety valve system as

a solution to the impairment of the taxes and trading instruments. Referring to Roberts and

Spence (1976), the combination of both instruments is more efficient than implementing only

one instrument. The efficiency of a hybrid system to reduce emissions was also argued by Ja-

coby and Ellerman (2004), Pizer (2002), and McKibbin and Wilcoxen (2002). Maeda (2011)

develops an analytical model that shows the existence of a specific combination of the valve

price and emissions target allowing the control of emissions reduction under business-as-usual

emissions uncertainty. The current practical consensus seems to be that hybrid markets are the

way to go. For example, Australia has recently adopted such a structure as described below.

Australia’s nationwide market based carbon price mechanism (CPM) will be established by

2015 to unconditionally reduce carbon emissions 5% below 2000 levels. The mid-term horizon

reduction objective depends on international community action to reach a 25% reduction target

by 2020. Starting in July 2012, the CPM allows participants to trade Australian allowances at a
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fixed level1 without emissions cap in order to ensure a smooth transition into a trading scheme

by July 2015. The allowances will be considered as personal property that acts equivalent to a

tax mechanism. Consequently they are regulated as financial products. The period from July

2015 to July 2018 represents the first phase of the market mechanism with ceiling and floor

prices. The floor will be equal to A$15 and increases 4% per annum in real terms. The ceiling

will be introduced in May 2014 and it will depend on the international carbon permit price as

it is set to exceed this permit price by A$20 for 2015-2016, with an annual increase of 5% in

real terms until 2018. In the same month an emission cap will be introduced for the first five

years. A five year window emission cap will remain available as the fifth year cap is released

after each elapsed year. The Australian Climate Change Authority will review the role of the

ceiling and floor prices in 2016. Banking and borrowing are only allowed during the flexi-

ble price phase (i.e. from July 2015). The carbon price excludes carbon emissions used for

agricultural purposes and closely assist the transition to exposed sectors, including industries

whose international competitors are based in countries without carbon reduction regulation. At

the time of writing, the Australian model was still very young and it is premature to draw any

quantitative conclusions from it. For this reason we focus on the much more mature EU ETS

market described below.

The European Union Emission Trading Scheme (EU ETS) is the leading cap-and-trade

system and covers around 41% of EU’s CO2e emissions. The EU ETS is designed into different

phases. The first commitment period ran between 2005 and 2007. This pilot phase acted

to introduce the new regulatory framework to participants within the 27 EU member states.

Low prices as well as high volatility were observed as this period suffered from excessive free

allocation. Benz and Truck (2009), Daskalakis and Markellos (2008), Uhrig-Homburg and

Wagner (2009) performed empirical analyses of the EU ETS market under phase I. Despite all

these deficiencies, phase I succeeded by abating 3% of total verified emissions. Phase II started

at 2008 and ends in 2012. Phase I allowances could not be carried over, or banked, to phase II2

1The price is set equal to: A$23/tonne in 2012, A$24.15/tonne in 2013 and A$25.40/tonne in 2014.
2France and Poland allowed limited banking.
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so expired worthless at the end of 2007 trading period. Phase II was characterized both by a

geographical extension to include Iceland, Liechtenstein and Norway, and the new possibility

of banking credits over to the phase III period. The latter phase has the longest compliance

period, from 2013 to 2020. Its target is to reach, by 2020, an emissions level of 21% less than

2005 level. The number of allowances will decrease 1.74% annually until 20203. The trading

scheme will be progressively introduced until it is fully applied to all sectors by 2027. Trading

will take place on a common EU-wide platform for the majority of the members. The EU

ETS allows the intra-period borrowing and banking practice from or to a future year. However

inter-period borrowing is forbidden.

Research to understand the functioning of an ETS can be classified into two different

groups. The first group adopts a pricing framework based on equilibrium models. This in-

cludes the work of Hitzemann and Uhrig-Homburg (2011), Borovkov et al. (2011), Hinz and

Novikov (2010), Kijima et al. (2010), Carmona et al. (2009), Chesney and Taschini (2009),

Seifert, Fehr and Henz (2009), and Maeda (2004). The second group adopts applied probability

techniques. For instance we cite Carmona and Hinz (2011), Mnif and Davison (2011b), Çetin

and Verschuere (2009) and Grüll and Kiesel (2009). A part from where specifically needed

here, we refer to Mnif and Davison (2011a) for a review of most previously mentioned papers.

This part aims to study the spread observed in the EU ETS between futures that mature

at subsequent dates. We focus on futures rather than spot market for the following reasons.

First, EU allowances (EUA) are not considered as financial instruments. Their transaction is

not protected by the EU financial regulation against observed market abuse and transparency

requirements. EUA spot transaction is subjected to Value-Added Tax, which causes a decrease

in liquidity. Second, a number of carbon trades involving stolen carbon units from the na-

tional registries occurred and caused a temporary suspension on EUA spot trading in couple

of exchanges (e.g. ICE, Bluenext, Green Exchange). Consequently the spot market value de-

creased from US$ 7.5 billion in 2008 to US$2.8 billion in 2011, while at the same time futures

3This rate will be applied to the fourth phase between 2021 and 2028, with a possible adjustment by 2025.
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transactions have grown steadily to reach a market value of US$130.8 billion in 2011.

We assume that random futures price dynamics are driven by both a continuous part gen-

erated by Brownian motions and a discontinuous component modeled by two pure Poisson

processes. The size and sign of these Poisson jumps can model the impact of different kind

of unexpected information release. Afterwards we fit the model to quoted prices during phase

II. The market model framework has more sources of randomness than the number of traded

assets. Therefore a wide range of derivatives written on futures carries an intrinsic risk that can-

not be hedged by traded assets. We present a flexible pricing framework based on the Föllmer-

Schweizer decomposition. The fair price as well as the optimal hedging strategy depend on all

traded futures. A generalization to a setting with more than two periods is straightforward.

This part is organized as follows. Chapter 8 introduces the underlying stochastic differential

equation that models the market system. Also it reports the estimated parameters and the

econometric procedure employed to fit the data. Chapter 9 presents the pricing methodology as

well as the price of a contingent claim under different market schemes. Chapter 10 summarizes

the results of the continuous time work.



Chapter 8

Futures dynamics and Parameter

Estimation

8.1 Futures Dynamics

Figure 8.1 (resp. 8.2) shows the quoted prices of December 2011 (resp. 2010) and December

2012 (resp. 2011) futures discounted to a December 2011 (resp. 2010) baseline. We observe a

positive spread starting from 2009, where a longer maturity contract is more valuable than the

short one. This spread reaches 5% between 2011 and 2012 contracts.

We consider a two-period market model in which two discounted futures contracts F(t,T1)

and F(t,T2) that respectively mature at subsequent compliance dates T1 and T2 are traded. We

investigate the impact of information release at any time before T1 in both contracts prices, and

therefore on the spread. We model the uncertainty by two Brownian motions Wit, i = 1, 2. W1t

represents the continuous random part that drives F(t,T1). W2t is independent of W1t, and it

characterizes the risk specific to the post-T1 phase. We assume that any unexpected release of

information generates a jump in the prices and that such jumps can be classified into two types,

each modeled by its own Poisson process.
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Let (Ω,F,P) be a complete1 probability space with the right continuous filtration F =

{Ft}0≤t≤T . We assume that at the initial time we know all impossible scenarios and scenar-

ios with probability 1. To be more technically accurate, F0 is trivial and contains all null sets

of F. The dynamic of futures is:

dF(t,T1)
F(t−,T1)

= µ1dt + σ11dW1t + ϕ11dN1t + ϕ12dN2t, F(0,T1) > 0, (8.1)

dF(t,T2)
F(t−,T2)

= µ2dt + σ21dW1t + σ22dW2t + ϕ21dN1t + ϕ22dN2t, F(0,T2) > 0, (8.2)

where Nt = (N1t,N2t)′ is a bivariate Poisson process with constant intensity λ = (λ1, λ2)′,

and ϕi j > −1,∀i, j = 1, 2. We do not impose any restrictions on (ϕi1, ϕi2), i = 1, 2 instead

allowing our econometric investigation to define their signs. σ22 determines the impact of

W2t’s fluctuation on F(t,T2). We are interested in studying the effect of:

• W1t on both F(t,T1) and F(t,T2). Thus we compare σ21 with σ11.

• W2t on F(t,T2), in particular the relative size of σ22 with respect to σ21.

• Nit, i = 1, 2, on both F(t,T1) and F(t,T2). We investigate the sign and relative size of:

ϕ11 and ϕ12; ϕ11 and ϕ21; ϕ12 and ϕ22.

Although the parameters are assumed to be deterministic, the underlying dynamics given

by (8.1)-(8.2) allow us to acquire deep insights about the emissions market with multiperiod

compliance dates. Moreover the model proposed here includes more uncertainty factors than

the number of traded assets. Therefore the market model is incomplete and contingent claims

may add non-redundant risk to the market.

1Every negligible set is measurable.
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8.2 Parameter Estimation

We estimate the model for discounted prices2 of December 2011-12 as well as December 2010-

11 futures. The estimation procedure consists of two stages. We begin by numerically maxi-

mizing the log-likelihood function. This maximization is over a large space and the outcome

of this procedure is an approximate to the maximum likelihood. Afterwards, we plug this ap-

proximate solution as an initial guess for the Generalized Expectation-Maximization (GEM)

algorithm. The GEM method is a powerful tool that requires to find at least one set of pa-

rameters that increases a function Q at each iteration in order to monotonically increase the

log-likelihood function. The GEM converges slowly and its efficiency strongly depends on

the initial guess. For this reason we begin by using a global maximization approach. This

estimation procedure allows us to converge to the best approximation, relatively close to the

maximum likelihood. We estimate the asymptotic standard error by two methods: the inverse

of the information matrix and the robust variance matrix.

8.2.1 Log-likelihood Function

Let us define Xt = (X1t, X2t)′, where:

Xit = ln(F(t,Ti)), i = 1, 2.

Using Itô’s lemma, it follows that the stochastic differential equation governing Xit is:

dX1t = (µ1 −
1
2
σ2

11)dt + σ11dW1t + σ12dW2t + φ11dN1t + φ12dN2t, (8.3)

dX2t = (µ2 −
1
2

(σ2
21 + σ2

22))dt + σ21dW1t + σ22dW2t + φ21dN1t + φ22dN2t, (8.4)

2We use Euribor futures rates to discount the prices. We are interested in studying the spread between bivariate
process components originating from the market design. So we use the same time reference for both processes in
order to neglect the time value effect.
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where

φi j = ln(1 + ϕi j), i, j = 1, 2.

Therefore, for a time step 4t, the probability distribution of 4Xt = (4X1t,4X2t)′ is:

f (4Xt) =

M∑
i=0

M∑
j=0

e−(λ1+λ2)4t(λ14t)i(λ24t) j

i! j!
Φi j, (8.5)

where M = +∞ and Φi j is the bivariate normal distribution with mean θi j and covariance matrix

Σ4t:

θi j =

 (µ1 −
1
2σ

2
11)4t + iφ11 + jφ12

(µ2 −
1
2 (σ2

21 + σ2
22))4t + iφ21 + jφ22

 (8.6)

Σ =

 σ2
11 σ11σ21

σ11σ21 σ2
22 + σ2

21

 (8.7)

The joint distribution of the return increment is state independent with probability law given

by an infinite Gaussian mixture. The probability weight for each regime depends on the number

of jumps as well as the Poisson processes intensity, and decreases as the number of jumps

increase. However the mean θi j may change sign as i and j vary. We impose restrictions neither

on the jump size nor on its sign. The impact of unexpected information release will be fully

determined by the econometric investigation. To numerically compute the joint distribution, we

truncate (8.5) to 30 possible jumps for each Poisson process (M=30)3. Our aim is to estimate

the vector of unknown parameters Θ defined as:

Θ =

(
µ1, µ2, σ11, σ21, σ22, δ1, φ11, φ21, δ2, φ12, φ22

)
, (8.8)

3We use daily returns to estimate the parameters. M=30 means that it is possible to observe a jump in less
than one hour. Using the estimated parameters, we find that

∑30
i=0

∑30
j=0

e−(λ1+λ2)4t(λ14t)i(λ24t) j

i! j! = 1 at least to 8 figures
accuracy.
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where δ1 = ln(λ1) and δ2 = ln(λ2), that maximizes the log-likelhood function:

L(X,Θ) =

n∏
i=1

f (4Xi; Θ). (8.9)

n is the number of observed return increments.

8.2.2 The Generalized Expectation-Maximization Algorithm

The EM algorithm is an iterative procedure that was firstly used by Newcomb (1886). In their

seminal work, Dempster, Laird, and Rubin (1977) presented its fundamental properties to-

gether with some applications. The EM algorithm assumes that the observed data is incomplete

to fully describe the joint distribution. Consequently we estimate the maximum log-likelihood

in presence of incomplete data.

We suppose that the observed returns X constitute the incomplete data set. We now con-

struct an artificial problem which requires additional data to complete the missing information.

Our hypothetical experiment assumes that the sum of the total number of jumps from both

Poisson processes that occurs at each time step 4t is constant and equal to J . J is not observ-

able, and represents the missing information. Thus the complete data Y is X augmented with

J . An ith complete observation would make the ordered pair Yi = (4Xi,J) available, and has

the probability density function (pdf):

fc(4Xi,J) =

J∑
k=0

e−(λ1+λ2)4t(λ14t)k(λ24t)(J−k)

k! (J − k)!
Φk(J−k), (8.10)

The complete log-likelihood function is then:

ln(Lc(Y; Θ)) = ln

 n∏
i=1

fc (4Xi,J ; Θ)

 , (8.11)

The iterative EM algorithm consists of successively applying the E-step and the M-step. On
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the (k+1)st iteration, the E-step computes the Q-function:

Q
(
Θ,Θ(k)

)
= EΘ(k)

[
ln (Lc (Y; Θ)) | X

]
. (8.12)

Appendix E provides details on the computation of the Q-function. The M-step, which follows

the E-step, finds the maximum over any Θ of Q(Θ,Θ(k)) and equates this to Θ(k+1). Conse-

quently,

Q(Θ(k+1),Θ(k)) ≥ Q(Θ,Θ(k)), ∀Θ. (8.13)

The GEM is an extension of the EM procedure, where Θ(k+1) is chosen such that:

Q(Θ(k+1),Θ(k)) ≥ Q(Θ(k),Θ(k)). (8.14)

Condition (8.14) guarantees the monotonicity of (8.9) for each iteration4:

L(X,Θ(k+1)) ≥ L(X,Θ(k)). (8.15)

We consider that the GEM algorithm to converge when ‖ Θ(k+1) − Θ(k) ‖≤ 10−6. We refer

to McLachlan and Krishnan (2008) for an extensive development of both the EM and GEM

algorithms and for a description of their properties.

8.2.3 Asymptotic Standard Errors

Assume that Θ̂ is the estimate of the true maximum likelihood estimator Θ∗. We report two

asymptotic standard errors. We can approximate the asymptotic distribution of the estimate Θ̂

as:

√
n(Θ̂ − Θ∗) ∼ N(0, (I(Θ∗))−1), (8.16)

4We use numerical algorithm to find such Θ(k+1).
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where the information matrix I is defined as:

I(Θ∗) = E
[
∂ ln( f (4Xt); Θ∗)

∂Θ

∂ ln( f (4Xt); Θ∗)
∂Θ

′
]
. (8.17)

Here (I(Θ∗))−1 is the Cramer-Rao lower bound. The outer-product estimate:

In(Θ̂) =
1
n

n∑
i=1

∂ ln( f (4Xi); Θ̂)
∂Θ

∂ ln( f (4Xi); Θ̂)
∂Θ

′

(8.18)

is an efficient estimate of I (See Hamilton (1994)).

The second asymptotic standard error is based on the robust covariance matrix, also known

as the sandwich matrix. By Theorem 3.2 of White (1982), we have:

√
n(Θ̂ − Θ∗) ∼ N(0, J(Θ∗)−1I(Θ∗)J(Θ∗)−1), (8.19)

where

J(Θ∗) = E
[
∂2 ln( f (4Xt); Θ∗)

∂Θ∂Θ′

]
(8.20)

Define:

Jn(Θ) =
1
n

n∑
i=1

∂2 ln( f (4Xi); Θ)
∂Θ∂Θ′

(8.21)

Then,

Jn(Θ̂)−1In(Θ̂)Jn(Θ̂)−1 a.s.
−−→ J(Θ∗)−1I(Θ∗)J(Θ∗)−1. (8.22)

We use Slutsky’s theorem to compute the standard error of the estimated parameters taken

from Θ̂.
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8.2.4 Estimated Parameters

We apply the above described estimation procedure to December 2010-11 (D1) and December

2011-12 (D2) contracts. We use daily returns from January 2, 2008 to the last trading day of

December 2010 for D1 and December 2011 for D2. Table 8.1 reports the estimated parameters.

We observe that most of the uncertainty for both D1 and D2 is driven by the same Brownian

motion. Moreover σ11 and σ21 have the same sign, which means that this factor causes the

same fluctuation pattern. The impact of σ22 increases as we get closer to the end of phase II

and it remains relatively small with respect to σ21. Two kind of information affect the return

dynamics. The first adds value to the future price, and represents the impact of any unexpected

release of information that projects the market to be short. The second has the opposite effect

and drives the returns down. We emphasize that we did not impose any sign restrictions on

ϕi j, i, j = 1, 2 during the estimation procedure.

We observe that | ϕ1 j |<| ϕ2 j |, j = 1, 2. This implies that any release of information has

more impact on returns with longer maturity. Futures on D1 vary on a similar way as ϕ1 j and

ϕ2 j have the same sign, ∀ j = 1, 2. However this pattern no longer holds for D2. A jump, when

it occurs, has an opposite effect on returns. To explain this, we highlight that each contract in

both data set may be banked either within the intra-phase (for December 2010 and 2011) or the

inter-phase (December 2012) compliance periods. However the same cannot be said for phase

II borrowing practices as participants in 2012 are forbidden to use phase III allowances for

compliance purposes. We conclude that this observed feature between D1 and D2 is generated

by the borrowing condition. Moreover return adjustments via ϕi j with respect to this structural

change suggests that the futures market of the EU ETS is efficient and mature enough to be

considered in the same league as usual futures markets.
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Dec 2010 - Dec 2011 Dec 2011 - Dec 2012

µ1

µ̂1 -42.37% -21.45 %
CII [-100.78% ; 16.03%] [-81.63% ; 38.73%]
CIR [-106.63% ; 21.89%] [-80.03% ; 37.13%]

µ2

µ̂2 -39.56% -25.32%
CII [-96.02% ; 16.89%] [-84.46% ;33.82%]
CIR [-102.42% ; 23.29%] [-83.64% ;33.00%]

σ11

σ̂11 43.95% 47.24%
CII [42.46% ; 45.43%] [44.27% ; 50.20% ]
CIR [40.63% ; 47.26%] [44.27% ; 50.20%]

σ21

σ̂21 42.37% 45.95%
CII [40.89% ; 43.85%] [44.48% ; 47.42%]
CIR [39.12% ; 45.63%] [42.93% ; 48.96%]

σ22

σ̂22 2.17% 7.86%
CII [2.05% ; 2.30%] [7.47% ; 8.25%]
CIR [1.98% ; 2.37%] [7.32% ; 8.40%]

λ1

λ̂1 12.79 19.78
CII [7.04 ; 18.53] [14.82 ; 24.74]
CIR [7.38 ; 18.19] [12.68 ; 26.88]

ϕ11

ϕ̂11 1.53% 0.72%
CII [0.46% ;2.61%] [0.31% ; 1.12%]
CIR [0.13% ;2.93%] [-0.03% ; 1.46%]

ϕ21

ϕ̂21 1.95% -1.32%
CII [0.88% ; 3.03%] [-1.71% ; -0.93%]
CIR [0.64% ; 3.26%] [-2.07% ; -0.57%]

λ2

λ̂2 20.32 27.26
CII [12.40 ; 28.25] [20.62 ; 33.91]
CIR [7.09 ; 33.56] [17.22 ; 37.31]

ϕ12

ϕ̂12 -0.87% -0.59%
CII [-1.81% ; 0.06%] [-1.20% ; 0.02%]
CIR [-1.98% ; 0.24%] [-1.07% ; -0.11%]

ϕ22

ϕ̂22 -1.22% 0.92%
CII [-2.20% ; -0.25%] [0.28% ; 1.55%]
CIR [-2.22% ; -0.22%] [0.47% ; 1.37%]

Table 8.1: The table reports the estimated parameters of (8.1)-(8.2) for Dec 2010 - Dec 2011
and Dec 2011 - Dec 2012 futures. We use daily returns quoted in the European market from:
a) 02/01/2008 to 20/12/2010 for Dec 2010 - Dec 2011 futures; b) 02/01/2008 to 19/12/2011 for
Dec 2011 - Dec 2012 futures. CII: 90% confidence interval computed from the Information
matrix. CIR: 90% confidence interval computed from the Robust Variance matrix.



Chapter 9

Pricing Contingent Claims under

Different Market Schemes

9.1 Pricing Criterion

When the market is complete, all risks are generated by the primary assets and any contingent

claim may be completely hedged by means of a self-financing strategy. Recall that a self-

financing strategy requires no further injection of funds during the life of the claim. Therefore

the discounted cumulative cost of the option is constant, and equal to the initial price of the

hedging strategy. In the incomplete market framework, we distinguish two sets of contingent

claims. The first set contains all claims that can be fully replicated, while the second one

comprises claims that add risk to the market. The former set is not attainable and possess an

intrinsic risk. The discounted cost process is no longer constant and many strategies could be

considered to hedge the claim. Therefore a strategy performance criteria must be introduced in

order to choose the most efficient hedging rule. A claim’s fair price is then defined with respect

to this criteria; because of this arbitrary choice this price is not unique.

Föllmer and Sondermann (1986) introduce the risk-minimizing strategy where the primary

asset is a martingale under the historical probability measure P. It measures the risk by the

83
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mean conditional square error of the cumulative cost process. To illustrate this criteria, we

present Föllmer and Sondermann’s ideas for a one-period discrete time model, in particular

to the pricing of a contingent claim H written on the underlying asset Ft. Consider ζ0 as the

number of stocks to hold at time 0 and ηi, i = 0, 1 the amount invested in the bank account1.

The cost C0 of the claim H is equal to the initial value of the portfolio V0:

C0 = V0 = ζ0F0 + η0. (9.1)

At time 1, we must deliver the payoff H. Therefore we must choose η1 such that V1 = H. Thus

η1 = H − ζ0F1 (9.2)

The change in the cost process is:

C1 −C0 = η1 − η0 (9.3)

= H − V0 − ζ0(F1 − F0). (9.4)

F1 − F0 represents the fluctuation of the underlying asset’s price which we denote by ∆F. The

performance measure is defined as the expected quadratic cost:

R0(ζ0) = E
[
(C1 −C0)2

]
(9.5)

= E
[
(H − V0 − ζ0∆F)2

]
. (9.6)

The optimal strategy (V0, ζ0) is the one which minimizes the risk defined by (9.6). In continuous

time, the value of the portfolio is:

Vt = ζtFt + ηt (9.7)

1Recall that we work with discounted prices. So η1 represents the bank account in time 0 money value.
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and the cumulative cost is:

Ct = Vt −

∫ t

0
ζtdFt. (9.8)

Define the trading strategy Φ = (V, ζ). The remaining risk at time t of Φ is:

Rt(Φ) = E
[
(CT −Ct)2 | Ft

]
. (9.9)

The optimal strategy minimizes (9.9) over all possible strategies. Schweizer (1990) extends

the work of Föllmer and Sondermann (1986) to the case where the primary asset is a semi-

martingale under P and defines the locally risk-minimizing concept. A strategy is locally risk-

minimizing if it continues to minimize (9.9) under all infinitesimal perturbations (Schweizer,

1990). The solution of (9.9) gives us the opportunity to price any contingent claim by taking

the expectation under an equivalent measure P̂, called the minimal martingale measure.

Define:

Γ =

 ϕ11 ϕ12

ϕ21 ϕ22

 (9.10)

Λ =

 σ2
11 σ21σ11

σ21σ11 σ2
22 + σ2

21

 (9.11)

Ξ =

 ϕ2
11λ1 + ϕ2

12λ2 ϕ11ϕ21λ1 + ϕ12ϕ22λ2

ϕ21ϕ11λ1 + ϕ22ϕ12λ2 ϕ2
21λ1 + ϕ2

22λ2

 (9.12)

 α1

α2

 = (Λ + Ξ)−1(µ + Γλ) (9.13)
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where µ = (µ1, µ2)′. The dynamics of futures under P̂ is:

dF(t,T1)
F(t,T1)

= µP̂
1 dt + σ11dW P̂

1t + ϕ11dN P̂
1t + ϕ12dN P̂

2t, F(0,T1) > 0, (9.14)

dF(t,T2)
F(t,T2)

= µP̂
2 dt + σ21dW P̂

1t + σ22dW P̂
2t + ϕ21dN P̂

1t + ϕ22dN P̂
2t, F(0,T2) > 0, (9.15)

where

µP̂
1 = µ1 − σ11(α1σ11 + α2σ21), (9.16)

µP̂
2 = µ2 − (σ21(α1σ11 + α2σ21) + σ22(α1σ12 + α2σ22)) , (9.17)

(W P̂
1t,W

P̂
2t)
′ is a P̂-standard Brownian motion and (N P̂

1t,N
P̂
2t)
′ is Poisson process under P̂ with

intensity:

λP̂ =

 λ1(1 − α1ϕ11)(1 − α2ϕ21)

λ2(1 − α1ϕ12)(1 − α2ϕ22)

 (9.18)

The fair price of H at time t is computed as a conditional expectation:

Vt = EP̂ [H | Ft] , (9.19)

where EP̂ [.] is the expectation taken under the probability measure P̂. Thus the initial cost is:

V0 = EP̂ [H] , (9.20)

The details of this derivation are given in Appendix F.

The dynamics of F(t,T1) under P̂ depends on the parameters of F(t,T2) underP. Therefore

the price of any contingent claim written on F(t,T1) depends on the parameters of both F(t,T1)

and F(t,T2) under P. This is consistent with the work reported by Mnif and Davison (2011b),

which shows that the fair price of a T1-claim should depend on both F(t,T1) and F(t,T2).
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Consequently in a more general multiperiod setting, the optimal hedging strategy depends on

all futures with post-T1 maturity.

9.2 Claim Price Under Cap-and-Trade Market

The pricing equation in (9.20) allows any T1-contingent claim to be priced as a function of post-

T1 futures parameters. The price is easily computed through an expectation under the minimal

martingale measure P̂. Within a cap-and-trade market framework, any derivative that has a

closed form solution under the Black and Scholes (1973) setting has a closed form formula

under P̂ by conditioning on N P̂
1T1

and N P̂
2T1

. The price of a T1-contingent claim H is given by:

V0 = EP̂ [H] (9.21)

= EP̂

[
EP̂

[
H | (N P̂

1T1
= i,N P̂

2T1
= j)

]]
(9.22)

=

∞∑
i=0

∞∑
j=0

e−(λP̂
1 +λP̂

2 )T1
(λP̂

1 T1)i(λP̂
2 T1) j

i! j!
BS (F(0,T1)(1 + ϕ11)i(1 + ϕ12) j, µP̂

1 ,T1, σ11),

(9.23)

where λP̂ = (λP̂
1 , λ

P̂
2 )′. BS (F(0,T1)(1 + ϕ11)i(1 + ϕ12) j, µP̂

1 ,T1, σ11) is the Black-Scholes price

of H with time to maturity T1, an initial underlying asset value F(0,T1)(1 + ϕ11)i(1 + ϕ12) j, a

volatility σ11 and a drift µP̂
1 both in annual units. For a call price with a strike K, we have:

BS (F(0,T1)(1 + ϕ11)i(1 + ϕ12) j, µP̂
1 ,T1, σ11) = S i j

0N(di j
1 ) − Ke−µ

P̂
1 T1N(di j

2 ) (9.24)

S i j
0 = F(0,T1)(1 + ϕ11)i(1 + ϕ12) j (9.25)

di j
1 =

ln(S i j
0

K ) + (µP̂
1 −

σ2
11
2 )T1

σ11
√

T1
(9.26)

di j
2 = di j

1 − σ11

√
T1, (9.27)

and N(.) is the standard normal cumulative distribution function.
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Conditioning on N P̂
1T1

and N P̂
2T1

, the Black-Scholes price uses µP̂
1 as the discount rate, instead

of the risk-free rate, which is equal to zero in our framework as we work with discounted

prices. As µP̂
1 depends on the market model, the discount factor takes into consideration all

traded primary assets and is applicable to all market participants.

9.3 Claim Price Under Hybrid Market

A hybrid market offers a guarantee against high prices to market participants in order to avoid

carbon leakage. Carbon leakage is defined as the competition motivated transfer of a company

to another country or state with less stringent constraints on carbon emissions. The regulator

sets a price ceiling Pmax at the beginning of the compliance period. We assume that Pmax is

constant over the compliance period. Furthermore we suppose that Pmax is an absorbing state,

meaning that the market will become dysfunctional when the price reaches Pmax, and prices

will be traded at Pmax level during the remaining compliance period. The payoff of any T1-

contingent claim H written on F(t,T1) with payoff h(F(T1,T1)) is:

Iτ>T1h(F(T1,T1)) + Iτ≤T1h(Pmax), (9.28)

where τ is the first overshooting2 time and is defined as:

τ = min{t|F(t,T1) ≥ Pmax} (9.29)

The price of H at an initial time is therefore:

V0 = EP̂
[
Iτ>T1h(F(T1,T1))

]
+ h(Pmax)EP̂

[
Iτ≤T1

]
(9.30)

= EP̂
[
Iτ>T1h(F(T1,T1))

]
+ h(Pmax)P̂ (τ ≤ T1) . (9.31)

2The underlying process is discontinuous, the reason why it is defined as an overshooting time rather than as
a hitting time.
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P̂ (τ ≤ T1) represents the probability of the market to be dysfunctional under P̂. It reflects the

impact of the market parameters on its functionality and the involvement degree of the regulator

to protect his economy from prices spike. This quantity is the same for all contingent claims.

Note that in the absence of jump components, closed form solution for digital, call and put

options are available.

Monte-Carlo simulation can be used in order to provide an efficient estimate of (9.31).

Figure 9.1 shows the box plot of put and call option prices estimated over 10000 paths repeated

1000 times for different degrees of moneyness3. Monte-Carlo techniques are easy to implement

and, as shown in Figure 9.1, they are efficient and show low variance.

A cap-and-trade scheme is a special case of an hybrid scheme when we let Pmax approaches

+∞. Figures 9.2 and 9.3 show the convergence of both call and put option prices to the closed

form solution under a cap-and-trade scheme as Pmax increases. The reported prices are com-

puted as the average of the 1000 runs. The cap-and-trade prices for put and call options are an

upper bound for all different hybrid schemes. Therefore trading these options within an hybrid

market is less expensive for market participants.

3The results are obtained using the estimated parameters from December 2011-12 futures.
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Figure 9.1: Box plot for call and put options under hybrid market scheme with Pmax = 35 for
different strike prices. The options mature in one year with initial future price F(0,T1) = 24.75.
The results are obtained using the estimated parameters from Dec 2011 - Dec 2012 futures (see
table 8.1).
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Figure 9.2: Call prices under a hybrid scheme converges to cap-and-trade scheme as Pmax varies
from 30 to 150 with an unit increment. The options mature in one year with initial future price
F(0,T1) = 24.75. The results are obtained using the estimated parameters from Dec 2011 -
Dec 2012 futures (see table 8.1).
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Figure 9.3: Put prices under a hybrid scheme converges to cap-and-trade scheme as Pmax varies
from 30 to 150 with an unit increment. The options mature in one year with initial future price
F(0,T1) = 24.75. The results are obtained using the estimated parameters from Dec 2011 -
Dec 12 futures (see table 8.1).
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Continuous-Time Model Summary

We propose a stochastic model to study the spread between two futures that mature at subse-

quent dates. We assume that futures dynamics are mainly driven by Brownian motions. We

add two jump components in order to model the impact of an unexpected release of informa-

tion. We fit the model to the data collected from the EU ETS during phase II. Our estimation

procedure consists of two steps. We start by numerically maximizing the maximum likelihood

function. Afterwards we use its output as an initial guess for a generalized EM algorithm. We

find that the fluctuation of F(t,T1) explains the major part of F(t,T2) variation. The impact of

any release of information is amplified in contracts with longer maturity. Furthermore jump

sizes have the same sign in different contracts when both borrowing and banking are allowed.

The way in which the market response (via the ϕi j) to a structural change supports the stance

that the market is mature and efficient enough to be comparable to many other derivatives mar-

kets. We present a pricing procedure under which the cost process is a martingale under the

historical probability measure. This approach is based on minimizing the mean conditional

square error of the cumulative cost process. The optimal hedging strategy is invariant after any

small perturbation as defined in Schweizer (1990). Any contingent claim that has closed for-

mula under Black and Scholes (1973) has a closed formula within a cap-and-trade framework,

up to some parameter adjustments. We compare call and put options prices under different
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market schemes. We observe that options cost less under a hybrid scheme. This result seems

to support the Australian government choice of a hybrid market structure.
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Conclusions

The purpose of carbon markets is to implement the least cost policy instrument to achieve

a given emissions reduction target. It will provide a time varying price signal equal to the

lowest internal abatement cost in the economy. However many obstacles face a regulatory

agency as it attempts to establish an appropriate market design, one which yields the decrease

of global greenhouse gas emissions over both short and long time periods. On the one hand,

regulators are concerned about local economy competitiveness and the related carbon leakage

phenomenon. In fact some countries have yet to commit to reduce greenhouse gas emissions

through international agreements and compliance processes. On the other hand, the long term

regulatory environment remains very complex and dependent on international community ac-

tion (e.g. Australia’s market based carbon price mechanism). Low and high prices were ob-

served during phase I and II of the EU ETS experience. Moreover the EU ETS is characterized

by a very high historical volatility. Therefore carbon markets are different from most tradi-

tional markets, and the quantitative financial tools that have been built to study other financial

markets must be carefully employed within this new context.

This thesis contributes to the carbon markets literature in three different respects. Recall

that a market is incomplete if the number of sources of randomness in the market exceeds the

number of traded primary financial contracts. We propose mathematical models to describe the
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futures dynamics under an incompleteness assumption. We fit their parameters to the quoted

EU ETS prices. Our empirical study shows that most of the market uncertainty can be ex-

plained by one factor that can be either the returns of the contract with the closest maturity or

by a Brownian motion. Contracts with further maturities evaluate risk related to the expected

market position at future dates. This is a result of carbon market banking and borrowing pos-

sibilities. We provide evidence that market participants adjust their trading strategies to profit

from the expected market position.

The second aspect is related to options pricing and hedging strategies. We show that a

strategy involving all traded assets is more efficient than a strategy that includes only positions

on the underlying futures contract. The trading compliance periods are therefore correlated

and the one-period pricing framework is less effective than a multi-period model. We present

pricing tools under two criteria. We price contingent claims under discrete-time models by

quadratic hedging criterion. This criterion consists of solving an optimization problem which

defines a fair price and its associated attainable portfolio that minimizes the quadratic risk. In

other words, the price of any contingent claim H is approximated by the price of an attainable

payoff that matures as close as possible to H with respect to the Euclidean norm. This notion

was first introduced by Schäl (1994) and generalized by Schweizer (1996) in the one dimen-

sional case. We also provide pricing solution for continuous-time model, in which the hedging

strategy minimizes the mean conditional square error of the cumulative cost process and re-

mains the minimizing strategy under all infinitesimal perturbations. This strategy is called the

locally risk-minimizing strategy. This concept was introduced by Schweizer (1990) for the

case where the primary asset is a semimartingale under the historical probability. We compare

call and put options prices under different market designs, and we conclude that options cost

less under a hybrid scheme.

The third aspect of this thesis is linked to regulatory policy and market design. We show

how the regulator can intervene in order to provide market participants with a tool to hedge

against extreme scenarios. We recommend that the regulator introduce a new additional trad-
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able primary asset, exogenous to all market participants. This new financial instrument would

play the role of an expected market position indicator. Its pricing solution considers the social

wealth of the market rules initially established to define the market parameters. We present a

possible pricing framework based on the indifference pricing technique.

Carbon markets are still at an early stage in terms of their real world implementation. As

such, related empirically grounded academic research is also by necessity sparse. It is impor-

tant that uncertainty related to market rules be resolved, since the result of this ambiguity is

that companies do not yet have clear information signals for making clean energy investment

decisions. Should they make these investments now, or wait for new regulations to be intro-

duced? Quantitative finance techniques are ill suited to address such questions of regulatory

risk.

An extension of the thesis is to empirically study the observed spread between certified

emissions reductions (CERs) and emissions allowances. Such a study faces many challenges,

as CERs are less liquid than allowances and have associated conditions that must be satisfied

before they may be issued. Another challenging area for future work would be to provide

pricing and hedging tools in the case where different emissions trading schemes are linked. In

this setting foreign exchange rates play a key role in defining the optimal trading strategy.
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Appendix A

Proof of Proposition 5.1.1

As first step and before presenting the proof, we assume the following conventions and defini-

tions:

• L2(P): the space of square integrable 1-dimensional random variables;

• L2
d(P): the space of square integrable d-dimensional random variables;

• T = [0, 1, 2, ...,T ];

• If X ∈ Rd, then X2 = XX′; which is a d × d matrix;

• Sum over an empty set is 0;

• Product over an empty set is 1;

• 0
0 = 0;

• if Σ is an d × d singular matrix, Σ−1 = 0d×d
1;

• ′ is the transpose operator;

• if X,Y ∈ Rd, then X′Y is the Euclidean product defined as:
∑d

i=1 XiYi = Y ′X.

1Note that we use this assumption to keep a solid proof. A comment in Appendix C states that the nonsingu-
larity condition that we need afterwards is satisfied by the market model under the no-arbitrage condition.
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Definition Signed Θ-martingale measure: Q is a signed measure on (Ω,F) if it satisfies:

• Q[Ω] = 1;

• Q � P such that dQ
dP ∈ L

2(P);

• ∀ϑ ∈ Θ,

E
[
dQ
dP

GT (ϑ)
]

= 0. (A.1)

Define Ps(Θ) as the set of signed Θ-martingale measures. This set depends on the space of all

admissible strategies, as follows from the characterization (A.1). Moreover, as we are working

within a finite discrete time framework, every signed measure Q is a martingale measure for S

(Schweizer, 1996). In other words, ∀s, t ∈ T , s ≤ t,

E
[
dQ
dP

S t|Fs

]
= S s, P − a.s. (A.2)

Q is also called a signed L2-martingale measure for S . By assuming that the market is free of

arbitrage, we have

Ps(Θ) , ∅. (A.3)

Definition Non-Degeneracy Condition (ND): Suppose δ ∈ (0, 1). The process (S t)t∈T ∈ L
2
d(P)

meets the non-degeneracy condition, if ∀k = 1, ...,T, the random matrix

δE[∆S 2
k |Fk−1] − (E[∆S k|Fk−1])2 (A.4)

is positive-semidefinite P-a.s.
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To give more intuition, (ND) is equivalent under a one dimensional framework to:

Var(∆S k) > 0. (A.5)

It means that we are not interested in deterministic processes: process dynamics must depend

on the information that arises during the compliance period.

Proof βk and %k are well defined. Appendix B contains the proofs of the following properties

used later to ensure integrability conditions:

T∏
j=k

(1 − β′j∆S j) ∈ L2(P), (A.6)

β′k∆S k

T∏
j=k

(1 − β′j∆S j) ∈ L2(P), (A.7)

E

 T∏
j=k

(1 − β′j∆S j)2|Fk−1

 = E

 T∏
j=k

(1 − β′j∆S j)|Fk−1

 ≤ 1 P − a.s., (A.8)

E

Hβ′k∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1

 = E

%′k∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1

 P − a.s.,

(A.9)

∀k ∈ T\{0}.

Consider the following optimization problem: For a fixed c ∈ R and H ∈ L2(P), we determine

ζ = (ζk)T
k=1 such that

ζ = arg min
ϑ∈Θ

EP[(H − c −GT (ϑ))2]. (A.10)

Motoczyński (2000) shows that the space G(ϑ) is closed under the (ND) condition. Therefore,

by the projection theorem, there is a unique strategy ζc ∈ ϑ solving (A.10). Furthermore a

necessary and sufficient condition that ζc ∈ ϑ be the unique minimizing strategy is:

E
[
(H − c −GT (ζc))GT (ϑ)

]
= 0,∀ϑ ∈ Θ. (A.11)
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The condition (A.11) is equivalently written as follows:

E
[
(H − c −GT (ζc))∆S k|Fk−1

]
= 0, P − a.s. ∀k ∈ T\{0}. (A.12)

We show by backward induction that:

(i)

H − c −GT (ζc) = H −
T∑

j=k

%′j∆S j

T∏
l= j+1

(1 − β′l∆S l) − (c + Gk−1(ζc))
T∏

l=k

(1 − β′l∆S l)

(A.13)

(ii)

ζc
k = %k − βk(c + Gk−1(ζc)) (A.14)

For k = T , we have from (A.12)

0 = E
[
(H − c −GT (ζc))∆S T |FT−1

]
(A.15)

= E
[
H∆S T − ∆S 2

Tζ
c
T − (c + GT−1(ζc))∆S T |FT−1

]
(A.16)

= E [H∆S T |FT−1] − E
[
∆S 2

T |FT−1

]
ζc

T − (c + GT−1(ζc))E [∆S T |FT−1] (A.17)

as GT−1(ζc) and ζc
T are both FT−1-measurable. So,

ζc
T =

(
E

[
∆S 2

T |FT−1

])−1
E [H∆S T |FT−1]

−
(
E

[
∆S 2

T |FT−1

])−1
E [∆S T |FT−1] (c + GT−1(ζc)) (A.18)

= %T − βT (c + GT−1(ζc)). (A.19)
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On the other hand, we have

H − c −GT (ζc) = H − ζc′
T ∆S T − (c + GT−1(ζc)) (A.20)

= H − %′T ∆S T − (c + GT−1(ζc))(1 − β′T ∆S T ) (A.21)

Assume that (A.13) and (A.14) hold for j = k + 1, ...,T . Then (A.12) implies that:

0 = E
[
∆S k(H − c −GT (ζc))|Fk−1

]
(A.22)

= E

∆S k

H −
T∑

j=k+1

%′j∆S j

T∏
l= j+1

(1 − β′l∆S l)

 |Fk−1

 (A.23)

−(c + Gk−1(ζc))E

∆S k

T∏
l=k+1

(1 − β′l∆S l)|Fk−1

 (A.24)

−E

∆S 2
k

T∏
l=k+1

(1 − β′l∆S l)|Fk−1

 ζc
k (A.25)

The last equality is obtained due to the Fk−1-measurability of ζc
k and Gk−1(ζc). When ∀ j > k,

(A.9) implies:

E

Hβ′j∆S j

T∏
l= j+1

(1 − β′l∆S l)|F j−1

 = E

%′j∆S j

T∏
l= j+1

(1 − β′l∆S l)|F j−1

 (A.26)

By conditioning on F j−1, ∀ j > k, and armed with (A.26), we get:

0 = E [∆S kH|Fk−1] − E

∆S kH
T∑

j=k+1

β′j∆S j

T∏
l= j+1

(1 − β′l∆S l)|Fk−1

 (A.27)

− (c + Gk−1(ζc))E

∆S k

T∏
l=k+1

(1 − β′l∆S l)|Fk−1

 (A.28)

− E

∆S 2
k

T∏
l=k+1

(1 − β′l∆S l)|Fk−1

 . (A.29)
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Or,

E [∆S kH|Fk−1] − E

∆S kH
T∑

j=k+1

β′j∆S j

T∏
l= j+1

(1 − β′l∆S l)|Fk−1

 =

E

∆S kH
T∏

l=k+1

(1 − β′l∆S l)|Fk−1

 (A.30)

Whence,

ζc
k =

E

∆S 2
k

T∏
l=k+1

(1 − β′l∆S l)|Fk−1

−1

E [∆S kH|Fk−1] − E

∆S k

T∏
l=k+1

(1 − β′l∆S l)|Fk−1

 (c + Gk−1(ζc))


= %k − βk(c + Gk−1(ζc)). (A.31)

We can then write:

c + Gk(ζc) = c + Gk−1(ζc) + ζc′
k ∆S k (A.32)

= %′k∆S k + (c + Gk−1(ζc))(1 − β′k∆S k) (A.33)

Furthermore, the induction assumption allows us to apply (A.13) for k + 1 and, plugging in

(A.33), we prove that (A.13) is true for k.

On the other hand, from (A.13) we have:

E
[
(H − c −GT (ζc))

]
= E

H − T∑
j=1

%′j∆S j

T∏
l= j+1

(1 − β′l∆S l) − c
T∏

l=1

(1 − β′l∆Xl)

 (A.34)

= E

H − T∑
j=1

Hβ′j∆S j

T∏
l= j+1

(1 − β′l∆S l) − c
T∏

l=1

(1 − β′l∆Xl)

 (by (A.9))

(A.35)

= E

(H − c)
T∏

l=1

(1 − β′l∆S l)

 (A.36)

= E[HZ̃0] − cE[Z̃0], (A.37)
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where

Z̃0 =

T∏
l=1

(1 − β′l∆S l). (A.38)

Define

dP̃
dP

=
Z̃0

E[Z̃0]
(A.39)

(Appendix C presents the properties of P̃.)

Moreover,

E
[
(H − c −GT (ζc))2

]
= c2E

 T∏
j=1

(1 − β′j∆S j)2


+E

(H − T∑
j=1

%′j∆S j

T∏
l= j+1

(1 − β′l∆S l))2


−2cE[(H −

T∑
j=1

%′j∆S j

T∏
l= j+1

(1 − β′l∆S l))
T∏

k=1

(1 − β′k∆S k)] (A.40)

= c2E
[
Z̃0

]
− 2cE

[
HZ̃0

]
+ E

(H − T∑
j=1

%′j∆S j

T∏
l= j+1

(1 − β′l∆S l))2


(A.41)

In fact,
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E

%′j∆S j

T∏
l= j+1

(1 − β′l∆S l)
T∏

k=1

(1 − β′k∆S k)|F j−1

 =

%′jE

∆S j

T∏
l= j+1

(1 − β′l∆S l)2(1 − β′j∆S j)|F j−1

 j−1∏
k=1

(1 − β′k∆S k) =

%′jE

∆S jE

 T∏
l= j+1

(1 − β′l∆S l)2|F j

 (1 − β′j∆S j)|F j−1

 j−1∏
k=1

(1 − β′k∆S k) = (by (A.8))

%′jE

∆S j

T∏
l=1

(1 − β′l∆S l)

 = (by martingale property)

0 (A.42)

The price V0 therefore minimizes (A.41). Then,

V0E
[
Z̃0

]
− E

[
HZ̃0

]
= 0. (A.43)

This implies:

V0 =
E

[
HZ̃0

]
E

[
Z̃0

] = EP̃ [H] . (A.44)

To complete the proof, we obtain (5.10) by replacing c with V0 in (A.41).
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Proof of (A.6)-(A.9)

Proof of (A.6)-(A.8)

To prove (A.6)-(A.7), it is sufficient to show that (β′k∆S k)2 ∏T
j=k+1(1−β′j∆S j)2 ∈ L1(P). Define:

Rn := E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1](E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1∆S 2
k

T∏
j=k+1

(1 − β′j∆S j))2

(E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1E[∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1]

1{| det(E[∆S 2
k
∏T

j=k+1(1−β′j∆S j)2 |Fk−1])|≥ 1
n }
, (B.1)

where det(A) is the determinant of the matrix A and 1{B} is the indicator function of the subset

B. We have Rn are positive and increasing a.s. to (β′k∆S k
∏T

j=k+1(1−β′j∆S j))2. By the monotone
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convergence theorem (see Jacod and Protter, 2003), we obtain:

E[β′k∆S k

T∏
j=k+1

(1 − β′j∆S j))2|Fk−1] P−a.s.
= lim

n→∞
E[Rn|Fk−1] (B.2)

= E[E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1](E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2

(E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1E[∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1]|Fk−1]

1{|det(E[∆S 2
k
∏T

j=k+1(1−β′j∆S j)2 |Fk−1])|≥ 1
n }

(B.3)

= E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1](E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1

E[∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1]|Fk−1]1{|det(E[∆S 2
k
∏T

j=k+1(1−β′j∆S j)2 |Fk−1])|≥ 1
n }
≤ 1

The last inequality is obtained from the positive semi-definite property of the variance covari-

ance matrix. We have:

Var(∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1) � 0 (B.4)

⇒ E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1] − (E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1])2 � 0 (B.5)

We are interested in the set of events where E[∆S 2
k

∏T
j=k+1(1 − β′j∆S j)2|Fk−1] is invertible, then

E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1]E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1]1 − (E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1])(E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1

E[∆S ′k
T∏

j=k+1

(1 − β j∆S j)|Fk−1]

 ≥ 0,

(B.6)
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proving the inequality. Note that the inequality still holds if E[∆S k
∏T

j=k+1(1 − β′j∆S j)|Fk−1] =

0d×1. As a consequence,

E[(β′k∆S k)2
T∏

j=k+1

(1 − β′j∆S j)2] ≤ 1, P − a.s.

⇒ (β′k∆S k)2
T∏

j=k+1

(1 − β′j∆S j)2 ∈ L1(P). (B.7)

We prove (A.8) by backward induction. For k = T , note that from the definition of βT we have

E[(β′T ∆S T )2|FT−1] = β′T E[∆S T |FT−1] (B.8)

= E[β′T ∆S T |FT−1]. (B.9)

Therefore, we conclude that

E[(1 − β′T ∆S T )2|FT−1] = E[1 − β′T ∆S T |FT−1] (B.10)

= 1 − E[∆S ′T |FT−1]E[∆S 2
T |FT−1]E[∆S T |FT−1] ≤ 1. (B.11)

Suppose that (A.8) holds for k + 1, then

E[
T∏

j=k+1

(1 − β′j∆S j)2|Fk] = E[
T∏

j=k+1

(1 − β′j∆S j)|Fk] ≤ 1 P − a.s. (B.12)

We have

E[
T∏

j=k

(1 − β′j∆S j)|Fk−1] = E[
T∏

j=k+1

(1 − β′j∆S j)|Fk−1] − E[β′k∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1]

(B.13)
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and

E[β′k∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1] = β′kE[∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1]

(B.14)

= E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1](E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1

(E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])

(E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1E[∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1]

= E [ E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1](E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1

∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2(E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1E[∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1]|Fk−1 ]

(B.15)

= E[(β′k∆S k)2
T∏

j=k+1

(1 − β′j∆S j)2|Fk−1]. (B.16)

It follows that:

E[
T∏

j=k

(1 − β′j∆S j)|Fk−1] = E[E[
T∏

j=k+1

(1 − β′j∆S j)|Fk]|Fk−1] − E[(β′k∆S k)2
T∏

j=k+1

(1 − β′j∆S j)2|Fk−1]

(B.17)

= E[
T∏

j=k+1

(1 − β′j∆S j)2|Fk−1] − E[(β′k∆S k)2
T∏

j=k+1

(1 − β′j∆S j)2|Fk−1]

(B.18)

= E[
T∏

j=k

(1 − β′j∆S j)2|Fk−1]. (B.19)

Note that from (B.18), we obtain

E[
T∏

j=k

(1 − β′j∆S j)|Fk−1] ≤ 1 P − a.s. (B.20)
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which completes the proof.

Proof of (A.9)

We have

E[Hβ′k∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1] = E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1]

(E[∆S 2
k

T∏
j=k+1

(1 − β′j∆S j)2|Fk−1])−1E[H∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1] (B.21)

= E[%′k∆S k

T∏
j=k+1

(1 − β′j∆S j)|Fk−1]. (B.22)
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Properties of P̃

P̃ is a signed L2-martingale measure. In fact, we have from (A.8):

0 ≤ E[Z̃0] = E[(Z̃0)2] ≤ 1 (C.1)

⇒ Z̃0 ∈ L
2(P)

and ∀k = 1, ...,T,

E[Z̃0∆S ′k|Fk−1] = E[
T∏

j=1

(1 − β′j∆S j)∆S ′k|Fk−1] (C.2)

= E[
T∏

j=k+1

(1 − β′j∆S j)(1 − β′k∆S k)∆S ′k|Fk−1]
k−1∏
j=1

(1 − β′j∆S j) (C.3)

=

E[
T∏

j=k+1

(1 − β′j∆S j)∆S ′k|Fk−1] − E[
T∏

j=k+1

(1 − β′j∆S j)β′k∆S k∆S ′k|Fk−1]

 k−1∏
j=1

(1 − β′j∆S j) (C.4)

=

E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1] − β′kE[∆S k∆S ′kE[
T∏

j=k+1

(1 − β′j∆S j)|Fk]|Fk−1]

 k−1∏
j=1

(1 − β′j∆S j)

(C.5)
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=

E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1] − β′kE[∆S k∆S ′k
T∏

j=k+1

(1 − β′j∆S j)2|Fk−1]

 k−1∏
j=1

(1 − β′j∆S j)

(C.6)

=

E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1] − E[∆S ′k
T∏

j=k+1

(1 − β′j∆S j)|Fk−1]

 k−1∏
j=1

(1 − β′j∆S j) (C.7)

= 0,

from which the martingale property of Z̃0 follows.

Schweizer (1996) shows that a signed martingale measure P̃ is a variance-optimal measure if

and only if

E
dQ
dP

dP̃
dP

 is constant over all Q ∈ Ps(Θ). (C.8)

Assume that Q ∈ Ps(Θ) and define

Zk := E
[
dQ
dP
|Fk−1

]
∈ L2(P). (C.9)

By backward induction we show that

E[ZT

T∏
j=k

(1 − β′j∆S j)|Fk−1] = Zk−1,P-a.s. for k = 1, ...,T. (C.10)

For k=T, (C.10) is satisfied due to:

E[Zk∆S k|Fk−1] = 0 P − a.s. for k = 1, ...,T. (C.11)
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Supposing that (C.10) is true for k + 1, then

E[ZT

T∏
j=k

(1 − β′j∆S j)|Fk−1] = E[ZT

T∏
j=k+1

(1 − β′j∆S j)(1 − β′k∆S k)|Fk−1] (C.12)

= E[E[ZT

T∏
j=k+1

(1 − β′j∆S j)|Fk](1 − β′k∆S k)|Fk−1] (C.13)

= E[Zk(1 − β′k∆S k)|Fk−1] (C.14)

= E[Zk|Fk−1] − β′k E[Zk∆S k|Fk−1]︸            ︷︷            ︸
0 by martingale property

(C.15)

= Zk−1. (C.16)

We note that integrability is ensured by (A.7). This completes the proof of (C.10).

Armed with (C.10), we obtain by inspection that

E[ZT Z̃0] = E[Z0] = 1. (C.17)

We conclude that P̃ is a variance-optimal measure.

Furthermore, under the no-arbitrage condition, P̃ exists and is unique (see Schweizer,

1996). This implies that the invertibility of (E[∆S 2
k

∏T
j=k+1(1−β′j∆S j)2|Fk−1],∀k = 1, ...,T,P−

a.s. is guaranteed by the assumption (A.3) and theP−a.s. non-singularity condition of E[∆S 2
k |Fk−1].



Appendix D

Sufficient Condition to Reduce the

Unhedged Risk

Assume (S ′t ,Ξt)t∈T ∈ L
2
d+1(P) and H ∈ L2(P). Define

Θ1 := {predictable processes ϑ|ϑ′k(∆S ′k,∆Ξk)′ ∈ L2(P)}, (D.1)

GT (ϑ, S ) :=
T∑

j=1

ϑ′j∆S j. (D.2)

The unhedged risk of given strategy (ϑ, η) ∈ Θ1 and initial capital V0 is:

R(V0, ϑ, η) = EP[(H − V0 −GT (ϑ, S ) −GT (η,Ξ))2]. (D.3)

Define (O)t∈T ∈ L
2(P), such as P(Ot = 0,∀t ≤ T ) = 1. R(V0, ϑ,O) is the unhedged risk by

following strategy ϑ on S with an initial capital V0.
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Proposition D.1 Assume a probability space (Ω,F,P), H ∈ L2(P), and stochastic process

(S ′t ,Ξ)′t∈T ∈ L
2
d+1(P) adapted to the filtration F = (Ft)t∈T such that E[∆S 2

k |Fk−1] and E[(∆S ′k,∆Ξk)′2|Fk−1]

are invertible P-a.s. and satisfy the non-degeneracy condition. Define:

(V0, ζ) = argmin
(c,ϑ)∈R×Θ

R(c, ϑ,O). (D.4)

If P(E[(H − V0 −GT (ζ, S ))∆ΞT |FT−1] , 0) > 0, then

R(V0, ζ,O) > min
(c,(ϑ,η))R×Θ1

R(c, ϑ, η). (D.5)

Therefore, hedging with (S ′t ,Ξt)t∈T is more efficient than hedging with (S t)t∈T .

Proof The existence and uniqueness of a solution to the optimization problems (either with

or without (Ξt)t∈T ) are guaranteed by proposition 5.1.1. To clarify the steps, we start with

presenting the proof for one time period model, T = 1. We firstly prove that it exists at least a

η0 such as:

R(V0, ζ,O) > R(V0, ζ, η0). (D.6)

As R(V0, ζ, η0) ≥ min
(c,ϑ,η)

R(c, ϑ, η), then (D.5) is satisfied.

We have:

R(V0, ζ, η) = E[(H − V0 − ζ
′∆S 1 − η∆Ξ1)2] (D.7)

= E[(H − V0 − ζ
′
0∆S 1)2] + η2E[(∆Ξ1)2] − 2ηE[(H − V0 − ζ

′∆S 1)∆Ξ1]

(D.8)

= R(V0, ζ, 0) + η2E[(∆Ξ1)2] − 2ηE[(H − V0 − ζ
′∆S 1)∆Ξ1]. (D.9)

As P(E[(H − V0 − ζ
′
0∆S 1)∆Ξ1] , 0) > 0, then E[(H − V0 − ζ

′
0∆S 1)∆Ξ1] , 0. We can always
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find η0 such as:

η2
0E[(∆Ξ1)2] − 2η0E[(H − V0 − ζ

′
0∆S 1)∆Ξ1] < 0. (D.10)

Thus (D.5) is satisfied.

For a multiperiod model, consider the following strategy (ζ, η) such that (ηt)t≤T−1 is indistin-

guishable from O under the historical probability measure P. In probability terms,

P(ηt = 0,∀t ≤ T − 1) = 1. (D.11)

Therefore,

R(V0, ζ, η) = E[(H − V0 −GT (ζ, S ) − ηT ∆ΞT )2] (D.12)

= E[(H − V0 −GT (ζ, S ))2] + E
[
η2

T E[(∆ΞT )2|FT−1] −

2ηT E[(H − V0 −GT (ζ, S ))∆ΞT |FT−1]
]

(D.13)

= R(V0, ζ, 0) + E
[
η2

T E[(∆ΞT )2|FT−1] − 2ηT E[(H − V0 −GT (ζ, S ))∆ΞT |FT−1]
]
.

(D.14)

Define

A = {ω ∈ Ω|E[(H − V0 −GT (ζ, S ))∆ΞT |FT−1](ω) , 0} (D.15)

Now A is FT−1− measurable and P(A) > 0. It is always possible to construct a strategy ηT such

that there exists M < 0:
M < η2

T (ω)E[(∆ΞT )2|FT−1](ω) − 2ηT (ω)E[(H − V0 −GT (ζ, S ))∆ΞT |FT−1](ω) < 0 if ω ∈ A,

0 otherwise.
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As A is FT−1−measurable, then ηT is FT−1−measurable too. Also (ζ, η) ∈ Θ1. Furthermore,

E
[
η2

T E[(∆ΞT )2|FT−1] − 2ηT E[(H − V0 −GT (ζ, S ))∆ΞT |FT−1]
]
< 0. (D.16)

Thus,

R(V0, ζ, η) < R(V0, ζ,O). (D.17)

Consequently, (D.5) follows.



Appendix E

E-step

J has the Poisson distribution with parameters (λ1 + λ2)4t, as it is the sum of two independent

Poisson processes dN1t and dN2t with parameter λ14t and λ24t, respectively.

To compute the E-step, we need to determine the conditional probability of J given the

observed returns:

P(J = J | X; Θ) =
P(J = J,X)

P(X)
(E.1)

=
P(J = J)P(X | J = J)

P(X)
(E.2)

=
e−(λ1+λ2)4t ((λ1 + λ2)4t)J

J!

∏n
i=1 fc (4Xi, J; Θ)∏n

i=1 f (4Xi; Θ)
(E.3)

Given P(J = J | X; Θ), the Q-function on the (k + 1)st iteration is:

Q
(
Θ,Θ(k)

)
= EΘ(k)

[
ln (Lc (Y; Θ)) | X

]
(E.4)

=

M∑
J=0

P(J = J | X; Θ(k)) ln (Lc ((X, J); Θ)) , (E.5)

where M = +∞. We choose M = 60 to compute (E.5)1.

1It is discussed in page 77 that 30 is a decent choice to truncate the number of jumps for each discontinuous
component. As J represents the sum of the total number of jumps from both Poisson processes, we choose 60 as
a truncation level.
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Föllmer-Schweizer Decomposition

Consider a more general case where:

dF(t,Ti)
F(t−,Ti)

= µidt + σi1dW1t + σi2dW2t + ϕi1dN1t + ϕi2dN2t, F(0,Ti) > 0, i = 1, 2.

(F.1)

We set σ12 = 0 in order to reduce this to our framework. The process F(t,Ti), i = 1, 2, is a

semimartingale and it has the following Doob-Meyer decomposition:

F(t,Ti) = F(0,Ti) + Mit + Ait, (F.2)

where

Mit =

∫ t

0
F(t−,Ti)(σi1dW1s + σi2dW2s + ϕi1dÑ1s + ϕi2dÑ2s),

Ait =

∫ t

0
F(t−,Ti)(µi + ϕi1λ1 + ϕi2λ2)ds,

with Mi0 = Ai0 = 0. Ñit is the compensated Poisson process of Nit. Since Ñit is a P-martingale,

therefore Mit is a P-martingale. Furthermore Ait is a predictable process with finite variation.

Consequently F(t,Ti) is a special semimartingale. Given F(0,Ti), this decomposition is unique.
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Denote L2(P) as the set of square integrable random variables with respect to P:

L2(P) =
{
X; E[|X|2] < ∞

}
(F.3)

(Unless explicitly stated otherwise, all expectations are taken under the P measure).

We assume that the market is free of arbitrage and therefore the set of equivalent local martin-

gale measures:

Pe =

{
Q ∼ P :

dQ
dP
∈ L2(P), F(t,Ti), i = 1, 2, is a Q − local martingale

}
(F.4)

is non-empty. As the market is incomplete and Pe , ∅, Pe contains infinitely many elements

(see Delbaen and Schachermayer, 2006).

A portfolio strategy Φ includes both the value of the portfolio process V as well as the

trading strategy ζ. V is an adapted process with VT ∈ L
2(P). ζ is a R2-predictable process that

lives in:

Ψ =

(ζ)t : R2 − predictable process;
(
E

[∫ T1

0
ζ′t d < M >t ζt

]) 1
2

< ∞ and E

(∫ T1

0
|ζ′t dAt|

)2 < ∞
 ,

where Mt = (M1t,M2t)′, At = (A1t, A2t)′, and < M > is the sharp bracket process1 of M.

Consequently, we have

∫
ζdF is a martingale under Q, ∀Q ∈ Pe. (F.5)

where Ft = (F(t,T1), F(t,T2))′(see Pham, 2000).

Given a T1-claim H ∈ L2(P), an H-admissible strategy ΦH = (VH, ζH) is a portfolio strat-

egy that pays H at maturity T1, VH
T1

= H, P− almost surely. Schweizer (1990) shows that an

H-admissible strategy Φ is locally risk minimizing if the associated cost process is a square-

1The sharp bracket process of M is the compensator of its quadratic variation process. We refer to Klebaner
(2005) for a detailed definition of the sharp bracket process.
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integrable martingale orthogonal to Mi, i = 1, 2, under P. Recall that two square integrable

martingales M1 and M2 are orthogonal if their product M1M2 is a martingale with initial value

M1M2 = 0. This is equivalent to:

< M1,M2 >:=
1
2

(
< M1 + M2 > − < M1 > − < M2 >

)
= 0. (F.6)

Föllmer and Schweizer (1991) show that a T1-claim H has an H-admissible strategy ΦH =

(VH, ζH) if and only if H:

H = H0 +

∫ T1

0
ζH

t dFt + LH
T , P − almost surely, (F.7)

where H0 ∈ R and is F0-measurable, ζH ∈ Ψ and LH is a square-integrable P−martingale or-

thogonal to Mi, i = 1, 2, such that LH
0 = 0. This decomposition is called the Föllmer-Schweizer

decomposition of H under P. The associated value of the portfolio is:

VH
t = H0 +

∫ t

0
ζH

s dFs + LH
t , P − almost surely, 0 ≤ t ≤ T1, (F.8)

and the associated cost process is:

Ct(ΦH) = H0 + LH
t , 0 ≤ t ≤ T1. (F.9)

Set λ̂it := αi
F(t−,Ti)

, i = 1, 2,∀0 ≤ t ≤ T1. The mean-variance trade-off process K̂ is the predictable

process:

K̂t =

∫ t

0
λ̂′isd < M >s λ̂is, 0 ≤ t ≤ T1. (F.10)

In our framework, the mean-variance trade-off process is:

K̂t = [α1[α1β + α2χ] + α2[α1χ + α2γ]]t, (F.11)
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where

β = [σ2
11 + σ2

12 + ϕ2
11λ1 + ϕ2

12λ2 + 2ϕ12ϕ11(λ1 + λ2)]

γ = [σ2
21 + σ2

22 + ϕ22λ2 + ϕ2
21λ1 + 2ϕ21ϕ22(λ1 + λ2)]

χ = [σ11σ21 + σ12σ22 + ϕ11ϕ21λ1 + ϕ11ϕ22(λ1 + λ2) + ϕ12ϕ21(λ1 + λ2) + ϕ22ϕ12λ2].

K̂ is uniformly bounded. Thus, every P square-integrable contingent claim has an unique

Föllmer-Schweizer decomposition (Monat and Stricker, 1995).

Assume now that there exists P̂ ∈ Pe such that both
∫ .

0
ζH

t dFt and LH are P̂-martingales. Thus,

EP̂ [H|Ft] = EP̂

[
H0 +

∫ T1

0
ζH

s dFs + LH
T |Ft

]
(F.12)

= H0 +

∫ t

0
ζH

s dFs + LH
t (F.13)

= VH
t . (F.14)

Therefore, the fair price of H at time t is given by:

VH
t = EP̂ [H|Ft] . (F.15)

P̂ is called the minimum martingale measure. Referring to Arai (2004), such a measure exists
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and its density process Ẑ is:

Ẑt = exp(−(α1σ11 + α2σ21)W1t − (σ12α1 + σ22α2)W2t

−
1
2

(α2
1σ

2
11 + α2

1σ
2
12 + α1α2σ11σ21 + α1α2σ12σ22

α2α1σ21σ11 + α2α1σ22σ12 + α2
2σ

2
21 + α2

2σ
2
22)t

+ ln(1 − α1ϕ11)N1t + α1ϕ11λ1t

+ ln(1 − α2ϕ21)N1t + α2ϕ21λ1t

+ ln(1 − α1ϕ12)N2t + α1ϕ12λ2t

+ ln(1 − α2ϕ22)N2t + α2ϕ22λ2t) (F.16)

Ẑt = exp(−(α1σ11 + α2σ21)W1t − (σ12α1 + σ22α2)W2t

−
1
2

((α1σ11 + α2σ21)2 + (σ12α1 + σ22α2)2)t

+ ln(1 − α1ϕ11)N1t + α1ϕ11λ1t

+ ln(1 − α2ϕ21)N1t + α2ϕ21λ1t

+ ln(1 − α1ϕ12)N2t + α1ϕ12λ2t

+ ln(1 − α2ϕ22)N2t + α2ϕ22λ2t) (F.17)

Ẑt = exp(−(α1σ11 + α2σ21)W1t −
1
2

(α1σ11 + α2σ21)2t

−(σ12α1 + σ22α2)W2t −
1
2

(σ12α1 + σ22α2)2t

+ ln(1 − α1ϕ11)N1(t) + α1ϕ11λ1t

+ ln(1 − α2ϕ21)N1t + α2ϕ21λ1t

+ ln(1 − α1ϕ12)N2t + α1ϕ12λ2t

+ ln(1 − α2ϕ22)N2t + α2ϕ22λ2t). (F.18)
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Ẑ is strictly positive if there exists a constant c > 0, such that

(α′Γ)i ≤ 1 − c, i = 1, 2. (F.19)

K̂ is uniformly bounded, therefore Ẑ is a square-integrable local martingale under P2. Define

W P̂
1t = W1t + (α1σ11 + α2σ21)t and W P̂

1t = W1t + (σ12α1 + σ22α2)t. Therefore, the dynamics of

F(t,Ti) under P̂ is:

dF(t,Ti)
F(t−,Ti)

= ((µi − σi1(α1σ11 + α2σ21) − σi2(σ12α1 + σ22α2))dt

+σi1dW P̂
1t + σi2dW P̂

2t + ϕi1dN P̂
1t + ϕi2dN P̂

2t), F(0,Ti) > 0 (F.20)

where W P̂
1t and W P̂

2t are P̂-standard Brownian motions, and N P̂
t = (N P̂

1t,N
P̂
2t)
′ is a bivariate Poisson

process under P̂ with intensity

λP̂ = (λ1(1 − α1ϕ11)(1 − α2ϕ21), λ2(1 − α1ϕ12)(1 − α2ϕ22))′ (F.21)

and the initial fair price is:

V0 = EP̂ [H] . (F.22)

2In our case, it is easy to show that Ẑ is a P-martingale. To prove the martingale property for the Poisson
component, you might use the following result E[exp(ln(1 − β)Nit + βλit)] = 1,∀0 < β < 1 and i = 1, 2.
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