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Abstract 

The initial catastrophic biological effects of hypervelocity impacts are well established. 

However, a growing body of evidence suggests that meteorite impact events have 

beneficial effects for microbial life.  This, in turn, has led many to suggest that impact 

craters may have been important habitats for life on early Earth. Any large meteorite 

impact into a water-rich target on a solid planetary body has the potential to generate 

hydrothermal systems. Impact-generated hydrothermal systems expand the potential 

environments for microbial colonization to environments without endogenous volcanic 

heat sources to drive hydrothermal activity. Examination of impact glass from the Ries 

impact structure, Germany, has revealed the presence of putative microbial alteration. 

Given the probable ubiquity of impact glasses in post-impact environments throughout 

the Solar System, it is important to understand the biological components and potential of 

such systems. A multi-analytical approach to assess the biogenicity of the tubular features 

in the Ries glasses has been used. Their complex morphology (spiralling, bifurcation, 

avoidance, lack of intersection) has been studied extensively using both optical and 

scanning electron microscopy. Using Energy Dispersive Spectroscopy we have shown 

the presence of a depletion zone indicative of biological processing surrounding the 

tubules. Fourier Transform Infrared Spectroscopy has identified the presence of organic 

compounds spatially associated with the tubules and absent in crystallite regions. 

Synchrotron near edge fine structure (NEXAFS) spectroscopy at the C K-edge also 

indicates the presence of organically bound carbon in the glassy matrix surrounding the 

tubules, but absent in the matrix hosting only crystallites. NEXAFS spectroscopy at the 

Fe L2 and L3 -edges indicates distinct patterns of Fe speciation in the tubules not present 

in the Fe-rich abiotic quench crystallites. Together, these results are strongly suggestive 

of a microbial alteration origin for the tubules in the Ries glasses. Impact cratering is a 

significant and ubiquitous geological process on terrestrial bodies in the Solar System as 

well as on the early Earth, as such the discovery of biogenic features in impact glass has 

profound implications for early life on Earth and the early evolution of life on Earth as 

well as for life on other terrestrial planets.  
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Epigraph 

 

 

Stones of the Sky 

 
To harden the earth 
the rocks took charge; 
instantly 
they grew wings; 
the rocks 
that soared; 
the survivors 
flew up 
the lightening bolt, 
screamed in the night, 
a watermark, 
a violet sword, 
a meteor. 
 
The succulent 
sky 
had not only clouds,  
not only space smelling of oxygen,  
but an earthly stone  
flashing here and there  
changed into a dove,  
changed into a bell,  
into immensity, into a piercing  
wind:  
into a phosphorescent arrow,  
into salt of the sky. 
 
 
 

~Pablo Neruda 
     (translation by James Nolan) 
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Chapter 1  

1 Introduction 

Initially, meteorite impact events are biologically catastrophic, as result of immediate 

sterilization of the target area (e.g., Sleep et al. 1989). However, the ecological 

succession following such biological resetting may prove beneficial to microbial life, 

creating novel habitat and metabolic niches. This has led to the suggestion that impact 

craters may have been important habitats for primitive microbial life on early Earth 

(Cockell & Lee 2002). More speculatively, impacts may have acted as ‘cradles’ for 

prebiotic chemical reactions (e.g., Cockell 2006). Impact-ejected rocks may have 

provided refuges for microbial life during the ~3.8 Ga late heavy bombardment and may 

even have allowed the transfer of life between planetary bodies (e.g., Cockell 2006). 

Although impact craters are uncommon on present day Earth, (182 terrestrial impacts 

constituting ~50 000 km2; Earth Impact Database, September 28, 2012), they are 

ubiquitous on rocky and icy bodies within the solar system, often comprising the 

dominant geological features. 

Any hypervelocity impact into a water-rich target on a solid planetary body has the 

potential to generate hydrothermal systems (Naumov 2005), resulting in the ‘thermal 

phase of biology’ (Cockell & Lee 2002) following an impact. The hyperthermophilic root 

of the phylogenetic tree of life suggests an essential role for thermophilic environments in 

the origin or the early evolutionary history of life (Pace 1994; Schwartzman & 

Lineweaver 2004). Previous work has associated primitive life on Earth with submarine 

volcanic activity: filamentous microfossils as old as ca. 3.2 Ga have been found in 

volcanogenic massive sulphide deposits (Rasmussen 2000); bioalteration of volcanic 

glasses back to 3.5 Ga provide the earliest record of life on Earth (Banerjee et al. 2006; 

Staudigel et al. 2008a) suggesting that submarine hydrothermal settings may have played 

an essential role in the origin of life. Impact-induced hydrothermal systems share many 

characteristics with submarine volcanic hydrothermal systems including the presence of 

chemical and thermal energy for microbial metabolism and the precipitation of 

hydrothermal minerals such as clays and zeolites, which may have catalyzed important 

prebiotic chemical reactions. Thus, post-impact hydrothermal systems expand the 



 

 2 

potential environments for the origin of life and for later microbial colonization to 

environments without endogenous volcanic heat sources to drive hydrothermal activity. 

During the Late Heavy Bombardment period when life purportedly arose on Earth, 

impact generated habitats were likely much more common on Earth than submarine 

hydrothermal systems suggesting the former as a more statistically probable habitat for 

the origin of life. The Late Heavy Bombardment period affecting the planets of inner 

Solar System 3.8 – 4.2 Ga resulted from disruption of the main asteroid belt during 

possible orbital migration of the gas giants (Strom et al. 2005; Gomes et al. 2005). 

The Ries crater is exceptionally preserved and well characterized (Pohl et al. 1977).  In 

addition, a post-impact hydrothermal system at Ries has been documented (e.g., Newsom 

et al. 1986; Osinski 2005).  This structure possesses a variety of impactites including a 

well-preserved ejecta blanket including a glass-bearing breccia (‘suevite’). The surficial 

suevite, comprising one of the preserved proximal ejecta deposits contains abundant glass 

clasts that have been studied in great detail (Osinski 2003). The rapid quenching of 

molten material following a hypervelocity impact often results in the formation of impact 

glasses. Impact glasses share many similarities with volcanic glasses, however, 

fundamental differences make impact glasses unique geochemical systems. The bulk 

compositions of impact melts are diverse, reflecting the target lithologies from which 

they were derived. Furthermore, impact glasses often display chemical and textural 

heterogeneity on multiple scales. In addition, the presence of lechatelierite (a pure silica 

glass phase) is indicative of high temperatures (>1713oC; Stöffler 1984) reflecting 

formation conditions distinct from normal igneous processes. Meteoritic contamination 

may result in siderophile element anomalies or isotopic anomalies (Osinski 2003).  

It is notable that microbial alteration of terrestrial sub-marine basaltic glasses produces 

characteristic tubular and granular aggregate textures (e.g., Banerjee et al. 2004; 

Staudigel et al. 2006). Significant to the present study are distinctive tubular and granular 

aggregate textures observed in ancient to modern basaltic glasses; these are suspected to 

have been produced via microbially mediated dissolution of the glass (e.g., Staudigel et 

al. 2006). Such bioalteration textures documented from Archean greenstone belts 

constitute one of the oldest forms of evidence suggesting life on Earth (Banerjee et al. 



 

 3 

2006). Examination of glasses from the Ries crater in Germany has revealed tubular 

alteration textures with remarkably similar morphologies to the putative bioalteration of 

volcanic glasses. Given the probable ubiquity of impact glasses in post-impact 

environments throughout the Solar System, it is important to understand the biological 

components and potential of such systems.  

This thesis examines the enigmatic tubular features in the Ries glasses establishing an 

argument for biogenicity. Chapter 3 uses a suite of impactites from the Rochechouart 

impact structure to illustrate the importance of consistent and unambiguous nomenclature 

in the literature. The descriptive nomenclature proposed in Chapter 3 for the transitional 

melt-bearing Rochechouart impactites allows for the classification of transitional 

lithologies without a priori knowledge of geological context. This study sets a precedent 

for scenarios such as sample returns, deeply eroded terrestrial structures and meteorite 

breccias where the geological context is unavailable or details of the original geologic 

context are obscured. Chapter 4, a detailed petrographic study of the glass-bearing 

breccias of the Ries impact structure, provides the geological context for the tubules 

ruling out a purely abiotic origin. In Chapter 5, a geochemical study of the tubules is 

presented establishing several lines of evidence for biological processing. High-resolution 

synchrotron and transmission electron microscopy analyses are presented in Chapter 6 

providing an unprecedented high-resolution geochemical study of putative ichnofossils in 

impact glass. Chapter 7 summarizes the research to date on the tubular features in the 

Ries impact glasses following the arguments and criteria for biogenicity (McLoughlin et 

al. 2007; Banerjee et al. 2008; Staudigel et al. 2008b).  

The tubules within the Ries glasses constitute the first putative bioalteration texture to be 

reported in an impact glass and have significant implications for the habitability of 

impact sites as well as the potential importance of terrestrial impacts in the evolution of 

life on early Earth. Impact derived endolithic habitats are being considered as possible 

locations for life on early Earth (Westall & Folk 2003) and on the surface of other planets 

such as Mars (Cockell et al. 2002; Cockell et al. 2005). Establishing the biogenicity of 

features in impact glasses has significant astrobiological implications. As bioalteration 

textures preserved in Archean greenstone belts constitute one of the oldest records of life 
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on Earth (Furnes et al. 2004; Banerjee et al. 2006; Staudigel et al. 2008a), linking 

potential microbial activity in volcanic and impact glasses may yield insight into early 

life and the origin of life on Earth. Understanding the geomicrobiology of impact craters 

on Earth is critical in furthering the search for life on Mars. Studies constraining the 

biogeochemistry of impact craters may not only yield insight into early life on Earth, but, 

furthermore, may comprise a potential habitat for life and past life on other terrestrial 

planets such as Mars. 
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Chapter 2  

2 Background Information 

2.1 Impact-generated Hydrothermal Systems 

Recent work has shown that hydrothermal activity is commonplace in the immediate 

aftermath of an impact event on any H2O-rich solid planetary surface (Naumov 2005). In 

an impact crater, the heat source is provided by impact-melted or -heated materials 

providing a transient source of heat in an otherwise cold environment. The interaction of 

water with these hot materials forms a hot rock-water circulatory system that can 

dissolve, transport, and precipitate various mineral species (Osinski et al. 2001; Osinski 

et al. 2005). An exceptionally well-preserved example of impact-generated hydrothermal 

systems is located at the Ries impact structure (Fig. 2.1), southern Germany (Newsom et 

al. 1986; Osinski 2005; Fig. 2.2).  

In addition to generating hydrothermal systems, impacts on Earth are capable of altering 

the pre-existing terrestrial environment that can, in turn, render them viable biotic 

habitats with evolutionary and adaptive advantages for lithophytic organisms (i.e., 

organisms that live on or within rocks; Cockell et al. 2002, 2005; Cockell 2004). Studies 

of shock-metamorphosed target rocks at the Haughton impact structure, Devon Island, 

Nunavut, have indicated that impact induced fracturing and shock metamorphism may 

increase both the porosity (by up to a factor of 25; Cockell 2004), and translucence 

(penetration of photosynthetically available radiation) of target rocks, including 

crystalline lithologies, thereby increasing the surface area for colonizing microbes 

(Cockell et al. 2005). These endolithic habitats offer relatively warm, moist, and UV-

protected environments relative to the surroundings, which persist for much longer than 

the fundamentally transient post-impact hydrothermal systems. Previously, it was thought 

that endolithic habitats were restricted to sedimentary rocks, such as sandstone and 

carbonates. However, the discovery at Haughton that shock metamorphism can transform 

crystalline rock into to suitable endolithic habitats facilitating microbial colonization 

(Cockell et al., 2002) has important implications for the search for life on Mars. 
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2.2 The Ries impact structure: Geologic Setting 

The mid-Miocene Ries impact crater located in southern Germany is arguably one of the 

best-characterized and best-preserved terrestrial impact structures (see Pohl et al. 1977; 

Engelhardt 1990 for reviews). Shoemaker and Chao (1961) first recognized the impact 

origin of the Ries structure in 1961 by the identification of coesite, a high-pressure 

polymorph of SiO2, and lechatelierite, a pure SiO2 glass, within the glass-bearing impact 

breccia. 40Ar/39Ar laser-probe dating of tektites constrains the age of the Ries Crater to 

14.6 + 0.2 Ma (Buchner et al. 2010). Ries is a complex crater with a total diameter of ~24 

km (Pohl et al., 1977). The approximately circular inner basin has a diameter of 12 km 

representing the maximum extent of the transient cavity (Wunnemann et al. 2006). A 

crystalline inner ring of uplifted basement surrounds the inner basin. The megablock zone, 

a tectonic ridge comprised of a system of concentric normal faults, extends from the inner 

ring to the crater rim with a maximum extent of ~24 km (Pohl et al., 1977; Fig. 2.1).  

The two-layer target is comprised of dominantly Mesozoic flat lying sediments that 

unconformably overlie crystalline Hercynian basement (Pohl et al. 1977). At the time of 

impact the thickness of the sedimentary package varied from ~470 m in the north to ~820 

m in the south. The lower sedimentary unit consists of sandstone, siltstone and marl 

overlain by an upper limestone unit (Schmidt-Kaler 1978). The Hercynian basement 

consists of steeply dipping gneisses, amphibolites, and ultrabasic rocks that are cut by 

later granitic intrusions (Graup, 1978). 
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Figure 2.1: Simplified geologic map of the Ries impact structure, with sample 
locations. 

 

Modified from Osinski (2003). The inner dotted line delineates the crystalline inner ring 
of uplifted basement that surrounds the ~12 km inner basin. The outer dotted line marks 
the ~24 km diameter crater rim. Samples were obtained (appendix A) from the indicated 
locations representing the spatial distribution of the impactite outcrops.  
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2.2.1 Impactites and ejecta 

Impactites and ejecta deposits are exceptionally well preserved at the Ries crater. The 

sequence of impactites preserved at the Ries crater include: a) a thick series of crater-fill 

rocks (‘crater suevite’); b) various proximal ejecta deposits preserved up to a radius of 

~37 km from the crater centre (Fig. 2.1); and c) a tektite strewn field extending out to 

distances of 260 – 400 km east and northeast of Ries (Hörz 1982). The allochthonous 

crater-fill units occur within the inner basin and consist of ‘crater suevite’ overlain by 

~400 m of post-impact lacustrine sedimentary rocks (Pohl et al., 1977) reflecting the 

existence of a post-impact crater lake. There are four main types of proximal ejecta 

identified at the Ries impact crater which overlie the outer zone of the structure: 1) Bunte 

Breccia and megablocks; 2) polymict crystalline breccias; 3) ‘surficial’ suevites; and 4) 

coherent impact melt rocks (Engelhardt 1990; Osinski 2004; Fig. 2.1). 

The Bunte Breccia is the most abundant proximal ejecta unit by volume. Outcrops of this 

poorly sorted, glass free, polymict breccia have been interpreted as remnants of a 

continuous ejecta blanket which was emplaced along ballistic trajectories (Oberbeck 

1975; Morrison & Oberbeck 1978; Hörz 1982; Hörz et al. 1983), The Bunte Breccia is 

derived predominantly from the uppermost sedimentary target sequences (Hörz 1982; 

Hörz et al. 1983). The Bunte Breccia is comprised of two main components: a) primary 

ejecta excavated from the initial crater that is dominantly sedimentary rock with 

subordinate admixtures of crystalline material (predominantly granites); and b) local 

material or secondary ejecta. The secondary ejecta zone includes deposits of primary 

ejecta that have been re-mobilized and incorporated by the secondary cratering action of 

the primary ejecta (Hörz et al. 1983). Megablocks are defined as “displaced fragments of 

all stratigraphic units of the target rocks, which are larger than 25 m in size and can be 

mapped geologically” (Pohl et al. 1977, p. 354). 

The Polymict crystalline breccias are mixtures of crystalline rock fragments of different 

lithologies and shock levels (Pohl et al. 1977).  Rare irregular outcrops (a few tens of 

meters in size) of the polymict crystalline breccias occur overlying the Bunte Breccia in 

the inner ring and megablock zone (Engelhardt 1990). Stratigraphic relationships between 
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the polymict crystalline breccias and the Bunte Breccia are not always clear (Pohl et al. 

1977). 

The surficial suevite (after Engelhardt et al. 1995) is distinct from the crater-fill suevite. 

Isolated outcrops of surficial suevite overlie the Bunte Breccia inside the morphological 

rim of the Ries Crater and up to radial distances of ~14 km beyond the rim to the south-

southwest and east-northeast (Engelhardt 1990; Fig. 2.1). The surficial suevite was 

deposited on the uneven surface of the upper Bunte Breccia. Deposits of the surficial 

suevite range in thickness from a few meters to ~25 – 30 m (Engelhardt et al. 1990). The 

Wörnitzostheim drill hole within the megablock zone penetrated ~80 m of suevite. The 

surficial suevite contains lithic, mineral and glass clasts hosted within a dominantly 

montmorillonite (30 – 40 vol%) and glass (30 – 50 vol%) groundmass which constitutes ~ 

80 vol% of the suevite units (Engelhardt 1990). The remainder of the groundmass is 

composed of fine-grained lithic and mineral clasts. The abundance of calcite within the 

groundmass is variable accounting for up to 40 – 50 vol% (Graup 1999), In contrast to the 

Bunte Breccia, crystalline material dominates the lithic clasts hosted within the suevite 

(e.g., Pohl et al. 1977; von Engelhardt & Graup 1984; Engelhardt et al. 1995). However, a 

new road cut exposes suevites that conation ~8 vol% limestone clasts (Srebenschock et al. 

1998). Glasses within the surficial suevite occur as either angular or amoeboid particles 

(Engelhardt 1990). Bringemeier (1994), divided the surficial suevite into two distinct 

lithologic units: 1) dominant main suevite that represents a clast-rich impact melt rock 

emplaced via impact melt flows (Osinski et al. 2004); and 2) subordinate basal suevite, a 

fall-out suevite, sensu stricto. 

The well-consolidated main suevite forms the bulk of all surficial suevite outcrops. The 

main suevite contains abundant glass, mineral and lithic clasts. There are no indications of 

sorting or layering (Engelhardt et al. 1995) and the preferred horizontal orientation of flat 

glass clasts constitutes the only observed textural regularity (Engelhardt & Hörz 1965; 

Bringemeier 1994). Glasses within the main suevite occur both as groundmass phases and 

as discrete glass clasts (Osinski 2004). Glass clasts are typically vesiculated, schlieren-

rich mixtures containing abundant mineral and lithic fragments (Engelhardt & Hörz 1965; 

Engelhardt 1972; Stähle 1972; Pohl et al. 1977; von Engelhardt & Graup 1984; 
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Engelhardt et al. 1995; Vennemann et al. 2001; Osinski 2003, 2004), identified four main 

glass types present within the main suevites.  

The groundmass of the main suevites is defined after Osinski (2004) as the fine-grained 

material that encloses fragments of shocked/unshocked target material exclusive of any 

identifiable mineral and lithic clasts (>10 – 20 µm across). In a recent study Osinski et al. 

(2004) characterized the groundmass, sensu stricto, of the main suevites and has 

interpreted the groundmass phases as a series of impact melts on the basis of observable 

textures in SEM BSE. The discrete groundmass components include: silicate mineral and 

lithic fragments (8.9 – 50.1 vol%), carbonate mineral and lithic fragments (0 – 12.0 

vol%), angular impact glass clasts (0 – 18.3 vol%), crystalline calcite (0 – 42.6 vol%), 

fine-grained clay minerals (1.6 – 70.6 vol%), impact glass comingled with calcite and clay 

(0 – 16.6 vol%), Fe-Mg-rich plagioclase (0 – 7.5 vol%), rare garnet and pyroxene 

crystallites (<0.5 vol%), francolite (carbonate-hydroxy-fluor-apatite; 0 – 5.3 vol%), Ba-

rich phillipsite (Ca-K-Ba zeolite; 0 – 34.2 vol%). Vesicles can comprise up to several 

vol% of a sample. The main surficial suevites are typically groundmass supported, 

however the proportions of the various groundmass phases and clasts vary from thin-

section scale to outcrop scale (Osinski et al. 2004).  

Osinski et al. (2004) presents textural evidence that the groundmass phases of the main 

suevite were in a liquid state at the time of deposition. Furthermore, the observation that 

the clays are the host phases for the vesicles suggests the generation of volatile-rich melt 

with vesicles forming following deposition (Osinski et al. 2004). The main mass of 

surficial suevite was emplaced as a high temperature (580oC – >900oC; Engelhardt et al. 

1995; Harker & Tuttle 1955) melt-rich flow containing entrained glass and lithic clasts 

that emanated from different regions of the evolving crater during the formation of the 

central uplift during the modification stage of crater formation (Osinski et al. 2004). 

2.2.2 Ries impact glasses 

The glasses hosted in the Ries suevites have been classified on the basis of composition 

and microstructural characteristics (Osinski 2003). The type I glasses, which host the 

tubular alteration textures, are most abundant in the Ries suevites, contain Al-rich 
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pyroxene quench crystallites and have SiO2 contents ~63%. Of all 4 glass types, type I 

glasses have the highest concentrations of FeO and MgO. The type II glasses have a 

similar SiO2 content as type I however contain only plagioclase crystallites. Type III 

glasses have low SiO2 contents, are hydrated relative to the other glasses and contain 

relatively little FeO and MgO while having high Al, Ca, and Na contents. Type IV 

glasses have very high SiO2 contents commonly >90% (Osinski 2003). 

Silica content and crystallinity affect the dissolution (weathering) and cation release rates 

of natural materials (e.g., Wolff-Boenisch et al. 2004; Wolff-Boenisch et al. 2006). The 

rate-limiting step determining dissolution rates in silicates is the breaking of strong Si-O 

bonds (Oelkers 2001). The weathering rates (low temperature dissolution) of natural 

silicates increase systematically with increasing Si content and polymerization.  The 

effect of crystallinity on polymerization consequently affecting dissolution rates is a 

function of Si content (Wolff-Boenisch et al. 2006). Silica-rich glasses have weathering 

rates ~ 1.6X the weathering rates of their crystalline counterparts (Wolff-Boenisch et al. 

2006). However, in silica-poor material (once crystalline minerals no longer contain 

bridging Si-O-Si bonds), crystallinity has little effect on Si polymerization. As a result, 

the weathering rates of silica-poor glass and crystalline material are approximately equal 

(Wolff-Boenisch et al. 2006). In silica rich material, such as impact glasses, the degree of 

polymerization is critical to stability. The rapid quenching of natural glasses precludes Si 

polymerization such that, Si-rich crystalline material will persist 2 orders of magnitude 

longer than Si-rich glass while the lifetime of Si-poor crystalline material approximates 

that of Si-poor glass (Wolff-Boenisch et al. 2006). Based on theoretical calculations at far 

from equilibrium conditions, the lifetime of a 1mm natural glass sphere increases 

exponentially with increasing Si content (Wolff-Boenisch et al. 2004). Cation release 

rates (as non-framework metal ions are leached from the glass) decrease exponentially 

with increasing Si content (Wolff-Boenisch et al. 2004).  

The stability (or dissolution rate) and corresponding cation release rates (metal 

availability) of natural glasses has implications for potential microbial colonization (e.g., 

(Cockell et al. 2009). It has been noted that bioalteration textures are more abundant in 

basaltic (Si-poor) glasses relative to obsidian (Si-rich glass; e.g., Cockell 2009). The 
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preferential microbial colonization of basaltic glass has been hypothesized to result from 

greater availability of bio-essential cations as well as easier dissolution of the glass.  

Impact glasses are characteristically silica rich. In the absence of less-stable basaltic 

glass, cation content may become more important to potential microbial colonization than 

cation availability as related to Si content. Despite their high silica content relative to the 

Ries type II glasses, tubular alteration textures are hosted within type I glass. The 

significantly higher Fe and Mg contents of the type I glasses relative to the type II glass 

may explain the presence of the tubular alteration hosted exclusively within type I glass.  

The basal suevite is a fine-grained, poorly consolidated, moderately- to well-sorted 

suevitic impactite unit deficient in glass clasts relative to the main suevite (Chao et al. 

1978; Osinski 2004). The basal suevite is stratigraphically located between the Bunte 

Breccia and the main suevite at an outcrop in the Aumühle quarry, Osinski (2004), 

studied the relationship between the Bunte Breccia and the basal suevite in detail. There 

is a transitional layer containing clasts of Bunte Breccia material up to ~55 cm thick 

locally developed between the basal suevite and the Bunte Breccia (Osinski et al. 2004; 

Chao et al. 1978). The basal suevite may represent “lateral extensions of the sorted 

fallback layer from the crater interior” (Newsom et al. 1990; Osinski et al. 2004). 

Isolated bodies of coherent melt rock overlie the Bunte Breccia or megablocks (Graup 

1999). Outcrops have a lateral extent of 10 – 50 m (Pohl et al. 1977). The microscopic 

groundmass hosts variably shocked lithic (dominantly granite) and mineral (dominantly 

quartz) clasts (Engelhardt et al. 1969; Pohl 1977). The microcrystalline groundmass 

consists of alkali feldspar, plagioclase, quartz and illite. Interstices are filled with fresh or 

devitrified glassy mesostasis (Osinski et al. 2004). The impact melt rock has been 

interpreted by Osinski (2004) as a coherent and discrete impact melt flow that emanated 

from the evolving crater during the modification stage of crater formation.  

2.2.3 Ries impact-generated hydrothermal system 

The Ries crater is one of the first impact sites where an impact-generated hydrothermal 

system has been proposed (Engelhardt 1972; Salger 1977; Stähle & Ottemann 1977; 

Osinski 2005). The occurrence of secondary mineralization and hydrothermal alteration 
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of the impact suites has been noted and described (e.g., Förstner 1967; Engelhardt 1972; 

Stähle 1972; Jankowski 1977; Stöffler et al. 1977; von Engelhardt & Graup 1984; 

Newsom et al. 1986; Engelhardt et al. 1995; Graup 1999; Osinski 2003, 2004; Osinski et 

al. 2004; see Osinski, 2005 for a detailed study of hydrothermal alteration of the Ries 

impactites).   

Using a combination of petrographic and analytical SEM techniques, Osinski (2005) has 

identified a number of hydrothermal alteration phases within the surficial suevites 

including clays (dominantly montmorillonite), zeolites, quartz, calcite, hematite and 

goethite. Alteration phases of the crater suevite include: potassium-feldspar, albite, clays, 

chlorite, zeolites, calcite, and minor phases including pyrite, goethite, barite and siderite. 

Alteration assemblages occur in three main settings: 1) open-space cavity and fracture 

fillings within the groundmass; 2) vesicle linings/fillings within impact glass clasts; and 

3) pervasive alteration of groundmass phases and glass clasts (Osinski 2005). Overall the 

glass clasts are well preserved in the surficial suevites (Engelhardt & Graup, 1984; 

Engelhardt et al. 1995; Graup 1999; Osinski 2003, 2005). The hydrothermal fluids of the 

Ries impact-generated hydrothermal system were likely derived from a combination of 

meteoric water from the overlying crater lake and ground waters from nearby country 

rocks. There is no evidence of a magmatic or metamorphic source (Osinski 2005). 

Due to the focused hydrothermal alteration of the suevite units, these impactites were 

likely the main heat source driving hydrothermal circulation (Osinski 2005; Fig. 2.2). 

Emplacement temperatures >750oC – 900oC have been suggested for the suevites based 

on evidence of ductile deformation in glasses following deposition (Osinski et al. 2004).  

Intense pervasive hydrothermal alteration is limited to the crater suevites indicating that 

early, high temperature (200oC – 300oC) hydrothermal activity was restricted to the crater 

fill units (Osinski 2005). The surficial suevites were affected by the main and late stages 

of hydrothermal activity that are characterized by lower peak temperatures (<100oC – 

130oC constrained by the lack of illite) and intermediate argillic alteration and 

zeolitization (Osinski 2005).  With the exception of rare instances of pervasive alteration 

noted in glasses at some localities, the dominant alteration of the surficial suevites is 

montmorillonite and Ba-phillipsite within cavities, fractures and vesicles. It is significant 
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to note that neither clasts of pre-impact target rocks nor impactite phases were enriched in 

Ba. Therefore the Ba must have been dissolved by the hydrothermal fluids, transported 

and precipitated during zeolitization of the surficial suevites (Osinski 2005).  

Recent work by Muttik et al. (2008) suggests that the Ries impact-generated 

hydrothermal system was limited to the intensely altered crater suevites and that the 

alteration of the surficial suevites can be entirely attributed to ambient weathering 

processes. It is argued that the main alteration phase of the surficial suevites identified as 

montmorillonite by whole rock powder XRD is chemically homogenous throughout the 

surficial suevites consistent with low temperature hydrous devitrification of impact 

glasses. However, Osinski (2005) noted that hydrothermal alteration in the surficial 

suevites was limited to localized zones including fractures and vugs. Bulk XRD alone is 

not a suitable technique to identify trace assemblages in spatially restricted zones. It is 

likely that alteration assemblages formed by post-impact weathering processes are the 

predominant assemblages of the surficial suevites considering the limited extent of 

hydrothermal activity in these units. Furthermore no explanation is offered regarding the 

Ba-phillipsite phase within the surficial suevites. 
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Figure 2.2: Idealized cross section of the Ries crater schematically illustrating the 
post-impact hydrothermal system. 

 
Schematic cross section showing the heterogeneous distribution of hydrothermal cells 
relative to the crater centre. The main, high temperature hydrothermal activity is 
concentrated in the crater fill material beneath a transient crater lake with isolated, patchy 
systems distal to the crater rim. The primary heat source driving hydrothermal circulation 
is from impact-heated materials. Note the discontinuous nature of isolated outcrops of 
glass-bearing breccia (suevite) overlying the Bunte breccia outside the crater rim. 
Modified from Osinski (2004).   
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2.2.3.1 Alteration of Crater Suevite 

Alteration phases of the crater suevite include: K-feldspar, albite, clays, chlorite, zeolites, 

calcite, and minor phases including pyrite, goethite, barite and siderite. The alteration 

assemblages as recorded in the Nördlingen core, are consistent with an early, high-

temperature (200 – 300oC) phase of K-metasomatism coinciding with albitization and 

chloritization followed by pervasive intermediate argillic alteration and zeolitization 

(Osinski 2005). 

2.2.3.2 Alteration of Surficial Suevite 

A number of hydrothermal alteration phases consistent with low-temperature (<100 – 

200oC) hydrothermal activity including clays, zeolites, quartz, calcite, hematite and 

goethite have been identified in glass bearing breccia located beyond the crater rim 

(Newsom et al. 1986). The main alteration phase is montmorillonite and Ba-phillipsite. It 

is significant to note that neither clasts of pre-impact target rocks nor impactite phases 

were enriched in Ba. Therefore the Ba was likely dissolved by the hydrothermal fluids, 

transported and precipitated during zeolitization of the surficial suevites (Osinski 2005). 

2.2.3.3 Alteration of Surficial Suevite at Depth 

Study of the Wörnitzostheim core has shown alteration assemblages consistent with the 

surficial suevites described above defined by vesicle filling montmorillonite, Ba-rich 

phillipsite forming within vesicles, and groundmass montmorillonite. At depth (>78 m) 

montmorillonite and illite become major components and zeolitization occurs. 

Mineralogical and petrographic evidence of the hydrothermal alteration assemblages 

present in glass-bearing breccias at the Ries impact structure are presented blow. 

2.2.3.4 Evidence for Hydrothermal Activity Outside the Crater Rim 

Alteration textures are spatially restricted at the metre scale and include 

coliform/rhythmic banding, vesicle infilling, pervasive alteration to complete replacement 

of glass clasts by clay minerals and the occurrence of platy clays. If a limited extent of 

hydrothermal activity is assumed in these units, then alteration assemblages within the 

ejected glass-bearing breccia are predominantly formed by post-impact weathering 
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processes. However, an extremely spatially limited hydrothermal system outside the 

crater rim does not offer an explanation for the Ba-phillipsite phase within the glass-

bearing breccias. Furthermore, the similarity of the alteration assemblages between the 

surficial suevite and the suevite in the Wörnitzostheim core(s) suggests these phases are 

not due to weathering processes as the Wörnitzostheim core suevite was protected by ~20 

m of overburden. 

2.2.3.5 Hydrothermal Alteration Summary 

Studies of the alteration textures of glassy and formerly glassy clasts within both the 

ejected and crater-fill glass-bearing breccias has shown a consistent progression from 

fresh glass through various states of alteration. The phases of alteration inferred from 

such textures include incipient, low temperature alteration (perlitic fracturing, 

devitrification and decomposition textures) to evidence of fluid circulation (alteration 

zones surrounding perlitic fractures and vesicles, banding and zonation) resulting in 

progressive alteration (globular replacement textures, platy clays) and finally pervasive 

alteration and complete replacement including the formation of Ba-phillipsite 

(harmatone) and montmorillonite in both the crater-fill and ejected glass-bearing 

breccias. Alteration of the surficial suevite followed a progression from high- to low-

temperature with textures consistent with hydrothermal alteration, sensu stricto over a 

wide temperature spectrum. Hydrothermal systems were likely spatially extensive in the 

surficial suevites with localized, higher intensity systems sporadically distributed (Fig. 

2.2). Hydrothermal alteration was likely preceded by high-temperature devitrification or 

autometamorphism and followed by low-temperature weathering. 

Similar textural and mineralogical evidence of hydrothermal alteration in both the crater-

fill and ejected glass-bearing breccias suggests a similar progression of alteration 

processes in both units consistent with hydrothermal alteration. It is suggested that the 

impact-generated hydrothermal system at the Ries impact structure was much more 

extensive and pervasive outside the crater rim area than previously reported. 
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2.3 Bioalteration of Natural Glasses 

Bioalteration of natural glasses is a well-documented phenomenon. Conspicuous tubular 

and granular morphologies, with no known parsimonious abiotic formation mechanism, 

hosted within oceanic basaltic glasses are widely accepted to represent microbially 

mediated alteration textures (Thorseth et al. 1995, 2003; Fisk et al. 1998; Torsvik et al. 

1998; Furnes et al. 2001a,b, 2004; Banerjee & Muehlenbachs 2003; Furnes & 

Muehlenbachs 2003; Banerjee et al. 2004, 2006a,b, 2008; Staudigel et al. 2006, 2008a,b; 

Benzerara et al. 2007; Peckmann et al. 2008; Izawa et al. 2010a,b). Tubular and granular 

alteration of submarine volcanic glasses are recognized in modern oceanic crust, 

Phanerozoic ophiolites and Archaean greenstone belt constituting both temporally and 

spatially distributed ichnofossils (McLoughlin et al., 2008; Thorseth et al., 1991; 

Banerjee 2006, 2007; Banerjee & Muehlenbachs, 2003; Furnes 2004; Furnes et al., 2008; 

Staudigel et al., 2008a).  

Microbial alteration textures in basaltic glass formed through endolithic microboring are 

characterized by microstructures of two distinct morphologic types: agglomerations of 

micron-scale pits forming a granular texture emanating from a single point; and 

vermicular tubular features. The latter have large length to width ratios that may spiral, 

bifurcate and/or display regular segmentation (e.g., Banerjee & Muehlenbachs 2003; 

Furnes et al. 2008; McLoughlin et al. 2008a; Staudigel et al. 2008a,b). These 

characteristic hollow etch features are commonly filled with authigenic mineral phases 

such as phyllosilicates, zeolites, Fe-oxyhydroxides and titanite (Banerjee & 

Muehlenbachs 2003; Benzerara et al. 2007; Staudigel et al. 2006).  

In addition, it has been shown that endolithic microbial communities thrive in terrestrial 

and submarine volcanic glasses with a range of SiO2 contents (Richardson et al. 2007; 

Santelli et al. 2008; Cockell et al. 2009; Herrera et al. 2009). Pitted and elongated 

alteration features have been described in subaerial volcanic glass (e.g., Furnes 1984; 

Thorseth et al. 1992; Herrera et al. 2008; Cockell et al. 2009). However, elongate 

features have only been observed in glasses of basaltic composition while microbial 

alteration is confined to rounded (convex hemispherical) etch pits in more siliceous 

glasses (Cockell 2009). In the case of terrestrial biologically mediated glass alteration, 
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biomorphic features have only been observed on the exposed surfaces suggesting a role 

for phototrophic communities (Thorseth et al. 1992; Herrera et al. 2008). 

Secondary ion mass spectrometry (SIMS) analyses of basaltic glass samples with 

abundant tubular bioalteration from the Ontong Java Plateau revealed significant 

chemical variations in areas with tubular microbial etch structures including: alkalis, 

which show depletion in Na with enrichment in K and Rb; enrichments in the alkaline 

elements (Ca, Sr, Ba) and the high field strength elements (Ti, Y, Zr); the first row 

transition metals V, Cr, and Mn are slightly enriched, while Fe, Co, Ni, Cu, and Zn are 

depleted; Mo and W and the lanthanides are enriched in tubule-bearing regions; slight 

enrichments in U and P are also observed. Overall findings indicate a correlation between 

element variation and the presence or absence of tubular alteration in the OJP glasses. 

This is consistent with microbial dissolution of the glass but no direct link between a 

particular element and a microbial metabolic pathway has been established. Enrichment 

of elements like titanium and calcium are consistent with the identification of titanite by 

micro-XRD within the tubules (Izawa et al. 2010a). Titanite mineralization is coeval with 

glass dissolution and tubule formation. An interesting and unexpected outcome of the 

SIMS analyses is the discovery of delicate, spongy textures within the tubules revealed 

by ion sputtering. These textures have been interpreted to be the direct result of 

incongruent dissolution of the glass in proximity to the tubules.  

Additional evidence for biogenicity is focused on chemical evidence for biological 

processing and includes; elemental distribution patterns, stable isotope signatures, and 

evidence of organic matter (Giovannoni et al. 1996; Torsvik et al. 1998; Furnes et al. 

2001b; Banerjee & Muehlenbachs 2003; Walton & Schiffman 2003). X-ray element 

mapping of basaltic glass hosting microborings is often enriched in carbon, nitrogen and 

phosphorous (e.g., Furnes et al. 2001a; Banerjee & Muehlenbachs 2003; Banerjee et al. 

2006, 2007; Staudigel et al. 2008a). In addition, Mg, Fe, Ca, and Na depletion zones 

surrounding tubule alteration have been identified as a biological processing signature as 

microbes extract essential elements from glass resulting in leached zones (McLoughlin et 

al. 2007). Stable isotope studies have been conducted on several modern oceanic glasses 

(e.g., Furnes et al. 2001a,b; Banerjee & Muehlenbachs 2003; Furnes et al. 2007, 2008; 
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Staudigel et al. 2008a, 2008b), obducted Phanerozoic ophiolites (Furnes & 

Muehlenbachs 2003; Furnes et al., 2001a,b, 2007, 2008; Staudigel et al. 2008a,b), as well 

as Archean greenstone belts (Furnes et al. 2004; Banerjee et al. 2006, 2007; Furnes et al. 

2007, 2008; McLoughlin et al. 2008a) all documenting negative δ13Ccarb isotopic 

signatures interpreted as evidence for biologically processed carbon. Fluorescence 

(DAPI: 4,6 diamino-phenyl-indole) staining of tubular features in modern basaltic glass 

samples has identified nucleic acids within the terminal end of the tubules (e.g., Banerjee 

& Muehlenbachs 2003). Organic carbon coating the micro-burrows has also been 

identified through carbon X-ray mapping (Torsvik et al. 1998; Banerjee & Muehlenbachs 

2003) and near-edge fine-structure X-ray spectroscopy (Benzerara et al. 2007). 

2.4 Biogenicity Criteria 

It is notoriously difficult to assign biogenicity to a putative ichnofossil (e.g., Brasier et al. 

2002; Cady et al. 2003; Garcia-Ruiz et al. 2003). Systematic criteria for determining the 

biogenic morphology of tubular glass alteration has been reviewed in detail elsewhere 

(e.g., Morrison & Oberbeck 1978; Staudigel et al. 2006; McLoughlin et al. 2008). 

McLoughlin et al. (2007) developed a three-pronged approach to assessing the 

biogenicity of putative ichnofossils. Tentative bioalteration features must satisfy the 

following three criteria before a biogenic origin can be determined: “(1) a geological 

context that demonstrates the syngenicity and antiquity of the putative biological 

remains; (2) evidence of biogenic morphology and behaviour; and (3) geochemical 

evidence for biological processing” (McLoughlin 2007).   

Staudigel et al. (2007) introduces a series of textual arguments further expanding on 

morphological evidence for biogenicity. These arguments are summarized below in the 

context of the Ries tubules: 

• Tubules do not line up on opposite sides of fracture and therefore do not 

represent planes of weakness. 
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• Tubule diameters are on the order of a micron, consistent with the size of 

microbial cells and microbial borings in terrestrial volcanic glass (Staudigel et 

al. 2008a). 

• The tubule diameter remains constant, i.e. there is no narrowing or flaring at 

the entrance or terminus of the tubule as would be expected from abiotic 

dissolution or vesicle generation. 

• A population of tubules in the Ries glasses display regular segmentation 

consistent with segmented biotic filaments suggestive of multiple cells within a 

sheath. 

• A sub-population of segmented tubules shows clear bifurcation suggestive of 

cell division.  

• The spiral morphology of some tubules in the Ries glasses is extremely hard to 

reconcile abiotically, but closely resembles bacterial spirochete morphology 

(McLoughlin et al. 2009). 

Recently this biogenicity criteria has been applied to a series of tubular alteration textures 

observed in a Palaeozoic ophiolite and Precambrian greenstone belts: Titanite 

mineralized tubular textures were observed in ~442 Ma pillow lavas from a Caledonian 

west Norwegian ophiolite (Fliegel et al. 2011); Annulated tubular textures in Proterozoic 

pillow lavas from the Pechanga greenstone belt (Fliegel et al. 2010); and tubular 

alteration features in Archean pillow lavas from the Wutai greenstone belt (McLoughlin 

et al. 2010).  In all three cases, titanite dating and the overprinting of later metamorphic 

events demonstrated the syngenicity and antiquity of the features.  

The Caledonian tubules (Fliegel et al. 2011) lacked the morphological complexity and 

large length to width ratios typically associated with tubule bioalteration features (e.g., 

Furnes et al. 2004; Banerjee et al. 2006a; McLoughlin et al. 2009). In contrast, the 

Pechanga (Fliegel et al. 2010) and Wutai (McLoughlin et al. 2010) features do display a 

complexity suggestive of biogenic morphology and behaviour. The Caledonian features 

did not meet the biogenicity criteria as they did not display complex morphologies 
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suggestive of a biotic origin and geochemical evidence could neither support nor refute 

biological processing. The origin of these features remains ambiguous although the 

authors suggest they may represent the initial stages of microbial etching (Fliegel et al. 

2011).  

The complex morphology together with geochemical evidence of biological processes 

allowed the Pechanga tubular features to be classified as ichnofossils preserving 

microbial tunnelling (Fliegel et al. 2010). Geochemical evidence is not discussed with 

respect to the Wutai features, however their morphological similarity to both in situ 

bioalteration of modern ocean crust and ichnofossils in other Precambrian greenstone 

belts led the authors to conclude that the Wutai tubular features are biogenic in origin 

(McLoughlin et al. 2010). 

2.5 Mechanisms of Microbially Mediated Glass 
Alteration 

Various mechanisms of glass tunnelling by microorganisms have been hypothesized 

(e.g., McLoughlin et al. 2010b). Community structures are likely complex and difficult to 

elucidate as there is likely not a one-to-one correlation between an organism and the 

tubular structure preserving behaviour. One species may preserve multiple tunnel 

morphologies depending on life cycle stage or environmental conditions; conversely, 

multiple organisms may create similar tunnel morphologies. In addition, taphonomical 

change, such as that caused by mineralization, and diagenesis may distort tubule 

morphologies and the resulting preserved structure likely represents a combination of 

biological behaviour and preservation history.  

McLoughlin et al. (2010b) provides detailed reasoning concluding that chemical 

dissolution is the only feasible mechanism of tubule formation in natural glass. Microbes 

are able to selectively dissolve various substrates to gain essential nutrients resulting in 

the generation of protective endolithic habitats (e.g., Cockell & Herrera 2008). 

Experimental studies show that congruent and incongruent dissolution of rock substrates 

occurs via localized pH changes. Microbes are able to locally alter pH through 

bioalkalization (e.g., Büdel et al. 2004) or production of organic acids (e.g., Callot et al. 
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1987). Microbes may initially colonize fractures and grain boundaries, as the microbe 

continues to dissolve the substrate extracting essential metabolites, a cavity forms. 

Initially, fluid circulation removes waste products as well as preventing authigenic 

mineral precipitation from sealing off the tunnel. As the tunnel extends, however, 

circulating fluid would become minimal and alteration and metabolic waste products 

would begin to build up. Cellular extensions, such as fungal hyphae, have been suggested 

as a mechanism to continue localized dissolution and tunnel formation (Staudigel et al. 

2008). Many prokaryotes (e.g., the actinomyces) are also capable of forming hypha-like 

extensions (McLoughlin et al. 2010b). Eventually, it can be speculated that tunnel 

formation would no longer be advantageous as waste products and low-permeability 

mineral alteration products continue to increase. Once no longer sustained by fluid 

circulation, or cellular extensions are withdrawn, the tubular cavities become preserved 

by authigenic minerals and their diagenetic products. 

Molecular profiling of endolithic microbial communities in submarine volcanic glasses 

suggest autotrophs as initial colonizers employing Fe and Mg cycling as potential 

metabolic strategies (e.g., Edwards et al. 2005 and references therein; Thorseth et al. 

2001). Chemoautolithotrophs may actively oxidize reduced species such as Fe2+, Mn4+, 

and (SO4)2, in the glasses with the oxidized fluids acting as the electron acceptor 

(McLoughlin et al. 2010). Such dependence on reduced species may explain the chemical 

control on tubule distribution and the experimental finding that endoliths prefer Fe rich 

substrates (Roberts-Rogers & Bennett 2004). Tubules in the Ries glasses are enriched in 

Mg, Ca, and Fe and depleted in Na, K, Al, and Si relative to the glassy matrix. Ca-

clinopyroxene quench crystallites present in the type I glass clast display similar 

enrichment and depletion patterns. Pyroxene crystallites are rich in bio-essential elements 

such as Fe and Ca that are lacking in the glassy matrix. It is conceivable that microbes are 

preferentially extracting these bio-essential elements from crystallites. These elements 

would therefore become concentrated within the tubules and preserved following decay 

of organic matter. A similar preservation mechanism has been suggested for tubules 

preserved by titanite mineralization in Archaean greenstone belts (Izawa et al 2010a). In 

the case of Archaean tubules, Ti is passively accumulated by microbes and concentrated 

within bioalteration features. 
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2.6 Biology of Impact Craters 

2.6.1 Impact craters as microbial habitats 

The intense heat generated by hypervelocity impacts results in local sterilization of the 

target area. Meteorite impacts can therefore be viewed as biological resetting events 

resulting in the generation of a primary succession environment. The earliest phase of 

ecological recovery following an impact event, the phase of thermal biology ‘during 

which the thermal anomaly associated with a recently formed crater sustains biological 

activity of a nature or at a level requiring warmed environmental conditions’ is of 

astrobiological interest (Cockell & Lee 2002). The impact flux on the Archean Earth was 

more than twice the present level (Cockell 2004). As a result, endolithic habitats are 

being considered as possible locations for life on early Earth (Westall & Folk 2003) and 

on the surface of other planets such as Mars (Wierzchos et al. 2003). Understanding the 

geomicrobiology of impact craters on Earth is critical in furthering the search for life on 

Mars. The hydrothermal systems associated with impact events may therefore provide an 

additional setting to study evidence of early life on Earth. Further studies considering the 

potential hydrothermal habitats of impact craters may not only yield insight into early life 

and the origin of life on Earth, but furthermore, may comprise a potential habitat for life 

and past life on other terrestrial planets such as Mars. 

2.6.2 Early Earth 

The environment created by an impact crater has several characteristics that make it 

conducive to prebiotic chemistry (Cockell 2006). Theories of prebiotic synthesis must 

consider the following: an energy source for growth and metabolism, a localized area in 

which reactants can concentrate suitable mechanisms of catalysis and an appropriate 

geochemical environment which is stable over a time scale over which life can evolve. 

Environments created by impact events are driven by diverse energies, ranging from 

latent heat to the redox potential of novel juxtapositions of chemical species. The 

fracturing of target rocks and hydrothermally driven fluid migration act as mechanisms 

that may act to concentrate the possible precursors of prebiotic chemistry within the 

hydrothermal system. The secondary hydrothermal minerals such as clays and zeolites 
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have been suggested as prebiotic templates (Cockell 2006).  Hydrothermal activity at 

Haughton (~23 Km diameter) is estimated to have lasted for tens of thousands of years 

(Osinski et al. 2005). Studies of larger structures such as of the ~250 km diameter 

Sudbury impact structure suggest that the impact-generated hydrothermal system may 

have been sustained for up to 2 Ma based purely on conductive cooling (Ames et al. 

1998).  

Tubular bioalteration of volcanic glasses back to ~3.5 Ga provide one of the earliest 

records of life on Earth (Banerjee et al. 2006a; Staudigel et al 2008a) suggesting that 

submarine hydrothermal settings may have played an essential role in the origin of life. 

Periodic global heating may account for the thermophilic root of life preserved in 16s 

rRNA sequences (Pace 1997; Schwartzman & Lineweaver 2004). In this sense meteorite 

impacts could not only have generated the putative bottleneck resulting in a perceived 

thermophilic last universal common ancestor, but would also select for thermo-tolerant 

life surviving previous impacts (Cockell & Lee 2002). Therefore, the endolithic habitats 

produced by increasing the porosity of crystalline targets during shock metamorphism 

would provide a refuge from frequent meteorite bombardment and intense UV radiation. 

The high flux rate of meteorite impacts on the early Earth would favour life in endolithic 

environments suggesting that meteorite impacts played a pivotal role in the early 

evolution, if not origin of, life on Earth and possibly life on other planets. 

2.6.3 Beyond Earth 

On Earth, endolithic microbes are often present in extreme conditions such as vast 

temperature changes, high UV intensity and desiccation, suggesting that endolithic 

microbes can tolerate and thrive in environmental extremes. The extreme conditions 

present on Mars, such as intense UV flux, low temperature, and absence of liquid water 

may also encourage the exploitation of endolithic strategies. McLaughlin et al. (2007, 

2010) suggest microborings into volcanic glasses as a potential planetary biosignature 

and lists natural glasses as one of the most promising preservation environments for 

ichnofossils on early Earth and Mars. By extending this to impact glasses we greatly 

increase the number of candidate environments. Although impact craters are uncommon 

on present day Earth, (~50,000 km2 globally), impact events are the only ubiquitous 
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geological processes in the Solar System and impact structures represent the dominant 

geological landform amongst the terrestrial planets (Grieve 1987; Melosh 1989; French 

1998; Melosh & Ivanov 1999; French & Koeberl 2010; Osinski 2012). 

2.6.4 Impact craters as sites of biological preservation 

Impact systems are understudied from the perspective of biological preservation. To the 

best of the authors’ knowledge there are only four studies reporting fossil evidence of 

biological activity in impact systems: microbial etching of hydrothermal minerals at the 

Ries impact structure (Glamoclija et al. 1989); the presence of rod-shaped biomorphs in 

post-impact hydrothermally altered sediments from the Chesapeake Bay impact structure 

(Glamoclija 2007); evidence of extracellular polymeric substances in a hydrothermally 

precipitated calcite vein from the Siljan impact structure (Hode et al. 200); and most 

recently, a report of filamentous ‘fossils’ hosted in hydrothermally precipitated mineral 

assemblages within fractured impact breccia from the Dellen impact structure (Lindgren 

et al. 2010). In all the above studies there is a systemic failure to recognize biogenicity 

criteria and all evidence rests on tenuous morphological evidence.  

Glamoclija (1989) describes titanium oxide ‘biomineralized’ rod-shaped features and 

associated etch pits on hydrothermal clinoptilolite. The biogenicity of the rod-shaped 

features is based solely on their morphology. The images presented depict a mass of 

ovoid particles, whose morphology is not necessarily biogenic. Furthermore, syngenicity 

and antiquity of the biological remains is not demonstrated, nor is a uniquely biogenic 

morphology.  

Glamoclija (2007) recognized the importance of establishing biogenicity based on 

multiple lines of evidence stating: “further work is needed in order to verify biogenicity 

of observed communities by multiple datasets, and to confirm their syngenicity with the 

hydrothermal overprint.” Further work has not been as of yet completed. The textures 

described, if biological, may represent microbial communities taking advantage of the 

chemical disequilibria created by the precipitation of hydrothermal minerals at any point 

post the ~35.3 Ma impact.  
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The most recent work by Lindgren et al. (2010) at the Dellen impact structure, Sweden, 

fails to address all previously proposed criteria for biogenicity. Furthermore, the samples 

and hydrothermal alteration in which the putatively biological structures occur, cannot 

unambiguously be tied to the impact event. The samples were collected from ‘large 

blocks and boulders’ apparently lacking field context. The granite samples do not show 

impact shock effects other than fracturing suggestive of a very low shock level. The 

unidentified hydrothermal clays and zeolites may be from any post-impact aqueous 

alteration and do not unequivocally represent impact-generated hydrothermal activity. 

Impact-generated hydrothermal activity is heterogeneously distributed and occurs only as 

isolated, limited patches distal to the crater centre. The impactites collected likely 

represent distal ejecta indicated by their low shock level and occurrence in monomict 

breccias. Even though no evidence of syngenicity is presented, the authors cite formation 

of the feature coeval with impact-generated hydrothermal activity as the only line of 

evidence for biogenicity. Further to the lack of geological context, the authors fail to 

address biological behaviour as indicated by distribution or a uniquely biogenic 

morphology. The photomicrographs presented are obscure and the features cannot be 

unambiguously differentiated from ambient inclusion trails (AITs). In addition, no 

geochemical evidence of biogenicity is offered. The features lack evidence of organic 

matter and are not associated with alteration of the hosting material. In summary 

Lindgren et al., (2010) present an unconvincing argument for both biogenicity as well as 

association with an impact-generated hydrothermal system.  

Although the Glamoclija and Hode studies do present convincing cases for association 

with a post-impact hydrothermal system, biological activity at hydrothermal systems is 

not novel, and microbes exploiting this well-studied niche in post-impact hydrothermal 

systems are not unexpected. In contrast, the subject of this thesis presents evidence of 

microbial activity in a previously unstudied substrate unequivocally tied to an impact 

event and an impact-generated hydrothermal system. 
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2.7 Characterization of the Ries Tubules 

2.7.1 Fieldwork 

Fieldwork was conducted July 2009 and 2010 at the Ries impact structure. A list of 

samples and sampling locations is presented in Appendix A. See appendix 2 for a 

collection of representative field photograph.  In 2009 sites of interest identified during 

previous field seasons by Osinski were visited and a sample suite was collected. 

Sampling was focused on A: obtaining a variety (both in location and morphology) of 

suevitic glass clasts to constrain the distribution of the tubular alteration; and B: 

collecting samples with a focus on identifying various alteration assemblages. 

Understanding and identifying the many different and complex alteration assemblages at 

the Ries impact structure may help to better constrain the impact-generated hydrothermal 

system with implication for microbial colonization.  

In addition to sample collection, as putative bioalteration at the Ries crater has not 

previously been documented and previous field sampling plans were not executed as to 

address the question of bioalteration and putative microbial colonization of suevitic 

glasses, a list of sites of interest was assembled with a focus on constraining the 

distribution of putative bioalteration textures and understanding the complex alteration 

history at the Ries. Additional fieldwork in 2010 at the Ries crater was focused on 

determining fine scale distribution of the tubular alteration in association to hydrothermal 

alteration. Sampling and transect sites were be chosen based on the distribution of tubular 

alteration observed in thin sections cut from 2009 field samples.  Depth profiles and 

transects were constructed across surficial suevite outcrops and samples obtained at 

regular intervals to assess the distribution of putative bioalteration within suevite 

outcrops. The distribution of alteration is significant and may have biological and 

ecological implications. In addition, sites of interest with respect to hydrothermal 

alteration were revisited. 

2.7.2 Establishing geologic context 

It is imperative to document and thoroughly describe the geological context of a putative 

ichnofossil. A representative suite of impact-melt bearing breccias from the Ries impact 
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structure were examined in hand sample and polished thin section. Approximately 100 

thin sections derived from five field campaigns (2000, 2001, 2005, 2009, 2010), were 

chosen for petrographic study, see appendix 3 for representative petrographic light 

photomicrographs. In Chapter 3, an impact suite from the Rochechouart impact structure 

is used as a case study to identify and classify impact lithologies based on their intrinsic 

characteristics.  

Classical impactite classification schemes do not account for intermediate lithologies and 

as a result, transitional lithologies are inadequately described by end-member 

nomenclature. Further to the issue of transitional lithologies, the currently accepted IUGS 

impactite classification scheme is based on the location of the impactite with respect to 

the transient cavity. Such classification requires interpretation of field context and 

absolute knowledge of the location of the crater rim. Both of these perquisites are 

currently debated in the literature leading to ambiguous and inconsistent use of 

nomenclature in the literature. Interpretive bias aside, the majority of terrestrial impact 

structures are not preserved well enough to consistently and accurately delineate the 

extent of the transient cavity. Furthermore, in cases where there is no field context, such 

as deeply eroded structures, meteorite breccias, and future sample returns, classification 

based on provenance is purely speculative. The petrographic evaluation of the 

Rochechouart impactites presented in Chapter 3 allows for a systematic classification 

integrating the most recent recommendations of the IUGS Subcommission on the 

Systematics of Metamorphic Rocks (SCMR; Stöffler and Grieve, 2007) with descriptive 

nomenclature allowing for indeterminate and transitional units.  

Chapter 4 presents the results of a detailed petrographic and electron microscope study 

defining the geological context of the Ries tubules, see appendix 4 for additional electron 

microscopy images.  Reflected and transmitted plane polarized and crossed polarized 

light was used for imaging using a Nikon Eclipse LV100POL petrographic light 

microscope equipped with a Nikon DS-Ri1 12 Megapixel camera.  Extended-depth of 

focus images (EDF) were obtained using plane-polarized transmission microscopy by 

aligning multiple images in the z plane using Nikon Elements software. On average 25 – 

35 images were collected at ~0.4µm z-spacing and merged to created a single EDF 
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image. Reflected light was used to target areas for SEM analysis by identifying regions 

where tubules intersected the thin section surface. Two glass clasts one from the 

Amerdingen and Seelbronn localities that contained representative tubular textures were 

chosen from the optical images for further analysis. 

Three glass clasts were chosen for micro-X-ray diffraction (µ-XRD) analysis from a 

polished thin section of the Amerdingen. Glass clasts were chosen based on size (>50µm) 

and absence of large vesicles and lithic inclusions. X-ray diffraction data were collected 

in coupled geometry with θ1=5º and θ2= 17º with a frame width of 30.5º and scanning 

speed of 1.22º/min using the Bruker D8 Discover micro X-ray diffractometer (µXRD) at 

the University of Western Ontario (Flemming 2007), operated using Cu Kα radiation 

generated at 40 kV and 40 mA with a beam diameter of 50 µm. Diffracted X-rays were 

detected by a General Area Detector Diffraction System (GADDS). Diffractograms were 

analyzed using the BrukerAXS EVA software package and the International Center for 

Diffraction Data (ICDD) PDF-4 database.  

High-resolution backscatter electron (BSE) imaging and energy dispersive X-ray (EDX) 

spectroscopy spot analyses were carried out with a Leo 1540 FIB/SEM CrossBeam field 

emission SEM equipped with an Oxford Instruments INCA EDX system allowing for 

elemental analysis, sensitive to ~0.5 wt.% or less for all elements from C – U in the 

Nanofabrication Laboratory, University of Western Ontario. Samples were Pt sputter 

coated using the Denton Vacuum Desk 2 for 200 seconds at 15 mA. The sections were 

analyzed under high vacuum with an accelerating voltage of 15 – 20 kV and a working 

distance ~10 mm. Energy dispersive X-ray (EDX) spectroscopy mapping and spot 

analyses of selected samples allowed for the identification of elemental distribution on a 

micron scale.  

Further SEM imaging and EDX mapping was carried out on a Hitachi SU6600 variable 

pressure field emission SEM (Schottky emitter) equipped with an Oxford Instruments 

80mm2 silicon drift detector at the University of Western Ontario Zircon and Accessory 

Phase analysis facility. The spectral resolution of the EDX detector was 129 eV at an 

accelerating voltage of 5.9 keV. Samples were analyzed under vacuum at a working 
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distance between ~10 – 15 µm and an accelerating voltage of 10 – 15 kV with a probe 

current of 1 – 2 nA. BSE images were captured with a five segment solid-state detector. 

Samples were coated as above and all data was analyzed with Oxford Instruments INCA 

software. 

Additional quantitative electron probe analyses were analyzed by energy dispersive X-ray 

spectroscopy (EDX) conducted on a Cameca SX100 electron microprobe at the Electron 

Microprobe Laboratory at the University of Alberta. A defocused 10µm beam was used 

to collect EDX spectra of the matrix glass while a 5µm focused beam was used to collect 

spectra from the tubular features and crystallites. EDX mapping was collected for areas 

of interest. See appendix 5 for EDX spectra and elemental maps.  

A carbon tab was prepared for BSE imaging. Pieces of a large glass clast from the 

Seelbronn sample were crumbled then crushed with a mortar and pestle to sub-millimeter 

sized angular fragments. The fragments were then stuck to a 1 cm double-backed 

conductive adhesive carbon tab, which was then stuck to a titanium stub mount. The full 

assembly was then Pt coated using the Denton Vacuum Desk 2 for 200 seconds at 15 

mA. 

2.7.3 Establishing biogenicity 

Characterizing the tubules will involve several laboratory-based techniques. Micro X-ray 

diffraction (µXRD) allows for in situ mineralogical analysis at scales of tens to hundreds 

of microns. Establishing the mineralogy of the alteration structures and the host glasses 

will provide a basis for further characterization. An understanding of the mineral phases 

hosted within the tubular structures is significant to establishing their biogenicity. 

Electron beam based techniques such as scanning electron microscopy (SEM) will be 

paramount in substantiating the chemical composition of the host glass. Establishing the 

composition of the host glass may demonstrate the presence of chemical species relevant 

to potential microbial metabolism. Microprobe mapping may establish enrichment of 

biologically significant elements (P, C, N, K) that can be correlated with the structural 

information provided by µXRD. Detailed mapping with higher resolution techniques may 

demonstrate the presence of biomarkers such as a carbon anomaly or remnant organic 
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matter. Combining µXRD with SEM and TEM will allow for in situ correlation of 

compositional and structural analyses providing preliminary characterization of the 

putative bioalteration textures hosted within the Ries glasses.  

To further elucidate potential chemical variations on a sub-micron scale focused ion 

beam (FIB) milled foils containing the tubules and relevant tubule cross-sections will be 

cut from petrographic thin sections which have previously been characterized via optical 

and electron microscopy and laboratory micro X-ray diffraction techniques as described 

above. Transmission electron microscopy (TEM), energy dispersive X-ray spectrometry 

(EDXS) and electron energy loss spectroscopy (EELS) of these FIB foils will allow for 

preliminary high-resolution (nano-meter scale) mineralogical and chemical 

characterization of the tubules followed by scanning transmission X-ray microscopy 

(STXM) coupled with near edge X-ray absorption fine structure spectroscopy 

(NEXAFS). STXM will provide three-dimensional tomographic imaging of the tubules. 

NEXAFS allows for high-resolution chemical analyses including an assessment of 

valence states. Therefore NEXAFS will assess the valence states of transition elements 

with significant implications to potential microbial metabolism. Coupling NEXAFS with 

STXM will produce high-resolution three-dimensional chemical maps of the tubules as 

well as potential ‘redox’ maps.  Previous TEM and STXM studies on putative 

bioalteration textures in basaltic glasses from the Ontong Java Plateau have provided a 

wealth of mineralogical and chemical information pertinent to constraining the physical 

and chemical conditions of formation with the potential of establishing a biogenic origin 

(Benzerara et al. 2007).  Detailed sub-micron scale chemical studies may yield the 

presence of remnant organic matter or enrichment of biologically relevant elements 

within the tubules not observed at larger scales. Furthermore, elemental gradients or 

subtle chemical difference between unaltered glass, altered glass, and glass in close 

proximity to alteration (visually unaltered glass) may be significant and allow for 

speculation with regard to possible microbial metabolic reactions. 
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Chapter 3  

3 Re-evaluating the Rochechouart impact structure: 
setting a precedent for classification with limited 
geologic context 

Sapers, H. M., Osinski, G. R., Banerjee, N. R., Ferrière, L. Lambert, P., Izawa, M. R. M. 

3.1 Introduction 

Impact cratering is one of the most important geological processes on the terrestrial 

planets and rocky and icy moons of the Solar System. Once thought to be relatively 

unimportant for Earth history, it has become increasingly apparent over the past two 

decades that impact cratering has played a major role in shaping the origin and evolution 

of Earth, and possibly of life itself. The importance of the link between meteorite impacts 

and Earth evolution finally entered the geological mainstream in the 1980s, with evidence 

for a major impact as the cause of the mass extinction event at the Cretaceous – 

Palaeogene (K – Pg) boundary 65 Myr ago (Alvarez et al. 1980). The actual impact site, 

the ~180 km diameter Chicxulub crater, was subsequently identified in 1991, buried 

beneath ~1 km of sediments in the Yucatan peninsula, Mexico (Hildebrand et al. 1991). 

Despite some controversy, it is apparent that the Chicxulub impact event and its 

aftermath account for the sudden extinctions at the K – Pg boundary (Schulte et al. 2010). 

This remains, to date, the only unambiguous association of an impact crater with a mass 

extinction event in the geological record. First suspected following the discovery of an 

iridium anomaly (Olsen et al. 2002), a recent Nature News Feature noted the 

correspondence between the age of the Triassic – Jurassic boundary and a new reported 

age for the Rochechouart impact structure in France (Smith 2011). 

The Rochechouart impact structure is an eroded, late Triassic impact site, located in 

south-central France (45o50’N and 0o46’E; Kraut et al. 1969; Kraut & French 1971). 

Despite erosion, a wide variety of “impactites” are preserved. Impactites comprise all 

rocks affected by impact processes and range from fracture, displaced, and/or shocked 

rocks (including shatter cones) and lithic (melt-free) breccias, to impact melt-bearing 
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breccias and melt rocks. While detailed petrographic studies at the thin-section to hand 

sample scale have been conducted on Rochechouart impactites (e.g., Kraut & French 

1971; Lambert 1974, 1977), the complex relationships between clasts and matrix as well 

as the nature of the matrix itself can only be fully observed at the micrometer to 

nanometer scale using scanning electron microscopy (SEM) imaging techniques (e.g., 

Osinski & Spray 2001; Osinski et al. 2004; Nelson & Newsom 2006). We have carried 

out such a study for the first time on Rochechouart impactites. Our SEM-based 

observations demonstrate the transitional nature of impact melt-bearing impactites. We 

show that they form a continuum between impact melt-poor and melt-rich breccias and 

melt rocks, sensu stricto. In describing a suite of impactites from the Rochechouart 

structure we hope to illustrate the highly variable usage of impactite nomenclature in the 

literature. We then apply new nomenclature based on the matrix/groundmass textures 

(Osinski et al. 2008) to this suite of investigated impactites avoiding previous 

tautological classifications (Stöffler & Grieve 2007). The Rochechouart impact structure 

provides an opportunity to study a suite of impactites with extremely limited field 

exposures (e.g., as in the case of lunar exploration missions). As such, the majority of 

samples were examined without a priori knowledge of detailed geological context due to 

lack of exposure and poor quality of outcrops available on site. Subsequent classification 

is largely based on observable characteristics intrinsic to the samples at the micrometer 

scale. When taken together with new information on impact-generated hydrothermal 

activity, a more complete picture of the Rochechouart impact structure emerges. The 

eroded nature of this site complicates reconstruction of the original impact crater. One 

possible reconstruction suggests that the structure is much larger than originally thought, 

with implications for a possible impact cause of the Triassic – Jurassic extinction as 

proposed by Olsen et al. (2002). 

3.2 Geologic setting of the Rochechouart impact 
structure 

The late Triassic Rochechouart impact structure was formed in Hercynian age (300 – 400 

Ma) granitic intrusive and metamorphic rocks at the northwestern edge of the French 

Massif Central near the margin of a Mesozoic sea (e.g., Turpin et al. 1990). The currently 
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accepted age of the Rochechouart structure, 214 ± 8 Ma, is based on 40Ar/39Ar laser spot 

fusion dating of pseudotachylite generated during transient crater collapse providing the 

most robust age estimate to date (Kelley & Spray 1997). However, recent age 

determinations of hydrothermal K-feldspar in shocked gneisses suggest an age of 201 ± 2 

Ma, coincident within error of the Triassic – Jurassic boundary (Schmieder et al. 2010). 

The crystalline target rocks are comprised of granite, gneiss, and metamorphosed, 

intercalated, fine-grained quartzofeldspathic and metabasic rocks (leptynites) of the 

French Massif Central (Turpin et al. 1990). The crystalline basement is unconformably 

overlain to the west by the Triassic – Cretaceous limestones and sediments of the 

Aquitaine Basin (Lambert 1977b).  

As a result of erosion, the Rochechouart impact structure is not delimited by any specific 

topographic expression, as previously described by Kraut and French (1971; Fig. 3.1). 

Originally interpreted as a volcanic feature (Manes 1833), the identification of shock 

metamorphic features such as planar deformation features (PDFs) in quartz (Kraut 1967) 

and shatter cones (Kraut 1969; Kraut et al. 1969) led to the recognition of an impact 

origin. Rochechouart contains scattered outcrops of monomict and polymict impact 

breccias, impact melt-bearing rocks, shatter cones and other shocked target rocks (see 

e.g., Lambert 2010 and references therein). Allochthonous impactites (impact breccias 

and impact melt-bearing materials) occur as remnant outcrops distributed in a 

centrosymmetric, discontinuous sheet, over an area of ~150 km2 (Fig. 3.1). These 

outcrops delineate a somewhat circular area with a diameter of approximately 15 km that 

was considered by Kraut and French (1971) to be “the minimum original diameter of the 

crater”. Estimating the original crater size is an area of active debate (e.g., Lambert 1974, 

1977c, 2010). Pohl et al. (1978) cite a diameter related to the 18 – 25 km diameter 

disturbed zone, which represents the minimum diameter of the structure. This estimate is 

consistent with a negative gravity anomaly centered on the structure (Pohl et al. 1978). A 

shock zoning study conducted by Lambert (1977b) estimated the size of the structure to 

be 20 – 25 km. recently, a 40 – 50 km diameter for the Rochechouart structure has been 

proposed (Lambert 2010). The conservative estimates (18 – 25 km) are based on the 

extent of damage to the basement and do not take into account the extensive removal of 

material by erosion. 
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Figure 3.1: Simplified geologic map of the Rochechouart impact structure, with 
sample locations. 

Modified from Kelley and Spray (1997), and Lambert (1974, 1977c). The dotted line 
delineates the 23 km impact structure. Mineralogy for selected samples based on bulk 
XRD analysis is illustrated by the pie charts (see text for details). Note that the wedge 
size is not indicative of relative mineral amounts, but rather the presence of a particular 
mineral phase. Basement samples: 010, 018, 038, 045; unit 1, lithic breccia 
(Rochechouart breccia): 003, 020, 023, 035; unit 2, impact melt-bearing breccia 
(Chassenon suevite): 005, 006, 011; unit 4, particulate, clast-rich impact melt rock 
(Montoume breccia): 008, 013, 014, 017, 029, 030; unit 5, impact melt rock (Babaudus 
melt): 042, 043. 
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The impact structure has been affected by later regional tectonic activity (Kraut & French 

1971). A north – south cross sectional profile indicates that regional deformation has 

tilted the crater floor about 0.6o to the north such that the southern part of the structure is 

raised relative to the northern region (Lambert 1977, 2008, 2010). It is notable that the 

crater floor beneath the allochthonous impactites is extremely flat, ± 50 m over 300 km2 

(Lambert 1977a 1982, 2010).  

The Rochechouart allochthonous impactites are complex and heterogeneous at all scales. 

Five main impactite units overlying the impact-damaged parautochthonous basement 

rock have been described as follows with many of the units named with respect to their 

location of discovery and/or main occurrence (Fig. 3.2; Table 3.1): unit 1) lithic breccia 

(“Rochechouart breccia”); unit 2) suevitic breccia (“Chassenon suevite”); unit 3) “basal 

suevite”, a recently-discovered transitional impact melt-bearing breccia (see Lambert, 

2010); unit 4) red “welded” breccia or suevite (“Montoume breccia”); unit 5) finely 

crystalline melt rock (“Babaudus melt”; Kraut & French 1971). Lambert (1974, 1977b,c) 

described and named the Rochechouart impactites based on shock level, in contrast with 

the stratigraphic ordering of Kraut and French (1971). In the present study, we have 

followed and expanded Lambert’s classification. It should be noted that it has recently 

been suggested that some of the crater fill units (units 1 – 5) are also capped by a graded, 

impactoclastic, ash-like deposit of very fine-grained, glass-poor lithic debris 

compositionally consistent with the basement (Lambert 2010). This unit is not studied 

here. For clarity and consistency, in this paper we will refer to the different impactites as 

unit 1, 2, etc., in the results section. We then reclassify and reinterpret these impactites in 

the discussion section. 
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Table 3-1: Summary of nomenclature used to depict the Rochechouart impactites. 

Correlation of various classification and nomenclature used to define the Rochechouart 
impacts in the literatures. 

  Lambert 1977 Lambert 2010 Kraut 1969 This Study* 

     

  A (fractured 
basement rock) 

shocked 
basement n.a. shocked/fractured 

basement  

  B (monomict 
breccia) 

monomict lithic 
breccia Rochechouart 

breccia 

monomict lithic 
breccia 

unit 1 C (polymict 
breccia, no glass) 

polymict lithic 
breccia 

[melt-free] lithic 
breccia 

unit 2 D (polymict 
breccia, with glass) 

melt poor 
(upper)suevite 

Chassenon 
Suevite 

[clastic] melt-
bearing breccia 

unit 3 n.a. melt rich (basal) 
suevite n.a. Melt-rich 

impactite 

unit 4 

E (melt) impact melt 

Montoume 
breccia 

[particulate clast-
rich] impact melt 

rock 

unit 5 Babaudus melt [clast-poor] 
impact melt rock 

*Square brackets are used to delineate descriptive terms applicable to specific 
Rochechouart samples 

n.a. not applicable to the referenced study 
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3.3 Methodology 

Twelve samples representing each of the five main impactite lithologies described above 

were prepared for powder X-ray diffraction (XRD) analysis. Nineteen representative 

polished thin sections from sixteen samples representing each of the main impact 

lithologies were chosen for petrographic study in transmitted light. Six of those thin 

sections representing each impactite unit exclusive of the basement material were 

selected for further investigations using scanning electron microscopy (SEM). Powdered 

samples for XRD analysis were prepared by grinding with an agate mortar and pestle for 

approximately 30 minutes. Representative matrix material was chosen from each sample 

avoiding large (> 3 mm) clasts; ~400 mg of each powdered sample was used for analysis. 

Back-packed mounts were used to reduce the effects of preferred orientation and surface 

roughness. X-ray diffraction data were collected from 2º to 82º 2θ with a step size of 

0.02º and scanning speed of 10º per minute using the Rigaku Rotaflex diffractometer at 

the Laboratory for Stable Isotope Studies, University of Western Ontario (London, 

Canada), operating at 45 kV accelerating voltage and 160 mA tube current with a Co 

rotating anode source (Co Kα, λ = 1.7902 Å). Diffractograms were analyzed using the 

BrukerAXS 2005 EVA software package using the International Center for Diffraction 

Data Powder Diffraction File (ICDD PDF-4) database.  

Polished, carbon-coated thin sections were analyzed using a Hitachi S-4300S/E field 

emission variable pressure scanning electron microscope with EDAX Pegasus 4040 

integrated EDX/EBSD X-ray spectrometer at the Imaging Center, Texas Tech University 

(Lubbock, U.S.A); with 15 kV accelerating voltage, and a working distance ~12 – 15 

mm. Additional backscattered electron (BSE) and secondary electron (SE) imaging was 

carried out using a tungsten-filament Hitachi S-2500C SEM at the Zircon and Accessory 

Phase Laboratory, University of Western Ontario, using a Robinson Backscatter detector. 

Additional high-resolution BSE imaging and EDX spot analysis was carried out with a 

Leo 1540 FIB/SEM CrossBeam field emission SEM equipped with an Oxford 

Instruments INCA EDX system allowing for semi-quantitative elemental analysis, 

sensitive to ~0.5 wt. % or less for all elements from C – U in the Nanofabrication 

laboratory, University of Western Ontario. The sections were analyzed under high 
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vacuum with an accelerating voltage of 15 – 20 kV and a working distance ~10 mm. 

Energy dispersive X-ray (EDX) spectroscopy mapping and spot analyses of selected 

samples allowed for the identification of elemental phases representing mineral phases 

that may be present in low concentrations beneath the bulk XRD threshold. 

3.4 Results 

3.4.1 Petrographic shock indicators 

All impactites examined contain petrographic indicators of shock-metamorphism, 

including planar fractures (PF) and planar deformation features (PDFs) in quartz, 

mosaicism of quartz, diaplectic quartz glass and feldspar glass. Kink banding in mica was 

also observed in many of the investigated samples; even it is not considered to be an 

indicator of shock-metamorphism, it is clear that in the present case, kink banding is 

related to the impact event. The presence of “toasted quartz” (e.g., Whitehead et al. 2002, 

Ferrière et al. 2009b) was also noted in all of the melt-bearing impactites lithologies. 

Ballen silica was observed in “Babaudus melt” and in “Montoume breccia” samples, in 

agreement with previous reports by Ferrière et al. (2009a, 2010). The petrographic shock 

indicators observed in this study are consistent with previous studies (e.g., Lambert 

1977c) indicating that clasts within both the autochthonous and the allochthonous 

impactites have been subjected to a certain range of pressures and temperatures. 

3.4.2 Bulk mineralogy 

Bulk powder XRD was used to determine the main mineral assemblages present in each 

of the impactite units, as well as in the unshocked basement rocks (Fig. 3.1). As expected, 

the mineralogy is somewhat limited and consistent with the Hercynian target rocks. 

Diffractograms containing peaks corresponding to clay minerals, calcite, and Fe-Ti-

oxides are suggestive of various alteration phases. Phyllosilicates including muscovite, 

glauconite, illite, chlorite, and montmorillonite/smectite group clays, were identified by 

XRD in all units, including the unshocked basement rocks. Analyses from the units 1 and 

4 have XRD patterns corresponding to Fe-Ti-oxides (hematite, ilmenite, and 

lepidocrocite). Bulk XRD analysis of an altered glass clast from unit 2 indicated 

quartzofeldspathic mineralogy consistent with the bulk suevite. However, alteration 
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mineralization (calcite and mica-clay minerals) is more prevalent in the glass clast 

compared to the bulk impactite.  

3.4.3 Groundmass textures and clasts 

3.4.3.1 Unit 1: lithic breccia (‘Rochechouart breccia’) 

Transmitted light microscopy observations indicate that the groundmass is composed of 

angular to sub angular lithic and mineral fragments of quartzofeldspathic composition set 

in a matrix of fine-grained material, forming a cataclastic texture (Fig. 3.2). The fine-

grained matrix is a minor component compared to the lithic and mineral clasts (Fig. 

3.2B). Mineral and lithic fragments range in size from ~2 – 15µm to larger clasts of up to 

a centimeter in size. Mineral clasts are dominantly feldspars, mica, and quartz. Mineral 

grains display various shock induced features including fracturing, PDFs in quartz, and 

partial melting. Chloritization is present (Fig. 3.2B) and is pervasive in some areas giving 

the matrix a "crystalline appearance". No impact glass clasts were observed in the 

investigated samples.  

Backscattered electron images highlight the angular clastic matrix of the polymict lithic 

breccia (Fig. 3.2D). Mineral grains have discrete margins, are fragmented, and fractured, 

and range in size from >1 µm to >500 µm. Most mineral grains have angular to 

subangular boundaries. Rare rounded apatite grains were also observed. Evidence of 

variable shock levels in mineral clasts was observed, including kink banding in mica, 

fracturing, and displacement of mineral grains. Some quartz grains show evidence of 

partial melting. Spaces between large mineral and lithic clasts are infilled by fine-grained 

clastic material (Figs. 3.2 C – D). Uncommon, sub-micron Fe-Ti oxide grains 

disseminated in the matrix were observed (Fig. 3.2D). 
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Figure 3.2: Unit 1: melt-free lithic impact breccia. 
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Figure 3.2: Unit 1: melt-free lithic impact breccia. A: Hand sample. Note the clastic 
nature of the sample composed of various fragmented lithic clasts (c) ranging in size. 
There is a notable absence of melt/ glassy inclusions. B – C: Transmitted light 
micrographs: Note the clastic nature of the groundmass composed of various lithic and 
mineral clasts (bt: biotite; qtz: quartz; fsp: feldspar). Sharp, irregular grain boundaries are 
outlined in red. Chloritization (chl) is also observed. D: Backscattered electron (BSE) 
image. Note the fragmental, cataclastic nature of the groundmass and the similarity of the 
jagged, sharp grain boundaries (red line) to those in the melt bearing impact breccia. Also 
note the fine-grained clastic matrix material between larger clasts (red arrow). 
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3.4.3.2 Unit 2: Clastic melt-bearing impact breccia (‘Chassenon 
Suevite’) 

Transmitted light microscopy suggests that the groundmass is composed of angular to 

subangular lithic and mineral fragments in a matrix of fine-grained material forming a 

cataclastic texture (Fig. 3.3). Mineral fragments are generally smaller than those observed 

in unit 1, ranging in size from ~2 – 5 µm (Fig. 3.3C). In contrast to the unit 1, the matrix 

material of unit 2 is a major component forming ~50% of the bulk rock (Fig. 3.3B). 

Mineral clasts are dominantly feldspar, mica, and quartz. Shock induced features are 

observed including irregular fracturing, PDFs in quartz, and partial melting. Impact glass 

clasts are present and are irregular in shape with amoeboid margins and vary in size from 

micrometers to centimeters. There is a diversity of glass clasts observed. Color ranges 

from black through pale green. In some samples the glass has been altered to a deep-red 

brown material. All glassy clasts have intricate relationships with the matrix.  

SEM-based observations of the matrix are very similar to unit 1, comprising fragmental, 

angular mineral grains (Fig. 3.3D) displaying various shock induced features, including 

fractures and annealed PDFs in quartz. Areas of formerly glassy melt inclusions are now 

replaced with an Fe-Ti oxide similar in EDX composition to the Fe-Ti oxide grains 

present in unit 1 (Fig. 3.3D). Occasionally, flow banding is preserved in the oxide grains. 

Euhedral Fe-Ti oxide crystals have replaced the primary margin between fine-grained 

matrix breccia and former melt (Fig. 3.3D). The fine-grained infilling breccia contains 

euhedral to subhedral feldspar crystals at the interface between former melt and matrix 

that may represent a silica rich phase crystallizing out of the melt.  
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Figure 3.3: Unit 2: clastic melt-bearing impact breccia. 
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Figure 3: Unit 2: clastic melt-bearing impact breccia. A: Hand sample. Note the 
numerous lithic clasts (c) and melt inclusions (m). Melt inclusions have complex, 
delicate, amoeboid morphologies (yellow dashed line) unlikely to survive aerial transport. 
B – C: Transmitted light photomicrographs. Note the clastic nature of the matrix (red 
arrow). Former melt clasts (m) have irregular borders and have recrystallized to a red-
brown mineral phase. Note the irregular amoeboid protrusions of the former melt 
inundating the clastic matrix (black arrows). D: Backscattered electron (BSE) image. 
Note the fragmental, cataclastic nature of the groundmass (example grains outlined in 
red). The melt phase has recrystallized to a Fe-Ti oxide (white phase at bottom of image). 
Notice the former melt inundating the grains of the matrix forming becoming an 
interstitial phase (yellow arrows). 
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3.4.3.3 Unit 3: Melt-rich impactite (‘basal suevite’) 

The impact glass content of this unit visible in hand specimen varies from <10% to 

>60%. Numerous lithic clasts, angular to rounded, and of varying shock level recorded 

are present. Some of these clasts are enclosed by glass (Fig. 3.4A). The matrix is purple 

in color while the glass fragments varies from deep red to yellow in color. The glass and 

matrix boundaries are irregular in shape and convoluted. Under plane-polarized light the 

intricate textures between the matrix and melt are easily observed (Fig. 3.4B). At high 

magnification under scanning electron microscopy the nature of the matrix is somewhat 

ambiguous. Clast margins are poorly defined and irregular. Interstitial material is poorly 

resolved. Red-brown, ~1 µm across irregularly-shaped grains are disseminated 

throughout the matrix (Fig. 3.4C).  

Numerous sub-angular lithic and mineral clasts are visible in a quartzofeldspathic matrix 

with BSE imaging (Fig. 3.4D). Up to ~30% of the matrix is composed of irregular pits 

filled with fine-grained clay minerals. Glassy, former melt regions have irregular, 

amoeboid margins and intricate relationships with the matrix. An Fe-Ti oxide phase is 

disseminated as patchy grains with feathery margins throughout the matrix and within 

voids in clasts. 
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Figure 3.4: Unit 3: melt-rich impactite. 
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Figure 4: Unit 3: melt-rich impactite. A: hand sample. Left: low melt content, note the 
large, highly shocked and partially melted clast (c) wrapped in reddish melt (m). Right: 
high melt content. The matrix has a purple hue in contrast to the extensively altered and 
discoloured melt phase. The melt region hosts several subrounded lithic clasts (c). Note 
also the intricate margins between the melt and the breccia matrix. B – C: 
Microphotographs. Note the intermingling of the glassy melt phase (m) with the matrix. 
The melt phase has been altered and appears black and opaque to a translucent yellow-
orange. Two large, shocked lithic clasts with irregular, obscure boundaries are outlined in 
yellow. The nature of the interstitial space is ambiguous. Also note the presence of 
disseminated Ti-Fe oxide grains (white arrows) within the matrix and the similarity of the 
matrix texture to that of the particulate melt rock (unit 4). D: Backscattered electron 
(BSE) image. Numerous lithic and mineral clasts (c) are visible in a quartzofeldspathic 
matrix. Irregular pits (black arrows) are filled with fine-grained clay minerals. It is not 
clear if these pits represent a preferentially altered phase within a crystalline matrix or 
altered clasts in a clastic matrix. A secondary Fe-Ti oxide phase (white arrows) is 
disseminated throughout the matrix and within voids of clasts. 
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3.4.3.4 Unit 4: Clast-rich impact melt rock (‘Montoume breccia’) 

Under transmitted light the unit 4 has a crystalline matrix that varies in color from grey-

brown to red (Fig. 3.5). The matrix often displays flow banding that is cross-cut by 

fractures associated with red-brown discoloration (Figs. 3.5A – B). Flow banding around 

centimeter sized lithic clasts is also observed in hand specimens (Fig. 3.5A). This 

network of fractures and associated discoloration gives the matrix a mesh-like appearance 

(Fig. 3.5B). The matrix forms between 10 and 80% of the bulk rock; the remaining 

material is composed of angular to sub-angular mineral, lithic, and amoeboid glassy 

clasts (Fig. 3.5B). Lithic and mineral clasts are dominantly quartz and feldspar, most of 

them displaying various shock-induced features including fractures, PDFs (Fig. 3.5C), 

and partial melting. The matrix surrounding the clasts also displays the red-brown 

discoloration (Fig. 3.5C). Under high magnification, sub-micron, red-brown, subhedral 

crystallites disseminated throughout the crystalline matrix, are visible (Fig. 3.5C). These 

mineral grains give the matrix a granular texture (Figs. 3.5B – C). Former glassy melt 

“pockets”/clasts have highly irregular boundaries and often fill interstitial spaces within 

the groundmass.  

SEM based observations indicate that the matrix has an igneous texture, including 

interlocking grains of feldspar (Fig. 3.5D). Lath-shaped pits filled with clay range in size 

from 25 nm × 1 µm to 2 µm × 25 µm suggesting that one phase of the matrix has been 

pervasively altered. These pits may make up to 50 % of any given area (Fig. 3.5D). 

Larger pits have irregular borders, while smaller pits have a more defined lath shape. 

Other areas are very silica-rich. In these areas the pits make up only ~3 – 5 % (area). The 

margins between the feldspathic and silica-rich areas are highly irregular. The quartz-rich 

areas may represent a different initial melt phase or large, partially assimilated, quartz 

grains. There are distinct lithic and mineral grains of millimeter scale throughout the 

sample. Quartz clasts have complex, undulating margins suggestive of partial 

assimilation (Fig. 3.5D). Thread-like strings of Fe-Ti oxide crystals decorate the 

boundaries between immiscible phases. The distribution of this oxide is heterogeneous; 

disseminated grains (~10%) appear as isolated rounded grains in the melt ranging from 

500 nm to cluster up to ~20 µm in size (Ti >>Fe) and as lath shaped (Ti > Fe) ~25 nm × 1 
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µm to clusters up to 5 µm × 15 µm; there are also occasional larger (>100 µm) clusters 

(Fig. 3.5D). 
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Figure 3.5: Unit 4: particulate clast-rich impact melt rock. 
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Figure 3.5: Unit 4 particulate clast-rich impact melt. A: Hand sample. Note the presence 
of multiple lithic clasts (c) and one breccia clast (bc). Yellow dashed lines highlight 
matrix flow features around lithic clasts. B – C: Transmitted light microphotographs. 
Note the presence of multiple lithic and mineral clasts (c) and a quartz clast (qtz) 
displaying planar deformation features (red dashed lines). Also note the flow banding in 
the melt matrix (yellow dashed line) and the multiple sets of fractures cross cutting the 
flow banding (black arrows). The fractures and clasts are associated with rusty 
discoloration. The discoloration of the fractures formed a mesh-like texture. Also note the 
red-brown disseminated Fe-Ti oxide grains in the melt matrix circled in yellow. D: 
Backscattered electron (BSE) image: Note the interlocking crystalline nature of the 
feldspathic matrix. Lath-shaped voids (yellow arrow) are interpreted to represent areas 
where a mineral phase was completely weathered out. There are many partially resorbed 
quartz clasts (qtz). The yellow circle encloses a cluster of Fe-Ti oxide grains that are also 
disseminated throughout the melt. 
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3.4.3.5 Unit 5: Clast-poor impact melt rock (‘Babaudus melt’) 

In transmitted light, the quartzofeldspathic groundmass of unit 5 appears buff coloured 

and has a larger overall grain size (average size of 25 µm) compared to the other 

impactite units (Fig. 3.6). The crystalline, vesicular nature of unit 5 is illustrated in 

Figures 3.6B and 3.6D. Sub-micron scale dark crystallites are disseminated in the 

interlocking, semi-polygonal grains, giving the matrix a surgery texture (Fig. 3.6C). The 

matrix is remarkably homogenous and is mottled with patches of oxide or oxyhydroxide 

staining (Fig. 3.6B). The groundmass hosts few clasts in comparison to the other 

impactite units (Fig. 3.6A). Lithic clasts are quartzofeldspathic in composition and are 

generally uniformly small and rounded. Clasts and vesicles are commonly surrounded by 

alteration halos of iron oxyhydroxide staining. Vesicles are either empty or infilled with 

fine-grained mineral assemblages. Scanning electron microscopy highlights the presence 

of interlocking, sutured grain boundaries indicative of recrystallization (Fig. 3.6D). 

Micron-scale vesicles are semi-elliptical in contrast to the centimeter-scale elongated 

vesicles visible in hand specimen. Sub-micron iron-titanium oxide grains are 

disseminated throughout the melt (Fig. 3.6D).  
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Figure 3.6: Unit 5: clast-poor impact melt rock. 
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Figure 3.6. Unit 5: Clast-poor impact melt rock. A: Hand sample. Note the homogenous 
nature of the groundmass and numerous slightly elongated vesicles (black arrows). 
Elongation may be a flow feature. A rare lithic clast (c) with irregular grain boundaries. B 
– C: Transmitted light photomicrographs: Note the vesicular nature of the melt (B, black 
arrows) and the igneous texture of interlocking, semi-polygonal grains (C, red dashed 
lines). Disseminated Fe-Ti oxide grains give the matrix a speckled texture. D: 
Backscattered electron (BSE) image: Notice the interlocking sutured grain boundaries 
indicative of recrystallization (outlined in yellow). Black arrows highlight the vesicular 
nature of the sample. Red arrows point to disseminated Fe-Ti oxide grains. 
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3.5 Interpretation and Discussion 

3.5.1 Impactites 

3.5.1.1 Nomenclature  

Impactite nomenclature and classification has been burdened by ambiguity in the 

literature (e.g., Reimold 2008). In 1994, the first recommendations for the systematic 

naming and classification of impactites were proposed (Stöffler & Grieve 1994). Stöffler 

and Grieve (2007), on the behalf of the IUGS SCMR, published a revised proposal on 

impactite nomenclature and classification based on texture, degree of shock 

metamorphism, and lithological components. Reimold et al. (2008) highlighted a number 

of recent studies that give rise to problems and potential issues with the revised impactite 

classification scheme. Five specific areas of ambiguity have been identified: (1) suevites; 

(2) scale of classification; (3) marine impactites; (4) transitional lithologies; and (5) 

pseudotachylitic breccias. With the exception of marine impactites and pseudotachylitic 

breccias, this paper presents the Rochechouart impactite suite as a case study to address 

these problematic areas of classification.  

One of the most notable discussion points is the application of the term “suevite”, which 

was first used in 1920 to describe a breccia (at that time, interpreted as being volcanic) 

thought to be unique to the Roman “Provincia Suevia” in Germany (Sauer, 1920) at what 

is now recognized as the Ries impact structure (Pohl et al. 1977). Based on the most 

recent recommendations of the IUGS SCMR, a “suevite” is an impact breccia with a fine-

grained lithic (clastic or particulate) matrix hosting both lithic and glass clasts. This 

represents a revision to the original definition of “suevite” by Stöffler et al. (1977), which 

was defined as a polymict impact breccia with a clastic matrix/groundmass containing 

fragments and shards of impact glass and shocked mineral and lithic clasts. 

Unfortunately, the term “suevite” is used loosely in the literature to refer to any impact 

glass-containing impactite, regardless of groundmass texture (e.g., Kelley & Spray, 1997; 

Masaitis, 1999). Indeed, at least three of the impactites studied here, units 2, 3, and 4, 

have been termed “suevites” in the past based on the IUGS classification scheme, despite 

the vast differences in appearance, even at the hand specimen scale (Figs. 3.3 – 3.5). As 
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demonstrated in the subsequent section, these impactites also differ in terms of the nature 

of their groundmass. 

The groundmass texture of an impactite is significant with respect to the mode of 

emplacement. For example, suevite sensu stricto has been classically interpreted to be 

emplaced through the atmosphere (e.g., Stöffler 1977, Masaitis 1999). Recent studies of 

the Ries “suevite”, however, suggest that the type locality outcrops have a melt-rich 

matrix (Osinski et al. 2004). A melt-rich matrix is not consistent with an airborne mode 

of origin and suggests that these impactites may have been emplaced via surface flow 

(Osinski et al., 2004). So-called “suevites” have also been documented to underlie 

coherent impact melt rocks at a variety of structures (Osinski et al. 2011), which is not 

consistent with an airborne mode of origin for the former. Furthermore, drill cores from 

the Bosumtwi impact structure, Ghana, suggest a continuum of fine-scale intercalations 

between melt-bearing and melt-free clastic breccias (Coney et al. 2007, Ferrière et al. 

2007), which require more complex, multi-stage emplacement models. 

3.5.1.2 Classification of the Rochechouart impactites 

High-resolution imaging of the Rochechouart impactites using scanning electron 

microscopy allowed for detailed observations of textual relationships within, and 

between, the groundmass and clasts. The Rochechouart impactites have historically been 

classified based on observable characteristics at the hand sample to thin section (i.e., 

optical microscopy) scale and contextual relationships in the field (e.g., Kraut and French 

1971, Lambert 1977a). These macro- to intermediate-scale observations are excellent 

‘first principle’ classifications and field divisions. However, recommendations proposed 

by the IUGS SCMR involve a classification scheme for impactites based on the degree of 

shock metamorphism and lithological components (Stöffler & Grieve 2007). To take into 

account gradational boundaries and transitional lithologies, a recent sub-classification of 

melt-bearing impactites has been proposed, based on textural analysis of the groundmass 

or matrix and its relationship with the melt phase(s) and clasts (Osinski et al. 2008). Such 

clast-matrix relationships require microscopic-scale observations as presented in our 

study for the different types of impactites from Rochechouart. Importantly, the proposed 

micro-scale analysis and subsequent classification of impactites is by no means meant to 



 

 69 

diminish the importance of field observation and classification; rather, it augments 

detailed field studies and enables the classification of impact lithologies based on 

observable intrinsic properties rather than interpretations of field context. For example, as 

noted above, at the Rochechouart impact structure, several different “suevite” units have 

previously been classified, including “basal suevite”, “welded suevite”, and “upper 

suevite”; the upper suevite has also been referred to as “Chassenon suevite” and suevite 

“sensu stricto”. The non-uniform use of nomenclature makes it difficult to correlate and 

compare different studies at this impact structure, let alone between multiple impact 

craters. Furthermore, the terms “basal” and “upper” are dependent on field relationships 

between different units. Due to partial erosion at the Rochechouart structure, determining 

these field relationships are somewhat difficult and in some cases even impossible. Thus, 

a “suevite” sample with no relative context would not be able to be classified using the 

current IUGS impactite classification scheme. 

A recent study by Lambert (2010) uses the terminology “suevite sensu stricto” and 

“melt-rich suevite” to refer to unit 2 and unit 3 respectively. We suggest that this 

nomenclature be modified and the units classified based on their observable 

characteristics independent of the connotation of terms such as “suevite”, which have 

been historically misrepresented in the literature. In accord with the proposed 

classification schemes of Stöffler and Grieve (2007) and Osinski et al. (2008), the 

following nomenclature is proposed for the Rochechouart impactites (Fig. 3.7). Square 

brackets are used to delineate descriptive terms applicable to specific Rochechouart 

samples. We suggest descriptive terminology be used for transitional lithologies where 

end-member (IUGS) classification cannot be used to distinguish between units such as 

Rochechouart units 3 through 5 

Unit 1: [Melt-free] lithic impact breccia.  

Unit 2: [clastic] melt-bearing impact breccia (formerly the “Chassenon" or 

“green” suevite).  

Unit 3: Melt-rich impactite. As the primary nature of the groundmass cannot 

unambiguously be determined, unit 3 cannot be classified as either a lithic breccia 
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or impact melt. This unit is a transitional lithology resulting from a continuum 

between melt and melt-free impactites.  

Unit 4: [Particulate clast-rich] impact-melt rock; this unit, previously known as a 

“Montoume breccia”, “red welded breccia/suevite” has a crystalline, rather than 

clastic, matrix. As such, this unit is here classified as an impact melt rock. 

Unit 5: [Clast-poor to clast-free aphanitic vesicular] impact-melt rock. 
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Figure 3.7: Descriptive classification of the Rochechouart impactites based on 
groundmass textures. 

Descriptive classification of the Rochechouart impactites based on groundmass textures. 
Note the defining characteristics of each impactite highlighted in the right column text. 
The images on the left side are representative transmitted light microphotographs and 
scanning electron images of each units. The full images with scale bars are depicted in 
Figures 3.2 – 3.5. 
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While the distinction between a lithic breccia and an impact melt-bearing impactite is 

easily defined by the presence or absence of melt phases (either as clastic or matrix 

material), the textural and genetic relationships between the impact melt-bearing units 

(units 2, 3, and 4) are complex. It is only with careful microscopic imagery that 

characteristic relationships between the matrix and melt phases can be elucidated. As 

noted by Osinski et al. (2004) and exemplified here by units 3 and 4, care should be 

exercised when interpreting seemingly “clastic” textures based on hand specimen and 

optical studies alone. Unit 2, corresponding to the classic "Chassenon suevite" or “upper 

suevite” of Lambert (2010) likely represents a lithology in the continuum between impact 

melt-free and melt-rich impactites. The recently discovered impact melt-rich impactite 

(unit 3; previously basal suevite) is highly variable in composition and texture. This 

impact melt-rich unit is located in direct contact with the basement rocks and always in 

close proximity to the particulate impact melt rocks (Lambert 2010). The matrix, 

formerly reported as clastic, incorporates up to 50 vol% melt clasts (Lambert 2010). We 

cannot definitively classify the matrix as either clastic or crystalline as extensive post-

impact hydrothermal alteration obscures the primary texture (Figs. 3.4 C – D). The matrix 

is very similar in texture and composition, as assessed by EDX analyzes, to that of unit 4 

(the particulate clast-rich impact melt rock). The characteristics of this melt-rich 

impactite do not conform to the definition of suevite sensu stricto and should not be 

termed as such. The unit 3 is both texturally and genetically transitional between the 

polymict lithic breccia and particulate melt rock, as proposed and discussed by Lambert 

(2010). 

3.5.1.3 Complications due to weathering and alteration 

Impactite lithologies were subject to complex alteration processes as noted above and as 

exemplified by unit 3. Weathering and alteration lead to the formation of secondary and 

even tertiary mineral phases that overprint primary textures and mineralogy. For 

example, argillic clay alteration and chloritization (Fig. 3.2B) often completely replace 

feldspar grains in the Rochechouart impact breccias. The matrix of the impact melt-rich 

impactite (unit 3) contains numerous ‘pits’ filled with fine-grained clay minerals. It is not 

clear if these patches of clay represent a mineral phase within a crystalline matrix that has 
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been preferentially altered (as in the crystalline impact melt rock), or altered fine-grained 

material interstitial to larger clasts within a cataclastic matrix. Such an extensive 

alteration, as with the examples presented above, leads to difficulties assigning primary 

mineralogy and even in some cases primary textures. Impact glasses may be completely 

devitrified to clay minerals, recrystallized to an Fe-Ti oxide, or weathered out 

completely, leaving a vesicular-like texture to glass-bearing impact breccias. The 

alteration of the fractures and surrounding clasts in the particulate clast-rich impact melt 

rock is suggestive of hydrous alteration. SEM imaging can elucidate complex 

relationships between clasts and the matrix and potentially deconvolve complex 

overprinting relationships resulting from weathering, post-impact hydrothermal activity, 

and regional metamorphism. The extensive alteration resulting from devitrification, post-

impact hydrothermal activity, and terrestrial weathering processes underscores the 

importance of detailed micro-scale observations. 

3.5.2 Impact-generated hydrothermal activity at Rochechouart 

Alteration of the Rochechouart impactites has been previously noted by several 

researchers (Kraut & French 1971, Lambert 1977b, c, Reimold et al. 1987); however, the 

post-impact hydrothermal system has not been described in any detail in previous studies. 

Three main alteration assemblages are recognized (Table 2): (1) argillic-like (commonly 

dominated by phyllosilicates); (2) carbonate; and (3) oxide, possibly reflecting differing 

alteration conditions and heterogeneous primary material. The dominant K-rich clay 

mineralization alteration assemblage at Rochechouart is consistent with the general 

patterns of post-impact hydrothermal systems discussed by Naumov (2002, 2005). The 

alteration assemblages are present in both allochthonous and autothchonous impactites, 

but are most prevalent in units 3 and 5.  

The intense evidence of K-metasomatism in all impactite units is indicative of pervasive, 

deep-circulation of hydrothermal fluids (Lambert 1977b, 2009). All impactite units have 

positive K2O/Na2O ratios (Lambert 1977b). Interestingly, this K enrichment 

systematically increases with melt content. The K2O/Na2O ratios of the lithic polymict 

breccia is approximately five times that of the unshocked basement rocks; approximately 

six times higher in suevite; approximately ten times higher in lithic clasts within melt 
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rocks, and approximately fifteen times higher in melt (Lambert 1977b, 2009). The 

pervasive argillic-like alteration assemblages, together with fine-grained quartz and 

carbonate mineralization, are consistent with the development of a post-impact 

hydrothermal system (e.g., Naumov 2005, Osinski et al. 2012), as previously suggested 

by Reimold et al. (1984). Staining by alteration products is most prevalent in oxide rich 

units, such as in the hematite-rich particulate melt rock (Unit 3). However, it is still 

unclear why the melt in the particulate melt rock is richer in oxides than the crystalline 

melt. 

It is notable that the accessory phases present in the impactite units vary with the melt 

content. Both the lithic breccia and suevite contain rounded, embayed apatite grains. 

Apatite was not seen in the particulate clast-rich melt or crystalline melt units. It is 

interesting to note that apatite is unstable in the presence of Cl-rich fluids (Boudreau et 

al. 1986). The increasing K2O/Na2O ratios with the presence of melt suggest that 

hydrothermal alteration was more intense in these units, possibly resulting in apatite 

recrystallization. In contrast, oxides and oxyhydroxides are more prevalent in the melt-

rich units. This may be a consequence of homogenization and immiscibility between 

phases at a local scale. Oxides also often form skeletal quench textures within the silicate 

melt, thus, there is likely three generations of oxides: (1) primary relict accessory mineral 

oxides from the target rock occurring in the melt-free impactites; (2) impact-generated 

oxides forming quench crystallites within the melt; and (3) oxide mineralization as a 

result of post-impact hydrothermal alteration. 

3.5.3 Implications for the Rochechouart impact structure 

3.5.3.1 Comparison with other craters in crystalline targets 

A major question for the Rochechouart structure is why does there not appear to be a 

“simple” relatively clast-free impact melt sheet? Studies of other mid-sized complex 

impact structures developed in crystalline targets — such as the 24-km-diameter Boltysh 

(Grieve et al. 1987), the 24-km-diameter and 36-km-diameter East and West Clearwater 

Lakes (Simonds et al. 1978b), and the 28-km-diameter Mistastin (Grieve 1975) impact 

structures  —  and considerations of the origin and emplacement of impact melts (Grieve 
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et al. 1977, Osinski et al. 2008) would suggest that this should be the case. The 

reclassification of impactites proposed herein goes part way to answering this question, 

but uncertainty remains. As an example, the well-preserved 24 km Boltysh impact crater, 

Ukraine, (Grieve et al. 1987), which formed in the crystalline Precambrian basement of 

the Ukrainian shield, shares a similar stratigraphic sequence of impactites to that 

proposed here for Rochechouart. The ~200 m thick Boltysh impact melt sheet lies 

directly over polymict lithic breccias of the crater floor and is overlain by ~25 m of 

“suevitic breccia” (Grieve et al. 1987). This melt sheet contains ~10% granitic clasts 

displaying varying degrees of assimilation (Grieve et al. 1987). It is also of note that the 

top ~60 m of the Boltysh melt unit is described as a clast-poor microcrystalline impact 

melt (Grieve et al. 1987), which is similar to the aphanitic vesicular impact melt at 

Rochechouart (unit 5). Thus, we suggest that the clast-poor aphanitic vesicular impact 

melt rock (unit 5) may have occurred as scattered, isolated lenses within and/or near the 

top of the impact melt “sheet” that did not interact with underlying, unconsolidated 

breccia or that these outcrops represent melt near the crater centre that presumably lined 

the transient cavity crater immediately after its formation.  

We suggest that the textural and chemical properties, together with the stratigraphic 

relations, of the Rochechouart impactites, are consistent with the particulate clast-rich 

impact melt rock being the main allochthonous crater-fill unit, equivalent to the coherent 

impact melt sheets observed in impact structures such as Mistastin (Grieve 1975). This is 

supported by the presence of columnar joints that are clearly visible in the Montoume 

quarry. Similar columnar jointing in impactites has only been observed in impact melt 

sheets, such as at the Mistastin (Grieve 1975) and Manicouagan (Simonds et al. 1978a) 

impact structures (both in Canada). However, it is unclear as to why the clast content of 

the main Rochechouart melt sheet (interpreted here to be the clast-rich melt rock) is so 

high; although the partial erosion of Rochechouart may be a factor in that we may only be 

viewing the basal sequence of the original melt sheet. 
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3.5.3.2 Location of the crater center and size of the Rochechouart 
structure 

The above discussions have potential implications for determining the center of the 

Rochechouart impact structure and, correspondingly, its size. Previous workers (Kraut & 

French 1971, Lambert 1974, 1977c) estimate the crater center to be in the Valette area 

(Fig. 3.1), based on the distribution of the impact breccias/impact melt rocks and on the 

distribution and orientation of shatter cones. It has since been shown that the distribution 

and orientation of shatter cones is an inherently unreliable method to determine the center 

of an impact structure (Osinski & Spray 2006, Wieland et al. 2006). In addition, if unit 3 

(i.e., melt-rich impactite) represents the main crater-fill material, then, the center of crater 

may be further to the south, near the village of Montoume (Fig. 3.1). The Montoume 

quarry hosts a 900 m long, 600 m wide, and 25 m high outcrop of the particulate impact 

melt lithology (unit 4) and is the thickest known sequence of crater-fill material at the 

scale of the whole structure. Moving the crater center to the south would place the main 

outcropping area of the unit 5 (i.e., at Chassenon; Fig. 3.10, in the crater rim area — if the 

crater diameter remains the same (i.e., 24 km). However, a few shatter cones occurrences 

are known in the Chassenon area (e.g., Lambert 1977a, 2010) and were recently 

confirmed during a recent mapping campaign of the distribution of shatter cones at the 

scale of the Rochechouart structure by (L.F.). If these occurrences of shatter cones are 

truly in situ, then this would be inconsistent with placing Chassenon in the crater rim 

area. Invoking a larger crater diameter is one possible solution. Thus, if the crater 

diameter is increased and the crater center placed further south, near the village of 

Montoume, then the Chassenon area would be well inside the crater rim, consistent with 

the recent mapping of shatter cone distribution. A crater diameter in the 40 – 50 km range 

has been suggested by studying topographic comparisons using crater profile data of 

Rochechouart with other structures, including the Ries and the El’gygytgyn impact 

structures (Lambert 2010). More conclusive data is required to support this suggestion 

but a diameter in this range certainly seems possible from the results of our study, in 

particular, if the particulate clast-rich impact melt rock is a small remnant of the basal 

parts of a once much more extensive and thicker crater-fill impact melt sheet.  
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Finally, we note that the distribution of impactites and shock indicators may be biased in 

the northern part of the structure as the crater floor is inclined 0.6o to the north (Lambert 

1977a, 2008, 2010). Such an inclination of 0.6o over a 24 km lateral distance corresponds 

to an approximate vertical difference of 250 m between the northern and southern extents 

of the structure. This inclination may have lead to preferential erosion of impactite 

outcrops south of the structure, as the present-day erosional level is approximately equal 

to the crater floor. Such asymmetrical erosion could have led to the preservation of 

stratigraphically higher impactite units to the northern part such as impact melt-bearing 

breccias and an impactoclastic unit and resulted in the erosion of ejecta deposits. 

3.6 Closing Remarks 

High-resolution imaging of the Rochechouart impactites using scanning electron 

microscopy combined with optical microscope observations, has enabled elucidation of 

textual relationships within, and between, the groundmass and clasts. In summary, 

groundmass textures form a continuum largely based on the proportion of impact melt 

(glass and crystallites) between the aphanitic crystalline matrix of the clast-poor to clast-

free impact melt rock (unit 5) and the fragmental, clastic matrix of the melt-free lithic 

breccia (unit 1). This study of the Rochechouart impactites underscores the importance of 

establishing consistent use of nomenclature in the literature.  

The classification system applied to the Rochechouart impactites in this study allows for 

gradational lithologies in addition to being highly beneficial for samples/sites with 

limited exposure and little to no field context. Developing such a system and applying it 

to all impact structures will allow correlation between sites and studies as well as set a 

precedent for limited sample environments. It is hoped that this type of “multi-scale” 

classification of impactites will allow correlations between impact structures in very 

different target lithologies, as the impactite nomenclature is independent of relationships 

between impactite lithologies and relationships between lithologies and the impact 

structure itself.  

It is hoped that these new observations will stimulate renewed interest in the study of the 

Rochechouart impact structure. Despite its location in western Europe, the Rochechouart 
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impact structure has been relatively little studied, especially compared to its close 

neighbour, the Ries impact structure in Germany. As we have shown here, erosion 

hampers our understanding of this structure, but important new observations and 

interpretations can still be made. The potential larger diameter of the Rochechouart 

structure, in the range of 40 to 50 km, which is supported by our study, would definitely 

have affected a much larger area than previously thought and likely induced regional or 

even continental environmental perturbations (e.g., Pierazzo & Artemieva, 2011). 
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Chapter 4  

4 Enigmatic tubular features in impact glass from the Ries 
impact structure, Germany 

Sapers, H. M., Osinski, G. R., Flemming, R. L., Banerjee, N. R. 

4.1 Introduction 

The rapid quenching of a silicate melt results in the formation of natural glass. While 

glasses produced through volcanism are well known, they are also a ubiquitous product 

of meteorite impact events in craters as small as ~45 m (Folco et al. 2010) and as large as 

~250 km (Dressler et al. 1996) in diameter. Impact glasses form during decompression 

from the shocked (compressed) state during shock metamorphism. They may be derived 

from individual minerals or whole rocks (Stöffler 1984) and can be found as individual 

particles (e.g., tektites) or may be incorporated into impact melt-bearing breccia deposits. 

They can also form glassy regions in cohesive impact melt sheets as well as dikes and 

veins in the crater floor. 

The rapid undercooling required to produce a purely amorphous, homogeneous glass is 

rarely achieved in a natural setting and as a result the majority of natural glasses contain 

an abundance of microcrystallites (e.g., Iddings 1899; Lofgren 1977). Primary crystallites 

or quench crystallites that form during rapid solidification are usually flow oriented, have 

well-developed skeletal morphologies, and the majority are too small to allow for 

unequivocal petrographic identification (e.g., Marshall 1961). Previous studies of the 

crystallites in the glass clasts from the impact melt-bearing breccias of the Ries impact 

structure identified unusual tubular features with complexly curved morphologies (e.g., 

Osinski 2003; Engelhardt 1995). These features were tentatively described as non-

canonical pyroxene crystallites (Osinski 2003). Here, we present the results of a detailed 

petrological, geochemical and mineralogical investigation of these enigmatic tubules and 

demonstrably abiotic crystallites suggesting that the former may not be purely 

mineralogical in origin. The purpose of this study is to provide a well-constrained 
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geological context to the tubules in the Ries glass effectively ruling out a purely 

mineralogical formation mechanism.  

4.2 Ries impact structure 

The 24 km diameter mid-Miocene (14.6 + 0.2 Ma; Buchner et al., 2010) Ries impact 

structure located in southern Germany is arguably one of the best-characterized and best-

preserved terrestrial impact structures (see Pohl et al., 1977 and Engelhardt, 1990, for 

reviews). A wide variety of impactites are present at the Ries structure. So-called “crater 

suevites” fill the interior cavity, bounded by the inner ring to a thickness of ~400 m (Pohl 

et al. 1977). They are buried by post-impact lacustrine sediments and are only known in 

drill cores. Outside of this inner ring, there are 4 main proximal impact ejecta lithologies: 

1) polymict, melt-free sedimentary-rich breccia (Bunte Breccia) and megablocks; 2) 

polymict crystalline breccias; 3) impact glass-bearing breccias or “suevites”; and 4) 

coherent impact melt rocks (refer to Osinski, 2004 for a detailed overview of the melt-

bearing impactite lithologies). It is the glass clasts within the impact glass-bearing 

breccias or “suevites” that host the enigmatic tubular structures described in this study.  

Four main glass types occur within the impact melt-bearing ejecta deposits both as 

groundmass phases and as discrete glass clasts (Osinski 2003). Type I glasses are the 

most abundant and are the only glasses in which tubular features have been observed. 

These glasses contain Al-rich pyroxene quench crystallites and have SiO2 contents ~63%. 

Type I glasses have the highest concentrations of FeO and MgO of all 4 glass types. Type 

II glasses contain only plagioclase crystallites, have a similar SiO2 content as type I, and 

also host micrometer-scale vesicles. Type III glasses have low SiO2 contents, are 

hydrated relative to the other glasses, and contain relatively little FeO, MgO, and K2O, 

while having high Al2O3, CaO, and Na2O contents. Type IV glasses have very high SiO2 

contents, commonly >90%. An extensive review of the geochemistry and quench 

crystallites of the Ries glasses is presented elsewhere (Osinski 2003, 2004). 
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4.3 Observations 

4.3.1 Matrix Glass 

The glass clasts hosting the tubular textures in this study correspond to the type 1 glasses 

as defined by Osinski (2003). These glasses represent >90% of all glassy material at the 

Ries impact structure. Approximately 100 polished thin sections made from samples 

representing the spatial distribution of melt-bearing breccia outcrops were chosen for 

study. In hand specimen the glasses are black and may appear vesicular. Vesicles occur 

on multiple scales (centimetre - micron). In transmitted light the glasses are dominantly 

yellow-brown in color, but vary from colourless to brown, yellow, pink or green. The 

glass typically has a cloudy or dusty appearance, which increases with tubule density, 

alteration, and hydration. Of the glass clasts studied, all contain quench crystallites and 

~70% contain tubular features affecting 50 – 80% of the clast as observed by optical 

petrography. Highly altered glass clasts may appear dark brown to black (cf. Osinski 

2003). Glass clasts are schlieren-rich and are characterized by complex flow textures 

commonly defined by dense assemblages of crystallites (Fig. 4.1A, B).  

Electron microprobe energy dispersive X-ray (EDX) spectroscopy allowed for bulk 

elemental characterization of the larger (>300 µm) glass clasts. Detailed analytical 

techniques are available in supplemental information. Previous work indicated that the 

type I glasses, on average, have SiO2 contents of ~63% (Osinski 2003). However, the 

glass composition is heterogeneous on a micrometer scale as a result of randomly 

distributed, locally partially resorbed quartz grains with SiO2 contents range from ~50% 

in regions devoid of partially resorbed grains to >80% in relict quartz grains (Table 4S1). 

Areas dominated by tubular features have a remarkably consistent SiO2 composition of 

~53 wt%. The average total for these regions is <90%, consistent with a relatively high 

volatile content due to hydrous alteration as seen previously by Osinski (2003, 2005). 

Minor elements such as Ti, P, and Cl were not analyzed for in this study, previous work 

(Osinski 2005) has shown that these elements may contribute up to ~1 wt. % and their 

absence in the present analyses may contribute to the lower totals. The heterogeneity of 

the glass is such that within a 50µm area, replicate analysis with a 10µm defocused beam 

vary by as much as 20 wt% SiO2. In general, areas dominated by crystallites had higher 
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SiO2 contents (ranging from 57 to 59 wt% similar to the average composition reported by 

Osinski 2003) and generally slightly higher totals (>90%). The areas devoid of both 

tubules and crystallites have the highest average SiO2 content ranging from 64 – 83 wt%. 

In general tubule features tend to be associated with lower SiO2 contents and lower totals 

reflecting areas subjected to hydrous alteration.  This is consistent with micro-XRD 

conducted on nine spots within glassy clasts suggesting the presence of a complex suite 

of secondary mineral phases (Fig. 4S1). Alteration assemblages were dominated by clay 

minerals including montmorillonite, illite and saponite with subordinate chlorite, zeolites, 

carbonate, and goethite (Fig. 4S1).  

4.3.2 Crystallites and tubules 

Transmitted light optical microscopy allows the tubular structures to be viewed in a 

three-dimensional context (Fig. 4.1 C). Tubules are concentrated along fractures or clast 

margins (Fig. 4.2 A), form radiating aggregates, and have complex morphologies 

including spirals, and other convoluted morphologies (Figs. 4.1D, E). Smooth-walled 

tubules, without segmentation, typically display complex curvatures forming a 

morphological continuum between loose undulating curves and tightly coiled 

morphologies. Curvature appears random, non-oriented and specific to individual tubules, 

however, tubules are not observed to crosscut each other, even display evidence of 

avoidance (Fig. 4.2 B) and dextrally versus sinistrally coiled tubules appear to cluster 

respectively. Spiral morphologies typically have one complete revolution but may display 

up to five coils with loops of a fixed size (Fig. 4.1D). Non-segmented tubules have 

diameters ~1 µm. Tubule length is difficult to estimate as tubules continue in three 

dimensions. The observable length of tubules commonly exceeds 100 µm. Approximately 

one-third of these tubules display annulation reminiscent of distinct segmentation (Fig. 

4.1C). Segmented tubules typically display less curvature than non-segmented tubules. 

Individual segments have length to width ratios of approximately 1:2 (Fig. 4.1C). 

Segmented tubules vary in diameter from ~1 µm to approaching 3 µm. Tubules appear to 

display bifurcation or branching (Fig. 4.1C). Branching is asymmetric, however, 

branches are nearly identical in diameter and segmentation to the parent tubule (Fig. 

4.1C, F). Rare segmented tubules with large (~3 µm) diameters have segments with 
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length to width ratios approaching 1:6. There is a positive relationship between the extent 

of glass alteration and tubule density. 

Scanning electron microscopy (SEM) was used to image the surface expression of the 

tubules. They appear as irregular, sub-linear to tightly curled, high-brightness regions in 

the darker grey glassy matrix under back-scattered electron operating conditions (Figs. 

4.1D, E). The margins of the features are sharp and range from highly irregular to 

smooth. The tubules either appear solid and infilled with an unidentified mineral phase(s) 

(the extremely fine-grained (<<1 µm) nature of this material precludes definitive mineral 

identification; Fig. 4.1D) or hollow (Fig. 4.1E) Filled tubules may have either an ovoid or 

rhomboid cross-section and hollow tubules are approximately circular in cross-section. 

Hollow tubules have smooth margins, may display annulations, are approximately 0.4 – 

1µm in diameter, and up to hundreds of micrometers in length. Filled tubules may have 

either smooth margins or highly irregular ornamentation perpendicular to the long axis. 

Filled tubules tend to be shorter compared to the hollow tubules and vary in diameter 

from 1 – 3 µm.   

Three types of crystallites are identified with SEM and EDX, distinguished by 

morphology and elemental chemistry. Most abundant are skeletal dendrites enriched in 

K, Mg, Ca, and Fe and depleted in Na relative to the matrix (possibly pyroxene; Fig. 4.3). 

Tabular crystalline laths enriched in Al, Ca, and Na and depleted in K, Mg, and Fe 

relative to the matrix are also present (possibly plagioclase; Fig. 4.2). There are rare, 

rounded Ti, Mg, and Fe oxides. Partially absorbed quartz grains are scattered throughout 

the matrix. The dendrites are commonly clustered together (Fig. 4.1A) and may form a 

fine-grained phase complexly intergrown with the lath shaped crystals at the matrix-

crystal lath boundary (Fig. 4.1B).  

The sub-micron size of both the tubules and crystallites preclude quantitative elemental 

analyses. The tubular features are enriched in Mg, Fe, and Ca and depleted in Na, K, and 

Al relative to the matrix (Fig. 4.3). Amoeboid zones enriched in K and depleted in Mg, 

Fe, Na, and Ca surround the tubular features (Fig. 4.3). In contrast to the crystalline 

intergrowths surrounding the lath-shaped crystallites, no recognizable crystal morphology 
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can be discerned in the zones surrounding the tubules. The tubular features are generally 

spatially associated with areas containing the dendritic crystallites. Areas dominated by 

relict quartz, have low tubule density if tubules are present at all. 

Secondary electron imaging of angular fragments adhered to the stub-mount provided a 

three-dimensional perspective of the tubular structures not possible when imaging thin 

sections. Angular fragments were prepared by manual crushing with a mortar and pestle 

and required no further mechanical preparation. The tubules are present as dense masses 

within fracture systems that provide a window into the interior of the glass grain (Fig. 

4.1F). The tubules are curved to sub-linear with diameters ranging from 0.2 µm to 1µm. 

The full extent of the tubule length could not be determined, but visible sections extend 

>10 µm. Two distinct morphologies are recognized: tubules with an ovoid cross section 

and tubules with a rhomboid cross section. The former are either hollow or solid while all 

tubules with a rhomboid cross-section are solid. 
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Figure 4.1: Quench crystallites and tubule morphologies. 

Characteristic dendritic and skeletal morphologies of pyroxene (A: RI_09_006) and 
plagioclase laths (B: RI_09_006) imaged in back scatter electron scanning electron 
microscopy (BSE SEM). (C: RI_00_056) Extended depth of focus photomicrograph 
illustrating dense masses of non-intersecting tubular features. Notice branching, smooth-
walled tubules indicated by black arrow; tubules displaying annulations suggestive of 
segmentation (white arrow). (D: RI_10_009A1) BSE SEM image showing smooth-
walled, solid (filled) tubules display spirals. (E: RI_10_009A1) BSE SEM image 
illustrating the complex curvatures typical of the hollow tubules. (F: RI_09_006) 
Secondary electron SEM images of a dense mass of mineralized tubules in an altered 
void of impact-glass. Bifurcating tubules are indicated by white arrows, notice the parent 
tubule is approximately the same diameter as the daughter tubules. 
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Figure 4.2: Distribution of tubular features. 

Back scatter scanning electron microscopy images depicting the distribution of the 
tubular features relative to other features in the glass clasts. Sample RI_10_009A1. A: 
Note the association of the tubules with the clast margin radiating into the centre of the 
glass. B: Notice the convoluted morphology of the tubule and the apparent avoidance of 
other tubules in the glass.  
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Figure 4.3: Elemental composition of tubular features, crystallites and matrix by 

EDX mapping. 

Quench crystallites (black arrow) pyroxene (white) and plagioclase (grey) and tubules 
(white arrow) are mapped by EDX spectroscopy.  The tubules are enriched in Fe, Mg and 
Ca while depleted in Al, Si, K, and Na.  The pyroxene crystallites are enriched in Fe, Ca, 
Mg and K while the plagioclase crystallites are enriched in Al, Na, and Ca. Note the Si- 
Al-rich composition of the glassy matrix. The tubules are concentrated in areas of high K 
and lower Na and Ca compositions and surrounded by pronounced zones depleted in Ca, 
Na, Fe and Mg. Sample RI_00_006. 
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4.4 Discussion 

The Ries glasses host a dense assemblage of quench crystallites with two main 

morphologies. The dominant crystallites are of calcic pyroxene composition and display 

dendritic to skeletal morphologies (Fig. 4.1A; Osinski 2003; this study). Lath-shaped 

crystallites with plagioclase composition surrounded by a complex intergrowth of fine-

grained pyroxene (Fig. 4.1B) comprise the second morphological group of quench 

crystallites. These morphologies correspond to well-understood quench crystal 

morphologies indicative of rapid crystallization from a melt (Bryan 1972; Lofgren 1974, 

Marshall 1961). Such mineralogical distributions are expected as the Ca-rich plagioclase 

crystallization leaves a residual melt enriched in Mg, and Fe from which the pyroxene 

crystallizes. In areas with lower concentrations of Al, Ca and Na, plagioclase does not 

form large lath-shaped crystallites, and large pyroxene dendrites form.  

In contrast to the well-established quench-crystallites, the enigmatic tubules have distinct 

morphologies that clearly distinguish them (Fig. 4.1, 4.2). Previous studies also describe 

tubular and complexly curved, non-canonical pyroxene crystallites (Pankau 1989; 

Engelhardt et al. 1995; Osinski 2003). The distinct forms of the tubular features, as 

revealed by high-resolution imaging techniques for the first time in this study, suggest 

that they are not purely mineralogical in origin, as they do not conform to any known 

quench crystal morphology.  

Tubular ichnofossils have been attributed to ambient inclusion trails (AIT), hollow trails 

with convoluted morphologies formed by pressure solution, as discussed by Banerjee et 

al. (2006) and McLoughlin et al. (2010). We discount AITs as an explanation for the 

formation of the Ries tubules as tubules do not display longitudinal vertical striations, nor 

are the Ries tubules associated with mineral grains at their tips. The presence of striae and 

terminal inclusions are associated with and diagnostic of ambient inclusion trails (Tyler 

& Barghoorn 1963). The material constituting the terminal inclusion acts a bore carving 

out the trail, leaving longitudinal striations, driven by locally elevated fluid pressures. See 

McLoughlin et al. (2010) for a discussion of the primary difference between tubular 

ichnofossils and ambient inclusion trails. 
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Such tubular morphologies, with no known parsimonious abiotic formation mechanism, 

are consistent with numerous studies that have shown similar tubular features to exist 

within oceanic basaltic glasses that are widely accepted to represent microbial alteration 

textures (Banerjee et al. 2006, 2007, 2008; Banerjee & Muehlenbachs 2003; Benzerara et 

al. 2007; Fisk et al. 1998; Furnes et al. 2001a, 2001b, 2004, 2008; Furnes & 

Muehlenbachs 2003; Izawa et al. 2010a, 2010b; Peckmann et al. 2008; Staudigel et al. 

2006, 2008a, 2008b; Thorseth et al. 1995, 2003; Torsvik et al. 1998.) Microbial alteration 

of natural volcanic glasses is a well-documented phenomenon in modern oceanic crust, 

Phanerozoic to Proterozoic ophiolites and Precambrian greenstone belts (McLoughin et 

al. 2008; Thorseth et al. 1991; Banerjee 2006, 2007; Banerjee & Muehlenbachs 2003; 

Furnes 2004; Furnes et al. 2008; Staudigel et al. 2008a). It is unclear if the transition 

from hollow, smooth-walled, circular tubules to solid, decorated, rhomboid features 

represents a continuum of preservation, or if the solid, rhomboid, linear features represent 

discrete, genetically unrelated features. Both the hollow and solid tubules have 

morphologies distinct from the characteristic skeletal and dendritic forms of the quench 

crystallites (Fig. 4.1). 

Endolithic microbial communities occur in terrestrial and submarine volcanic glasses 

with a range of SiO2 contents (e.g., Cockell et al. 2009). It is notable that tubules are not 

present in Si-rich regions of the glass nor are they concentrated in areas dominated by 

partially resorbed quartz grains (Fig. 4.3). Interestingly, Mg, Fe, Ca, and Na depletion 

zones surrounding tubule alteration (Fig. 4.3) have been identified as a biological 

processing signature (McLoughlin et al. 2007). The tubule features themselves are 

preserved by a mineral phase enriched in Mg, Ca and Fe and depleted in Na, K, Al and Si 

relative to the glassy matrix (Fig. 4.3). Ca-clinopyroxene quench crystallites present in 

the type I glass clast display similar enrichment and depletion patterns. However, their 

distinct morphologies imply different origins (Fig. 4.1).  The tubule features are 

associated with hydrothermal alteration fronts in the glass and are cross-cut by late brittle 

fractures that do not display evidence of hydrothermal alteration constraining the period 

of tubule formation to that of the post-impact hydrothermal system.  
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Micro-habitats created by meteorite impacts have been shown to be conducive to 

microbial colonization (Cockell & Lee 2002). In particular, impact-induced hydrothermal 

systems as documented to have occurred at Ries (Osinski 2005; Muttik et al. 2008) have 

been postulated to facilitate microbial colonization following an impact event (Osinski et 

al. 2001). Impact induced hydrothermal systems provide a heat source driving 

hydrothermal activity facilitating water rock interactions. In addition to the thermal and 

chemical disequilibria characterizing such systems that are able to support a variety of 

autotrophic microbial metabolisms, impact craters host metastable glass and shocked 

rock with interconnected pore space that constitute endolithic habitats. Previous literature 

has shown that microbes colonize glasses while extracting metabolically relevant 

elements leaving traces, such as tubular features, (e.g., Banerjee & Muehlenbachs 2003; 

McLoughlin et al. 2008) of this activity. Based on the available data, we conclude that 

the tubules in the Ries glasses are not mineralogical in origin and likely constitute a novel 

microbial ichnofossil. In order to unequivocally demonstrate the biogenicity of these 

features, further high-resolution studies such as scanning transmission X-ray and electron 

microscopy coupled with near edge X-ray absorption spectroscopy aimed at identifying 

organic signatures is required. 

4.5 Concluding Remarks 

Through a detailed, multi-scaled microscopy study we have illustrated a unique class of 

tubular features morphologically distinct from quench crystallites hosted within impact 

glass from the Ries impact structure in south central Germany. The complex 

morphologies and convoluted structures characterizing these features suggest that these 

features are not mineralogical in origin. The similarity of these features to bioalteration 

textures in submarine basaltic glasses warrants further investigation into a possible 

biogenic origin of the Ries tubules. If the tubules are biotic in origin, impact glass would 

thus represent a previously unknown microbial habitat on Earth, with implications for the 

early evolution of life on Earth as well as for life on other terrestrial planets such as Mars. 
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4.7 Supplementary Information 

4.7.1 Samples and Methods 

A representative suite of more than 50 samples of impact-melt bearing breccias collected 

over five field campaigns from the Ries impact structure were examined in hand sample, 

polished thin section and analyzed with micro-X-ray diffraction and a variety of electron-

beam based techniques. Samples were collected from samples were obtained from the 

Otting, Aumühle, Altenburg, Sternbach, Seelbron, Zipplingen, and Amerdingen quarries.  

Approximately 100 polished thin sections were chosen for petrographic study; 5 grain 

mounts prepared for secondary electron scanning electron microscopy; 7 polished thin-

sections coated for backscatter scanning electron microscopy, 3 polished thin sections 

selected for micro-X-ray diffraction and 2 polished thin sections chosen for microprobe 

analyses. 

Reflected and transmitted plane polarized and crossed polarized light was used for 

imaging using a Nikon Eclipse LV100POL petrographic light microscope equipped with 

a Nikon DS-Ri1 12 megapixel camera.  Extended-depth of focus images (EDF) were 

obtained using plane-polarized transmission microscopy by aligning multiple images in 

the z plane using the Nikon NIS Elements software suite. Clay minerals characteristically 

have peaks at low angles, therefore micro X-ray diffraction data were collected in 

coupled scan mode with θ1=8º and θ2= 12º with a frame width of 32.5º. Each frame was 

collected for 45 minutes (while remaining stationary) using the Bruker D8 Discover 

micro X-ray diffractometer (µXRD) at the University of Western Ontario (Flemming 

2007).  
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Polished thin sections selected for electron-beam based analyses and imaging were 

coated with amorphous Os prior to analyses with the exception of SE SEM imaging. S 

stubs were prepared by dipping C-tape coated Ti SEM stubs into crushed (~1mm grain 

size) glass clasts. The Tubules and matrix were analyzed with high-resolution backscatter 

electron (BSE) and secondary electron (SE) imaging and energy dispersive X-ray (EDX) 

spectroscopy carried out with a Leo 1540 FIB/SEM CrossBeam field emission SEM 

equipped with an Oxford Instruments INCA EDX system allowing for elemental 

analysis, sensitive to ~0.5 wt. % or less for all elements from C – U at the 

Nanofabrication Laboratory, University of Western Ontario EDX spectroscopy. Fourteen 

spots were analyzed by energy dispersive X-ray spectroscopy (EDX) conducted on a 

Cameca SX100 electron microprobe at the Electron Microprobe Laboratory at the 

University of Alberta. A defocused 10µm beam was used to collect EDX spectra of the 

matrix glass; nine spots in the vicinity of tubule features; 2 regions in areas dominated by 

pyroxene quench crystallites; and 3 areas without visible tubules or quench crystallites. 

4.7.2 Supplementary References 

FLEMMING, R.L., (2007) Micro X-ray Diffraction (µXRD):  A versatile technique for 
characterization of Earth and planetary materials.  Canadian Journal of Earth 
Sciences 44, 1333 – 1346. 
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4.7.3 Supplementary Tables 

Table S4-1: Microprobe analyses of glass clasts within glass-bearing impact breccia. 

Analyses were conducted using a 10 μm defocused beam and reported in oxide wt%. 
SiO2  contents of the glass range from 53 oxide wt% in glasses containing tubules to 83 
oxide wt% in areas dominated by partially resorbed quartz grains. In general, the tubules 
are hosted in glasses containing the lowest wt% SiO2 

Sample # SiO2 Na2O MgO K2O CaO FeO Al2O3 Total 

         glass containing tubules 

       RI_00_056 036 53.0 4.82 2.75 0.709 5.40 5.57 16.3 89.5 

RI_00_056 032 53.1 5.05 2.68 0.665 5.11 5.38 16.2 89.2 

RI_00_056 035 53.7 4.82 2.47 0.996 4.78 4.88 15.8 88.4 

RI_00_056 031 53.7 5.14 2.45 0.751 4.79 5.26 16.1 88.8 

         glass containing only crystallites 

      RI_09_6  011 001 58.7 3.69 2.15 2.07 4.62 4.25 14.4 90.6 

RI_09_6  011 002 58.7 3.77 2.42 2.66 3.41 4.68 14.5 91.0 

RI_09_6  011 003 59.0 3.85 2.30 2.19 4.25 4.68 14.5 91.7 

RI_09_6 009 011 58.1 3.93 2.44 2.08 4.08 4.83 14.6 91.0 

RI_09_6 009 012 57.2 3.99 2.54 1.94 4.28 4.76 14.6 90.2 

         SiO2-rich glasses 

        RI_00_056 033 63.9 3.98 0.890 2.16 2.71 2.42 12.5 89.1 

RI_00_056 034 67.5 1.45 0.956 4.32 0.893 3.02 9.04 88.1 

RI_00_056 037 79.8 0.841 0.253 2.20 0.278 0.814 4.33 88.5 

RI_00_056 038 82.2 0.881 0.117 1.51 0.273 0.926 3.68 89.6 

RI_00_056 039 82.7 0.639 0.237 1.11 1.09 1.96 2.88 90.8 
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4.7.4 Supplementary Figures 

 

Figure S4.4: Mineralogy of glass clast as determined by µ-XRD. 

An example analysis area and corresponding XRD patterns and their respective 
mineralogical assignments are shown. The 500 µm resolution of the micro-XRD 
precludes analyzing individual mineral or lithic fragments within the glassy clasts. The 
presented mineralogy is representative of the bulk material comprising the glassy clast 
and may represent secondary alteration phases as well as pre-impact material included, 
but not assimilated, into the glass. A broad hump around 20o 2θ-scale indicates the 
presence of amorphous glass A: photomicrograph of a glass clast. The margins of the 
clast are shown in red and the approximate µ-XRD footprint is shown by the dashed 
yellow ellipse. B: µ-XRD patterns indicating the presence of a complex assemblage of 
micro-crystalline material. The original spectra is shown in grey; note the large glass 
hump. Effects of background and glass are subtracted out to produce the black spectra. 
Sample RI_00_056. 
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Chapter 5  

 

5 Microbial ichnofossils preserved in impact glass 

Sapers, H. M., Banerjee, N. R., Preston, L. J., Osinski, G. R. 

5.1 Introduction 

Tubular microbial alteration features are commonly recognized in modern oceanic crust, 

Phanerozoic ophiolites, and Archaean greenstone belts. Over the last two decades 

systematic criteria for establishing the biogenicity of these putative microbial alteration 

textures has been established to aid in the recognition and classification of such trace 

ichnofossils. Here we describe the first known occurrence of microbial ichnofossils in 

impact glass from the Ries structure in south central Germany. These tubular ichnofossils 

have a remarkable morphological similarity to the microbial alteration textures observed 

in submarine basaltic glass, including complex morphologies suggestive of biological 

behaviour.  In addition, Fourier transform infrared spectroscopy analyses indicate the 

presence of a variety of organic compounds spatially associated with the tubules. Any 

hypervelocity impact into a water-rich target, such as Mars, has the potential to generate a 

post-impact hydrothermal system creating a novel ecological niche. Establishing the 

biogenicity of the Ries microbial alteration textures has significant astrobiological 

implications for the search for life on other planets such as Mars.      

The catastrophic effects of hypervelocity impacts are well established (Schulte et al. 

2010). However, a growing body of evidence suggests that meteorite impact events also 

have beneficial effects, particularly for microbial life (Osinski et al. 2001; Cockell et al. 

2005b). For example, post-impact hydrothermal systems provide heat, water and 

chemical disequilibria creating a potentially suitable microbial habitat (Kring 2000; 

Osinski et al. 2001; Naumov et al. 2002; Naumov 2005).  

Any hypervelocity impact into a water-rich target on a solid planetary body has the 

potential to generate a hydrothermal system (Naumov et al. 2002; Naumov 2005). In 
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volcanic hydrothermal environments, microbial alteration of basaltic glasses produces 

characteristic tubular and granular textures (Fisk et al. 1998; Furnes et al. 2001, 2004, 

2007; Banerjee et al. 2007; McLoughlin et al. 2008) that are now recognized as 

ichnofossils (McLoughlin et al. 2009). Such ichnofossils preserved in Archaean 

greenstone belts constitute the oldest directly dated microbial traces of life on Earth 

(Fliegel et al. 2010; Nisbet 2000; Furnes et al. 2004; Banerjee et al. 2006a; Staudigel et 

al. 2006; Banerjee et al. 2007). Impact-induced hydrothermal systems share many 

characteristics with submarine volcanic hydrothermal systems including the presence of 

chemical and thermal energy for microbial metabolism and the precipitation of 

hydrothermal minerals. Despite the similarities, post-impact hydrothermal systems and 

impact craters in general represent an understudied microbial habitat.  

In this study, we investigate impact glasses from the Ries impact structure, Germany, that 

preserve tubular alteration textures that share a remarkable morphological similarity to 

tubular microbial ichnofossils found in volcanic basaltic glass (Fig. 5.1). Systematic 

criteria for determining the biogenicity of microbial alteration textures has been reviewed 

in detail elsewhere (e.g., Banerjee & Muehlenbachs 2003; Staudigel et al. 2006; 

McLoughlin et al. 2007; McLoughlin et al. 2008). Here we follow the three-pronged 

approach to assessing the biogenicity of putative ichnofossils developed by McLoughlin 

et al. (2007). Tentative bioalteration features must satisfy the following three criteria 

before a biogenic origin can be determined: “(1) a geological context that demonstrates 

the syngenicity and antiquity of the putative biological remains; (2) evidence of biogenic 

morphology and behaviour; and (3) geochemical evidence for biological processing 

(McLoughlin et al. 2007).” Impact glasses are ubiquitous products of meteorite impact 

events on Earth and likely on other planets such as Mars (Melosh 1989); thus, this 

discovery may have implications for the prospect of finding life on Mars and other 

planetary bodies that may have hosted liquid water. Furthermore, our work may inform 

our understanding of potential ancient habitats on Earth and perhaps even the evolution 

of early life on Earth.  
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Figure 5.1: Tubular alteration textures in natural glasses. 

A – C transmitted light micrographs of tubular alteration features in natural glasses. A: 
Segmented tubular bioalteration features in modern submarine basaltic glass from the 
Ontong Java Plateau. B: Elongate titanite mineralized tubular bioalteration features in 
Archean interpillow hyaloclastite samples from the Euro Basalt, Pilbara Craton. C: 
Tubular features in ~15 Ma impact glass from the Ries impact structure, Germany, 
sample RI_10_009A1. 
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5.2 Geologic Context 

The mid-Miocene (14.6 + 0.2 Ma; Buchner et al. 2010) Ries impact structure located in 

southern Germany is arguably one of the best-characterized and best-preserved terrestrial 

impact structures (see Pohl et al. 1977; von Engelhardt 1990 for reviews). Ries is a 

complex crater with a diameter of ~24 km (Pohl et al. 1977). The two-layer target is 

comprised of dominantly Mesozoic flat lying sediments that unconformably overlie 

crystalline Hercynian basement (Pohl et al. 1977; Graup 1978). Impactite units are well 

preserved (e.g., Chao et al. 1978); the glass-bearing impact breccia or surficial “suevite” 

comprises one of four main proximal ejecta deposits (von Engelhardt 1990). Glass clasts 

are typically vesiculated, schlieren-rich mixtures containing abundant mineral and lithic 

fragments (von Engelhardt 1990). A detailed geochemical and petrological study of the 

Ries glasses is presented elsewhere (Osinski 2003). Post-impact hydrothermal alteration 

has been well documented at the Ries impact structure (Naumov 2005; Osinski 2005).  A 

recent study suggests that alteration of glass clasts within the surficial suevite followed a 

progression from high- to low-temperature alteration with textures consistent with 

hydrothermal alteration, sensu stricto, between the two temperature end members (Sapers 

et al. 2009). 

The impact glass itself is a theoretically suitable microbial substrate. Microorganisms are 

known to inhabit subaerial (Herrera et al. 2009) and submarine natural glasses (Mason et 

al. 2007 and references therein) with a variety of Si contents. The Ries glasses and the 

quench crystallites within it contain many bio-essential elements necessary for microbial 

metabolism such as K, Mn, Mg, Ca, Na, and Fe (Cady et al. 2003a). In addition, most 

microbes use transition metals as co-factors in enzymatic reactions. Many lithotrophic 

(rock-eating) microbes exploit redox disequilibria by oxidizing or reducing the transition 

metals depending on the environmental conditions providing metabolic energy along 

redox gradients. 

5.3 Morphological Evidence 

Staudigel et al. (2006) published a set of characteristic criteria regarding the distribution 

and morphology of putative microbial alteration features in volcanic glass. We 
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summarize these criteria in the context of the Ries glasses. The tubule features in the Ries 

glasses are associated with clast margins, fractures, and vesicles displaying alteration 

fronts consistent with post-impact hydrothermal alteration (Sapers et al. in prep-a; Fig. 

5.2A). This is consistent with tubule formation only where the impact glass was in 

contact with circulating fluids. As discussed below, tubules are crosscut by later fractures 

(Fig. 5.2 B, C), which do not exhibit hydration alteration fronts, or associated tubules. 

This distribution of tubules correlated with glass-fluid interfaces is consistent with reports 

of bioalteration in submarine basaltic glasses (e.g., Furnes et al. 2007) and is fundamental 

to the proposed process of tubule formation discussed in detail elsewhere (Dole 1964 and 

references therein). 

The integral nature of the tubules within the glass establishes their syngenicity and 

antiquity. The tubules must have formed following quenching, and deposition of the 

glass. The tubules are not flow aligned and in some cases crosscut flow features within 

the glass. The complex and delicate morphologies such as spirals (Fig. 5.2B) would not 

survive transport and deposition: none of the tubular features observed show elongation, 

distortion or other evidence of modification as would be expected if the features were 

incorporated into the glass as it formed rather than forming within the glass following 

emplacement (Fig. 5.2). A set of fractures in the glass not associated with hydrothermal 

alteration crosscuts the tubular features (Fig. 5.2B,C) restricting their time of formation 

between 15.9 Ma (time of impact) and a later event following the cessation of post-

impact hydrothermal activity causing brittle fracture. 

The tubules themselves are villiform forming straight to complex and highly convoluted 

vermicular features in the glass (e.g., Figs. 5.2, 5.3). They may or may not bifurcate, 

branch (Fig. 5.3A) and/or exhibit annulations suggestive of segmentation (Sapers et al. in 

prep-b; e.g., Fig. 5.2D).  There is no parsimonious abiotic explanation of these 

morphologies. Ambient inclusion trails (AITs) are discounted as the hollow tubules lack 

the longitudinal striations diagnostic of AITs (Fig. 5.1G). Furthermore, none of the 

tubular features observed contain terminal inclusions. Biogenic behaviour is suggested by 

the distribution of the tubular features. Similar textural morphologies are commonly 

clustered together, suggestive of discrete populations. Segmented tubules are observed to 
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cluster together in one region while non-segmented or spiral-shaped tubules cluster in 

other regions. Consistent with reports of bioalteration in submarine basaltic glasses (e.g., 

Banerjee & Muehlenbachs 2003; Furnes et al. 2004; Furnes et al. 2007), the tubules in 

the Ries glasses do not intersect, in contrast to quench crystallites, and appear to avoid 

each other as indicated by changes in direction as two tubules approach each other (Fig. 

5.2D). This is an expected behaviour in microbial populations sharing a substrate to avoid 

waste material. 
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Figure 5.2: Transmitted light photomicrographs of the Ries tubules. 

A (RI_10_013 5 m): extended depth of field images illustrating the association of tubular 
features with fractures displaying evidence of hydrous alteration (white arrows). B 
(RI_10_013 0 m): hydrated glass densely populated with non-intersecting tubular 
features. Black arrows indicate spirals; a late fracture (white arrow) cross-cuts the tubular 
features. C (RI_05_040): a segmented tubule is cross-cut by a fracture (white arrow); D 
(RI_00_056): segmented tubules diverge into different focal fields rather than 
intersecting, direction indicated by white arrows. 
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Scanning electron microscopy in secondary electron (SE) (Fig. 5.3 A, B) and back 

scattered electron (BSE) (Fig. 5.3 C, D) modes allows for three-dimensional and surface 

imaging, respectively. In SE mode, the tubules appear as dense clusters in natural voids 

within the glass. Examples of branching where daughter tubules are of approximately 

equal diameter to the parent tube are evident (Fig. 5.3A). The tubular features appear to 

be associated with a thin, film-like material (Fig. 5.3A) reminiscent of extra polymeric 

substance, a biologically produced ‘biofilm’ that adheres microbes to an abiotic substrate 

(cf. Banerjee & Muehlenbachs 2003). Furthermore, this material forms ‘sheath-like’ 

structures around individual tubules (Fig. 5.3B) strongly suggestive of sheaths. In BSE 

mode hollow (Fig. 5.3C) and solid (Fig 5.3D) tubules can be easily discerned. Some solid 

features have a rhomboid cross-section. It is unclear if the transition from hollow, 

smooth-walled, circular tubules to solid, decorated, rhomboid features represents a 

continuum of preservation and taphonomical change, or if the solid, rhomboid, linear 

features represent a discrete abiotic phenomena such as micro-crystallites. Both the 

hollow and solid tubules have morphologies distinct from the characteristic skeletal and 

dendritic forms of quench crystallites (Sapers et al. in prep-b). 
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Figure 5.3: Scanning electron micrographs of the Ries tubules. 

A – B: secondary electron mode. A (RI_10_006): Dense mass of mineralized tubules in 
altered void of impact-glass, note the thin EPS-like material associated with the tubular 
features (white arrows). Black arrows indicate examples of bifurcating tubules. B 
(RI_10_006): enlargement of boxed area in A. Note the sheath-like material (white 
arrow) coating the tubules not unlike cyanobacterial sheathed filaments.  C – D 
(RI_10_009A1): back scatter electron mode. C: tubules are hollow in cross-section. Note 
the approximately ovoid cross-sections.  D: tubules are solid in cross-section. Rhomboid 
features may crystallographically controlled due to preservation or may represent small 
crystallites. 
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5.4 Geochemical Evidence 

Morphology alone is a notoriously controversial indicator of biogenicity (Brasier et al. 

2002; Cady et al. 2003b; Garcia-Ruiz et al. 2003 and others), therefore, we also present 

geochemical evidence of biological processing including the presence of organic 

compounds associated with morphological evidence. As previously reported (Sapers et 

al. in prep-b) the tubules occur in zones enriched with respect the transition metals and 

alkali elements (Sapers et al. in prep-b). The Mg, Fe, Ca and Na depletion zone 

surrounding the tubules has been identified as a biological processing signature 

(McLoughlin et al. 2007). The elemental similarity between the mineral phase preserving 

the tubular features and the pyroxene quench crystallites may be explained by 

sequestering the available bioessential elements. Pyroxene crystallites are rich in bio-

essential elements such as Fe and Ca that are lacking in the glassy matrix. It is 

conceivable that microbes could preferentially extract these bio-essential elements from 

crystallites. These elements would therefore become concentrated within the tubules and 

likely be preserved following decay of organic matter. Therefore, this enrichment would 

be expected if microbes are accumulating these metabolically relevant elements followed 

by passive accumulation of authigenic mineral phases and subsequent sealing of the 

channel and decay of organic matter.  A similar preservation mechanism has been 

suggested for tubules preserved by titanite mineralization in Archaean greenstone belts 

(Banerjee et al. 2006a; Vogt et al. 2010). In the case of Archaean tubules, Ti is passively 

accumulated by microbes and concentrated within microbial alteration features.   

Scanning transmission X-ray microscopy (STXM) at the Canadian Light Source 

spectromicroscopy beamline was used to measure near-edge X-ray absorbance spectra 

(NEXAFS) at the C K-edge. Spectra were collected between 200 – 310 eV to obtain 

high-resolution data in the 280 – 300 eV range in order to identify and differentiate 

organic carbon species based on C π bond energies calibrated to atmospheric CO2. 

NEXAFS stacks were aligned using the Jacobsen model (Jacobsen et al. 2000) and 

spectra analysed with aXis2000 (Hitchcock 2000). Several spectral features indicative of 

organic carbon were found in association with the tubular features and notably absent in 

regions containing only crystallites (Fig. 5.4). In the matrix of regions hosting tubules, a 
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~285.2 eV peak consistent with the aromatic groups of protein (Myneni 2002); albumin 

used as a reference model for protein as per (Benzerara et al. 2004; H. Bluhm 2006) was 

evident. In spectra of the tubular features the well-resolved 285.2 eV peak is present in 

addition to two additional features: a ~288.5 eV feature interpreted to represent the 

carboxylic group in polysaccharides (Myneni et al. 2002; alginate used as a reference 

model for polysaccharides as per Bluhm et al. 2006; Benzarara et al. 2004); and a 283.6 

eV feature tentatively interpreted to represent quinone structures (Solomon et al. 2005). 

Spectra of the areas containing only crystallites have a ~290 peak indicative of inorganic 

carbonate (Benzerara et al. 2004) and lack spectral features indicative of organic carbon 

species. The spectral features assigned to organic carbon species spatially associated with 

the tubules are consistent with C k-edge spectra of bacteria, and various biological 

compounds including proteins and polysaccharides.  The spatial association of the 

organic carbon signatures with the tubules and absence of these spectral features in 

crystallite regions is consistent with the FTIR data discussed below and supports a 

biogenic origin of the tubules (Fig. 5.4). 
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Figure 5.4: STXM observations of hollow tubules at the C 1S edge. 

Spectra were collected between 200 – 310 eV to obtain high-resolution data in the 280 – 
300 eV range in order to identify and differentiate organic carbon species based on C π 
bond energies calibrated to atmospheric CO2. NEXAFS stacks were aligned using the 
Jacobsen model(Jacobsen et al. 2000) and spectra analysed with aXis2000(Hitchcock 
2000) A: Scanning transmission X-ray photomicrograph of the area analyzed by 
NEXAFS spectroscopy. B: Composite image map illustrating the location of spectral 
features unique to the tubules (red) and matrix (cyan). C: Overplot of NEXAFS spectra 
obtained from the tubule walls (red) and matrix (blue) as imaged in A. Note the multiple 
peaks indicative of organic carbon species: 283.6 eV, 285.2 eV, and 288.5 eV 
representing the 1s-π* transition in quinones, aromatics and carboxylic acid groups 
respectively. Also resolved in the matrix spectra is a peak at 290.3 eV characteristic of 
inorganic carbonate groups. Sample RI_10_009. 
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Fourier Transform Infra-Red (FTIR) spectroscopy was carried out on both tubule-rich 

(Fig. 5.5A) and tubule-free (Fig. 5.5B) areas using a Bruker IFS55 FTIR with a Baseline 

TM Horizontal Attenuated Total Reflection (ATR) attachment equipped with a 

germanium crystal, under an IRScope II microscope. Within the Ries glasses, the 

dominant spectral features observed are those associated with silicate minerals and 

glasses due to Si-O-Si, Si-O-Al and/or Al-O-Al fundamental vibrational modes (Fig. 5.5) 

(e.g., McMillan 1984; McMillan & Hofmeister 1988). These spectral features are centred 

on 977 cm-1 in the tubule-rich areas, and 985 cm-1 in the tubule-free glasses. The OH 

absorption bands observed around 3250 and 3400 cm-1 are common to all spectra 

obtained, indicating the samples are hydrated; likely representing water molecules bound 

within the glass matrix. Interestingly, in the tubular-rich areas a symmetric OH stretching 

vibrational mode of partially hydrogen bonded water molecules is identified at ~3590 cm-

1. In a study of microbially altered submarine volcanic glass from the Ontong Java 

Plateau using the same techniques this absorption band is interpreted to imply that the 

partially hydrogen bonded water molecules are bound to an organic matrix (Preston et al. 

2011). In the tubule-rich areas of the Ries glasses a variety of organic bands are observed 

(Fig. 5.5A). Aliphatic C-Hx stretching absorption bands between 3000 and 2800 cm-1 are 

observed and may be derived from groups usually present in fatty acid components of 

cell membranes (Helm et al. 1991). Additionally, many of the important vibrational 

modes associated with lipids (Tamm & Tatulian 1997) are identified including the amide 

I C=O stretching vibrational mode of esters found within fatty acids (e.g., Byler and Susi 

1986; Arrondo et al. 1993; Goormaghtigh et al. 1994; Jackson & Mantsch 1995) and the 

amide II absorption band of secondary protein structure at 1731 cm-1 and 1562 cm-1 

respectively. The identification of distinct functional group frequencies belonging to 

aliphatic hydrocarbons, amides and carbonyl group molecules, which may be assigned to 

various functional groups in lipids, proteins and carboxylic acids, and are found to be 

spatially associated with the tubules and notably absent from the tubular-free areas (Fig. 

5.5B), strongly suggests the presence of biomolecules preserved within the tubules. 
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Figure 5.5: Transmitted light images and FTIR absorbance spectra. 

Transmitted light images and FTIR absorbance spectra from a tubule-rich area (spot 1) 
and tubule-free area (spot 2). A: photomicrograph of a glass-bearing breccia indicating 
the approximate locations of FTIR analyses (red circles). B: FTIR absorbance spectra 
from spot 1, a tubule-rich area. Si-O, Ti-O and OH stretching absorption bands are 
observed. The main organic vibrational mode frequencies are identified on the inset 
expanded absorbance spectrum. Peak numbers match those described within the text. The 
photomicrograph to the right shows the dense clots of tubular features hosted within the 
glass. C: FTIR absorbance spectra from spot 2, a tubule-free area. Si-O, Ti-O and OH 
stretching absorption bands are again observed. No organic bands are observed. The 
photomicrograph to the right shows the absence of tubular features. Sample RI_00_056. 
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5.5 A New Astrobiology Target 

Impact events are the only ubiquitous geological process in the Solar System and impact 

structures represent the dominant geological landform amongst the majority of the 

terrestrial planets. The habitability of subaerial (Herrera et al. 2009) and submarine 

natural glasses (Mason et al. 2007 and references therein) suggests that impact glasses, 

such as those found at the Ries impact structure, are potential habitats for 

microorganisms. Given the probable ubiquity of impact glasses in post-impact 

environments throughout the Solar System, it is important to understand the biological 

components and potential of such systems. Establishing the biogenicity of the tubular 

structures observed in the Ries impact glasses has significant astrobiological 

implications. The high flux rate of meteorite impacts on the early Earth would favour life 

in endolithic (within rock) environments such as glassy substrates, furthermore, impact 

events would provide transient energy to terrestrial bodies without endogenous volcanic 

heat sources to drive hydrothermal activity, such as Mars.  The endolithic environments 

resulting from impact events are important targets for astrobiological investigations of the 

early Earth and of other terrestrial planets. The extreme conditions present on Mars, such 

as intense UV flux, low temperature, and absence of liquid water may encourage the 

exploitation of endolithic strategies. (Dole 1964; Banerjee et al. 2006b; McLoughlin et 

al. 2007a; Izawa et al. 2010), suggest microborings into volcanic glasses as a potential 

planetary biosignature and lists natural glasses as one of the most promising preservation 

environments for ichnofossils on early Earth and Mars. By extending this to impact 

glasses we greatly increase the number of candidate environments.  

A recent paper by Ivarsson and Lindgren (2010) highlights the significance of impact 

ejecta as a target for an astrobiology focused Mars sample return mission. Impact events 

have the potential to excavate deep into the crust of the target body making the 

subsurface available for study precluding the need for drilling. The subsurface of Mars 

has been targeted as one of the most promising environments preserving past or present 

traces of life (Ivarsson & Lindgren 2010a and references therein). Impact structures have 

been heralded as prime astrobiology targets in the literature (Cockell et al. 2003; Cady 

and Noffke 2009; Ivarsson & Lindgren 2010b): post-impact hydrothermal systems 
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provide an exogenous source of heat to an otherwise energetically ‘dead’ planets as well 

as source of metabolic energy in the form of chemical disequilibria resulting from water-

rock interactions (Cockell et al. 2003) in addition, impact-shocked crystalline rock 

provides protective endolithic microbial habitats (Cockell et al. 2005a). The identification 

of ichnofossils in impact glass has tremendous implications for impact structures as 

astrobiology targets. Due to the ubiquity of impact events on terrestrial planets and the 

adaptive advantages of the post-impact environment to microbial colonization, impact 

glass may well represent one of the best targets in which to search for evidence of extra-

terrestrial life. This discovery of biogenic tubules in the Ries impact glasses represents a 

novel habitat for life on Earth within impact ejecta. Such an environment can be 

extrapolated to a potential habitat within impact ejecta on other planets such as Mars. 

5.6 The Case for Biogenicity 

We have illustrated the presence of enigmatic tubular features hosted within glass clasts 

from impact melt-bearing breccias from the Ries impact structure, Germany. The host 

glasses at the Ries contain crystallites dominated by Ca- and Al-rich pyroxene (Osinski 

2003; this study). These pyroxene crystallites are typically skeletal to dendritic, which are 

well-understood quench crystal morphologies (e.g., Marshall 1961). The complex 

morphologies and convoluted structures characterizing these features (e.g., Figs. 5.2, 5.3) 

combined with organic functional group identification indicate these features likely were 

not formed by purely mineralogical processes. 

Here we have established the morphological similarity of the tubular textures in the Ries 

glasses to both in situ microbial alteration of modern oceanic crust and Palaeozoic and 

Precambrian ichnofossils preserving evidence of microbial glass tunnelling (Fig. 5.1) by 

satisfying the criteria put forward by (Staudigel et al. 2006). The morphological 

complexity and distribution of the Ries tubules (Figs. 5.2, 5.3) indicate biological 

morphology and behaviour. We have illustrated the syngenicity and antiquity of the Ries 

tubular features as the features are integral to the glass substrate and are crosscut by later 

fracture systems (Fig. 5.2B, C). In addition we present evidence of organic compounds 

spatially associated with the features and absent in the host impact glass. Taken together 

these data and observations satisfy the biogenicity criteria developed by McLoughlin et 
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al. (2007) and we conclude a biogenic origin of the Ries tubules. Our study indicates that 

microbes colonized impact-generated glass of the Ries impact structure much in the same 

way they do modern submarine volcanic glass. Well-preserved impact glasses, a major 

component of craters on Earth and other rocky bodies in the solar system, represent a new 

niche in the search for microbial ichnofossils and may represent one of the best places to 

search for evidence of life beyond Earth. 
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Chapter 6  

6 Microbially Mediated Alteration of Impact Glass: a 
STXM and TEM Study 

Sapers, H. M., Schumann, D., Banerjee, N. R., Osinski, G. R., Vali, H. 

6.1 Introduction 

Text Studies of impact glasses hosted within glass-bearing breccias of the Ries impact 

structure have revealed the presence of conspicuous tubular structures with complex 

morphologies and chemical signatures suggestive of a biogenic origin (Chapters 4 & 5). 

The previous studies the tubule features in the Ries glasses suggest a biogenic origin for 

the tubules. However, establishing the biogenicity of a trace fossil is notoriously difficult 

(Brasier et al. 2002; Cady et al. 2003; Garcia-Ruiz et al. 2003) and requires multiple lines 

of evidence and complementary data sets consistent with a biological origin while 

discounting abiotic formation mechanisms (e.g., McLoughlin et al. 2007). Such 

investigations commonly produce equivocal evidence and ambiguous conclusions (e.g., 

Brasier et al. 2002). This is especially problematic when dealing with ancient systems, or 

systems with very little to no organic matter, such as the Ries tubules. Without abundant 

organic matter such as nucleic acids and proteins, in situ detection of biological material 

is not possible and the biogenicity of such features is often questioned. This study is 

unique as not only do we merge complimentary analytical techniques to assess the 

biogenicity of the Ries tubules, but also incorporate an intrinsic negative control. We 

compare the results from analyses of abiotic quench crystallites with putatively biogenic 

tubular features. Using scanning transmission X-ray microscopy (STXM) near edge X-

ray absorption fine structure spectroscopy (NEXAFS) at the Fe L2,3 and C 1s edges 

combined with transmission electron microscopy (TEM) we are able to identify and map 

chemical changes consistent with biological processing and organic carbon species 

spatially associated with putative microbial alteration features in the glassy substrate. The 

results of this study interpret the Ries tubules as ichnofossils providing the first evidence 

of microbially mediated alteration of impact materials.  
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Microbial alteration of natural glasses is a widespread natural phenomenon (Thorseth et 

al. 1995; Fisk et al. 1998; Torsvik et al. 1998; Furnes et al. 2001a,b, 2004, 2007; 

Banerjee & Muehlenbachs 2003; Banerjee et al. 2004a,b, 2006a,b, 2007, 2008; Staudigel 

et al. 2006, 2008a,b; Benzerara et al. 2007; Fliegel et al. 2008; Peckmann et al. 2008; 

Cockell et al. 2009; Izawa et al. 2010a,b). Biological weathering of subaerial volcanic 

glasses is also a well-documented process (Cockell & Herrera 2008; Cockell et al. 2009; 

Herrera et al. 2009) with significant impact on the persistence of natural glasses and their 

resistance to weathering and erosion. Here we present geochemical evidence through 

STXM and TEM of biologically mediated alteration of impact glass from the Ries impact 

structure, Germany. Impact glass represents a novel terrestrial microbial substrate and the 

discovery of microbial alteration features within the impact glass has significant 

implications for the earliest colonization of habitable niches on early Earth as well on 

other planets such as Mars.  

Impact events are a relatively rare occurrence on modern Earth. With only 182 terrestrial 

impact structures identified they constitute a minor geographical feature on modern day 

Earth (Earth Impact Database, 2012). However, impact cratering is the only ubiquitous 

geological process in the Solar System and impact structures account for the dominant 

landform on many terrestrial planets including the early Earth. During the Late Heavy 

Bombardment (4.2 – 3.8 Ga) impact flux was an estimated 2X higher than it is today 

(Kring and Cohen 2002). The destructive effects of impact events are well studied; 

however, impact events may have beneficial effects particularly for microbial life (e.g., 

Osinski et al. 2001; Cockell et al. 2002, 2003; Osinski 2003a). Impact event results in 

local sterilization and may be viewed as biological resetting events followed by distinct 

ecological successional stages (Cockell & Lee 2002b). The earliest phase of ecological 

recovery following an impact is the phase of thermal biology ‘during which the thermal 

anomaly associated with a recently formed crater sustains biological activity of a nature 

or at a level requiring warmed environmental conditions’ (Cockell & Lee 2002a). Impact 

events create novel microbial niches and substrates such as chemically and energetically 

diverse impact glass providing not only a novel microbial habitat on present day Earth, 

but furthermore, a potential preservation environment for microbial trace fossils of early 

Earth and possibly other planets such as Mars. 
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6.2 The Ries Impact Structure 

The mid – Miocene Ries impact structure located in southern Germany is arguably one of 

the best-characterized and best-preserved terrestrial impact structures (see Pohl et al. 

1977; von Engelhardt 1990 for reviews). 40Ar/39Ar laser-probe dating of tektites 

constrains the age of the Ries impact structure to 14.6 + 0.2 Ma (Buchner et al. 2010). 

Ries is a complex crater with a diameter of ~24 km (Pohl et al., 1977; Fig. 6.1).  

Impactite units are well preserved (e.g., Chao et al. 1978); surficial “suevite” comprises 

one of four main proximal ejecta deposits (von Engelhardt 1990). Four main glass types 

occur within the main suevite both as groundmass phases and as discrete glass clasts 

(Osinski 2003b). Glass clasts are typically vesiculated, schlieren-rich mixtures containing 

abundant mineral and lithic fragments (von Engelhardt 1990). The glass clasts hosted 

within the suevite have been classified based on composition and microtextures (Osinski 

2003b).  

Type I glasses are the most abundant in the Ries suevites. These glasses contain Al-rich 

pyroxene quench crystallites and have SiO2 contents ~63%. Type II glasses have a 

similar SiO2 content as type I; however, they contain only plagioclase crystallites as well 

as a generation of dense, micron-scale vesicles. Type III glasses have low SiO2 contents, 

are hydrated relative to the other glasses, and contain relatively little FeO, MgO, and 

K2O, while having high Al2O3, CaO, and Na2O contents. Type IV glasses have very high 

SiO2 contents commonly >90%. Type I glasses have the highest concentrations of FeO 

and MgO of all 4 glass types (Osinski 2003). Type I glasses are the focus of this study as 

they comprise >90% of the glass clasts hosted within the Ries surficial suevite (Osinski 

2003). 

The Ries crater in southern Germany is one of the best-characterized terrestrial impact 

structures (e.g., Pohl et al. 1977). Furthermore, detailed studies have characterized the 

impact-generated hydrothermal system of the Ries crater. In addition, the Ries crater has 

exceptionally well preserved proximal impact ejecta deposits including an impact glass-

bearing breccia unit. The rapid quenching of molten material following a hypervelocity 

impact results in the formation of impact glasses. Impact glasses share many similarities 
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with volcanic glasses but the bulk compositions of impact melts are commonly more 

diverse, reflecting heterogeneities in the target lithologies. Furthermore, impact melts 

commonly display heterogeneity on multiple scales. In addition, the presence of 

lechatelierite (a silica glass phase) is indicative of high temperatures (>1713oC; Stöffler 

1984) reflecting formation conditions distinct from normal igneous processes. 

6.3 Experimental Methods 

6.3.1 Samples 

Samples of glass-bearing impact breccia (suevite) for this study were obtained from the 

Seelbronn and Aumühle quarries at the Ries impact structure over two field seasons. 

Samples were previously characterized in Chapters 4, 5. Petrographic thin sections were 

sputter coated with Pt (sample A) or Os (sample B) to mitigate charge build-up during 

SEM observation. The tubular features within the impact glass clasts hosted in the glass 

bearing impact breccia from the Ries impact structure have been previously characterized 

with optical petrography and scanning electron microscopy. Previous work has 

documented the biogenicity of the features establishing their syngenicity to the impact 

glass, homologous morphology lacking a parsimonious abiotic formation mechanism, 

and chemical evidence of biological processing. These studies described tubular features 

~ 1um in diameter extending hundreds of microns in length with complex morphologies 

including spirals and regular annulation.  

Two of the previously studied glass clasts differentiated by size, both hosting dense 

assemblages of these tubular features were chosen for this study. Sample A (RI_10_006) 

represents a decimeter-sized glass clast with little visible surface alteration. A 

petrographic thin section was cut from the interior of sample A to minimize surface 

contamination. Two focused ion beam (FIB) samples were milled from this thin section: 

A1 contains dendritic pyroxene crystallite and A2 contains solid, coiled tubular features. 

Sample B (RI_10_009) is a petrographic section cut from the matrix of surficial glass-

bearing breccia. Within the matrix are numerous micron-scale glassy clasts partially to 

completely replaced by clay minerals. One of these highly altered glass clasts was chosen 
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for further study. Two FIB sections were milled from the chosen glass clast in sample B: 

B1 contains solid, coiled tubules and B2 contains hollow, coiled tubules. 
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Figure 6.1: Geological map of the Ries impact structure. 

Samples of glass-bearing breccia (suevite) A1 and A2 were obtained from Seelbronn and 
samples B1 and B2 from Amerdingen. Modified from Osinski (2003). 
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6.3.2 Focused Ion Beam Milling 

Focused ion beam (FIB) milling was conducted at Fibics Inc. Ottawa, ON Canada using a 

Micrion 2500 Focused Ion Beam (FIB) microscope system and modified in-house FIB 

lift-out techniques (Patternson et al. 2002). Prior to milling, samples were cleaned with 

compressed air and remaining contaminates removed by ‘high ion beam current milling’ 

under visual guidance in ion mode on a FEI Vectra "FlipChip" 8" Wafer FIB system. A 

thin (~1 µm) protective strip (dimensions) of tungsten was deposited over the area to be 

milled. A Ga+ ion beam was used for milling at 50 kV operating conditions. Rough 

excavation troughs were milled into the sample using a FEI Vectra "FlipChip" 8" Wafer 

FIB surrounding the area of interest to the final dimensions of 30 µm X 1.5 µm and then 

thinned to ~800 nm via progressive trenching. The sample was then moved to the 

Micrion 2500 for final thinning to 80 – 100 nm and trimming to ~25 µm X ~1.5 µm 

followed by lift-out. FIB foil A1 was transferred at room pressure with a 

micromanipulator to the membrane of a Formvar-coated 300 mesh copper TEM grid (SPI 

supplies, West Chester, PA, USA #3330C). Similar preparation of FIB foils of 

ichnofossils in natural glass have been studied successfully using synchrotron radiation 

(Benzerara et al. 2007). FIB foils A2, B1, and B2 were fused to modified Cu TEM 

mounts as per an in-house method developed by Fibics Inc. (Patternson et al. 2002). 

Following milling and lift out, SEM and optical microscopy were conducted to confirm 

the areas of interest were correctly targeted during FIB milling. 
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Figure 6.2: Proximity of crystallites and tubule features. 

Plane polarized light micrograph indication the location of FIB foils in sample A. Note 
the proximity of sample A1 (crystallites) and sample A2 (tubes). Sample RI_10_006). 
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6.3.3 Scanning Transmission X-ray Microscopy (STXM) 

STXM observations and near-edge X-ray absorption fine structure (NEXAFS) 

spectroscopy were preformed at the Canadian Light Source on the Soft X-ray 

Spectromicroscopy (SM) beamline (10ID-1) under the guidance of the beamline 

scientists following the methods reviewed by Leung et al, 2010. The synchrotron storage 

ring operates at 2.9 GeV with a maximum stored electron current of 300 mA. The 10ID-1 

beamline uses a 75 mm generalized Apple II Elliptically Polarizing Undulator (EPU) 

source and STXM observations were conducted at a flux of ~108 ph/s in 30 nm spot 

normalized at 100 mA. A 250 l/mm grating and 35 µm vertical and horizontal exit slits 

were used for carbon imaging and spectroscopy. A 500 l/mm grating and 9 µm vertical 

and horizontal exit slits were used for iron imaging and spectroscopy. Energy calibration 

was accomplished using the 3p Rydberg peak at 294.96 eV of gaseous CO2 for the C K-

edge (Ma et al. 1991) and reference FeCl2 and FeCl3 spectra (Hitchcock, A. P., Per. 

Comm.) for the Fe L2,3 -edges. NEXAFS data was collected over an energy range of 280 

– 320 eV for the C K-edge and 700 – 730 eV for the Fe L2,3 -edges. NEXAFS stacks were 

aligned using the Jacobson algorithm (Jacobsen et al. 2000) and data was analyzed using 

the aXis2000 software package (Hitchcock 2000). 

6.3.4 Transmission Electron Microscopy (TEM) 

The FIB foils were characterized in bright field mode and in selected area diffraction 

mode with a Philips CM200 TEM equipped with an AMT XR41B CCD camera system 

and an EDAX Genesis energy dispersive X-ray spectroscopy system (EDS) at an 

accelerating voltage of 200 kV. Transmission electron microscopy, energy dispersive X-

ray spectroscopy and electron diffraction analyses were conducted at McGill University. 

6.4 Results 

6.4.1 Transmission electron microscopy 

Transmission electron microscopy and EDXS analyses showed that the matrix impact 

glass is extremely heterogeneous both texturally and chemically on a micron to sub-

micron scale. The character of the matrix glass is distinct between all four samples. 
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Matrix glass in sample A showed the least variability and largest degree of amorphous 

character. All EDXS spectra show the presence of the Cu Kα peak from the Cu TEM 

mount. The Ga L and K emission lines are also present in some EDX spectra revealing 

the presence of Ga+ ions implanted during FIB milling. 

6.4.1.1 Sample A1: crystallites 

Five glassy areas were selected for electron diffraction in sample A1 and four of these 

areas were also analyzed by EDXS (Fig. 6.3). The crystallites are hosted in amorphous 

glass as indicated by the presence of diffuse diffraction rings and general lack of spots on 

electron diffraction patterns (Fig. 6.3B). The glass is composed of primarily Si, O, Fe and 

Al as determined by EDXS. There are minor amounts of Ca, K, Na and Mg (Fig. 6.3C). 

The crystallites themselves have skeletal morphologies, are mottled to streaky in 

appearance, and have sharp margins at the crystal/glass boundary (Fig. 6.3A, D, G, J). 

Crystals are elongate varying from ~500 nm to >5 µm in length and <100 nm to ~700 nm 

in width. Crystal faces are straight and are geometrically controlled (Fig. 6.3D, G). They 

are composed of numerous smaller crystal segments that are stacked along the long axis 

of the crystallite (Fig. 6.3D, G) .Individual crystals commonly intersect. Four separate 

crystals were selected for EDXS analyses and electron diffraction (Fig. 6.3D – L). 

Chemical composition is remarkably homogeneous between the crystals, dominantly Si, 

O, Mg, Al, Fe and subordinate K (Fig. 6.3E, H, K).  

Electron diffraction analyses and EDXS analyses suggest that the crystallites are similar 

in composition and structure to the clinopyroxene augite. Electron diffraction analysis of 

the elongated crystallite in Figure 6.3D clearly shows the families of the {010} planes 

and also what seems to be the {001} planes (Fig. 6.3F). The d-value of 4.11 Å for the 

{001} plane is smaller than the value of the reference augite (d= 5.06 Å; PDF#41-1483; 

Table 6.1).  
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Figure 6.3: Sample A1: crystallites. 

Transmission electron microscopy images (a, d, g, j); EDX analyses (c, e, h, k,) and 
electron diffraction analyses (b, f, i, l) of selected quench crystallites from sample A1.  
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6.4.1.2 Sample A2: solid tubule features 

The glassy matrix of sample A2 displays two distinct textures (Fig. 6.4, 6.7). The matrix 

surrounding the crystallites and tubules is amorphous as indicated by the presence of 

diffuse diffraction rings in the electron diffraction patterns and complete lack of spots 

(Fig. 6.4B). The matrix distal to crystallites and tubules is densely populated with sub 

rounded, elongate octahedral, micro-crystallites ranging from ~1 nm to ~100 nm in 

diameter (Fig. 6.4A, D). The electron diffraction pattern is indicative of poorly crystalline 

material (Fig. 6.4E). EDXS analyses of the matrix glass indicate a predominance of Si, O, 

and Al as well as minor amounts Ca, K, Ti, and Fe (Fig. 6.4F). This composition is 

similar to the glass that surrounds the quenched crystallites in sample A1 (Fig. 6.3C). 

There are two morphologically distinct types of larger (> 500 nm) features: several 

irregular, sub rounded, subhedral crystallites composed of multiple crystal domains 

(black arrows in Fig. 6.7 A, B, and C) and one tubule visible as an elongate (~ 2 µm X 

200 nm) structure (Fig. 6.7 A, B, C).   

The elongate feature has smooth, straight edges and sharp contacts with the amorphous 

matrix (Fig. 6.7 A, C). These features appear to be composed of multiple stacked 50 to 80 

nm wide plates aligned along the long axis of the elongated feature  (Fig. 6.7C). There is 

a poorly resolved, poorly crystalline, interstitial phase visible between the stacked 

platelets, becoming densest in the centre of the elongate feature (Fig. 6.7B, C) 

There is a large (~ 1µm x 1.5µm) crystallite visible to the right of the elongated feature in 

Figure 6.7A. The EDX spectrum of the larger crystallites is dominated by Si and O with 

Mg, Al, Fe, Ca, and minor Ti and Mn (Fig. 6.4H, I). 

Crystallographic axes of the visible crystal domains were determined by electron 

diffraction structure analyses of both the large crystallite and the elongate feature. Axes 

{020} (a-axis) and {300} (b-axis) form the crystallographic plane of the large crystallite 

shown in Fig. 6.7B and have d-spacing of 4.4Å and 2.8Å respectively (Fig. 6.7B inset). 

Axes {001} and {110} were determined for the elongate feature with d-spacing of 4.9Å 

and 6.1Å, respectively (Fig. 6.7C inset). The platelets are aligned along the c-axis 

corresponding to the long axis of the tubule. 
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Figure 6.4: Sample A2: solid tubules. 

Transmission electron microscopy images, diffraction patterns and energy dispersive 
spectroscopy of sample A2. A: overview. B: diffraction pattern of matrix area ‘c’ in panel 
a. C: EDX spectrum of matrix spot c in a. D: crystallites in matrix. E: diffraction pattern 
for matrix area ‘e’ in panel a F: EDX spectrum of matrix spot ‘f’ in panel a. G: elongate 
features and large crystals. H: EDX spectrum for crystal  ‘h’ in panel g. I: EDX spectrum 
for crystal ‘i’ in panel g. 
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6.4.1.3 Sample B1: solid tubules 

The matrix of sample B1 has been completely replaced by clay minerals and has a fibrous 

appearance with abundant void spaces giving a porous texture (Fig. 6.5). Clay mineral 

packets and void spaces are on the order of several hundreds of nanometers with 

nanometer scale crystallites diffusely scattered throughout the matrix. Sample B1 

displays the most heterogeneity in matrix composition and texture. Nanometre scale 

microcrystallites are finely disseminated throughout the FIB foil (Fig. 6.5A, B, D, G). 

Microcrystallites may be blocky, elongate or skeletal in shape (Fig. 6.5G, H). A linear 

~700nm wide grey strip of glassy material is amorphous and also contains blocky 

microcrystallites (Fig. 6.5A, B). Electron diffraction patterns of the clay matrix are 

suggestive of poorly crystalline material (Fig. 6.5E). EDXS analysis of both the 

amorphous glass and clay indicate they are very similar in composition composed 

dominantly of Si and O with minor Fe, Al and Ca (Fig. 6.5C, F).  

The tubular features in sample B2 are solid, approximately 500nm in diameter and are 

visible in both horizontal and vertical cross-section. The tubules have irregular ‘saw-

tooth’ like margins and are composed of multiple crystallographic domains (Fig. 6.7D, E, 

F). In longitudinal cross section the edges of the tubules are composed of subhedral, 

triangle shaped crystals pointed inwards roughly 100 nm at the widest point (Fig. 6.5A, 

7E, F). The central portion of the tubules is composed of a poorly crystalline, fine grained 

material that cannot be fully resolved but seems to be of similar chemical composition to 

the triangle shaped crystals along the outer margin (Fig. 6.7E; white arrow). EDS spectra 

of the tubules are dominated by Si and O with Mg, Al, Ca, Fe and minor Ti (Fig. 6.5I). 

X-ray diffraction structure analysis identified the {001}, {011}, and {010} families with 

d-values of 5.06 Å, 4.22 Å, and 7.9 Å respectively. Similarly to the elongate features in 

samples A2 and B1, the features in sample B2 are elongated along the c-axis. Despite the 

appearance of multiple crystal domains, electron diffraction patterns are suggestive of a 

single crystal that is due to the almost perfect alignment of the crystal platelets along the 

c-axis (Fig. 6.7D; insert). 
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Figure 6.5: Sample B1:  solid tubules. 

Transmission electron microscopy images, diffraction patterns and energy dispersive 
spectroscopy of sample B1. A: overview. B: amorphous glass strip and corresponding 
diffraction pattern. C: EDX spectrum for glass strip in ‘c’. D: clay minerals in matrix. E: 
diffraction pattern for matrix ‘e’. F: EDX spectrum for matrix ‘f’. G: crystallites in 
matrix. H: close of crystallite in g showing lattice fringes. I: EDX spectrum of tubule ‘I’ 
in panel A.   
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6.4.1.4 Sample B2: Hollow tubules 

The matrix is mainly altered clay minerals similar in appearance to sample B1. Clay 

mineral packets and void spaces are on the order of several hundreds of nanometers (Fig. 

6.6A, C, H). Nano-meter scale crystallites are diffusely scattered throughout the matrix 

(Fig. 6.6A). The electron diffraction patterns of the matrix are indicative of poorly 

crystalline material (Fig. 6.6B). EDX spectra of the matrix are dominated by Si and O 

peaks with minor Al, Mg and Fe peaks (Fig. 6.6D, E).  

Multiple hollow tubules are present in sample B2 both in longitudinal and horizontal 

cross section (Fig. 6.7G, H). The tubules have a remarkably consistent diameter of ~500 

µm and are round to octagonal in horizontal cross section. They appear to be aggregates 

of 50 – 80 nm wide ring-like sections aligned along the long axis of the tubules. The 

margins of the tubules have a blunted ‘saw tooth’ texture (Fig. 6.7I). Each ‘ring’ appears 

to be an aggregate of multiple crystallites similar to those described in sample A2. The 

interior margins of the tubules are highly irregular and composed of massive poorly 

resolved fine-grained material (Fig. 6.7G, H, I, K; white arrows). The chemical 

composition of the tubular features is consistent across 6 EDXS analyses: dominant Si, 

O; subordinate Fe, Mg, Al and Ca (Fig. 6.6F, G, K). An EDX spectrum was also taken 

from the material within the centre of the hollow tubules (Fig. 6.6J). The material within 

the tubules is also dominated by Si and O with Mg, Al, Ca and Fe. The P Kα peak was 

also detected within the tubules (Fig. 6.6F, G).  

X-ray diffraction structural analysis was able to identify the {001}, {110}, and {020} 

families with corresponding d-spacings of 4.9Å, 6.0Å, and 4.4Å respectively (Fig. 6.7J, 

K). High-resolution TEM images taken from the edge of horizontal cross-sections in 

figure 6.7k (white arrow) show two sets of lattice fringes: the {110} family with a d-

value of ~6.2 Å and the {020} family with a d-value of  ~4.4 Å.  Interestingly, despite the 

obvious multi-crystal appearance to the tubule features, electron diffraction patterns of 

horizontal cross-sections are indicative of a single crystal (insert Fig. 6.7K). This can be 

partially explained by the perfect alignment/stacking of the crystal platelets along the c-

axis. 
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Figure 6.6: Sample B2:  hollow tubules. 

Transmission electron microscopy images, diffraction patterns and energy dispersive 
spectroscopy of sample A2. a: overview. b: diffraction of clay matrix. c: close up of clay 
matrix. d: EDX of C-rich space between clay minerals. e: EDX of clay minerals. f: EDX 
of tubule. g: EDX of tubule. h: group of tubules with different degree of alteration (see 
arrow for small hole). i: altered tubule. j: EDX of C-rich tubule filling. k: EDX of tubule. 
l: altered tubule in which we have a clay mineral (smectite)  
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Figure 6.7: Transmission electron microscopy images of tubule features. 

Transmission electron microscopy images and diffraction patterns of tubules in samples 
A2, B1, B2. A – C: sample A2. D – F: sample B1. G – I: sample B2. 
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Table 6-1: Comparison of d-values. 

Comparison between d-values determined experimentally for tubule features and 
crystallites (this study) with published values for augite.  
PDF#41-1483, Augite, 
aluminian, Paskapole, 
Czech Rep. 

A1 crystallites, A2 solid 
tubules, B1 solid 
tubules: 
values obtained from 
measurements on 
electron diffraction 
patterns 

B2 hollow tubules:  
values obtained from lattice 
fringe measurements on the 
particle in Fig. 6.7 K 

matrix crystals Fig. 6.5 H 
 

(hkl) d(Å) d(Å) Ø d(Å) d(Å) Ø d(Å) d(Å) Ø d(Å) 
(100) 9.3534       
(200) 4.6767       
(300) 3.1178 2.7826 2.7826     
(600)* 1.5589*       
(010) 8.8934 8.7619, 

8.3636, 
8.0000, 
8.0843, 
7.8597, 
7.6666 

8.1227   9.1670, 
8.9230, 
8.8660, 
8.8290 

8.9462 

(020)* 4.4467* 4.4356, 
4.3495, 
4.2199 

4.3350 4.5500, 4.5496, 
4.5289, 4.4712, 
4.4441, 4.3907, 
4.4359, 4.1680, 
4.1300, 4.0886 

4.3757   

(001) 5.0628 5.0592, 
4.9230 

4.9911     

(002)* 2.5314*       
(110) 6.4446 6.4000, 

6.2439, 
6.1279, 
6.0377, 
6.0000, 
5.9385, 
5.9381, 
5.9078  

6.0742 6.4194, 6.3979, 
6.2194, 6.1469, 
6.1307, 6.0501, 
5.9766, 5.9750, 
5.9657, 5.9228, 
5.9056, 5.8800, 
5.8357, 5.6863  

6.0366   

(220)* 3.2223*       
(011) 4.3998 4.2197 4.2197     
(022)* 2.1999*       
(hkl)* data obtained from PDF#41-1483, aluminian augite; all other (hkl) are calculated from these values 
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6.4.2 STXM Analysis 

Near edge X-ray absorption fine structure (NEXAFS) spectroscopy was completed on all 

four samples at the Fe L3 -edges and the C K-edge. NEXAFS spectroscopy provides 

constraints on the speciation and the molecular configuration of the absorbing atom as the 

absolute edge energy and near edge fine structure oscillations are sensitive to the 

oxidation state and the average local bonding geometry respectively (e.g., Myneni 2002). 

6.4.2.1 Iron L3-edge 

Spectral composition maps (Fig. 6.9) were calculated for each sample using a 

combination of forward fitting of internal NEXAFS spectra and iron-chloride reference 

spectra with the singular value decomposition algorithm available in aXis2000 [Ref]. 

Three distinct spectral components indicative of differing Fe oxidation are identified 

based on the ratio of the 707.8 eV and 709.5 eV peaks at the Fe L3-edge (Crocombetter et 

al. 1995). Based on relative units of optical density, the matrix of all samples has 

relatively low concentrations of Fe compared to the tubules and crystallites.  The matrix 

of all four samples is the most oxidized component with spectra exhibiting peaks of 

comparable intensity at both 707.8 eV and 709.5 eV indicative of partial iron oxidation. 

NEXAFS spectra of the tubules (A2, B1, B2) are dominated by a major peak at 707.8 eV 

characteristic of reduced iron indicating that Fe2+ largely dominates the iron in the 

tubules. Tubular cores or centres are intermediate in character: oxidized relative to 

tubular margins, but contain a higher reduced component than the matrix. Tubular 

margins (hollow tubule wall, B2; edges of solid tubules, A2) have a major 707.8 eV peak 

and with a minor 709.5 eV component indicating a highly reduced Fe character with a 

minimal oxidized component. The high resolution mapping of sample B1 shows the 

presence of a fourth phase rimming the tubules reduced relative to the matrix and tubule 

centres but oxidized in comparison to the bulk of the tubule. The crystallites in sample 

A1 did not display any zoning with respect to Fe oxidation state and therefore no patterns 

of Fe speciation are present. The crystallites are either of reduced Fe- or intermediate Fe 

character relative to the matrix with no internal zonation. 
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Figure 6.8: STXM Fe L3-edge analysis. 

Scanning transmission microscopy images (A – D) and Fe L3-edge NEXAFS spectral 
composition maps (E – H) based on forward fitting of internal spectra (I – L).  A, E, I 
sample A1. B, F, J sample A2. C, G, K sample B1. D, H, L samples B2. 
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6.4.2.2 Carbon K-edge 

Spectral features associated with various organic carbon species are present in all tubule 

samples (A2, B1, 2) and absent in the sample containing only crystallites (A1). The 285 

eV feature consistent with aromatic groups (284.9 eV – 285.5 eV π*C=C; (Myneni 2002) 

and refs therein) is the most prominent in all three tubule samples. There is also a 288 eV 

peak interpreted to result from the 1s-π* transition of C=O in carboxylic acids and/or 

ketones (Myneni 2002 and refs therein). Spectral components were fit to the NEXAFS 

stacks using the singular value decomposition algorithm in aXis2000 (Hitchcock 2006) 

based on forward fitting of internal spectra following identification of discrete spectral 

components (Fig. 6.9). 

6.4.2.2.1 Sample A2: solid tubules 

Very similar organic components are identified in the matrix and tubules characterized by 

a dominant peak at 288.7 eV and subordinate peaks at 283.7 eV and 285.4 eV. The tubule 

spectra are defined by more intense 288.7 eV and 285.4 peaks relative to those peaks in 

spectra derived from the matrix. Organic carbon spectra derived from a crack is unique 

and characterized by a dominant 285.4 eV peak and subordinate 288.7 eV peak (Fig. 

6.9A, D, G). 

6.4.2.2.2 Sample B1: solid tubules 

Spectra derived from the tubules in sample B1 are dominated by artefacts due to higher 

order interference and an organic component cannot be discerned. Two distinct organic 

components are derived from the matrix with a dominant 285.1 eV peak and subordinate 

287.5 eV and 288.6 eV peaks. The spectra are distinguished by their optical density and 

the relative prominence of the 285.1 eV peak. A 290.6 eV peak, indicative of carbonate, 

is also identified in the matrix spectra (Fig. 6.9B, E, H). 

6.4.2.2.3 Sample B2: hollow tubules 

Similar to the features in sample A2, the spectra derived from the tubules are dominated 

by higher order artefacts. Two distinct organic spectral components are distinguished in 
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the matrix most strongly associated with the interior of the tubules. A peak at 285.2 eV 

dominates one organic component. The second component also has a dominant peak at 

285.2 but also contains peaks of similar intensity at 288.7 eV and 290.1 eV (Fig. 6.9C, F, 

I). 
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Figure 6.9: STXM C K-edge analysis. 

Scanning transmission microscopy images (A – C) and C K-edge NEXAFS  spectral 
composition maps (D – F) based on forward fitting of internal spectra (G – I). A, D, G 
sample A2. B, E, H sample B1. C, F, I sample B2. 
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6.5 Discussion 

6.5.1 Biogenicity of the Ries tubules 

Microbial alteration textures observed in submarine basaltic glasses are interpreted to 

have formed by microorganisms via local dissolution as they extract bio-essential 

elements (Staudigel et al. 2006, 2008b; McLoughlin et al. 2010) from the glass. Many 

elements present in natural glasses, including the Ries impact glasses, are essential macro 

and micronutrients (Banerjee & Muehlenbachs 2003; Staudigel et al. 2006, 2008a; 

Benzerara et al. 2007; Banerjee et al. 2008). The leaching of these bioessential elements 

from the glass alters the chemistry of the surrounding glass. Furthermore, as elements are 

actively or passively accumulated, mineral precipitates are commonly formed. These 

biogenic minerals typically have a mineralogical structure distinct from their abiotic 

counterparts (McLoughlin et al. 2007). The high-resolution techniques implemented in 

this study have shown the structure of the tubule features to be unlike any known abiotic 

mineral. In addition, NEXAFS spectroscopy at the C K-edge has found organic matter 

spatially associated with the tubule features. Both of these findings support a biogenic 

origin of the tubules.  

High-resolution TEM imaging reveals four morphologically distinct features: 1) skeletal 

quench crystallites (sample A1, Fig. 6.3A, D, G, J); 2) matrix microcrystallites (samples 

A1, A2, B1, B2; Fig. 6.4A, D, G; Fig. 6.5B, D, G, H); 3) large crystals (sample A2, 

Fig.6.7A, B); and 4) elongate features comprising the Ries tubules (samples A2, B1, B2; 

Fig. 6.4G; Fig. 6.5A; Fig. 6.6A, Fig. 6.7A, C, D, E, F, G, H, I, J). As illustrated by high-

resolution TEM, the elongate features (tubules) and abiotic crystalline features are 

morphologically distinct. The matrix microcrystallites are likely formed through 

quenching mechanisms, incipient re-crystallization of the impact glass, or devitrification 

mechanisms. Discerning the crystallization mechanism of the matrix microcrystallites is 

beyond the scope of the current study.  

The patterns of Fe speciation as revealed by NEXAFS spectroscopy (Fig. 6.8) are 

suggestive of biomineralization. Metal-encrusted cell surfaces forming a class of bacterial 

microfossils through biomineralization are formed through accumulation of metabolic 
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by-products (e.g., Southam and Donald 1999). Gallionella sp. and Leptothrix sp. both 

common in marine hydrothermal settings are known to form iron oxide filaments and 

sheaths encasing the cells (Fortin, 2007 and refs therein). Shewanella, and iron reducing 

bacteria, forms Fe(II) granules during anaerobic respiration that accumulate and adhere to 

the cell wall eventually encasing the cell in reduced iron (Fortin et al. 2008 and 

references therein). The oxidized tubule centres suggest that the solid tubules were 

initially hollow with reduced iron walls and subsequently filled with an oxidized 

authigenic mineral phase during extended hydrothermal alteration. As the A2 tubules and 

A1 crystallites were subject to the same post-impact conditions, alteration and weathering 

are discounted as an explanation for the patterns of Fe speciation present in the tubules. 

Furthermore, the highly reduced character of the tubules discounts oxidation induced 

during ion beam milling. 

NEXAFS carbon spectromicroscopy allows for direct chemical characterization of 

untreated natural samples at nanometer resolution. Information regarding the local 

coordination environment of carbon atoms can then be used to infer the presence of 

specific carbon functional groups in organic molecules (Myneni 2002). Spectral peaks 

indicative of various organic molecules including alkanes, aromatics, and carboxillic 

acids/ketones are spatially associated with the tubules. Organic spectra were not derived 

from areas hosting only crystallites. Samples A1 (crystallites) and A2 (tubules) are from 

the same sample occurring only microns from each other. The proximity of the features 

makes contamination and discrepancies in matrix composition highly unlikely. 

Furthermore, the organic spectra derived from a crack in sample A2 is distinct from all of 

the organic spectra derived from the samples indicating distinct sources.  

The hollow tubules (B2) are associated with the highest concentrations of organic matter 

while an organic component could not be detected in spectra from the solid tubules in 

sample A1. The observation that not all of the hollow tubules are associated with organic 

material suggests that the presence of organic material in the tubule centres is not due to 

passive accumulation of material. The variation in the concentration of organic matter is 

likely do to mineralization and preservation. Samples B1 and B2 exhibited higher degrees 

of hydrothermal alteration suggesting much more extensive and/or longer lived 
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hydrothermal actively. Biogenic tubule formation is constrained by the ability of fluids to 

remove metabolic waste products (e.g., McLoughlin 2010). Once fluid circulation can no 

longer support biological activity, tubule formation ceases and the mineralization process 

begins (e.g., McLoughlin 2010; Staudigel 2008a). Samples B1 and B2 likely experience a 

longer duration of tubule formation. In samples A1 and A2, the tubules are completely 

mineralized and very little (A2) or no (A1) organic matter is preserved. The taphonomical 

continuum from hollow to solid tubules resulting from stages of mineralization and 

preservation is supported by TEM observations. 

6.5.2 Tubule mineralization and preservation 

The X-ray diffraction structure analyses of the elongate features in samples A2, B1, and 

B2 as well as the large crystallite in sample A2 consistently indicate the presence of the 

following families: {001} d-values ranging from 4.9Å – 5.06Å; {110} d-values ranging 

from 6.0Å – 6.2Å; and {0.20} d-value of 4.4Å (Table 6.1). Although the morphology of 

the elongate features is not consistent with any known pyroxene crystal habit, the EDX 

analyses suggest a chemical composition similar to augite.  The d-values obtained from 

the electron diffraction patterns were compared with various d-values of pyroxene 

specimens from XRD databases and the closest match is to an aluminum rich augite from 

Panska, Czech Republic (PDF#41-1483). While several crystallographic families have 

been identified, it is clear by the single crystal diffraction patterns indicative of highly 

crystalline material, that the fine-grained, poorly crystalline phase interstitial to the 

crystal domains and filling the centre of the tubules is not represented in the XRD data. 

The complex intergrowth of the two-phase system implies the tubules were not formed 

through a simple crystallization process. The thickness of the FIB foils was optimized for 

NEXAFS at the Fe edge and precludes ultra-high resolution imaging of lattice fringes. 

Without lattice fringe measurements the augite-like mineral cannot be definitively 

identified. 

The post-impact hydrothermal alteration of the Ries impact structure affecting the glass-

bearing breccias outside the crater rim was characterized by low-temperatures between 

<100 – 200oC (Newsom et al. 1986; Osinski 2005). Based on the 24 km crater diameter, 

temperatures of ~ 60oC could have been sustained for several tens of thousands of years 
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(Osinski et al. 2001). These low temperatures are inconsistent with hydrothermal 

pyroxene growth suggesting that the mineral(s) phase(s) composing the large crystals and 

tubules are either not a canonical pyroxene or are quench crystallites formed during the 

initial cooling and quenching of the impact glass at high temperatures. The latter theory is 

discounted due to the unique and well-characterized morphologies displayed by quench 

crystallites. Quench crystallites form under out of equilibrium conditions during 

quenching of a super-cooled melt phase and are typically dendritic and/or skeletal (Bryan, 

1972; Lofgren 1974) such as the quench crystallites in sample A1. Neither the tubules nor 

the large crystallites display morphologies consistent with a quench origin.  Furthermore, 

the presence of both canonical quench crystallites and the elongate features and large 

crystals within a 100µm2 area necessitates separate formation mechanisms to account for 

both types of crystal morphologies in the same matrix glass. X-ray diffraction will 

produce prominent peaks for only highly crystalline material. TEM images clearly show 

the presence of an additional, poorly crystalline material complexly associated with the 

crystal domains in the tubular features (Fig. 6.7).  

A detailed study of the hydrothermal system at the Ries constraining the fluid 

composition has not been completed; however, the composition of the larger crystallites 

and the tubules (this study) is consistent with hydrothermal mineralization of the host 

glass-bearing impact breccias. A number of hydrothermal alteration phases consistent 

with low-temperature (<100 – 200oC) hydrothermal activity including clays, zeolites, 

quartz, calcite, hematite and goethite have been identified dominated by montmorillonite 

and Ba-phillipsite (Newsom et al. 1986; Osinski 2005).  The co-occurrence of the 

morphologically distinct larger crystals and tubules in the same physical matrix (e.g., Fig. 

6.7A) logically implies distinct formation mechanisms despite the mineralogical 

similarity implied by consistent d-values (Table 1). The elongate morphology of the 

tubular features is not consistent with canonical crystal growth and is reminiscent of 

minerals templating a pre-existing tubular structure. If the minerals comprising the tubule 

features were formed through hydrothermal precipitation within a pre-existing structure, 

then this would explain the chemical and mineralogical similarities with the large crystals 

(sample A2, Fig. 6.7) also postulated to have formed through hydrothermal precipitation. 
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The consistency of the d-values suggests that the large crystals and solid tubules in 

sample A2, the solid tubules in samples B1 and the hollow tubules in sample B2 are 

composed of the same material in various states of alteration. The matrix of sample B2 

displays the highest level of alteration while that of sample A2 the lowest degree of 

alteration. The morphology of the crystal domains comprising the solid tubules is 

reminiscent of void space with large, euhedral growth dominant crystals at the margins 

and fine-grained nucleation dominated crystal growth in the interior. The fine-grained, 

relatively oxidized interior of the tubules is likely a result of hydrothermal mineral 

precipitation. A three-stage formation mechanism for the tubules is proposed: 

1) Microbial tunnelling: Amorphous impact glass in samples A2, B1, and B2 

were subject to microbial alteration as proposed by Staudigel et al. (2006) and 

summarized in McLoughlin et al. (2010), during the initial post-impact 

hydrothermal system. If these were iron-reducing micro-organisms as is suggested 

by the iron speciation patterns and by studies of initial microbial colonizing 

communities of terrestrial glasses then they likely left concentrations of reduced 

iron along the wall of the tubules as they tunnelled through the glass. Samples B1 

and B2 experience more intense hydrothermal alteration due to the increased 

surface area exposed to circulating fluids and this initial phase of microbial 

alteration was of longer duration than in samples A1 and A2.  

2) Tunnel formation cessation: Eventually either the tubules would reach a 

length where passive fluid exchange would be insufficient to remove metabolic 

waste products (samples B1, B2), or the hydrothermal fluid circulation could not 

longer sustain tubule formation (samples A1, A2) resulting in the death of the 

micro-organisms and cessation of tubule formation. At this point mineralization 

of the tubules would begin, initially with deposits of reduced iron acting as 

nucleation sites along the tubule margins.  

3) Mineralization: Crystallization continued until space-limited and fine-grained 

aggregates of material sealed off the tubules. Following the cessation of the post-

impact hydrothermal system, surficial weathering and meteoric water circulation 
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would become the dominant mode of alteration. Glass in samples B1 and B3 

would be much more susceptible to surficial weathering due to the increased 

surface area exposed to the porous matrix of the glass-bearing breccia. Oxidized 

meteoric water circulation resulting in the observed patterns of iron oxidation at 

the interface between the tubules and matrix as observed in sample A1 (Fig. 6.7). 

6.5.3 The impact structure as a microbial habitat 

Recent work has shown that hydrothermal activity is commonplace in the immediate 

aftermath of an impact event on any H2O-rich solid planetary surface (Naumov 2005). In 

an impact crater, impact-melted or -heated materials provide a transient source of heat in 

an otherwise cold environment. The interaction of water with these hot materials forms a 

hot rock-water circulatory system that can dissolve, transport, and precipitate various 

aqueous species (Osinski et al., 2001). The chemical disequilibria characterizing post-

impact hydrothermal systems are a source of metabolic energy for microorganisms. The 

Ries impact structure has an exceptionally well preserved post-impact hydrothermal 

system (Osinski, 2005). 

6.5.4 Impactites as astrobiology targets 

Impact events are the only ubiquitous geological process in the Solar System and impact 

structures represent the dominant geological landform amongst the majority of the 

terrestrial planets. The habitability of subaerial (Herrera et al. 2009) and submarine 

natural glasses (Mason et al. 2007 and references therein) suggests that impact glasses, 

such as those found at the Ries impact structure, are potential habitats for 

microorganisms. Given the probable ubiquity of impact glasses in post-impact 

environments throughout the Solar System, it is important to understand the biological 

components and potential of such systems. Establishing the biogenicity of the tubular 

structures observed in the Ries impact glasses has significant astrobiological 

implications. The high flux rate of meteorite impacts on the early Earth would favour life 

in endolithic (within rock) environments such as glassy substrates, furthermore, impact 

events would provide transient energy to terrestrial bodies without endogenous volcanic 

heat sources to drive hydrothermal activity, such as Mars.  The endolithic environments 



 

 157 

resulting from impact events are important targets for astrobiological investigations of the 

early Earth and of other terrestrial planets such as Mars.  

Understanding the geomicrobiology of impact craters on Earth is critical in furthering the 

search for life on Mars. The hydrothermal systems associated with impact events may 

therefore provide an additional setting to study evidence of early life on Earth. Further 

studies considering the potential hydrothermal habitats of impact craters may not only 

yield insight into early life and the origin of life on Earth, but furthermore, may comprise 

a potential habitat for life and past life on other terrestrial planets such as Mars. 

The extreme conditions present on Mars, such as intense UV flux, low temperature, and 

absence of liquid water may encourage the exploitation of endolithic strategies. Banerjee 

LPSC 2004 McLoughlin et al. (2007, 2010) suggest microborings into volcanic glasses as 

a potential planetary biosignature and lists natural glasses as one of the most promising 

preservation environments for ichnofossils on early Earth and Mars. By extending this to 

impact glasses we greatly increase the number of candidate environments. 
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Chapter 7  

7 Microbial alteration of impact glass 

Sapers, H.M., Banerjee, N. R., Osinski, G. R., Preston, L. J. 

7.1 Introduction 
Bioalteration of terrestrial basaltic glasses produces characteristic tubular and granular 

aggregate textures (Banerjee et al., 2007). Such bioalteration textures preserved in 

Archean greenstone belts constitute one of the oldest records of life on Earth (Banerjee et 

al., 2007). Examination of impact glasses from the Ries impact structure, Germany, has 

revealed tubular textures with remarkably similar morphologies to the tubular 

bioalteration of submarine volcanic glasses (Fig. 7.1). In Chapter 4 the geologic context 

of the tubules is defined concluding that the tubules were not likely to have been formed 

through purely abiotic processes. Arguments for biogenicity including morphology 

consistent with biological behavior and chemical evidence suggestive of biological 

processing are developed in Chapter 5. Results from the first high-resolution 

biogeochemical study of impact glass are presented in Chapter 6 supporting a biogenic 

origin of the Ries tubules. In Chapter 7, the methodology used in Chapters 5 and 6 is 

discussed in detail and the results presented in the context of other putative ichnofossils 

preserved in impactites. This chapter will further discuss the astrobiological implications 

of microbially mediated alteration of meteorite impact glass. The biogeochemical study 

of the Ries impact glasses comprising this thesis is the first such study to present a robust 

dataset characterizing putative microbial alteration of impact materials and thus this work 

presents the first such evidence of ichnofossils in impact glass.  Given the probable 

ubiquity of impact glasses in post-impact environments throughout the Solar System, it is 

important to understand the biological components and potential of such systems. 

The initial catastrophic biological effects of hypervelocity impacts are well established. 

However, a growing body of evidence suggests that meteorite impact events also have 

beneficial effects particularly for microbial life.  This has led many to suggest that impact 

craters may have been important habitats for life on early Earth (Cockell and Lee, 2002). 



 

 165 

More speculatively, impacts may have acted as ‘cradles’ for prebiotic chemical reactions. 

Impact-ejected rocks may have provided refuges for microbial life during the ~3.8 Ga 

late heavy bombardment and may even have allowed the transfer of life between 

planetary bodies (e.g., Cockell 2006). Although impact craters are uncommon on present 

day Earth, (~50 000 km2 globally), they are ubiquitous on rocky and icy bodies within the 

solar system often comprising the dominant geological features. 
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Figure 7.1: Tubular alteration textures in natural glasses. 

A – D: Bioalteration in submarine basaltic glass (Banerjee, 2003). E – H: putative 
bioalteration in impact glass. A, E (RI_00_056): Plane polarized light. Notice the 
segmentation in the tubular textures and bifurcation in E. B, F (RI_10_006): SEM 
secondary electron image. Complex, undulating, irregular structures. C, G (RI_10_006): 
SEM secondary electron image. Hollow tubular textures hosted in glass grains. G: Note 
the ovoid cross section and lack of continuous longitudinal striae in this hollow tubule.  
D, H (RI_00_056): SEM secondary electron image (D), back scattered electron image 
(H). Notice the similarity of the hollow etch structures in D and the mineralized tubular 
structures in H. 
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Any hypervelocity impact into a water-rich target on a solid planetary body has the 

potential to generate hydrothermal system (Naumov, 2005). The hyperthermophilic root 

of the phylogenic tree of life suggests an essential role for thermophilic environments in 

the origin or the early evolutionary history of life. Previous work has associated primitive 

life on Earth with submarine volcanic activity: filamentous microfossils as old as ca. 3.2 

Ga have been found in volcanogenic massive sulfide deposits (Nisbet, 2000); 

bioalteration of volcanic glasses back to 3.5 Ga provide the earliest record of life on Earth 

(Staudigel et al., 2006) suggesting that submarine hydrothermal settings may have played 

an essential role in the origin of life. Impact-induced hydrothermal systems share many 

characteristics with submarine volcanic hydrothermal systems including the presence of 

chemical and thermal energy for microbial metabolism and the precipitation of 

hydrothermal minerals such as clays and zeolites, which may have catalyzed important 

prebiotic chemical reactions. An impact event results in local sterilization; a biological 

resetting event followed by distinct ecological successional stages (Cockell & Lee 

2002c). Impact events create novel microbial niches such as the endolithic habitat created 

by the shock-induced increased porosity of crystalline target rock. For example, 

photosynthetic cyanobacteria have been documented and studied growing within the 

near-surface layers of highly shocked gneisses from the Haughton impact structure, 

Canada (Cockell et al. 2002). Impact glass is another potential impact-induced microbial 

habitat for life on Earth as well as a potential preservation environment for microbial 

trace fossils on Earth and possibly other planets such as Mars.  

The Ries crater in southern Germany is one of the best characterized terrestrial impact 

structures (e.g., Pohl et al., 1977). Furthermore, detailed studies have characterized the 

post-impact hydrothermal system of the Ries crater. In addition, the Ries crater has 

exceptionally preserved proximal impact ejecta deposits including a glass-bearing breccia 

unit. The rapid quenching of molten material following a hypervelocity impact results in 

the formation of impact glasses. Impact glasses share many similarities with volcanic 

glasses, however, fundamental differences impact glasses unique geochemical systems. 

The bulk compositions of impact melts are diverse, reflecting heterogeneities in the target 

lithologies. Furthermore, impact melts often display heterogeneity on multiple scales. In 

addition, the presence of lechatelierite (a silica glass phase) is indicative of high 
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temperatures (>1713oC; Stöffler, 1984) reflecting formation conditions distinct from 

normal igneous processes. Meteoritic contamination may result in siderophile element 

anomalies or isotopic anomalies (Osinski 2003). 

7.2 The Ries Impact Structure: Geological Setting 

The mid – Miocene Ries impact structure located in southern Germany is arguably one of 

the best-characterized and best-preserved terrestrial impact structures (see Pohl et al., 

1977 and von Engelhardt 1990 for reviews). Shoemaker and Chao (1961) first recognized 

the impact origin of the Ries structure in by documenting coesite and lechatelierite within 

the lithic components of glass-bearing breccias. 40Ar/39Ar laser-probe dating of tektites 

constrains the age of the Ries impact structure to 14.6 + 0.2 Ma (Buchner et al. 2010). 

Ries is a complex crater with a diameter of ~24 km (Pohl et al., 1977; Fig. 7.2). The 

approximately circular inner basin has a diameter of 12 km interpreted to represent the 

maximum extent of the transient cavity (Wünnemann et al. 2005; Bader & Schmidt-Kaler 

1979). A crystalline inner ring of uplifted basement surrounds the inner basin. The 

megablock zone, a tectonic ridge comprised of a system of concentric normal faults, 

extends from the inner ring to the crater rim with a maximum extent of ~24 km (Pohl et 

al. 1977). The two-layer target is comprised of dominantly Mesozoic flat lying sediments 

that unconformably overlie crystalline Hercynian basement (Pohl et al., 1977; Graup 

1978). At the time of impact the thickness of the sedimentary package varied from ~470 

m in the north to ~820 m in the south. The lower sedimentary unit consists of sandstone, 

siltstone and marl overlain by an upper limestone unit (Schmidt-Kaler 1978). The 

Hercynian basement consists of steeply dipping gneisses, amphibolites, and ultrabasic 

rocks that are cut by later granitic intrusions (Graup 1978).  

 

Impactites are well preserved (e.g., Chao et al. 1978); surficial “suevite” comprises one 

of four main proximal ejecta deposits (von Engelhardt 1990). The surficial “suevites” 

(impact melt-bearing breccias) are divided into two distinct lithological units: 1) the 

dominant main suevite that represents a clast-rich particulate impact melt rock or impact 

melt-bearing breccia (von Engelhardt 1990; Osinski et al. 2004); 2) subordinate basal 

suevite (Bringemeier 1994). Four main glass types occur within the main suevite both as 
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groundmass phases and as discrete glass clasts (Osinski 2003). Glass clasts are typically 

vesiculated, schlieren-rich mixtures containing abundant mineral and lithic fragments 

(von Engelhardt 1990). The glass clasts hosted within the suevite have been classified 

based on composition and microtextures (Osinski 2003).  

Type I glasses are the most abundant in the Ries suevites. These glasses contain Al-rich 

pyroxene quench crystallites and have SiO2 contents ~63%. Type II glasses have a 

similar SiO2 content as type I; however, they contain only plagioclase crystallites as well 

as a generation of dense, micron-scale vesicles. Type III glasses have low SiO2 contents, 

are hydrated relative to the other glasses, and contain relatively little FeO, MgO, and 

K2O, while having high Al2O3, CaO, and Na2O contents. Type IV glasses have very high 

SiO2 contents commonly >90%. Type I glasses have the highest concentrations of FeO 

and MgO of all 4 glass types (Osinski 2003). Type I glasses are the focus of this study as 

they comprise >90% of the glass clasts hosted within the Ries surficial suevite (Osinski 

2003). 
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Figure 7.2: Simplified geologic map of the Ries impact structure. 

Simplified geologic map of the Ries impact structure. White stars indicate the suevite 
outcrops with glass clasts hosting tubular features. Modified from Osinski (2003). 
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7.3 Impact-generated hydrothermal systems 

Recent work has shown that hydrothermal activity is commonplace in the immediate 

aftermath of an impact event on any water-rich solid planetary surface (Naumov 2005; 

Osinski et al. 2005; Osinski et al. in press). In an impact crater, the heat source is 

provided by impact-melted or -heated materials providing a transient source of heat in an 

otherwise cold environment. The interaction of water with these hot materials forms a hot 

rock-water circulatory system that can dissolve, transport, and precipitate various mineral 

species (Osinski et al. 2001). This has important astrobiological implications as 

hydrothermal systems in general may have played a role in the origin and evolution of 

early life on Earth and possibly other planets such as Mars (Farmer 2000).  

The Ries crater is one of the first impact sites where a post-impact hydrothermal system 

has been proposed (Engelhardt 1972; Salger 1977; Stähle & Ottemann 1977; Osinski 

2005). The occurrence of secondary mineralization and hydrothermal alteration of the 

impact suites has been noted and described (e.g., Förstner 1967; Engelhardt 1972; Stähle 

1972; Jankowski 1977; Stöffler et al. 1977; Engelhardt & Graup 1984; Engelhardt et al. 

1995; Graup 1999; Osinski 2003; Osinski et al. 2004; see Osinski (2005) for a detailed 

study of hydrothermal alteration of the Ries impactites). Using a combination of 

petrographic and analytical SEM techniques, Osinski (2005) has identified a number of 

hydrothermal alteration phases within the glass-bearing breccias including clays 

(dominantly montmorillonite), zeolites, quartz, calcite, hematite and goethite. Alteration 

phases of the crater suevite include: K-feldspar, albite, clays, chlorite, zeolites, calcite, 

and minor phases including pyrite, goethite, barite and siderite. Alteration occurs in three 

main settings: 1) open-space cavity and fracture fillings within the groundmass; 2) vesicle 

linings/fillings within impact glass clasts; and 3) pervasive alteration of groundmass 

phases and glass clasts (Osinski, 2005). Overall the glass clasts are well preserved in the 

surficial suevites (Engelhardt & Graup 1984; Engelhardt et al. 1995; Graup 1999; 

Osinski 2003, 2005). The hydrothermal fluids of the Ries post-impact hydrothermal 

system were likely derived from a combination of meteoric water from the over lying 

crater lake and ground waters from nearby country rocks. There is no evidence of a 

magmatic or metamorphic source (Osinski 2005).  
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Recent work by Muttik et al. (2008) suggests that the Ries post-impact hydrothermal 

system was limited to the intensely altered glass-bearing breccias within the crater and 

the alteration of the glass-bearing breccia outside the crater rim is due to weathering 

process. It is argued that the main alteration phase of these glass-bearing breccias 

identified as montmorillonite and Ba-phillipsite by whole rock powder XRD is 

chemically homogenous throughout the surficial suevites consistent with low temperature 

hydrous devitrification of impact glasses. It is significant to note that neither clasts of pre-

impact target rocks nor impactite phases were enriched in Ba. Therefore the Ba must 

have been dissolved by the hydrothermal fluids, transported and precipitated during 

zeolitization of the surficial suevites (Osinski 2005). However, Osinski (2005) noted that 

hydrothermal alteration in the surficial suevites was limited to localized zones including 

fractures and vugs. Bulk XRD is not a sufficient technique to identify trace assemblages 

in spatially restricted zones. It is likely that alteration assemblages formed by post-impact 

weathering processes are the predominate assemblages of the surficial suevites 

considering the limited extent of hydrothermal activity in these units. Furthermore no 

explanation is offered regarding the Ba-phillipsite phase within the glass-bearing breccias 

outside the crater rim. A recent study suggests that alteration of glass clasts within these 

glass-bearing breccias followed a progression from high- to low-temperature alteration 

with textures consistent with hydrothermal alteration, sensu stricto, between the two 

temperature end members (Sapers et al 2009). 

7.4 Analytical Techniques 

A representative suite of impact-melt bearing breccias from the Ries impact structure 

(Fig. 7.2) were examined in hand sample, polished thin section, and analyzed with 

Fourier Transform Infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM), 

and energy dispersive X-ray spectroscopy.  Approximately 100 thin sections derived 

from five field campaigns (2000, 2001, 2005, 2009, 2010), were chosen for petrographic 

study. Reflected and transmitted plane polarized and crossed polarized light was used for 

imaging using a Nikon Eclipse LV100POL petrographic light microscope equipped with 

a Nikon DS-Ri1 12 megapixel camera.  Extended-depth of focus images (EDF) were 

obtained using plane-polarized transmission microscopy by aligning multiple images in 
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the z plane using Nikon Elements software. On average 25 – 35 images were collected at 

~0.4µm z-spacing and merged to created a single EDF image. Reflected light was used to 

target areas for SEM analysis by identifying regions where tubules intersected the thin 

section surface. Two glass clasts one from the Amerdingen and Seelbronn localities that 

contained representative tubular textures were chosen from the optical images for further 

analysis. 

Three glass clasts were chosen for micro-X-ray diffraction (µ-XRD) analysis from a 

polished thin section of the Amerdingen. Glass clasts were chosen based on size (>50µm) 

and absence of large vesicles and lithic inclusions. X-ray diffraction data were collected 

in coupled geometry with θ1=5º and θ2= 17º with a frame width of 30.5º and scanning 

speed of 1.22º/min using the Bruker D8 Discover micro X-ray diffractometer (µXRD) at 

the University of Western Ontario (Flemming 2007), operated using CuKα radiation 

generated at 40 kV and 40 mA with a beam diameter of 50 µm. Diffracted X-rays were 

detected by a General Area Detector Diffraction System (GADDS). Diffractograms were 

analyzed using the BrukerAXS EVA software package and the International Center for 

Diffraction Data (ICDD) PDF-4 database.  

High-resolution backscatter electron (BSE) imaging and energy dispersive X-ray (EDX) 

spectroscopy spot analyses were carried out with a Leo 1540 FIB/SEM CrossBeam field 

emission SEM equipped with an Oxford Instruments INCA EDX system allowing for 

elemental analysis, sensitive to ~0.5 wt. % or less for all elements from C – U in the 

Nanofabrication Laboratory, University of Western Ontario. Samples were Pt sputter 

coated using the Denton Vacuum Desk 2 for 200 seconds at 15 mA. The sections were 

analyzed under high vacuum with an accelerating voltage of 15 – 20 kV and a working 

distance ~10 mm. Energy dispersive X-ray (EDX) spectroscopy mapping and spot 

analyses of selected samples allowed for the identification of elemental distribution on a 

micron scale.  

Further SEM imaging and EDX mapping was carried out on a Hitachi SU6600 variable 

pressure field emission SEM (Schottky emitter) equipped with an Oxford Instruments 

80mm2 silicon drift detector at the University of Western Ontario Zircon and Accessory 
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Phase analysis facility. The spectral resolution of the EDX detector was 129eV at an 

accelerating voltage of 5.9 keV. Samples were analyzed under vacuum at a working 

distance between ~10 – 15µm and an accelerating voltage of 10 – 15kV with a probe 

current of 1 – 2nA. BSE images were captured with a five segment solid-state detector. 

Samples were coated as above and all data was analyzed with Oxford Instruments INCA 

software. 

A carbon tab was prepared for BSE imaging. Pieces of a large glass clast from the 

Seelbronn sample were crumbled then crushed with a mortar and pestle to sub-millimeter 

sized angular fragments. The fragments were then stuck to a 1 cm double-backed 

conductive adhesive carbon tab, which was then stuck to a titanium stub mount. The full 

assembly was then Pt coated using the Denton Vacuum Desk 2 for 200 seconds at 15 

mA. 

Fourier Transform Infra-Red (FTIR) spectroscopy was carried out on both tubule-free 

and tubule-rich areas of the Amerdingen sample using a Bruker IFS55 FTIR with a 

Baseline TM Horizontal Attenuated Total Reflection (ATR) attachment equipped with a 

germanium crystal, under an IRScope II microscope. The infrared microscope is a 

sampling accessory used to obtain infrared spectra of very small samples. The 

microscope provided visual assessment of the sample and condensed the infrared beam 

for spectral acquisition. Analyses of the polished thin section were carried out at Surface 

Science Western. A spectral resolution of 4 cm-1 was used, with a scan and sample 

background of 100 scans, over a spectral range of 4000 – 700 cm-1 (2.5 – 14.2 µm), 

analysing a spot size between 50 and 60 µm in diameter. All analyses were calibrated to 

the ATR-equipped germanium crystal and atmospheric H2O and CO2 bands were 

subtracted out. Measurements were carried out on the pure glass thin section surrounding 

the sample and the mounting media to identify contaminants and to enable the removal of 

these contaminants from the spectra obtained. 
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7.5 Results 

7.5.1 Transmitted light optical microscopy 

Transmitted light optical microscopy allows the tubular structures to be viewed in a 

three-dimentional context (Fig. 7.3). The fresh glass hosting the tubular alteration 

textures are isotropic, holohyaline to cryptocrystalline schlieren-rich, characterized by 

complex flow textures and vary in colour from colourless to brown, yellow, pink or 

green, yellow-brown being dominant (cf. Osinski 2003). The glass typically has a cloudy 

appearance, which increases with tubule density. Increasing alteration and hydration also 

darken the glass; highly altered glass clasts may appear dark brown to black. Tubules are 

concentrated along fractures or clast margins (Fig. 7.4), form radiating aggregates and 

have complex, convoluted morphologies forming a morphological continuum between 

loose undulating curves and coiled morphologies (Figs. 7.3B, 7.4A). Curvature appears 

random, non-oriented and unique to individual tubules (Fig. 7.3B; 7.5A). Coils may be 

either dextral or sinistral and typically have one complete revolution (Fig. 7.3B) but may 

display up to five whorls (Fig. 7.4A). Tubules have diameters ~1µm and commonly have 

length to width ratios >5. Some appear to display bifurcation or asymmetric branching 

(Fig. 7.3A). Approximately one-third of tubules display annulation reminiscent of distinct 

segmentation (Fig. 7.3A). These segmented tubules typically display less curvature than 

their non-segmented counterparts (Fig. 7.3). Individual segments have length to width 

ratios approximately 1:2 (Fig. 7.3B) and vary in diameter from ~1µm to approaching 

3µm. Occasionally segmented tubules with large (~3µm) diameters are observed that 

have segments with length to width ratios approaching 1:6 (Fig. 7.4B). Tubules are 

commonly observed to cluster by like-morphology (Fig. 7.3A, C). 

In summary, areas displaying evidence of hydrous alteration such as optical darkening 

have a higher concentration of tubules (Fig. 7.4). The glass often displays flow features 

that are not associated with tubule distribution. Most importantly, the tubules are not 

found in areas of fresh glass devoid of alteration features and they are cross-cut by a later 

series of fractures that are not associated with evidence of alteration (e.g., Fig. 7.4C, D). 
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Figure 7.3: Transmitted light EDF photomicrographs of tubular features. 

Transmitted light EDF photomicrographs of tubular features in type I impact glass 
illustrating complex morphologies sample RI_00_056. A and C: dense masses of non-
intersecting tubular features. Notice branching, smooth-walled tubules indicated by black 
arrow; tubules displaying annulations suggestive of segmentation (white arrows); and the 
tendency for tubules of like morphologies to cluster shown by red ellipses. B: zoom-in of 
area in the red ellipse of A showing diverging segmented tubules. Directionality indicated 
by black arrows. Notice the complete coil indicated by the white arrow. 
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Figure 7.4: Association of tubular features with clast margins and fractures. 

A: 0.5mm glass clast hosting tubular alteration. Notice the association of the tubules with 
the clast margin. A (RI_10_013 5m): EDF image of the area bound by the white box in 
A. Note the extension of the tubules perpendicular to hydrous alteration phases (white 
arrows). C (RI_10_013 4m): Tubules concentrated around the hydrothermally altered 
margins of a glass clast (white arrows). Note the large, partially resorbed, shocked quartz 
grain (black arrow). The presence of the PDFs in the quartz grain in an unambiguous 
indicator of impact shock metamorphism. Also note the absence of tubules in the vicinity 
of the quartz grain.  D, E: Late fractures cross-cutting tubular structures. D (RI_10_013 
0m): a late fracture not associated with hydrous alteration cross cuts a series of smooth-
walled, curvilinear tubular features (white arrow). Also note the spiral tubular features 
indicated by the black arrows. E (RI_05_040): a large (~ 6µm) segmented tubule is cross 
cut by a late fracture (white arrow). 
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7.5.2 Scanning electron microscopy 

Scanning electron microscopy was used to image the surface expression of the tubular 

alteration texture. The tubules appear as irregular, sub-linear to tightly curled, bright 

objects in the darker grey glassy matrix (Fig. 7.5). The margins of the tubular features are 

sharp and range from highly irregular (Fig. 7.5D) to smooth (Fig. 7.5B). Fine-scale (sub-

micron) textures in both the glass and tubules are absent. Some tubules appear hollow 

with a circular cross-section, displaying smooth margins, ± annulations, are 

approximately 0.4 – 1µm in diameter, and up to hundreds of microns in length (Fig. 7.5C, 

D).  Other tubules appear to be filled with an unidentified mineral phase and are either 

ovoid or rhomboid in cross-section. They have smaller length to width ratios compared to 

the hollow tubules and vary in diameter from 1 – 3 µm.  Margins are either smooth or 

display highly irregular ornamentation perpendicular to the long axis of the feature (Fig. 

7.5C – D). 

Tubules and matrix in both of the Amerdingen and Seelbronn samples were analyzed 

with EDX spectroscopy. Relative to the Si-rich glassy matrix the tubules are depleted by 

~5x in Na, ~2x in K, ~1.5x in Al and Si. The tubules are enriched by ~6x in Mg and Fe, 

and ~1.5x in Ca (Fig. 7.6). These qualitative elemental ratios are based on normalized 

spectral intensities from linescans produced from EDX elemental maps. In areas where 

tubules are densely concentrated, they are surrounded by a zone depleted in Mg, Fe, Ca 

and Na and enriched in K (Fig. 7.7).  

Both bright and dark crystallites, relative to the glassy matrix, were observed. Three types 

are distinguished by morphology and elemental chemistry. Most commonly observed are 

bright skeletal dendrites of a calcic pyroxene composition (Fig. 7.8), followed by darker 

tabular laths of feldspar (Fig. 7.8) and rare bright, rounded Ti, Mg, and Fe oxides. Quartz 

grains with irregular boundaries are scattered throughout the glassy matrix (Figs. 7.4, 

7.6). The matrix adjacent to the quartz grains is darker and higher in Si content compared 

to the surrounding matrix (Fig. 7.6).  Tubular features are generally associated with areas 

containing crystallites chemically consistent with pyroxene. Areas dominated by quartz 

grains or high-Si, have few to no tubules (Figs. 7.4, 7.6). 
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Imaging the angular crushed glass fragments adhered to the stub-mount provided a three-

dimensional surface of the tubular structures within the glass grain. Tubules were 

observed as dense masses within fractures and voids (Fig. 7.9), with curved to sub-linear 

morphologies and diameters ranging from 0.2 µm to 1 µm. The full extent of the tubule 

length could not be determined, however, visible sections extend >10µm. Two distinct 

morphologies are recognized: tubules with an ovoid cross section and tubules with a 

rhomboid cross section. The former are either hollow or solid while all tubules with a 

rhomboid cross-section appear solid.  
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Figure 7.5: BSE SEM images of tubular features. 

A (RI_00_056): tubular features appear hollow in cross section. B (RI_00_056): Note the 
tightly curled morphologies (white arrows) and ovoid solid cross sections (black arrows). 
C (RI_09_006):  The features appear as gently undulating, filaments extending 100s of 
microns in length (black arrows). Notice the hollow cross section indicated by the white 
arrow. D (RI_09_006): Undulating features displaying annulations indicated by black 
arrows. 
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Figure 7.6: Elemental composition of tubular features. 

The tubules are enriched in Fe, Mg and Ca while depleted in Al, Si, K, and Na. Note the 
Si- Al-rich composition of the glassy matrix. The tubules are concentrated in areas of 
high K and lower Na and Ca compositions. This may represent areas of alteration 
possibly as a result of biological processing. These areas are visible in the central BSE 
image as dark gray halos around the tubules. Note the absence of tubules in the vicinity 
of a relict quartz grain circled in red on the Si and BSE panels. Sample RI_09_006. 
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Figure 7.7: matrix composition surrounding tubular features. 

EDX mapping illustrating matrix composition surrounding tubular features. Tubules 
surrounded by zone depleted in Ca, Na, Fe and Mg while enriched in K. Tubules are 
enriched in Ca, Fe and Mg and depleted in Al, Si, K, and Na. Note the late fracture cross 
cutting tubule features indicated by the white arrow on the BSE panel. Scale bars 30µm. 
Sample RI_09_006. 
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Figure 7.8: Micrographs illustrating the distinct morphologies between quench 

crystallites and tubules. 

A, C, E: transmitted light photomicrographs. B, D, F: Backscatter secondary electron 
scanning electron micrographs. A – B (RI_10_006): Tubules (white arrows) and quench 
crystallites (black arrows). Notice the close propinquity and distinct morphologies of the 
two features. C (RI_10_009A1), D (RI_10_006): Quench crystallites displaying 
characteristic skeletal and dendritic morphologies. E – F (RI_10_009A1): Tubular 
features in dense, non-intersecting clusters concentrated around clast margins (E); hollow 
in cross-section, note the convoluted morphologies 
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Figure 7.9: Secondary electron SEM images of a dense mass of mineralized tubules. 

A: Dense mass of mineralized tubules in altered void of impact-glass sample RI_10_006. 
Note the smooth appearance of fresh glass (black arrow right) compared to the pitted 
texture of altered glass (black arrow left). B: close up of boxed area in A. Notice the film 
of material coating many of the tubules (white arrows). C, D: close up of boxed areas in 
B. 
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7.5.3 Micro-XRD 

Micro XRD conducted on 3 glassy clasts suggests the presence of a complex suite of 

micro-crystalline material (Fig. 7.10). Clay minerals include montmorillonite, illite and 

nontronite. There is also evidence for chlorites, zeolites, carbonates, and iron sulphides. 

Peaks indicative of quartz, orthoclase and K-feldspar are also present. The large angle 

between the detector and X-ray gun required to record clay peaks elongated the analysis 

ellipse. As a result cataclastic matrix material was also analyzed with the intended glass 

clast target. 
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Figure 7.10: Mineralogy of glass clast as determined by µ-XRD. 

An example analysis area and corresponding XRD patterns and their respective 
mineralogical assignments are shown. A: photomicrograph of a glass clast. The margins 
of the clast are shown in red and the approximate µ-XRD footprint is shown by the 
dashed yellow ellipse. B: µ-XRD patterns indicating the presence of a complex 
assemblage of micro-crystalline material. The original spectra is shown in grey; note the 
large glass hump. Effects of background and glass are subtracted out to produce the black 
spectra. Sample RI_00_056. 
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7.5.4 FTIR Spectroscopy 

7.5.4.1 Tubular regions 

FTIR absorption bands were identified at 3592, 3394 and 3251 cm-1 that are due to the 

OH symmetric stretching vibrational mode of partially hydrogen-bonded water 

molecules, and the asymmetric and symmetric OH stretch of water molecules fully 

hydrogen-bonded with surrounding water molecules respectively (Verma et al. 2007). 

This region of OH bands can be contributed through OH stretching vibrational modes 

relating to the minerals present, or potentially to an organic matrix (Fig. 7.11A). 

Absorption bands identified at 1153, 1095, and 977, cm-1 are the Si-O asymmetric 

stretching vibrational modes of SiO4 tetrahedra, whilst absorption bands at 790 and 732 

cm-1 are the Si-O-Si and Si-O stretching vibrational modes. An absorption band at 763 

cm-1 may be that of carbonate ions (CO3
2-) due to carbonate being present within the 

glasses (Legodi et al. 2001; Prencipe et al. 2004; Tatzber et al. 2007). Finally, the 646 

cm-1 absorption band can be derived as a Ti-O stretching vibrational mode of TiO6 

octahedra.  

Interestingly, absorption bands were observed corresponding to organic functional 

groups. Aliphatic C-Hx moieties are observed at 2958, 2938, 2875 and 2859 cm-1. The 

shoulder band absorption at 2958 cm-1 and the absorption band at 2938 cm-1 are derived 

from the asymmetric stretching vibrational modes of CH3 and CH2, respectively. An 

absorption band at 2875 cm-1 relates to the symmetric stretching vibrational mode of CH3 

whilst the symmetric CH2 stretching vibrational mode is observed at 2859 cm-1. 

An absorption band at 1731 cm-1 is due to a C=O stretching vibrational mode (Schmitt 

and Flemming 1998) and references therein). An absorption band at 1635 cm-1 may be 

derived from the amide I C=O stretching vibrational mode (Krimm & Bandekar 1986), 

however, it overlaps the positioning of the H2O bending vibrational mode. An absorption 

band at 1562 cm-1 corresponds to an Amide II vibrational mode (Krimm & Bandekar, 

1986). A band at 1509 cm-1 may be that of a C-C stretching vibrational mode but is also 

located where the strongest absorption band corresponding to the epoxy is found. Further 

absorptions are identified at 1457 and 1382 cm-1 of CH3 asymmetric and symmetric 
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bending vibrational modes respectively. Finally the 1095 cm-1 shoulder absorption band 

may not only correspond to the Si-O asymmetric stretching vibrational mode, but also 

that of a PO2
- symmetric stretch (Fig. 7.11A inset). 

7.5.4.2 Tubular-free regions 

An FTIR absorbance spectrum from the tubular-free glasses indicates an absorption band 

located at 3259 cm-1 on a broad band centred at 3380 cm-1. These are the symmetric and 

asymmetric OH stretching vibrational modes of water molecules fully hydrogen bonded 

with surrounding water molecules (Verma et al. 2007). An absorption band at 1627 cm-1 

is that of H2O. The absorption bands at 1095 and 985 cm-1 are the Si-O asymmetric 

stretching vibrational modes of SiO4 tetrahedra; and the 779 and 732 cm-1 absorption 

bands are Si-O-Si or Si-O stretching vibrational modes of SiO4 tetrahedra. The absorption 

band at 644 cm-1 is that of a stretching vibrational mode of Ti-O from TiO6 octahedra. A 

shoulder is observed on this absorption at 624 cm-1 that is assigned to belong to the 

mineral component of the sample, however, an exact determination is unavailable at 

present (Fig. 7.11B). No organic bands as seen in the tubular-rich areas are identified. An 

absorption band at 1517 cm-1 is observed, however this is due to the epoxy as explained 

above. 
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Figure 7.11: Transmitted light images and FTIR absorbance spectra. 

Transmitted light images and FTIR absorbance spectra from a tubule-rich area (spot 1) 
and tubule-free area (spot 2). A: photomicrograph of Amerdingen suevite indicating the 
approximate locations of FTIR analyses (red circles). B: FTIR absorbance spectra from 
spot 1, a tubule-rich area. Si-O, Ti-O and OH stretching absorption bands are observed. 
The main organic vibrational mode frequencies are identified on the inset expanded 
absorbance spectrum. Peak numbers match those described within the text. The 
photomicrograph to the right shows the dense clots of tubular features hosted within the 
glass. C: FTIR absorbance spectra from spot 2, a tubule-free area. Si-O, Ti-O and OH 
stretching absorption bands are again observed. No organic bands are observed. The 
photomicrograph to the right shows the absence of tubular features. Sample RI_00_056. 

1mm	
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7.6 Discussion 

7.6.1 Evidence for biogenicity of the Reis tubules 

7.6.1.1 Biogenicity criteria 

Systematic criteria for determining the biogenic morphology of tubular glass alteration 

has been reviewed in detail elsewhere (e.g., Staudigel et al. 2006; McLoughlin et al. 

2007; McLoughlin et al. 2008). McLoughlin et al. (2007) developed a three-pronged 

approach to assessing the biogenicity of putative ichnofossils. Tentative bioalteration 

features must satisfy the following three criteria before a biogenic origin can be 

determined: “(1) a geological context that demonstrates the syngenicity and antiquity of 

the putative biological remains; (2) evidence of biogenic morphology and behaviour; and 

(3) geochemical evidence for biological processing” (McLoughlin 2007).  Recently this 

biogenicity criteria has been applied to a series of tubular alteration textures observed in a 

Palaeozoic ophiolite and Precambrian greenstone belts: Titanite mineralized tubular 

textures were observed in ~442 Ma pillow lavas from a Caledonian west Norwegian 

ophiolite (Fliegel et al. 2011); Annulated tubular textures in Proterozoic pillow lavas 

from the Pechanga greenstone belt (Fliegel et al. 2010); and tubular alteration features in 

Archean pillow lavas from the Wutai greenstone belt (McLoughlin et al. 2010).  In all 

three cases, titanite dating and the overprinting of later metamorphic events demonstrated 

the syngenicity and antiquity of the features. The Caledonian tubules (Fliegel et al. 2011) 

lacked the morphological complexity and large length to width ratios typically associated 

with tubule bioalteration features (e.g., Furnes et al. 2004; Banerjee et al. 2006; 

McLoughlin et al. 2009). In contrast, the Pechanga (Fliegel et al. 2010) and Wutai 

(McLoughlin et al. 2010) features do display a complexity suggestive of biogenic 

morphology and behaviour. The Caledonian features did not meet the biogenicity criteria 

as they did not display complex morphologies suggestive of a biotic origin and 

geochemical evidence could neither support nor refute biological processing. The origin 

of these features remains ambiguous although the authors suggest they may represent the 

initial stages of microbial etching (Fliegel et al. 2011). The complex morphology together 

with geochemical evidence of biological processes allowed the Pechanga tubular features 
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to be classified as ichnofossils preserving microbial tunnelling (Fliegel et al. 2010). 

Geochemical evidence is not discussed with respect to the Wutai features, however their 

morphological similarity to both in situ bioalteration of modern ocean crust and 

ichnofossils in other Precambrian greenstone belts lead the authors to conclude that the 

Wutai tubular features are biogenic in origin (McLoughlin et al. 2010). 

7.6.1.2 Morphological evidence 

Staudigel et al. (2007) presented a set of characteristics concerning the distribution and 

morphology of putative bioalteration features. We summarize these criteria in the context 

of the Ries glasses. The tubule features in the Ries glasses are associated with clast 

margins, fractures, and vesicles displaying alteration fronts consistent with post-impact 

hydrothermal alteration (Fig. 7.4). This is consistent with tubule formation only where 

the impact glass was in contact with circulating fluids. As mentioned above, tubules are 

cross-cut by later fractures (Fig. 7.4) which do not exhibited alteration fronts, or 

associated tubules. This distribution of tubules correlated with glass-fluid interfaces is 

consistent with reports of bioalteration in submarine basaltic glasses (e.g., Furnes et al. 

2007) and is fundamental to the proposed process of tubule formation discussed below. 

The tubules themselves are villiform forming straight to complex and highly convoluted 

vermicular features in the glass (e.g., Fig. 7.4A). They may or may not bifurcate, branch 

(Fig. 7.3A) and/or exhibit annulations suggestive of segmentation (e.g., Fig. 7.4B).  There 

is no parsimonious abiotic explanation of these morphologies. Ambient inclusion trails 

(AITs) are discounted as the hollow tubules lack the longitudinal striations diagnostic of 

AITs. Furthermore, none of the tubular features observed to date contain terminal 

inclusions (see McLoughlin et al., 2010 for distinguishing AITs from biogenic 

tunneling). Biogenic behavior is suggested by the distribution of the tubular features. 

Like morphologies are often clustered together, suggestive of discrete populations. 

Segmented tubules are clustered together while non-segmented or spiral-shaped tubules 

cluster in other regions (Fig. 7.3). This distribution of clusters of tubules with like 

morphologies is suggestive of microbial populations. Consistent with reports of 

bioalteration in submarine basaltic glasses e.g., (Banerjee and Muehlenbachs 2003; 

Furnes et al. 2004, 2007), the tubules in the Ries glasses do not intersect, in contrast to 
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quench crystallites, and appear to avoid each other as indicated by changes in direction as 

two tubules approach each other (Fig. 7.3). This is expected in microbial populations 

sharing a substrate. We further expand on the morphological evidence for biogenicity by 

following the textual arguments of Staudigel et al. (2007) and (McLoughlin et al. 2007):  

• Tubules do not line up on opposite sides of fracture and therefore do not 

represent planes of weakness. 

• Tubule diameters are on the order of a micron, consistent with the size of 

microbial cells and microbial borings in terrestrial volcanic glass (Staudigel et 

al. 2008a). 

• The tubule diameter remains constant, i.e. there is no narrowing or flaring at the 

entrance or terminus of the tubule as would be expected from abiotic dissolution 

or vesicle generation. 

• A population of tubules in the Ries glasses display regular segmentation 

consistent with segmented biotic filaments suggestive of multiple cells within a 

sheath. 

• A sub-population of segmented tubules show clear bifurcation suggestive of cell 

division.  

• The spiral morphology of some tubules in the Ries glasses is extremely hard to 

reconcile abiotically, but closely resembles bacterial spirochete morphology 

(McLoughlin et al. 2009). 

The morphology of putative ichnofossils is a notoriously ambivalent indicator of 

biogenicity (Brasier et al. 2002; Cady et al. 2003; Garcia-Ruiz et al. 2003 and others), 

therefore, we also present geochemical evidence of biological processing in addition to 

the presence of organic compounds associated with morphological evidence.   
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7.6.1.3 Geochemical evidence 

Infrared spectroscopy applied to the study of microorganisms over the last 60 years (e.g., 

Heber et al. 1952; Norris 1959) has identified a number of distinct functional group 

frequencies belonging to aliphatic hydrocarbons, amides and carbonyl group molecules, 

which may be assigned to various functional groups in lipids, proteins and carboxylic 

acids. These groups can also be found as part of the structure of other organic compounds 

that are non-biological in nature, however in this study their spatial association with the 

tubule patterns may infer that they reflect biomolecules preserved within the tubules.   

FTIR spectroscopy is used to compare the functional groups present within the tubule-

free and tubule-rich areas of the glasses. Spectral absorptions are assigned to distinct 

functional groups or chemical substructures that encompass information about various 

biomolecules. A recent FTIR investigation of tubule bioalteration in submarine basaltic 

glass from the Ontong Java Plateau (OJP) found evidence of organic compounds in 

tubule-rich regions including: aliphatic hydrocarbons, amides, esters and carboxylic 

group absorption bands (Preston et al. in press). These organic molecules were 

interpreted to represent the fatty acids of cell membranes, proteins and peptides produced 

by microorganisms inhabiting the glass.  In this study, the FTIR spectra are comparable 

to the spectra of the bioaltered OJP glasses and also indicate the presence of various 

organic molecules included aliphatic hydrocarbons, esters, amides and carboxylic groups. 

Within the Ries glasses, the dominant spectral features observed are those associated with 

silicate minerals and glasses due to Si-O-Si, Si-O-Al and/or Al-O-Al fundamental 

vibrational modes (e.g., McMillan 1984; McMillan and Hofmeister 1988). These spectral 

features are centred on 977 cm-1 in the tubule-rich areas, and 985 cm-1 in the tubule-free 

glasses. Absorption bands observed at 644 and 646 cm-1 are tentatively assigned to the 

Ti-O stretching vibrational modes of TiO6 octahedra based on studies by (Zhang et al. 

2002). A Ti phase is observed to be present in the Si-rich glass as confirmed by EDX 

mapping (data not shown). The OH absorption bands observed around 3250 and 3400 

cm-1 are common to all spectra obtained, indicating the samples are hydrated; likely 

representing water molecules bound within the glass matrix. The absorption band at 

~3590 cm-1 (symmetric OH stretching vibrational mode of partially hydrogen bonded 
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water molecules) is identified in all spectra from the tubule-rich areas but is absent in 

those from the tubule-free glasses. A similar occurrence of partially hydrogen bonded 

water molecules in bioaltered areas of the OJP glasses was inferred from the FTIR 

spectra of that study. In the case of the OJP glasses, the presence of the ~3590 cm-1 

absorption band in areas of dense tubular alteration and its absence in tubule-free areas 

was interpreted to imply that the partially hydrogen bonded water molecules were bound 

to an organic matrix (Preston et al. 2011). The H2O absorption band commonly located at 

~1640 cm-1 overlaps with that of the amide I absorption band described later. This 

absorption band has a relatively high absorbance within the tubule-rich spectra, but is 

weaker in the glass spectra. Perhaps indicating greater hydration of the glass containing 

tubules. Four internal vibration modes of the CO3
2- ions can be observed (Vn), with the 

763 cm-1 vibrational mode of this study being that of v4, indicating the presence of minor 

carbonates. This is the only spectral evidence for carbonates within the samples and is 

only found within the tubule-rich areas. 

The aliphatic C-Hx stretching vibrational bands between 3000 and 2800 cm-1 may be 

derived from groups usually present in fatty acid components of cell membranes (Helm et 

al. 1991). The asymmetric CH2 stretching vibrational mode in this region has the highest 

absorbance value, followed by the CH3 symmetric absorption band in the FTIR spectra. 

A dominance of CH2 absorbance bands would indicate that the areas under analysis are 

highly aliphatic in nature however this is not the case for the Ries tubules. There are two 

CH2 absorbance bands identified and four CH3 indicating the dominance of CH3 aliphatic 

groups in the tubule-rich areas despite the higher absorbance of the CH2 feature. An 

abundance of CH2 spectral bands indicates an aliphatic nature, the implications of a 

dominance of CH3 functional groups is unclear, however, this combination of CH2 and 

CH3 absorption bands may imply a mix of carbon molecules dominated by branched 

rather than linear aliphatic molecules (Lin and Ritz 1993). In the tubule-free areas, the C-

Hx region has inverted absorption bands, indicating that these areas have less aliphatic 

hydrocarbons than the standards used for calibrations. 

Many of the important vibrational modes associated with lipids (Tamm and Tatulian 

1997) are identified in the FTIR spectra from the tubule-rich areas of this study, for 
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example the absorption band at 1731 cm-1 is that of a C=O stretching vibrational mode of 

esters found within fatty acids. The infrared spectra of polypeptides exhibit a number of 

amide absorption bands, which represent different vibrational modes of the peptide bond. 

An absorption band at 1635 cm-1 may be derived from the Amide I C=O stretching 

vibrational mode (e.g., Byler & Susi 1986; Arrondo et al. 1993; Goormaghtigh et al. 

1994; Jackson & Mantsch 1995). An amide II absorption band of secondary protein 

structure is observed at 1562 cm-1. These amide vibrational modes are additional 

evidence that organics, perhaps of biological origin, are preserved within the tubule-rich 

areas. The Amide I absorption band overlaps with that of H2O; however both are 

expected to be present within the samples. The H2O absorption band is mirrored by bands 

around 3300 cm-1, whilst the Amide I assignment is strengthened by the Amide II 

absorption band. Further deconvolution of these bands caused artefacts to be created in 

the spectra that hindered more detailed interpretations. 

The absorption bands at 1509 and 1517 cm-1 are tentatively linked to vibrational modes of 

various carboxylic groups. These are in fact proposed to be from the epoxy used to 

embed the samples. This absorption band in the epoxy FTIR spectra has the highest 

absorbance, so even with the removal of the epoxy from the tubule and glass spectra, this 

still remains a very minor component. No other effects from the epoxy have been 

observed within any of the spectra collected. Finally the 1095 cm-1 tentative assignment 

to the PO2
- symmetric stretching vibrational mode, if not due to the minerals present, 

could be due to the phosphate stretching vibrations within membrane lipids or nucleic 

acids of DNA (Benedetti et al. 1997; Pevsner & Diem 2003). 

Tubules are not present in Si-rich regions of the glass nor are they concentrated in areas 

dominated by partially resorbed quartz grains (Fig. 7.6). This distribution suggests a 

preference for a glass substrate enriched in the transition metals and alkali elements. In 

addition, Mg, Fe, Ca, and Na depletion zones surrounding tubule alteration (Fig. 7.7) has 

been identified as a biological processing signature (McLoughlin et al. 2007). The tubule 

features themselves are preserved by a mineral phase enriched in Mg, Ca and Fe and 

depleted in Na, K, Al and Si relative to the glassy matrix (Figs. 7.6, 7.7). Ca-

clinopyroxene quench crystallites present in the type I glass clast display similar 
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enrichment and depletion patterns. Pyroxene crystallites are rich in bio-essential elements 

such as Fe and Ca that are lacking in the glassy matrix. It is conceivable that microbes 

could preferentially extract these bio-essential elements from crystallites. These elements 

would therefore become concentrated within the tubules and preserved following decay 

of organic matter. Therefore, this enrichment would be expected if microbes are 

accumulating these metabolically relevant elements followed by passive accumulation of 

authigenic mineral phases and subsequent sealing of the channel and decay of organic 

matter.  A similar preservation mechanism has been suggested for tubules preserved by 

titanite mineralization in Archaean greenstone belts (Banerjee et al. 2006; Vogt et al. 

2010). In the case of Archaean tubules, Ti is passively accumulated by microbes and 

concentrated within bioalteration features. It is unclear if the transition from hollow, 

smooth-walled, circular tubules to solid, decorated, rhomboid features represents a 

continuum of preservation and taphonomical change, or if the solid, rhomboid, linear 

features represent a discrete abiotic phenomena such as micro-crystallites. Both the 

hollow and solid tubules have morphologies distinct from the characteristic skeletal and 

dendritic forms of quench crystallites. 

7.6.1.4 Mechanisms of microbial glass tunnelling 

To account for the tubular morphologies observed in the Ries glasses, various models of 

glass tunnelling by microorganisms can be hypothesized (e.g., Dole 1964). A plausible 

mechanism of euendolithic tunnelling in volcanic glass has been reported in a series of 

papers (Thorseth et al. 1992; Thorseth et al. 1995; Staudigel et al. 1998, 2008a) and is 

summarized below. Microbes introduced by circulating fluids may initially colonize 

fractures and grain boundaries of the glass substrate. As the microbe continues to dissolve 

the substrate extracting essential metabolites, a cavity forms. Initially, fluid circulation 

removes waste products as well as preventing authigenic mineral precipitation from 

sealing off the tunnel. As the tunnel extends, however, fluid circulating would become 

minimal and alteration and metabolic waste products will begin to build up. Cellular 

extensions, such as fungal hyphae, have been suggested as a mechanism to continue 

localized dissolution and tunnel formation (Staudigel et al. 2008b). Many prokaryotes 

(e.g., the actinomyces) are also capable of forming hypha-like extensions (McLoughlin 
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2010). Eventually, it can be speculated that tunnel formation would no longer be 

advantageous as waste products and low-permeability mineral alteration products 

continue to increase. Once the tunnel is no longer sustained by fluid circulation, or 

cellular extensions are with drawn, the cavies become preserved by authigenic minerals 

and their diagenetic products. 

Impact systems are understudied from the perspective of biological preservation. To the 

best of the authors’ knowledge there are only four studies reporting potential fossil 

evidence of biological activity in impact systems: microbial etching of hydrothermal 

minerals at the Ries impact structure (Glamoclija et al. 2007), the presence of rod-shaped 

biomorphs in post-impact hydrothermally altered sediments from the Chesapeake Bay 

impact structure (Glamoclija 2007), evidence of extracellular polymeric substances in a 

hydrothermally precipitated calcite vein from the Siljan impact structure (Hode et al. 

2009) and, most recently, a report of filamentous ‘fossils’ hosted in hydrothermally 

precipitated mineral assemblages within fractured impact breccia from the Dellen impact 

structure (Ivarsson et al. 2009; Plainaki et al. 2010). In all the above studies there is a 

systemic failure to recognize both biogenicity criteria as well as a systematic study of the 

host material: all evidence rests on tenuous morphological evidence. 

7.6.2 Implications for astrobiology 

Impact events are the only ubiquitous geological process in the Solar System and impact 

structures represent the dominant geological landform amongst the majority of the 

terrestrial planets. The habitability of subaerial (Herrera et al. 2009) and submarine 

natural glasses (Mason et al. 2007 and references therein) suggests that impact glasses, 

such as those found at the Ries impact structure, are potential habitats for 

microorganisms. Given the probable ubiquity of impact glasses in post-impact 

environments throughout the Solar System, it is important to understand the biological 

components and potential of such systems. Establishing the biogenicity of the tubular 

structures observed in the Ries impact glasses has significant astrobiological 

implications. The high flux rate of meteorite impacts on the early Earth would favour life 

in endolithic (within rock) environments such as glassy substrates, furthermore, impact 

events would provide transient energy to terrestrial bodies without endogenous volcanic 
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heat sources to drive hydrothermal activity, such as Mars.  The endolithic environments 

resulting from impact events are important targets for astrobiological investigations of the 

early Earth and of other terrestrial planets. 

The extreme conditions present on Mars, such as intense UV flux, low temperature, and 

absence of liquid water may encourage the exploitation of endolithic strategies. 

McLoughlin et al. (2007, 2010) suggest microborings into volcanic glasses as a potential 

planetary biosignature and lists natural glasses as one of the most promising preservation 

environments for ichnofossils on early Earth and Mars. By extending this to impact 

glasses we greatly increase the number of candidate environments.  

A recent paper by Ivarsson and Lindgren (2010) highlights the significance of impact 

ejecta as a target for an astrobiology focused Mars sample return mission. Impact events 

have the potential to excavate deep into the crust of the target body making the 

subsurface available for study precluding the need for drilling. The subsurface of Mars 

has been targeted as one of the most promising environments preserving past or present 

traces of life (Ivarsson and Lindgren 2010 and references therein).  A better 

understanding of the habitability potential of impact glasses may provide insight into the 

possibility of similar microbial niches on other terrestrial planets, including Mars 

(Cockell et al. 2005). Establishing the biogenicity of the Ries tubules would result in the 

discovery of a novel habitat for life on Earth within impact ejecta. This can be 

extrapolated to a potential habitat within impact ejecta on other planets such as Mars. 
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Chapter 8  

8 Conclusions 

The reclassification of the Rochechouart impactites and implications for the 

Rochechouart impact structure presented in Chapter 3 illustrate the value of looking at 

previously studied rocks with higher resolution micro analytical techniques. The first 

detailed scanning electron microscopy observations of the Rochechouart impactites 

resulted in the classification of the impactites based on observable intrinsic 

characteristics. Not only do these results have implications for the crater size and 

formation as discussed in Chapter 3, but furthermore, this study sets a precedent for the 

classification of indeterminate lithologies that do not fit the end-member nomenclature 

proposed by the most recent recommendations of the IUGS Subcommission on the 

Systematics of Metamorphic Rocks (SCMR; Stöffler and Grieve, 2007) as well as in 

situations where field context is unavailable.  

Classical classification schemes do not account for intermediate lithologies and as a 

result, transitional lithologies are inadequately described by end-member nomenclature. 

Further to the issue of transitional lithologies, the currently accepted IUGS impactite 

classification scheme is based on the location of the impactite with respect to the transient 

cavity. Such classification requires interpretation of field context and absolute knowledge 

of the location of the crater rim. Both of these perquisites are currently debated in the 

literature leading to ambiguous and inconsistent use of nomenclature. Interpretive bias 

aside, the majority of terrestrial impact structures are not preserved well enough to 

consistently and accurately delineate the extent of the transient cavity. Furthermore, in 

cases where there is no field context classification based on provenance is purely 

speculative. The petrographic evaluation of the Rochechouart impactites presented in 

Chapter 3 allows for a systematic classification integrating the most recent 

recommendations of the IUGS SCMR with descriptive nomenclature allowing for 

indeterminate and transitional units. Such a classification system based on observable, 

intrinsic characteristics can be extrapolated to collections where there is an extremely 
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limited sample size or complete lack of field context such as deeply eroded impact 

structures, drill cores, Apollo samples, meteorites, and future planetary sample returns. 

Being able to correlate these samples and compare them to samples with a field context is 

invaluable and fundamental to understanding impact cratering as a geological process 

occurring not just on Earth but also on other terrestrial bodies. The detailed high-

resolution petrographic study of the Rochechouart impactites provides the context with 

which to approach the Ries samples. An important step in establishing biogenicity, often 

absent in other studies assessing putative biogenic features, is a careful and thorough 

evaluation of the geologic context to demonstrate the integrity, syngenicity, and antiquity 

of the features in question.  

The work contained in this thesis has illustrated the presence of enigmatic tubular 

features hosted within impact glass clasts from impact melt-bearing breccias from the 

Ries impact structure, Germany. The host glasses at the Ries contain crystallites 

dominated by Ca- and Al-rich pyroxene (Osinski, 2003; this study). These pyroxene 

crystallites are typically skeletal to dendritic, which are well-understood quench crystal 

morphologies (e.g., Marshall 1961; Iddings 1899; Lofgren 1977). Previous studies also 

describe tubular and complexly curved, non-canonical pyroxene crystallites (Osinski, 

2003; Engelhardt et al. 1995). Our work suggests these features are not purely 

mineralogical in origin and display morphological and geochemical evidence consistent 

with biological activity (Chapters 4 – 7). Furthermore, the scale of these features preclude 

traditional X-ray diffraction studies and nanoscale analyses such as TEM based 

techniques have not yet been used to investigate the nature of these anomalous 

‘crystallites.’ The complex morphologies and convoluted structures characterizing these 

features combined with organic functional group identification imply that these features 

represent biological trace fossils within impact glass. 

Previous studies by have shown similar tubular features to exist within oceanic basaltic 

glasses from the Ontong Java Plateau that are widely accepted to represent bioalteration 

textures (e.g., Banerjee & Muehlenbachs 2003; Benzerara et al. 2007). Bioalteration of 

natural volcanic glasses is a well-documented phenomenon in modern oceanic crust, 

Phanerozoic ophiolites and Archaean greenstone belts. In addition, it has been shown that 
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endolithic microbial communities thrive in terrestrial and submarine volcanic glasses 

with a range of SiO2 contents (Richardson et al. 2007; Santelli et al. 2008; Cockell et al. 

2009; Herrera et al. 2009). It has been shown that microbes colonize glasses while 

extracting metabolically relevant elements leaving traces, such as tubular features, 

(Banerjee & Muehlenbachs 2003; Herrera et al. 2008; McLoughlin et al. 2008 and refs 

therein) of this activity. 

Volcanic glasses have been shown to comprise an important and significant microbial 

habitat on Earth requiring the re-evaluation of the limits of the biosphere. It is 

conceivable that impact glass also comprises a microbial habit. Furthermore, the micro-

habitats created by meteorite impacts have been shown to be conducive to microbial 

colonization (Cockell & Lee 2002a). In particular, impact-induced hydrothermal systems 

(as documented to have occurred at Ries, Osinski 2005; Muttik et al. 2008) have been 

postulated to facilitate microbial colonization following an impact event. Meteorite 

impact events interacted significantly with the terrestrial biosphere throughout Earth’s 

history. In the Hadean and Early Archaean during the Late Heavy Bombardment period 

3.8 – 4.2 Ga (Kring & Cohen 2002) a cataclysmic spike in large impact events coincided 

with the origin of life on Earth suggesting a role for impact events in the early evolution, 

if not origin, of life on Earth. Impacts during the Phanerozoic would have acted as 

primary biological succession events irreversibly altering the habitat of the affected area.  

Several theories suggest a hot, aqueous environment for the origin of life; submarine 

hydrothermal systems comprise one of the predominant candidate environments for 

prebiotic chemistry (e.g., Martin et al. 2008; Nisbet & Sleep 2001). Although there is 

wide spread speculation on the geological setting for the origin of life, there is some 

consensus regarding the requisite conditions. Liquid water, organic polymers including 

the bioessential elements fundamental to organic compounds (C, H, O, N, P, and S), an 

excess of Gibbs free energy and a thermodynamic regime capable of supporting 

disequilibrium, chemical or otherwise, a mechanism to concentrate the prebiotic 

constitutes and a proto-membrane in which they can be contained, and energy to facilitate 

or initiate prebiotic reactions.  Phylogenetic and metabolic research into the last universal 

common ancestor suggests a high temperature setting (e.g., Schwartzman & Lineweaver 
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2004). Submarine hydrothermal systems, black smokers, satisfy all of these requirements. 

However, such systems have a limited geological context and the extent of such plate-

tectonic dependent phenomena during the Hadean and early Archean is not well 

established. Post-impact hydrothermal systems extend the possible environments for the 

origin of life on Earth. High impact flux during the Late Heavy Bombardment would 

have established such system in a variety of geologic settings increasing the chemical 

complexity of candidate environments. Post-impact hydrothermal systems were likely 

more common than submarine hydrothermal systems on the primitive Earth and would 

therefore constitute a statistically more probably environment for the origin of life. The 

vesicular nature of impact glass and pore-space created in shocked target rocks may have 

acted as proto-membranes to concentrate prebiotic constituents. Furthermore, clays are a 

common weathering product of subaerial glasses and a phyllosilicates substrate has been 

suggested as an initial template for the earliest self-replicating molecules (Ponnamperuma 

et al. 1982). It has been postulated that meteorites during the Late Heavy Bombardment 

have delivered the initial organic molecules to Earth (Chyba & Sagan 1992). The high 

flux rate of meteorite impacts on the early Earth would favor life in chasmoendolithic 

environments suggesting that meteorite impacts played a pivotal role in the early 

evolution, if not origin of, life on Earth and possibly life on other planets. 

If impact-induced environments were not the initial geological setting for the origin of 

life, impact events during the Late Heavy Bombardment almost certainly influenced early 

life (e.g., Maher & Stevenson 1988; Abramov & Mojzsis 2009). Periodic global heating 

may account for the thermophillic root of life preserved in 16s rRNA sequences (Pace 

1994; Schwartzman & Lineweaver 2004). In this sense meteorite impacts could not only 

have generated the putative bottleneck resulting in a perceived thermophilic last universal 

common ancestor, but would also select for thermo-tolerant life surviving previous 

impacts (Cockell & Lee 2002). The endolithic habitats produced by increasing the 

porosity of crystalline targets during shock metamorphism would provide a refuge from 

frequent meteorite bombardment and intense UV radiation. Impact glass, an amorphous 

substrate relatively easily attacked by microbially produced acids, can 

thermodynamically support autotrophic metabolisms.  
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Large impact events occurring once life has been firmly established on Earth have 

undoubtedly influenced evolution. Although often cited a catastrophic events (Sleep et al. 

1989) such as the Chicxulub impact ultimately leading to the mass extinction as the 

Cretaceous-Palaeogene (K – Pg) boundary 65 Myr ago (Alvarez et al. 1980), impact 

events can be viewed as biological resetting events generating unique habitats and novel 

microbial niches (Cockell & Lee 2002). The endolithic habitats created by through the 

impact process have been shown to harbour a diverse microbial community (Cockell 

2004; Parnell et al. 2004). Furthermore, shock metamorphism has been shown to 

mobilize bioessential elements (Pontefract et al. 2012) and based on the elemental and 

mineralogical characterization presented in this thesis impact glasses would provide a 

suitable nutrient source. Establishing the tubules in the Ries glass as biogenic features 

extends the known environments on Earth for the microbial colonization of natural 

glasses. Impact glass would have been much more prevalent on the Archaean Earth 

during the Late Heavy Bombardment and likely comprises a significant component of 

natural glass on other rocky bodies in our Solar System such as Mars. 

The search for evidence of life on Mars has driven space exploration. Most recently, 

Curiosity, the Mars Science Laboratory, landed in Gale Crater on Mars August 5, 2012 to 

begin a multi-year mission to assess habitability potential and search for life on Mars 

(Grotzinger et al. 2012). Although a detailed multi-analytical study to assess the 

biogenicity of suggestive features requires sample return, remote instruments such as 

those onboard Curiosity could potentially be used to identify impact glass associated with 

hydrothermal alteration. Previous missions have not specifically identified impact glass 

as a high-priority target, however, the ubiquity of impact glasses on the terrestrial planets 

and the preservation potential of natural glasses on Earth suggest that impact glass on 

Mars may be of significant astrobiological interest. Using the X-ray diffraction 

capabilities of CheMin (Blake et al.  2012), the broad spectral features indicative of 

amorphous material could potentially distinguish impact glass from crystalline material. 

Using laser ablation and the ChemCam (Wiens et al. 2012) suite, chemical information 

can be combined with the mineralogical information acquired from CheMin to identify 

potential hydrothermal mineral assemblages. By using non-contact instruments, samples 

can be prioritized by the presence amorphous material occurring in association with 
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minerals typical of hydrothermal alteration for collection and further analysis by on board 

instruments such as SAM. The mass spectrometer, gas chromatograph, and tunable laser 

spectrometer comprising the SAM instrument suite can then be used on high-priority 

samples to identify the presence of light elements (H, O, N) associated with organic 

molecules (Mahaffy et al. 2012). Samples containing amorphous material, hydrothermal 

mineralogical assemblages and evidence of organics could then be targeted for future 

sample return missions. Given the density of tubular features in the Ries glasses, a 

minimum of 1 cm3 of material would be required for a similar, multi-analytical, robust 

geological and biological characterization of the sample.  

In summary a biogenic origin for the Ries tubules is concluded. Given the probable 

ubiquity of impact glasses in post-impact environments throughout the Solar System, it is 

important to understand the biological components and potential of such systems. 

Establishing the biogenicity of the alteration structures observed in impact glasses has 

significant and far-reaching astrobiological implications, as impact cratering is a 

ubiquitous geological process throughout the solar system. Thus, post-impact 

hydrothermal systems expand the potential environments for the origin of life and for 

later microbial colonization to environments without endogenous volcanic heat sources to 

drive hydrothermal activity. Understanding the geomicrobiology of impact craters on 

Earth is critical in furthering the search for life on Mars. The hydrothermal systems 

associated with impact events may therefore provide an additional setting to study 

evidence of early life on Earth. Further studies considering the potential hydrothermal 

habitats of impact craters may not only yield insight into early life and the origin of life 

on Earth, but furthermore, may comprise a potential habitat for life and past life on other 

terrestrial planets such as Mars. 

8.1 References Cited 

ABRAMOV, O., and MOJZSIS, S. J. (2009) Microbial habitability of the Hadean Earth 
during the late heavy bombardment. Nature 459, 419 – 422. 

ALVAREZ, L.W., ALVAREZ, W., ASARO, F. AND MICHEL, H.V. (1980) Extraterrestrial cause 
for the Cretaceous/Tertiary extinction. Science 208, 1095 – 1108. 



 

 214 

AMES D. E., WATKINSON D. H. and PARRISH R. R. (1998) Dating of a regional 
hydrothermal system induced by the 1850 Ma Sudbury impact event. Geology 
26(5), 447 – 450. 

BANERJEE N. R. and MUEHLENBACHS K. (2003) Tuff life: Bioalteration in volcaniclastic 
rocks from the Ontong Java Plateau. Geochemistry, Geophysics, Geosystems 4(4), 
1. 

BENZERARA K., MENGUY N., BANERJEE N., TYLISZCZAK T., BROWN JR G. E. and GUYOT 
F. (2007) Alteration of submarine basaltic glass from the Ontong Java Plateau: A 
STXM and TEM study. Earth and Planetary Science Letters 260, 187 – 200. 

BLAKE, D., VANIMAN, D., ACHILLES, C., ANDERSON, R., BISH, D., BRISOW, T., CHEN, C., 
CHIPERA, S., CRISP, J., DES MARAIS, D., DOWNS, R. T., FARMER, J., FELDMAN, S., 
FONDA, M., GAILHANOU, M., MA, H., MING, D. W., MORRIS, R. V., SARRAZIN, P., 
STOLPER, E., TREIMANN, A., and YEN, A. (2012) Characterization and calibration 
of the CheMin mineralogical instruments on Mars Science Laboratory. Space 
Science Reviews 170(1 – 4), 341 – 399. 

CHYBA, C. and SAGAN, C. (1992) Endogenous production, exogenous delivery and 
impact-shock synthesis of organic molecultes: an inventory for the origins of life. 
Nature 355, 125 – 132. 

COCKELL C. S. (2004) Impact-shocked rocks - insights into Archean and extraterrestrial 
microbial habitats (and sites for prebiotic chemistry?). Advances in Space 
Research 33, 1231 – 1235. 

— (2006) The origin and emergence of life under impact bombardment. Philosophical 
Transactions of the Royal Society B 361, 1845 – 1856. 

COCKELL C. S. and LEE P. (2002) The biology of impact crater — a review. Biological 
Reviews 77, 279 – 310. 

COCKELL C. S., OLSSON-FRANCIS K., HERRERA A. and MEUNIER A. (2009) Alteration 
textures in terrestrial volcanic glass and the associated bacterial community. 
Geobiology 7(1), 50 – 65. 

GROTZINGER, J. P., CRISP, J., VASAVADA, A. R., ANDERSON, R. C., BAKER, C. J., BARRY, 
R., BLAKE, D. F., CONRAD, P., EDGETT, K. S., FERDOWSKI, B., GELLERT, R., 
GILBERT, J. B., GOLOMBEK, M., GÓMEZ-ELVIRA, J., HASSLER, D. M., JANDURA, L., 
LITVAK, M., MAHAFFY, P., MAKI, J., MEYER, M., MALIN, M. C., MITROFANOV, I., 
SIMMONDS, J. J., VANIMAN, D., WELCH, R. V., and WIENS, R. C. (2012) Mars 
Science Laboratory Mission and Science Investigation. Space Science Reviews 
140(1 – 4), 5 – 56. 

HERRERA A., COCKELL C. S., SELF S., BLAXTER M., REITNER J., ARP G., DRÖSE W., 
THORSTEINSSON T. and TINDLE A. G. (2008) Bacterial Colonization and 



 

 215 

Weathering of Terrestrial Obsidian in Iceland. Geomicrobiology Journal 25, 25 – 
37. 

HERRERA A., COCKELL C. S., SELF S., BLAXTER M., REITNER J., THORSTEINSSON T., ARP 
G., DRÖSE W. and TINDLE A. G. (2009) A Cryptoendolithic Community in 
Volcanic Glass. Astrobiology 9(4), 369 – 381. 

IDDINGS, J., 1899, Geology of Yellowstone National Park: U.S. Geological Survey 
Monograph 32, Pt. 2, 893 p. 

KRING D. A. and COHEN B. A. (2002) Cataclysmic bombardment throughout the inner 
solar system 3.9 – 4.0 Ga. Journal of Geophysical Research 107(E2), 4-1 – 4-6. 

LOFGREN, G., 1974, An experimental study of plagioclase crystal morphology: Isothermal 
crystallization. American Journal of Science 274, 243 – 273. 

MAHAFFY, P. M., WEBSTER, C. R., CABANE, M., CONRAD, P. C., COLL, P., and the SAM 
TEAM. (2012) The Sample Analysis as Mars Investigation and instrument suite. 
Space Science Reviews 170(1 – 4), 401 – 478. 

MAHER, K. A., and STEVENSON, D. J. (1988) Impact frustration of the origin of life. 
Nature 331, 612 – 614. 

MARSHALL, R. R., 1961, Devitrification of Natural Glass. Geological Society of America 
Bulletin 72, 1493 – 1520. 

MCLOUGHLIN N., FURNES H., BANERJEE N., STAUDIGEL H., MUECHLENBACHS K., DE WIT 
M. and VAN KRANENDONK M. (2008) Micro-bioerosion in volcanic glass: 
extending the ichnofossil record to Archaean basaltic crust. In Current 
Developments in Bioerosion (eds. M. Wisshak and L. Tapanila). Springer-Verlag, 
Berlin Heidelberg. 

MUTTIK N., KIRSIMÄE K., SOMELAR P. and OSINSKI G. R. (2008) Post-impact alteration 
of surficial suevites in Ries crater, Germany: Hydrothermal modification or 
weathering processes? Meteoritics & Planetary Science 43(11), 1827 – 1840. 

NISBET, E. G. and SLEEP, N. H. (2001) The habitat and nature of early life. Nature 409, 
1083 – 1091. 

OSINSKI G. R. (2005) Hydrothermal activity associated with the Ries impact event, 
Germany. Geofluids 5(3), 202 – 220. 

OSINSKI G. R., LEE P., PARNELL J., SPRAY J. G. and BARON M. (2005) A case study of 
impact-induced hydrothermal activity: The Haughton impact structure, Devon 
Island, Canadian High Arctic. Meteoritics & Planetary Science 40(12), 1859 – 
1878. 



 

 216 

PACE, N. R. (1997) A Molecular View of Microbial Dirversity and the Biosphere. Science 
276, 634 – 740. 

PARNELL, J., LEE, P., COCKELL, C. S., and OSINSKI, G. R. (2004) Microbial colonization in 
impact-generated hydrothermal sulphate deposits, Haughton impact structure, and 
implications for sulphates on Mars. International Journal of Astrobiology 3(3), 
247 – 256. 

PONNAMPERUMA, C. SHIMOYAMA, A. and FRIEBELE, E. (1982) Clay and the origin of life. 
Origins of Life 12, 9 – 40. 

PONTEFRACT, A., OSINSKI, G. R., LINDGREN, P., PARNELL, J., COCKELL, C. S., and 
SOUTHAM, G. (2012) The effects of meteorite impacts on the availability of 
bioessential elements for endolithic organsims. Meteoritics & Planetary Science 
47(10), 1681 – 1691 

RICHARDSON L. J., DEMING D., HORNING K., SEAGER S. and HARRINGTON J. (2007) A 
spectrum of an extrasolar planet. Nature 445, 892 – 895. 

SANTELLI C. M., ORCUTT B. N., BANNING E., BACH W., MOYER C. L., SOGIN M. L., 
STAUDIGEL H. and EDWARDS K. J. (2008) Abundance and diversity of microbial 
life in ocean crust. Nature 453, 653 – 657. 

SCHWARTZMAN, D. W. and LINEWEAVER, C. H. (2004) The hyperthermophilic origin of 
life revisited. Biochemical Society Transactions 32(2), 168 – 171. 

SLEEP, N. H., ZAHNLE, K. J., KASTING, J. F., and MOROWITZ, H. J. (1989) Annihilation of 
ecosystmes by large asteroid impacts on the early Earth. Nature 342, 139 – 142. 

STÖFFLER D. AND GRIEVE R. (2007) Classification and nomenclature scheme; impactites. 
In Metamorphic rocks, a classification and glossary of terms; recommendations 
of the International Union of Geological Sciences Subcommission on the 
Systematics of Metamorphic Rocks edited by Fettes D. and Desmons J. 
Cambridge: University Press Cambridge. pp. 82 – 92.  

WESTALL F. and FOLK R. L. (2003) Exogenous carbonaceous microstructures in Early 
Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the 
search for life in ancient rocks. Precambrian Research 126, 313 – 330. 

WIENS, R. C., MAURICE, S., BARRACLOUGH, B., SACCOCCIO, M. and the CHEMCAM TEAM. 
(2012) The ChemCam Instruments Suite on the Mars Science Laboratory (MSL) 
rover: Body unit and combined systems tests. Space Science Reviews 170, 1 – 4, 
167 – 227. 

WIERZCHOS J., ASCASO C., SANCHO L. G. and GREEN A. (2003) Iron-rich diagenetic 
minerals are biomarkers of microbial activity in antarctic rocks. Geomicrobiology 
Journal 20, 15 – 24. 



 

 217 

 

 

 

 

 

 

Appendices 

Appendix A: Samples locations 

    Geographic coordinates§   

	
  Sample # Locality: Easting: Northing: Sample / location description: 

	
  00-001 Otting 3631339 5416222 Suevite - rich in glass clasts 

00-002 Otting 3631342 5416193 Suevite - weathered 

00-003 Otting 3631371 5416110 Suevite - rich in glass clasts 

00-004 Otting 3631371 5416110 Diorite clast from suevite 

00-005 Otting 3631293 5416075 Suevite - rich in glass clasts 

00-006 Otting 3631293 5416075 Glass clast from suevite 

00-007 Otting 3631260 5416071 Suevite - rich in glass clasts 

00-008 Otting 3631082 5416171 Glass clast from suevite 

00-009 Otting 3631082 5416171 Suevite - rich in glass clasts 

00-010 Otting 3631082 5416171 Vesiculated gneiss clast from suevite 

00-011 Gundelsheim 3634110 5419521 Monomict limestone (Bunte) breccia 

00-012 Aumühle 3619410 5426780 Suevite - fine grained from contact zone 

00-013 Aumühle 3619410 5426780 Suevite - fine grained from contact zone 

00-014 Aumühle 3619410 5426780 Suevite - fine grained from contact zone 

00-015 Aumühle 3619410 5426780 Polymict (Bunte) breccia 

00-016 Aumühle 3619410 5426780 Polymict (Bunte) breccia 

00-017 Aumühle 3619410 5426780 Polymict (Bunte) breccia 

00-018 Aumühle 3619410 5426780 Suevite 

	
  00-019 Aumühle 3619409 5426784 Gneiss clast from suevite 

00-020 Aumühle 3619409 5426784 Glass clast from suevite 

00-021 Aumühle 3619409 5426784 Polymict breccia underlying suevite (Bunte) 

00-022 Aumühle 3619409 5426784 Polymict breccia underlying suevite (Bunte) 

00-023 Aumühle 3619423 5426786 Monomict limestone (Bunte) breccia 

00-024 Aumühle 3619423 5426786 Suevite - fine grained 

00-025 Aumühle 3619407 5426792 Suevite 

	
  00-026 Aumühle 3619407 5426792 Glass clast from suevite 
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00-027 Aumühle 3619407 5426792 Gneiss clast from suevite 

00-028 Zipplingen 3603351 5421959 Suevite 

	
  00-029 Zipplingen 3603351 5421959 Suevite 

	
  00-030 Zipplingen 3603351 5421959 Suevite - glass clasts weathered out 

00-031 Zipplingen 3603351 5421959 Suevite - glass clasts weathered out 

00-032 Zipplingen 3603351 5421959 Suevite - reddish groundmass colour 

00-033 Unterwilfingen 3606010 5420799 Clast from polymict breccia 

00-034 Unterwilfingen 3606010 5420799 Monomict limestone (Bunte) breccia 

00-035 Unterwilfingen 3605995 5420796 Clast from polymict breccia 

00-036 Unterwilfingen 3605995 5420796 Clast from polymict breccia 

00-037 Unterwilfingen 3605995 5420796 Clast from polymict breccia 

00-038 Unterwilfingen 3605995 5420796 Clast from polymict breccia 

00-039 Unterwilfingen 3605995 5420796 Clast from polymict breccia 

00-040 Unterwilfingen 3605993 5420794 Clast from polymict breccia 

00-041 Unterwilfingen 3605993 5420794 Clast from polymict breccia 

00-042 Unterwilfingen 3605993 5420794 Clast from polymict breccia 

00-043 Unterwilfingen 3605993 5420794 Clast from polymict breccia 

00-044 Unterwilfingen 3605993 5420794 Clast from polymict breccia 

00-045 Unterwilfingen 3605993 5420794 Clast from polymict breccia 

00-046 Unterwilfingen 3605989 5420798 Parautchthonous gneiss ('inner ring') 

00-047 Unterwilfingen 3605989 5420798 Parautchthonous granite ('inner ring') 

00-048 Altenburg 3605170 5409482 Suevite 

	
  00-049 Seelbronn 3608291 5400422 Suevite 

	
  00-050 Seelbronn 3608291 5400422 Suevite 

	
  00-051 Seelbronn 3608291 5400422 Suevite 

	
  00-052 Seelbronn 3608291 5400422 Suevite 

	
  00-053 Seelbronn 3608291 5400422 Vesiculated gneiss clast from suevite 

00-054 Seelbronn 3608291 5400422 Monomict limestone (Bunte) breccia 

00-055 Amerdingen 3609761 5398912 Suevite 

	
  00-056 Amerdingen 3609761 5398912 Suevite 

	
  00-057 Amerdingen 3609761 5398912 Suevite 

	
  00-058 Sternbach 3609762 5410033 Sedimentary clast from suevite 

00-059 Sternbach 3609762 5410033 Suevite 

	
  00-060 Sternbach 3609762 5410033 Suevite 

	
  00-061 Mauren 3622091 5401147 Suevite 

	
  
	
   	
   	
   	
  

 
	
  

	
   	
   	
   	
   	
   	
  01-001 Hoppingen 3621295 5407851 Limestone 'megablock' 

01-002 Ronheim 3623451 5407340 Polymict (Bunte) breccia 

01-003 Aumühle 3619422 5426788 Suevite with pipe structure 

01-004 Aumühle 3619410 5426780 Suevite - contact zone 

01-005 Aumühle 3619410 5426780 Marl clast from suevite 

01-006 Aumühle 3619410 5426780 Suevite with pipe structure 
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01-007 Aumühle 3619410 5426780 Suevite 

	
  01-008 Aumühle 3619406 5426791 Suevite - black with purple glass clasts 

01-009 Aumühle 3619406 5426791 Suevite - black with purple glass clasts 

01-010 Aumühle 3619406 5426791 Suevite - black with purple glass clasts 

01-011 Steinbühl 3627752 5417801 Suevite - heavily weathered/altered 

01-012 Steinbühl 3626951 5418011 Faulted limestones from crater rim 

01-013 Steinbühl 3626951 5418011 Faulted limestones from crater rim 

01-014 Polsingen 3624372 5420803 Impact melt rock 

	
  01-015 Polsingen 3624372 5420803 Impact melt rock 

	
  01-016 Herkheim 3610556 5410729 Polymict crystalline breccia 

01-017 Holheim 3607307 5410051 Faulted limestones from crater rim 

01-018 Holheim 3607307 5410051 Faulted limestones from crater rim 

01-019 Langenmuhle 3608910 5423049 Crystalline breccia? 

01-020 Langenmuhle 3608910 5423049 Crystalline breccia? 

01-021 Langenmuhle 3608910 5423049 Crystalline breccia? 

01-022 Langenmuhle 3608910 5423049 Crystalline breccia? 

01-023 Unterwilfingen 3606002 5420807 Polymict breccia 

	
  01-024 Zipplingen 3603350 5421959 Suevite 

	
  01-025 Zipplingen 3603350 5421959 Suevite 

	
  01-026 Schmühingen 3611382 5408121 Polymict crystalline breccia 

01-027 Aufhausen 3609262 5401757 Suevite 

	
  01-028 Aufhausen 3609262 5401757 Suevite 

	
  01-029 Aufhausen 3609262 5401757 Glass clast from suevite 

01-030 Anhausen 3608291 5406271 Glass clast from suevite 

01-031 Anhausen 3608291 5406271 Suevite - heavily altered and weathered 

01-032 Holheim 3606863 5410052 Faulted limestones from crater rim 

01-033 Holheim 3606863 5410052 Faulted limestones from crater rim 

	
   	
   	
   	
   	
   	
  
	
   	
   	
   	
   	
   	
  05-001 Iggenhausen 3601599 5399529 Malm limest. Megablock; gries structure 

05-002 Iggenhausen 3601599 5399529 Malm limest. Megablock; gries structure 

	
  
Guldesmuhle 3599940 5395020 Sand pit 

	
  
	
  

Hainsfarth 4400000 5425000 Sedimentary crater-fill deposits 

05-003 Megasheim 4401719 5424517 Sedimentary crater-fill deposits 

05-004 Polsingen 4405213 5420863 Impact melt rock 

	
  05-005 Polsingen 4405213 5420863 Impact melt rock; altered 

05-006 Amerbach 4404745 5417630 Impact melt rock 

	
  05-007 Otting 4411482 5416117 Suevite 

	
  05-008 Otting 4411482 5416117 Suevite 

	
  
	
  

Otting 

	
   	
  
House next to quarry 

	
  
Gundelsheim 4414422 5419412 Quarry in Malm limestone 

	
  
Harburg 4404206 5407633 Quarry in Bunte Breccia 

05-009 Wennenberg 4399490 5413647 Polymict crystalline breccia 
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05-010 Wennenberg 4399490 5413647 Polymict crystalline breccia 

05-011 Aumühle 4399752 5426819 Soft, green transitional lithology 

05-012 Aumühle 4399752 5426819 Impact breccia; hard, red, from transitional zone 

05-013 Aumühle 4399752 5426819 Suevite-like breccia 

05-014 Aumühle 4399752 5426819 Impact breccia; hard, red, from transitional zone 

05-015 Aumühle 4399752 5426819 Suevite; contact with Bunte Breccia 

05-016 Aumühle 4399752 5426819 Suevite; contact with Bunte Breccia 

05-017 Aumühle 4399752 5426819 Breccia vein from within Bunte Breccia 

05-018 Aumühle 4399752 5426819 Suevite; degassing pipe 

05-019 Aumühle 4399752 5426819 Suevite; degassing pipe 

05-020 Aumühle 4399752 5426819 Glass stringer in unusual facies of suevite 

05-021 Aumühle 4399752 5426819 Melt-rich suevite/impact melt breccia 

05-022 Aumühle 4399752 5426819 Melt-rich suevite/impact melt breccia 

05-023 Hohenaltheim 

	
   	
  
Suevite; sedimentary-rich 

05-024 Sternbach 4390282 5401387 Shale clast from suevite 

05-025 Sternbach 4390282 5401387 Suevite with calcite vug 

05-026 Sternbach 4390282 5401387 Shale clast from Bunte Breccia 

	
  
Seelbronn 3608166 5400843 Suevite quarry 

	
  
	
  

Altenburh 3605177 5409458 Suevite quarry 

	
  
	
  

Holheim 

	
   	
  
Quarry in Malm limestone 

05-027 Wengenhousen 3607282 5420353 Clast from polymict crystalline breccia 

05-028 Wengenhousen 3607282 5420353 Clast from polymict crystalline breccia 

05-029 Wengenhousen 3607282 5420353 Clast from polymict crystalline breccia 

05-030 Wengenhousen 3607282 5420353 Clast from polymict crystalline breccia 

05-031 Wengenhousen 3607282 5420353 Clast from polymict crystalline breccia 

05-032 Wengenhousen 3607282 5420353 Clast-rich sedimentary crater-fill 

05-033 Unterwilfingen 3606058 5420731 Gneiss-cored glass clast 

05-034 Unterwilfingen 3606058 5420731 Soft breccia 

	
  05-035 Unterwilfingen 3606058 5420731 Gneiss-cored glass clast 

05-036 Zipplingen 3603300 5421933 Suevite 

	
  
	
   	
   	
   	
   	
   	
  
	
   	
   	
   	
   	
   	
  
	
   	
   	
   	
   	
   	
  
	
   	
   	
   	
   	
   	
  §Coordinate system: DHDN/3-degree Gauss Zone 2. 

	
  09-001 Wengenhousen 010,28.080 48,54.613 v. altered Fe-rich clast from polymict crystalline breccia 

09-002 Wengenhousen 010,28.080 48,54.613 v. altered chalky clast and matrix polymict crystalline 
breccia 

09-003 Wengenhousen 010,28.080 48,54.613 altered Fe-rich polymict breccia - dark zone 

09-004 Unterwilfingen 010,26.784 48,54.917 highly altered suevite 

09-005 Zipplingen 010,24.539 48,55,580 glass rich suevite (some blue glass) 

09-006 Seelbron 010,28.189 48,44.114 skinny glass clast 

	
  09-007 Seelbron 010,28.189 48,44.114 glass clast with in filled vesicles 
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09-008a Seelbron 010,28.189 48,44.114 v. altered white vesicular glass 

09-008b Seelbron 010,28.189 48,44.114 altered blue and purple glass 

09-009 Seelbron 010,28.189 48,44.114 unusual blue vesicular glass 

09-010a Seelbron 010,28.189 48,44.114 5 glass clasts 

	
  09-010b Seelbron 010,28.189 48,44.114 rusty glass clast 

	
  09-011 Seelbron 010,28.189 48,44.114 glass clast with white mineralization/alteration 

09-012 Seelbron 010,28.189 48,44.114 v. shocked clast - altered glass? 

09-013 Seelbron 010,28.189 48,44.114 altered multi-coloured glass - with layer of alteration 

09-014 Altenburg 010,25.863 48,48.790 altered glass clasts with vesicles filled with white 
material 

09-015 Altenburg 010,25.863 48,48.790 glass clasts 

	
  09-016 Altenburg 010,25.863 48,48.790 dark matrix 

	
  09-017 Altenburg 010,25.863 48,48.790 light matrix 

	
  09-018 Sternbach 010,30.466 48,30,466 large piece of white chalky vein material 

09-019 Sternbach 010,30.466 48,30,466 small pieces of white chalky vein material 

09-020 Sternbach 010,30.466 48,30,466 altered glass clasts  

09-021 Sternbach 010,30.466 48,30,466 2 glass clasts with infilling of calcite? 

09-022 Sternbach 010,30.466 48,30,466 suevite with altered glass clasts and fresh glass 

09-023 Sternbach 010,30.466 48,30,466 3 pieces of suevite with altered glass clasts 

09-024 Sternbach 010,30.466 48,30,466 suevite with large glass clast 

09-025 Polsingen 010,42.331 48,55.069 dark red melt, sandy lithic clasts 

09-026 Polsingen 010,42.331 48,55.069 red melt various alteration colours 

09-027 Polsingen 010,42.331 48,55.069 altered melt- white chalky crust 

09-028 Polsingen 010,42.331 48,55.069 large piece of melt with angular lithic clasts 

09-029 Polsingen 010,42.331 48,55.069 moderately altered melt 

09-030 Altenburg 010,25.863 48,48.790 white chalky material from vein 'B' 

09-031 Altenburg 010,25.863 48,48.790 white chalky material from vein 'C' 

09-032 Altenburg 010,25.863 48,48.790 left margin of vein stained and coarse material 

09-033 Altenburg 010,25.863 48,48.790 40cm above 032, R margin, fine grained carbonate 
material 

09-034 Altenburg 010,25.863 48,48.790 limestone block from W side 

09-035 Altenburg 010,25.863 48,48.790 limestone block from E side 

09-036 Altenburg 010,25.863 48,48.790 suevite near limestone contact 

09-037 Altenburg 010,25.863 48,48.790 glass clasts near sample 36 

09-038 Altenburg 010,25.863 48,48.790 suevite glass near base of hill under W limestone block 

09-039 Aumühle 010,37.703 48,58.266 suevite from 1m above contact 

09-040 Aumühle 010,37.703 48,58.266 glass clasts 50cm above contact 

09-041 Aumühle 010,37.703 48,58.266 lisegene banding 'concretions' on quarry floor 

09-042 Aumühle 010,37.703 48,58.266 dark red-brown muddy vein fill 

09-043 Aumühle 010,37.703 48,58.266 subvertical fractures 'suevite matrix' 

09-044 Aumühle 010,37.703 48,58.266 transitional layer flat side is top 

09-045 Aumühle 010,37.703 48,58.266 bunte breccia below transitional layer 

09-046 Aumühle 010,37.293 48,58.293 suevite glass 

	
  09-047 Aumühle 010,37.293 48,58.293 suevite alteration in sub-vertical yellow-brown 'pipes' 
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09-048 Aumühle 010,37.293 48,58.293 alteration zone proximal to pipes, reddish, irregular, 
globular 

09-049 Aumühle 010,37.293 48,58.293 grey suevite close to pipe material 047 glasses purple 

09-050 Aumühle 010,37.293 48,58.293 yellow-brown muddy filling from central hole in 'pipe' 

09-051 Aumühle 010,37.293 48,58.293 purple glass clasts 

	
  09-052 Otting 010,47.462 48,52.635 grey massive suevite 

	
   	
   	
   	
   	
   	
  10-001a Otting 010,47.468 48,52.651 surface alteration of suevite 

10-00b Otting 010,47.468 48,52.651 fresh surface of suevite 

10-002 Otting 010,47.468 48,52.651 altered suevite from pipe-like structure 

10-003 Otting 010,47.468 48,52.651 coarse-grained vein fill material 

10-004 Otting 010,47.468 48,52.651 chiselled out coarse-grained vein fill material 

10-005 0cm Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 50cm Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 60cm Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 70cm Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 90cm Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 1m Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 1.5m Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 2m Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 2.5m Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 3m Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 3.5m Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 4m Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 4.5m Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-005 5m Aumühle 

	
   	
  
Aumühle suevite transect on W face 

10-006 Aumühle 

	
   	
  

breccia pipe on N face, material scraped from inside 
'pipe' 

10-007 Aumühle 

	
   	
  
transistional zone between suevite and Bunte breccia 

10-008 Amerdingen 3609761 5398912 suevite - old quarry blocks - altered 

10-009 Amerdingen 3609761 5398912 suevite - old quarry blocks - appears altered, but coherent 
c fresh glass 

10-010 Seelbronn 010,28.189 48,44.114 lime stone Bunte breccia 

10-011 Polsingen 010,42.331 48,55.069 impact melt - collected as display sample 

10-012 0m Aumühle 

	
   	
  
Aumühle suevite transect part 1 (upper face) on N face 

10-012 1m Aumühle 

	
   	
  
Aumühle suevite transect part 1 (upper face) on N face 

10-012 2m Aumühle 

	
   	
  
Aumühle suevite transect part 1 (upper face) on N face 

10-012 3m Aumühle 

	
   	
  
Aumühle suevite transect part 1 (upper face) on N face 

10-012 4m Aumühle 

	
   	
  
Aumühle suevite transect part 1 (upper face) on N face 

10-012 5m Aumühle 

	
   	
  
Aumühle suevite transect part 1 (upper face) on N face 

10-012 6m Aumühle 

	
   	
  
Aumühle suevite transect part 1 (upper face) on N face 

10-012 7m Aumühle 

	
   	
  
Aumühle suevite transect part 1 (upper face) on N face 

10-012 8m Aumühle 

	
   	
  
Aumühle suevite transect part 1 (upper face) on N face 

10-013 0m Aumühle 

	
   	
  
Aumühle suevite transect part 2 (lower face) on N face 

10-013 1m Aumühle 

	
   	
  
Aumühle suevite transect part 2 (lower face) on N face 
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10-013 2m Aumühle 

	
   	
  
Aumühle suevite transect part 2 (lower face) on N face 

10-013 3m Aumühle 

	
   	
  
Aumühle suevite transect part 2 (lower face) on N face 

10-013 4m Aumühle 

	
   	
  
Aumühle suevite transect part 2 (lower face) on N face 

10-013 5m Aumühle 

	
   	
  
Aumühle suevite transect part 2 (lower face) on N face 

10-013 6m Aumühle 

	
   	
  
Aumühle suevite transect part 2 (lower face) on N face 

10-014 Aumühle 

	
   	
  

fine-grained suevite - bunte breccia transitional zone on 
E wall 

10-015 Aumühle 

	
   	
  

very fine grained grey unite btw suevite and breccia E 
wall 

10-016 Aumühle 

	
   	
  
white crud at base of transition zone E wall 

10-017 Aumühle 

	
   	
  
pink crud in transition zone E wall 

10-018 Aumühle 

	
   	
  
yellow flakes below pink crud E wall 

10-019 Aumühle 

	
   	
  
yellow-red-orange banded alteration of breccia E wall 

10-020 0cm Aumühle 

	
   	
  
transect through transitional zone on E wall 

10-020 50cm Aumühle 

	
   	
  
transect through transitional zone on E wall 

10-020 1m Aumühle 

	
   	
  
transect through transitional zone on E wall 

10-020 1.5m Aumühle 

	
   	
  
transect through transitional zone on E wall 

10-020 2m Aumühle 

	
   	
  
transect through transitional zone on E wall 

10-021 Aumühle 

	
   	
  

suevite 3.5m tangent to transect,10-020, ~50cm above 
contact 

10-022 Erbisberg 010,30.720 48,49.873 limestone with 'stromatelite' texture 

10-023 Erbisberg 010,30.720 48,49.873 loose limestone block with 'tubular' texture 

10-024 Hainsfarth 

	
   	
  

sediments with stromatelites with reported preserved 
'tubular' textures 

10-025 Unterwilfingen 010,26.784 48,54.917 powder-like chalky highly altered glass clast in suevite 
dyke 

10-026 Unterwilfingen 010,26.784 48,54.917 matrix of altered suevite dyke to the right of 10-025 
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Appendix B: Field photographs 

Otting 
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Aumühle 
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Gundelsheimer 
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Erbisberg 
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Seelbron 
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Amerdingen 
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Appendix C: Photomicrographs 
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Appendix D: Scanning electron microscopy images 
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Appendix E: Electron microprobe data 
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Focused phase (5µm) 
Comment SiO2 Na2O MgO K2O CaO FeO MnO TiO2 Cl Al2O3 Cr2O3 NiO Total 

RI_01_6 
017.0012 13.4859 0.564 3.358 2.3161 2.291 4.6242 0.0855 0.1928 0.0072 4.7635 0.0165 0.0212 31.726 

RI_00_056 
001.0025 25.2612 0.0948 3.327 0.2764 6.1806 6.8207 0.1076 0.631 0.1869 7.3036 0.0782 0.0294 50.2974 

RI_01_6 
017.003 26.6925 0.0817 6.8677 0.1323 5.7161 14.2151 0.315 0.6551 0.1513 13.7249 0.1828 0.0119 68.7462 

RI_09_6 
003.003 29.22 0.5969 3.9394 1.4631 3.0154 54.2702 0.1743 1.8946 0.0058 10.9253 0.5169 -0.0284 105.9933 

RI_09_6 
003.005 30.9173 0.7596 1.4154 2.4544 0.8081 46.1045 0.1029 1.5261 0.015 11.5318 0.7322 0.0268 96.394 

RI_00_056 
001.0026 31.3622 0.1146 5.7982 0.2713 9.2715 9.5025 0.1948 0.8927 0.1692 9.7504 0.0905 -0.0192 67.3988 

RI_00_056 
001.0028 32.5814 0.1936 5.8979 0.2236 8.3617 10.4522 0.2296 0.9115 0.1279 10.4812 -0.046 -0.0269 69.3877 

RI_09_86 
003 0012 33.3145 0.9807 1.1866 1.754 1.381 29.6414 0.0696 2.2806 0.0563 13.7714 4.0617 0.0454 88.543 

RI_00_056 
001.0029 34.3503 0.221 5.3775 0.3449 7.0173 9.4971 0.1594 0.8567 0.2903 10.6802 0.0953 0.0522 68.9422 

RI_00_056 
001.0027 34.6311 0.2536 7.4222 0.1091 12.4115 11.2423 0.2763 0.6392 0.0887 10.741 0.1543 -0.0007 77.9686 

RI_00_056 
001.0022 35.6623 0.1135 7.4216 0.1894 10.7013 10.9284 0.2419 0.7311 0.0877 10.7586 0.1883 0.0424 77.0664 

RI_00_056 
001.0024 36.0341 0.1717 6.3872 0.3535 7.0701 11.48 0.2972 0.8897 0.1157 11.6059 0.1636 -0.0117 74.5569 

RI_01_6 
017.009 37.1701 0.5932 6.6117 2.1376 4.8574 12.6266 0.3543 0.4398 -0.002 12.2674 0.0131 0.0569 77.126 

RI_00_056 
001.0018 37.2723 0.8929 8.1681 0.6155 10.3449 12.0538 0.3224 0.7021 0.0507 12.1693 0.0706 -0.0076 82.6549 

RI_01_6 
017.004 37.6247 0.1573 9.0532 0.2486 4.37 14.1251 0.3337 0.4311 0.0571 9.5499 0.0785 0.0055 76.0346 

RI_00_056 
001.0023 37.6409 0.1159 8.3395 0.1733 10.7287 12.4133 0.2842 0.6842 0.0772 11.5797 0.1369 0.0256 82.1994 

RI_01_6 
017.005 38.1875 0.8408 5.7596 2.5623 5.4713 12.2415 0.2775 0.3853 0.0196 13.7544 0.0169 0.0128 79.5294 

RI_01_6 
017.0011 38.4212 0.5459 4.032 2.4909 6.2412 9.1917 0.185 0.5643 0.0075 12.0287 0.0407 0.0271 73.7764 

RI_01_6 
017.007 39.3717 0.5047 4.4169 2.9353 5.8337 8.6698 0.2157 0.5732 0.0017 11.6699 0.1173 0.0379 74.3478 

RI_00_056 
001.007 39.5867 1.8149 4.5302 0.6566 8.3309 7.4713 0.1408 0.266 0.1213 10.6614 0.1447 0.0107 73.7355 

RI_01_6 
017.0010 39.5988 0.7507 4.143 3.7256 6.212 5.9486 0.1865 0.5619 0.0076 11.8983 0.0226 0.0038 73.0594 

RI_00_056 
001.008 40.572 1.6217 7.0384 0.387 12.4464 10.8608 0.2576 0.5257 0.0261 12.2577 0.1026 0.0197 86.1158 

RI_01_6 
017.008 40.9312 0.6732 3.9984 3.4141 5.4775 7.0878 0.1922 0.556 0.014 11.8549 0.1008 0.0163 74.3163 

RI_01_6 
017.006 41.6339 0.9191 3.214 4.0282 4.0129 5.5331 0.1842 0.5771 0.0012 12.1733 0.079 -0.0062 72.3497 

RI_00_056 
001.0017 43.0994 0.8543 8.4458 0.2573 9.5663 14.3 0.34 0.6698 -0.0046 13.4063 0.0652 0.017 91.0168 

RI_00_056 
001.0016 43.6794 1.4004 7.8484 0.3647 9.6927 13.4722 0.3059 0.632 0.0013 13.9253 0.0537 -0.0099 91.3663 

RI_00_056 
001.005 44.1479 0.9642 7.1791 0.3713 12.4278 12.1598 0.2634 0.5594 0.0003 13.8615 0.046 0.0327 92.0133 

RI_00_056 
001.006 44.427 1.9221 7.6371 0.4941 10.8603 11.8402 0.2987 0.5585 0.0111 13.2472 0.0635 0.0548 91.4148 

RI_00_056 
001.002 44.7692 1.1824 7.8695 0.4951 11.0586 11.4614 0.2727 0.6109 0.0079 12.9906 0.1373 0.0278 90.8832 

RI_00_056 
001.0020 44.9731 1.0751 8.6729 0.3379 8.7898 12.8091 0.3842 0.7204 0.0066 13.7425 0.1746 0.0244 91.7104 

RI_00_056 
001.004 45.8285 1.7555 7.1919 0.4602 10.0925 11.4614 0.2364 0.64 0.0054 13.6126 0.1541 -0.0647 91.3737 

RI_01_6 
016.002 46.4298 0.3999 11.3899 1.0797 7.3798 14.3197 0.3975 0.352 0.0026 13.2103 0.0491 0.0307 95.041 

RI_09_6 
008.006 46.5136 0.6443 4.9242 2.3312 2.6829 8.3992 0.2251 0.598 0.1559 18.0369 0.1046 0.0083 84.6242 

RI_09_6 
008.005 47.3135 0.5389 8.8683 1.6454 3.4687 13.7359 0.3406 0.7171 0.0327 15.6974 0.1508 0.0365 92.5459 

RI_00_056 
001.0019 47.4276 2.4549 4.3626 0.6187 5.9136 9.5105 0.201 0.6268 0.0038 15.2447 0.1541 0.0236 86.542 

RI_09_86 
003 007 47.4301 0.5173 5.1219 2.1983 4.5516 14.9547 0.1813 1.0397 0.0205 8.8419 0.1119 0.0684 85.0377 

RI_00_056 
001.0014 47.5247 2.1331 6.5118 0.5254 7.1753 11.7248 0.3177 0.5859 0.0127 15.2218 0.0674 -0.0005 91.7999 

RI_09_86 
003 006 47.9439 1.097 4.5907 2.5969 3.4385 16.7617 0.2064 0.7846 0.0232 9.6723 0.0323 -0.0017 87.1459 

RI_00_056 
001.009 48.4509 1.8925 5.297 0.7279 6.9388 10.7585 0.2888 0.7719 0.0245 15.6236 0.0304 -0.0263 90.7786 

RI_09_86 
003 0010 48.6668 1.855 5.0693 1.0698 3.994 16.6417 0.1953 0.5669 0.018 12.5004 0.0684 0.0533 90.6988 

RI_09_86 
003 008 48.6671 1.5099 4.8129 1.7931 4.6194 13.0412 0.1551 0.6647 0.0274 11.3972 0.137 -0.008 86.8168 

RI_00_056 
001.0010 48.9035 2.1145 6.4094 0.9402 7.1979 9.3799 0.245 0.7674 0.0169 14.2581 0.1073 -0.0022 90.338 

RI_00_056 
001.0015 48.9578 2.5038 5.8952 0.5582 6.3711 11.4861 0.2707 0.6479 0.0144 15.8896 0.1415 0.0058 92.7421 

RI_09_86 
003 0011 49.1551 0.4445 5.5929 1.7029 4.3351 18.3776 0.2212 0.9646 0.0234 9.0474 0.1683 0.0489 90.0819 
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RI_09_86 
003 004 49.3876 4.513 0.2024 0.4771 8.3241 1.572 -0.0081 0.0615 0.0184 22.6295 -0.0147 -0.0239 87.1389 

RI_01_6 
016.001 49.8228 0.6177 8.4905 1.4907 7.413 10.9699 0.3215 0.5921 0.0146 12.5119 0.0507 0.018 92.3134 

RI_00_056 
001.0013 49.8978 1.9428 5.0989 0.9149 8.635 8.9165 0.2521 0.5565 0.0194 14.4588 0.1446 -0.0026 90.8346 

RI_09_6 
013 001 50.3392 0.7876 6.4783 2.6796 6.0721 8.8826 0.2346 0.6919 0.0104 13.0258 0.0217 -0.0058 89.2179 

RI_01_6 
016.006 50.3436 0.596 8.5982 1.6749 6.0958 11.9694 0.3288 0.5368 0.0085 13.4057 0.0132 0.0384 93.6094 

RI_09_86 
003 002 50.4896 4.935 0.2477 0.5643 8.1509 1.533 -0.0295 0.082 0.0092 22.5929 -0.0316 0.0416 88.585 

RI_01_6 
016.0013 50.5119 0.7032 9.6284 1.6812 6.9181 11.8504 0.3298 0.578 0.0071 12.289 0.0355 0.0178 94.5505 

RI_09_86 
003 003 50.9428 5.0328 0.1205 0.6228 7.7129 1.4175 -0.0164 0.0504 0.0136 23.0218 -0.0069 -0.037 88.8748 

RI_01_6 
016.0012 50.9782 0.9462 8.349 1.3861 6.4634 12.6922 0.3175 0.6259 0.0065 13.8592 0.1208 0.0515 95.7966 

RI_01_6 
016.008 51.2038 0.7242 9.1891 1.7289 5.5497 12.5143 0.319 0.5598 0.0026 13.7449 0.0454 0.0125 95.5943 

RI_01_6 
016.003 51.3246 0.7082 8.1585 2.0763 5.5501 12.4397 0.2563 0.4843 0.0108 14.9786 0.1301 0.0051 96.1226 

RI_00_056 
001.0021 51.4601 0.217 3.5919 1.202 9.271 7.5144 0.1497 0.244 0.078 14.2899 0.0014 0.0573 88.0766 

RI_01_6 
016.005 51.6487 0.5195 8.045 2.3712 6.9392 10.8094 0.3381 0.5339 0.0104 13.3149 -0.0202 0.0084 94.5183 

RI_01_6 
016.0010 51.7205 0.5867 7.8584 2.3236 7.464 10.313 0.3409 0.5893 0.0135 12.5703 0.0717 -0.0113 93.8407 

RI_09_6 
006.001 51.828 4.0414 0.3922 0.4926 10.8858 0.9365 0.0107 0.1014 0.0119 25.8107 -0.0297 -0.073 94.4085 

RI_09_6 
013 004 52.0186 0.6939 7.7775 2.4173 5.3139 11.0408 0.3386 0.8877 0.0202 14.2 0.0893 0.0079 94.8056 

RI_00_056 
001.0012 52.0462 3.8291 3.6723 1.4757 4.8008 7.633 0.1822 0.7356 0.0222 15.483 0.1392 -0.0038 90.0155 

RI_01_6 
016.0011 52.1168 0.9696 7.5698 2.749 3.7238 11.587 0.2922 0.4544 0.0201 15.6449 0.0897 -0.0004 95.2169 

RI_09_6 
013 003 52.22 0.5703 6.9164 2.5042 5.4931 9.9968 0.3181 0.7719 0.0109 13.8855 0.0989 -0.0044 92.7816 

RI_09_86 
003 009 52.2291 3.4394 2.9394 1.2101 4.5859 10.1758 0.1145 0.6092 0.0135 14.0847 0.2003 -0.0371 89.5648 

RI_01_6 
016.009 52.5906 0.7377 7.9636 2.6384 6.1945 10.5158 0.2405 0.5997 0.0123 13.099 0.0681 0.0495 94.7099 

RI_09_6 
003.004 52.6427 1.7754 3.0521 3.5145 3.6588 15.2011 0.1278 0.7995 0.0022 13.1982 0.3358 -0.0097 94.2984 

RI_09_6 
008.003 52.7477 0.7816 8.3057 2.7367 3.8727 12.027 0.2769 0.7535 0.0101 14.1111 -0.0237 0.0018 95.6012 

RI_00_056 
001.0011 52.979 2.735 3.7128 1.0681 7.0366 7.8515 0.2342 0.4589 0.0027 16.2811 0.1754 -0.03 92.5054 

RI_09_6 
003.002 52.9895 0.8913 4.8099 2.934 6.861 10.3157 0.2467 0.5128 0.005 13.2259 0.0375 -0.0009 92.8284 

RI_09_6 
013 007 53.0937 0.9053 6.2714 1.9225 7.4327 9.8539 0.1991 0.6125 -0.0007 13.7301 0.029 0.0214 94.0708 

RI_09_6 
013 002 53.1124 0.6642 5.9918 2.7871 6.812 8.5091 0.2961 0.7723 0.0098 13.8908 0.0433 0.0265 92.9154 

RI_01_6 
016.0014 53.2337 0.5621 6.5073 2.3625 6.8185 10.5776 0.2478 0.6092 0.0104 13.6412 0.2002 -0.0039 94.7666 

RI_00_056 
001.003 53.4115 1.8274 3.1764 0.6825 7.3194 8.174 0.1694 0.5629 0.004 17.1873 0.1634 -0.026 92.652 

RI_09_6 
009 001 53.4761 1.0539 5.2429 2.7915 3.8802 9.6361 0.1797 1.1201 0.0069 14.0336 0.1494 -0.0087 91.5617 

RI_09_6 
009 005 53.487 1.095 4.661 3.2668 4.1 8.8624 0.2086 1.1308 0.0217 14.3875 0.0394 -0.0439 91.2163 

RI_09_6 
005.001 53.661 0.286 6.7006 1.6872 7.5294 10.5249 0.2644 0.5682 0.0098 13.4716 0.0383 0.0021 94.7436 

RI_09_6 
013 008 53.8748 0.2938 3.1727 3.4501 4.3655 6.2144 0.206 0.7595 0.0221 15.669 -0.0705 0.0174 87.975 

RI_01_6 
016.004 53.8753 1.129 7.9746 2.3307 5.7778 9.9419 0.2992 0.5749 0.0009 13.7488 0.1361 0.0514 95.8405 

RI_09_6 
009 006 53.9049 5.0197 1.0329 0.6862 8.06 1.8714 0.0673 0.2305 -0.0032 21.936 0.0036 -0.0264 92.7828 

RI_09_6 
006.005 53.9503 1.0644 5.8607 3.1937 6.963 8.5823 0.2474 0.6401 0.0014 13.11 0.093 0.0559 93.7621 

RI_09_6 
005.004 54.2984 0.6584 6.5204 2.6319 6.9829 9.4077 0.2286 0.5891 0.0039 13.3939 0.089 0.0587 94.863 

RI_09_6 
009 007 54.4454 4.9649 1.6275 0.8764 6.7679 2.3682 0.0416 0.3195 0.0057 20.2243 0.0065 -0.0034 91.6446 

RI_09_6 
009 002 54.5363 0.9462 4.9278 3.4648 4.2401 7.6662 0.1956 1.1327 0.0113 13.2113 0.0795 -0.0201 90.3916 

RI_09_86 
003 005 54.5966 6.1255 0.2303 1.05 5.2205 1.5183 0.0237 0.1185 0.0165 20.461 -0.0476 -0.008 89.3053 

RI_00_056 
001.001 54.7862 2.5777 2.3304 1.9002 4.0496 6.9329 0.1077 0.6961 0.014 17.0619 0.0082 0.0352 90.5001 

RI_00_056 
001.0030 54.8132 0.3151 0.5033 0.7021 0.578 35.0908 0.0811 0.147 0.012 2.2392 0.0189 0.513 95.0136 

RI_09_6 
009 003 54.8242 2.0315 5.9203 2.2807 3.6361 8.4758 0.2083 0.8327 0.0066 14.2642 0.0486 -0.0061 92.5231 

RI_09_6 
006.002 55.1554 4.1709 0.9425 1.0796 7.8272 1.727 0.0371 0.2995 0.0016 20.7638 0.088 0.0055 92.0981 

RI_09_6 
013 006 55.4809 1.2768 5.2853 2.8226 4.8373 8.3937 0.2268 0.6611 0.0073 14.4356 0.0232 -0.0016 93.449 

RI_09_6 
008.004 55.4911 1.1961 4.6807 3.3913 3.1791 7.8769 0.1741 0.8696 0.0162 17.2887 0.0617 0.0029 94.2283 
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RI_09_6 
009 008 55.6937 4.3948 1.6827 1.5575 6.0678 2.3374 0.0545 0.5034 0.0153 18.8058 0.0054 -0.0033 91.1151 

RI_09_6 
005.007 55.797 0.6802 4.0268 3.2994 6.6218 5.7624 0.137 0.5527 0.0053 13.6 0.0908 0.042 90.6155 

RI_09_6 
009 004 55.955 2.2499 5.5112 1.9416 4.2665 7.9646 0.2043 0.8018 0.003 14.3776 0.1257 0.0231 93.4243 

RI_09_6 
006.004 56.1685 4.5239 1.2221 1.0797 7.7139 2.0306 0.0449 0.3451 0.0016 20.3262 -0.0184 0.0351 93.4732 

RI_09_6 
009 009 57.1347 4.2921 2.3202 1.1129 5.9781 3.4086 0.0536 0.5382 0.0085 17.2596 0.1033 0.021 92.2307 

RI_01_6 
016.0015 57.378 0.951 3.3083 4.4423 3.2302 4.647 0.1244 0.6872 0.0029 13.7704 0.0209 -0.0114 88.5513 

RI_09_6 
013 005 57.4897 1.0398 4.1877 2.6086 5.2618 6.0636 0.2169 0.5631 0.0069 13.9641 -0.0592 0.0613 91.4045 

RI_09_6 
006.003 57.7267 3.838 2.0432 1.5875 6.9721 3.5791 0.0841 0.6041 0.0171 17.9308 0.1202 0.0296 94.5325 

RI_09_6 
005.002 57.8905 0.8062 4.2998 3.3816 4.2867 7.926 0.1481 0.6119 -0.0013 14.1734 0.046 -0.0291 93.5398 

RI_09_6 
009 0010 58.305 3.3707 1.8092 1.5709 5.9643 3.2298 0.0789 0.5285 0.0101 17.9122 0.0855 0.0589 92.924 

RI_09_6 
008.002 58.8867 1.8587 3.5233 2.1062 3.9012 6.7166 0.1353 0.7542 0.0078 15.4477 0.075 -0.037 93.3755 

RI_09_6 
003.001 58.9998 1.0806 1.8248 4.4331 3.9007 3.5316 0.0877 0.6537 0.0022 14.74 0.0063 0.0444 89.3048 

RI_01_6 
017.0013 59.7295 0.9864 2.6774 4.5668 2.8997 4.2852 0.1409 0.682 0.002 14.2178 -0.0016 -0.0506 90.1354 

RI_09_6 
005.003 59.839 0.8246 2.9085 3.6611 3.6892 4.679 0.1913 0.6449 -0.0004 14.0823 0.0487 -0.0005 90.5676 

RI_01_6 
016.007 60.3403 1.7349 2.4264 3.4494 3.012 4.21 0.098 0.73 0.0103 14.5504 -0.0356 -0.0137 90.5125 

RI_09_6 
005.005 60.7271 0.8012 2.7359 3.7147 3.3557 5.3608 0.1095 0.6454 0.0114 14.6564 -0.0475 -0.0112 92.0595 

RI_09_6 
005.006 61.0529 0.9111 2.1464 4.0462 4.2422 4.5338 0.1065 0.53 0.0042 14.1593 0.0284 0.0204 91.7813 

RI_09_6 
006.006 61.9603 2.37 1.6903 3.3417 4.0188 3.3937 0.0474 0.6618 0.0022 15.5229 -0.0439 0.0059 92.9711 

RI_01_6 
017.002 73.712 0.038 0.1194 0.0224 0.1047 1.7933 -0.0219 -0.0029 0.0762 5.1037 0.0075 0.0048 80.9572 

RI_01_6 
017.001 81.9429 0.0815 0.1719 0.1526 0.4108 0.9272 -0.0169 0.212 0.039 2.5415 0.0617 -0.0219 86.5022 

Hematite 0.0296 -0.0014 -0.0145 0.0017 0.0202 90.9408 -0.0061 0.0029   0.028 0.003 -0.012 91.0263 

Diopside 54.7489 0.0177 18.3551 0.004 25.2942 0.033 0.0419 0.0442   0.0691 0.0024 -0.0038 98.6104 

Rut 54.8206 -0.0041 18.2696 0.0008 25.5152 0.0411 0.0515 0.0753   0.0778 0.0022 -0.0051 98.8541 

Sanidine 0.0173 0.0029 0.0117 0.0014 0.0207 0.0284 -0.0019 
117.990

3   0.0282 0.0069 0.0085 118.1163 

Chromite 0.0101 0.0034 7.8077 0.0103 0.0133 35.3236 0.2329 0.8548   13.1814 41.2066 0.1209 98.765 
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Defocused phase (10µm) 
  

Comment SiO2 Na2O MgO K2O CaO FeO Al2O3 Total 

RI_00_056 
036 53.014 4.824 2.7478 0.7089 5.3947 5.5702 16.2634 89.4589 

RI_00_056 
032 53.114 5.0538 2.6805 0.6645 5.1128 5.3772 16.1933 89.1768 

RI_00_056 
035 53.6677 4.8166 2.4665 0.9954 4.7815 4.8847 15.8234 88.4422 

RI_00_056 
031 53.6878 5.138 2.4483 0.7508 4.6983 5.263 16.0615 88.8492 

RI_09_6 
013 009 56.8381 3.4852 2.2942 1.3237 6.3022 4.0276 14.8448 90.0704 

RI_09_6 
009 012 57.1645 3.9866 2.5352 1.9417 4.2823 4.7587 14.5627 90.2083 

RI_09_6 
013 0010 57.5087 4.025 2.1831 1.7351 5.0055 4.1873 14.7492 90.2103 

RI_09_6 
013 0011 57.8591 3.7821 2.3351 1.8545 5.8108 4.3085 13.9428 90.7915 

RI_09_6 
009 011 58.108 3.938 2.44 2.0827 4.078 4.8313 14.6079 90.9632 

RI_09_6  
011 002 58.665 3.7744 2.4213 2.6611 3.4113 4.6821 14.498 90.9546 

RI_09_6  
011 001 58.7268 3.6897 2.1471 2.0726 4.6159 4.2522 14.4185 90.5556 

RI_09_6 
015 016 58.9942 3.6981 2.4541 2.4365 4.0426 4.7721 14.6689 91.9235 

RI_09_6  
011 003 59.0076 3.8496 2.2954 2.1866 4.248 4.6803 14.5201 91.6532 

RI_09_6 
017 014 60.2138 4.1985 2.0276 2.0938 4.056 4.1082 14.773 92.1729 

RI_00_056 
033 63.9208 3.9826 0.8904 2.1612 2.7056 2.4196 12.5044 89.1409 

RI_00_056 
034 67.4762 1.449 0.9564 4.3159 0.8937 3.0199 9.04 88.1046 

Obs glass 73.9783 4.127 0.0493 5.1524 0.7229 1.5425 13.3482 99.4977 

RI_00_056 
037 79.7949 0.8405 0.2527 2.1957 0.278 0.8137 4.3328 88.5125 

RI_00_056 
038 82.1829 0.881 0.117 1.5145 0.2733 0.9264 3.675 89.5828 

RI_00_056 
039 82.6846 0.6394 0.2369 1.114 1.0905 1.9583 2.8794 90.8142 
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Appendix F: µ-XRD data 
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