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Abstract 

Intrinsically disordered proteins (IDPs) are abundant in cells and have central roles in 

protein-protein interaction networks. Many are involved in cancer, aging and 

neurodegenerative diseases. The structure and dynamics of IDPs is intimately related to their 

interactions with binding partners. Because IDPs are inherently flexible and do not have a 

single conformation, conventional methods and conditions for determining structure and 

dynamics of globular proteins may not be directly applicable. Nuclear magnetic resonance 

(NMR) spectroscopy is one of the primary techniques characterizing the structures and 

dynamics of IDPs, but one cannot rely solely on NMR data. A primary aim of this work was 

to use Molecular Dynamics (MD) simulations in conjunction with NMR and other 

biophysical techniques to achieve a deeper understanding of the structure and dynamics of 

IDPs. To establish suitable parameters and force field choice for simulating IDPs, extensive 

MD simulations were performed and the results were compared to experimental data. Using 

computational and experimental techniques, the interactions between peptides from 9 

disordered proteins with a common target were interrogated. The findings allowed us to 

determine key factors in modulating the affinities of the various interactions and highlighted 

the importance of Linear Motifs (LMs) in IDP target recognition and binding. IDP binding 

was also investigated from the perspective of the binding partner. The backbone resonances 

of the ~32 kDa target were assigned and the binding interface was mapped in the presence of 

a peptide from a disordered binding partner. Chemical shift changes distant from the 

interaction site indicated that IDP binding is a complex process, which should be studied 

from the perspectives of the partner and target. Because IDPs are highly sensitive to 

environmental conditions, the effects of molecular crowding on the dynamics of IDPs were 

also investigated. I found that crowding might have differential effects on the conformational 

propensities of distinct regions of some IDPs. This information will help to understand the 

behavior of IDPs in cellular environments and to determine suitable conditions for accurately 

studying them. This work has helped to improve the understanding of how IDP structure and 

dynamics relate to target binding. 
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1 Introduction 

1.1 Intrinsically disordered proteins 

Intrinsically disordered proteins (IDPs) are a biologically functional class of 

proteins that comprise ~30% of the eukaryotic proteome (1-4). The abundance of IDPs in 

organisms suggests that they are essential for numerous functions. It was once thought 

that a protein must adopt a defined three-dimensional structure to function properly; 

however, the discovery of biologically active disordered proteins illustrates that IDPs 

carry out their functions through different mechanisms than globular proteins. The 

defined conformation of a globular protein is often important for stabilizing a single 

interaction site, allowing it to partake in a specific and high affinity interaction. In 

contrast, the different possible conformations of an IDP often allow for specific, but 

generally lower affinity interactions with numerous different targets (5). These properties 

are well suited to their roles in signaling pathways, where reversible binding and the 

ability to interact with multiple partners is often required (5). 

 

Figure 1.1 NMR structural ensembles of the intrinsically disordered Thylakoid 

soluble phosphoprotein TSP9 and globular protein, Ubiquitin. 
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Thylakoid soluble phosphoprotein TSP9 (left, PDB id: 2FFT) and Ubiquitin 

(right, PDB id: 1D3Z). 

 

 The structural differences between IDPs and globular proteins (Figure 1.1) illustrate 

that disorder is encoded in their sequences. IDPs have different amino acid compositions 

than globular proteins. They are enriched in charged, polar and the structure-breaking 

residues, glycine and proline (1, 6). Hydrophobic and aromatic content is also lower in 

IDPs (1, 6). As a result, IDPs usually lack hydrophobic cores, which stabilize globular 

proteins. Due to the absence of hydrophobic cores, IDPs are more dynamic compared to 

globular proteins. Ordered regions of globular proteins undergo relatively small 

fluctuations around their equilibrium backbone atom positions over time. In comparison, 

IDPs usually exhibit significant changes in their φ and ψ angles over time and may not 

have specific equilibrium values (6). Although IDPs lack stable tertiary structures, they 

may contain elements of secondary structure, which are often crucial for their 

functionality (eg. target binding).  

 The dynamic properties of IDPs are intimately related to the timescale of 

conformational exchange within the ensemble (Figure 1.1), which govern target 

recognition and how these proteins function. Different structures in the ensemble can 

participate in the interactions with distinct targets; therefore, the rate of exchange 

between conformers can have significant impact on the protein function (7, 8). 

 

1.2 Target binding by IDPs 

Protein-protein interaction (PPI) networks are essential for most biological 

functions. IDPs often act as hubs in PPI networks, where they regulate biochemical 

processes through low-affinity and high-specificity protein-protein interactions (2). 

Although IDPs are involved in crucial biological functions, such as signal transduction 

and transcription (5), there is relatively limited data, compared to globular proteins, 

describing how they interact with binding partners. Knowledge of the mechanisms that 
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IDPs employ to bind to their targets will aid in development of therapeutic approaches 

targeting these interactions (9).  

Studies have shown that the unique structural properties of IDPs are important for 

their ability to act as hubs in PPI networks (10-12). Like proteins in the unfolded state, 

IDPs do not adopt completely random coil conformations (13-16). Many IDPs have 

considerable conformational propensities (17-19). Segments of IDPs that contain residual 

structure may act as molecular recognition features (MoRFs) for binding to their targets 

(17, 19). MoRFs are defined as 5-25 residue target binding regions, which may contain 

residual structure in their unbound states (17). It is possible for IDPs to contain multiple 

MoRFs along their sequence allowing them to interact with different binding partners. 

Also, binding to different targets can cause a MoRF to adopt completely different 

structures (17, 20, 21). For example, the same region of the intrinsically disordered N-

terminal of p53 can adopt a helix or a sheet depending on its binding partners (21).  

Some IDPs interact with targets through preformed structural elements (PSEs) 

that resemble the bound state (19, 22-24), while others may couple conformational 

changes with target binding (coupled folding and binding model). For IDPs that bind 

using PSEs, the binding region structure is already formed in the unbound state. In the 

coupled folding and binding model, the IDP undergoes a disorder-to-order transition 

upon binding to a target (2). Binding of IDPs may also be modulated by a combination of 

these two mechanisms (25). 
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Figure 1.2 Mechanisms of target binding by IDPs. 

Possible mechanism(s) for the interaction between the intrinsically disordered 

phosphorylated kinase inducible activation domain (pKID) and KIX domain of the 

CREB binding protein (26). Usage of this figure has been granted by the Nature 

Publishing Group (licence number 2993681394339). 

 

1.3 IDPs and diseases 

IDPs have been found to be associated with cancers, neurodegenerative diseases 

and aging (5, 27). Because their structural plasticity often allows them to interact with a 

large number of targets, IDPs are enriched in signaling networks (5). They have been 

shown to be involved in various activities, such as signal transduction, apoptosis, cell 

differentiation, and neuron function (28). In addition to missignalling diseases, IDPs are 

also involved in diseases related to protein misfolding (5). Mutations, exposure to toxins, 

aberrant posttranslational modifications and other factors can lead to misfolding of these 

 

Figure S1. Schematic  diagram illustrating the problem that is addressed in this paper. How unstructured proteins 

bind to their targets is poorly understood. In the case of the binding of the phosphorylated kinase inducible domain of 

CREB (pKID) to the KIX domain of CBP, we find that the mechanism more nearly approximates the lower of these 

two possibilities, with the formation of unstructured encounter complexes and an intermediate, partly folded complex 

before formation of the final, fully folded complex. 
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proteins, which can have serious consequences. The term ‘misfolding’ may seem 

counterintuitive because IDPs do not adopt stable folds. However, in several 

neurodegenerative disorders, the normal, disordered form of a protein may convert to a 

‘misfolded’ conformation that is prone to aggregation. The build up of non-functional, 

ordered and highly stable amyloid fibrils in various tissues can result in specific 

pathological conditions depending on the protein (5). Because IDPs typically have low 

structural preferences compared to folded proteins, it is thought that they can transform 

into an aggregate-prone conformation more easily. Understanding the links between 

sequence, structure and target binding by IDPs is crucial for improving our understanding 

of their roles in disease and developing treatments and cures. 

 

1.4 Techniques for characterizing IDPs 

Nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography are 

commonly used methods to obtain atomic details of protein structure and dynamics. The 

dynamic nature of IDPs makes acquiring diffracting crystals of them in unbound states 

nearly impossible (29). Therefore, NMR is the primary technique for studying the 

structure and dynamics of IDPs (30, 31). NMR can yield a wealth of data, but there are 

limitations. Data collected by NMR are averaged over time and represent an ensemble 

average. For globular proteins, the protein core is stable and the ensemble average is 

usually a good representation of a true physical state. For highly flexible polymers, like 

IDPs, the ensemble average may not represent a realistic physical state. To 

comprehensively study the structure and dynamics of IDPs, and their relationship to 

target binding, NMR techniques were combined with molecular dynamics (MD) 

simulations and other biophysical techniques, such as isothermal calorimetry (ITC) for 

many of the projects in this thesis. A brief introduction to each of these techniques is 

provided below. 
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1.4.1 NMR spectroscopy 

 NMR is a technique used to determine the chemical environment of atoms (32-

35). This information can be used to learn about the structure, dynamics, chemical 

environment, etc of the molecules that the atoms are contained in. The technique exploits 

the magnetic properties of specific nuclei in order to obtain this information. In a 

magnetic field (Bo), NMR active nuclei, atoms that have odd number of protons, 

neutrons, or both, and spin values of ½ (eg. 1H, 15N, 13C) will precess in either spin-

aligned or spin-opposed orientations parallel to the field (Figure 1.3). Nuclei in the spin-

aligned state have a slightly lower energy and are slightly more populated than the spin 

opposed nuclei. By applying electromagnetic radiation, in the form of radio waves, these 

nuclei can be temporarily be excited to the higher energy, unaligned state. Data collected 

during the return to the lower energy state gives information about the local environment 

of the nuclei (chemical shift). This is the basis of all NMR experiments. Various types 

and patterns of electromagnetic pulses are combined to generate specific NMR 

experiments to obtain the desired information (eg. chemical environment, dynamics, etc) 

about the nuclei.  

NMR can be used to determine protein structures and numerous other properties, 

such as dynamics. The process of determining a protein structure by NMR can be divided 

into two parts: assignment and restraint collection. Assignment refers to the 

determination of the chemical shift values of spin ½ nuclei. Next, restraints are gathered 

(distances, angles, orientations, etc) for the assigned atoms, which are used to 

computationally fold the polypeptide in such a way that the restraints are satisfied. The 

two steps are not always mutually exclusive. For example, through space distance 

restraints may be also used to assist with or verify the resonance assignment. For small 

proteins and peptides (~30 residues or less), homonuclear NMR experiments (eg. 1H 

signals only) may be sufficient to assign the proton resonances (via 1H-1H COSY and 

TOCSY experiments) and determine the structure (via 1H-1H NOESY). This approach is 

used in chapter 4 to assign and collect distance restraints for several ~20-mer peptides. 

Due to spectral crowding and overlap in the 1H dimension, multidimensional, 

heteronuclear experiments are required to assign and determine the structures of larger 
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proteins and peptides. In chapter 5, several heteronuclear experiments were used to assign 

backbone resonances for a ~32 kDa protein domain. In this case, the goal of assignment 

was not to determine the structure. Instead, we used the assigned 1H-15N HSQC spectrum 

to determine the residue-specific chemical shift changes upon addition of a peptide from 

a binding partner. This allowed us to map the binding interface (chemical shift mapping) 

onto a previously determined crystal structure. Furthermore, assignment of the 13Cα and 
13Cβ resonances allowed for the determination of secondary structure content of the 

polypeptide. NMR can also be used to study protein dynamics. Relaxation measurements 

allow one to determine motions occurring on ps-ns timescales, which can help to identify 

structured and flexible regions of proteins. These types of experiments are employed in 

chapter 6 to measure changes in the dynamics of IDPs under crowded conditions. The 

experiments mentioned here are just a few examples of the uses of NMR. 

  

 

Figure 1.3 The basis of NMR experiments. 

NMR active nuclei precess in either spin-aligned or spin-opposed orientations 

parallel to the field (Bo). Lower energy nuclei can be temporarily be excited to the 
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higher energy state. Data collected as the nuclei return to equilibrium gives 

information about the local environment of the nuclei. 

 

1.4.2 MD simulations  

 MD is a simulation of the movement of particles, accomplished by solving 

Newton’s equation of motion (2nd law) for a system of interacting particles: 

  

€ 

 
F i = mi

 a i = mi
d v i
dt

= mi
d2 r i
dt 2   

 

Where Fi is the force exerted on particle i, mi is the mass of particle i, ai is the 

acceleration of particle i, vi is the velocity of particle i and ri is the position of particle i at 

time t.  

 Using this equation, a trajectory (particle positions as a function of time) can be 

calculated by integration once the initial positions and velocities of the particles are 

known. The positions may come from a known structure (eg. Crystal or NMR protein 

structure) and the velocities are often taken from a Maxwellian distribution at the desired 

temperature. From these values, the forces on the particles (usually atoms) are calculated. 

The particles are allowed to move for a short period of time (the timestep), and 

integration gives their t+1 positions. Time is moved forward according to the timestep. 

This process is repeated as long as necessary. A number of different integration 

algorithms may be used, such as leap frog and velocity Verlet (36, 37). 

 The calculation of forces is the most time-consuming process in the generation of 

a trajectory. The forces may also be expressed as the negative gradient of the potential 

energy: 

  

€ 

 
F i = −∇ iV  
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The potential energy function (V) is the sum of terms for bonded and non-bonded 

energies. These energies are determined as a function of the atom positions (Cartesian 

coordinates, r) in the system: 

 

The bonded interactions typically contain terms for stretching, angle-bending, dihedral 

angle and, usually, a term for improper dihedral angles, which functions to maintain the 

planarity of planar molecules (Figure 1.4): 

   

 

Figure 1.4 Bonded energy terms for MD simulations. 

Figure usage granted under MesoBioNano (MBN) explorer academic license 

agreement (http://www.mbnexplorer.com/academic-license-agreement) (38). 

 

! 

V (r) = E
bonded

+ E
non"bonded

! 

Ebonded = Ebond"stretch + Eangle"bend + Edihedral + Eimproper"dihedral
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The non-bonded energy consists of terms for Van der Waals and electrostatic interaction 

energies. Van der Waals forces are approximated using the Lennard-Jones potential: 

 

Where ε is the well depth, σ is the distance where the inter-particle potential is zero and r 

is the distance between the particles. Figure 1.5 illustrates examples of Lennard-Jones 

potentials. 

 

Figure 1.5 Examples of Lennard-Jones potentials. 

r is the distance between particles in nanometers and the Lennard-Jones potential 

is given in kJ/mol. All Lennard-Jones potentials include repulsive and attractive 

components. Here, the grey curve has a greater attractive component compared to 

the black one. 

 

The Coulomb interactions between two charged particles is given by: 
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! 

VC (rij ) =
qiq j

4"# o# rrij
 

Where q is the charge on each particle, 

! 

"
r
 is the relative dielectric constant and rij is the 

separation distance. 

The values associated with each of the energy terms are dictated by the force field being 

used for the simulation. Chapter 2 details some of the most commonly used force fields 

for biomolecular simulations. 

 When conducting MD simulations of biomolecules, such as proteins, it is usually 

desirable to mimic experimental, or laboratory conditions (eg. temperature, pressure). 

Direct integration of Newton’s equation of motion will result in the system energy being 

conserved, which corresponds to an isolated system. In contrast, laboratory experiments 

are typically “open” systems. To reproduce experimental conditions it is usually desirable 

to run simulations under the NPT ensemble, where the number of particles, pressure and 

temperature of the system are kept constant. This is accomplished by coupling the system 

to temperature and/or pressure baths. Thermostat (39, 40) and barostat (41-44) algorithms 

can be employed to achieve the NPT ensemble. 

 One final concept that warrants introduction is that of periodic boundary 

conditions (PBCs). Typically, in a simulation, it is desirable to mimic a bulk system (e.g., 

protein in solution); however, because this would be too computationally expensive, a 

finite system with a small number of particles is preferred. Using PBCs, a finite system is 

surrounded by translated copies of itself (Figure 1.6). This eliminates boundary effects 

that would be present at the system edges if PBCs were not employed. In some cases, one 

may want to perform a simulation without the use of PBCs (e.g., a crystal). 
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Figure 1.6 Periodic boundary conditions in 2D. 

The system (center) is surrounded by translated copies of itself, eliminating edge 

effects and mimicking a bulk solvent environment (45). Figure usage granted 

under the GNU General Public License (http://www.gnu.org/copyleft/gpl.html). 

 

MD simulations have become increasingly valuable tools in the field of 

biochemistry. Berni Alder invented the technique in the late 1950’s and in 1959 

performed the first MD simulation – of a group of interacting hard spheres under periodic 

boundary conditions (46). The first protein MD simulation was performed in 1975 of the 

bovine pancreatic trypsin inhibitor (BPTI) (47). Since then, advances in computing power 

have allowed for MD simulations to be used to study considerably more complex 

systems. They have become important predictive tools. Today, MD simulations are 

routinely used for NMR structure determination, refining X-ray crystal structures, 

protein-ligand docking, drug discovery/refinement, protein folding and countless other 

purposes. As computational power and software algorithms improve, the uses and 

applications of MD simulations will expand correspondingly. 

  

1.4.3 ITC 

 ITC is a method to quantitatively measure the thermodynamic parameters of 

interactions in solution (48). The binding affinity (Ka), enthalpy changes (ΔH) and 

stoichiometry (n) of the interaction between two or more molecules are measured 

12 Chapter 3. Algorithms
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Figure 3.1: Periodic boundary conditions in two dimensions.

better suited to the study of an approximately spherical macromolecule in solution, since fewer
solvent molecules are required to fill the box given a minimum distance between macromolecular
images. At the same time, rhombic dodecahedra and truncated octahedra are special cases of
triclinic unit cells; the most general space-filling unit cells that comprise all possible space-filling
shapes [18]. For this reason, GROMACS is based on the triclinic unit cell.

GROMACS uses periodic boundary conditions, combined with the minimum image convention:
only one – the nearest – image of each particle is considered for short-range non-bonded in-
teraction terms. For long-range electrostatic interactions this is not always accurate enough, and
GROMACS therefore also incorporates lattice sum methods such as Ewald Sum, PME and PPPM.

GROMACS supports triclinic boxes of any shape. The simulation box (unit cell) is defined by the
3 box vectors a,b and c. The box vectors must satisfy the following conditions:

ay = az = bz = 0 (3.1)

ax > 0, by > 0, cz > 0 (3.2)

|bx| ≤ 1
2

ax, |cx| ≤ 1
2

ax, |cy| ≤ 1
2

by (3.3)

Equations 3.1 can always be satisfied by rotating the box. Inequalities (3.2) and (3.3) can always
be satisfied by adding and subtracting box vectors.

Even when simulating using a triclinic box, GROMACS always keeps the particles in a brick-
shaped volume, for efficiency reasons, as illustrated in Fig. 3.1 for a 2-dimensional system. From
the output trajectory it might therefore seem as if the simulation was done in a rectangular box.
The program trjconv can be used to convert the trajectory to a different unit-cell representation.
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directly. Determination of these parameters allows one to derive the Gibbs free energy 

and entropy changes (ΔG and ΔS, respectively) using the relationship: 

 

Where R is the gas constant and T is the temperature. 

 Briefly, in an ITC experiment, a binding target is loaded into the sample cell and 

subjected to a stepwise titration of precise volumes of ligand into the same cell (Figure 

1.7). The reference cell contains water or buffer. A constant power is applied to the 

reference cell heater. During the titration, sensitive thermocouples measure the 

temperature differences between the reference and sample cells. In an exothermic 

reaction, heat is evolved in the sample cell and the power to the heater is decreased. In an 

endothermic reaction, heat is absorbed in the sample cell and the heater is activated. The 

heat input required to maintain the same temperatures in the sample and reference cells is 

measured throughout the experiment (Figure 1.8). Integration of the heat input with 

respect to time as a function of the molar ratio ((ligand)/(target)) gives the 

thermodynamic parameters of interest. 

 

! 

"G = #RT lnK
a

= "H #T"S
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Figure 1.7 ITC instrument schematic. 

Figure has been released to the public domain without conditions. 



15 

 

 

Figure 1.8 Typical ITC data 

The top panel shows the raw ITC data and the bottom panel shows the binding 

isotherm. 

 

1.5 Significance and aims 

The primary aim of this work was to improve the understanding of how the 

structure and dynamics of IDPs are related to target binding. To accomplish this, 

experimental and computational techniques were used to investigate the molecular 

mechanisms by which several IDPs interact with a common binding partner. The 
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common partner is the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1). 

This domain is a key component in regulating the cellular response to oxidative stress 

(49). It adopts a β-propeller conformation that comprises an interaction site for numerous 

proteins (50-55) (Figure 1.9, left). Perhaps the most important interaction that the Kelch 

domain is involved in is with the transcription factor Nuclear factor erythroid 2-related 

factor 2 (Nrf2). The intrinsically disordered Neh2 domain of Nrf2 can bind two Kelch 

domain monomers via distinct motifs with different binding affinities (54, 56). Under 

normal cellular conditions, association of both motifs with the Kelch domain leads to its 

degradation (54) (Figure 1.9, right). However, when cells are exposed to conditions of 

oxidative stress (eg. reactive oxygen species, toxins, etc), the lower affinity interaction is 

disrupted, and Nrf2 is able to promote transcription of cytoprotective genes (54). Because 

the overexpression of these genes may have clinical benefits, development of compounds 

that induce the Keap1-Nrf2 pathway are being actively developed for various purposes 

(see chapter 4 for details) (57). Moreover, misregulation of this pathway can result in 

cancers, premature aging and neurodegenerative diseases (58, 59). In recent years, 

numerous other proteins that bind to the same interface on the Kelch domain and share 

similar binding motif sequences with Nrf2 have been discovered, but not extensively 

studied (53, 60-66). Some of the proteins have been shown to promote cytoprotective 

gene expression by disrupting the low affinity Nrf2-Kelch domain interaction (52, 62, 65, 

66), while others have different, or unknown roles. Several of the works presented in this 

thesis focus on the relationships between sequences and structures in controlling the 

affinities of the various protein-protein interactions. The findings should be useful for 

improving the general understanding of the mechanisms used by IDPs to interact with 

targets, deciphering the biological roles of these interactions, and development of 

therapeutic agents that target the Nrf2-Kelch domain interaction. 
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Figure 1.9 The structure of the Kelch domain of Keap1 and its interaction with the 

Neh2 domain of Nrf2. 

Two-site binding is disrupted under conditions of oxidative stress preventing Nrf2 

degradation and allowing promotion of cytoprotective gene expression. The 

structure corresponding to PDB id 1X2R was obtained from (67) and rendered 

with VMD (68). 

 

1.6 Thesis outline 

The following chapters (2-6) represent individual, first author publications, in 

their unmodified forms. A primary aim of this work was to use Molecular Dynamics 

(MD) simulations in conjunction with NMR and other biophysical techniques to achieve 

a deeper understanding of the structure and dynamics of IDPs. Although NMR is a 

powerful tool, the data represents an ensemble average, which can be limiting when 

studying a molecule rapidly undergoing conformational changes like an IDP. Because 

MD trajectories allow for the examination of discrete states and the interconversion 

between conformations, they can be used to complement experimental techniques. 

However, because IDPs have been recently discovered relative to their globular 

counterparts, parameters and protocols for accurately simulating them have not been 

widely established. Chapter 2 describes our efforts towards determining suitable 
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parameters and force field selection for performing MD simulations of IDPs. This was 

accomplished by performing extensive MD simulations of a peptide from the high 

affinity motif of Nrf2 with 10 different force fields and different parameters. The results 

were compared to experimental data. After determining suitable combinations of 

parameters for simulating IDPs, we applied the methodology to more diverse IDP 

systems. In chapters 3 and 4, we combine MD simulations with experimental techniques 

to dissect the mechanisms used by 9 different IDPs for binding to a common target, the 

Kelch domain of Keap1. Our findings provide valuable insights into the mechanisms 

used by IDPs for target binding and should also help to elucidate the biological roles of 

the various protein-protein interactions. In chapter 5, we report the backbone resonance 

assignments for the Kelch domain of Keap1 and map its binding interface with a peptide 

from the high affinity motif of Nrf2. This study was important for examining IDP binding 

from the perspective of a target, allowing us to more thoroughly understand IDP 

interactions. Chapter 6 focuses on determining how molecular crowding affects the 

dynamics of IDPs. Inside cells, the concentration of macromolecules can reach up to 400 

g/L. In such crowded environments, proteins are expected to behave differently than in 

vitro. The dynamic properties of IDPs are intimately related to the timescale of 

conformational exchange within the ensemble, which govern target recognition and how 

these proteins function. Therefore, assessing how these properties are affected by 

environmental conditions is crucial for accurately studying this class of proteins. The 

major conclusions from this thesis and possible future directions are discussed in chapter 

7.   
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2.1 Abstract 

 We have compared molecular dynamics (MD) simulations of a β-hairpin forming 

peptide derived from the protein Nrf2 with ten biomolecular force fields using trajectories 

of at least one microsecond long. The total simulation time was 37.2 microseconds. 

Previous studies have shown that different force fields, water models, simulation methods 

and parameters can affect simulation outcomes. The MD simulations were done in 

explicit solvent with a 16-mer Nrf2 β-hairpin forming peptide using Amber ff99SB-

ILDN, Amber ff99SB*-ILDN, Amber ff99SB, Amber ff99SB*, Amber ff03, Amber 

ff03*, GROMOS96 43a1p, GROMOS96 53a6, CHARMM27 and OPLS-AA/L force 

fields. The effects of charge-groups, terminal capping and phosphorylation on the peptide 

folding were also examined. Despite using identical starting structures and simulation 

parameters, we observed clear differences amongst the various force fields and even 

between replicates using the same force field. Our simulations show that the uncapped 

peptide folds into a native-like β-hairpin structure at 310 K when Amber ff99SB-ILDN, 

Amber ff99SB*-ILDN, Amber ff99SB, Amber ff99SB*, Amber ff03, Amber ff03*, 

GROMOS96 43a1p or GROMOS96 53a6 were used. The CHARMM27 simulations were 

able to form native hairpins in some of the elevated temperature simulations, while the 

OPLS-AA/L simulations did not yield native hairpin structures at any temperatures 

tested. Simulations that used charge-groups or peptide capping groups were not largely 

different from their uncapped counterparts with single atom charge-groups. On the other 

hand, phosphorylation of the threonine residue located at the β-turn significantly affected 

the hairpin formation. To our knowledge, this is the first study comparing such a large set 

of force fields with respect to β-hairpin folding. Such a comprehensive comparison will 

offer useful guidance to others conducting similar types of simulations. 
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2.2 Introduction 

Atomistic molecular dynamics (MD) simulations are a versatile tool for studying 

protein folding and function. They can provide detailed atomistic information, which may 

be difficult to obtain by experimental techniques. Increases in computational power have 

allowed for simulations to reach experimentally relevant time scales at the microsecond 

level: MD simulations have been used to study the folding of peptides and small proteins 

(1-9) and to model other biological systems. The current record for an atomistic 

simulation of protein conformational changes, as far as we know, is 1 ms reached by 

Shaw et al. (7) for the 58-residue protein BPTI. 

One of the major challenges in protein folding simulations is choosing an 

appropriate force field, see e.g. Ref (10). This is due to possible biases different force 

fields have towards certain types of secondary structure (3, 11-14). Ideally, the force field 

should be fully validated with experimental data, but that is typically not possible as it 

would involve validation against different structures and other physical properties from a 

large number of independent and fully validated experiments – mission impossible since 

experiments have their own error sources due to, e.g., instrumentation. While a 

completely transferable force field does not exist, modifications of existing force fields 

have led to improvements in agreement with experimental data (15-22). 

In this work, we compared 10 biomolecular force fields with respect to the folding 

of a peptide derived from Nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is an 

important transcription factor that regulates the expression of genes responsive to 

oxidative stress (23, 24). The protein consists of six highly homologous regions (Neh1-6 

domains). Structural analysis showed that the N-terminal Neh2 domain is intrinsically 

disordered, a novel class of proteins that are extremely dynamic in nature (25-29). Under 

homeostatic conditions, this domain binds two Kelch units of a Keap1 dimer through two 

separate motifs: a high affinity ‘ETGE’ motif and a lower affinity ‘DLG’ motif (30). 

Crystallographic data has shown that the ‘ETGE’ motif and its surrounding residues 

(residues 75-83) form a β-hairpin structure upon binding to the Kelch domain of Keap1 

(PDB ids: 2FLU and 1X2R) (30, 31). NMR-derived 1H, 1H NOEs suggest that residual 

structure spanning from residues 74-85, likely in the form of a β-hairpin, also exists in the 
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free-state of Neh2 (30, 31). Other experimental data has shown that a peptide containing 

residues 74-87 can compete with the full-length Nrf2 for binding Keap1 (31). Here, we 

chose to use a 16-mer human Nrf2 peptide with the sequence 
72AQLQLDEETGEFLPIQ87 for our MD simulations. This peptide contains the ‘ETGE’ 

motif and should be of sufficient length to form the necessary interactions to stabilize the 

β-hairpin structure. It is noteworthy that the phosphorylation of Thr-80 has been shown to 

impair the binding to Keap1 (31). Since Neh2 is largely disordered and lacks a tertiary 

structure, this β-hairpin likely folds independently, making it a good target for folding 

simulations (30). 

In addition to Nrf2, several other proteins that contain ‘ETGE’-like motifs have 

been shown to interact with the Kelch domain of Keap1. These include PGAM5 (32), 

FAC1 (33), PTMA (34), p62 (35), WTX (36) and PALB2 (37). Some of these Keap1 

interacting proteins have only been recently discovered, which suggests that this list of 

targets may still be growing. Structures of PTMA (Prothymosin alpha) and p62 peptides 

in complex with Keap1 indicate that their ‘ETGE’-like motifs bind to the same region as 

the ‘ETGE’ motif of Nrf2 and form similar hairpin structures in their bound states (31, 

34, 35). Interestingly, MD simulations from our previous work showed that the binding 

motifs of Nrf2 and PTMA have tendency to form hairpin structures that resembled the 

bound state conformation even in the absence of Keap1 (9). With the list of Keap1 

binding partners seemingly expanding and MD simulations becoming an increasingly 

important and predictive tool, it is important to establish appropriate simulation protocols 

for these systems, including force field choice.  

β-hairpins are a type of protein supersecondary structure consisting of two 

hydrogen bonded antiparallel β-strands connected by a turn. These structural elements are 

common in globular proteins because they reverse the direction of the protein backbone, 

allowing the formation of compact structures. β-hairpin motifs are sometimes involved in 

protein-protein interactions and it has been suggested that they can act as nucleation sites 

for protein folding (31, 38-40). In this study, we compared folding simulations of a β-

hairpin peptide derived from the intrinsically disordered Neh2 domain. Starting from an 

unfolded structure, we performed extensive (1-2 µs each, totaling 37.2 µs) atomistic 
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molecular dynamics simulations using 10 different force fields (details in next section). 

We selected these force fields primarily because they are commonly used in biomolecular 

simulations, including those of β-hairpin folding (3, 9, 41, 42).  

Force field selection is a key factor in the outcome of protein folding simulations. 

Although force field modifications have led to improved agreements between MD 

simulations and experimental data, continued testing and comparison with experimental 

data is required to further these advances. While studies comparing different force fields 

have been conducted previously, very few of them had included such a large set of force 

fields with respect to folding of secondary structure elements (3, 14, 19, 43-45). Small 

proteins and peptides with folding times on the microsecond timescale are excellent 

systems to test and compare force fields; such trajectories provide reasonable sampling of 

conformations and sufficient length to examine the stability of the force field. 

In this work, we compare MD simulations of a β-hairpin forming peptide derived 

from the protein Nrf2, performed with ten force fields. We assess their agreements with 

experimental data. The effects of elevated temperatures, charge-groups (46, 47), peptide 

capping and phosphorylation of Thr-80 with respect to β-hairpin formation were also 

examined. Despite using identical starting structures and simulation parameters, we 

observed clear differences amongst the various force fields and even between replicate 

simulations using the same force field. Such a comprehensive comparison will offer 

useful guidance to others conducting similar types of simulations and for improving force 

fields. 

 

2.3 Simulation methodology 

The starting structure for our MD simulations was generated based upon the 

amino acid sequence of a 16-mer human Nrf2 peptide (72AQLQLDEETGEFLPIQ87). We 

used the Crystallography & NMR System (CNS) (48) to generate an extended structure, 

which subsequently underwent simulated annealing. To avoid any potential bias to the 

bound-state conformation, a structure from the annealing simulations that did not 

resemble the bound state structure (PDB id: 2FLU) was chosen as the starting structure 
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(31). The exact same starting structure was used for all simulations. For the 

phosphorylated peptide (pThr-80) simulations, a dianionic phosphate group (PO4
2-) was 

modeled onto residue Thr-80 of the same structure using chimera (49). 

 

Force fields 

We compared the peptide folding using the following force fields: Amber ff99SB-

ILDN (15, 19, 20), Amber ff99SB*-ILDN (15, 17, 19, 20), Amber ff99SB (15, 19), 

Amber ff99SB* (15, 17, 19), Amber ff03 (15, 16), Amber ff03* (15-17), GROMOS96 

43a1p  (50, 51), GROMOS96 53a6 (21, 22), CHARMM27 (version c32b1) with CMAP 

(18, 52, 53) and OPLS-AA/L force fields (54-56). The ‘*’ designations on the Amber 

force fields indicate the presence of a modification to the backbone dihedral potentials to 

improve agreement with experimental data (17). The ‘ILDN’ designation indicates the 

presence of a modification to the side-chain torsion potentials of isoleucine, leucine, 

aspartate and asparagine to improve agreement with quantum-mechanical calculations 

(20). Combination of the ‘ILDN’ and ff99SB* modifications has been demonstrated 

recently (44, 57). For a recent summary of the evolution of the Amber ff99 and ff03 

series of force fields see the results section of  (44) The ‘p’ designation on the 

GROMOS96 43a1 force field indicates the inclusion of phosphorylated amino acid 

parameters to the otherwise unmodified 43a1 parameters (50). One major difference 

between the GROMOS force fields and the others used in this study is that the GROMOS 

force fields are united atom and do not explicitly have all hydrogen atoms. The ‘AA’ and 

‘/L’ designations on the OPLS force field indicate all-atom and the inclusion of updated 

dihedral parameters from the original distribution (56). 

Simulations of the same peptide with residue Thr-80 phosphorylated (pThr-80) 

were conducted with several of the above force fields in which phosphothreonine 

parameters were available. These included Amber ff99SB-ILDN, GROMOS96 43a1p 

and CHARMM27. Phosphothreonine parameters from (58) and (50) were used for the 

Amber ff99SB-ILDN and GROMOS96 43a1p force field simulations, respectively. 
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Phosphothreonine parameters included in the CHARMM27 force field distribution were 

used (18, 53). 

 Simulation details 

A. General parameters. Simulations were performed using GROMACS 

(GROningen MAchine for Chemical Simulations) version 4.5 (47) Although GROMACS 

was used in this work, we expect that our findings will be applicable to other simulation 

software that utilizes the same force fields (59). Cubic boxes of linear size 6 nm were 

used and periodic boundary conditions were applied in all directions. Sodium (Na+) and 

chloride (Cl-) ions were added to neutralize the system and bring the salt concentration to 

0.1 M. Na+ and Cl-  parameters specific to each force field distribution were used (60). 

Protein and non-protein atoms were coupled to their own temperature baths, which were 

kept constant at 310 K using the Parrinello-Bussi algorithm (61). This approach has been 

shown to perform very well in biomolecular simulations (46). Pressure was maintained 

isotropically at 1 bar using the Parrinello-Rahman barostat (62). A 2-fs timestep was 

employed. Prior to the production runs, the energy of each system was minimized using 

the steepest descents algorithm. This was followed by 2 ps of position-restrained 

dynamics with all non-hydrogen atoms restrained with a 1000 kJ mol-1 force constant. 

Initial atom velocities were taken from a Maxwellian distribution at 310 K. All bond 

lengths were constrained using the LINCS algorithm (63). A 1.0 nm cut-off was used for 

Lennard-Jones interactions. Dispersion corrections for energy and pressure were applied. 

Electrostatic interactions were calculated using the Particle-Mesh Ewald (PME) method 

(64) with 0.12 nm grid-spacing and a 1.0 nm real-space cut-off. No reaction-field or 

cutoff methods were tested as they have previously been shown be inferior to PME (65, 

66). System coordinates were written out at 4 ps intervals during the production runs. 

B. System-specific attributes. The protonation states of all ionizable residues were 

chosen based on their most probable state at pH 7. Unless specified, simulations were 

conducted with the amino and carboxyl terminals of the peptide left uncapped (NH3
+ and 

COO-, respectively) for each force field. When studying peptides from the interior of a 

protein sequence, it is common to add capping groups to the ends. This neutralizes the 
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unphysical charges introduced by the free N- and C-termini, which can potentially disrupt 

the native structure. To study the effects of peptide capping, several simulations with the 

N- and C-terminus capped with acetyl (ACE) and NH2 groups, respectively, were 

performed (Table 2.1). The starting structure was solvated in SPC (simple point charge), 

TIP3P or TIP4P (67, 68) water. The compatibility of these water models with ions has 

been examined in detail by (60). A three-point water model (SPC or TIP3P) was 

recommended by GROMACS for all of the force fields used in this study, with the 

exception of OPLS-AA/L, in which the four-point (TIP4P) water model was the 

recommended choice (Table 2.1). Simulations with TIP3P and TIP4P were conducted for 

this force field (Table 2.1). The non-phosphorylated peptide systems each contained 17 

Na+ and 13 Cl-  ions, while for the pThr-80 systems two extra Na+ ions were added to 

neutralize the dianionic phosphate group. For each force field, a simulation was 

conducted without the use of charge-groups (single atom charge groups); GROMACS 

uses the concept of charge groups to speed up simulations, see section “Domain 

Decomposition” in (47) for details. It has recently been shown that in some situations 

charge-groups can lead to pronounced unphysical effects (46). To examine the effect of 

charge-groups, additional simulations were conducted with the GROMOS96 and OPLS-

AA/L force fields employing the default charge-groups for these force fields. Simulations 

performed with charge-groups are denoted with brackets around the force field name in 

the results section. For simulations conducted with the CHARMM27 force field, CMAP 

correction was applied (18). A few of the simulations were duplicated in order to assess 

reproducibility (Table 2.1). These systems did not use charge-groups, were prepared in 

the same manner as stated above and were assigned different initial atom velocities than 

their originals. Duplicated simulations are denoted with bracketed sequential numbering 

beside the force field name in the results section. We also performed elevated 

temperature simulations at 330, 350 and 370K with the Amber ff99SB*-ILDN (15, 17, 

19, 20), Amber ff03*, (15-17) GROMOS96 53a6, (21, 22) CHARMM27 with CMAP 

(18, 52, 53) and OPLS-AA/L force fields (54-56). Using the initial and final (after 1 µs) 

system configurations at 310K, we reassigned the atom velocities at each higher 

temperature and performed 0.2 µs MD simulations.  
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In total, 28 individual 1 µs simulations were conducted and two of these 

trajectories were extended to 2 µs (Amber ff99SB* and OPLS-AA/L). An additional 7.2 

µs of simulations at elevated temperature were performed. The cumulative simulation 

time was 37.2 µs. The simulations are summarized in Table 2.1. 

 
Table 2.1 Summary of the MD simulations 
Force field Water Elevated 

tempa 
Cappedb pThr-

80c 
Charge-
groupsd 

Duplicatee 

Amber ff99SB-
ILDN 

TIP3P 
(7038) 

    Y 

 TIP3P 
(7030) 

 Y   Y 

 TIP3P 
(7036) 

  Y   

Amber ff99SB*-
ILDN 

TIP3P 
(7038) 

Y     

Amber ff99SB TIP3P 
(7038) 

    Y 

Amber ff99SB*f TIP3P 
(7038) 

    Y 

Amber ff03 TIP3P 
(7038) 

     

Amber ff03* TIP3P 
(7038) 

Y     

GROMOS96 
43a1p 

SPC 
(7035) 

   Y  

 SPC 
(7030) 

 Y    

 SPC 
(7033) 

  Y Y  

 SPC 
(7027) 

 Y Y   

GROMOS96 
53a6 

SPC 
(7035) 

Y   Y Y  

 SPC 
(7033) 

Y Y    

CHARMM27 TIP3P 
(7038) 

Y    Y 

 TIP3P 
(7030) 

  Y   

OPLS-AA/Lf TIP3P 
(7037) 

Y   Y  

 TIP4P 
(6969) 
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a ‘Y’ indicates that elevated temperature simulations were performed at 330, 350 
and 370 K from the initial and final (after 1µs) system configurations. 
b ‘Y’ indicates that the N and C termini of the peptide was capped with with acetyl 
(ACE) and NH2 groups, respectively. They were otherwise left uncapped (NH3

+ 
and COO-, respectively). 

 c ‘Y’ indicates that residue Thr-80 was phosphorylated. 
d ‘Y’ indicates that two simulations were performed: one with default GROMACS 
charge-groups and one without charge-groups. 
e ‘Y’ indicates that two simulations, each 1 µs, were performed. Duplicates were 
always performed without charge-groups and were identical to the first simulation 
except for their initial atom velocities. 
f The trajectory was extended to 2 µs. 

 

Simulation analysis 

 We used either the full 1 µs trajectories or the last 0.1 µs for analysis. By restricting 

some analyses to the last 0.1 µs, we allowed as much time as possible for the simulations 

to converge to a stable conformation. Hydrogen bonds were analyzed as follows: A 

hydrogen bond between a donor (D-H) and an acceptor (A) was considered to be formed 

when the DA distance was less than 3.2 Å and the angle between the DA vector and the 

D-H bond (AD-H angle) was less than 35°. These geometric criteria for defining 

hydrogen bonds are consistent with those used in prior studies (69, 70). Secondary 

structure content was assessed with the DSSP algorithm (71). 

 

2.4 Results 

 We have compared the secondary structures and free- and bound-state contact 

formations in MD simulations of a β-hairpin forming peptide derived from the 

intrinsically disordered Neh2 domain of Nrf2 conducted with 10 different biomolecular 

force fields. The DSSP algorithm was used to monitor the evolution of secondary 

structures over the entire 1 µs trajectories. β-hairpin formation was identified by 

inspection of the cluster center structures and the Cα-Cα atom pair distances during the 

last 0.1 µs. Resemblance to the native state was gauged via the presence or absence of 

experimentally determined 1H, 1H NOEs (30). We have also compared hydrogen bonds, 
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RMSDs and backbone dihedral angles in the MD structures to the peptide in complex 

with its binding target, Keap1 (31). The effects of elevated temperatures, terminal 

capping, charge-groups and phosphorylation of Thr-80 on hairpin folding were also 

assessed. 

 

Assessing secondary structure formation at 310K 

 To compare the MD trajectories obtained with different force fields, we first 

assessed the secondary structure content over the course of our simulations at 310K using 

the program DSSP (71). In this analysis, we deemed simulations that had residues from 

their β-turn regions (77DEET80) in “turn” conformations (yellow) flanked by residues in 

β-sheet conformations (red) simultaneously, to have formed β-hairpins (Figure 2.1). For 

the uncapped peptides, the Amber ff99SB-ILDN (1), Amber ff99SB*-ILDN, Amber 

ff99SB (2), Amber ff99SB* (2), Amber ff03, Amber ff03*, GROMOS96 43a1p and 

GROMOS96 53a6 (1 & 2) simulations, including those which used charge-groups, 

appeared to adopt β-hairpins at some points in their trajectories (Figure 2.1A). Cluster 

center structures from the last 0.1 µs of the simulations, with the potential β-turn region 

(77DEET80) colored in black, are shown in Figure 2.2. The result clearly illustrates the 16-

mer peptide folds into β-hairpin conformations by using these force fields. Intriguingly, 

the folding times vary greatly between ~0.05 µs and > 0.9 µs in these simulations (Figure 

2.1A). The CHARMM27 simulations did not form hairpins and DSSP plots showed that 

helical content was present in the peptide (Figures 2.1A & 2.2A). None of the OPLS-

AA/L simulations met our criteria for hairpin formation. Instead, these simulations were 

enriched in “bend” conformations (green) (Figure 2.1A). While there was some transient 

turn and β-sheet content in the expected locations, there were no pronounced β-hairpin 

signatures (Figures 2.1A & 2.2A). Extending of the OPLS-AA/L trajectory (without 

charge groups and TIP3P water) to 2 µs still did not yield a native-like hairpin (data not 

shown).  
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Figure 2.1 Secondary structure propensity analysis of the trajectories. 

Secondary structure content was assessed with the DSSP algorithm (71): coil 

(white), β-sheet (red), β-bridge (black), bend (green), turn (yellow), α-helix (blue) 

and 310 helix (grey). A) Uncapped peptide. B) Capped peptide. C) pThr-80 

peptide. 
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Figure 2.2 Cluster centroid structures from the last 0.1 µs of the simulations. 

A single cluster represented all structures in each simulation and the center 

structure was extracted. A) Uncapped peptide. B) Capped peptide. C) pThr-80 

peptide. 

 

 There were clear differences between replicate runs using the same force fields. 

Specifically, the Amber ff99SB-ILDN (2), Amber ff99SB (1) and Amber ff99SB* (1) 

simulations did not converge upon β-hairpin conformations (Figures 2.1A & 2.2A). To 

determine if a longer trajectory would lead to hairpin formation, we extended the Amber 

ff99SB* (1) simulation to 2 µs. DSSP analysis, however, still was not indicative of a 

hairpin structure (data not shown). 

 For the capped peptides, while the Amber ff99SB-ILDN (2), GROMOS96 43a1p 

and GROMOS96 53a6 simulations yielded hairpin signatures throughout large parts of 

the trajectories (Figure 2.1B), only the GROMOS96 force fields led to the formation of 

well-defined β-hairpins in the last 0.1 µs of the simulations (Figure 2.2B). Again, there 



41 

 

were differences between the two Amber ff99SB-ILDN replicates. While the Amber 

ff99SB-ILDN (1) simulation did have turn and strand contents in the expected region, it 

appeared to be transient and not as pronounced as the Amber ff99SB-ILDN (2) hairpin 

signature (Figure 2.1B). Figure 2.2B shows that close to the end of the trajectory, Amber 

ff99SB-ILDN (1) structure adopted a short non-native helix before the turn region while 

hairpin structure that is slightly displaced from the expected location was observed in the 

Amber ff99SB-ILDN (2) trajectory.   

 The phosphorylation of Thr-80 located at the turn region appears to have significant 

effects on the peptide folding. β-hairpin formation was not observed in any of the pThr-

80 simulations (Figures 2.1C & 2.2C). Interestingly, these simulations all displayed 

considerable bend content but failed to form a turn in the expected location (Figure 2.1C).  

 The averaged Cα-Cα atom pair distances (within 10 Å) were also plotted to identify 

β-hairpin formation in the simulations (Figure 2.3). In these plots, the β-turn (77DEET80) 

region, which the hairpin is approximately centered around, was indicated. For the 

uncapped peptides, the Amber ff99SB-ILDN (1), Amber ff99SB*-ILDN, Amber ff99SB 

(2), Amber ff99SB* (2), Amber ff03, Amber ff03*, GROMOS96 43a1p and 

GROMOS96 53a6 (1 & 2) simulations, including those which used charge-groups, 

appeared to form β-hairpins as evidenced by the cross-strand Cα-Cα contacts centered 

around the β-turn (Figure 3.3A). Like the DSSP plots, this analysis also revealed clear 

differences between the replicates of Amber ff99SB-ILDN, Amber ff99SB, and Amber 

ff99SB* simulations. While Amber ff99SB-ILDN (2) displayed no signature of β-hairpin 

structure, the hairpins formed in the Amber ff99SB (1) and Amber ff99SB* (1) 

simulations were found in different regions compared to the replicas (Figure 2.3A). The 

CHARMM27 simulations did not have cross-strand Cα-Cα contacts indicative of β-

hairpin structures, but showed regions of compactness in the turn segment (Figure 2.3A). 

The OPLS-AA/L simulations without charge groups had some evident cross-strand 

contacts, but the β-turn was shifted from the expected location (Figure 2.3A); while the 

OPLS-AA/L simulation with default charge-groups did not appear to form a hairpin 

(Figure 2.3A). Cα-Cα contacts in the capped peptide simulations were indicative of 

hairpin structures. However, unlike the conformations observed with the GROMOS force 
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fields, the β-hairpin in the Amber ff99SB-ILDN simulations were shifted from the 

expected location (Figure 2.3B). None of the pThr-80 simulations had cross-strand 

contacts evident of β-hairpin structures (Figure 2.3C). It is worthwhile to note that in both 

GROMOS96 43a1p trajectories with Thr-80 phosphorylated there was evidence of close 

contacts between the positively charged N-terminus and the negatively charged 

phosphate group (Figure 2.3C). Since this may represent an unphysical interaction, we 

performed an additional simulation with a capped version of the peptide (Table 2.1). In 

this trajectory we still did not observe hairpin or turn formation and noticed similar close 

contacts between the N-terminal region and phosphate group (data not shown). 
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Figure 2.3 Cα-Cα atom pair distances. 

Average Cα-Cα distances less than or equal to 10 Å during the last 0.1 µs of the 

MD simulations. Distances equal to or greater than 10 Å are colored blue. The 

black square indicates the β-turn (77DEET80) region. A) Uncapped peptide. B) 

Capped peptide. C) pThr-80 peptide. 

 

Comparison to experimental data 

Next, we compared the results of our simulations to experimental data. To begin, 

we assessed how many experimentally determined atomic contacts within the Nrf2 β-
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hairpin were found in our simulations. Even though the free state structure of the 16-mer 

human Nrf2 peptide used in this study is not currently available, several atomic contacts 

within the β-hairpin region of mouse Nrf2 have been determined by NMR (30). The 

mouse Nrf2 contains the same β-hairpin sequence as the human version used in this 

study, except with a single conservative amino acid change of L74F (Figure 2.4A). Given 

that the human and mouse Nrf2 β-hairpin sequences are nearly identical, they are 

expected to adopt similar structures.  

 

Figure 2.4 Nrf2 β-hairpin sequence alignment and native contacts. 

A) Sequence alignments between the human and mouse Nrf2 β-hairpin segments 

were generated with ClustalW XXL (80). The Blosum scoring matrix (81) was 

used and gap penalties were set at their default values. Opening and end gap 

penalties were set to 10. Extending and separation gap penalties were set to 0.05. 

B) Three NMR-derived cross-strand 1H, 1H NOEs determined by (30) mapped 

onto a model Nrf2 β-hairpin backbone structure. C) Presence or absence of each 

native contact for each force field. Time-averaged distances < 6 Å during the last 
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0.1 µs of the simulations between hydrogen atom pairs matching those observed 

by Tong et al. (30) were considered to be native contacts. 

 

We compared the NMR-derived cross-strand 1H, 1H NOEs determined by (30) to 

the corresponding time-averaged distances from our MD simulations. Time-averaged 

distances < 6 Å between hydrogen atom pairs matching those observed in (30) were 

considered to be native contacts. Because the united-atom GROMOS96 force fields used 

in this study do not explicitly represent every hydrogen atom, we restricted our analysis 

to backbone amide hydrogens, which were explicitly represented in all force fields. NOEs 

between adjacent residues and those involving F74, were excluded from the analysis. 

This reduced the number of experimentally determined native contacts used in this 

analysis to three (Q75 HN:L84 HN, L76 HN:L84 HN and D77 HN:E82 HN). They are 

depicted in Figure 2.4B.  

The presence or absence of each of the three contacts is shown in Figure 2.4C. 

For the uncapped peptides, the Amber ff99SB-ILDN (1), Amber ff99SB*-ILDN, Amber 

ff99SB (2), Amber ff99SB* (2), Amber ff03, Amber ff03*, GROMOS96 43a1p and 

GROMOS96 53a6 simulations, including those which used charge-groups, had at least 2 

of the 3 native contacts (Figure 2.4C). Once again, there were differences between the 

Amber replicas (Figure 2.4C). Notably, in the Amber ff99SB-ILDN (2), Amber ff99SB 

(1) and Amber ff99SB* (1) simulations, only one or none of the native contacts were 

present, while their replicas had all three (Figure 2.4C). The CHARMM27 and OPLS-

AA/L simulations had only 1 out of the 3 native contacts (Figure 2.4C). The capped 

peptides were able to form all 3 native contacts, but differences between duplicates were 

also evident. The Amber ff99SB-ILDN (1) simulation had all 3 contacts while its 

duplicate had only 1 (Figure 2.4C). Native contacts were reduced in all pThr-80 

simulations compared to their unphosphorylated counterparts (Figure 2.4C). 

Interestingly, 2 of the 3 native contacts were still present in the GROMOS96 43a1p pThr-

80 trajectories (Figure 2.4C). In these simulations, while the two contacts in the β-sheet 
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region of the hairpin were present, the contact in the turn region was missing (Figure 

2.4C). 

In addition to NMR-derived contacts, backbone and side chain hydrogen bonds 

between Asp-77 and Thr-80 are present when Nrf2 is bound to Keap1 (PDB id: 2FLU) 

(31). We previously found that hydrogen bonds between these residues may also exist in 

the free state with high frequencies in simulations conducted with the GROMOS96 53a6 

force field (9). Because hydrogen bonding between Asp-77 and Thr-80 may be correlated 

with β-hairpin formation, we calculated the frequencies of hydrogen bonding between 

these residues (Table 2.2). For the uncapped peptides, we observed high (> 0.68) 

frequencies of Asp-77 to Thr-80 hydrogen bonding in the Amber ff99SB-ILDN (1), 

Amber ff99SB*-ILDN, Amber ff99SB (2), Amber ff99SB* (2), Amber ff03*, 

GROMOS96 43a1p and GROMOS96 53a6 (1 & 2) simulations, including those which 

used charge-groups (Table 2.2). Like the aforementioned analyses, clear differences 

between some replicas were observed (Table 2.2). Specifically, the Amber ff99SB-ILDN 

(2), Amber ff99SB (1) and Amber ff99SB* (1) simulations had considerably less Asp-77 

to Thr-80 hydrogen bonding compared to their duplicates (Table 2.2).  

 

Table 2.2 Frequency of Asp-77 to Thr-80 hydrogen bondinga 
Force field Uncappedb Cappedc pThr-80d 
Amber ff99SB-ILDN (1) 0.95 0.00 0.00 
Amber ff99SB-ILDN (2) 0.27 0.00  
Amber ff99SB*-ILDN 0.94   
Amber ff99SB (1) 0.00   
Amber ff99SB (2) 0.97   
Amber ff99SB* (1) 0.00   
Amber ff99SB* (2) 0.97   
Amber ff03 0.00   
Amber ff03* 0.86   
GROMOS96 43a1p 0.69 0.91 0.00 
(GROMOS96 43a1p)e 0.94  0.00 
GROMOS96 53a6 (1) 0.90 0.92  
GROMOS96 53a6 (2) 0.93   
(GROMOS96 53a6) 0.91   
CHARMM27 0.32  0.00 
CHARMM36 0.22   
OPLS-AA/L 0.00   
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(OPLS-AA/L) 0.00   
OPLS-AA/L (TIP4P) 0.00   

a Frequencies of 1 or more hydrogen bonds during the last 0.1 µs of the trajectories. 
Oxygen and nitrogen atoms were acceptors. Amine groups and the hydroxyl group 
of Thr-80 were donors. Intra-residue hydrogen bonds were excluded from the 
analysis. A hydrogen bond between a hydrogen donor (D-H) and a hydrogen 
acceptor (A) was judged to be formed when the DA distance (r) was less than 3.2 Å 
and the angle between the DA vector and the D-H bond (AD-H angle) was less than 
35°. 
b Values for the  peptides with unmodified N and C termini (NH3

+ and COO-, 
respectively). 
c Values for the peptides with  capped N and C termini (ACE and NH2, 
respectively).  

 d Values for the peptides with residue Thr-80 phosphorylated. 
e Bracketed values indicate hydrogen bond frequencies for trajectories with default 
GROMACS charge groups. 

 

It is noteworthy that in the Amber ff03 simulation, no hydrogen bonding between 

Asp-77 and Thr-80 was observed (Table 2.2). Because prior analysis showed that this 

trajectory formed a hairpin with 3 native contacts (Figure 2.4A), the complete lack of 

hydrogen bonding between these two residues was unexpected. Inspection of the 

trajectory showed that the side chains of Leu-76 and Asp-77 were on opposite sides of 

the hairpin compared to the other simulations (data not shown). Although Asp-77 was not 

in an appropriate orientation to form hydrogen bonds with Thr-80, we found that the 

frequency of forming 1 or more hydrogen bonds between Leu-76 and Thr-80 was 0.66 in 

this trajectory. Low frequencies of Asp-77 to Thr-80 hydrogen bonding was found in the 

CHARMM27 simulations (between 0.22 and 0.32) and was completely absent in the 

OPLS-AA/L simulations (Table 2.2).  

For the capped peptides, no hydrogen bonding between Asp-77 and Thr-80 was 

observed in the Amber ff99SB-ILDN simulations, but was present in over 90% of the 

structures in the last 0.1 µs of the GROMOS96 trajectories (Table 2.2). While the capped 

Amber ff99SB-ILDN (1) simulation was found to have 3 native contacts (Figure 2.4C), 

cluster analysis indicated that there was a short non-native helix before its β-turn region 

(Figure 2.1B). Furthermore, the DSSP plot of this trajectory did not have a typical hairpin 

signature (Figure 2.2B). These factors likely contributed to the lack of Asp-77 to Thr-80 

hydrogen bonding in this trajectory (Table 2.2). The capped Amber ff99SB-ILDN (2) 
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simulation had only 1 native contact (Figure 2.4C) and its β-turn was in a slightly 

displaced from the expected location (Figure 2.3B); factors that likely contributed to the 

lack of hydrogen bonding (Table 2.2). Hydrogen bonding between Asp-77 and Thr-80 

was not observed in any of the pThr-80 simulations (Table 2.2).  

 We also compared the Nrf2 peptide structures from our simulations to that of the 

Keap1-bound state (PDB id: 2FLU) (31). This comparison is interesting because the 

ETGE motif of the disordered Nrf2 has been shown to have a tendency to form bound 

state-like structure even in the absence of the target (9, 30, 31). Since the Nrf2 β-hairpin 

does not adopt a well-defined in the free state (30), we restricted the RMSD calculations 

to backbone atoms only.  

 RMSDs were calculated separately for the β-turn, 77DEET80 and β-hairpin, 
72AQLQLDEETGEFL84 regions. The RMSDs throughout the trajectories are plotted in 

Figure 2.5 and average RMSD values over the last 0.1 µs are shown in Figure 2.6 and 

summarized in Tables 2.3-2.5. For the uncapped peptides, the Amber ff99SB-ILDN (1), 

Amber ff99SB*-ILDN, Amber ff99SB (2), Amber ff99SB* (2), Amber ff03, Amber 

ff03*, GROMOS96 43a1p and GROMOS96 53a6 (1 & 2) simulations achieved average 

RMSDs < 1 and < 3 Å to the bound state β-turn and hairpin, respectively, including 

simulations which used charge-groups (Figure 2.6A). Again, there were some differences 

between replicas. The Amber ff99SB-ILDN (2) simulation had a β-turn region with an 

average RMSD < 1 Å, but when considering the full β-hairpin, the RMSD was larger 

than 4.8 Å  (Figure 2.6A). Also, the Amber ff99SB (1) and Amber ff99SB* (1) 

simulations had substantially higher RMSDs compared to their duplicates (Figures 2.5A 

and 2.6A). The CHARMM simulations did not lead to bound state like β-hairpin 

(RMSDs > 4 Å), but had β-turn RMSDs below 1 Å (Figures 2.5A and 2.6A). The OPLS-

AA/L simulations had both β-turn and hairpin RMSDs greater than 1 Å and 3 Å, 

respectively (Figures 2.5A and 2.6A), indicating significant deviations from the bound-

state structure.  
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Figure 2.5 Backbone RMSDs between the bound state and MD structures 

throughout the trajectories. 

RMSD values were calculated for the β-turn 4-mer, 77DEET80 (black) and β-

hairpin 13-mer, 72AQLQLDEETGEFL84 (red) by least squares fitting the 

backbone atoms (N, Cα and C) from each frame to the corresponding atoms of 

bound state reference structure (PDB id: 2FLU) (31). A) Uncapped peptide. B) 

Capped peptide. C) pThr-80 peptide. 
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Figure 2.6 Average backbone RMSDs between the bound state and MD structures. 

Average RMSD values were calculated over the last 0.1 µs of the simulations for 

the β-turn 4-mer, 77DEET80 (black) and β-hairpin 13-mer, 
72AQLQLDEETGEFL84 (red) by least squares fitting the backbone atoms (N, Cα 

and C) from each frame to the corresponding atoms of bound state reference 

structure (PDB id: 2FLU) (31). A) Uncapped peptide. B) Capped peptide. C) 

pThr-80 peptide. 
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Table 2.3 Average backbone RMSDs between the bound state structure and MD 
structures of the uncapped peptidesa 
Force field Backboneb (Å) 

± sdev β-turnc 
Backbone (Å) ± 
sdev β-hairpind 

Amber ff99SB-ILDN (1) 0.30 ± 0.10  2.74 ± 0.45 
Amber ff99SB-ILDN (2) 0.77 ± 0.25 4.86 ± 1.14 
Amber ff99SB*-ILDN 0.35 ± 0.08 2.41 ± 0.28 
Amber ff99SB (1) 1.81 ± 0.19 6.10 ± 0.80 
Amber ff99SB (2) 0.38 ± 0.13 2.53 ± 0.42 
Amber ff99SB* (1) 1.86 ± 0.16 5.33 ± 0.14 
Amber ff99SB* (2) 0.35 ± 0.09 2.32 ± 0.30 
Amber ff03 0.77 ± 0.06 1.98 ± 0.24 
Amber ff03* 0.46 ± 0.16 2.56 ± 0.39 
GROMOS96 43a1p 0.50 ± 0.33 1.56 ± 0.43 
(GROMOS96 43a1p)e 0.39 ± 0.09 2.88 ± 0.57 
GROMOS96 53a6 (1) 0.25 ± 0.12  1.89 ± 0.41 
GROMOS96 53a6 (2) 0.30 ± 0.12 2.32 ± 0.26 
(GROMOS96 53a6) 0.32 ± 0.12 1.42 ± 0.56 
CHARMM27 0.45 ± 0.21 4.45 ± 0.57 
CHARMM36 0.39 ± 0.07 4.80 ± 0.71 
OPLS-AA/L 1.84 ± 0.21 2.88 ± 0.87 
(OPLS-AA/L) 1.33 ± 0.19 4.63 ± 0.57 
OPLS-AA/L (TIP4P) 1.08 ± 0.11 3.48 ± 0.21 

 a Average RMSDs were calculated over the last 0.1 µs of the trajectories. 
 b Backbone atoms include N, Cα and C.  
 c β-turn (77DEET80). 
 d β-hairpin (72AQLQLDEETGEFL84).  
 e Average RMSDs for trajectory with default GROMACS charge groups.  
 
 
 
Table 2.4 Average RMSDs between the bound state conformation and MD 
structures of the capped peptidesa 

Force field Backboneb (Å) 
± sdev β-turnc 

Backbone (Å) ± 
sdev β-hairpind 

Amber ff99SB-ILDN (1) 1.39 ± 0.13 2.67 ± 0.34 
Amber ff99SB-ILDN (2) 1.66 ± 0.10 2.65 ± 0.38 
GROMOS96 43a1p 0.32 ± 0.14 2.18 ± 0.31 
GROMOS96 53a6 0.29 ± 0.11 2.23 ± 0.31 

 aAverage RMSDs were calculated over the last 0.1 µs of the trajectories. 
 b Backbone atoms include N, Cα and C.  
 c β-turn (77DEET80). 
 d β-hairpin (72AQLQLDEETGEFL84). 
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Table 2.5 Average RMSDs between the bound state conformation and MD 
structures of the pThr-80 peptidesa 
Force field Backboneb (Å) 

± sdev β-turnc 
Backbone (Å) ± 
sdev β-hairpind 

Amber ff99SB-ILDN 1.85 ± 0.45 5.96 ± 1.19 
GROMOS96 43a1p 2.01 ± 0.18 5.45 ± 0.17 
(GROMOS96 43a1p)e 2.00 ± 0.18 5.04 ± 0.17 
CHARMM27 1.89 ± 0.34 5.88 ± 0.93 

 aAverage RMSDs were calculated over the last 0.1 µs of the trajectories. 
 b Backbone atoms include N, Cα and C.  
 c β-turn (77DEET80). 
 d β-hairpin (72AQLQLDEETGEFL84). 
              e Average RMSDs for trajectory with default GROMACS charge groups. 
 
 

 For the capped peptides, both Amber ff99SB-ILDN simulations had average 

RMSDs < 3 Å for the hairpin region, but their β-turns had RMSDs > 1 Å (Figures 2.5B 

and 2.6B). In comparison, both GROMOS96 force fields had RMSDs of < 1 and < 3 Å 

for the β-turn and hairpin, respectively (Figures 2.5B and 2.6B). These RMSDs were 

similar to their uncapped versions (Figures 2.5A and 2.6A). It is worthwhile to note that 

the capped GROMOS96 53a6 simulation converged to bound state like structure in < 

0.05 µs, the fastest of all the simulations (Figure 2.5B). Among the simulations which 

had bound state like RMSDs, the amount of time it took to adopt these conformations 

varied between < 0.05 and ~ 0.9 µs, even for duplicates using the same force field 

(Figures 2.5A and B). However, once a bound state like structure was formed, it tended 

to remain stable. The β-turn and hairpin RMSDs were higher in all pThr-80 simulations 

compared to those of the unphosphorylated peptides (Figures 2.5C and 2.6C). 

 The convergence of the dihedral angles from the trajectories to those from the 

bound state structure was also assessed (PDB id: 2FLU) (31). The combined φ and ψ 

angles from the simulations and bound state structure are shown in Figure 2.7 and the 

average per-residue deviations are shown in Figure 2.8. For the uncapped peptides, the 

GROMOS96 43a1p with charge groups and 53a6 force field simulations had the lowest φ 

and ψ deviations from the bound state structure (Figure 2.8A). These simulations had 

combined φ and ψ deviations of < 7º and < 17º per residue from the bound state in their 

β-turn and hairpin regions, respectively (Figure 2.8A). The Amber ff99SB-ILDN (1) and 
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CHARMM simulations had combined φ and ψ deviations of ~ 10º in their β-turns, but 

deviated > 20º per residue when considering the entire hairpin (Figure 2.8A). For the 

capped peptides, both GROMOS96 force fields had slightly lower deviations compared 

to their uncapped counterparts and had considerably lower deviations than Amber 

ff99SB-ILDN (Figure 2.8B). The β-turn and hairpin deviations were higher in all pThr-

80 simulations compared to those of the unphosphorylated peptides (Figure 2.8B). 
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Figure 2.7 Comparison of the backbone dihedral angles from the bound state 

structure and MD simulations. 

The φ and ψ angles for residues 73QLQLDEETGEF83 were converted to radians 

and the absolute values were summed and averaged.  Black circles indicate the 

values from the bound state crystal structure (PDB id: 2FLU) (31). Red squares 

are the values over the last 0.1 µs of the simulations. A) Uncapped peptide. B) 

Capped peptide. C) pThr-80 peptide. 
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Figure 2.8 Average combined φ  and ψ deviations per residue from the bound state 

crystal structure. 

Black bars are for the β-turn 4-mer, 77DEET80 and red bars are for the β-hairpin 

13-mer, 72AQLQLDEETGEFL84. Data was analyzed over the last 0.1 µs of the 

simulations. A) Uncapped peptide. B) Capped peptide. C) pThr-80 peptide. 
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Secondary structure formation at elevated temperatures 

 Finally, we have performed MD simulations at elevated temperatures using a subset 

of force fields, Amber ff99SB*-ILDN and ff03*, GROMOS96 53a6, CHARMM27, and 

OPLS-AA/L, to identify secondary structure formation of the Neh2 peptide under these 

conditions. Using elevated temperatures provides an additional test to examine possible 

metastable states. The simulations were performed at 330, 350 and 370 K from both the 

initial and final (after 1 µs) system configurations at 310 K. Again, we used DSSP 

analysis to illustrate the evolution of secondary structures over the trajectories. 

 In the simulations starting from the initial (unfolded) system coordinates, hairpin 

formation, at the expected location, was observed in the Amber ff03*, GROMOS96 53a6 

(2), and capped GROMOS96 53a6 simulations at 330 K (Figure 9). β-hairpin structures 

were also identified in the MD simulations using these force fields at 310 K as mentioned 

above (Figure 2.1).  Hairpin conformation, which was not observed in CHARMM27 (1) 

at 310 K, was significantly populated in the trajectory at 330 K (Figure 2.9). At 350 K, 

the Amber ff03*, GROMOS96 53a6 (2) and capped GROMOS96 53a6 simulations still 

had hairpin signatures at some points in their trajectories, but β-hairpin structure was no 

longer observed in the CHARMM27 (1) simulation (Figure 2.9). On the other hand, a 

low population of hairpin conformation was observed in the 350 K OPLS-AA/L 

trajectory (Figure 2.9). Significant population of β-hairpin structure remained even at 370 

K in GROMOS96 53a6 (2) and capped GROMOS96 53a6 simulations (Figure 2.9), while 

only transiently formed hairpin was observed in CHARMM27 (1). It is noteworthy that 

rapid hairpin folding and high thermal stability were observed in the capped GROMOS96 

53a6 simulations at all elevated temperatures (Figure 2.9).  
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Figure 2.9 Secondary structure propensity analysis of the elevated temperature 

simulations from the initial system configurations. 

Secondary structure content was assessed with the DSSP algorithm71: coil (white), 

β-sheet (red), β-bridge (black), bend (green), turn (yellow), α-helix (blue) and 310 

helix (grey). A) Uncapped peptide. B) Capped peptide. 
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 In the simulations starting from the final system coordinates, the Amber ff99SB*-

ILDN, Amber ff03*, GROMOS96 53a6 (2) and capped GROMOS96 53a6 trajectories, 

all of which formed hairpins at 310 K, maintained hairpin signatures at 330 K over 0.2 µs 

(Figure 10). On the other hand, the CHARMM27 (1) and OPLS-AA/L trajectories at 330 

K were heavily biased by α-helical and bend conformations, respectively, similar to what 

were observed at 310 K (Figure 2.10). When the temperature was increased to 350 K, the 

hairpin signature in the Amber ff99SB*-ILDN trajectory disappeared shortly after ~ 0.1 

µs, however the Amber ff03*, GROMOS96 53a6 (2) and capped GROMOS96 53a6 

trajectories maintained their hairpins over the whole 0.2 µs period (Figure 2.10). The 

CHARMM27 (1) simulation at 350 K lost its helical properties after about 0.15 µs and 

appeared to form a hairpin shortly after (Figure 2.10). At 370 K, both the Amber 

ff99SB*-ILDN and Amber ff03* trajectories lost their hairpin signatures after ~ 0.1 µs, 

but the GROMOS96 53a6 (2) and capped GROMOS96 53a6 simulations still remained in 

hairpin conformations throughout almost the whole trajectories (Figure 2.10). On the 

other hand, the CHARMM27 (1) simulation at 370 K lost its helical property almost 

immediately and a turn conformation was present in the expected location, but a distinct 

hairpin signature was not observed (Figure 2.10). The OPLS-AA/L trajectories did not 

have any clear hairpin signatures at any of the temperatures (Figure 2.10). Once again, 

high thermal stability was observed in the GROMOS96 53a6 simulations (Figure 2.10). 
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Figure 2.10 Secondary structure propensity analysis of the elevated temperature 

simulations from the final (after 1µs) system configurations. 

Secondary structure content was assessed with the DSSP algorithm71: coil (white), 

β-sheet (red), β-bridge (black), bend (green), turn (yellow), α-helix (blue) and 310 

helix (grey). A) Uncapped peptide. B) Capped peptide. 
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2.5 Discussion and conclusions 

We have examined the folding of a 16-mer polypeptide with 10 commonly used 

biomolecular force fields. The peptide used in this study is derived from the Neh2 

domain of Nrf2. Despite that Neh2 has been characterized as being intrinsically 

disordered, the region encoded by the sequence of this peptide has been shown to contain 

β-hairpin structure (30, 31, 72). Various criteria were used to assess β-hairpin formation 

of this peptide and compare the results to experimental data. Although the simulations all 

used the same, non-native, starting structure and were performed with identical 

parameters, clear differences were observed between different force fields used and even 

between replicate simulations with the same force field. 

While no single type of analysis was sufficient to thoroughly assess and compare 

β-hairpin formation, the DSSP plots were useful for visualizing potential hairpin 

formation in this work. In addition, these analyses were also useful in identifying other 

types of secondary structures. For example, DSSP plots of the CHARMM27 simulations 

showed that the Nrf2 peptide did not fold into hairpins, but had tendencies to form short 

α-helices (Figure 2.2A). This finding was not completely unexpected because CHARMM 

force fields have been known to have a bias towards helical structures, even when 

simulating the folding of all β proteins (3, 11-13, 73). In addition to CHARMM27, the 

Amber ff03 force field has also been shown to overstabilize helical structures. Lindorff-

Larsen et al. (44) observed that while both CHARMM27 and Amber ff03 could fold the 

α-helical villin headpiece, proper folding of the β-sheet WW domain could not be 

achieved even in simulations that were 10 times the experimentally determined folding 

time in length. On the other hand, they found that the “helix-coil-balanced” Amber ff03* 

and recently developed CHARMM22* variants could achieve proper folding of both 

villin and the WW domain (8, 57).  

The DSSP plots for the OPLS-AA/L force field simulations also were not 

indicative of hairpins, but showed considerable amounts of ‘bend’ content. This aligns 

with the finding of Cao et al. (74) that this force field did not produce the expected β-
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hairpin structure of the H1 peptide. Interestingly, simulations of the H1 peptide 

performed with GROMOS96 43a1 yielded a β-hairpin structure consistent with 

experimental data (74). It is difficult to determine why the OPLS-AA/L simulations did 

not form a native-like hairpin structure in our simulations. It is possible that, in general, 

longer trajectories may be needed for convergence due to the rugged energy landscape 

and different barriers in these systems (75, 76). The weak hairpin signature observed in 

the DSSP plot of the OPLS-AA/L trajectory at 350 K supports this notion. Alternatively, 

there may be incompatibilities between our peptide sequence and OPLS-AA/L, such as 

high amounts of exposed hydrophobic content (74).  

The Cα-Cα contacts plots also illustrated β-hairpin formation and helped to 

identify non-native hairpins. For example, these plots showed that the β-turn in the 

capped peptide Amber ff99SB-ILDN (2) simulation was slightly displaced from its 

expected location (Figure 2.2B). This likely explains the lack of Asp-77 to Thr-80 

hydrogen bonding in this simulation (Table 2.2). Together, our findings from the DSSP 

and Cα-Cα contact analysis, suggested that the uncapped Amber ff99SB-ILDN (1), Amber 

ff99SB*-ILDN, Amber ff99SB (2), Amber ff99SB* (2), Amber ff03, Amber ff03*, 

GROMOS96 43a1p, GROMOS96 53a6 (1 & 2) and capped GROMOS96 43a1p and 

53a6 simulations formed native-like β-hairpins.  

Interestingly, the simulations that formed β-hairpins, as judged by DSSP and Cα-

Cα contact analysis, also exhibited experimentally determined native contacts present in 

the free state of Nrf2. Furthermore, we observed that the presence or absence of native 

contacts was correlated with the frequency of Asp-77 to Thr-80 hydrogen bonding to 

some extent. Interactions between these residues are thought to be important for the 

hairpin structure (9, 31). Most of the simulations of the uncapped and unphosphorylated 

peptides that had two or more native contacts also had high frequencies of Asp-77 to Thr-

80 hydrogen bonding. On the other hand, when 1 or 0 native contacts were present, there 

was usually less hydrogen bonding. One exception was the Amber ff03 simulation, which 

had all 3 native contacts, but lacked hydrogen bonding between Asp-77 to Thr-80. Figure 

2.5 shows that in this simulation, Leu-76 and Asp-77 had large backbone dihedral angle 

deviations from the bound state structure, which could possibly explain the lower 
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hydrogen bonding with Thr-80. It is possible that alternate hydrogen bonds between Leu-

76 and Thr-80 may have compensated. The evident positive correlation between native 

contact formation and a high frequency of Asp-77 to Thr-80 hydrogen bonding in our 

simulations supports prior suggestions that these interactions are vital for the hairpin 

structure (9, 31). 

We also found that the simulations that formed β-hairpins converged upon 

conformations that were similar to the structure of Nrf2 bound to Keap1 (PDB id: 2FLU) 

(31). It is common for disordered proteins, like Nrf2, to contain preformed structural 

elements in their binding regions (9, 30, 77-79). Indeed, NMR data and our prior MD 

simulations indicated that Nrf2 adopts a hairpin structure in the free-state, which is high 

resemblance to its Keap1 bound form (PDB id: 2FLU) (9, 31). Therefore, it was expected 

that simulations with 2-3 free state native contacts also had low RMSDs to the bound 

state structure. The GROMOS96 simulations clearly had the lowest β-turn and hairpin 

RMSDs of all the simulations. These simulations also had very low dihedral angle 

deviations from the bound state structure. 

In general, the simulations that used charge-groups or peptide capping groups 

were not largely different from their uncapped counterparts with single atom charge-

groups. When studying peptides from the interior of a protein sequence, it is common to 

add capping groups to the ends. This neutralizes the unphysical charges introduced by the 

free N- and C-termini, which can potentially disrupt the native structure. However, we 

did not find that the uncapped termini had a detrimental effect on hairpin folding in our 

current simulations. The GROMOS96 force field simulations employing default charge-

groups or peptide capping groups were highly consistent, in all aspects, to their uncapped 

counterparts. On the other hand, in both capped Amber ff99SB-ILDN replicates, the 

peptide folded into structures that were moderately different from their uncapped 

counterparts. It was difficult to determine the cause of this behavior and it could simply 

be a convergence issue.  

The finding that none of the simulations where Thr-80 was phosphorylated 

formed β-hairpins was not surprising. Experimental data has shown that phosphorylation 
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of this residue can severely impair binding of Nrf2 to Keap1, likely due to a disruption of 

β-turn formation (31). Our pThr-80 simulations were consistent with this proposition and 

also suggest that β-turn disruption strongly impairs hairpin formation. 

 The evident differences between duplicate simulations in this work highlight the 

importance of replica simulations when performing MD simulations of folding. Even 

though all duplicate simulations here used identical starting structures and parameters, the 

assignment of different initial atom velocities led the simulations to follow different 

pathways. As a result, duplicate simulations did not always converge upon folded 

structures even with microsecond long trajectories. In this work, we have conducted 

simulations at elevated temperatures using a subset of force fields in order to gain 

insights into the temperature-dependence and metastability of conformational sampling. 

The results show that with the GROMOS96 53a6 force field, the Neh2 peptide continued 

to fold into β-hairpin conformation and remained stable even at higher temperatures. This 

is quite different from what was observed for Amber ff99SB*-ILDN as the hairpin 

structure becomes less stable under this force field when the temperature increases.  

Although native-like conformation was not observed in the microsecond long 

CHARMM27 (1) simulation at 310 K, the peptide quickly folded into a β-hairpin 

structure at 330 K. Therefore, the lack of conformational convergence at lower 

temperature may simply be due to insufficient sampling time. However, further increase 

in temperature (i.e. 350 and 370 K) again led to the disappearance of β-hairpin structure 

in the CHARMM27 (1) simulations. The results here also show that although long 

simulation times are necessary, it is important to have alternative methods of sampling 

conformations, such as replica-exchange and related methods (82-84).  

Finally, this and other recent comparative studies (44, 45, 85) show the 

importance of using different criteria for assessing the properties of different force fields. 

In addition to more reliable simulations, such studies provide invaluable information 

about the collective non-additive properties of amino acids that are helpful in interpreting 

experiments. 
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2.6 Supplemental information 

Two videos are available on YouTube (too large for direct inclusion): 

Video 1: http://www.youtube.com/watch?v=AtDOJnVNC18&feature=channel&list=UL. 

The first and last 10 ns of the Amber ff99SB-ILDN (1), Amber ff99SB*-ILDN, Amber 

ff99SB (2), Amber ff03, Amber ff03* GROMOS96 43a1p, GROMOS96 53a6 (2), 

CHARMM27 (2) and OPLS-AA/L trajectories (without terminal capping or charge 

groups). For clarity, water, ions and hydrogens are not shown and rotation and translation 

of the peptide has been removed. Secondary structures were colored as follows in VMD: 

yellow - β-sheet (arrows indicate chain direction), purple - alpha helix, blue - 310 helix, 

white - coil.  

Video 2: at http://www.youtube.com/watch?v=HtRbtQ12eOI&feature=channel&list=UL. 

0-400 ns of the Amber ff99SB* (2) trajectory. For clarity, water, ions and hydrogens are 

not shown and rotation and translation of the peptide has been removed. Secondary 

structures were colored as follows in VMD: yellow - β-sheet (arrows indicate chain 

direction), purple - alpha helix, blue - 310 helix, white - coil. 
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3.1 Abstract 

Intrinsically disordered proteins (IDPs) are abundant in cells and have central 

roles in protein-protein interaction networks. Interactions between the IDP Prothymosin 

alpha (ProTα) and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2), 

with a common binding partner, Kelch-like ECH-associated protein 1 (Keap1), are 

essential for regulating cellular response to oxidative stress. Misregulation of this 

pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to 

understand the mechanisms these two disordered proteins employ to bind to Keap1, we 

performed extensive 0.5-1.0 microsecond atomistic molecular dynamics (MD) 

simulations and isothermal titration calorimetry experiments to investigate the 

structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. 

The results show that in their free states, both ProTα and Neh2 have propensities to form 

bound-state-like β-turn structures but to different extents. We also found that, for both 

proteins, residues outside the Keap1-binding motifs may play important roles in 

stabilizing the bound-state-like structures. Based on our findings, we propose that the 

binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed 

structural elements (PSEs) and coupled folding and binding, with a heavy bias towards 

PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms 

Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to 

enhance the oxidative stress response. 
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3.2 Introduction 

IDPs are a class of proteins that are biologically functional despite lacking well-

defined structures (1-5). They are abundant in nature: 25-30% of eukaryotic proteins are 

predicted to be at least partially disordered, while up to 70% of signaling proteins may 

contain intrinsically disordered regions (6, 7). Compared to globular proteins, the amino 

acid compositions of IDPs are usually biased towards charged, polar and structure-

breaking residues, such as glycine and proline (3, 8, 9). As a result, in the absence of 

binding partners, these proteins generally lack structured hydrophobic cores and display 

high conformational flexibility (3, 5).  

Despite their dynamic nature, IDPs seldom adopt completely random coil 

conformations (10-13). In fact, many IDPs are found to possess considerable 

conformational propensities along their sequences (14-20). These transiently structured 

regions frequently act as molecular recognition features for target binding (16-18, 21, 

22). Interestingly, interactions with different partners can also cause a disordered region 

to adopt distinct conformations (2, 18, 21-23). For example, the same region of the 

intrinsically disordered C-terminus of p53 can adopt either a helix or a ß-strand structure 

depending on the target it interacts with (23). These unique structural properties empower 

many IDPs to act as hubs in protein-protein interaction networks through low-affinity but 

yet highly specific binding (4, 21, 24-26). Therefore, it is not a surprise that IDPs are 

frequently associated with human diseases, in particular cancer and neurodegenerative 

diseases (27-29).  

Even though IDPs are involved in crucial biological functions, the mechanisms by 

which they interact with targets are not well understood. Recent studies have shown that 

some IDPs undergo large conformational changes upon target binding (4, 30-32), while 

others have preformed structural elements (PSEs) that resemble the bound state 

conformations in a significant population of conformers in the ensemble (16, 33-35). It is 

noteworthy that these two mechanisms are not always independent; in many cases, the 

binding of IDPs to their targets involves a combination of both (36). Knowledge of the 

detailed mechanisms that IDPs employ to bind to their targets is critical for understanding 



80 

 

how this class of proteins function. More importantly, it will also aid in the development 

of therapeutic agents targeting these types of interactions (37, 38).  

 While X-ray crystallography is commonly used to determine protein structures 

with atomic-level accuracy, the dynamic nature of IDPs makes acquiring diffracting 

crystals of these proteins in free states extremely challenging (2). Nuclear magnetic 

resonance (NMR) spectroscopy has become the primary technique for the structural 

characterization of this class of proteins (39, 40). Despite the fact that NMR can yield a 

wealth of data, there are limitations. For an IDP undergoing fast conformational exchange 

on the NMR timescale, collected data are averaged over the entire ensemble of 

conformations sampled by the protein. Therefore, unlike for folded proteins, it is 

inappropriate to determine a single conformation to represent the disordered state. To 

circumvent this problem, molecular dynamics (MD) simulations have been used to 

complement the experimental techniques in order to establish better models for 

describing the dynamic nature of interconverting disordered state ensembles and, more 

importantly, the mechanisms by which IDPs interact with targets. For instance, MD 

simulations have been performed on both the bound and apo phosphorylated forms of 

intrinsically disordered kinase-inducible domain (KID) to investigate the molecular 

mechanism by which pKID interacts with KIX in signal transduction (41). Wu et al. have 

combined NMR spectroscopy and MD simulations to identify the structural 

reorganization of alpha-synuclein at low pH (42).  

The objective of this work is to understand the molecular mechanisms that the 

disordered ProTα and Neh2 domain of Nrf2 use to bind Keap1 in the oxidative stress 

response pathway. Exposure to toxic reactive electrophiles from the environment as well 

as those generated by our own metabolism can disrupt the cellular functions, resulting in 

neurodegenerative diseases, cancer and aging (43). Nrf2 is a key transcription factor for 

genes responsive to oxidative stress (44, 45). The protein consists of six highly 

homologous regions (Neh1-6 domains). The Neh2 domain, which is located at the N-

terminus of Nrf2, plays a regulatory role by interacting with an ubiquitously expressed 

inhibitor, Keap1 (45). Under homeostatic conditions, the Neh2 domain of Nrf2 binds to 

the Kelch domains of the monomeric units of a Keap1 dimer via a high affinity ETGE 
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motif and a lower affinity DLG motif (with Kd values of ~8 nM and ~0.5 µM), 

respectively (46). When both motifs are bound to a Keap1 dimer, Neh2 is (poly) 

ubiquitinated and subsequently degraded by the proteosome (45-48). When the cells are 

under oxidative stress conditions, the interaction of Keap1 and Nrf2 is disrupted, leading 

to the upregulation of Nrf2-mediated gene expression. 

Recent studies have shown that ProTα can compete with Nrf2 for binding to 

Keap1, resulting in the upregulation of Nrf2-targeted cytoprotective genes (49, 50). 

ProTα is ubiquitously expressed in a wide variety of human tissues and besides the 

regulatory role it plays in the expression of oxidative stress response genes, the protein 

has also been found to be involved in other cellular processes such as cell proliferation, 

chromatin remodeling, transcriptional regulation and apoptosis (51-53). The Keap1-

binding motif of ProTα (-NEENGE-) shares a similar sequence with that of the Neh2 (-

DEETGE-). Crystal structures of ProTα and Neh2 peptides bound to the Kelch domain of 

Keap1 further reveal that these two proteins bind to the same site on the Kelch domain 

and form similar β-turn conformations (46, 50) (Figure 3.1). The Kelch domain adopts a 

six-bladed ß-propeller structure with each blade composed of four anti-parallel ß-strands 

(46, 50). Both ProTα and Neh2 bind to the positively charged face of the ß-propeller 

where the inter-blade loops are located and the electrostatic interactions are crucial for 

the stability of the complexes (46, 50). Interestingly, despite the high sequence identity 

and structural similarity of the binding motifs, ProTα seems to have a lower binding 

affinity to Keap1 (see result below) compared to Neh2 (only the ETGE motif is 

considered) (46, 49).  
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Figure 3.1 Crystal structures of ProTα and Neh2 peptides bound to the Kelch 

domain of Keap1. 

A) Cartoon B-Spline representations of the ProTα-Keap1 and Neh2-Keap1 crystal 

structures (PDB ids: 2Z32 and 1X2R respectively (50, 55). Residues Asn-41 to 

Glu-48 of ProTα and Leu-76 to Leu-84 of Neh2 (red) are shown bound to the 

Kelch domain of Keap1 (grey). B) Licorice representations of the i to i+3 residues 

of the β-turns from the crystal structures (41Asn-Glu-Glu-Asn44 and 77Asp-Glu-

Glu-Thr80, of ProTα and Neh2 respectively). C) Overlay of the ProTα (white) and 

Neh2 (grey) β-turns. 

 

Atomistic microsecond scale MD simulations were used to investigate the 

molecular mechanisms by which the intrinsically disordered ProTα and Neh2 interact 

with Keap1. In particular, we focused on whether their XEEXGE motifs bind to Kelch 

domain through coupled folding and binding, PSEs or a combination of both 

mechanisms. Our results show that in their free states, both the Keap1-binding motifs of 

ProTα and Neh2 display intrinsic propensities to form bound-state-like β-turns, and that 

the residues outside of the motifs may also contribute to the stability of the structural 

elements. We found that the Keap1-binding motif of Neh2 adopted a β-turn conformation 

that more closely resembled its bound-state structure than that of ProTα. Based on these 

results, we propose that binding occurs synergistically via a combination of PSEs and 

coupled folding and binding with a heavy bias towards PSEs, especially for Neh2. The 

better understanding of the binding mechanisms may provide insight into developing of 

therapeutics that can be used to promote cellular response to oxidative stress. 

 

3.3 Materials and methods 

Starting structures 

 The free state structure and dynamics of ProTα and Neh2 were investigated using 
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atomistic MD simulations. All starting structures were generated using the 

Crystallography & NMR System (CNS) software package (54). Briefly, extended 

structures were first generated based on the amino acid sequences of ProTα and Neh2. 

Each structure subsequently underwent a simulated annealing simulation using default 

CNS parameters from the anneal.inp script (without any restraints) (54). By using this 

procedure, we generated structures of peptides with identical sequences and lengths to 

those used to generate the crystal structures of mouse ProTα and Neh2 bound to Keap1 

(PDB ids: 2Z32 and 1X2R respectively) (50, 55), the full-length mouse ProTα protein 

and a 32-mer mouse Neh2 peptide, as well as their human homologs. Table 1 summarizes 

the amino acid sequences used in the MD simulations and the lengths of the trajectories. 

Peptides with longer sequences (full-length ProTα protein and the 32-mer Neh2 peptide) 

were simulated to determine if residues outside of the Keap1 binding motif might be 

important for binding, while human sequences were simulated for cross-species 

comparison. To focus on the ETGE binding motif, the 32-mer Neh2 peptides instead of 

the full-length proteins were simulated in order to exclude the N-terminus DLG motif and 

the central helical region, which is not involved in Keap1 binding (46). To avoid biasing 

the sampling towards native-like conformations, conformers from the annealing 

simulations that did not resemble their bound-states were chosen as starting structures 

(Figure S1). The underlined residues in Table 1 comprise the Keap1-binding β-turns of 

ProTα and Neh2, determined from the crystal structures (50, 55), and are referred to as 

positions i through i+3 in this work (Figure 1). 

 

MD simulations 

 All simulations were performed using GROMACS (GROningen MAchine for 

Chemical Simulations) version 4 (56), with the GROMOS96 53a6 united atom force-field 

parameter set (57, 58). This force field has been shown to be reliable in simulating 

proteins, including β-peptide folding (59). Protonation states of ionizable residues were 

chosen based on their most probable state at pH 7. The amino and carboxyl terminals of 

all systems were capped with NH3
+ and COO- groups respectively. The starting structures 
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were solvated in simple point charge (SPC) water (60), followed by the addition of 

sodium (Na+) and chloride (Cl-) ions to make the system charge neutral and bring the salt 

concentration to 0.1 M. The 16-mer ProTα and the 9-mer Neh2 systems (Table 3.1) 

contained between 9950 and 5926 water molecules and 43 to 26 molecules of salt, 

respectively. The full-length ProTα and the 32-mer Neh2 systems (Table 3.1) contained 

between 68146 and 16887 water molecules and 293 to 67 molecules of salt, respectively. 

The GROMOS parameterization of Na+ and Cl- was used, which has been shown to work 

well with SPC water (61). MD simulations were performed at constant temperature, 

pressure and number of particles (NPT ensemble). Protein and non-protein atoms were 

coupled to their own temperature baths, which were kept constant at 310 K using the 

weak coupling algorithm (62). Pressure was maintained isotropically at 1 bar using the 

Berendsen barostat (62). Prior to the production runs, the energy of each system was 

minimized using the steepest descents method. This was followed by 2 ps of position-

restrained dynamics with all non-hydrogen atoms restrained with a 1000 kJ mol-1 force 

constant. The timestep was set to 2 fs. Initial atom velocities were taken from a 

Maxwellian distribution at 310 K. All bond lengths were constrained using the LINCS 

algorithm (63). Cut-off of 1.0 nm was used for Lennard-Jones interactions and the real 

part of the long-range electrostatic interactions, which were calculated using the Particle-

Mesh Ewald (PME) method (64). 0.12 nm grid-spacing was used for PME. It is important 

to treat electrostatic interactions with accurate methods, such as PME, to avoid potential 

serious artifacts (65, 66). It has been shown that choosing simulation parameters, 

including thermostat and electrostatic treatment, is a subtle issue and that the choice of 

charge-groups may lead to unphysical effects (67). Baumketner et al. (68, 69) also 

reported that charge-group based truncation with reaction-field electrostatics may cause 

artificial repulsions between charged residues, identified as the microscopic reason 

behind artificial unfolding of protein in some simulations. Here, charge-groups were 

chosen to be small to avoid artifacts (67). Periodic boundary conditions were applied in 

all directions. This simulation protocol has been successfully applied in a number of our 

previous protein and membrane simulations (67, 70, 71). Simulations of the shorter 

peptide systems took ~1-2 weeks each using 32 cores, while the larger systems each took 

~3-7 weeks using 64 cores. The cumulative simulation time for all of the trajectories was 
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~231, 000 CPU hours.  

 
Table 3.1 Amino acid sequences of the simulated molecules and trajectory lengths. 
System Sequence Simulation time (µs) 
16-mer 
ProTα 
peptide 
(mouse) 

39AQNEENGEQEADNEVD54 

 
1.0 

9-mer Neh2 
peptide 
(mouse) 

76LDEETGEFL84 1.0 

Full-length 
ProTα 
(mouse) 

1MSDAAVDTSSEITTKDLKEKKEVVEEAE
NGRDAPANGNAQNEENGEQEADNEVDEE
EEEGGEEEEEEEEGDGEEEDGDEDEEAEA
PTGKRVAEDDEDDDVDTKKQKTEEDD111 

0.5 

32-mer Neh2 
peptide 
(mouse) 

69AFFAQFQLDEETGEFLPIQPAQHIQTDTS
GSA100 

0.5 

Full-length 
ProTα 
(human 
isoform 2) 

1MSDAAVDTSSEITTKDLKEKKEVVEEAE
NGRDAPANGNANEENGEQEADNEVDEEE
EEGGEEEEEEEEGDGEEEDGDEDEEAESA
TGKRAAEDDEDDDVDTKKQKTDEDD110 

0.5 

32-mer Neh2 
peptide 
(human 
isoform 1) 

69AFFAQLQLDEETGEFLPIQPAQHIQSETS
GSA100 

0.5 

Residues i through i+3 of the β-turn regions of the ProTα and Neh2 sequences, 
determined from the crystal structures (50, 55) are underlined.  

 

Simulation analysis 

 To determine whether the binding motifs of ProTα and Neh2 have tendencies to 

adopt bound-state-like structures in their free states, coordinates from the MD trajectories 

were compared with the corresponding PDB crystal structures (PDB ids: 2Z32 and 1X2R 

respectively) (50, 55). Distance-based root-mean-square deviations (RMSD) were 

computed between structures at time t of the trajectory and the bound state reference 

determined from the crystal structure using the equation (56):  
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where rij(t) and rij(0) are the distances between atoms i and j at time t of the trajectory and 

the same pair of atoms in the bound-state structure, respectively.  

 The Cαi-Cαi+3 distances were calculated to determine if Keap1-binding β-turns of 

ProTα and Neh2 were formed during the simulations. To be defined as a β-turn, the Cαi-

Cαi+3 distance must be less than 7 Å (72). Residue specific dynamics of the β-turns were 

also probed by analyzing the circular variance (C.V.) of the φ and ψ dihedral angles over 

time. The C.V. is defined as (73):  

! 

CV =1" R /m   (2) 

where m is the number of structures included in the analysis, and R is calculated using the 

following equation (73):  

! 

R =
1

2
( cos")2 + ( sin")2 + ( cos#)2 + ( sin#)2

i=1

m

$
i=1

m

$
i=1

m

$
i=1

m

$
% 

& 
' 

( 

) 
* 

   (3)

 

The value of C.V. ranges between 0 and 1. Lower values represent tighter clustering 

about the mean and higher values are indicative of greater φ and ψ variability. 

 Hydrogen bonds were analyzed as follows: A hydrogen bond between a donor (D-

H) and an acceptor (A) was considered to be formed when the DA distance was less than 

3.2 Å and the angle between the DA vector and the D-H bond (AD-H angle) was less 

than 35° (74, 75). Visualization of the structures was done using VMD (76) and Chimera 

(77).  

 

Isothermal titration calorimetry (ITC) experiments 
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  The Kelch domain (residues 324-612) of mouse Keap1 was expressed in 

Escherichia coli BL21 (DE3) grown in minimal M9 medium. The N-terminally His-

tagged protein was purified by affinity chromatography using Ni Sepharose™ 6 Fast 

Flow beads (Amersham Biosciences). The tag was then cleaved by incubation with His-

tagged tobacco etch virus (TEV) protease overnight at 25 ºC. The protein product was 

purified by passing the mixture through Ni Sepharose™ 6 Fast Flow beads (Amersham 

Biosciences). 

 ITC experiments were performed on a VP-ITC system (MicroCal) at 25 ºC. The 

Kelch domain was dialyzed against 50 mM phosphate buffer at pH 7, containing 100 mM 

NaCl and 1 mM DTT. Mouse ProTα (Ala-39 to Asp-54) and Neh2 (Leu-76 to Leu-84) 

peptides (GenScript) were also dissolved in the same buffer. All samples were filtered 

and degassed before the ITC experiments. Typically, 5 µL aliquots of 0.5 mM ProTα or 

Neh2 peptide were titrated to the sample cell containing 1.4 mL of 0.05 mM Kelch at 4-

minute intervals. Heat changes after saturation were used to account for the heat of 

dilution. The binding stoichiometries (n), enthalpy changes (∆H), binding constants (Ka), 

Gibbs free energy changes (∆G) and entropy changes (∆S) were calculated using the 

titration data. 

 

3.4 Results and discussion 

MD simulations were used to study the free-state structure and dynamics of 

ProTα and the Neh2 domain of Nrf2. The crystal structures revealed that the NEENGE 

and DEETGE motifs of ProTα and Neh2, respectively, bind to same site on the C-

terminal Kelch domain of Keap1 (50, 55) (Figure 3.1). In particular, both the segments 

NEEN and DEET of ProTα and Neh2 occupied positions i through i+3 of their respective 

β-turns and adopted highly similar structures in their bound states (Figure 3.1). We 

compared the structures of free-state ProTα and Neh2 peptides from the MD simulations 

to their corresponding bound-state conformations (50, 55) in order to determine whether 

ProTα and Neh2 interact with Keap1 via PSEs or coupled folding and binding 

mechanisms. MD simulations on the full-length ProTα protein and a 32-mer Neh2 
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peptide were also performed to determine if the residues outside the binding motifs play a 

role in binding. Finally, contributing factors to the β-turn propensities of ProTα and Neh2 

were investigated through circular variance, Cα-Cα contact, and hydrogen-bond analyses. 

 

Comparison of the free and bound-state structures 

 We first determined the average distance-based RMSD values (Eq. 1) between the 

free-state MD structures of ProTα and Neh2 peptides and their corresponding Keap1 

bound-state conformations (Table 3.2). To focus on the turn structure that is crucial for 

the Keap1 binding, only the four residues that are involved in the β-turn formation 

(NEEN and DEET of ProTα and Neh2, respectively) were included in the following 

calculations. The all-atom RMSD values plotted over the trajectories reveal that the β-

turn segment in the ProTα peptide sampled conformations with ~3 Å RMSD from the 

bound-state structure for the majority of the trajectory, and infrequently adopted lower 

RMSD (i.e. < 1.0 Å) bound-state like conformations (Figure 3.2A).  In contrast, the 9-

mer Neh2 peptide underwent conformational change between structures with ~1.0 Å and 

~2.5 Å all-atom RMSD throughout the trajectory and adopted bound-state like 

conformations at multiple periods of time (Figure 3.2A; Video S3.1).   

 

Table 3.2 Average distance-based RMSD values between the bound-state 
conformation and the MD structures. 
System Cα (Å) ± sdev Backbonea (Å) ± sdev All-atom (Å) ± sdev 
16-mer ProTα peptide 1.17 ± 0.48 1.13 ± 0.40 2.47 ± 0.62 
9-mer Neh2 peptide 1.02 ± 0.66 1.03 ± 0.59 1.73 ± 0.68 
Full-length ProTαb 0.34 ± 0.12 0.44 ± 0.12 1.82 ± 0.25 
32-mer Neh2 peptideb 0.18 ± 0.08 0.26 ± 0.07 0.85 ± 0.12 

a Backbone atoms include N, Cα and C. 
 b The last 0.1 µs of the trajectory was used in the RMSD calculations. 
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Figure 3.2 All-atom RMSD values between the MD and crystal structures. 

The RMSD values were computed by subtracting the all-atom distance matrix at 

time t of the MD trajectories from the reference distance matrix determined from 

the crystal structures of the ProTα and Neh2 peptides bound to Keap1 (PDB ids: 

2Z32 and 1X2R respectively) (50, 55). The distance matrices consisted of 

residues i through i+3 of the β-turn regions of the ProTα and Neh2 peptides 

determined from the crystal structures (50, 55). 

 

 Next, we determined if defined β-turns were formed by the free-state peptides. A 

good indicator of β-turn formation is that the distance between the Cα atoms of residues i 

and i+3 (Cαi-Cαi+3) is less than 7 Å (72). Based on this criterion, ~28% of the structures 

from the 16-mer ProTα peptide trajectory adopted a β-turn conformation in that particular 
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segment of the sequence, compared to ~53% of the structures from the 9-mer Neh2 

trajectory (Figure 3.3A). The same data set was also plotted in terms of deviation from 

their corresponding Cαi-Cαi+3 values in the crystal structure (Figure 3.3B). The ProTα 

peptide had a single distribution of conformations, with an average Cαi-Cαi+3 deviation of 

~2.2 Å from its bound state value (Figure 3.3B). In contrast, the Cαi-Cαi+3 distance 

deviations for the Neh2 peptide showed that significant populations of structures had 

deviations of <1.0 Å and >3.0 Å (Figure 3.3B). This finding was consistent with the 

RMSD data, which showed that the 9-mer Neh2 peptide transitioned between ~1 Å and 

~2.5 Å all-atom RMSD throughout the trajectory (Figure 3.2A). Importantly, the RMSD 

data and Cαi-Cαi+3 distance distribution of the 9-mer Neh2 indicated that the free-state 

conformational ensemble of this peptide consists of both structures that closely resemble 

the bound-state β-turn conformation and ones that are comparably extended in that region 

(Video S1). 
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Figure 3.3 Cαi-Cαi+3 distances and their deviations from their crystal structure 

distances. 

Panels B and D show the absolute deviations of Cαi-Cαi+3 distances from the 

corresponding distances in the crystal structures. Data were collected over the full 

1.0 µs trajectories for the crystal structure peptides and the last 0.1 µs for the full-

length ProTα and 32-mer Neh2. Deviations were calculated for Cαi-Cαi+3 pairs 

from the β-turns, determined from the crystal structures (50, 55), by subtraction of 

the i to i+3 distance at time t of the trajectory from the fixed distance of the 

corresponding atom pair from the crystal structures (PDB ids: 2Z32 and 1X2R) 

for ProTα and Neh2 respectively) (50, 55). 

 

 The above findings also indicate that during the 1-µs simulations, both the 16-mer 

ProTα and the 9-mer Neh2 peptides displayed intrinsic propensities of forming bound-

state-like β-turn structures in the absence of Keap1. We realized that in the absence of 

Keap1, the peptides might not be long enough to form stable structures. To assess the 

contributions of residues outside the binding motifs in stabilizing the ß-turn 

conformation, MD simulations of the full-length ProTα protein and a 32-mer Neh2 

peptide were performed. Structural resemblance to their Keap1-bound states was gauged 

by the same parameters as above. 

 Figure 3.2B shows the distance-based all-atom RMSD values between the MD 

structures and the corresponding bound-state crystal structures of full-length ProTα and 

the 32-mer Neh2 peptide over 0.5-µs trajectories. Like above, the analyses focused on the 

four residues that are involved in the β-turn formation. Interestingly, both the full-length 

ProTα protein and the 32-mer Neh2 peptide achieved lower and more stable all-atom 

RMSDs than their shorter counterparts (Figure 3.2). Specifically, the full-length ProTα 

converged to an all-atom RMSD of  ~1 Å after a short period of simulation time despite 

having a starting structure with an RMSD ~2.6 Å (Figure S3.1). The values of RMSD 

fluctuated between ~0.75-3.75 Å in the first 0.18 µs and then stabilized at an all-atom 

RMSD around 2 Å for the remainder of the trajectory (Figure 3.2B). The 32-mer Neh2 
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peptide converged to an all-atom RMSD of less than 1 Å in about 0.13 µs and remained 

stable around that value for the rest of the trajectory (Figure 3.2B; Video S3.2). It is 

worth mentioning that the bound-state-like β-turn conformations formed by the full-

length ProTα and the 32-mer Neh2 peptide closely resembled the ones adopted by their 

shorter peptide counterparts (Figure S3.2). 
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Figure S3.1 Overlays of the starting structure (grey) and crystal structure (pink) β-

turns. 
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Residues i through i+3 of the β-turns from the starting structures, generated in 

CNS (54), were superimposed onto the corresponding residues from their bound 

state crystal structures. The RMSD values were computed by subtracting the all-

atom distance matrix of the starting structures from the reference distance matrix 

determined from the crystal structures of the ProTα and Neh2 peptides bound to 

Keap1 (PDB ids: 2Z32 and 1X2R respectively) (50, 55). The distance matrices 

consisted of residues i through i+3 of the β-turn regions of the ProTα and Neh2 

peptides determined from the crystal structures (50,55). The starting structures for 

human ProTα and Neh2 were compared to the mouse structures (PDB ids: 2Z32 

and 1X2R) (50, 55) as their bound-state references. Hydrogen atoms were added 

for clarity. 

 

 

Figure S3.2 Overlays of the β-turn structures from the 16-mer ProTα and 9-mer 

Neh2 MD simulations (white) with those from the longer sequence simulations 

(pink). 

The RMSD values were computed by subtracting the all-atom distance matrices. 

The distance matrices consisted of residues i through i+3 of the β-turn regions of 

the ProTα and Neh2 peptides determined from the crystal structures (50, 55). 

Centroid structures from the shorter peptide simulations with lowest RMSDs to 

the bound state (820-830 ns and 630-640 ns from the ProTα and Neh2 
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simulations, respectively) were superimposed onto the corresponding centroid 

structures from the last 100 ns of the longer sequence simulations. 

 

 The Cαi-Cαi+3 distances were also calculated to appraise the formation of β-turn 

structure during the simulations. The results show that during the last 0.1 µs of the full-

length ProTα trajectory, ~66% of the structures have the binding motif in β-turn 

conformations (Cαi-Cαi+3 < 7 Å), compared to ~94% of the 32-mer Neh2 peptide 

structures (Figure 3.3C). It is noteworthy that both systems showed considerably smaller 

deviations from their bound-state Cαi-Cαi+3 distances compared to their shorter 

counterparts (Figure 3.3D).   

 The superpositions of the cluster centroids of β-turn-forming residues from the MD 

simulations with their corresponding crystal structure atoms in Figure 3.4 further 

illustrate the structural similarities between the free and bound states for both ProTα and 

the Neh2 domain. The average distance-based RMSD values between the bound-state 

conformation and the MD structures were summarized in Table 3.2. Although both 

ProTα and Neh2 had average Cα and backbone RMSDs below 0.5 Å, the RMSDs and 

standard deviations increase considerably when all atoms were considered. It is clear that 

the side chains were not all in their bound state-like conformations. Figure S3 shows the 

distributions of side chain torsion angles in the NEEN and DEET motifs of ProTα and 

Neh2, respectively. The results suggest that although the backbones of these two proteins 

have strong propensity of forming ß-turn structure, the side chains within the turns are 

not restricted in torsion angle samplings. However, it is worthwhile to note that Thr-80 of 

Neh2 showed a clear preference for adopting a χ1 angle that closely resembled its bound 

state value (Figure S3.3). This is discussed further in the following section. 
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Figure 3.4 Overlay of the free and bound-state β-turns. 

Residues i through i+3 of the β-turns from the full-length ProTα and the 32-mer 

Neh2 MD structures were superimposed onto the corresponding residues from 

their bound state crystal structures. Cluster centroids from the last 0.1 µs of the 

MD simulations (grey) were superimposed onto the corresponding Cα atoms from 

the crystal structures (pink) of ProTα and Neh2 bound to Keap1 (PDB ids: 2Z32 

and 1X2R respectively) (50, 55). The single linkage clustering algorithm was 

used with a cutoff that included all structures from the last 0.1 µs. Hydrogens 

were added to the crystal structures for clarity. RMSD values were computed by 

subtracting the Cα, backbone or all-atom distance matrix of the centroid structures 

from the reference distance matrix determined from the crystal structures of the 

ProTα and Neh2 peptides bound to Keap1 (PDB ids: 2Z32 and 1X2R 

respectively) (50, 55). 
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Figure S3.3 χ1 and χ2 angles from the MD and bound-state structures. 
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Plots of the sidechain χ1 and χ2 angles for residues i to i+3 of the β-turns are 

shown. Red dots indicate the angles from the last 0.1 µs of the full-length ProTα 

and 32-mer Neh2 trajectories. Black dots indicate the angles from the crystal 

structures (PDB ids: 2Z32 and 1X2R) for ProTα and Neh2 respectively) (50, 55). 

 

Contributing factors to the β-turn propensities of ProTα and Neh2 

 To determine residue-specific convergences of amino acids in the torsion angle 

space, backbone dihedral angles of the Keap1-binding β-turns from the MD trajectories 

were compared to their corresponding bound-state values. Since ProTα and Neh2 

peptides bind to the same site on the Kelch domain of Keap1 and adopt structurally 

similar β-turns (Figure 3.1), their bound-state φ and ψ angles are comparable as expected 

(Figure 3.5). MD simulations show that, in their free states, both ProTα and Neh2 had 

preferences of sampling dihedral angles around their bound-state values (Figure 3.5). 

Circular variance (C.V.) measurements were used to quantify the spread of φ and ψ 

angles over the last 0.1 µs of the trajectories. Both ProTα and Neh2 had similar C.V. (Eq. 

2) values for residues i to i+2, while ProTα displayed a slightly lower circular variance 

for residue i+3 compared to that of Neh2 (Figure 3.5). Snapshots over the last 0.1 µs of 

the trajectories illustrate that the β-turns of Neh2 and ProTα had limited backbone 

flexibilities (Figure 3.5). 
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Figure 3.5 Ramachandran plots for residues i to i+3 of the ß-turns from the MD and 

crystal structures. 
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Red dots indicate the φ and ψ pair from the last 0.1 µs of the full-length ProTα 

and the 32-mer Neh2 trajectories. Blue circles indicate the angles of the starting 

structures. Green circles indicate the φ and ψ angle pair from the crystal structures 

(PDB ids: 2Z32 and 1X2R) (50, 55). Circular variance (C.V.) values and overlaid 

licorice representation snapshots from the last 0.1 µs of the simulations illustrate 

backbone mobility within the β-turns of ProTα and Neh2. Average circular 

variance values were calculated over the last 0.1 µs of the full-length ProTα and 

the 32-mer Neh2 peptide MD trajectories using the method described by 

MacArthur & Thornton (73). 

 

 Contacts between Cα-Cα atom pairs during the last 0.1 µs of the simulations were 

also examined. The contact plots and structures from the MD simulations show that the 

β-turns formed by ProTα and Neh2 at their Keap1-binding sites stretched out in both 

directions to form antiparallel β-sheets (Figure 3.6). This finding was in good agreement 

with previous NMR results, which suggest that residual structures may exist in regions 

surrounding the Keap1-binding motifs of disordered ProTα and Neh2 (46, 78). 

Interestingly, Neh2 has relatively higher 1H-15N heteronuclear NOE values in its Keap1-

binding region, indicating a less dynamic free-state (46). Furthermore, chemical shift 

index values indicative of β-strand structure and the observance of 1H, 1H NOEs between 

the adjacent strands also evidence that residues on either side of the ETGE motif of Neh2 

form a short β-sheet (46). Tong et al. suggested that interactions between the 

hydrophobic residues (Phe-74, Leu-76, Phe-83, and Pro-85) located on the β-strands may 

stabilize the antiparallel β-sheet structure (46). This proposal is supported by the ITC data 

showing that a long Neh2 segment containing the ETGE motif bound to the Kelch 

domain of Keap1 with higher affinity than the 9-mer peptide used in the current study 

(Kd≈8 nM vs Kd≈182 nM) (46). Similarly, Lo et al. (79) demonstrated that human Nrf2-

derived 14-mer (LQLDEETGEFLPIQ) or 16-mer (AFFAQLQLDEETGEFL) peptides 

could compete with full-length Nrf2 for binding to Keap1 much better than a 10-mer 

peptide (LDEETGEFLP). Their ITC measurements showed that the human 16-mer Nrf2 

peptide binds to the Kelch domain of Keap1 with Kd≈20 nM, an affinity similar to that of 
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the mouse homolog (79).  

 

Figure 3.6 Cα-Cα contacts in the MD structures. 

A) Average Cα-Cα distances over the last 0.1 µs of the full-length ProTα and 32-

mer Neh2 MD trajectories. Distances equal to or greater than 10 Å are colored 

dark red and distances equal to or less than 2 Å are colored dark blue. The Cαi-

Cαi+3 atoms of the β-turns are indicated by the black boxes. B) Cartoon B-Spline 

representations colored by residue type of ther Keap1 binding regions of full-

length ProTα and 32-mer Neh2 cluster centroids from the last 0.1 µs of the MD 

simulations. The single linkage clustering algorithm was used with a cutoff that 

included all structures from the last 0.1 µs. Residues comprising the XEEXGE 

Keap1-binding motifs are labeled. Directionality is indicated with the N and C 

labels. 
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In this work, we have measured the binding affinities of mouse 16-mer ProTα and 

9-mer Neh2 peptides to the Kelch domain using ITC (Table 3.3; Figure S3.4). The large 

and negative entropy changes of 16-mer ProTα and 9-mer Neh2 peptides upon binding to 

Keap1 (Table 3.3) clearly reflect the significant reduction in conformational entropy of 

the peptides due to the disorder-to-order transition upon binding. Even though the 16-mer 

ProTα and the 9-mer Neh2 peptides have similar binding affinity to the Kelch domain, 

the former interacts more weakly with Keap1 compared to the Neh2 peptide with the 

same length (79). This observation is in good agreement with the lower propensity of the 

ß-turn formation in ProTα that is critical for the binding revealed by our MD simulations. 

It is noteworthy that unlike Neh2, ProTα lacks comparable hydrophobic content in the 

region surrounding the Keap1-binding motifs (Table 3.1). The deficiency in hydrophobic 

interactions may also account for the lower binding affinity between ProTα and Keap1. 

 
 
Table 3.3 Thermodynamic parameters for the binding of ProTα and Neh2 peptides 
to the Kelch domain of Keap1. 
Peptide na Ka

b 
(106 M-1) 

∆Hb 
(kcal/mol) 

T∆Sb 
(kcal/mol) 

∆Gb 
(kcal/mol) 

16-mer ProTα peptide 1.03 2.4 ± 0.1 -18.9 ± 0.1 -10.20 -8.70 ± 0.02 
9-mer Neh2 peptide 1.02 3.7 ± 0.1 -19.0 ± 0.1 -10.05 -8.95 ± 0.02 

 a Binding stoichiometry 
b Ka is the binding constant. ∆H, ∆S and ∆G are the change in enthalpy, entropy and          
Gibbs free energy upon binding (at temperature T=298 K), respectively. 
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Figure S3.4 Isothermal titration calorimetry (ITC) measurements. 

Panels A and B correspond to titrations of 16-mer ProTα and 9-mer Neh2 peptide 

to the mouse Kelch domain of Keap1, respectively. (Upper) The raw data of two 

ITC experiments each performed at 25° C. (Lower) The integrated heat changes, 

corrected for the heat of dilution, and the fitted curve assuming single-site 

binding. 

 

Hydrogen bond analysis was conducted to help explain why the β-turns of ProTα 

and Neh2 converged to their bound state structures to different extents. Inspection of the 

MD structures from the last 0.1 µs of the simulations reveal that ProTα and Neh2 had 

different occurrence frequencies of hydrogen bonds within their Keap1-binding β-turns 

(Table 3.4). ProTα had at least one hydrogen bond present in only 14.3% of the 

structures, compared to a frequency of 98.6% for Neh2 (Table 3.4). The main differences 

arose from increased i to i+3 and, to a lesser extent, i to i+2 intra-turn hydrogen bonding 

in Neh2 compared to ProTα. For instance, hydrogen bonding between the side chains of 

Asp-77 and Thr-80 was observed in ~80% of the Neh2 structures, while the 
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corresponding side chain hydrogen bonding between Asn-41 and Asn-44 of ProTα was 

not observed in the MD trajectory (Table 3.4). The involvement of Thr-80 in intra-turn 

hydrogen bonds may explain why its χ1 angle closely resembled its bound state value 

(Figure S3). Furthermore, hydrogen bonding between the side chain of Asn-41 and the 

main chain of Asn-44 was observed in only 6.7% of the ProTα conformations, while, in 

the Neh2 trajectory, over 77.5% of the conformations were found to have hydrogen 

bonding between the side chain of Asp-77 and the main chain of Thr-80 (Table 3.4). In 

addition, the side chain of Asp-77 and the main chain of Glu-79 in Neh2 also form 

hydrogen bond more frequently compared to the corresponding residues in ProTα (55% 

vs 0.4%) (Table 3.4). The result of this analysis suggested that the greater number and 

more frequent intra-turn hydrogen bonds formed by Neh2, particularly between the i and 

i+3 residues, may explain why it adopts more stable bound-state-like structure than 

ProTα. Interestingly, this finding qualitatively agrees with the difference in the residue-

specific turn potentials for the β-turns of ProTα and Neh2. Using a table of overall turn 

potentials for each amino acid determined by Hutchinson & Thornton (80), the turn 

potentials for residues in the i to i+3 positions were summed. The NEEN and DEET 

sequences of Neh2 and ProTα had turn potentials of 4.87 and 5.03 respectively. The 

lower value for ProTα compared to Neh2 arose partly due to asparagine being slightly 

disfavored in position i compared to aspartic acid, but mainly because threonine was 

considerably more favored in position i+3 than asparagine. 
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Table 3.4 Frequencies of intra-turn hydrogen bond formations. 
Atom involved Full-length ProTαa 32-mer Neh2a 
mcb i to mc i+2  0.196% 
mc i to mc i+3  3.844% 
mc i to sc i+3  27.808% 
mc i+2 to sc i+3 0.284% 0.204% 
scc i to mc i+2 0.396% 55.368% 
sc i to mc i+3 6.696% 77.524% 
sc i+1 to mc i+2  0.428% 
sc i to sc i+3  80.212% 
sc i+2 to sc i+3 7.316% 0.572% 
Intra-turn total 14.348% 98.644% 

a Each frame from the last 0.1 µs of the mouse full-length ProTα and 32-mer Neh2 
trajectories were used for the hydrogen bond calculations (25,000 structures). A 
hydrogen bond between a hydrogen donor (D-H) and a hydrogen acceptor (A) was 

judged to be formed when the DA distance (r) was less than 3.2 Å and the angle 
between the DA vector and the D-H bond (AD-H angle) was less than 35°. For 
clarity, only hydrogen bonds occur in more than 0.1% of the structures are listed 
and intra-residue hydrogen bonds are excluded. 
b mc – main chain atoms  
c sc – side chain atoms 

 

 As shown in Table 3.4, a large fraction of the intra-turn hydrogen bonds formed by 

Neh2 involve Thr-80. Studies reveal that mutating Thr-80 of Neh2 to alanine disrupts the 

interaction between these two proteins, making Nrf2 resistant to Keap1 mediated 

degradation. In contrast, a T80S mutant, which has the side chain hydroxyl group 

retained, behaved similarly to the wild type (79). Interestingly, the phosphorylation of 

Thr-80 has also been shown to severely decrease binding of Neh2 to Keap1 (79). The 

authors suggested that the negative charge introduced by the phosphorylation may disrupt 

the β-turn formation, preventing Neh2 from adopting a complementary structure to the 

binding site of Keap1 (79).  

 The attenuation of Keap1 binding when Thr-80 is mutated to alanine is likely due 

to the disruption of the β-turn structure. This idea is reinforced by our findings, which 

showed that the side chain of this residue is involved in the majority of intra-turn 

hydrogen bonds in the free state (Table 3.4). Moreover, residue-specific turn potential 

calculation also indicates that when the DEET sequence of Nrf2 is mutated to DEEA, the 
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turn potential falls below that of the ProTα sequence to 4.72. Therefore, Thr-80 may act 

as a function switch, allowing Nrf2 activity to be regulated efficiently by phosphorylation 

(79, 81).  

  

Comparison of the mouse and human simulations 

  Finally, MD simulations were performed on the human homologs of full-length 

ProTα and the 32-mer Neh2 peptide (Table 3.1). The sequence alignments (Figure S3.5) 

indicate that there is a large percentage of sequence identity between the human and 

mouse versions of ProTα and Neh2. The human isoform 2 of ProTα used in this study 

contains 110 residues, which is shorter than the corresponding mouse sequence by one 

amino acid. The deletion site is located near the Keap1 binding region, immediately 

before the NEEN sequence.  Besides the deletion, the human and mouse ProTα sequences 

are differ in only 5 other positions (Figure S3.5).  For the 32-mer Neh2, there are three 

substitutions in the human sequence; one of them is located three residues upstream of 

the DEET ß-turn. The MD simulations of human ProTα and Neh2 therefore serve as 

pseudo duplicates of the mouse trajectories owing to the high sequence identities between 

the human and mouse versions of these two proteins. Moreover, the single-residue 

changes (deletion in ProTα and substitution in Neh2) close to the ß-turn sequences also 

allowed us to gauge the effects of mutations on the simulations.  
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Figure S3.5 Sequence alignments of the mouse and human full-length ProTα and 32-

mer Neh2 constructs generated using ClustalW XXL. 

The Blosum scoring matrix was used and gap penalties were set at their default 

values. Opening and end gap penalties were set to 10. Extending and separation 

gap penalties were set to 0.05. 

 

 The structure of a 16-mer human Neh2 peptide bound to human Keap1 (PDB id: 

2FLU) (79) was compared to the structure of mouse Neh2-Keap1. Average distance-

based RMSD calculations show that the residues comprising the β-turns in human and 

mouse Neh2 peptides adopt almost identical structures, with a backbone RMSD less than 

0.1 Å in the bound-states (55, 79). For ProTα, the crystal structure of human ProTα-

Keap1 was not currently available. Therefore, for consistency, in the following 

calculations, we continued to use the mouse structures (PDB ids: 2Z32 and 1X2R) (50, 

55) as the bound-state references for the human MD data.  

 Due to the intrinsically disordered nature of ProTα and Neh2, the initial structures 

used for the simulations are not well-defined. To avoid the potential bias of 

conformational sampling, starting structures used in the MD simulations of human ProTα 

and Neh2 were different from that used for the mouse. Considering the residues 
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comprising the β-turns, the all-atom RMSDs between starting structures for the human 

and mouse sequences were 2.41 Å and 2.48 Å for the full-length ProTα proteins and the 

32-mer Neh2 peptides, respectively. 

 Like the mouse versions, the β-turns of the human full-length ProTα and the 32-mer 

Neh2 peptide also converged to bound-state-like structures by the end of the trajectories 

(Figure S3.6). In the last 0.1 µs of the trajectories, both ProTα and Neh2 had Cαi-Cαi+3 

distance deviations around 1 Å from their mouse bound-state distances, with Neh2 

having slightly closer Cαi-Cαi+3 contacts (Figure S3.7). Interestingly, the 32-mer human 

Neh2 peptide adopted structures with about the same all-atom RMSDs to the bound-state 

conformation after a similar amount of simulation time compared to the mouse version 

(Figure S3.6 and Figure 3.2B). Meanwhile, the human ProTα was able to adopt structures 

with a lower all-atom RMSD to its bound state compared to its mouse counterpart (Figure 

S3.6 and Figure 3.2B). 

 

Figure S3.6 All-atom RMSD values between the MD and crystal structures. 

The RMSD values were computed by subtracting the all-atom distance matrix at 

time t of the MD trajectories from the reference distance matrix determined from 

the crystal structures of the ProTα and Neh2 peptides bound to Keap1 (PDB ids: 

2Z32 and 1X2R respectively) (50, 55). The distance matrices consisted of 

residues i through i+3 of the β-turn regions of the ProTα and Neh2 peptides 

determined from the crystal structures (50, 55). 
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Figure S3.7 Cαi-Cαi+3 distances and their deviations from their crystal structure 

distances. 

Panels A and B show the Cαi-Cαi+3 distances and the deviations from the 

corresponding distances in the crystal structures respectively. Data was collected 

over the last 0.1 µs of the full-length human ProTα and human 32-mer Neh2 

trajectories. Deviations were calculated for Cαi-Cαi+3 pairs from the β-turns, 

determined from the mouse crystal structures (50, 55), by subtraction of the i to 

i+3 distance at time t of the trajectory from the fixed distance of the 

corresponding atom pair from the crystal structures (PDB ids: 2Z32 and 1X2R) 

for ProTα and Neh2 respectively) (50, 55). 
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 The hydrogen bond analysis showed that, like the mouse homolog, human ProTα 

formed i to i+3 hydrogen bonds less frequently compared to Neh2 (Table S3.1). For 

instance, hydrogen bonding between the side chains of Asn-40 and Asn-43 was observed 

in 24.2% of the ProTα structures compared to 63.7% for the corresponding Asp-77 and 

Thr-80 pair in Neh2 (Table S3.1). Furthermore, hydrogen bonding between the side chain 

of Asn-40 and the main chain of Asn-43 was observed in 61.3% of the ProTα 

conformations compared to 74.5% for the corresponding Asp-77 and Thr-80 pair in Neh2 

(Table S3.1). The results from the human systems reinforce the notion that i to i+3 

hydrogen bonding between Asp-77 and Thr-80 of Neh2 might be more preferable than 

the corresponding Asn pair in ProTα. 

 

Table S3.1 Frequencies of intra-turn hydrogen bond formations 
Atoms involved Full-length ProTαa 32-mer Neh2a 
mc i to mc i+2 85.124% 0.16% 
mc i to mc i+3  1.744% 
mc i to sc i+3  15.884% 
mc i+1 to sc i  1.708% 
mc i+1 to sc i+2  0.56% 
sc i to mc i+2 6.828% 49.164% 
sc i to mc i+3 61.272% 74.504% 
sc i+1 to mc i+2  0.328% 
sc i+2 to mc i+3 0.112%  
sc i to sc i+3 24.172% 63.74% 
sc i+2 to sc i+3 0.14% 0.536% 
Intra-turn total 96.844% 95.248% 

a Each frame from the last 0.1 µs of the human full-length ProTα and 32-mer Neh2 
trajectories were used for the hydrogen bond calculations (25 000 structures). A 
hydrogen bond between a hydrogen donor (D-H) and a hydrogen acceptor (A) was 

judged to be formed when the DA distance (r) was less than 3.2 Å and the angle 
between the DA vector and the D-H bond (AD-H angle) was less than 35°. For 
clarity, only hydrogen bonds occur in more than 0.1% of the structures are listed 
and intra-residue hydrogen bonds are excluded. 

 b mc – main chain atoms  
c sc – side chain atoms 

 

 Unlike the high similarities between the simulations of the mouse and the human 

Neh2, the intra-turn hydrogen bonding patterns of the human and mouse versions of 
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ProTα were less consistent (Tables 3.4 and S3.1). Higher occurrences of hydrogen 

bonding between the main chains of i and i+2 residues, as well as between the side chain 

and main chain of i and i+3 were found in human ProTα. We speculate that the 

discrepancies reflect lower simulation convergence due to the less restricted 

conformation sampling of free-state ProTα (78). However, the influence of starting 

structures and sequence differences cannot be ruled out.  Further experimental studies are 

required to validate these findings. 

 

3.5 Conclusion 

In this work we have investigated how ProTα and Neh2 interact with a common 

binding partner, the Kelch domain of Keap1 using 0.5-1.0 µs MD simulations. Our main 

findings are that the XEEXGE Keap1 binding motifs of ProTα and Neh2 in their free 

states possess propensities to form bound-state-like structure to different extents. Neh2 

was found to form a defined β-turn more frequently than ProTα and had lower RMSD to 

its bound state conformation. This may be attributed to a larger number of and more 

stable intra-turn hydrogen bonds. In particular, hydrogen bonding between Asp-77 and 

Thr-80 of Neh2 might be more preferable than the corresponding Asn pair in ProTα. 

However, we cannot rule out that other factors, such as the lack of comparable 

hydrophobic content surrounding the Keap1 binding region of ProTα. This may also 

contribute to the more dynamic nature of ProTα and its lower propensity for adopting 

bound-state-like conformations.  

Addressing whether ProTα and Neh2 bind to Keap1 through PSEs, coupled 

folding and binding or a combination of both mechanisms was challenging. To conclude 

that binding occurs via PSEs, the free and bound state conformations would have to be 

highly similar or identical. The definition of being highly similar can be ambiguous, 

while restricting the definition to identical structures seems too stringent. In any protein-

protein interaction there are likely to be a certain amount of structural changes upon 

binding. In this case, the backbone atoms of the β-turns overlay well with the crystal 

structure backbones, especially for Neh2. However, the side chain orientations of some 
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residues show considerable differences. It is clear that both mechanisms are at work to 

different extents. Because our data shows that the Keap1 binding regions of ProTα and 

Neh2 tend to form β-turns that have an obvious resemblance to their bound state 

conformations, we propose that binding occurs synergistically via a combination of PSEs 

and coupled folding and binding with a heavy bias towards PSEs, especially for Neh2. 
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4.2 Abstract 

In the protein interactome, there are a small number of proteins with high 

connectivity. These proteins are commonly referred to as hubs, and are essential for 

interactome functionality and integrity. By combining experimental and computational 

approaches, we identified the Kelch domain of Keap1 as a crucial hub for binding 

intrinsically disordered proteins (IDPs) in oxidative stress response and apoptosis. Keap1 

regulates transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2), a 

master regulator of cytoprotective gene activation in the oxidative stress response 

pathway. Disorder predictions suggest that the majority of proteins that interact with the 

Kelch hub are intrinsically disordered in their binding regions. These targets share similar 

binding motifs, but have a wide range of binding affinities, spanning more than 2 orders 

of magnitude. Using nuclear magnetic resonance spectroscopy and molecular dynamic 

simulations, the major factors that govern the binding affinity and specificity of different 

disordered targets to the Kelch hub were determined. Good correlations (r2 > 0.75) 

between the binding free-energy and protein dynamics and hydrophobicity were found. 

The results indicate that the binding affinity of different disordered targets to the Kelch 

hub is largely determined by the extent of preformed bound-state like conformation in 

their free-state structures. Based on the knowledge acquired, we have designed a high-

binding affinity peptide that can specifically disrupt the Keap1-NRF2 interaction and has 

the potential for therapeutic applications. Overall, the work demonstrates a simple yet 

effective methodology for structurally characterizing IDP-protein interactions. 
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4.3 Introduction 

 Protein-protein interactions are the foundation upon which cells carry out their 

functions. Characterizing the interaction network is crucial for determining the functions 

of individual proteins, and identifying signaling pathways and their interconnections (1-

6). Some proteins have much higher connectivity relative to the others. These proteins are 

referred to as hubs (1, 7-11). It is common for a protein to interact with a few targets but 

hubs, which may have tens to hundreds of network connections, are rare in comparison 

(6, 7, 12). Their ability to interact with numerous partners is thought to be essential for 

network functionality and stability. Because of the critical roles they play, disruption of 

hub interactions in the human protein interaction network are frequently associated with 

diseases (5, 13, 14).  

 The structural plasticity of IDPs is a crucial feature allowing them to interact with 

numerous different partners (15-19). Therefore, these proteins are frequently found to 

function as hubs. Interestingly, there are also examples of ordered hubs that interact 

almost exclusively with disordered partners (15, 18, 20-22). In contrast to protein-protein 

interactions between globular proteins, which usually involve larger interaction surfaces 

that are discontinuous in sequence, IDPs typically bind to ordered hubs using short (~6 

residues) consecutive stretches of amino acid residues called linear motifs (LMs) (23-27). 

For example, the 14-3-3 family is one of the most studied hubs for IDPs. These are ~30 

kDa dimeric proteins that adopt rigid structures capable of binding hundreds of ligands, 

which together may comprise 0.6% of the human proteome (18, 20, 22, 28-30). These 

interactions are involved in important cellular functions such as catalysis, regulation and 

localization (22, 29, 30). It is estimated that over 90% of the 14-3-3 binding partners are 

completely or partially disordered (20, 22). Binding is governed by phosphoserine and 

phosphothreonine containing motifs on the partners. Several distinct consensus motifs 

(modes), with varying binding affinities, have been discovered across the broad spectrum 

of 14-3-3 ligands (28, 29). In addition to phosphorylation of 14-3-3 binding motifs, the 

presence of structurally constrained anchor residues outside of the motifs are thought to 

play important roles in the stability and specificity of the interactions (31). Another 

established hub with a preference for binding disordered partners is the N-terminal β-
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propeller domain (TD) domain of clathrin. Interactions between this hub and several 

disordered partners, including amphiphysins, AP180 and SNX9 have been demonstrated 

(32, 33). Using NMR, AP180 was found to be largely unstructured in free and clathrin 

bound states. Residues comprising the two clathrin binding motifs of AP180 had limited 

β-turn structures in their free and bound states and are more restricted in dynamics 

relative to their surrounding regions (33). Binding partners that remain dynamic in their 

free and bound states have been described to form ‘fuzzy’ complexes. Such complexes 

are thought to be important where specific, yet reversible binding is required (34-36). 

 Because LMs along an IDP sequence often represent potential target binding 

motifs, there have been considerable efforts towards identifying them (19, 23, 24, 37). 

The majority of work has been to detect motifs from sequences. Linear motifs often have 

distinct sequence characteristics compared to their surroundings, with the primary 

difference being an increased hydrophobic content (38), which may promote local 

structure formations. Such preformed structural elements often resemble their bound state 

conformations (39-42). A major hindrance in accurately detecting LMs with preformed 

structures or conformational propensity is a lack of free state structure data. Such 

information would provide unique insights into the relationships between sequence and 

structure, which could be used to verify and improve bioinformatics predictions of LMs. 

Another impeding factor in identifying, characterizing and comparing LMs is 

inconsistency in methods. For instance, to determine binding affinities and bound state 

structures, peptides containing the LM are frequently used. This is reasonable for IDPs 

because binding is typically a local event. However, because different binding partners 

for a given hub are typically discovered by different groups, there is often a lack of 

consistency in peptide lengths, alignments of LMs, organisms, buffers, methods, etc, 

which can be problematic if one wants to compare all binding partners simultaneously. 

While there are clear benefits of combining experimental data and predictive methods to 

predict and characterize LMs, variability in methods, experimental techniques can make 

it difficult to perform fair comparisons. 
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In this study, we have used bioinformatics tools for disorder prediction, 

isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) spectroscopy, 

and molecular dynamic (MD) simulations to systematically characterize the interactions 

between Kelch-like ECH-associated protein 1 (Keap1), an ordered hub protein, and all of 

its known (to date) disordered partners that bind to the Kelch domain of the protein 

(Figure 4.1A). Keap1/NRF2 pathway is essential for regulating the cellular response to 

oxidative stress (43, 44). The Kelch domain is a ~32 kDa β-propeller located near the C-

terminus of Keap1. To date, 9 different proteins have been shown to interact with it and 

most of them share similar ‘GE’-containing motifs (Figure 4.1A). Scrutinizing the 

mechanisms they employ to interact with the Kelch domain is essential for understanding 

their functions. It will also provide insight into how the Kelch domain tasks as a hub for 

disordered proteins in the oxidative stress response, and possibly other biological 

processes. Our study illustrates that by using a systematic approach based on a 

combination of experimental and computational methods, one can obtain unique insights 

into factors regulating the affinities and specificities of interactions of disordered partners 

with ordered hub proteins. Our approach should be generally applicable to investigate the 

binding mechanisms of other systems involving disordered LMs. 
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Figure 4.1 Sequence analysis of the Kelch domain interacting proteins. 

Sequence analysis of the Kelch domain interacting proteins. A) Manual sequence 

alignment and sequence logos of the site 1- and site 2-type regions of the Kelch 

domain binding proteins (91-93). B) Residue type fractions of the sequences. A, 
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F, I, L, M, P, V and W are hydrophobic; C, G, N, Q, S and T are polar; D and E 

are acidic; K, H and R are basic 

 

4.4 Materials and methods 

Expression and purification of the human Kelch domain 

 The Kelch domain of human Keap1 (residues 321-609), subcloned into the pET15b 

expression vector (from Dr. Mark Hannink, University of Missouri-Columbia), was 

expressed as an N-terminally His-tagged protein in Escherichia coli BL21 (DE3) and 

grown in minimal M9 medium. Protein expression was induced by addition of 0.5 mM 

IPTG at 18ºC for 24 h. The protein was purified from the crude cell lysate by affinity 

chromatography using Ni Sepharose™ 6 Fast Flow beads (Amersham Biosciences). The 

His-tag was then cleaved by incubation with human α-thrombin (Haematologic 

Technologies Inc.) overnight at 4ºC. The Kelch domain was purified from the cleavage 

mixture using a HiLoad Superdex-75 size-exclusion column (GE Healthcare) equilibrated 

with 50 mM sodium phosphate buffer, 100 mM NaCl, 1 mM DTT at pH 7. 

 

Kelch domain interacting peptides 

 Peptides from the various site 1-type Kelch domain interacting proteins (Figure 

4.1A) were synthesized (Tufts peptide synthesis). The sequences were manually aligned 

at their Kelch domain binding motifs, and extended on either side, up to 20 residues 

(Figure 4.1A). Because the sequences were from the interior regions of their respective 

proteins, acetyl and NH2 groups were added on their N- and C-termini, respectively. 

IKKβ peptide was excluded from this study because its Kelch domain interacting region 

is located in a structured region of the protein (65). A WTX peptide with S286 

phosphorylated was also synthesized. Phosphorylation of this residue has been 

demonstrated to occur in vivo (45). Two peptides were synthesized for PTMA, one for 

each isoform. The only difference between the two isoforms (in the full length proteins) 
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is the absence of E40 in isoform 2 (Figure 4.1A); therefore, the PTMA isoform 2 peptide 

was only 19 residues long. The peptides were dialyzed into 50 mM sodium phosphate 

buffer at pH 7 containing 100 mM NaCl and 1 mM DTT before use.   

 

Isothermal titration calorimetry (ITC) experiments 

 ITC experiments were carried out on a VP-ITC instrument (MicroCal) at 25ºC. The 

protein and peptide samples were dialyzed into a buffer containing 50 mM sodium 

phosphate, 100 mM NaCl, 1 mM DTT at pH 7 and degassed before the experiments. ~40 

µM Kelch was added to the 1.4 mL sample cell and subjected to stepwise titration with 5 

µL aliquots of  ~500 µM peptide. The equilibration period between each injection was 

300 seconds. The association constant (Ka), molar binding stoichiometry (n) and the 

binding enthalpy (∆H), entropy (∆S) and Gibbs free energy (∆G) were determined by 

fitting the binding isotherm to a single-binding-site model with Origin7 software 

(MicroCal). The heat changes after saturation were averaged and used to correct for the 

heats of dilution.  All ITC experiments were performed in duplicate. 

 

NMR spectroscopy 

 NMR experiments were performed on a 600 MHz Varian INOVA spectrometer 

(UWO Biomolecular NMR Facility). The peptide samples were prepared at a 

concentration of ~3 mM in a buffer containing 50 mM sodium phosphate, 100 mM NaCl, 

1 mM DTT at pH 7.0. All samples contained 10% D2O and trace 2,2-dimethyl-2-sila-

pentane-5-sulfonic acid (DSS) for 1H chemical shift referencing. The experiments were 

conducted at either 25 or 10ºC. Two-dimensional 1H-1H TOCSY and NOESY spectra 

were collected with spectral widths of 8000 Hz in both dimensions. WATERGATE 

solvent suppression was employed (82). TOCSY spectra were recorded with a 50 ms spin 

lock time. NOESY spectra were collected with a mixing time of 200 ms. The TOCSY 

and NOESY experiments were acquired using 4096 points with 256 increments. 

Sequential assignments for each peptide were obtained using the TOCSY and NOESY 
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spectra along with a natural abundance 1H-15N HSQC spectrum. All NMR data was 

processed with NMRPipe (83). 

 

MD simulations 

The amino acid sequences of all simulated peptides were the same as those used 

in the ITC experiments (Figure 4.1A and Table 4.1). We used the Crystallography & 

NMR System (CNS) (84) to generate an extended structure from each sequence. 

Simulated annealing was performed on each extended structure and resulting 

conformations that did not resemble the Neh2 domain site 1 region bound to the Kelch 

domain (PDB id: 2FLU) were used as starting structures (51). The N- and C-terminus of 

each structure was capped with acetyl (ACE) and NH2 groups, respectively, using 

chimera (85). For the WTX peptide with S286 phosphorylated (WTX pS286), a dianionic 

phosphate group (PO4
2-) was modeled onto S286 of the non-phosphorylated WTX 

peptide structure. 

The MD simulations were performed using GROMACS (GROningen MAchine 

for Chemical Simulations) version 4.5 (86). All chemical species were represented by the 

GROMOS96 53a6 force field (87, 88), except in the WTX pS286 peptide simulation, 

where the GROMOS96 43a1p (89) force field was used. The starting structures were 

solvated in cubic boxes of linear size 6 nm with periodic boundary conditions applied in 

all directions. The SPC (simple point charge) water model was used (90). Protonation 

states of all ionizable residues were chosen based on their most probable state at pH 7. 

Histidine residues were protonated on ND1 only. Each system was neutralized and 

brought to an ionic strength of 0.1 M with sodium (Na+) and chloride (Cl-) ions. The 

simulations were performed using similar protocols as described in (39). System 

coordinates were written out at 4 ps intervals and each simulation was run for at least 1 

µs, for a cumulative simulation time of 15 µs. The systems are summarized in Table 4.1. 
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Table 4.1 Summary of the MD simulations. 
Protein  Sequence Water & ions 
NRF2 site 1 Ac-FAQLQLDEETGEFLPIQPAQ-NH2 7007, 17 Na+, 13 Cl- 
PGAM5 Ac-INVRKRNVESGEEELASKLD-NH2 7019, 14 Na+, 13 Cl- 
p62 Ac-LSSKEVDPSTGELQSLQMPE-NH2 7012, 16 Na+, 13 Cl- 
WTX Ac-SLEEPHSPETGEKVVAGEVN-NH2 7017, 17 Na+, 13 Cl- 
WTX pS286 Ac-SLEEPHpSPETGEKVVAGEVN-NH2 7010, 19 Na+, 13 Cl- 
FAC1 Ac-SAKAADDPENGERESHTPVS-NH2 7024, 16 Na+, 13 Cl- 
PALB2 Ac-HIKTHLDEETGEKTSITLDV-NH2 7019, 16 Na+, 13 Cl- 
PTMA 
isoform 1 

Ac-ANGNAENEENGEQEADNEVD-NH2 7020, 21 Na+, 13 Cl- 

PTMA 
isoform 2 

Ac-ANGNANEENGEQEADNEVD-NH2 7022, 20 Na+, 13 Cl- 

IKKβ Ac-NVIRWHNQETGEQIAIKQCR-NH2 7005, 13 Na+, 14 Cl- 
NRF2 site 2 Ac-MDLIDILWRQDIDLGVSREV-NH2 7008, 16 Na+, 13 Cl- 
BCL2 Ac-LNRHLHTWIQDNGGWDAFVE-NH2 7001, 15 Na+, 13 Cl- 
NRF2 site 1 
E78P 

Ac-FAQLQLDPETGEFLPIQPAQ-NH2 7013, 16 Na+, 13 Cl- 

 

4.5 Results and discussion 

We have used a multidisciplinary approach involving bioinformatics, ITC, NMR 

and MD simulations to compare the sequences, binding parameters and free state 

structures of all Kelch domain interacting proteins identified to date. The study builds 

upon the findings from numerous investigations of Kelch domain interacting proteins (43, 

45-59). While these protein-protein interactions have been identified, they have not all 

been thoroughly characterized and compared. Our study provides new insights into the 

relationship between sequence and structure in governing the binding affinity of the 

different targets to the hub protein Keap1. The findings will be useful in delineating the 

binding mechanisms of the different proteins – crucial information for understanding 

their biological roles. Importantly, our approach is generally applicable for investigations 

of the binding mechanisms of other systems involving disordered proteins. 

 

Kelch domain interacting proteins are predominantly disordered 

The Neh2 domain of NRF2 is responsible for mediating the interaction with the 
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Kelch domain of Keap1. Structural studies have shown that Neh2 is intrinsically 

disordered (57, 58). It has high and low affinity ‘ETGE’ and ‘DLG’ containing Kelch 

domain binding regions, respectively, which will be referred to as sites 1 and 2, 

respectively hereafter (57, 58). These sites are located on separate ends of the ~100 

residue Neh2 domain, connected by a segment with high helical propensity (57). When 

both sites are bound to two separate Kelch domains, NRF2 is ubiquitinated, which targets 

it for proteasomal degradation (58). When only site 1 is bound, NRF2 avoids the 

degradation pathway and can promote expression of its target genes (58). 

 

Several proteins have been shown to disrupt the low affinity site 2-Kelch domain 

interaction, allowing NRF2 to promote cytoprotective gene expression. These proteins 

include PGAM5, p62, WTX and PALB2 (45, 48, 50, 52). In addition, FAC1 (56), PTMA 

(54, 60), IKKβ (47, 49) and BCL2 (53) can also bind to the Kelch domain. PTMA is a 

highly disordered protein that functions as a vehicle for shuttling Keap1 into the nucleus 

(60-62). The purposes of the other protein-protein interactions are currently under 

intensive investigations (44, 63). Most of the Kelch domain interacting proteins contain 

sequences resembling the site 1 sequence of the Neh2 domain (Figure 4.1A) and will be 

referred to as site 1-type proteins hereafter. The one exception is BCL2, which contains a 

site 2-type sequence and will be referred to as a site 2-type protein (Figure 4.1A). 

Although not included in this study, because it does not appear to be directly linked to the 

oxidative stress response or apoptosis, myosin-VIIa has also been shown to interact with 

Kelch (64). It is worthwhile to mention that the region of human myosin-VIIa capable of 

binding Kelch includes a site 1 type sequence 1635LDHDTGE1641. 

 

Structural information of only a few of the Kelch domain interacting proteins is 

currently available. Crystal structures of PTMA and p62 peptides in complex with the 

Kelch domain show that their site 1-type motifs bind to the same region as the NRF2 site 

1 region and form similar β-hairpin structures in their bound states (48, 51, 54, 55). In its 

unbound state, the NRF2 site 1 region contains a short β-sheet structure, which is thought 
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to contribute to its higher binding affinity compared to the site 2 region (39, 40, 57). Our 

previous MD simulations showed that, in their free states, the NRF2 site 1 region and the 

site 1-type region of PTMA formed β-hairpin structures that resembled the bound state 

structure to different extents, with NRF2 forming a more defined hairpin that had a closer 

resemblance to its bound state structure compared to PTMA (40). Although the structure 

of a p62 peptide bound to the Kelch domain has been determined (48), its free state 

structure has not been examined and it is not known if it may also contain residual 

structure in its Kelch domain interacting region. Additionally, a homology structure of 

the IKKβ kinase domain, in the absence of the Kelch domain, illustrates that its site 1-

type motif also adopts a β-hairpin conformation (65). 

 

Based on the amino acids sequences of the various proteins (Figure 4.1A), we 

found that intrinsic disorder in the Kelch domain binding regions of the site 1-type 

binders may be a common attribute. NRF2 site 1 and PALB2 had PONDR-FIT (66) 

disorder tendencies of 0.50 or higher, while p62, WTX, FAC1 and PTMA had tendencies 

>0.70 (Figure S4.1). Furthermore, p62, WTX, FAC1 and PTMA are predicted to have 

long stretches of disorder around their binding regions (Figure S4.1). PGAM5 and IKKβ 

were the only site 1-type proteins with predicted disorder tendencies <0.5 (Figure S4.1). 

The binding region of PGAM5 (Figure 4.1A) had an average PONDR-FIT score of 0.36, 

but scored 0.59 when the metaPrDOS predictor was used (67). PONDR-FIT predicted 

that the N-terminal portion of PGAM5 is largely disordered, while the C-terminal is 

structured (Figure S4.1), suggesting that the Kelch domain binding region of PGAM5 is 

located on the border of a disordered region and structured domain. This notion is 

supported by the X-ray crystal structure of the C-terminal PGAM5 domain (PDB id: 

3MXO), beginning at D90 (Figure 4.1A). The binding region of IKKβ is predicted to be 

in a structured part of the protein (Figure S4.1), which is consistent with the homology 

model (65) that illustrates that it is a well-folded protein (Figure 4.2). The site 2-type 

binders were predicted to have disorder tendencies of 0.40 for NRF2 and 0.07 for BCL2 

(Figure S4.1). The predicted low disorder tendency of BCL2 was not surprising because 

its binding region is found in a well-folded part of the protein (68) (Figure 4.2). We also 
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used the MoRFpred server (69) to identify if the Kelch domain interacting regions of the 

various proteins are predicted to contain molecular recognition features (MoRFs). NRF2 

site 1, PTMA and NRF2 site 2 were the only partners that were predicted to contain 

MoRFs at their binding sites (Figure S4.1). However, it is noteworthy that these two 

proteins were included in the training dataset of MoRFpred (69). Data presented 

throughout this work may be useful for further improving this predictive tool. Overall, 

the results suggest that while both intrinsically disordered and well-folded polypeptide 

segments are able to bind to the same interaction surface of the Kelch domain, the 

majority of the partners (identified to date) are disordered. 
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Figure S4.1 Disorder and MoRF predictions of the Kelch domain interacting 

proteins. 

The disorder predictions were performed with PONDR-FIT (66). Arrows indicate 

the locations of the Kelch domain binding regions (Figure 4.1A). Blue lines 



136 

 

indicate predicted MoRFs (>3 residues) by the MoRFpred web server (69). The 

gene of FAC1 encodes part of a larger protein called bromodomain PHD finger 

transcription factor (BPTF). For the FAC1 plot, the prediction of the entire BPTF 

protein is shown. The residues 1-810 of FAC1 correspond to residues 140-939 of 

BPTF (97). 

 

Sequence and structure comparison of the Kelch domain interacting proteins 

To help assess factors that dictate the binding affinity and specificity to the Kelch 

domain, we performed an analysis of the amino acid sequences and available structures 

of the Kelch domain interacting proteins. The site 1-type proteins have sequence identity 

in a 6-residue stretch corresponding to the ‘DEETGE’ of NRF2 site 1 (Figure 4.1A). 

These residues comprise the Kelch domain binding interface (51) and will be referred to 

as positions i - i+5. G and E always occupy positions i+4 and i+5, respectively (Figure 

4.1A). E is found at i+2 in all of the proteins, except p62, which contains an S at this 

position (Figure 4.1A). The other positions are more variable (Figure 4.1A). In order of 

highest to lowest occurrence frequencies, D/N or S is found at position i, E, P or V/Q at 

i+1 and T, N or S at i+3 (Figure 4.1A). Outside of this 6-residue stretch, there are no 

clear sequence similarities between the different site 1-type proteins (Figure 4.1A). 

Furthermore, there is no obvious sequence consensus between the site 1- and 2-type 

Kelch binding proteins (Figure 4.1A). The two site 2-type proteins have a short, 4-

residue, ‘WXQD’ consensus region. BCL2 contains the sequence ‘WIQD’, which bears 

similarity to the ‘WRQD’ sequence of NRF2 site 2 (Figure 4.1A). Like the site 1-type 

proteins, these two proteins do not share apparent sequence consensus outside of this 

short motif (Figure 4.1A).  

Next, we compared the residue type fractions of the sequences (Figure 4.1B). The 

hydrophobic content amongst the site 1-type binders varied considerably between 20-

50% (Figure 4.1B). NRF2 site 1 had the highest fraction of hydrophobic residues, 

followed by p62/WTX, PGAM5/FAC1/IKKβ, PALB2 and PTMA (Figure 4.1B). Polar 

content in the site 1-type binders was more consistent, with a range of 25-40% (Figure 



137 

 

4.1B). PTMA, p62 and IKKβ had the highest fraction of polar content, followed by 

NRF2/WTX/FAC1/PALB2 and PGAM5 (Figure 4.1B). Acidic content fell into a range 

of 10-25% for all proteins, except PTMA, which had a considerably higher fraction of 

40% (Figure 4.1B). Basic content varied between 0% in NRF2 and PTMA to 20% in 

PGAM5, PALB2 and IKKβ (Figure 4.1B). The site 2-type sequences of NRF2 and BCL2 

had similar amounts of hydrophobic content between 40-45% (Figure 4.1B). BCL2 had 

considerably more polar and less acidic content compared to the NRF2 site 2 sequence 

(Figure 4.1B). Basic content was similar for both 20-mer sequences (Figure 4.1B). 

We also compared the available structures of the Kelch domain binding proteins. 

Aside from IKKβ, for which a homology model structure exists (65), the free-state 

structures of the site 1 type Kelch domain binding proteins are otherwise not known. 

However, structures of NRF2 site 1 and 2, p62 and PTMA peptides bound to the Kelch 

domain have been determined (48, 54, 55, 59). In their bound states, the PTMA and p62 

peptides both adopt β-hairpin structures with low rmsd (< 0.3 Å Cα rmsds for 8 atom 

pairs) to the NRF2 site 1 peptide bound to the Kelch domain (48, 54, 55) (Figure 4.2). 

The bound state structures of these peptides also reveal that they assume similar 

sidechain conformations (Figure 4.2). In its free state, the Kelch domain binding region 

of IKKβ (Figure 4.1A) also forms a β-hairpin that has considerable resemblance (~0.5 Å 

Cα rmsd for 8 atom pairs) to the bound state structure of the NRF2 site 1 peptide (Figure 

4.2). Furthermore, the bound state structures of the NRF2 site 1, p62 and PTMA peptides 

and the free state structure of IKKβ have similar backbone and sidechain χ1 dihedral 

angles in their binding interface residues (Table S1). When comparing the site 2-type 

binders, it was clear that in its free state, the ‘WIQD’ sequence of BCL2 (PDB id: 1G5M) 

(68) has considerable structural resemblance (<0.5 Å Cα rmsd for 4 atom pairs) to the 

‘WRQD’ sequence of the NRF2 site 2 peptide bound to Kelch (PDB id: 2DYH) (59) 

(Figure 4.2). These residues appear to adopt a ‘turn’ conformation and share similar 

backbone, but not χ1, dihedral angles (Figure 4.2 and Table S1). Intriguingly, although 

the site 1- and 2-type Kelch domain interacting proteins do not have obvious sequence 

similarities, the residues that are largely buried in the Kelch domain binding interface (EE 

in NRF2 site 1 and PTMA, PS in p62, QE in IKKβ and QD in NRF2 site 2 and BCL2) 
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have similar φ and ψ angles (Table S1). 

 

 

Figure 4.2 Structure comparisons of the Kelch domain binding proteins. 

A) Superposition of NRF2 site 1 and PTMA peptides bound to the Kelch domain 

(PDB ids: 1X2R and 2Z32, respectively) (54, 55). The structures of the Kelch 

domain are not shown for clarity. B) Superposition of NRF2 site 1 and p62 

peptides bound to the Kelch domain (not shown) (PDB ids: 1X2R and 3ADE, 

respectively) (48, 55). C) Superposition of an NRF2 site 1 peptide bound to the 



139 

 

Kelch domain (not shown) (PDB id: 1X2R) (55) and the free state IKKβ 

homology model structure (PMDB id: 76858) (65). D) Superposition of an NRF2 

site 2 peptide bound to the Kelch domain (not shown) (PDB id: 2DYH) (59) and 

the free state BCL2 structure (PDB id: 1G5M) (68). 

 

Table S1 Dihedral angles of the Kelch domain binding interface residues. 
Protein Residue φº ψº χ1º 
NRF2 site 1a D77 -70.8 110.0 -170.8 
 E78 -63.8 -21.8 -144.1 
 E79 -82.0 -31.4 -72.8 
 T80 -117.2 -21.2 66.0 
 G81 85.3 -5.7  
 E82 -71.8 146.8 -67.0 
p62b D349 -87.3 109.3 -179.9 
 P350 -47.7 -39.0 -26.0 
 S351 -72.9 -31.1 -173.2 
 T352 -121.8 -22.0 61.5 
 G353 84.7 4.7  
 E354 -76.0 143.1 -80.5 
PTMAc N41 -67.8 115.6 -174.6 
 E42 -70.1 -16.1 -80.4 
 E43 -77.7 -39.9 -68.1 
 N44 -126.4 -2.9 61.4 
 G45 78.1 0.3  
 E46 -74.8 152.8 -51.2 
IKKβd N34 -94.8 134.7 -168.9 
 Q35 -91.5  -22.0 -83.2 
 E36 -81.7 -36.7 -60.4 
 T37 -102.5   -26.4 62.1 
 G38 80.8  10.6  
 E39 -59.7   133.1 -166.9 
NRF2 site 2e W24 nag nag nag 

 R25 -67.9 -16.5 58.5 
 Q26 -77.6 -24.6 49.0 
 D27 -76.5 -17.3 -88.4 
BCL2f W188 -63.7 -40.2 -179.6 
 I189 -46.5 -59.0 -81.2 
 Q190 -66.8 -30.2 -76.1 
 D191 -64.5 -45.5 -150.4 

 a PDB id: 1X2R(55). 
 b PDB id: 3ADE(48). 
 c PDB id: 2Z32(54). 
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 d Protein model database (PMDB) id: 76858(65). 
 e PDB id: 2DYH(59). 
 f PDB id: 1G5M(68). 
 g Atom positions needed to calculate the angle were not resolved in the structure. 
 
 

Binding parameters of the Kelch domain interacting proteins 

Using ITC, we determined the thermodynamic parameters of binding (Table 4.2) 

for peptides from the binding regions (Figure 4.1A) of all of the known (to date) site 1-

type Kelch domain interacting proteins with high disorder tendencies. ITC thermograms 

and an additional set of binding parameters from duplicate experiments are available 

(Figure S4.2 and Table S4.2). Binding parameters have been previously reported for 

NRF2 (40, 57, 58), p62 (48) and PTMA isoform 2 (40). To our knowledge, parameters 

for PGAM5, WTX, WTX pS286, FAC1, PALB2 and PTMA isoform 1 have not been 

reported. Here, we determined the binding parameters for these proteins as well as the 

ones that have been previously reported. The reason for repeating the previously 

documented measurements was to insure that a systematic comparison with equal length 

peptides, same buffer conditions, protein/peptide concentrations, was performed. 
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Table 4.2 Thermodynamic parameters for the binding of the peptides to the human 
Kelch domaina 

Protein 
nb Kd

c 

(10-6 M) 
∆Hc 
(kcal/mol) 

T∆Sc 
(kcal/mol) 

∆Gc 
(kcal/mol) 

NRF2 site 1 1.08  0.023 ± 0.002  -16.96 ± 0.046 -6.559 -10.40 ± 0.03 
PGAM5 1.07  0.23 ± 0.010 -19.12 ± 0.056 -10.048 -9.07 ± 0.03 
p62 0.97 1.3 ± 0.021 -18.38 ± 0.067 -10.345 -8.04 ± 0.03 
WTX 1.04  0.25 ± 0.017 -18.04 ± 0.087 -9.034 -9.01 ± 0.04  
WTX pS286 0.98  1.5 ± 0.140 -10.83 ± 0.143 -2.880 -7.95 ± 0.10 
FAC1 0.99 1.1 ± 0.047 -15.11 ± 0.076 -6.976 -8.13 ± 0.04 
PALB2 1.01 0.087 ± 0.007  -19.29 ± 0.109 -9.660 -9.63 ± 0.05  
PTMA iso 1 1.07 11.6 ± 0.230 -14.74 ± 0.120 -8.020 -6.72 ± 0.05 
PTMA iso 2 1.05 2.62 ± 0.052 -17.29 ± 0.064 -9.690 -7.60 ± 0.03  

 a The peptide sequences are shown in Figure 4.1A and Table 4.1. 
 b Binding stoichiometry. 

c Kd is the dissociation constant. ∆H, ∆S and ∆G are the change in enthalpy, entropy 
and Gibbs free energy upon binding at T=298.15 K, respectively. 
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Figure S4.2 ITC thermograms. 

Filtered and degassed aliquots of ~40 µM Kelch containing 50 mM sodium 
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phosphate, 100 mM NaCl, 1 mM DTT at pH 7 was added to the 1.4 mL sample 

cell and subjected to stepwise titration with 5 µL aliquots of  ~500 µM peptide. 

The equilibration period between each injection was 300 seconds. The association 

constant (Ka), molar binding stoichiometry (n) and the binding enthalpy (∆H), 

entropy (∆S) and Gibbs free energy (∆G) were determined by fitting the binding 

isotherm to a single-binding-site model with Origin7 software (MicroCal). The 

heat changes after saturation were averaged and used to correct for the heats of 

dilution.  All ITC experiments were performed in duplicate. ITC experiments 

were carried out on a VP-ITC instrument (MicroCal) at 25ºC. The protein and 

peptide samples were dialyzed into a buffer containing 50 mM sodium phosphate, 

100 mM NaCl, 1 mM DTT at pH 7 and degassed before the experiments. 

 

Table S4.2. Duplicate set of peptide to the human Kelch domain thermodynamic 
binding parametersa 
Protein nb Kd

c 

(10-6 M) 
∆Hc 
(kcal/mol) 

T∆Sc 
(kcal/mol) 

∆Gc 
(kcal/mol) 

NRF2 site 1 1.08 0.024 ± 0.002 -17.56 ± 0.046 -7.185 -10.38 ± 0.03  
PGAM5 1.08  0.18 ± 0.010 -19.78 ± 0.066 -10.584 -9.20 ± 0.03  
p62 0.99 1.7 ± 0.038 -18.27 ± 0.088 -10.375 -7.90 ± 0.04 
WTX 1.04  0.27 ± 0.020 -18.15 ± 0.094 -9.183 -8.97 ± 0.05  
WTX pS286 0.99 1.6 ± 0.16 -10.39 ± 0.136 -2.480 -7.91 ± 0.10 
FAC1 0.96 0.98 ± 0.069 -15.41 ± 0.124 -7.215 -8.20 ± 0.07  
PALB2 0.96  0.13 ± 0.02 -19.30 ± 0.123 -9.869 -9.43 ± 0.06 
PTMA iso 1 1.09  13.4 ± 0.32 -14.32 ± 0.153 -7.662 -6.66 ± 0.07 
PTMA iso 2 1.04  2.93 ± 0.078 -17.53 ± 0.093 -10.077 -7.45 ± 0.04  

 a The peptide sequences are shown in Figure 4.1A and Table 4.1. 
 b Binding stoichiometry. 

c Kd is the dissociation constant. ∆H, ∆S and ∆G are the change in enthalpy, entropy 
and Gibbs free energy upon binding at T=298.15 K, respectively. 

 

A large variation in the binding affinity (Kd ranging from ~12 µM to 23 nM) was 

observed for different disordered Kelch domain interacting proteins. Out of all the 

peptides, the NRF2 site 1 peptide had the highest affinity for the Kelch domain (23 ± 2 

nM), followed by PALB2 (87 ± 7 nM), PGAM5 (230 ± 10 nM), WTX (250 ± 17 nM), 

FAC1 (1 100 ± 47 nM), p62 (1 300 ± 21 nM), WTX pS286 (1 500 ± 140 nM), PTMA 
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isoform 2 (2 620 ± 52 nM) and PTMA isoform 1 (11 600 ± 230 nM). The Kd of the 

NRF2 site 1-Kelch domain interaction has been measured at 20 nM for a 16-mer peptide, 

which was consistent with our value of 23 ± 2 nM (51). It is interesting that PALB2, 

which contains the same ‘LDEETGE’ sequence as NRF2 site 1, was ~4-fold weaker. It 

has been demonstrated that PALB2 can compete with NRF2 for Kelch domain binding, 

and as a result, the authors proposed that PALB2 may have a similar, or higher affinity 

(52). Our ITC data showed that while the PALB2 peptide interacted with the Kelch 

domain slightly more favorably enthalpically than the NRF2 site 1 peptide, it lost 

considerable entropy upon binding. Our sequence analysis illustrates that, compared to 

NRF2 site 1, PALB2 has considerably less hydrophobic content in its binding region, 

which may allow for more conformational freedom. This could possibly explain why 

PALB2 loses considerable entropy upon binding, resulting in a weaker interaction. The 

affinity of the p62 peptide for the Kelch domain was 1300 ± 21 nM, which was on par 

with the reported value of 1851 ± 103 for a (mouse) fragment containing residues 168-

391 (48). The high similarity between these measurements indicates that regions distant 

from the binding motif may not participate in the interaction. The relatively weak affinity 

of the p62-Kelch domain interaction may be attributed to the lacking of an E in the i+2 

position of p62 (Figure 4.1A). The other binding partners all contain an E at this position 

and structures of NRF2 site 1 and PTMA peptides in complex with Kelch show that this 

residue forms favorable electrostatic interactions with a basic surface of Kelch (51, 54, 

55). Although this suggests that the lower affinity of the p62 peptide would be primarily 

due to a less favorable enthalpic component of binding, p62 actually had a more 

favorable ∆H of binding compared to most of the other peptides, including NRF2. 

Because this could be due to number of possibilities, such as favorable intra-peptide 

interactions occurring upon binding, further experiments are necessary to determine the 

thermodynamic contributions of the E in position i+2. The unphosphorylated WTX 

peptide interacted comparably to PGAM5; however, upon phosphorylation of S286, 

binding was substantially decreased by ~6-fold (Table 4.2). The significant effect of 

WTX phosphorylation on its binding affinity parallels the effect of phosphorylation of 

residue T80 (position i+3) in NRF2, both of which occur in vivo (45, 51, 70). The ~5 fold 

lower affinity of PTMA isoform 1 compared to isoform 2 (Table 4.2) was intriguing. The 
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two isoforms have nearly identical sequences, with the major difference being a deletion 

of E at position i-1 in isoform 2 (Figure 4.1A). The contributing factor(s) for this 

difference are not clear, but we speculate that having amino acids with the same charge 

(E41 and E48) somewhat close to each other in a β-turn conformation is unfavorable. 

Similarly, the D589 and E597 pair in FAC1 would also be in close proximity, assuming a 

β-turn conformation is adopted.  

There were some obvious trends in the ITC data, which led us to group the 

different proteins based on their binding affinities. These groupings may be helpful in 

deciphering the relationships between binding affinity and the biological functions of the 

various protein-protein interactions. Tier 1 consists of NRF2 only, which has a Kd of ~20 

nM. NRF2 is known as the master regulator of the cellular oxidative stress response 

pathway (71-73). Tier 2 consists of PALB2, PGAM5 and WTX, which have Kd’s in the 

~100-200 nM range. The proteins have been shown to promote NRF2-mediated 

cytoprotective gene expression, by presumably, disrupting the low affinity site 2-Kelch 

domain interaction. Based on their affinities, these proteins should be able to easily 

disrupt this interaction, which has a Kd of ~1 µM (57). A third tier of proteins, consisting 

of FAC1, p62 and PTMA have dissociation constants > 1000 nM. PTMA contains a 

nuclear localization signal, and is thought to function as a vehicle for shuttling Keap1 

into the nucleus. The transient nature of its shuttling role may explain its lower affinity. It 

should be noted that while the proteins discussed here interact with the Kelch domain of 

Keap1, the purpose of many of the interactions are not well established. The binding 

parameters reported here and hypothesis presented in several recent review articles may 

give insights into their possible roles (44, 63). 

 

Free state structures of Kelch domain interacting peptides 

 NMR and MD simulations were used to assess the free state solution structures of 

the various Kelch domain interacting peptides. These experiments were crucial for 

assessing the relationships between peptide conformation in the free and bound states. 

We previously found evidence that, in their free states, the NRF2 site 1 region and the 
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site 1-type region of PTMA adopt β-hairpin conformations that resemble the bound state 

structures to different extents, with NRF2 forming a more defined hairpin that has a 

closer resemblance to its bound state structure compared to PTMA (40). The chemical 

shift assignments and assigned 1H-15N HSQC spectra for each peptide are available 

(Table S4.3 and Figure S4.3). The small 1Hα chemical shifts deviations from their 

random coil values, and narrow range of 1H peak dispersions (~1 ppm) suggest that the 

peptides are largely disordered in solution (Table S4.3 and Figure S4.3). The main 

purpose of assigning the 1H resonances was to assess the solution structures of the 

various peptides using NOESY experiments. In Figure 4.3, lines mapped onto the peptide 

sequences, are used to illustrate any NOESY cross-peaks between protons >2 residues 

apart. Using this criterion, the NRF2 site 1 peptide had the largest number of cross-peaks 

of all the peptides (Figure 4.3). Several of the NRF2 site 1 peptide cross-peaks were 

between residues comprising the β-turn motif that forms the binding interface with the 

Kelch domain (Figure 4.3). The corresponding region in many of the other peptides also 

contained NOESY cross-peaks (Figure 4.3). In particular, cross-peaks between residues 

in the i and i+3 positions of the regions corresponding to the β-turn motif of the NRF2 

site 1 peptide were usually observed (Figure 4.3). In addition to contacts within the β-

turn, the NRF2 site 1 peptide also contained cross-peaks between hydrophobic residues 

on either side of the turn, suggestive of a hairpin structure (Figure 4.3). The p62 and 

WTX peptides also had detectable NOESY cross-peaks between residues outside of their 

binding motifs indicative of hairpin structures (Figure 4.3). Although NOESY cross-

peaks between residues > 2 residues apart were not found for the FAC1, PALB2 and 

PTMA peptides, the presence of such contacts cannot be ruled out. Incomplete resonance 

assignments and overcrowding made analysis of these spectra challenging. 
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Figure 4.3 Peptide NOESY connections. 

The NMR experiments were performed at 25ºC with a 3 mM peptide sample in 50 

mM sodium phosphate pH 7, 100 mM NaCl, 1 mM DTT and trace DSS for 

chemical shift referencing. Lines mapped onto the peptide sequences are used to 

illustrate any NOESY cross-peaks between protons > 2 residues apart. 
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Table S4.3. Chemical shifts assignments of the peptides. 
NRF2 site 1 peptide, Ac-FAQLQLDEETGEFLPIQPAQ-NH2 
Residue NH HN Hα Hβ Others 
F 125.931 8.175 4.540 2.977, 3.119 Hδ: 7.261 
A 125.300 8.269 4.272 1.328  
Q 119.427 8.217 4.298 1.968, 2.084 Hγ: 2.346, Hε: 

6.867, 7.548 
L 123.158 8.165 4.423 1.621 Hγ: 1.490, Hδ: 

0.825 
Q 121.318 8.596 4.449 1.977, 2.058 Hγ: 2.315, Hε: 

6.850, 7.563  
L 124.973 8.388 4.209  Hγ: 1.456, 1.495, 

Hδ: 0.661, 0.749  
D 123.342 8.515 4.589 2.560, 2.846  
E 123.292 8.571 4.102 1.967, 2.056  
E  120.166 8.439 4.283 1.923, 2.090 Hγ: 2.384 
T 111.394 8.022 4.383 4.275 Hγ: 1.211 
G 111.218 8.426 3.810, 

3.999 
  

E 119.788 7.931 4.258 1.786, 1.925  Hγ: 2.071, 2.150 
F 120.922 8.426 4.667 2.960, 3.009 Hδ: 7.185 
L 125.787 8.296 4.664 1.575 Hγ: 1.529, Hδ: 

0.886 
P   4.463 2.004, 2.258 Hγ: 1.863, Hδ: 

3.616, 3.741  
 I 121.300 8.154 4.099 1.783 Hγ: 1.166, Hδ: 

0.875 
Q 125.711 8.450 4.275 1.984, 1.213 Hγ: 2.371 
P   4.368 2.314, 2.021 Hγ: 1.908, Hδ: 

3.676, 3.811 
A 124.333 8.439 4.253 1.401  
Q 119.821 8.337 4.275 1.984, 2.123 Hγ: 2.371 
PGAM5 peptide, Ac-INVRKRNVESGEEELASKLD-NH2 
Residue NH HN Hα Hβ Others 
I 125.561 8.145 4.121 1.826 Hγ: 1.461, 1.196, 

Hδ: 0.867 
N 120.831 8.599 4.695 2.763, 2.873 Hδ: 6.901, 7.599 
V 120.437 7.962 4.077 2.082 Hγ: 0.912 
R 123.436 8.342 4.338 1.748, 1.824 Hγ: 1.624, Hδ: 

3.008 
K 122.556 8.393 4.342 1.743, 1.812 Hγ: 1.586, Hδ: 

1.627 
R 124.816 8.340 4.305 1.744, 1.825 Hγ: 1.626, Hδ: 

3.182, Hε: 7.249  
N 128.837 8.550 4.717 2.746, 2.831 Hδ: 6.928, 7.638 
V 120.166 8.133 4.123 2.113 Hγ: 0.924 
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E 121.718 8.548 4.318 1.956, 2.087 Hγ: 2.282 
S 116.273 8.328 4.442 3.869. 3.927  
G 111.198 8.484 3.971, 

4.012 
  

E 120.511 8.263 4.283 1.928, 2.054 Hγ: 2.247 
E 122.556 8.393 4.246 1.957, 2.033 Hγ: 2.233, 2.271 
E 121.693 8.564 4.233 1.960, 2.020 Hγ: 2.275 
La 123.053 8.224 4.285 1.592, 1.665 Hδ: 0.904, 0.955 
A 124.157 8.226 4.279 1.416  
S 114.277 8.133 4.397 3.862, 3.889  
K 123.147 8.198 4.286 1.782, 1.883 Hγ: 1.446, Hε: 

3.266 
La      
D 121.151 8.213 4.546 2.654  
a L15 and L19 have similar HN shifts. A set of ambiguous shifts for both residues is 
reported in the L15 row. 
p62 peptide, Ac-LSSKEVDPSTGELQSLQMPE-NH2

 

Residue NH HN Hα Hβ Others 
L 123.822 8.182 4.368 1.624 Hδ: 0.856, 0.898 
S 116.678 8.286 4.419 3.852, 3.877  
S 115.561 8.572 4.458 3.910, 3.945  
K 127.719 8.272 4.334 1.746, 1.840 Hγ: 1.423, Hε: 

3.155 
E 121.822 8.335 4.322 1.918, 2.044 Hγ: 2.255 
V 120.783 8.116 4.093 1.990 Hγ: 0.895 
D 126.005 8.481 4.878 2.552, 2.864  
P   4.435 2.034, 2.323 Hδ: 3.685, 3.827 
S 117.812 8.337 4.458 3.924, 3.990  
T 114.054 7.960 4.348 4.309 Hγ: 1.226 
G 110.677 8.323 3.931, 

3.995 
  

E 120.549 8.181 4.297 1.918, 2.041 Hγ: 2.220, 2.258 
L 122.936 8.337 4.324 1.659 Hγ: 1.579, Hδ: 

0.863 
Q 123.326 8.391 4.294 1.964, 2.104 Hγ: 2.372 
S 116.546 8.415 4.510 3.876, 3.911  
L 122.695 8.285 4.332 1.603, 1.655 Hδ: 0.882, 0.906 
Q 120.946 8.269 4.312 1.963, 2.073 Hγ: 2.348 
M 121.310 8.403 4.347  Hγ: 2.562, 2.635 
P   4.412 1.926 Hδ: 3.687, 3.812 
E 121.692 8.545 4.204 1.965, 2.031 Hγ: 2.292 
WTX peptide, Ac-SLEEPHSPETGEKVVAGEVN-NH2 
Residue NH HN Hα Hβ Others 
S 121.319 8.303 4.426 3.832, 3.859  
L 124.232 8.428 4.398 1.627 Hδ: 0.868, 0.911 
E 123.677 8.338 4.273 1.877, 2.016 Hγ: 2.267 
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E 121.578 8.298 4.253 1.889, 2.028 Hγ: 2.238 
P   4.380 1.992, 2.257 Hγ: 1.838, Hδ: 

3.680, 3.776 
H 119.526 8.506 4.671 3.148, 3.162 Hδ: 7.165 
S 119.102 8.430 4.291 3.832, 3.869  
P   4.433 2.026, 2.307 Hγ: 1.944, Hδ: 

3.757 
E 121.066 8.597 4.323 1.963, 2.084 Hγ: 2.299 
T 114.070 8.167 4.353 4.293 Hγ: 1.212 
G 111.053 8.377 3.988   
E 120.807 8.259 4.346 1.922, 2.026 Hγ: 2.224 
K 122.843 8.403 4.342 1.779 Hγ: 1.412, Hδ: 

1.742, Hε: 2.987 
V 122.843 8.207 4.091 2.019 Hγ: 0.885, 0.921 
V 125.563 8.337 4.104 2.027 Hγ: 0.922 
A 128.821 8.455 4.331 1.392  
G 108.444 8.350 3.948   
E na 8.109 4.286 1.793, 1.931 Hγ: 2.145, 2.233 
V 121.436 8.286 4.088 2.080 Hγ: 0.931 
N 122.584 8.531 4.762 2.747, 2.821 Hδ: 6.924, 7.602 
WTX pS286 peptide, Ac-SLEEPHpSPETGEKVVAGEVN-NH2 
Residue NH HN Hα Hβ Others 
S 120.426 8.262 4.429 3.831, 3.866  
L 123.907 8.423 4.375 1.627 Hδ: 0.860, 0.917 
E 123.341 8.319 4.267 1.916, 2.021 Hγ: 2.243 
E 120.465 8.265 4.301 1.895, 2.026 Hγ: 2.249 
P   4.535 2.013, 2.272 Hγ: 1.871, Hδ: 

3.677, 3.839 
H 118.983 8.501 4.688 3.194, 3.250 Hδ: 7.198, Hε: 

8.644 
pS 120.027 9.068 4.340 4.014, 4.080  
P   4.420 2.016, 2.292 Hγ: 1.899, Hδ: 

3.656, 3.843 
E 121.388 8.672 4.334 2.005, 2.086 Hγ: 2.321 
T 114.342 8.228 4.349 4.270 Hγ: 1.206 
G 110.618 8.410 3.983   
E 120.443 8.240 4.352 1.927 Hγ: 2.230 
K 122.448 8.358 4.328 1.750, 1.799 Hγ: 1.432, Hε: 

2.761 
V 122.419 8.190 4.088 2.022 Hγ: 0.903, 0.939 
V 125.197 8.320 4.086 2.084 Hγ: 0.931 
A 128.434 8.449 4.315 1.396  
G 108.126 8.333 3.944   
E na 8.073 4.243 1.792, 1.923 Hγ: 2.151 
V 121.073 8.269 4.105 2.041 Hγ: 0.932, 0.914 
N 122.276 8.515 4.688 2.761, 2.835 Hδ: 6.893, 7.575 
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FAC1 peptide, Ac-SAKAADDPENGERESHTPVS-NH2 
Residue NH HN Hα Hβ Others 
Sa na 8.289 4.425 3.841, 3.871  
Ab 126.315 8.408 4.313 1.403  
K 121.013 8.232 4.291 1.737, 1.811 Hγ: 1.435, Hδ: 

1.681 
A      
A      
D 118.438 8.173 4.556 2.591, 2.641  
D 121.669 8.054 4.853 2.549, 2.747  
P   4.383 2.025, 2.301 Hγ: 1.961, Hδ: 

3.799 
E 119.725 8.525 4.227 1.957, 2.063 Hγ: 2.233, 2.278 
N 118.715 8.199 4.712 2.796, 2.861 Hδ: 6.912, 7.675 
G 109.298 8.316 3.955, 

3.982 
  

E 120.685 8.252 4.296 1.954, 2.045 Hγ: 2.240, 2.268 
R 123.285 8.316 4.298 1.781, 1.859 Hγ: 1.639, Hδ: 

3.188, Hε: 7.178  
E 121.568 8.408 4.269 1.935, 2.009 Hγ: 2.243 
S      
H 118.816 8.095 4.664 3.429  
T 120.584 8.320 4.330 4.246 Hγ: 1.382 
P   4.462 2.049, 2.321 Hγ: 1.914, Hδ: 

3.719, 3.867 
V 121.694 8.304 4.120 2.113 Hγ: 0.968 
S      
a S1, S15 and S20 have similar HN and Hβ shifts. A set of ambiguous shifts for all 
three residues is reported in the S1 row.  
b A2, A4 and A5 have similar NH, HN and Hβ shifts. A set of ambiguous shifts for all 
three residues is reported in the A2 row.  
PALB2 peptide, Ac-HIKTHLDEETGEKTSITLDV-NH2 
Residue NH HN Hα Hβ Others 
H      
I 125.362 8.281 4.105 1.812 Hγ: 1.190, Hδ: 

0.899 
K 122.602 8.463 4.346 1.783, 1.863 Hγ: 1.467, Hδ: 

1.680 
T      
H      
L      
D      
E      
E      
T      
G 111.026 8.373 3.975   



152 

 

E 120.835 8.269 4.270 1.936, 2.055 Hγ: 2.263 
K      
T      
S      
I      
T      
L      
D      
V 120.188 8.018 4.125 2.164 Hγ: 0.935 
PTMA isoform 1 peptide, Ac-ANGNAENEENGEQEADNEVD-NH2 
Residue NH HN Hα Hβ Others 
A      
N      
G      
N      
A      
E      
N      
E      
E      
N      
G      
E      
Q      
E      
A      
D      
N      
E      
V 120.786 8.149 4.096 2.100 Hγ: 0.923 
D      
PTMA isoform 2 peptide, Ac-ANGNANEENGEQEADNEVD-NH2 
Residue NH HN Hα Hβ Others 
A      
N      
G      
N      
A      
N      
E      
E      
N      
G      
E      
Q      
E      
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A      
D      
N      
E      
V 120.727 8.144 4.073 2.092 Hγ: 0.928 
D      
NRF2 site 1 E78P peptide, Ac-FAQLQLDPETGEFLPIQPAQ-NH2 
Residue NH HN Hα Hβ Others 
F 126.184 8.286 4.541 2.954, 3.108 Hδ: 7.250 
A 125.466 8.363 4.264 1.328  
Q 119.515 8.313 4.273 1.967, 2.095 Hγ: 2.358 
L 123.128 8.247 4.499 1.614, 1.835 Hγ: 1.426, Hδ: 

0.780 
Q 121.109 8.820 4.506 1.981, 2.062 Hγ: 2.327 
L 124.962 8.492 4.198 1.353 Hγ: 1.268, Hδ: 

0.624, 0.545 
D 125.926 8.769 4.850 2.533, 3.025  
P   4.381 2.019, 2.311 Hγ: 1.918, Hδ: 

3.674, 3.830 
E 117.769 8.444 4.273 2.117 Hγ: 2.226, 2.299 
T 108.789 7.855 4.424 4.303 Hγ: 1.197 
G 111.154 8.508 3.732. 

4.047 
  

E 119.124 7.817 4.286 1.787, 1.986 Hγ: 2.116, 2.205 
F 120.586 8.625 4.716 2.932, 2.971 Hδ: 7.159 
L 125.899 8.508 4.699  Hγ: 1.560, 1.601, 

Hδ: 0.922 
P   4.277 2.042, 2.309 Hδ: 3.889, 4.018 
I 121.789 8.284 4.088 1.770 Hγ: 1.159, Hδ: 

0.873 
Q 126.173 8.599 4.607 1.920, 2.096 Hγ: 2.400 
P   4.511 2.273 Hγ: 1.856, Hδ: 

3.653, 3.798 
A 124.693 8.570 4.266 1.401  
Q 120.176 8.469 4.277 1.987, 2.123 Hγ: 2.383 
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Figure S4.3 Assigned 1H-15N HSQC spectra of the peptides and NOESY 

connections. 
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The NMR experiments were performed at 25ºC with a 3 mM peptide sample in 50 

mM sodium phosphate buffer at pH 7, 100 mM NaCl, 1 mM DTT and trace DSS 

for chemical shift referencing. Lines mapped onto the peptide sequences are used to 

illustrate any NOESY cross-peaks between protons > 2 residues apart. 

 

 Microsecond atomistic MD simulations were performed on the Kelch domain 

interaction peptides (Table 4.1) to investigate their free-state conformational propensities.   

To compare to the NMR result obtained, the 1/r6 averaged  distances were 

calculated (Figure 4.4). The results clearly show that the regions of compactness 

identified in the NOESY experiments were also found in MD simulations of the peptide 

in the free states (The 1/r6 averaged distance matrices and final structures from the 

simulations are shown in Figure S4.4). Secondary structure assignments throughout the 

MD trajectories were also conducted (Figure S4.5). The NRF2 site 1, PGAM5, p62, 

FAC1, PALB2 and IKKβ peptides showed evidence of cross-strand contacts, which 

propagated away from their turn regions, and also had final structures with hairpin-like 

conformations (Figures 4.4 and S4.4). Several of these peptides had intra-turn contacts. 

Specifically, contacts between residues in position i, i+2 and i+3 were frequently 

observed (Figure S4.4). The NRF2 site 1 peptide also had contacts between hydrophobic 

residues on adjacent strands (Figure S4.4). The PGAM5 peptide showed evidence of 

cross-strand contacts from the N77 to E82 and E84 sidechains (Figures S4.4 and 4.1A). 

There was also indication of cross-strand contacts between the oppositely charged K344 

and E352 sidechains of the p62 peptide (Figure S4.4 and 4.1A). The WTX peptide 

adopted a turn/bend conformation at the expected location, and had i to i+2 contacts, but 

did not have cross-strand contacts indicative of a hairpin (Figure S4.4). The WTX pS286 

peptide had a turn at the expected location, and some evidence of cross-strand contacts, 

slightly offset from the turn location (Figure S4.4). In this peptide, obvious contacts 

between the pS286 sidechain phosphate group and a lysine residue on the opposite side of 

the turn were observed (Figure S4.4 and 4.1A). In our previous MD simulations, we 

found that phosphorylation of T80 in an NRF2 peptide severely inhibited formation of 

the expected β-hairpin structure (39). In the current MD simulations of WTX, it appeared 

! 

C"

i
#C"
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that S286 phosphorylation may actually enhance free state structure formation. This is 

supported by our ITC data (Table 4.2), which revealed that the WTX pS286 peptide had 

the smallest entropy change upon binding. However, this peptide interacted with the 

Kelch domain the least favorably enthalpically, which suggests that the peptide 

conformation induced by phosphorylation is not ideal for binding. Indeed, our MD 

simulations show that the β-turn adopted by this peptide is distorted due to interactions 

between the pS286 residue and a lysine on the opposite side of the turn (Figure S4.4).  

Both PTMA peptides did not show clear evidence of turn or hairpin formation in the 

expected location; however, the secondary structure analysis (Figure S4.5) showed these 

features occurred transiently throughout the trajectories. Despite the site 2-type peptide 

trajectories being extended to 2 µs, their ‘WXQD’ motifs rarely formed ‘turn’ structures 

that resembled the NRF2 site 2 bound state structure, or the BCL2 free state structure 

(data not shown). These trajectories were not analyzed further.  

 

Figure 4.4 Cαi-Cαi+3 1/r6 averaged distances from the MD simulations. 
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The 1/r6 averaged distances were calculated using the g_rmsdist tool in 

GROMACS 4.5 (86) over the last 0.5 µs of the trajectories. 
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Figure S4.4 1/r6 averaged distances and final structures from the MD simulations. 

The NMR averaged 1/r6 distances between all atoms pairs (atom index) were 
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calculated using the g_rmsdist tool in GROMACS 4.5(86) over the last 0.5 µs of 

the trajectories. Final (t=1.0 µs) structures of the peptides rendered with VMD 

(94). The potential turn forming regions (Figure 4.1A) are boxed and possible turn 

stabilizing contacts are indicated. 
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Figure S4.5 Evolution of secondary structures throughout the MD simulations. 

The DSSP algorithm (98) was used for secondary structure assignments: coil 
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(white), β-sheet (red), β-bridge (black), bend (green), turn (yellow), α-helix (blue) 

and 310 helix (grey). 

 

The NMR and MD results suggest that a larger fraction of hydrophobic residues 

in the NRF2 peptide may act to stabilize the free state peptide conformation, lowering the 

entropy difference between the free and bound states, leading to higher binding affinity. 

While the peptides from the other Kelch domain interacting proteins lack comparable 

hydrophobic content, our NMR and MD data suggest that like NRF2, interactions 

between residues within their β-turns are likely to play important roles in stabilizing their 

free states. This idea is supported by various studies, which together clearly demonstrate 

that mutating residues within and surrounding the binding regions to amino acids with 

different characteristics usually decrease Kelch domain binding (45, 48, 50, 52). In 

addition to intra-turn contacts, we found that interactions between oppositely charged 

sidechains surrounding the turn might act to stabilize the free state conformations of the 

PGAM5, p62, WTX pS286 and possibly some of the other peptides (Figure S4.4). 

Overall, the analysis of the free states reveal that several, if not all, of the Kelch domain 

binding peptides analyzed in this study contain β-turn resembling LMs at their binding 

sites. These structures likely have some resemblance to their bound state conformations. 

It is anticipated that preformed structures are important features in regulating the binding 

affinities and other thermodynamic parameters of the different interactions. 

 

A higher affinity Kelch domain interacting peptide 

 The findings from our analysis of the site 1-type proteins were used to create a 

peptide with a higher affinity for the Kelch domain than any of the natural peptides 

(identified to date). This peptide aided our interpretation and understanding of the 

thermodynamics of interaction with the Kelch domain and, possibly even more 

importantly, may be a potential therapeutic agent (74). Because the data presented here 

and in our previous work (40) points to a positive correlation between residual structure, 
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resembling the bound state conformation, in the free state and increased binding affinity, 

our peptide design aimed to further define the free state structure of the NRF2 site 1 

peptide. By further restricting the bound state like conformation of this peptide, the 

entropic cost of binding may be reduced, potentially increasing binding affinity. 

Therefore, our attempt at designing a higher affinity peptide focused on reducing free 

state entropy.  

 NMR and MD data indicated that β-turn formation at the Kelch domain binding 

sites is a common feature of the various peptides, therefore, we aimed to increase the turn 

propensity of this region. The likely sites of turn formation in the site 1-type binders are 

the ‘DEET’-like regions (Figure 4.1A) (40). For the site 2-type binders, the β-turn 

forming region is not as firmly established, however, the residues ‘WRQD’ appear to 

adopt a turn conformation in the bound state (59) (Figure 4.2). Using a table of turn 

potentials (75), we calculated the residue-specific and overall turn potentials of the 

‘DEET’-like regions of the various proteins (Table 4.3). The protein with the highest turn 

potential was p62, followed by FAC1, WTX, NRF2 site 1/PALB2, PTMA, IKKβ and 

PGAM5 (Table 4.3). The high turn potentials of p62, FAC1 and WTX result primarily 

from their sequences containing proline at position i+1 (Table 4.3). The site 2-type Kelch 

domain interacting proteins had lower turn propensities than the site 1 binders and NRF2 

site 2 had a slightly lower turn potential than BCL2 (Table 4.3).  

Table 4.3 Turn potentials of the Kelch domain binding proteinsa. 
Protein i i+1 i+2 i+3 Total 
NRF2 site 1 D(1.56) E(1.35) E(0.92) T(1.20) 5.03 
NRF2 site 1 E78P D(1.56) P(2.45) E(0.92) T(1.20) 6.13 
PGAM5 N(1.54) V(0.70) E(0.92) S(1.03) 4.19 
p62 D(1.56) P(2.45) S(1.06) T(1.20) 6.27 
WTX S(1.29) P(2.45) E(0.92) T(1.20) 5.86 
FAC1 D(1.56) P(2.45) E(0.92) N(1.06) 5.99 
PALB2 D(1.56) E(1.35) E(0.92) T(1.20) 5.03 
PTMA  N(1.54) E(1.35) E(0.92) N(1.06) 4.87 
IKKβ N(1.54) Q(0.94) E(0.92) T(1.20) 4.60 
NRF2 site 2 W(0.62) R(0.93) Q(0.92) D(0.99) 3.46 
BCL2 W(0.62) I(0.61) Q(0.92) D(0.99) 3.14 

 a Turn potentials are from (75). 
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 Based upon the turn potential analysis, we made a single point mutation, E78P, to 

the natural, 20-mer NRF2 site 1 peptide (Figure 4.1A) and used ITC to assess its binding 

affinity to the Kelch domain. This mutation increases the turn potential to 6.13 (Table 

4.3), possibly enriching the population of molecules with defined structure in solution 

(75). Our ITC measurements reveal that the E78P mutation indeed increases the binding 

affinity of the peptide (6.90 ± 1.07 nM) compared to the natural sequence by 3-4 fold 

(Tables 4.2 and 4.4). This increase in binding affinity arises primarily due to a decreased 

entropic cost of binding (Tables 4.2 and 4.4). The T∆S value is increased by ~1 kcal/mol, 

while the ∆H increased marginally (0.2 kcal/mol) compared to the natural peptide (Tables 

4.2 and 4.4). The ITC thermogram for this measurement and an additional set of 

thermodynamic parameters from a duplicate experiment are available (Figure S4.6 and 

Table S4.4). 

 

Table 4.4 Thermodynamic parameters for the binding of the E78P to the human 
Kelch domaina 
Protein nb Kd

c 
(10-9 M) 

∆Hc 
(kcal/mol) 

T∆Sc 
(kcal/mol) 

∆Gc 
(kcal/mol) 

NRF2 site 1 E78P 0.994  6.90 ± 1.07 -16.76 ± 0.05 -5.635 -11.12 ± 0.03 
 a The peptide sequences are shown in Table 4.1. 
 b Binding stoichiometry. 

c Kd is the dissociation constant. ∆H, ∆S and ∆G are the change in enthalpy, entropy 
and Gibbs free energy upon binding at T=298.15 K, respectively. 
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Figure S4.6 ITC thermogram for the NRF2 site 1 E78P peptide. 

Filtered and degassed aliquots of ~40 µM Kelch containing 50 mM sodium 

phosphate, 100 mM NaCl, 1 mM DTT at pH 7 was added to the 1.4 mL sample cell 

and subjected to stepwise titration with 5 µL aliquots of  ~500 µM peptide. The 

equilibration period between each injection was 300 seconds. The association 

constant (Ka), molar binding stoichiometry (n) and the binding enthalpy (∆H), 

entropy (∆S) and Gibbs free energy (∆G) were determined by fitting the binding 

isotherm to a single-binding-site model with Origin7 software (MicroCal). The heat 

changes after saturation were averaged and used to correct for the heats of dilution.  

All ITC experiments were performed in duplicate. ITC experiments were carried 

out on a VP-ITC instrument (MicroCal) at 25ºC. The protein and peptide samples 

were dialyzed into a buffer containing 50 mM sodium phosphate, 100 mM NaCl, 1 

mM DTT at pH 7 and degassed before the experiments. 
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Table S4.4: Duplicate set of NRF2 E78P peptide to the human Kelch domain 
thermodynamic binding parameters 

Protein nb Kd
c 

(10-9 M) 
∆Hc 
(kcal/mol) 

T∆Sc 
(kcal/mol) 

∆Gc 
(kcal/mol) 

NRF2 site 1 E78P 1.04 5.95 ± 0.24 -16.65 ± 0.064 -5.367 - 11.28 ± 0.04  
 a The peptide sequences are shown in Table 4.1. 
 b Binding stoichiometry. 

c Kd is the dissociation constant. ∆H, ∆S and ∆G are the change in enthalpy, entropy  
and Gibbs free energy upon binding at T=298.15 K, respectively. 

 

 NMR experiments and MD simulations were used to examine the free state 

structures of the E78P peptide. The chemical shifts assignments are available (Table 

S4.3). The assigned 1H-15N HSQC spectrum, NOESY contacts between protons >2 

residues apart, 1/r6 averaged distances, extracted from the MD simulation, and final MD 

structures are shown in Figure 4.5. The data confirms that the E78P peptide is able to 

adopt a hairpin structure with similar cross-strand contacts as the natural peptide (Figure 

4.5). Overall, these findings provide new insights into the interplay between entropy and 

enthalpy in regulating interactions between IDPs and targets. Such information is useful 

for understanding how LMs can be regulated in IDPs in general, and provides guidance 

for making additional modifications the LM region of NRF2 in order to further increase 

its Kelch domain binding affinity.  
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Figure 4.5 Assigned 1H-15N HSQC spectrum, NOESY connections, 1/r6 averaged 

distances and final structure from the MD simulations of the E78P peptide. 

The NMR experiments were performed at 10ºC with a 3 mM peptide sample in 50 

mM sodium phosphate pH 7, 100 mM NaCl, 1 mM DTT and trace DSS for 

chemical shift referencing. Lines mapped onto the peptide sequences are used to 

illustrate any NOESY cross-peaks between protons > 2 residues apart. The 

averaged 1/r6 distances were calculated using the g_rmsdist tool in GROMACS 

4.5 (86) over the last 0.5 µs of the trajectory. The final (t=1.0 µs) structure of the 

peptide was rendered with VMD (94). 

 

 The development of higher affinity Kelch domain ligands, which can compete with 

NRF2, is an area of active research. Several NRF2 inducers (eg. bardoxolone methyl) are 

currently in development or clinical trials for the treatment of chronic kidney disease, 
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diabetes, cancer prevention, multiple sclerosis and oxidative tissue damage (76-80). 

However, to our knowledge, none of these compounds disrupt the NRF2-Kelch domain 

interaction directly. Instead, data suggests that these triterpenoids prevent NRF2 

ubiquitination by reacting with specific thiol groups on the surface of Keap1 (76). 

Interestingly, these NRF2 inducers may actually promote interaction of NRF2 with 

Keap1 (76). While compounds such as bardoxolone methyl have shown positive clinical 

results, it is conceivable that such electrophilic compounds could covalently bind to 

cysteines of off-target proteins. Compounds, such as our E78P peptide, which directly 

and specifically bind to the NRF2 binding site on the Kelch domain through non-covalent 

interactions can be an alternative therapeutic agents. Head-to-tail cyclization or 

attachment of our E78P peptide to a cell-penetration peptide may further improve this 

peptide as a drug candidate (81).  

 

Binding affinity correlations 

 Because all experiments and simulations were conducted with the same conditions 

for each peptide, we were able to assess correlations between the affinities of binding and 

various physical properties (Figure 4.6). We found that there was a good correlation (r2 = 

0.77) between Kyte Doolittle hydropathy index (higher values indicates more 

hydrophobic content in the sequence) and the free energy difference (ΔG) of binding 

(Figure 4.6A). The two main outliers in this correlation were the p62 and WTX pS286 

peptides. For p62, this deviation is probably due to the lack of an E in position i+2. If an 

E was present at this position, the 6-mer motif of p62 gets converted to that of our NRF2 

E78P peptide and would be expected to increase its binding affinity substantially to a 

level comparable the Tier 2 binders. The overestimated affinity of the WTX pS286 

peptide was understandable considering the Kyte Doolittle scale does not include values 

for phosphorylated amino acids. Although phosphoserine was assigned the maximum 

negative value on the scale (-4.5), equivalent to arginine, a more negative value is 

probably appropriate. 
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Figure 4.6 Correlations between ∆G’s of binding and hydropathy, disorderness, and 

circular variances. 

∆G values were determined by ITC (Table 4.2) and plotted against Kyte Doolittle 

hydropathy indexes (A), average circular variances (B), combined circular 

variances and Kyte Doolittle indexes (C), and PONDR-FIT disorder predictions 

(D) of the peptides (Figure 4.1). Kyte Doolittle hydropathy index values were 

obtained from (95). For the WTX pS286 peptide, phosphoserine was assigned the 

maximum hydrophilic value on the scale (-4.5). The circular variances were 

calculated over the last 0.5 µs of the MD trajectories, using the method described 

by (96). Disorder predictions were performed on the full-length sequences and the 

average values for the segments in Figure 4.1A were plotted. For the WTX pS286 

peptide, phosphoserine was changed to glutamic acid. 
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 Circular variance values, a measure of backbone dynamics, extracted from the MD 

simulations, were also well correlated (r2 = 0.75) with the ΔG of binding (Figure 4.6B). 

The trend clearly illustrates that lower free state dynamics corresponds to a higher 

binding affinity. By combining hydropathy indices with circular variances (Figure 4.6C), 

the correlation was moderately improved (r2 = 0.81). The binding affinities were 

correlated to a lesser extent (r2 = 0.50) to the PONDR-FIT disorder tendencies (Figure 

4.6D). The major outlier here was PGAM5, with an average disorder probability of 0.36 

for the 20-mer region of its sequence (Figure 4.6D). However, another disorder predictor, 

metaPrDOS (67) yielded a disorder probability of 0.59, which improves the correlation 

considerably r2 = 0.70 (data not shown). 

 By establishing important parameters that are well correlated with the ΔG’s of 

binding, it may be possible to identify novel LMs capable of binding Kelch and to assess 

their possible interaction strengths. One potential partner is the DNA replication licensing 

factor MCM3, which was found to have a physical interaction (by two hybrid methods) 

with Keap1 in Fruit fly (6). Although the function of this interaction is not known and 

experimental studies are required to confirm this interaction in humans, the human 

MCM3 sequence does harbor a site 1 type sequence, 
379TAAVTTDQETGERRLEAGAM398. This peptide has a hydropathy index of -13 and 

an MD simulation of this sequence did indeed form a hairpin conformation at the 

expected location and had an average C.V. value of 0.18. These diagnostics place it in the 

realm of the Tier 2 binders, but this needs to be experimentally verified. 

 

4.6 Conclusions 

Our findings suggest that intrinsic disorder coupled with a preformed β-turn 

resembling LM located at the binding site is a common feature among many of the Kelch 

domain interacting proteins. The LMs are differentially stabilized by intra-turn contacts 

and interactions between residues in close proximity to the binding region. The extent of 

turn stabilization is likely an important factor in modulating binding affinity. We found 

that the hydropathic indices and circular variance measurements of the peptides were well 



170 

 

correlated with the measured free energy difference of binding. These parameters may be 

useful for prediction the affinities of other possible Kelch domain interactions. Based on 

this knowledge, we have selectively mutated the turn region of the NRF2 site 1 peptide 

(E78P) to increase its binding affinity. The increase in affinity resulted from a lower 

entropic cost of binding, possibly due to a reduction in the conformational freedom of the 

free state. Importantly, this modified higher affinity peptide may have potential 

therapeutic applications. This work illustrates a simple, yet effective methodology for 

structurally characterizing LMs in the context of target binding. The results should also 

be useful for determining the biological roles of the various Kelch domain interactions 

and development of specific NRF2 inducers. 
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5.1 Abstract 

Keap1 is a multi-domain protein that functions as an inhibitor of the transcription 

factor Nrf2 in the cellular response to oxidative stress. Under normal conditions, Keap1 

binds to Nrf2 via its C-terminal Kelch domain and the interaction ultimately leads to the 

ubiquitin-dependent degradation of Nrf2. It has been proposed that designing molecules 

to selectively disrupt the Keap1-Nrf2 interaction can be a potential therapeutic approach 

for enhancing the expression of cytoprotective genes. Here, we reported the 1H, 13C, and 
15N backbone chemical shift assignments of the Kelch domain of mouse Keap1. Further, 

unlabeled Nrf2 peptide containing the Kelch-binding motif was added to the 15N-labeled 

Kelch sample. 1H-15N HSQC spectra of the protein in the absence and presence of an 

equimolar concentration of the Nrf2 peptide were presented. A significant number of 

resonance signals were shifted upon addition of the peptide, confirming the protein-

peptide interaction. The results here will not just facilitate the further studies of the 

binding between Keap1 and Nrf2, it will also be valuable for probing interactions 

between the Kelch domain and small molecules, as well as a growing list of protein 

targets that have been identified recently. 

 

Keywords 
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5.2 Biological context 

Keap1 (Kelch-like ECH-associated Protein 1) is a 70-kDa protein that is rich in 

cysteine. It functions as the repressor of Nrf2 (nuclear factor E2-related factor 2), the key 

transcription factor that coordinates the cellular responses to oxidative stress. Keap1 is 

composed of three domains (1). The N-terminal BTB (Broad-Complex, Tramtrack and 

Bric-a-Brac) domain mediates the protein dimerization and is also responsible for the 

binding to the Cul3-dependent E3 ubiquitin ligase complex (1). The BTB domain is 

linked to the C-terminal Kelch domain by the intervening region (IVR), where cysteines 

that are pivotal for the Keap1 functions as chemical sensor are located (1). The C-

terminal Kelch domain is responsible for target recognition. It directly interacts with the 

ETGE and DLG motifs present in the N-terminal Neh2 domain of Nrf2 (2-4). Under 

unstressed conditions, Keap1 binds to Nrf2 and targets this transcription factor for 

degradation (5).  

The 32-kDa Kelch domain adopts a six-bladed β-propeller conformation and the 

structures in complex with peptides derived from Nrf2 that contain the binding motifs 

have been determined by X-ray crystallography (6-8). Due to the critical roles Keap1 and 

Nrf2 play in the oxidative stress response mechanism, disrupting their interaction has 

been proposed as a potential strategy to enhance the expression of cytoprotective genes. 

The backbone resonance assignments obtained here will facilitate the screening of 

inhibitors that can disrupt the Keap1-Nrf2 interaction. In addition to Nrf2, several novel 

targets of the Kelch domain of Keap1 have been identified recently. These include FAC1 

(9), PGAM5 (10), WTX (11, 12), prothymosin α (13), p62 (14) and PALB2 (15). The 

assignments reported here will also serve as important starting points for studying the 

interaction of Keap1 with these proteins. 

 

5.3 Methods and experiments 

Sample preparation 
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The mouse Keap1 cDNA (GenBank# BC055732) was purchased from the 

American Type Culture Collection (ATCC) and the Kelch domain (residues 324-612) 

was cloned into the expression vector pDEST17 (Invitrogen). The TEV cleavage 

recognition sequence, ‘ENLYFQG’, was introduced between the histidine tag and insert. 

This vector was transformed into E. coli BL21(DE3). 15N, 13C and 2H labeled protein was 

produced by growing E. coli in deuterated M9 media. Cells adapted in 70% D2O were 

used to inoculate 1L of M9 prepared in 100% D2O. The cells were then grown at 37ºC 

and overexpression was induced at an OD600 of 0.6 with 0.5 mM IPTG. After a 60-hour 

induction, the cells were centrifuged and the pellets were frozen. The N-terminally His-

tagged protein was purified by affinity chromatography using Ni Sepharose™ 6 Fast 

Flow beads (Amersham Biosciences). The tag was cleaved by incubation with His-tagged 

tobacco etch virus (TEV) protease overnight at 25 ºC and the protein product was 

purified by passing the mixture through Ni Sepharose™ 6 Fast Flow beads (Amersham 

Biosciences). For NMR experiments, the purified protein was dialyzed against 50 mM 

sodium phosphate at pH 7 containing 50 mM NaCl and 1 mM DTT. The samples were 

then concentrated to ~0.3 mM. All samples contained 10% D2O and 1 mM 2,2-dimethyl-

2-sila-pentane-5-sulfonic acid (DSS) as 1H and 13C chemical shift references. 

 

Sequential assignment experiments 

NMR experiments for the backbone resonance assignment were conducted at 

25ºC on Varian INOVA 800 MHz (NANUC) and Bruker Avance 800 MHz (Singapore) 

spectrometers equipped with cryogenic probes. Sequential assignments were obtained 

from 1H-15N TROSY-HSQC, HNCA, HN(CO)CA, HNCACB, HN(CO)CACB and 15N-

NOESY-HSQC spectra. The data was processed with NMRPipe (16) and analyzed using 

CARA (17). 

  

Ligand binding experiment 
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 To demonstrate the binding of the Kelch domain to a mouse Nrf2 peptide (Ac-
72AQFQLDEETGEFLP85-NH2; ordered from NEOpeptide), 1H-15N HSQC spectra of 
15N-labeled Kelch domain (~ 200 µM) were collected on a Varian Inova 600 MHz 

spectrometer with cryogenic probe (UWO Biomolecular NMR Facility) at 25ºC in the 

absence and presence of equimolar concentration of the Nrf2 peptide. 

 

5.4 Assignments and data deposition 

The 1H-15N TROSY-HSQC of the Kelch domain of Keap1 (Figure 5.1a) had well 

dispersed peaks for a protein of this size. We were able to assign 91.3% of the 1HN and 
15N resonances of non-proline residues, 90.7% of all 13Cα and 90% all 13Cβ resonances. 

Repetitive sequences of the β-propeller structure (Figure 5.1b) made it difficult to obtain 

a higher percentage of resonance assignments. The 1H, 15N and 13C α/β chemical shifts of 

the backbone resonances have been deposited in the BioMagResBank 

(http://www.bmrb.wisc.edu), under BMRB accession number 18353.  
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Figure 5.1 1H-15N TROSY-HSQC spectrum and backbone resonance assignment of 

the 2H/13C/15N labeled Kelch domain of mouse Keap1. 
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a 1H-15N TROSY-HSQC spectrum and backbone resonance assignment of the 
2H/13C/15N labeled Kelch domain of mouse Keap1. The figure was generated 

using Sparky (21). b Protein sequence of the Kelch domain with unassigned 

resonances colored red and regions with high sequence identities boxed. The 

starting ‘G’ was a non-native residue from the TEV recognition sequence that 

remained after cleavage. 

 

Figure 5.2 shows the residue-specific secondary structure propensity (SSP) scores 

determined using the program SSP on the basis of the assigned 13C α/β chemical shifts 

(18). The result strongly indicates that the protein has an all-β fold (Figure 5.2). This is in 

good agreement with the crystal structure of the Kelch domain (PDB id: 1X2J), which 

shows that the protein adopts a six-bladed β-propeller conformation (7). The SSP scores 

we obtained here are also consistent with the DSSP analysis (19) and the secondary 

structure plot (20) of the crystal structure (7).  
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Figure 5.2 Secondary structure propensity (SSP) scores and DSSP analysis of the 

mouse Kelch domain of Keap1. 

SSP scores were calculated based upon the 13C α/β chemical shifts (18). The 

crystal structure of the mouse Kelch domain (PDB id: 1X2J) (7) was used for the 

DSSP analysis (19) and generation of the secondary structure cartoon diagram 

(20). 

 

The overlay of the 1H-15N HSQC spectra of the Kelch domain in the absence and 

presence of an equimolar concentration of the 14-mer Nrf2 peptide is shown in Figure 

5.3a. A significant number of resonance signals are shifted upon addition of the peptide 

(Figure 3a). To quantify the magnitude of peak shifts, combined chemical shift changes 

(Δω = |Δ15N| + |Δ1HN|) were calculated, where |Δ15N| + |Δ1HN| are the absolute values of 

resonance frequency change (in Hz) in the 15N and 1H dimensions, respectively. Figure 

5.3b shows that many of the traceable assigned residues with Δω > 50 Hz (in descending 
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order: G378, N504, G364, G477, G600, G570, G571, G417, G524, G379 and S431) are 

residues that comprise, or are in close proximity, to the binding interface as identified in 

the crystal structure (7). 

 

Figure 5.3 Overlay of 1H-15N HSQC spectra in the absence (black) and presence 

(pink) of an equimolar concentration of the Nrf2 

a Overlay of 1H-15N HSQC spectra in the absence (black) and presence (pink) of 

an equimolar concentration of the Nrf2 peptide (Ac-72AQFQLDEETGEFLP85-
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NH2). b Crystal structure of the mouse Kelch domain of Keap1 (grey) in complex 

with an Nrf2 peptide (red) (PDB id: 1X2R) (7). Residues with traceable assigned 

resonances are colored based on their combined absolute proton and nitrogen 

resonance frequency changes (Hz) upon ligand binding (yellow <25 Hz, orange 

25-50 Hz and pink >50 Hz). 
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6.1 Abstract 

Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such 

crowded environments, proteins are expected to behave differently than in vitro. It has 

been shown that the stability and the folding rate of a globular protein can be altered by 

the excluded volume effect produced by a high density of macromolecules. However, 

macromolecular crowding effects on intrinsically disordered proteins (IDPs) are less 

explored. These proteins can be extremely dynamic and potentially sample a wide 

ensemble of conformations under non-denaturing conditions. The dynamic properties of 

IDPs are intimately related to the timescale of conformational exchange within the 

ensemble, which govern target recognition and how these proteins function. In this work, 

we investigated the macromolecular crowding effects on the dynamics of several IDPs by 

measuring the NMR spin relaxation parameters of three disordered proteins (ProTα, TC1, 

and α-synuclein) with different extents of residual structures. To aid the interpretation of 

experimental results, we also performed an MD simulation of ProTα. Based on the MD 

analysis, a simple model to correlate the observed changes in relaxation rates to the 

alteration in protein motions under crowding conditions was proposed. Our results show 

that 1) IDPs remain at least partially disordered despite the presence of high 

concentration of other macromolecules, 2) the crowded environment has differential 

effects on the conformational propensity of distinct regions of an IDP, which may lead to 

selective stabilization of certain target-binding motifs, and 3) the segmental motions of 

IDPs on the nanosecond timescale are retained under crowded conditions. These findings 

strongly suggest that IDPs function as dynamic structural ensembles in cellular 

environments. 
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6.2 Introduction 

 Macromolecular crowding and confinement can have significant impacts on the 

behaviors of proteins in cellular environments. Inside of cells, the concentration of 

macromolecules can reach up to 400 g/L (1, 2). The cumulative excluded volume from all 

macromolecules inside of cells is commonly referred to as macromolecular crowding (3, 

4). The large volume occupied by macromolecules in the cellular environment exerts 

nonspecific forces on surrounding molecules (3). It is well documented that these forces 

can have significant effects on the behaviors of proteins (5-7).  

 Experimental studies have demonstrated that molecular crowding can affect protein 

structure and function. For example, at low pH, cytochrome c adopts an unfolded form. 

When the crowding agent dextran is added to the sample, the protein transitions into a 

near-native molten globule state (8). Crowding has also been shown to enhance the 

activity of phosphoglycerate kinase (PGK) in vitro. At a mild concentration of Ficoll 70 

(100 g/L), the enzymatic activity of PGK was found to increase by more than 10 fold 

(after the viscosity effect was taken into account), possibility due to the large-scale of 

conformational changes induced by the crowders (9). In another study, Stagg et al. (10) 

investigated effects of crowding on the structure and stability of both the native and 

denatured states of Flavodoxin. Interestingly, their experimental and computer simulation 

results indicate that the presence of a high concentration of Ficoll 70 in solution increased 

the thermal stability and secondary structure content of the native-state ensemble, but had 

relatively minor effects on the denatured state (10). 

 The crowded environment in cells also alters the diffusional behavior of proteins, 

and thus their rates of folding, association with other molecules and intracellular transport 

(11, 12). A recent work by Leduc et al. (13) suggested that different motor proteins, such 

as kinesins, process distinct molecular properties in order to operate effectively in the 

crowded cellular environments. Macromolecular crowding has also been proposed to be 

one of the possible factors that regulate the phosphorylation of ERK kinase in cells. Aoki 

et al. (14) demonstrated that under crowded conditions, the phosphorylation of ERK 

could switch from the distributive to processive mode. Further, experimental and 

molecular simulation studies suggested that crowding plays a key role in human diseases 
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that are related to protein aggregation and fibril formation (15-17). For instance, the 

amyloid formation of human and bovine prion proteins are significantly enhanced even at 

mild concentration (150-200 g/L) of Ficoll 70. Intriguingly, the amyloid formation of 

rabbit prion protein is inhibited by crowding agents (17, 18).  

 The effects of macromolecular crowding on the structure and dynamics of IDPs, on 

the other hand, are less explored. These proteins lack stable tertiary structures and can be 

very flexible under non-denaturing conditions. The functions of IDPs are intimately 

related to their dynamics (19). It has been proposed that proteins with disordered regions 

have larger capture radius for targets, therefore, enhancing the binding rates by the so-

called “fly-casting” mechanism (20). Flexibility of IDPs also governs the affinity of 

target recognition. The high entropic cost of disorder-to-order transition upon binding 

needs to be compensated by specific interactions formed in the interface with target. 

Therefore, IDPs frequently associate with binding partners through low affinity but 

highly specific interactions, which are important for their functions in signal transduction 

and cell cycle control (21, 22). Another important link between protein flexibility and 

function is the rate of inter-conversion between conformers. An IDP exists as an 

ensemble of conformers in equilibrium (23-25). Different structures in the ensemble can 

participate in the interactions with distinct targets; therefore, the rate of exchange 

between conformers can have significant impact on the protein function (26, 27). Further, 

recent studies show that some IDPs employ multiple linear motifs to engage in a dynamic 

equilibrium with a target, resulting in ultra-sensitivity of binding (28-30). Undoubtedly, 

protein flexibility plays a critical role in this polyvalent mode of binding (29).  

 There are several studies of macromolecular crowding effects on the structure of 

IDPs. The results, however, are not conclusive. For instance, FlgM is disordered in dilute 

buffer solutions, but gains structure in its C-terminal half when studied in cells or in 

solutions with high concentration of glucose (31). On the other hand, Flaugh and Lumb 

reported that neither the disordered C-terminal activation domain of c-Fos nor the kinase-

inhibition domain of p27Kip1 undergo any significantly conformational change in the 

presence of dextran or Ficoll (32). By using small-angle neutron scattering techniques, 

Johansen et al. (33) demonstrated that the disordered N protein of bacteriophage λ adopts 
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more compact conformations even in the presence of relatively low concentration of 

crowding agents (~65 g/L of BPTI protein). A recent work by Tompa and co-worker 

(34), however, shows that molecular crowding caused only minor structural changes to 

three IDPs (α-casein, MAP2c and p21Cip1). The authors suggested that retaining 

dynamics under crowded conditions is a functional requirement of IDPs. 

 Further experimental studies of the macromolecular crowding effects on IDPs are 

important for increasing our understanding of how these proteins behave in cellular 

environments. These studies will also facilitate the development of computational models 

that can be used to explain and predict the behaviors these proteins under crowded 

conditions (5, 34, 35). We focus on assessing the effects of macromolecular crowding on 

the dynamics of IDPs in residue-specific manner using NMR spin relaxation experiments. 

Three IDPs with different extents of residual structure under dilute buffer conditions were 

studied. Further, by using one of the IDPs (ProTα) as a representative case, based on an 

MD simulation, we proposed a model to correlate the observed changes in relaxation 

rates to the possible alteration in protein motions under crowding conditions. ProTα is a 

ubiquitously expressed, highly acidic IDP that is involved in multiple biological functions 

(36-38). Our recent studies demonstrated that ProTα is largely disordered with minimal 

residual structure present under non-denaturing conditions (39, 40). Although ProTα 

adopts an extended structure, it can convert to more compact conformations in the 

presence of zinc ions (40). Another IDP used in this study is Thyroid Cancer 1 (TC-1), 

which was first found to be overexpressed in thyroid cancer (41, 42). TC-1 is a basic 

protein and is a positive regulator of the Wnt/β-catenin signaling pathway (42-44). It 

competes with β-catenin on binding to Chibby (Cby) and therefore inhibits the 

antagonistic action of Cby on β-catenin mediated transcription (44, 45). Even though TC-

1 is classified as an IDP, structural characterization shows that while the N-terminal half 

of the protein is largely unstructured, high helical propensity is present in the C-terminal 

part (42, 46). α-synuclein, a well-studied IDP that has been found to be the main 

structural component of Lewy body fibrils found in patients with Parkinson’s disease 

(47), was also included in this study to add additional depth to our approach. α-synuclein 

is natively disordered in its soluble form, but is able to self-associate to form insoluble 

aggregates that have considerable structure (47). In-cell NMR experiments have shown 
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that the periplasmic environment in Escherichia coli prevents α-synuclein from 

undergoing a conformational change that is detected in dilute buffer conditions, 

indicating that the crowding acts to keep α-synuclein disordered (48). In addition to the 

IDPs mentioned above, we also assessed the crowding effect on a well-studied globular 

protein, Ubiquitin, for comparison. By performing NMR relaxation measurements on 

these proteins we aim to determine how the dynamics of IDPs with different structural 

characteristics can be affected by macromolecular crowding. 

 

6.3 Materials and methods 

Protein expression and purification 

   Uniformly 
15

N labeled ProTα (human isoform 2), TC-1 (human) and α-synuclein 

(human isoform 1) were expressed in Escherichia coli BL21 (DE3) cells grown in 

minimal M9 medium containing 
15

NH
4
Cl (Cambridge Isotope Laboratories) as the sole 

nitrogen source. 
15

N/
13

C labeled TC-1 was expressed as above except with 
13

C6-D-

glucose (Isotec) as the sole carbon source. ProTα was purified using the method 

described by Yi et al. (39). The N-terminally His tagged TC-1 protein was extracted from 

inclusion bodies using 6 M guanidine hydrochloride and purified by affinity 

chromatography using Ni Sepharose™ 6 Fast Flow beads (Amersham Biosciences) (46). 

The plasmid carrying the α-synuclein cDNA was kindly supplied by Dr. Pielak at the 

University of North Carolina-Chapel Hill. The protein was purified by osmotic shock, 

using a procedure similar to the one reported by Shevchik et al. (49), followed by boiling 

and cooling steps similar to (39). The protein was then precipitated out of solution with 

60% saturated solution of ammonium sulfate. Lyophilized 
15

N labeled human Ubiquitin 

was kindly supplied by Dr. Gary Shaw’s lab at the University of Western Ontario.  

 

NMR spectroscopy 
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 All NMR experiments were performed at 25 ºC on a Varian Inova 600 MHz 

spectrometer (UWO Biomolecular NMR Facility) with an xyz-gradient triple resonance 

probe. The experiments were performed in the presence and absence of 160 g/L, and 

several used 400 g/L, Ficoll 70 (Sigma) or Dextran 70 (Sigma). Each NMR sample 

contained 10% D2O and trace sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS, 

Sigma) for chemical shift referencing. Data was processed with NMRPipe (50) and 

spectra were visualized with NMRViewJ (51).  

 1H-15N HSQC spectra were collected using 0.2 mM 15N-labeled ProTα, TC-1 and 

α-synuclein samples and 1 mM Ubiquitin samples in the presence or absence of crowding 

agent. Backbone amide resonance assignments of ProTα, TC-1, α-synuclein and 

Ubiquitin were obtained from (40, 46, 52, 53). The triple-resonance CBCA(CO)NH 

experiment was carried out using 0.3 mM TC-1 samples in the presence and absence of 

160 g/L Ficoll 70 (Sigma) for 13C chemical shift assignments.  

 Backbone 
15

N longitudinal relaxation rate (R
1
), relaxation rate in rotating frame 

(R
1ρ

), and steady-state 
1
H-

15
N NOE experiments were performed using 0.2 mM of 15N-

labeled ProTα, and TC-1 samples and 1 mM Ubiquitin sample in the presence and 

absence of crowding agent in their corresponding buffers. R
1 experiments were 

performed with delay times 10-640 ms for ProTα and TC-1 and 10-500 ms for Ubiquitin. 

R
1ρ

 experiments employed delay times between 10 and 150 ms for all proteins. The relax 

program (54, 55) was used for two-parameter exponential curve fitting of peak intensities 

from the R1 and R1ρ data, and the calculation of R1 and R1ρ relaxation rates and their 

associated errors. 
15

N transverse relaxation rate (R
2
) values were calculated using the R1 

and R1ρ rates and the offset between the resonance and carrier frequency (Δω) in hertz, 

using the equation  

        (1) 

where tanθ = BSL/∆ω. BSL (= 1.5 kHz) was the spin-lock field used in the R1ρ 

experiments. 1H-15N steady-state NOEs were obtained from the ratio of peak intensities 
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of spectra recorded with and without proton saturation. Seven and 12 s delays between 

scans were used for the saturated and non-saturated spectra respectively and 5 s 

saturation periods were used. Errors were estimated based on the ratios of background 

noise to the signals in the spectra.   

 

MD simulations 

 We conducted an atomistic MD simulation of ProTα in its free state in order to help 

to interpret the NMR relaxation measurements. The starting structure was generated 

based upon the amino acid sequence of ProTα (human isoform 2) by simulated annealing 

using the Crystallography & NMR System (CNS) software package (56). 

 The simulation was performed using GROMACS (GROningen MAchine for 

Chemical Simulations) version 4 (57) with the GROMOS96 53a6 united atom force-field 

parameter set (58, 59). This force field has been shown to perform well in simulations of 

disordered proteins and membrane proteins (60-62). Protonation states of ionizable 

residues were assigned to their most probable state at pH 7. The starting structure was 

centered in a cubic box with a side length of 20 nm and periodic boundary conditions 

were applied. The system was solvated with simple point charge (SPC) water (63). 

Sodium (Na+) and chloride (Cl-) ions were added to make the system charge neutral and 

bring the salt concentration to 0.1 M. The system contained 265474 water molecules, 525 

sodium and 482 chloride ions. MD simulations were performed at constant number of 

particles, pressure and temperature (NPT ensemble). Protein and non-protein atoms were 

coupled to their own temperature baths, which were kept constant at 310 K using the 

Parrinello-Donadio-Bussi algorithm (64). Pressure was maintained isotropically at 1 bar 

using the Parrinello-Rahman barostat (65). The time constants for temperature and 

pressure coupling were 0.1 and 0.5 ps, respectively.  Prior to the production run, the 

energy of the system was minimized using the steepest descents method, followed by 2 

ps of position-restrained dynamics with all non-hydrogen atoms restrained with a 1000 kJ 

mol-1 force constant. The timestep was set to 2 fs. Initial atom velocities were taken from 

a Maxwellian distribution at 310 K. All bond lengths were constrained using the LINCS 
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algorithm (66). Cut-off of 1.0 nm was used for Lennard-Jones interactions and the real 

part of the long-range electrostatic interactions, which were calculated using the Particle-

Mesh Ewald (PME) method (67). For a recent review on the different methods and the 

importance electrostatics in simulations of biological systems, see (68). Dispersion 

corrections were applied for energy and pressure. 0.12 nm grid-spacing was used for 

PME. The MD simulation was run for 427 ns and the last 400 ns were used for analysis. 

During this time, temperature, pressure and potential energy values remained stable and 

fluctuated around their averages, without systematic drift, indicating that the system was 

well equilibrated. 

 

MD Simulation analysis 

 Autocorrelation functions of backbone 1H-15N bond vectors of ProTα were 

extracted from the MD trajectory (region 27-427ns) (without the removal of overall 

tumbling) using the g_rotacf tool in GROMACS (57). Each autocorrelation function was 

fitted to two-, three-, or four-exponential decay curves (69-71) as shown in equation (2): 

        (2) 

where C(t) is the autocorrelation function at time t, n=2, 3, or 4, ai and τi are the 

amplitude and time constant of the ith exponential decay term.  The fitted autocorrelation 

functions were then used to calculate the spectral density J(ω) by analytical Fourier 

transformation (69-71): 

      (3)
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To evaluate whether the multi-exponential model j with more parameters statistically 

outperforms model i in fitting the autocorrelation functions, the F-ratio of statistical F-test 

were calculated using the following equation: 

         (4) 

where  ( ) and Di (Dj) are the sum of square deviations and degrees of freedom of 

model i (model j), respectively. 

 

6.4 Results 

IDPs remain disordered under crowded environments 

To study the effect of macromolecular crowding on the structure and dynamics of 

IDPs, Ficoll 70, a commonly used crowding agent, was added to the protein samples to 

mimic the cellular environment (6). First, 1H-15N HSQC spectra of ProTα, TC-1, α-

synuclein, and Ubiquitin, acquired in the absence and presence of 160 g/L of Ficoll 70, 

were compared. Intriguingly, the spectra of the three IDPs all display narrow peak 

dispersions along their 1H dimension in the presence of Ficoll 70 (Figure 6.1), indicating 

these proteins remain disordered under this crowded condition. 1H-15N HSQC spectra of 

ProTα and TC-1 in the presence of 400 g/L crowding agent had similar extents of peak 

dispersion as those collected in buffer or 160 g/L Ficoll conditions (Figures S6.1 and 

S6.2). Minor peak shifts between dilute and crowded conditions of some residues in TC-1 

were observed (Figure 6.1B). To investigate the possibility that these spectral changes 

were due to the crowding agents binding to TC-1, we performed isothermal calorimetry 

(ITC) experiments, titrating 0.1 mM TC-1 into 160 g/L crowder solutions (Figure S6.3). 

These measurements were not indicative of specific interactions between TC-1 and Ficoll 

or Dextran 70 (72). 
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Figure 6.1 1H-15N HSQC spectra of ProTα, TC-1, α-synuclein and Ubiquitn in the 

absence and presence of 160 g/L Ficoll 70. 

ProTα (A), TC-1 (B), α-synuclein (C) and Ubiquitin (D) spectra were collected in 

40 mM HEPES pH 6.8, 10 mM sodium acetate pH 5, 50 mM sodium phosphate 

pH 7 and 10 mM sodium acetate pH 5 respectively in the absence (black) and 

presence of 160 g/L Ficoll 70 (red). 
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Figure S6.1 1H-15N HSQC spectrum of ProTα in 400 g/L Ficoll 70. 

The sample contained 0.3 mM ProTα in 50 mM NaPO4 pH 7, 100 mM NaCl and 

1 mM DTT. 
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Figure S6.2 1H-15N HSQC spectra of TC-1 in 400 g/L Ficoll 70 and Dextran 70. 

The samples contained 0.2 mM TC-1 in 10 mM sodium acetate pH 5 and 400 g/L 

Ficoll 70 (A) or Dextran 70 (B). 
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Figure S6.3 ITC profiles of TC-1 titrations into crowded solutions. 

Buffer (10 mM sodium acetate pH 5) alone or containing 0.1 mM TC-1 was 

titrated into the cell, containing 160 g/L Ficoll (A) or Dextran 70 (B) in the same 

buffer. 10 µL injections were used with 120-second delays. 

 

 To determine if the chemical shift changes observed in the 1H-15N HSQC 

spectrum of TC-1 with 160 g/L of Ficoll 70 were the result of alteration of secondary 

structure, site-specific secondary structure propensities were determined based on the 

observed 13Cα and 13Cβ chemical shifts in the absence and presence of crowding agents 

using the SSP program (46, 73). Residues in well-formed β-strand/extended or α-helical 

conformations are expected to yield SSP scores close to -1 and 1, respectively. Figure 6.2 

shows the SSP score profiles of TC-1. While the N-terminal half of the protein is largely 

unstructured, three regions (D44-R53, K58-A64 and D73-T88) with high helical 
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propensities (i.e. SSP scores > 0.2) were found in the C-terminal part under both 

conditions. The results are consistent with our previous SSP analysis of TC-1 (46). Based 

on the SSP scores reported here, it is apparent that the presence of crowding agents only 

leads to a minor increase in the helical propensity of the second helical region (K58-

A64), while the other parts of the TC-1 structure are largely unaffected (Figure 6.2). 

 

Figure 6.2 Secondary structure propensity (SSP) scores for TC-1 in the absence 

(black) and presence (red) of 160 g/L Ficoll 70. 

SSP scores were calculated on the basis of the assigned 
13

Cα and 
13

Cβ chemical 

shifts (46) using the SSP program (73). The CBCA(CO)NH spectra was collected 

in 10 mM sodium acetate pH 5 in the absence and presence of 160 g/L Ficoll 70. 

 

Backbone 15N spin relaxation measurements under crowded conditions 

The effects of macromolecular crowding on the dynamics of ProTα, TC-1, α-

synuclein, and Ubiquitin were investigated with backbone 15N spin relaxation and 1H-15N 

NOE measurements. The results are shown in Figure 6.3. For the well-folded Ubiquitin, 

significant increases (decreases) in R2 (R1) of residues are observed in the presence of 160 
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g/L of Ficoll 70. Because crowding does not alter the structure of Ubiquitin, judging from 

the 1H-15N HSQC spectra (Figure 6.1D), the changes in R2 and R1 are expected to be due 

to the increase in viscosity of the solution. Based on the R1 and R2 values, the overall 

rotational correlation time of Ubiquitin is estimated to increase from 4.3 to 8.0 ns upon 

addition of crowding agents (74). Even though the molecular tumbling time was 

increased, crowding does not seem to have significant effects on the fast internal motion 

of this globular protein since the values of NOE were mostly unaffected by the addition 

of crowders.  

Unlike Ubiquitin, however, the increase in viscosity upon addition of 160 g/L of 

Ficoll 70 does not lead to dramatic changes in the observed R1, R2 and NOE values of 

ProTα and α-synuclein (Figure 6.3). In particular, the value of R2, which is sensitive to 

the rotational correlation time, remains unchanged for most of the residues of ProTα upon 

addition of crowding agents. On the other hand, residues in different regions of TC-1 

show differential responses to crowding. In particular, residues in the high helical 

propensity regions of TC-1 generally have decreased R1 and increased R2 relaxation rates 

in the presence of 160 g/L Ficoll 70 (Figure 6.3A and B), while R1 and R2 values of 

residues in the flexible N-terminal region show only minor changes. In addition, most of 

the residues in TC-1 also display slightly higher NOE values in the presence of 160 g/L 

of Ficoll 70 (Figure 6.3C). To ensure the observed changes in relaxation rates are not due 

to the particular crowding agent used, 15N relaxation experiments for TC-1 were also 

repeated with Dextran 70 as a crowder and the results were similar to that aforementioned 

(Figure 6.4). Figure S6.4 contains the R1, R2 and NOE values for TC-1 in buffer and 160 

g/L Ficoll and Dextran 70 plotted by residue number.  
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Figure 6.3 Backbone 15N relaxation measurements for ProTα, TC-1, α-synuclein and 

Ubiquitin in the absence and presence of 160 g/L Ficoll 70. 

Longitudinal relaxation rate, R1 (A), transverse relaxation rate, R2 (B) and steady-

state 1H-15N NOE (C). ProTα (black), TC-1 (red), α-synuclein (green) and 

Ubiquitin (magenta) relaxation measurements were collected in 40 mM HEPES 
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pH 6.8, 10 mM sodium acetate pH 5, 50 mM sodium phosphate pH 7 and 10 mM 

sodium acetate pH 5 respectively in the absence and presence of 160 g/L Ficoll 

70. The blue line indicates a unitary slope. 
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Figure 6.4 Backbone 15N relaxation measurements for TC-1 in the absence and 

presence of 160 g/L Dextran 70. 

Longitudinal relaxation rate, R1 (A), transverse relaxation rate, R2 (B) and steady-

state 1H-15N NOE (C). The sample contained 10 mM sodium acetate pH 5 in the 

absence and presence of 160 g/L Dextran 70. 



208 

 

 

Figure S6.4 R1, R2 and NOE values for TC-1 in buffer and 160 g/L Ficoll 70 and 

Dextran 70 plotted by residue number. 

The samples contained 10 mM sodium acetate pH 5 in absence and presence of 

160 g/L Ficoll 70 or Dextran 70. 
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Considerable changes in the relaxation rates were observed for ProTα when the 

extremely high concentration of crowding agent (400 g/L Ficoll 70) was used (Figure 

6.5). In particular, most residues show higher R2 values in the presence of 400 g/L Ficoll 

70 compared to buffer conditions (Figure 6.5B). The largest changes are observed in the 

region around residues I12-R31. Interestingly, residues in that region also have less 

negative 1H-15N steady-state NOE values in buffer conditions, suggesting this segment is 

intrinsically more restricted in motion compared to the rest of the protein in the absence 

of crowders. Furthermore, NOE values were systematically higher for all residues under 

this crowded condition (Figure 6.5C). 
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Figure 6.5 Backbone 15N relaxation measurements for ProTα in the absence and 

presence of 400 g/L Ficoll 70. 

Longitudinal relaxation rate, R1 (A), transverse relaxation rate, R2 (B) and steady-

state 1H-15N NOE (C). The sample contained 0.3 mM ProTα in 50 mM NaPO4 pH 
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7, 100 mM NaCl and 1 mM DTT in the presence of 400 g/L Ficoll 70. For the 

sample without crowder, 40 mM HEPES pH 6.8 was used as the buffer. 

 

Model for interpreting the observed relaxation data 

For well-folded globular proteins, the 15N R1, R2, and NOE measurements are 

commonly fitted to the Lipari-Szabo (LS) model-free model in order to extract the 

amplitude and correlation time of internal motion as well as the overall molecular 

tumbling time, which are denoted by the order parameter (S2), τe and τm in the spectral 

density function, respectively (75). A modified LS model was later proposed by Clore 

and co-worker to fit the relaxation rates observed from flexible loop regions of a folded 

protein (76). In this model, an extra term was introduced to the spectral density function 

of the original LS model to describe the internal motion occurring on a slower timescale. 

For disordered proteins, however, the timescale of large-amplitude local segmental 

motions can be close to the overall tumbling time, making the separation of these two 

contributions to the relaxation rates challenging (71, 77).  

To establish a simple model to describe the dynamic behaviors of IDPs and 

correlate them to the observed relaxation parameters, autocorrelation functions of the 

backbone amide bond vectors were extracted from a 427-ns atomistic MD trajectory of 

ProTα. Autocorrelation functions of each residue (except the N-terminus and P34) were 

fitted to models with different numbers of exponential decay terms. Instead of using these 

models to back calculate the observed backbone 15N relaxation rates, which have been 

shown by many others to be a challenging task (78, 79), our aim is to establish a simple 

model to interpret the relaxation data we obtained. 

  Autocorrelation functions of individual amide bond vectors extracted from the 

MD simulation were fitted to the sum of two, three, or four exponential decay terms 

(Equation 2) in order to determine the best LS-like model that can be used to describe the 

backbone dynamics of highly disordered proteins such as ProTα. The autocorrelation 

functions of several residues are shown in Figure 6.6. In general, quick decreases in the 
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autocorrelation functions are observed in the beginning, which are likely contributed 

from the librational motions (fast internal motions) (71, 75). The fast decay is then 

followed by more gradual decreases in the autocorrelation functions, reflecting the 

existence of local motions on slower timescales (Figure 6.6). However, it is clear that 

residues in different positions of the protein display distinct autocorrelation profiles. 

Figure 6.6 (inset) shows typical fits of the autocorrelation functions to 2-, 3-, and 4-

exponential decay terms. We found that for most of the residues, the equation with three 

exponential decay terms fits the autocorrelation function statistically better than that with 

only two terms. Increasing the number of exponential decay terms further (i.e. n = 4) does 

not result in dramatic decreases in the root mean square deviation of fitting (Figure S6.5). 

Additionally, for many residues, different τi values obtained from the four-exponential fit 

are very close, indicating that the motion described by these terms cannot be 

discriminated. Because of these reasons, our analyses were focused on the three-

exponential decay model (LS3 model; n=3 in Equation 3), which is very similar to the 

modified LS-model described by Clore and coworkers (76).   
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Figure 6.6 Correlation functions of selected backbone 1H-15N amide bond vectors. 

(red: residue 2; green: residue 10; blue: residue 48; magenta: residue 57; cyan: 

residue 102) extracted from a 400 ns MD trajectory of ProTα. The inset shows the 

fitting of the autocorrelation function (solid black line) of residue 31 to 2- (red 

dash line), 3- (blue dash line), and 4-exponential decay curves (green dash line) as 

indicated in Equation 2. The blue and green dash lines overlay remarkably, and 

only start to deviate when t > 1.5 ns. 
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Figure S6.5 Comparison of the fitting of autocorrelations to 2-, 3-, and 4-exponential 

decay curves. 

Blue: F-ratios calculated from the χ2 and degrees of freedom of 2- and 3-

exponential models; Red: F-ratios calculated from the χ2 and degrees of freedom 

of 3- and 4-exponential models (Equation 4). 

 

The results of fitting the amide bond vector autocorrelation functions to three-

exponential decay terms are summarized in Table 6.1. To illustrate how the fluctuations 

in amplitude and timescale of motions translate to the observed relaxation rate changes, 
15N R1, R2, and 1H-15N steady-state NOE values were calculated using the LS3 model 

with different values of ai and τi. We first apply this model to Ubiquitin. To simulate the 

relaxation rates of Ubiquitin, we assumed that the fast internal motion of this rigid protein 

is not altered upon crowding. By fixing the amplitude and correlation time of fast internal 
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motion (a1 and τ1) to 0.15 and 10 ps, respectively, the significant increase (decrease) in 

the measured R2 (R1) relaxation rates of Ubiquitin in the presence of 160 g/L of Ficoll 70 

can be reproduced by changing τ3 (the overall tumbling time) from 4.3 to 8 ns, assuming 

that the slower segmental motion can be neglected (i.e. a2 ~ 0; blue arrows) (Figure 6.7). 

 
Table 6.1 Averaged values and the standard deviations of fitted parameters of LS-3 
model. 

 i=1 i=2 i=3 
τi (ps) 7±9 419±454 3400±5700 

ai 0.37±0.09 0.36±0.12 0.27±0.17 
average±standard 
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Figure 6.7 15N Relaxation parameters calculated using the LS-3 model. 

(a) a1=0.15, τ1=10 ps, τ3 = 4.3 ns, a3=1- a1- a2 (b) a1=0.15, τ1=10 ps, τ3 = 8.0 ns, 

a3=1- a1- a2. τ2 and a2 values are indicated along the x and y axes, respectively. 

The slower internal motion is negligible when a2 ~ 0 (blue arrows). 
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We have also simulated the dependence of the 15N R1, R2, and steady-state NOE 

values of ProTα on the values of ai and τi. Since ProTα remains disordered under 

crowded conditions and the observed NOEs are significantly smaller than what are 

expected for a folded protein of similar molecular weight (Figure 6.5), it is reasonable to 

assume that large amplitude of fast internal motion persists. Figure 6.8A illustrates that 

with a1=0.37, τ1=7 ps, τ2 ~500 ps, and τ3 = 3.4 ns, a wide distribution of NOE values can 

be expected with the variation of the amplitude of segmental motion (value of a2). 

Meanwhile, R2 is predicted to be not very sensitive to the fluctuation in a2 (R2 ~ 2 - 4 s-1). 

These observations agree qualitatively with the distributions of experimental relaxation 

rates measured under buffer conditions (Figure 6.5). 

On the other hand, almost all residues of ProTα have the R2 and NOE increased at 

the high concentration of crowding agents (~400 g/L of Ficoll 70), while the variation of 

R1 along the protein sequence diminished. Based on the LS3 model, these trends can be 

explained by the increase in the correlation times of the slow local segmental motions. 

With τ2 increases from 500 to 1000 ps and the value of τ3 doubled (Figure 6.8B), R2 

values can increase to ~6 s-1 and many NOEs will turn positive. The simulated relaxation 

rates further match the experimentally observed values, especially for the R1 values, if we 

assume that the amplitude of fast internal motion is reduced in a highly crowded 

environment (i.e. a1=0.2; Figure 6.8C). 
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Figure 6.8 15N Relaxation parameters calculated using the LS-3 model. 

(a) a1=0.37, τ1=7 ps, τ3 = 3.4 ns, a3=1- a1- a2 (b) a1=0.37, τ1=7 ps, τ3 = 6.8 ns, 

a3=1- a1- a2 and (c) a1=0.20, τ1=7 ps, τ3 = 6.8 ns, a3=1- a1- a2, respectively. τ2 and 

a2 values are indicated along the x and y axes, respectively. 

 

Finally, based on the amplitudes and correlation times of motions on different 

timescales (fitted ai and τi values of autocorrelation functions) extracted from the MD 

simulation, we have simulated the 15N R1, R2, and steady-state NOE values of ProTα. The 

relaxation parameters in the presence of 160 g/L of Ficoll 70 were then predicted by 

scaling the correlation time of the slow motions (τ2 and τ3) by the same factor (i.e. 1.86) 

as the Ubiquitin tumbling time changes to account for the increase in viscosity. Figure 6.9 
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shows the plots of the simulated relaxation data before and after the correlation time 

adjustments. The result indicates that in the presence of 160 g/L of Ficoll 70, the R1, R2, 

and NOE of ProTα were expected to systematically increase if the correlation times of 

the slow motions were increased by viscosity. However, these changes were observed 

experimentally only in the presence of 400 g/L of Ficoll 70. Again, the simulated data 

suggest that the timescale of local segmental motions were slowed down only at a very 

high concentration of crowders. 
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Figure 6.9 Plots of the simulated relaxation data of ProTα before and after 

correlation time adjustments. 

15N R1, R2, and steady-state NOE values of ProTα were simulated based on the 

amplitudes and correlation times of motions extracted from the MD simulation 
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using the LS3 model. R1*, R2*, and NOE* are the relaxation data predicted by 

scaling the correlation times of the slow motions (τ2 and τ3) by the same factor as 

the Ubiquitin tumbling time changes to account for the increase in viscosity. 

 

6.5 Discussion 

 We have investigated the effects of macromolecular crowding on the dynamics of 

three IDPs, ProTα, TC-1 and α-synuclein, with different extents of residual structure 

using NMR spectroscopy. This complements several recent studies of macromolecular 

crowding effects on the structure and dynamics of IDPs (34, 35, 80). We used Ficoll 70 

and Dextran 70 as crowding agents, which are commonly used to mimic excluded 

volume effects (7, 17, 18, 72). These polymers are inert and do not interact 

nonspecifically with proteins. In contrast, the use of polyethylene glycol as a crowding 

agent is discouraged, due to attractive interactions with proteins (7, 72). 

 The IDPs examined here all had narrow dispersion of peaks along the 1H dimension 

in the 1H-15N HSQC spectra compared to the well-folded Ubiquitin, both in the absence 

and presence of crowding agents, suggesting that they remain disordered in the crowded 

environments. Interestingly, for the partially disordered TC-1, a minor increase of the 

helical propensity was observed only in the relatively structured region in the presence of 

Ficoll 70. This indicates that the crowded environment may have differential effects on 

the partially structured regions and the highly disordered parts of the protein. Increased 

helical content in the presence of crowding agent has also been observed for the 

Flavodoxin (10). Stagg et al. reported that the far-UV CD signal of Flavodoxin at the 

helical signature wavelength (222 nm) increases by about 10% in the presence of 200 g/L 

of Ficoll 70; however, a less dramatic effect of crowding in the denatured state was 

observed. 

Site-specific changes in the protein flexibility of ProTα and TC-1 have been 

characterized by using 15N NMR spin relaxation experiments. In particular, we focused 

on the highly disordered ProTα since this protein produces NMR data with reasonable 

signal to noise ratio even at high concentration of Ficoll 70 (400 g/L). It is noteworthy 
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that besides the excluded volume effect, the presence of high concentrations of crowding 

agents also inevitably increases the viscosity of the solution (12, 34). This adds a layer of 

complexity to the interpretation of spin relaxation data. The viscosity effect is reflected in 

the systematic increase in the 15N R2 rates of Ubiquitin in the presence of 160 g/L Ficoll 

70, while the values of NOE were mostly unaffected. Similar results were obtained by 

Simorellis & Flynn (81). They showed that encapsulation of Ubiquitin in a confined 

environment only has very minor effects on the protein backbone dynamics.  

Intriguingly, the increase in viscosity did not cause significant changes in the 15N 

R2 of intrinsically disordered ProTα under the same conditions. To have a better 

understanding of our relaxation data, we performed an MD simulation (~ 400 ns) on 

ProTα to investigate its dynamic behaviors. Although MD simulations in the presence of 

atomistically represented crowders are not currently practical (because of the large 

number of atoms these molecules contain and the long time scales such molecules need 

for diffusion), our simulation facilitated the development of a simple model to correlate 

the observed changes in relaxation rates to the alteration in protein motions under 

crowding conditions. While the LS3 model proposed here might not be sufficient to 

represent the complicated dynamics of IDPs, it provides insights into interpreting the 

relaxation measurements. 

Based on the experimental and simulation results, we conclude that even though 

crowded environments can slow down the timescale of local segmental motions in the 

highly disordered ProTα, it still retains a certain level of flexibility at high concentrations 

of Ficoll 70. Based on the observed R2 rates (Figure 6.5B), however, it is apparent that a 

few regions of ProTα become more structured at high concentration of crowders. 

Interestingly, some of these regions overlap or are close to known target-binding motifs 

of ProTα. For instance, residues 39-54 are involved in mediating the interaction with the 

Kelch domain of Keap1 in the oxidative stress response (82) while the caspase-3 

cleavage site of ProTα is located around residue 100 (83). Because the dynamics of IDPs 

can have significant impacts on their target recognitions (60), this observation has a 

strong biological implication of how this class of proteins functions in crowded cellular 

environments. 
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 We are aware that while Ficoll and Dextran may be suitable agents to mimic the 

crowded cellular environment, combining different crowding agents with varying 

physical characteristics (sizes, shapes, charges, etc) may more accurately represent the in 

vivo environment (2, 7, 84, 85). Therefore, extending the current studies by using other 

crowding agents with different sizes and chemical properties are required to further our 

understanding of the macromolecular crowding effects on IDPs. These in vitro studies 

together with the recently developed in cell NMR techniques (86-92) will hopefully 

provide further insights into understanding the environmental effects on IDP structure 

and functions. 
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7 Conclusions and future directions 

7.1 Conclusions 

Using an experimental and computational approach of NMR, MD simulations and 

ITC, we have furthered the understanding of the structure and dynamics of IDPs, and 

their roles in target binding. Importantly, our approach was applied to gain new insights 

into the interaction mechanisms of proteins with important biological functions. The 

work illustrates that experimental and computational techniques are complementary tools 

that can be used to gain new insights into the relationships between IDP structure, 

dynamics and function. Here, the primary conclusions from this thesis are presented. 

7.1.1 MD simulations provide unique insights into the structure and dynamics of 
IDPs 

Conventional methods and conditions for determining structure and dynamics of 

globular proteins may not be directly applicable to IDPs. NMR is a powerful technique 

for examining the structure and dynamics of IDPs, but relying solely on this type of data 

can be limiting. MD simulations can be used in conjunction with NMR and other 

biophysical techniques to gain a deeper understanding of the structure and dynamics of 

IDPs. By performing extensive MD simulations and comparing the results to 

experimental data, we have established suitable parameters and force field choice for 

accurately simulating this class of proteins. The methodology was shown to be applicable 

to a diverse set of peptides from 9 IDPs. These MD simulations were in good agreement 

with our NMR data and also provided unique insights into the mechanisms that IDPs may 

use to interact with targets. The work emphasizes that MD simulations of IDPs are an 

excellent complement to experimental techniques and provide new insights that are 

difficult to obtain by other methods. 

7.1.2 Preformed structures are crucial for the interactions between some IDPs and 
targets 

Using a combination of NMR, ITC and MD simulations, we studied the binding 

of 9 disordered proteins to a common target. The findings illustrated how MoRFs are 

important for the interaction between IDPs and targets. The IDPs that were examined had 

free state preformed structures in their MoRF regions that resembled bound state 
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conformations. The correlations between the binding affinities, amino acid compositions 

and MoRF stability revealed how different sequence properties can modulate the various 

protein-protein interactions. Using these findings, the MoRF region of a peptide from one 

of the IDPs was selectively mutated to enhance its target binding affinity. The designed 

peptide may be a potentially useful therapeutic agent. Together, the findings provide 

valuable insights into the mechanisms used by IDPs for target binding and should also 

help to elucidate the biological roles of the various protein-protein interactions. 

7.1.3 Molecular crowding may affect the conformational propensity of distinct 
regions of an IDP 

Using inert polymers as crowding agents to mimic the cellular environment, the 

effects of molecular crowding on dynamics of IDPs were assessed. We found that IDPs 

remain at least partially disordered despite the presence of high concentration of other 

macromolecules and that the crowded environment has differential effects on the 

conformational propensity of distinct regions of an IDP, which may lead to selective 

stabilization of certain target-binding motifs. This information will help to understand the 

behavior of IDPs in cellular environments and to accurately study them in vitro. 

 

7.2 Future directions 

7.2.1 The origins of molecular crowding effects 

In chapter 6, we found that crowding agents may act to selectively stabilize target-

binding regions of IDPs. Based upon our experimental NMR data under crowded 

conditions and an MD simulation of an IDP in the absence of crowders, we proposed a 

simple model to interpret the observed changes in IDP dynamics between dilute and 

crowded environments. Although the model qualitatively reproduces some of the 

experimental data, it is clearly insufficient to fully describe IDP dynamics in crowded 

environments. MD simulations with accurately parameterized crowding agents would 

undoubtedly aid in the interpretation of our experimental data. Efforts are underway to 

modify an existing force field to include crowding agents. Several groups have performed 

simulations with crowding agents (1-3). However, the agents are often crudely 
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parameterized as hard spheres with repulsive potentials to all species within the system. 

Our aim is to provide a more detailed description of the crowding agents that is consistent 

with experimental data. For example, our modified GROMOS 53a6 force field includes 

crowding agents with attractive and repulsive non-bonded potentials to different system 

components. The interaction between crowding agents and proteins is semi-repulsive to 

insure that physical contact between these species is minimized (eg. non-specific binding 

does not occur). Additionally, we include an attractive potential between crowding agent 

and the oxygen atom of water molecules to keep the crowders surrounded by a solvation 

shell. Extensive testing and tuning of these parameters has been performed. Prior to 

conducting crowding simulations with IDPs, we have performed MD simulations of 

Ubiquitin in the absence and presence of crowding agents and checked agreement with 

our experimental data (chapter 6). Such work should help us to provide a more thorough 

understanding of crowding on IDP dynamics. 

7.2.2 How MoRFs modulate target binding 

The identification of MoRFs along an IDP sequence is an area of active 

bioinformatic research (4). These segments are hot spots for target binding (5, 6) and 

their identification is an important first step in studying the interactions that IDPs partake 

in. While MoRF discovery and prediction algorithms have improved in recent years (4), 

their mechanisms of function are often not well understood. The work presented in 

chapter 4 illustrated that the regions within and surrounding MoRF sites can modulate 

interaction affinities with targets. Such information may be useful for improving MoRF 

identification and prediction of important parameters (e.g., binding affinities). 

Additionally, the ability to predict how MoRF modifications can affect their binding 

affinities could possibly be useful for assessing the potential consequences of somatic 

mutations in these regions. Knowledge of how to selectively modify these sites could be 

useful for development of targeted therapeutics. By studying the molecular mechanisms 

used by other IDPs to interact with targets (e.g., using a similar approach as in chapter 4), 

it should, eventually, be possible to improve predictive methods for assessing important 

properties of MoRF regions and their relationship to binding. 
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7.2.3 IDP binding from the perspective of targets 

This work has largely focused on the structure and dynamics of IDPs in the 

absence and presence of a binding target. The assignment of the backbone resonance of 

the target protein (chapter 5) revealed that considerable changes in the local chemical 

environments of many residues occur upon binding to an IDP. It is of particular interest 

that many of these changes are distant from the binding site. It would be interesting to 

analyze how the dynamics of the target protein change upon IDP binding (e.g., by NMR 

spin-relaxation measurements). This information would help to interpret our observed 

thermodynamic parameters of interaction (chapter 3) and further decipher the molecular 

mechanisms of IDP binding. 
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