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ABSTRACT 

Unaccustomed lengthening contractions have been shown to impair muscle 

function - however little is known regarding this impairment on muscle power - 

specifically, the velocity component of power during voluntary contractions in 

humans.  The four studies presented in my thesis investigated power-loss following 

lengthening contractions in healthy young and old women and young men. 

The purpose of Study 1 was to determine reliability of velocity-dependent 

power of the dorsiflexors using the isotonic mode of the Biodex Dynamometer.  I 

determined the isotonic mode is reliable and can be used to track changes in 

velocity and power following fatigue and lengthening contractions.  

The purpose of Study 2 was to investigate changes in neuromuscular 

properties of the ankle dorsiflexors during and following repetitive lengthening 

contractions and throughout recovery in 21 (10 men, and, 11 women) recreationally 

active young adults (25.8 ± 2.3 y).  The protocol for the following 3 studies involves 

subjects performing 5 sets of 30 lengthening contractions, with neuromuscular 

measures (i.e., electrically evoked twitch, tetanus, voluntary activation, voluntary 

contractions) recorded at baseline, during the task, and throughout recovery.  

Exercise induced muscle damage ultimately led to velocity-dependent (i.e., isotonic) 

power loss at a moderate load (i.e., 20% maximum voluntary strength). 

Compared with isometric and isokinetic tasks, less is known regarding 

velocity-dependent muscle power and recovery in older adults following repeated 

lengthening contractions.  In Study 3 we tested 9 old (68.3 ± 6.1 y) and 9 young 

women (25.1 ± 1.3 y).  Old were more impaired following the task than young as 

shown by greater low-frequency torque depression at task termination leading to a 

more pronounced initial loss of power than young.  However, power remained 

reduced in both groups during the 30 min recovery period.  Older women were 

more susceptible to power loss than young following lengthening contractions likely 

owing to a greater fatigue response. 
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In Study 4, power curves were constructed [8 men (27 ± 3 y), 8 women (26 ± 

4 y)] using various isotonic loads before and following task termination.  There was 

a preferential loss of power at higher loads, with a relative maintenance of maximal 

shortening velocity shifting the power curve down and leftward.  When stressed 

with heavier loads during dynamic contractions, force modulators arranged in 

parallel seem to be affected more by damage than those organized in series 

(velocity), which was highlighted by the attenuation of power at higher versus lower 

resistances.   

The main findings of my thesis are that repetitive lengthening contractions 

fatigued and temporarily weakened the dorsiflexors, thus impairing their power 

producing ability immediately (i.e., fatigue + weakness) and longer term (i.e., 

weakness) owing to an inability to generate torque rapidly. 

 

KEYWORDS 

Muscle Damage, Shortening Velocity, Rate of Torque Development, Power, Sex, 

Aging, Eccentric, Isometric, Isotonic, Isokinetic  
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GLOSSARY OF TERMS 

Angular Velocity – Change in angular position over time. 

Force – A vector which has both magnitude and direction, the product of mass and 
acceleration.  

Isokinetic – A dynamic muscular contraction in which the angular joint velocity is 
constant and the resistance (i.e., torque) is variable. 

Isometric – A static muscular contraction.  

Isotonic – The dynamic contraction mode in which a load is held constant and the 
joint angular velocity is variable as the limb moves through a range of motion.  

Muscle Damage – Exercise induced dysfunction to the structure and function of 
skeletal muscle. 

Neuromuscular Fatigue – Any exercise-induced reduction in the ability to generate 
torque or power regardless of whether or not the task can be sustained. 

Power – The product of torque (N·m) and joint angular velocity (rad/s) expressed 
in watts (W); considered to be a more relevant measure of function because it 
incorporates both strength and contractile speed.  

Torque – Also termed ‘moment’ is the product of the lever arm length, the 
magnitude of force vector, and the sine of the angle between the force vector and the 
lever arm vector, and is expressed in newton·meters (N·m). 

Velocity-Dependent Contraction – Velocity-dependent contractions are those in 
which the imposed load remains relatively constant (i.e., isotonic-like) and the 
velocity is allowed to vary throughout the joint range of motion and is dependent 
upon the maximal effort of the subject. 

Muscle Weakness – An inability to produce expected muscular strength.
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Chapter 1– General Introduction 

Skeletal muscle is a remarkable, highly organized tissue which regulates 

metabolic processes, is important in thermoregulation and ultimately serves as a 

‘molecular motor’.  Muscles produce tension, pull on tendons and move bones to 

produce meaningful movement and locomotion.  Not only do muscles pull and 

shorten, but when an external load overcomes the tension produced by the muscle, 

they lengthen actively.  Lengthening muscle actions are a normal part of daily 

activity whether it be absorbing energy when landing from a jump or walking down 

a flight of stairs.  For a given resistance, these contractions are less energetically 

demanding, cause less metabolic disturbance and generally produce greater forces 

than shortening or isometric contractions (2, 7, 35).  Because of the greater tension 

associated with lengthening versus shortening or isometric contractions (28), and 

the high strain placed on the myofilaments, this contraction type is prone to causing 

muscle damage (46, 63).  However, there is minimal knowledge regarding how 

unconstrained isotonic-like power (i.e., velocity-dependent power) production in 

humans is impaired following muscle damage, specifically the role of shortening 

velocity.  

 

1.0 Mechanics of Lengthening Contractions 

The first published investigation of lengthening contractions and muscle damage 

in humans was a study by Theodore Hough at the turn of the twentieth century (36).  

The simple study design involved participants contracting their finger against a 
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spring, thus shortening the muscle while stretching the spring and experiencing 

unaccustomed lengthening during the spring recoil.  Following the task, Hough 

described a long lasting muscle pain which he distinguished from the short term 

transient pain of repetitive shortening or sustained isometric actions.  Hough 

suggested the short term pain was associated with muscle fatigue and was due to 

the accumulation of metabolites while the long lasting soreness was caused 

ultimately by ‘some sort of rupture within the muscle’, which we now know as 

muscle damage.  Indeed, lengthening muscle actions possess several unique features 

compared with those of other muscle actions, which lead to a greater susceptibility 

to muscle damage (4).  First, based on the force-velocity (F-V) relationship (Figure 

1) established by Katz (39), the force generated during muscle lengthening is 1.5-1.9 

times greater as compared to isometric force (24).  The F-V relationship dictates 

that, as a muscle shortens and velocity changes from zero, force generating capacity 

drops, owing to the decreased probability of interaction between the contractile 

proteins actin and myosin, and that muscle force also decreases as a function of 

shortening velocity (34).  Conversely, during lengthening, when a muscle is 

stretched actively, muscle force is elevated above isometric and shortening muscle 

force due to a tighter packing of myofilaments increasing the contact area between 

actin and myosin effectively increasing bond formation leading to a firmer 

attachment of the cross bridge (24).  As well, the engagement of passive force 

transmitting elements (25, 33) contributes to the elevated tension.  Katz (39) 

observed a discontinuity in the F-V relationship during lengthening such that 

greater force was required for a given rate of stretch than for the same rate of 
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shortening.  Additionally, following rapid stretching, the muscle became 

permanently weaker, and there was a shift in the optimal length of force production 

towards longer muscle lengths (39), suggesting the presence of damaged and 

overstretched sarcomeres (11, 32). 

Furthermore, muscle activity as indicated via surface electromyography (EMG) 

is lower for maximal lengthening actions compared with isometric and shortening 

(10, 23, 26) contractions.  Therefore, the combination of higher forces during 

lengthening and lower levels of muscle activity (i.e., less active muscle mass 

involved) places greater tensile strain on the involved remaining structures (26).  

Finally, force generation during lengthening differs from shortening whereby cross -

bridges are broken mechanically rather than undergoing detachment by high-

energy phosphates (ATP) (5).  The forced detachment places greater strain on the 

myofilaments and contributes to muscle damage following lengthening contractions.  
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Figure 1. Force-velocity (FV) relationship 
 
The angular velocity of movement is represented along the X-axis, with Vmax 
representing maximum unloaded movement velocity for a representative young and 
older adult.  Torque and power are represented on the dual Y-axis, Fmax represents 
maximum voluntary torque and Pmax represents the finely tuned trade-off of 
angular velocity and torque to achieve peak power.  Note the hyperbolic FV curve 
and power curve for the older adult is shifted left-ward (1) down (2) and relative to 
the young adult.  Adapted from Raj et al. Exp Gerontol 45: 81-90, 2010.  
 

1.1 Structural Changes Associated With Muscle Damage 

Unaccustomed repeated lengthening contractions result in muscle damage (28).  

Evidence of structural and morphological changes to the muscle following 

lengthening contractions in humans came from Friden (29).  Following 

unaccustomed lengthening contractions of the lower limbs, muscle biopsies were 

obtained from the vastus lateralis of participants.  Analysis of the muscle tissue was 

performed via electron microscopy which identified disturbances to the 

ultrastructural milieu of the sarcomere (29).  Damage to the sarcomere was 
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observed along the Z-line (Figure 2) which included: Z-line broadening, spreading of 

the Z-line material throughout the sarcomere, and non-uniform disturbed Z-lines 

throughout the fiber.  These structural changes and disorganization of Z -lines 

contribute to impaired force production and transmission.  Thus, during 

lengthening contractions when the muscle is under active strain over the 

descending limb of the length-tension (Figure 3) curve (46, 55), there is mechanical 

disruption of the actin-myosin bonds, and cytoskeleton of the muscle fibers.  

Ultimately, this damage results in a prolonged reduction in maximal voluntary force 

(6, 72). 

 

 

Figure 2. A schematic depicting the structure of an individual sarcomere.   
 

1.2 Mechanisms of Damage Induced Force Loss 

The extent of muscle damage induced force loss following lengthening 

contractions is determined by multiple factors, which include: the number of 

lengthening contractions, the initial muscle length (i.e., location on the force-length 
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(F-L) relationship; Figure 3), amplitude of stretch, the tension reached during 

stretch, and the contractile history (4, 18).  Ultimately, force is reduced by a 

disturbance to the contractile machinery and failure to activate viable intact 

structures.  Structurally, weakened and overstretched sarcomeres result in a shift in 

the peak of the F-L relationship to longer muscle lengths for optimal torque 

production (32).  As well, sarcomeres stretched further along the descending limb of 

the F-L relationship may fail to re-interdigitate, thus producing lower force due to 

less thick and thin filament overlap (54, 55).  Therefore, when isometric force is 

measured at the same muscle length prior to lengthening contractions and not the 

new optimal muscle length, force will appear to be reduced.  The examination of 

isometric strength as a function of joint angle/muscle length reveals a 

disproportionate loss of strength at joint angles corresponding to short versus long 

muscle lengths (59).  These findings lend support to the idea that longer muscle 

lengths are required to achieve the same myofilament overlap after muscle damage 

and hence one contributing factor to force loss after damage is an increase in series 

compliance as a result of overextended sarcomeres (11, 32).   

Not only are muscle contractile structures damaged following lengthening 

contractions, but, impaired force production can also be attributed to failure of 

excitation-contraction (E-C) coupling.  Excitation-contraction coupling is the 

cascade of events that begins with the transmission of an action potential along the 

sarcolemma and ends with the release of calcium (Ca2+) from the sarcoplasmic 

reticulum and subsequent activation of the contractile machinery.  Reduced Ca2+ 

release as a result of damage induced dysfunction to structural components 
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involved in E-C coupling, and reduced myofibular Ca2+ sensitivity (5, 37, 71) result in 

impaired force production capability (71).  A reduced efficiency of the E-C coupling 

process is commonly observed following damage and in some cases (37) the failure 

to activate the contractile machinery following lengthening contractions contributes 

more (75%) than actual structural damage to the functional impairment/force 

generation. 

 

 

Figure 3. A schematic depicting the sarcomere length-tension (FL) relationship.   

At short muscle lengths, along the ascending limb of the curve, force is reduced due 
to too much overlap of thick and thin myofilaments.  Optimal length is reached over 
the plateau region.  On the descending limb, force is reduced owing to less 
interaction of myofilaments.  Adapted and modified from Martini (2001, p. 115.)  
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1.3 Common Markers of Muscle Damage 

The invasive nature of muscle biopsies, renders this technique less feasible to 

perform in some muscles to determine the incidence of muscle damage following 

lengthening contractions in humans.  It has been suggested that hypercontracted 

fibers as evidence of ultrastructural damage might be caused by the biopsy 

procedure itself.  Thus, the biopsy procedure can produce come changes mistaken 

for damage (18).  Therefore, many non-invasive indirect measures of muscle 

damage are commonly used.  The three most frequently used markers are: 1) 

subjective reports of muscle soreness, 2) blood protein assessment and 3) recovery 

of maximal voluntary muscle strength (18, 72).  Maximal voluntary isometric torque 

generating capacity (MVC) is generally regarded as the best indirect measure of 

muscle damage and functional impairment following lengthening contractions in 

investigations on human subjects (72).  Maximal voluntary torque is less impaired 

immediately following high-intensity lengthening actions than following shortening 

or isometric tasks (8, 43, 57).  However, when assessed throughout recovery and 

day(s) later, MVC torque loss following shortening contractions recovers fully; 

whereas following lengthening contractions torque loss remains (68).  Because the 

fatigue induced from repetitive contractions is transient and recovers relatively 

quickly compared with muscle damage, the incomplete recovery of both voluntary 

and electrically evoked torque cannot be attributed to fatigue.  Thus, the remaining 

impairment in maximal torque capacity (i.e., MVC) represents muscle damage.   

Self reported soreness and blood markers do not correlate well with measures of 

functional impairment.  Muscle soreness and blood markers typically peak 48 hrs 
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following the initial insult to the muscle structures (13, 44, 53), during which time 

strength is already starting to recover.  The mismatch between these markers and 

recovery of functional impairment does not lend support to the utility of soreness 

and blood markers as indirect measures of muscle damage.  Thus, MVC performance 

is a relatively accurate and reliable measure, and provides the means for 

determining muscle function (12).  The incomplete recovery of MVC torque 

following lengthening contractions suggests strongly that the muscle fibers are 

damaged (6).  Nevertheless, an important issue in all studies of lengthening muscle 

actions is to distinguish between the reduction in force caused by fatigue and that 

caused by muscle damage (17).  To corroborate results from an impaired MVC 

another useful measure in quantifying muscle damage is the shift in optimal angle of 

torque production to longer muscle lengths (62).  The presence of overstretched, 

disrupted sarcomeres in series with still functional sarcomeres results in an 

immediate shift in optimum length of torque production to longer muscle lengths 

and is considered to be a reliable indicator of muscle damage (32, 62).  This shift 

following lengthening contractions has been observed previously in the ankle 

dorsiflexors (45, 61).  

 

1.4 Neuromuscular Function Following Muscle Damage 

Optimal power generation is based on the finely tuned relationship between 

torque and velocity.  As velocity increases, less torque can be generated owing to 

fewer cross-bridge attachments, requiring a trade-off of torque in favor of velocity 

to achieve peak power (3, 47).  Following muscle damage, maximal isometric 
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dorsiflexion torque (8, 50, 57) is reduced although little is known regarding power 

loss.  Voluntary maximal loaded shortening velocity is known to recover rapidly (< 5 

min) in young adults after voluntary isometric and concentric fatigue tasks (15, 16).  

However, repeated lengthening contractions result in muscle damage which can 

take several days to recover fully (18), and it is unclear how this damage may affect 

velocity-dependent power production during short-term recovery.  Up to now, the 

only available data of velocity-specific alterations in power in humans are based on 

studies involving isovelocity (i.e., constant speed/isokinetic) actions (12, 67).  To 

determine the extent of concentric strength loss following muscle damage an 

isovelocity model relies specifically on testing the torque component of power when 

angular velocity is fixed and results from this paradigm are equivocal.  Some report 

greater impairments at slow angular velocities, thus reflecting impaired torque 

generation (21, 52); whereas others report greater impairments at fast velocities 

suggesting shortening velocity is more impaired than torque generation (27, 29, 31).  

However, the isovelocity contraction mode constrains angular velocity artificially 

and therefore does not properly represent normal contractile function of the limb 

muscle model.  Importantly, when torque is held constant and velocity can vary 

freely (i.e., velocity-dependent), the muscle functions more closely to in vivo 

conditions (60), and alterations in the power curve can be explored to offer insight 

on the mechanisms of power loss following muscle damage.   

A loss of capacity to produce high torques rapidly (i.e., rate of torque 

development; RTD) would contribute much less to power production for lighter 

loads whereas at higher loads it would presumably impede power production 
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severely.  In other words, because shortening velocity is related to the number of 

sarcomeres working in series whilst torque production is related to those 

sarcomeres in parallel (56), muscle damage would preferentially affect torque 

production, and would therefore result in a greater loss of power at heavier rather 

than lighter loads following muscle damage.  This is an under studied but important 

area of research which needs further elucidation, and investigations of  populations 

with specific characteristics as described below can help explain the role of 

shortening velocity and power loss following muscle damage.  

 

1.5 Sex Differences in Response to Muscle Damage 

In contrast to the literature on sex-differences following muscle damage in 

animals, reports on sex-related differences in response to damaging lengthening 

contractions in humans are equivocal, or show a greater impairment in women than 

men [for review see (18) and references therein].  Following lengthening 

contractions in a large sample of men (n=98) and women (n=94), Sayers & Clarkson 

(68) reported that a disproportionately higher number of women than men 

demonstrated greater initial force loss.  In addition, despite similar indices of muscle 

damage in the elbow flexors of both sexes, Sewright et al., (69) showed that 

immediate strength loss was more prominent in women than men.  Women and 

men had similar markers of muscle damage, but women had a greater impairment 

in strength.  This finding can be interpreted as E-C uncoupling playing a key role in 

the observed sex-difference.  Additionally, muscle damage results in impaired RTD 

(9, 53), potentially diminishing power production.  Thus, in women, muscle damage 
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induced dysfunction may be exacerbated due to a greater susceptibility to E-C 

coupling failure and lower RTD compared with men, owing to a lower Type II/Type 

I fiber area ratio (42).  

 

1.6 Effects of Age on Muscle Damage 

Impaired force generating capacity is a consequence of natural adult aging 

resulting from many factors (66) including: the loss of contractile muscle mass  and 

motor units (22, 56, 70), decreased neural activation (1, 65), changes in muscle 

architecture (56) and excitation-contraction uncoupling (58).  Because E-C coupling 

is compromised in older adults (58) and maximal unconstrained shortening velocity 

is indeed slower (19, 20, 51, 64) compared with younger adults, the old may be 

energetically disadvantaged during repetitive lengthening contractions.  Therefore, 

older adults may experience a greater perturbation in ATP homeostasis, 

consequently exacerbating their fatigue response and resulting in a greater 

reduction in shortening velocity and subsequent velocity-dependent power 

following repetitive lengthening contractions than young adults.  Moreover 

functional impairments following muscle damage have been previously attributed 

to impaired E-C coupling (71).  A mechanical disruption of the link between the t-

tubule and the sarcoplasmic reticulum impairing Ca2+ release (37) could further 

impair an already compromised system.  Furthermore, dynamic concentric muscle 

performance following multi-joint lengthening contractions is known to be impaired 

(12, 67) although the underlying mechanisms are not understood entirely.  Thereby, 

stressing a system which is already compromised in terms of E-C coupling and 
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shortening velocity will aid in understanding these physiological mechanisms of 

muscle damage on subsequent power loss.  

 

1.7 Limb-Muscle Model 

The ankle dorsiflexors were chosen as the model for my studies due to the many 

advantages of this particular muscle group.  The fibular nerve is easily accessible at 

the head of the fibula for percutaneous electrical stimulation.  The dorsiflexor 

muscle group’s consistently high voluntary activation level, with minimal 

familiarization trials required, aids in comparing muscle damage studies  between 

young and older adults (40, 41).  The main dorsiflexor, the tibialis anterior (TA), 

contributes approximately 40-60% to dorsiflexion torque.  The 40% value was 

estimated via focal tetanus to the TA, relative to fibular nerve stimulation (14, 49). 

However, based on the physiological cross-sectional area of the TA relative to the 

other dorsiflexors, Fukunaga et al. (30) suggest the TA contributes ~60% to 

dorsiflexion torque.  The TA is a primarily slow twitch muscle, composed of ~76% 

(38) Type I muscle fibers.  The dorsiflexors have a flat force-length relationship 

(14), reaching peak torque values over both the ascending and plateau regions (48).  

Therefore, age-related changes in fiber type and alterations in the F-L relationship 

should be of minor influence in interpreting the results.  
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Figure 4. Participant positioned in the Biodex Multi-joint Dynamometer for testing 
of the ankle dorsiflexors. Graphic art provided by Mr. Andrew Davidson.   
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Testing was performed on a Biodex dynamometer (Figure 4), using the ankle 

attachment for dorsiflexion.  All subjects were recreationally active and not 

systematically trained.  The isotonic mode was used to perform ‘velocity-dependent’ 

contractions.  A velocity-dependent movement is characterized by a participant 

producing a dynamic contraction as fast as possible with only minimal constraint in 

the angular velocity while the load or resistance is maintained at a pre-determined 

value (i.e., %MVC).  Before the footplate is displaced during the velocity-dependent 

shortening contraction, the pre-programmed resistance has to be overcome by the 

participant.  The dynamometer absorbs this increase in applied torque resulting in a 

directly proportional increase in angular velocity.  This is in contrast to isovelocity 

actions (i.e., isokinetic) where the velocity is constrained and torque is recorded.  

However, the isovelocity contraction mode constrains angular velocity artificially 

and therefore does not properly represent normal contractile function of the limb 

muscle model.  Importantly, when torque is held fairly constant and velocity can 

vary freely (i.e., velocity-dependent), the muscle functions more closely to in vivo 

conditions (60), and alterations in the power curve can be explored to offer insight 

on the mechanisms of power loss following muscle damage.   

 

1.8 Purpose 

Understanding the concomitant reductions in torque generating capacity and 

shortening velocity are important in elucidating the mechanism by which power 

production is reduced and neuromuscular function impaired following damaging 

lengthening contractions.  Skeletal muscles are designed to modulate shortening 
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velocity based upon the load imposed (isotonic) and not vice-versa (isokinetic).  The 

following series of investigations employed a velocity-dependent model which 

aimed to offer insight into the mechanisms of power loss following muscle damage.  

Reliable measures of strength and power output are critical for the assessment of 

neuromuscular function.  Therefore, In Chapter 2 the purpose was to provide an 

initial assessment of the day-to-day reproducibility of shortening velocity and 

power variables, using the isotonic testing mode of the Biodex dynamometer.   

Owing to the lower metabolic cost of lengthening contractions, but greater 

muscle damage compared with isometric or shortening contractions, it remains 

unclear whether velocity-dependent power loss is different between this type of 

exercise and repeated isometric or concentric contraction tasks.  In Chapter 3, the 

purpose was to investigate the effect of high-intensity lengthening contractions on 

neuromuscular function and velocity-dependent power in young men and women.  

A secondary purpose was to explore further the equivocal observations in the 

literature regarding sex-related differences in muscle fatigue and responses to 

lengthening contractions.  As an extension, the purpose of Chapter 4 was to 

investigate neuromuscular function in older and younger women with a particular 

emphasis on short-term recovery of velocity-dependent power following muscle 

damage.  Finally, in Chapter 5, the purpose was to investigate velocity-dependent 

power loss following muscle damage, and to determine whether a sex-difference 

exists when assessed across multiple loads; stressing torque production and near 

maximal shortening velocities.   
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The hypotheses were that:  1) measurement methods for velocity and power 

following muscle damage will yield good reliability; 2) there will be a modest 

reduction in shortening velocity due to muscle damage, resulting in velocity-

dependent power loss which will remain reduced throughout recovery in both men 

and women; 3) as a result of muscle damage levels that are comparable, MVC torque 

will be reduced similarly in both old and young women and remain reduced 

throughout a 30 min recovery period.  However, when tested under dynamic 

conditions, older women will have a larger reduction in velocity-dependent power 

than the young owing to a greater impairment in E-C coupling and shortening 

velocity, which are known to be compromised in older adults and may not be 

observable during isometric testing.  As a result of muscle damage neither group 

will recover by 30 min.  4) Because torque production is impaired considerably 

following muscle damage and the velocity at which a muscle shortens depends on 

the force it is resisting, it was hypothesized there would be a left and downward 

shift in the power curve, owing to a preferential loss of power at higher loads.  

However, maximal shortening velocity and shortening velocity at low loads will not 

be affected significantly owing likely to fewer cross-bridge interactions involved 

that do not stress the damaged force generators.  Finally - to further highlight the 

role of muscle damage and impaired RTD - which is a putative major contributor to 

power production; I tested women, whom are known to have lower RTD than men.  

It was expected that following damage women will have a greater loss of power at 

heavier loads than men because of a greater strength loss driven by larger 

impairments in RTD and more reliance on the velocity component of power.
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Chapter 2 – Reproducibility of velocity-dependent power: before and 
after lengthening contractions1 

2.0 Introduction 

Reliability of isokinetic testing at various fixed angular velocities has been 

well established (6, 8, 25, 32).  However, when muscle power is tested isokinetically 

shortening velocity is constrained artificially and does not provide a measure of 

muscle performance replicating daily activities, in which the load is fixed and 

velocity is unconstrained.  A less common, but useful method used to determine 

power is to perform contractions under velocity-dependent conditions, whereby 

velocity is unconstrained and the contraction is performed at a pre-determined 

load.  The Biodex Dynamometer can be operated in the isotonic mode to allow for a 

fixed resistance (i.e., % maximum voluntary isometric contraction (MVC)) and a 

variable unconstrained angular velocity (29, 30) dependent upon the effort of the 

subject.  Because these contractions involve the acceleration of a constant load 

rather than measuring torque produced at a constant velocity, this mode may serve 

as a better tool than isokinetic measures during clinical, athletic and laboratory 

testing.  Due to the recent increase in use of the isotonic mode for baseline 

normative measures (19, 33), training (30, 34) and fatigue studies (2, 3, 5, 18, 28) it 

is essential to establish the day-to-day reliability and utility of this measure.  

                                                 

1
 A version of this chapter has been published.  Used with permission from the NRC Research Press.  

Power GA, Dalton BH, Rice CL, Vandervoort AA. Reproducibility of velocity-dependent power: 
before and after lengthening contractions. Appl Physiol Nutr Metab 36: 626-633, 2011.  
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When testing participants using the isotonic mode of the Biodex 

Dynamometer, the individual must first overcome the preset resistance throughout 

the range of motion, while any additional torque generated is translated into 

increases in velocity.  Due to inherent mechanical limitations of the dynamometer 

(unable to maintain an exact constant external load), these contractions are not 

strictly isotonic and neither are they iso-inertial as the load is fixed (mechanically) 

and is determined by the constant braking of the dynamometer (14).  Therefore, we 

have chosen to refer to these contractions as “velocity-dependent”, in that these 

velocity-dependent movements involve an unconstrained angular velocity while the 

contraction is performed at a pre-determined load (i.e., %MVC). 

The determination of strength and power under isokinetic conditions has 

been shown to be reliable (ICCs) in muscles about the ankle [0.61-0.96] (10, 11, 25, 

26), knee [0.82-0.98] (8, 23, 24, 32), elbow [0.95-0.97] (16) and shoulder [0.60-

0.95] (17, 20) joints, as well as during and following fatigue interventions [0.82 -

0.89] (23, 25).   However, isotonic and isokinetic testing involve different 

mechanical constraints which are likely to necessitate altered neuromuscular 

strategies to perform each movement effectively (29, 30).  Thus, reliability of the 

isotonic mode should be evaluated, and may result in different outcomes than 

isokinetic maneuvers.   

Fatigue, defined as any exercise-induced reduction in muscle performance is 

task-dependent and multi-faceted (7), and thus should be assessed using a 

multitude of tasks in addition to the most common, isometric strength (3).  

Isometric and isokinetic tasks utilize torque as the index of fatigue whereas for 
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velocity-dependent contractions, velocity is the underlying parameter that largely 

reflects changes in power over time.  Isokinetic contractions are limited by a 

constant fixed velocity and provide limited information regarding fatigue-induced 

alterations in shortening velocity, which ultimately is the major determinant of 

power-loss during daily activities with unconstrained velocities.  It is of particular 

interest to explore the reliability of these measures to track group changes following 

a bout of unaccustomed lengthening contractions, which in addition to muscle 

fatigue are known to induce muscle damage (4, 21) and require a prolonged 

recovery (28) for the return of neuromuscular function.  Because torque generation 

capacity is more impaired following damaging lengthening contractions than loaded 

shortening velocity (28), a moderately loaded contraction (i.e., 20% MVC) may 

provide a reliable day-to-day measure of muscle function following lengthening 

contractions such as those incurred during plyometric training. 

The importance of accurately reproducing strength and power values is 

critical for the assessment of fatigue and training induced alterations in muscle 

function.  Furthermore, the ankle dorsiflexors were chosen as the model of study 

due to this muscle group’s consistently high voluntary activation with little  need for 

subject familiarization (15).  Therefore, the purpose of this investigation was to 

provide an initial determination of the day-to-day reliability of maximum shortening 

velocity and peak power in healthy young adults, using an isotonic testing mode and 

further the understanding of fatigue and recovery of shortening velocity following 

lengthening contractions.   
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2.1 Methods 

2.1.1 Experimental approach to the problem: A group of healthy young men 

and women performed dynamic contractions on a Biodex Dynamometer operated 

using the ‘isotonic mode’.  Day-to-day reliability of velocity-dependent power 

(calculated at 20% MVC) was evaluated at baseline and following repeated high-

intensity lengthening contractions.  Data were collected approximately the same 

time of day on two separate testing sessions seven days apart.  Intraclass correlation 

coefficients (ICC2,1) with 95% confidence intervals were used to determine relative 

reliability, while absolute reliability measures included typical error (TEM) and 

typical error expressed as a coefficient of variation (TEMCV).  Bland-Altman plots 

were constructed to provide a visual representation of systematic bias and 

variability.   

2.1.2 Subjects: Twenty four young men (n=10; 25.6 ± 2.9 y) and women (25.3 

± 1.8 y) from the university population volunteered for this study.  The mean height 

and body mass of the men and women were: 176.4 ± 6.8 cm, 76.8 ± 7.8 kg and 166.9 

± 6.6 cm, 61.5 ± 10.7 kg, respectively.  Participants were recreationally active and 

free from musculoskeletal disorders and were not involved in systematic resistance 

training of the dorsiflexors, or were competitive runners.  This study received 

approval from the University of Western Ontario Review Board for Health Sciences 

Research Involving Human Subjects and conformed to the Declaration of Helsinki.  

Informed, oral and written consent were obtained prior to testing.  Participants 

were asked to refrain from strenuous exercise 24 hr prior to the day of testing and 

to not consume caffeine on the day of testing.   
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2.1.3 Experimental set-up: A Biodex multi-joint dynamometer (System 3, 

Biodex(TM) Medical Systems, Shirley, New York) was used for testing and calibration 

was verified according to Biodex(TM) System 3 guidelines.  All dynamic contractions 

were performed in the isotonic mode.  The right foot was strapped tightly to the 

footplate with the ankle in line with the rotational axis of the dynamometer.  

Extraneous body movements were minimized using non-elastic shoulder, waist and 

thigh straps.  Participants were positioned on the chair with hip and knee angles at 

~110o and ~140o, respectively, and ankle angle at ~30o plantar flexion.  All 

isometric contractions were performed at 30o of plantar flexion.  Voluntary 

shortening contractions began from the plantar flexed position of 30o and ended at 

the neutral ankle angle (0o), thus moving through a 30o range of motion.  Before the 

footplate moved during the velocity-dependent shortening contractions, 

participants had to overcome the pre-programmed resistance.  The dynamometer 

absorbs this increase in applied torque resulting in a directly proportional increase 

in angular velocity (29).   

2.1.4 Procedures: Velocity-dependent contractions were performed at 20% of 

MVC.  Pilot testing indicated that a 20% MVC load represents a moderate resistance 

in which the participant could perform fast shortening contractions without range 

of motion failure following high-intensity lengthening contractions.  Three MVCs 

were performed for 3-5 s, with three min rest between all contractions (Figure 5).   

Participants were provided visual feedback of the torque, and exhorted during all 

voluntary contractions.  To ensure MVCs were maximal, voluntary activation was 

assessed using the modified interpolated twitch technique (9). 
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Figure 5. Schematic diagram of experimental protocol. 

Baseline measures, a fatigue intervention and recovery measures were perfo rmed in 
the same order during two sessions separated by 7 days.  Day-to-day reliability 
analyses were performed on peak velocity and power for the baseline velocity-
dependent contractions and the recovery response of these measures following the 
fatigue intervention.  Grey bars are maximum voluntary isometric contractions 
(MVC).  Open triangles are electrically evoked contractions (twitch and twitch 
doublet).  Open arrows indicate the stimuli of the electrically evoked twitches; and 
filled arrows are electrically evoked doublets.  Filled profiles are dynamic 
contractions; fast velocity-dependent shortening contractions at 20% MVC 
(triangles), and dynamic lengthening contractions at 80% MVC (rectangles).  
Recovery time points: 30s, 2, 5, 10, 15, 20, 30 min.   
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Contractions of the tibialis anterior were electrically evoked using a bar 

electrode held distal to the fibular head over the deep branch of the common fibular 

nerve.  A computer-triggered stimulator (model DS7AH, Digitimer. Welwyn Garden 

City, Hertfordshire, UK) was used with a setting of 400 V and a pulse width of 100 

µs.  The amplitude of the interpolated torque evoked during the peak plateau of the 

MVC (Ts) was compared with a resting twitch doublet torque evoked when the 

muscle was relaxed fully ~1 s following the MVC attempt (Tr).  If the superimposed 

twitch doublet torque amplitude was visible during the MVC, the participant was 

encouraged further to perform an additional attempt until there was indeed 

minimal voluntary activation failure.  Percent voluntary activation was calculated as 

voluntary activation (%) = [1- (Ts/Tr)] x 100.  Values from the MVC with the highest 

torque amplitude were used for data analysis.   

Once MVC torque was determined to be maximal, the dynamometer was 

switched from the isometric to isotonic mode and a load equal to 20% MVC was 

programmed.  The dynamometer was programmed to allow the footplate to return 

to 30o of plantar flexion at the end of each shortening voluntary contraction while 

the participant relaxed fully.  Familiarization with these ‘fast’ shortening 

contractions involved participants performing several (typically 5) velocity-

dependent shortening contractions until a stable baseline value was obtained (no 

change in maximal shortening velocity).  To ensure a maximal effort (peak velocity) 

contraction, all participants were instructed to move the load “as hard and as fast as 

possible throughout the entire range of motion”.  To assist participants in reaching 

their maximal shortening velocity, visual feedback of the velocity profile was 



31 

 

 

 

provided via a computer monitor, and a horizontal cursor was positioned at the 

previous personal best attempt.  Participants rested for 3 min and then performed 2 

consecutive contractions, the fastest was used to establish baseline values for 

maximum shortening velocity and peak power.  

2.1.5 Lengthening contraction intervention: Because many natural movements 

are comprised of isometric,  shortening and lengthening phases we challenged the 

system with an under-studied, but important dynamic task of lengthening 

contractions to explore reliability following fatigue in relation to velocity and power, 

and also uniquely during a period of recovery.  Participants performed 5 sets of 30 

lengthening dorsiflexion contractions with a load of 80% MVC and each set 

separated by 30 s.  The contractions started at the neutral ankle angle (0 o) and 

ended at 30o plantar flexion, thus moving through a 30o range of motion.  

Participants were provided with visual feedback of velocity and instructed to resist 

while lowering the foot plate through the 30o range of motion over a 1 s period 

(~30o/s).  The foot was then returned to the neutral ankle position by the 

investigator over a period of 2 s.  Following task completion on both day 1 and day 2 

absolute peak velocity of the shortening contractions were determined from two 

contractions performed at each of seven time points throughout recovery; at 0.5 

min, 2 min, 5 min, 10 min, 15 min, 20 min, and 30 min (Figure 5).  The absolute peak 

velocity values from each of the seven recovery time points from day 1 and 2 were 

used to assess the reliability of the overall recovery response to the lengthening 

contraction protocol (see statistical analysis for specific measures) (27).  This 
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allowed for a comprehensive analysis of the reliability of recovery following the 

intervention of lengthening contractions.  

2.1.6 Data reduction and analysis: Torque, position and velocity data were 

sampled at 100 Hz and converted to digital format using a 12-bit analog-to-digital 

converter (model 1401 Power, Cambridge Electronic Design, Cambridge, UK).  Spike 

2 software was used to determine off line values for MVC torque, and voluntary 

maximum shortening velocity.  Power was calculated as the product of torque (Nm) 

and the peak shortening velocity (rad/s) of the faster of two contraction attempts 

(as described above).   

2.1.7 Statistical analysis: All statistical analyses were performed using SPSS 

software (version 16, SPSS Inc. Chicago, IL) and Microsoft Excel 2007 (Microsoft, 

Seattle, WA).  Paired t-test analysis between day 1 and day 2 was performed to 

establish whether reproducibility bias was present for baseline measures.  

Reliability of baseline and recovery measures was assessed using the following 

statistical analyses.  Bland-Altman plots were constructed to provide a visual 

representation of systematic bias and variability (1) by plotting the difference of day 

1 and day 2 against the individual mean of day 1 and day 2 using either peak 

velocity or power at baseline and following the lengthening contractions.  Reliability 

of maximum shortening velocity and peak power were assessed using the intraclass 

correlation coefficient ICC2,1 which is based upon a repeated-measures ANOVA with 

testing session as the independent variable (31).  The first subscripted number 

denotes the model (i.e., 2), selected because it is based upon repeated measures 

analysis of variance during which all participants are assessed by the same rater.  
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The second subscripted number signifies the form using either a single score (1) or 

the mean of several scores (2).  The scores were peak absolute values (31).  This 

model takes into account differences among participants, testing sessions, and error 

variance.  Therefore, ICC2,1  with 95% confidence intervals were used to determine 

the relative reliability across the 2 testing sessions of peak shortening velocity and 

power at baseline and following lengthening contractions.  Measures of absolute 

reliability include: typical error (TEM), typical error expressed as a coefficient of 

variation (TEMCV), and the limits of agreement (LOA) reflecting 95% probability 

limits between which the difference scores of day 1 and 2 should fall.  Typical error 

(TEM) was calculated as the standard deviation of the difference score between the 

two days, divided by the square root of 2.  Coefficient of variation of the typical error 

was calculated as the TEM divided by the average of all trials, multiplied by 100 

(12).  The LOA was calculated as the mean difference between the two days ± 1.96 x 

SD of the difference between the two days.  Alpha was set at 0.05, and Table 1 is 

presented as means ± standard deviations (SD). 

 

2.2 Results 

Among participants, MVCs ranged from 24 to 66 N·m while individual scores 

were highly reproducible day to day, thus resulting in similar 20% loads (8.2 ± 2.2 

and 8.3 ± 2.2 N·m) with which the loaded velocity-dependent shortening 

contractions were performed.  The means and SDs for MVC, maximum shortening 

velocity, and peak power on day 1 and day 2 are presented in Table 1.  There were 

no significant differences between day 1 and day 2 for any of these measures (p > 
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0.05).  As well, voluntary activation was near maximal at baseline both days (99% ± 

1%) and following (96% ± 5%; 95% ± 6%) the lengthening contractions bo th days 

(p > 0.05). 

Intraclass correlation coefficients were calculated separately for men and 

women for maximum shortening velocity and power at baseline, however ICCs were 

not different between sexes for velocity [0.93 (men), 0.94 (women)] or power [0.97  

(men), 0.98 (women)].  Thus, data were pooled to represent the reliability of 

velocity and power for both men and women for all subsequent analyses.    

The differences between test day 1 and day 2 for maximum shortening 

velocity and peak power at baseline and following lengthening contractions are 

plotted against the average of the two testing sessions for each individual (Figure 6).  

The results from the Bland-Altman plots show the mean bias to be positive and 

relatively small for velocity and power measures indicating values were slightly 

higher on day 2, with fatigue data showing a greater bias towards a positive 

difference between the two testing sessions.  For all Bland-Altman plots, the 95% 

limits of agreement were symmetric around the zero line, with a greater tendency 

towards asymmetry for the fatigue data.   

Despite fluctuations in mean bias, the intraclass correlations for maximal 

shortening velocity and peak power at baseline (presented in Table 1) were 

classified as ‘high’ (27).  The pooled recovery data over 30 min for maximum 

shortening velocity and peak power following the lengthening contractions also 

displayed high intraclass correlations for maximal shortening velocity and peak 

power. 
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Table 1 Absolute baseline measures and reliability statistics for maximal shortening 
velocity and peak power. 

Between measurement p-values are not reported for day-to-day recovery data 
because the data were pooled over the testing sessions and analyzed as a time effect 
of the fatigue intervention. 
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C. 

D.  

       

Figure 6. Bland-Altman plots  
 
Maximum shortening velocity (deg/s) (A) and peak power (Watts) (B) at baseline 
and following the fatigue intervention (C and D), respectively, for women (open 
circles) and men (closed circles). The horizontal lines represent the mean bias 
(dotted line) and upper and lower 95% limits of agreement.  The x-axis is the mean 
value of day 1 and day 2, and the y-axis is the difference score of day 2 – day 1.  
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Measures of absolute reliability for maximum shortening velocity and peak 

power are presented in Table 1.  The typical error and coefficient of variation 

associated with shortening velocity was 4.66o/s and 3.25%, respectively.  The 

typical error and coefficient of variation associated with peak power was 1.2 Watts 

and 5.63 %, respectively.  Following the lengthening contractions, the typical error 

associated with shortening velocity was 6.8o/s and the coefficient of variation was 

5.2%.  The typical error associated with peak power following the lengthening 

contractions was 1.8 Watts and the coefficient of variation was 8.7%. 

 

2.3 Discussion 

This study analyzed the day-to-day reproducibility of maximum shortening 

velocity and velocity-dependent power with a load set at 20% MVC in healthy young 

adults before and after an intervention of repeated high-intensity lengthening 

contractions.  Our findings demonstrate relative reliability (ICCs) to be ‘high’ at 

baseline and following lengthening contractions.  Absolute reliability, as assessed, 

via coefficient of variation of the typical error for maximum shortening velocity and 

peak power resulted in an error of ~3% and ~9% at baseline and following the 

lengthening contractions, respectively.  As suggested by Portney and Watkins 

(2000) intraclass correlations greater than 0.75 are considered to have good 

reliability.  In this study, ICC confidence intervals for velocity and power at baseline 

ranged from 0.85-0.97 and 0.95-0.99, respectively.  As well, following the 

lengthening contractions we obtained ICC confidence intervals ranging from 0.82-

0.90 and 0.93-0.96 for velocity and power, respectively indicating high reliability.  
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The high reliability of this measure is encouraging and suggests the isotonic mode 

can be used in various settings to track group changes such as before and after 

training and following fatigue and lengthening contractions. 

This study reported TEM and TEMCV; these statistics provide an absolute and 

generalizable measure, respectively for comparisons of reliability between 

individuals of different strength and power.  Typical error provides a reliability 

statistic free from the influence of correlations, as well; TEMCV serves as a 

dimensionless measure which allows for the comparison across reliability studies 

using different testing protocols, participants and measurement tools (12).  Here, 

lower values for TEM and TEMcv indicate high reliability.  Velocity measures 

resulted in a TEM of 4.66o/s, and TEMcv of 3.25%, which suggest one would need a 

signal-to-noise ratio greater than ~5o/s and a 3.25% difference to observe a value 

that would not be associated with systematic error.  Power measures resulted in a 

TEM of 1.19 Watts, and TEMcv of 5.63%, which suggest one would need a signal to 

noise ratio greater than 1.19 Watts and a difference of 5.63% to observe a value that 

would not be associated with systematic error.  Visual analysis of the graphs and 

interpretation of the Bland-Altman analysis showed the mean absolute scores for 

maximum shortening velocity and power at baseline to be stable across day 1 and 

day 2.  The mean bias for velocity (0.19o/s) and power (0.16 Watts) at baseline 

suggests there was no practice/learning effect from performing the previous bout.  

Adding the element of repeated lengthening contractions over time allows for 

potentially more error to affect the true score.  There was however only a mean bias 

of 3.6o/s and 0.87 Watts for velocity and power, respectively, following the 
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lengthening contractions (Figure 6).  The positive mean bias on day 2 following the 

lengthening contractions suggests there was less impairment in shortening velocity 

and power, thus individuals may have benefited slightly from the previous 

experience, such that, the muscle may have adopted a protective mechanism leading 

to less impairment in neuromuscular function during the second day of testing, 

commonly known as, the “repeated bout effect” (4, 22).  For example, the muscle 

may have adapted to the previous bout of lengthening contractions with the 

addition of more sarcomeres in series (21) and thus, ‘protected’  from subsequent 

muscle damage during the second testing day one week later.  However, the baseline 

values for maximum shortening velocity and peak power were highly consistent 

across days (Figure 6), suggesting the muscle had adequate time to recover from the 

previous bout of lengthening contractions. 

In the present study, the ICC statistics were higher for power than velocity.  

This may be attributed to normalization of shortening velocity to a percentage of 

one’s MVC (Power (W) = 20% MVC (N·m) x Velocity (rad/s).   Reliability methods 

based on correlation coefficients, such as ICC, provide a measure of relative 

reliability.  However, these reliability statistics are influenced by the range of values 

measured and give no indication of actual measurement values or systematic 

variability within the measure itself (12).  Here, the ICC for maximum shortening 

velocity was 0.93 while the TEMCV was 3.25%.  Although, power had a higher ICC of 

0.98 it was associated with more measurement error (5.63%), thus emphasizing the 

need for several statistical measures to evaluate reliability effectively.  Using the 

isotonic mode, in which power is calculated as a percentage of MVC the additional 
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error can be attributed to day-to-day variability of the MVCs and hence emphasizes 

the importance of proper control measures to ensure a suitable maximal isometric 

effort is obtained prior to isotonic testing.   

When performing velocity-dependent contractions strict care ought to be 

taken to ensure high reliability.  First, the process of obtaining the isometric MVC 

must be controlled to achieve a maximal value; depending on the muscle group, this 

may require multiple familiarization attempts (9, 13).  The current study 

investigated the ankle dorsiflexors because of the consistently high voluntary 

activation levels reported for this muscle group (15).    Secondly, to obtain a 

maximal effort (peak velocity) during the velocity-dependent contractions and 

reduce the learning effect, participants were required to reach a consistent peak 

velocity (no change during five successive attempts) before performing baseline 

attempts.  A fast, maximal effort can be achieved by providing the participant with 

visual feedback of the velocity profile and positioning a horizontal cursor at a 

previous personal best.  These considerations help to minimize the likelihood of 

introducing systematic error into the measurement and ensures high reliability.  

Holmback et al. (1999) investigated the isokinetic reliability of the ankle 

dorsiflexors of young men and women across a range of velocities (30 – 150o/s).  

The ICCs for peak torque when the participants were tested at 120 and 150 o/s 

(similar to our isotonic velocities) ranged from 0.78-0.80 with a coefficient of 

variation of ~13% and a trend of increasing measurement error with increasing 

velocity.  This is not surprising based upon a study of the mechanical reliability of 

the Biodex (6) which showed higher reliability values associated with slower 
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isokinetic velocities.  In our study we found high reliability and minimal 

measurement error associated in determining power before and after lengthening 

contractions using the isotonic mode.  But, it is unknown in young adults whether 

such reliability would be similar when performing isotonic contractions at other 

relative workloads which may dictate a faster or slower angular velocity, or place a 

greater or lesser demand on rate of torque development.  Furthermore, with the 

increasing recognition of the isotonic mode for neuromuscular testing (2, 3, 5, 18, 

28), reliability should be evaluated in other populations, such as elite athletes, 

individuals with athletic injuries or those with musculoskeletal disorders to ensure 

the utility of this testing mode. 

These measures of relative and absolute reliability indicate velocity-

dependent power is sufficiently reproducible when assessing baseline muscle 

characteristics (as in the case of a training intervention) and recovery following an 

intervention consisting of lengthening contractions.  Acceptability of these values 

depends highly on the precision one requires to observe a meaningful difference.  

When investigating fatigue-induced changes following an exercise intervention or 

over the course of a training study, these day-to-day error fluctuations are relatively 

small and should provide reliable measures.  To reduce the chance of introducing 

systematic error into the measurement when testing under unconstrained velocity 

conditions participants must be highly motivated and able to maintain high or at 

least consistent voluntary activation of the muscle group involved, and for some 

clinical populations this may require multiple practice contractions or separate 

familiarization days.  
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Chapter 3 – Delayed recovery of velocity-dependent power loss 
following eccentric actions of the ankle dorsiflexors 2 

3.0 Introduction 

Unaccustomed eccentric exercise is known to induce muscle damage and 

impair muscle function (19), although little is known regarding this impairment on 

concentric muscle power.  Power loss is the result of fatigue-related reductions in 

both torque and shortening velocity, but the contributions of fatigue-related 

declines in shortening velocity to the reduction in power following eccentric 

exercise are unknown.  Thus, our interest involves investigating the effects of 

repeated eccentric contractions on the ability of the muscle to generate velocity-

dependent power. 

Eccentric contractions are characterized by an external load overcoming the 

torque produced by the agonist resulting in a lengthening of the muscle.  For a given 

resistance, these contractions are less energetically demanding, cause less metabolic 

flux and generally produce greater forces than concentric or isometric contractions 

(31, 32).  This lengthening can place the muscle fiber under active strain over the 

descending limb of the length-tension curve (43, 46), resulting in mechanical 

disruption of the actin-myosin bonds, cytoskeletal damage, and a prolonged 

reduction in voluntary force evident in studies of both animals (24) and humans 

                                                 

2 A version of this chapter has been published via the American Physiological Society.   

Power GA, Dalton BH, Rice CL, Vandervoort AA. Delayed recovery of velocity-dependent power 
loss following eccentric actions of the ankl e dorsiflexors. J Appl Physiol 109: 669-676, 2010.  
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(50). Impaired torque production following eccentric exercise can be attributed to 

impaired calcium release as a result of damage induced dysfunction to structural 

components involved in E-C coupling (2, 59).  As well, the increase in series 

compliance due to overstretched sarcomeres, leads to a shift to longer muscle 

lengths for optimal torque production (27) resulting in impaired torque production 

at the original muscle length.   

The ability of a muscle to generate peak power is dependent on its maximum 

shortening velocity at a given load.  Many factors contribute to maximum shortening 

velocity in an intact muscle, such as; rate of motor unit recruitment (58), muscle 

architecture (7) and fiber composition (28) (see Gordon (26) for review).  Type II 

fibers generally produce ~4x greater power than Type I fibers.  Additionally, it has 

been suggested that Type II muscle fibers are more susceptible to muscle damage 

than Type I (36), and damage may be more closely related to sarcomere length 

during contraction (12).  Thus, the differences in fatigability following an eccentric 

fatigue task may depend upon the muscle group and type of contraction performed. 

Neuromuscular fatigue, defined as any exercise-induced reduction in the 

generation of torque or power, can be manifested through both central or 

peripheral factors (22) and its analysis is further complicated by many influences 

such as species, sex and muscle fiber type differences whose interactive effect will 

depend on the type of contraction task utilized, muscle group involved and 

incidence of muscle damage (2, 6, 11, 12, 18, 19, 24, 34).  The fatigue response to 

dynamic shortening contractions is similar between sexes (17, 54).  However, in 

limited studies following eccentric fatiguing contractions women had greater 
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isometric strength loss compared with men (53, 55).  Thus it is unknown whether 

isotonic power will be impaired differently between the sexes. 

One limitation of previous studies is only using a measure of isometric torque 

(MVC) to assess fatigue following eccentric contractions, but because of task-

specificity, MVCs may underestimate the functional deficit in muscle performance 

(49).  Power, the product of both torque and velocity, may serve to exploit different 

mechanisms of fatigue to a greater extent than isometric torque.  However, only 

isokinetic power has been reported following eccentric contractions (23, 44, 47) 

with modest reductions.  Isokinetic measures are limited by a constant velocity with 

varying resistance which therefore cannot assess fatigue-induced alterations in 

shortening velocity following a task or exercise. 

A less common method used to calculate power, but functionally relevant, 

are velocity-dependent contractions, in which the load is held constant and velocity 

varies throughout the range of motion and over time (15).  Unlike impairments in 

force production capacity, the contributions of fatigue-related declines in shortening 

velocity to the reduction in power following eccentric exercise are unknown.  

Indeed, shortening velocity is known to recover fairly rapidly (< 5 min) after 

isometric and concentric contractions (15, 16), but repeated eccentric contractions 

result in disintegration and streaming of the Z-disks, disorganized myofilaments, 

and hypercontracted and overstretched sarcomeres (40), which could impair cross-

bridge cycling, and hence, affect, to a greater extent, the production of shortening 

velocity.   
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Because of the lower metabolic cost of lengthening contractions, but greater muscle 

damage compared with isometric or shortening contractions, it remains unclear 

whether velocity-dependent power loss is lesser than, greater than, or similar to 

repeated isometric or concentric contraction tasks (16).  Therefore, the purpose 

here was to investigate the effect of high-intensity eccentric contractions on 

neuromuscular function and velocity-dependent power in young men and women.  

We hypothesized there will be a modest reduction in shortening velocity resulting in 

velocity-dependent power loss which will remain reduced throughout recovery.  A 

secondary purpose of the study was to explore further the equivocal observations in 

the literature about differences between the sexes in muscle fatigue and responses 

to eccentric exercise. 

 

3.1 Methods 

3.1.1 Participants: Ten young men (25.6 ± 2.9 y) and eleven young women 

(26.0 ± 1.7 y) from the university population volunteered for the study.  The mean 

height and mass of the men and women were: 176.4 ± 6.8 cm and 76.8 ± 7.7 kg; and 

164.8 ± 5.9 cm and 59.2 ± 10.1 kg, respectively.  The study protocol was approved 

by the local University’s Review Board for Health Sciences Research Involving 

Human Subjects and conformed to the Declaration of Helsinki.  Informed, oral and 

written consent was obtained prior to testing.  

Participants visited the laboratory on 2 occasions separated by seven days.  

All participants were recreationally active with no known neurological or 
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cardiovascular diseases.  The first session was familiarization to the testing 

procedures, and the second during which data were collected.  Participants were 

asked to refrain from strenuous exercise one day prior to testing and to not 

consume caffeine on the day of testing.  

3.1.2 Experimental set-up: A Biodex multi-joint dynamometer (System 3, 

Biodex Medical Systems, Shirley, New York) was used for testing and calibration 

was verified according to Biodex System 3 guidelines.  A footplate was attached to 

the dynamometer and positioned at an angle of approximately 45o to the floor.  The 

right foot was strapped tightly to the footplate with the lateral malleolus in line with 

the rotational axis of the dynamometer.  Extraneous body movements were 

minimized using non-elastic shoulder, waist and thigh straps.  Participants sat in a 

slightly reclined position with hip, knee, and ankle angles at ~110o, ~140o, and ~30o 

plantar flexion, respectively.  All isometric dorsiflexion contractions were 

performed at 30o of plantar flexion.  Concentric contractions began from the plantar 

flexed position of 30o and ended at the neutral ankle angle (0o).  The eccentric 

contractions started at the neutral ankle angle and ended at 30o plantar flexion, thus 

moving through a 30o range of motion.  The dynamic contractions were performed 

in the isotonic mode of the Biodex, thus allowing velocity to vary while providing 

inertia-free constant torque.  In the isotonic mode, participants had to overcome the 

pre-programmed torque before the footplate would move during the concentric 

movements.  Increases in applied torque were absorbed by the dynamometer and 

returned as a directly proportional increase in velocity (51).  The isotonic mode is 

not by the proper definition strictly isotonic.  The important point is that the load 
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(resistance) is essentially constant and velocity of movement can vary freely.  This is 

useful when exploring the effect of velocity changes on movement and power.  

Therefore, throughout this paper we will refer to these contractions as velocity-

dependent.   

Surface electromyography (EMG) was collected from the tibialis anterior and 

soleus muscles using self-adhering Ag-AgCl electrodes (1.5 X 1cm; Kendall, 

Mansfield, MA).  The skin was rubbed vigorously with alcohol prior to the 

application of the electrodes.  A monopolar electrode set up was used with an active 

electrode positioned on the proximal portion of the tibialis anterior over the 

innervation zone (~7 cm distal to the tibial tuberosity and ~2 cm lateral to the tibial 

anterior border) and a reference placed over the distal tendinous portion of the 

tibialis anterior at the ankle.  For the soleus the active electrode was positioned ~2 

cm distal to the medial head of the gastrocnemius and a reference placed over the 

calcaneal tendon. 

A computer-triggered stimulator (model DS7A, Digitimer. Welwyn Garden 

City, Hertfordshire, UK) provided the electrical stimulation of the dorsiflexors using 

a pulse width of 100 µs, 400 V, and current ranging from 20-95 mA.  Contractions of 

the tibialis anterior were electrically evoked using a bar electrode held distal to the 

fibular head over the deep branch of the common peroneal nerve.  Through 

palpation and careful observation we were confident there was no activation of the 

peroneal or plantar flexor muscles during the electrically evoked contractions. 

3.1.3 Experimental procedures: Peak twitch torque (Pt) was determined by 

increasing the amplitude of the current until a plateau in M-wave amplitude was 
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reached (30-95 mA), followed by a further 10-15% increase in current to ensure 

supramaximal stimulation.  This stimulation intensity was the same one used for 

doublet stimulation (two pulses at 10 ms interpulse interval) to assess voluntary 

activation.  Next, 100 Hz peak torque (P100) was determined by increasing the 

current until there was a plateau in P100 (20-65 mA).  A torque-frequency 

relationship was constructed using 1 s trains of the following frequencies: 1, 5, 10, 

20, 30, 40, 50, and 100 Hz.  Frequencies were delivered, in random order, at the 

current found to evoke P100 with 1 s between trains. 

Then, 3 MVCs were performed of 3-5 s duration.  Three minutes of rest was 

given between all contractions.  Participants were provided visual feedback of the 

torque via near real time display, and verbally exhorted during all voluntary 

contractions.  Voluntary activation was assessed during all MVCs using the modified 

interpolated twitch technique (29).  The amplitude of the interpolated torque 

evoked during the MVC was compared with a resting twitch doublet torque evoked 

~1 s following the MVC.  Percent voluntary activation was calculated as voluntary 

activation (%) = [1- (interpolated twitch doublet/resting twitch doublet)] x 100.  

Values from the peak MVC were used for data analysis.  Once MVC torque was 

determined, the dynamometer was switched from the isometric to isotonic mode.  A 

load equal to 20% MVC was programmed into the Biodex and participants were 

instructed to perform practice concentric contractions (3-5 contractions) as fast as 

possible.  The 20% MVC load represents a moderate resistance for dynamic 

contractions that all subjects could endure when it is important to have fast 

shortening contractions performed throughout the range of motion following a 
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fatiguing protocol.  For example, at a load of approximately 60% of MVC many 

subjects cannot perform one concentric contraction through a full range of motion 

and the speed of movement is very slow.  The Biodex was programmed such that the 

footplate was automatically returned to 30o of plantar flexion at the end of each 

concentric voluntary contraction.  Following practice, two contractions wer e 

performed to establish values for peak shortening velocity at baseline.  

3.1.4 Fatigue and recovery protocol: Participants performed 5 sets of 30 

eccentric dorsiflexion contractions separated by 30 s, and performed with a load set 

at 80% MVC.  Pilot testing showed 80% to be a compromise between very rapid 

fatigue but a sufficient contraction intensity to permit several contraction cycles to 

occur before achieving task failure.  Participants were provided with visual feedback 

of velocity and instructed to resist while lowering the foot plate through the 30o 

range of motion over a 1 s period.  The foot was then returned to the neutral ankle 

position by the investigator over a period of 2 s.  The voluntary and electrically 

evoked responses of the dorsiflexors were recorded at: baseline, during the fatigue 

protocol, immediately following each of the 5 sets, and throughout the recovery 

period at 0.5 min, 2 min, 5 min, 10 min, 15 min, 20 min, and 30 min (Figure 7).  

Measures following the fatigue protocol included, and were performed in the 

following order: (1) maximum evoked twitch properties, (2) assessment of MVC and 

voluntary activation, (3) post-activation twitch and twitch doublet, (4) A measure of 

low frequency torque depression (10:50 Hz ratio), and (5) velocity-dependent 

concentric power.  
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Figure 7. Schematic diagram of experimental protocol.  
 
Grey bars are isometric maximum voluntary contractions (MVC). Open profiles are 
electrically evoked contractions (twitches (small triangles), doublet (large 
triangles), 10 Hz and 50 Hz (bars)).  Filled profiles are dynamic contractions; 
concentric at 20% MVC (triangles), and dynamic eccentric contractions at 80% MVC 
(rectangles).  Open arrows are electrically evoked twitches; and filled arrows are 
electrically evoked doublets. Recovery time points: Post (task termination), and at 
0.5, 2, 5, 10, 15, 20, and 30 minutes.  
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3.1.5 Data reduction and analysis: Torque, position and velocity data were 

sampled at a rate of 100 Hz.  All data were converted to digital format using a 12-bit 

analog-to-digital converter (model 1401 Power, Cambridge Electronic Design, 

Cambridge, UK).  Surface EMG signals were pre-amplified (x100), amplified (x2) and 

band-pass filtered (10-1,000 Hz), and sampled online at 2500 Hz using Spike 2 

software (version 6.10, Cambridge Electronic Design Ltd.).  Surface EMG from the 

MVC was root mean squared (RMS) and values were used from a 1 s time period 

about the peak torque.  All subsequent MVC RMS values were normalized to the 

level obtained during baseline.  EMG was collected during the fatigue protocol from 

contractions 1-5, 13-17 and 25-30 of each set and averaged for each set.  Peak RMS 

values of the raw surface EMG was calculated during the lowering phase through the 

30o range of motion and then normalized to the M-wave.  Post-activation 

potentiation was calculated by comparing the twitch following the MVC to the 

baseline twitch.  Power was calculated as the product of torque (N·m) and the peak 

shortening velocity (rad/s) of the fastest contraction attempt.  Spike 2 software was 

used off line to determine M-wave amplitude, area, duration, the peak twitch torque 

(Pt), peak doublet torque (Dt), doublet time to peak twitch (DTPT), half relaxation 

time (DHRT) of the doublet, contraction duration (CD=DTPT+DHRT), doublet rate of 

torque development, and doublet maximum rate of relaxation.  Low frequency 

torque depression was calculated using a ratio of peak 10 to peak 50 Hz evoked 

torques (10:50 Hz).  To account for expected strength differences, all measures were 

normalized to baseline and presented as a percent change. 
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3.1.6 Statistical analysis: Using SPSS software (version 16, SPSS Inc. Chicago, 

IL) a two-way (sex x time) repeated measures analysis of variance was used to 

assess all neuromuscular data over time.  Because voluntary activation values are 

not normally distributed, a Mann-Whitney U-test was employed to test for 

significance between groups.  An unpaired t-test was used to assess group 

differences for subject characteristics.  The level of significance was set at p <0.05.  

When a significant main effect or interaction was present, Tukey’s HSD post hoc test 

was performed to identify where significant differences existed.  Tables are 

presented as mean ± standard deviation (SD), and figures as mean ± standard error 

(SE).  

 

3.2 Results 

3.2.1 Baseline measures: As expected, due to differences in anthropometrics, 

men had higher values for absolute measures of: peak twitch torque, MVC torque, 

velocity and power than women, ~ 49%, 30%, 16% and 38%, respectively (Table 2).  

When absolute values were compared, men were stronger than women (p < 0.05) at 

every stimulation frequency, but when the torque frequency curves (Figure 8) were 

normalized to 100 Hz torque there were no differences  in the relationship between 

men and women (p > 0.05).  Evoked torque corresponded to approximately 62% 

and 50% of MVC torque for the 50 Hz, and 64% and 52% of MVC torque for the 100 

Hz, for the men and women, respectively. 
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Table 2. Baseline contractile data.   
 
Women had lower absolute evoked peak twitch torque, maximal voluntary 
isometric contraction (MVC) torque, maximum shortening velocity, and peak power 
than men (*p < 0.05).  Voluntary activation (VA) was not significantly different (p > 
0.05) between groups.  Time to peak twitch (TPT), half relaxation time (HRT) and 
contraction duration (CD) of the twitch were not significantly different (p > 0.05) 
between groups.  Mean ± SD.   
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Figure 8. Torque-Frequency relationship.  
 
Open triangle (men absolute torque), filled triangle (men relative torque), Open 
circle (women absolute torque), and filled circle (women relative torque).  Men had 
higher absolute torques at all frequencies (1-100 Hz) compared to women (*p < 
0.05).  Relative torques were similar at all stimulation frequencies (* p > 0.05).    
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3.2.2 Fatigue and recovery measures: All participants were capable of 

completing the 5 sets of 30 eccentric contractions, although some subjects had 

difficulty lowering the foot plate at a constant velocity for the last few contractions 

of each set.  This failure to maintain a constant velocity resulted in increased 

eccentric velocities which ranged from 37o/s to 41o/s.  Despite the variation in 

velocity, the duty cycles were similar (p > 0.05) between men and women (0.32 ± 

0.04). 

When all neuromuscular measures were analyzed with regard to relative 

changes over time, no significant differences between men and women were found 

(p > 0.05).  Thus, data were pooled and normalized to baseline for all subsequent 

analyses.  Peak dorsiflexor MVC torque decreased to 85% of baseline (p < 0.05), 

following the first set of 30 eccentric contractions (Figure 9).  The MVC torque 

progressively decreased following each successive set to 72% of baseline 

immediately following task termination and did not recover fully.  There were no 

significant changes from baseline (p > 0.05) in RMS EMG of the agonist TA during 

MVCs, and voluntary activation was greater than 99% at baseline and did not 

change (p > 0.05; Figure 10) throughout fatigue and recovery.  Conversely, soleus 

RMS EMG during MVCs increased (p < 0.05) to 111 ± 21% of baseline following the 

third set of eccentric contractions, resulting in a 13 ± 9% increase in the ratio of 

antagonist coactivation where it remained for up to 20 min recovery, but returned 

to baseline by 30 min.  M-wave properties, including; peak-to-peak amplitude, 

duration, and area remained unchanged from baseline (p > 0.05).  During the 
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eccentric contractions, RMS EMG of the agonist TA normalized to M-wave did not 

differ significantly (p > 0.05) among sets. 

 

 

Figure 9. Maximum isometric voluntary contraction (MVC). 
 
Maximal voluntary strength was reduced following the first set (S1) of eccentric 
contractions and continued to decline to ~70% of baseline at Post (task 
termination) and it did not recover fully (*p < 0.05) within 30 min. [S represents 
‘sets’, R represents ‘recovery’].  Mean ± SE.  
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Figure 10. Torque output and activation for a representative subject at 30min of 
recovery. 
 
The vertical bar on the torque tracing represents the evoked doublet.  Open arrows 
indicate electrically evoked twitches; and filled arrows indicate electrically evoked 
doublets.   Maximal voluntary isometric contraction (MVC) torque    
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Twitch potentiation increased to 130 ± 16% from baseline fo llowing the first 

set of 30 contractions and 140 ± 28% of baseline immediately following task 

termination (p < 0.05), gradually diminishing to the baseline value at 2 min.  Once 

the potentiating effects of the fatigue protocol were mitigated, twitch torque was 

reduced to 79 ± 24% of baseline at 2 min recovery (p < 0.05) and continued to 

decrease to 65 ± 18% of baseline by 30 min of recovery.  Twitch doublet torque 

decreased (p < 0.05) to 83 ± 15% of baseline following the third set of contractions 

and was further reduced to 63 ± 11% of baseline by 30 min.  Twitch doublet 

contractile properties parameters including DTPT, DHRT, CD, maximum rate of 

relaxation and rate of torque development did not differ significantly from baseline 

at any time point during fatigue and recovery (p > 0.05).  Peak torque of the 10 Hz 

was 13.9 ± 5.7 N·m at baseline and was reduced to 64 ± 24% of baseline 

immediately following the eccentric exercise (p < 0.05), and did not recover fully.  As 

well, peak torque of the 50 Hz (Baseline; 24.0 ± 10.2 N·m) was reduced only to 85 ± 

16% of baseline following the second set of eccentric contractions (p < 0.05) and to 

79 ± 15% of baseline immediately following task termination, and did not recover 

fully.  The change in the 10:50 Hz ratio was manifested by the greater reduction in 

10 Hz evoked torque compared with the 50 Hz.  The 10:50 Hz ratio decreased to 

28% of baseline immediately following task termination and continued to decrease 

to 47% of baseline (p < 0.05) at 10 min of recovery (Figure 11) and remained 

reduced.  This indicated there was significant low frequency torque depression 

following the last set of eccentric contractions.   
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Figure 11. Low-Frequency torque depression (10:50 Hz). 
 
A significant increase in low frequency torque depression as shown by the 
decreased 10:50Hz ratio was present at Post (task termination), with a continued 
decrease in 10:50 Hz until 10 min and remained depressed for 30 min (*p < 0.05). [ 
S represents ‘sets’, R represents ‘recovery’]. Mean ± SE. 
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Figure 12. Velocity-dependent power 
 
Velocity-dependent concentric power was reduced by 8% at Post (task termination) 
compared with baseline and did not recover fully within 30 minutes (*p < 0.05). 
Mean ± SE.   
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All participants were capable of completing the 30o range of motion during 

baseline measures and following the eccentric fatigue protocol for all velocity-

dependent shortening contractions.  Absolute values for baseline velocity and 

power measures are presented in Table 2.  Maximum shortening velocity and 

subsequently velocity-dependent power were reduced to 92% of baseline 

immediately following the fatigue protocol (p < 0.05; Figure 12) and neither 

recovered fully.   

 

3.3 Discussion 

We tested the hypotheses that following a bout of high-intensity eccentric 

contractions of the ankle dorsiflexors, there would be a modest reduction in 

shortening velocity resulting in velocity-dependent power loss, which would remain 

reduced throughout recovery.  The main findings indicate velocity-dependent 

power loss occurred immediately following the eccentric exercise, and did not 

recover fully.  Furthermore, despite baseline differences the fatigue and recovery 

profiles were not different between men and women.  These results indicate 

following a bout of eccentric muscle contractions there is a reduction in velocity-

dependent power driven by impairment in maximum shortening velocity.  

When normalized to pre-fatigue values, there was no sex-related difference 

for fatigue and recovery.  This is an interesting finding because studies on animals 

support a sex-related difference in fatigability following eccentric exercise (5, 57).  

However, equivocal results are found in humans (8, 11, 33, 52, 53, 55).  The 

normalized torque-frequency curves (Figure 8), and twitch contractile speeds (time 
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to peak twitch, half-relaxation time and contraction duration) (Table 2), were not 

different between the men and women.  Thus, both groups may have similar muscle 

properties (i.e., architecture and fiber type composition) of the ankle dorsiflexors 

which would lead to a comparable fatigue response.  In turn, these findings 

corroborate reports that suggest human single fiber shortening velocity is similar 

between sexes (38). 

Voluntary ankle dorsiflexor strength was reduced by 28% following 

eccentric exercise and did not recover fully.  Evidently, the mechanisms of fatigue in 

this study originate peripherally as voluntary activation (>99%) and RMS EMG of 

the agonist tibialis anterior did not change throughout the entire protocol, which is 

similar to previous reports on the ankle dorsiflexors (9, 48).  However, this is not 

always the case when other muscles are investigated, for example voluntary 

activation of the elbow flexors has been shown to decrease by ~11-22% following 

eccentric exercise (25, 40).  Thus, the ability to fully activate the dorsiflexors, even 

when the muscle is stressed severely or in this case undergone damaging 

lengthening contractions is unique. 

A recent investigation (30) found muscle fiber conduction velocity in the 

quadriceps was decreased following eccentric exercise due to sarcolemmal damage.  

However, excitation failure of the sarcolemma cannot account for the torque and 

power depression in the ankle dorsiflexors, as similar to other reports (48), M-wave 

properties (area, duration, amplitude) did not change during and following task 

termination.  This was further corroborated with the findings from the electrically 

evoked contractions.  For example, peak twitch torque declined by 21% 2 min 
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following task termination.  Concomitantly, twitch potentiation, which could offset 

the initial fatigue response in peak twitch torque, was no longer measurable at that 

time and peak twitch torque remained depressed.  Similarly, the 10 Hz and 50 Hz 

evoked torques were reduced following the eccentric exercise and did not recover 

fully.  As previously observed (9, 48) following eccentric exercise of the ankle 

dorsiflexors, the contractile speeds (time to peak twitch, half-relaxation time and 

contraction duration) of the evoked twitch doublet did not change.  Because 

eccentric muscle actions are less metabolically demanding than other contraction 

types (1, 10) metabolic accumulation and alterations to blood chemistry may not 

have been responsible for the impairment in torque production (3).  Subsequently, 

mechanical disruption of the link between the t-tubule and the sarcoplasmic 

reticulum lead to excitation-contraction (E-C) uncoupling, which remains as the 

likely peripheral impairment responsible for the immediate torque and power loss 

(2, 35, 59).  The most plausible stage of E-C coupling which was impaired following 

the eccentric exercise was the release of calcium from the sarcoplasmic reticulum 

(39), evident by the decrease in electrically evoked torque at low-frequency 

stimulation.  In addition to impaired calcium release, muscle damage or some 

structural impairment to the contractile machinery likely occurred, which is 

represented by the decrease and incomplete recovery of the 10:50 Hz ratio, and 

MVC.  The 10:50 Hz ratio decreased immediately following eccentric exercise and 

continued to decrease into recovery, but at 10 min it stabilized at ~50% of baseline 

throughout the remainder of recovery.  The change in the 10:50 Hz ratio was 

manifested by the greater reduction in 10 Hz than 50 Hz evoked torque.  This 
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further supports an impairment in E-C coupling leading to low frequency torque 

depression (21).  Ultimately, this finding was a result of the primary insult of 

eccentric exercise and not due to secondary effects of muscle damage which 

typically occur 1-2 hr after the initial injury (56). 

The incomplete recovery of MVC torque following the eccentric exercise 

suggests strongly that damage to muscle fibers had occurred (6).  Prolonged torque 

loss following unaccustomed eccentric exercise is often considered to be a reliable 

indirect marker of muscle damage (19, 40, 60).  Although MVC torque is less 

impaired immediately following high-intensity eccentric actions than concentric or 

isometric exercise (37, 41, 48), when reassessed day(s) later, voluntary isometric 

torque loss following concentric contractions recovers, whereas following eccentric 

contractions torque loss is still present (53).  Incomplete recovery of both voluntary 

and evoked torque cannot be attributed to metabolic fatigue.  Thus, muscle damage 

and the subsequent impairment of the contractile machinery may have been 

responsible for the prolonged torque loss in the present study. 

Velocity-dependent power, calculated here as the product of 20% MVC 

torque and maximum angular velocity of the contraction, was reduced by 8% 

following eccentric exercise and did not recover fully.  These observations are unlike 

previous reports which used shortening velocity as the criterion measure of fatigue 

following contractions of the ankle dorsiflexors, and other muscles (14, 15) in which 

velocity-dependent power recovered within ~5 min following concentric 

contractions.  For example, Cheng & Rice (16) fatigued the dorsiflexors to 50% of 

peak shortening velocity, but velocity recovered within 5 min.  In the present study, 
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velocity-dependent power was reduced by 8%, but did not recover within 30 min.  

Mechanisms of impaired neuromuscular functioning differ between fatigue and 

damage, and can be distinguished by the time course of recovery.  Thus, the 

reduction and prolonged recovery of power following eccentric fatigue may result 

from different mechanisms than during a concentric fatigue task (discussed below).  

Although MVC torque yields valuable insight regarding the contractile state 

of the muscle, it assesses only a single aspect of muscle performance.  The unique 

study design employed here involved testing participants using the isotonic mode of 

the Biodex to evaluate eccentric fatigue-induced reductions in shortening velocity 

which would remain masked when tested isokinetically.  We observed a significant 

decrease of 8% and 28% in velocity-dependent power and MVC following the 

eccentric fatigue task, compared with baseline, respectively.  Despite a 3.5 fold 

greater loss of torque production capacity (MVC) over shortening velocity, it would 

seem MVC is more sensitive to perturbations to the system following eccentric 

exercise.  Because power was calculated at 20% MVC the observed loss of torque 

production capacity may only contribute minimally to the loss of power, as peak 

shortening velocity was reached not at the onset of movement but rather 

throughout the range of motion (~15o plantar flexion).  Hence, the torque developed 

to overcome the resistance was not as critical in determining peak power as the 

speed of shortening.  

A metabolic explanation (20, 61) may account for the initial decrease in 

shortening velocity, where excessive ADP surrounding the contractile proteins actin 

and myosin result in slower cross-bridge cycling.  However, due to the time 
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sensitive nature of metabolic perturbations this slowing does not account for the 

incomplete recovery of shortening velocity and, hence, power.  The delayed 

recovery of power, as seen here is most likely due to damage induced EC 

uncoupling, resulting in reduced calcium release (4, 35), and damage to the 

contractile machinery imposed by the lengthening contractions.  Increased 

sarcomere instability following eccentric exercise leads to a reduction in the 

number of functional sarcomeres in series, hence the number of ‘force generators’ 

are reduced (45, 46) resulting in a reduced shortening velocity, as well, a change in 

optimal muscle length for torque production to longer lengths (13, 42, 49).  Thus, 

structural impairments in EC coupling and the contractile machinery imposed via 

the eccentric actions is responsible for power loss and reduced recovery following 

eccentric exercise.  

Although the current study cannot determine the specific mechanisms of 

reduced power, we found significant E-C coupling perturbations as evidenced by the 

presence of low frequency torque depression.  The damaging eccentric contractions 

impaired shortening velocity and reduced power for up to 30 min following task 

termination.  In summary, when velocity-dependent contractions are used as the 

criterion measure to calculate power, we demonstrated that following eccentric 

exercise maximal shortening velocity was reduced, which contributed to the 

observed reduction in power.  Further research on velocity-dependent contractions 

is warranted, as it relates to human movement where the load is fixed and velocity 

is variable. 
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Chapter 4 – Power loss is greater following lengthening contractions in 
old versus young women 3 

4.0 Introduction 

Research on age-related muscle fatigue has focused primarily on isometric 

and shortening contractions.  Far less is known in older adults regarding 

neuromuscular function and short-term recovery following repeated high-intensity 

lengthening contractions which can provoke long lasting impairments in 

neuromuscular performance (11, 49).  Furthermore, we are interested in the 

velocity component (i.e., voluntary shortening velocity) of power, following 

lengthening contractions.  This contraction mode in which the load is fixed and 

velocity of movement is unconstrained allows for alterations in shortening velocity 

to be elucidated which in older adults already is impaired and is a strong indicator 

of age-related muscle fatigability (22, 41, 47, 56). 

By the eighth decade of life, the senescent adult has undergone alterations to 

both the structure and function of the neuromuscular system that lead to impaired 

muscle performance (17, 44, 57).  These alterations include: muscle atrophy 

(preferentially Type II muscle fibers), and the death and remodeling of motor units 

(MUs) resulting in a greater relative composition of slow type muscle fibers (57), 

and architectural changes to the muscle and musculotendinous unit (44).  

                                                 

3 A version of this chapter has been published.  Used with permission from Springer.   

Power GA, Dalton BH, Rice CL, Vandervoort AA. Power loss is greater following lengthening 
contractions in old versus young women. Age 34: 737-750, 2012.  
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Additionally, neural changes can include greater antagonist coactivation (34) and 

lower maximal MU discharge rates (21).  The combined consequence of these 

structural and neural age-related manifestations are a slowing of intrinsic muscle 

contractile properties (59), lower rates of torque development and reduced cross-

bridge kinetics (1).  Hence, older adults exhibit impairments in maximal voluntary 

shortening velocity, torque production and especially muscle power (41).  Despite 

the negative implications of age-related changes to the neuromuscular system, there 

is a relative preservation of eccentric strength (31, 48, 58).  Although older adults 

can experience similar (18), less (38), or more (24) muscle damage than young 

adults, it is unknown whether maintained eccentric strength is an advantageous 

mechanism with which to maintain effective neuromuscular performance during 

and following a bout of repeated lengthening contractions.   

It seems well established that older adults are more fatigue resistant than 

young adults during isometric tasks (33), yet the fatigue response during and 

following dynamic shortening contractions is equivocal and depends upon the task.  

Older adults can experience less (37, 53), similar (12, 35), or more (8, 40, 47) fatigue 

than young.  However, tasks which are performed with an unconstrained velocity 

component (i.e., velocity-dependent) always yield a greater fatigue response in 

older adults than young (22, 40, 47).  Moreover, the effects of repeated lengthening 

contractions on age-related muscle fatigue are less well understood.  The only study 

investigating age-related fatigability following lengthening contractions (8), 

reported that the reduction in maximum voluntary isometric contraction (MVC) 

torque did not differ between old and young adults during or following repeated 
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isokinetic (60o/s) lengthening contractions, but isokinetic torque loss during the 

lengthening contractions was greater in older adults than the young.  However, 

power was not assessed following the protocol, and thus it is unknown whether 

repetitive lengthening contractions affect concentric power differently in old and 

young adults, and which component of power (torque or shortening velocity) is 

more compromised.   

Voluntary maximal loaded shortening velocity is known to recover rapidly (< 

5 min) in young adults after voluntary isometric and concentric fatigue tasks (14, 

15).  However, repeated lengthening contractions result in muscle damage which 

can take multiple days to recover fully (19, 51), and it is unclear how this damage 

may affect velocity-dependent power during short-term recovery in older adults.  

Impaired isometric torque production following lengthening contractions can be 

attributed to a mechanical disruption of the link between the t-tubule and the 

sarcoplasmic reticulum impairing calcium (Ca2+) release (32, 60), and also, to the 

redistribution of sarcomere lengths [see popping sarcomere hypothesis (43)], 

resulting in a length-tension relationship shift to longer muscle lengths for optimal 

torque production.  As well, dynamic performance following multi-joint lengthening 

contractions is known to be impaired (11, 55) although the mechanisms are not 

entirely understood.  Recently, we (49) reported that MVC torque and velocity-

dependent power did not recover fully up to 30 min following 150 lengthening 

contractions in healthy young men and women.  Although lengthening contractions 

are less energetically demanding than isometric and dynamic shortening 

contractions (2, 54), they are known to induce muscle fatigue (8, 16, 42, 45).  
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Because excitation-contraction (E-C) coupling is compromised in older adults (46) 

and maximal unconstrained shortening velocity is indeed slower (22, 41, 47) 

compared with young adults, the old may be energetically disadvantaged during this 

task.  Thus, older adults may experience a greater perturbation in ATP homeostasis, 

consequently exacerbating their fatigue response (33) and resulting in a greater 

reduction in shortening velocity and subsequent velocity-dependent power than 

young adults. 

Therefore, the purpose here was to investigate the effect of repeated high-

intensity lengthening contractions on neuromuscular function in old and young 

women with a particular emphasis on the short-term recovery of velocity-

dependent power.  As a result of similar muscle damage, MVC torque will be 

reduced similarly in both old and young women and remain reduced throughout a 

30 min recovery period.  However, when tested under dynamic conditions (velocity-

dependent shortening), we hypothesize that the older women will have a larger 

reduction in velocity-dependent power than the young owing to a greater 

impairment in shortening velocity and impairments in E-C coupling, which are 

known to be compromised in older adults and may not be observable during 

isometric testing.  As a result of muscle damage neither group will recover by 30 

min. 
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4.1 Methods 

4.1.1 Participants: Nine old (68.3 ± 6.1 y) and nine young women (25.1 ± 1.3 

y) from the university population and local community groups, who were free from 

musculoskeletal disorders which would impair their ability to perform the task, 

volunteered for this study.  All participants were recreationally active.  The mean 

height and mass of the old and young women were: 162.0 ± 7.3 cm and 67.7 ± 8.5 kg, 

and 167.1 ± 7.0 cm and 63.7 ± 10.4 kg, respectively.  All participants were asked to 

refrain from strenuous exercise one day prior to testing and to not consume caffeine 

on the testing day. This study was approved by the local University’s Review Board 

for Health Sciences Research Involving Human Subjects and conformed to the 

Declaration of Helsinki.  Informed, oral and written consent was obtained from all 

participants prior to testing. 

4.1.2 Experimental arrangement: All testing was conducted on a Biodex 

multi-joint dynamometer (System 3, Biodex Medical Systems, Shirley, New York).  

For a detailed explanation and experimental timeline of the testing set-up and 

procedures please refer to (49).  The right foot was strapped tightly to the Biodex 

ankle attachment footplate, aligning the lateral malleolus with the rotational axis of 

the dynamometer.  Extraneous movements were minimized using non-elastic 

shoulder, waist and thigh straps.  Participants sat in a slightly reclined position with 

the hip, knee, and ankle angles set at ~110o, ~140o, and ~30o plantar flexion, 

respectively.  All voluntary and evoked isometric dorsiflexion contractions were 

performed at an ankle joint angle of 30o of plantar flexion.  Shortening contractions 

began from the plantar flexed position of 30o and ended at the neutral ankle angle 
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(0o).  The lengthening contractions commenced at the neutral ankle angle (0o) and 

ended at 30o plantar flexion, thus both dynamic actions moved through a 30o range 

of motion.  All dynamic contractions were performed using the isotonic mode of the 

Biodex.  However, due to inherent mechanical limitations of the dynamometer 

(unable to maintain an exact constant external load throughout an entire range of 

motion), these contractions are not purely isotonic and neither are they iso-inertial 

as the load is fixed (mechanically) and not influenced by gravity but rather the 

braking of the dynamometer.  And therefore, we refer to these contractions as 

“velocity-dependent”.   A velocity-dependent movement is characterized by a 

participant producing a dynamic contraction as fast as possible in which the angular 

velocity is unconstrained while the load or resistance is fixed at a pre-determined 

value (i.e., 20%MVC). 

Surface electromyography (EMG) was collected from the tibialis anterior and 

soleus muscles using self-adhering Ag-AgCl electrodes (1.5 X 1 cm; Kendall, 

Mansfield, MA).  The skin was cleaned forcefully with an alcohol swab prior to the 

application of the electrodes.  A monopolar electrode configuration was used with 

the active electrode positioned on the proximal portion of the tibialis anterior over 

the innervation zone (~7 cm distal to the tibial tuberosity and ~2 cm lateral to the 

tibial anterior border) and a reference electrode was placed over the distal 

tendinous portion of the tibialis anterior at the malleoli.  The active electrode for the 

soleus was positioned ~2 cm distal to the lower border of the medial head of the 

gastrocnemius and a reference was placed over the calcaneal tendon. 
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Stimulated contractions of the dorsiflexors were evoked electrically using a 

bar electrode held distal to the fibular head over the deep branch of the common 

peroneal nerve.  A computer-triggered stimulator (model DS7AH, Digitimer, 

Welwyn Garden City, Hertfordshire, UK) set at 400 V provided the electrical 

stimulation using a pulse width of 50-100 µs. 

4.1.3 Experimental procedures: Peak twitch torque (Pt) was determined by 

increasing the current until a plateau in dorsiflexor Pt and tibialis anterior M-wave 

amplitude were reached, and then the current was further increased by 10-15% to 

ensure activation of all motoneurons via supramaximal stimulation.  This 

stimulation intensity was used for the evoked doublet (Pd) (2 pulses at a 10 ms 

interpulse interval), and to assess voluntary activation.  Next, a 1 s train at 50 Hz 

was delivered to assess peak tetanic torque by increasing the current until there 

was a plateau in evoked torque.  This was tolerated by all young women and 4 of the 

older women. 

Three isometric MVCs were then performed; each of 3-5 s duration.  Three 

min of rest was given between all contractions.  To ensure MVC attempts were 

maximal, participants were provided visual feedback of the torque tracing on a 

computer monitor, and exhorted verbally during all voluntary efforts and voluntary 

activation was assessed using the modified interpolated twitch technique (26).  The 

amplitude of the interpolated torque evoked during the peak plateau of the MVC 

was compared with a resting Pd evoked ~1 s following the MVC when the muscles 

were relaxed fully.  Percent voluntary activation was calculated as voluntary 

activation (%) = [1- interpolated Pd /resting Pd] x 100.  Values from the MVC with 
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the highest peak torque were used for data analysis.  Next, 10 pulses and 50 pulses 

were delivered over a 1 s period to determine a 10 Hz to 50 Hz relationship in all 9 

young and 4 old participants using the current required to evoke peak 50 Hz torque. 

Once MVC torque was determined, the dynamometer was switched from the 

isometric to isotonic mode and a load equal to 20% MVC was programmed to allow 

for determination of maximal shortening velocity with this load, and velocity-

dependent power.  The 20% MVC resistance was chosen because it represents a 

moderate load for the fast shortening contractions, and one that all subjects could 

perform through the entire range of motion even after a bout of repeated high-

intensity lengthening contractions.  Before the footplate moved during the velocity-

dependent shortening contractions, participants had to overcome the pr e-

programmed resistance.  The dynamometer absorbs this increase in applied torque 

resulting in a directly proportional increase in angular velocity.  This is a helpful 

feature to explore the effect of damaging lengthening contractions on alterations in 

velocity of unconstrained movement and power.  The dynamometer was 

programmed to allow the footplate to return to 30o of plantar flexion at the end of 

each shortening voluntary contraction while the participant relaxed fully.  

Familiarization with these ‘fast’ shortening contractions involved participants 

performing several (typically 5) velocity-dependent shortening contractions until a 

stable value was obtained (no change in maximal shortening velocity).  To ensure a 

maximal effort (peak velocity) contraction, all participants were instructed to move 

the load “as hard and as fast as possible throughout the entire range of motion”.  To 

assist participants in reaching their maximal shortening velocity, visual feedback of 
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the velocity profile was provided via a computer monitor, and a horizontal cursor 

was positioned at the previous plateau in peak velocity.  Participants rested for 3 

min and then performed 2 consecutive contractions which were used to establish 

baseline values for maximum shortening velocity and peak power. 

4.1.4 Fatigue and recovery protocol: With a load of 80% MVC, participants 

performed 5 sets of 30 eccentric dorsiflexion contractions with each set separated 

by 30 s of rest.  Participants were provided visual feedback of the torque and 

instructed to resist the lowering of the foot plate through the 30o range of motion 

over a 1 s period.  After the lengthening contraction, the foot was returned to the 

neutral ankle starting position by the investigator over a 2 s (15o/s) period while 

the participant relaxed fully.  The participant was then instructed to resist the 

lowering of the footplate immediately again until the protocol was complete.  The 

voluntary and electrically evoked responses of the dorsiflexors were recorded at 

baseline, during the fatigue protocol immediately following each of the 5 sets, and 

during recovery at 0.5 min, 2 min, 5 min, 10 min, 15 min, 20 min, and 30 min after 

task termination.  Measures following the fatigue protocol included, and were 

performed in the following order: (1) maximum evoked twitch properties, (2) 

assessment of MVC and voluntary activation, (3) post-activation twitch and twitch 

doublet, (4) measure of low frequency torque depression (10:50 Hz ratio ; LFTD), 

and (5) velocity-dependent shortening power.  

4.1.5 Data reduction and analysis: Torque, position and velocity data were 

sampled at a rate of 100 Hz.  All data were converted to digital format using a 12-bit 

analog-to-digital converter (model 1401 Power, Cambridge Electronic Design, 
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Cambridge, UK).  Surface EMG signals were pre-amplified (x100), amplified (x2) and 

band-pass filtered (10-1,000 Hz), and sampled online at 2500 Hz using Spike 2 

software (version 6.10, Cambridge Electronic Design Ltd.).  Surface EMG from the 

MVC was expressed as root mean squared (RMS) and values were obtained from a 1 

s time period about the peak torque.  All subsequent MVC RMS values were 

normalized to the level obtained during baseline.  Peak RMS values of the raw 

surface EMG during the fast shortening contractions was calculated through the 30o 

range of motion from the onset of movement to the end of the range of motion and 

then normalized to the fastest baseline contraction.  Power was calculated as the 

product of torque (Nm) and the peak shortening velocity (rad/s) of the faster of 2 

contraction attempts.  Post-activation potentiation was determined by calculating 

the ratio between the amplitude of the peak twitch torque recorded before and 

following the isometric MVC.  Spike 2 software was used off line to determine M-

wave amplitude, area, duration, the peak twitch torque (Pt), peak doublet torque 

(Pd), doublet time to peak twitch (DTPT), half relaxation time (DHRT) of the doublet, 

and doublet rate of torque development (DMRTD).  Low frequency torque 

depression was calculated using a ratio of peak 10 to peak 50 Hz evoked torques 

(10:50 Hz). 

4.1.6 Statistical analysis: Using SPSS software (version 16, SPSS Inc. Chicago, 

IL) a two-way (age x time) repeated measures analysis of variance was performed 

to assess all neuromuscular data.  Because voluntary activation values are not 

normally distributed, a Mann-Whitney U-test was employed and an unpaired T-test 

was used for subject characteristics and baseline measures to assess group 
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differences.  The level of significance was set at p<0.05.  When a significant main 

effect or interaction was present, Post hoc analysis using unpaired T-tests was 

performed with a Bonferroni correction factor to determine where significant 

differences existed.   Effect sizes (ES) were calculated using the partial eta-squared 

method to explore the magnitude of apparent statistical effects.  Due to the small 

sample size of old women for LFTD (n=4) unpaired t-tests were performed for this 

parameter.  The table is presented as means ± standard deviations (SD), and figures 

as mean ± standard errors (SE) values, normalized to baseline (pre-test).  

 

4.2 Results 

4.2.1 Baseline measures:  As shown in Table 3 the old women as compared 

with the young women were ~21% weaker for MVC torque (p=0.021, ES=0.292) 

despite similar high voluntary activation (~95%, p=0.682, ES=0.012).  Peak loaded 

shortening velocity (Figure 13) was ~21% slower for the old women than the young 

(p<0.001, ES=0.522), which lead to power (calculated as the product of peak loaded 

shortening velocity at 20% MVC) to be ~39% less in the old compared with the 

young women (p=0.006, ES=0.383).  Both groups had a similar Pd (p=0.685, 

ES=0.011), while DTPT was ~16% slower (p=0.023, ES=0.284), and DHRT was ~33% 

longer in old compared to young, respectively (p=0.012, ES=0.337).  Despite similar 

Pt (p=0.735, ES=0.007) for the old (3.9 ± 1.6 N·m) and young (4.0 ± 0.9 N·m) women, 

the older adults had a reduced capacity for potentiation (105.8 ± 6.0%) compared to 

the young (124.6 ± 17.2%) (p=0.023, ES=0.339). 
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Table 3. Voluntary and evoked participant baseline characteristics. 
 
Old women had slower absolute evoked doublet twitch torque (Pd) contractile 
properties for time to peak twitch (DTPT) (p=0.023, ES=0.284), half-relaxation time 
(DHRT) (p=0.012, ES=0.337), and maximum rate of torque development (DMRTD) 
(p=0.031, ES=0.258) compared to young.  Maximal voluntary isometric contraction 
(MVC) torque (p=0.021, ES=0.292), maximum shortening velocity (p=0.001, 
ES=0.522), and peak power (p=0.006, ES=0.383) were lower in the old than young 
women.  Voluntary activation (VA) (p=0.682, ES=0.012) and doublet twitch torque 
(p=0.685, ES=0.011) was not significantly different between groups. * Denotes a 
significant difference between old and young women. 
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Figure 13. Representative unprocessed data  
 
A young and older woman performing a fast velocity-dependent shortening 
contraction at baseline and 30 s following (Post) the lengthening contraction task.  
The EMG amplitude is presented with arbitrary values (AV).  The dashed vertical 
line indicates peak velocity.    
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4.2.2 Fatigue and recovery measures: All participants were capable of 

completing all contractions, although as reported previously using this contraction 

mode some subjects had difficulty lowering the foot plate at a steady pace for the 

last few contractions of each set (49).  This failure to maintain a constant velocity 

resulted in increased eccentric velocities which ranged from 36o/s to 42o/s.  Despite 

the variation in velocity, the duty cycles were similar (p=0.295, ES=0.680) between 

old and young women 0.33 ± 0.07.  For the velocity-dependent shortening 

contractions, all participants were capable of completing the 30o range of motion 

during baseline measures and following the lengthening contraction task.  

Neuromuscular fatigue measures were analyzed with regard to relative changes 

over time.  For maximum loaded shortening velocity and subsequently peak power 

(Figure 14), there were main effects for time (p<0.001, ES=0.681) and age (p=0.007, 

ES=0.396) and an interaction (p=0.004, ES=0.244).  Thus, at task termination the old 

women had a greater loss of power (~19%) than the young (~8%).  This difference 

persisted until 10 min of recovery and did not recover by 30 min post intervention.  
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Figure 14. Velocity-Dependent Power 
 
Short-term recovery of velocity-dependent power calculated at 20% MVC and 
maximal shortening velocity normalized to 100% of baseline values for old (open 
symbols) and young women (solid symbols).  The dashed lines represent the 
lengthening contraction intervention during which time only isometric measures 
were obtained.  Significant effects for Time (*p<0.05) and Age (†p<0.05).  Values are 
means ± SE.   
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For dorsiflexor MVC torque there was only a significant effect for time 

(p<0.001, ES=0.696).  Isometric MVC torque decreased similarly in the old and 

young by ~19% following the first set of 30 eccentric contractions and following 

each successive set it continued to decrease until it was reduced by ~28% 

immediately following task termination.  By the end of the 30 min recovery period 

the MVC regained 9% but was still significantly less than baseline (Figure 15).  

Voluntary activation was maintained greater than 95% at baseline and did not 

change (p=0.910, ES=0.022) throughout fatigue and recovery.  The incomplete 

recovery of MVC by 30 min post intervention suggests similar muscle damage had 

occurred in young and old women. 

  



92 

 

 

 

 

Figure 15. Maximum voluntary isometric contraction (MVC) 
 
Maximal voluntary isometric strength during and following lengthening 
contractions normalized to 100% of baseline values for old (open symbols) and 
young women (solid symbols).  Significant effects for Time (*p<0.05).  Values are 
means ± SE.  
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Low frequency torque depression (10:50 Hz) presented a significant effect 

for time (p<0.001, ES=0.960) and age (p=0.032, ES=0.225).  Over time, the 

alterations in the 10:50 Hz ratio were manifested by the greater reduction in 10 Hz 

evoked torque compared with the 50 Hz.  This indicated there was significant low 

frequency torque depression following the lengthening contractions for both 

groups.  Low frequency torque depression persisted in both groups throughout the 

30 min recovery period.   However, at task termination the 10:50 Hz ratio was 

reduced by 40% in the four old, but only 20% in the young, suggesting there was an 

initial greater impairment in E-C coupling in the old women.  This age-related 

difference was present up to 10 min in the recovery period (Figure 16) at which 

time both groups were reduced by 50% and did not change during the final 20 min 

of the recovery period. 
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Figure 16. Low Frequency torque depression (10:50 Hz) 
 
Low frequency torque depression during and following lengthening contractions 
normalized to 100% of baseline values for old (n=4) (open symbols) and yo ung 
(n=9) women (solid symbols).  The decrease in the 10:50 Hz ratio was driven 
primarily by the progressive decline in 10 Hz torque (40% decrease at task 
termination, and 60% decrease by 30 min of recovery) with a minimal decrease in 
50 Hz (20% decrease at task termination and throughout recovery).  Significant 
effects for Time (*p<0.05) and Age (†p<0.05).  Values are means ± SE  
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There were main effects for time (p<0.001, ES=0.646) and age (p=0.005, 

ES=0.437) and an interaction (p<0.001, ES=0.409) for Pt (Figure 17).  Twitch torque 

decreased by ~21% in the old women following the first set of 30 lengthening 

contractions, while the young women had a potentiation of Pt, which increased to 

~130% of baseline following Set 1.  At task termination the values for the old 

women were reduced by 50%, whereas Pt for the young women was not different 

from baseline values.  Once the potentiating effects of the fatigue protocol were 

mitigated in the young, both groups were reduced similarly (~ 50%) 5 min into 

recovery.  For the Pd torque there was only a significant effect for time (p<0.001, 

ES=0.648).  Pd continued to decrease (Figure 17) during the lengthening 

contractions and remained reduced in both groups by ~40%  throughout the 30 min 

recovery period   For doublet twitch contractile speeds there were only main effects 

for time for DTPT (p<0.001, ES=0.544), and DHRT (p<0.001, ES=0.475), meaning 

doublet twitch contractile properties slowed similarly in both groups by ~15-20%.  

However, there was a main effect of time (p<0.001, ES=0.356) and age (p=0.003, 

ES=0.429) and an interaction (p=0.05, ES=0.118) for the DMRTD which was reduced 

~15% greater in old women than young women at task termination but was no 

longer significantly different between groups 30 s later. 
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Figure 17. Peak twitch torque (Pt) 
 
Peak twitch torque during and following lengthening contractions normalized to 
100% of baseline values for old (open symbols) and young women (solid symbols).  
Significant effects for Time (*p<0.05) and Age (†p<0.05).   
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Tibialis anterior M-wave properties, including: peak-to-peak amplitude, 

duration, and area showed a main effect for time (p=0.004, ES=0.190), meaning M-

wave properties were reduced similarly in both old and young women by ~10-15% 

at task termination, and returned to baseline value by the end of the 30 min  

recovery period.  For both the old and young women there were no significant 

changes from baseline for (p=0.064, ES=0.151) RMS EMG of the agonist tibialis 

anterior during MVCs throughout the protocol.  As well, RMS EMG of the soleus 

muscle did not differ for time or age from baseline (p=0.222, ES=0.0125).  During 

the velocity-dependent shortening contractions RMS EMG of the agonist tibialis 

anterior or antagonist soleus showed no effect for time (p=0.135, ES=0.125) or age 

(p=0.426, ES=0.070) meaning there was no difference in ‘neural drive’ from baseline 

contractions. 

 

4.3 Discussion 

This investigation tested the hypothesis that neuromuscular function of the 

dorsiflexors following repeated lengthening contractions would be impaired more 

in the old women than young.  Specifically, velocity-dependent power would be 

reduced more in the old than young and neither would remain depressed 

throughout the 30 min period of recovery following task termination.  Indeed, peak 

power was reduced by 19% for the older women after the lengthening contractions, 

whereas the young women only incurred an 8% decrement at task termination, and 

neither recovered.  In contrast, isometric MVC torque was reduced similarly (28%) 

in both the old and young and did not recover fully.  Despite similar muscle damage 
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as indicated by incomplete recovery of MVC torque (61), these findings suggest old 

women have greater decrements in velocity-dependent power than their younger 

counterparts following repeated lengthening contractions.  Therefore, the greater 

power-loss in the old than young women is driven more by fatigue mechanisms 

influencing impairments in whole muscle loaded shortening velocity following 

lengthening contractions than those affecting torque generation per se. 

4.3.1 Baseline.  The old women in this study were weaker and slower (Table 

3) for whole muscle shortening velocity, leading to a greater reduction in power 

when compared with young women.  The 39% reduction in velocity-dependent 

power compared with the young is greater than that reported previously for 

velocity-dependent contractions of the dorsiflexors (25%) of old men (41) and 

similar to the plantar flexors (38%) of old men (22), and elbow flexors (41%) (56) 

and knee extensors (45%) (47) of old women.  As well, older women rely more on 

the velocity component of power than torque production when compared with old 

men and younger adults (56). Valour et al. (2003) reported that when peak muscle 

power was compared among various loads (i.e., % MVC) older women reached peak 

power at a lower percentage of MVC torque than older men and women.  In the 

current study we used a relative load of 20% MVC which relies strongly on the 

velocity component of power (49).  Factors discussed below that impair whole 

muscle shortening velocity in older women may greatly impair their ability to 

generate power more so than older men and younger individuals.   

4.3.2 Lengthening contraction intervention.  In the current study, following 

150 high-intensity lengthening contractions the old women incurred (up to 10 min) 
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a greater loss of velocity-dependent power (19%) than the young (8%) following 

task termination, whilst both the old and young women experienced similar 

reductions in isometric MVC torque at task-termination (28%).  This is similar to 

findings from isovelocity fatigue studies in which older adults incur a greater 

decline in eccentric isokinetic torque than young, while still maintaining isometric 

strength (8).  Interestingly, the reduction in MVC torque at 30 min recovery (~19%) 

is similar to the reduction following the first 30 lengthening contractions (Figure 

15), suggesting the primary insult of muscle damage occurred during the first set of 

contractions and the further decrease in MVC torque to task termination can be 

attributed to fatigue processes (16, 42).  Despite similar reductions in isometric 

MVC torque following the lengthening contractions, low-frequency torque 

depression was greater in the old than the young women (~25% difference) 

following the second set of lengthening contractions and for up to 5 min into 

recovery, and neither recovered during the 30 min period of recovery .  

The development of fatigue can manifest through central or peripheral 

mechanisms (4, 26), or both.  In the current study voluntary activation and RMS 

EMG amplitude of the tibialis anterior during the isometric MVCs was not reduced 

from baseline and did not differ between age groups.  In accord with previous 

investigations utilizing velocity-dependent contractions, RMS EMG amplitude of the 

agonist tibialis anterior during velocity-dependent shortening contractions did not 

differ throughout the study (49) or between young and old.  Hence, the main site of 

fatigue is likely peripheral in nature.  Voluntary activation failure can account for 

torque loss following muscle damage in other limb muscles (50) however, 
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maintained voluntary activation to the tibialis anterior is a common finding 

following lengthening contractions (8, 45, 49).  Furthermore, in the present study, 

M-wave parameters (i.e., p-p amplitude, area, duration) were reduced similarly in 

old and young indicating that muscle damage may have disturbed sarcolemmal 

excitability in both age groups equally.  However, findings are equivocal; some 

studies show a decrease in M-wave properties (30) while others using similar 

lengthening contraction protocols do not (45, 49).  The reason for this disparity 

among studies is unclear, but it may be related to rest intervals between 

contractions or because of different aged populations tested. 

4.3.3 Fatigue and muscle damage.  Although lengthening contractions are less 

energetically demanding than isometric and dynamic shortening contractions (2, 

54), they are known to induce muscle fatigue in addition to muscle damage (8, 16, 

42, 45).  A commonly accepted indirect measure of muscle damage is the reduction 

and incomplete recovery of isometric MVC torque (6, 19, 61).  The concomitant 

existence of fatigue and damage may account for the greater initial decline in MVC 

torque than either factor alone, however because MVC torque did not recover fully, 

this observation may represent muscle weakness (26) and suggest muscle damage 

occurred.  The long term deficits in force production may be due to damage induced 

impairments in E-C coupling (32, 60).  In the present study, it seems the old had an 

initial greater perturbation in E-C coupling as shown by the reduced twitch torque 

and greater low-frequency torque depression compared to the young (Figures 16 

and 17).  As well, following lengthening contractions a shift to longer muscle lengths 

for optimal torque production represents an increase in series compliance of the 



101 

 

 

 

muscle (29, 64).  The presence of overstretched, disrupted sarcomeres in series with 

still functional sarcomeres results in an immediate shift in optimum length and is 

considered to be a reliable indicator of muscle damage, as it relates to the number of 

overstretched sarcomeres (9, 13).  An immediate shift in muscle length for optimal 

torque production following 120 lengthening contractions has been previously 

observed in the ankle dorsiflexors (39).  With our study design utilizing a velocity-

dependent contraction task we were not able to record optimal muscle torque-

length per se, however based on the same muscle tested and a similar protocol of 

repeated lengthening contractions we would expect a similar increase in the optimal 

muscle length-tension relationship as is known to be induced by muscle damage. 

The mechanisms responsible for force loss that occur following muscle 

damage have been reviewed extensively (3, 20), whereas the processes responsible 

for impairments in shortening velocity have received little attention (16, 42, 64).  

Data from our study highlight that the effects of fatigue on loaded shortening 

velocity are independent of muscle damage and the coexistence of fatigue and 

damage is evident by the time course of the transient effects of fatigue and long-

lasting effects of damage.  Hence, the combined effects of fatigue and muscle damage 

more greatly affect the production of shortening velocity and subsequently power 

than either variable alone following this task.  Indeed, voluntary maximal shortening 

velocity is known to recover rapidly (< 5 min) in young adults after isometric and 

concentric fatigue tasks (14, 15).  Interestingly, following repeated lengthening 

contractions the velocity component of power does not recover fully (49, 64).  In a 

recent study of young men and women, following repeated lengthening 
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contractions, power remained reduced up to 30 min following task termination 

(49).  Therefore, long lasting muscle damage appears to limit power production (10, 

49) following lengthening contractions 30 min into recovery. 

Both the old and young women possibly incurred a similar amount of muscle 

damage (i.e., prolonged reduction in isometric MVC), yet the old were more fatigable 

than young as indicated by the greater power-loss up to 10 min into the recovery 

period.  Once the transient effects of fatigue were recovered both groups had a 

similar reduced power and for this reason, we can argue both groups experienced 

similar impairments in muscle function owing to muscle damage.  However, the old 

women incurred more fatigue than the young women which can account for the 

greater power-loss immediately following the lengthening contractions.  The loss of 

power in the old women in the current study following 150 lengthening 

contractions is less than that observed in studies using protocols of shortening 

contractions (8, 22, 40).  For example, in older men, McNeil et al. (2007) found a 

20% loss of power for the dorsiflexors following 25 fast shortening contractions and 

Dalton et al. (2010) found a 26% reduction following 50 fast shortening plantar 

flexion contractions.  The greater mechanochemical efficiency for lengthening 

compared to isometric and shortening contractions result in less perturbation of 

intracellular high-energy phosphate (Pi) energetics (16, 54).  Thus, despite the 

greater number of contractions in this study than the others, the disparate results 

can be explained by the task-dependent nature of fatigue (23).   

4.3.4 Young vs. old metabolic (dis)advantage.  It is well known that older 

adults are more fatigue resistant than young when performing isometric tasks, 
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owing to their slower contracting muscle and lower motor unit discharge rates 

required to reach fused tetanus as indicated by a shift to the left in the force-

frequency relationship (5).  That is to say, under isometric conditions the lower 

glycolytic flux in old compared with young is less energetically costly (lower ATP 

required) with a greater energy turn over through oxidative processes (36), 

resulting in less metabolic acidosis and accumulation of inorganic phosphates thus 

mitigating the reduction in isometric MVC torque (33).  However, when ‘stressed’ 

with repeated dynamic shortening contractions this apparent fatigue resistance in 

older adults is abolished and in some situations older adults are more fatigable than 

young (12).  This is found exclusively during tasks which allow velocity to be 

unconstrained (i.e., velocity-dependent) (22, 40, 47).  Furthermore, it appears based 

on the greater power-loss incurred by the old women in this study we now show 

older adults may be ‘energetically’ disadvantaged following repeated lengthening 

contractions, thus further exacerbating fatigue mechanisms related to whole muscle 

shortening velocity and the subsequent generation of power.  The greater 

accumulation of muscle metabolites during the lengthening contraction protocol in 

older women impairs E-C coupling and may limit crossbridge function while 

performing a subsequent fast shortening contraction. 

A greater initial impairment in E-C coupling is supported further by the 

reduced 10:50 Hz ratio and an already impaired capacity for potentiation may have 

disadvantaged the older adults for the performance of subsequent ‘fast’ velocity-

dependent contractions (Figure 14) compared with the young.  By contrast, the 

young had a greater twitch potentiation and were less influenced by LFTD in the 
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first 5 min into recovery (Figures 16 and 17).  Post-activation potentiation, due to 

myosin light-chain phosphorylation, can compensate for impaired E-C coupling by 

increasing myofibrillar calcium sensitivity in spite of the presence of LFTD (28, 52).  

In our current study, this suggests the young had less of a reduction in myofibrillar 

calcium sensitivity (27) compared with old, meaning they were less adversely 

affected by cellular mechanisms of fatigue.  This could include: increased H+ and Pi 

which directly reduce force output, and can result in a decline in the number and/or 

force per unit of the strongly bound cross bridges (25) as well as impaired ADP 

dissociation from the myosin head (25) limiting peak shortening velocity.  Following 

lengthening contractions a failure of the dihydropyridine receptors to stimulate 

sarcoplasmic reticulum Ca2+ release (32), and reduced myofibrillar Ca2+ sensitivity 

together with minimal potentiation capability might have heightened the effects of 

the ‘potentially greater’ metabolite accumulation in older adults effect on the 

impaired generation of velocity-dependent power (25, 62, 63).  Whereas, velocity-

dependent power in both the old and young women reached a similar value by 10 

min into recovery, the greater potentiation in young may have helped offset the 

initial perturbations in E-C coupling, thus mitigating the reduction in shortening 

velocity (7) and power at task termination.  The greater power loss in older women 

is likely a result of greater LFTD and E-C coupling failure in the muscles of older 

compared with young women, as this is also supported by our observation of a 

greater reduction in doublet twitch rate of torque development in the old women 

than the young at task termination. 
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In summary, the damaging lengthening contractions impaired shortening 

velocity and thus power in both the old and young women, with a greater reduction 

in the old for up to 10 min into recovery at which time subsequently both remained 

reduced for the duration of the 30 min recovery period.  The observations were not 

related to neural drive changes but to peripheral alterations primarily affecting E-C 

coupling.  The mechanisms responsible for the reduction in shortening velocity 

following muscle damage may include decreases in the number of functioning 

sarcomeres in series, Ca2+ kinetics and myofibular Ca2+ sensitivity.  The greater 

fatigue in older women can be attributed to their blunted potentiation, a factor in 

the young which may have helped offset initial fatigue-induced impairments in 

shortening velocity.  Furthermore, our findings highlight the value of investigating 

changes in the velocity-component of power (i.e., shortening velocity) following 

perturbations to the neuromuscular system.
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Chapter 5 – A leftward shift in the torque-velocity relationship 
following muscle damage results in a preferential loss of power at 

higher loads 

5.0 Introduction 

Unique to unaccustomed lengthening contractions is muscle damage (25).  

Mechanical strain imposed upon the muscle fiber during active lengthening (40) 

results in the disruption of actin-myosin bonds, cytoskeletal damage and impaired 

excitation contraction (E-C) coupling (4, 28, 46).  As well, a redistribution of 

sarcomere lengths (33) increases series compliance and shifts the torque-length 

relationship to longer muscle lengths for optimal torque production (21).  Damage 

to the muscle is detrimental to its function (41) by attenuating torque generating 

capacity, shortening velocity, and as a result, whole muscle concentric power (8, 37, 

39, 43).  We reported previously that following a bout of damaging lengthening 

contractions, power was reduced in young men and women similarly and remained 

reduced throughout short term recovery (35), however power was tested only at a 

moderate load (i.e., 20% maximum voluntary isometric contraction; MVC).  Thus, it 

remains unclear whether the torque-velocity (T-V) relationship and hence power 

production over the entire working range of the muscle is altered as a result of 

muscle damage and whether a sex-related difference is an underlying factor in 

performance decrements. 

Power generation is based on the relationship between torque and velocity.  

As velocity increases, less torque can be generated owing to fewer cross-bridge 

attachments, requiring an optimal trade off of torque and velocity to achieve peak 



112 

 

 

 

power (2, 29).  Following muscle damage, dorsiflexion MVC and shortening velocity 

(load: 20% MVC) were reduced by 28% and 8%, respectively, in men and women 

(35).  Because muscle damage resulted in a greater loss of maximal torque 

generating capacity than shortening velocity at a moderate load, and because whole 

muscle shortening velocity depends on the load resisting the movement (29), it is 

conceivable that power will be reduced preferentially at higher rather than lower 

loads.  This muscle strategy will reflect impaired torque-generating capacity and the 

ability to initiate the movement rapidly (rate of torque development; RTD) for 

adequate power production.  As a compensatory mechanism to muscle damage and 

associated muscle weakness, peak power will ‘shift’ to lighter loads thus relying on 

the velocity component of power for optimal performance rather than torque per se.  

This hypothesis of a preferential loss of concentric power at higher loads following 

muscle damage is partially supported by studies involving isovelocity (i.e., 

isokinetic) actions (8).  To determine the extent of concentric strength loss following 

muscle damage an isovelocity model relies specifically on testing the torque 

component of power when angular velocity is fixed.  Some studies report greater 

impairments at slow angular velocities, thus reflecting impaired torque generation 

(12, 19, 31) whereas others report greater impairments at fast velocities suggesting 

shortening velocity is more impaired than torque generation (15, 17, 20).  However, 

the isovelocity contraction mode artificially constrains angular velocity and 

therefore does not properly represent normal contractile function of the limb.  

Importantly, when torque is constant and velocity can vary freely, the muscle 

functions more closely to in vivo conditions (37), and alterations in the power curve 
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can be explored to offer insight on the mechanisms of power loss following muscle 

damage.   

In contrast to the literature on sex-differences following muscle damage in 

animals, reports on sex-related differences in response to damaging lengthening 

contractions in humans are equivocal, or show a greater impairment in women than 

men [for review see (10)].  Following lengthening contractions in a large sample of 

men (n=98) and women (n=94), Sayers & Clarkson (2001) reported that a 

disproportionately higher number of women than men demonstrated greater initial 

force loss.  In addition, despite similar indices of muscle damage in the elbow flexors 

of both sexes, Sewright et al. (2008) showed that immediate strength loss was more 

prominent in women than men.  Because women and men had similar markers of 

muscle damage, but women had a greater impairment in strength, this finding can 

be interpreted as E-C uncoupling playing a key role in the observed sex-difference.  

Muscle damage results in impaired RTD (26), potentially diminishing power 

production.  Thus, in women, muscle damage induced dysfunction may be 

exacerbated due to a lower RTD compared with men, owing to a lower Type II/Type 

I fiber area ratio (24) and the potential for greater susceptibility to E-C coupling 

failure. 

Therefore, the purpose of our study was to investigate the effect of repeated 

high-intensity lengthening contractions on velocity-dependent power loss, and to 

determine whether a sex-difference exists when assessed across multiple loads.  

Because torque production is impaired substantially following muscle damage and 

the velocity at which a muscle shortens depends on the force it is resisting, we 
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hypothesized there would be a left and downward shift in the power curve with a 

preferential loss of power at higher loads.  However, maximal shortening velocity 

and shortening velocity at lower loads will be impaired minimally owing likely to 

fewer cross-bridge interactions, thus avoiding damaged force generators.  Finally, to 

further highlight the role of muscle damage and impaired RTD, which we suspect is 

a major contributor to power production; we tested women, whom are known to 

have lower RTD than men.  We expect that following damage women will have a 

greater loss of power at heavier loads than men because of a greater strength loss 

driven by larger impairments in RTD and more reliance on the velocity component 

of power. 

 

5.1 Methods 

5.1.1 Participants: Eight men (27 ± 3 y, 178.1 ± 7.3 cm, 81.4 ± 10.1 kg) and 8 

women (26 ± 4 y, 170.6 ± 6.8 cm, 63.9 ± 6.8 kg) volunteers, who were recreationally 

active and free from musculoskeletal disorders, were recruited for the study.  All 

participants were asked to refrain from strenuous exercise 1 day prior to and 2 days 

following baseline testing and not consume caffeine prior to testing.  This study was 

approved by the local University’s Review Board for Health Sciences Research 

Involving Human Subjects and conformed to the Declaration of Helsinki.  Informed 

oral and written consent was obtained from all participants prior to testing. 

5.1.2 Experimental arrangement: All testing was conducted on a Biodex multi-

joint dynamometer (System 3, Biodex Medical Systems, Shirley, New York).  The 

right foot was fastened tightly to the ankle attachment footplate with inelastic 
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straps, aligning the lateral malleolus of the ankle with the rotational axis of the 

dynamometer.  Extraneous movements were minimized using non-elastic shoulder, 

waist and thigh straps.  Participants sat in a slightly reclined position with the hip, 

knee, and ankle angles set at 110o, 140o, and 30o plantar flexion, respectively.  All 

voluntary and evoked isometric dorsiflexion contractions were performed at an 

ankle joint angle of 30o of plantar flexion, which pilot testing and previous 

investigations of the dorsiflexors (30, 38) showed to be the optimal angle of torque 

production.  Shortening contractions began from the plantar flexed position of 30 o 

and ended at the neutral ankle angle (0o).  To maximize the stretch placed on the 

muscle, lengthening contractions occurred from the neutral ankle angle until 30o of 

plantar flexion thus all dynamic actions moved through a 30o range of motion. 

5.1.3 Electromyography (EMG): Electromyography of the tibialis anterior was 

collected using a custom-made insulated stainless steel fine wire electrode (50µm, 

California Fine Wire Company, Grover Beach, CA) with ~5 mm of insulation 

removed from the recording tip.  The electrode was inserted using a 30 G sterilized 

hypodermic needle (B-D PrecisionGlide; Becton Dickinson and Company, Franklin 

Lakes, NJ).  Self-adhering Ag-AgCl surface electrodes (1.5 x 1 cm; Kendall, Mansfield, 

MA) were used to collect surface EMG from the antagonist soleus.  Prior to electrode 

placement and insertion, the skin was cleansed with pre-soaked alcohol swabs.  A 

monopolar electrode configuration was used with the active electrode positioned in 

the proximal portion of the tibialis anterior at the innervation zone (~7 cm distal to 

the tibial tuberosity and ~2 cm lateral to the tibial anterior border) (7) and a 

reference surface electrode was placed over the distal tendinous portion of the 
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tibialis anterior at the malleoli.  The surface active electrode for the soleus was 

positioned ~2cm distal to the lower border of the medial head of the gastrocnemiu s 

and a reference was placed over the calcaneal tendon at the malleoli.  The ground 

electrode for both tibialis anterior and soleus EMG configurations was positioned 

over the patella.  

5.1.4 Electrical stimulation:  Stimulated contractions of the dorsiflexors were 

evoked electrically using a bar electrode firmly held distal to the fibular head over 

the deep branch of the common fibular nerve.  A computer-triggered stimulator 

(model DS7AH, Digitimer, Welwyn Garden City, Hertfordshire, UK) set at 400 V 

provided the electrical stimulation using a pulse width of 100 µs.  Peak twitch 

torque (Pt) was determined by increasing the current until a plateau in dorsiflexor 

Pt and tibialis anterior compound muscle action potential (M-wave) peak to peak 

amplitude were reached.  Then, the current was further increased by at least 15% to 

ensure activation of all motor axons via supramaximal stimulation.  This stimulation 

intensity was used for the evoked doublet (Pd) (2 pulses at a 10 ms interpulse 

interval) to assess voluntary activation.  Finally, a 10 Hz (5 pulses over 0.5 s) and 50 

Hz stimulus (25 pulses over 0.5 s) was delivered to assess peak tetanic torque by 

increasing the current until there was a plateau in evoked 50Hz torque.   

5.1.5 Maximal voluntary isometric contraction (MVC):  Three isometric MVCs 

were performed, each of 3-5 s in duration.  Three min of rest was given between all 

contractions.  To ensure MVC attempts were maximal, participants were provided 

visual feedback of the torque tracing on a computer monitor, and exhorted verbally 

during all voluntary efforts.  Voluntary activation was assessed using the modified 
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interpolated twitch technique.  The amplitude of the interpolated torque evoked 

during the peak plateau of the MVC was compared with a resting Pd evoked ~1s 

following the MVC when the muscles were relaxed fully.  Percent voluntary 

activation was calculated as voluntary activation (%) = [1- interpolated Pd /resting 

Pd] x 100%.  Values from the MVC with the highest peak torque were used for data 

analysis.  Next, electrical stimulations at tetanic frequencies were delivered to 

determine a 10Hz to 50Hz relationship using the current required to evoke peak 

50Hz torque.    

5.1.6 Power curve determination: Once MVC torque was determined, the 

dynamometer was switched from the isometric to isotonic mode.  However, due to 

inherent mechanical limitations of the dynamometer (i.e., unable to maintain an 

exact constant external load throughout an entire range of motion), these 

contractions are neither purely isotonic, nor are they iso-inertial as the load is fixed 

(mechanically) and velocity of contraction is determined by the effort of the 

participant.  Therefore we refer to these contractions as “velocity-dependent” (37).  

A velocity-dependent movement is characterized by a participant producing a 

dynamic contraction as fast as possible without any constraint in the angular 

velocity while the load or resistance is maintained at a pre-determined value (i.e., 

%MVC).  Before the footplate will move during the velocity-dependent shortening 

contraction, the pre-programmed resistance has to be overcome by the participant.  

The dynamometer absorbs this increase in applied torque resulting in a directly 

proportional increase in angular velocity.  Velocity-dependent contractions allow us 
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to explore the effect of damaging, lengthening contractions on alterations in velocity 

of unconstrained movement and power.   

The dynamometer was programmed to allow the footplate to return to 30o of 

plantar flexion at the end of each shortening voluntary contraction while the leg 

muscles were relaxed fully.  Familiarization with these shortening contractions 

involved participants performing 5 velocity-dependent shortening contractions at a 

moderate load (20% MVC) until a stable value was obtained (no change in maximal 

shortening velocity).  To ensure a maximal effort (peak velocity) contraction, all 

participants were instructed to move the load “as hard and as fast as possible 

throughout the entire range of motion”, and provided verbal encouragement and 

visual feedback of the velocity profile via a computer monitor.  Participants rested 

for 3 min and then performed 2 consecutive velocity-dependent contractions at 

each of the 8 pre-determined loads with 30 s between attempts, with the peak value 

of each contraction used to establish baseline values for maximum shortening 

velocity and peak power.  Power curves were then constructed from those values 

from the contractions with the highest peak velocity obtained from 1N∙m to 70% 

MVC.  Power curves were plotted and fitted by the Hill equation (23) (SigmaPlot 12, 

Systat Software Inc. Washington USA.).  To investigate changes in the series 

compliance of the muscle, optimal angle of torque production during a slow (30o/s) 

isokinetic contraction was performed.  Participants first practiced 2 of these 

contractions and following 3 min rest performed 2 more for baseline values.  The 

attempt with the greater torque value was used for analysis.  
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5.1.7 Damage and recovery protocol: Participants performed 5 sets of 30 

eccentric isokinetic dorsiflexion contractions at 60o/s with each set separated by 

30s of rest.  Participants were provided visual feedback of the torque and instructed 

to resist maximally the lowering of the foot plate through the full 30o range of 

motion.  The foot was then returned to the neutral ankle position by the 

dynamometer over a 1 s period while the leg muscles were relaxed fully.  The 

voluntary and electrically evoked responses of the dorsiflexors were recorded at 

baseline, during the protocol immediately following each of the 5 sets, immediately 

following task termination, and during recovery at: 2.5 min, 5 min, 10 min, 15 min, 

20 min, 30 min, 24 hr and 48 hr.  Neuromuscular measures following the protocol 

included, and were performed in the following order: (1) maximum evoked twitch 

properties, (2) assessment of MVC and voluntary activation, (3) post-activation 

twitch and twitch doublet, (4) measure of low frequency torque depression (10:50 

Hz ratio), (5) torque –velocity relationships (1N·m-70% MVC) and (6) 

determination of optimal angle of torque production (30o/s isokinetic contraction) 

(see experimental protocol: Figure 18).  Muscle soreness was assessed subjectively 

by the participant using a 100 mm visual analog scale, with ‘no soreness’ (0 mm) 

and ‘severe soreness’ (100 mm) serving as the left and right anchors, respectively.  
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Figure 18. Schematic diagram of experimental protocol. 
 
Grey bars are isometric maximum voluntary contractions (MVC).  Open torque 
profiles are electrically evoked contractions (twitches, doublet, 10, 50 Hz).  Filled 
profiles are dynamic contractions; concentric at 20% MVC (triangles), and dynamic 
eccentric contractions at 80% MVC (rectangles).  Power curves indicate dynamic 
contractions performed under the following loads: 1N∙m, 10%, 20% 30% 40% 50% 
60% 70% of MVC.  Open arrows are electrically evoked twitches; and filled arrows 
are electrically evoked doublets.  Recovery time points: immediately, 2.5, 5, 10, 15, 
20, 30 min, 24 and 48 hr.  
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5.1.8 Data reduction and analysis:  Torque, position and velocity data were 

sampled at a rate of 100Hz.  All data were converted to digital format using a 12-bit 

analog-to-digital converter (model 1401 Power, Cambridge Electronic Design, 

Cambridge, UK).  Electromyographic signals were pre-amplified (x100), amplified 

(x2) and band-pass filtered (10-1,000Hz), and sampled online at 2500Hz using 

Spike 2 software (version 7.07, Cambridge Electronic Design Ltd).  Dorsiflexor EMG 

from the MVC attempt was expressed as a root mean square (RMS) value over a 1 s 

epoch about the peak torque and soleus EMG during that period was used to 

calculate co-activation as soleus:tibialis anterior EMG x 100%.  All subsequent MVC 

RMS values were normalized to the level obtained during baseline.  For EMG 

analysis during the dynamic tasks and to estimate the maximal rate of 

neuromuscular activation the RMS value was calculated from the onset of voluntary 

EMG activity to the point at which peak RTD was achieved.  Then, the signal was 

integrated as a function of time and a slope of best fit was derived to assess the rate 

of activation (mV/s) (11).  Muscle power (W) was calculated as the product of 

torque (N·m) and the peak shortening velocity (rad/s) of the faster of the 2 

contractions.  Post-activation potentiation was determined by calculating the ratio 

between the amplitude of the peak twitch torque recorded before and following the 

isometric MVC.  Spike 2 software was used off line to determine the peak twitch 

torque (Pt), peak doublet torque (Pd), doublet time to peak twitch (DTPT), doublet 

half relaxation time (DHRT), 50Hz HRT, rate of torque development (RTD) and 

optimal angle of torque production during a slow (30o/s) isokinetic shortening 
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contraction.  Low frequency torque depression was calculated using a ratio of peak 

10Hz to peak 50Hz evoked torques (10:50Hz). 

5.1.9 Statistical analysis:  Using SPSS software (version 16, SPSS Inc. Chicago, 

IL) a two-way (sex x time) repeated measures ANOVA was performed to assess all 

neuromuscular data.  Because voluntary activation values were not normally 

distributed, a Mann-Whitney U-test was employed.  Unpaired t-tests were used for 

subject characteristics and baseline measures to assess group differences.  The level 

of significance was set at p<0.05.  When a significant main effect or interaction was 

present, post hoc analysis using unpaired t-tests was performed with a Modified 

Bonferroni correction factor to determine where significant differences existed.  The 

tabulated and text data are presented as means ± standard deviations (SD); and the 

data represented in the figures are presented as means ± standard errors (SE), 

normalized to baseline (pre-test).  

 

5.2 Results 

5.2.1 Baseline measures:  As shown in Table 4 women were 34% weaker than 

men for MVC torque (p<0.01) despite similar values for voluntary activation (~95%, 

P=0.68) and optimal angle of torque production (p=0.78).  Women had a 20% lower 

isometric MVCRTD (p<0.01) than men.  Maximal “unloaded” (1 N∙m) shortening 

velocity (Figure 19) was 13% slower (p<0.01), and peak power (Table 4) was 

reached at a 19% lighter load (p<0.01), and was 49% less in women than men 

(p<0.01).  Women had a lower RTD across loads compared to men (p<0.05), but   
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Figure 19. Unprocessed data  

A representative male participant depicting a (A.) lightest load contraction and (B.) 
50% MVC velocity-dependent contraction. Maximal voluntary isometric contraction 
(MVC) torque. Rate of torque development (RTD).  
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Table 4. Voluntary and electrically evoked neuromuscular properties of the 
dorsiflexors.  
 
Women had lower absolute evoked peak doublet twitch torque (Pd; p<0.05), 10Hz 
peak torque (p<0.05), 50Hz peak torque (p<0.05) compared with men, but 50Hz half 
relaxation time (50 HzHRT, p=0.87) was not different.  Maximal voluntary isometric 
contraction (MVC) torque (p<0.01), Rate of torque development for MVC (MVCRTD; 
p<0.01), maximum shortening velocity (VMAX; p<0.01), and peak power (PP; p<0.01) 
were less in women than men.  The percentage at which peak power  (%MVCPP) was 
achieved was lower for women than men (p<0.01).  * Denotes significant sex 
difference.  
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similar levels of rate of activation of EMG (p=0.54).  Rate of torque development and 

rate of activation of EMG at each relative load are presented in Tables 5 and 6, 

respectively.  Women had a 31% lower Pd than men (p<0.05), whereas groups did 

not differ for doublet contractile properties (DTPT; p=0.58 and DHRT p=0.86; Table 

4), and both sexes had a similar capacity for twitch potentiation (124 ± 16.0%) 

(p=0.98).  
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Table 5. Dynamic rate of torque development RTD; N·m·s-1 values preceding and 
succeeding muscle damage 
 
Women had lower RTD across all loads compared to men at baseline (p<0.01).  
Following muscle damage, both sexes experienced impaired RTD (p<0.05).  Women 
had a greater loss of RTD at higher loads (60, 70% MVC) than men (p<0.01).  * = 
Difference in RTD across loads at baseline  † = Effect of Time relative to baseline  ‡ = 
Sex difference   
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Table 6. Rates of neuromuscular activation (mV/s) preceding and succeeding 
muscle damage. 
 
Rate of activation of the tibialis anterior was maintained similar to baseline in both 
men and women (p=0.61) throughout the task and recovery (p=0.83). 
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5.2.2 Markers of muscle damage: Participants reported no muscle soreness 

preceding the lengthening contraction task (0 mm) and mild to no muscle soreness 

within the first 30min of recovery (13.1 mm).  Soreness peaked 24 hr post task 

termination (27.6 mm) and returned to mild soreness (9.4 mm) within 48 hr, with 

no detectable differences between groups (p>0.05).  For dorsiflexor MVC torque 

there was a significant time x sex interaction (p<0.05, ES=0.15).  Isometric MVC 

torque decreased similarly in the men and women during the task (30%), but 

women had a delayed recovery compared with men from 10 min-24 hr.  Women 

recovered to only 81.3 ± 5.5%, of baseline whereas men recovered to 89.2 ± 8.1% by 

24 hr following task termination (Figure 20A), suggesting women incurred more 

damage induced dysfunction than men.  By 48 hr both men and women had 

recovered.  Voluntary activation in women and men was well-maintained 

throughout the task (greater than 95%, p=0.91, ES=0.02) and recovery.  The optimal 

angle of torque production showed a main effect for time (range: 2-8o; p<0.01, 

ES=0.46) in both men and women and did not recover by 24 hr.  The incomplete 

recovery of MVC by 24 hr post lengthening contractions and the shift to longer 

muscle lengths for the optimal angle of torque production indicates muscle dama ge 

occurred in both sexes.  
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Figure 20. (A.) Maximal rate of torque development and (B.) maximal voluntary 
isometric contraction before and following muscle damage. 
 
Maximal rate of torque development was impaired more in women than men, with 
the men recovering by 24 hrs while women did not recover fully by 48 hrs.  Maximal 
voluntary strength was reduced similarly in men (solid line; closed box) and women 
(dotted line; open circle), with a reduced recovery in women.  Effect of time (*), 
effect of sex (†), values are means ± SE 
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5.2.3 Lengthening contraction task and recovery measures: All participants 

were able to complete the lengthening contraction task, and eccentric torque for 

both men and women decreased similarly during this protocol (p=0.27, ES=0.11).  

Neuromuscular measures were analyzed and compared with baseline and reported 

as a relative change over time.  For maximum shortening velocity (Figure 21A) and 

peak power (Figure 21B), there were main effects for time (p<0.01, ES=0.42 and 

p<0.01, ES=0.50, respectively), and a trend of a main effect for sex during recovery 

for shortening velocity (p=0.07, ES=0.22) and peak power (p=0.06, ES=0.24), 

respectively.  At task termination both men and women had a similar 3% loss of 

maximal shortening velocity and a 10% loss of peak power.  The reduction in 

maximal shortening velocity persisted until 30 min of recovery, whereas peak 

power did not recover until 24 hr. 

For velocity-dependent power loss across loads (Figure 22A-H) there was a 

time × sex × load interaction (p<0.01, ES=0.12), with main effects for each variable: 

time (p<0.01, ES=0.38), sex (p<0.01, ES=0.17) and load (p<0.01, ES=0.23).  Women 

had a greater loss of power at heavier loads than men, and both sexes showed a 

preferential loss of power at the heavier loads resulting in a shift down and to the 

left for the power curves (Figure 23).  Both sexes recovered similarly when tested at 

lighter loads (<30%MVC), but women had a slower recovery than men for heavier 

loads (p<0.01, ES=0.33) recovering by 48 hrs, whereas men recovered by 24 hrs.  

For RTD determined across loads (Table 5) there was a main effect for time (p<0.01 

ES=0.63) and sex (p<0.05, ES=0.29) with RTD recovering in women by 48 hr and in 

men by 24 hr.  Women had a greater loss of RTD at higher loads (60, 70% MVC) than 
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men (p<0.01).  As reported in Table 6, the tibialis anterior EMG rate of 

neuromuscular activation remained similar to baseline throughout recovery 

(p=0.76, ES=0.07) and did not differ between men and women (p=0.66, ES=0.08), 

suggesting impairments in neuromuscular function occurred distal to the 

neuromuscular junction. 

 

Figure 21. (A.) Maximal shortening velocity and (B.) peak power. 
 
Maximal shortening velocity was impaired minimally in both men (solid line; closed 
box) and women (dotted line; open circle) and recovered fully by 30 min.  Peak 
power shifted to lighter loads and was reduced similarly in men and women by 10% 
and recovered fully by 24 hrs.  Effect of time (*), values are means ± SE 
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Figure 22. Power loss across multiple loads following muscle damage. 
 
Men (solid line; closed box) and women (dotted line; closed circle).  Effect of time 
(*), effect of sex (†), values are means ± SE 
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Figure 23. Power curves  
 
Men (upper curve) and women (lower curve), preceding (solid line) and succeeding 
(dotted line) damaging lengthening contractions.   
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Rate of torque development for the isometric MVC showed a significant time 

× sex interaction (p<0.05, ES=0.13) and decreased more in women (66.2 ± 18.1% of 

baseline) than men (89.5 ± 12.9% of baseline).  Rate of torque development for the 

MVC remained reduced in both sexes throughout the short-term 30 min recovery 

period, but men recovered by 24 hrs while women remained reduced throughout 

recovery (figure 20B).  There was a significant effect for time (p<0.01, ES=0.57), but 

not sex (p=0.48, ES=0.04) for low frequency torque depression (10:50Hz).  Men and 

women had a similar decrease to 83.6 ± 16.7% of baseline by 30 min and recovered 

within 48 hr.  The alterations in the 10:50 Hz ratio was manifested by the greater 

reduction in 10 Hz evoked torque compared with the 50 Hz (Figure 24A-C).  During 

the task, 50 Hz decreased (P<0.05, ES=0.16) similarly in women and men and 

recovered by 24 hr.  The 10 Hz torque was significantly reduced throughout 

recovery in both men and women (p<0.05, ES=0.03).  Women experienced an 

incomplete recovery (p<0.01, ES=0.03) up to 48 hr whereas men recovered by 24 hr 

(Figure 24B).  Reductions in the 10:50 Hz ratio indicated there was significant low 

frequency torque depression following the lengthening contractions for both men 

and women, but a greater impairment in women throughout recovery.  

For twitch torque (Figure 25) there was a main effect for time (p<0.01, 

ES=0.68).  Twitch torque was potentiated and increased to 127 ± 17.7% 

immediately post task in both men and women.  By 30 min recovery the 

potentiating effects decayed and twitch torque was reduced to 82.4 ± 17.5% of 

baseline.  Electrically evoked contractile speeds only showed main effects of time for 
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DTPT (p<0.01, ES=0.56), and DHRT (p<0.01, ES=0.21), thus slowed similarly in both 

groups by 15-20% compared with baseline. 

 

 

Figure 24. (A.) Low frequency torque depression as a combined consequence of 
impaired (B.) 10 Hz and (C.) 50 Hz torque. 
 
A significant increase in low-frequency torque depression in men (solid line; closed 
box) and women (dotted line; open circle), as shown by the decreased 10:50 Hz was 
present throughout recovery, with a trend towards greater LFTD in women 
(p=0.072).  The decreased ratio was driven by the 10 Hz component which also 
presented a sex difference throughout recovery.  Effect of time (*), effect of sex (†), 
values are means ± SE  
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Figure 25. Peak twitch torque. 
 
Peak twitch torque was potentiated similarly in women and men throughout the 
lengthening contraction task and was impaired similarly throughout recovery.  
Effect of time (*).  Values are means ± SE 
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5.3 Discussion 
 

We investigated the effects of repeated high-intensity lengthening 

contractions on velocity-dependent power loss.  Muscle damage induced a left and 

downward shift in the power curve with a preferential loss of power at higher loads 

(Figures 22, 23).  Meanwhile, maximal shortening velocity was impaired minimally 

owing to the transient effects of fatigue which recovered fully within 30 min.  In line 

with our hypothesis, an effect of sex was observed in which women had a 50% 

greater loss of power than men when tested at loads >50% MVC, and this effect 

persisted throughout recovery.  However, peak power was reduced similarly (10%) 

in both sexes and recovered fully within 24 hr.  The greater loss of power at heavier 

loads in women than men appears to be driven by those factors affecting strength 

loss and not maximal shortening velocity as reflected fundamentally by the inability 

to generate torque rapidly (i.e., rate of torque development).   

5.3.1 Strength loss  Although baseline MVC torque was 34% greater in men, 

relative strength loss was similar in both groups throughout the task and within the 

first 10 min of recovery, but thereafter, recovery of strength between the groups 

was divergent.  Men recovered fully within 24 hr, whereas women did not recover 

until 48 hr following lengthening contractions (Figure 20A).  This finding is 

consistent with sex-related differences in response to damaging lengthening 

contractions observed previously (44, 45), although others have found no sex 

difference (26, 42).  In the present study, men recovered to 89% of baseline during 

the 30 min recovery period, but women recovered to only 81% of baseline.  

Presumably, sex-differences in response to repeated dynamic contractions 
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contributed to the similar initial fatigue-induced decline in MVC in men and women 

and their different recovery profiles.  In the present study, because women ar e more 

fatigue resistant during repetitive dynamic tasks (22, 27) the initial decline in men 

could have been attributed to a greater fatigue response.  The divergent recovery 

profiles indicate that women experienced a greater level of damage induced 

impairment in muscle function leading to a delayed recovery of MVC compared with 

the men.  

Previously, we reported no change in neuromuscular activation (RMS EMG) 

or voluntary activation following exercise-induced muscle damage (35-37), and 

these results are in line with our current study in which the rate of neuromuscular 

activation did not differ from baseline for either sex (Table 6).  This indicates 

peripheral mechanisms are fundamentally responsible for decrements in 

performance following lengthening contractions in this model.  Both sexes had a 

similar increase in muscle soreness and increase in muscle series compliance  as 

indicated by the shift in optimal angle for torque production to longer lengths (2-8o).  

Although structurally, men and women seem to have experienced a similar level of 

muscle damage, there remained a greater degree of strength loss in the women 

compared with the men.  To account for this disparity, it is reasonable to suggest 

that E-C coupling was more impaired in women than men, which is supported by a 

15% greater reduction in the 10 Hz torque for the women by 24 hrs recovery 

(Figure 24B).  The main contributor to E-C uncoupling following muscle damage is 

impaired Ca2+ release (13, 28).  Thus, sex-related differences in E-C uncoupling may 

also be related to a greater impairment in Ca2+ channel regulation following muscle 
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damage in women than men in response to differing sex hormone levels as 

suggested for cardiac myocytes in mice (16).  Although a direct link between cardiac 

myocytes and skeletal muscle fibers has not been made for this pathway it is 

conceivable that the sex-difference in E-C uncoupling following damage could be 

attributed to less Ca2+ released from the female SR owing to a smaller safety factor.  

Although muscle damage was similar between sexes, the women were less able than 

the men to engage a sufficient number of viable force generators.   

5.3.2 Velocity and power  Strength loss and the velocity reductions at each 

relative load altered the T-V relationship and thus power production following the 

damaging lengthening contractions.  The weakened muscle required a higher 

percentage of initial MVC to accomplish relative movements successfully.  Peak 

power was reduced similarly in men and women, whereas power assessed at 

heavier loads was attenuated to a greater extent than when power was assessed at 

lighter loads in both sexes.  Following the damaging contractions, power did not 

recover at heavier loads (i.e., > 60% MVC) for either sex, but for the unloaded and 

lighter loads (<20% MVC), power recovered within 30 min with no sex difference.  

The shift in peak power to lighter loads allowed the muscle to compensate for the 

damage associated muscle weakness by relying more on the velocity component for 

power generation with less dependence on RTD and damaged force generators. 

Dynamic performance is dependent highly upon ballistic force generation 

which is related to the ability to generate torque rapidly and can be quantified by 

voluntary RTD (1, 5).  Following the lengthening contractions in our study, men had 

a 20% reduction in RTD during the MVC whilst women exhibited a 35% decrease.  
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Because voluntary activation and RMS EMG amplitude were unchanged, the 

impairment following muscle damage was dependent on factors distal to the 

neuromuscular junction.  Failed activation of intact force-generators (i.e., E-C 

coupling failure (6, 46)), and disruption of the force transmitting structures resulted 

in the inability to generate force rapidly.  The manner in which torque is generated 

(i.e., developed quickly) appears to play a critical role in muscular performance 

following damage, such that, there may be a critical threshold value of RTD to 

perform the task successfully.  During the dynamic contractions, across varying 

loads, women had a 15-18% loss of RTD compared with the 7-9% loss in men.  

Therefore, for loaded contractions representing a higher percentage of one’s MVC, if 

the individual’s maximal RTD is impaired below the requisite needed to initiate 

movement rapidly, power will be impaired greatly.  On the contrary, performing fast 

movements with light to moderate loads that represent a low percentage of one’s 

MVC, the critical threshold for RTD to move the load quickly is not stressed and 

performance is unimpeded by muscle damage.  

Muscular power is defined by the T-V relationship, however the torque-

length relationship governs the ability of a muscle to develop force throughout a 

range of motion, thereby contributing prominently to the generation of maximal 

power production (2, 29).  The increase in muscle series compliance as shown by 

the change in optimal angle of torque production to longer muscle lengths could 

have contributed to power loss, particularly the ability to generate torque at higher 

loads.  Women reached peak power at a lower %MVC than men, therefore, the 

additional loss of strength following muscle damage created an even greater loss of 
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power at heavier loads compared with men.  Thus, mechanisms of dynamic force 

generation are affected more in women than men following damage.  The inability to 

generate high torques rapidly at the onset of exercise, owing to increased series 

compliance and E-C uncoupling appears to be the underlying factors responsible for 

the loss of power following lengthening contractions, particularly at higher loads in 

women.   

Power loss at lighter loads recovered quickly, thus representing a fatigue-

related impairment in maximal shortening velocity.  Neuromuscular fatigue can 

result from both metabolic and non-metabolic factors such as the accumulation of 

metabolites (3) and central nervous system impairments (18).  Ultimately, fatigue 

has transient effects on power production as indicated by the recovery of power (< 

20% MVC) by 30 min, whereas muscle damage creates longer lasting impairments 

(9, 32).  Because of the relatively transient nature of metabolic perturbations, their 

slowing effect on maximal shortening velocity does not contribute to the prolonged 

impairment in velocity-dependent power.  

5.3.3 Velocity specific alterations in power  The change in maximum velocity 

reached at each load following muscle damage is consistent with velocity-specific 

alterations in the T-V relationship.  As reported previously (13), when velocity-

dependent power is tested at a moderate load following damage, the compromised 

torque production of the muscle is less stressed (< 20% MVC) as the velocity of 

contraction was fast with little need for high torque generation.  The current study 

emphasizes that at higher loads, velocity is indeed compromised greatly because the 

weakened muscle was unable to produce the requisite torque to move the load 
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quickly and powerfully.  These results indicate that a relationship exists between 

the impairment in force generation capacity following muscle damage and velocity-

dependent power production.  This is observed during isovelocity movements in 

which the constrained velocity is high enough to not impede torque production (19).  

However, when tested at faster velocities the isovelocity model does not permit the 

relative impact of force and velocity on power production to be discriminated.  

Velocity-specific alterations in power following muscle damage have been 

recently disregarded (14).  It was reported that power-loss was affected equally 

across a range of pedaling cadences which corresponded in knee extension 

velocities between 2.5-5.7 rad/s (i.e., 140-325o/s) (14).  Due to the fast knee 

extension velocities, it is apparent this mode of testing did not stress the torque 

component of power and therefore any velocity-specific alteration in power could 

not have been observed.  Previously, we (35) suspected the decline in velocity-

dependent power was driven by the decline in maximal shortening velocity.  

However, when power was tested across multiple loads in the present study we can 

conclude confidently that torque impairment, particularly the inability to generate 

torque rapidly, was driving the loss of velocity-dependent power following muscle 

damage.  Therefore, torque loss contributes minimally to power production for 

lighter loads whereas at higher loads torque loss impedes power production 

severely.  Perhaps, because shortening velocity is related to the number of 

sarcomeres working in series whilst torque production is related to those 

sarcomeres in parallel (34), damage preferentially affects torque production, and 
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hence why we observed a greater loss of power at heavier rather than lighter loads 

following muscle damage.   

Repetitive lengthening contractions fatigued and temporarily weakened the 

dorsiflexors, thus impairing their ability to generate torque rapidly.  This effect of 

muscle damage was most evident via a preferential loss of power for those loads 

representing a higher percentage of maximal isometric strength.  Although strength 

decreased similarly between sexes, women displayed a reduced recovery related to 

a greater and longer lasting failure in E-C coupling, presumably Ca2+ release, thus 

further impairing power generation at higher loads owing to a greater impairment 

in torque development than the men.  We conclude that the inability to generate 

torque rapidly at the onset of exercise appears to be one of the underlying 

mechanisms responsible for the loss of power following muscle damage, particularly 

at higher loads.
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Chapter 6 – General discussion and summary 

The studies presented in Chapters 2 to 5 of my thesis exploit the unique 

modality of muscle damage testing by focusing on the velocity component of po wer 

generation during movement.  The specific aim was to challenge the human 

neuromuscular system in a population of young and old women and men.  I used a 

less-studied, but important, dynamic task of lengthening contractions to explore the 

effects of muscle damage on factors responsible for subsequent impairments in 

shortening velocity and power generation.   

The main findings of my thesis are that repetitive lengthening contractions 

fatigued and temporarily weakened the dorsiflexors, thus impairing their power 

producing ability owing to an inability to generate torque rapidly.  In Chapter 3 I 

showed that muscle fatigue is transient, and recovers relatively quickly, while the 

effects of muscle damage can be longer lasting.  This effect of muscle damage was 

most evident via a preferential loss of shortening velocity and power for those loads 

representing a higher percentage of maximal voluntary isometric strength (MVC).  

Although strength decreased similarly between sexes, women showed a delayed 

recovery related to a greater and longer lasting failure in excitation-contraction (E-

C) coupling, thus further impairing power generation at higher loads owing to a 

lower voluntary rate of torque development (RTD) than the men (Chapter 5).  The 

old experienced greater fatigue than the young.  This greater fatigue response in 

older women is likely attributable to their limited capacity for post-activation 

potentiation; a factor in the young which may have helped offset the initial transient 
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fatigue-induced impairments in shortening velocity (Chapter 4; Figure 17).  It 

appears based on the greater power loss incurred by the older women they may be 

energetically disadvantaged (18) following repeated lengthening contractions, thus 

further exacerbating fatigue mechanisms related to whole muscle shortening 

velocity (1) and the subsequent generation of power (Chapter 4).  I emphasize - that 

the inability to generate torque rapidly and initiate movement quickly at the onset 

of exercise appears to be an underlying mechanism responsible for the power-loss 

following muscle damage - particularly at higher loads (Figure 26).   

For this particular limb muscle model, central neural factors do not appear to 

contribute to impaired neuromuscular function following lengthening contr actions.  

Voluntary activation, as assessed using the interpolated twitch technique, and 

surface and indwelling wire RMS EMG amplitude of the dorsiflexors and tibialis 

anterior, respectively, were unchanged.  Therefore, impairments in power following 

muscle damage seem to be dependent upon factors distal to the neuromuscular 

junction.  Isometric torque loss following muscle damage can be due to voluntary 

activation failure (17).  However, a maintenance of high voluntary activation for the 

tibialis anterior is a consistent and reliable (15) finding (see Chapter 2) following 

lengthening contractions (3, 11, 13, 14, 16).  Furthermore, M-wave parameters (i.e., 

p-p amplitude, area, duration) were reduced similarly in old and young indicating 

that muscle damage may have disturbed sarcolemmal excitability in both age groups 

equally.  However, results are equivocal; M-wave properties can be impaired 

following lengthening contractions (8) while others using similar lengthening 

contraction protocols do not show impairments (3, 11).   
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In Chapter 4 the older women were weaker and slower for whole muscle 

shortening velocity, leading to a greater reduction in power when compared with 

young women.  Both the old and young women possibly incurred a similar amount 

of muscle damage (i.e., prolonged reduction in isometric MVC), yet the old were 

more fatigable than young as indicated by the greater power loss up to 10 min into 

the recovery period.  Once the transient effects of fatigue recovered both age groups 

exhibited a similar reduction in power and for this reason, I argue that both groups 

experienced similar functional impairments owing to muscle damage.  However, the 

old women incurred more fatigue than the young women which accounted for the 

greater power loss immediately following the lengthening contractions.   

 

 
 
Figure 26. Factors related to repetitive lengthening contractions contributing to 
reduced shortening velocity and power loss.  
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As shown in Chapter 5, the increased muscle series compliance as evidenced 

by the change in optimal angle of torque production to longer muscle lengths could 

have contributed to the loss of power production capacity in the dorsiflexors.  

Muscle function was tested at the original muscle length not the new angle of 

optimal torque production.  Therefore, the increase in series compliance could be a 

confounding factor for the observed weakness.  Because the young women were 

weaker and reached peak power at a lower percentage of MVC than men, the 

additional loss of strength following muscle damage created an even greater loss of 

power at heavier loads compared with men.  Structurally, men and women seem to 

have experienced a similar level of muscle damage.  Although, it appears 

mechanisms of dynamic torque generation are affected more in women than men 

following damage (see below).   
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Figure 27. Force velocity and rate of torque development.  Theoretical pre- (solid 
line) and post-damage (dotted line) force velocity relationships as related to rate of 
torque development (RTD).  As shown by the curves angular velocity is less 
impaired at lower loads which require minimal RTD, while angular velocity is 
impaired severely at higher loads which require a much greater RTD to perform the 
task.  
 
 

Inadequate activation of intact force-generators (i.e., E-C coupling failure (2, 

19)), and disruption of force transmitting structures resulted in the inability to 

generate force rapidly (4, 12) which is critical for optimal performance during the 

heavier loaded contractions.  The main contributor to E-C uncoupling following 

muscle damage is impaired Ca2+ release (6, 9).  It is conceivable that the sex-

difference in E-C uncoupling following damage could be attributed to less Ca2+ 

released from the female sarcoplasmic reticulum owing to a smaller safety factor 
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(Chapter 5).  Consequently, a mechanical disruption of the link between the t-tubule 

and the sarcoplasmic reticulum could further impair an already compromised 

system.  Although muscle damage was similar between sexes, the women were less 

able than the men to engage a sufficient number of viable force generators.  The 

manner in which torque is generated (i.e., developed quickly) appears to play a 

critical role in muscular performance following damage, such that, there may be a 

critical threshold value of RTD to perform the task successfully.  Therefore, for 

loaded contractions representing a higher percentage of one’s maximal strength, if 

maximal RTD is impaired below the requisite needed to initiate movement rapidly, 

power will be impaired greatly.  On the contrary, when performing fast movements 

with light to moderate loads that represent a low percentage of one’s maximal 

strength, the critical threshold for RTD to move the load quickly is not stressed and 

performance is unimpeded by muscle damage (Figure 27).  Therefore, muscle 

weakness contributes minimally to power production for lighter loads whereas at 

higher loads torque loss impedes power production severely.   

 

6.1 Limitations 

The markers of muscle damage I used in my experiments were self-reported 

muscle soreness, optimal angle of torque production and maximal isometric 

voluntary strength.  These are indirect markers of muscle damage and can be 

influenced by central factors and voluntary effort.  Ideally muscle biopsies could 

have been obtained, but were not practical for these experiments.  We were not 

interested in investigating the extent of muscle damage per se, but rather, 
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neuromuscular function following lengthening contractions.  Additionally, the 

disruption to the muscle from the biopsy and additional intimation and pain from 

the procedure could have altered neuromuscular properties.   Despite the 

limitations of these measures in identifying structural muscle damage, they do 

reflect impairments in function, which is ultimately the primary concern following 

muscle damage.  

Surface electromyographic (EMG) recordings during a dynamic task are 

known to be affected due to movement of the muscle fibers recorded in relation to 

the surface detected potentials as the muscle shortens or lengthens under the skin 

(7).  In an attempt to minimize this limitation, I employed a mono-polar electrode 

configuration to record from a large global area of the tibialis anterior.  Further, to 

provide improved assessment of EMG in Chapter 5 and to correct for this limitation I 

inserted a fine-wire electrode into the muscle to ‘move with’ the muscle during 

dynamic contractions.  Central neural influences were ruled out as factors 

responsible for power loss.  However, measuring voluntary activation is restricted 

to isometric or slow isokinetic contractions.  Thus I do not have a measure of 

voluntary activation during fast shortening contractions, and therefore it is unclear 

if deficits in voluntary activation were indeed present.  Voluntary activation was 

high and consistent throughout all studies; this measure along with EMG may not 

have been sensitive enough to detect central deficits brought about by lengthening 

contractions. 

The isotonic mode of the Biodex dynamometer was used.  However, due to 

inherent mechanical limitations of the dynamometer (i.e., unable to maintain an 
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exact constant external load throughout an entire range of motion), these 

contractions are neither purely isotonic, nor are they iso-inertial as the load is fixed 

(mechanically) and velocity of contraction is determined by the effort of the 

participant.  Therefore we define and refer to these contractions first in Chapter 3 as 

“velocity-dependent” (5, 15).  The distinction between an isotonic movement true to 

the theoretical term and practical sense is secondary to the fact that these 

movements are more representative than isovelocity for replicating movements 

performed in everyday life, and emphasize the unconstrained velocity component of 

power.  

Many indirect measurements were obtained using electrical stimulation to 

infer fatigue/muscle damage induced changes in neuromuscular function, such as, 

central drive to the muscle (Voluntary activation, EMG), neuromuscular propagation 

(M-wave), and excitation-contraction coupling / Ca2+ handling (electrically evoked 

twitch and tetanus measures).  Even though the specific mechanisms of failure 

cannot be confirmed in these experiments, this does not impair interpretation of 

these results based on the available literature, and also emphasizes the need for 

future studies.  

 

6.2 Future Directions 

A second bout of lengthening contractions within days or weeks following 

exercise-induced muscle damage provides a prophylactic effect on muscle function 

compared with those of the initial insult.  This phenomenon is known as the 

repeated bout effect (RBE).  In my thesis I suggest torque loss - specifically impaired 
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rate of torque development - is a key factor in power loss following muscle damage.  

Thus, it would be interesting to explore whether power loss is less impaired 

following a second bout of lengthening contractions, and if so, attempt to elucidate 

further those mechanisms responsible.  Presumably, there would be less of a 

leftward shift in the force-velocity curve owing to maintenance of torque generation.  

Currently, it is unknown how the force-velocity relationship is altered following 

muscle damage in older adults and also what effects would be seen in other muscle 

models such as the elbow flexors.    

In my thesis, there were no indications of central impairments following 

lengthening contractions.  Thus, more sensitive measures may be required to 

identify central limitations following muscle damage such as transcranial magnetic 

stimulation (TMS), cervicomedullary (CM) stimulation and single motor unit 

recordings.  The silent period following stimulation would provide insight into 

cortical (TMS) and spinal inhibition (CM) following muscle damage.  Single motor 

unit recordings would provide information on recruitment thresholds and firing 

rates; the precursors of motor output. 

Imaging techniques would further identify muscle damage.  Ultrasound 

imaging could be used to measure real time fascicle length changes and tendon 

compliance.  This would help to decipher whether tendon and musculotendinous 

stiffness is affected during damaging lengthening contractions and the extent to 

which the fascicles of the tibialis anterior actually lengthen.  As well, advances in 

magnetic resonance imaging (MRI) can be used to identify muscle damage less 

invasively than the biopsy technique.  
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6.3 Summary 

Many natural movements are comprised of not only shortening actions but 

lengthening phases which act to lower the body and brake/decelerate movements, 

which can result in muscle damage.  My thesis provides support for the importance 

of measuring the velocity-component of power to provide a complete description of 

muscle function and mechanics.  Indeed, my unique results indicate that isometric 

torque loss per se is of lesser importance in explaining functional impairment 

following dynamic lengthening actions than factors that impede dynamic contractile 

kinetics (i.e., RTD).  Additionally, my results offer further evidence that fatigue is 

task-specific and that experimental designs need to extend beyond isometric models 

to provide a greater understanding of muscle fatigue and damage.  The 

compromised neuromuscular system of older adults, and weaker system of women 

has helped highlight this feature.  Finally, I propose that because shortening velocity 

is related to the number of sarcomeres working in series whilst torque production is 

related to those sarcomeres in parallel (10), muscle damage preferentially affects 

torque production, and lead to my observations of a subsequent greater loss of 

power at heavier rather than lighter loads following muscle damage.  
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