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Abstract 
 

 Ran-binding protein M (RanBPM) is an evolutionarily conserved nucleocytosolic 

protein that has been proposed to regulate various cellular processes, including protein 

stability, gene expression, receptor-mediated signalling pathways, cell adhesion, 

development, and apoptosis.  Despite the multitude of functions attributed to RanBPM 

however, little is known regarding the precise mechanisms by which RanBPM executes 

these cellular roles.  In this work, we seek to address this matter by describing functions 

for RanBPM in the regulation of apoptotic and pro-survival signalling pathways, and in 

cellular transformation.   

 We first identify RanBPM as a pro-apoptotic protein that regulates the activation 

of the intrinsic apoptotic signalling pathway in response to DNA damage.  We show that 

RanBPM executes its pro-apoptotic functions by modulating the expression and 

localization of Bcl-2 family proteins.  Next, we demonstrate that RanBPM functions as a 

novel inhibitor of the ERK1/2 signalling cascade, and that RanBPM regulates the 

expression of Bcl-2 factors through repression of this pathway.  We also extend these 

analyses to show that RanBPM forms a complex with c-Raf, and that it prevents aberrant 

ERK1/2 signalling by destabilizing the c-Raf-Hsp90 complex, thus maintaining low 

cellular c-Raf expression.  Our studies also implicate an important function for RanBPM 

in the regulation of gene expression programs.  We find that disruption of RanBPM 

expression affects transcriptional networks involved in the regulation of organism 

development and tumourigenesis, and that decreased RanBPM levels alter the expression 

of factors involved in signal transduction through the Notch, Wnt, PI3K, and ERK1/2 

pathways.   Importantly, our work also reveals that the down-regulation of RanBPM 

expression is associated with the acquisition of markers of cellular transformation, 

specifically evasion from apoptosis, sustained proliferative signalling, and increased 

cellular migration and invasion, suggesting a novel tumour suppressor function for 

RanBPM. 

 Taken together, our studies provide insight into the molecular mechanisms by 

which may RanBPM mediate its diverse biological functions, and reveal that altered 

RanBPM expression may have important ramifications in the regulation of organism 

development and disease pathogenesis. 
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Chapter 1  

1.  Introduction 

1.1 General introduction 

 On average, the human body generates 60 billion cells per day, and must 

eliminate the same number of cells daily in order to maintain cellular homeostasis [1].  

This requires the balance between signals that stimulate cell proliferation and those that 

mediate cell death, and not surprisingly, deregulation of either of these processes can 

result in the pathogenesis of diseases such as cancer [1-3].  In humans, cancer 

development (tumourigenesis) occurs as a result of complex, multi-step genetic 

alterations that drive the progression from a normal cell to a transformed, malignant cell 

[4].  These alterations arise from genomic instability that causes gain-of-function 

mutations that generate proto-oncogenes and loss-of-function mutations in tumour 

suppressors, which together disrupt control over cellular growth and proliferation [4-6].  

Different combinations of mutations within these genes are attributed to the over 100 

different types of human cancers that have been identified to date [4]. Over the last thirty 

years, intensive studies on the mechanisms that govern malignant transformation have led 

to the proposal that cancer occurs as a result of broad genetic alterations that disrupt a 

small number of key cellular processes [4, 5].  Based upon this notion, in 2000 Hanahan 

and Weinberg proposed the six hallmarks of cancer, which were defined as: uncontrolled 

cellular replication, failure to respond to growth-suppressor signals, sustained 

proliferative signalling, evasion from apoptosis, increased angiogenesis, and enhanced 

cellular migration and invasion [5].  These hallmarks represent the changes in cellular 

physiology that mediate the progression of cells from a normal to a malignant state, via a 

series of intermediate stages that define the physiology of pre-metastatic disease [5].   

 At its core, cancer is a disease that occurs as a result of loss of cellular 

homeostasis.  Therefore, in order to understand how cancer develops, it is also necessary 

to attain a detailed understanding of how normal cells balance the numerous intrinsic and 

extrinsic signals that stimulate growth or promote death.  The current focus of many 

cancer researchers is to unravel the complex regulatory networks that mediate normal 
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cellular growth, proliferation, survival, and death, and couple this with elucidating the 

mechanisms by which cells disrupt control of these networks to become cancerous.  The 

aim of this thesis is to contribute to this field of research by characterizing a novel 

function for Ran-binding protein M (RanBPM, also called RanBP9) in the regulation of 

signalling pathways that govern cell survival and cell death, and the implications of this 

role for RanBPM in the regulation of cellular transformation.    

 

1.2 RanBPM 

1.2.1 Structure and proposed functions  

 RanBPM (also known as RanBP9) is a 90kDa nucleocytoplasmic protein, initially 

identified as a binding partner of the Ran GTPase that localized to the microtubule 

organizing centre (MTOC) [7].  These initial observations of RanBPM were later 

dismissed however [8], and subsequent studies on this protein have been aimed at 

identifying its cellular function.  The RanBPM protein is ubiquitously expressed [8, 9] 

and highly conserved, with RanBPM orthologues identified in plants [10], lower 

eukaryotes (known as Vid30/Gid1 in yeast) [11],  and vertebrates species [8], and is 

characterized by four well-conserved domains (Fig. 1.1).  The N-terminus of RanBPM 

contains a SPRY (Sp1A and ryanodine receptors) domain that is proposed to function as 

a protein-interaction module [12, 13].  SPRY domains have been identified in over 600 

eukaryotic proteins with diverse cellular roles such as calcium and cytokine signalling, 

and retroviral restriction [12, 13].  The presence of SPRY domains is believed to be of 

critical importance for the overall function of proteins that contain this domain [12, 13].  

For example truncation or deletion of the SPRY domain in the TRIM5 (tripartite motif 5) 

protein, which is involved in retroviral restriction in primates, completely abolishes its 

anti-viral activity and also inhibits the anti-viral activity of wildtype TRIM5 [14].  In 

addition, mutations in the SPRY domain of the Pyrin protein alter its function, and result 

in an auto-inflammatory condition called familial Mediterranean fever [12, 15, 16].  

Interestingly, deletion of the SPRY domain in RanBPM has been found to disrupt its 

interaction with several of its binding partners [12], suggesting that this domain may also 
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Figure 1.1 RanBPM domain map.  The four conserved regions of the RanBPM protein 

are comprised of the SPRY, LisH, CTLH, and CRA domains.  The relative amino acid 

position in the human RanBPM protein is indicated for each domain.  Figure adapted 

from [17]. 
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be important for RanBPM function.   The central region of the RanBPM protein contains 

a LisH (Lissencephaly homology) domain that is involved in protein dimerization [18, 

19], and a CTLH (C-terminal to LisH) domain, for which a function is currently not 

known [18].  LisH domains have been found in more than 100 eukaryotic proteins, the 

majority of which are involved in regulation of microtubule dynamics [18].  Mutations in 

the LisH domain of proteins have been associated with disease development, including 

conditions that arise as a result of abnormal cell migration [18].  While a function for the 

CTLH domain has not been elucidated, structurally conserved CTLH complexes 

consisting of several LisH- and CTLH-domain containing proteins (including RanBPM) 

have been identified in plant, yeast, and mammalian cells [10, 20, 21].  The yeast CTLH 

complex was found to regulate proteasomal and vacuolar degradation of fructose-1,6-

bisphosphate [20], while in mammals a component of this complex was reported to 

participate in the lysosomal trafficking of ubiquitinated proteins [22].  The last 100 amino 

acids of RanBPM comprise an alpha-helical region called the CRA (CT11-RanBPM) 

domain, that is proposed to mediate protein-protein interactions [23], and has been 

identified in several proteins that are components of CTLH complexes [10, 20, 21].     

 RanBPM has been reported to function in a multitude of cellular processes 

including regulation of protein stability [24, 25], transcriptional regulation of steroid 

receptors [26-28], functioning as an adaptor/scaffold for receptor signalling pathways 

[29-32], and in the regulation of development [33-35] and apoptosis [36-39].  Despite 

these findings however, the precise modality by which RanBPM functions remains 

largely undetermined.   

 

1.2.2 Regulation of intracellular signalling pathways 

 Early studies on RanBPM revealed that the N-terminal region of the protein 

contains a long stretch of proline and glutamine residues [8]. It is well established that 

proteins which possess glutamine-rich regions form aggregates [40], a characteristic 

which has been attributed to the development of several pathological conditions including 

Huntington's Disease (HD) [40].  The presence of a glutamine-rich region in RanBPM 
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led to the hypothesis that protein-protein interactions may be important to its cellular 

function, a notion that was supported by the observation that RanBPM was a component 

of a large, multi-subunit protein complex exceeding 670kDa in size [8].  This also led to 

the suggestion that RanBPM may function as a scaffolding protein that integrates signals 

from multiple pathways within the cell [9, 41].   Consistent with such a role, RanBPM 

was proposed to localize to the plasma membrane and function as a scaffold for several 

cell-surface receptors, by coupling receptor activation to the induction of downstream 

signalling events.  For example, interaction of RanBPM with the intracellular kinase 

domain of the MET proto-oncogene (MET) receptor was found to stimulate extracellular 

signal-regulated kinase (ERK) 1/2 signalling, and to enhance cell migration [30].  

Further, its interaction with the intracellular kinase domain of the tropomyosin-related 

kinase (Trk) B receptor was found to promote ERK1/2 and Akt activation, and lead to 

neuronal differentiation [31].   In an opposing role, Cheng et al. reported that RanBPM 

interacted with the cytoplasmic domain of the neural cell adhesion molecule L1, and 

inhibited L1-mediated ERK1/2 activation and neurite outgrowth [29].   In studies with the 

LFA-1 (lymphocyte function-associated antigen-1) integrin, RanBPM was observed to 

bind the cytoplasmic domain of the β2integrin LFA-1 at the plasma membrane, and 

couple LFA-1 with intracellular signalling and transcriptional activation [9]. Together, 

these findings led to a model for RanBPM function, in which RanBPM mediates 

intracellular responses to extracellular cues that govern cell function and behaviour. 

 

1.2.3 Functions in developmental regulation 

 Most studies on RanBPM are centred upon the identification and characterization 

of its interaction partners, but fail to ascribe a biological significance to these 

interactions.  However, several recent reports have pointed to an important function for 

this protein in neuronal and germline development.  In support of a role in neuronal 

development, Brunkhorst et al. reported that RanBPM interacted with the transcriptional 

co-activator TAF4 (TATA box binding protein-associated factor 4) in neural stem cells 

and mediated neuritogenesis during differentiation [35].  Additionally, work by 

Scantlebury and colleagues determined that in the Drosophila nervous system, RanBPM 
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function was required for proper larval feeding behaviour, response to light, and for 

coordinated locomotion [42].  With regard to a function in germline development, 

RanBPM was found to regulate the size and morphology of the microenvironment (niche) 

that determines germline stem cell (GSC) fate in the Drosophila ovary, and to regulate 

the capacity of this niche for GSCs [34].   Moreover, recent studies using knockout mice 

demonstrated that RanBPM is critical for normal gonad development in mammals, as 

absence of RanBPM expression resulted in the loss of all germ cells in the gonads of 

male and female mice, and rendered them sterile [33].   

 The importance of RanBPM function in development is further substantiated by 

the observation that it is a vital gene in Drosophila, and that larvae expressing mutant 

forms of RanBPM exhibit feeding defects that cause them to be markedly smaller than 

control flies [34, 42].  RanBPM appears to be equally important for normal development 

in mammals, although unlike in Drosophila, deletion of RanBPM in mice is not lethal 

[33].  Intriguingly, in the study by Puverel et al., over half of RanBPM knockout mice 

died perinatally, and those which did survive were significantly smaller in size than their 

normal littermate controls [33].  While the causes of perinatal lethality and growth 

suppression in these mice have not yet been elucidated, they support the notion that 

perturbation of RanBPM expression has significant consequences for normal organism 

development. 

 

1.2.4 Functions in apoptotic signalling 

 RanBPM has also been linked to the regulation of apoptotic pathways.  It was 

reported to bind the intracellular death domain of the p75 neurotrophin receptor 

(p75NTR), a member of the tumour necrosis factor (TNF) superfamily that promotes 

apoptosis in neuronal cells [43]. It was also found to bind a caspase-cleaved fragment of 

cyclin-dependent kinase 11 (CDK11p46) that functions as an effector protein in receptor-

activated apoptotic signalling pathways [37].   Additionally, RanBPM interacts with 

factors involved in transcriptional regulation of intrinsic apoptotic signalling.  Kramer 

and colleagues reported that binding of RanBPM to the transcription factor p73 stabilized 
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the p73 protein, and enhanced its pro-apoptotic activity [25].  An interaction of RanBPM 

was also observed with homeodomain-interacting protein kinase 2 (HIPK2), which 

promotes p53-dependent apoptosis [38].  Recent studies have also identified a function 

for RanBPM in apoptotic regulation in diseased states. Alzheimer's Disease (AD) is a 

neurodegenerative disorder that is characterized by accumulation of the amyloid β (Aβ) 

protein in extracellular plaques, and by widespread neuronal and synaptic loss [44].  

RanBPM was found to enhance Aβ generation [45] and to augment Aβ-mediated 

apoptosis and neurodegeneration in neuronal cell lines [39].  

  

1.2.5 Summary 

 Since its initial discovery nearly 15 years ago, extensive efforts have been made 

to understand the cellular function(s) of RanBPM.  This has been complicated, however, 

by the fact that the majority of reports on RanBPM identify binding partners for this 

protein without providing insight into the functional consequences of these interactions.   

Nevertheless these observations have identified several processes in which RanBPM 

appears to have a critical role, including apoptosis and the regulation of diverse signalling 

pathways.  They also highlight an important role for RanBPM in development, and 

suggest a function for RanBPM in disease pathogenesis.  While it remains to be 

determined how RanBPM can govern so many distinct processes, it appears that 

elucidating the cellular functions of RanBPM may have great implications in 

understanding normal organism function and the development of pathophysiological 

conditions. 

 

1.3 Apoptosis 

1.3.1 Overview 

 Initially defined in 1972 as a counterbalance for cell proliferation, apoptosis is a 

process of programmed cell death that is critical to both physiological and pathological 

development [2].  Activation of apoptosis can be triggered either by extracellular stimuli 
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(extrinsic pathway) or intracellular stimuli (intrinsic pathway) that converge upon a 

family of cysteine proteases called caspases, which are responsible for the execution of 

cell death [46].  In the extrinsic apoptotic pathway, specialized immune cells produce 

death-inducing ligands that bind pro-apoptotic receptors at the cell membrane and 

activate intracellular signalling pathways that lead to caspase activation [46].  Conversely 

exposure of cells to stresses such as heat shock, growth factor withdrawal, or radiation-

induced DNA damage, activates the intrinsic apoptotic pathway that mediates caspase 

activation via disruption of mitochondrial function [46, 47].  Upon activation, caspases 

cleave specific cellular substrates to induce apoptotic cell death [47].  The end stages of 

apoptosis are characterized by chromatin condensation, nuclear fragmentation, cell 

shrinkage and fragmentation, and ultimately the engulfment and elimination of cells by 

phagocytosis [1].    

 

1.3.2 Intrinsic apoptotic pathway 

 DNA is under constant assault from environmental and intracellular factors, 

which pose a threat to the integrity of the genome [48].  Genotoxic agents such as 

ionizing radiation (IR) or reactive oxygen species (ROS) can generate DNA lesions and 

strand breaks [48, 49], the most dangerous form of which is DNA double-stranded breaks 

(DSBs) [50, 51].  If not repaired properly, DNA damage can lead to genomic instability 

and chromosomal rearrangements, both of which are critical features of cancer 

development [52].  Thus cells have developed intricate signalling pathways, collectively 

known as the DNA damage response (DDR), to sense and repair DNA strand breaks [51, 

52].  Alternatively when repair is not possible, the DNA damage response activates cell 

death pathways that eliminate damaged cells before the compromised genetic material 

can be propagated [51-53].  In the DDR, DNA lesions signal the recruitment and 

assembly of repair complexes at the sites of damage, and the activation of checkpoint 

signalling [53, 54].  Checkpoint signalling mediates cell cycle arrest in order to allow 

cells sufficient time to repair the damaged DNA and to restore genomic integrity [53, 54].  

Successful DNA repair causes the inactivation of checkpoint signalling and re-entry into 

the cell cycle [53, 54].  However, in instances where DNA damage exceeds a certain 
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threshold and is too extensive to be repaired, the intrinsic apoptotic pathway is activated 

to eliminate damaged cells (Fig 1.2) [52, 54].  DNA damage can signal apoptotic 

activation through several cellular factors including caspase-2, and the transcription 

factors p53 and E2F1 [49, 51, 55].  P53 is one of the key proteins involved in mediating 

DNA damage-induced apoptosis.  It has been extensively demonstrated to function as a 

critical tumour suppressor in cells that prevents genomic instability by promoting cell 

death in response to irreparable DNA damage [56]. Upon its activation by upstream DNA 

damage signalling cascades, p53 transactivates the expression of pro-apoptotic B-cell 

lymphoma 2 (Bcl-2) family factors.  Pro-apoptotic Bcl-2 proteins trigger mitochondrial 

membrane permeabilization (MMP), which causes mitochondrial dysfunction and marks 

the commitment of cells to apoptotic cell death [52].  Mitochondrial dysfunction results 

in the release of integral mitochondrial proteins such as cytochrome c (cyt c) from the 

intermembrane space into the cytoplasm [57].  Cytosolic cyt c then recruits the apoptotic 

protease-activating factor-1 (APAF-1), and the initiator caspase pro-caspase-9, and 

together these form the death signalling complex known as the apoptosome [57].  Within 

the apoptosome, pro-caspase-9 undergoes autocatalytic activation and cleaves and 

activates the effector caspases, caspase -3 and -7 [57, 58].  Effector caspases have a wide 

range of cellular targets, including factors involved in the cell cycle and DNA repair, as 

well as cytoskeletal and structural proteins.  Cleavage of these substrates promotes 

downstream signalling events that culminate in the execution of apoptotic cell death.   

 Apoptosis is a highly regulated process, and the ability to undergo apoptosis is 

pivotal to preventing genomic instability and chromosomal rearrangements, and to 

maintaining cellular and tissue homeostasis [1].  Consequently, deregulation of apoptotic 

pathways is associated with the occurrence of pathological conditions such as cancer.  

For example, somatic mutations in p53 are among the most common in cancer, occurring 

in nearly half of all human malignancies [59].  These mutations result in the simultaneous 

loss of the tumour suppressor activity of p53 and in the acquisition of oncogenic activity 

by p53, and are often associated with more aggressive and metastatic cancers [59]. 

Mutations in the expression and activity of several Bcl-2 family proteins have also been 

associated with the occurrence and progression of certain cancers, and are often
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Figure 1.2 Intrinsic apoptotic pathway.  In resting cells, Bcl-2 and Bcl-XL prevent 

mitochondrial membrane permeabilization by inhibiting Bax and Bak activity.  Induction 

of upstream apoptotic signalling leads to Bax and Bak oligomerization at the 

mitochondrial membrane, and cytochrome c (cyt c) release into the cytoplasm.  Together 

with APAF-1 and pro-caspase-9, cyt c forms a death signalling complex (apoptosome), in 

which caspase-9 is activated, and mediates cleavage and activation of the executioner 

caspases, caspase-3 and caspase-7.  
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prognostic indicators of poor patient outcome [60-62].  As such, these proteins have 

become the focus of tremendous research aimed at elucidating the mechanisms that 

regulate their expression and function under normal conditions, and how these processes 

are deregulated in cancer. 

 

1.4 Bcl-2 family proteins 

1.4.1 Overview  

 Bcl-2 proteins comprise a large family of pro- and anti-apoptotic factors, with 

critical functions in apoptotic regulation.  In the absence of death stimuli, anti-apoptotic 

Bcl-2 proteins bind pro-apoptotic Bcl-2 members and retain them in an inactive state, 

thereby preventing cell death.  Upstream apoptotic signalling causes the release and 

activation of pro-apoptotic Bcl-2 proteins, followed by MMP and cyt c release, resulting 

in cell death. Due to their critical roles in apoptosis, the expression of Bcl-2 proteins is 

highly regulated, and changes in the relative cellular ratios of the pro- and anti-apoptotic 

members determines the commitment to cell death.  Bcl-2 proteins are divided into three 

sub-classes: the anti-apoptotic Bcl-2 proteins (Fig 1.3A), the multi-BH (Bcl-2 homology) 

domain pro-apoptotic proteins (Fig. 1.3B), and the pro-apoptotic BH3-only proteins that 

as the name indicates contain only the BH3 motif (Fig 1.3C).  The BH1-3 motifs in the 

anti-apoptotic, and multi-domain pro-apoptotic, Bcl-2 proteins form a hydrophobic 

groove that can be bound by the BH3 motif of BH3-only proteins [63].  In the pro-

apoptotic BH3-only proteins, this motif serves as an interaction surface that either binds 

and represses anti-apoptotic Bcl-2 proteins, or binds and activates pro-apoptotic Bcl-2 

proteins [63].  It is believed that for the majority of BH3-only proteins, this motif is 

required for their death-promoting activity [63, 64].  Finally, the C-termini of Bcl-2 

proteins contain hydrophobic regions (known as the transmembrane (TM) domain) that 

facilitate their interaction with, and their insertion into, intracellular membranes, such as 

the mitochondria [63].         
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Figure 1.3 Bcl-2 family proteins.  The domain structure of the (A) multi-domain anti-

apoptotic, (B) multi-domain pro-apoptotic, and (C) BH3-only pro-apoptotic, Bcl-2 

proteins is depicted.  The respective positions of the Bcl-2 homology (BH), and 

transmembrane [(TM), purple] domains are indicated for each protein.  Figure adapted 

from [63].      
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1.4.2 Pro-apoptotic Bcl-2 proteins 

 The two classes of pro-apoptotic Bcl-2 proteins function to regulate the activation 

and execution of MMP and cell death.  The pro-apoptotic BH3-only proteins act as stress 

sensors that are activated in response to various stimuli including DNA damage, and 

function upstream of the mitochondria to activate the pro-apoptotic multi-BH domain 

proteins [65].  The function of the multi-BH domain pro-apoptotic proteins is to execute 

mitochondrial permeabilization and cyt c release [65].    

 To date, eight BH3-only Bcl-2 proteins have been identified, including Noxa, 

p53-upregulated modulator of apoptosis (PUMA), Bad, and Bim, which are each 

activated by specific death stimuli.  Activation of BH3-only proteins is achieved through 

changes in their expression levels, either via up-regulation of gene expression or changes 

in post-translational modifications.  This increases the cellular ratio of pro-apoptotic Bcl-

2 proteins, relative to the anti-apoptotic proteins, and shifts the balance toward cell death 

[47, 65].  BH3-only proteins can activate the pro-apoptotic multi-BH domain proteins by 

two distinct mechanisms [64].  They can bind and sequester anti-apoptotic Bcl-2 proteins, 

thus facilitating the release and indirect activation of the pro-apoptotic multi-BH domain 

proteins [64, 66].  Alternatively, BH3-only proteins can directly bind the pro-apoptotic 

multi-BH domain proteins, resulting in their release from inactive heterodimers, and their 

activation [64, 66].  Based upon their roles as stress sensors and activators of downstream 

apoptotic signalling, BH3-only proteins are essential to the initiation of apoptosis [64].   

 The two main multi-BH domain pro-apoptotic Bcl-2 proteins are Bax and Bak, 

which function by oligomerizing at the outer mitochondrial membrane (OMM), thus 

causing mitochondrial dysfunction and cell death.  Activation of Bax and Bak occurs 

through changes in their post-translational modifications and sub-cellular localization 

[64, 66].  In the absence of death stimuli Bax resides in the cytoplasm as an inactive 

monomer (Fig. 1.2) [57, 65].  Upon activation by BH3-only proteins, it translocates to the 

mitochondria where it undergoes conformational changes that facilitate its insertion into 

the OMM [57, 65].  Conversely, Bak resides at the OMM, and is retained in an inactive 

state through heterodimerization with anti-apoptotic Bcl-2 proteins (Fig. 1.2) [57, 65].  

Upon activation Bak is released from these inactive heterodimers, and undergoes 
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conformational changes that cause its oligomerization [57, 65].  Bax and Bak oligomers 

form pores or channels in the mitochondrial membrane that disrupt the voltage gradient 

across the membrane, and lead to loss of mitochondrial integrity.  This, coupled with the 

release of inner mitochondrial proteins such as cyt c into the cytosol, commits the cells to 

apoptotic cell death [47].   

 

1.4.3 Anti-apoptotic Bcl-2 proteins 

 The central function of the anti-apoptotic members of the Bcl-2 family is to 

prevent apoptosis by opposing the death-inducing activity of pro-apoptotic Bcl-2 proteins 

[60, 63].  The five members of this sub-class (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, and A1) are 

known to protect cells from a variety of cytotoxic insults including IR, UV radiation, and 

cytokine withdrawal [60, 63].  In resting cells, anti-apoptotic Bcl-2 proteins sequester 

pro-apoptotic Bcl-2 proteins and neutralize their death-promoting activity.  Apoptosis is 

triggered by "de-repression" of pro-apoptotic Bcl-2 proteins, wherein anti-apoptotic Bcl-2 

proteins become inactivated, and mitochondria become sensitized to permeabilization due 

to enhanced levels of activated Bax and Bak [66].  Further, anti-apoptotic Bcl-2 proteins 

can localize to the cytoplasmic surfaces of the endoplasmic reticulum (ER), nuclear, and 

mitochondrial membranes to maintain their membrane integrity, which may also have 

important implications in regulating cell death [47, 61, 63].  These proteins also have 

documented roles in regulating cellular and tissue homeostasis, and in development [47, 

63, 67].   

 The execution of these pivotal cellular functions by anti-apoptotic Bcl-2 proteins 

necessitates intricate regulation of their expression and activity.  This is achieved through 

complex transcriptional and post-translational mechanisms [61].  Extensive studies on 

Bcl-2 and Bcl-XL in particular have implicated roles for the cyclic AMP-response 

element-binding protein (CREB) [68-70] and nuclear factor kappa-B (NF-κB) [68, 71-74] 

transcription factors in promoting Bcl-2 and Bcl-XL gene expression, while p53 has been 

found to repress Bcl-2 gene expression [75, 76].  Bcl-2, Bcl-XL, and Mcl-1 are also 

known to be regulated through post-translational modifications that modulate their anti-
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apoptotic activity, and protein stability.  For example, their phosphorylation can be 

associated either with enhanced protein stability and anti-apoptotic function [77-79], or 

with increased ubiquitination and proteasome-dependent degradation [79-84], depending 

upon the stimulus that triggers the modification.  The multi-level regulation of expression 

and activity of anti-apoptotic Bcl-2 proteins is achieved mainly through the induction of 

mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3K) 

signalling cascades [79, 80, 82, 85-87].  These pathways regulate the expression of anti-

apoptotic Bcl-2 factors either through direct phosphorylation of their proteins, or 

indirectly by modulating the activity of transcription factors that regulate their gene 

expression.  This shifts the balance either toward cell survival or cell death, depending 

upon the effect of the pathway on cellular levels of anti-apoptotic Bcl-2 proteins. 

 

1.4.4 Bcl-2 proteins and cancer  

 The ability of cells to undergo apoptosis is critical to tumour suppression.  

Mutations that result in deregulated expression and activity of Bcl-2 family proteins have 

important implications in the initiation and progression of several types of cancer [62, 63, 

65].  Based upon their roles in promoting cell death, Bax and Bak are proposed to 

function as tumour suppressors [60, 61, 63].  In support of this notion, Bax was reported 

to be mutated and/or inactivated in colon tumours [52, 88], and decreased Bax expression 

was associated with increased tumourigenicity and poor patient outcome [89-91].  

Tumour suppressor functions for both Bim [92] and Bid [93] have also been suggested.  

These observations, as well as the potent role of BH3-only proteins in promoting 

apoptosis, have made them attractive targets in the development of chemotherapeutic 

agents that function by reactivating the apoptotic machinery in order to promote tumour 

cell death [61, 67]. 

 Significant evidence also supports a tumour-promoting function for anti-apoptotic 

Bcl-2 proteins.  Indeed Bcl-2 itself was initially identified based upon a chromosomal 

translocation event (denoted t(14;18) translocation) occurring in lymphomas.  This 

translocation fuses the Bcl-2 gene to the immunoglobulin heavy chain gene locus, 
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resulting in aberrant transactivation of Bcl-2, and a marked increase in its expression [62, 

94].  Additional studies have determined that the Bcl-2 gene is often amplified and/or 

overexpressed in many human cancers [62, 95].  Bcl-2 is a proto-oncogene [47, 62], but 

is unique in that unlike most oncogenes, it does not promote tumourigenesis via enhanced 

cellular proliferation, but rather through suppression of cell death [65, 67].  Importantly, 

mutations in Bcl-2 confer resistance to radiation and chemotherapies in patients, and are 

poor prognostic indicators in many cancers [62, 94, 95].  Likewise, Bcl-XL expression is 

associated with increased radio- and chemotherapeutic resistance in many cancers [95, 

96], and Mcl-1 expression is reported to be increased in multiple myeloma [97] and 

chronic lymphocytic leukemia [98].  These collective findings have resulted in substantial 

efforts aimed at identifying novel therapies that will antagonize the functions of anti-

apoptotic Bcl-2 proteins, in order to restore normal apoptotic signalling and response to 

chemotherapeutic agents in tumours [67, 95].  These strategies include targeting the 

pathways that modulate the expression and activity of anti-apoptotic Bcl-2 proteins, such 

as MAPK signalling. 

 

1.5 ERK1/2 signalling pathway 

1.5.1 Mitogen-activated protein kinases 

 Since their initial discovery over 20 years ago, the MAPK superfamily of 

serine/threonine kinases has become one of the most intensively studied signal 

transduction modulators in eukaryotes [99, 100].  These evolutionarily and functionally 

conserved proteins link cell surface receptors to intracellular signal transducers, and have 

been implicated in the regulation of many important cellular processes including 

embryogenesis, cellular proliferation, cell differentiation, metabolism, and cell death [99, 

101, 102].  Deregulated MAPK signalling has also been attributed to the development of 

many pathological conditions including inflammatory and degenerative disorders, and 

cancer [100, 103].  Signalling through the MAPK pathway involves a "phospho-relay" 

system [101], whereby mitogenic stimuli lead to the sequential activation of three
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kinases, each by its upstream kinase, following the general pattern of 

MAPKKK  MAPKK  MAPK 

that is also regulated at each step by a MAPK phosphatase that serves to attenuate 

signalling [100-102].   

 While each MAPK exhibits a certain degree of specificity for its cellular targets 

(sometimes called MAPK effectors), there is also considerable overlap amongst different 

MAPKs for these substrates [99, 100].  This overlap allows for the incorporation of 

signals from numerous stimuli into specific cellular substrates that mediate the response 

to that stimulus [99].  Thus, regulation of MAPK signalling is achieved through the 

formation of complexes that integrate various signal inputs and ensure substrate 

specificity [99].  Within these complexes, scaffolding proteins tether the different 

components of the signalling pathway to each other, thereby facilitating kinase activation, 

and determining the specificity of kinases for their targets [99, 100].  These scaffolding 

complexes can also impact the sub-cellular localization of MAPKs, which has important 

consequences for MAPK activity, and substrate recognition [99].  Substrates of activated 

MAPKs include transcription factors, cytoskeletal proteins, other kinases, and upstream 

components of the MAPK signalling pathway [100, 102, 104].  Upon activation, MAPKs 

can translocate to the nucleus, where they modulate the activity and DNA binding affinity 

of transcription factors, thus altering gene expression patterns [100, 102].  In the 

cytoplasm, active MAPKs can regulate cell motility and morphology through 

phosphorylation of cytoskeletal proteins [99, 104], and can activate downstream kinases 

to promote cell cycle progression and cell proliferation [102, 104].  They can also 

activate negative feedback loops to attenuate their signalling by phosphorylating 

upstream components of the signalling cascade [102, 105].  This is particularly important 

as the duration of MAPK signalling determines the functional outcome of signalling, 

such as whether cells will undergo proliferation or differentiation in response to a given 

stimulus [100, 102, 105].   

 To date, four distinct sub-classes of MAPKs have been identified in mammals: 

ERK1 and 2 (ERK1/2), c-Jun N-terminal kinases/stress activated protein kinases 
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(JNK/SAPK), p38 kinases, and ERK5 [99, 101, 102], which are each activated by unique 

MAPKKs to govern distinct cellular responses [99, 102].  Of these, ERK1/2 is perhaps 

the most well studied MAPK sub-family, which is attributed in part to its pivotal roles in 

regulating both normal and pathological processes [105]. 

 

1.5.2 Overview of ERK1/2 signalling 

 ERK1 and ERK2 (often referred to as ERK1/2) are ubiquitously expressed, highly 

related kinases that have important functions in many fundamental cellular and 

physiological processes, and in the development of various diseases [99, 105, 106].  

ERK1/2 signalling can be activated in response to growth factors, cytokines, viral 

infection, G protein-coupled receptor (GPCR) activation, transforming agents, and 

cellular stresses [99, 101, 105] to mediate responses such as cell cycle progression and 

proliferation, cell motility, differentiation, metabolism, cell survival, and apoptosis [105-

107].  ERK1/2 signalling is also required for physiological processes such as growth 

factor response, tissue development and homeostasis, and memory formation, and 

aberrant signalling through this pathway is known to cause pathologies including cancer, 

diabetes, and cardiovascular disease [105, 108].       

 The most well established model of the ERK1/2 pathway is signalling that is 

activated by the binding of extracellular growth factors to receptor tyrosine kinases 

(RTKs) at the plasma membrane (Fig 1.4) [99, 105].  Ligand binding initiates the 

catalytic activity of RTKs, and results in autophosphorylation of tyrosine residues on the 

cytoplasmic tails of the receptors.  Tyrosine phosphorylation leads to the recruitment of 

the adaptor protein Grb2 (growth factor receptor-bound protein 2) and the guanine 

exchange factor Sos (Son-of-sevenless) to the membrane, followed by their interaction 

with the small G-protein Ras.  Sos induces Ras activation by mediating GTP loading on 

Ras.  Once activated, Ras recruits the serine/threonine kinase Raf to the membrane and 

binds it, causing conformational changes that lead to Raf phosphorylation, and activation 

of its kinase activity.  Raf mediates the phosphorylation and activation of MEK1/2, which 

in turn phosphorylates and activates ERK1/2.   
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Figure 1.4 ERK1/2 signalling pathway.  The binding of growth factors to cell-surface 

receptor tyrosine kinases (RTKs) results in receptor activation and recruitment of the 

adaptor protein Grb2, and the guanine exchange factor Sos to the membrane, where they 

mediate GTP-loading on Ras.  Activation of Ras leads to the induction of MAPK 

signalling and the sequential phosphorylation and activation of Raf, MEK1/2, and 

ERK1/2.  Upon its activation, ERK1/2 phosphorylates numerous nuclear and cytosolic 

substrates that mediate the specific cellular responses to the stimulus, such as cell 

proliferation and migration.   
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 To date over 70 cellular substrates of ERK1/2 have been identified [100, 105, 

109]. The functional outcome of ERK1/2 activation is dependent, to a great extent, on the 

substrates that it phosphorylates, which is determined by the stimuli that initiate the 

signalling pathway [105].  For example, one of the most potent downstream signalling 

events mediated by ERK1/2 is the activation of transcription factors, including Elk1, c-

Fos, Ets, and CREB, achieved through the nuclear translocation of activated ERK1/2 [99, 

105].  Activation of transcription factors can govern cellular responses including DNA 

replication, cell cycle progression, and cell survival [102, 107, 108].  In addition to 

transcription factors, another important target of activated ERK1/2 is substrates that 

regulate feedback loops that determine the duration and intensity of ERK1/2 signalling 

[105].  For example, ERK1/2 can directly mediate inhibitory phosphorylation of MEK 

[109], Raf [110], and Sos [109] that prevents signal propagation through the cascade.  

These inhibitory feedback loops ensure appropriate cellular response to the stimulus is 

achieved (ie. differentiation versus proliferation), and are critical in preventing 

deregulated ERK1/2 signalling [105]. 

 

1.5.3 Raf kinases 

 

1.5.3.1 Overview and structure of Raf kinases 

 Raf protein kinases link the signals from ligand-mediated receptor activation to 

downstream signalling pathways, in order to regulate diverse cellular and physiological 

programs.  In mammals, three distinct Raf isoforms encoded by three distinct genes, have 

been identified: A-Raf, B-Raf, and c-Raf (also known as Raf-1) [111, 112] .  Raf proteins 

are ubiquitously expressed, though A-Raf expression is highest in urogenital organs, and 

B-Raf expression is most abundant in neuronal tissues [99].  Rafs share a common 

structure consisting of three conserved regions (CR) with distinct functions, denoted 

CR1, CR2, and CR3 (Fig 1.5) [111-113].  CR1 and CR2 are located within the N-

terminal region of Raf that is required for regulation of Raf activity, whereas CR3 is 

located within the C-terminal region that contains the Raf catalytic kinase domain
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Figure 1.5 Raf protein structure.  The mammalian isoforms of Raf (A-Raf, B-Raf, and 

c-Raf) each consist of three conserved regions: CR1, CR2, and CR3.  CR1 (pink) 

contains the Ras-binding domain (RBD) and cysteine-rich domain (CRD), which are 

necessary for the recruitment of Raf to the membrane, and for binding to Ras.  One of the 

14-3-3 binding sites (S259) needed for proper Raf folding is found within CR2 (purple).  

The catalytic domain of Raf is located within CR3 (green), which also contains the 

activation loop (yellow) that is pivotal for Raf kinase activity.  Immediately upstream of 

CR3 lies the N-region (negative-charge region) that contains two residues (S338 and 

Y341) that must be phosphorylated to achieve Raf kinase activation.  In the extreme C-

terminal region of Raf lies the second 14-3-3 binding site (S621).  All amino acid 

positions indicated correspond to the respective residues in the c-Raf protein. (S, serine; 

Y, tyrosine).  Figure adapted from [112].       
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[99, 111].  The CR1 of Raf contains the Ras-binding domain (RBD) and cysteine-rich 

domain (CRD), which facilitate membrane recruitment of Raf, and its interaction with 

Ras [112, 114].  CR2 is a small region containing several inhibitory phosphorylation sites 

that are critical to inhibiting Ras binding, and repressing Raf activity [111].  The catalytic 

domain of Raf is found within CR3, and contains the ATP-binding domain and activation 

segment [111].  These regions undergo phosphorylation events that are necessary for 

induction of Raf kinase activity [111].  Since the identification of c-Raf over 20 years 

ago, Raf proteins have been the subject of intensive study aimed at elucidating the 

mechanisms that regulate their activation and signalling.  While signalling downstream of 

Raf is well characterized, the mechanisms by which Raf activation occurs remain under 

study.  However, using c-Raf as the model, significant progress has been made in 

delineating the complex and intricate process of Raf activation [105, 111, 112].   

 

1.5.3.2 Activation of c-Raf  

 The c-Raf activation/inactivation cycle consists of a series of post-translational 

modifications, changes in sub-cellular localization, and intra- and inter-molecular protein 

interactions of c-Raf (Fig 1.6) [110].  In the absence of receptor signalling, c-Raf is held 

in an inactive state in the cytoplasm.  This is achieved through the formation of a 

"closed" conformation of the protein, where the N-terminal regulatory region folds over 

the C-terminal catalytic region and inhibits its kinase activity [111, 115].  In this inactive 

state, a 14-3-3 dimer binds phosphorylated residues in the N-terminal (S259) and C-

terminal (S621) regions of c-Raf, and tethers them together, thereby stabilizing the closed 

conformation [105, 111, 115].  This conformation further represses c-Raf activity by 

obstructing the interaction surfaces needed for recruitment of c-Raf to the membrane and 

for its interaction with Ras [112, 115].  Receptor activation mediates the translocation of 

c-Raf to the membrane, where it is dephosphorylated at S259, releasing 14-3-3 from the 

N-terminal region of c-Raf, and loosening the closed conformation [105, 111, 115].  

These conformational changes allow c-Raf to adopt an "open" conformation that exposes 

its kinase domain, and enables binding of Ras-GTP to the RBD of c-Raf [111].  In 

addition to the Ras-binding domain, Ras also binds the CRD of c-Raf, which functions to 
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Figure 1.6 C-Raf activation cycle.  Phosphorylation of c-Raf at S259 and S621 mediates 

the binding of 14-3-3 to c-Raf, and the formation of the closed, inactive conformation of 

the protein.  Activated Ras (Ras-GTP) recruits c-Raf to the membrane where S259 is 

dephosphorylated, allowing c-Raf to adopt an open conformation.  Phosphorylation of c-

Raf at S338 and Y341 of the N-region facilitates full activation of c-Raf kinase activity, 

and induction of downstream signalling.  Repression of c-Raf activity is achieved by 

dephosphorylation of S338 and inhibitory phosphorylation at S289, which cause its 

dissociation from Ras.  C-Raf is subsequently re-phosphorylated on S259 to re-form its 

closed, inactive conformation.  (S, serine; Y, tyrosine).  Figure adapted from [111]. 
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further stabilize c-Raf membrane localization, and Ras-c-Raf interaction [111].  This also 

serves as the initiating event in c-Raf catalytic activation [111, 112].  Between the N-

terminal regulatory region and C-terminal catalytic region resides the N-region 

(negatively-charged region) of c-Raf, consisting of Ser338-Ser-Tyr-Tyr341 residues [112, 

115].  Phosphorylation of S338 and Y341 within this region is essential for the activation 

of c-Raf kinase activity [111, 113].  While it has been well established that 

phosphorylation at Y341 is mediated by SRC (v-src sarcoma) and JAK (Janus kinase) 

family kinases, a great deal of controversy remains over the kinase(s) responsible for 

phosphorylation of c-Raf at S338, a fact which has been attributed to the diverse stimuli 

that can signal c-Raf activation [111-113].  In addition to mediating c-Raf activation, 

phosphorylation of the N-region also facilitates c-Raf-MEK1/2 interaction at the 

membrane, and the induction of downstream signalling events [111, 113].  Inactivation of 

c-Raf, and attenuation of its signalling, is achieved through inhibitory phosphorylation at 

multiple residues including S259 and S289, coupled with dephosphorylation at S338, and 

binding to 14-3-3 [110, 111].  This restores c-Raf to its closed, inactive conformation in 

the cytoplasm until the next round of c-Raf signalling is initiated.  The complex 

conformational changes that drive the c-Raf activation cycle underscore the importance 

of c-Raf protein structure in modulating its activity and downstream signalling.  In-depth 

analyses of the regulation of c-Raf folding and structure have highlighted an important 

role for molecular chaperones in this process. 

 

1.5.3.3 C-Raf protein folding and stability  

 

1.5.3.3.1 Heat shock proteins  

 Molecular chaperones are critical to the maintenance of proteostasis, and the 

prevention of protein misfolding and aggregation within the cell [116].  They function by 

assisting in the folding of nascent polypeptides, forming of protein complexes, and 

preventing the aggregation of misfolded or unfolded proteins by mediating either their 

refolding or degradation [116, 117].  Heat shock protein (HSP) 90 is a highly conserved 
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molecular chaperone that regulates the folding and stability of over 200 cellular 

substrates (known as Hsp90 client proteins), with roles in immune response, cell 

signalling, and protein trafficking [116-118].  Hsp90 can either function alone, or as a 

component of a multi-chaperone complex with a related molecular chaperone called 

Hsp70 [119].  Like its counterpart, Hsp70 is a highly conserved chaperone that regulates 

the folding, trafficking, degradation, and protein-protein interactions of its client 

substrates [120].  Both Hsp70 and Hsp90 contain an ATPase domain, and utilize the 

energy from ATP hydrolysis to bind and fold their client proteins [116, 120].   

 The activity of molecular chaperones is further regulated by a group of cofactors, 

known as co-chaperones, which either associate with Hsp70 and Hsp90 alone, or together 

as components of the multi-chaperone complex [116, 119].  In mammalian cells, over 20 

co-chaperones have been identified thus far [116], which are grouped into four general 

categories according to their functions.  Co-chaperones can (1) physically link Hsp70 and 

Hsp90 and mediate the transfer of client proteins between these two chaperone systems, 

(2) modulate the ATPase activity of chaperones, thus modifying their affinity for 

substrates, (3) target client proteins to specific chaperones, and (4) recruit chaperones to 

execute specific cellular tasks such as protein trafficking and degradation [116, 119].  In 

support of a role in degradation, some co-chaperones have been found to link Hsp70 and 

Hsp90 to proteasomes.  The co-chaperone CHIP (carboxy terminal of Hsp70-interacting 

protein) is an E3 ubiquitin ligase [121] that binds the Hsp70-Hsp90 complex and 

mediates the ubiquitination and degradation of unfolded client proteins [116, 119].  

BAG1 (Bcl-2 associated athanogene 1) is a co-chaperone that binds the ATPase domain 

of Hsp70 and opposes its protein folding activity, therefore targeting Hsp70 client 

proteins to proteasomes for degradation [119].  In addition, certain co-chaperones 

function on specific classes of protein substrates.  For example, the co-chaperone Cdc37 

(cell division cycle 37 homologue, also called p50) specifically binds kinases that are 

Hsp90 client proteins, and assists Hsp90 in their folding and activation [122].  Studies on 

Raf proteins have uncovered a pivotal role for the molecular chaperone and co-chaperone 

machinery in regulating the folding, kinase activity, and stability of c-Raf.  
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1.5.3.3.2 Regulation of c-Raf folding and stability by molecular chaperones 

 Early studies on c-Raf established that it exists as a component of a high 

molecular weight protein complex of 300-500kDa, that consisted of Hsp90 and Cdc37 

[123, 124].  C-Raf was found to bind Hsp90 via its C-terminal catalytic domain [123, 

125] both in its inactive state in the cytoplasm, and when activated and bound to Ras at 

the plasma membrane [124].  The c-Raf-Hsp90 complex was initially postulated to be 

necessary for membrane recruitment and activation of c-Raf [126].  However, seminal 

studies by Schulte and colleagues revealed that in addition to mediating its membrane 

recruitment, binding of c-Raf to Hsp90 was also critical for stabilization of the c-Raf 

protein, as disruption of this binding targeted c-Raf for proteasomal degradation [124, 

127, 128].  The integration of these findings provided a model wherein the binding of 

Hsp90 to c-Raf is required to stabilize the tertiary structure of the c-Raf protein and 

facilitate native c-Raf folding, and to mediate c-Raf activation and signalling [113, 129].   

 In addition to Hsp90, other components of the molecular chaperone machinery 

including Hsp70 [113], BAG1 [130], and CHIP [131, 132], have been reported to bind c-

Raf and regulate its activity, stability, and degradation.  BAG1 binds the catalytic domain 

of c-Raf and stimulates its kinase activity, thereby promoting the activation of ERK1/2 

signalling independently of Ras activation [130].  The same study also reported that 

Hsp70 competes with c-Raf for binding to BAG1.  They found that in resting cells BAG1 

tightly binds c-Raf and promotes its activation.  However in response to cellular stress 

such as heat shock, the protein levels of Hsp70 are up-regulated, resulting in the 

displacement of c-Raf from BAG1, and the suppression of downstream signalling 

pathways.  Therefore, Hsp70 was proposed to function as a negative regulator of c-Raf-

BAG1 interaction, and of cell growth signalling [130].  More recently, work by Dogan et 

al. uncovered a role for inhibitor of apoptosis (IAP) proteins in regulating c-Raf stability 

and degradation through a chaperone-dependent mechanism [132].  They observed that 

the binding of IAPs to c-Raf interferes with c-Raf folding and disrupts its native 

conformation, resulting in the recruitment of CHIP to the c-Raf-Hsp90 complex, and the 

proteasomal degradation of c-Raf [132].  Together, these findings reveal the intricate 

mechanisms by which c-Raf expression and signalling are modulated within the cell.  
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1.5.4 Deregulation of Ras-Raf-ERK1/2 signalling in cancer  

 In the last decade overwhelming evidence has pointed to a central role for 

deregulated ERK1/2 signalling in promoting cancer development and metastasis, due to 

the significant growth, migration, and survival advantages afforded to cells harbouring 

mutations of this pathway [108, 133, 134].  This is reinforced by the finding that 

components of ERK1/2 signalling are mutated in a significant majority of cancers.  

Activating mutations in Ras have been observed in 30% of all cancers [135] and occur 

with particular frequency in pancreatic (90%), colorectal (50%), and thyroid (60%) 

cancers [134].  Of the Raf kinases, B-Raf is most commonly mutated in cancer [111], 

with the highest incidence of mutations reported in melanoma (70%) and thyroid cancer 

(50%) [112, 134].  To date over 100 different mutations in B-Raf have been reported in 

tumours, though the majority of tumours exhibit a valine to glutamic acid mutation at 

amino acid 600 (V600E), which disrupts the inactive conformation of the kinase and 

renders it constitutively active [111, 112].  By comparison, mutations in c-Raf are quite 

rare [112, 133] but have been found in acute myeloid leukemia [111]. In addition to 

mutations in Ras and Raf, ERK1/2 is hyperactivated in 30% of human cancers [112], and 

upstream components of the signalling cascade, including several RTKs, are often 

mutated in tumours [134].  These staggering statistics have led to tremendous efforts to 

identify therapeutic strategies capable of inactivating components of the ERK pathway, 

and thus repress its signalling in cancers harbouring mutations in this pathway.   

 

1.6 Cellular transformation and tumourigenesis  

1.6.1 Hallmarks of cancer  

 Three decades of research into the molecular and physiological processes 

associated with the development of cancer led to the classification of six essential 

markers of cell transformation and metastasis [5, 136].  These were termed the 

"hallmarks of cancer" and were defined as: evasion from apoptosis, uncontrolled cellular 

replication, increased angiogenesis, enhanced cellular migration and invasion, evasion 

from growth-suppressor signals, and sustained proliferative signalling [5].  In recent 
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years, an important role has also emerged for the tumour microenvironment as a key 

contributor to malignancies [137, 138].  The tumour microenvironment consists of the 

normal stromal cells that surround the cancer tissue, and is exploited by cancer cells to 

promote tumour angiogenesis, proliferation, migration, and invasion [137-139].  Current 

cancer research seeks to provide insight into the mechanisms by which tumour cells 

manipulate their environment and normal cellular networks to accomplish malignant 

transformation.  This process is believed to be achieved largely through the acquisition of 

the hallmarks of cancer.   

 

1.6.1.1 Evasion from apoptosis 

  The process of cellular transformation in itself exposes cancer cells to numerous 

cellular stresses, such as increased DNA damage arising from hyperproliferation, and 

accumulation of ROS arising from increased metabolism [137, 140].  While these stresses 

typically activate apoptotic signalling, cancer cells often develop mechanisms to avoid 

apoptotic induction.  This is accomplished in several ways, such as up-regulation of pro-

survival Bcl-2 proteins [61, 67] and the down-regulation of DNA damage sensors such as 

p53 [59].  Deregulation of apoptosis disrupts cellular and tissue homeostasis, and results 

in cancer metastasis and resistance to cancer therapies [137].    

 

1.6.1.2 Uncontrolled cellular replication 

 Normal cells exhibit finite replicative capacities, meaning that they are 

programmed to undergo a specific number of cell divisions, after which growth stops and 

cells become senescent [141].  On occasion, cells may acquire the capacity to overcome 

this senescent state, thus allowing for continued replication [141].  Ultimately however, 

these cells will enter a second inhibitory state called crisis, which is characterized by 

wide-spread cell death [5, 141].  However, in highly rare instances, a sub-population of 

cells are able to also overcome crisis and consequently become immortalized, which is 

defined by their ability to undergo infinite cycles of cell replication [5].  It is believed that 
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senescence and crisis function as two important tumour suppressor mechanisms in cells 

[137].  The number of replications that cells are able to undergo before entering 

senescence or crisis is suggested to be largely dependent upon the length of telomeres, 

which protect DNA ends by preventing end-to-end chromosome fusions and genomic 

instability [136, 141].  Cancer cells are proposed to circumvent senescence and crisis 

through several mechanisms, such as acquiring mutations in the telomerase gene, thus 

preventing telomere shortening, or by inactivating factors such as p53 that sense the 

genomic instability that can be caused by chromosome-end fusions [56, 136, 137].  

Uncontrolled cellular replication is associated with tumour growth and progression [137]. 

 

1.6.1.3 Sustained proliferative signalling 

  While in normal cells the expression and release of factors that govern cell 

growth and division is highly regulated, cancer cells can develop the ability to grow in 

the absence of growth factor stimulation, and thus exhibit sustained cell proliferation 

[137].  This is usually achieved through deregulation of signalling pathways that are 

activated downstream of growth factors [137], such as that of MAPKs and the ERK1/2 

signalling pathway [134].  For example, in some cancers hyperproliferation is 

accomplished through aberrant expression of RTKs that enhance the cellular response to 

growth factors, or through activating mutations in RTKs that altogether bypasses the need 

for growth factor activation [134].  In other instances, cancer cells acquire activating 

mutations in a component of these signalling pathways (such as Ras or Raf) that allows 

them to circumvent the need for upstream receptor activation [134, 137].  The ability of 

cancer cells to gain growth factor independence is one of the key processes associated 

with tumourigenesis.  

 

1.6.1.4 Escape from growth suppression 

 In cancer, sustained cellular proliferation is frequently coupled with the ability to 

evade the critical growth suppression mechanisms that exist in normal cells.  The 
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prevention of aberrant cellular growth and proliferation is regulated by tumour 

suppressors, such as p53 and retinoblastoma protein (pRB), which are accordingly often 

mutated or inactivated in cancers [136, 137].  P53 is an essential component of the 

cellular response to intrinsic stresses such as DNA damage, and functions as a tumour 

suppressor by mediating cell cycle arrest, apoptosis, and DNA repair in damaged cells 

[59].  The tumour suppressor pRB plays a central role in the regulation of cell cycle 

progression and apoptosis, and the inactivation of pRB function has been observed in a 

multitude of cancers [142, 143].  Inactivation of pRB leads to alterations in cell cycle 

checkpoint activation and cell cycle progression, and in increased genomic instability 

[142, 144].  Loss of p53 and/or pRB function ultimately impedes the ability to eliminate 

damaged cells, and thus promotes tumourigenesis.    

 

1.6.1.5 Increased angiogenesis, and enhanced cellular migration and invasion 

 The hallmarks of cancer outlined thus far are components of the events that 

initiate cellular transformation, and are involved in the early stages of tumourigenesis and 

primary tumour development.  Cancer progression is characterized by the acquisition of 

secondary features by tumour cells that mediate metastasis and the formation of 

secondary lesions in distant tissues.  Metastasis marks a key point in cancer progression, 

as metastatic cancers are predominantly incurable and account for over 90% of all 

cancer-related deaths [145].  Two key features acquired by metastatic cancers are 

increased angiogenesis, and enhanced cell migration and invasion.  

 Angiogenesis represents an important step in the progression of cancer to a 

metastatic disease [146].  Induction of angiogenesis (known as the angiogenic switch) is 

characterized by elevated pro-angiogenic signalling and abnormal proliferation of 

endothelial cells in the tumour microenvironment, that together lead to neovascularisation 

[146, 147].  Enhanced angiogenesis is required for the exponential growth of tumour 

cells, and thus mediates disease progression [146, 148].   

 Metastatic cancer is also the result of an elaborate biological process known as the 

invasion-metastasis cascade, in which tumour cells invade the local extracellular matrix 
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(ECM) and surrounding stromal cells, intravasate blood vessels and are transported to 

secondary sites by the vasculature, extravasate and form micrometastases at these 

secondary sites, and finally reactivate proliferation at the sites of metastasis to form 

secondary tumours [145].  A critical step in the invasion-metastasis cascade is epithelial 

to mesenchymal transition (EMT) [137], where epithelial cells of the primary tumour 

undergo intricate changes in their architecture and behaviour to become more akin to 

mesenchymal cells [149].  The acquisition of a mesenchymal phenotype is mediated by 

changes in gene-expression patterns that alter cell-cell, and cell-ECM contacts, and 

renders tumour cells highly motile and able to invade distant tissues [149].  EMT also 

provides protection from apoptosis, which enables cancer cells to survive migration to 

secondary sites, and to form lesions at these sites [137, 149].  Several cellular networks 

have been implicated in the regulation of EMT, both in normal and pathological settings, 

and chief among these is EMT mediated by transforming growth factor β (TGFβ) 

signalling [150].  Enhanced TGFβ expression and signalling in cancers is associated with 

increased EMT and migration of tumour cells, and with the induction of angiogenesis in 

tumours [150, 151].   

 The processes of angiogenesis and EMT are not novel to pathological conditions, 

but rather are also pivotal aspects of normal organism development [146, 149].  For 

example, angiogenesis is required for the de novo formation of blood vessels during 

embryogenesis [146].  This is a highly regulated process, and the factors that signal 

angiogenesis become quiescent in the adult vasculature [146].  Similarly, EMT is a 

highly regulated process that is essential for mesoderm formation during early 

embryogenesis, and for the formation of various tissues, such as bone and muscle, in later 

stages of embryonic development [149, 150].  Intriguingly, a considerable degree of 

overlap exists between the pathways that regulate angiogenesis and EMT, and in addition 

to their critical functions in development, these pathways are also known to contribute to 

the development and progression of cancer [152].   
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1.6.2 Deregulated developmental signalling in cancer 

 Among the distinguishing features of cancer is the acquired ability of cells to 

manipulate signalling programs that govern normal development, in order to undergo 

tumourigenesis and metastasis.  Therefore it is not surprising that fundamental 

developmental pathways, such as Notch, TGFβ, and Wnt signalling are often mutated or 

deregulated in many cancers [153].  Aberrant signalling through these pathways is 

associated with increased cell proliferation and survival, and enhanced angiogenesis and 

EMT [152-154].  Thus delineating the mechanisms by which deregulated developmental 

signalling contributes to cancer development and progression has become highly 

important to the effective treatment of cancer.  

 

1.6.2.1 Notch signalling 

 The evolutionarily conserved Notch signalling pathway was first characterized in 

Drosophila, and has since been established as a key component of embryonic 

development and adult tissue maintenance in metazoans [154, 155].  The four 

mammalian Notch proteins (denoted Notch 1-4) localize to the plasma membrane as 

single-pass type I transmembrane receptors, consisting of a large extracellular domain 

involved in ligand binding and a cytoplasmic domain involved in downstream signalling 

[154, 155].  Notch receptors are bound by two classes of ligands, known as the Delta-like 

(Dll 1, 3 and 4) and Jagged (JAG 1 and 2) ligands, which are also expressed as type I 

transmembrane receptors [154, 155].  Notch signalling is a form of cell-cell 

communication, and requires the interaction of cells expressing Notch ligands with 

adjacent cells that express the Notch receptor [154, 156].  Ligand binding triggers the 

proteolytic cleavage of the receptor, releasing the Notch intracellular domain (NICD) 

[154, 156].  NICD then translocates to the nucleus and interacts with the DNA binding 

protein CBF1(C promoter-binding factor 1) to initiate gene expression [154, 156].  To 

date, the most well established Notch target genes are the Hes (hairy and enhancer of 

split) and Hey (Hes-related repressor protein) family of basic helix-loop-helix 

transcription factors [154, 155].  These factors mediate the cellular responses to Notch 
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signalling, which include embryonic cell-fate determination, differentiation, proliferation, 

and apoptosis, in a wide range of tissues [152, 154, 156]. 

 A link between aberrant Notch signalling and tumourigenesis was first observed 

in acute lymphoblastic leukemia, in which a chromosomal translocation event {t(7;9)} 

resulted in a truncated, constitutively active form of Notch 1 [157].  Subsequent studies in 

animal models revealed that truncated, constitutively active forms of all four Notch 

receptors were capable of promoting cellular transformation [155].  The tumourigenic 

activity of Notch was further corroborated by the finding that Notch receptors, ligands, 

and effectors are mutated or deregulated in numerous solid tumours including melanoma, 

non-small cell lung cancer, breast cancer, and ovarian cancer, as well as in hematological 

malignancies [154, 155].  In addition to tumourigenesis, alterations in Notch signalling 

have also been associated with cancer metastasis, as activated Notch signalling was found 

to enhance angiogenesis and EMT [154, 155].  Specifically, ligand-mediated activation of 

Notch signalling in the tumour microenvironment was reported to promote 

neovascularisation and angiogenesis in squamous cell carcinomas, and the metastasis of 

breast cancer to the bone [154].  Intriguingly, Notch signalling can also indirectly 

mediate metastasis by contributing to EMT programs driven by the TGFβ and Wnt/β-

catenin signalling pathways [154, 155].  The cross-talk between these pathways is 

believed to be an important aspect of developmental regulation, and to contribute to the 

complexity of treating malignancies bearing mutations in these pathways [152].          

 

1.6.2.2 Wnt/β-catenin signalling 

 Regulation of developmental programs in the embryo and in adult tissues is also 

governed by the Wnt signalling pathway.  Wnts comprise a large, highly conserved 

family of secreted growth factors that act as ligands for the Frizzled (Fz) transmembrane, 

and LRP5/6 (lipoprotein receptor-related proteins 5 and 6), receptors [152, 158].  The 

founding member of the Wnt family, the proto-oncogene Wnt1, was described in 1982 by 

Nusse and Varmus as the gene activated by the integration of the mouse mammary 

tumour virus (MMTV) DNA into virally-induced breast tumours [159].  Since that time 
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19 Wnt proteins have been identified in mammals, and have been implicated in the 

regulation of cell fate determination and organogenesis in the embryo, and in the 

regulation of self-renewal and maintenance in adult tissues [152, 158].  Initiation of Wnt 

signalling requires the palmitoylation of Wnts on cysteine residues, followed by their 

secretion from Wnt producing cells by the protein Wntless (Wls) [158, 160].  Secreted 

Wnts then bind to Fz and LRP5/6 receptors on the surfaces of target cells to trigger 

intracellular signalling events [158, 160].  The induction of Wnt receptor signalling can 

activate four distinct pathways within the cell, of which the canonical Wnt/β-catenin 

pathway is the best understood [158, 161].  In this pathway, β-catenin functions as an 

effector protein that modulates Wnt target gene expression [162].  Due to its central role 

in signalling downstream of Wnt activation, the expression of β-catenin is highly 

regulated [161].  This is accomplished by the cytoplasmic destruction complex, which 

maintains low cellular levels of β-catenin in the absence of receptor activation by 

promoting its rapid turnover [158].  In this complex, β-catenin is phosphorylated on a 

series of serine and threonine residues in its N-terminus by CK1 (casein kinase 1) and 

GSK3 (glycogen synthase kinase 3), which mark it for ubiquitination and proteasomal 

degradation [158].  Receptor activation by Wnt ligands inhibits the activity of the 

cytoplasmic destruction complex, thereby relieving the repression on β-catenin 

expression [162].  This results in accumulation of stabilized β-catenin in the cytoplasm, 

followed by its translocation into the nucleus where it binds the TCF/LEF (T cell 

factor/lymphoid enhancer factor) family of transcription factors to promote gene 

expression [162].  The transcriptional output of Wnt signalling is often cell-type specific 

and dependent upon the intended cellular response, such as cell growth and proliferation, 

cell fate determination, or terminal differentiation [158].  The best characterized gene 

targets of the TCF/β-catenin complex are positive and negative regulators of the Wnt 

pathway, cyclin D1, and the transcription factor c-Myc [158]. 

 Since the initial observation of a tumour-promoting function for Wnt1 [159], 

numerous studies have uncovered a pivotal role for canonical Wnt signalling in cancer 

development and metastasis.  Tumourigenic mutations in the Wnt pathway are frequently 

observed in tissues which are dependent upon this pathway for renewal or repair, and 

occur in both hereditary and sporadic cancers [160].  Many of these mutations occur in 
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genes which are components of the cytoplasmic destruction complex [160].  The result of 

these mutations is the constitutive stabilization and accumulation of β-catenin, and 

aberrant Wnt target gene expression [160].  Gain-of-function mutations in Wnt ligands 

and receptors, and loss-of-function mutations in negative regulators of Wnt signalling, 

have also been observed in several cancers [153, 160].  Mutations of the Wnt pathway are 

associated with the development of several solid tumours including melanoma, 

hepatocellular, gastric, and colon cancers and with hematological malignancies including 

acute and chronic myeloid leukemias [152, 160].  The tumourigenic activity of Wnt 

signalling is compounded by the fact that it can also promote cancer metastasis.  In this 

respect Wnt signalling can induce changes in the gene transcription events, and cell 

adhesion mediated by β-catenin, which cause EMT [163].  In addition cross-talk between 

the canonical Wnt pathway, TGFβ, and Notch signalling can enhance EMT [160].  

 

1.6.2.3 Summary 

 How these complex pathways regulate normal organism development and 

function has only recently begun to be elucidated.  Further, how cells gain the ability to 

reactivate these programs in order to undergo cellular transformation, and exploit them to 

undergo metastasis, is poorly understood.  However, it is clear that acquiring a more 

detailed understanding of these processes represents an important hurdle that must be 

surpassed to better understand cancer development and progression.     

 

1.7 Scope of thesis  

 The observation that perturbations in a few key cellular processes can cause the 

transition from a normal cell to a cancer cell highlights the delicate balance that must be 

maintained between signals that promote, or inhibit, cellular growth and survival.  

Decades of research have significantly advanced our knowledge of how highly intricate 

cellular networks maintain the balance between life and death.  However, the effective 

detection and treatment of pathological conditions such as cancer requires greater insight 
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into the mechanisms and factors that "fine-tune" these complex cellular events.  Studies 

on RanBPM have implicated a role for this protein in the regulation of diverse cellular 

processes such as transcription, cell adhesion, signalling, and apoptosis, which are of 

importance to both organism development and disease pathogenesis.  Despite this 

knowledge however, the mode of RanBPM function remains elusive.  The work 

presented in this thesis aims to address this matter through characterizing functions of 

RanBPM in regulation of apoptotic activation, cell signalling, and cellular 

transformation.  

 We begin by describing a function for RanBPM in the activation of apoptotic cell 

death in response to radiation-induced DNA damage (Chapter 2).  We show that 

RanBPM is a pro-apoptotic protein whose ectopic expression promotes apoptotic cell 

death, whereas down-regulation of RanBPM expression protects cells from apoptosis and 

enhances cell survival in response to DNA damage.  Further, we determine that RanBPM 

mediates its pro-apoptotic effects by modulating the sub-cellular localization and 

expression of Bcl-2 family factors.   Together, these studies identify RanBPM as a novel 

regulator of the intrinsic apoptotic signalling pathway. 

 We then continue our analyses by characterizing the regulation of Bcl-2 family 

factors by RanBPM, which result in the identification of a role for RanBPM as a novel 

inhibitor of the ERK1/2 signalling pathway (Chapter 3).  The data in this chapter show 

that RanBPM represses ERK1/2 signalling by regulating c-Raf protein expression and 

stability, and that down-regulation of RanBPM expression results in hyperactivation of 

the ERK1/2 pathway.  We go on to show that in cultured cells, down-regulation of 

RanBPM expression results in alterations in cellular behaviour that are associated with 

cellular transformation and metastasis.  These findings identify a central role for 

RanBPM in the regulation of signalling pathways and processes involved in normal cell 

function and cancer development. 

 Finally, the data presented in chapter 4 describe the effects of sustained RanBPM 

down-regulation on global transcriptional programs in cells.  Our gene expression 

profiling data indicate that RanBPM regulates processes associated with cell signalling, 

tissue and organ development and maintenance, and cancer.  The studies in this chapter 
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contribute to the characterization of an important role for RanBPM in development, and 

together with the data obtained in chapters 2 and 3, implicate a function for this protein as 

a critical tumour suppressor in cells. 
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Chapter 2  

2.  RanBPM has pro-apoptotic activities that regulate cell death 

pathways in response to DNA damage 

2.1 Introduction 

 The integrity of the genome is under constant threat, not only from environmental 

toxins and radiation, but also from by-products of normal cellular metabolism.  In 

response to DNA damage, eukaryotic cells trigger signalling pathways to induce cell 

cycle checkpoints and establish DNA repair complexes [1, 2].  The activation of 

apoptotic pathways is also an essential component of the DNA damage response, and 

defects in the activation of apoptosis or in the apoptotic machinery lead to genomic 

instability [3]. Conversely, chromosomal instability favours the inactivation of apoptotic 

pathways to select for resistant cells and tumours often harbour inactivating mutations of 

genes that encode pro-apoptotic factors, such as Bax, or factors that are involved in 

apoptosis regulation such as p53 [4, 5]. Thus, identifying the factors and mechanisms that 

link DNA repair and apoptosis is fundamental to our understanding of tumourigenesis 

and to developing strategies for the prevention of cancer development. 

 The intrinsic apoptotic pathway is the primary pathway activated in response to 

DNA damage. The central event in this pathway is mitochondrial membrane 

depolarization which is controlled by Bcl-2 family factors [6, 7]. Anti-apoptotic family 

members (such as Bcl-2, Mcl-1 and Bcl-XL) prevent apoptosis by sequestering and 

neutralizing the pro-apoptotic members (such as Bax, Bad, Noxa and PUMA) through 

direct interaction. Pro-apoptotic factors activate membrane permeabilization, releasing 

mitochondrial intermembrane proteins such as cytochrome c, which initiate caspase-

dependent apoptosis. Thus, the balance between cell life and death depends on the 

relative level of expression of pro- and anti-apoptotic members.  

 RanBPM is a nucleocytoplasmic protein whose function remains largely 

unknown. Several recent reports have suggested that RanBPM contributes to the 

regulation of various cell signalling functions, including cell adhesion and migration [8-
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11], microtubule regulation [12, 13] as well as the regulation of gene transcription [14, 

15].  There is also evidence for RanBPM involvement in signalling pathways elicited by 

environmental signals. RanBPM is a phosphoprotein whose phosphorylation is 

modulated by stress stimuli such as osmotic shock and UV radiation [16]. RanBPM is 

also phosphorylated in response to IR at a consensus site recognized by DNA damage-

activated kinases ATM (Ataxia telangiectasia mutated), ATR (ATM-related) and DNA-

dependent protein kinase (DNA-PK) [17]. In addition, the participation of RanBPM in 

apoptotic signalling pathways was suggested based on RanBPM’s ability to interact with 

CDK11p46, a protein implicated in apoptotic signalling cascades [18]. Also, RanBPM 

was found to interact with the death domain of p75NTR, a member of the TNF receptor 

family mediating programmed cell death in neurons [19]. Finally, the association of 

RanBPM with HIPK2 and with p73 has also been suggested to modulate DNA damage-

induced apoptotic pathways [20, 21].  However, the functional consequences of these 

interactions on the regulation of apoptosis remain largely unexplored.   

 Here, we further the link between RanBPM and apoptosis by establishing a 

function for RanBPM in promoting apoptosis. We determined that RanBPM expression 

in Hela cells activates caspase-3 activity and induces cell death. Consistent with these 

pro-apoptotic capabilities, siRNA-mediated down-regulation of RanBPM compromised 

the induction of apoptosis and increased cell survival in response to IR. Cells expressing 

reduced levels of RanBPM also showed altered Bax mitochondrial localization and 

increased Bcl-2 expression. These results suggest that RanBPM is a DNA damage-

activated factor with pro-apoptotic activities capable of regulating the intrinsic apoptotic 

pathway. 

 

2.2 Materials and methods 

2.2.1 Plasmid expression constructs 

 pCMV-HA-RanBPM (a gift of Dr. Mark Nelson, Department of Surgery, 

University of Arizona, Tucson, AZ) was described in [18]. pcDNA3-FLAG-RanBPM 

was generated by sub-cloning of the full-length RanBPM cDNA from pCMV-HA-
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RanBPM into pcDNA3-FLAG. pCMV-HA-RanBPM shRNA mutant construct (HA-

RanBPM si-mt) was generated by introducing 2 silent point mutations at nt 2152/2153 

(TC to AG, numbering with respect to the first ATG of the RanBPM cDNA) in pCMV-

HA-RanBPM by site-directed mutagenesis using PfuTurbo (Stratagene, La Jolla, CA, 

USA). pEGFP-C1 is from Clontech (Mountain View, CA, USA), pCGN-Oct-1 has been 

described elsewhere [22].  

 

2.2.2 siRNA and shRNA constructs 

 All siRNAs were purchased from Ambion (Austin, TX, USA): control siRNA 

(Ambion, #AM4611), RanBPM siRNA#2 (Ambion, #107725, upper strand: 5'-

GGAAUUGGAUCCUGCGCAU -3) and RanBPM siRNA#1 (Ambion, #107724, upper 

strand: 5'-GGCCACACAAUGUCUAGGA-3).  To generate shRNA expression 

constructs, the pSuper.retro.neo expression vector (Oligoengine, Seattle, WA, USA) was 

digested with BglII and HindIII, and subsequently ligated to double-stranded 

oligonucleotides corresponding to either control shRNA (Ambion, #AM4611) or 

RanBPM shRNA #2 (Ambion, #107725).   

 

2.2.3 Cell culture, treatments and irradiation 

 Hela and HCT116 cells were cultured in high glucose Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37°C in 

5% CO2. Culture medium for Hela and HCT116 control and RanBPM shRNA stable cell 

lines was also supplemented with 0.35mg/ml G418 (Geneticin, Bioshop Canada, 

Burlington, ON, Canada). All cell lines were obtained from the American Type Culture 

Collection. For irradiation experiments, cells were plated the night before irradiation at 

50–60% confluency. Irradiations were performed with a Faxitron RX-650 at a dose rate 

of 1.42 Gy/min.  
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2.2.4 Transfections assays 

 Plasmid transfections were carried out with ExGen 500™ (MBI Fermentas, 

Burlington, ON, Canada).  siRNA duplexes were transfected with siPORT™ NeoFX™ 

(Ambion) following the manufacturer’s instructions, with a final siRNA concentration of 

20nM. For clonal selection of Hela cells, 0.35mg/ml G418 was added to the media 24h 

after transfection and carried out for 10-14 days before colony isolation.  Two 

independently derived RanBPM shRNA cell lines [denoted Hela RanBPM shRNA (clone 

2-6) and (clone 2-7)] were selected for experimental analyses.  Similarly, clonal selection 

of HCT116 cells was carried out with 0.35mg/ml G418, and experiments were performed 

using [HCT RanBPM shRNA (clone 2-8) and clone (2-16)] cell lines. 

 

2.2.5 Extracts and western blot analyses 

 For whole cell extracts, cells were collected in ice-cold PBS and lysed in buffer 

containing 150mM NaCl, 1mM EDTA, 50mM HEPES (pH 7.4), 10% Glycerol, 0.5% 

NP40, and supplemented with 1mM PMSF, 1mM DTT, 1µg/ml leupeptin, 10µg/ml 

aprotinin, 1µg/ml pepstatin, 2mM sodium fluoride, and 2mM sodium orthovanadate. For 

sub-cellular fractionations, cells were scraped and washed in ice-cold PBS and lysed in 

mitochondrial lysis buffer (20mM HEPES, 1mM EGTA, 1mM EDTA, 10mM KCl and 

1.5mM MgCl2) with 50 strokes of a dounce homogenizer.  After centrifugation, the pellet 

(nuclei) was incubated in nuclear lysis buffer (20mM HEPES, 25% glycerol, 450mM 

NaCl, 1.5mM MgCl2 and 0.2mM EDTA) and centrifuged to collect the nuclear fraction.  

The supernatant was centrifuged at 10,000g for 20min to collect the supernatant 

(cytoplasmic fraction).  The pellet (heavy-membrane) was washed in mitochondrial lysis 

buffer and resuspended in 1% CHAPS buffer (50mM Tris HCl, 110mM NaCl, 50mM 

HEPES, 10% glycerol and 0.5% NP40), incubated on ice for 15 minutes, and centrifuged 

to collect the mitochondrial fraction. 

 For Western blot analysis, extracts were resolved by SDS-PAGE (between 8% 

and 12%). Gels were transferred on PVDF membrane and hybridized with either of the 

following antibodies:  RanBPM 5M [23] (Bioacademia, Japan), β-actin (I-19, Santa Cruz, 
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CA, USA), Bax (N-20, Santa Cruz), Bcl-2 (Cell Signalling, Danvers, MA, USA), HA 

(HA-7, Sigma, Oakville, ON, Canada), γ-tubulin (a kind gift from Dr. Litchfield, 

University of Western Ontario, London, ON, Canada), Ku70 (AB-4, NeoMarkers), 

PCNA (clone PC-10, Millipore, Billerica, MA, USA) and Cox IV (Cell Signalling). The 

blots were developed using the Enhanced Luminol Reagent (Renaissance, NEN Life 

Sciences). 

 

2.2.6 Caspase assays 

 Cell extracts were prepared in Lysis buffer (1mM KCl, 10mM HEPES (pH 7.4), 

1.5mM MgCl2, 1mM DTT, 1mM PMSF, 5µg/ml leupeptin, 2µg/ml aprotinin, and 10% 

glycerol). Caspase activity was measured as previously described [24] in caspase assay 

buffer (25mM HEPES (pH 7.4), 10mM DTT, 10% sucrose, 0.1% CHAPS containing 

either 10µM caspase-3 substrate, N-acetyl-Asp-Glu-Val-Asp-(7-amino-4trifluoromethyl-

coumarin (DEVD-AFC) or 10µM caspase-2 substrate, N-acetyl-Val-Asp-Val-Ala-Asp-

AFC (VDVAD-AFC) (BIOMOL International, L.P., Plymouth Meeting, PA, USA).  The 

fluorescence produced by substrate cleavage was measured on a SpectraMax M5 

fluorimeter (excitation 400 nm, emission 505 nm) over a 2h interval. Caspase activity was 

calculated as the ratio of the fluorescence output in treated samples relative to 

corresponding untreated controls. For caspase assays of transfected samples, mock-

transfected cells were used as controls.  

 

2.2.7 Apoptotic index and survival assays 

 Apoptosis was assessed by analyzing nuclear morphology in Hoechst 33342 

stained cells. Cells were stained live with Hoechst 33342 (1 µg/ml, Sigma-Aldrich, St 

Louis, MO, USA) and were visualized by fluorescence microscopy (IX70; Olympus, 

Tokyo, Japan). Images were captured with a CCD camera (Q-imaging, Burnaby, British 

Columbia, Canada) using Northern Eclipse software (Empix Imaging, Mississauga, 

Ontario, Canada). A minimum of 500 cells were counted for each sample analyzed, and 
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the fraction of cells displaying an apoptotic nuclear morphology (chromatin condensation, 

nuclear blebbing and/or fragmentation) was determined.  

 For clonogenic assays, cells were plated at single-cell density (200-1000 cells per 

6cm dish), irradiated 6-8 h after plating and incubated for 10-14 days to allow for colony 

growth. Colonies were fixed and stained with crystal violet. Colonies of at least 50 cells 

were scored as survivors. The number of colonies of irradiated samples was normalized to 

that of unirradiated controls.  For crystal violet staining, the cells were washed with PBS 

and stained with 0.5% crystal violet in 20% methanol, and rinsed 3 times with PBS. 

 

2.2.8 Statistical analyses 

 Differences between two groups were compared using an unpaired two-tailed t-

test and analysis of variance (ANOVA) was used when comparing multiple groups. 

Results were considered significant when P <0.05. 

 

2.3 Results 

2.3.1 RanBPM overexpression induces cell death 

 We initially identified RanBPM in a yeast two-hybrid screen as interacting with 

Octamer factor 1 (Oct-1), a transcription factor previously characterized as a regulator of 

cell survival in response to DNA damage [22, 25]. Intrigued by preliminary reports 

implicating RanBPM in signalling pathways elicited by DNA damage [16, 17, 20] we 

decided to investigate a potential role for RanBPM in the DNA damage response.   

 In initial transfection experiments, we determined that RanBPM ectopic 

expression in Hela cells triggered significant cell death 24-48h following transfection, 

that was not observed upon transfection of similar constructs expressing different cDNAs 

using identical transfection conditions (data not shown). To confirm a potential effect of 

RanBPM ectopic expression on cell viability, we expressed RanBPM from a Neomycin 

selection-containing expression vector and selected transfected cells with G418 for 
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several days (Fig. 2.1A). While transfection of the vector alone gave rise to numerous 

G418-resistant colonies, far fewer colonies were observed for cells transfected with 

RanBPM (20-30 times less), supporting the notion that increased expression of RanBPM 

reduced cell viability. To determine if RanBPM-induced cell death was due to increased 

apoptotic activity, we measured caspase activity in RanBPM-transfected Hela cells using 

a caspase-3 substrate. A strong induction of caspase activity was observed in cells 

transfected with RanBPM, but not vector alone, suggesting that RanBPM expression 

activates apoptotic pathways (Fig. 2.1B). Additional caspase analyses performed using 

extracts from cells transfected with EGFP and Oct-1 expression constructs confirmed that 

apoptosis was not appreciably induced by overexpression of these proteins, but that the 

effect was restricted to RanBPM ectopic expression (Fig. 2.1C).  Finally to confirm that 

cell death was triggered specifically by HA-RanBPM expression, we performed indirect 

immunofluorescence experiments. Cells showing condensed nuclei, typical features of 

apoptosis, also showed expression of HA-RanBPM detected with an HA antibody (Fig. 

2.1D), further linking RanBPM overexpression with cell death.  Altogether, these results 

suggested that increased expression of RanBPM activates apoptotic pathways.  

 

2.3.2 RanBPM down-regulation prevents caspase activation and cell death in response to 

IR 

 While our results suggested the possibility of a pro-apoptotic role for RanBPM, 

we proposed to determine if endogenous RanBPM could fulfill such a function in 

response to pro-apoptotic stimuli. To investigate a physiological role for RanBPM in the 

activation of apoptosis, we assessed the effect of RanBPM down-regulation on DNA 

damage-induced apoptotic induction (Fig. 2.2). The substantial reduction in RanBPM 

expression obtained through transient siRNA transfection (Fig. 2.2A) resulted in a 

marked decrease of caspase-3 activation in response to 10Gy of IR (over 2.5-fold 

decrease at 96h and 120h, Fig. 2.2B). The activation of caspase-2, a stress and DNA 

damage-induced caspase was also strongly inhibited by RanBPM down-regulation, with 

over 2-fold reduction of activation at 96h and 120h (Fig. 2.2C). This effect appeared 

specific to RanBPM as we obtained a similar result with a second RanBPM siRNA
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FIGURE 2.1 Ectopic expression of RanBPM in Hela cells induces cell death through 

apoptotic pathways.  A.  Cells overexpressing RanBPM display reduced clonogenic 

potential.  Hela cells were transfected with equivalent amounts of pcDNA3-FLAG-

RanBPM or empty pcDNA3 vector.  Cells were re-plated 24h later at the dilutions 

indicated and selection was carried out with 0.4mg/ml G418 for 10-14 days at which time 

cells were stained with crystal violet.  B.  Ectopic expression of RanBPM induces caspase 

activity.  Equivalent amounts of pCMV-HA-RanBPM or pCMV-HA empty vector were 

transfected in Hela cells.  Caspase-3 activity was assayed 24h later. Shown is fold 

increase of caspase-3 activity in RanBPM-transfected cells over control cells. Results are 

averaged from seven individual transfections experiments. Error bars indicate the 

standard deviation of the mean.  C.  Cells were transfected with equivalent amount 

(250ng) of pCMV-HA-RanBPM, pEGFP-C1 or pCGN-Oct-1. Caspase activity was 

assayed as in B. Results are from three experiments performed with triplicate samples. 

Error bars indicate standard deviation.  D.  Cells transfected with pCMV-HA-RanBPM 

were grown on poly-L-ornithine-treated coverslips, and fixed 30h post-transfection.  

Immunolabeling for RanBPM was done with an anti-HA antibody and nuclei were 

stained with DAPI. Arrows indicate cells undergoing apoptosis. 
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FIGURE 2.2 Down-regulation of RanBPM expression affects the induction of 

caspase activity following IR treatment.  Hela cells were transfected with control 

siRNA or RanBPM siRNA#2, split 24h after transfection and plated in 6-well plates for 

western blot (A) or for caspase assay (B, C).  A.  Unirradiated cells transfected with 

control or RanBPM siRNA, were harvested at the time indicated after transfection and 

whole cell extracts were analyzed by western blot with a RanBPM antibody.  The 

membrane was re-hybridized with a β-actin antibody to verify equal loading.  B.  Cells 

were irradiated with 10Gy of IR or left untreated. Extracts were prepared at the times 

indicated after IR treatment and assayed for caspase-3 activity using the Ac-DEVD-AFC 

substrate. Shown is fold increase of caspase-3 activity in irradiated cells over control 

cells.  The results are from three separate experiments with duplicate samples at each 

time point. Error bars indicate standard deviation and P <0.001 for 96h and 120h. C.  

Extracts prepared in B were assayed for caspase-2 activity using the caspase-2 substrate 

Ac-VDVAD-AFC.  Shown is fold increase of caspase-2 activity in irradiated cells over 

control cells.  Error bars indicate standard deviation and P <0.001 for 96h and 120h. D.  

Hela cells were transfected with control siRNA or RanBPM siRNA#1, split 24h after 

transfection and plated in 6-well plates for western blot (left panel) or for caspase assay 

(right panel).  Left ‒ Unirradiated cells transfected with control or RanBPM siRNA, were 

harvested at the time indicated after transfection and whole cell extracts were analyzed by 

western blot with RanBPM and β-actin antibodies. Right ‒  Cells were irradiated with 

10Gy of IR or left untreated. Extracts were prepared at the times indicated after IR 

treatment and assayed for caspase-3 activity using the Ac-DEVD-AFC substrate. Shown 

is fold increase of caspase-3 activity in irradiated cells over control cells.  The results are 

from three experiments with duplicate samples at each time point. Error bars indicate 

standard deviation.  
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targeting a different region of RanBPM mRNA (Fig. 2.2D). To determine if this decrease 

in caspase activation correlated with an effect on cell viability, we generated a stable cell 

line expressing RanBPM siRNA from the pSuper.Neo expression vector in which 

RanBPM expression was found to be efficiently down-regulated (Fig. 2.3A). We 

measured the relative number of cells undergoing apoptosis (apoptotic index) after IR 

treatment by examination of apoptotic cell morphology following staining with Hoechst 

33342 in control and RanBPM shRNA cells (Fig. 2.3A, B). Consistent with the reduction 

of caspase activity observed in our previous assay, we observed a significant decrease in 

apoptosis induced by DNA damage in RanBPM-deficient cells compared to control 

shRNA cells.  This correlated with an increased overall survival of the RanBPM shRNA 

expressing cells in colony-forming assay (Fig. 2.3C), further demonstrating the protective 

effect of RanBPM down-regulation on cell survival following DNA damage. The 

protective effect conferred by RanBPM down-regulation was particularly apparent at 

high doses of IR, as over 5-fold increase in survival was observed at 8 Gy (5.3 ± 2.9 for 

control versus 29.7 ± 8.1 for RanBPM shRNA) and over 10-fold at 12 Gy (1.3 ± 0.6 

versus 24.6 ± 6.4).  Finally, we verified that the reintroduction of RanBPM in the shRNA 

down-regulated cell line, through ectopic expression of a RanBPM cDNA bearing a point 

mutation in the sequence targeted by the shRNA, re-instated caspase activation in 

response to IR, confirming the specificity of RanBPM function in the activation of 

apoptotic pathways (Fig. 2.3D). Thus these results suggested that decreased RanBPM 

expression prevents the activation of apoptosis in response to DNA damage, and 

promotes cell survival. 

  

2.3.3 RanBPM affects levels and localization of Bcl-2 family factors 

 IR-induced DNA damage activates apoptosis primarily through the mitochondrial 

pathway which is controlled by the Bcl-2 protein family [7, 26]. We sought to examine 

the mechanism of RanBPM pro-apoptotic function by evaluating the effect of RanBPM 

expression, or lack thereof, on members of the Bcl-2 family. We initiated this analysis by 

testing the expression and localization of Bax, which is central to the activation of the 

mitochondrial pathway activated by DNA damage [26]. In most cell types, in response to
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FIGURE 2.3 RanBPM down-regulation reduces apoptosis and increases cell 

survival.  A.  Apoptotic index.  Hela cells stably expressing a control shRNA or 

RanBPM shRNA (clone 2-7) were either irradiated with 10Gy or left untreated (C), and 

stained with Hoechst 33342.  Images were captured with a fluorescent microscope using 

Northern Eclipse 7.0 software. Images from unirradiated and 120h post-irradiation 

control shRNA and RanBPM shRNA cells are represented.  Arrows indicate fragmented 

and condensed nuclei considered to exhibit apoptotic morphologies.  B.  To assess 

apoptotic activation, a minimum of 500 nuclei were counted at each timepoint, and the 

fraction of cells exhibiting an apoptotic nuclear morphology is indicated. Data represents 

the mean of four independent experiments with error bars representing standard error, 

and ** P <0.01, *** P <0.001.  The inset shows RanBPM protein levels in whole cell 

extracts from cells expressing a control shRNA or RanBPM shRNA. Western blot 

analysis was done with RanBPM and β-actin antibodies as indicated.  C.  Clonogenic 

assay.  Hela cells stably expressing control shRNA or RanBPM shRNA (2-7) were 

seeded at a single-cell density and either irradiated at the dose indicated or left untreated 

(C). Cells were incubated for 10-14 days, after which they were fixed and stained with 

crystal violet and counted. Survival is expressed as the ration of irradiated cells at each 

dose over control cells. Data represents the mean of three independent experiments with 

errors bars representing standard error, * P <0.05.  D.  Ectopic expression of RanBPM 

restores caspase-3 activity in RanBPM-deficient cells.  Left - Hela cells stably expressing 

RanBPM shRNA (2-7) were transfected with a pCMV-HA-RanBPM construct bearing a 

silent point mutation in the RanBPM cDNA sequence targeted by the siRNA (RanBPM 

si-mt), or with the empty vector. Cells were irradiated (10Gy) 24h after transfection, and 

incubated for another 96h or 120h, at which time extracts were prepared for caspase-3 

assays. Results are averaged from four individual experiments performed in duplicates. 

Error bars indicate standard deviation, ** P <0.01 and *** P <0.001.  Right – 

Representative western blot analysis of RanBPM shRNA (2-7) cells showing the level of 

expression of transfected RanBPM si-mt (+), in comparison with empty vector 

transfected cells (-) and control Hela cells (Hela).  
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apoptotic stimuli, Bax translocates to the mitochondrial membrane, oligomerizes and 

triggers the release of cytochrome c and other proteins present in the intermembrane 

space [6, 27]. However, in some cell types, including Hela cells, Bax mitochondrial 

levels do not increase during apoptosis, and Bax activation occurs through its 

oligomerization and insertion in the mitochondrial membrane [28, 29].  

 Analysis of whole cell extracts from control shRNA and RanBPM shRNA (clone 

2-7) cells showed that Bax protein levels were unaffected by RanBPM down-regulation 

(Fig. 2.4A, D). However, analysis of heavy membrane fractions revealed that the levels 

of Bax associated with the mitochondria were strikingly decreased in extracts from 

RanBPM shRNA cells compared to control shRNA cells (Fig. 2.4B). Since Bax 

localization and activation are largely dependent on Bcl-2 regulation [7, 30], we analyzed 

Bcl-2 levels in cells exhibiting reduced expression of RanBPM. Bcl-2 protein levels were 

found markedly increased in cytoplasmic and whole cell extracts prepared from RanBPM 

shRNA (2-7) cells (Fig. 2.4C, E). Elevated Bcl-2 expression was also observed in whole 

cell extracts prepared from a second, independently derived clonal RanBPM shRNA cell 

line [Hela RanBPM shRNA (2-6)] (Fig. 2.4D). Further, we confirmed that the rise of Bcl-

2 protein levels was triggered by the lack of RanBPM expression as re-introduction of 

RanBPM in the RanBPM shRNA cells (via RanBPM si-mt transfection) reduced Bcl-2 

protein levels close to those observed in control shRNA cells (Fig. 2.4E). Thus, RanBPM 

pro-apoptotic activity is mediated, at least in part, by its regulation of factors of the 

mitochondrial apoptotic pathway.   

 Finally, to verify that the effects of RanBPM depletion were not due to a cell line-

specific mechanism in Hela cells, we produced HCT116 clonal derivatives expressing 

either a control or RanBPM shRNA. As was observed for Hela cells, down-regulation of 

RanBPM in HCT116 cells correlated with a strong increase in Bcl-2 protein levels in two 

independent clonal-derived cell lines (RanBPM shRNA 2-8 and 2-16) (Fig 2.5A). 

Further, RanBPM depleted HCT116 cells also displayed decreased caspase activation in 

response to IR (Fig. 2.5B) and increased survival as measured by clonogenic assays (Fig. 

2.5C), confirming that RanBPM also regulates apoptotic pathways in these cells. 
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FIGURE 2.4 RanBPM down-regulation affects Bax localization and Bcl-2 

expression. A. Hela cells stably expressing control shRNA or RanBPM shRNA (2-7) 

were subjected to 10Gy of IR, or left untreated (C). Whole cell extracts were prepared at 

the indicated timepoints and 20µg of protein was analyzed by western blot with 

antibodies directed against RanBPM and Bax, and β-actin was used as a loading control.  

B.  Control and RanBPM shRNA (2-7) cell lines were treated as in A, and mitochondrial 

(heavy membrane) fractions were prepared at timepoints indicated. Western blotting was 

performed with 10µg of protein extract.  Mitochondrial localization of Bax was assessed 

using a Bax antibody, and Cox IV was used as a loading control C.  Control shRNA and 

RanBPM shRNA (2-7) cells were treated as in A, cytosolic fractions were prepared at the 

timepoints indicated, and extracts were analyzed by western blotting using antibodies 

against RanBPM, β-actin and Bcl-2. D.  Control shRNA (C) and RanBPM shRNA (2-6) 

cells were either irradiated at 10Gy or left untreated (control).  Whole cell lysates were 

prepared at the timepoints indicated, and were analyzed by western blotting using the 

indicated antibodies.  E.  Down-regulation of Bcl-2 levels through restoration of 

RanBPM expression.  Hela RanBPM shRNA (2-7) cells were either left untransfected (-) 

or were transfected with pCMV-HA-RanBPM si-mt (+ RanBPM si-mt), and whole cell 

lysates were prepared 24h and 48h post-transfection.  Western blot analysis was 

performed with 20µg of protein extracts from control shRNA, untransfected RanBPM 

shRNA (2-7), and RanBPM shRNA (2-7 + RanBPM si-mt) using antibodies directed 

against RanBPM and Bcl-2.  β-actin was used as a loading control. 
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FIGURE 2.5 RanBPM down-regulation in HCT116 cells.  A.  Western blot analysis of 

control and RanBPM shRNA (2-8) and (2-16) HCT116 stable cell lines. Whole cell 

extracts were analyzed with antibodies against RanBPM, Bcl-2 and β-actin.  B.  Control 

and RanBPM shRNA (2-8) expressing cells were either irradiated at 10Gy or left 

untreated.  At the timepoints indicated, extracts were prepared and assayed for caspase-3 

activity. Results are from four independent experiments with triplicate samples at each 

time point.  Error bars indicate standard deviation and *** P <0.001 for 72h and 96h.  C.  

Clonogenic assay.  HCT116 control and RanBPM shRNA cells (2-8) were plated at 

single-cell densities, and either irradiated at the dose indicated or left untreated. Cells 

were incubated for 6-8 days, after which they were fixed, stained with crystal violet, and 

counted. Survival is expressed as the ratio of irradiated cells at each dose over control 

cells. Data represents the mean of four independent experiments with errors bars 

representing standard error. ** indicates P <0.01 and *** indicates P <0.001.   
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2.4 Discussion  

 Here, we present evidence that RanBPM functions as an activator of the 

mitochondrial apoptotic pathway. By the use of two complementary approaches, 

overexpression and down-regulation, we demonstrated that RanBPM regulates the 

activation of caspases, modulates the levels and localization of Bcl-2 family members, 

and regulates cell survival in response to DNA damage.  

 While overexpression of RanBPM triggered caspase activation, down-regulation 

of RanBPM prevented the activation of apoptotic pathways in response to DNA damage, 

thus establishing a function for RanBPM in the activation of apoptosis in response to 

genotoxic insults. RanBPM depletion had a marked effect on overall cell survival in 

response to IR.  This raises the possibility that RanBPM may also function to regulate 

other forms of cell death such as necrosis and autophagy that can also be triggered, in 

addition to apoptosis, in response to DNA damage [31].  Apart from caspase-3, we have 

found 3 proteins that exhibit changes in their expression, activity, or localization upon 

RanBPM down-regulation: Bcl-2, Bax and caspase-2. Together, these observations may 

account for the apoptotic defects observed in RanBPM-deficient cells. Bcl-2 is a primary 

regulator of the mitochondrial apoptotic pathway, and its overexpression impairs the 

activation of apoptosis and is linked to cancer development [4, 30]. Bcl-2 functions by 

interacting with, and neutralizing, members of the pro-apoptotic family. In particular, 

Bcl-2 has been shown to prevent Bax translocation and oligomerization, either through 

direct binding or by preventing its activation through BH3-family factors [6, 28, 32, 33]. 

Thus, the increase in Bcl-2 expression could explain the decrease in mitochondrial Bax 

observed in RanBPM-down-regulated cells. Consistent with previous observations [34], 

Bcl-2 up-regulation was not associated with an increase in overall Bax levels.  

 Bcl-2 levels have been shown to be regulated by several mechanisms and 

pathways. First, Bcl-2 expression is regulated at the transcriptional level by several 

transcription factors including CREB, p53, NF-κB, Sp1, and Oct-1 [35-37]. Bcl-2 can 

also be regulated by post-translational modifications such as phosphorylation and 

ubiquitination [38]. In turn, several studies have implicated RanBPM in transcriptional 

regulation [14, 15, 39], while others have linked RanBPM to the regulation of post-



74 
 

translational modifications such as phosphorylation, ubiquitination, and sumoylation [10, 

20, 39]. Thus, RanBPM could control Bcl-2 transcriptionally and/or post-translationally. 

We noted a steady decrease of Bcl-2 protein levels in response to IR in RanBPM shRNA 

cells. Such a decrease was previously suggested to be causally involved in apoptotic 

activation [40-42]. Yet, this IR-dependent (RanBPM-independent) Bcl-2 down-regulation 

is not sufficient to fully activate apoptotic pathways in RanBPM-deficient cells, 

suggesting that RanBPM also affects the activation of other pro-apoptotic pathways.  

 Interestingly, we found that caspase-2 activation in response to IR was abrogated 

in absence of RanBPM. Several studies indicate that caspase-2 activation is a requirement 

for mitochondrial membrane permeabilization and the apoptotic response induced by 

various agents, including DNA damage and H2O2 [43-45].  Caspase-2 has been reported 

to contribute to Bax translocation and oligomerization at the mitochondrial membrane 

[44, 46]. However, the signals controlling caspase-2 activation are still largely undefined, 

and caspase-2 activation has been found in turn to occur through both Bcl-2-dependent 

and Bcl-2-independent mechanisms [47-50]. Further investigation will be needed to 

understand whether RanBPM controls the activation of both factors or if they are 

regulated by each other sequentially.  

 In conclusion, we have characterized a novel pro-apoptotic function for RanBPM 

and revealed a critical role for this factor in the activation of cell death pathways 

triggered by DNA damage. Our results predict that in cells exhibiting genomic 

alterations, RanBPM inactivation would result in decreased cell death and allow for the 

propagation of potential oncogenic mutations. Interestingly decreased levels, and altered 

patterns of expression, of RanBPM were previously observed in cancer cells from several 

tumour samples, suggesting that down-regulation of this protein accompanies cancer 

development [16]. While further investigations will be needed to explore the molecular 

details of RanBPM action, our current findings suggest that RanBPM could be an 

important regulator of pathways that prevent tumourigenesis by promoting the 

elimination of cells with genomic alterations.  
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Chapter 3  

3.  RanBPM is an inhibitor of ERK signalling 

3.1 Introduction 

 The ERK pathway is activated by a wide range of signals including growth 

factors, cytokines and external stressors.  These signals trigger the activation of 

transmembrane receptors such as receptor tyrosine kinase (RTK) or G protein-coupled 

receptors which activate the Ras-Raf-MEK signalling cascade [1, 2].  Activation of Ras is 

mediated by adaptor proteins, including Sos (son-of-sevenless) and Grb2 (growth-factor-

receptor bound 2), which mediate GDP for GTP exchange on Ras, leading to Ras 

activation [1, 3].  Activation of Ras at the plasma membrane leads to its association with 

Raf serine/threonine kinases, promoting their activation and in turn phosphorylation and 

activation of MEK1/2, ultimately resulting in the activation of ERK1 and ERK2 [1, 3].  

ERK1 and ERK2 (commonly referred to as ERK1/2 or ERK) are over 80% identical and 

share many physiological functions.  ERK1/2 are promiscuous kinases that have been 

demonstrated to act on nearly 100 cellular targets, and regulate several diverse cellular 

functions such as cell cycle progression, proliferation, cell adhesion, transcription, and 

importantly cell death and apoptosis [3, 4].  The ERK pathway is generally associated 

with increased cell survival and proliferation and has been shown to be constitutively 

activated in many tumours [4, 5].  In particular, the ERK pathway is known to inhibit 

apoptosis by regulating the levels and activity of many apoptotic regulators, including 

Bcl-2 and Bcl-XL [4, 6, 7].  

 RanBPM is a nucleocytoplasmic protein whose function is still elusive, but that 

has been implicated in a variety of cellular functions, including transcriptional regulation 

[8, 9], regulation of cell morphology [10, 11] and regulation of receptor-activated 

intracellular signalling pathways including those activated by MET, TrkA and TrkB [12-

15].  Analyses of RanBPM-deficient mice have recently shown a role for RanBPM in 

gametogenesis in both genders [16].  Several reports have also suggested that RanBPM 

functions as a regulator of apoptotic pathways through its interaction with several 

apoptotic factors such as cyclin-dependent kinase CDK11p46, the p75 neurotrophin 



82 
 

receptor (p75NTR), p73, and homeodomain interacting protein kinase-2 (HIPK-2) [17-

20]. We have also demonstrated a functional role for RanBPM in DNA-damage induced 

activation of the intrinsic apoptotic pathway (Chapter 2).  We found that down-regulation 

of RanBPM inhibited the activation of apoptosis in response to ionizing radiation (IR), 

and consequently led to increased cell survival in both Hela and HCT116 cells.  

Furthermore, we showed that down-regulation of RanBPM resulted in a substantial up-

regulation of Bcl-2 protein levels, suggesting that RanBPM pro-apoptotic function could 

result at least in part from its ability to regulate the expression of anti-apoptotic factors.  

 In the present study we provide evidence that the RanBPM-mediated modulation 

of Bcl-2 expression is linked to its regulation of the ERK pathway.  We first demonstrate 

that similarly to Bcl-2, the protein levels of Bcl-XL are markedly increased in RanBPM 

down-regulated cells and that RanBPM controls the expression of these anti-apoptotic 

factors both at the transcriptional and post-translational levels.  Next, we demonstrate that 

RanBPM down-regulation results in increased ERK1/2 activation that can be reversed 

upon re-expression of RanBPM.  Further, the effect of RanBPM on Bcl-2 expression is 

dependent on the regulation of the ERK1/2 pathway by RanBPM.  We also provide 

evidence that RanBPM’s control of ERK signalling occurs through a regulation of c-Raf 

levels/stability and that RanBPM associates with c-Raf and affects the interaction of c-

Raf and Hsp90.  Finally, we show that RanBPM down-regulation promotes cell 

proliferation and migration, cell transformation properties known to be triggered by 

deregulated ERK activation.  Together, our findings implicate a novel role for RanBPM 

as an inhibitor of ERK1/2 activation through the regulation of c-Raf stability.  They also 

suggest that loss of RanBPM function, in addition to compromising apoptosis, promotes 

cellular events leading to cellular transformation, and that these effects could be 

attributed, at least in part, through a deregulation of the ERK pathway.  
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3.2 Materials and methods 

3.2.1 Plasmid expression constructs 

 pCMV-HA-RanBPM shRNA mutant construct (RanBPM si-mt) was described in 

chapter 2.  pEGFP-C1 is from Clontech (Mountain View, CA, USA), and pCGN-ΔN-

Oct-1 has been reported elsewhere [22].  The pCMV-3xFlag-Bcl-2 construct was a kind 

gift from Dr. Sean P. Cregan (University of Western Ontario, London, ON, Canada).  The 

kinase-deficient ERK1 construct pCEP4-DN-ERK1 (DN-ERK1) [23] was a kind gift 

from Dr. Melanie H. Cobb (University of Texas, Southwestern Medical Centre, Dallas, 

TX, USA).  The constitutively active H-Ras construct pSV-3xHA-RasV12 (RasV12) [24] 

was a kind gift from Dr. Arthur Gutierrez-Hartmann (University of Colorado Denver, 

Aurora, CO, USA).  The constitutively active c-Raf constructs pEBG-GST-ΔN-c-Raf 

(GST-ΔN-c-Raf) and pCMV-Flag-c-Raf Y340D/Y341D (Flag-Y/Y-c-Raf) [25, 26] were 

a kind gift from Dr. Zhijun Luo (Boston University, Boston, MA, USA). 

 

3.2.2 siRNA and shRNA constructs 

 Control siRNA and RanBPM siRNA were purchased from Ambion (Austin, TX, 

USA) and have been described in chapter 2.  Generation of the pSuper-shRanBPM and 

pSuper-shControl has been outlined in chapter 2. 

 

3.2.3 Cell culture and treatments 

 Hela and HCT116 control shRNA and RanBPM shRNA stable cell lines were 

generated previously (Chapter 2).  HEK293 control shRNA (clones 1-21 and 1-24) and 

RanBPM shRNA (clones 1-2 and 1-7) stable cell lines were similarly obtained by clonal 

selection of cells transfected with pSuper-shRanBPM or pSuper-shControl vectors.  Hela, 

HCT116, and HEK293 cells were cultured in high glucose Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1mM sodium 

pyruvate, and 2mM L-glutamine at 37°C in 5% CO2.  Control shRNA and RanBPM 
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shRNA stable Hela and HCT116 cell lines were maintained in media supplemented with 

0.35mg/ml G418 (Geneticin, Bioshop Canada, Burlington, ON, Canada), and HEK293 

clonal derivatives were maintained in 0.45mg/ml G418.  For serum starvation 

experiments, HCT116 cells were cultured in media containing 0.1% FBS and HEK293 

cells were cultured in serum-free media.  For the MEK1/2 inhibitor (U0126) experiments, 

RanBPM shRNA Hela cells were treated with 10μM U0126 (Cell Signalling, Danvers, 

MA, USA) or DMSO alone (Sigma, Oakville, ON, Canada) for 24h. 

 

3.2.4 Transfections assays 

 Plasmid transfections were carried out with ExGen 500™ (MBI Fermentas, 

Burlington, ON, Canada) according to the manufacturer’s protocol, and siRNA duplexes 

were transfected with siPORT NeoFX (Ambion) as outlined in chapter 2. 

 

3.2.5 Western blot, co-immunoprecipitations and GST-pull down assays  

 Preparation of whole-cell extracts has been described in chapter 2.  In 

experiments involving c-Raf analysis, the whole cell extract buffer was supplemented 

with 0.5% Triton-X-100.  For Western blot analysis, extracts were resolved by SDS-

PAGE (between 8% and 12%). Gels were transferred on PVDF membranes and 

hybridized with the following antibodies: RanBPM 5M (Bioacademia, Japan), β-actin (I-

19, Santa Cruz, Santa Cruz, CA, USA), Bcl-2 (Cell Signalling), Bcl-XL (Cell Signalling), 

HA (HA-7, Sigma), Flag (M2, Sigma), phospho-T202/Y204-ERK1/2 (Cell Signalling), 

ERK1/2 (Cell Signalling), phospho-S217/221-MEK1/2 (Cell Signalling), MEK1/2 

(Genscript, Piscataway, NJ, USA), c-Raf (clones C-12 and E-10, Santa Cruz), Hsp90 α/β 

(clone H-114, Santa Cruz), γ-tubulin (a kind gift from Dr. David Litchfield, University of 

Western Ontario, London, ON, Canada), GST (GE Health Care Life Sciences, Baie 

d'Urfe, QC, Canada).  The blots were developed using the Western Lightning® Enhanced 

Chemiluminescence Reagent (Perkin Elmer, Waltham, MA, USA). 
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 In co-immunoprecipitation analyses of RanBPM and c-Raf, 1.5mg of extracts 

were adjusted to 0.25% Triton X-100, 0.25% NP-40 and 100mM KCl, 

immunoprecipitations were carried out for 2h at 4ºC with the indicated antibodies, and 

immunoprecipitates were isolated with Dynabeads® protein G (Invitrogen, Life 

Technologies, Burlington, ON, Canada).  GST pull-down assays were performed 

overnight in the same conditions with glutathione beads (Sigma).  In co-

immunoprecipitation analyses of c-Raf and Hsp90, extracts were adjusted to 0.2% NP-40, 

0.04% Triton X-100, and 100mM KCl.  The amount of protein was adjusted to obtain 

similar amount of c-Raf immunoprecipitates from control and RanBPM shRNA cells, and 

immunoprecipitations were carried out overnight at 4ºC with c-Raf (E-10) antibody and 

were isolated using Dynabeads®. 

 

3.2.6 Quantitative reverse-transcriptase PCR 

 Total RNA was collected from Hela control shRNA, RanBPM shRNA, and 

RanBPM shRNA re-expressing RanBPM si-mt, cells using the Qiagen RNeasy RNA 

Extraction kit (Qiagen, Mississauga, ON, Canada). cDNA was prepared from 2.5μg of 

total RNA using the SuperScriptII Reverse Transcriptase kit (Invitrogen, Life 

Technologies).  For gene expression analyses of Bcl-2 and Bcl-XL, 10ng cDNA was 

incubated with control RNA polymerase II primers (Pol II) (FW: 5’ 

TTGCCTGTGGCTTGATGCG 3’ RV: 5’ TTTGTTCTTCCCGAGGATCAGC 3’); and 

50ng cDNA was incubated with either Bcl-2-specific primers (FW: 5’ 

TTGTTGTTGTTCAAACGGGA 3’ RV: 5’ ACAAAACCCCACAGCAAAAG 3’) or 

Bcl-XL-specific primers (FW: 5’ GTAAACTGGGGTCGCATTGT 3’ RV: 5’ 

CAGGTAAGTGGCCATCCAAG 3’).  For c-Raf analysis, 10ng cDNA was incubated 

with either control GAPDH primers (FW: 5’ GTAGCTCAGGCCTCAAGACCTTGG 3’ 

RV: 5’ TGCGGGCTCAATTTATAGAAACCG 3’) or c-Raf primers (FW: 5' 

TTAATCGCGGGCGCTTGGGC 3' RV: 5' CCAGCTGACCCTTTTCGGGGC 3').  

Quantitative real-time PCR analysis was performed using SYBR green (Bio-Rad, 

Mississauga, ON, Canada) and the Bio-Rad MyiQ single-colour real-time PCR detection 
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system.  Relative quantification of gene expression was determined by the ΔΔC(t) 

method, with Bcl-2, Bcl-XL and c-Raf C(t) values normalized to that of the controls.   

 

3.2.7 Cell growth and cell migration assays 

 To assess cellular growth rates, control shRNA and RanBPM shRNA HEK293 

cells were seeded in triplicate in 6-well dishes, and 24h post-plating cells were placed in 

serum-free media.  At each timepoint cells were trypsinized, counted using a 

hemocytometer, and the mean number of cells was determined.  Percent growth was 

obtained by dividing the number of cells at each time point by the number of cells at day 

one. 

 In cell migration assays, control and RanBPM shRNA HEK293 cells were grown 

to 100% confluence on 24-well dishes.  Cell monolayers were incubated in the presence 

of 2mM hydroxyurea (Sigma) for 24h to prevent cell proliferation, after which cells were 

scratched using a sterile 200µl pipette tip, washed, and maintained in DMEM 

supplemented with 2mM hydroxyurea.  Wound closure was assessed at 0h and 24h using 

a fluorescent microscope (IX70, Olympus), and images were captured using a charge-

coupled device camera (Q-imaging).  Percent migration was determined by measuring the 

wound width at each time point using ImageJ software.  

 

3.2.8 Statistical analyses 

 Statistical differences between groups were analyzed by a student's t-test and one-

way analysis of variance (ANOVA) using GraphPad (GraphPad Software Inc., La Jolla, 

CA, USA). Results were considered significant when P <0.05. 
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3.3 Results 

3.3.1 RanBPM modulates transcriptional and post-transcriptional events that regulate        

Bcl-2 and Bcl-XL expression 

 We showed in chapter 2 that down-regulation of RanBPM expression leads to 

increased Bcl-2 protein levels in Hela and HCT116 cells.  We expanded these analyses to 

determine whether the expression of other anti-apoptotic Bcl-2 family factors such as 

Bcl-XL and Mcl-1 was also altered in the absence of RanBPM.  Analysis of whole cell 

extracts from control shRNA and RanBPM shRNA Hela and HCT116 revealed that Bcl-

XL protein levels were markedly elevated in RanBPM shRNA cells compared to control 

cells (Fig. 3.1A).  However, we found that Mcl-1 protein levels remain unchanged in 

RanBPM shRNA cells (data not shown). 

 We carried out quantitative reverse transcriptase-PCR (qRT-PCR) analyses to 

determine whether RanBPM is involved in the regulation of Bcl-2 and Bcl-XL gene 

expression.  RanBPM shRNA cells showed increased mRNA levels for both Bcl-2 (2.5-

fold increase) and Bcl-XL (1.4- fold increase) in comparison to control shRNA cells (Fig. 

3.1B).  To verify that this increase in gene expression was specifically due to RanBPM 

down-regulation, we re-expressed RanBPM in RanBPM shRNA cells by transfecting a 

cDNA containing a point mutation in the shRNA target sequence (RanBPM si-mt) 

(described in chapter 2).  Upon RanBPM re-expression, Bcl-2 and Bcl-XL mRNA 

expression was reduced to levels near that of control shRNA cells (Fig. 3.1B), thus 

confirming a role for RanBPM in the transcriptional regulation of Bcl-2 and Bcl-XL.  

Previous reports have implicated RanBPM in the regulation of protein stability [17, 27], 

therefore we sought to determine whether RanBPM may also regulate Bcl-2 and/or Bcl-

XL protein levels.  To this end, we expressed a Flag-Bcl-2 construct under the control of 

the CMV promoter in RanBPM shRNA cells and analyzed the effect of RanBPM re-

expression on the Flag-Bcl-2 levels.  Expression of RanBPM led to a significant down-

regulation of Flag-Bcl-2 protein levels (Fig. 3.1C).  To ensure that this was not due to an 

effect of RanBPM on the CMV promoter, we repeated this experiment using an Octamer 

transcription factor-1 (Oct-1) expression construct also under the control of a CMV 

promoter Endogenous Oct-1 protein levels are not affected by RanBPM down- regulation
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Figure 3.1 Regulation of Bcl-2 and Bcl-XL expression by RanBPM.  A. Down-

regulation of RanBPM leads to enhanced Bcl-XL expression. Whole cell extracts were 

prepared from Hela and HCT116 control shRNA and RanBPM shRNA cells and were 

analyzed by western blotting. Blots were hybridized with antibodies against Bcl-XL, β-

actin, and RanBPM.  B. RanBPM shRNA cells exhibit enhanced Bcl-2 and Bcl-XL 

mRNA expression. cDNA from Hela control shRNA, RanBPM shRNA, and RanBPM 

shRNA cells re-expressing RanBPM via transient transfection of RanBPM si-mt 

construct was analyzed by qRT-PCR with RNA polymerase II (Pol II), Bcl-2, and Bcl-

XL, specific primers.  Relative quantification of Bcl-2 and Bcl-XL gene expression was 

determined using the ΔΔC(t) method with Bcl-2 and Bcl-XL expression normalized to 

that of the controls.  Bars represent values normalized to control shRNA cells.  Data 

represents the mean of three independent experiments with error bars representing 

standard deviation, and * P <0.05.  Inset, representative western blot analysis of whole 

cell extracts to control for the levels of RanBPM using a RanBPM antibody and β-actin 

as a loading control.  C. RanBPM expression down-regulates Bcl-2 protein levels.  Hela 

RanBPM shRNA cells were transfected with pCMV-3xFlag-Bcl-2.  24h post-

transfection, cells were split and were either transfected with pCMV-HA-RanBPM si-mt 

(RanBPM si-mt) or empty vector.  Whole cell extracts were prepared 48h later and 

analyzed by western blotting.  Expression of ectopic Bcl-2 was determined by 

hybridization with an anti-Flag antibody.  RanBPM expression was assessed with a 

RanBPM antibody, and β-actin was used as a loading control.  D. Control experiment to 

confirm the specificity of RanBPM expression on Bcl-2 protein levels.  This experiment 

was carried out the same as in C, except that RanBPM shRNA cells were transfected with 

pCGN-HA-ΔN-Oct-1 instead of Flag-Bcl-2.  The truncated ΔN-Oct-1 migrates at 65kDa 

as opposed to full-length Oct-1 (which migrates at 90kDa), allowing for detection of Oct-

1 and RanBPM expression in cells transfected with both constructs.  Blots were 

hybridized with anti-HA antibody to verify Oct-1 and RanBPM expression.  
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(data not shown).  As Oct-1 and RanBPM migrate at the same size on SDS-PAGE 

(approximately 95kDa), a truncated form of Oct-1 (HA-ΔN-Oct-1 [28]) lacking Oct-1 N-

terminus was used so that ectopically expressed HA-Oct-1 and HA-RanBPM would be 

detected on the same gel.  Oct-1 protein levels were found to be unchanged upon 

RanBPM expression (Fig. 3.1D), indicating that RanBPM does not modulate the activity 

of the CMV promoter, thus confirming a regulation of Bcl-2 by RanBPM through a post-

transcriptional or post-translational mechanism. 

 

3.3.2 RanBPM inhibits ERK1/2 activation 

 Our findings that RanBPM modulates Bcl-2 and Bcl-XL expression through 

mechanisms involving transcriptional and post-translational regulation suggested that 

RanBPM could regulate signalling pathway(s) that control the expression of both factors.  

One of the main pathways that regulates Bcl-2 (and Bcl-XL) both transcriptionally and 

post-transcriptionally is the ERK pathway [4, 5].  RanBPM was previously shown to 

participate in ERK1/2 signalling, but the effects of RanBPM on this pathway remain 

controversial [12, 29, 30].  Thus, we looked at a direct effect of RanBPM down-

regulation on ERK activation by comparing ERK1/2 and MEK1/2 phosphorylation in 

extracts from Hela control shRNA and RanBPM shRNA cells.  Both MEK1/2 and 

ERK1/2 phosphorylation was significantly enhanced in Hela RanBPM shRNA cells 

compared to control cells (Fig. 3.2A).  To verify that this elevated ERK1/2 activation was 

not specific to Hela cells, we prepared extracts from serum-deprived HCT116 control and 

RanBPM shRNA cells, and we observed a similar up-regulation in ERK1/2 

phosphorylation in RanBPM shRNA HCT116 cells compared to control cells (Fig. 3.2B).  

In addition, we generated a third stable cell line by expressing either the control shRNA 

or RanBPM shRNA expression construct in HEK293 cells, which are immortalized but 

not transformed [31].  We obtained two independently derived control shRNA cell lines 

[denoted HEK control shRNA (clone 1-21) and (clone 1-24)], and two independently 

derived RanBPM shRNA cell lines [denoted HEK RanBPM shRNA (clone 1-2) and 

(clone 1-7)].  Analysis of extracts from these cells revealed that similarly to the effect 

observed in HCT116 cells, serum starvation led to enhanced ERK1/2 phosphorylation in
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Figure 3.2 RanBPM is a negative regulator of ERK1/2 activation.  A. Enhanced 

MEK1/2 and ERK1/2 phosphorylation in the absence of RanBPM.  Whole cell extracts 

were prepared from Hela control shRNA and RanBPM shRNA cells (2-7) and analyzed 

by western blotting.  Activation of ERK1/2 was determined by hybridization with 

phospho-ERK1/2 antibody.  Expression of RanBPM in control shRNA cells was verified 

using a RanBPM antibody, and total ERK1/2 was used as a loading control.  B. HCT116 

control shRNA and RanBPM shRNA (2-8) cells were serum-starved for 18h in 0.1% 

FBS.  HEK293 control shRNA and RanBPM shRNA (1-7) cells were incubated in 

serum-free media for 24h.  Whole cell extract were prepared and analyzed as described in 

A.  C. Control and RanBPM shRNA Hela and HCT116 cells were either left 

untransfected, or were transfected with empty vector or RanBPM si-mt.  24h post-

transfection, HCT116 cells were serum-starved in 0.1% FBS, and extracts were prepared 

18h later.  Western blot analysis was carried out the same as in A.  
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RanBPM-down-regulated HEK293 cells compared to control shRNA cells (Fig. 3.2B).  

Finally, we verified that the increased ERK1/2 activation was due to a lack of RanBPM 

expression, as re-expression of RanBPM in both RanBPM shRNA Hela and HCT116 

cells led to a marked down-regulation of ERK1/2 phosphorylation to levels near that of 

control cells (Fig. 3.2C).  Together, these analyses suggested that RanBPM inhibits ERK 

phosphorylation and that down-regulation of RanBPM leads to a constitutive ERK 

activation. 

 

3.3.3 Inhibition of ERK1/2 signalling down-regulates Bcl-2 protein levels in RanBPM 

shRNA cells 

 To further confirm that the enhanced ERK1/2 activation was due to a decrease of 

RanBPM expression, we performed transient siRNA knockdown experiments in Hela 

cells (Fig. 3.3A).  Transient down-regulation of RanBPM corresponded with a marked 

increase in ERK1/2 phosphorylation, and this correlated with an increase in Bcl-2 protein 

levels, suggesting a direct link between RanBPM expression, ERK pathway activation, 

and Bcl-2 up-regulation. 

 Since activation of the ERK pathway has been shown to enhance Bcl-2 expression 

[4, 5, 32], we assessed whether the increased ERK1/2 phosphorylation in RanBPM 

shRNA cells was responsible for the elevated Bcl-2 protein levels observed in these cells.  

Treatment of RanBPM shRNA cells with the MEK1/2 inhibitor U0126 completely 

abolished ERK1/2 phosphorylation, and coincided with a marked down-regulation of 

Bcl-2 protein expression (Fig. 3.3B). U0126 however is not entirely specific to the 

ERK1/2 pathway, but can also inhibit MEK5 and thus the whole ERK5 pathway [33].  

Therefore we repeated this experiment using a dominant negative ERK1 cDNA construct 

(DN-ERK1) [34].  Expression of DN-ERK1 led to decreased ERK1/2 phosphorylation 

and correlated with a significant down-regulation in Bcl-2 protein levels (Fig. 3.3C).  

These findings support the notion that the enhanced ERK1/2 activation resulting from 

RanBPM down-regulation promotes the up-regulation of Bcl-2 expression.
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Figure 3.3 Regulation of Bcl-2 expression by RanBPM occurs through ERK1/2.  A. 

Transient down-regulation of RanBPM increases ERK1/2 phosphorylation and Bcl-2 

protein levels.  Hela cells were transfected with control siRNA or RanBPM siRNA.  

Whole cell extracts were prepared at the indicated timepoints and analyzed by western 

blotting with antibodies directed against Bcl-2 and phospho-ERK1/2.  Down-regulation 

of RanBPM expression was verified using a RanBPM antibody and total ERK1/2 was 

used as a loading control.  B. RanBPM shRNA (2-7) Hela cells were treated with the 

MEK1/2 inhibitor U0126 or DMSO for 24h.  Whole cell extracts were prepared and 

analyzed by western blot as in A.  C. Hela control shRNA and RanBPM shRNA (2-7) 

cells were either left untransfected or were transfected with DN-ERK1, and whole cell 

extracts were collected 24h and 48h post-transfection. Western blot analysis was 

performed as in A with γ-tubulin used as a loading control. 

  



95 
 

 

  



96 
 

3.3.4 RanBPM targets the ERK1/2 signalling pathway downstream of Ras  

 We investigated the ability of RanBPM to regulate upstream events in the ERK 

signalling cascade. Both active forms of Ras and c-Raf have been shown to bypass the 

upstream components of the pathway for ERK activation [1, 4, 35].  As a first step, we 

assessed whether RanBPM acts upstream or downstream of Ras to inhibit ERK1/2 

activation.  We expressed a constitutively active H-Ras construct (RasV12) in Hela 

RanBPM shRNA cells, either in the presence or absence of ectopically expressed 

RanBPM, and analyzed the effect of RasV12 and RanBPM expression on the levels of 

ERK1/2 phosphorylation.  As expected, while RasV12 expression resulted in increased 

ERK phosphorylation, this effect was inhibited by RanBPM expression (Fig. 3.4A).  

Interestingly, MEK-induced phosphorylation by RasV12 was also reduced upon 

RanBPM expression. This suggested that RanBPM is able to inhibit MEK and ERK 

activation by Ras and thus functions to regulate signalling events between Ras and MEK. 

 

3.3.5 RanBPM forms a complex with c-Raf and inhibits c-Raf expression 

 Using a similar experimental scheme, we next investigated whether RanBPM 

expression could inhibit MEK and ERK activation by active c-Raf.  Co-expression of 

RanBPM with a constitutively active c-Raf construct (GST-ΔN-c-Raf, containing c-Raf 

aa 325-648 [25]) in Hela RanBPM shRNA cells had an inhibitory effect on c-Raf-

induced ERK activation (Fig. 3.4B).  Intriguingly, we found that expression of RanBPM 

consistently led to a pronounced decrease in GST-ΔN-c-Raf protein levels (Fig. 3.4B, see 

also Fig. 3.5B).  Since the GST-ΔN-c-Raf construct is under an EF-1α promoter that 

could potentially be affected by RanBPM expression, this experiment was repeated with 

another constitutively active c-Raf construct (c-Raf Y340D/Y341D).  This active c-Raf 

construct is expressed from a CMV promoter, the transcriptional activity of which is not 

affected by RanBPM (see Fig. 3.1D).  We obtained a similar down-regulation of c-Raf 

Y340D/Y341D upon RanBPM expression (Fig. 3.4C), suggesting that RanBPM 

functions to down-regulate c-Raf protein levels. 
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Figure 3.4 RanBPM inhibits ERK1/2 activation through regulation of c-Raf.  A. 

RanBPM regulates ERK1/2 signalling downstream of Ras. RanBPM shRNA Hela cells 

were left untransfected, or were transfected with either constitutively active RasV12 and 

RanBPM si-mt or RasV12 and empty pCMV vector.  24h post-transfection, whole cell 

extracts were prepared and analyzed by western blotting.  MEK1/2 and ERK1/2 

activation was assessed using phospho-MEK1/2 and phospho-ERK1/2 antibodies 

respectively, and their total protein levels were assessed using MEK1/2 and ERK1/2 

antibodies.  Expression of RasV12 and RanBPM was determined with an HA antibody.  

B. RanBPM expression down-regulates c-Raf protein levels. RanBPM shRNA Hela cells 

were left untransfected, or were transfected with either the constitutively active c-Raf 

construct pEBG-GST-ΔN-c-Raf (GST-ΔN-c-Raf) and empty pCMV vector, or GST-ΔN-

c-Raf and RanBPM si-mt.  48h post-transfection, whole cell extracts were prepared and 

analyzed by western blotting.  C-Raf expression was determined using a GST antibody, 

and ERK1/2 activation was assessed using a phospho-ERK1/2 antibody.  RanBPM 

expression was verified using an HA antibody, and γ-tubulin was used as a loading 

control.  C. RanBPM shRNA Hela cells were left untransfected, or were either 

transfected with the constitutively active c-Raf construct pCMV-Flag-Y/Y-c-Raf (Flag-

Y/Y-c-Raf) and empty vector, or Flag-Y/Y-c-Raf and RanBPM si-mt.  48h post-

transfection, whole cell extracts were prepared and analyzed as in B, with c-Raf levels 

assessed using a Flag antibody, and GAPDH used as a loading control.  D. Whole cell 

extracts were prepared from Hela and HEK293 control shRNA and RanBPM shRNA 

cells, and endogenous protein levels were analyzed by western blotting with c-Raf and 

RanBPM antibodies, with β-actin used as a control.  E. Control shRNA and RanBPM 

shRNA Hela cells were either left untransfected, or were transfected with empty vector or 

RanBPM si-mt.  48h post-transfection, whole cell extracts were prepared and analyzed as 

in D.  F. RanBPM down-regulation does not affect c-Raf mRNA expression. cDNA from 

Hela control shRNA and RanBPM shRNA cells was analyzed by qRT-PCR using 

specific primers for GAPDH and c-Raf. Gene expression was quantified using the ΔΔC(t) 

method, with c-Raf expression normalized to GAPDH, and expression in RanBPM 

shRNA cells normalized to control cells (set to an arbitrary value of 1). Data represents 

the mean of nine independent experiments, with error bars indicating standard error.  
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 To confirm that RanBPM affects c-Raf expression, we analyzed endogenous c-

Raf protein levels in Hela and HEK293 control and RanBPM shRNA cells (Fig. 3.4D).  

Indeed, RanBPM shRNA cells exhibited elevated c-Raf protein levels, and this effect was 

specifically due to RanBPM down-regulation, as restoration of RanBPM expression in 

RanBPM shRNA cells led to a decrease in c-Raf protein levels (Fig. 3.4E).  To determine 

whether up-regulation of endogenous c-Raf protein levels may also be attributed to 

changes in c-Raf gene expression, we performed qRT-PCR analyses to compare c-Raf 

gene expression in Hela control and RanBPM shRNA cells.  Surprisingly, RanBPM 

down-regulation resulted in a slight decrease in c-Raf mRNA expression, although this 

difference was not found to be statistically significant, suggesting that RanBPM does not 

affect c-Raf expression at the transcriptional level (Fig. 3.4F).  Together these findings 

indicate that RanBPM functions to regulate ERK1/2 signalling by modulating c-Raf 

protein levels. 

 To begin investigating how RanBPM promotes c-Raf down-regulation, we first 

looked into a possible association of RanBPM with the c-Raf complex.  A previous study 

reported the interaction of c-Raf kinase domain with RanBPM in a yeast two-hybrid 

analysis, but their interaction was not confirmed in mammalian cells [29].  Endogenous 

c-Raf was found to co-immunoprecipitate with HA-RanBPM re-expressed in RanBPM 

shRNA cells, suggesting that the two proteins form a complex (Fig. 3.5A).  In addition, 

we determined that GST-ΔN-c-Raf, the levels of which were found to be markedly 

affected by RanBPM (Fig. 3.4B, 3.5B), was able to interact with RanBPM (Fig. 3.5B).  

Altogether, these results suggest that RanBPM associates with c-Raf and that this 

interaction relies on the C-terminal kinase domain of c-Raf. 

 

3.3.6 RanBPM disrupts Hsp90-c-Raf association 

 Rafs are Hsp90 client proteins, and the binding of Hsp90 to c-Raf is required for 

proper folding and protein stability of c-Raf [36, 37].  To characterize the mechanism by 

which RanBPM may regulate c-Raf, we assessed whether RanBPM expression affected 

the association of Hsp90 with c-Raf.  Co-immunoprecipitation of c-Raf from Hela control 
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Figure 3.5 RanBPM interacts with c-Raf and reduces c-Raf-Hsp90 association.  A. 

Co-immunoprecipitation of RanBPM and c-Raf. RanBPM shRNA (2-7) Hela cells were 

transfected with empty vector or RanBPM si-mt, and 48 post-transfection whole cell 

extracts were incubated with either an HA antibody or mouse IgG control.  Presence of c-

Raf in immunoprecipitates was determined using a c-Raf antibody and RanBPM 

expression was verified using HA, compared to 5% input extract.  B. RanBPM shRNA 

(2-7) Hela cells were transfected with GST-ΔN-c-Raf and either pCMV empty vector or 

RanBPM si-mt, or with RanBPM si-mt and GST empty vector, and whole cell extracts 

were prepared 48h post-transfection.  Activated c-Raf was pulled down using glutathione 

beads, presence of RanBPM was verified using an HA antibody, and c-Raf expression 

was determined using GST, compared to 5% input extract.  C. Co-immunoprecipitation 

of Hsp90 with c-Raf.  Extracts from Hela control shRNA (C) and RanBPM shRNA (2-7) 

cells were immunoprecipitated with c-Raf or mouse IgG control antibodies.  Equal 

amounts of immunoprecipitated c-Raf from control and RanBPM shRNA cells were 

analyzed by western blot with Hsp90 and c-Raf antibodies.  Inputs represent 5% of the 

total protein used for immunoprecipitation.  D. Hela RanBPM shRNA (2-7) cells were 

transfected with empty vector (-) or RanBPM si-mt, and whole cell extracts prepared 48 

post-transfection were immunoprecipitated and analyzed as in C.  
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and RanBPM shRNA cell extracts revealed an increased amount of Hsp90 co-

immunoprecipitating with c-Raf in RanBPM-depleted cells (Fig. 3.5C).  In addition, re-

expression of RanBPM reversed this effect, substantiating an inhibitory effect of 

RanBPM on the association of Hsp90 with c-Raf (Fig. 3.5D).  These findings indicate 

that RanBPM may function to destabilize the c-Raf protein by inhibiting the interaction 

of c-Raf and Hsp90. 

 

3.3.7 Inhibition of RanBPM expression promotes cellular transformation 

 Activating mutations in K-Ras and N-Ras that result in constitutive activation of 

the ERK pathway are among the most frequent oncogenic events in human cancers [5, 

38].  Our observation that RanBPM down-regulation promotes ERK activation suggested 

that loss of RanBPM function, in addition to compromising apoptosis, could promote 

cellular transformation.  We first analyzed the effect of RanBPM down-regulation on cell 

growth in HEK293 cells.  We evaluated the growth rate of both RanBPM and control 

shRNA HEK293 cells upon serum withdrawal.  For both HEK293 (WT) and the clonal 

derivative control shRNA HEK293 (1-21) cells, growth slowed down at approximately 

four days post serum starvation, and at seven days post serum withdrawal cell growth had 

almost completely stopped (Fig. 3.6A).  However this was not observed with two 

different clonal derivative RanBPM shRNA cells (1-2 and 1-7).  These cells continued to 

grow in the absence of serum, even at seven days post serum withdrawal.  These results 

indicate that down-regulation of RanBPM expression promotes loss of growth factor 

dependence.  In addition, as previous studies have demonstrated a role for the ERK 

pathway in promoting cell migration [38, 39], we tested the migratory properties of 

RanBPM and control shRNA HEK293 cells in a wound-healing assay, which evaluates 

the ability of cells to move over a cell-free zone created by scraping the middle of the 

plate with a pipette tip.  This assay revealed a significant increase in cell motility of 

RanBPM shRNA cells, which displayed a 1.7 fold increase in wound closure compared 

to control cells (Fig. 3.6B, C).  Together, these results indicate that loss of RanBPM 

expression leads to cell signalling alterations that promote aberrant cell proliferation and 

cell migration.  
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Figure 3.6 Down-regulation of RanBPM expression enhances cellular 

transformation.  A. RanBPM shRNA cells exhibit increased cell growth. Growth rates 

for HEK293 wild-type (WT), control shRNA (1-21) and RanBPM shRNA (1-2 and 1-7) 

cells were assessed for seven days.  Data represents the mean percent growth for four 

independent experiments, with error bars indicating standard error, and ** P <0.01 and 

*** P <0.001.  B. Confluent monolayers of control shRNA and RanBPM shRNA (1-7) 

HEK293 cells were cultured in the presence of 2mM hydroxyurea for 24h, scratched 

using a sterile pipette tip, and wound healing was assessed at the indicated time points 

using a microscope at 4x magnification. Images from a representative experiment are 

shown.  C. Percent wound closure was calculated for control and RanBPM shRNA 

HEK293 cells. Data represents the mean of four independent experiments with error bars 

representing standard error, and ** P <0.01.   
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3.4 Discussion 

 This study reveals an important role for RanBPM in repressing ERK activation 

and signalling.  Expanding on our previous findings which showed elevated expression of 

the anti-apoptotic factor Bcl-2 in RanBPM down-regulated cells, we demonstrate here 

that Bcl-2 overexpression in these cells is mediated by increased ERK activation that is 

specifically triggered by the loss of RanBPM expression.  We show that the inhibition of 

ERK signalling by RanBPM is achieved through a regulation of c-Raf protein levels and 

that RanBPM associates with c-Raf in vivo.  Finally, we determine that loss of RanBPM 

expression confers increased cell growth and cell migration, properties known to be 

induced by increased ERK signalling.  

 Here, we demonstrate that the regulation of Bcl-2 expression by RanBPM that we 

documented in chapter 2 is a direct consequence of a regulation of the ERK pathway by 

RanBPM.  Our investigation of a potential effect of RanBPM on the ERK pathway was 

prompted by the observation that, in addition to Bcl-2, RanBPM also modulated the 

expression of another anti-apoptotic factor, Bcl-XL, and that these regulations occurred 

both at the transcriptional and at the post-translational levels.  The ERK pathway has 

previously been shown to regulate Bcl-2 and Bcl-XL both transcriptionally and post-

transcriptionally [4, 5, 32].  In our studies, we have shown that both transient and stable 

down-regulation of RanBPM activated ERK phosphorylation, and we have confirmed 

that this effect was specific to RanBPM, as restoration of RanBPM expression reversed 

this effect.  Further, we have substantiated that RanBPM down-regulation promotes ERK 

activation in three different cell lines, confirming that the regulation of ERK by RanBPM 

is not cell-type specific.  Moreover, we show that inhibiting ERK in RanBPM down-

regulated cells reduces Bcl-2 expression, confirming that ERK signalling is directly 

responsible for elevated Bcl-2 expression in these cells.  Altogether, these experiments 

demonstrate that RanBPM expression has an inhibitory effect on ERK phosphorylation 

and signalling.  

 Previous studies have implicated RanBPM in the regulation of the ERK pathway, 

however there have been conflicting reports of the outcome of RanBPM expression on 

ERK activation.  In a first study, RanBPM was shown to stimulate this pathway through 
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an interaction with the RTK MET [12].  While our results are in contradiction with this 

report, it should be noted that this previous study employed an experimental approach 

that involved overexpression of a GFP-RanBPM fusion construct.  Whether the addition 

of a bulky fluorescent tag at the N-terminus of RanBPM interferes with RanBPM 

function is unknown, but since RanBPM has been shown to dimerize (or even 

multimerize) through LisH domain [40], it is possible that the GFP-RanBPM fusion 

protein may have had an adverse effect on endogenous RanBPM function.  Another study 

presented evidence that the N-terminal region of RanBPM interacted with the neural cell 

adhesion molecule L1 and inhibited ERK activation induced by L1 [30].  However, this 

study relied on overexpression of a truncated form of RanBPM, and the effect of the 

truncation on RanBPM function was not investigated [30].  In contrast to these reports, a 

third study reported an inhibitory role of RanBPM on ERK signalling activated by a 

constitutively active Raf-BXB [29].  This study also described an interaction between 

RanBPM and the catalytic domain of c-Raf using a yeast two-hybrid assay.  Consistent 

with these findings, we show here that RanBPM associates with the C-terminus of c-Raf 

using a GST-pull-down assay in mammalian cells.  Further, we also show that RanBPM 

can form a complex with endogenous c-Raf.  

 Raf proteins are central regulators of the ERK pathway that function by coupling 

receptor activation to ERK-dependent signalling cascades, and as such their activity is 

subject to complex regulation [39].   Intensive studies on c-Raf in particular have 

revealed that c-Raf undergoes an intricate cycle of activation/deactivation that involves 

multiple interactions with regulators, phosphorylation and dephosphorylation events, and 

conformational changes [39].  Our data indicate that RanBPM modulates c-Raf 

expression through a regulation of c-Raf protein levels/stability.  First, our qRT-PCR 

analyses revealed that RanBPM down-regulation did not result in increased c-Raf mRNA 

levels, indicating that RanBPM does not affect c-Raf gene expression.  In fact, RanBPM 

down-regulation resulted in a slight, albeit not significant, decrease in c-Raf mRNA 

levels.  A possible explanation may be that elevated c-Raf protein expression activates 

negative feedback loops that repress its transcription. Second, our results show that 

RanBPM is able to modulate the stability of ectopically expressed c-Raf, as the 

expression of both active c-Raf point mutant (Y/Y) and ∆N deletion mutant was strongly 
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affected by RanBPM expression.  Interestingly, the down-regulation of c-Raf by 

RanBPM seemed more pronounced with these transfected active forms of c-Raf than with 

the pool of endogenous c-Raf proteins which comprises active and inactive forms.  This 

is consistent with the ability of RanBPM to form a complex with the c-Raf kinase 

domain, and thus suggests that RanBPM preferentially targets active forms of c-Raf. 

 An important part of c-Raf regulation is its association with chaperone proteins 

that ensure proper folding and prevent c-Raf degradation [36].  C-Raf protein folding and 

stability has been shown to be dependent on its association with the chaperone Hsp90, as 

disruption of Hsp90-c-Raf interaction results in a sharp decrease in c-Raf levels [37, 41, 

42].  Phosphorylation of Ser621 through c-Raf autophosphorylation has also been 

implicated in promoting c-Raf stability [43].  We did not find a consistent change in 

Ser621 phosphorylation resulting from RanBPM expression (data not shown).  However, 

we found that RanBPM down-regulation enhanced c-Raf-Hsp90 complex formation.  

This effect was found to be specifically due to down-regulation of RanBPM, as 

restoration of RanBPM expression reduced the association of Hsp90 with c-Raf.  These 

findings suggest that the interaction of RanBPM with c-Raf disrupts the c-Raf-Hsp90 

complex, leading to its destabilization.  For instance, RanBPM may function to 

destabilize c-Raf by competing with Hsp90 for binding to c-Raf.  Such a mechanism was 

previously proposed to explain the negative regulation of c-Raf by Hsp70. Hsp70 was 

shown to compete with c-Raf for binding to BAG1, a chaperone that stimulates c-Raf 

catalytic activity, thus preventing c-Raf activation of proliferation pathways [44, 45].  

Alternatively, RanBPM may recruit a protein or protein complex to c-Raf that disrupts 

the c-Raf-Hsp90 complex.  A precedent exists for such a remodelling of Hsp90-

chaperone complexes, which is mediated by the co-chaperone CHIP (carboxy terminus of 

Hsp70-interacting protein) [46].  CHIP was shown to bind Hsp90 substrates and mediate 

the transfer of client proteins to Hsp70, causing their dissociation from Hsp90 and 

promoting their proteasome-mediated degradation [41, 46-48].  Whether RanBPM is part 

of this complex or functions independently in regulating chaperone-dependent Hsp90 

client proteins stability/degradation remains to be determined.  
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 It is well established that deregulation of the ERK pathway leading to its 

constitutive activation is linked with many aspects of tumour development including cell 

growth, proliferation, differentiation, and migration [4-6].  Our observation that RanBPM 

down-regulation promotes ERK activation suggests that loss of RanBPM function could 

promote cellular events leading to cellular transformation.  Both cell proliferation and 

cell migration were found enhanced in HEK293 RanBPM shRNA cells suggesting that 

RanBPM expression is essential to regulate these two cellular functions.  It should be 

noted that while the increased cell migration observed upon RanBPM down-regulation 

may be due to increased ERK activation, it could also result from MEK-independent 

functions of c-Raf, which has been shown to regulate cell motility through a direct 

regulation of the Rho effector Rokα [38, 39, 49].  Previous reports have suggested a 

function for RanBPM in repressing oncogenic cellular events by promoting the activity of 

the tumour suppressor p73 and Mammalian Lethal Giant Larvae-1 (Mgl-1) [17, 50].  Our 

results not only confirm a tumour suppressor role for RanBPM, but go beyond these 

observations to show that altering RanBPM expression is in itself sufficient to disrupt 

regulatory mechanisms that control cell transformation and the establishment of 

oncogenic pathways.  Interestingly, decreased RanBPM expression was previously 

reported in cancer cells from several tumour samples, suggesting that loss of RanBPM 

may be linked to tumour development [51].  To confirm a link between these 

observations, it will be important to determine whether loss of RanBPM expression in 

tumours correlates with the constitutive activation of the ERK pathway. 
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Chapter 4  

4.  RanBPM expression regulates transcriptional pathways involved in 

development and tumourigenesis 

4.1 Introduction 

 Cancer development is driven by alterations in cellular pathways leading to the 

evasion from mechanisms that normally restrict growth, migration and invasion [1]. 

Tumourigenesis is associated with changes in gene expression and the progression of cell 

transformation from normal to tumour cells [2, 3]. Altered gene expression can elicit 

cancer development, and may also occur as the result of downstream signalling from 

pathways deregulated during cancer progression [4]. These changes in expression have 

been linked to specific phases of cancer development often reflecting either the type or 

the stage of cancer progression. To this end gene expression profiling has greatly 

contributed to our understanding of cancer progression, and to the identification of key 

genes and pathways which when deregulated promote cancer development [3].   

 RanBPM was initially identified as a binding partner for the Ran GTPase that 

localized to the microtubule-organizing center (MTOC) [5], although both of these 

observations were later dismissed [6]. Several roles for RanBPM have subsequently been 

proposed in cellular processes including the regulation of cell morphology [7-9], cell 

adhesion [10-12], cell cycle progression [13] and regulation of neurological functions 

[13-15]. Most of these functions result from interaction of RanBPM with various 

proteins, which have been reported to occur both in the cytoplasm and the nucleus. In the 

cytoplasm, RanBPM has been suggested to function as a scaffold for receptor signalling 

pathways through interactions with the neuronal cell adhesion molecule L1 [11], the 

MET receptor (MET proto-oncogene, also called hepatocyte growth factor receptor) [16], 

and tropomyosin-related kinase (Trk) TrkA [17] and TrkB [14] receptors. The interaction 

of RanBPM with these receptors is believed to regulate the activation of downstream 

signalling pathways including the ERK1/2 [11, 16], Akt [14], and NF-κB pathways [18].  

In addition, RanBPM was suggested to modulate the stability of proteins, such as the pro-

apoptotic transcription factor p73 [19].  In the nucleus, RanBPM has been shown to 
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interact with the transcriptional regulator TAF4 [15] and the viral early-immediate 

transcriptional regulator Rta [20].  RanBPM has also been reported to modulate the 

transcriptional activity of the androgen receptor (AR) [21], the glucocorticoid receptor 

(GR) [21], and the thyroid hormone receptor (TR) [22]. These data suggest that RanBPM 

could have wide ranging and important influences on gene expression, either directly 

through interaction with transcriptional regulators, or indirectly through the modulation 

of intracellular signalling pathways.  

 In chapter 2, we established that RanBPM functions to promote apoptosis in 

response to DNA damage. We showed that down-regulation of RanBPM in Hela and 

HCT116 cells prevented the activation of the mitochondrial apoptotic pathway and 

promoted cell survival in response to ionizing radiation treatment. Therefore in the 

present study, we sought to gain further insight into the pathways and cellular functions 

that are regulated by RanBPM. Using microarray analyses that compared RanBPM 

down-regulated cells to those in which RanBPM is expressed at physiological levels, 

global changes in gene expression elicited by RanBPM down-regulation were 

investigated. Our analyses reveal that decreased RanBPM expression causes wide spread 

changes in gene expression that indicate it may be an important mediator in the control of 

many tumourigenic processes. 

 

4.2 Materials and methods 

4.2.1 Cell culture  

 Hela and HCT116 control shRNA and RanBPM shRNA stable cell lines were 

previously generated (as outlined in chapter 2). Cells were cultured in high glucose 

Dulbecco’s Modified Eagle's Medium (DMEM) (Life Technologies, Burlington, ON, 

Canada) supplemented with 10% fetal bovine serum (FBS) (Wisent Bioproducts, St. 

Bruno, QC, Canada), 2mM L-glutamine, and 1mM sodium pyruvate (Life Technologies) 

at 37°C in 5% CO2. Control shRNA and RanBPM shRNA stable cell lines were 

maintained in media supplemented with 0.35mg/ml G418 (Geneticin, Bioshop Canada, 

Burlington, ON, Canada).  



117 
 

4.2.2 Plasmid expression constructs and transfection assays 

 The pCMV-RanBPM shRNA mutant expression construct (RanBPM si-mt) has 

been described in chapter 2. Transfection assays were carried out using ExGen 500TM 

(Thermo Scientific, Fermentas, Burlington, ON, Canada) as per the manufacturer's 

instructions. 

 

4.2.3 Western blotting 

 To prepare whole cell extracts, cells were collected in ice-cold PBS and lysed in 

buffer containing 150mM NaCl, 1mM EDTA, 50mM HEPES (pH 7.4), 10% Glycerol, 

0.5% NP40, and supplemented with 1mM PMSF, 1mM DTT, 1µg/ml leupeptin, 10µg/ml 

aprotinin, 1µg/ml pepstatin, 2mM sodium fluoride, and 2mM sodium orthovanadate. For 

western blot analysis, 20µg of protein extracts were resolved on 10% SDS-PAGE, 

transferred onto PVDF membranes (Bio-Rad, Burlington, ON, Canada), and blots were 

hybridized with antibodies against RanBPM (5M, BioAcademia, Japan) and β-actin (I-

19, Santa Cruz Biotechnology, Santa Cruz, CA, USA). 

 

4.2.4 RNA extraction, quantitative reverse-transcriptase PCR and statistical analysis 

 Total RNA was isolated from Hela and HCT116 control shRNA, RanBPM 

shRNA, and RanBPM shRNA re-expressing RanBPM si-mt, cells using the Qiagen 

RNeasy RNA isolation kit (Qiagen, Mississauga, ON, Canada). For quantitative reverse-

transcriptase PCR (qRT-PCR) analyses, cDNA was prepared from 2.5µg of total RNA 

using the SuperscriptII Reverse Transcriptase kit (Life Technologies), and gene 

expression was determined using 10-100ng of cDNA incubated with primers described in 

Suppl. Table 4.1, using SYBR green (Bio-Rad) and the BioRad MyiQ single-colour real-

time PCR detection system. Relative gene expression was quantified via the ΔΔC(t) 

method with candidate gene values normalized to that of controls. Statistical significance 

was analyzed using a student's t-test, with a P <0.05 indicating significant results. 
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4.2.5 RNA quality assessment, probe preparation and GeneChip hybridization  

 All sample labelling and GeneChip processing was performed at the London 

Regional Genomics Centre (Robarts Research Institute, London, ON, Canada; 

http://www.lrgc.ca).  RNA quality was assessed using the Agilent 2100 Bioanalyzer 

(Agilent Technologies Inc., Palo Alto, CA, USA) and the RNA 6000 Nano kit (Caliper 

Life Sciences, Mountain View, CA, USA).  Single stranded complementary DNA 

(sscDNA) was prepared from 200ng of total RNA as per the Ambion WT Expression Kit 

for Affymetrix GeneChip Whole Transcript (WT) Expression Arrays 

(http://www.ambion.com/techlib/prot/fm_4411973.pdf, Applied Biosystems, Carlsbad, 

CA, USA) and the Affymetrix GeneChip WT Terminal Labelling kit and Hybridization 

User Manual 

(http://media.affymetrix.com/support/downloads/manuals/wt_term_label_ambion_user_

manual.pdf, Affymetrix, Santa Clara, CA, USA). Total RNA was first converted to 

cDNA, followed by in vitro transcription to make cRNA.  5.5 µg of single stranded 

cDNA was synthesized, end labelled, and hybridized, for 16 hours at 45°C to Human 

Gene 1.0 sense-target (ST) arrays.  All liquid handling steps were performed by a 

GeneChip Fluidics Station 450 and GeneChips were scanned with the GeneChip Scanner 

3000 7G (Affymetrix) using Command Console v1.1. 

 

4.2.6 Bioinformatics and data analysis  

 Probe level (.CEL file) data was generated using Affymetrix Command Console 

v1.1.  Probes were summarized to gene level data, background subtraction was 

performed, and expression values were normalized to log base-2 in Partek Genomics 

Suite v6.6 (Partek, St. Louis, MO) using the Robust Multiarray Averaging (RMA) 

algorithm [24].  Partek was used to determine gene level ANalysis Of VAriance 

(ANOVA) p-values, fold-changes, and Gene Ontology (GO) enrichment, using a Chi-

square test.  Partek Pathway was also used to find enriched KEGG (Kyoto Encyclopedia 

of Genes and Genomes) pathways, using a Fisher’s exact test. 
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 For bioinformatics analyses, a list of genes exhibiting a minimum of 1.2-fold 

increase or decrease in expression in RanBPM shRNA cell lines compared to control 

shRNA cell lines was first generated (target gene list). Analysis of genes differentially 

expressed in RanBPM shRNA cells was performed using Ingenuity Pathway Analysis 

(IPA) (Ingenuity® Systems, www.ingenuity.com) and the Protein Analysis Through 

Evolutionary Relationships (PANTHER) database [25]. For IPA, the target gene list was 

uploaded alongside the respective HUGO (HUman Genome Organization) gene symbols 

and fold-change values, and analyzed using Ingenuity Pathway Core Analysis, which 

generated a list of focus genes. IPA Functional Analysis of this gene list was performed 

to identify top biological processes affected by decreased RanBPM expression, based 

upon GO terms and curator-defined ontology terms (Ingenuity® Systems, 

www.ingenuity.com). IPA was also used to generate cellular networks affected by 

RanBPM down-regulation. Significance of identified cellular networks was determined 

by assigning a score to each network. A score is assigned based upon a p-value 

calculation that determines the likelihood that genes appear within a given network by 

random chance, and is the negative exponent of the right-tailed Fisher's exact test result 

(Ingenuity® Systems, www.ingenuity.com). A score of ≥3 is considered significant, as it 

indicates a 1/1000 chance that genes appear within a network by chance. 

 The PANTHER database uses protein sequences to group proteins into functional 

families and subfamilies, and uses ontology terms to classify proteins according to 

molecular functions, biological processes, and protein classes. For PANTHER analyses, 

the target gene list and HUGO gene symbols were uploaded to the PANTHER website 

and the top biological processes, molecular functions, and protein classes affected in 

response to RanBPM down-regulation were identified. 

 The oPOSSUM analysis system was utilized to identify over-represented 

Transcription Factor Binding Sites (TFBS) in the list of genes affected by RanBPM 

down-regulation. Briefly, oPOSSUM compares the occurrence of TFBS within a set of 

co-expressed genes (target gene list) to a pre-determined background set of genes, in 

order to identify over-represented sites in the target list [26]. The significance of any 

identified binding sites is calculated using a Z-score and Fisher score, with a Z-score of 
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≥10 indicating a significantly over-represented TFBS, in agreement with database 

publisher's recommendations [27]. 

 

4.3 Results 

4.3.1 Identification of gene targets regulated by RanBPM expression 

 We have previously generated clonal stable cell lines in Hela and HCT116 cells 

expressing either a control or RanBPM shRNA (as described in chapter 2 and shown in 

Suppl. Fig. 4.1). To identify gene targets that are regulated by RanBPM expression, RNA 

samples were prepared in triplicate from normally proliferating Hela control shRNA and 

RanBPM shRNA (clone 2-7) cells, and gene expression profiling was performed using 

Affymetrix human gene expression arrays. The mean fold-change in gene expression in 

RanBPM shRNA (2-7) cells compared to control shRNA cells was calculated, and using 

a 1.2-fold change cut-off, we identified 2621 genes for which expression was altered by 

RanBPM down-regulation. To minimize the potential that the observed changes in gene 

expression arose from the derivation of clonal cell lines, RNA samples were prepared in 

triplicate from a second Hela RanBPM shRNA cell line  [denoted RanBPM shRNA 

(clone 2-6)]. Gene expression was quantified using the parameters outlined above, and 

we identified 3952 genes differentially expressed in RanBPM shRNA (2-6) cells 

compared to control shRNA cells. Comparison of the list of differentially expressed 

genes in the two Hela RanBPM shRNA cell lines identified 1719 genes common to both 

cell lines (Suppl. Fig. 4.1). Further, to limit possible cell-type specific effects of RanBPM 

down-regulation on gene expression patterns, RNA samples were also prepared in 

triplicate from HCT116 cells expressing either a control or RanBPM shRNA [denoted 

HCT116 RanBPM shRNA (clone 2-8)]. The mean fold-change in expression was 

calculated, and using a 1.2-fold change cut-off we identified 2226 genes with altered 

expression in response to RanBPM down-regulation. Combining the list of differentially 

expressed genes obtained for each cell line we identified a total of 187 genes common to 

all three cell lines, for which expression was changed by RanBPM down-regulation 

(Suppl. Fig. 4.1 and Suppl. Table 4.2). Of these, 167 were annotated genes, with 74 genes 
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down-regulated and 93 genes up-regulated upon RanBPM down-regulation. Our analysis 

also confirmed a strong decrease in RanBPM expression in all three RanBPM shRNA 

cell lines, as demonstrated by a 2.46-fold decrease in Hela RanBPM shRNA (2-6), 2.92-

fold decrease in Hela RanBPM shRNA (2-7), and 2.76-fold decrease in HCT116 

RanBPM shRNA (2-8) cells respectively (Suppl. Table 4.2). 

 

4.3.2 IPA and PANTHER analyses 

 To gain insight into the functional and biological consequences associated with 

decreased RanBPM expression, we performed Ingenuity Pathway Analysis on the 167 

genes identified above. IPA is a web-based tool that utilizes information from the 

literature to analyze data obtained from gene expression arrays. This analysis allows for 

modeling biological interactions and building networks of cellular processes to determine 

the effects of a given experimental treatment. IPA Functional Analysis of genes that were 

differentially expressed in RanBPM shRNA cells revealed that down-regulation of 

RanBPM expression most significantly affects cellular processes associated with cancer, 

tissue development, and cellular function and maintenance (Table 4.1). Notably, over 

one-third of the 167 genes analyzed were associated with cancer, suggesting a potentially 

important role for RanBPM in regulating cellular processes associated with 

tumourigenesis. To characterize pathways that are affected by down-regulation of 

RanBPM, we next performed Network Analyses in IPA. This analysis uses a given gene 

list to build networks of cellular processes, and assigns a score based upon the number of 

genes from that list that are found within a particular cellular network. Using the gene list 

from above and a cut-off score of 3 (see methods) we identified seven cellular networks 

that were significantly affected by the decrease in RanBPM expression. These networks 

encompass cellular processes such as organ development, tissue morphology, cancer, cell 

motility, cell signalling, RNA modification, protein synthesis, and molecular transport 

(Table 4.2).  ERK1/2 was a component of the top two cellular networks affected by the 

down-regulation of RanBPM expression. Additionally, PI3K/Akt, Notch, and NF-κB 

signalling were components of the most highly affected cellular networks in RanBPM 

shRNA cells. Together these analyses reveal that down-regulation of RanBPM leads to



122 
 

Table 4.1. IPA analysis of top biological functions altered in RanBPM shRNA cells  
 
Diseases and Disorders 

  

Name p-value # of molecules 
Cancer 2.43E-04 - 3.79E-02 57 
Reproductive System and Disease 2.43E-04 - 2.86E-02 19 
Gastrointestinal Disease 5.43E-04 - 3.79E-02 16 
Organismal Injury and Abnormalities 5.43E-04 - 3.79E-02 10 
Inflammatory Response 1.34E-03 - 3.79E-02 19 

   

Molecular and Cellular Functions   

Name p-value # of molecules 
Cellular Function and Maintenance 2.60E-04 - 3.79E-02 22 
Cell Morphology 2.73E-04 - 3.14E-02 12 
Cellular Assembly and Organization 2.73E-04 - 3.79E-02 10 
Lipid Metabolism 9.00E-04 - 3.79E-02 10 
Small Molecule Biochemistry 9.00E-04 - 3.79E-02 20 
   

Physiological System Development and Function   

Name p-value # of molecules 
Tissue Development 7.03E-04 - 3.79E-02 42 
Hematological System Development and Function 2.60E-04 - 3.79E-02 22 
Organ Morphology 9.00E-04 - 3.79E-02 10 
Reproductive System Development and Function 9.00E-04 - 3.79E-02 9 
Connective Tissue Development and Function 1.02E-03 - 3.79E-02 23 

Top biological function in each category is bolded 
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Table 4.2. IPA analysis of cellular networks affected by RanBPM down-regulation   

 Genes Score Function 

1 ADRBK2, CBLB, CREB, EDAR, EGLN3, ELF3, ERK1/2, 
FBXO32, IFNγ, IgG1, IL12, IL18, Interferon α, JNK, 
L1CAM, MFGE8, p38 MAPK, PDGF BB, PDGFC, PI3K, 
PLA2G4A, PMAIP1, PTGS2, SCN9A, SDC4, SERPINB9, 
SQLE, SSH1, ST6GAL1, SYK/ZAP, TCIRG1, TCR, TLR3, 
USP18, VEGF 
 

37 Cardiovascular System 
Development and 

Function, Organ 
Development, Organismal 

Development 

2 ADD3, AKT, ARL6IP5, ATP1B3, CD93, DHRS3, EMP1, 
ERAP1, ERK1/2, ER, FJX1, FSH, GBP1, GCA, hCG, 
Histone H3, Histone H4, IFITM3, IgG, JAG1, KDM5B, Lh, 
MAN1A1, MST1R, NF-κB, NPR3, NR0B1, OAS3, PLCB3, 
PPAP2B, RNF40, RUNX2, SACS, TANK, TGM2 
 

28 Protein Synthesis, Cell 
Signaling, Cancer 

3 ALDOC, APP, Arginase, ATP7A, CCND1, CEBPA, 
ELMO1, FBXO4, FXR2, GABRE, GBP1, HNF1A, HNF4A, 
HNMT, HOXB5, KIF5C, KLC2, KRT10, LEP, LIPA, 
MNS1, MST1, NCAPH, NPM1, NPR2, PADI4, PERP, 
ROCK2, SERPINE2, SLC7A11, TIMP3, TLE1, TMSB15A, 
TP53, ULK2 
 

24 Cell Morphology, Hepatic 
System Development and 

Function, Cellular 
Response to Therapeutics 

4 Actin, AHR, ANXA3, C9orf3, CAMSAP2, CDC25B, 
CDK2, CDKN1B, CDKN2C, Cyclin E, EHD1, EMILIN1, 
FBLN5, FURIN, IGF1R, JAG1, MATN2, MEIS2, mir-34, 
NCOA3, NPDC1, PITPNC1, PRKCDBP, RDM1, RNA Pol 
II, SATB2, SCG2, SDC4, SLC20A1, STARD3, TGFβ1, 
TIMP3, TIMP2, TWIST1, ZFP36 
 

22 Cellular Movement, 
Cancer, Cardiovascular 

System Development and 
Function 

5 AMY2A, DLL1, ERBB2, EZH2, FAM107B, FOXC2, 
GALNT3, GNAI1, GNG, HES1, HOXB6, HSD3B7, IL11, 
MAML3, MARCKS, MFAP5, MIB1, MSLN, NOTCH1, 
NOTCH2, NOTCH3, NOTCH4, NPC2, PAX7, PPARγ, 
PRICKLE1, PRSS23, PSEN1, RAB34, RAB27B, 
RAP1GAP, RETNLA, SLC4A11, TAL1, TFAP2A 
 

20 Tissue Morphology, 
Cellular Development, 

Embryonic Development 

6 ADD2, ALDH1A3, ANK3, AR, ASAP1, BCAR3, CA2, 
CAST, DAPK2, DICER1, DOCK1, FOS, FOXH1, GM2A, 
GPR125, GRHPR, IRS1, KIF5B, LAMA3, LHFP, MRAS, 
NTS, PDYN, PLK2, PRKAR2B, PRKRA, PTPLAD2, 
RANBP9, RAP1GAP, SOS, TARBP2, TBL1X, TCOF1, 
TNNC1, TNNT2 
 

13 RNA Modification, 
Skeletal and Muscular 

Development and 
Function, Tissue 

Morphology 

7 ALDH1A2, CASP1, CASP4, CBLB, CCL11, CD274, 
CHN2, CSF3, CTSK, CX3CR1, CXCL1, GZMB, IGE, IgG1, 
IL1, IL2, IL13, IL25, IL27, IL33, IL18, IL23A, IRF4, 
ITGAL, JAG1, LAMB3, MYD88, NAV3, NFATC1, 
PANX1, PDCD1, PSTPIP2, SLPI, TRB, ZBTB32 

9 Cell-Cell Signaling and 
Interaction, Hematological 
System Development and 
Function, Immunological 

Disease 
    

Genes marked in red indicate down-regulated genes, genes marked in green indicate up-
regulated genes. ERK1/2 is bolded. 
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gene expression changes that affect regulation of cell, tissue, and organ development and 

morphology, as well as biological processes implicated in tumourigenesis. 

 To corroborate the findings from IPA, and further characterize the molecular 

processes that are altered in cells with decreased RanBPM expression, we analyzed our 

list of differentially expressed genes using the PANTHER database [25]. Similarly to 

IPA, PANTHER allows for functional analysis of data gathered from gene expression 

profiling by using curator-defined groupings of protein sequences to build protein 

families. These protein families can then be used to identify biological processes, 

molecular functions, pathways, and protein classes to which groups of genes may be 

assigned. We first identified the most highly affected biological processes and molecular 

functions associated with reduced expression of RanBPM (Fig. 4.1A, B). We determined 

that in RanBPM down-regulated cells, the most highly affected biological processes 

include cell communication, tissue development, and cellular metabolism; and the most 

highly affected molecular functions include receptor and protein binding, enzyme 

catalysis, and transcriptional regulation. PANTHER also allows for the classification of 

protein classes to which genes from a given gene list may belong. Using the protein class 

analyses, the expression of transcription factors, receptors, cell adhesion proteins, and 

cytoskeletal proteins were all found to be affected by the down-regulation of RanBPM 

expression (Fig. 4.1C). Our analyses using PANTHER verify our findings with IPA and 

indicate that decreased RanBPM expression leads to changes in gene expression patterns 

that affect cellular processes involved in both development and cancer. 

 

4.3.3 Validation of selected gene targets 

 Next, we sought to validate the expression data obtained from our gene arrays by 

performing qRT-PCR analyses.  As our findings with IPA identified cancer as one of the 

cellular processes most significantly affected by the down-regulation of RanBPM (Table 

4.1), we chose to validate gene targets which had previously been linked in the literature 

to tumourigenesis.  Eleven candidate genes were selected, and their expression was 

analysed in RNA extracts from control and RanBPM shRNA Hela and HCT116 cells
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Figure 4.1 PANTHER analysis of cellular processes altered by RanBPM down-

regulation. A and B. Gene Ontology (GO) analyses of top biological processes (A) and 

molecular functions (B) affected by RanBPM down-regulation. The number of genes in 

target gene list that are annotated to a given function are plotted, with percentages 

indicating the number of genes that appear in selected gene list divided by the total 

number of genes assigned to that function. C. Protein classes for which expression is 

most significantly affected in RanBPM shRNA cells. Data is represented as in A and B. 
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(Fig. 4.2A, B).  For 10 of the candidate genes selected, we confirmed the change in 

expression observed in the gene arrays in both the Hela and HCT116 cell lines (Fig. 

4.2B). However MFAP5 (microfibrillar associated protein 5, also known as MAGP2) 

mRNA expression levels were too low to be reliably measured in HCT116 cells, and 

therefore the change in expression of MFAP5 was only successfully confirmed in Hela 

cells. As might be expected we found that for the majority of candidate genes selected, 

the fold-change in gene expression as determined by qRT-PCR was greater than that 

observed using the gene arrays [28, 29].  

 To evaluate the direct contribution of RanBPM down-regulation to the changes in 

gene expression observed, we ectopically re-expressed RanBPM in Hela and HCT116 

RanBPM shRNA cell lines. This was achieved by transiently expressing a RanBPM 

cDNA containing a point mutation in the siRNA recognition sequence (RanBPM si-mt) 

in these cells, allowing for restoration of RanBPM expression to near endogenous levels 

(Fig. 4.2A). RNA extracts were prepared 48h post-transfection from both Hela and 

HCT116 cells, and gene expression for the 11 candidate genes outlined above was 

quantified using qRT-PCR. Interestingly, our analyses revealed two categories of genes. 

The first category comprised genes for which re-expression of RanBPM restored mRNA 

expression close to levels observed in control cells. These genes, grouped to the left of 

the axis break in Figure 4.2B, included ELF3 (E74-like factor 3, also known as ESE-1), 

RON [recepteur d’origine nantais/macrophage stimulating receptor 1 (MST1R)], 

ALDH1A3 (aldehyde dehydrogenase 1 isoform A3), Rab27B (Rab 27B member Ras 

oncogene family), and L1CAM (L1 cell adhesion molecule). MSLN1 (mesothelin 1) 

showed a statistically significant change upon RanBPM re-expression in Hela cells, but 

not in HCT116 cells. The second category of genes, grouped together to the right of the 

axis break in Figure 4.2B, comprised genes for which expression was not significantly 

altered upon restoration of RanBPM expression. Included in this category were TG2 

(transglutaminase 2, also called TGM2), PHD3 (prolyl hyrdoxylase 3, also called 

EGLN3), LAMB3(laminin β3), and CHN1 (chimerin 1).  Similarly, MFAP5 expression 

was not affected by restoration of RanBPM expression in Hela cells.
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Figure 4.2 Validation of selected gene targets identified in microarray analyses. A. 

Hela RanBPM shRNA (2-7) cells (left) and HCT116 RanBPM shRNA (2-8) cells (right) 

were either left untransfected (-) or were transfected with pCMV-RanBPM si-mt (+ 

RanBPM si-mt) expression construct. Forty-eight hours post-transfection, whole cell 

extracts were prepared and analyzed by western blotting, alongside control shRNA (C) 

and untransfected RanBPM shRNA extracts. Restoration of RanBPM expression was 

verified by hybridizing with a RanBPM antibody, and β-actin was used as a loading 

control. B. cDNA from control shRNA, RanBPM shRNA, and RanBPM shRNA 

+RanBPM si-mt Hela (top) and HCT116 (bottom) cells was analyzed by qRT-PCR 

analyses using primers specific to the indicated genes. Fold gene expression was 

normalized to control shRNA cells. Genes appearing to the left of x-axis break are genes 

whose expression was responsive to restoration of RanBPM expression, and genes 

appearing to the right of x-axis break were not responsive to restored RanBPM 

expression. Data represents the mean of a minimum of three independent experiments 

with error bars indicating standard error, and * P <0.05 and ** P <0.005. 
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4.3.4 Identification of over-represented transcription factor binding sites 

 The PANTHER analyses outlined above identified transcriptional regulation and 

transcription factors as one of the most highly affected molecular functions and protein 

classes altered by the down-regulation of RanBPM. To expand upon this finding we 

sought to determine whether decreased RanBPM expression affects the expression of 

subsets of genes regulated by specific classes or families of transcription factors. To test 

this, we utilized oPOSSUM, a web-based tool that allows for the identification of over-

represented TFBS in the promoters of sets of co-expressed genes [27]. Analysis of the 

167 genes differentially expressed in RanBPM shRNA cells using oPOSSUM identified 

20 transcription factors which contain significantly over-represented TFBS within the 

promoters of these genes (Table 4.3). We found that the most over-represented TFBS in 

our gene list was HOXA5 (homeobox A5), a member of the Homeobox family of 

transcription factors. Of the 167 genes analyzed, 134 contained binding sites for HOXA5 

within their promoters. We also identified six members of the Forkheadbox (FOX) family 

of transcription factors, four additional members of the Homeobox family, and four 

members of the High Mobility Group (HMG) family of transcription factors, all of which 

contained over-represented TFBS in the promoters of our differentially expressed genes.  

 

4.4 Discussion 

4.4.1 Summary  

 RanBPM has been implicated in the control of a multitude of cellular processes 

including regulation of development [7, 8], cell motility [16], transcription [15, 20-22],

and apoptosis [19, 23, 30-32]. However, a common modality for the function of this 

protein remains unclear. The aim of the present study was to utilize gene expression 

profiling to gain further insight into the cellular functions of RanBPM, by characterizing 

the impact of RanBPM down-regulation on global cellular signalling events. To identify 

the functional consequences associated with decreased RanBPM expression we generated 

a list of genes whose expression was altered in RanBPM shRNA cells, and identified the
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Table 4.3.  oPOSSUM analysis of over-represented transcription factor binding sites 
Transcription Factor Family Target Genes Z-Score 
Class: Winged Helix-Turn-Helix     
 FOXI1 

FOXO3 
FOXD1 
Foxa2 
FOXA1 
Foxd3 
SPI1 

Forkhead 
Forkhead 
Forkhead 
Forkhead 
Forkhead 
Forkhead 
ETS 

103 
112 
108 
102 
105 
97 
130 

30.93 
29.9 
23.8 

22.82 
21.82 
21.76 
17.32 

 
Class: Helix-Turn-Helix     
 Nkx2-5 

HOXA5 
Pdx1 
Prrx2 
Nobox 
ARID3A 
 

Homeo 
Homeo 
Homeo 
Homeo 
Homeo 
Arid 

129 
134 
122 
117 
113 
130 

31.21 
29.04 
25.42 
24.24 
23.05 
28.3 

Class: Other Alpha-Helix     
 SRY 

SOX5 
Sox17 
SOX9 

HMG 
HMG 
HMG 
HMG 
 

116 
111 
110 
110 

35 
22.42 
20.15 
18.86 

 
Class: Zinc-Coordinating     
 Gata1 

Gfi 
GATA 
ββα-zinc finger 

117 
118 

 

25.85 
18.11 

Class: Leucine Zipper     
 CEBPA Zipper-type 109 17.2 
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most highly affected biological processes and cellular networks in these cells.  Down-

regulation of RanBPM expression was found to significantly affect the expression of 

factors associated with embryonic, cellular, and tissue development, as well as those 

involved in cancer development and progression.  

 

4.4.2 Implications in development 

 Our analyses revealed several components of the Notch and Wnt signalling 

pathways whose expression was altered upon RanBPM down-regulation. These include 

JAG1 (Jagged 1), which is a ligand for Notch receptors [33], RUNX2 (runt-related 

transcription factor 2), which integrates signals from Notch, Wnt, and TGFβ 

(transforming growth factor β) to regulate bone development and differentiation [34], and 

RON/MST1R, a receptor tyrosine kinase known to promote phosphorylation and nuclear 

accumulation of β-catenin in breast and colon tumours [35]. Moreover, Notch signalling 

was found to be a major component of one of the top cellular networks affected by 

RanBPM down-regulation. It is well established that signalling pathways such as the 

Notch/Wnt/Hedgehog pathway, which normally regulate embryonic development, can 

become deregulated in cancer. For example, Notch signalling normally mediates cell-cell 

communication in embryogenesis, as well as cell proliferation, differentiation, and 

apoptosis [33, 36]. Deregulated Notch signalling has been linked to tumour development 

in the lung, ovaries, breast, and colon, and to enhanced epithelial-to-mesenchymal 

transition (EMT) of cancer cells [33, 37, 38]. Induction of Wnt signalling occurs upon the 

binding of Wnt proteins to cell surface receptors, leading to the stabilization and nuclear 

accumulation of β-catenin [39]. Within the nucleus, β-catenin mediates the expression of 

Wnt target genes that regulate embryonic signalling events such as proliferation, 

morphogenesis, and differentiation [34, 39]. Similarly to Notch, Wnt signalling is 

deregulated in many cancers and in certain cases such as colorectal tumours deregulated 

Wnt signalling can initiate tumour development [33, 39]. Several studies have also 

identified an important role for RanBPM in development. RanBPM was found to be 

required in the Drosophila nervous system for larval behaviour associated with feeding, 

growth, and locomotion [7]. Recent studies in RanBPM knockout mice revealed a critical 
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role for this protein in normal gonad development and gametogenesis in both males and 

females [40]. Additionally, RanBPM has been linked to developmental processes 

occurring through Notch-dependent signalling. For example it was shown to regulate the 

size, shape, and organization of the germline stem cell (GSC) niche in female Drosophila 

[8]. The development, and capacity of this niche for stem cells, is known to be regulated 

through Notch expression and signalling [8, 15]. RanBPM was found to regulate neuronal 

differentiation in Drosophila by interacting with TAF4, a transcriptional co-activator that 

binds transcription factors downstream of Notch signalling to regulate neural stem cell 

fate and differentiation [15]. Our gene expression data indicate that RanBPM regulates 

the expression of several factors involved in Notch signalling, further suggesting a 

possible role for RanBPM in the regulation of Notch-mediated signalling during 

development. 

 In addition to factors involved in Notch/Wnt signalling, we also identified several 

other differentially expressed genes for which a function in both development and cancer 

has been demonstrated. These include GBP1 (guanylate binding protein 1), a cytokine-

activated small GTPase normally involved in cellular proliferation and angiogenesis [41], 

which is overexpressed in ovarian and oral tumours [42, 43]; NR0B1 (nuclear receptor 

subfamily 0 Group B member 1) that acts a transcriptional co-repressor in embryonic 

stem cell development, pluoripotency, and differentiation [44], and is overexpressed in 

several tumours [44, 45]; and L1CAM, which is involved in neurite outgrowth and axon 

guidance in normal cells [46], and is overexpressed in numerous cancers, including 

melanoma, lung, and thyroid cancer [46, 47]. Thus, these findings suggest a complex role 

for RanBPM in both the regulation of normal cellular processes associated with 

development, as well as in the progression of diseased states such as cancer. 

 

4.4.3 Implications in signalling 

 RanBPM has previously been demonstrated to regulate several receptor-mediated 

signalling pathways, including the ERK1/2 and NF-κB pathways. As such, it was 

hypothesized to have potential functions in tumourigenesis, although the outcome of 
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RanBPM function in this process remains controversial due to differing findings 

regarding its role in activation of signalling cascades such as ERK1/2. While some 

reports indicate that RanBPM expression promotes activation of ERK1/2 signalling and 

would therefore enhance cellular transformation [14, 16, 17], other groups including ours 

(as outlined in chapter 3) have characterized RanBPM as a repressor of ERK1/2 

activation and suggest a tumour-suppressor role for this protein [11]. Our gene expression 

data indicated that several signalling pathways are affected by decreased RanBPM 

expression, including the ERK1/2 and the PI3K/Akt pathways, both of which were 

components of the top two cellular networks affected by down-regulation of RanBPM. 

These pathways are known to play critical functions in cancer development.  ERK1/2 

signalling regulates many cellular processes including cell cycle progression, cell 

proliferation, differentiation, migration, and adhesion [48], and aberrant ERK1/2 

signalling has been observed in many diseased states including cardiovascular disease 

and cancer [48, 49]. PI3K signalling is activated by cell-surface receptors and converges 

upon Akt, which phosphorylates various cellular targets involved in cell growth, survival, 

metabolism, and autophagy [50]. Similarly to ERK1/2, both PI3K and Akt are often 

found to be mutated and/or deregulated in cancer [51]. Our data indicate that while gene 

expression of ERK1/2, PI3K, and Akt is not affected by RanBPM down-regulation, the 

expression of several factors that regulate these signalling pathways is altered by 

decreased RanBPM expression, suggesting a tumour-suppressor function for RanBPM. 

For example, L1CAM and IL-18 have been found to promote ERK1/2 activation and 

enhance ERK-target gene expression, and are often overexpressed in tumour samples [46, 

52, 53]. Our gene expression data reveal that down-regulation of RanBPM leads to 

increased L1CAM and IL-18 expression, indicating a potential link between the 

expression of these genes and deregulated ERK1/2 signalling in RanBPM shRNA cells.  

Similarly, gene expression of the tyrosine kinase RON was up-regulated in cells with 

decreased RanBPM expression. Overexpression of RON has been observed in multiple 

tumours, and is associated with enhanced ERK1/2 and Akt activation and signalling [54-

56]. Collectively these findings suggest a role for RanBPM in the regulation of signalling 

pathways that are associated with both normal cellular function and diseased states, and 

further implicate a potential role for RanBPM as a tumour suppressor. 
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4.4.4 Implications in transcriptional regulation 

 In addition to its roles in development and receptor signalling, RanBPM has been 

proposed to be directly involved in regulation of gene transcription. RanBPM was 

reported to function as a transcriptional co-activator for AR, GR, and TR, and to mediate 

their ligand-dependent nuclear translocation [21, 22]. RanBPM was also shown to 

enhance the sumoylation and transactivation of the early-immediate Epstein-Barr Virus 

(EBV) protein Rta [20], and to interact with the TAF4 subunit of TFIID (transcription 

factor IID, also known as TBP) [15, 57]. As our data revealed a wide range of gene 

targets affected by RanBPM expression, we sought to identify potential transcription 

factors through which RanBPM may mediate its effects on gene expression. Analysis of 

the over-represented TFBS in our list of differentially expressed genes revealed that the 

FOX, Homeobox, and HMG families of transcription factors contain the greatest number 

of binding sites within the promoters of genes affected by RanBPM down-regulation.   

 FOX proteins comprise a large family of transcriptional regulators that are 

divided into subclasses according to their function in modifying chromatin structure. The 

FOXA subclass (FOXA 1, 2, and 3) plays an important role in development, 

organogenesis, metabolism, and stem cell differentiation [57]. FOXA proteins have been 

reported to be overexpressed or amplified in human tumours, especially in breast, 

prostate, thyroid, lung, and esophageal cancers [57, 58]. The FOXO subclass (FOXO1, 

3a, 4, and 6) is involved in insulin and growth factor mediated signalling through 

PI3K/Akt, and is a downstream target of activated Akt [57, 59]. FOXOs regulate 

differentiation, metabolism, cell cycle arrest, cell death, and tumour suppression [57]. 

Overall, we identified six FOX family transcription factors with over-represented binding 

sites in our list of differentially expressed genes, including FOXA1, FOXA2, and 

FOXO3. Interestingly, deregulation of FOXA proteins has been linked to hormone-

sensitive malignancies, and is suggested to mediate tumourigenesis through regulation of 

steroid hormone receptors [58]. As RanBPM has been reported to function as a co-

activator of AR, it is tempting to hypothesize that it may function to regulate target gene 

expression through an AR/FOXA1-dependent process. Additionally, FOXA1 has been 

reported to mediate chromatin opening and enhance the DNA binding of the GR at the 
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mouse mammary tumour virus (MMTV) promoter [60]. RanBPM was also reported to 

enhance the transcriptional activity of GR [21], further suggesting a potential link 

between RanBPM and FOXA1 in the regulation of steroid receptor-mediated gene 

expression.   

 Our oPOSSUM analyses identified five members of the Homeobox family of 

transcription factors as being over-represented in the promoters of our differentially 

expressed genes. Homeobox transcription factors play a pivotal role in the regulation of 

embryonic development [61], regulate homeostasis, cell differentiation, and organ 

function in adult tissues [62-64] and their expression is often deregulated in cancer [65-

68]. One such example is HOXA5, which during development regulates organogenesis in 

lung, mammary, and tracheal tissues, and in adult tissues regulates mammary gland 

development and function [64, 69]. HOXA5 is also believed to function as a tumour 

suppressor by transactivating p53 to promote p53-dependent and p53-independent 

apoptotic signalling [65]. Consequently, HOXA5 expression is decreased in tumours of 

the breast, colon, and lung, and this expression is believed to be regulated at least in part 

through epigenetic modifications of the HOXA5 gene in these tumours [65, 68]. HOXA5 

binding sites are the most highly over-represented in our list of genes, as they are found 

in the promoters of 134 of 167 genes analyzed. The HMG protein family consists of a 

unique group of transcription factors that bind to the minor groove of DNA and regulate 

gene expression through modifications of the DNA structure and through interaction with 

other factors [70]. Analyses in oPOSSUM identified four members of the HMG family 

with over-represented TFBS in our gene list including SRY (sex-determining region on 

Y-chromosome), and the SOX (SRY-related HMG Box) proteins SOX5, SOX9, and 

SOX17. HMG proteins are critical in cell lineage specification and cell maturation during 

development, and the SOX proteins in particular have been proposed to function in 

determining stem cell identity, fate, and maintenance in multiple tissues [70, 71]. SOX 

proteins were reported to enhance the DNA-binding affinity of steroid hormone receptors 

such as AR, and this has implications in both development and cancer. Deregulated 

expression of SOX9 has been observed in prostate cancer, and is linked to prostate cancer 

progression [72, 73]. The binding sites of SOX5, SOX9, and SOX17 are significantly 

over-represented in our list of genes affected by decreased RanBPM expression. 
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Collectively, our analyses of the over-represented TFBS in our list of differentially 

expressed genes identified several transcription factors which regulate key processes in 

development, and whose function is often deregulated in cancer. These findings further 

implicate a role for RanBPM in the regulation of pathways that govern the critical 

balance between development and tumourigenesis. 

 All of the candidate genes selected for validation by quantitative RT-PCR 

confirmed the initial results obtained in the microarray analyses. All nine genes up-

regulated in RanBPM shRNA cells have previously been reported to be overexpressed in 

various cancers and/or tumours. For instance, overexpression of RON has been linked to 

human cancers such as breast, prostate, colorectal, and ovarian carcinomas [35, 55, 74, 

75]. RON hyperactivity has been shown to lead to increased cell proliferation, motility, 

and transformation, and to the inhibition of apoptosis and anoikis [76]. Similarly, ELF3 

overexpression has been detected in breast, prostate, colon, and cervical tumours, and is 

associated with cell transformation [77, 78]. ELF3 is believed to promote tumourigenesis 

through transcriptional regulation of several known oncogenes, including TGFβ [78]. 

Abnormal expression of L1CAM has also been observed in various cancer types and 

linked to cell proliferation, migration, invasion, and metastasis of cancer cells [47]; and 

Rab27B [79], ALDH1A3 [80], MSLN1 [38], LAMB3 [81], PHD3 [82], and MFAP5 [83] 

levels have all been reported to be increased in various cancer types. Further, both TG2 

and CHN1, the expression of which is strongly down-regulated in RanBPM shRNA cells, 

have been linked to tumourigenesis, and CHN1 has been proposed to function as a 

tumour suppressor [84, 85]. Overall, these findings suggest that RanBPM functions to 

prevent aberrant gene expression that may lead to oncogenesis. This reinforces the notion 

that has previously been inferred in several studies, that RanBPM may function as a 

tumour suppressor [10, 19, 23]. 

 

4.4.5 Potential implications in epigenetic regulation 

 The quantitative RT-PCR analysis of target gene expression following re-

expression of RanBPM in Hela and HCT116 RanBPM shRNA cells revealed two 
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categories of genes. The first group comprises genes which responded to RanBPM re-

expression, and consists of RON, ELF3, Rab27B, L1CAM, and ALDH1A3. For these 

genes, re-expression of RanBPM reversed the effect observed upon RanBPM down-

regulation, at least partially. Analysis of the promoters of these genes using oPOSSUM 

did not reveal any common TFBS. While we cannot rule out a direct effect of RanBPM at 

these gene promoters, an alternate possibility is that RanBPM modulates signalling 

pathways that regulate the expression of these genes. The second group comprises genes 

which did not show a transcriptional response to restoration of RanBPM expression. This 

group consists of LAMB3, PHD3, TG2, CHN1, and MFAP5. Analysis of samples 

prepared 72h post-transfection with RanBPM si-mt showed identical results (data not 

shown). This suggests the possibility that RanBPM down-regulation establishes long-

term changes in gene expression programs, such as epigenetic modifications, that cannot 

be reversed by transient re-expression of RanBPM. Interestingly several candidate genes, 

and transcription factors identified by oPOSSUM analysis, that are affected in response 

to down-regulation of RanBPM are known to be regulated through epigenetic 

modifications. For example, LAMB3 expression, which is up-regulated in gastric cancer 

cells, was shown to be regulated by demethylation of its promoter [86]. Down-regulation 

of TG2 expression is linked to several types of cancer [84], and has been shown to result 

from aberrant hypermethylation of the TG2 promoter in brain and breast tumours [87, 

88]. Additionally, expression of the HOXA5, SOX9, and SOX17 transcription factors is 

regulated through epigenetic mechanisms. As discussed above, HOXA5 promoters are 

hypermethylated in breast and lung cancers which results in silencing of HOXA5 

expression, and may correlate with decreased p53 activation and decreased apoptosis in 

breast tumours [68]. SOX9 has been reported to be hypermethylated in mantle cell 

lymphoma (MCL), and this hypermethylation is associated with decreased SOX9 

expression in these tumours [89]. Hypermethylation of SOX9 in MCL tumours also 

correlated with higher proliferation, increased chromosomal abnormalities, and reduced 

overall patient survival [89]. The promoter region of SOX17 is hypermethylated in 

mammary, gastric, and hepatocellular carcinomas, thereby silencing SOX17 and leading 

to aberrant activation of Wnt signalling [90, 91].These findings suggest that RanBPM 

may have broad effects on gene transcription, and may function both directly on gene 
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promoters, and indirectly through modification of epigenetic programs, to regulate gene 

expression. 

 

4.4.6 Conclusion 

 Overall, the results of this study indicate that alterations in the expression of 

RanBPM has profound and wide ranging effects on genes and pathways that play 

important roles in the regulation of developmental programs, and are linked to 

tumourigenesis when disrupted. RanBPM may therefore have a central role in controlling 

the activity of several signalling pathways that function to coordinate cell proliferation 

and differentiation during mammalian development and that are tightly regulated in adult 

tissues to maintain homeostatic regulations and prevent tumourigenesis. 
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4.6 Supplementary materials 

Supplementary Figure 4.1 Analysis of Hela and HCT116 stable cell lines.  Top ‒ 

Whole cell extracts from Hela control shRNA, RanBPM shRNA (2-6), RanBPM shRNA 

(2-7); and HCT116 control shRNA and RanBPM shRNA (2-8) were analyzed by western 

blotting.  Down-regulated RanBPM expression was verified using a RanBPM antibody, 

and β-actin was used as a loading control.  Fold-decrease in mRNA expression for each 

cell line is also indicated.  Bottom ‒ Venn Diagram of differentially expressed genes in 

RanBPM shRNA cell lines.  For each cell line, the total number of differentially 

expressed genes is indicated in square brackets, and differentially expressed genes 

common between cell lines are indicated in overlapping regions of circles. 
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Supplementary Table 4.1.  Primers for candidate gene validation by qRT-PCR 
Gene Forward Primer Reverse Primer 
RON (MST1R) 5’ AGGGTGTGGAGCGCTGTTGTG 3’ 5’ CTTCCAGGCCAGGCGGGTTG 3’ 

ELF3 (ESE-1) 5’ AGAAGAGCAAGCACGCGCCC 3’ 5’ AGCCTCGGAGCGCAGGAAC 3’ 

MSLN1 5’ AGGCTCAGCGCCACGCACTC 3’ 5’ CCAGGGAGGGAGGCACCGTG 3’ 

ALDH1A3 5’ AGGCGGAGCGTGGAGTATGC 3’ 5’ ACTGCTTTTGATCAATCTGAGGCCC 3’ 

CHN1 5’ TTCAAGGTGCATACATTCAGAGGGC 3’ 5’ ACCACAATCTGCACATTTCACTCCC 3’ 

LAMB3 5’ CCATTGCAGCCAGGCTCCCC 3’ 5’ GCTCGGCTCCTGGCTTCCTC 3’ 

TG2 (TGM2) 5’ ACCTCATCAAGGTGCGGGCC 3’ 5’ TGGGCTCCCCAAGGATCCGG 3’ 

L1CAM 5’ CGCAGCAAGGGCGGCAAATAC 3’ 5’ TCTCCAGGGACCTGTACTCGC 3’ 

PHD3 (EGLN3) 5’ GCCACGTGGACAACCCCAACG 3’ 5’ CAGGATCCCACCATGTAGCTTGGC 3’ 

MFAP5 (MAGP2) 5’ TCAGCAGCCAAAGGACTCGGTG 3’ 5’ CCCCAGGGGTATCCAGTCAGAGG 3’ 

RAB27B 5’ CGGGACAAGAGCGGTTCCGG 3’ 5’ GCTTGCAGTTGGCTCATCCAGT 3’ 

RON, recepteur d'origine nantais/macrophage stimulating receptor 1 (MST1R); ELF3, 
E74-like factor 3 (ESE-1); MSLN1, mesothelin 1; ALDH1A3, aldehyde dehydrogenase 1 
isoform A3; CHN1, chimerin 1; LAMB3, lamininβ 3; TG2, transglutaminase 2 (TGM2); 
L1CAM, L1 cell adhesion molecule; PHD3, prolyl hydroxylase 3 (EGLN3); MFAP5, 
microfibrillar associated protein 5 (MAGP2); RAB27B, RAB27B member Ras oncogene 
family. 
 



Supplementary Table 4.2. List of genes affected by RanBPM down-regulation

Gene Symbol Accession No. p-value Fold Change p-value Fold Change p-value Fold Change

MLLT11 NM_006818 1.21E-05 -1.94805 1.78E-04 -1.65798 7.68E-03 -1.42647
PLA2G4A NM_024420 9.94E-04 -1.98148 2.50E-02 -1.50694 1.04E-01 -1.38663
CAMSAP1L1 NM_203459 1.86E-04 -1.28092 7.56E-04 -1.23381 4.25E-04 -1.2971
C1orf71 NM_152609 3.65E-04 -1.26617 5.95E-06 -1.43517 5.50E-03 -1.20895
PTGS2 NM_000963 1.55E-03 -2.23247 7.75E-05 -3.13005 4.15E-01 -1.21651
KDM5B NM_006618 2.38E-01 -1.20273 2.37E-01 -1.20358 9.98E-02 -1.35748
ADD3 NM_016824 1.44E-01 -1.20664 3.16E-04 -1.7965 1.73E-01 -1.22262
KLC2 NM_022822 7.57E-06 -1.45389 2.19E-04 -1.30358 8.60E-03 -1.20564
PANX1 NM_015368 1.69E-02 -1.28365 6.50E-02 -1.20168 1.01E-01 -1.20387
TARBP2 NM_134323 1.36E-07 -1.49385 1.64E-07 -1.48434 1.02E-03 -1.20971
NAV3 NM_014903 3.51E-02 -1.25264 4.96E-03 -1.38175 5.98E-07 -2.70703
ISCU NM_014301 1.11E-07 -1.56273 6.43E-08 -1.59608 1.68E-05 -1.38687
RERG NM_032918 7.97E-02 -1.38315 1.20E-02 -1.64535 2.20E-02 -1.66901
SSH1 NM_001161330 1.66E-02 -1.2583 1.96E-02 -1.24929 6.79E-05 -1.74098
GNG2 NM_053064 1.17E-04 -1.56726 1.07E-02 -1.28025 7.66E-02 -1.20227
ADAM21 NM_003813 2.33E-01 -1.23904 2.48E-01 -1.23016 3.64E-01 -1.20459
ADAM21 NM_003813 6.46E-03 -1.49927 7.95E-03 -1.47916 5.32E-02 -1.35929
ATPBD4 NM_080650 4.97E-03 -1.38728 2.73E-02 -1.27256 1.25E-01 -1.20153
MNS1 NM_018365 2.12E-03 -1.24488 4.02E-03 -1.22116 1.03E-02 -1.21957
MFGE8 NM_005928 2.91E-04 -2.09135 3.83E-03 -1.69699 3.03E-01 -1.20496
FGF11 NM_004112 1.46E-01 -1.30058 2.13E-01 -1.24941 3.02E-01 -1.23479
STARD3 NM_006804 1.64E-06 -1.32588 2.20E-06 -1.31601 1.74E-04 -1.22799
PITPNC1 NM_181671 7.03E-05 -2.5873 2.73E-06 -3.68728 3.87E-02 -1.55431
FXR2 NM_004860 1.81E-05 -1.24529 3.34E-05 -1.22921 2.13E-04 -1.21627
ALDOC NM_005165 4.77E-02 -1.53452 8.64E-02 -1.43808 2.97E-01 -1.27832
GPR125 NM_145290 2.30E-03 -1.27392 1.75E-03 -1.28586 2.09E-02 -1.21458
MRPL34 NM_023937 1.87E-07 -1.58934 4.04E-08 -1.69516 2.88E-05 -1.39995
OLFM2 NM_058164 5.18E-03 -1.79105 1.79E-02 -1.60066 1.52E-01 -1.35655
ZNF585B NM_152279 6.12E-02 -1.31428 7.42E-03 -1.52573 1.61E-05 -2.78181
TANK NM_004180 3.16E-02 -1.23583 4.09E-02 -1.22079 5.57E-05 -1.81299
CHN1 NM_001822 3.27E-02 -1.23527 5.21E-03 -1.34482 3.19E-04 -1.6401
SATB2 NM_015265 7.03E-05 -1.53953 2.17E-03 -1.33286 4.69E-03 -1.34527
SCG2 NM_003469 1.58E-01 -1.3339 4.69E-03 -1.92649 1.23E-01 -1.44325
SERPINE2 NM_001136529 4.12E-03 -1.94032 3.54E-01 -1.20136 4.16E-01 -1.20337
SPTLC3 NM_018327 3.38E-07 -2.4565 2.13E-06 -2.14408 7.89E-02 -1.23241
JAG1 NM_000214 2.96E-03 -1.98526 2.63E-01 -1.24633 4.81E-02 -1.60611
GGT7 NM_178026 2.31E-02 -1.2819 2.35E-02 -1.28085 6.66E-02 -1.24981
TGM2 (TG2) NM_004613 2.65E-04 -1.8711 1.45E-04 -1.95422 1.35E-02 -1.51768
ADRBK2 NM_005160 2.26E-07 -1.89169 6.79E-06 -1.59868 9.37E-03 -1.25698
MRAS NM_012219 7.07E-06 -2.08349 6.24E-05 -1.80706 1.04E-01 -1.22871

Down-regulated Genes

Hela RanBPM sh (2-6) Hela RanBPM sh (2-7) HCT RanBPM sh (2-8)
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ST6GAL1 NM_173216 3.29E-02 -1.25882 7.53E-02 -1.20493 2.22E-03 -1.52625
TBC1D5 NM_014744 1.17E-08 -2.1308 2.04E-07 -1.81176 2.12E-03 -1.30354
TNNC1 NM_003280 1.45E-03 -1.47697 2.47E-05 -1.85436 1.22E-02 -1.38503
CBLB NM_170662 7.24E-03 -1.42617 2.10E-03 -1.5327 8.45E-02 -1.27219
METT5D1 NM_001113528 1.28E-03 -1.24527 3.23E-03 -1.2131 1.11E-02 -1.20096
B3GALNT1 NM_001038628 8.34E-04 -1.51373 1.34E-02 -1.31586 5.77E-02 -1.2595
DCUN1D1 NM_020640 9.28E-04 -1.42207 3.69E-02 -1.21187 7.44E-02 -1.20334
TBC1D19 NM_018317 3.21E-02 -1.20661 9.70E-03 -1.26742 1.95E-06 -2.0792
SLC7A11 NM_014331 8.25E-02 -1.39848 1.98E-01 -1.27329 3.52E-01 -1.21972
MAML3 NM_018717 3.45E-04 -4.52242 1.55E-01 -1.60779 4.80E-01 -1.30168
PDGFC NM_016205 4.80E-03 -1.70882 3.39E-02 -1.45408 1.09E-01 -1.36899
C5orf23 BC022250 2.47E-04 -1.92466 1.39E-01 -1.22998 2.23E-01 -1.21372
PCDHB16 NM_020957 1.73E-06 -2.43184 7.53E-04 -1.60758 1.63E-01 -1.20361
RUNX2 NM_001024630 1.74E-02 -1.36279 2.72E-03 -1.52094 8.85E-04 -1.75488
DCBLD1 NM_173674 1.58E-04 -1.97271 1.68E-02 -1.42643 3.21E-02 -1.43175
C6orf211 BC011348 1.05E-03 -1.53886 4.73E-04 -1.60851 2.72E-02 -1.34316
SERPINB9 NM_004155 2.98E-02 -1.41724 4.75E-02 -1.36721 2.45E-01 -1.22258
RANBP9 (RanBPM) NM_005493 1.21E-09 -2.46026 1.37E-10 -2.92317 1.62E-09 -2.76113
POPDC3 NM_022361 1.20E-07 -3.88063 2.63E-06 -2.80793 9.01E-02 -1.3191
MAN1A1 NM_005907 2.89E-01 -1.44414 2.47E-04 -5.24997 2.23E-01 -1.63354
CHN2 NM_004067 1.17E-03 -1.33711 6.35E-03 -1.25631 2.55E-06 -1.8985
GNAI1 NM_002069 1.22E-03 -1.30292 6.05E-04 -1.33507 1.02E-03 -1.36712
ANKIB1 NM_019004 2.15E-09 -1.99628 3.42E-09 -1.94551 1.09E-05 -1.46284
FLJ30064 AK054626 1.19E-02 -1.23465 1.20E-02 -1.23407 4.30E-02 -1.20536
PRKAR2B NM_002736 3.45E-04 -1.51304 9.27E-03 -1.30104 8.69E-03 -1.35962
ELMO1 NM_014800 3.04E-10 -5.47252 2.36E-09 -4.22104 6.24E-02 -1.26619
JHDM1D NM_030647 3.03E-01 -1.22543 2.24E-01 -1.2735 7.07E-03 -2.01056
SQLE NM_003129 2.04E-02 -1.36587 5.01E-02 -1.29043 2.42E-02 -1.41606
IMPAD1 NM_017813 6.16E-04 -1.37208 4.27E-03 -1.27602 1.43E-03 -1.38843
FBXO32 NM_058229 1.68E-01 -1.43967 1.86E-01 -1.41688 4.74E-01 -1.23644
NR0B1 NM_000475 9.24E-05 -1.35907 2.86E-03 -1.22408 9.06E-03 -1.21559
TMSB15A NM_021992 2.40E-03 -1.50078 5.97E-03 -1.42557 2.45E-02 -1.37353
CAPN6 NM_014289 1.61E-02 -1.44132 1.39E-03 -1.70707 8.87E-07 -3.77299
CLIC2 NM_001289 5.70E-04 -2.21894 3.48E-02 -1.5143 2.33E-01 -1.28961

TMEM56 NM_152487 1.54E-05 1.58243 1.20E-04 1.45086 8.57E-03 1.27857
AMY2A NM_000699 1.97E-04 1.89055 2.42E-03 1.59469 8.81E-02 1.30332
DNM3 NM_015569 3.70E-05 2.27619 5.53E-02 1.32742 2.18E-01 1.22254
ELF3 (ESE-1) NM_001114309 8.38E-10 5.40777 1.61E-08 3.76364 6.03E-01 1.20112
DUSP5P NR_002834 1.30E-04 1.85352 5.92E-04 1.68014 1.16E-01 1.25092
DUSP5P AK055963 3.46E-04 1.71938 2.55E-02 1.32929 1.28E-01 1.23605
DHRS3 NM_004753 1.22E-03 4.07971 2.40E-01 1.52307 3.94E-01 1.41615
PPAP2B NM_003713 1.56E-05 1.6272 8.49E-04 1.37031 3.52E-02 1.21952
GBP1 NM_002053 3.57E-06 1.89229 4.01E-05 1.65635 2.62E-02 1.2726

Up-regulated Genes
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LAMB3 NM_001017402 9.58E-03 1.46725 1.51E-04 1.94691 1.52E-01 1.24829
TSPAN15 NM_012339 8.49E-08 2.99291 2.66E-06 2.24679 6.67E-02 1.26809
C10orf116 NM_006829 5.53E-02 1.31188 1.29E-01 1.23276 2.10E-01 1.2172
FAM107B BC072452 4.50E-04 1.36372 7.20E-03 1.23625 2.46E-03 1.33376
FAM111B NM_198947 1.29E-03 1.47392 3.45E-03 1.403 5.37E-03 1.44156
PLCB3 NM_000932 1.73E-06 1.23013 3.31E-06 1.21553 9.54E-06 1.22635
TCIRG1 NM_006019 3.70E-06 1.42594 6.37E-05 1.30811 6.60E-04 1.26936
PRSS23 NM_007173 8.55E-02 1.21509 7.26E-02 1.22687 1.59E-02 1.39761
GLB1L2 NM_138342 1.99E-04 1.29167 3.31E-04 1.27335 4.54E-03 1.21882
IFITM3 NM_021034 1.05E-03 1.52729 3.90E-02 1.2609 1.39E-01 1.20209
PRKCDBP NM_145040 1.45E-02 1.2689 1.27E-02 1.27643 7.47E-03 1.36171
IL18 NM_001562 1.46E-02 1.47751 9.54E-02 1.28318 1.79E-01 1.2554
EMP1 NM_001423 3.10E-04 2.03037 2.86E-02 1.43137 1.13E-01 1.33105
SRGAP1 NM_020762 1.07E-02 1.2594 2.89E-02 1.20969 7.36E-06 1.89828
MFAP5 (MAGP2) NM_003480 5.91E-08 3.81188 2.38E-06 2.63256 1.87E-01 1.21632
PRICKLE1 NM_153026 8.65E-04 2.53978 2.63E-01 1.28881 9.80E-02 1.56251
PCOTH NM_001014442 1.26E-01 1.22419 9.32E-03 1.45778 1.41E-01 1.25062
LHFP NM_005780 7.48E-06 2.2658 5.44E-04 1.68312 8.80E-04 1.76235
THTPA NM_024328 1.22E-06 1.24314 7.77E-06 1.20133 1.37E-05 1.22202
PLEKHG3 NM_015549 1.15E-06 1.64696 1.93E-06 1.6097 5.16E-03 1.25555
LOC388022 AK131040 6.07E-03 1.35422 1.88E-04 1.61103 3.06E-04 1.68425
AP1G2 NM_003917 5.58E-05 1.33624 4.50E-04 1.25886 3.59E-03 1.22432
DHRS1 NM_001136050 3.93E-05 1.78477 1.62E-03 1.45926 7.44E-02 1.23808
EGLN3 (PHD3) NM_022073 2.31E-04 1.62416 1.85E-04 1.64412 7.00E-02 1.24591
FBLN5 NM_006329 4.78E-04 2.09136 2.18E-02 1.51535 3.30E-01 1.20486
ALDH1A3 NM_000693 6.93E-06 2.48605 3.50E-04 1.83368 5.74E-02 1.35584
MEIS2 NM_172316 9.81E-04 1.25657 6.74E-04 1.2704 5.62E-04 1.32651
MSLN NM_005823 5.96E-04 1.90214 3.40E-02 1.40282 8.56E-02 1.35907
TMC5 NM_001105248 4.30E-04 1.96946 9.77E-02 1.29488 1.02E-01 1.34208
HSD3B7 NM_025193 1.63E-06 1.53082 8.75E-05 1.33532 1.59E-04 1.36754
C16orf93 NM_001014979 2.82E-03 1.25639 9.19E-03 1.20921 8.97E-03 1.24636
CDRT1 NM_006382 1.98E-04 1.73327 4.81E-02 1.26431 5.32E-03 1.51366
CDRT1 NM_006382 4.79E-04 1.62109 5.34E-03 1.41757 2.28E-02 1.36553
ULK2 NM_014683 9.18E-05 1.42662 8.44E-05 1.43116 5.74E-04 1.39582
RDM1 NM_145654 3.30E-02 1.24351 5.96E-02 1.20757 7.75E-02 1.22423
HOXB5 NM_002147 8.07E-04 1.57366 2.60E-02 1.30036 1.91E-02 1.38102
HOXB6 NM_018952 2.11E-04 1.85847 1.02E-02 1.44224 4.62E-02 1.36399
SCARNA17 NR_003003 6.81E-04 1.33125 2.27E-03 1.27697 2.25E-02 1.21306
RAB27B NM_004163 3.19E-04 2.14986 4.13E-02 1.42978 9.87E-02 1.38312
PMAIP1 NM_021127 3.22E-04 1.33759 1.17E-03 1.28228 1.17E-05 1.60819
PSTPIP2 NM_024430 1.83E-06 1.63595 5.71E-05 1.42369 1.87E-04 1.43202
ALPK2 NM_052947 8.31E-06 3.5668 1.72E-03 2.02592 3.66E-01 1.21451
ZNF91 NM_003430 2.98E-04 1.72095 3.93E-02 1.28992 3.16E-04 1.86383
HNMT NM_006895 9.08E-03 1.33786 6.32E-02 1.21293 2.45E-02 1.32208
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DKFZp434H1419 AK125369 7.62E-03 1.3181 7.73E-03 1.31719 2.10E-02 1.30412
EDAR NM_022336 1.15E-02 1.28525 4.95E-02 1.20299 2.87E-02 1.27402
GALNT3 NM_004482 5.55E-07 2.28147 8.67E-07 2.20981 3.34E-03 1.45717
SCN9A NM_002977 6.71E-05 2.68432 2.36E-04 2.36665 1.29E-01 1.37881
SLC4A11 NM_032034 4.11E-05 1.3121 1.18E-04 1.2752 2.28E-05 1.39485
CTD-2514C3.1 NR_004846 1.10E-03 1.61351 2.96E-02 1.32356 3.71E-02 1.36039
SDC4 NM_002999 2.26E-02 1.27084 1.62E-02 1.29191 8.18E-02 1.22376
USP18 NM_017414 4.57E-04 1.70765 6.16E-03 1.45632 1.14E-01 1.25282
MST1R (RON) NM_002447 1.75E-04 1.59982 1.30E-05 1.84799 3.40E-03 1.45303
FRAS1 NM_025074 1.63E-04 1.88825 1.89E-02 1.38504 2.10E-01 1.20351
ANXA3 NM_005139 2.40E-03 1.30439 4.91E-03 1.27043 2.93E-02 1.22156
CCDC109B NM_017918 8.21E-03 1.40159 4.98E-03 1.44161 6.45E-03 1.50005
TLR3 NM_003265 2.85E-07 2.40756 1.99E-05 1.81232 6.08E-02 1.24193
FBXO4 NM_012176 2.10E-02 1.422 2.49E-02 1.40495 2.29E-01 1.21585
SH3RF2 NM_152550 1.24E-02 1.53236 2.80E-02 1.43895 5.00E-02 1.44378
ERAP1 NM_001040458 1.38E-06 1.63246 1.48E-05 1.48083 4.36E-04 1.37218
MRAP2 NM_138409 2.00E-05 2.13295 7.38E-06 2.30291 3.67E-02 1.36787
PLEKHG1 NM_001029884 7.22E-03 1.67107 4.12E-02 1.4414 1.69E-01 1.31205
MBOAT1 NM_001080480 7.64E-07 1.71621 1.40E-05 1.51059 6.26E-03 1.2591
C6orf132 ENST0000034186 2.99E-07 2.60787 1.76E-06 2.26832 1.20E-02 1.4013
COBL NM_015198 4.52E-02 1.33178 7.54E-02 1.28395 1.01E-01 1.30195
MATN2 NM_002380 9.63E-04 1.50342 3.61E-03 1.4057 3.65E-02 1.29524
RHPN1 NM_052924 1.23E-04 1.29147 3.74E-04 1.25316 4.87E-03 1.20379
C8orf51 NR_026785 8.67E-07 1.27628 5.59E-06 1.22846 8.06E-05 1.20001
C8orf73 NM_001100878 1.04E-02 1.37454 6.80E-02 1.23581 1.03E-02 1.44525
NPR2 NM_003995 1.58E-05 1.46282 6.67E-05 1.38947 8.63E-03 1.22615
GRHPR NM_012203 2.38E-03 1.2851 1.60E-02 1.20268 2.80E-02 1.20965
FAM189A2 NM_004816 2.68E-02 1.46127 2.05E-03 1.79215 1.39E-01 1.31887
C9orf3 AF043897 1.69E-05 1.48498 2.18E-05 1.47055 2.43E-06 1.73043
NIPSNAP3A NM_015469 1.28E-05 1.44175 2.96E-03 1.21701 9.71E-03 1.20717
ARRDC1 NM_152285 4.09E-07 1.74846 5.70E-07 1.72052 4.51E-03 1.26792
PTPLAD2 NM_001010915 2.21E-07 2.42495 3.35E-06 2.00393 3.25E-02 1.28292
TLE1 NM_005077 7.80E-05 1.98957 6.76E-04 1.71392 1.49E-01 1.24041
HDHD3 NM_031219 2.73E-02 1.21184 1.79E-03 1.35297 2.20E-02 1.26123
PTRH1 NM_001002913 8.47E-03 1.25899 2.30E-02 1.211 5.87E-03 1.32616
NPDC1 NM_015392 5.95E-04 1.43109 1.55E-03 1.37363 5.30E-02 1.21613
SCML1 NM_001037540 3.55E-05 1.47592 3.27E-06 1.63206 4.95E-04 1.40074
FAM156A NM_014138 9.97E-03 1.21367 5.06E-04 1.34309 8.82E-03 1.25655
GABRE NM_004961 6.66E-05 1.81362 2.29E-03 1.47851 4.39E-03 1.5082
GABRE U92285 2.59E-04 2.57423 4.17E-02 1.53774 3.39E-01 1.24385
L1CAM NM_000425 8.88E-03 1.31114 2.74E-03 1.38376 3.21E-02 1.27652
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Chapter 5 

5.  Discussion and future directions 

5.1 Summary of findings 

 RanBPM was first described as a factor involved in Ran-mediated microtubule 

nucleation.  However, this notion was quickly dismissed and many studies have since 

attempted to elucidate the cellular functions of RanBPM.  While some progress has been 

made in understanding its role, the diverse processes in which RanBPM has been 

proposed to participate have made defining a unified function for this protein difficult.  In 

this thesis, we aim to address this matter by describing a function for RanBPM in the 

regulation of signalling pathways that mediate cell survival and apoptosis.  Further, this 

work suggests a previously unknown function for RanBPM as a tumour suppressor, and 

also expands upon a role for RanBPM in development.      

 Although RanBPM has been implicated in apoptotic regulation, a specific 

mechanism for such a role has not been demonstrated thus far.  In chapter 2, we identify 

RanBPM as a pro-apoptotic protein that regulates the intrinsic apoptotic signalling 

pathway.  In this chapter we also provide evidence that RanBPM modulates the 

localization and expression of Bcl-2 family proteins, thus identifying a novel mechanism 

by which RanBPM executes its pro-apoptotic activity.  We go on to show in chapter 3 

that the effect of RanBPM on the expression of Bcl-2 family proteins is mediated at least 

in part, through repression of the ERK1/2 pathway.  RanBPM has previously been 

proposed to regulate ERK1/2 signalling, however, its role in this pathway remains 

controversial.  The studies in chapter 3 reveal that RanBPM inhibits ERK1/2 signalling 

through destabilization of the c-Raf protein, thus uncovering a novel function for 

RanBPM in the regulation of the ERK1/2 cascade.  Finally, the findings in chapter 4 

reveal that altered RanBPM expression affects transcriptional programs involved in 

cellular signalling, regulation of organism development, and tumourigenesis.  This is the 

first example of a characterization of global gene expression patterns regulated by 

RanBPM.  The data presented in this thesis also suggest a potential role for RanBPM as a 

novel tumour suppressor in cells.  We ascribe this function to RanBPM based upon the 
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observation that down-regulation of RanBPM expression is associated with the 

acquisition of multiple hallmarks of cellular transformation.  Together, our findings 

assign a biological significance to the molecular functions of RanBPM by describing how 

perturbations in RanBPM expression affect normal and pathological development.  

 

5.2 Functions for RanBPM in tumour suppression 

 A critical aspect of normal cellular function is the ability to balance the 

extracellular cues that signal either proliferation, or growth suppression [1, 2].  For 

example, cells in a given tissue are able to stimulate the growth of adjacent cells by 

secreting mitogenic stimuli, such as growth factors.  This triggers growth-inducing 

signalling cascades, and leads to cell cycle progression and/or differentiation [1, 2].  

Conversely, cells can also secrete factors that convey growth-restrictive signals in 

neighbouring cells [2].  These stimuli activate signalling pathways that prohibit cell 

proliferation by halting cell cycle progression, inducing differentiation, or activating 

apoptosis [2].  Importantly, the inability to properly respond to these extracellular cues is 

associated with the occurrence of pathological conditions such as developmental 

abnormalities and cancer [1].   

 A common feature of cancer is chromosomal rearrangements that cause the 

amplification of oncogenes, and the deletion of tumour suppressors [3].  In its most 

simple form, an oncogene is defined as a gene that conveys growth-inducing signals in 

cells, while tumour suppressors are genes whose products potentiate growth-restrictive 

signals within cells [2].  Thus, mutations that promote the growth-inducing activity of 

oncogenes, and abolish the restrictive activity of tumour suppressors, together cause the 

deregulated cellular growth that is observed in cancer [2, 4].  Our analyses of the cellular 

functions of RanBPM suggest a role for this protein as a tumour suppressor, as absence of 

RanBPM expression in cells disrupts apoptotic activation, leads to growth factor 

independence, and increases rates of migration and invasion (Fig. 5.1).
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Figure 5.1 ERK-dependent and ERK-independent functions of RanBPM. Left ‒ 

Novel function for RanBPM in the repression of c-Raf-mediated ERK1/2 signalling.  

Destabilization of the c-Raf-Hsp90 complex by RanBPM inhibits signalling downstream 

of c-Raf.  This has implications in the regulation of cell survival, cell proliferation, cell 

migration, apoptosis, and transcriptional programs mediated by activated ERK1/2 

signalling.  Right ‒ Regulation of gene expression by RanBPM may occur independently 

of the ERK1/2 cascade, through Notch and Wnt signalling pathways, and FOX family 

transcription factors.  RanBPM may also inhibit the migratory capacity of cells 

independently of ERK1/2, by regulating EMT programs or the c-Raf-Rho-Rokα 

signalling pathway.   
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5.2.1 Down-regulation of RanBPM expression confers resistance to apoptosis  

 Pro-apoptotic factors comprise an important class of tumour suppressor genes, 

and are often mutated or inactivated in cancer [5].  The first piece of evidence for a 

potential tumour suppressor role for RanBPM arises from the observation that RanBPM 

is a critical pro-apoptotic factor (Chapter 2).  In this chapter, we show that ectopic 

expression of RanBPM leads to caspase-mediated apoptotic cell death.  Conversely, the 

down-regulation of RanBPM expression was able to protect cells from apoptotic 

activation induced by DNA damage, and corresponded with an order-of-magnitude 

increase in cell survival upon exposure to IR.  In the absence of RanBPM expression, we 

also observed a marked up-regulation in the cellular levels of anti-apoptotic Bcl-2 

proteins, and a concurrent decrease in mitochondria-associated Bax.  This suggests that 

down-regulation of RanBPM causes a shift in the cellular ratios of anti- and pro- 

apoptotic Bcl-2 proteins within the cell.  We hypothesize that this prevents genotoxic 

stimuli from properly signalling mitochondrial permeabilization, thus blocking the 

activation of cell death.  Based upon the data presented in chapter 2, we propose that 

RanBPM is required for the proper execution of apoptosis, and that disruption of its pro-

apoptotic activity contributes to the acquisition of a transformed phenotype in cells.   

 In the future, it will be important to determine whether, in addition to IR-induced 

DNA damage, RanBPM can also participate in apoptotic activation in response to other 

forms of cellular stress.  For example, exposure to cytotoxic factors can cause ER 

dysfunction, consequently disrupting calcium homeostasis and protein folding, and 

leading to apoptotic cell death [6].  Assessing such a function for RanBPM will help to 

determine whether RanBPM is a general apoptotic factor that can be activated 

downstream of various stress stimuli, or whether it may be involved in "sensing" specific 

types of cell stress and mediating the apoptotic response to these stresses.  A potential 

role for RanBPM as a stress sensor is supported by our observation that the induction of 

caspase-2 activity is abrogated in RanBPM-deficient cells upon exposure to IR.  Caspase-

2 can be activated by various forms of cellular stress, including DNA damage and ER 

dysfunction, to trigger pro-apoptotic signalling [7].  While the precise mechanisms of 

caspase-2-mediated apoptosis remain enigmatic, it has been suggested to promote 
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apoptosis through both p53-dependent and p53-independent mechanisms [7].  In addition, 

caspase-2 has been shown to localize to the nucleus and to participate in DNA damage-

dependent signal transduction [7, 8].  These observations have also led to the notion that 

caspase-2 is an important tumour suppressor that safeguards cells from undergoing 

transformation by responding to specific forms of cellular stress and promoting apoptotic 

induction, even when p53-dependent apoptotic pathways have become inactivated [7, 8].  

As RanBPM is also known to localize to the nucleus [9-11], it will be intriguing to 

investigate whether RanBPM may be involved in promoting the induction of caspase-2 

activity to further enhance the apoptotic response of cells exposed to certain types of 

genotoxic or cytotoxic stress.           

 

5.2.2 Decreased RanBPM expression is associated with loss of growth factor dependence 

in cells 

 Factors that function as negative regulators of growth factor-mediated signalling 

often exhibit tumour suppressor activities in cells [12-14].  Deletion or inactivation of 

these negative regulators can contribute to growth factor independence, which is often 

characterized by the constitutive activation of a component of a signalling pathway that 

thereby vacates the need for upstream ligand-mediated receptor activation [14].  Here we 

propose that RanBPM functions as a negative regulator of the ERK1/2 signalling 

pathway (Chapter 3).  We found that down-regulation of RanBPM expression in cultured 

cells results in the hyperactivation of MEK1/2 and ERK1/2.  We also show that the 

elevated Bcl-2 protein levels observed in the absence of RanBPM is specifically due to 

the hyperactivation of ERK1/2 signalling.  Further, we demonstrate that RanBPM 

functions to regulate this pathway through the destabilization of the c-Raf protein.  

RanBPM was found to form a complex with c-Raf, and its expression corresponded with 

a marked down-regulation in c-Raf protein levels.  Intriguingly, this latter effect of 

RanBPM was especially pronounced on activated forms of the c-Raf kinase.  Finally, 

decreased c-Raf protein levels were found to be mediated through the disruption of the c-

Raf-Hsp90 complex by RanBPM.  Based upon these findings we hypothesize that in 

RanBPM-expressing cells, RanBPM prevents aberrant ERK1/2 activation by maintaining 
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low cellular levels of c-Raf.  In the absence of RanBPM expression however, this 

repression on c-Raf is removed, leading to the deregulation of ERK1/2 signalling.  The 

data presented in chapter 3 indicate that loss of RanBPM expression confers growth 

factor independence upon cells, thus further contributing to the acquisition of a 

transformed phenotype in these cells. 

 Our findings that RanBPM disrupts the c-Raf-Hsp90 protein complex suggest a 

mechanism by which RanBPM may mediate low c-Raf protein expression.  Molecular 

chaperones are known to be essential for the folding and stability of c-Raf, and blocking 

c-Raf-Hsp90 complex formation was found to cause its rapid ubiquitination and 

degradation by proteasomes [15, 16].  Therefore, it will be necessary to assess whether 

RanBPM expression is associated with increased c-Raf protein turnover.  Rapid protein 

turnover is one of the mechanisms by which cells "fine-tune" the duration of, and 

response to, signalling cascades.  For example, activation of Notch signalling causes the 

rapid degradation of transcription factors that mediate neuronal differentiation, thereby 

promoting stem cell maintenance in the nervous system [17].  Likewise, the absence of 

upstream Wnt activation stimulates the rapid turnover of β-catenin to prevent aberrant 

Wnt target-gene expression [18].  Therefore, it is plausible that RanBPM may function to 

"fine-tune" ERK1/2 signalling by maintaining low cellular levels of c-Raf.  This role for 

RanBPM is supported by the observation that it is a component of the evolutionarily 

conserved CTLH complex that is proposed to mediate the ubiquitination and degradation 

of various cellular proteins [19-21]. Whether RanBPM regulates c-Raf by promoting its 

ubiquitination and proteasomal degradation is the subject of on-going investigation in our 

lab.    

 The mechanism by which RanBPM destabilizes the c-Raf-Hsp90 complex will 

also need to be elucidated.  One proposed mechanism would be that RanBPM directly 

competes with Hsp90 for binding to c-Raf.  A similar role was previously described for 

Hsp70, which competes with c-Raf for binding to the co-chaperone BAG1 [22].  In this 

study, binding of c-Raf to BAG1 was found to be necessary for c-Raf kinase activity, and 

induction of signalling downstream of c-Raf [22].  Disruption of the c-Raf-BAG1 

interaction by Hsp70 was thus suggested to facilitate the repression of mitogenic 
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signalling by c-Raf in response to heat shock [22].  RanBPM may function in a similar 

manner in order to attenuate c-Raf-mediated ERK signalling.  The binding of Hsp90 to c-

Raf is not only required for stabilizing c-Raf protein structure, but also for c-Raf catalytic 

activity and signalling [16].  Therefore destabilization of this complex by RanBPM may 

provide a means of preventing aberrant ERK1/2 signalling, or attenuating activated 

ERK1/2 signalling in cells.  This notion is supported by our observation that, in addition 

to modulating c-Raf protein levels in resting cells, RanBPM also robustly down-regulates 

activated forms of c-Raf.  Therefore in this model of RanBPM function, we propose that 

RanBPM would compete with Hsp90 for binding to c-Raf in resting cells, in order to 

maintain low c-Raf expression.  Upon c-Raf activation, the affinity of RanBPM for c-Raf, 

or its competition with Hsp90 for binding to c-Raf, would be enhanced and ultimately 

lead to the down-regulation of c-Raf and repression of its downstream signalling.  

Alternatively, the interaction of RanBPM with c-Raf may mediate the recruitment of a 

protein complex that causes the dissociation of c-Raf from Hsp90, thus leading to its 

destabilization.  One of the cellular functions of the molecular chaperone complex is to 

shuttle client proteins that cannot be properly folded to the proteasomes for degradation 

[23, 24].  This often requires client-protein transfer, wherein co-chaperones facilitate the 

physical transfer of protein substrates from one chaperone to another, in order to 

ubiquitinate client proteins and target them to proteasomes [25].  For example, such a 

mechanism has previously been described for the ubiquitination and degradation of the 

Hsp90 client protein ErbB2 (epidermal growth factor receptor 2), by the co-chaperone 

CHIP.  CHIP was reported to bind the Hsp90-ErbB2 complex, and mediate the stepwise 

dissociation of ErbB2 from Hsp90, followed by its binding to Hsp70, and its 

ubiquitination and shuttling to proteasomes for degradation [26].  As c-Raf is a known 

CHIP client protein [27, 28], RanBPM may function to promote CHIP-dependent transfer 

of c-Raf from Hsp90 to Hsp70, thereby destabilizing the c-Raf-Hsp90 complex.  If 

RanBPM is found to function in this manner, it will also be important to determine 

whether its binding to c-Raf corresponds with enhanced proteasomal degradation of c-

Raf.   

 A critical physiological outcome of growth factor independence is the ability to 

undergo sustained proliferative signalling, even in the absence of receptor or growth-
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factor stimulation [14].  In chapter 3, we demonstrate that RanBPM-deficient cells exhibit 

a sustained proliferative phenotype, as they are able to grow under serum-free conditions.  

We propose that this occurs as a result of hyperactivated ERK1/2 signalling in these cells.  

Collectively, these findings characterize the molecular and physiological consequences 

associated with RanBPM down-regulation (Fig. 5.1), and serve to further implicate a role 

for this protein in tumour suppression.   

   

5.2.3 Absence of RanBPM expression corresponds with enhanced cellular migration and 

invasion 

 Cytoskeletal proteins are an important class of ERK1/2 effector proteins, and one 

of the physiological outcomes of ERK1/2 activation is cell migration [29-31].  Thus, it is 

not surprising that deregulated ERK1/2 signalling can increase cell migration and 

invasion, and lead to tumour metastasis [29].  In chapter 3 we show that in addition to 

apoptotic resistance and loss of growth factor dependence, down-regulation of RanBPM 

expression in cultured cells is also associated with increased rates of cellular migration 

and invasion.  As tumour suppressors are known to regulate processes associated with 

cell motility [32], these observations further support the potential of such a role for 

RanBPM.  In the future, it will be necessary to determine how RanBPM-deficient cells 

acquire their enhanced invasive and migratory capacities (Fig. 5.1).  This phenotype may 

be a result of sustained ERK1/2 activation, or may be attributed to the elevated c-Raf 

levels observed in these cells.  C-Raf is known to mediate cell migration and invasion in 

certain cell types by signalling through the Rho family of small GTPases, in a process 

independent of its kinase activity [33].  Thus, it is plausible that the increased cell 

motility observed in RanBPM-deficient cells occurs in an ERK-independent manner, 

highlighting yet another signalling pathway in which RanBPM may function.  

Alternatively, RanBPM may affect rates of cellular migration and invasion through a 

process that is completely independent of its functions on c-Raf and ERK1/2.  

Specifically, the data outlined in chapter 4 reveal that RanBPM regulates components of 

the Notch, Wnt, and TGFβ signalling pathways, all of which are well-established 

modulators of the EMT program [34, 35].  Whether the down-regulation of RanBPM 
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expression is associated with the acquisition of a mesenchymal phenotype, and whether 

this is the cause of the enhanced migratory and invasive capabilities observed in 

RanBPM-deficient cells, will need to be investigated. 

 

5.3 Regulation of diverse transcriptional programs by RanBPM 

 The responses to the broad extrinsic cues that cells receive are mediated by 

changes in gene expression patterns that drive processes such as proliferation, 

differentiation, and cell death [1, 36].  During embryogenesis, for example, 

transcriptional changes arising from signalling through the Notch, Wnt, and TGFβ 

pathways facilitate cell fate determination and organogenesis across a wide range of 

tissues [36, 37].  Similarly, these pathways regulate maintenance, renewal, and repair in 

adult tissues [36].  Alterations in these transcriptional programs can result in 

developmental abnormalities, and in diseases such as cancer.  Thus, delineating the 

complex gene regulatory networks of the cell has important implications in understanding 

both normal and pathological development [38].  The gene expression profiling data 

presented in chapter 4 implicate a role for RanBPM in regulating the expression of genes 

involved in organism development and tumourigenesis.   

 With regard to a role in development, we found that one-quarter of the genes 

whose expression is altered in response to RanBPM down-regulation are involved in 

tissue development, and include components of the Notch, Wnt/β-catenin, and TGFβ 

pathways.  Included in this group of genes are factors implicated in the regulation of 

cellular proliferation, stem cell differentiation, neurite outgrowth, and organ 

morphogenesis.  Additionally, we found that the promoters of many RanBPM target 

genes contain binding sites for transcription factors that have key functions in 

development, including the FOX, HMG, and Homeobox family factors.  Together, these 

observations suggest that RanBPM may function to regulate developmental processes 

both directly and indirectly.  With respect to a direct function in development, RanBPM 

may modulate the expression of components of signalling pathways in order to execute 

specific developmental responses.  For example, we found that RanBPM down-regulation 
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corresponded with decreased expression of the Notch ligand JAG1.  During 

embryogenesis, ligand-mediated Notch signalling is essential for cellular differentiation, 

proliferation, apoptosis, and migration [39].  Defects in this pathway, arising from 

mutations in either Notch ligands or receptors, are associated with severe developmental 

defects [36].  Specifically, mutations of JAG1 lead to a developmental disorder known as 

Alagille syndrome, which is characterized by growth retardation and abnormalities in the 

development of cardiac, renal, ocular, vascular, and hepatic tissues [36, 40].  Intriguingly, 

in their recent studies of RanBPM function in development, Puverel and colleagues 

reported that over half of RanBPM-null mice died perinatally, and those which did 

survive exhibited severe growth retardation [41].  While the causes of the growth and 

survival abnormalities observed in these mice have not yet been determined [41], it is 

tempting to propose that they may be a result of defects in Notch signalling.  To assess 

this, it will be important to determine whether JAG1 expression is down-regulated in 

RanBPM-null mice compared to wildtype controls, and if so, whether this indeed disrupts 

JAG1/Notch-dependent pathways in RanBPM-null cells obtained from the tissues of 

these mice.  RanBPM may also indirectly function in development by modulating the 

activity or function of transcription factors that regulate the expression of groups of genes 

involved in various aspects of organism development.  This function for RanBPM is 

supported by the fact that it is a known transcriptional co-activator of steroid hormone 

receptors, including the androgen receptor (AR) [42].  AR is involved in the 

development, function, and maintenance of male reproductive organs and more recently 

has been suggested to function in a similar role in female reproductive organs [43, 44].  

AR has been shown to interact with the transcription factor FOXA1 to regulate the 

expression of AR target genes during prostate development [45].  In addition, the 

interaction of AR with the transcription factor FOXO3a has been found to regulate gene 

expression patterns associated with development, growth, and apoptosis in the prostate 

and ovary [46, 47].  As our data in chapter 4 indicate that RanBPM down-regulation 

alters the expression of FOXA1- and FOXO3a-target genes, we postulate that a potential 

function for RanBPM may be to regulate developmental programs driven by 

FOXA1/AR- and FOXO3a/AR-dependent transcription.  This hypothesis is corroborated 

by recent findings that highlight a critical function for RanBPM in the development and 
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function of mammalian reproductive organs [41].  This study reported that RanBPM 

knockout led to severe gonadal defects that prevented spermatogenesis and resulted in 

sterility in male mice, and to sterility and premature ovarian failure in female mice [41], 

the latter being a characteristic that has previously been attributed to the deletion or 

mutation of FOXO3a [48].  Therefore, future experiments will need to address whether 

the gonadal abnormalities observed in RanBPM-null mice arise due to defects in the 

FOX/AR transcriptional program.  This may be assessed using gene expression profiling 

comparing the expression of FOX/AR gene targets involved in development in control 

and RanBPM-null mice.  It will also be important to verify that any observed changes in 

transcriptional output occur due to the absence of RanBPM, by assessing whether re-

expression of RanBPM can restore normal gene expression patterns in RanBPM-deficient 

cells.    

 The data in chapter 4 also strongly implicate a role for RanBPM in 

tumourigenesis, as more than one-third of all RanBPM target genes identified in our 

analyses have been associated with cancer.  We found that down-regulation of RanBPM 

expression affected signalling pathways that, when perturbed, can promote cellular 

transformation and tumour metastasis.  For example, decreased RanBPM expression 

corresponded with a marked up-regulation in the expression of the RTK RON, which 

drives tumourigenesis by enhancing signalling through the ERK1/2 and Akt signalling 

pathways [49, 50].  Interestingly, we also noted that many of the transcription factors 

identified in our analyses that normally function in development can become deregulated 

to promote oncogenesis.  For example, in addition to their aforementioned roles in 

normal biological processes, most FOX transcription factors have also been found to 

contribute to oncogenic transformation by functioning as either tumour suppressors or 

oncogenes [48].  FOXA1, for example, exhibits oncogenic activity in certain tissue 

subtypes, as its overexpression positively correlates with metastatic lesions in the thyroid 

and prostate [45, 51].  Conversely FOXO3a is an established tumour suppressor, and its 

deletion corresponds to enhanced cell cycle progression and inhibition of apoptosis [51].  

Inactivation of FOXO3a is associated with tumourigenesis in a broad range of tissues, 

particularly in haematological cancers [48, 51].  In addition to FOX transcription factors, 

the deregulated activities of Homeobox (ie. HOXA5), [52, 53] and HMG (ie. SOX9 and 
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SOX17) [54, 55] families of transcription factors are associated with cancer development 

and metastasis in several tissues.  An important question that arises based upon these 

observations is whether the expression of RanBPM may correlate with the oncogenic 

activity of specific groups of transcription factors.  While it is known that RanBPM is 

ubiquitously expressed in normal tissues [10], little is known regarding its expression 

patterns in cancerous tissues.  However, one study did report that the expression of 

RanBPM was either significantly down-regulated, or completely absent, in patient 

tumour samples from the lung, kidney, and breast, when compared to RanBPM 

expression in the normal adjacent tissue [9].  As FOXA1 is suggested to strongly 

contribute to breast cancer development, but not metastasis [45, 51], it will be highly 

informative to determine whether RanBPM expression may negatively correlate with 

FOXA1 expression in breast cancer.  A similar analysis could be applied to tumour 

samples from the lung, as it has been reported that the FOXA1 gene locus is amplified in 

lung cancers [45].  In addition, the expression of HOXA5 [53] and SOX17 [56] is known 

to be decreased in breast cancers, therefore whether RanBPM expression positively 

correlates with the expression of these factors in breast cancer will also be of interest to 

investigate.  The proposition that RanBPM may regulate the activity of these 

transcription factors is supported by previous findings that RanBPM promotes the nuclear 

localization of steroid hormone receptors and enhances their DNA-binding affinities [42, 

57], and that RanBPM itself exhibits a predominantly nuclear localization in resting cells 

[9-11].  Therefore, it is tempting to hypothesize that one of the roles of RanBPM within 

the nucleus may be to modulate the function or activity of specific groups of transcription 

factors, and that disruption of RanBPM expression would impede this regulation, and 

thus lead to aberrant gene transcription patterns that promote tumourigenesis.  

Collectively, the findings in chapter 4 suggest that RanBPM can have wide-reaching 

effects on cellular transcription programs, which when disrupted, may lead to malignant 

transformation.   
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5.4 Oncogenic and metastatic potential of RanBPM in vivo 

     The data presented in this thesis underscore a potentially critical function for 

RanBPM in regulating tumour suppressor programs in cultured cells.  However, an 

important question that remains to be answered is whether RanBPM can exert such a 

function in animal models that more closely reflect normal mammalian physiology.   This 

may be addressed through the use of mouse models of tumour formation, and RanBPM-

null mice.   

 The ability of RanBPM to promote tumourigenesis in vivo can be addressed by 

xenografting either control, or RanBPM-deficient cells into athymic nude mice, and 

measuring the tumour volume in these animals post-injection. We hypothesize that if the 

absence of RanBPM expression is oncogenic, then mice injected with RanBPM-deficient 

cells should exhibit increased tumour volume, compared to those injected with control 

cells expressing physiological levels of RanBPM.  To ensure that any observed increase 

in tumourigenicity occurs specifically due to decreased RanBPM expression, the ability 

of cells re-expressing RanBPM to rescue the oncogenic phenotype of RanBPM down-

regulation will also need to be assessed in these mice.  In addition, a role for RanBPM in 

tumourigenesis can be studied in genetically engineered RanBPM knockout mice, by 

determining whether these mice may be "pre-disposed" to cancer and exhibit increased 

rates of spontaneous tumour formation, compared to normal littermate controls.  An 

intriguing aspect of utilizing this model to study the oncogenic potential of RanBPM will 

be determining which tissues may be pre-disposed to tumourigenesis as a result of 

RanBPM deletion.  Based upon previous reports of RanBPM expression in human 

cancers [9], we hypothesize that tumours may be particularly likely to develop in the 

breast and lung tissues of RanBPM-null mice.  This notion is also corroborated by our 

findings in chapter 4 that RanBPM-deficient cells exhibit enhanced expression of genes 

such as ELF-3, L1CAM, and RON, which are all known drive the development of 

cancerous lesions in the breast or lung [58-60].  In addition, the expression and activity of 

transcription factors with over-represented binding sites in the promoters of RanBPM-

target genes, such as HOXA5 and FOXA1, are also known to be deregulated in these 

cancer subtypes [45, 53], further suggesting that ablation of RanBPM expression may 
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indeed pre-dispose these tissues to tumourigenesis.  These mouse models will also be 

beneficial to assessing whether RanBPM down-regulation is associated with metastatic 

disease.  Our data suggest that RanBPM modulates the invasive and migratory capacity 

of cells, and may also be involved in EMT of cells (Fig. 5.1).  Therefore, it will be 

interesting to determine whether the number of secondary-site lesions is increased in 

RanBPM-null mice, compared to controls.  For example, advanced stages of breast and 

lung cancer may be associated with bone metastasis, thus it will be necessary to assess 

RanBPM-null mice for cancerous lesions of the bone.  Further, if RanBPM is found to 

promote metastasis, the cells from these secondary lesions may be isolated and analyzed 

for markers of EMT, such as decreased E-cadherin expression or increased vimentin 

expression [34], and for hyperactivated ERK1/2 signalling.  These analyses would 

provide insight into potential functions for RanBPM in driving EMT and metastatic 

programs in cancer.   
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