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Abstract

Several approximations to the distribution of indefinite quadratic expressions in
possibly singular Gaussian random vectors and ratios thereof are obtained in this disser-
tation. It is established that such quadratic expressions can be represented in their most
general form as the difference of two positive definite quadratic forms plus a linear com-
bination of Gaussian random variables. New advances on the distribution of quadratic
expressions in elliptically contoured vectors, which are expressed as scalar mixtures of
Gaussian vectors, are proposed as well. Certain distributional aspects of Hermitian
quadratic expressions in complex Gaussian vectors are also investigated. Additionally,
approximations to the distributions of quadratic forms in uniform, beta, exponential and
gamma random variables as well as order statistics thereof are determined from their
exact moments, for which explicit representations are derived. Closed form representa-
tions of the approximations to the density functions of the various types of quadratic
expressions being considered herein are obtained by adjusting the base density functions
associated with the quadratic forms appearing in the decompositions of the expressions by
means of polynomials whose coefficients are determined from the moments of the target
distributions. Quadratic forms being ubiquitous in Statistics, the proposed distributional
results should prove eminently useful.

Keywords: Real quadratic expressions, Hermitian quadratic forms, density approxima-
tion, cumulant generating function, moments, singular Gaussian vectors, order statistics,
generalized gamma distribution, uniform random variables, beta random variables, ex-
ponential random variables, elliptically contoured random vectors.
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Chapter 1

Introduction

1.1 Introduction

Numerous distributional results are already available in connection with quadratic forms
in normal random variables and ratios thereof. Various representations of the density
and distribution functions of a quadratic form have been derived, and several procedures
have been proposed for computing percentage points and preparing tables. Box (1954b)
considered a linear combination of chi-square variables having even degrees of freedom.
Gurland (1953), Pachares (1955), Ruben (1960, 1962), Shah and Khatri (1961), and Kotz
et al. (1967a,b) among others, have obtained expressions involving MacLaurin series and
the density function of chi-square variables. Gurland (1956) and Shah (1963) respectively
considered central and noncentral indefinite quadratic forms, but as pointed by Shah
(1963), the expansions obtained are not practical. Imhof (1961), Davis (1973) and Rice
(1980) determined the exact density and distribution functions of indefinite quadratic
forms in normal vectors. As pointed out in Mathai and Provost (1992), which contains a
wealth of related results, a wide array of statistics can be expressed in terms of quadratic
forms in normal random vectors.

An accessible approach is proposed in this thesis for approximating the density
of positive definite and indefinite quadratic forms and expressions in normal random
variables in terms of gamma, generalized gamma and Pearson-type densities. The case
of quadratic forms and quadratic expressions in possibly singular normal vectors and their
ratios had yet to be fully developed. So far, when dealing with quadratic forms in singular
normal vectors, it has been implicitly assumed in the literature that the rank of the matrix
associated with the quadratic form is greater than or equal to that of the covariance
matrix of the singular normal vector. This is the case, for instance, within Representation
3.1a.5 in Mathai and Provost (1992) and Equation (1) in Tong et al. (2010), neither of
which involves a linear term. Such a term is indeed present in the general representation
given in Equation (2.4). It should also be noted that, as pointed out in Provost (1996),
bilinear expressions can be expressed in terms of quadratic expressions. Thus, all the
results presented in this thesis can also be utilized to approximate the distributions of
bilinear forms and bilinear expressions in random vectors.

1
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Chapter 2 provides a methodology that yields very accurate approximations to the
density and distribution functions of any quadratic form or expression in singular nor-
mal vectors. Such quadratic forms are involved for instance in singular linear models
as pointed out in Rao (1978), in least-squares estimators as discussed in Hsuan et al.
(1985) and in genetic studies in connection with genome scans and the determination of
haplotype frequencies, as explained in Tong et al. (2010). It should be noted that the
computational routines that are currently available for determining the distribution of
quadratic forms do not adequately address the singular case.

It is shown in Chapter 3 that the results derived in Chapter 2 can be utilized
to determine the approximate distribution of certain ratios of quadratic forms. Such
ratios arise for example in regression theory, linear models, analysis of variance and time
series. For instance, the sample serial correlation coefficient as defined in Anderson (1990)
and discussed in Provost and Rudiuk (1995), as well as the sample innovation cross-
correlation function for an ARMA time series whose asymptotic distribution was derived
by McLeod (1979), have such a structure. Koerts and Abrahamse (1969) investigated
the distribution of ratios of quadratic forms in the context of the general linear model.
Shenton and Johnson (1965) derived the first few terms of the series expansions of the
first two moments of this sample circular serial correlation coefficient. Inder (1986)
developed an approximation to the null distribution of the Durbin-Watson statistic to
test for autoregressive disturbances in a linear regression model with a lagged dependent
variable and obtained its critical values. This statistic can be expressed as a ratio of
quadratic forms wherein the matrix of the quadratic form appearing in the denominator
is idempotent. One may also consider the lagged regression residuals developed by De
Gooijer and MacNeill (1999) and discussed in Provost et al. (2005), or certain change
point test statistics obtained by MacNeill (1978). In fact, one of the first papers that
extended the study of quadratic forms to the study of their ratios is due to Robbins
and Pitman (1949). Other statistics that can be expressed as ratios of quadratic forms
include the ratio of the mean square successive differences to the variance is studied in
von Neumann et al. (1941); a statistic involved in a two-stage test is considered in Toyoda
and Ohtani (1986); test statistics having this structure are derived in connection with a
two-way analysis of variance for stationary periodic time series in Sutradhar and Bartlett
(1989); certain ratios used in time series analysis were investigated in Geisser (1957) and
Meng (2005); and test statistics related to some general linear models are considered in
Koerts and Abrahamse (1969).

Ratios of quadratic forms that are connected to certain analysis of variance prob-
lems such as the determination of the effects of inequality of variance and of correlation
between errors in the two-way classification, are considered in Box (1954b). Another
example involves the sample circular serial correlation coefficient associated with a first
order Gaussian auto-regressive process, Xt, which, in White (1957), was taken to be an
estimator of the parameter ρ in the stochastic difference equation, Xt = ρXt−1 + Ut,
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where the Ut’s are independent standard normal variables. The first few terms in the
series expansions of the first and second moments of this serial correlation coefficient are
derived in Shenton and Johnson (1965). An approximation to the distribution of the
ratio of two quadratic forms in connection with time series valued designs is discussed
in Sutradhar and Bartlett (1989). A statistic whose structure is a ratio of two sums of
gamma variables for the problem of testing the equality of two gamma populations with
common shape parameter is derived in Shiue and Bain (1983).

The notion of mixture distributions was utilized to obtain convergent series expan-
sions for the distribution of positive definite quadratic forms as well as that of certain
ratios thereof; for instance, a mixture representation is utilized in Baldessari (1965) to
derive the moments of the ratios. Inequalities applying to ratios of quadratic forms in
independent normal random variables were obtained by Kadiyala (1968).

Ratios of independent quadratic forms involving chi-squares having even degrees of
freedom are considered in Box (1954a). An inversion formula for the distribution of ratios
of linear combinations of chi-square random variables is derived in Gurland (1948). An
expressions for the moments of the ratios of certain quadratic forms as well as conditions
for their existence is provided in Magnus (1990). Other results on the moments of ratios
of quadratic forms may be found in Magnus (1986), Jones (1987), Smith (1989) and
Roberts (1995).

The moments of the quantity Q1/Q2 with Q1 =
∑
aiXi+

∑
ciZi and Q2 =

∑
biYi+∑

diZi where Xi, Yi, Zi are independently distributed chi-square random variables, are
derived in Chaubey and Nur Enayet Talukder; a representation of the moments about
the origin of the ratio Q1/Q2 was obtained in closed form by Morin-Wahhab (1985).
Representations of the distribution function of ratios of sums of gamma random variables
were derived in Provost (1989a). Gurland (1948) derived an inversion formula for the
distribution of ratios of the form R = (c1Y1 + · · ·+ cnYn)/(d1Y1 + · · ·+ dnYn), where the
Yi’s are independently distributed chi-square random variables. On expressing quadratic
forms as sums of gamma random variables, a representation of the distribution function
of ratios thereof was obtained by Provost (1989b).

The distribution of Hermitian quadratic forms and quadratic expressions in com-
plex normal vectors is discussed in Chapter 4. Such quadratic forms and expressions
frequently arise in binary hypothesis testing problems, especially in the performance
analysis of systems whose inputs are affected by random noise such as radars, sonars,
communications receivers and signal acquisition devices. This is explained, for instance,
in Kac and Sieger (1947), Divsalar et al. (1990), and Kailath (1960). As pointed out by
Biyari and Lindsey (1993), the decision variables in many systems can also be character-
ized by means of Hermitian quadratic forms in complex Gaussian vectors. Moreover, as
explained in Provost and Rudiuk (1995), Section 2.16, several statistics used for testing
hypotheses on the parameters of complex random vectors involve Hermitian quadratic
forms. As well, Hermitian quadratic forms were employed as cost functions by Kwon
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et al. (1994) and as characteristic functions in correlated Rician fading environments by
Annamalai et al. (2005).

Some distributional properties of Hermitian quadratic forms in complex Gaussian
random vectors have been studied by Bello and Nelin (1962), Khatri (1970), Goodman
(1963), Fang et al. (1990), Sultan (1999) and Mathai (1997), Provost and Cheong (2002),
among others. Kac and Sieger (1947), Turin (1958, 1959), Kailath (1960), Bello and Nelin
(1962), Simon and Divsalar (1988), Divsalar et al. (1990), Cavers and Ho (1992) and Bi-
yari and Lindsey (1993) make use of such results in the computation of pairwise error
probabilities of system output decision variables. Shah and Li (2005) pointed out an
application involving bit error rate calculation in a certain wireless relay network. While
considering a full-duplex decode-and-forward relay system in a Rician fading environ-
ment, Zhu et al. (2008) expressed the highest achievable information rate of the system
as a Hermitian quadratic form.

As pointed out by Kay (1989) and Monzigo and Miller (1980), complex random
vectors are utilized in many areas of signal processing such as spectral analysis and array
processing. Picinbono (1996) provides an informative account of the uses of complex
normal vectors and discusses related distributional results.

A general form of the moment generating function of a scalar random variable, which
covers many cases including that of a Hermitian quadratic forms in complex normal
variables, is presented in Sultan (1999). A representation of the characteristic function
of Hermitian quadratic forms in complex normal variables was derived by Turin (1960).
Shah and Li (2005) obtained an alternative representation of the moment generating
function by contour integration. Soong (1984) provides the expected values of certain
Hermitian quadratic forms in closed form. It should be pointed out that, up to now,
no general representation of Hermitian quadratic forms in singular Gaussian vectors was
available.

Chapter 5 addresses the case of quadratic expressions in elliptically contoured vec-
tors. Several fields of applications involve elliptically contoured distributions, including
for instance, anomalous change detection in hyperspectral imagery: Theiler et al. (2010);
option pricing: Hamada and Valdez (2008); filtering and stochastic control: Chu (1973);
random input signal: McGraw and Wagner (1968); financial analysis: Zellner (1976)
and the references therein; the analysis of stock market data: Mandelbrot (1963) and
Fama (1965); and Bayesian Kalman filtering: Girón and Rojano (1994). Additionally,
studies on the robustness of statistical procedures when the probability model departs
from the multivariate normal distribution to the broader class of elliptically contoured
distributions were carried out by King (1980) and Osiewalski and Steel (1993). Several
multivariate applications are also discussed in Devlin et al. (1976). Results related to
regression analysis can be found for example in Fraser and Ng (1980). Heavy-tailed time
series models were discussed in Resnick (1997). A new family of life distributions, that
are generated from an elliptically contoured distribution, is discussed by Dı́az-Garćıa
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and Leiva-Sánchez (2005). Recently Ipa et al. (2007) derived some results applicable to
Bayesian inference for a general multivariate linear regression model with matrix vari-
ate elliptically distributed errors. In fact, the class of elliptically contoured distributions,
which contains the multivariate normal distribution, enjoys several of its properties while
allowing for more flexibility in modeling various random processes.

Quadratic forms in uniform and beta random variables are discussed in Chap-
ter 6. As explained in Guttorp and Lockhart (1988), many tests of the hypoth-
esis that a distribution is uniform over (0, 1) are based on statistics of the form,
T = Mij(Ui− i/(n+ i))(Uj − j/(n+ 1)), where U1 < · · · < Un are order statistics from a
uniform distribution over the interval (0, 1) and the matrix M is such that nMij is a func-
tion of i/n and j/n. The Cramér-von Mises statistic, Watson’s U2 statistic, Greenwood’s
statistic and Cressie’s overlapping spacings statistics are all of this type. For instance,
Greenwood’s (1946) statistic is

∑n
i=0(Ui+1 − Ui)2 where U0 = 0 and Un+1 = 1. Cressie

(1976, 1979) studied the overlapping m-spacings generalizations, Cm =
∑n

i=0(Um+1−Ui)2

where Un+1+k = 1 + Uk, and C∗m =
∑n+1−m

i=0 (Ui+m − Ui)2, whereas del Pino (1979) re-
stricted the sum to a subset of i such that the m-spacings do not overlap. The large-
sample distribution of such statistics has been studied by several authors. For approaches
based on empirical processes and U-statistics, the reader is referred to Durbin (1973) and
Gregory (1977), respectively. Hartley and Pfaffenberger (1972) pointed out the connec-
tion to some goodness-of-fit criteria, determined the exact small-sample distribution in
a certain instance and showed that the family of criteria presents certain asymptotic
optimal power properties.

Chapter 6 also provides distributional results on quadratic forms in exponential and
gamma random variables. Let Y1 < · · · < Yn be order statistics from an exponential
distribution with mean θ; several tests of fit with respect to the exponential distribution
are based on certain quadratic forms in the Yi’s divided by an estimate of the scaling
parameter. Hartley and Pfaffenberger (1972), Lockhart (1985) and McLaren and Lock-
hart (1987) considered tests based on correlations involving the Yi’s. Some distributional
limit theorems such as those that are discussed in del Barrio et al. (2005) in connection
with a certain empirical quantile process, involve quadratic forms in exponential random
variables. Moreover, Donald and Paarsch (2002) described three test statistics that can
be expressed as quadratic forms in exponential random variables.

This thesis provides functional representations of the approximate densities asso-
ciated with quadratic forms and expressions in various types of random vectors. The
distributional results are often compared with simulated distributions when the exact
densities are not tractable. The Monte Carlo and analytical approaches have their own
merits and shortcomings. Monte Carlo simulations where artificial data are generated,
wherefrom sampling distributions and moments are estimated, can be implemented with
relative ease on an extensive range of models and error probability distributions. There
are, however, some limitations on the range of applicability of this approach as the results
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may be subject to sampling variations and simulation inadequacies, and may depend on
the assumed parameter values. Recent efforts to cope with these issues are reported
for example in Hendry (1979), Hendry and Harrison (1974), Hendry and Mizon (1980)
and Dempster et al. (1977). The analytical approach, on the other hand, derives results
that hold over the whole parameter space but may find limitations in terms of simplifi-
cations on the model, which have to be imposed to make the problem tractable. When
exact theoretical results can be obtained, the resulting expressions can then be fairly
complicated.

The thesis is organized as follows. The distribution of quadratic forms and quadratic
expressions in nonsingular and singular Gaussian vectors is discussed in Chapter 2.
Distributional results on moment generating functions, moments, cumulant generating
functions and cumulants are also provided in this chapter. Approximations based on a
Pearson-type density function or generalized gamma-type densities, which are polynomi-
ally adjusted for increased precision, are also proposed. Ratios of quadratic forms and
quadratic expressions are investigated in Chapter 3. More specifically, ratios whose distri-
bution can be determined from that of the difference of positive definite quadratic forms
and ratios involving idempotent or positive definite matrices in their denominators are
being considered. It is shown in Chapter 4 that Hermitian quadratic forms or quadratic
expressions in singular Gaussian vectors can be expressed in terms of real positive definite
quadratic forms and an independently distributed normal random variable; representa-
tions of their moment generating functions and cumulants—wherefrom the moments can
be determined—are also provided. A methodology for approximating the distribution
of Hermitian quadratic forms and quadratic expressions is also introduced. Chapter
5 includes distributional results in connection with quadratic expressions in elliptically
contoured random vectors: A decomposition of quadratic expressions in elliptically con-
toured vectors is derived and the distribution of such quadratic expressions is obtained by
expressing the elliptically contoured vectors as scale mixtures of Gaussian vectors. Rep-
resentations of the moments of quadratic forms in uniform and gamma random variables
are derived in Chapter 6. Closed form expressions are also obtained for the moments of
quadratic forms in order statistics from uniform and exponential populations. Quadratic
forms in beta and gamma random variables are considered as well. Some concluding
remarks and suggestions for future work are included in the last chapter.

Each chapter is meant to be essentially self-contained. As a result, certain prelimi-
nary results, definitions and derivations will appear more than once in this dissertation.



Chapter 2

The Distribution of Real Quadratic
Expressions in Normal Vectors

2.1 Introduction

Some basic results related to the decomposition of matrices and the definiteness of the
associated quadratic forms are presented in Section 2.2. Several distributional results
on quadratic forms in nonsingular normal vectors are included in Section 2.3. This sec-
tion contains a definition of quadratic forms in random variables and a representation
of nonsingular normal vectors in terms of standard normal vectors. Indefinite quadratic
expressions in nonsingular normal vectors are discussed in Section 2.4 which also in-
cludes results on their moments, cumulants, moment generating functions and cumulant
generating functions. Representations of singular quadratic forms and quadratic expres-
sions are respectively given in Sections 2.5 and 2.6. Approximate distributions based on
Pearson’s density and generalized gamma-type densities, as well as their polynomially
adjusted counterparts, are proposed in Section 2.7. This section also includes a closed
form representation of the exact density of a quadratic form whose associated matrix has
eigenvalues occurring in pairs, as well as closed form density functions for the general
case. In addition, a step-by-step algorithm for implementing the proposed density ap-
proximation methodology is provided and several numerical examples are presented for
various cases. The last section is specifically devoted to the evaluation of approximate
distributions for quadratic expressions in singular normal vectors.

2.2 Preliminary Results

Several relevant concepts and definitions as well as some preliminary results are included
in this section.

7
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Definition 2.2.1. Characteristic roots and vectors If A is an n×n matrix, then a non-
null vector x in <n is called a characteristic vector or eigenvector of A if Ax is a scalar
multiple of x, i.e.,

Ax = λx or (A− λI)x = 0 (2.1)

for some scalar λ. A necessary and sufficient condition for the existence of a non-null
vector x satisfying this equation is that λ be a root of the determinantal equation

|A− λI| = 0 . (2.2)

This equation is called the characteristic equation of A. As a polynomial in λ, the right-
hand side possesses n roots, distinct or not, which are called the characteristic roots or
eigenvalues of A and denoted ch(A).

Theorem 2.2.1. If A is an n× n matrix with eigenvalues λ1, . . . , λn, then the following
identities hold:

(i) tr(Ak) =
∑n

i=1 λ
k
i , k = 1, 2, . . .

(ii) |A| =
∏n

i=1 λi

(iii) |In ± A| =
∏n

i=1(1± λi) .

Theorem 2.2.2. Spectral decomposition theorem Let A be a real n × n symmetric
matrix. Then there exists an orthogonal matrix P = (p1, . . . ,pn) such that P ′AP is a
diagonal matrix whose diagonal elements λ1 ≥ λ2 ≥ · · · ≥ λn are the characteristic roots
of A, that is,

P ′AP =


λ1 0 · · · 0

0 λ2
...

...
. . .

...
0 · · · · · · λn

 ≡ L,

with pi = νi/(ν
′
iνi)

1
2 , νi being a characteristic vector corresponding to λi, i = 1, . . . , n.

It follows that A = PLP ′ or, equivalently, that

A =
n∑
i=1

λipip
′
i .

Theorem 2.2.3. Let A be a real n×n symmetric matrix. Then the characteristic roots
of A are all real.
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Theorem 2.2.4. Let A be a real n×n symmetric matrix. If the rank of A, ρ(A) = r < n,
then zero will be a characteristic root of multiplicity (n− r).

Theorem 2.2.5. If A is an idempotent matrix, then its characteristic roots are either
zero or one. If all are unities then A = In.

Definition 2.2.2. The moment-generating function of an n-dimensional random vector
X = (X1, . . . , Xn) is

MX(t) = E(et
′X) , t ∈ <n (2.3)

whenever this expectation exists. MX(0) always exists and is equal to 1.

A key problem with moment-generating functions is that moments and the moment-
generating function may not exist, as the integrals need not converge absolutely. By
contrast, the characteristic function always exists (because it is the integral of a bounded
function on a space of finite measure), and thus may be used instead.

Definition 2.2.3. The characteristic function of an n-dimensional random vector X =
(X1, . . . , Xn) is

ϕX(t) = E(ei t
′X) , t ∈ <n . (2.4)

Definition 2.2.4. Quadratic form Let X = (X1, . . . , Xn)′ denote a random vector with
mean µ = (µ1, . . . , µn)′ and covariance matrix Σ. The quadratic form in the random
variables X1, . . . , Xn with associated n× n symmetric matrix A = (aij) is defined as

Q(X) = Q(X1, . . . , Xn) = X′AX =
n∑
i=1

n∑
j=1

aijXiXj.

We note that if A is not symmetric, it suffices to replace this matrix by (A+A′)/2 in
any quadratic form where A′ denotes the transpose of A. Accordingly, it will be assumed
without any loss of generality that the matrices of the quadratic forms being considered
are symmetric. (Vectors are denoted by bold letters in this thesis.)

Definition 2.2.5. A central quadratic form is a quadratic form in random variables
whose means are all equal to zero (that is, in central random variables); otherwise the
quadratic form is said to be noncentral. Thus, when E(X) ≡ µ is a null vector, X′AX
is a central quadratic form in X; when µ is a non-null vector, X′AX is said to be a
noncentral quadratic form.
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Definition 2.2.6. Positive definite quadratic form A real quadratic form X ′AX is said
to be positive definite if X ′AX > 0 for all X 6= 0. A matrix A is said to be positive
definite, denoted by A > 0, if the quadratic form X ′AX is positive definite. A symmetric
matrix A is said to be negative definite if −A is positive definite.

Theorem 2.2.6. Let A be a symmetric n× n positive definite matrix; then

(i) A is nonsingular

(ii) the eigenvalues of A are all positive

(iii) A can be written as R′R where R is nonsingular; the converse also holds true

(iv) if B is a p× n matrix of rank p where p ≤ n, BAB′ will also be positive definite

(v) A−1 is also positive definite

(vi) there exists a symmetric positive definite matrix denoted, A
1
2 , called the symmetric

square root of A, which is such that

A = A
1
2A

1
2

with

A
1
2 = P ′L

1
2P

where P and L are as defined in Theorem 2.2.2, L
1
2 being equal to Diag(λ

1
2
1 , . . . , λ

1
2
n ) .

Definition 2.2.7. Positive semidefinite quadratic form A real quadratic form X ′AX
and its matrix A are said to be positive semidefinite if X ′AX ≥ 0 for all X and we shall
use the notation A ≥ 0 . The term nonnegative definite is used to indicate that the
quadratic form is either positive definite or positive semidefinite. In that case, all the
eigenvalues are nonnegative.

Definition 2.2.8. Negative semidefinite quadratic form A quadratic form and its matrix
A are said to be negative semidefinite if −A is positive semidefinite.

Theorem 2.2.7. Let A be a symmetric n× n positive semidefinite matrix, then

(i) its eigenvalues are nonnegative and so is its trace
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(ii) if A has rank ρ, it can be written as S ′S where S is a square matrix of rank ρ. The
converse also holds true

(iii) B′AB ≥ 0 for any n×m matrix B

(iv) there exists a symmetric positive semidefinite matrix denoted by A
1
2 and called

the symmetric square root of A such that

A = A
1
2A

1
2

(v) if ρ(A) = r ≤ n, exactly r eigenvalues of A will be positive while the remaining
(n− r) eigenvalues of A will be equal to zero.

Definition 2.2.9. Indefinite quadratic form A quadratic form and its matrix are said
to be indefinite if they do not belong to any of the categories, positive definite, positive
semidefinite, negative definite or negative semidefinite. An indefinite matrix has both
positive and negative eigenvalues.

Theorem 2.2.8. Cholesky’s Decomposition Let A be a symmetric n×n positive definite
matrix, then A has a unique factorization of the form A = TT ′ where T is a lower
triangular matrix whose diagonal elements are all positive. One can then write X ′AX as
(TX)′(TX).

The elements of the matrix T can easily be found by multiplying out TT ′ and
equating the resulting expressions to the elements of A. Other methods such as Doolittle’s
method and Crout’s method for factoring matrices into a product of triangular matrices
are discussed for instance in Burden and Faires (1988).

2.3 Quadratic Forms in Nonsingular Normal Vectors

Let X be a p × 1 normal random vector with mean µ and positive definite covariance
matrix Σ, that is, E(X) = µ and Cov(X) = E[(X−E(X))(X−E(X))′] = Σ > 0. Then,

letting Y = Σ−
1
2 X, one has

E(Y) = Σ−
1
2 µ, Cov(Y) = Σ−

1
2 Cov(X)Σ−

1
2 = Σ−

1
2 ΣΣ−

1
2 = I and Y ∼ Np(Σ−

1
2 µ, I) .

Thus, letting Z = Σ−
1
2 (X− µ),

Z ∼ Np(0, Ip) ,
and one can express the quadratic form Q(X) as follows:

Q(X) = X′AX = Y′Σ
1
2AΣ

1
2 Y = (Z + Σ−

1
2µ)′Σ

1
2AΣ

1
2 (Z + Σ−

1
2µ) .
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Note that one can use any decomposition of the form Σ = BB′ where B is p×p and
|B| 6= 0 instead of the symmetric square root Σ

1
2 . Then, the standardizing transformation

will be of the form Z = B−1(X − µ). For notational convenience, we shall use the

symmetric square root Σ
1
2 throughout this thesis.

Let P be a p× p orthogonal matrix which diagonalizes Σ
1
2AΣ

1
2 . That is,

P ′Σ
1
2AΣ

1
2P = Diag(λ1, . . . , λp), P ′P = PP ′ = I,

where λ1, . . . , λp are the eigenvalues of Σ
1
2AΣ

1
2 or equivalently those of ΣA. Note that

all orthogonal matrices are assumed to be orthonormal in this thesis. Letting U = P ′Z,
one has that

Z = PU where U ∼ Np(0, Ip) .
Then,

Q(X) = (Z + Σ−
1
2µ)′Σ

1
2AΣ

1
2 (Z + Σ−

1
2µ)

= (U + b)′P ′Σ
1
2AΣ

1
2P (U + b)

= (U + b)′Diag(λ1, . . . , λp)(U + b), (2.5)

where U′ = (U1, . . . , Up), U ∼ Np(0, I) and b′ = (P ′Σ−
1
2µ)′ = (b1, . . . , bp). Accordingly,

one has

Representation 2.3.1. Let X ∼ Np(µ,Σ), Σ > 0 and A = A′. Then

Q(X) = X′AX =

p∑
j=1

λj(Uj + bj)
2

=

p∑
j=1

λjU
2
j , wheneverµ = 0 (2.6)

where λ1, . . . , λp are the eigenvalues of Σ
1
2AΣ

1
2 , the Ui’s are independently distributed

standard normal variables, (b1, . . . , bp) ≡ b′ = (P ′Σ−
1
2µ)′, P being an orthogonal matrix

such that P ′Σ1/2AΣ1/2P = Diag(λ1, . . . , λp). Thus, Q(X) is distributed as a linear com-
bination of independent noncentral (central) chi-square variables when µ 6= 0 (µ = 0).

2.4 Indefinite Quadratic Expressions: The Nonsin-

gular Case

A decomposition of noncentral indefinite quadratic expressions in nonsingular normal
vectors is given in terms of the difference of two positive definite quadratic forms whose
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moments are determined from a certain recursive relationship involving their cumulants.
An integral representation of the density function of an indefinite quadratic form is also
provided.

We first show that an indefinite quadratic expression in a nonsingular normal random
vector can be expressed in terms of standard normal variables. Let X ∼ Np(µ, Σ), Σ > 0,
that is, X is distributed as a p-variate normal random vector with mean µ and positive
definite covariance matrix Σ . On letting Z ∼ Np(0, I), where I is a p×p identity matrix,

one has X = Σ
1
2 Z+µ where Σ

1
2 denotes the symmetric square root of Σ . Then, in light of

the spectral decomposition theorem, the quadratic expression Q∗(X) = X′AX + a′X + d
where A is a p× p real symmetric matrix, a is a p-dimensional constant vector and d is
a scalar constant can be expressed as

Q∗(X) = (Z + Σ−
1
2µ)′Σ

1
2AΣ

1
2 (Z + Σ−

1
2µ) + a′Σ

1
2 (Z + Σ−

1
2µ) + d

= (Z + Σ−
1
2µ)′PP ′Σ

1
2AΣ

1
2PP ′(Z + Σ−

1
2µ)

+a′Σ
1
2PP ′(Z + Σ−

1
2µ) + d (2.7)

where P is an orthogonal matrix that diagonalizes Σ
1
2AΣ

1
2 , that is, P ′Σ

1
2A Σ

1
2P =

Diag(λ1, . . . , λp), λ1, . . . , λp being the eigenvalues of Σ
1
2AΣ

1
2 in decreasing order with

λ1, . . . , λr positive, λr+1 = · · · = λr+θ = 0 and λr+1+θ, . . . , λp negative. Let vi de-

note the normalized eigenvector of Σ
1
2AΣ

1
2 corresponding to λi, i = 1, . . . , p, (such that

Σ
1
2AΣ

1
2 vi = λivi and vi

′vi = 1) and P = (v1, . . . ,vp). Letting U = P ′Z where U =

(U1, . . . , Up)
′ ∼ Np(0, I), b = P ′Σ−

1
2µ with b = (b1, . . . , bp)

′, g′ = (g1, . . . , gp) = a′Σ
1
2P

and c = b′Diag(λ1, . . . , λp)b + g′b + d , one has

Q∗(X) = (U + b)′Diag(λ1, . . . , λp)(U + b) + a′Σ
1
2P (U + b) + d

= U′Diag(λ1, . . . , λp)U + (2b′Diag(λ1, . . . , λp) + g′)U + c

=

p∑
j=1

λjU
2
j +

p∑
j=1

kjUj + c

=
r∑
j=1

λjU
2
j +

r∑
j=1

kjUj −
p∑

j=r+θ+1

|λj|U2
j +

p∑
j=r+θ+1

kjUj

+
r+θ∑
j=r+1

kjUj + c

=
r∑
j=1

λj

(
Uj +

kj
2λj

)2

−
p∑

j=r+θ+1

|λj|
(
Uj +

kj
2λj

)2
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+
r+θ∑
j=r+1

kjUj +
(
c−

r∑
j=1

k2
j

4λj
−

p∑
j=r+θ+1

k2
j

4λj

)

≡ Q1(V+)−Q2(V−) +
r+θ∑
j=r+1

kjUj + κ

≡ Q1(V+)−Q2(V−) + T, (2.8)

where k′ = (k1, . . . , kp) = 2b′Diag(λ1, . . . , λp) + g′, κ =
(
c −

∑r
j=1 k

2
j/(4λj) −∑p

j=r+θ+1 k
2
j/(4λj)

)
, T = (

∑r+θ
j=r+1 gjUj + κ) ∼ N (κ ,

∑r+θ
j=r+1 g

2
j ), Q1(V+) and Q2(V−)

are positive definite quadratic forms with V+ = (U1 + k1/(2λ1), . . . , Ur + kr/(2λr))
′ ∼

Nr(m1, I), V− = (Ur+θ+1 + kr+θ+1/(2λr+θ+1), . . . , Up +kp/(2λp))
′ ∼ Np−r−θ(m2, I),

where m1 = (k1/(2λ1), . . . , kr/(2λr))
′ and m2 = (kr+θ+1/(2λr+θ+1), . . . , kp/(2λp))

′, θ be-
ing number of zero eigenvalues of AΣ . It should be emphasized that the three terms in
Representation (2.8) are independently distributed, which facilitates the determination
of the distribution of Q∗(X).

In particular, when a = 0 and d = 0, one has

Q(X) = X′AX =

p∑
j=1

λj(Uj + bj)
2

=
r∑
j=1

λj(Uj + bj)
2 −

p∑
j=r+θ+1

|λj|(Uj + bj)
2

≡ Q1(Y+)−Q2(Y−) , (2.9)

where Y+ = (U1 + b1, . . . , Ur + br)
′ ∼ Nr(m1, I), Y− = (Ur+θ+1 + br+θ+1, . . . , Up + bp)

′ ∼
Np−r−θ(m2, I) with m1 = (b1, . . . , br)

′, m2 = (br+θ+1, . . . , bp)
′ and b = (b1, . . . , bp)

′ =
P ′Σ−1/2µ . Thus, a noncentral indefinite quadratic expression, Q∗(X), can be expressed
as a difference of independently distributed linear combinations of independent non-
central chi-square random variables having one degree of freedom each plus linear com-
bination of normal random variables, or equivalently, as the difference of two positive
definite quadratic forms plus linear combination of normal random variables. It is seen
from (2.7) that, in the nonsingular case, a noncentral indefinite quadratic form can be
represented as the difference of two positive definite quadratic forms. It should be noted
that the chi-square random variables are central whenever µ = 0. When the matrix A
is positive semidefinite, so is the quadratic form Q(X), and then, Q(X) ∼ Q1(Y+), as
defined in Equation (2.9).

The cumulants and moments of quadratic forms and quadratic expressions, which
are useful for determining the parameters of the distributions involved in the density
approximations, are discussed in the next section.
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2.4.1 Moments and Cumulants of Quadratic Expressions

Representations of the moment generating functions and the moments of quadratic ex-
pressions in nonsingular normal vectors are included in this section. As shown in Mathai
and Provost (1992), if A be a real symmetric p× p matrix, X ∼ Np(µ,Σ), Σ > 0, a′ be
a p dimensional constant vector and d be a scalar constant, then the moment generating
function of Q∗(X) = X′AX + a′X + d is

MQ∗(t) = |I − 2tΣ
1
2AΣ

1
2 |−

1
2 exp{t(d+ µ′Aµ+ a′µ)

+(t2/2)(Σ
1
2 a + 2Σ

1
2Aµ)′(I − 2tΣ

1
2AΣ

1
2 )−1(Σ

1
2 a + 2Σ

1
2Aµ)} (2.10)

and that of Q(X) = X′AX is

MQ(t) = |I − 2tAΣ|−
1
2 exp

{
−1

2
µ′[I − (I − 2tAΣ)−1]Σ−1µ

}
. (2.11)

In terms of the eigenvalues of AΣ, the moment generating functions of Q(X) =
X′AX and Q(X)∗ = X′AX + a′X + d can respectively be expressed as

MQ(t) = exp
{
−1

2

p∑
j=1

b2
j

}
exp
{1

2

p∑
j=1

b2
j(1− 2tλj)

−1
} p∏
j=1

(1− 2tλj)
− 1

2

= exp
{
t

p∑
j=1

b2
jλj(1− 2tλj)

−1
} p∏
j=1

(1− 2tλj)
− 1

2 , for µ 6= 0

=

p∏
j=1

(1− 2tλj)
− 1

2 for µ = 0 (2.12)

and

MQ∗(t) = exp
{
t(d+ µ′Aµ+ a′µ)

+
t2

2

p∑
j=1

b∗2j (1− 2tλj)
−1
} p∏
j=1

(1− 2tλj)
− 1

2 , (2.13)

where P ′Σ
1
2AΣ

1
2P = Diag(λ1, . . . , λp), PP

′ = P ′P = I, P ′Σ−
1
2µ = b = (b1, . . . , bp)

′,

P ′(Σ
1
2 a + 2Σ

1
2Aµ) = b∗ = (b∗1, . . . , b

∗
p)
′ .

We now provide explicit expressions for the cumulants of a quadratic expression and
discuss some special cases of interest.
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Definition 2.4.1. Let M(t) be the moment generating function of a random variable X
and let M(t1, . . . , tk) denote the joint moment generating function of k random variables
X1, . . . , Xk. Then the logarithms lnM(t) and lnM(t1, . . . , tk) are defined as the cumu-
lant generating function of X and the joint cumulant generating function of X1, . . . , Xk,
respectively.

Definition 2.4.2. If lnM(t) of Definition 2.3.1 admits a power series expansion, then
the coefficient of ts/s! in the power series of lnM(t) is defined as the sth cumulant of X,
which is denoted by k(s). That is,

lnM(t) =
∞∑
s=1

k(s)
ts

s!
.

If lnM(t) is differentiable, then

k(s) =
ds

dts
[lnM(t)]|t=0 .

The sth cumulant, k(s), of Q∗(X) = X′AX + a′X + d is specified in the following result.

Result 2.4.1. Let X ∼ Np(µ,Σ), Σ > 0, A = A′, a′ be a p dimensional constant
vector, d be a scaler constant, Q∗(X) = X′AX + a′X + d and Q(X) = X′AX; then sth

cumulants of Q∗(X) and Q(X) are, respectively,

k∗(s) = 2s−1s!
{tr(AΣ)s

s
+

1

4
a′(ΣA)s−2Σa + µ′(AΣ)s−1Aµ

+a′(ΣA)s−1Aµ
}
, s ≥ 2

= tr(AΣ) + µ′Aµ+ a′µ+ d, s = 1 ; (2.14)

and

k(s) = 2s−1s!
{tr(AΣ)s

s
+ µ′(AΣ)s−1Aµ

}
, s ≥ 2

= tr(AΣ) + µ′Aµ , s = 1. (2.15)

For any random variable Y , k(1) = E(Y ) and k(2) = Var(Y ) . We observe that for the
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quadratic form, Q(X) = X′AX, one has

k(s) = 2s−1s!
(

tr(AΣ)s/s + µ′(AΣ)s−1Aµ
)

= 2s−1s!

p∑
j=1

λsj(b
2
j + 1/s)

= 2s−1(s− 1)!

p∑
j=1

λsj(sb
2
j + 1)

= 2s−1(s− 1)! θs (2.16)

where λ1, . . . , λp are the eigenvalues of Σ
1
2AΣ

1
2 , b′ = (b1, . . . , bp) = (P ′Σ−

1
2µ)′ , tr(·)

denotes the trace of (·) and θs =
∑p

j=1 λ
s
j(sb

2
j + 1), s = 1, 2, . . . . Note that tr(AΣ)s =∑p

j=1 λ
s
j .

As explained in Smith (1995), the moments of a random variable can be obtained
from its cumulants by means of the recursive relationship that is specified by Equation
(2.17). Accordingly, the hth moment of Q∗(X) is given by

µ∗h =
h−1∑
i=0

(h− 1)!

(h− 1− i)! i!
k∗(h− i)µ∗i , (2.17)

where k∗(s) is as given in Equation (2.14) and µ∗h denotes the hth moment about the
origin.

2.5 Quadratic Forms in Singular Normal Vectors

Singular covariance matrices occur in many contexts. For example, consider a standard
linear regression model y = Xβ+ε where y ∈ Rn, X is a non stochastic n×k matrix of full
column rank and ε ∼ Nn(0, σ2In), In denoting identity matrix order n. The distribution
of the residuals, e = y−Xβ̂ = (In −X(X ′X)−1X ′)y, where β̂ = (X ′X)−1X ′y, is

e ∼ Nn
(
0 , σ2(In −X(X ′X)−1X ′)

)
where the covariance matrix, σ2(In −X(X ′X)−1X ′), is of rank n− k .

Another example of application of singular covariance matrices pertains to economic
data, which may be subject to constraints such as the requirement for a company’s profits
equal its turnover expenses. If, for example, the data vector X = (X1, . . . , Xk)

′ must
satisfy the restriction X1 + · · ·+Xk−1 = Xk, then Σ, the covariance matrix of X, will be
singular.
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When Σp×p is a singular matrix of rank r < p, we make use of the spectral de-
composition theorem to express Σ as UWU ′ where W is a diagonal matrix whose first
r diagonal elements are positive, the remaining diagonal elements being equal to zero.
Next, we let B∗p×p = UW 1/2 and remove the p − r last columns of B∗, which are null
vectors, to obtain the matrix Bp×r. Then, it can be verified that Σ = BB′.

Let X be a p × 1 random vector with E(X) = µ and Cov(X) = Σ of rank r ≤ p.
Since Σ is positive semidefinite and symmetric, as previously explained, one can write
Σ = BB′ where B is a p× r matrix of rank r. Now, consider the linear transformation

X = µ+B Z1 where Z1 ∼ Nr(0, I) ;

then, one has the following decomposition of the quadratic form Q(X):

Q(X) = X′AX = (µ+BZ1)′A(µ+BZ1)

= µ′Aµ+ 2 Z′1B
′Aµ+ Z′1B

′ABZ1, whenever A = A′.

Let P be an orthogonal matrix such that P ′B′ABP = Diag(λ1, . . . , λr), λ1, . . . , λr
being the eigenvalues of B′AB in decreasing order, with λr1+1, . . . , λr1+θ denoting null
eigenvalues, if any. Note that when B′AB = O, the null matrix, Q(X) reduces to a linear
form. Then, assuming that B′AB 6= O, one has Z ≡ P ′Z1 ∼ Nr(0, I), and

Q(X) = µ′Aµ+ 2Z′P ′B′Aµ+ Z′Diag(λ1, . . . , λr)Z .

Thus, the quadratic form Q(X) = X′AX has the following representation.

Representation 2.5.1. Letting A = A′, X be a p × 1 normal vector with E(X) =
µ , Cov(X) = Σ ≥ 0 , rank(Σ) = r ≤ p, Σ = BB′ where B is a p × r matrix and
assuming that B′AB 6= O, one has

Q(X) = X′AX =
r∑
j=1

λjZ
2
j + 2

r∑
j=1

b∗jZj + c∗

=

r1∑
j=1

λjZ
2
j + 2

r1∑
j=1

b∗jZj −
r∑

j=r1+θ+1

|λj|Z2
j + 2

r∑
j=r1+θ+1

b∗jZj

+2

r1+θ∑
j=r1+1

b∗jZj + c∗

=

r1∑
j=1

λj

(
Zj +

b∗j
λj

)2

−
r∑

j=r1+θ+1

|λj|
(
Zj +

b∗j
λj

)2

+ 2

r1+θ∑
j=r1+1

b∗jZj

+
(
c∗ −

r1∑
j=1

b∗2j
λj
−

r∑
j=r1+θ+1

b∗2j
λj

)
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≡ Q1(W1)−Q2(W2) + 2

r1+θ∑
j=r1+1

b∗jZj + κ∗

≡ Q1(W1)−Q2(W2) + T ∗, (2.18)

where Q1(W1) and Q2(W2) are positive definite quadratic forms with W1 = (W1, . . . ,
Wr1)

′, W2 = (Wr1+θ+1, . . . ,Wr)
′, Wj = Zj + b∗j/λj, j = 1, . . . , r1, r1 + θ + 1, . . . , r, b∗

′
=

(b∗1, . . . , b
∗
r) = µ′A′BP, Z = (Z1, . . . , Zr)

′ ∼ Nr(0, I), P ′B′ABP = Diag(λ1, . . . , λr), PP
′

= P ′P = I, c∗ = µ′Aµ, κ∗ =
(
c∗ −

∑r1
j=1 b

∗2
j /λj −

∑r
j=r1+θ+1 b

∗2
j /λj

)
, λj > 0, j =

1, . . . , r1; λj = 0, j = r1 + 1, . . . , r1 + θ; λj < 0, j = r1 + θ + 1, . . . , r, and T ∗ =

2
∑r1+θ

j=r1+1 b
∗
jZj + κ∗ ∼ N (κ∗ , 4

∑r1+θ
j=r1+1 b

∗2
j ) .

2.6 Quadratic Expressions in Singular Normal Vec-

tors

Let the p × 1 random vector X be a singular p-variate normal random variables with
E(X) = µ and Cov(X) = Σ = BB′ where B is p × r of rank r ≤ p . Consider the
quadratic expression

Q∗(X) = X′AX + a′X + d (2.19)

where A = A′ , a is a p-dimensional vector and d is a constant.

Representation of Q∗(X) and its cumulants are provided in next two subsections.

2.6.1 A Decomposition of Q∗(X)

Letting X = µ+B Z where Z ∼ Nr(0, I), one can write

Q∗(X) ≡ Q∗(Z) = (µ+BZ)′A(µ+BZ) + a′(µ+BZ) + d

= µ′Aµ+ 2µ′A′BZ + Z′B′ABZ + a′BZ + a′µ+ d .

Let P be an orthogonal matrix such that P ′B′ABP = Diag(λ1, . . . , λr), with λ1, . . . , λr
being the eigenvalues of B′AB, PP ′ = P ′P = I, m′ = a′BP , b∗

′
= µ′ABP and

c1 = µ′Aµ + a′µ + d and W = P ′Z ∼ Nr(0, I) . Then, assuming that B′AB 6= O, one
has

Q∗(X) ≡ Q∗(W) = W′P ′B′ABPW + 2µ′A′BPW + a′BPW + µ′Aµ+ a′µ+ d

= W′Diag(λ1, . . . , λr)W + (2b∗
′
+ m′)W + c1 .

which yields the decomposition that follows.



2.6. Quadratic Expressions in Singular Normal Vectors 20

Representation 2.6.1. Let A = A′, X be a p-dimensional normal vector with E(X) =
µ, Cov(X) = Σ ≥ 0, rank(Σ) = r ≤ p, Σ = BB′ where B is a p × r matrix, a is a p-
dimensional vector, P ′B′ABP = Diag(λ1, . . . , λr) with PP ′ = P ′P = I, λ1, . . . , λr1 be
the positive eigenvalues B′AB, λr1+1 = · · · = λr1+θ = 0, λr1+θ+1, . . . , λr be the negative
eigenvalues of B′AB, m′ = (m1, . . . ,mr) = a′BP, b∗

′
= (b∗1, . . . , b

∗
r) = µ′A′BP, and d is

a real constant, and assume that B′AB 6= O, then

Q∗(X) = X′AX + a′X + d

≡ Q∗(W) =
r∑
j=1

λjW
2
j + 2

r∑
j=1

(1

2
mj + b∗j

)
Wj + c1

=

r1∑
j=1

λjW
2
j + 2

r1∑
j=1

njWj −
r∑

j=r1+θ+1

|λj|W 2
j + 2

r∑
j=r1+θ+1

njWj

+2

r1+θ∑
j=r1+1

njWj + c1

=

r1∑
j=1

λj

(
Wj +

nj
λj

)2

−
r∑

j=r1+θ+1

|λj|
(
Wj +

nj
λj

)2

+ 2

r1+θ∑
j=r1+1

njWj

+
(
c1 −

r1∑
j=1

n2
j

λj
−

r∑
j=r1+θ+1

n2
j

λj

)

≡ Q1(W+)−Q2(W−) + 2

r1+θ∑
j=r1+1

njWj + κ1

≡ Q1(W+)−Q2(W−) + T1, (2.20)

where W′ = (W1, . . . ,Wr) ∼ Nr(0, I), Q1(W+) and Q2(W−) are positive defi-
nite quadratic forms with W+ = (W1 + n1/λ1, . . . ,Wr1 + nr1/λr1)

′ ∼ Nr1(ν1, I),
W− = (Wr1+θ+1 + nr1+θ+1/λr1+θ+1, . . . ,Wr + nr/λr)

′ ∼ Nr−r1−θ (ν2, I) with ν1 =
(n1/λ1, . . . , nr1/λr1)

′ and ν2 = (nr1+θ+1/λr1+θ+1, . . . , nr/λr)
′, θ being number of null

eigenvalues of B′AB, nj = 1
2
mj + b∗j , c1 = µ′Aµ + a′µ + d, κ1 =

(
c1 −

∑r1
j=1 n

2
j/λj −∑r

j=r1+θ+1 n
2
j/λj

)
and T1 = (2

∑r1+θ
j=r1+1 njWj + κ1) ∼ N (κ1 , 4

∑r1+θ
j=r1+1 n

2
j) .

When µ = 0, one has

Q∗(X) ≡ Q∗(W) =
r∑
j=1

λjW
2
j +

r∑
j=1

mjWj + d
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=

r1∑
j=1

λjW
2
j +

r1∑
j=1

mjWj −
r∑

j=r1+θ+1

|λj|W 2
j +

r∑
j=r1+θ+1

mjWj

+

r1+θ∑
j=r1+1

mjWj + d

=

r1∑
j=1

λj

(
Wj +

mj

2λj

)2

−
r∑

j=r+θ+1

|λj|
(
Wj +

mj

2λj

)2

+

r1+θ∑
j=r1+1

mjWj +
(
d−

r1∑
j=1

m2
j

4λj
−

r∑
j=r1+θ+1

m2
j

4λj

)

≡ Q1(W+
1 )−Q2(W−

1 ) +

r1+θ∑
j=r1+1

mjWj + κ∗1

≡ Q1(W+
1 )−Q2(W−

1 ) + T ∗1 , (2.21)

where Q1(W+
1 ) and Q2(W−

1 ) are positive definite quadratic forms with W+
1 = (W1 +

m1/(2λ1), . . . ,Wr1 + mr1/(2λr1))
′ ∼ Nr1(µ1, I), µ1 = (m1/(2λ1), . . . , mr1/(2λr1))

′,
W−

1 = (Wr1+θ+1 + mr1+θ+1/(2λr1+θ+1), . . . ,Wr + mr/(2λr))
′ ∼ Nr−r1−θ(µ2, I), µ2 =

(mr1+θ+1/(2λr1+θ+1), . . . ,mr/(2λr))
′, κ∗1 =

(
d −

∑r1
j=1m

2
j/(4λj) −

∑r
j=r1+θ+1m

2
j/(4λj)

)
and T ∗1 = (

∑r1+θ
j=r1+1 mjWj + κ∗1) ∼ N (κ∗1 ,

∑r1+θ
j=r1+1m

2
j) .

2.6.2 Cumulants and Moments of Quadratic Expressions in Sin-
gular Normal Vectors

The cumulant generating functions of Q∗ = X′AX+a′X+d and Q = X′AX where A =
A′, X has a singular p-variate normal distribution with E(X) = µ, Cov(X) = Σ = BB′,
with Bp×r of rank r, a is a p–dimensional constant vector and d is a scalar constant, are
respectively

ln(MQ∗(t)) = t(d+ a′µ+ µ′Aµ) +
1

2

∞∑
j=1

(2t)j

j
tr(AΣ)j

+
∞∑
j=0

(2t)j+2
{1

8
a′(ΣA)jΣ a +

1

2
µ′ (AΣ)j+1Aµ

+
1

2
a′(ΣA)j+1µ

}
(2.22)

and
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ln(MQ(t)) = −1

2

r∑
j=1

ln(1− 2 tλj) + c∗t+ 2 t2
r∑
j=1

b∗2j
(1− 2 tλj)

where λ1, . . . , λp are the eigenvalues of B′AB, B′AB 6= O, c∗ = µ′Aµ, b∗ = P ′B′Aµ,
and P is an orthogonal matrix such that P ′B′ABP = Diag(λ1, . . . , λr).

It is also shown in Mathai and Provost (1992) that sth cumulant of Q∗ is

k∗(s) = 2s−1s!
{

(1/s) tr(B′AB)s + (1/4) a′B (B′AB)s−2B′a

+ µ′AB(B′AB)s−2B′Aµ+ a′B(B′AB)s−2B′Aµ
}

= 2s−1s!
{

(1/s)tr(AΣ)s + (1/4)a′(ΣA)s−2Σ a

+µ′(AΣ)s−1Aµ+ a′(ΣA)s−1µ
}
, for s ≥ 2.

= tr(AΣ) + µ′Aµ+ a′µ+ d, for s = 1 .

(2.23)

The moments of Q∗(X) can then be readily determined via the recursive relationship
given in Equation (2.17) .

2.7 Approximating the Distribution of Quadratic

Forms

Since the representations of indefinite quadratic expressions involve Q1−Q2 where Q1 and
Q2 are independently distributed positive definite quadratic forms, some approximations
to the density function of Q1−Q2 are provided in Sections 2.7.1 and 2.7.2 . An algorithm
describing proposed methodology is provided in Section 2.7.5 .

Letting Q(X) = Q1(X1) − Q2(X2) and hQ(q) I<(q), fQ1(q1) I(τ1,∞)(q1) and fQ2(q2)
I(τ2,∞)(q2) respectively denote the approximate densities of Q(X), Q1(X1) > 0 and
Q2(X2) > 0 , where X′ = (X′1 , X′2) and X′1 and X′2 are independently distributed,
IA(.) being the indicator function with respect to the set A, an approximation to den-
sity function of the indefinite quadratic form Q(X) can be obtained as follows via the
transformation variables technique:

hQ(q) =

{
hp(q) for q ≥ τ1 − τ2

hn(q) for q < τ1 − τ2,
(2.24)

where
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hp(q) =

∫ ∞
q+τ2

fQ1(y)fQ2(y − q)dy (2.25)

and

hn(q) =

∫ ∞
τ1

fQ1(y)fQ2(y − q)dy . (2.26)

These integral representations hold whether τ1 and τ2 are positive or negative and whether
τ1 > τ2 or τ1 ≤ τ2.

Note that in the case of gamma-type density functions without location parameters,
τ1 and τ2 are equal to zero in Equations (2.24), (2.25) and (2.26).

2.7.1 Approximation via Pearson’s Approach

Let σQ denote the standard deviation of the positive definite quadratic form Q(X).
According to Pearson (1959), one has Q(X) ≈ U with

U ∼
(χ2

ν − ν√
2ν

)
σQ + E(Q(X)) (2.27)

where the symbol ≈ means “is approximately distributed as” and ν is such that both
Q(X) and U have equal third cumulants. Since E(χ2

ν) = ν and Var(χ2
ν) = 2ν,

E(U) = E(Q(X)) and Var(U) = σ2
Q. Letting θi be as defined in Equation (2.16), the

third cumulant of U is 8ν σ3
Q/(2ν)3/2 = 23/2k(2)3/2/

√
ν = 8θ

3/2
2 /
√
ν, while the first and

second cumulants of U coincide with those of Q(X). On equating the third cumulants of
U and Q(X), which according to (2.16) is 8 θ3, one has

ν =
θ3

2

θ2
3

. (2.28)

Thus,

Q(X) ≈ θ3

θ2

χ2
ν −

θ3
2

θ2
3

+ θ1 , (2.29)

or equivalently,

Q(X) ≈ c χ2
ν + τ, (2.30)
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where c = θ3
θ2

and τ = − θ32
θ23

+ θ1. That is, Pearson’s approximant to the exact density of

Q(X) is given by

fQ(q) =
(q − τ)ν/2−1 e−(q−τ)/(2c)

Γ(ν
2
)(2c)ν/2

I(τ,<)(q) . (2.31)

Accordingly, the density function of the indefinite quadratic form Q(X) = Q1(X)−
Q2(X), where Q1(X) and Q2(X) are positive definite quadratic forms, can be approx-
imated by making use of Equation (2.24) where fQ1(·) and fQ2(·) respectively denote
the Pearson-type density approximants of Q1(X) and Q2(X) with parameters τi, ci and
νi/2, i = 1, 2, which are available from Equation (2.31). Explicit representations of hp(q)
and hn(q) as specified by Equations (2.25) and (2.26), respectively, can be obtained as
follows:

hn(q) =

∫ ∞
τ1

fQ1(y) fQ2(y − q) dy , q < 0

=

∫ ∞
τ1

(y − τ1)ν1/2−1 (y − q − τ2)ν2/2−1 e−(y−τ1)/(2c1) e−(y−q−τ2)/(2c2)

Γ(ν1
2

) Γ(ν2
2

) (2c1)ν1/2 (2c2)ν2/2
dy

where τ1 − τ2 > q, ν1 > 0, ν2 > 0, c1 > 0, c2 > 0; and

hp(q) =

∫ ∞
q+τ2

fQ1(y) fQ2(y − q) dy , q > 0

=

∫ ∞
q+τ2

(y − τ1)ν1/2−1 (y − q − τ2)ν2/2−1 e−(y−τ1)/(2c1) e−(y−q−τ2)/(2c2)

Γ(ν1
2

) Γ(ν2
2

) (2c1)ν1/2 (2c2)ν2/2
dy

(2.32)

where τ1 − τ2 < q , ν1 > 0, ν2 > 0, c1 > 0, c2 > 0. One can express hn(q) and hp(q)
in terms of the Whittaker function, which has the following representation, see Section
9.220 in Gradshteyn and Ryzhik (1980):

Wλ, µ(z) =
zλ e−z/2

Γ(µ− λ+ 1
2
)

∫ ∞
0

tµ−λ−
1
2 e−t (1 +

t

z
)µ+λ− 1

2 dt , (2.33)

which is real for all positive real-valued z and Re(µ − λ) > −1
2
. The value at zero is

easily obtained by evaluating Wλ, µ(z) at ε > 0 and letting ε tend to zero.

Letting y − q − τ2 = x in Equation (2.32) and then replacing (c1 + c2)/(2c1 c2) by ϑ
and ω by q + τ2 − τ1, one has
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hp(q) =

∫ ∞
0

(x+ ω)
ν1
2
−1 x

ν2
2
−1 e−(x+ω)/(2c1) e−x/(2c2)

Γ(ν1
2

) Γ(ν2
2

) (2c1)
ν1
2 (2c2)

ν2
2

dx

=

∫ ∞
0

(1 + x
ω

)
ν1
2
−1ω

ν1
2
−1 x

ν2
2
−1 e−x( 1

2c1
+ 1

2c2
) e−ω/(2c1)

Γ(ν1
2

) Γ(ν2
2

) (2c1)
ν1
2 (2c2)

ν2
2

dx

=
ω
ν1
2
−1 e−ω/(2c1)

Γ(ν1
2

) Γ(ν2
2

) (2c1)
ν1
2 (2c2)

ν2
2

∫ ∞
0

(1 +
x

ω
)
ν1
2
−1 x

ν2
2
−1 e−xϑ dx .

Now, letting xϑ = t, ν1
2
− 1 = µ − λ − 1

2
and ν2

2
− 1 = µ + λ − 1

2
, which implies that

λ = (ν1 − ν2)/4 and µ = (ν2 + ν1 − 2)/4, one has

hp(q) =
ω
ν1
2
−1 e−ω/(2c1) ϑ−

ν2
2 (ϑω)−λ eϑω/2

Γ(ν1
2

) (2c1)
ν1
2 (2c2)

ν2
2

×(ϑω)λ e−ϑω/2

Γ(µ− λ+ 1
2
)

∫ ∞
0

tµ−λ−
1
2 (1 +

t

ϑ ω
)µ+λ− 1

2 e−t dt

=
ω
ν1
2
−1 e−ω/(2c1) ϑ−

ν2
2 (ϑω)−λ eϑω/2

Γ(ν1
2

) (2c1)
ν1
2 (2c2)

ν2
2

W(ν1−ν2)/4,(ν2+ν1−2)/4(ω ϑ)

=
ω(ν1+ν2−4)/4 eω/(ϑ/2−1/(2c1)) ϑ−(ν1+ν2)/4

Γ(ν1
2

) (2c1)
ν1
2 (2c2)

ν2
2

W(ν1−ν2)/4,(ν2+ν1−2)/4(ω ϑ)

=
ϑ−(ν1+ν2)/4

Γ(ν1
2

) (2c1)
ν1
2 (2c2)

ν2
2

(q + τ2 − τ1)(ν1+ν2−4)/4 e(q+τ2−τ1)/(ϑ/2−1/(2c1))

×W(ν1−ν2)/4,(ν2+ν1−2)/4((q + τ2 − τ1)ϑ) . (2.34)

Since hn(q; ν1
2
, c1,

ν2
2
, c2) = hp(−q; ν22 , c2,

ν1
2
, c1), one has

hn(q) =
ϑ−(ν2+ν1)/4

Γ(ν2
2

) (2c2)
ν2
2 (2c1)

ν1
2

(−q + τ1 − τ2)(ν2+ν1−4)/4 e(−q+τ1−τ2)/(ϑ/2−1/(2c2))

×W(ν2−ν1)/4,(ν1+ν2−2)/4((−q + τ1 − τ2)ϑ) . (2.35)

Note that the condition Re(µ−λ) > −1
2

in (2.33) is not restrictive since µ−λ+ 1
2

= ν2/2
in Equation (2.34), µ − λ + 1

2
= ν1/2 in Equation (2.35), and ν1 and ν2 are positive

parameters. Thus, the density function of Q1(X)−Q2(X) is
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hQ(q) = hn(q) I(−∞, τ1)(q) + hp(q) I(τ2,∞)(q) .

The corresponding cumulative distribution function is obtained by numerical inte-
gration. When ν1 and ν2 are equal to two, a limiting procedure has to be applied to
determine the cumulative distribution function.

2.7.2 Approximations via Generalized Gamma Distributions

Positive definite quadratic forms are approximated by gamma-type distributions in this
section. First, let us consider the gamma distribution whose density function is given by

ψ(x) =
xα−1e−x/β

Γ(α)βα
I(0 ,∞)(x) (2.36)

where α > 0 and β > 0 can be specified as follows on the basis of µ1 and µ2, the first
two integer moments of the distribution being approximated:

α = µ2
1/(µ2 − µ2

1) and β = µ2/µ1 − µ1 .

The generalized gamma density function that we are considering has the following
parameterization:

ψ(x) =
γ

βαγΓ(α)
xαγ−1e−(x/β)γ I(0 ,∞)(x) (2.37)

where α > 0, β > 0 and γ > 0. Denoting its integer moments by mj, j = 0, 1, . . . , one
has

mj =
βj Γ(α + j/γ)

Γ(α)
. (2.38)

Its three parameters can readily be determined by solving numerically the equations,

µi = mi , for i = 1, 2, 3, (2.39)

where µi denotes the ith moment of a certain positive definite quadratic form Q.

A four-parameter gamma, referred to as a shifted generalized gamma density func-
tion, is given by

ψ(x) =
γ

βαγΓ(α)
(x− τ)αγ−1e−(x−τ

β
)γ I(τ,∞)(x) (2.40)
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where α > 0, β > 0 and γ > 0 . One can determine the moments of the shifted
generalized gamma distribution by applying the binomial expansion to the moments of
the generalized gamma .

LetQ1(Y+) andQ2(Y−) be two independently distributed positive definite quadratic
forms such as those defined in Equation (2.9) . Then, an approximate density function
for Q1(Y+) − Q2(Y−) can be obtained from Equation (2.24) . Consider the non-shifted
gamma distribution whose density function is given in Equation (2.36). Let αi and βi
be determined from the first two moments of Qi(X), i = 1, 2 . In this case, the negative
part of the density function of Q(X) is

hn(q) =

∫ ∞
−q

fQ1(y) fQ2(y − q) dy , q < 0

=

∫ ∞
0

yα1−1 (y − q)α2−1 e−y/β1 e−(y−q)/β2

Γ(α1) Γ(α2) βα1
1 βα2

2

dy

the positive part of the density being

hp(q) =

∫ ∞
q

fQ1(y) fQ2(y − q) dy , q > 0

=

∫ ∞
q

yα1−1 (y − q)α2−1 e−y/β1 e−(y−q)/β2

Γ(α1) Γ(α2) βα1
1 βα2

2

dy

where α1 > 0, α2 > 0, β1 > 0 and β2 > 0. One can express hp(q) and hn(q) in terms
of the Whittaker function by letting τ1 = 0, τ2 = 0, 2c1 = β1, ν1/2 = α1, 2c2 = β2 and
ν2/2 = α2 in (2.34) and (2.35), respectively, as follows:

hp(q) =
ϑ
−(α1+α2)/2
1

Γ(α1) βα1
1 βα2

2

q(α1+α2−2)/2 eq(ϑ1/2−1/β1)

×W(α1−α2)/2,(α1+α2−1)/2(ϑ1q) (2.41)

and

hn(q) =
ϑ
−(α1+α2)/2
1

Γ(α2) βα1
1 βα2

2

(−q)(α1+α2−2)/2 e−q(ϑ1/2−1/β2)

×W(α2−α1)/2,(α1+α2−1)/2(−ϑ1q) (2.42)

where ϑ1 = β1+β2
β1β2

, ϑ1q 6= 0. A limiting procedure yields the density function at the point
zero. Once again, it should be pointed out that the Whittaker function as specified by
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(2.33) is defined for Re(µ − λ) > −1
2

which merely requires that α1 and α2 be positive
in (2.41) and (2.42).

Thus, the density function of Q1(Y+) −Q2(Y−) is

hQ(q) = hn(q) I(−∞,0)(q) + hp(q) I(0,∞)(q) . (2.43)

The corresponding cumulative distribution function of Q(X) is obtained by numerical
integration. When α1 = 1 or α2 = 1, the cumulative distribution function is determined
by letting αi = 1± ε and ε tend 0 for i = 1, 2 .

2.7.3 Polynomially Adjusted Density Functions

In this section, the density approximations are adjusted with polynomials whose coef-
ficients are such that the first n moments of the approximation coincide with the first
moments of a given quadratic form. The larger n is, the more accurate the approxima-
tion. Accordingly, the value of n can be increased until a satisfactory level of accuracy
is attained.

In order to approximate the density function of a noncentral quadratic form Q(X),
one should first approximate the density functions of the two positive definite quadratic
forms, Q1(X) and Q2(X) as defined in (2.9). According to Equation (2.17), the moments
of the positive definite quadratic form Q1(X) denoted by µQ1(·) can be obtained recur-
sively from the cumulants. Then, on the basis of the first n moments of Q1(X), a density
approximation of the following form is assumed for Q1(X):

fn(x) = ϕ(x)
n∑
j=0

ξjx
j (2.44)

where ϕ(x) is an initial density approximant referred to as base density function, which
could be a gamma, generalized gamma, generalized shifted gamma or Pearson-type den-
sity function.

In order to determine the polynomial coefficients, ξj, we equate the hth moment of
Q1(X) to the hth moment of the approximate distribution specified by fn(x). That is,

µQ1(h) =

∫ ∞
τ1

xhϕ(x)
n∑
j=0

ξjx
jdx

=
n∑
j=0

ξj

∫ ∞
τ1

xh+jϕ(x)dx

=
n∑
j=0

ξj mh+j, h = 0, 1, . . . , n, (2.45)
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where mh+j is the (h + j)th moment associated with ϕ(x). For the generalized gamma,
mj is given by (2.38), and for the Pearson-type distribution,

mj =



2−ν/2 ch eτ/(2 c)

Γ(1− ν
2

) Γ(h+1+ ν
2

) Γ( ν
2

)

(
Γ(h+ 1)

(
Γ(−h− ν

2
) Γ(h+ ν

2
+ 1) (− τ

c
)h + ( τ

c
)h Γ(1− ν

2
)

×Γ(ν
2
)
)

1F1

(
h+ 1;h+ ν

2
+ 1;− τ

2c

)
(− τ

c
)ν/2 + 2h+ν/2 Γ(1− ν

2
) Γ(h+ ν

2
)

×Γ(h+ ν
2

+ 1) 1F1(1− ν
2
; 1

2
(−2h− ν + 2);− τ

2c
)
)

for τ ≤ 0

2h ch U(−h, 1− h− ν
2
, τ

2c
) for τ > 0.

where U(a, b, z) = 1
Γ(a)

∫∞
0
e−z t ta−1 (1 + t)b−a−1dt is the confluent hypergeometric func-

tion. This leads to a linear system of (n+1) equations in (n+1) unknowns whose solution
is 

ξ0

ξ1
...
ξn

 =


m0 m1 · · · mn−1 mn

m1 m2 · · · mn mn+1

· · · · · · · · · · · · · · ·
mn mn+1 · · · m2n−1 m2n


−1

µQ1(0)
µQ1(1)

...
µQ1(n)

 . (2.46)

The resulting representation of the density function of Q1(X) will be referred to as a
polynomially adjusted density approximant, which can be readily evaluated. As long as
higher moments are available, more accurate approximations can always be obtained by
making use of additional moments.

The density function for Q2(X) can similarly be approximated using the same
procedure. The density approximant to the noncentral indefinite quadratic form
Q(X)=Q1(X)−Q2(X) is obtained from Equation (2.24), with τ1 and τ2 equal to zero.

2.7.4 Polynomially Adjusted Gamma Density Approximations

This section provides an alternative representation of the polynomial adjustment when
the base density is a gamma density function.

As explained in Provost (2005), the density functions of numerous statistics dis-
tributed on the positive half-line can be approximated from their exact moments by
making use of gamma-type density functions that are adjusted by means of linear combi-
nations of Laguerre polynomials. For conditions ensuring that a distribution be uniquely
defined by its moments, the reader is referred to Rao (1965).

Consider a random variable Y defined on the interval [0,∞), whose jth moment is
denoted by µj, j = 0, 1, 2, . . . , and let c = (µ2 − µ2

1)/µ1, v = (µ1/c) − 1 and X = Y/c.
Denoting the jth moment of X by µ∗j = E [(Y/c)j], the density function of the random
variable X, also defined on the interval [0,∞), can be expressed as
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f(x) = xνe−x
∞∑
j=0

δjLj(ν, x), (2.47)

where

Lj(v, x) =

j∑
k=0

(−1)k
Γ(v + j + 1)xj−k

k! (j − k)! Γ(v + j − k + 1)
(2.48)

is a Laguerre polynomial of order j in x with parameter v and

δj =

j∑
k=0

(−1)k
j !

k! (j − k)! Γ(v + j − k + 1)
µ∗j−k , (2.49)

see for instance Szegö (1959) or Devroye (1989). Then, on truncating the series appearing
in Equation (2.47) and making the change of variable Y = cX, one obtains the following
density approximant for Y :

fn(y) =
yve−y/c

cv+1

n∑
j=0

δjLj (v, y/c) . (2.50)

Remark 2.7.1. Note that f0(y) is a gamma density function with parameters α ≡
v + 1 = µ2

1/ (µ2 − µ2
1) and β ≡ c = (µ2 − µ1

2)/µ1 whose mean, αβ = µ1, and variance,
αβ2 = µ2−µ1

2, match the mean and variance of Y and that, in light of Equation (2.50),
we can express fn(y) as the product of an initial gamma density approximation specified
by f0(y) times a polynomial adjustment, that is,

fn(y) =
yα−1e−y/β

βα Γ(α)

n∑
j=0

ωjLj

(
α− 1,

y

β

)
(2.51)

where ωj = Γ(α) δj.

2.7.5 Algorithm for Approximating the Distribution of Q(X)

The following algorithm can be utilized to approximate the density function of the
quadratic form Q = X′AX where X ∼ N p(µ, Σ), Σ > 0 and A is a symmetric in-
definite real matrix.

1. The eigenvalues of AΣ denoted by λ1 ≥ · · · ≥ λr > 0 > λr+θ+1 ≥ · · · ≥ λp, and the
corresponding normalized eigenvectors, ν1, . . . ,νp, are determined.
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2. Letting P = (ν1, . . . ,νp), γ1, . . . , γp be the eigenvalues of Σ, t1, . . . , tp be the
normalized eigenvectors corresponding to γ1, . . . , γp, T = (t1, . . . , tp), Σ−1/2 =

T Diag(γ
−1/2
1 , . . . , γ

−1/2
p ) T ′, b = (b1, · · · , bp)′ = P ′Σ−1/2µ and the Uj’s be in-

dependently distributed standard normal variables, one has the decomposition
Q =

∑r
j=1 λj(Uj +bj)

2−
∑p

j=r+θ+1 |λj|(Uj +bj)
2 ≡ Q1−Q2, where Q1 ≡W′

1A1W1,

W1 ∼ N r(b1, I), b1 = (b1, . . . , br)
′, A1 = Diag(λ1, . . . , λr), and Q2 ≡ W′

2A2W2,
W2 ∼ N p−r−θ(b2, I), b2 = (br+θ+1, . . . , bp)

′, A2 = Diag(|λr+θ+1|, . . . , |λp|). Clearly,
b = 0 whenever µ = 0 and, in that case, there is no need to determine the matrices
P or T .

3. The cumulants and the moments of Q1 and Q2 are obtained from Equations (2.15)
and (2.17), respectively.

4. Density approximants are determined for each of the positive definite quadratic
forms Q1 and Q2 on the basis of their respective moments and denoted by fQ1(·) and
fQ2(·), fQi(·) being given by Equation (2.31) for a Pearson-type density function.

5. Given fQ1(·) and fQ2(·), the approximate density ofQ(X) is obtained from Equation
(2.24) where hp(·) and hn(·) are respectively specified by Equation (2.26) and (2.25).
When making use of Pearson’s approach, hn(·) and hp(·) are explicitly given by
(2.35) and (2.34) while (2.42) and (2.41) are to be used in the case of gamma
approximations. Otherwise, numerical integration can be used.

6. A polynomial adjustment of degree d can be made as explained in Section 2.7.3,
the resulting density approximation being

fd(z) = ϕ(z)
d∑
j=0

ξjz
j .

Additional accuracy can be attained by increasing d.

Remark 2.7.2. For a nonnegative definite quadratic form, in which case Q(X) =
X′AX where A = A′ and A ≥ 0, all the eigenvalues of A are nonnegative, and only the
distribution of Q1(X) needs be approximated. This remark, of course, applies to positive
definite quadratic forms.
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2.7.6 Exact Density of Central Quadratic Forms When the
Eigenvalues Occur in Pairs

The following result is useful for comparison purposes. Consider the following general
linear combination of independently distributed central chi-square random variables;

Q(X) = Q1(X)−Q2(X) =
r∑
i=1

λiYi −
p∑

j=r+θ+1

|λj|Yj , (2.52)

where the Yj’s, j = 1, . . . , p, are independently distributed central chi-square random
variables, each having one degree of freedom. Suppose that the eigenvalues occur in
pairs in the right-hand side of Equation (2.52). Then, Q(X) can be expressed as

Q(X) =
s∑
i=1

λ′i Ti −
t∑

j=s+1

|λ′j|Tj , (2.53)

where s = r/2, t = p/2, λ′k = λk/2, k = 1, . . . , t, and the Ti’s and Tj’s are independently
distributed chi-square random variables, each having two degrees of freedom. Imhof
(1961) derived the following representation of the exact density function of Q(X):

ψ(q) =



∑s
j=1

λ
′t−2
j e

−q/(2λ′j)

2

(∏s
k=1,k 6=j(λ

′
j−λ′k)

)(∏t
k=s+1(|λ′j |+|λ′k|)

) , q ≥ 0

∑t
j=s+1

|λ′j |t−2 e
q/(2|λ′j |)

2

(∏t
k=s+1,k 6=j(|λ′j |−|λ′k|)

)(∏s
k=1(λ′j+λ

′
k)

) , q < 0.

(2.54)

2.7.7 Numerical Examples

Four numerical examples are presented in this section. The first example involves a
positive definite central quadratic form whose exact density is compared to various ap-
proximations. Secondly, we consider the case of a central indefinite quadratic form. The
third example involves a noncentral indefinite quadratic form and the last one, which is
the most general, involves a noncentral singular quadratic form.

Example 2.7.1. We first consider the case of a positive definite central quadratic form in
independently distributed standard normal variables, which, according to Representation
2.3.1, can be expressed as

Q1(X) = X′AX =
r∑
j=1

λjYj , (2.55)
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Table 2.1: Four approximations to the distribution function of Q1(X) evaluated at certain
exact percentage points (Exact %).

CDF Exact % Gamma Ge.G. Ge.S.G. Pear.

0.0001 1.2626 0.556672 1.20013 2.364263 4.990738
0.0010 2.3608 1.358368 2.25234 3.134820 5.267700

0.01 4.6406 3.42151 4.49223 4.99449 6.29310
0.05 7.9534 6.85298 7.82310 8.01495 8.52796
0.10 10.388 9.50466 10.2952 10.3562 10.5203
0.50 24.421 24.8204 24.5012 24.4035 24.1541
0.90 51.182 51.6342 51.1048 51.2234 51.5235
0.95 61.874 61.6360 61.7067 61.8650 62.2407
0.99 86.268 83.4670 86.1000 86.1370 86.1563

0.9990 120.88 112.890 121.560 120.850 119.120
0.9999 155.40 141.202 158.201 156.100 151.301

where A > 0, X ∼ Np(0, I), λj, j = 1, . . . , r, are the positive eigenvalues of A, the
Yj’s, j = 1, . . . , r are independently distributed central chi-square random variables, each
having one degree of freedom.

Let r = 8 and λ1 = λ2 = 1.2, λ3 = λ4 = 1.45, λ5 = λ6 = 4, and λ7 = λ8 = 7.5. Since
the eigenvalues occur in pairs, the exact density function can be determined from the pos-
itive part of Equation (2.54) wherein λ′k = λk/2, s = t = r/2, ρ = 0 and an empty product
is interpreted as 1. In Table 2.1, we compare certain quantiles determined from the ex-
act distribution of Q1(X) with those obtained from various approximate distributions,
namely, the gamma, generalized gamma (Ge.G), generalized shifted gamma (Ge.S.G.)
and Pearson-type (Pear.) as defined in (2.36), (2.37), (2.40), and (2.31), respectively. In
this case, no polynomial adjustments were made. The most accurate approximation is
highlighted for each value of the cdf being considered.

As can be seen from Table 2.1, the approximations obtained by means of the gen-
eralized shifted gamma distribution are generally more accurate. (A shaded background
designates the most accurate approximation in a given row of the table.) Certain ex-
treme tail quantiles determined from the exact distribution function of Q1(X) and the
approximated distributions are presented in Table 2.1 as well. In this case, the general-
ized gamma is more accurate for extreme lower quantiles while, for higher quantiles, the
generalized shifted gamma provides more accurate quantiles.

We now refine our approximations with polynomial adjustments of degree 10. The
results are presented in Table 2.2 for many quantiles of interest. Table 2.2 indicates
that, in this case, the generalized gamma distribution is more accurate than the other
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Table 2.2: Four polynomially-adjusted approximations to the distribution function of
Q1(X) evaluated at certain exact percentage points (Exact % ).

CDF Exact % G.P. Ge.G.P. Ge.S.G.P Pear.P.

0.0001 1.2626 1.214325 1.245530 2.335322 4.960818
0.0010 2.3608 2.295100 2.328056 3.076903 5.162420

0.01 4.6406 4.59770 4.60548 4.89275 5.94111
0.05 7.9534 7.95705 7.94169 7.90754 7.84305
0.10 10.388 10.4089 10.3928 10.2809 9.81260
0.50 24.421 24.3937 24.4129 24.4999 24.8680
0.90 51.182 51.1884 51.2178 51.0612 50.7508
0.95 61.874 61.7905 61.9075 61.8875 62.6298
0.99 86.268 86.4170 86.1600 86.5220 86.0780

0.9990 120.88 120.480 121.140 119.810 119.370
0.9999 155.40 156.002 155.702 158.101 162.500

distributions under consideration, even for extreme lower and higher percentage points.
Figures 2.1 and 2.2 clearly show that the gamma, generalized gamma and gener-

alized shifted gamma densities provide close approximations throughout the range of
distribution. Figure 2.2 suggests that Pearson’s approximation is not as accurate for
0 ≤ x < 30. The corresponding cumulative distribution functions are plotted in Figures
2.3 and 2.4.

Example 2.7.2. Consider the following general linear combination of independently
distributed central chi-square random variables;

Q2(X) =
s∑
i=1

λ′i Ti −
t∑

j=s+1

|λ′j|Tj ,

where s = 6, t = 10, λ′k = λk/2, k = 1, . . . , 10, the Ti’s and Tj’s are independently
distributed chi-square random variables, each having two degrees of freedom and λ1 =
λ2 = 23.1, λ3 = λ4 = 4.5, λ5 = λ6 = 6.8, λ7 = λ8 = 8.13, λ9 = λ10 = 10.3, λ11 = λ12 =
20.1, λ13 = λ14 = −3.4, λ15 = λ16 = −12.4, λ17 = λ18 = −2 and λ19 = λ20 = −1.3.

Since the eigenvalues occur in pairs; the exact density of Q2(X) can be determined
from Equation (2.54). In this example, we compare the exact density and distribution
functions of Q2(X) with various approximations. Exact and approximate percentiles are
listed in Tables 2.3 and 2.4, polynomial adjustments of degree 10 being used in the latter.
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Figure 2.1: Exact density (light solid line), gamma pdf approximation (left) and gener-
alized gamma pdf approximation (right)

Figure 2.2: Exact density (light solid line), generalized shifted gamma pdf approximation
(left) and Pearson’s pdf approximation (right)

Figure 2.3: Exact cdf (light solid line), gamma cdf approximation (left) and generalized
gamma cdf approximation (right)
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Figure 2.4: Exact cdf (light solid line), generalized shifted gamma cdf approximation
(left) and Pearson’s cdf approximation (right)

Table 2.3: Four approximations to the distribution function of Q2(X) evaluated at certain
exact percentage points (Exact %).

CDF Exact % Gamma Ge.G. Ge.S.G. Pear.

0.0001 −147.47 0.000040090 0.00012745 0.00010296 0.000080655
0.0010 −90.366 0.000689575 0.00104074 0.00098547 0.000895522

0.01 −33.257 0.010198 0.00981096 0.009887 0.0095731
0.05 7.0176 0.055784 0.0499524 0.049864 0.0482842
0.10 25.734 0.108681 0.100281 0.100013 0.0981895
0.50 98.008 0.494008 0.499698 0.500128 0.503077
0.90 203.27 0.898124 0.900115 0.899893 0.898534
0.95 241.73 0.950857 0.950186 0.950052 0.949254
0.99 325.86 0.991558 0.990045 0.990057 0.990126

0.9990 440.25 0.999399 0.998977 0.998997 0.999104
0.9999 551.20 0.999961 0.999889 0.999895 0.999922
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Table 2.4: Four polynomially-adjusted approximations to the distribution function of
Q2(X) evaluated at certain exact percentage points (Exact % ).

CDF Exact % G.P. Ge.G.P. Ge.S.G.P Pear.P.

0.0001 −147.47 0.00009764 0.00011283 0.00009848 0.00013783
0.0010 −90.366 0.00100590 0.00097822 0.00097477 0.00090439

0.01 −33.257 0.009993 0.010023 0.010031 0.010036
0.05 7.0176 0.050010 0.050009 0.049983 0.050146
0.10 25.734 0.099996 0.100029 0.100153 0.101126
0.50 98.008 0.500075 0.499928 0.499725 0.498507
0.90 203.27 0.899967 0.900005 0.899984 0.899103
0.95 241.73 0.950023 0.949979 0.949858 0.948979
0.99 325.86 0.989989 0.990005 0.990030 0.990473

0.9990 440.25 0.998996 0.999003 0.999004 0.998887
0.9999 551.20 0.999901 0.999899 0.999894 0.999907

The results included in Table 2.3 indicate that the approximations obtained from
the generalized shifted gamma distribution are more accurate when enhanced with poly-
nomial adjustments. The results presented in Table 2.4 show that after making a polyno-
mial adjustment, the generalized gamma distribution is more accurate, even for extreme
higher percentage points.

Figures 2.5 and 2.6 indicate that all the density approximations closely follow the
exact density. In Figures 2.7 and 2.8, the cumulative distribution functions of the var-
ious approximations are superimposed on the exact distribution function. Again, close
agreement is observed. The tables prove more informative as to which approximation is
more accurate.

Example 2.7.3. Consider the noncentral indefinite quadratic form, Q3(X) = X′AX,
where X ∼ N4(µ, Σ),

A =


1 2 2 5
2 8 0 4
2 0 −1/4 1
5 4 1 −2

 ,

µ = (1, 2, 3, 4)′ and
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Figure 2.5: Exact density (light solid line), gamma pdf approximation (left) and gener-
alized gamma pdf approximation (right)

Figure 2.6: Exact density (light solid line), generalized shifted gamma pdf approximation
(left) and Pearson’s pdf approximation (right)
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Figure 2.7: Exact cdf (light solid line), gamma cdf approximation (left) and generalized
gamma cdf approximation (right)

Figure 2.8: Exact cdf (light solid line), generalized shifted gamma cdf approximation
(left) and Pearson’s cdf approximation (right)
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Σ =


1 −1/2 2/5 1/2

−1/2 1 1/4 −3/8
2/5 1/4 1 1/3
1/2 −3/8 1/3 1

 .

In light of Equation (2.9), Q3(X) can be re-expressed as

Q3(X) = QI(X)−QII(X) =
2∑
i=1

λi(Ui + bi)
2 −

4∑
j=3

|λj|(Uj + bj)
2 (2.56)

where the Ui’s, i = 1, 2, 3, 4, are standard normal random variables, λ1 = 8.29749, λ2 =
4.61802, λ3 = −3.25405, λ4 = −0.644806, b1 = 2.13221, b2 = 0.519464, b3 = −1.67346,
and b4 = −2.52353. In this case, the matrices Σ1/2 and P are respectively

Σ1/2 =


0.90931 −0.27212 0.22259 0.22264
−0.27212 0.92651 0.18280 −0.18472

0.22259 0.18280 0.94269 0.16846
0.22264 −0.18472 0.16846 0.94230


and

P =


0.59391 0.35170 0.53923 0.48251
−0.39961 0.90875 −0.11103 −0.04643

0.47283 0.17968 0.12569 −0.85343
0.51382 0.13490 −0.82529 0.19153

 .

The approximate density functions of QI(X) and QII(X) were obtained by making
use of Pearson’s approximation, as well as the gamma and generalized gamma approxi-
mations. The resulting approximations to the density of Q3(X), as evaluated from steps
4 and 5 (Section 2.7.5) of the proposed algorithm, are plotted in Figure 2.10 (left panel).
The cumulative distribution functions were determined by making use of the last step of
the algorithm described in Section 2.7.5. They are respectively plotted in Figures 2.9 and
2.10 (right panel) where they are superimposed on the simulated distribution function
which was determined on the basis of 1,000,000 replications.

Example 2.7.4. Consider the quadratic form, Q4(X) = X′AX, in the singular normal
vector X ∼ N5(µ, Σ) where
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Figure 2.9: Simulated cdf (light solid line), gamma cdf approximation (left) and gener-
alized gamma cdf approximation (right)

Figure 2.10: Simulated cdf (light solid line) and Pearson’s cdf approximation (right).
Three Density Approximants: Gamma (light solid line), Generalized Gamma (dashed
line) and Pearson’s (dark solid line) (left)
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A =


1 4 3 1 3
4 4 1 2 1
3 1 3 3 2
1 2 3 1 5
3 1 2 5 2

 ,

µ = (1, 0, 1,−1)′ and

Σ =


3 3 3 2 0
3 3 3 2 0
3 3 5 2 0
2 2 2 2 0
0 0 0 0 1

 .

On making use of the representation given in Section 2.5, it was determined that B and
P are respectively

B =


1.66591 0.39015 0 −0.26930
1.66591 0.39015 0 −0.26930
2.03287 −0.92672 0 0.09291
1.18171 0.49418 0 0.59945

0 0 1 0


and

P =


−0.98651 0.08692 −0.07525 0.11651
−0.04021 0.49908 −0.20028 −0.84213
−0.15866 −0.67263 0.50984 −0.51231
−0.00168 0.53938 0.83324 0.12157

 ,

that the eigenvalues of B′AB are λ1 = 106.028, λ2 = −3.45476, λ3 = 2.13033, λ4 =
1.29687, and b1 = −61.1512, b2 = −3.99144, b3 = 2.57186 and b4 = 3.31448.

The approximate density functions of QI(X) and QII(X) were obtained from the
gamma, generalized gamma approximations and the generalized shifted gamma approx-
imations. For comparison purposes, the distribution was determined on the basis of
1,000,000 replications. The resulting approximated cdf’s of Q4(X), as evaluated from
Step 4 and 5 of the algorithm described in Section 2.7.5 are presented in Tables of 2.5 to
2.7.

In Table 2.5, the approximations are determined without polynomial adjustments.
The results show that for the extreme lower percentage points, the generalized gamma
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Table 2.5: Four approximations to the distribution of Q4(X) evaluated at certain per-
centage points (Simul. %) obtained by simulation.

CDF Simul. % Gamma Ge.G. Ge.S.G.

0.0001 −56.232 0.00020343 0.00010682 0.00003158
0.0010 −36.489 0.00159707 0.00121260 0.00035982

0.01 −15.281 0.015662 0.014260 0.004442
0.05 0.0292 0.104459 0.090615 0.025754
0.10 7.0079 0.168562 0.152575 0.057528
0.50 73.634 0.478706 0.474164 0.494155
0.90 388.74 0.898058 0.900882 0.899273
0.95 540.29 0.950187 0.951229 0.949404
0.99 904.36 0.990558 0.990163 0.989841

0.9990 1433.5 0.999097 0.998875 0.998910
0.9999 1930.8 0.999760 0.999844 0.999942

Table 2.6: Four approximations to the distribution of Q4(X) evaluated at certain per-
centage points (Simul. %) obtained by simulation.

CDF Simul. % G.P. Ge.G.P. Ge.S.G.P

0.0001 −56.232 0.00000890 0.00009990 0.00002528
0.0010 −36.489 0.00113033 0.00106195 0.00038488

0.01 −15.281 0.012767 0.012474 0.004358
0.05 0.0292 0.081759 0.079405 0.026191
0.10 7.0079 0.135374 0.135192 0.057579
0.50 73.634 0.463551 0.465501 0.494400
0.90 388.74 0.898585 0.901356 0.899710
0.95 540.29 0.944821 0.946199 0.949768
0.99 904.36 0.991395 0.990308 0.989689

0.9990 1433.5 0.998585 0.999015 0.998977
0.9999 1930.8 0.999733 0.999909 0.999822
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Table 2.7: Two approximations with and without polynomial adjustment (d = 10) to
the distribution of Q4(X) evaluated at certain percentage points (Simul. %) obtained by
simulation.

CDF Simul. % Ge.G Ge.G.P. Ge.S.G. Ge.S.G.P.

0.0001 −56.232 0.00010682 0.00009990 0.00003158 0.00002528
0.0010 −36.489 0.00121260 0.00106195 0.00036000 0.00038488

0.01 −15.281 0.014260 0.012474 0.004442 0.00435772
0.05 0.0292 0.090615 0.079405 0.025754 0.026191
0.10 7.0079 0.152575 0.135192 0.057528 0.0575786
0.50 73.634 0.474164 0.465501 0.494155 0.494400
0.90 388.74 0.900882 0.901356 0.899273 0.899710
0.95 540.29 0.951229 0.946199 0.949404 0.949768
0.99 904.36 0.990163 0.990308 0.989841 0.989689

0.9990 1433.5 0.998875 0.999015 0.99891 0.998977
0.9999 1930.8 0.999844 0.999733 0.999942 0.999822

provides accurate approximations but that for cdf’s exceeding 0.1, the generalized shifted
gamma is clearly more accurate in the majority of the cases.

The approximations that are adjusted with polynomials of degree 10 are presented
in Table 2.6. The results indicate that for the extreme lower and higher points, the gener-
alized gamma approximation is more accurate than the other approximations. Moreover,
the generalized gamma approximations are more accurate than the other approximations
at certain percentage points exceeding 0.1. Table 2.7 includes approximate percentiles
obtained from the generalized gamma and generalized shifted gamma distributions with
and without polynomial adjustments. The results show that the polynomially-adjusted
generalized shifted gamma and that generalized shifted gamma are more accurate in a
majority of cases. The polynomially-adjusted generalized gamma approximation is more
accurate for extreme lower percentage points.

Figures 2.6 and 2.6 show plots of the gamma, generalized gamma and the general-
ized shifted gamma approximations superimposed on the simulated distribution function,
which was determined on the basis of 1,000,000 replications.
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Figure 2.11: Simulated cdf (light solid line), gamma cdf approximation (left) and gener-
alized gamma (right)

Figure 2.12: Simulated cdf (light solid line) and generalized shifted gamma cdf approxi-
mation
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2.8 Approximating the Distribution of Quadratic

Expressions

Quadratic expressions are represented as the difference of two positive definite quadratic
forms plus a linear combination of normal random variables in Equations (2.8), (2.9),
(2.20) or (2.21).

Consider the case of a singular quadratic expression Q∗(X), which is decomposed as
in Equation (2.20) into Q1(W+)−Q2(W−)+T1, where the approximate density function
of Q = Q1(W+) − Q2(W−) is as given in Equation (2.43) and T1 = (2

∑r1+θ
j=r1+1 njWj +

κ1) ∼ N (κ1 , 4
∑r1+θ

j=r1+1 n
2
j) with κ1 =

(
c1 −

∑r1
j=1 n

2
j/λj −

∑r
j=r1+θ+1 n

2
j/λj

)
, T1 being

distributed independently of Q1(W+) and Q2(W−). In this case, the density function of

T1 is η(t) =
(
1
/(√

2πσ
))

e−(t−κ1)2/(2σ2) where σ2 = 4
∑r1+θ

j=r1+1 n
2
j . Then, the approxi-

mate density function of V = Q+ T1 is

g(v) =

∫ ∞
−∞

gV,U(v , u) du

=

∫ ∞
−∞

hQ(v − u)η(u) du

=

∫ ∞
−∞

(
hN(v − u) I(−∞,0)(v − u)η(u) +

hP (v − u) I(0,∞)(v − u)η(u)
)

du

=

∫ v

−∞
hN(v − u) η(u) du+

∫ ∞
v

hP (v − u) η(u) du

≡ gn(v) + gp(v) (2.57)

where

gn(v) =

∫ v

−∞
hN(v − u) η(u) du

=

∫ 0

−∞

∞∑
k=0

(
exp

{
−(u− κ1)2

2σ2
− u

β2

+
v

β2

}
βα2−2

1 βα1−2
2 b−a+1 (ζ(u− v))k−1

×
(
β1β2Γ(α1)2Γ(k − α2 + 1)Γ(−a+ 1)Γ(−a+ 2)Γ(k + a)
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× (ζ (u− v))a + (u− v) bΓ(k + α1) Γ(1− α2)2 Γ(k − a+ 2)

×Γ(a− 1)Γ(a)
)
/
(

(
√

2πσk!Γ(α1)2Γ(1− α2)2Γ(k − a+ 2)

×Γ(α2)Γ(k + a))
))

du

=
∞∑
k=0

(
1√

πk!Γ(α2)
2
k
2
−2e−(v−κ1)2/(2σ2)βα2

1 ζkβα1−2
2 b−a σk−2

×
(

1

Γ(1− α2)2Γ(k − a+ 2)
2
a
2β2Γ(k − α2 + 1)Γ(−a+ 1)

×Γ(−a+ 2)

(√
2β2σΓ

(
1

2
(k + a)

)
1F1

(
1

2
(k + a);

1

2
; γ

)
−2
(
σ2 + vβ2 − β2 κ1

)
Γ

(
1

2
(k + a+ 1)

)
1F1

(1

2
(k + a+ 1);

×3

2
; γ
))

(ζσ)a +
1

β1Γ(α1)2Γ(k + a)

√
2β2σΓ(k + α1)Γ(a− 1)

×Γ(a)

(√
2β2σΓ

(
k + 1

2

)
1F1

(
k + 1

2
;
1

2
; γ

)
−2
(
σ2 + vβ2 − β2κ1

)
Γ

(
k

2
+ 1

)
1F1

(
k + 2

2
;
3

2
; γ

))
+

1

Γ(α1)2Γ(k + a)
2σΓ(k + α1)Γ(a− 1)Γ(a)

×
(
β2σΓ

(
k + 1

2

)
1F1

(
k + 1

2
;
1

2
; γ

)
−
√

2
(
σ2 + vβ2 − β2 κ1

)
Γ

(
k

2
+ 1

)
1F1

(
k + 2

2
;
3

2
; γ

))))
. (2.58)

and

gp(v) =

∫ ∞
v

hP (v − u) η(t) du

=

∫ ∞
v

∞∑
k=0

(
1√

2πσk!Γ(α1)
exp

{
v − u
β2

− (u− κ1)2

2σ2

}
(v − u)α2−1β−α1

1 β−α2
2

×(ζ(u− v))k
(

Γ(k + α1)Γ(−a+ 1)Γ(a)(v − u)α1

Γ(1− α1)Γ(α1)Γ(k + a)
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+

((1
ζ

)a−1

Γ(k − α2 + 1)Γ(−a+ 2)Γ(a− 1)(v − u)1−α2

Γ(1− α2)Γ(k − a+ 2)Γ(α2)

))
du

=
∞∑
k=0

{
1√

πσ2k!Γ(α1)2
2k/2−2e−(v−κ1)2/(2σ2)β−α1

1 β−α2−2
2

Γ(1− α2)Γ(k − a+ 2)Γ(α2)

×

[
1

Γ(1− α1)Γ(k + a)
2
a
2β2σ

k+aΓ(k + α1)Γ(−a+ 1)Γ(a)

×
(√

2β2σΓ

(
1

2
(k + a)

)
1F1

(
1

2
(k + a);

1

2
; γ

)
+2
(
σ2 + vβ2 − β2κ1

)
Γ

(
1

2
(k + a+ 1)

)
×1F1

(
1

2
(k + a+ 1);

3

2
; γ

)
(−ζ)k +

(
2β2

(
1

ζ

)a−1

σ (ζσ)k

×Γ(α1)Γ(k − α2 + 1)Γ(−a+ 2)Γ(a− 1)

(
β2σΓ

(
k + 1

2

)
×1F1

(
k + 1
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(2.59)

where a = α1 + α2, b = β1 + β2, ζ = (β1 + β2)/(β1β2), γ = (σ2 + vβ2 − β2κ1)2/(2β2σ2)
and 1− α1 and 1− α2 are not zero or negative integer and a 6= 3, 4, . . . .

2.8.1 Algorithm for Approximating the Distribution of Q∗(X)

The following algorithm can be utilized to approximate the density function of the
quadratic expression Q∗(X) = X′AX + a′X + d where X ∼ N p(µ, Σ), Σ ≥ 0, A is
an indefinite symmetric real matrix, a is a p-dimensional constant vector and d is a
scalar constant. When Σ is a singular matrix, the symmetric square root does not exist.
In this case, we make use of the spectral decomposition theorem to express Σ as UWU ′

where W is a diagonal matrix whose first r diagonal elements are positive, the remaining
diagonal elements being equal to zero. Next, we let B∗p×p = UW 1/2 and remove the p− r
last columns of B∗, which are null vectors, to obtain the matrix Bp×r, and it follows that
Σ = BB′.

1. The eigenvalues of B′AB denoted by λ1 ≥ · · · ≥ λr > λr+1 = · · · = λr+θ = 0 >
λr+θ+1 ≥ · · · ≥ λp, and the corresponding normalized eigenvectors, ν1, . . . ,νp, are
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determined; then, we let P = (ν1, . . . ,νp) .

2. In the singular case, one can decompose Q∗(X) as Q1(W+) − Q2(W−) + T1

where Q1(W+) and Q2(W−) are positive definite quadratic forms with W+ =
(W1 + n1/λ1, . . . ,Wr1 + nr1/λr1)

′ ∼ Nr1(ν1, I), ν1 = (n1/λ1, . . . , nr1/ λr1)
′,

W− = (Wr1+θ+1 + nr1+θ+1/(λr1+θ+1), . . . ,Wr + nr/(λr))
′ ∼ Nr−r1−θ(ν2 , I),

ν2 = (nr1+θ+1/(λr1+θ+1), . . . , nr/(λr))
′, θ being number of null eigenvalues, b∗

′
=

(b∗1, . . . , b
∗
r) = µ′ABP, nj = 1

2
mj+b

∗
j , c1 = µ′Aµ+a′µ+d and W′ = (W1, . . . ,Wr) .

Letting κ1 =
(
c1−

∑r1
j=1 n

2
j/λj −

∑r
j=r1+θ+1 n

2
j/λj

)
, T1 = (2

∑r1+θ
j=r1+1 njWj +κ1) ∼

N (κ1 , 4
∑r1+θ

j=r1+1 n
2
j). Clearly, b∗ = 0 whenever µ = 0 and in that case, there is no

need to determine the matrix P .

3. The cumulants and the moments of Q1 and Q2 are obtained from Equations (2.15)
and (2.17), respectively.

4. Density approximants are determined for each of the positive definite quadratic
forms Q1 and Q2 on the basis of their respective moments and denoted by fQ1(·)
and fQ2(·) .

5. Given fQ1(·) and fQ2(·), we first approximate density ofQ1(W+)−Q2(W−) by using
Equation (2.24) and then, determine the density function of Q1(W+)−Q2(W−)+T1

by making use of Equation (2.57) .

6. A polynomial adjustment, which improves the accuracy of the approximations, can
also be applied to the density approximations determined for Q1(W+) and Q2(W−)
as explained in Section 2.7.3. Then, an approximate density function for Q∗(X) is
obtained as explained in Step 5 .

Example 2.8.1. Consider the singular quadratic expression Q∗(X) = X′AX + a′X + d
where X ∼ N5(µ, Σ),

A =


1 −.9 −1 0 −5
−.9 1 1 2 1
−1 1 2 3 1

0 2 3 −1 0
−5 1 1 0 1

 ,

µ = 0′, a′ = (−1, 2, 3, 1, 1) , d = 6 and
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Σ =


3 3 3 2 0
3 3 3 2 0
3 3 5 2 0
2 2 2 2 0
0 0 0 0 1

 .

The matrices B and P were found to be

B =


1.66591 0.39015 0 −0.26930
1.66591 0.39015 0 −0.26930
2.03287 −0.92672 0 0.09291
1.18171 0.49418 0 0.59945

0 0 1 0


and

P =


−0.97731 0.00042 −0.14936 −0.15022

0.05695 −0.58347 −0.72923 0.35290
0.13922 0.69384 −0.66277 −0.24484
−0.14916 0.42208 0.08157 0.89048

 ,

respectively. The eigenvalues of B′AB are λ1 = 31.2355, λ2 = 3.80066, λ3 =
−2.92434, λ4 = −2.51178 and the ni’s as defined in Step 2 are n1 = 4.47312,
n2 = −0.94791, n3 = 0.5, and n4 = 0.304443. Moreover, µ1 = (0.143206,−0.249407)′,
µ2 = (−0.170979,−0.121206)′ and c1 = 6.

The approximate density functions of Q1(W+) and Q2(W−) are obtained by making
use of the gamma, generalized gamma and the generalized shifted gamma approxima-
tions. The resulting distribution functions are evaluated at certain simulated percentiles
obtained on the basis of 1,000,000 replications. The results are presented in Tables 2.8
and 2.9.

The approximations are determined without polynomial adjustments in Table 2.8.
The results indicate that for cdf’s lower than .05, the generalized gamma provides accu-
rate approximations but that for cdf’s higher than .05, the generalized shifted gamma is
more accurate than the others approximations of the cdf in a majority of cases.

The approximations, once adjusted with polynomials of degree 10, are presented
in Table 2.9. The cdf values included in Table 2.9 show that, for the extreme lower
points, the generalized gamma approximation is more accurate, whereas the generalized
shifted gamma approximation produces the best results for the extreme higher points.
Approximations obtained from the generalized gamma are more accurate than the other
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Table 2.8: Four approximations to the distribution of Q∗(X) evaluated at certain per-
centage points (Simul. %) obtained by simulation [µ = 0].

CDF Simul. % Gamma Ge.G. Ge.S.G.

0.0001 −38.250 0.00011045 0.0000988 0.00008133
0.0010 −24.571 0.00120036 0.0010863 0.00089474

0.01 −11.369 0.011995 0.010931 0.009010
0.05 −2.1220 0.06010 0.054855 0.045251
0.10 1.8869 0.120792 0.110206 0.090960
0.50 19.792 0.501819 0.495766 0.508848
0.90 90.668 0.896101 0.900322 0.899398
0.95 126.56 0.949267 0.950921 0.949723
0.99 214.63 0.990651 0.990124 0.989887

0.9990 347.62 0.999210 0.998922 0.998983
0.9999 482.47 0.999932 0.999871 0.999895

Table 2.9: Three approximations with and without polynomial adjustment (d = 10) to
the distribution of Q∗(X) evaluated at certain percentage points (Simul. %) obtained by
simulation [µ = 0].

CDF Simul. % G.P. Ge.G.P. Ge.S.G.P.

0.0001 −38.250 0.00009491 0.00009580 0.00008227
0.0010 −24.571 0.00105407 0.00104208 0.00090530

0.01 −11.369 0.010613 0.010490 0.009116
0.05 −2.1220 0.053264 0.052643 0.045791
0.10 1.8869 0.106997 0.105759 0.092028
0.50 19.792 0.486872 0.490738 0.509861
0.90 90.668 0.900936 0.902296 0.899949
0.95 126.56 0.947142 0.948977 0.951033
0.99 214.63 0.990651 0.989648 0.989506

0.9990 347.62 0.998747 0.999094 0.999043
0.9999 482.47 0.999924 0.999827 0.999906
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Figure 2.13: Simulated cdf (light solid lines), Gamma cdf approximation (left) and gen-
eralized gamma cdf approximation (right) for Q∗(X) [µ = 0].

Figure 2.14: Simulated cdf (light solid lines) and generalized shifted gamma cdf approx-
imation for Q∗(X) [µ = 0].

approximations for cdf’s between .01 and .99. Figures 2.13 and 2.14 show that all of
these three densities provide accurate approximations.

For comparison purposes, we consider the generalized gamma and the generalized
shifted gamma with and without polynomial adjustments in Table 2.10. This table
shows that for cdf’s larger than .95, accurate results are obtained from the generalized
shifted gamma whereas, for extreme lower points, the polynomially-adjusted generalized
gamma provides more precision. This table also indicates that polynomial adjustments
do not improve the approximations when used in conjunction with the generalized shifted
gamma as base density.

In this next example, assume that X is a noncentral normal vector with mean
µ = (100, 0,−50, 150, 5)′ in the quadratic expression Q∗(X) as defined in Example 2.8.1
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Table 2.10: Two approximations with and without polynomial adjustment (d = 10) to
the distribution of Q∗(X) evaluated at certain percentage points (Simul. %) obtained by
simulation [µ = 0].

CDF Simul. % Ge.G Ge.G.P. Ge.S.G. Ge.S.G.P.

0.0001 −38.250 0.00009877 0.00009580 0.000008133 0.00008227
0.0010 −24.571 0.00108627 0.00104208 0.00089474 0.00090530

0.01 −11.369 0.010931 0.010490 0.009010 0.009116
0.05 −2.1220 0.054855 0.052643 0.045251 0.045791
0.10 1.8869 0.110206 0.105759 0.0909599 0.0920281
0.50 19.792 0.495766 0.490738 0.508848 0.509861
0.90 90.668 0.900322 0.902296 0.899398 0.899949
0.95 126.56 0.950921 0.948977 0.949723 0.951033
0.99 214.63 0.990124 0.989648 0.989887 0.989506

0.9990 347.62 0.998922 0.999094 0.998983 0.999043
0.9999 482.47 0.999871 0.999827 0.999895 0.999906

and denote the resulting quadratic expression by Q∗1(X). Figures 2.15 and 2.16 show
that the gamma, generalized gamma and the generalized shifted gamma all provide ac-
curate approximations. Table 2.11 include various approximate cdf values, which were
determined with and without polynomial adjustments. The results in this table indicate
that the generalized shifted gamma provides accurate approximations for most points.
The approximations adjusted with polynomials of degree 5, which are presented in Table
2.12, are compared with non polynomially-adjusted approximations. The results indicate
that polynomially-adjusted generalized gamma approximations are more accurate than
the other approximations. Polynomial adjustments do not improve the approximations
when the generalized shifted gamma is being utilized as base density.

Example 2.8.2. Consider the singular quadratic expression Q∗2(X) = X′AX + a′X + d
where X ∼ N5(µ, Σ),

A =


4 4 1 2 1
4 4 1 2 1
1 1 0 0 0
2 2 0 0 0
1 1 0 0 1

 , Σ =


3 3 3 2 0
3 3 3 2 0
3 3 5 2 0
2 2 2 2 0
0 0 0 0 1

 ,
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Table 2.11: Three approximations to the distribution of Q∗1(X) evaluated at certain
percentage points (Simul. %) obtained by simulation [µ = (100, 0,−50, 150, 5)′].

CDF Simul. % Gamma Ge.G. Ge.S.G.

0.0001 −54663.6 0.00012171 0.00012171 0.00012167
0.0010 −53591.0 0.00109316 0.00109315 0.00109291

0.01 −52256.0 0.010282 0.010282 0.010281
0.05 −51039.4 0.050496 0.050496 0.050493
0.10 −50389.2 0.100088 0.100088 0.100083
0.50 −48053.1 0.498438 0.498439 0.498434
0.90 −45661.4 0.900235 0.900235 0.900231
0.95 −44971.4 0.950553 0.950553 0.950549
0.99 −43679.4 0.990187 0.990187 0.990184

0.9990 −42211.5 0.999040 0.999040 0.999036
0.9999 −40911.8 0.999920 0.999920 0.999918

Table 2.12: Three approximations with and without polynomial adjustment (d = 5) to
the distribution of Q∗1(X) evaluated at certain percentage points (Simul. %) obtained by
simulation [µ = (100, 0,−50, 150, 5)′].

CDF Simul. % Gamma G.P. Ge.G. Ge.G.P. Ge.S.G.

0.0001 −54663.6 0.00012171 0.00010440 0.00012171 0.00010402 0.000121669
0.0010 −53591.0 0.00109316 0.00100100 0.00109315 0.00099966 0.00109291

0.01 −52256.0 0.010282 0.009906 0.010282 0.009907 0.0102805
0.05 −51039.4 0.050496 0.049888 0.050496 0.049920 0.0504927
0.10 −50389.2 0.100088 0.099617 0.100088 0.099693 0.100083
0.50 −48053.1 0.498438 0.499307 0.498439 0.499719 0.498434
0.90 −45661.4 0.900235 0.899218 0.900235 0.899959 0.900231
0.95 −44971.4 0.950553 0.949276 0.950553 0.950064 0.950549
0.99 −43679.4 0.990187 0.98904 0.990187 0.989871 0.990184

0.9990 −42211.5 0.999040 0.998159 0.999040 0.999001 0.999036
0.9999 −40911.8 0.999920 0.999115 0.999920 0.999958 0.999918
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Figure 2.15: Simulated cdf (light solid lines), Gamma cdf approximation (left) and gen-
eralized gamma cdf approximation (right) for Q∗1(X) [µ = (100, 0,−50, 150, 5)′].

Figure 2.16: Simulated cdf (light solid lines)and generalized shifted gamma cdf approxi-
mation for Q∗1(X) [µ = (100, 0,−50, 150, 5)′].
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Figure 2.17: Simulated cdf (light solid lines) and gamma cdf approximation for Q∗2(X).

µ = 0, a′ = (1, 2, 3, 4, 5) and d = 6 .

In this case, the matrices B and P were found to be

B =


1.66591 0.39015 0 −0.26930
1.66591 0.39015 0 −0.26930
2.03287 −0.92672 0 0.09291
1.18171 0.49418 0 0.59945

0 0 1 0


and

P =


−0.97731 0.00042 −0.14936 −0.15022

0.05695 −0.58347 −0.72923 0.352901
0.13922 0.69384 −0.66277 −0.24484
−0.14916 0.42208 0.08157 0.89048

 .

The eigenvalues of B′AB are λ1 = 76.8865, λ2 = 0.9121, λ3 = −0.79856, λ4 = 0. Figure
2.17 indicates that the gamma approximation agrees closely with the simulated cdf.



Chapter 3

The Distribution of Ratios of
Quadratic Expressions in Normal
Vectors

3.1 Introduction

Ratios of quadratic forms and quadratic expressions are discussed in this chapter. More
specifically, ratios whose distribution can be determined from that of the difference of
positive definite quadratic forms and ratios involving idempotent or positive definite ma-
trices in their denominators are being considered. Suitable approaches are proposed for
approximating their distributions. Several illustrative examples are provided, includ-
ing applications to the Durbin-Watson statistic and Burg’s estimator. The last section
focuses on the case of ratios of quadratic expressions in singular normal vectors.

3.2 The Distribution of Ratios of Quadratic Forms

Three type of the ratios of quadratic forms are considered in this section: ratios of
indefinite quadratic forms (Section 3.2.1) and ratios involving idempotent or positive
definite matrices in their denominators (Sections 3.2.2 and 3.2.3, respectively).

3.2.1 The Distribution of Ratios of Indefinite Quadratic Forms

Let R = Q1(X)/Q2(X) = X′AX/X′BX where the matrices of A and B can be indefinite,
the rank of B being at least one and let X ∼ N p(µ, Σ); then, one has

57
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Pr (R ≤ t0) = Pr
(X′AX

X′BX
≤ t0

)
= Pr

(
X′AX ≤ t0X

′BX
)

= Pr
(
X′(A− t0B)X ≤ 0

)
. (3.1)

On letting U = X′(A − t0B)X, U can be re-expressed as a difference of two positive
quadratic forms as explained in Section 2.4 and the distribution function of R can be
evaluated at each point t0. This approach is illustrated by the next example which
involves the Durbin-Watson statistic.

Example 3.2.1. The statistic proposed by Durbin and Watson (1950), which in fact
assesses whether the disturbances in the linear regression model Y = Xβ + ε are uncor-
related, can be expressed as

D =
ε̂′A∗ε̂

ε̂′ε̂

where
ε̂ = Y−Xβ̂

is the vector of residuals, β̂ = (X′X)−1X′Y being the ordinary least-squares estimator
of β, and A∗ = (a∗ij) is a symmetric tridiagonal matrix with a∗11 = a∗pp = 1; a∗ii = 2, for
i = 2, . . . , p−1; a∗ij = −1 if |i− j| = 1; and a∗ij = 0 if |i− j| ≥ 2. Assuming that the error
vector is normally distributed, one has ε ∼ Np(0, I) under the null hypothesis. Then, on
writing ε̂ as MY where Mp×p = I −X(X′X)−1X′ = M ′ is an idempotent matrix of rank
p− k, the test statistic can be expressed as the following ratio of quadratic forms:

D =
Z′MA∗MZ

Z′MZ
, (3.2)

where Z ∼ Np(0, I); this can be seen from the fact that MY and MZ are identically
distributed singular normal vectors with mean vector 0 and covariance matrix MM ′.

The cumulative distribution function of D at t0 is

Pr (D < t0) = Pr
(
Z′M(A∗M − t0I)Z < 0

)
(3.3)

where U1 = Z′M(A∗M − t0I)Z is an indefinite quadratic from with A = M(A∗M − t0I),
µ = 0 and Σ = I. One can obtain the moments and the various approximations of the
density functions of U1 from Equations (2.17) and (2.24).

We make use of a data set that is provided in Hildreth and Lu (1960). In this case,
there are k = 5 independent variables, p = 18, the observed value of D is 0.96, and the
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Table 3.1: Three polynomially-adjusted approximations (d = 10) to the distribution
function of D evaluated at certain percentage points (Simul. % ) obtained by simulation.

CDF Simul. % G.P. Ge.G.P. Pear.P.

0.01 1.3607 0.010435 0.010420 0.010197
0.05 1.6479 0.050280 0.050277 0.050286
0.10 1.8098 0.099761 0.099770 0.100059
0.25 2.0854 0.247875 0.247909 0.248167
0.50 2.3901 0.495934 0.495953 0.496051
0.75 2.6861 0.748343 0.748288 0.749567
0.90 2.9374 0.902156 0.902100 0.901533
0.95 3.0768 0.952783 0.952788 0.952592
0.99 3.3101 0.991466 0.991457 0.991665

13 non-zero eigenvalues of M(A∗M − t0I) are those of MA∗M minus t0. The non-zero
eigenvalues of MA∗M are 3.92807, 3.82025, 3.68089, 3.38335, 3.22043, 2.9572, 2.35303,
2.25696, 1.79483, 1.48804, 0.948635, 0.742294 and 0.378736. For instance, when t0 =
1.80977, which corresponds to the 10th percentile of the simulated cumulative distribution
functions resulting from 1,000,000 replications, the eigenvalues of the positive definite
quadratic form Q1(X) are 2.11817, 2.01035, 1.87099, 1.57345, 1.41053, 1.14734, 0.54-313
and 0.44706, while those of Q2(X) are 0.01507, 0.3218, 0.86126, 1.06761 and 1.43116.

Polynomially adjusted density functions were obtained for D with gamma and gen-
eralized gamma base density functions. The corresponding cumulative distribution func-
tions were evaluated at certain percentiles of the distribution obtained by simulation on
the basis of 1,000,000 replications. The results reported in Table 3.1 suggest that the
polynomially adjusted generalized gamma approximation is slightly more accurate.

3.2.2 Ratios whose Denominator Involves an Idempotent Ma-
trix

Let R = X′AX /X′BX where A is indefinite, B is idempotent and X ∼ Np(µ,Σ).
Then, as stated in Hannan (1970), the hth moment of the ratio of such quadratic forms
is equal to the ratio of their hth moments. Thus, E(Rh) = E[(X′AX)h] /E[(X′BX)h].
The following example involves such a ratio.

Example 3.2.2. In Example 3.2.1, M , the matrix of the quadratic form appearing in the
denominator of D as defined in (3.2), happens to be idempotent. Thus, the hth moment of
D can be obtained as E(Z′MA∗MZ)h/E(Z′MZ)h and polynomially adjusted generalized
gamma density approximants as defined in Section 2.7.2 can be directly determined
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Table 3.2: Generalized gamma approximations to the distribution function ofD evaluated
at certain percentage points (Simul. % ) obtained with (Ge.G.P) and without (Ge.G.)
polynomial adjustment.

CDF Simul. % Ge.G. Ge.G.P.

0.01 1.3607 0.011744 0.010365
0.05 1.6479 0.050061 0.050308
0.10 1.8098 0.097460 0.099875
0.25 2.0854 0.243139 0.247947
0.50 2.3901 0.495703 0.495807
0.75 2.6861 0.754125 0.748325
0.90 2.9374 0.905234 0.902239
0.95 3.0768 0.952770 0.952814
0.99 3.3101 0.989273 0.991458

from the exact moments of D. A polynomial adjustment of degree d = 10 was used.
The approximate cumulative distribution function for the generalized gamma and the
polynomially-adjusted generalized gamma were evaluated at certain percentiles obtained
from the empirical distribution, which was generated from 1,000,000 replications. The
results reported in Table 3.3 indicate that the proposed approximations are indeed very
accurate.

3.2.3 Ratios whose Denominator Consists of a Positive Definite
Quadratic Form

In this section, the denominators are assumed to be positive definite quadratic forms.
Accordingly, letting R = X′AX /X′BX ≡ Q1/Q2 where A is indefinite and B is positive
definite, we have the following representation of the hth moments of R whenever it exists:

E(R)h = E
[
(X′AX)h(X′BX)−h

]
= E

(
Qh

1

1

Γ(h)

∫ ∞
0

yh−1e−Q2y dy

)
=

1

Γ(h)

∫ ∞
0

yh−1E
(
Qh

1 e−Q2y
)

dy

=
1

Γ(h)

∫ ∞
0

yh−1 d
h

dsh
MQ1,Q2(s,−y) |s=0 dy

=
1

Γ(h)

∫ ∞
0

yh−1
( dh
dsh
| I − 2sAΣ + 2yBΣ |−1/2|s=0

)
dy
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=
1

Γ(h)

∫ ∞
0

yh−1 | Σ−1 |1/2
( dh
dsh
| Σ−1 − 2sA+ 2yB |−1/2|s=0

)
dy (3.4)

where MQ1,Q2(s, y) is the joint moment generating function of Q1(X) and Q2(X).
In the next example, we determine the moments of Burg’s estimator and approxi-

mate its distribution.

Example 3.2.3. Burg’s estimator, ᾱ, of the parameter α in an AR(1) process is defined
as

ᾱ =
2
∑n

t=2 xtxt−1∑n
t=2

(
x2
t + x2

t−1

) ,
which can be expressed as follows in matrix form:

ᾱ =
X′B1X

X′B0X
(3.5)

where

B1 =


0 1 0 · · · 0
1 0 1 · · · 0

0
. . . . . . . . . 0

0 · · · 1 0 1
0 · · · 0 1 0

 , B0 =


1 0 0 · · · 0
0 2 0 · · · 0

0
. . . . . . . . . 0

0 · · · 0 2 0
0 · · · 0 0 1


and X ∼ Nn(0,Σ), the inverse of the covariance matrix of an AR(1) process being

Σ−1 =


1 −α 0 · · · 0
−α 1 + α2 −α · · · 0

0
. . . . . . . . . 0

0 · · · −α 1 + α2 −α
0 · · · 0 −α 1

 . (3.6)

In light of Equation (3.4), the hth moment of Burg’s estimator is given by

E(ᾱ)h = E
[
(X′B1X)h(X′B0X)−h

]
,

and letting Q0 = X′B0X and Q1 = X′B1X,
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E(ᾱ)h = E

(
Qh

1

1

Γ(h)

∫ ∞
0

yh−1e−Q0y dy

)
=

1

Γ(h)

∫ ∞
0

yh−1 | Σ−1 |1/2
( dh
dsh
| Σ−1 − 2sB1

+2yB0 |−1/2|s=0

)
dy. (3.7)

In this case, the expression

| Σ−1 − 2sB1 + 2yB0 |−1/2|s=0 (3.8)

is tridiagonal which make it easier to evaluate.
Since the support of the distribution is finite, we approximate the distribution of

the ratio from its moments by making use of a beta distribution as base density function.
The proposed methodology comprises the following steps:

1. The moments of ᾱ are determined from Equation (3.7) for n = 50 and α = 0.5.

2. A beta density function is utilized as base density:

φ(x) =
1

B(a, b)
xa−1(1− x)b−1 I(0,1)(x), a > 0, b > 0,

where B(a, b) = Γ(a) Γ(b)/Γ(a+ b).

3. The support (q, r) of the ratio denoted by y is mapped onto the interval (0,1)
by means of the affine transformation, x = (y − q)/(r − q), which implies that
y = x(r − q) + q.

4. The hth moment of x is determined from the binomial expansion of
[
(y−q)/(r−q)

]h
.

5. The parameters of the beta density are evaluated as follows:

a = −µ1 +
(1− µ1)µ2

1

µ2 − µ2
1

, b = −1− a+
(1− µ1)µ1

µ2 − µ2
1

.

6. Approximate densities are obtained with and without polynomial adjustments using
the procedure described in Section 2.7.3.
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Table 3.3: Approximate cdf’s of Q(X) evaluated at certain percentage points (Simul. %)
obtained by simulation based on the moments of ᾱ (n = 50 and α = .5).

CDF Simul. % Beta Beta Poly

0.0001 −0.06975 0.00003878 0.00011285
0.0010 0.03410 0.00059530 0.00117713

0.01 0.15748 0.008215 0.010906
0.05 0.26337 0.048012 0.051062
0.10 0.31726 0.100023 0.100270
0.25 0.40260 0.256156 0.248771
0.50 0.49001 0.508722 0.500073
0.75 0.56864 0.750512 0.750520
0.90 0.66737 0.944097 0.949802
0.95 0.66737 0.944097 0.949802
0.99 0.72743 0.986898 0.989970

0.999 0.78539 0.998254 0.999007
0.9999 0.82370 0.999721 0.999890

A polynomial adjustment of degree d = 3 was used. The approximate cumula-
tive distribution functions corresponding to the beta and the polynomially-adjusted beta
density functions were evaluated at certain percentiles obtained from the empirical distri-
bution, which was generated from 1,000,000 replications. The results reported in Table
3.3 corroborate that the proposed approximations are very accurate.

We now resort to a different approach involving the relationship (3.1) to approximate
distribution of ᾱ using several base densities and various values for n and α.

Example 3.2.4. Let ᾱ be the Burg estimator of the parameter α in an AR(1) process
as defined in (3.5). Then, it follows from the relationship (3.1) that the distribution
function of ᾱ at the point t0 is

Pr (ᾱ ≤ t0) = Pr
(
X′(B1 − t0B0)X ≤ 0

)
. (3.9)

On letting U = X′(B1 − t0B0)X, U can be re-expressed as a difference of two positive
quadratic forms by applying Steps 1 and 2 of the algorithm provided in Section 2.7.5,
with A = (B1 − t0B0), µ = 0 and Σ = I. Polynomially adjusted density functions were
obtained via the indefinite quadratic form approach with gamma, generalized gamma and
Pearson-type base density functions. The corresponding cumulatve distribution functions
were evaluated at certain percentiles of the distribution obtained by simulation. The
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Table 3.4: Approximate cdf’s of ᾱ evaluated at certain percentage points (Simul. %)
without polynomial adjustments (n = 50 and α = 0.25).

CDF Simul. % Gamma Ge.G. Ge.S.G.

0.0001 −0.29474 0.00016120 0.000110418 0.00010394
0.0010 −0.20229 0.00138816 0.001114110 0.00108598

0.01 −0.09178 0.011440 0.010336 0.0102635
0.05 0.00890 0.052744 0.050636 0.0505776
0.10 0.06238 0.102949 0.100756 0.100751
0.25 0.15008 0.250864 0.249903 0.249990
0.50 0.24513 0.498778 0.499997 0.500061
0.75 0.33566 0.748343 0.750052 0.750028
0.90 0.41276 0.899569 0.900444 0.900416
0.95 0.45684 0.950268 0.950668 0.950660
0.99 0.53496 0.990473 0.990487 0.990524

0.9990 0.61468 0.998968 0.998923 0.999138
0.9999 0.66910 0.999268 0.999175 0.999906

approximate cdf’s are presented in Tables 3.4 to 3.11 for α = 0.25,−0.25, 0.5 and 0.95
and for n = 10 and 50.

3.3 Ratios of Quadratic Expressions in Singular Nor-

mal Vectors

Let A1 = A′1 and A2 = A′2 be indefinite matrices, X be a p× 1 normal vector such that
E(X) = µ , Cov(X) = Σ ≥ 0 , ρ(Σ) = r ≤ p so that, Σ = BB′, B being a p × r
matrix, and let a′1 and a′2 be p−dimensional constant vectors, and d1 and d2 be scalar
constants. Then, letting Q∗1(X) = X′A1X + a′1X + d1 and Q∗2(X) = X′A2X + a′2X + d2,
the distribution of the ratio of quadratic expressions,

R =
X′A1X + a′1X + d1

X′A2X + a′2X + d2

, (3.10)

can be determined as follows:
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Table 3.5: Approximate cdf’s of ᾱ evaluated at certain percentage points (Simul. %)
with polynomial adjustments (d = 10, n = 50 and α = 0.25).

CDF Simul. % G.P. Ge.G.P. Ge.S.G.P

0.0001 −0.29474 0.00011431 0.00010411 0.00010391
0.0010 −0.20229 0.00111173 0.00109919 0.00108635

0.01 −0.09178 0.010282 0.010288 0.010266
0.05 0.00890 0.050576 0.050571 0.050585
0.10 0.06238 0.100735 0.100733 0.100737
0.25 0.15008 0.249963 0.249969 0.250134
0.50 0.24513 0.500062 0.500057 0.500065
0.75 0.33566 0.750043 0.750041 0.750050
0.90 0.41276 0.900420 0.900457 0.900402
0.95 0.45684 0.950504 0.950656 0.950665
0.99 0.53496 0.990489 0.990496 0.990462

0.9990 0.61468 0.998928 0.999244 0.998931
0.9999 0.66910 0.999180 0.999182 0.999903

Table 3.6: Approximate cdf’s of ᾱ evaluated at certain percentage points (Simul. %)
without polynomial adjustments (n = 50 and α = −0.25).

CDF Simul. % Gamma Ge.G. Ge.S.G. Pearson

0.0001 −0.66882 0.00009439 0.00009657 0.00009529 0.00000005
0.0010 −0.61317 0.00090534 0.00091529 0.00091011 0.00000556

0.01 −0.53413 0.009704 0.009682 0.0096720 0.000525
0.05 −0.45660 0.049943 0.0495397 0.049550 0.010598
0.10 −0.41245 0.100882 0.100003 0.100032 0.036816
0.25 −0.33548 0.252116 0.250405 0.250429 0.174675
0.50 −0.24477 0.502276 0.501063 0.500999 0.507978
0.75 −0.14998 0.749359 0.750322 0.750235 0.838852
0.90 −0.06180 0.897741 0.899936 0.899942 0.970393
0.95 0.00845 0.947574 0.949679 0.949737 0.992540
0.99 0.09273 0.988744 0.989838 0.989910 0.999767

0.9990 0.20434 0.998671 0.998937 0.998964 0.999999
0.9999 0.29299 0.999832 0.999884 0.999891 1.000000
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Table 3.7: Approximate cdf’s of ᾱ evaluated at certain percentage points (Simul. %)
with polynomial adjustments (d = 10, n = 50 and α = −0.25).

CDF Simul. % G.P. Ge.G.P. Ge.S.G.P. Pear.P.

0.0001 −0.66882 0.00009547 0.00009542 0.00009544 0.00003362
0.0010 −0.61317 0.00091092 0.00091099 0.00091035 0.00135811

0.01 −0.53413 0.009675 0.009675 0.009675 0.004625
0.05 −0.45660 0.049554 0.049551 0.049552 0.074497
0.10 −0.41245 0.100027 0.100026 0.100029 0.056944
0.25 −0.33547 0.250413 0.250412 0.250412 0.280581
0.50 −0.24477 0.500998 0.501001 0.500995 0.443270
0.75 −0.14998 0.750261 0.750259 0.749936 0.737736
0.90 −0.06180 0.899958 0.899960 0.899957 0.915464
0.95 0.00845 0.949738 0.949741 0.949730 0.955555
0.99 0.09273 0.989892 0.989886 0.989906 0.993913

0.9990 0.20434 0.998941 0.998951 0.998964 0.999423
0.9999 0.29299 0.999880 0.999890 0.999891 0.999784

Table 3.8: Approximate cdf’s of ᾱ evaluated at certain percentage points (Simul. %)
without polynomial adjustments (n = 50 and α = 0.5).

CDF Simul. % Gamma Ge.G. Ge.S.G.

0.0001 −0.06975 0.00026626 0.00021473 0.00010360
0.0010 0.03410 0.00179833 0.00114713 0.00105810

0.01 0.15748 0.013073 0.010633 0.010400
0.05 0.26337 0.055730 0.051370 0.051171
0.10 0.31726 0.105820 0.101477 0.101431
0.25 0.40260 0.251935 0.250435 0.250672
0.50 0.49001 0.496060 0.498871 0.499085
0.75 0.56864 0.744974 0.748063 0.748038
0.90 0.63233 0.898617 0.899578 0.899501
0.95 0.66737 0.950450 0.950487 0.950443
0.99 0.72743 0.991228 0.990902 0.990909

0.9990 0.78539 0.999318 0.999231 0.999267
0.9999 0.82370 0.999847 0.999820 0.999936
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Table 3.9: Approximate cdf’s of ᾱ evaluated at certain percentage points (Simul. %)
with polynomial adjustments (d = 10, n = 50 and α = 0.5).

CDF Simul. % G.P. Ge.G.P. Ge.S.G.P.

0.0001 −0.06975 0.00011574 0.00010902 0.00010845
0.0010 0.03410 0.00109257 0.00109750 0.00108890

0.01 0.15748 0.010478 0.010468 0.010483
0.05 0.26337 0.051147 0.0511622 0.051202
0.10 0.31726 0.101386 0.101239 0.101585
0.25 0.40260 0.250651 0.250552 0.250556
0.50 0.49001 0.499041 0.499088 0.499083
0.75 0.56864 0.748100 0.748075 0.748101
0.90 0.63233 0.899523 0.899583 0.899564
0.95 0.66737 0.950499 0.950483 0.950454
0.99 0.72743 0.990899 0.991144 0.990816

0.9990 0.78539 0.999237 0.999328 0.999234
0.9999 0.82370 1.000620 0.999831 0.999917

Table 3.10: Approximate cdf’s of ᾱ evaluated at certain percentage points (Simul. %)
without polynomial adjustments (n = 10 and α = 0.95).

CDF Simul. % Gamma Ge.G. Ge.S.G.

0.0001 −0.51901 0.01712640 0.00885508 0.000000000
0.0010 −0.26028 0.03047380 0.01823720 0.000000000

0.01 0.12204 0.0608326 0.043297 0.000001
0.05 0.45421 0.113882 0.093368 0.008579
0.10 0.60456 0.160510 0.140418 0.062949
0.25 0.79469 0.282287 0.268802 0.255151
0.50 0.91359 0.499850 0.497266 0.506946
0.75 0.96542 0.749942 0.750062 0.746778
0.90 0.98341 0.899988 0.900104 0.901998
0.95 0.98888 0.950188 0.950275 0.953367
0.99 0.99446 0.990025 0.990064 0.992074

0.9990 0.99737 0.998970 0.998979 0.999247
0.9999 0.99868 0.999918 0.999919 0.999745
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Table 3.11: Approximate cdf’s of ᾱ evaluated at certain percentage points (Simul. %)
with polynomial adjustments (d = 10, n = 10 and α = 0.95).

CDF Simul. % G.P. Ge.G.P. Ge.S.G.P.

0.0001 −0.51901 0.01268780 0.00792530 0.000000000
0.0010 −0.26028 0.02285400 0.01649720 0.000000000

0.01 0.12204 0.047212 0.036901 0.000016
0.05 0.45421 0.093623 0.086329 0.010791
0.10 0.60456 0.136677 0.131447 0.063953
0.25 0.79469 0.259564 0.259198 0.256471
0.50 0.91359 0.493526 0.494551 0.503528
0.75 0.96542 0.750099 0.750100 0.750143
0.90 0.98341 0.900102 0.900103 0.899839
0.95 0.98888 0.950271 0.950271 0.950274
0.99 0.99446 0.990060 0.990061 0.990112

0.9990 0.99737 0.998977 0.998978 0.999067
0.9999 0.99868 0.999919 0.999917 0.999601

FR(t0) = Pr(R ≤ t0) = Pr(Q∗1(X)− t0Q∗2(X) ≤ 0)

= Pr((X′A1X + a′1X + d1)− t0(X′A2X + a′2X + d2) ≤ 0)

= Pr(X′(A1 − t0A2)X + (a′1 − t0 a′2)X + (d1 − t0 d2) ≤ 0)

= Pr(X′AX + a′X + d ≤ 0) (3.11)

where A = A1 − t0A2, a′ = a′1 − t0 a′2 and d = d1 − t0 d2.
On letting Q∗(X) = X′AX + a′X + d, Q∗(X) can be re-expressed as a difference

of two positive quadratic forms plus a constant by making use of Representation 2.6.1.
Then, it suffices to evaluate the cdf of Q∗(X) at the point 0 to determine FR(t0).

Remark 3.3.1. Note that the numerator and denominator may involve different vectors.
For example, consider the ratio

(W′ , Y′)B1

(
W
Y

)
+ b′1Y + d1

(Y′ , Z′)B2

(
Y
Z

)
+ b′2

 W
Y
Z

+ d2
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which can be re-expressed as

X′
(
B1 O
O O

)
X + a′1X + d1

X′
(
O O
O B2

)
X + a′2X + d2

where X′ = (W′ , Y′ , Z′), a′1 = (0′ , b′1 , 0′) and a′2 = b′2.

Example 3.3.1. Let X ∼ N5(µ,Σ) where µ = (1, 2, 2, 1, 4)′ and

Σ =


2 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 3 0
0 0 0 0 2

 .

Consider the following ratio of quadratic expressions:

R =
X′A1X + a′1X + 3

X′A2X + a′2X + 1
(3.12)

where a′1 = (1, 2, 1, 3, 3), a′2 = (1, 1, 4, 2, 1),

A1 =


−4 2 2 2 0

2 0 −2 0 −2
2 −2 0 −2 2
2 0 −2 0 2
0 −2 2 2 4

 ,

and

A2 =


1 −1 −1 1 −1
−1 1 1 1 1
−1 1 1 1 1

1 1 1 1 0
−1 1 1 0 1

 .

The matrices B and P were found to be

B =


1.10133 0. −0.76987 0.44088
0.87818 0. −0.26911 −0.39545
0.87818 0. −0.26911 −0.39545
1.47651 0. 0.89436 0.14154

0. 1.41421 0. 0.
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Table 3.12: Three approximations to the distribution of R evaluated at certain percentage
points (Simul. %) obtained by simulation.

CDF Simul. % Gamma Ge.G. Ge.S.G.

0.01 −0.13586 0.004943 0.008627 0.011654
0.05 0.27988 0.045237 0.050729 0.051379
0.10 0.46437 0.090279 0.098642 0.100893
0.25 0.76761 0.240652 0.249059 0.249943
0.50 1.13672 0.498319 0.500332 0.499710
0.75 1.57132 0.753442 0.750528 0.750055
0.90 2.05093 0.903139 0.900769 0.901018
0.95 2.40063 0.952203 0.950949 0.951489
0.99 3.30089 0.990830 0.990636 0.991129

and

P =


0.95435 0.21694 −0.00179 0.20533
−0.04486 −0.35524 −0.73373 0.57744

0.22494 −0.24681 −0.51537 −0.78923
−0.19135 0.87512 −0.44275 −0.03909

 .

where P is an orthogonal matrix such that P ′B′ABP = Diag(λ1, . . . , λr), λ1, . . . , λr
being the eigenvalues of B′(A1 − t0A2)B. In light of Equation (3.11), we proceed as
in Example 2.8.1 to determine the cdf of R for various values of t0. Approximations to
the distribution function of R were obtained by making use of the gamma, generalized
gamma and the generalized shifted gamma densities. The simulated distribution function
was determined on the basis of 5,000,000 replications. Since the simulated values are not
as reliable for cdf’s less than 0.1, we use the following relationship to obtain cdf values
that are less than 0.1 from a given approximation.

Let T = 1/R = Q2(X)/Q1(X); noting that

p = Pr(T ≤ t′p) = Pr
( 1

R
≤ t′p

)
= Pr(R ≥ 1

t′p
)

= 1− Pr(R ≤ 1

t′p
) (3.13)

implies that Pr(R ≤ 1/t′p) = 1 − p, one has that 1 − 1/t′p ≡ t1−p is the (1 − p)100th

percentile of R. Thus, one can obtain the (1− p)100th percentile of R by determining the
percentile t′p from the generated values of Q2(X)/Q1(X).
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Table 3.13: Three polynomially-adjusted (d = 10) approximations to the distribution of
R evaluated at certain percentage points (Simul. %) obtained by simulation.

CDF Simul. % G.P. Ge.G.P. Ge.S.G.P.

0.01 0.12129 0.011033 0.011337 0.011493
0.05 0.27988 0.050263 0.050293 0.050292
0.10 0.46437 0.100035 0.100215 0.100132
0.50 1.13672 0.500356 0.500352 0.500144
0.90 2.05093 0.900152 0.900048 0.900096
0.95 2.40063 0.950389 0.950250 0.950411
0.99 3.30089 0.990395 0.990332 0.990640

Table 3.14: Two approximations with and without polynomial adjustments (d = 10)
to the distribution of R evaluated at certain percentage points (Simul. %) obtained by
simulation.

CDF Simul. % Ge.G. Ge.G.P. Ge.Sh.G Ge.Sh.G.P.

0.01 −0.13586 0.008627 0.011033 0.011654 0.011493
0.05 0.05073 0.050730 0.050293 0.051379 0.050292
0.10 0.46437 0.098642 0.100215 0.100893 0.100132
0.50 1.13672 0.500332 0.500352 0.499710 0.500144
0.90 2.05093 0.900769 0.900048 0.901018 0.900096
0.95 2.40063 0.950949 0.950250 0.951489 0.950411
0.99 3.30089 0.990636 0.990332 0.991129 0.990640

Tables 3.12 to 3.14 include various approximate cdf values that are determined with
and without polynomial adjustments. The results presented in Table 3.12 indicate that
the generalized gamma distribution provides the most accurate approximations for a ma-
jority of the points. The approximations adjusted with polynomials of degree 10, which
are presented in Table 3.13, suggest that the generalized shifted gamma approximation is
more accurate for cdf’s less than 0.75. However, for cdf’s higher than 0.75, the generalized
gamma approximation produces the best results. In addition, Table 3.14 indicates that,
in this case, the polynomial adjustments improve the accuracy of the approximations.



Chapter 4

Hermitian Quadratic Forms in
Normal Vectors

4.1 Introduction

It is shown in Section 4.2 that Hermitian quadratic forms or quadratic expressions in sin-
gular normal vectors can be expressed in terms of real positive definite quadratic forms
and an independently distributed normal random variable; representations of their mo-
ment generating functions and cumulants—wherefrom the moments can be determined—
are provided in Section 4.4. Several particular cases of interest are mentioned. It should
be noted that, when dealing with quadratic forms in singular normal vectors, whether
real or Hermitian, the results that are available in the statistical literature such as Equa-
tion (1) of Tong et al. (2010) and Representation 3.1a.5 in Mathai and Provost (1992)
may not hold if the rank of the matrix of the quadratic form is less than that of the
covariance matrix of the singular normal vector. Section 4.3 proposes a methodology for
approximating the distribution of Hermitian quadratic forms and quadratic expressions.
Four numerical examples illustrate the application of the proposed distributional results
in Section 4.5.

4.2 Hermitian Quadratic Forms Expressed in Terms

of Real Quadratic Forms

A complex random vector W in Cn can be written as W = U + iV where U and V are
real random vectors in <n. Accordingly, problems involving a complex random vector
W, can be re-expressed in terms of the real random vector (U′,V′)′ in <2n where, for
instance, U′ denotes the transpose of U. When U and V are correlated n-dimensional
real normal vectors with means µU and µV, respectively, the random vector W = U+iV

72
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has the complex normal distribution CN n(µW,Γ, C) where µW = µU + iµV = E(W),

Γ = E[(W− µW)(W− µ̄W)′] and C = E[(W− µW)(W− µW)′], (4.1)

W denoting the complex conjugate of W. The covariance matrix Γ is Hermitian and
non-negative definite and the relation matrix C is symmetric and non-negative definite.
Moreover, as pointed out in Picinbono (1996), the matrices Γ and C must be such that the
matrix Γ̄ − C̄ ′Γ−1/2C is also non-negative definite, which will be assumed throughout,
Γ−1/2 denoting the inverse of the symmetric square root of Γ. We note that in most
practical applications, C is taken to be the null matrix. For instance, Mathai (1997)
made that assumption when defining the multivariate normal density in the complex
case.

It follows from (4.1) that the matrices Γ and C are related to the covariance matrices
associated with U and V as follows:

Cov(U) = E[(U− µU)(U− µU)′] =
1

2
Re[Γ + C],

Cov(U,V) = E[(U− µU)(V− µV)′] =
1

2
Im[−Γ + C],

Cov(U,V)′ = E[(V− µV)(U− µU)′] =
1

2
Im[Γ + C],

and

Cov(V) = E[(V− µV)(V− µV)′] =
1

2
Re[Γ− C],

where Re[·] and Im[·] respectively denote the real and imaginary parts of [·].
Accordingly, the real random vector (U′,V′)′ corresponding to the complex normal

random vector (U′ + iV′) ∼ CN n(µU + iµV,Γ, C) has the following distribution:

(
U
V

)
∼ N2n

((
µU

µV

)
, Σ

)
(4.2)

where

Σ2n×2n =
1

2

(
Re[Γ + C] Im[−Γ + C]
Im[Γ + C] Re[Γ− C]

)
(4.3)

and Nν(µ,Σ) denotes a real ν-dimensional normal vector whose mean and covariance
matrices are µ and Σ, respectively. Assuming that the rank of Σ is r ≤ 2n, one has the
following representation of the normal vector (U′,V′)′ :(

U
V

)
= B Z + µ (4.4)
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where Z ∼ Nr(0, I), µ = (µ′U,µ
′
V)′ and B2n×r is such that BB′ = Σ. In order to

determine the matrix B2n×r when Σ2n×2n is a possibly singular symmetric real matrix of
rank r ≤ 2n, we make use of the spectral decomposition theorem to express Σ as ΘΛΘ′

where Λ is a diagonal matrix whose first r diagonal elements are the positive eigenvalues of
Σ, the remaining diagonal elements being equal to zero, and Θ is an orthogonal matrix
whose jth column contains the normalized eigenvector of Σ corresponding to the jth

diagonal element of Λ = Diag(δ1, . . . , δ2r), the δi’s denoting the eigenvalues of Σ in
decreasing order. Next, we let B∗2n×2n = ΘΛ1/2 and remove the last 2n − r columns of
B∗, which are null vectors, to obtain the matrix B2n×r. Then, it can be verified that
Σ = BB′. When Σ is nonsingular, B = Σ1/2 is the 2n× 2n symmetric square root of Σ.

A representation of a Hermitian quadratic form in a complex normal vector is now
given in terms of real quantities under very general assumptions.

Result 4.2.1. Let Q(W) = W
′
HW be a Hermitian quadratic form where W ∼

CN n(µW ,Γ, C), µW = µU + iµV with µU ∈ <n and µV ∈ <n, C is symmetric and
non-negative definite, and H and Γ are Hermitian, Γ being non-negative definite. Then,
Q(W) admits the decomposition given in (4.11).

Proof

Q(W) = W
′
HW = (U′ − iV′)H (U + iV)

= U′
(H +H ′

2

)
U + V′

(H +H ′

2

)
V− iU′H ′V + iU′H V

= U′
(H +H ′

2

)
U− i (U′ , V′)

(
O H ′/2
H/2 O

) (
U
V

)
+i (U′ , V′)

(
O H/2

H ′/2 O

) (
U
V

)
+ V′

(H +H ′

2

)
V

= (U′ , V′)

( (
H +H ′

)
/2 i

(
H −H ′

)
/2

i
(
H ′ −H

)
/2

(
H +H ′

)
/2

) (
U
V

)
≡ (U′ , V′)H1

(
U
V

)
(4.5)

(4.4)
= (B Z + µ)′H1(B Z + µ) (4.6)

= Z′B′H1B Z + 2µ′H1B Z + µ′H1µ (4.7)

where

H1 =

( (
H +H ′

)
/2 i

(
H −H ′

)
/2

i
(
H ′ −H

)
/2

(
H +H ′

)
/2

)
(4.8)

is a 2n × 2n symmetric real matrix and µ, Z and B2n×r are as defined in (4.4), with
BB′ = Σ as specified by (4.3).
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Now, let P be an r×r orthogonal matrix such that P ′B′H1BP = Diag(λ1, . . . , λr),
where λ1, . . . , λr1 are the positive eigenvalues of B′H1B (or equivalently those of ΣH1),
λr1+1 = · · · = λr1+θ = 0 and λr1+θ+1, . . . , λr are the negative eigenvalues of B′H1B,
b′ = (b1, . . . , br) = µ′H1BP , B′H1B 6= O and c1 = µ′H1µ. Then, on letting X = P ′Z
and noting that X = (X1, · · · , Xr)

′ ∼ Nr(0, I), one has

Q(W) = X′Diag(λ1, . . . , λr) X + 2 b′X + c1 (4.9)

=
r∑
j=1

λjX
2
j + 2

r∑
j=1

bjXj + c1

=

r1∑
j=1

λjX
2
j + 2

r1∑
j=1

bjXj −
r∑

j=r1+θ+1

|λj|X2
j + 2

r∑
j=r1+θ+1

bjXj

+2

r1+θ∑
j=r1+1

bjXj + c1

=

r1∑
j=1

λj

(
Xj +

bj
λj

)2

−
r∑

j=r1+θ+1

|λj|
(
Xj +

bj
λj

)2

+ 2

r1+θ∑
j=r1+1

bjXj

+
(
c1 −

r1∑
j=1

b2
j

λj
−

r∑
j=r1+θ+1

b2
j

λj

)
(4.10)

≡ Q1(X+)−Q2(X−) + 2

r1+θ∑
j=r1+1

bjXj + κ1

≡ Q1(X+)−Q2(X−) + T, (4.11)

where Q1(X+) and Q2(X−) are positive definite quadratic forms, X+ = (X1 +
b1/λ1, . . . , Xr1 + br1/λr1)

′ ∼ Nr1(ν1, I) with ν1 = (b1/λ1, . . . , br1/λr1)
′, X− = (Xr1+θ+1 +

br1+θ+1/λr1+θ+1, . . . , Xr + br/λr)
′ ∼ Nr−r1−θ (ν2, I) with ν2 = (br1+θ+1/λr1+θ+1, . . . ,

br/λr)
′, κ1 =

(
c1 −

∑r1
j=1 b

2
j/λj −

∑r
j=r1+θ+1 b

2
j/λj

)
, θ being number of null eigenvalues

of ΣH1 and T = (2
∑r1+θ

j=r1+1 bjXj +κ1) ∼ N (κ1 , 4
∑r1+θ

j=r1+1 b
2
j). Thus, when ρ(H1) < ρ(Σ)

and at least one bi, i = r1 + 1, . . . , r1 + θ, is non-null, ρ(·) denoting the rank of (·), non-
central Hermitian quadratic forms in possibly singular complex normal vectors can be
expressed as the difference of two positive definite real quadratic forms and an indepen-
dently distributed normal random variable.

It should be pointed out that the representation of the quadratic form (4.5), which
is given in (4.11), is more general than any representation currently available in the
statistical literature. A special case is discussed in the next result.
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Result 4.2.2. Consider Q(W) as defined in Result 4.2.1. Let the rank of H1Σ be equal
to the rank of Σ, in which case λj 6= 0, j = 1, 2, . . . , r; then a noncentral Hermitian
quadratic form in a possibly singular complex normal vectors can be represented as the
difference of two positive definite quadratic forms plus a scalar constant since the linear
term in (4.10) is now absent, θ being equal to zero. More specifically,

Q(W) =
r∑
j=1

λjX
2
j + 2

r∑
j=1

bjXj + c1

=

r1∑
j=1

λjX
2
j + 2

r1∑
j=1

bjXj −
r∑

j=r1+1

|λj|X2
j + 2

r∑
j=r1+1

bjXj + c1

=

r1∑
j=1

λj

(
Xj +

bj
λj

)2

−
r∑

j=r1+1

|λj|
(
Xj +

bj
λj

)2

+
(
c1 −

r1∑
j=1

b2
j

λj
−

r∑
j=r1+1

b2
j

λj

)
≡ Q1(X+)−Q2(X−) + κ1 (4.12)

where Q1(X+), Q2(X−), κ1, the λj’s and the bj’s are as specified in Result 4.2.1 wherein
it is assumed that θ = 0.

When Σ has full rank, the following result holds.

Result 4.2.3. When a Hermitian quadratic form in a complex normal vector whose
associated real covariance Σ as specified by (4.3) is nonsingular, the symmetric square
root of Σ denoted by Σ1/2 exists, and, as an alternative to representation (4.11), one can
make use of Equation (4.6) with B = Σ1/2 to obtain the decomposition of Q(W) given
in (4.13).

Proof Let P be a 2n× 2n orthogonal matrix that diagonalizes Σ1/2H1Σ1/2, that is, P
is such that

P ′Σ1/2H1 Σ1/2P = Diag(λ1, . . . , λ2n), with P ′P = I, PP ′ = I,

where λ1, . . . , λ2n are the eigenvalues of Σ1/2H1Σ1/2 (or equivalently those of ΣH1) in
decreasing order. Then, it follows from (4.6) that

Q(W) = (Z + Σ−1/2µ)′Σ1/2H1Σ1/2(Z + Σ−1/2µ)

= (Y + b∗)′P ′Σ1/2H1Σ1/2P (Y + b∗)

= (Y + b∗)′Diag(λ1, . . . , λ2n)(Y + b∗),

=
2n∑
j=1

λj(Yj + b∗j)
2
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=

r1∑
j=1

λj(Yj + b∗j)
2 −

2n∑
j=r1+θ+1

|λj|(Yj + b∗j)
2

≡ Q1(Y+)−Q2(Y−) , (4.13)

where Y = (Y1, . . . , Y2n)′ = P ′Z with Y ∼ N2n(0, I), Y+ = (Y1 + b∗1, . . . , Yr1 +
b∗r1)

′ ∼ Nr1(m1, I) with m1 = (b∗1, . . . , b
∗
r1

)′, Y− = (Yr1+θ+1 + b∗r1+θ+1, . . . , Y2n +

b∗2n)′ ∼ N2n−r1−θ(m2, I) with m2 = (b∗r1+θ+1, . . . , b
∗
2n)′, b∗ = (b∗1, . . . , b

∗
2n)′ = P ′Σ−1/2µ,

λ1, . . . , λr1 are the positive eigenvalues of Σ1/2H1Σ1/2, λr1+1 = · · · = λr1+θ = 0 and
λr1+θ+1, . . . , λ2n are the negative eigenvalues of Σ1/2H1 Σ1/2.

The central case is addressed in the next two results.

Result 4.2.4. A central Hermitian quadratic form in the complex normal vector W ∼
CN n(0,Γ, C) has the representation given in (4.14).

Proof Letting µ = 0 in Results 4.2.1 and 4.2.2, so that c1 = 0 and bj = 0, j = 1, . . . , r,
one has

Q(W) =
r∑
j=1

λjY
2
j =

r1∑
j=1

λjY
2
j −

r∑
j=r1+θ+1

|λj|Y 2
j

≡ Q1(Y+
1 )−Q2(Y−1 ), (4.14)

where Q1(Y+
1 ) and Q2(Y−1 ) are positive definite quadratic forms with Y+

1 = (Y1, . . . , Yr1)
′

∼ Nr1(0, Ir1) and Y−1 = (Yr1+θ+1, . . . , Yr)
′ ∼ Nr−r1−θ(0, Ir−r1−θ), and {λ1, . . . , λr1} and

{λr1+θ+1, . . . , λr} are the sets of positive and negative eigenvalues of ΣH1, respectively.

Result 4.2.5. When C is a null matrix, µ = 0 and the covariance matrix Γ is Hermitian
and non-negative definite (possibly singular), it follows from (4.10) that

Q(W) =

r1∑
j=1

λjX
2
j −

r∑
j=r1+θ+1

|λj|X2
j .

Since the eigenvalues of B′H1B happen to occur in pairs in this representation, the exact
density function of Q(W) can be determined by making use of Equation (2.54).

Result 4.2.6. When the matrix H1 is positive semidefinite, so is Q(W), and it follows
from Results 4.2.1 and 4.2.2 that Q(W) ∼ Q1(W+) + T when ρ(H1Σ) < ρ(Σ) and

Q(W) ∼ Q1(W+) + κ1 when ρ(H1Σ) = ρ(Σ) , where κ1 =
(
c1 −

∑r1
j=1 b

2
j/λj

)
.
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4.3 Hermitian Quadratic Expressions

Let Q∗(W) = W
′
HW + 1

2
W
′
α + 1

2
ᾱ′W + δ be a Hermitian quadratic expression in a

possibly singular complex normal vector W, where α = (a′1 + ia′2)′ and δ is real scalar
constant, H and W being as defined in Result 4.2.1. Note Q∗(W) is the counterpart of
(2.19) for the complex case. First, we note that

1

2
W
′
α+

1

2
ᾱ′W =

1

2
(U′ − iV′)(a1 + ia2) +

1

2
(a′1 − ia′2)(U + iV)

= a′1U + a′2V = (a′1, a
′
2)

(
U
V

)
.

Thus, in light of (4.5), one has

Q∗(W) = (U′,V′)H1

(
U
V

)
+ a′

(
U
V

)
+ δ (4.15)

where a′ = (a′1, a
′
2) and (U′,V′)′ is a real normal vector whose distribution is specified

in (4.2). Then, letting (U′,V′)′ = BZ +µ where Z ∼ Nr(0, I), as was done in Equation
(4.4), the following decomposition of Q∗(W) can be obtained from Equations (4.7) and
(4.15):

Q∗(W) = Z′B′H1BZ + 2µ′H1BZ + µ′H1µ+ a′(BZ + µ) + δ

= Z′B′H1BZ + 2(µ′H1 +
1

2
a′)BZ + µ′H1µ+ a′µ+ δ

≡ Z′B′H1BZ + 2β′Z + c2 (4.16)

where β′ = (µ′H1 + 1
2
a′)B and c2 = µ′H1µ + a′µ + δ. Then letting A1 = B′H1B and

2β′Z + c2 ≡ T2 with T2 ∼ N (c2, 4β
′β), one can represent Q∗(W) as Z′A1Z + T2 that is,

an indefinite quadratic form (or the difference of two positive definite quadratic forms)
and a normal random variable. Note that, as was shown for instance in Provost (1996),
the independence of Z′A1Z and T2 can be verified with the condition β′A1 = 0.

Alternatively, on proceding as in Result 4.2.1, with b and c1 in (4.9) respectively
replaced by β = (β1, . . . , βr)

′ and c2 as defined in (4.16), one has the following represen-
tation, which is analogous to (4.11):

Q∗(W) = Q1(X+)−Q2(X−) + T (4.17)

where Q1(X+) and Q2(X−) are positive definite quadratic forms, X+ = (X1 +
β1/λ1, . . . , Xr1 +βr1/λr1)

′ ∼ Nr1(ν1, I) with ν1 = (β1/λ1, . . . , βr1/λr1)
′, X− = (Xr1+θ+1+
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βr1+θ+1/λr1+θ+1, . . . , Xr + βr/λr)
′ ∼ Nr−r1−θ (ν2, I) with ν2 = (βr1+θ+1/λr1+θ+1, . . . ,

βr/λr)
′, κ2 =

(
c2−

∑r1
j=1 β

2
j /λj −

∑r
j=r1+θ+1 β

2
j /λj

)
, θ being number of null eigenvalues

of ΣH1 and T = (2
∑r1+θ

j=r1+1 βjXj + κ2) ∼ N (κ2 , 4
∑r1+θ

j=r1+1 β
2
j ).

4.4 Cumulants, Moments and Generating Functions

Expressions for the characteristic function and the cumulant generating function of a
quadratic expression in a central normal vector are, for instance, available in Good
(1963a). This section provides representations of the moment and cumulant generat-
ing functions of quadratic expressions in possibly singular normal vectors, as well as
expressions for their cumulants from which the moments can be determined.

Consider the Hermitian quadratic expression Q∗(W) = W
′
HW+ 1

2
W
′
α+ 1

2
ᾱ′W+δ

and the Hermitian quadratic form Q(W) = W
′
HW where W ∼ CN n(µW ,Γ, C),

µW = µU + iµV, C is symmetric and non-negative definite, H and Γ are Hermitian, Γ
being non-negative definite, α′ = (a′1 + i a′2) and d is real scalar constant. On expressing
Q∗(W) and Q(W) in terms of real quantities as was done in Equations (4.16) and (4.7),
and making use of the representations of the moment generating functions of quadratic
expressions which were derived in Mathai and Provost (1992) in Theorems 3.2a.3 and
Corollary 3.2a.2, one has

Result 4.4.1.

MQ∗(t) = |Ir − 2tB′H1B|−
1
2 exp{t(µ′H1µ+ a′µ+ δ)

+
t2

2
(B′a + 2B′H1µ)′(I − 2tB′H1B)−1(B′a + 2B′H1µ)} (4.18)

and

MQ(t) = |Ir − 2tB′H1B|−1/2 exp{tµ′H1µ+ 2t2µ′H1B

×(I − 2tB′H1B)−1B′H1µ} (4.19)

where H1 is the real symmetric 2n × 2n matrix specified by (4.8), a′ = (a′1, a
′
2), ρ(Σ) =

r ≤ 2n, Σ = BB′ with ρ(B2n×r) = r and B′H1B 6= O. Alternatively, in terms of
λ1, . . . , λr, the eigenvalues of B′H1B, one has
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Result 4.4.2.

MQ∗(t) =
{ r∏
j=1

(1− 2tλj)
− 1

2

}
exp
{
c∗1t+

t2

2

r∑
j=1

(b∗j)
2(1− 2tλj)

−1
}
, µ 6= 0

=
{ r∏
j=1

(1− 2tλj)
− 1

2

}
exp
{
d t+

t2

2

r∑
j=1

β2
j (1− 2tλj)

−1
}
, µ = 0

(4.20)

where (b∗1, . . . , b
∗
r)
′ = P ′(2B′H1µ+B′a), c∗1 = µ′H1µ+a′µ+ δ and (β1, . . . , βr)

′ = B′P ′a,
and

MQ(t) =
{ r∏
j=1

(1− 2tλj)
− 1

2

}
exp
{
c1t+ 2t2

r∑
j=1

b2
j(1− 2tλj)

−1
}
, µ 6= 0

=
r∏
j=1

(1− 2tλj)
− 1

2 , µ = 0 (4.21)

where c1 = µ′H1µ and (b1, · · · , br)′ = P ′B′H1µ, with P such that P ′B′H1BP =
Diag(λ1, . . . , λr1 , 0, . . . , 0, λr1+θ+1, . . . , λr) and PP ′ = P ′P = I.

Result 4.4.3. When r = 2n in Equations (4.18) and (4.19), Σ has full rank, and then

MQ∗(t) = |I2n − 2tH1Σ|−
1
2 exp{t(µ′H1µ+ a′µ+ δ)

+
t2

2
(a + 2H1µ)′(I2n − 2tH1Σ)−1 Σ (a + 2H1µ)}

and

MQ(t) = |I2n − 2tH1Σ|−1/2 exp{tµ′H1µ+ 2t2µ′H1

×(I2n − 2tH1Σ)−1ΣH1µ}.

Result 4.4.4. The cumulant generating functions (cgf) of Q∗(W) and Q(W) resulting
from Equations (4.18) and (4.19) are respectively

lnMQ∗(t) = −1

2
ln|Ir − 2tB′H1B|+ t(δ + a′µ+ µ′H1µ)

+
t2

2
(B′a + 2B′H1µ)′(Ir − 2tB′H1B)−1(B′a + 2B′H1µ)

(4.22)
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and

lnMQ(t) = −1

2
ln|Ir − 2tB′H1B|+ {tµ′H1µ+ 2t2µ′H1B

×(I − 2tB′H1B)−1B′H1µ} . (4.23)

Result 4.4.5. Referring to Result 4.4.2, the cumulant generating functions of Q∗(W)
and Q(W) can also be respectively expressed as follows:

lnMQ∗(t) = −1

2

r∑
j=1

ln(1− 2tλj) + c∗1 t+
t2

2

r∑
j=1

(b∗j)
2

(1− 2tλj)
, µ 6= 0 ,

= −1

2

r∑
j=1

ln(1− 2tλj) + d t+
t2

2

r∑
j=1

β2
j

(1− 2tλj)
, µ = 0 ,

(4.24)

and

lnMQ(t) = −1

2

r∑
j=1

ln(1− 2tλj) + c1 t+ 2 t2
r∑
j=1

b2
j

(1− 2tλj)
, µ 6= 0 ,

= −1

2

r∑
j=1

ln(1− 2tλj), µ = 0 . (4.25)

An alternative representation of the cumulant generating functions of Q(W) is pro-
posed in the next result.

Result 4.4.6. Referring to (4.11) and applying Result 4.2.3 with Σ = I, one can deter-
mine the cgf of Q(W) = Q1(X+)−Q2(X−) + T as follows. Let

Q† = X+′A1X
+ −X−

′
A2X

− = X′AX

where Ar×r = Diag(λ1, . . . , λr1 , 0, . . . , 0, λr1+θ+1, . . . , λr) and X ∼ Nr(ν, I), with ν =
(ν ′1,0

′,ν ′2)′, ν1 and ν2 being as defined in Equation (4.11). On making use of (4.25), one
has the following representation of the cumulant generating function of Q†:

lnMQ†(t) = −1

2

r∑
j=1

ln(1− 2tλj) + c3t+ 2t2
r∑
j=1

δ2
j

(1− 2tλj)
(4.26)

where δ′ = (δ1, . . . , δr) = ν ′A and c3 = ν ′Aν.
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The cgf of T ∼ N (κ1 , 4
∑r1+θ

j=r1+1 b
2
j) whose parameters are defined in Equation

(4.11), is κ1t + σ2t2/2 where σ2 = 4
∑r1+θ

j=r1+1 b
2
j . Since Q† and T are independently dis-

tributed,

lnMQ(t) = lnMQ†+T (t) = lnMQ†(t) + lnMT (t)

= −1

2

r∑
j=1

ln(1− 2tλj) + c3t+ 2t2
r∑
j=1

δ2
j

(1− 2tλj)
+ κ1t+ σ2t2/2 .

(4.27)

Remark 4.4.1. An expression analogous to (4.27) can be similarly obtained from (4.16)
for the cgf of the quadratic expression Q∗(W).

If lnMQ(t) admits a power series expansion then the coefficient of ts/s! in the power
series of lnMQ(t) is defined to be the sth cumulant of Q(W), which is denoted by k(s).
Thus, lnMQ(t) =

∑∞
s=1 k(s) ts/s! and whenever lnMQ(t) is differentiable,

k(s) =
ds

dts
[lnMQ(t)]|t=0.

Then, as explained in Mathai and Provost (1992), the following result can be derived
from Equations (4.22) and (4.23):

Result 4.4.7. The sth cumulants of Q∗ and Q are

k∗(s) = 2s−1s!

{
1

s
tr(B′H1B)s + a′B(B′H1B)s−2B′a/4

+ µ′H1B(B′H1B)s−2B′H1µ+ a′B(B′H1B)s−2B′H1µ
}
, s ≥ 2 ,

= tr(B′H1B) + µ′H1µ+ a′µ+ d, s = 1, (4.28)

and

k(s) = 2s−1s!

{
1

s
tr(B′H1B)s + µ′H1B(B′H1B)s−2B′H1µ

}
, s ≥ 2 ,

= tr(B′H1B) + µ′H1µ, s = 1, (4.29)

respectively.

For the special case where Σ is nonsingular, one has

k∗(s) = 2s−1s!
{1

s
tr(H1Σ)s +

1

4
a′(ΣH1)s−2Σa + µ′(H1Σ)s−1H1µ

+a′(ΣH1)s−1H1µ
}
, s ≥ 2 ,

= tr(H1Σ) + µ′H1µ+ a′µ+ d, s = 1 , (4.30)
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and

k(s) = 2s−1s!
{1

s
tr(H1Σ)s + µ′(H1Σ)s−1H1µ

}
, s ≥ 2 ,

= tr(H1Σ) + µ′H1µ, s = 1. (4.31)

Result 4.4.8. In light of (4.25), the sth cumulant of Q(W) = W
′
H1W can also be

expressed as

k(s) = 2s−1s!
r∑
j=1

λsj(b
2
j + 1/s) (4.32)

where λ1, . . . , λr are the eigenvalues of Σ
1
2H1Σ

1
2 and b′ = (b1, . . . , br) = (P ′Σ−

1
2µ)′ .

Note that
∑r

j=1 λ
s
j = tr(H1Σ)s.

Alternatively, one can make use of Equation (4.27) to obtain the following represen-
tations of k(s):

k(s) = 2s−1s!
r∑
j=1

λsj (δ2
j + 1/s) + κ1 + σ2t, s = 1 ,

= 2s−1s!
r∑
j=1

λsj (δ2
j + 1/s) + σ2, s = 2 ,

= 2s−1s!
r∑
j=1

λsj (δ2
j + 1/s), s ≥ 3 , (4.33)

where σ, κ1, λj and δj are as defined in Result 4.4.6.

Result 4.4.9. The moments of a random variable can be obtained from its cumulants
by means of a recursive relationship given in Smith (1995), which can also be deduced
for instance from Theorem 3.2b.2 of Mathai and Provost (1992). For example, the sth

moment of Q∗(W) can be determined as follows:

µs =
s−1∑
i=0

(s− 1)!

(s− 1− i)! i!
k(s− i)µi , (4.34)

where k(s) is as given in (4.29) or (4.33).
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4.5 Numerical Examples

Four numerical examples involving Hermitian quadratic forms and quadratic expressions
in singular or nonsingular complex normal vectors are presented in this section.

Example 4.5.1. Let Q1(W) = W
′
HW where W = X1 + iY1 ∼ CN n(0,Γ, O),

Γ =

(
1 3i/2

−3i/2 4

)
and H =

(
2 1− i

1 + i −6

)
.

In light of Equation (4.5), one can represent Q1(W) as the real quadratic form,

Q1(W) = (X′1 , Y′1)H1

(
X1

Y1

)
, (4.35)

where

H1 =


2 1 0 1
1 −6 −1 0
0 −1 2 1
1 0 1 −6


and

(
X1

Y1

)
∼ N2n

(
µW,Σ

)
with µ′W = (0′,0′) and

Σ =
1

2


1 0 0 −3/2
0 4 3/2 0
0 3/2 1 0
−3/2 0 0 4

 .

The eigenvalues of G′1H1G1 where G1 is the symmetric square root of Σ, are
(−12.9722, −12.9722, 0.472165, 0.472165). Since the eigenvalues occur in pairs, one can
make use of the representation of the exact density of Q1(W) given in Equation (2.54)
to determine the exact distribution function of Q1(W). Certain exact percentiles of
this distribution are presented in Table 4.1. The corresponding cdf approximations ob-
tained from a gamma and generalized gamma distribution are tabulated. The results
presented in this table as well as the plots included in Figures 4.1 and 4.2 indicate that
this approximation is, for all intents and purposes, exact.

Example 4.5.2. Let Q2(W) = W
′
HW where W ∼ CN n(µW,Γ, C), µW = (1 + 2 i, 3−

3 i),

Γ =

(
5 1 + i

5

1− i
5

3

)
, H =

(
3 1− 2 i

1 + 2i −1

)
and C =

(
1 1
1 2

)
.



4.5. Numerical Examples 85

Table 4.1: Gamma and Generalized Gamma approximations to the distribution function
of Q1(W) evaluated at certain exact quantiles (Exact %).

CDF Exact % Gamma Ge.G

0.0001 −238.03 0.0001 0.0001
0.0010 −178.29 0.0010 0.0010

0.01 −118.55 0.01 0.01
0.05 −118.55 0.01 0.01
0.10 −58.812 0.10 0.10
0.25 −35.039 0.25 0.25
0.50 −17.056 0.50 0.50
0.75 −6.5362 0.75 0.75
0.90 −1.8060 0.90 0.90
0.95 −0.4032 0.95 0.95
0.99 1.1863 0.99 0.99

0.9990 3.3607 0.9990 0.9990
0.9999 5.5351 0.9999 0.9999

Figure 4.1: Exact density (light solid line), gamma pdf approximation (left) and gener-
alized gamma pdf approximation (right)
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Figure 4.2: Exact cdf (light solid line), gamma cdf approximation (left) and generalized
gamma cdf approximation (right)

By making use of Equation (4.5), one can represent Q(W) as follows:

Q2(W) = (X′1 , Y′1)H1

(
X1

Y1

)
(4.36)

where

H1 =


3 1 0 2
1 −1 −2 0
0 −2 3 1
2 0 1 −1

 ,

and

(
X1

Y1

)
∼ N2n

(
µ,Σ

)
with µ′ = (1, 3, 2,−3) and

Σ =
1

2


6 2 0 −0.2
2 5 0.2 0
0 0.2 4 0

−0.2 0 0 1

 .

The approximate percentiles obtained from gamma, generalized gamma and gener-
alized shifted gamma distributions, with and without Laguerre polynomial adjustments
(d = 7), are tabulated in Tables 4.2 and 4.3. The results indicate that these approxima-
tions are very accurate. The cdf’s are also plotted in Figures 4.3 and 4.4.
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Table 4.2: Approximate cdf’s of Q2(X) evaluated at certain percentage points (Simul.
%) obtained by simulation without polynomial adjustments.

CDF Simul. % Gamma Ge.G. Ge.S.G.

0.0001 −170.62 0.00009737 0.00010142 0.00010197
0.0010 −140.63 0.00095056 0.00095491 0.00096858

0.01 −107.15 0.010210 0.010177 0.010143
0.05 −81.400 0.050101 0.050128 0.050116
0.10 −69.002 0.099793 0.099865 0.099959
0.25 −50.250 0.249798 0.249798 0.249835
0.50 −31.770 0.500277 0.500312 0.500169
0.75 −14.344 0.749578 0.749595 0.749684
0.90 4.1940 0.900242 0.899939 0.899936
0.95 18.380 0.949920 0.949877 0.949875
0.99 52.890 0.990120 0.990120 0.989987

0.9990 104.45 0.999054 0.998999 0.998999
0.9999 157.92 0.999894 0.999904 0.999904

Table 4.3: Approximate cdf’s of Q2(X) evaluated at certain percentage points (Simul.
%) obtained by simulation with polynomial adjustments.

CDF Simul. % G.P. Ge.G.P. Ge.S.G.P.

0.0001 −170.62 0.00011764 0.00010240 0.00010677
0.0010 −140.63 0.00105284 0.00097506 0.00099144

0.01 −107.15 0.010344 0.010048 0.010064
0.05 −81.400 0.050533 0.050122 0.050027
0.10 −69.002 0.100530 0.100243 0.100076
0.25 −50.250 0.250053 0.250143 0.250076
0.50 −31.770 0.499460 0.499647 0.499949
0.75 −14.344 0.748967 0.749737 0.749780
0.90 4.1940 0.898747 0.900082 0.900021
0.95 18.380 0.949290 0.949838 0.949810
0.99 52.890 0.990438 0.990072 0.990077

0.9990 104.45 0.999197 0.999025 0.999025
0.9999 157.92 0.999938 0.999905 0.999904
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Figure 4.3: Simulated cdf (solid line), gamma cdf approximation (left) and generalized
gamma cdf approximation (right)

Figure 4.4: Simulated cdf (solid line) and generalized shifted gamma cdf approximation



4.5. Numerical Examples 89

Example 4.5.3. Let

Q∗(W) = W
′
HW +

1

2
W
′
α+

1

2
ᾱ′W + δ

where W ∼ CN n(µW,Γ, C), µW = (1 + 2 i, 3 + 4 i, 2.1 + 3 i,−3− 1.4 i)′, α = (1− 2 i, 2 +
1.2 i,−1 + 3 i,−5− 4 i)′, δ = 4,

Γ =


10 1 + i i 2− 2 i

1− i 18 1 + i 1 + 3 i
−i 1− i 13 −i

2 + 2 i 1− 3 i i 14

 ,

H =


2 2 i 2
2 2 i 2
−i −i 4 1 + 2.5 i

2 2 1− 2.5 i −10

 and C =


1 0.3 1 1

0.3 2.3 1.7 1
1 1.7 2.3 2
1 1 2 2.3

 .

On making use of Equation (4.16), one can represent Q∗(W) as follows:

Q∗(W) = (X′1 , Y′1)H1

(
X1

Y1

)
+ a′

(
X1

Y1

)
+ δ

where

H1 =



2 2 0 2 0 0 −1 0
2 2 0 2 0 0 −1 0
0 0 4 1 1 1 0 −2.5
2 2 1 −10 0 0 2.5 0
0 0 1 0 2 2 0 2
0 0 1 0 2 2 0 2
−1 −1 0 2.5 0 0 4 1

0 0 −2.5 0 2 2 1 −10


,

a′ = (1, 2,−1,−5,−2, 1.2, 3,−4) and

(
X1

Y1

)
∼ N2n

(
µ,Σ

)
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Figure 4.5: Simulated cdf (solid line), gamma cdf approximation (left) and generalized
gamma cdf approximation (right)

with µ′ = (1, 3, 2.1,−3, 2, 4, 3,−1.4) and

Σ =



11 1.3 1 3 0 −1 −1 2
1.3 20.3 2.7 2 1 0 −1 −3
1 2.7 15.3 2 1 1 0 1
3 2 2 16.3 −2 3 −1 0
0 1 1 −2 9 0.7 −1 1
−1 0 1 3 0.7 15.7 −0.7 0
−1 −1 0 −1 −1 −0.7 10.7 −2

2 −3 1 0 1 0 −2 11.7


.

The eigenvalues of Σ1/2H1Σ1/2 where Σ1/2 is the symmetric square root of Σ, are
−81.732,−65.954, 50.969, 37.379, 24.819, 17.519, 0 and 0. The approximate cdf, which is
obtained from a gamma distribution that is adjusted by means of a linear combination
of Laguerre polynomials of degrees 1 to 10 by making use of the density approximation
methodology described in Provost (2005), was evaluated at certain percentiles of the
distribution. These quantiles were determined by simulation on the basis of 1,000,000
replications. The corresponding approximate cdf’s based on a simple gamma approxima-
tion are also included in Table 4.4 for comparison purposes. The results presented in this
table as well as the plots shown in Figure 4.5 suggest that the proposed approximations
are very accurate.
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Table 4.4: Gamma and Generalized Gamma approximations with and without polyno-
mial adjustments (d = 10) to the distribution function of Q∗(W) evaluated at certain
percentage points obtained by simulation.

CDF Simul. % Gamma G.P. Ge.G. Ge.G.P.

0.0001 −2203.5 0.00006571 0.00002965 0.00003055 0.00003849
0.0010 −1668.6 0.00143960 0.00075039 0.00094030 0.00102410

0.01 −1133.3 0.011215 0.010191 0.009923 0.009990
0.05 −720.23 0.049779 0.049609 0.050367 0.050001
0.10 −530.17 0.096668 0.098333 0.100284 0.099548
0.25 −257.36 0.241247 0.250592 0.249623 0.249623
0.50 −19.165 0.499152 0.500205 0.499175 0.500464
0.75 171.57 0.742547 0.748921 0.750210 0.750012
0.90 346.60 0.903458 0.899686 0.900035 0.899766
0.95 465.09 0.951788 0.950183 0.950032 0.949986
0.99 717.75 0.990153 0.989654 0.989951 0.989795

0.9990 1047.2 0.998770 0.998787 0.998793 0.998994
0.9999 1354.8 0.999681 0.999649 0.999680 0.999693

Example 4.5.4. Let Q3(W) = W
′
HW be a singular Hermitian quadratic form where

W = X1 + iY1 ∼ CN n(0,Γ, O),

Γ =


2 2 i 2
2 2 i 2
−i −i 4 1 + 2.5 i
2 2 1− 2.5 i 10


By making use of Equation (4.5) and applying the method described in Section 4.2 to
express Γ whose rank is 3 as BB′ where B is a matrix of dimension 4 × 3, one can
represent Q3(W) as the real quadratic form,

Q3(W) = (X′1 , Y′1)H1

(
X1

Y1

)
, (4.37)

where

B =


−0.7079 −1.1386 −0.4501
−0.7079 −1.1386 −0.4501

−0.4845− 0.7993 i 0.3360 + 1.6197 i −0.0880− 0.6185 i
−3.1251 + 0.2422 i 0.0365− 0.1680 i 0.3791 + 0.0440 i

 ,
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Figure 4.6: Exact density (light solid line), gamma pdf approximation (left) and gener-
alized gamma pdf approximation (right)

H1 =



2 1 0 2 0 −1 −1 2
1 3 1 1 1 0 −1 −3
0 1 −6 0 1 1 0 1
2 1 0 2 −2 3 −1 0
0 1 1 −2 2 1 0 2
−1 0 1 3 1 3 1 1
−1 −1 0 −1 0 1 −6 0

2 −3 1 0 2 1 0 2


and

(
X1

Y1

)
∼ N2n

(
µW,Σ

)
with µ′W = (0′,0′) and

Σ =
1

2



2 2 0 2 0 0 −1 0
2 2 0 2 0 0 −1 0
0 0 4 1 1 1 0 −2.5
2 2 1 10 0 0 2.5 0
0 0 1 0 2 2 0 2
0 0 1 0 2 2 0 2
−1 −1 0 2.5 0 0 4 1

0 0 −2.5 0 2 2 1 10


.

and

H =


2 1 + i i 2− 2 i

1− i 3 1 + i 1 + 3 i
−i 1− i −6 −i

2 + 2 i 1− 3 i i 2

 .
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Table 4.5: Gamma and Generalized Gamma approximations with and without polynomi-
ally adjusted gamma (d = 10) to the distribution function of Q3(W) evaluated at certain
exact quantiles.

CDF Exact % Gamma G.P. Ge.G. Ge.G.P.

0.0001 −205.68 0.00010063 0.00010003 0.00010025 0.00010002
0.0010 −147.57 0.00100631 0.00100024 0.00100252 0.00100022

0.01 −89.452 0.010063 0.010002 0.010025 0.010003
0.05 −48.832 0.050317 0.050013 0.050127 0.050012
0.10 −31.338 0.100633 0.100026 0.100254 0.100023
0.25 −8.2126 0.251583 0.250065 0.250634 0.250059
0.50 12.229 0.499137 0.498759 0.498679 0.499949
0.75 43.726 0.748555 0.751150 0.749572 0.750943
0.90 85.363 0.899685 0.899392 0.900274 0.899542
0.95 116.86 0.950075 0.949638 0.950238 0.949680
0.99 190.00 0.990165 0.990213 0.990024 0.990016

0.999 294.63 0.999042 0.998933 0.998982 0.998986
0.9999 399.26 0.999907 0.999916 0.999894 0.999910

Figure 4.7: Exact cdf (light solid line), gamma cdf approximation (left) and generalized
gamma cdf approximation (right)
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The eigenvalues of B′H1B with B such that Σ = BB′, are (22.7205, 22.7205, 0.3987,
0.3987, −12.6192, −12.6192). Since these eigenvalues occur in pairs, one can utilize a
representation of the exact density, which is available from Equation (2.54), to determine
the exact distribution function of Q3(W). Certain exact percentiles are included in Table
4.5. The corresponding cdf approximations obtained from a gamma and a generalized
gamma distribution, with and without adjustments, by means of a linear combination of
Laguerre polynomials of degrees 1 to 10 are also tabulated. The approximation is seen
to be nearly exact over the entire range of the distribution.



Chapter 5

Quadratic Expressions in Elliptically
Contoured Vectors

5.1 Introduction

A p-dimensional vector X has an elliptically contoured or elliptical distribution with
mean vector µ and scale parameter matrix Σ if its characteristic function φ(t) can be
written as

φ(t) = ei t
′µξ(t′Σ t)

where µ is a p-dimensional real vector, Σ is a p× p nonnegative definite matrix and ξ(·)
is a nonnegative function, see, for instance, Cambanis et al. (1981); this will be denoted

X ∼ Cp(µ,Σ; ξ).

Moreover, the densities associated with p-dimensional elliptically contoured vectors X
are of the form h((x − µ)′Σ−1(x − µ)) where h(·) is a density defined on (0,∞) whose
(p/2−1)th moment exists, see for example Fang et al. (1990), Section 2.2.3. In particular,
when µ is the null vector and Σ is the identity matrix of order p, X is said to have a
spherically symmetric or spherical distribution; this will be denoted

X ∼ Sp(ξ) .

In fact, whenever Y ∼ Cp(µ,Σ; ξ) and Σ is a positive definite matrix, Σ−
1
2 (Y−µ) ∼ Sp(ξ),

where Σ−1/2 denotes the inverse of the symmetric square root of Σ. Furthermore, spherical
distributions are invariant under orthogonal transformations, that is, for any orthogonal
matrix P , X ∼ Sp(ξ) and P X are identically distributed. Other characterizations and
properties are available from Kelker (1970), Chmielewski (1981), Fang and Anderson
(1990) and Mathai et al. (1995), among others.

95
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A decomposition of quadratic expressions in possibly singular elliptically contoured
vectors is introduced in Section 5.2 and representations of functions of elliptically con-
toured vectors such as the moments of a quadratic form, are obtained in Section 5.3. A
density approximation methodology that combines these results is described and illus-
trated by several numerical examples in Section 5.4.

The distributional results derived in this chapter for quadratic forms in elliptically
contoured random vectors not only extend, but also make use of, their Gaussian counter-
parts. Given that elliptically contoured distributions are utilized as models in a host of
applications, and quadratic forms are ubiquitous in statistics, the result presented herein
should prove useful in a variety of contexts and lead to the development of improved
statistical inference techniques.

5.2 A Decomposition of Quadratic Expressions in El-

liptically Contoured Vectors

Consider the real quadratic expression Q∗(X) = (X − α)′A(X − α) + a′(X − α) + d
where X ∼ Cp(µ,Σ; ξ), rank(Σ) = r ≤ p, α is a p-dimensional real vector and A is a real
symmetric matrix. Letting X = µ+B S, where Bp×r is such that BB′ = Σ (cf. Example
5.4.4) and S ∼ Sr(ξ), one can write

Q∗(X) ≡ Q∗(S) = (µ+B S−α)′A(µ+B S−α) + a′(µ+B S−α) + d

= [(µ−α) +B S]′A[(µ−α) +B S] + a′[(µ−α) +B S] + d

= µ′1Aµ1 + 2µ′1A
′B S + S′B′AB S + a′B S + a′µ1 + d

where µ1 = µ − α. Let P be an orthogonal matrix such that P ′B′ABP =
Diag(λ1, . . . , λr), λ1, . . . , λr denoting the eigenvalues of B′AB, with λ1, . . . , λr1 posi-
tive,λr1+1 = · · · = λr1+θ = 0 and λr1+θ+1, . . . , λr negative, m′ = (m1, . . . ,mr) =
a′BP , b∗

′
= (b∗1, . . . , b

∗
r) = µ′1ABP , c1 = µ′1Aµ1 + a′µ1 + d. Then, letting W =

(W1, . . . ,Wr1 , . . . ,Wr1+θ+1, . . . , Wr)
′ = P ′S ∼ Sr(ξ) and assuming that B′AB 6= O,

one has

Q∗(X) ≡ Q∗(W) = W′P ′B′ABPW + 2µ′1ABPW + a′BPW + µ′1Aµ1 + a′µ1 + d

= W′Diag(λ1, . . . , λr)W + (2b∗
′
+ m′)W + c1

=

r1∑
j=1

λjW
2
j + 2

r1∑
j=1

njWj −
r∑

j=r1+θ+1

|λj|W 2
j + 2

r∑
j=r1+θ+1

njWj

+2

r1+θ∑
j=r1+1

njWj + c1
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=

r1∑
j=1

λj

(
Wj +

nj
λj

)2

−
r∑

j=r1+θ+1

|λj|
(
Wj +

nj
λj

)2

+ 2

r1+θ∑
j=r1+1

njWj

+
(
c1 −

r1∑
j=1

n2
j

λj
−

r∑
j=r1+θ+1

n2
j

λj

)

≡ Q1(W+)−Q2(W−) + 2

r1+θ∑
j=r1+1

njWj + κ1

≡ Q1(W+)−Q2(W−) + T1, (5.1)

where Q1(W+) = W+′Diag(λ1, . . . , λr1)W
+ and Q2(W−) = W−′Diag(λr1+θ+1, . . . , λr)

W− are positive definite quadratic forms with W+ = (W1 +n1/λ1, . . . ,Wr1 +nr1/λr1)
′ ∼

Cr1(ν1, I; ξ),ν1 = (n1/λ1, . . . , nr1/λr1)
′, W− = (Wr1+θ+1 + nr1+θ+1/λr1+θ+1, . . . ,Wr +

nr/λr)
′ ∼ Cr−r1−θ (ν2, I; ξ), ν2 = (nr1+θ+1/λr1+θ+1, . . . , nr/ λr)

′, θ being number of null

eigenvalues of B′AB, nj = 1
2
mj + b∗j , c1 = µ′1Aµ1 + a′µ1 + d, κ1 =

(
c1 −

∑r1
j=1 n

2
j/λj −∑r

j=r1+θ+1 n
2
j/λj

)
and T1 = (2

∑r1+θ
j=r1+1 njWj + κ1) ∼ C1(κ1 , 4

∑r1+θ
j=r1+1 n

2
j ; ξ) . If

rank(AΣ) = rank(Σ) = r, T1 = κ1. Note that when α = 0 and µ = 0 (the central
case), µ1 = 0 and b∗ = 0.

As a particular case, when α = 0, a = 0′ and d = 0, one has the following decompo-
sition for the quadratic form X′AX in the possibly singular elliptically contoured vector
X ∼ Cp(µ,Σ; ξ),Σ being of rank r ≤ p :

Q(X) = X′AX =
r∑
j=1

λjW
2
j + 2

r∑
j=1

b∗jWj + c

=

r1∑
j=1

λjW
2
j + 2

r1∑
j=1

b∗jWj −
r∑

j=r1+θ+1

|λj|W 2
j + 2

r∑
j=r1+θ+1

b∗jWj

+2

r1+θ∑
j=r1+1

b∗jWj + c

=

r1∑
j=1

λj

(
Wj +

b∗j
λj

)2

−
r∑

j=r1+θ+1

|λj|
(
Wj +

b∗j
λj

)2

+ 2

r1+θ∑
j=r1+1

b∗jWj

+
(
c−

r1∑
j=1

b∗2j
λj
−

r∑
j=r1+θ+1

b∗2j
λj

)
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≡ Q1(W1)−Q2(W2) + 2

r1+θ∑
j=r1+1

b∗jWj + κ

≡ Q1(W1)−Q2(W2) + T, (5.2)

where W′ = (W1, . . . ,Wr) ∼ Sr(ξ), Q1(W1) = W′
1Diag(λ1, . . . , λr1)W1 and Q2(W2) =

W′
2Diag(λr1+θ+1, . . . , λr)W2 are positive definite quadratic forms with W1 = (W1 +

b∗1/λ1, . . . , Wr1 + b∗r1/λr1)
′ ∼ Cr1(ν1, I; ξ), ν1= (b∗1/λ1, . . . , b

∗
r1
/λr1)

′, W2 = (Wr1+θ+1 +
b∗r1+θ+1/λr1+θ+1, . . . ,Wr+b

∗
r/λr)

′ ∼ Cr−r1−θ(ν2, I; ξ), ν2 = (b∗r1+θ+1/λr1+θ+1, . . . , b
∗
r/λr)

′, θ
is the number of null eigenvalues of AΣ, the λj’s and b∗j ’s being as previously defined,

c = µ′Aµ, κ =
(
c −

∑r1
j=1 b

∗2
j /λj −

∑r
j=r1+θ+1 b

∗2
j /λj

)
and T = 2

∑r1+θ
j=r1+1 b

∗
jWj + κ ∼

C1(κ , 4
∑r1+θ

j=r1+1 b
∗2
j ) , whenever rank(AΣ) = r − θ, θ = 1, . . . , r − 1. When rank(Σ) =

rank(AΣ) = r, T = κ.

5.3 Elliptically Contoured Distributions as Scale Mix-

tures of Gaussian Vectors

Elliptically contoured distributions have the stochastic representation µ+Σ1/2LZ, where
µ is the mean of the distribution, Σ1/2 is such that Σ1/2(Σ1/2)′ = Σ, the positive definite
scale parameter matrix of the distribution, Z is a standard Gaussian random vector,
and L is a positive random variable that is distributed independently of Z. The density
function of Y ∼ Cp(µ,Σ; ξ) can be expressed in terms of a scale mixture of normal
densities as follows:

g(y) =
1

(2π)p/2|Σ|1/2

∫ ∞
0

r−p/2exp

{
− (y − µ)′Σ−1(y − µ)

2r

}
dU(r) (5.3)

where U(·), the distribution function of L2, is such that U(0) = 0. This representation
can be found, for example, in Muirhead (1982). We now extend a result due to Chu
(1973) to non-central elliptically contoured distributions. This next theorem enables one
to express various distributional results involving elliptically contoured vectors in terms
of their Gaussian counterparts.

Theorem 5.3.1. Let Y ∼ Cp(µ,Σ; ξ) with Σ > 0, h(y) denotes the density of Y and
f(s) be h(y) wherein (y − µ)′Σ−1(y − µ)/2 is replaced by s. Then, when the inverse
Laplace transform of f(s) exists, the density of Y denoted by h(y) has the following
integral representation:

h(y) =

∫ ∞
0

w(t) ηY(µ, t−1Σ) dt (5.4)
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where ηY(µ, t−1Σ) denotes the density function of a p-dimensional Gaussian random
vector with mean µ and covariance matrix t−1Σ, and the weighting function w(t) is
obtained as follows:

w(t) = (2π)p/2 |Σ|1/2 t−p/2 L−1 (f(s)),

L−1(f(s)) representing the inverse Laplace transform of f(s).

In fact, L−1(f(s)) exists whenever f(s) is an analytic function and f(s) is O(s−k)
as s → ∞ for k > 1; for additional properties of the Laplace transform and its inverse,
one may refer to Gradshteyn and Ryzhik (1980), Chapter 17. It follows from Theorem
5.3.1 that an elliptical distribution is completely specified by its mean µ, scale parameter
matrix Σ and weighting function w(t), whenever the latter exists. Letting t = 1/r and
defining w(t) to be the density function of 1/L2, it is seen that (5.3) and (5.4) are
equivalent. On integrating h(y) as defined in Theorem 5.3.1 over Rp and interchanging
the order of integration, one can easily establish that w(t) integrates to 1. Thus, w(t)
can be regarded as a weighting function. Explicit representations of w(t) are given in
Table 5.1 for several p-dimensional elliptically contoured distributions.

Theorem 5.3.1 enables one to determine the distribution of functions of ellipti-
cally contoured vectors in terms of their Gaussian counterparts. For instance, let
Y ∼ Cp(µ,Σ; ξ) and its associated weighting function be w(t). Then, the moment-
generating function of the non-central quadratic form Y′AY can be obtained as follows:

MY′AY(θ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ ∞
0

e θ y
′Ayw(t) ηY(µ, t−1Σ) dt dy

=

∫ ∞
0

w(t)M∗
Q(W)(θ) dt (5.5)

where

M∗
Q(W)(θ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eθ y
′Ay ηY(µ, t−1Σ) dy

is the moment-generating function of the quadratic form Q(W) = W′AW wherein W ∼
Np(µ, t−1 Σ), which is

|I − 2θt−1AΣ|−1/2 e−
1
2
µ[I−(I−2θt−1 AΣ)−1]Σ−1µ,

according to Equation (3:2a.1) in Mathai and Provost (1992).
Similarly, the moments of Y′AY can be evaluated as follows:

E(Y′AY)h ≡
∫ ∞

0

w(t)E
[
(W′AW)h

]
dt, (5.6)
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Table 5.1: Some elliptically contoured distributions and their weighting functions.

Distribution Density function Weighting function

Gaussian e−s/((2π)p/2 |Σ|1/2) δ(t− 1)

s = x
′
Σ−1x/2 throughout The Dirac delta function

Contaminated Normal {φλp/2e−λs + (1− φ)e−s}/
{(2π)p/2 |Σ|1/2} φ δ(t− λ) + (1− φ) δ(t− 1)

t−distribution with ν d.f.
{
νν/2Γ((ν + p)/2)|Σ|−1/2

{
ν(νt/2)(ν/2)−1e−νt/2

}
/

×(ν + 2s)−(ν+p)/2
}
/{πp/2Γ(ν/2)} {2Γ(ν/2)}

Multivariate Analog of the
{

Γ(p/2) e−
√
2s
}
/

{
Γ(p/2) e−1/2t

}
Bilateral Exponential Density

{
2(p+1)/2πp/2Γ(p)|Σ|1/2

} {
Γ(p) 2

√
π t(p+3)/2

}−1

The Generalized Slash Distribution νs−p/2−v|Σ|−1/2
{

Γ(p/2 + v)

{
ν tν−1 , 0 < ν < 1

0 , ν ≥ 1

−Γ(p/2 + v, s)
}
/(2π)p/2

where W ∼ Np(µ, t−1 Σ) and E
[
(W′AW)h

]
can be determined from (5.7).

In general, the moments of a random variable can be obtained from its cumulants
by means of a recursive relationship derived in Smith (1995), which can also be deduced
for instance from Theorem 3.2b.2 in Mathai and Provost (1992). For example, the hth

moment of Q(W) = W′AW is given by

E(W′AW)h = µh =
h−1∑
i=0

(h− 1)!

(h− 1− i)! i!
k(h− i)µi (5.7)

where k(h), the hth cumulant of Q(W), is given by

k(h) =


2h−1h!

(
tr( t−1AΣ)h/h+ µ′( t−1AΣ)h−1Aµ

)
, h ≥ 2 ,

tr( t−1AΣ) + µ′Aµ , h = 1.
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5.4 Illustrative Examples

Four numerical examples involving quadratic forms and quadratic expressions in various
types of elliptically contoured vectors are presented in this section. The steps to be
followed for determining their distributions are described in the first example.

Example 5.4.1. Consider the quadratic form QI(X) = X′AX where X has a noncentral
t−distribution with 10 degrees of freedom whose density function is as given in Table 5.1
with s = (x− µ)′Σ−1(x− µ)/2, µ = (0, 1, 3, 2)′,

Σ =


1 1/2 2/5 1/2

1/2 1 1/4 3/8
2/5 1/4 1 1/3
1/2 3/8 1/3 1

 and A =


1 −6 2 1
−6 7 0 4

2 0 −4 1
1 4 1 2

 .

The proposed methodology comprises the following steps:

1. QI(X) is expressed as QI
1(W1)−QI

2(W2) + κ in accordance with Equation (5.2).

2. The moments of QI
i(Wi), i = 1, 2 are determined from Equations (5.6) and (5.7).

3. A generalized gamma density function,

ψ(z) =
γ

βαγΓ(α)
zαγ−1e−(z/β)γ I(0,∞)(z) , α > 0, β > 0, γ > 0, (5.8)

is taken as base density for QI
i(Wi), i = 1, 2 .

4. The parameters α, β and γ are determined by simultaneously solving the following
nonlinear equations

µj = mj for j = 1, 2, 3,

where

mj =
βj Γ(α + j/γ)

Γ(α)
, j = 0, 1, . . .

are the moments associated with the generalized gamma density function and µj
can be determined from the recursive formula (5.7).
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Table 5.2: Approximate cdf of QI(X) evaluated at certain percentiles obtained by simu-
lation (Simul %).

CDF Simul. % G.Gamma

0.01 −93.013 0.009429
0.05 −56.312 0.052101
0.10 −40.539 0.101342
0.25 −17.485 0.246064
0.50 7.9373 0.509682
0.75 39.771 0.755445
0.90 77.615 0.893073
0.95 106.51 0.942475
0.99 179.76 0.988139

5. A polynomial adjustment of degree d can be made as explained in Section 2.7.3,
the resulting density approximation being

fd(z) = ψ(z)
d∑
j=0

ξj z
j ;

in this case, we set d = 7.

6. Given the density approximations determined for QI
1(W1) and QI

2(W2), the ap-
proximate density of the difference is obtained by applying the transformation of
variables technique. Shifting this density by κ then yields the desired approxima-
tion.

Certain values of the resulting approximate distribution function of QI(X) are in-
cluded in Table 5.2. The percentiles were obtained by simulation on the basis of 1,000,000
replications. The plot shown in Figure 5.1 confirms that the proposed approach yields a
very accurate approximation to the distribution of QI(X).

Example 5.4.2. Consider the quadratic form QII(X) = X′AX where X is a contami-
nated normal random vector as specified in Table 5.1, for which φ = 0.4, µ = (1, 2, 3)′,

Σ =

 1 0.2 0.7
0.2 1 0.2
0.7 0.2 1

 and A =

 5 3 2
3 −5 5
2 5 −2

 .

It this case, a gamma distribution (as defined by (5.8) with γ = 1) was utilized as
base density to obtain an approximate distribution for each quadratic form in decompo-
sition of QII(X). Letting the integer moments of a non-negative definite quadratic form
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Figure 5.1: Simulated cdf of QI(X) and cdf approximation (dots).

Figure 5.2: Simulated cdf of QII(X) and cdf approximation (dots).

be denoted by µj, j = 1, 2, . . . , a gamma approximation can be specified by equating its
first two moments to µ1 and µ2, respectively, and solving for α and β, that is, αβ = µ1

and α(α + 1)β2 = µ2, which yields

α =
µ2

1

µ2 − µ2
1

and β =
µ2

µ1

− µ1. (5.9)

The methodology described in Example 5.4.1 was applied in conjunction with polynomial
adjustments of degree six to determine the approximate distribution of QII(X). The plot
shown in Figure 5.2 indicates that the resulting approximation is very accurate.

Example 5.4.3. Consider the quadratic form QIII(X) = X′AX where X follows a
generalized slash distribution whose density function is as defined in Table 5.1 with
µ = (0, 1, 2)′,
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Figure 5.3: Simulated cdf of QIII(X) and approximations based on polynomially adjusted
gamma (left panel) and generalized gamma (right panel) distributions (dots).

Σ =

 1 1/2 2/5
1/2 1 1/4
2/5 1/4 1

 and A =

 1 −6 2
−6 7 0

2 0 −4

 .

By making use of the weighting function associated with the generalized slash dis-
tribution in order to determine the moments (Equation (5.7)) of the quadratic forms
occurring in its decomposition and implementing the steps described in Example 5.4.1 in
conjunction with a gamma distribution or a generalized gamma distribution whose associ-
ated densities are taken as base densities, one can determine an approximate distribution
for QIII(X).

The left and right panels of Figure 5.3 respectively show the distribution functions
resulting from gamma and generalized gamma approximations, which are superimposed
on the simulated distribution function determined on the basis of 1,000,000 replications.

Example 5.4.4. Let Q∗1(X) = (X − α)′A(X − α) + a′(X − α) + d be a quadratic
expression in a singular t−vector with 10 degrees of freedom where X ∼ C5(µ,Σ; ξ),
µ = (4, 1,−1, 3, 2)′,

Σ =


3 3 3 2 0
3 3 3 2 0
3 3 5 2 0
2 2 2 2 0
0 0 0 0 1

 ,

which is singular, α = (1, 1, 0, 1, 1)′, A is the following indefinite matrix
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Table 5.3: Approximate cdf of Q∗1(X) evaluated at certain percentiles obtained by simu-
lation (Simul %).

CDF Simul. % Gamma

0.01 −364.29 0.011478
0.05 −188.33 0.058634
0.10 −123.21 0.110176
0.25 −44.256 0.248199
0.50 6.1069 0.506286
0.75 39.771 0.755445
0.90 233.11 0.893207
0.95 360.83 0.943116
0.99 722.56 0.988926

Figure 5.4: Simulated cdf of Q∗1(X) and cdf approximation (dots).

A =


1 1 2 3 −5
1 1 2 3 −5
2 2 0 0 0
3 3 0 0 0
−5 −5 0 0 −26

 ,

a = (1, 2, 3, 4, 5)′ and d = 6.

When Σp×p is a singular matrix of rank r < p, we make use of the spectral de-
composition theorem to express Σ as UWU ′ where W is a diagonal matrix whose first
r diagonal elements (the non-null eigenvalues of Σ) are positive, the remaining diagonal
elements being equal to zero. Next, we let B∗p×p = UW 1/2 and remove the last p − r
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columns of B∗, which are null vectors, to obtain the matrix Bp×r. Then, it follows that
Σ = BB′. In this case, the matrices B and P were found to be

B =


1.66591 0.39015 0 −0.26930
1.66591 0.39015 0 −0.26930
2.03287 −0.92672 0 0.09291
1.18171 0.49418 0 0.59945

0 0 1 0


and

P =


−0.97731 0.00042 −0.14936 −0.15022

0.05695 −0.58347 −0.72923 0.35290
0.13922 0.69384 −0.66277 −0.24484
−0.14916 0.42208 0.08157 0.89048

 ,

respectively. One can utilize the decomposition of Q∗(X), which is provided in Equa-
tion (5.1), to determine an approximation to the distribution function of Q∗1(X). The
approximate density functions of Q1(W+) and Q2(W−) are obtained by making use of a
gamma approximation, as explained in Example 5.4.2. We first approximated density of
Q1(W+)−Q2(W−) and then, determined the density function of Q1(W+)−Q2(W−)+T1

by applying the transformation of variables technique.
Referring again to the decomposition (5.1), the eigenvalues of B′AB were found

to be λ1 = 65.8197, λ2 = −29.5759, λ3 = −2.24383, λ4 = 0, and it was determined
that n1 = −43.6247, n2 = 31.6913, n3 = 2.87613, and n4 = −0.154303, and that
µ1 = −0.662791, µ2 = (−1.07153,−1.2818)′ and c1 = −4. The resulting distribution
function was evaluated at certain simulated percentiles obtained on the basis of 500,000
replications. The results are presented in Table 5.3 and the cdf is plotted in Figure 5.4.



Chapter 6

Quadratic Forms in Uniform, Beta
and Gamma Random Variables

6.1 Introduction

A representation of the moments of quadratic forms in uniform random vectors is derived
in Section 6.2. A closed form expression is obtained for the moments of quadratic forms
in order statistics from a uniform population in Section 6.3. Quadratic forms in beta
random variables and their order statistics are respectively considered in Sections 6.4
and 6.5. A representation of quadratic forms in gamma random variables as well as a
derivation of their moments are provided in Section 6.6. A closed form representation
of the moments of quadratic forms in order statistics from an exponential population
is determined in Section 6.7. Several numerical examples illustrate the distributional
results.

6.2 Quadratic Forms in Uniform Random Variables

Let X = (X1, . . . , Xn)′ denote a random vector of independently distributed random
variables whose support is the interval (a, b). Consider the quadratic form,

Q(X) = Q(X1, . . . , Xn) = X′AX =
n∑
i=1

n∑
j=1

aijXiXj ,

where A = (aij) is an n×n symmetric matrix and X′ denotes the transpose of the vector
X. We note that if A is not symmetric, we can replace it without any loss of generality
by (A + A′)/2. Letting

∏n
i,j denote the double product

∏n
i=1

∏n
j=1, it follows from the

107
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multinomial expansion that

Q(X)m =

(
n∑
i=1

n∑
j=1

aijXiXj

)m

=
∑
(m)

[
m!

( n∏
i,j

a
mij
ij

mij!

) n∏
`=1

Xδ`
`

]
, m = 1, 2, . . . , (6.1)

where
∑

(m) denotes the sum over all the partitions of m into n2 terms such that m11 +
m12 + · · · + mnn = m with 0 ≤ mij ≤ m, the mij’s being nonnegative integers, for
i = 1, . . . , n and j = 1, . . . , n, and δ` =

∑n
j=1(m`j +mj`). The following identity is useful

for computing sums over partitions:∑
p1+···+pr=p

ϕ(p1, . . . , pr) =

p∑
p1=0

p−p1∑
p2=0

· · ·
p−p1−···−pr−2∑

pr−1=0

ϕ
(
p1, p2, . . . , pr−1, p−

r−1∑
i=1

pi

)
,

where pi = 0, 1, . . . , p; i = 1, 2, . . . , r.
Alternatively, symbolic computational software packages such as Mathematica can

readily generate the required partitions and expressQ(X)m as a sum of products of powers
of X`’s. Then, assuming that the Xi’s are independently distributed, with respective
density functions fXi(xi), one can determine the mth moment of Q(X) as follows:

E(Q(X)m) =

∫ b

a

∫ b

a

· · ·
∫ b

a

Q(X)mfX1,...,Xn(x1, . . . , xn) dx1 . . . dxn

=

∫ b

a

∫ b

a

· · ·
∫ b

a

(
n∑
i=1

n∑
j=1

aijxixj

)m n∏
`=1

fX`(x`) dx1 . . . dxn

=
∑
(m)

m!

[
n∏
i,j

a
mij
ij

mij!

]∫ b

a

∫ b

a

· · ·
∫ b

a

(
n∏
`=1

xδ`` fX`(x`)

)
dx1 . . . dxn

=
∑
(m)

m!

[
n∏
i,j

a
mij
ij

mij!

]
n∏
`=1

(∫ b

a

xδ`` fX`(x`)dx`

)
. (6.2)

Thus, when the Xi’s are independently and uniformly distributed on the interval (a, b),
one has

E(Q(X)m) =
m!

(b− a)n

∑
(m)

[
n∏
i,j

a
mij
ij

mij!

]
n∏
`=1

(bδ`+1 − aδ`+1

1 + δ`

)
. (6.3)

Based on the moments of Q(X), approximations to its distribution can be obtained
by making use of an initial beta approximation. The accuracy of the approximations can
be improved upon by making use of a polynomial adjustment whose coefficients can be
determined from Equation (2.44) of Section 2.7.3. The methodology advocated herein is
described in detail in the following example.
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Figure 6.1: Simulated cdf of Q1(X) and 7th degree polynomially adjusted beta cdf ap-
proximation (dots).

Example 6.2.1. Consider the quadratic form, Q1(X) = X′AX, where X′ = (X1, . . . , X5),
the Xi’s being independently and uniformly distributed on the interval (3, 6), and

A =


2 1 1 5 0
1 0 −2 0 −1
1 −2 0 −2 2
5 0 −2 0 3
0 −1 2 3 2

 .

We approximate the distribution of Q1(X) from its moments by making use of a beta
density function as base density. The proposed technique comprises the following steps:

1. The moments of Q1(X) are determined from the representation given in Equation
(6.3), with a = 3, b = 6 and n = 5.

2. The base density is taken to be

φ(z) =
1

B(α, β)
zα−1(1− z)β−1 I(0 , 1)(z), α > 0, β > 0 , (6.4)

where B(α, β) = Γ(α)Γ(β)/Γ(α, β) and I(0 , 1)(·) denotes the indicator function on
the interval (0, 1).

3. The support (q, r) of Q1(X) is mapped onto the interval (0, 1), the support of the
beta distribution, with the affine transformation z = (y − q)/(r − q), the inverse
transformation being y = z(r − q) + q.

4. The mth moment of the transformed distribution on (0, 1) is given by

µm =
1

(r − q)m
m∑
j=1

(
m

j

)
E(Q1(X)j)(−q)m−j .
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Table 6.1: Approximate cdf of Q1(X) evaluated at certain percentiles obtained by simu-
lation (Simul. %).

CDF Simul. % Beta Beta Poly

0.0001 111.504 0.00007692 0.00008210
0.0010 132.949 0.00131205 0.00103533

0.01 169.779 0.012625 0.009744
0.05 213.237 0.055130 0.049497
0.10 241.233 0.104888 0.100011
0.25 294.696 0.249791 0.249500
0.50 362.655 0.491610 0.499227
0.75 434.365 0.741042 0.749180
0.90 500.585 0.901307 0.899389
0.95 538.740 0.954795 0.949922
0.99 602.644 0.993672 0.989981

0.9990 654.815 0.999691 0.998937
0.9999 680.786 0.999989 0.999931

where E(Q1(X)j) is obtained from (6.3).

5. The parameters of the beta density are taken to be

α = −µ1 +
(1− µ1)µ2

1

µ2 − µ2
1

and β = −1− α +
(1− µ1)µ1

µ2 − µ2
1

.

6. A polynomial adjustment of degree d can be made as explained in Section 2.7.3,
the resulting density approximation being

fd(z) = ϕ(z)
d∑
j=0

ξjz
j ;

in this case, we observed that d = 7 provides sufficient accuracy.

7. The approximate density of Q1(X), as obtained by applying the inverse transfor-
mation, is then given by

g(y) =
1

r − q
fd

(
y − q
r − q

)
I(q , r)(y) .
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The values of the approximate distribution function displayed in Table 6.1 and
the plots shown in Figure 6.1 indicate that the polynomially adjusted beta distribution
provides a very accurate approximation to the distribution of Q1(X). The simulated
distribution function of Q1(X) was generated from 1,000,000 replications.

Result 6.2.1. The mth moment of the quadratic expression Q∗(X) = X
′
AX + b′X + δ,

where X
′
= (X1, . . . , Xn) is a vector of independently and uniformly distributed random

variables on the interval (a, b), A is symmetric matrix, b is an n× 1 constant vector and
δ is a scalar constant can be obtained in closed form as follows:

E(Q∗1(X)m) =

∫ b

a

∫ b

a

· · ·
∫ b

a

∫ b

a

( 1

b− a

)n
×

(
n∑
i=1

n∑
j=1

aijxixj +
n∑
k=1

bkxk + δ

)m

dx1dx2 · · · dxn−1dxn

=
( 1

b− a

)n ∫ b

a

∫ b

a

· · ·
∫ b

a

∫ b

a

m∑
s=0

(
m

s

)[ n∑
i=1

n∑
j=1

aijxixj

]s
[ n∑
k=1

bkxk + δ

]m−s
dx1dx2 · · · dxn−1dxn

=
( 1

b− a

)n ∫ b

a

∫ b

a

· · ·
∫ b

a

∫ b

a

m∑
s=0

(
m

s

)[ n∑
i=1

n∑
j=1

aijxixj

]s
×
[m−s∑
f=0

(
m− s
f

)( n∑
k=1

bkxk

)f
δm−s−f

]
dx1dx2 · · · dxn−1dxn

=
( 1

b− a

)n ∫ b

a

∫ b

a

· · ·
∫ b

a

∫ b

a

m∑
s=0

(
m

s

)[∑
(s)

s!

( n∏
i,j

a
sij
ij

sij!

) n∏
`=1

xδ``

]

×
[m−s∑
f=0

(
m− s
f

) ∑
k1,··· ,kn

(
f

k1, · · · , kn

) n∏
`=1

xk`` δ
m−s−f

]
dx1dx2 · · · dxn−1dxn

=
( 1

b− a

)n m∑
s=0

(
m

s

)
s!

[∑
(s)

( n∏
i,j

a
sij
ij

sij!

)][m−s∑
f=0

(
m− s
f

)

×
∑

k1,··· ,kn

(
f

k1, · · · , kn

)
δm−s−f

] ∫ b

a

∫ b

a

· · ·
∫ b

a

∫ b

a

n∏
`=1

xδ`+k``

dx1dx2 · · · dxn−1dxn
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Table 6.2: Approximate cdf of Q∗1(X) evaluated at certain percentiles obtained by simu-
lation (Simul. %).

CDF Simul. % Beta Beta Poly

0.0001 34.703 0.00041980 0.00001544
0.0010 42.203 0.00413030 0.00097898

0.01 55.627 0.024080 0.011425
0.05 70.927 0.070212 0.047505
0.10 81.647 0.116757 0.096854
0.25 106.55 0.260830 0.248639
0.50 142.94 0.516285 0.499375
0.75 181.75 0.766097 0.748432
0.90 215.68 0.914014 0.894654
0.95 233.52 0.959897 0.948470
0.99 258.54 0.992134 0.989677

0.9990 654.82 0.999127 0.998911
0.9999 286.70 0.999928 0.999916

=
( 1

b− a

)n m∑
s=0

(
m

s

)
s!

[∑
(s)

( n∏
i,j

a
sij
ij

sij!

)][m−s∑
f=0

(
m− s
f

)

×
∑

k1,··· ,kn

(
f

k1, · · · , kn

)
δm−s−f

] n∏
`=1

bk`+δ`+1 − ak`+δ`+1

k` + δ` + 1
(6.5)

where
∑n

i=1 ki = f .

Example 6.2.2. Consider the quadratic expression, Q∗1(X) = X′AX + b′X + δ, where
X′ = (X1, . . . , X4), the Xi’s being uniformly and independently distributed in the interval
(2, 5), b′ = (1, 2, 3, 4), δ = 3 and

A =


−3 1 4 5

1 0 −2 0
4 −2 0 −2
5 0 −2 0

 .

The beta approximation to the distribution function of Q∗1(X), as evaluated from Steps
1 to 7 of the proposed approach, is plotted in Figure 6.2 where it is superimposed on
the simulated distribution function determined on the basis of 1,000,000 replications.
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Figure 6.2: Simulated cdf of Q∗1(X) and 7th degree polynomially adjusted beta cdf ap-
proximation (dots).

The values of the approximate distribution function presented in Table 6.2 suggest that,
following a polynomial adjustment of degree 7, the beta distribution provides a reasonably
accurate approximation to the distribution of Q∗1(X).

6.3 Quadratic Forms in Order Statistics From a Uni-

form Population

Consider the order statistics U1 ≤ · · · ≤ Uk obtained from a simple random sample of size
n coming from a continuous uniform population on the interval (0, 1) and denote the joint
density and distribution functions of U1, . . . , Uk by f(·) and F (·), respectively. Letting
U1 = Xr1:n be the rth

1 order statistic, U2 = Xr1+r2:n be the (r1 + r2)th order statistic and
so on, Uk being the (r1 + · · ·+ rk)

th order statistic, the joint density of U1, . . . , Uk is given
by

f(u1, . . . , uk) =
Γ(n+ 1)∏k+1
j=1 Γ(rj)

[F (u1)]r1−1

{
k∏
i=2

[F (ui)− F (ui−1)]ri−1

}

×[1− F (uk)]
rk+1−1

k∏
`=1

f(u`) , (6.6)

whenever 0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ 1, with rk+1 − 1 = n−
∑k

i=1 ri.

Letting U′ = (U1, . . . , Uk), c′ = (c1, . . . , ck) be a constant vector and making use of
the expansion given in Equation (6.1) with δ` =

∑n
j=1(m`j +mj`), ` = 1, . . . , n, the mth

moment of Q(U) = (U− c)′A(U− c) can be determined as follows:
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E(Q(U)m) =
Γ(n+ 1)∏k+1
j=1 Γ(rj)

∑
(m)

m!

[
k∏
i,j

a
mij
ij

mij!

]∫ ∫
0≤u1≤···≤uk≤1

· · ·
∫ ( k∏

`=1

(u` − c`)δ`
)

×(u1 − c1)r1−1[(u2 − u1)− (c2 − c1)]r2−1 · · · [(uk − uk−1)

−(ck − ck−1)]rk−1(1− (uk − ck))rk+1−1du1 . . . duk

=
Γ(n+ 1)∏k+1
j=1 Γ(rj)

∑
(m)

m!

[
k∏
i,j

a
mij
ij

mij!

] 1∫
uk=0

uk∫
uk−1=0

· · ·
u2∫

u1=0

×

(
k∏
`=1

δ∑̀
α`=0

(
δ`
α`

)
uδ`` (−c`)δ`−α`

)(
r1−1∑
j1=0

(
r1 − 1

j1

)
uj11 (−c1)r1−j1−1

)

×

(
r2−1∑
j2=0

(
r2 − 1

j2

)
(u2 − u1)j2(c2 − c1)r2−j2−1

)
· · ·

×

(
rk−1∑
jk=0

(
rk − 1

jk

)
(uk − uk−1)jk(ck − ck−1)rk−j2−1

)

×

rk+1−1∑
jk+1=0

(
rk+1 − 1

jk+1

)
(1− uk)jk+1c

rk+1−jk+1−1
k

 du1 . . . duk

=
Γ(n+ 1)∏k+1
j=1 Γ(rj)

∑
(m)

m!

[
k∏
i,j

a
mij
ij

mij!

]
r1−1∑
j1=0

r2−1∑
j2=0

· · ·
rk−1∑
jk=0

rk+1−1∑
jk+1=0

(
r1 − 1

j1

)

×
(
r2 − 1

j2

)(
rk − 1

jk

)
· · ·
(
rk+1 − 1

jk+1

)
(−c1)r1−j1−1(c2 − c1)r2−j2−1

· · · (ck − ck−1)rk−j2−1c
rk+1−jk+1−1
k

×
1∫

uk=0

uk∫
uk−1=0

· · ·
u2∫

u1=0

(
k∏
`=1

δ∑̀
α`=0

(
δ`
α`

)
uδ`` (−c`)δ`−α`

)

×uj11 (u2 − u1)j2 . . . (uk − uk−1)jk(1− uk)jk−1du1 . . . duk .

On integrating the terms involving u and letting υ = u1
u2

, one has

u2∫
u1=0

uδ1+j1
1 (u2 − u1)j2du1 =

1∫
υ=0

uj1+j2+δ1+1
2 υδ1+j1(1− υ)j2dυ
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= uj1+j2+δ1+1
2

Γ(δ1 + j1 + 1)Γ(j2 + 1)

Γ(j1 + j2 + δ1 + 2)
;

similarly,

u3∫
u2=0

uj1+j2+δ1+δ2+1
2 (u3 − u2)j3du2 = uj1+j2+j3+δ1+δ2+2

3

×Γ(j1 + j2 + δ1 + δ2 + 2)Γ(j3 + 1)

Γ(j1 + j2 + j3 + δ1 + δ2 + 3)
, . . . ,

uk∫
uk−1=0

u
j1+···+jk−1+δ1+···+δk−1+k−2
k−1 (uk − uk−1)jkduk−1 = u

j1+j2+···+jk+δ1+···+δk−1+k−1
k

×Γ(j1 + j2 + · · ·+ jk−1 + δ1 + · · ·+ δk−1 + k − 1)Γ(jk + 1)

Γ(j1 + · · ·+ jk + δ1 + · · ·+ δk−1 + k)
,

and finally, ∫ 1

uk=0

u
j1+j2+···+jk+δ1+···+δk−1+δk+k−1
k (1− uk)jk+1duk

=
Γ(j1 + j2 + · · ·+ jk + δ1 + · · ·+ δk + k)Γ(jk+1 + 1)

Γ(j1 + · · ·+ jk+1 + δ1 + · · ·+ δk + k + 1)
.

Thus,

E(Q(U)m) =
Γ(n+ 1)∏k+1
j=1 Γ(rj)

∑
(m)

m!

[
k∏
i,j

a
mij
ij

mij!

]
r1−1∑
j1=0

r2−1∑
j2=0

· · ·
rk−1∑
jk=0

rk+1−1∑
jk+1=0

( k∏
`=1

δ∑̀
α`=0

×
(
δ`
α`

)(
r1 − 1

j1

)(
r2 − 1

j2

)
· · ·
(
rk − 1

jk

)(
rk+1 − 1

jk+1

)
×(−c`)δ`−α`(−c1)r1−j1−1(c2 − c1)r2−j2−1 · · ·

×(ck − ck−1)rk−jk−1 c
rk+1−jk+1−1
k

)
×

[
k∏
i=1

Γ(j1 + j2 + · · ·+ ji + δ1 + · · ·+ δi + i)Γ(ji+1 + 1)

Γ(j1 + · · ·+ ji+1 + δ1 + · · ·+ δi + i+ 1)

]
. (6.7)

Since the rj’s and the δj’s are non-negative integers, all the gamma functions exist and
no further conditions are required.
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Figure 6.3: Simulated cdf of Q1(U) and beta cdf approximation (dots).

Remark 6.3.1. It follows that the mth moment of Q∗(U) = U′AU is

E(Q∗(U)m) =
Γ(n+ 1)

r1

∑
(m)

m!

[
k∏
i,j

a
mij
ij

mij!

][
k∏
j=1

Γ(r1 + . . .+ rj + δ1 + . . .+ δj)

Γ(r1 + . . .+ rj+1 + δ1 + . . .+ δj)

]
. (6.8)

Example 6.3.1. Let the order statistics U1 ≤ · · · ≤ U5 originate from a random sample
of uniform random variables on (0, 1) and Q1(U) = U′AU be a quadratic form where
U′ = (U1, . . . , U5) and

A =


−3 1 4 5 0

1 0 −2 0 −1
4 −2 0 −2 2
5 0 −2 0 3
0 −1 2 3 4

 .

One can approximate the distribution function of Q1(U) by means of a beta distribution
by following the seven steps described in Example 6.2.1. This density approximation is
plotted in Figure 6.3 where it is superimposed on the simulated distribution function,
which was obtained on the basis of 1,000,000 replications. The values of the approximate
distribution functions included in Table 6.3 suggest that, following a polynomial adjust-
ment of degree 8, the beta distribution provides a very accurate approximation to the
distribution of Q1(U).

Remark 6.3.2. More generally, suppose that U1 ≤ · · · ≤ Un are order statistics from a
Uniform(a, b) population. In this case, the mth moment of the quadratic form Q2(U) =
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Table 6.3: Approximate cdf of Q1(U) evaluated at certain percentiles obtained by simu-
lation (Simul. %).

CDF Simul. % Beta Beta Poly

0.0001 0.2636 0.00002977 0.000081678
0.0010 0.6019 0.00213030 0.000938185

0.01 1.4747 0.003627 0.010812
0.05 2.8063 0.038119 0.049095
0.10 3.7001 0.094182 0.097786
0.25 5.3459 0.269229 0.252157
0.50 7.1402 0.516618 0.498152
0.75 8.9050 0.738569 0.750771
0.90 10.637 0.887226 0.901552
0.95 11.814 0.946025 0.949137
0.99 14.129 0.992684 0.990303

0.9990 16.524 0.999763 0.998806
0.9999 18.131 0.999997 0.999911

U′AU, can be obtained numerically from the following expressions:

E(Q2(U)m) =

∫ b

a

∫ un−1

a

· · ·
∫ u3

a

∫ u2

a

n!
( 1

b− a

)n
×

(
n∑
i=1

n∑
j=1

aijuiuj

)m

du1du2 · · · dun−1dun

= n!
( 1

b− a

)n∑
(m)

m!

[
n∏
i,j

a
mij
ij

mij!

]∫ b

a

∫ un−1

a

· · ·
∫ u3

a

∫ u2

a

×

(
n∏
`=1

uδ``

)
du1du2 · · · dun−1dun . (6.9)

Example 6.3.2. Replacing U1, . . . , Un in Example 6.3.1, by the order statistics U1 ≤
· · · ≤ U5 obtained from a random sample generated from a Uniform(2, 5) population,
denoting the resulting quadratic form by Q2(U) and following the steps described in
Example 6.2.1, one can approximate the density function of Q2(U) from its moments from
the representation given in (6.9). The approximate distribution function is tabulated for
certain percentiles in Table 6.4 and superimposed on the simulated distribution in Figure
6.4. Once again, close agreement is observed with the simulated distribution (based on
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Table 6.4: Approximate cdf of Q2(U) evaluated at certain percentiles obtained by simu-
lation (Simul. %).

CDF Simul. % Beta Beta Poly

0.0001 112.81 0.00006770 0.00008916
0.0010 131.13 0.00085479 0.00088193

0.01 164.11 0.007038 0.010312
0.05 201.50 0.040145 0.052437
0.10 223.32 0.096718 0.098555
0.25 259.73 0.269143 0.245106
0.50 296.99 0.518558 0.504306
0.75 330.53 0.738310 0.749871
0.90 361.29 0.884750 0.898980
0.95 381.16 0.943191 0.949932
0.99 418.96 0.991702 0.989496

0.9990 457.15 0.999725 0.999255
0.9999 483.37 0.999998 0.999988

1,000,000 replications).

Example 6.3.3. Let U1 ≤ · · · ≤ Uk be order statistics obtained from a simple random
sample of size n generated from a continuous uniform population on the interval (0, 1).
Consider the quadratic form, S2 = (U − µ)′V −1(U − µ) as defined in Equation (4) of
Hartley and Pfaffenberger (1972) where U′ = (U1, . . . , Uk), µj = E(Uj) = j/(n + 1) and
the elements vij of the covariance matrix V associated with the random vector U are
given by

vij =
i (n− j + 1)

(n+ 1)2(n+ 2)
, i ≤ j .

Hartley and Pfaffenberger (1972) obtained the exact upper 5th percentage point of the
distribution of S2 by making use of numerical integration recurrence formulas and pro-
posed a Type V Pearson curve approximation. We determined the fifth percentile with
the proposed methodology and then by making use of Monte Carlo simulations on the ba-
sis of 1,000,000 replications. The results presented in Table 6.5 indicate that the proposed
approximation is more accurate than that utilized by Hartley and Pfaffenberger.
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Figure 6.4: Simulated cdf of Q2(U) and beta cdf approximation (dots).

Table 6.5: Upper 5th percentage points of S2 for various values of n.

n Pearson Exact Proposed Monte
Type V Method Carlo

3 6.980 7.390 7.272 7.3850
4 8.980 9.270 9.220 9.2790
5 10.89 11.14 11.11 11.147
6 12.74 12.96 12.94 13.006
7 14.52 14.71 14.71 14.721
8 16.26 16.44 16.43 16.443
9 17.95 18.11 18.04 18.106
10 19.61 19.75 19.68 19.737
11 21.23 21.35 21.28 21.342
12 22.83 22.94 22.85 22.937
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6.4 Quadratic Forms in Beta Random Variables

Noting that the uniform distribution is a particular case of the beta distribution, we now
extend the results to quadratic form in beta random variables.

Let Y = (Y1, . . . , Yn)′ denote a random vector of independently distributed beta
random variables with parameters α and β and Q(Y) = Q(Y1, . . . , Yn) = Y′AY where
A = (aij) is a n× n symmetric matrix. In light of Equation (6.1) and making use of the
same notation, one can determine the mth moment of Q(Y) as follows:

E(Q(Y)m) =
∑
(m)

m!

[
n∏
i,j

a
mij
ij

mij!

]∫ 1

0

∫ 1

0

· · ·
∫ 1

0

(
n∏
l=1

yδll

)

×

(
1

B(α, β)

)n n∏
j=1

(
yα−1
j (1− yj)β−1

)
dy1 . . . dyn

= m!
∑
(m)

[
n∏
i,j

a
mij
ij

mij!

]∫ 1

0

∫ 1

0

· · ·
∫ 1

0

(
1

B(α, β)

)n

×
n∏
j=1

(
y
δj+α−1
j (1− yj)β−1

)
dy1 . . . dyn

=

(
Γ(α + β)

Γ(α)

)n

m!
∑
(m)

[
n∏
i,j

a
mij
ij

mij!

]
n∏
k=1

(
Γ(α + δk)

Γ(α + β + δk)

)
. (6.10)

Example 6.4.1. Consider the quadratic form, Q1(Y) = Y′AY, where Y = (Y1, . . . , Y4)
has a beta distribution with parameters α = 3 and β = 5 and

A =


1 1 2 3
1 0 −1 0
2 −1 4 3
3 0 3 1

 .

The steps described in Example 6.2.1 in conjuction with the moment representation
provided in Equation (6.10) yield an approximate beta density function for Q1(Y). The
results included in Table 6.6 and Figure 6.5 indicate that the approximate distribution
is in close agreement with the simulated distribution (based on 1,000,000 replications).
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Table 6.6: Approximate cdf of Q1(Y) evaluated at certain percentiles obtained by simu-
lation (Simul. %).

CDF Simul. % Beta Beta Poly

0.0001 0.1752 0.00020628 0.000037176
0.0010 0.3373 0.00212657 0.000705537

0.01 0.6578 0.015853 0.009003
0.05 1.1054 0.062765 0.049370
0.10 1.4168 0.113877 0.100487
0.25 2.0694 0.256351 0.252974
0.50 3.0047 0.490315 0.500682
0.75 4.1836 0.739495 0.748943
0.90 5.4126 0.896960 0.900290
0.95 6.2319 0.951701 0.951536
0.99 7.9164 0.993377 0.989582

0.9990 9.9633 0.999816 0.998907
0.9999 11.709 0.999999 0.999981

Figure 6.5: Simulated cdf of Q1(Y) and beta cdf approximation (dots)
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6.5 Quadratic Forms in Order Statistics From a Beta

Population

In this section, we determine the moments of a quadratic form Q(W) = W
′
AW for the

case where W is a vector of order statistics W1 ≤ · · · ≤ Wn obtained from a random
sample of a beta distributed population with parameters α and β, whose density function
is as specified in Equation (6.4).

In this case, the mth moment of the quadratic form Q(W), denoted by µ†m can be
obtained as follows:

µ†m =

∫ 1

0

∫ wn−1

0

· · ·
∫ w3

0

∫ w2

0

n!

(
1

B(α, β)

)n( n∏
k=1

wα−1
k (1− wk)β−1

)

×

(
n∑
i=1

n∑
j=1

aijwiwj

)m

dw1dw2 · · · dwn−1dwn

= n!

(
1

B(α, β)

)n∑
(m)

m!

[
n∏
i,j

a
mij
ij

mij!

]∫ 1

0

∫ wn−1

0

· · ·
∫ w3

0

∫ w2

0

(
n∏
`=1

wδ``

)

×

(
n∏
k=1

wα−1
k (1− wk)β−1

)
dw1dw2 · · · dwn−1dwn

= n!

(
1

B(α, β)

)n∑
(m)

m!

[
n∏
i,j

a
mij
ij

mij!

]∫ 1

0

∫ wn−1

0

· · ·
∫ w3

0

∫ w2

0(
n∏
k=1

wα−1+δk
k (1− wk)β−1

)
dw1dw2 · · · dwn−1dwn.

On integrating the terms involving w, one has

∫ w2

w1=0

wα+δ1−1
1 (1− w1)β−1dw1 =

wα+δ1−1
2 (1− w2)β−1

B(α + δ1, β)
;

similarly,∫ w3

w2=0

w2α+δ1+δ2−2
2 (1− w2)2β−2dw2 =

w2α+δ1+δ2−1
3 (1− w3)2β−2

B(2α + δ1 + δ2 − 1, 2 β − 1)
, . . . ,

∫ wn

wn−1=0

w
(n−1)α+δ1+δ2+···+δn−1−n+1
n−1 (1− wn−1)(n−1)β−(n−1)dwn−1
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=
w

(n−1)α+δ1+δ2+···+δn−1−(n−1)
n (1− wn)(n−1)β−(n−1)

B

(
(n− 1)α + δ1 + δ2 + · · ·+ δn−1 − (n− 2), (n− 1) β − (n− 2)

) ,

and finally, ∫ 1

wn=0

wnα+δ1+δ2+···+δn−n
n (1− wn)nβ−ndwn

=
1

B

(
nα + δ1 + δ2 + · · ·+ δn − (n− 1), n β − (n− 1)

) .

Thus,

µ†m = n!

(
1

B(α, β)

)n∑
(m)

m!

[
n∏
i,j

a
mij
ij

mij!

]

×
n∏
k=1

1

B

(
k α + δ1 + δ2 + · · ·+ δk − (k − 1), k β − (k − 1)

) . (6.11)

Example 6.5.1. Consider order statistics W1 ≤ · · · ≤ W5 obtained from a random
sample generated from a beta distribution with parameters α = 2 and β = 3. Let
Q1(W) = W′AW be a quadratic form where W′ = (W1, . . . ,W5) and

A =


3 1 4 2 0
1 0 −1 0 −1
4 −1 1 3 2
2 0 3 0 0
0 −1 2 0 1

 .

On following the steps outlined in Example 6.2.1 in conjunction with the moments
obtained from Equation (6.11), one can approximate distribution function of Q1(W) at
various percentiles by making use of a polynomially adjusted beta density. The values
of the approximate distribution function presented in Table 6.7 suggest that, following
a polynomial adjustment of degree 8, the adjusted beta distribution function provides a
very accurate approximation to the distribution of Q1(W). This approximation is plotted
in Figure 6.6 where it is superimposed on the simulated distribution function determined
on the basis of 1,000,000 replications.
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Figure 6.6: Simulated cdf of Q1(W) and beta cdf approximation (dots)

Table 6.7: Approximate cdf of Q1(W) evaluated at certain percentiles obtained by sim-
ulation (Simul. %).

CDF Simul. % Beta Beta Poly

0.0001 0.2609 0.00020628 0.000035493
0.0010 0.4417 0.00212657 0.000711698

0.01 0.7919 0.015853 0.009417
0.05 1.2553 0.062765 0.050034
0.10 1.5731 0.113877 0.100828
0.25 2.2342 0.256351 0.252130
0.50 3.1831 0.490315 0.500107
0.75 4.3808 0.739495 0.747402
0.90 5.6653 0.896960 0.899517
0.95 6.5306 0.951701 0.951151
0.99 8.3057 0.993377 0.989656

0.9990 10.507 0.999816 0.998765
0.9999 12.356 0.999999 0.999947
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6.6 Quadratic Forms in Gamma Random Variables

Let X = (X1, . . . , Xn)′ denote a random vector whose components are independently
distributed gamma random variables with parameters α and β whose density function is
given by

ψ(x) =
xα−1e−x/β

Γ(α) βα
IR+(x) , α > 0 , β > 0 , (6.12)

where IR+(x) denotes the indicator function on the set of positive real numbers. Then,
in light of Equation (6.2), one can determine the mth moment of Q(X) as follows:

E(Q(X)m) = m!
∑
(m)

[ n∏
i,j

a
mij
ij

mij!

] n∏
`=1

(∫ ∞
0

xδ`+α−1
` e−x`/β

Γ(α) βα

)
dx1 . . . dxn

= m! Γ(α)−n
∑
(m)

[ n∏
i,j

a
mij
ij

mij!

]
β
∑n
`=1 δ`

n∏
`=1

Γ(α + δ`)

≡ µm . (6.13)

Accordingly, when the components of the random vector X are exponentially dis-
tributed with parameter β, their density function is

f(x) =
1

β
e−x/β IR+(x) , β > 0 , (6.14)

and the mth moment of Q(X) is

E(Q(X)m) = m!
∑
(m)

[ n∏
i,j

a
mij
ij

mij!

]
β
∑n
`=1 δ`

n∏
`=1

Γ(1 + δ`) . (6.15)

Given the moments of such quadratic forms, approximations to their distribution
can be obtained by making use of the techniques advocated in Section 2.7.

Example 6.6.1. Consider the quadratic form Q1(X) = X′AX where X = (X1, . . . , X5),
and

A =


4 3 2 1 0
3 0 2 0 1
2 2 0 3 2
1 0 3 1 0
0 1 2 0 6

 ,
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Table 6.8: Approximate cdf’s of Q1(X) evaluated at certain percentiles obtained by
simulation (Simul. %).

CDF Simul. % Ge.G.Poly

0.01 0.2562 0.008006
0.05 0.6255 0.045688
0.10 0.9717 0.095557
0.25 1.9191 0.247761
0.50 3.8274 0.501751
0.75 8.3808 0.749402
0.90 12.108 0.900084
0.95 16.261 0.949537
0.99 27.589 0.989890

Figure 6.7: Simulated cdf of Q1(X) and 7th degree polynomially adjusted generalized
gamma cdf approximation (dots).

the Xi’s being independently and exponentially distributed with parameter β = 3.
Since the exponential distribution has a semi-infinite support and all the elements

of A are nonnegative, a generalized gamma distribution can be used as base density to
determine an approximate distribution for Q1(X). The proposed methodology comprises
the steps described in Example 5.4.1. The moments of Q1(X) are determined from
Equation (6.13) wherein n = 5 and β = 3.

Certain values of the resulting approximate distribution function of Q1(X) are dis-
played in Table 6.8 where Ge. G. Poly denotes the cdf obtained from the polynomially
adjusted generalized gamma density function. The percentiles were determined by sim-
ulation on the basis of 1,000,000 replications. The plot shown in Figure 6.7 confirms
that the polynomially adjusted generalized gamma distribution provides a very accurate
approximation to the distribution of Q1(X).
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Remark 6.6.1. Referring to Equation (6.12), when αi = νi/2, i = 1, 2, . . . , n and β = 2,
the ith component of the random vector X = (X1, . . . , Xn)′ has a chi-square distribution
with νi degrees of freedom and the representation of the mth moment of Q(X) given in
Equation (6.13) applies.

Remark 6.6.2. When the matrix A in the quadratic form Q(X) = X′AX contains nega-
tive elements, one can utilize the density function of the difference of two gamma random
variables as base density in order to determine an approximation to the distribution of
Q(X). Such a density function can be determined as follows.

Let Y1 and Y2 be independently distributed gamma random variables with pa-
rameters α1 , β1 and α2 , β2, respectively. By making use of binomial expansion of
(Y1 − Y2)h, h = 1, 2, 3, 4, and simplifying, one can determine the first four moments
of Y1 − Y2, which are

E(Y1 − Y2) = α1 β1 − α2 β2

E(Y1 − Y2)2 = α1 (1 + α1) β2
1 − 2α1 α2 β1 β2 + α2 (1 + α2) β2

2

E(Y1 − Y2)3 = α1 (1 + α1) (2 + α1) β3
1 − α2 β2 (3α1 (1 + α1) β2

1 − 3α1 (1 + α2) β1 β2

+(1 + α2) (2 + α2) β2
2)

E(Y1 − Y2)4 = α1 (1 + α1) (2 + α1) (3 + α1) β4
1 + α2 (1 + α2) (2 + α2) (3 + α2) β4

2

−2α1 α2 β1 β2 (2 (1 + α1) (2 + α1) β2
1 − 3 (1 + α1) (1 + α2) β1 β2

+2 (1 + α2) (2 + α2) β2
2). (6.16)

Now, on equating these moments to those obtained from (6.13), one can solve the resulting
system of equations for α1 , β1, α2 and β2, which can be achieved by utilizing of symbolic
computational packages such as Maple and Mathematica.

It follows from the results derived in Section 2.7 that the density function of Q =
Y1 − Y2 where Y1 and Y2 are independently distributed gamma random variables with
parameters α1 , β1 and α2 , β2, respectively, can be expressed as

hn(q) I(−∞ , 0)(q) + hp(q) I[0 ,∞)(q) (6.17)

where hn(q) and hp(q) are specified in (2.42) and (2.41).

Example 6.6.2. Consider the quadratic form Q2(X) = X′AX where X = (X1, X2, X3)′

is a vector of independently distributed chi-square random variables having 4, 3 and 5
degrees of freedom, respectively, and

A =

 4 1 −2
1 0 2
−2 2 −4

 .
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Figure 6.8: Simulated cdf of Q2(X) and cdf approximation obtained from the difference
of two gamma random variables (dots).

In light of Remark 6.6.2, one can determine an approximation to the distribution function
of Q2(X) by following the steps described in Example 5.4.1, the base density being given
by (6.17) in this instance. This approximation is superimposed in Figure 6.8 on the
simulated distribution function which was determined from 1,000,000 replications.

6.7 Quadratic Forms in Order Statistics From an Ex-

ponential Population

In this section, we derive the moments of the quadratic form Q(X) = X
′
AX where X

is a vector of order statistics X1 = Yr1:n, X2 = Yr1+r2:n and Xk = Yr1+···+rk:n obtained
from a simple random sample of n observations generated from a standard exponential
distribution (with density g(y) = e−y IR+(x)).

In this case, the joint density of X1, . . . , Xk is

f(x1, . . . , xk) =
Γ(n+ 1)∏k+1
j=1 Γ(rj)

( k∏
j=1

e−xj
)(

1− e−x1
)r1−1

×
k∏
i=2

(
e−xi−1 − e−xi

)ri−1(
e−xk

)rk+1−1
(6.18)

whenever 0 < x1 < . . . < xk <∞ with rk+1 = n+ 1−
∑k

j=1 rj, and 0, otherwise.

Consider the transformation z1 = 1 − e−x1 and zj = e−xj−1 − e−xj for j = 2, . . . , k.
The inverse transformation is then

xj = − ln(1− z1 − · · · − zj)
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for j = 1, . . . , k, and its Jacobian is

k∏
j=1

(1− z1 − · · · − zj)−1 =
k∏
j=1

exj > 0 . (6.19)

Noting that e−xk = 1− z1 − · · · − zk, the joint density of Z1, . . . , Zk is seen to be

h(z1, . . . , zk) =
Γ(n+ 1)∏k+1
j=1 Γ(rj)

( k∏
j=1

z
rj−1
j

)
(1− z1 − · · · − zk)rk+1−1 (6.20)

whenever 0 < zj < 1, i = 1, . . . , k, and
∑k

i=1 zi ≤ 1, and 0 otherwise. Thus, the
random vector Z = (Z1, . . . , Zk)

′ has a type-one Dirichlet distribution with parameters
r1, r2, . . . , rk+1.

In view of (6.19), the joint moment-generating function of U = (−X1, . . . ,−Xk)
′

evaluated at the point t = (t1, . . . , tk) can be expressed as

MU(t) = E
(
et1 ln(1−Z1)+···+tk ln(1−Z1−···−Zk)

)
= E

(
(1− Z1)t1 · · · (1− Z1 − · · · − Zk)tk

)
=

Γ(n+ 1)∏k+1
j=1 Γ(rj)

∫
· · ·
∫

(1− z1)t1(1− z1 − z2)t2 · · · (1− z1 − · · · − zk)tk

× zr1−1
1 zr2−1

2 · · · zrk−1
k (1− z1 − · · · − zk)rk+1−1dzk · · · dz2 dz1 (6.21)

where the domain of integration is 0 < zi < 1, i = 1, . . . , k, with
∑k

i=1 zi ≤ 1. Integrating
out zk and making the change of variables w = zk/(1− z1 − · · · − zk−1) yields∫ 1−z1−···−zk−1

0

zrk−1
k (1− z1 − · · · − zk)rk+1+tk−1dzk

= (1− z1 − · · · − zk−1)rk+rk+1+tk−1

∫ 1

0

wrk−1(1− w)rk+1+tk−1dw

= (1− z1 − · · · − zk−1)rk+rk+1+tk−1 Γ(rk)Γ(rk+1 + tk)

Γ(rk + rk+1 + tk)
.

Then, integrating the terms involving zk−1 from 0 to 1− z1 − · · · − zk−2, one has

(1− z1 − · · · − zk−2)rk+1+rk+rk−1+tk+tk−1−1 Γ(rk−1)Γ(rk+1 + rk + tk + tk−1)

Γ(rk+1 + rk + rk−1 + tk + tk−1)

and integrating successively the terms involving zk−2, . . . , z2 and z1, one obtains

MU(t) =
Γ(n+ 1)

Γ(rk+1)

k∏
j=1

Γ(rk+1 + · · ·+ rj+1 + tk + · · ·+ tj)

Γ(rk+1 + · · ·+ rj + tk + · · ·+ tj)
. (6.22)
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Accordingly,

E(Xδ1
1 X

δ2
2 · · ·X

δk
k ) = (−1)δ1+δ2+···+δk ∂

δ1+δ2+···+δkMU(t)

∂δ1t1∂δ2t2 . . . ∂δktk

∣∣∣
t=0

, (6.23)

and in light of Equations (6.1), (6.22) and (6.23), the mth moment of the quadratic form
Q(X) can be evaluated as follows:

E(Q(X)m) =
∑
(m)

m!

[ k∏
i,j

a
mij
ij

mij!

]
(−1)δ1+δ2+···+δk ∂

δ1+δ2+···+δkMU(t)

∂δ1t1∂δ2t2 . . . ∂δktk

∣∣∣
t=0
≡ µ∗m .

(6.24)

For computational purposes, it is simpler to make use of the joint cumulant gener-
ating function of U = (−X1, . . . ,−Xk)

′, which is

C∗U(t) = ln[Γ(n+ 1)]− ln[Γ(rk+1)] +
k∑
i=1

{ln Γ(rk+1 + · · ·+ rj+1 + tk

+ · · ·+ tj)− ln Γ(rk+1 + · · ·+ rj + tk + · · ·+ tj)}, (6.25)

in order to determine the joint moments needed to evaluate (6.24). The joint cumulants
of −X1, . . . ,−Xk of orders ξ1, . . . , ξk are then given by

κ∗U(ξ1, . . . , ξk) =
∂ξ1+···+ξk

∂ξ1t1 · · · ∂ξktk
C∗U(t) |t=0

=
(( k∑

j=1

ξj
)
− 1
)

!
ν−1∑
`=0

(
− 1/(n+ 1− ν + `)

)∑k
j=1 ξj

(6.26)

where ν =
∑λ

j=1 rj, λ being the position of the first non null component in ξ =
(ξ1, . . . , ξk)

′. On making use of a recursive relationship given in Smith (1995), one can
determine the joint moments of U = (−X1, . . . ,−Xk) in terms of the joint cumulants as
follows:

µ∗U(δ1, . . . , δk) =

δ1∑
i1=0

· · ·
δk−1∑
ik−1=0

δk−1∑
ik=0

(
δ1

i1

)
· · ·
(
δk−1

ik−1

)(
δk − 1

ik

)
×κ∗U(δ1 − i1, δ2 − i2, . . . , δk − ik)µ∗U(i1, i2, . . . , ik) (6.27)

where κ∗U(δ1 − i1, δ2 − i2, . . . , δk − ik) is as specified by (6.26).
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Table 6.9: Approximate cdf of Q3(X) obtained from a generalized gamma (G. Gamma)
density function evaluated at certain percentiles obtained by simulation (Simul. %).

CDF Simul. % Ge.G.Poly

0.0001 0.2257 0.00015054
0.001 0.7141 0.00071070

0.01 2.1704 0.009480
0.05 5.1663 0.050193
0.10 7.8542 0.100647
0.25 14.985 0.250374
0.50 28.884 0.500967
0.75 54.656 0.747110
0.90 84.180 0.897862
0.95 111.50 0.949800
0.99 179.43 0.989827

0.999 293.47 0.998986
0.9999 439.51 0.999919

Example 6.7.1. Let the order statistics X1 ≤ · · · ≤ X5 result from a random sample of
size 5 from an exponential distribution with parameter 1. Consider the quadratic form
Q3(X) = X′AX where X = (X1, . . . , X5)′ and

A =


1 1 1 3 0
1 0 2 0 1
1 2 0 4 2
3 0 4 1 0
0 1 2 0 2

 . (6.28)

In this example, we approximate the distribution of Q3(X) whose support is non-
negative by making use of a generalized gamma distribution. The moments of Q3(X) can
be determined from Equation (6.24) in terms of the joint moments of (−X1, . . . ,−Xk)
given in (6.27). The steps described in Example 5.4.1 were followed. The results included
in Table 6.9 indicate that the generalized gamma density function provides an accurate
approximation to the distribution of Q(X). The generalized gamma was adjusted with
a seventh degree polynomial and the resulting cdf is plotted in Figure 6.9.
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Figure 6.9: Simulated cdf of Q3(X) and 7th degree polynomially adjusted generalized
gamma cdf approximation (dots).

Figure 6.10: Simulated cdf of Q4(X) and cdf approximation (dots)

Example 6.7.2. Referring to Example 6.7.1, suppose that A is the matrix


−5 1 1 3 0

1 0 −2 0 −4
1 −2 0 4 2
3 0 4 1 0
0 −4 2 0 −2

 .

In this case, the base density given in (6.17) is appropriate. Then, on following the steps
described in Example 5.4.1, one can determine an approximate distribution for Q(X).
Figure 6.10 indicates that the approximated cdf (dots) closely agrees with the simulated
cdf.
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Remark 6.7.1. More generally, when the order statistics X1 ≤ · · · ≤ Xn are generated
from an Exponential(β) random variable whose density function is as specified by Equa-
tion (6.14), one can represent Q(X) = X′AX as Q(Y) = β2 (Y1, . . . , Yn)A (Y1 , . . . , Yn)′

where the Yi’s are order statistics from an Exponential(1) random variable. Once an
approximate density is obtained for (Y1, . . . , Yn)A (Y1 , . . . , Yn)′, a simple change of vari-
ables will yield the density function of Q(X). The moments of the quadratic form Q(X),
can be also obtained numerically from the following integral representation:

E(Q(X)m) =

∫ ∫
0≤x1≤···≤xk≤∞

· · ·
∫
Q(X)mfX1,...,Xn(x1, . . . , xn) dx1 . . . dxn

=

∫ ∞
0

∫ xn−1

0

· · ·
∫ x3

0

∫ x2

0

( n∑
i=1

n∑
j=1

aijxixj

)m n∏
`=1

n! fX`(x`) dx1 . . . dxn

=
∑
(m)

m!

[ n∏
i,j

a
mij
ij

mij!

] ∫ ∞
0

∫ xn−1

0

· · ·
∫ x3

0

∫ x2

0( n∏
`=1

n!xδ`` β
−1e−x`/β)

)
dx1 . . . dxn

= n! β−n
∑
(m)

m!

[ n∏
i,j

a
mij
ij

mij!

] ∫ ∞
0

∫ xn−1

0

· · ·
∫ x3

0

∫ x2

0

×
( n∏
`=1

xδ`` e
−x`/β

)
dx1 . . . dxn . (6.29)

Example 6.7.3. Suppose that the order statistics X1 ≤ · · · ≤ X5 are generated from
a random sample of size 5 from an exponential distribution with parameter 4 and let
Q5 denote the quadratic form X′AX with A as given in (6.28). Then, proceeding as in
Example 6.7.1 and reexpressing the quadratic form in terms of Exponential(1) random
variables as explained in Remark 6.7.1, one can approximate the density function of
Q5(X) by making use of a polynomially-adjusted generalized gamma distribution. The
results presented in Table 6.10 and Figure 6.11 indicate that approximate distribution
agrees with the simulated distribution which was determined on the basis of 1,000,000
replications.
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Table 6.10: Approximate cdf of Q5(X) evaluated at certain percentiles obtained by sim-
ulation (Simul. %).

CDF Simul. % Ge.G.Poly

0.0001 0.0172 0.00007942
0.001 0.0448 0.00088117

0.01 0.1337 0.009585
0.05 0.3183 0.049363
0.10 0.4866 0.099550
0.25 0.9357 0.250078
0.50 1.8023 0.500105
0.75 2.6956 0.749100
0.90 6.9692 0.899557
0.95 6.9692 0.949828
0.99 11.218 0.989847

0.999 18.358 0.998990
0.9999 26.249 0.999888

Figure 6.11: Simulated cdf of Q5(X) and polynomially-adjusted generalized gamma cdf
approximation (dots).



Chapter 7

Concluding Remarks and Future
Work

7.1 Concluding Remarks

The main objective of this dissertation consists in obtaining accurate moment-based
approximate distributions for various types of quadratic forms and quadratic expressions.
Excluding Chapter 6, the proposed methodology involves the decomposition of quadratic
forms and quadratic expressions as the difference of two positive definite real quadratic
forms plus possibly a linear combination normal random variables. We would like to
reiterate that this last term is not mentioned in the statistical literature. In this general
decomposition, the rank of A could be less than the rank of AΣ. In all cases, the
moment generating functions, cumulant generating functions as well as the moments and
cumulants are determined. Approximating the distributions by means of polynomially
adjusted generalized gamma and generalized shifted gamma as base density, is another
novel contribution of this dissertation. Ratios of various types quadratic forms and
quadratic expressions were considered in more general settings, including the singular
cases. We reexpressed Hermitian quadratic forms and quadratic expressions as well as
quadratic forms and quadratic expressions in elliptically contoured vectors in terms of
real quadratic forms and quadratic expressions in Gaussian vectors and then, proposed
decompositions involving the difference of two real positive definite quadratic forms and
a linear combination of normal random variables, which is another innovation of this
thesis.

Most of the results derived in the Chapter 6 are original contributions. In this chap-
ter quadratic forms and quadratic expressions in uniform, exponential, gamma and beta
variables as well as their order statistics are considered. We have determined the moments
of all such types of quadratic forms and quadratic expressions with special techniques. In
the case of quadratic forms and quadratic expressions in beta random variables or their

135
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order statistics, we are making use of beta density functions as base densities to approxi-
mate the distributions. The proposed methodology for approximating the distribution of
quadratic forms and quadratic expressions has applications in various fields of scientific
investigation. For instance, in finance, the stochastic process for modeling a price Yt can
be described by the stochastic differential equation,

dYt
Yt

= αtdt+ σtdWt ,

where the parameters αt, σt are often considered constant over time, see Šindelář (2010).
An estimation of the parameter α can be carried out from the model,

Yt+1 = αYt + et+1 ,

where the innovations could be taken to have normal or Laplace distributions. The
Laplace distribution can be viewed as particular case of the bilateral exponential density
which was discussed in Chapter 5. The maximum likelihood estimate is of the form

α̂GML =

∑T
t=2 yt yt−1∑T
t=2 y

2
t−1

which can be expressed as a ratio of quadratic forms.
Another application involves portfolio value-at-risk as pointed out by Glasserman

et al. (2002) where a quadratic expression in elliptically contoured random vectors is
considered in Equation (3.10).

7.2 Future Work

First, I am planning to extend the density approximation methodology advocated in
Provost (2005) and Ha and Provost (2007) to random vectors and matrices. This will
entail making use of multivariate base densities, which would be adjusted by linear com-
binations of multivariate orthogonal polynomials on the basis of the joint moments of the
variables involved. This semi-parametric approach would allow for much more flexibility
than that associated with purely parametric density functions when modeling multivari-
ate or matrix-variate distributions. I shall then consider extensions to the context of
density estimation on the basis of sample moments, including stopping rules for the de-
termination of the degree of the polynomial adjustment, which were addressed in Jiang
and Provost (2011) for the univariate case.

This would enable me to tackle the problem of determining the distribution of (pos-
sibly indefinite) generalized quadratic forms (expressible as X A X’ where X is a random
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matrix), which have applications for instance in multiple time series. A host of test statis-
tics and estimators in this area can be expressed in terms of generalized quadratic forms.
Thus, having a methodology for approximating their distributions accurately (without
having to resort to zonal polynomials expansions, as discussed for instance in Mathai
et al. (1995)), should prove eminently useful. I also propose to identify instances where
such generalized quadratic forms can be reduced to quadratic forms involving vectors.
The matrix X is usually assumed to be normally distributed in the literature. However,
such an assumption may not be realistic. Accordingly, I will consider the case of ellipti-
cally contoured matrices (whose densities are constant on hyper-ellipsoids). In this case,
the quadratic forms could presumably be expressed in terms of their Gaussian counter-
parts via a certain weight function. The case where A is a Hermitian matrix will also be
addressed; it is anticipated that my current results can be extended to the matrix-variate
setting. The singular case where the covariance matrices associated with the random
matrices may not have full rank will also be studied.

I would also like to investigate the distribution of generalized quadratic forms in ran-
dom matrices whose elements are distributed as uniform, beta or exponential variables.
This would presumably have applications similar to those pointed out in my current
work. I shall address the case of generalized quadratic expressions that also involve a
linear term of the form B X’ and generalized bilinear forms of the type Y B X’ where Y
and X are random matrices, and develop criteria for their independence along the lines
of the results derived in Provost (1996).

Additionally, I have an interest in the saddlepoint density approximation technique
[see, for instance, Butler (2007)], as it has been utilized by Kuonen (1999) to approximate
the distribution of quadratic forms. It is well-known that in this case the resulting density
approximations may be inaccurate in a neighborhood of the mean of a distribution, es-
pecially if it happens to be bimodal or irregular. Accordingly, improvements obtained by
applying a polynomial adjustment to a base density derived from an appropriately nor-
malized initial saddlepoint-type approximation shall be considered. I also wish to inves-
tigate possible generalizations of the saddlepoint approximation in multivariate settings
and possibly apply these results to the distribution of generalized quadratic forms. This
would involve making use of the joint cumulant-generating functions of the distributions
being approximated and generalizing some of the results derived by Barndorff-Nielsen
and Kluppelberg (1999).

These results would complement those included in Mathai and Provost (1992) and
Mathai et al. (1995) as well as those already available in the statistical literature. They
could also be included in a monograph on the evaluation of the distribution of quadratic
forms, which is currently in preparation.



Bibliography

Anderson O. D. (1990). Moments of the sampled autocovariances and autocorrelations
for a Gaussian white-noise process. The Canadian Journal of Statistics, 18, 271–284.

Annamalai A., Tellambura C. and Bhargava V. K. (2005). A general method for calculat-
ing error probabilities over fading channels. IEEE Trans. on Commun., 53, 841–852.

Baldessari B. (1965). Remarque sur le rapport de combinations linéaires de χ2. Publica-
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del Barrio E., Giné E. and Utzet F. (2005). Asymptotics for L2 functionals of the em-
pirical quantile process, with applications to tests of fit based on weighted Wasserstein
distances. Bernoulli, 11, 131–189.

del Pino G. E. (1979). On the asymptotic distribution of k-spacings with applications to
goodness- of-fit tests. Ann. Statist., 7, 1058–1065.

Dempster A. P., Schatzoff M. and Wermouth N. (1977). A simulation study of alternatives
to ordinary least squares. Journal of the American Statistical Association, 72, 77–106.

Devlin S. J., Gnanadesikan R. and Kettenring J. R. (1976). Some Multivariate Applica-
tions of Elliptical Distributions. Essays in Probability and Statistics, 365–393.

Devroye L. (1989). On random variate generation when only moments or Fourier coeffi-
cients are known. Mathematics and Computers in Simulation, 31, 71–89.
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King M. L. (1980). Robust tests for spherical symmetry and their application to least
squares regression. American Statistician, 8, 1265–1271.



References 143

Koerts J. and Abrahamse A. P. J. (1969). The Theory and Application of the General
Linear Model. University Press, Rotterdam.

Kotz S., Johnson N. L. and Boyd D. W. (1967a). Series representation of distribution
of quadratic forms in normal variables I. Central case. The Annals of Mathematical
Statistics, 38, 823–837.

Kotz S., Johnson N. L. and Boyd D. W. (1967b). Series representation of distribution of
quadratic forms in normal variables II. Non-central case. The Annals of Mathematical
Statistics, 38, 838–848.

Kuonen, D. (1999). Saddlepoint approximations for the distributions of quadratric forms
in normal variables. Biometrika, 86, 929-935.

Kwon O., Kim. B. and Ih J. (1994). On the positioning of control sources in active noise
control of three-dimensional interior space. KSME Journal, 8, 283–292.

Lockhart R. A. (1985). The asymptotic distribution of the correlation coefficient in
testing fit to the exponential distribution. Canad. J. Statist, 13, 253–256.

MacNeill I. B. (1978). Limit processes for sequences of partial sums of regression residuals.
The Annals of Probability, 6, 695–698.

Magnus J. R. (1986). The exact moments of a ratio of quadratic forms in normal variables.
Ann. Econom. Statist., 4, 95–109.

Magnus J. R. (1990). On certain moments relating to ratios of quadratic forms in normal
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Šindelář J. (2010). Bayesian vector auto-regression model with Laplace errors applied to
financial market data. Proceedings of MME, Michal Houda.

Smith M. D. (1989). On the expectation of a ratio of quadratic forms in normal variables.
Journal of Multivariate Analysis, 31, 244–257.

Smith P. J. (1995). A recursive formulation of the old problem of obtaining moments from
cumulants and vice versa. The American Statistician, 49, 217–219.

Soong T. T. (1984). A note on expectation of a random quadratic form. Stochastic Anal-
ysis and Applications, 2, 295–298.

Sultan S. A. (1999). The distribution of Hermitian indefinite quadratic forms. Stochastic
Analysis and Applications, 17, 275–293.

Sutradhar B. C. and Bartlett R. F. (1989). An approximation to the distribution of the
ratio of two general quadratic forms with application to time series valued designs.
Communications in Statistics, 18(4), 1563–1588.
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