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Abstract 

Polyesters have been used for many biomedical applications ranging from sutures to drug 

delivery vehicles. However, their bulk degradation results in an accumulation of acidic 

byproducts, which is detrimental to the human body. In order to circumvent this problem, as 

well as to impart new properties and functions to polymers for biomedical applications, 

poly(ester amide)s (PEAs) have been proposed as a different class of biodegradable 

polymers. However, up to date, there exists no way to stimulate the degradation of these 

polymers.  

The Gillies research group has previously incorporated self-immolative spacers into 

polymers and has been able to stimulate their degradation by adding the appropriate trigger. 

The objective of this thesis was to incorporate amino acids capable of 1,5-cyclization into the 

PEA backbone such that upon activation of the functional moiety, a 1,5-cyclization was 

induced, leading to degradation of the PEA backbone. PEAs containing L-2,4-diaminobutyric 

acid and DL-homocysteine were synthesized and their degradation was monitored in 

solution, and in films. It was found that the polymers containing the self-immolative spacers 

degraded faster than their controls under specific triggers (i.e. change in pH, reducing 

conditions, UV light), thereby allowing polymer degradation to be accelerated under these 

specific conditions. 

Keywords 

poly(ester amide), degradable polymer, self-immolative, pendant functional group, pH, 

reducing conditions, UV light, cyclization. 
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Chapter 1  

Biodegradable and stimuli-responsive polymers for 
biomedical applications 

1.1 General introduction 

Polymers that degrade under biological conditions have become a part of our daily lives. 

Due to their biocompatibility and their structural properties they have found many uses 

and have even achieved FDA approval in many cases. They have found applications in 

areas such as packaging (both medical and commercial),
 1,2

 medical implants (such as 

stents and internal fixation devices),
 2

 drug delivery,
 2 

and have even been used as 

scaffolds for tissue engineering.
1,2

 Among the polymers used are the polyesters, whose 

structures are shown (Figure 1.1).  

 

Figure 1.1 Chemical structures of common polyesters. 

 Another class of polymers that has also emerged for biomedical applications is 

poly(ester amide)s (PEAs) (Figure 1.2). These polymers, as well as other polymers which 

are stimuli-responsive are also shown in Figure 1.2 and shall be of interest to this thesis. 

Their advancements in the areas of drug delivery, tissue engineering, and biomedical 

applications such as stents shall also be reviewed. 
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Figure 1.2 Chemical structures of other biodegradable polymers. 

1.2 Biomedical applications: Tissue engineering & drug 
delivery 

Tissue engineering is a multi-disciplinary field which aims to apply the principles of 

engineering and the life sciences in order to develop biological materials that can restore, 

maintain, or improve tissue functions. Its main focus is to overcome the lack of tissue 

donors, while at the same time avoiding the immune response between host and guest. In 

this process, cells are cultured onto a scaffold which is then placed in the non-functioning 

part of the patient. In some cases, the culturing on the scaffold may be skipped altogether 

such that the scaffold (or the scaffold containing cells), is placed in vivo directly and the 

host’s body acts as a bioreactor to construct new tissues.
1,2

      

Ideally, a scaffold should not only meet the bulk mechanical and structural 

requirement of the target tissue; it should also enable molecular interactions with cells 

that promote healing. To this end, synthetic polymers are viable candidates owing to their 

material properties that are more flexible than those of natural materials. Their 

mechanical and chemical properties may also be adjusted accordingly and the materials 

are readily prepared and in some cases, inexpensive to produce.
2
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Drug delivery is another application in which polymers may be utilized. The 

hydrophobicity of some drugs hampers their ability to be administered and can result in 

their rapid clearance from the body. Synthetic polymers not only increase the solubility of 

drugs in water, but they also provide numerous advantages. Among them is the protection 

of bioactive drugs from degradation by the host, protection of the host from the toxicity 

of the drug thus increasing the therapeutic index of the drug, targeting of cells and 

organs, delivery of drugs at a predetermined rate and avoiding the need for repeated 

administrations. 
3 

Due to their ability to degrade over time, polyesters have found 

applications as packaging, both medical and commercial.
3,4,5

 

1.3 Polyesters for biomedical applications 

Among the polymers that have been used most for biomedical applications are the poly 

(hydroxyacid)s. These polymers have been chosen due to their ease of synthesis (Scheme 

1.1), biocompatibility, and because their degradation byproducts are broken down into 

water and carbon dioxide via the citric acid cycle.
1,6,7 

The polymers most commonly used 

for biomedical applications are: PGA, PLA, PLGA,  and PDLLA. As these polymers 

contain hydrolytically labile ester linkages along their backbones, they are susceptible to 

hydrolysis. Each has different rates of degradation due to their differing hydrophilicities 

and solid state structures. 

 

Scheme 1.1 Synthesis of polyester from a) glycolide (GA) b) racemic lactide (LA) c) 

glycolide and lactide. 
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As PGA is a highly crystalline polymer, it has a high tensile strength and low 

solubility in organic solvents. As a result of its high crystallinity, it has excellent 

mechanical properties which prompted its use as the bone internal fixation device,
1
 

Biofix
®
. PGA was also one of the first polymers to be approved as a resorbable suture in 

1969
1,5

 under the trademark name DEXON
®
. This particular polymer has been known to 

degrade in 6-12 months.  

PLA is another polymer that has garnered much attention. Due to the monomer’s 

optical activity, PLA comes in two forms: the D and L isomer, with the L isomer being 

more prevalent. Like PGA it is also crystalline, which results in a high tensile strength 

and a high modulus which makes it ideal for load-bearing devices such as orthopaedic 

devices. It can also be made into a high strength fiber and as a result, was chosen as a 

more effective suture over DEXON
®
 in 1971. Recently, an injectable form of PLLA 

(Sculptra
®

), has received FDA approval for the restoration or correction of facial fat loss 

and lipoatrophy in patients suffering from the human immunodeficiency virus.
1
 Due to its 

more hydrophobic nature (owing to its methyl group), PLA has a longer degradation time 

and has been known to take 2-6 years to degrade.
3,8

 In contrast, stereoisomeric PDLLA 

containing a mix of D and L monomers has been known to degrade in a period of 12-16 

months, thereby highlighting the effect of stereochemistry on degradation.
2,9

 Other 

factors that affect polyester degradation are Tg, crystallinity, MW, PDI, tacticity, as well 

as the sequence of monomers.
2,4,9,10,11 

As a result, in order to maximize the degradation of 

polyesters, various copolymers containing lactide and glycolide have been synthesized to 

exploit the characteristics of each monomer. 

 Various mixtures of L-lactide and glycolide have been used over the years and it 

has been found that the more lactide incorporated, the slower it degrades. As a 

consequence, PLGAs have been known to degrade in a short period of 2-3 months, 

upward to a year. A co-polymer containing 90% glycolide and 10% lactic acid has been 

used for the development of a multifilament suture, Vicryl
®
. PANACRYL

®
 is another 

commercially available suture containing the same monomers, only with a higher lactide 

ratio in order to decrease the degradation.
1
 PLGA also exhibit good cell adhesion and 

proliferation, thereby making them an excellent candidates for tissue engineering. PLGAs 
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have been used to synthesize the tissue engineered skin graft (Dermagraft
®

), using Vicryl 

mesh
®
 as the scaffolding structure; Vicryl mesh

®
 was made from the PLGA co-polymer.

1
  

Another application for this polymer and other polyesters is in the area of drug 

eluting stents. Drug eluting stents have been accepted by interventional cardiologists over 

bare metal stents due to their lower restenosis rate.
12

 In the last couple of years, the focus 

has been shifted to stents that can not only release drugs, but also degrade over the 

treatment period. This would be ideal in that it would omit another surgical step to 

remove the stent from the patient. Among the candidates is the Conor stent which elutes 

paclitaxel (Figure 1.3). In a 1700 patient study, it was found to not only have a greater 

target vessel revascularization (TVR) than the commercially available Taxus stent, but it 

was also found to have less major adverse cardiac events (MACE) as well.
12

 In a recent 

follow up of a ten year study; it was found that the first fully bioabsorbable stent, known 

as the Igaki-Tamai stent (made entirely out PLLA), had MACE rates similar to that of 

bare metal stents.
13

 

 

Figure 1.3 Paclitaxel (taxol). 

1.4 Polyesters for drug delivery 

Tumors that reside in the body need a tremendous amount of oxygen and nutrients in 

order to sustain their growth. They release growth factors such as VEGF (vascular 

endothelial growth factor) in order to facilitate the growth of new blood vessels. Unlike 

regular blood vessels, these vessels contain cell junctions that are not as tight as normal 

ones. As a result, anything that enters these vessels remains trapped therein.
14 

Many drug 

delivery systems have taken advantage of this phenomenon (otherwise known as the 
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enhanced permeation and retention effect; EPR for short), including those that contain 

polyesters. 

Of the ways to deliver a drug to the body, drug delivery using self-assemblies has 

garnered much attention. The driving force behind these assemblies relies on the 

hydrophobic and hydrophilic characteristics of block copolymers. When a polymer 

containing a relatively hydrophobic block (such as polyester), is connected to a more 

hydrophilic block such as (polyethylene glycol (PEG)) and is immersed in water, the 

polymers arrange themselves such that the hydrophobic blocks minimize contact with 

water. Of the various shapes formed, the spherical micelle shall be discussed herein; it is 

also widely studied in the area of drug delivery (Figure 1.4). 

 

Figure 1.4 Formation of a spherical micelle. 

   

 The hydrophobic core of the micelle provides an opportunity for hydrophobic 

drugs such as doxorubicin (Figure 1.5), which would otherwise exhibit limited solubility 

in the body to be delivered to their target. This in turn increases the bioavailability of the 

drug, thereby increasing its efficacy. There have been various reports utilizing this drug 

delivery type system.
15-17
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Figure 1.5 Doxorubicin (DOX).  

One of the major disadvantages to incorporating hydrophobic drugs in the core of 

micelles is that they exhibit poor loadings and they release their drugs over a shorter 

period of time. In order to circumvent this, Park and coworkers conjugated the terminal 

hydroxyl group of the PLGA by first activating it with p-nitrophenyl chloroformate, 

which was later used to conjugate doxorubicin (Scheme 1.2).
15

 

 

Scheme 1.2 Synthetic route to DOX-PLA-PEG conjugate. 

 

Once the DOX-PLA-PEG conjugate was synthesized, micelles were formed via 

the dialysis method. It was found that the DOX-PLA-PEG conjugate exhibited superior 

drug loadings then the control, non conjugated DOX-PLA-PEG conjugate (2.18% 

compared to 0.51%). This is attributed to the carbamate linkage which forces the 

hydrophobic drug into the core, whereas if it had been free, it would have escaped during 

the self- assembly process. When the micelles were incubated in a phosphate buffer, the 
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DOX-PLA-PEG conjugate showed a sustained release profile with only 50% of the drug 

released over a period of two weeks. In contrast, the non-conjugated micelle exhibited a 

burst release in 3 days. The sustained profile of the conjugated DOX-PLA-PEG micelle 

can be attributed to the carbamate linkage which takes longer to degrade than the PLA 

backbone. Cell studies were also undertaken which showed that not only are the 

conjugated micelles taken up more by cells (presumably via endocytotic transport), they 

are also more cytotoxic to cancer cells than free doxorubicin.  

Recently, target specific micelles have been the focus of many studies. In order to 

increase therapeutic efficiency and to reduce the side effects from chemotherapy, Du and 

co-workers devised a strategy where they decorated polymeric carriers with a moiety, 

such as an antibody for active targeting.
17 

The antibody used in this study was HAb18 F 

(ab′) 2, which was specific for the hepatocellular carcinoma (HCC) tumor, the 3
rd

 leading 

cause of death from cancer. The micelles were synthesized utilizing the same method as 

the Park group; however, once the micelles were synthesized, the antibodies were then 

attached. Although they exhibited lower drug loading efficiencies than  naked micelles 

(2.19% as opposed to 2.36%), they were taken up more efficiently by cancer cells and 

were more cytotoxic towards them compared to naked micelles. This can be attributed to 

receptor mediated endocytosis, owing to the antibody moiety on the micelle. From the in 

vivo studies, they discovered that the targeted micelles accumulated in the tumor, rather 

than accumulating in the organs such as the liver or heart, which is the case in drugs that 

are not targeted. This provides an exciting opportunity for drug delivery systems in that it 

reduces cardiac toxicity, which is one of the leading side effects of DOX chemotherapies.  

 

Polyesters have also found applications as micro- and nanoparticles, as well. Due 

to FDA approval, PLGA has found utilization in many drug delivery systems. A human 

growth hormone delivery system under the trademark name Lupron Depot
®

 was the first 

FDA approved implantable PLGA microparticle system.
4,18

 Since then, there have been 

reports of microparticles for use in the treatment of asthma
19

 and they have even showed 

promise as a promising drug carrier for local sustained inhalation therapy of pulmonary 

diseases.
20
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Polyesters have also found usage at the nano-scale level. Owing to their small size, 

nanoparticles have been shown to have improved cellular penetration. Throughout the 

years, there have been studies in which nanoparticles have been used in many preclinical 

trials for treatment of cerebral diseases, osteoporosis, cardiovascular diseases, diabetes, as 

well as for regenerative medicine and vaccinations.
18

 One such example involving the 

treatment of endometrial carcinoma utilized the folate receptor (which has been shown to 

be over expressed in tumor cells)
14

 to enhance uptake by cancerous cells. It was found 

that not only were the nanoparticles containing the folate receptor more likely to be taken 

up by cancer cells, but they were also less toxic to the other organs.
21

 

1.5 Poly(ester amide)s 

PEAs are a promising class of biodegradable polymers. They have excellent high 

temperature stability, excellent mechanical strength (a result of the H bonding of the 

polymer backbone) and crystallinity in some cases. In addition to these qualities, PEAs 

also exhibit the high degradability and versatility of the polyesters.
22-24

 PEAs commonly 

consist of three naturally occurring and non-toxic building blocks: α-amino acids, fatty 

diacids and diols (Figure 1.6).  

 

Figure 1.6 Poly(ester amide) PEA. 

Due to the vast accessibility and choices of these building blocks, many different 

types of PEAs have been synthesized which exhibit a wide range of thermal, physical, 

mechanical, chemical and biodegradation properties. Also, because they degrade via a 

surface erosion type mechanism, they have found usage as drug eluting stents,
24-25

 as 

commercial skin grafts (PhagoBioderm®)
26

 and have shown promise for future 

applications in the area of drug delivery,
27-30

 transfection agents,
31-33 

tissue engineering
34-
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36 
and as possible candidates for processing of high performance engineering plastics and 

photoelectric materials.
37

 

PEAs containing functional groups are advantageous in that their functional 

handles allow for the covalent attachment of drug molecules for drug delivery or growth 

factors and adhesion molecules, both important components of medical implants and 

tissue engineering scaffolds. As a result, there are many examples in the literature that 

aim to add functionality to these polymers. They shall be discussed in the following 

section, along with their potential applications. 

1.5.1 Unsaturated PEAs 

One way of adding functionality to a PEA is by incorporating double bonds in the 

polymer backbone, or incorporating them as pendant groups. In the first example, Chu 

and co-workers used the double bond on the polymer backbone as a reactive site to 

conjugate an amine, or a carboxylic acid via a thiol-ene reaction.
38

 The polymer was 

synthesized via a solution polycondensation of the unsaturated monomer, di-p-

nitrophenol fumarate with either the di-p-toluenesulfonic acid salts of L-phenylalanine 

butanediol-1,4-diester, or the di-p-toluenesulfonic acid salts of L-phenylalanine 

triethylene glycol diesters. With the polymer synthesized, the thioether was then formed 

by reacting the unsaturated PEA or poly(ether ester) amide (PEEA), with either 3-

mercaptopropionic acid, or cysteamine (Scheme 1.3). 
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Scheme 1.3 Synthesis of functional PEA or PEEA with pendant functional groups. 

  The ether linkage was used as a replacement for the fully aliphatic diol because in 

previous work, it was found that the fumarate monomer led to polymers with high 

rigidity and crystallinity.
39-40

 Therefore, the ether linkage was used to increase the 

hydrophilicity, flexibility, and biodegradability of the polymers. Thermal properties 

indicated that incorporation of the functional groups lowered the glass transition 

temperature.  

Another way to add functionality using the unsaturated approach has been 

postulated by the same group. Instead of using the backbone as the reactive site, the 

pendant groups were used to conjugate molecules; this has been accomplished by using 

the DL-2-allyglycine monomer which contains a pendant double bond.
41

 The polymers 

were synthesized by a solution polycondensation utilizing the allylglycine monomer, the 

di-p-toluenesulfonic acid salts of L-phenylalanine butane-1,4-diester and the di-p-

nitrophenyl diesters, each with varying aliphatic groups and monomer ratios. The 

functionality was then added by conjugating the pendant alkene group with the 

corresponding functional thiol to form the carboxylic acid, amine, or sulfonate moiety on 

the backbone (Scheme 1.4). The polymers were then cast into films and mass loss studies 

were undertaken to determine the effect the length of the chain and the monomer ratio 
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had on the degradation. An increase in the methylene chain length was found to 

accelerate the degradation of the polymers when the appropriate enzyme was present, 

while an increase in the allylglycine monomer lowered the degradation rate. This was 

thought to be attributed to the hydrophobicity of the polymer; an increase in the chain 

length made it more hydrophobic and thus led to better affinity towards the enzyme. In 

contrast, adding more of the allylglycine monomer led to less of the phenylalanine 

monomer being incorporated, thereby causing the polymer to be less hydrophobic. As a 

result, the degradation rate decreased. 

 

Scheme 1.4 Synthesis of functional PEAs using a pendant double bond approach. 

1.5.2 PEAs using the copolymer approach 

Another approach to add functionality to the PEA backbone is by copolymerization with 

functional monomers, an approach used by many groups with much success.
30-31,33,36-37, 41, 

42-43
 Recent work by Knight et al. have shown that by utilizing an interfacial 

polycondensation (as opposed to a solution condensation), the polymers that were 

synthesized had higher molecular weights and significantly reduced reaction times.
36

 In 
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brief, the di-p-toluenesulfonic acid salt monomer containing a varying amount of 

methylene groups in the diol chain was copolymerized with bis-N-ε-t-Boc-L-lysine 

diester and sebacoyl chloride (Scheme 1.5). Previous work indicated that only a small 

percentage of the functional groups was required to impart functionality to the PEA.
42-43 

As a result, the same percentage was used in this work. 

The interactions of these poly(ester amide)s with human coronary artery smooth 

muscle cells (HCASMCs) were then studied and  it was found that all PEAs not only 

supported HCASMC attachment, they also led to cell spreading which is indicative of a 

proliferative phenotype. Also, in some cases, cell viability was higher than the tissue 

culture polystyrene (TCPS), which served as the control. Out of all the PEAs studied, the 

one containing the deprotected lysine moiety was the most attractive as it could be used 

in future applications to conjugate molecules that regulate cell growth, differentiation and 

signaling pathways.  

 

Scheme 1.5 Synthesis of functional PEA via the interfacial polycondensation method. 
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PEAs have also found applications in gene delivery. For example, PEAs 

containing the bis-L-arginine ester monomer (synthesized from oligo ethylene glycols), 

were synthesized and nanoparticles were formed to transfect cells with DNA.
33

 In this 

particular study, the oligo(ethylene glycol) linker was substituted for the diol to not only 

increase its solubility, but to also improve transfection compared to previous results.
31-32 

Solubility was enhanced remarkably, as polymers containing the ether linkage had better 

solubilities than their diol counter-parts. Mobility shift assays indicated that an increase 

in the methylene chain unit allowed for better DNA complexation. A similar result was 

found with the ether linkage to a degree, presumably because the charge density between 

two adjacent arginine moieties was too far apart. With respect to transfection efficiency, 

the newly synthesized PEAs not only had higher transfection efficiencies, but in some 

cases, achieved better transfection efficiencies at a lower cytotoxicity levels than 

Lipofectamine2000® (a commercial transfection agent). Subsequent cells studies 

indicated that compared to other transfection agents, these newly synthesized PEAs were 

less toxic, even at a higher dosage. 

1.6 PEAs for drug delivery 

Another exciting application for PEAs is in the area of drug delivery. There have been 

many ways in which drugs have been encapsulated and delivered over the years and these 

different methods shall be the focus of this section.  

 Throughout the years, dendrimers have garnered a lot of interest for biomedical 

applications due to their regular and highly branched three-dimensional globular 

structure, low viscosity, high solubility, abundance of functional end groups and internal 

cavities. Also, their size and structure can be tuned to ensure biocompatibility and 

biodegradability. Dendrimers can also be seen as the analogs of enzymes, proteins, 

viruses and antibodies.
44

 As a result, they are attractive as drug delivery vehicles. 

However, a major drawback is their tedious and complex multistep synthesis which 

results in expensive products for limited usage in large-scale industrial applications.
27

 To 

this end, hyperbranched polymers can be seen as viable alternatives to dendrimers. 
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Hyperbranched polymers consist of highly branched, polydisperse macromolecules with 

a treelike topology and a large number of functional groups. In cases where structural 

perfection is not a necessity, hyperbranched polymers may be substituted.  Unlike 

dendrimers, their synthesis is rapid owing to their one-step reactions which results in 

economically promising products for small and large-scale industrial applications. 

Hyperbranched PEAs have been prepared and have already found applications as drug 

delivery vehicles, the most noted example being Hybrane® (Figure 1.7). This polymer 

was synthesized via a polycondensation between a cyclic anhydride and a diisopropanol 

amine to afford the hyperbranched structure.
45

 Hybrane® has also found other 

applications outside of drug delivery such as in additives in polypropylene fibers to allow 

dyeability, suppression of gas hydrates to aid in transportation of gas or oil at low 

temperatures and as a paper coating to improve printing speeds.
28

  

 

Figure 1.7 Structure of commercially available hyperbranched poly(ester amide), 

Hybrane®. 
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PEA microparticles have been reported for the physical encapsulation of drugs,
46

 

but in general, a problem with microparticles is their large size which causes them to 

exhibit rapid uptake by the liver and spleen. To address this, Zilinskas et al. sought to 

synthesize the first self-assembled PEA micelle by grafting a hydrophilic block (via the 

pendant amine group), in order to form an amphiphilic block copolymer (Scheme 1.6).
30

 

The hydrophilic block grafted was PEG, chosen for its high water solubility, known 

biocompatibility in drug delivery applications and its stealthy properties. Micelles were 

formed using the nanoprecipitation method and the sizes were suitable for in vivo studies 

(<100 nm). Nile red was then used as a model drug and was encapsulated. Nile red was 

found to be released over a period of 15 hr at physiological pH, whereas an accelerated 

release occurred at pH 5; both rates were reasonable for drug delivery applications. The 

enhanced release at the acidic pH was thought to be attributed to the protonation of the 

residual pendant amine groups in the micelle core, which increased the hydrophilicity of 

the core, thereby favoring drug release. Also, protonation of the drug at acidic pH would 

also favor release of the protonated drug molecule into the aqueous environment. Cell 

toxicity studies indicated that the micelles were not toxic to HeLa cells in vitro, even at a 

high 2 mg/mL concentration.  

 

Scheme 1.6 Formation of amphiphilic block copolymer for self-assembly of PEAs into 

micelles. 
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1.7 Limitations of Polyesters and PEAs 

Although polyesters have been used in many drug delivery applications, they suffer from 

an initial burst release in which a considerable amount of drug is released at the start of 

the degradation; this burst release may be harmful for in vivo applications. The burst 

release is a result of their bulk erosion degradation mechanism,
1,9,47

 resulting in 

accumulation of acidic byproducts in the system.
2,9

 These acidic byproducts are 

detrimental to cell growth and limit the usage of polyesters for tissue engineering.  

To circumvent these problems, PEAs have been seen as a viable alternative. As 

PEAs often degrade via a surface erosion mechanism,
47-50

 they are more attractive for 

drug delivery systems because they should lead to a sustained drug release over time. 

Also, because the degradation byproducts are often natural building blocks, they are 

expected to be relatively non-toxic.
22,26,51

Although their degradation is accelerated in the 

presence of enzymes,
48-50,52

 their degradation in neutral buffer is extremely slow.
26,41

 

Also, one should note that in the biological world, in order for enzymes to be present; the 

correct cells must also be present, an idea often overlooked when designing 

biodegradable polymers.
3
 To date, there exists no way to initiate the degradation of 

PEAs; they degrade via random uncontrolled hydrolysis of the polymer backbone. 

1.8 Stimuli responsive polymers 

Over the years there have been an increasing number of examples in the literature that 

aim to instigate the degradation of a polymer using a trigger. These polymers contain 

specific functional groups that are sensitive to specific stimuli (i.e. light, change in pH or 

redox potential). Upon encountering these stimuli, the functional groups react or change 

in some manner, releasing the payload (Scheme 1.7). The following section shall discuss 

recent advancements in this area, as well as different types of stimuli responsive 

polymers.  
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Scheme 1.7 Self-assembly, encapsulation of drug and subsequent release. 

1.8.1 Acid sensitive polymers 

Change in pH is a particularly useful type of stimulus for drug delivery agents, as there 

are numerous pH gradients in both normal and diseased states. It has been well 

documented that the extracellular pH of tumors is lower than that of normal tissue, with 

an average pH of 7.0, as opposed to the normal physiological pH of 7.4.
53

 The pH drops 

to about 5.5-6.0 in the endosomes and is close to 5.0 in the lysosome.
53

 As a result, drug 

carriers may exploit this gradient to deliver their payload to a specific area without 

harming nearby tissues. There have been numerous examples that have utilized this pH 

gradient and they shall be the focus of this section. 

 One of the ways in which a polymer may be sensitive to acidic pH is by 

incorporating an acid degradable linkage in the hydrophobic part of the backbone.
53-56

 

Upon forming a self-assembly and encountering an acidic environment, the acid sensitive 

linkage is cleaved which leads to disruption of the micelle core and release of any 

payload, if present. Chen and coworkers have synthesized polycarbonates (Scheme 1.8),
56
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containing different electron donating groups that were able to form micelles. At 

physiological pH there was negligible degradation. However, the half-lives at pH 4 and 5 

were 1 and 6.5 hrs, respectively. It was found that the polymer containing the two 

methoxy groups degraded faster, presumably because of their electron donating 

properties. The drugs paclitaxel and doxorubicin were then loaded with efficiencies of 65 

and 60% respectively; release studies were then undertaken. In vitro studies showed that 

release was accelerated at pH 4 and 5, as opposed to 7.4. For example, within 48 hr the 

release of both drugs were 98, 89, and 44% at pHs 4, 5, and 7.4, respectively.  

 

Scheme 1.8 Synthesis of polycarbonate and subsequent degradation. 

In some cases, a drug may be conjugated to a copolymer by an acid-labile 

linker
57-59

,
 
so that the polymer backbone remains intact. This is beneficial in that no 

further modification of the drug is required and can be generalized to different drugs 

without changing the linkage. In a particular example,
59

 doxorubicin was conjugated to a 

double hydrophilic block copolymer of poly(ethylene glycol)-hyperbranched-

polyglycerol (PEG-hb-PG) by a hydrazone linker (Figure 1.8). Micelles were formed and 

it was found that the release was accelerated at pH 5, as opposed to pH 7.4 (71% 

compared to 53.6% after 48 hr). Laser fluorescence microscopy proved that the micelles 

were internalized within the cell and cell viability studies indicated that the micelles were 

not cytotoxic to HeLa cells, due to the drug.  



20 

 

 

Figure 1.8 Doxorubicin conjugated to PEO-hb-PG by a hydrazone linkage. 

1.8.2 Reduction sensitive polymers 

There exists a large difference in reducing potential between the intracellular and 

extracellular environments of the cell.
60

 It has also been proven that tumor tissues are 

highly reducing.
61-62

 As a result, there have been many drug delivery vehicles that aim to 

use this reduction potential as a trigger to initiate degradation. The linkage that is 

sensitive to this trigger is the disulfide bond, which can either be incorporated into the 

main chain, or may be used as a cross-linker.  

 A disulfide bond may be incorporated into the polymer backbone so that upon 

reduction, the polymer chain is cleaved, thereby commencing degradation. A class of 

polymers that incorporates the disulfide into the polymer backbone is the poly(amido 

amine)s, which have gained usage as transfection agents due to their buffering 

capacities.
63-65

 In a particular example,
63

 Zhong and co-workers synthesized a series of 

reducible poly(amido amine)s in order to compare their buffering capacities (Scheme 

1.9).  Buffering capacity is thought to play a role in endosomal escape of polyplexes 

(“proton sponge theory”).
66

 These polymers were synthesized by a Michael addition 

between various amines to the disulfide-containing cysteamine bisacrylamide. It was 

found that the derivatives containing the dimethylamino as the pendant group were the 

least effective, mainly because protonation of the tertiary nitrogen on the backbone was 

suppressed.  
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Scheme 1.9 Derivatives of reducible poly (amido amine)s and their degradation. 

Using the ABOL derivative as an example, the degradation was monitored in non-

reducing conditions and there was only a 5% decrease in Mw after 3 days and up to 60% 

decrease after 20. In contrast, when dithiothreitol (DTT, a well known reducing agent) 

was added, the polymer completely degraded within 5 minutes. The polymer was found 

to retain DNA effectively and was also able to release it once DTT was added. Cell 

toxicity studies indicate that the reducible poly(amido amine)s have better cell viabilities 

(~100%) than the control, polyethyleneimine (~20%). These polymers were also found to 

have better transfection efficiencies than the control.  

Another way to add reducing functionality to a polymer is by adding the reducing 

linkage in the linker.
67-69

 Using a recent example,
67

 a new gene carrier composed of 

poly(L-lysine) and PEG was synthesized containing two labile linkages - one responsive 

to a decrease in pH and the other responsive to a change in reduction potential (Figure 

1.9). It was reasoned that by adding a reduction labile PEG shell (which would aid in 

intracellular uptake), the acid linker would disintegrate in the endosome and aid in release 

of genetic payload to the cytosol. Although the buffering capacity of this catiomer 

(mPEG-SS-PLL15-Star) was reduced compared to the control polyethyleneimine, the cell 

viability profiles were enhanced for this novel polymer. The catiomer was also able to not 

only condense DNA, it was also able to release it upon applying either one of the stimuli 

(reduction in pH, change in reduction potential).  
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Figure 1.9 Dual stimuli responsive catiomer, mPEG-SS-PLL15-Star. 

1.8.3 Photochemically sensitive polymers 

Light as a stimulus is attractive because it is non-invasive and can be applied from an 

external source for a short period of time with high spatial and temporal precision.
70

 

Recently, near infrared (NIR) light has achieved much attention due to its ability to 

penetrate deeper into the tissue and because it is less harmful to cells.
70-74 

Functional 

groups that are sensitive to light have been implemented into polymers to stimulate their 

degradation. These functional groups are o-nitrobenzyl
70,72, 75-79

 and derivatives of 

bromocoumarin.
70-71,73-74,77

 

 One example incorporating the o-nitrobenzyl moiety is illustrated by Dong and 

coworkers.
79

 In this particular example, a new polypeptide was synthesized by the ring 

opening polymerization (ROP) of a photoresponsive S-(o-nitrobenzyl)-L-cysteine-N-

carboxyanhydride to form the corresponding poly(S-(o-nitrobenzyl)-L-cysteine)-b-

poly(ethylene glycol) (pNBC-b-PEG) (Scheme 1.10).  The copolymers were found to 

form spherical micelles and irradiation for 20-40 minutes at 365 nm was required to 

completely remove the photolabile groups, depending on the polarity of the solution. 

Upon encapsulation of DOX and irradiating for different time periods (i.e. 2, 5 and 10 
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min), it was found that DOX release became faster with increasing irradiation time; this 

demonstrates that DOX can be released in a controlled manner by varying irradiation 

time.  

 

Scheme 1.10 Synthesis and photo-cleavage of pNBC-b-PEO. 

NIR irradiation presents another way to photochemically degrade a polymer. In 

order to make their polymers sensitive to NIR light, Zhao et al. added coumarin moieties 

to the glutamic acid monomers in order to increase its hydrophobicity and thus assist 

micelle formation in an aqueous solution.
73

 It was reasoned that upon self-assembly of 

the block copolymer and subsequent irradiation with NIR light, the hydrophilic-

hydrophobic balance of the micelle would be disrupted, leading to destabilization of 

micelles in solution (Scheme 1.11).  When these micelles were irradiated at 794 nm in 

solution, it was found that the absorbance corresponding to the coumarin groups 

disappeared after 220 minutes of irradiation. Two different drugs were encapsulated and 

then released with varying times. In the case of the rifampicin antibiotic drug, there was 

~75% release after 55 hours, compared to ~10% in a sample that was not irradiated. For 

paclitaxel, the release was found to be 50% after 145 hours, with neglible release from 

the control. The decreased release is thought to be attributed to the hydrophobic nature of 

paclitaxel, compared to rifampicin which is amphiphilic.  
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Scheme 1.11 Synthesis and photo-cleavage of PEG-b-p(LGA-co-COU). 

1.9 Self-immolative spacers 

Self-immolative spacers have been involved in prodrug synthetic strategies since the 

early 1980s. It was during this time that Katzenellenbogen and coworkers hypothesized 

that adding a linker in between the drug and the specifier would not only prevent 

premature release of the drug, it would also increase accessibility of the cleavage site, 

thereby enhancing release (Figure 1.10a) .
80 

As a result, the first ever self-immolative 

spacer was created which was based on 4-aminobenzyl alcohol. Unmasking of the 

aromatic amine began a 1,6-elimination which led to an electronic cascade, resulting in 

the release of CO2, followed by the free drug or other leaving group (Figure 1.10b). Other 

examples of self-immolative spacers are the ones capable of cyclization. In the first 

example, the functional group undergoes 1,5-cyclization to form the corresponding 

lactone (Figure 1.10c),
81

 whereas in the second example, due to three interlocking methyl 

groups; cyclization forms the corresponding coumarin (Figure 1.10d).
82

 The applications 

of these spacers are diverse and they range from applications in prodrug strategies,
83-85

 

signal amplifiers,
86-87

 and as latent fluorophores.
88-89

 Their applications in linear polymers
 

shall be discussed herein.  
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Figure 1.10 a) Schematic of a prodrug consisting of: specifier (trigger), spacer and drug; 

b) general structure of electronic cascade spacers; c) general structure of cyclization 

spacers; d) Rapid reaction of a trimethyl lock acid to form a δ-lactone. 

1.9.1 Self-immolative linear polymers 

When self-immolative spacers were first introduced, they were incorporated into 

dendritic systems for drug delivery applications with much success. They were 

advantageous in that only one single event was required to release multiple drug 

molecules; a signal amplification of sorts.
90-94

 However, the number of groups that can be 

incorporated on a dendritic periphery is limited by steric hindrance and the higher 

generations require additional synthetic steps.
95 

As a result, the first linear self-

immolative polymer was created by the Shabat group.
96

 The polymer was created by 

polymerizing a phenyl carbamate derivative and then capping it with an enzyme-labile 

trigger, 4-hydroxy-2-butanone. The protein BSA then catalyzed the removal of the trigger 

and the florescent molecule was emitted over a period of ten hours (Scheme 1.12). Since 

it has been proven that the cyclization mechanism is slower than the elimination 

mechanism, cyclic spacers have been incorporated by the Gillies group into linear 
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polymers to adjust the rate of degradation. For example, polymer 1.69 (Scheme 1.13) 

degrades by alternating cyclization and elimination reactions at a slower rate than 

polymer 1.66.
97

  

 

Scheme 1.12 Disassembly of linear self-immolative polymer. 

 

Scheme 1.13 Disassembly of self-immolative polymer by alternating and 1,6-elimination 

reactions. 

Previous studies that require light as a trigger have involved long irradiation 

times, and as a result, do not seem to have practical applications in the biological realm. 

In order to evade this issue, Almutairi and coworkers designed a system that was 

sensitive to brief irradiation.
71

 Using polymer 1.69 from the Gillies group as a starting 

point, they capped the polymer with a trigger that was sensitive to either UV (o-

nitrobenzyl), or NIR (4-bromo-7-hydroxycoumarin) light to compare the effect each had 

on degradation rate. Degradation was monitored by SEC and it was found that the 

polymer triggered under UV light for 10 min was fully degraded after 24 days. In 
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contrast, the polymer triggered under near IR light for 10 min was 70% degraded after 4 

days. Nanoparticles were created from these polymers and florescence dropped to 65% 

and 40% after 1 and 5 minutes of irradiation. The polymers were also subjected to 

toxicity studies and it was revealed that the polymers and degradation products were 

tolerated as well as the FDA approved polymer, PLGA.   

 As there have been studies that indicate that quionone methides can contribute to 

toxicity,
98-99

 Gillies and coworkers synthesized a self-immolative polymer consisting 

entirely of cyclization spacers.
100

 The spacers that were chosen for this particular study 

consisted of 2-mercaptoethanol and N,N’-dimethylethylenediamine. These spacers 

cyclized to their corresponding cyclic thiocarbonate and cyclic urea respectively (Scheme 

1.14). Degradation experiments were carried out and the polymer was found to be 80% 

degraded after 10-14 days, with the control polymer (with no reducing agent added), 

hardly exhibiting degradation over the same time period. Related cyclization spacers 

based on 4-aminobutyric acid were also developed by Gillies and coworkers with the aim 

of obtaining more rapid cyclization kinetics. However these have not yet been 

incorporated into linear polymers (Figure 1.11.) .
101

  

 

Scheme 1.14 Disassembly of a reduction sensitive self-immolative polymer. 

 

Figure 1.11 4-aminobutyric acid. 
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Although there have been many applications in which the so called “trimethyl 

lock” spacer has been used in prodrug applications,
102-103

 their use in the development of 

cleavable polymers has also been recently reported.
104

 Redox-sensitive nanoparticles 

were synthesized that had the trimethyl-locked benzoquinone moiety monomer. This 

monomer was polymerized with adipoyl chloride and nanoparticles were subsequently 

formed using the emulsion method (Scheme 1.15). It was reasoned that upon reduction of 

the benzoquinone moiety, the functional amine groups would be revealed, causing 

chemical changes in the nanoparticles which would lead to swelling or dissolution at 

physiological pH. Paclitaxel was loaded into these polymers at an efficiency of 77.9% 

and redox-triggered drug release was carried out in vitro.   

 

Scheme 1.15 Synthesis and subsequent reduction of redox-sensitive polymer based on 

trimethyl-locked benzoquinone. 

1.10  Objective of this thesis 

The aim of this thesis was to combine the structures of PEAs bearing pendant functional 

groups with the concepts of self-immolative spacers to develop PEAs for which the 

degradation of the backbone can be triggered by an external stimulus. As described 

above, the Gillies group has previously demonstrated that amino acids, such as lysine and 



29 

 

aspartic acid bearing protected pendant functional groups can be incorporated into PEAs. 

For this thesis it was proposed that by the use of amino acids such as L-2,4-

diaminobutyric acid and DL-homocysteine into the PEA backbone, it would be possible 

to trigger the cleavage of the PEA backbone upon cleavage of a protecting group or 

“trigger” on the amine or thiol moiety respectively (Scheme 1.16). Described in the 

following sections are studies to demonstrate that the 4-amine on an aliphatic ester 

derivative of L-2,4-diaminobutyric acid (DAB) does undergo cyclization to the 

corresponding lactam when the free 4-amine is revealed and that similarly, the thiol on 

DL-homocysteine (Hcy) cyclizes to form the thiolactone when the thiol is revealed. The 

synthesis of the target polymers is also described, followed by studies of their 

degradation in solution and in thin films. In addition, the development of a 

photoresponsive version of the polymer containing DAB is also described, followed by 

studies of its degradation.  

 

Scheme 1.16 Degradation of PEA via a triggered cyclization reaction 
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Chapter 2                                                                 
Controlled degradation of PEAs via cyclization of pendant 

functional groups 

2.1   Introduction 

Polymers that degrade under biological conditions have become a part of our daily lives 

due to their utilization as sutures,
1,2

 stents,
3,4

 drug delivery vehicles,
 5,6-9

 packaging for 

medical and non-medical applications
 2,5,10

 and as scaffolds for tissue engineering.
1,11

 Of 

the different types of the polymers used for these applications, the poly(hydroxyacid)s 

have garnered the most attention; receiving FDA approval in some cases.
1,2,9,10

 Although 

widely used in many applications, their bulk degradation results in many acidic 

byproducts,
1,11-13 

resulting in inflammation which is undesirable in many medical 

applications. Also, their lack of functionality and inability to exhibit stimuli-mediated 

degradation are other limitations of this class of polymers.    

 PEAs have been proposed as an alternative class of materials to polyesters. They 

are composed of amide and ester bonds which offer the thermal and mechanical 

properties derived from polyamides, while giving the degradability and flexibility of 

polyesters.
14-16 

In addition, their monomers can be selected from simple metabolic 

intermediates such as amino acids and dicarboxylic acids, such that their degradation by 

surface erosion results in non-toxic, non-inflammatory byproducts.
14,17-18

Another 

advantage is that by using amino acid monomers with functional handles, PEAs with 

functional groups can be prepared. These functional handles may be used for the 

conjugation of drug molecules in delivery systems, cell signaling molecules in tissue 

engineering scaffolds and as a means to tune the properties of the polymer.
19-23 

As a 

result, there have been many instances of PEAs being used for biomedical applications 

such as drug delivery,
24-27 

gene carriers
28-30

 and as scaffolds for tissue engineering.
19-20,31 

However, much like polyesters, their degradation is relatively uncontrolled and although 

they have been known to degrade under enzymatic conditions in vitro, their degradation 

under neutral conditions is still slow. 
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   The ability to trigger degradation under conditions such as photochemical, or 

changes in pH or redox potential is advantageous in that a polymer backbone may be 

stable to for extended periods, but degrades once the appropriate stimuli is applied; 

resulting in a controlled degradation. As a result, there have been many polymers that 

have been synthesized that are sensitive to stimuli such as light,
32-41

 changes in pH,
42-49

 or 

redox potential.
50-56 

Another way to impart controlled degradation to a polymer has been 

through the incorporation of self-immolative spacers. The first self-immolative spacers 

were based on 1,6-elimination reactions.
57 

They first found use in prodrug strategies 

where unmasking of an aromatic alcohol, amine, or thiol allowed it to become electron-

donating, initiating an electronic cascade leading to release of a free drug or other leaving 

group. This strategy has since been applied to drug delivery applications.
58-62 

Although 

initial work in the field of dendrimers was successful, the additional synthetic steps for 

the higher generations prevented its use for future applications, thereby inspiring the use 

of linear self-immolative polymers.
63 

It was later demonstrated by our group that by 

incorporating self-immolative spacers capable of cyclization, the rate of degradation 

could be adjusted.
64 

As there have been studies that indicate that the quinone methide 

intermediated formed during the elimination reaction can result in toxicity,
 65-66

 the 

Gillies group also synthesized a self-immolative polymer consisting entirely of 

cyclization spacers.
67 

Although the degradation required several days due to the slow rate 

of the diamine cyclization, related cyclization spacers based on 4-aminobutyric acid have 

since been developed by Gillies and coworkers with the aim of obtaining more rapid 

cyclization kinetics.
68

 However, these have not yet been incorporated into linear 

polymers. 

 The aim of this work is to combine the structures of PEAs bearing pendant 

functional groups, with the concepts of self-immolative spacers, to develop PEAs for 

which the degradation can be triggered by an external stimulus. Since previous work 

from our group has demonstrated that amino acids such lysine,
20,23,27

 and aspartic acid
69

 

can be incorporated into the PEA backbone and subsequently deprotected following 

polymerization, for this work we propose incorporating amino acids such as L-2,4-

diaminobutyric acid and DL-homocysteine into the PEA backbone.  These amino acids 

would allow triggering of the degradation of the PEA backbone following deprotection of 
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a thiol, or amine moiety, respectively. Described in the following sections are studies to 

demonstrate that the 4-amine on an aliphatic ester derivative of L-2,4-diaminobutyric acid 

(DAB) does undergo cyclization to the corresponding lactam when the free 4-amine is 

revealed and that similarly, the thiol on DL-homocysteine (Hcy) cyclizes to form the 

thiolactone when the thiol is revealed. The synthesis of the target polymers is also 

described, followed by studies of their degradation in solution and in thin films. In 

addition, the development of a photoresponsive version of the polymer containing DAB 

is also described, followed by studies of its degradation. 

2.2 Results and discussion 

2.2.1 Molecular design 

 The choice of pendant functionalities that would induce cyclization, and thus 

backbone cleavage of the PEAs was based on previous work in the Gillies group. DeWit 

and Gillies recently demonstrated that the amine moiety of 4-aminobutyric acid 

derivatives cyclized rapidly upon phenyl esters to provide the corresponding 5-membered 

lactam.
68 

Recent work by Chen et al. showed that a thiol moiety could be more 

nucleophilic than the amine at the neutral pH of 7.4, and thus undergo cyclization to the 

corresponding 5-membered ring more rapidly.
70

 Based on these data, DAB and Hcy were 

the target amino acids for incorporation into the PEA backbone.  

Following previous synthetic protocols for PEAs, it should be possible to prepare 

diamine-diester derivatives of these amino acids with aliphatic diols and polymerize these 

with aliphatic dicarboxylic acid derivatives by solution or interfacial routes. The 

interfacial route was selected as we have found that it leads to higher molecular weight 

(MW) polymers with shorter reaction times.
20,26

 This dictates the use of sebacoyl chloride 

as the dicarboxylic acid derivative as the shorter chain derivatives are too soluble in the 

aqueous phase of the CH2Cl2-water mixture that is used for the interfacial 

polymerization, resulting in premature monomer hydrolysis. 1,4-Butanediol was chosen 

as the aliphatic diol because it is easy to work with synthetically. In principle, it would be 

feasible to polymerize sebacoyl chloride with the diamine-diester derivative of DAB or 

Hcy (having protected side chain moieties). However, as with other PEAs containing 
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pendant functional groups, these DAB and Hcy monomers are relatively expensive to 

prepare, and to impart degradability to the target PEAs, it is not necessary to have a self-

immolative spacer at every repeat unit. Thus the functional DAB and Hcy monomers 

were diluted with an L-phenylalanine (Phe)-1,4-butanediol diester-diamine to provide 

20% of the DAB or Hcy monomer is the resulting polymer. This Phe monomer was 

selected due to its ease of synthesis and for the thermal and mechanical properties of the 

resulting polymer which enhance the polymer’s processability in melt.
71 

Thus, the 

specific target polymers 2.1 and 2.2 containing DAB and Hcy are shown in Figure 2.1.  

A t-butyloxycarbonyl (Boc) protecting group was selected for the DAB monomer. 

Although this Boc group cannot be cleaved under physiological conditions, it can be 

readily cleaved with trifluoroacetic acid (TFA), allowing the degradation process to be 

readily studied. It can later be replaced with a more specific trigger as described in 

section 2.2.7 of this thesis. A dithiopyridyl moiety was selected for the Hcy monomer as 

it can be cleaved by biological reducing agents such as glutathione, which are present at 

elevated levels in the intracellular environment as well as in hypoxic tissues such as 

tumors.
72-74 

In addition to the target polymers, two small molecule derivatives 2.3 and 2.4 

of DAB and Hcy were targeted in order to study the cyclization rate upon removal of the 

side chain protecting group and to verify that the cyclization was faster than background 

hydrolysis of the ester. 
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Figure 2.1 Chemical structures of proposed PEAs incorporating a) DAB monomer, b) 

Hcy monomer, c) DAB ester with Boc protecting group, d) Hcy ester with dithiopyridyl 

protecting group. 

2.2.2 Synthesis of small molecule model compounds 2.3 and 2.4 

The preparation of the model compounds 2.3 and 2.4 was necessary because the rates of 

the specific cyclization reactions to be utilized in this work had not been explicitly 

studied and it was important to understand their rates in the context of the future polymer 

degradation experiments. While phenyl ester derivatives of 4-aminobutyric acid have 

been previously reported by our group, an ethyl ester was selected for this work as it 

more closely mimics the aliphatic ester in the target polymer. The synthesis of this DAB 

ester was investigated using two different routes. In the first approach (the direct-method 

approach, Scheme 2.1), a Fischer esterification was attempted.  The reaction conditions 
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involving sulfuric acid proved unsuccessful, presumably due to the residual water in the 

acid. Another attempt was made using dry hydrochloric acid formed from calcium 

chloride;
 75

 however, this method proved to be more labor-intensive as acid had to be 

constantly replenished and finally, neutralized with base once the reaction was complete. 

 

 

Scheme 2.1 Unsuccessful synthesis of DAB ethyl ester using direct-method approach.  

As the direct-method approach was unsuccessful, the synthesis was performed 

using the commercially available starting material, (9-fluorenylmethoxycarbonyl) Fmoc-

DAB(Boc)-OH that was in hand for preparation of the polymerization monomer as a 

starting point (Scheme 2.2). First, the ethyl ester was synthesized using a N,N’-

dicyclohexylcarbodiimide (DCC)-mediated coupling with catalytic amounts of 4-

(dimethylamino) pyridine (DMAP) and 4-(dimethylamino)-pyridinium-4-

toluenesulfonate (DPTS) to afford 2.9. With the ester in hand, the protecting group was 

removed in order to make the ester soluble in the phosphate buffer. The Fmoc group was 

removed using a catalytic amount of 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) and 

excess 1-octanethiol, providing 2.3.  
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Scheme 2.2 Formation of DAB ethyl ester. 

As shown in Scheme 2.3, the reduction sensitive Hcy ethyl amino acid was first 

synthesized by protecting the hydrochloric acid salt of thiolactone Hcy derivative 2.10 

with Boc to form 2.11 and later ring opening of the thiolactone with lithium hydroxide to 

give 2.12. The disulfide bond was installed by reacting 2.12 with 2,2’- dipyridyl disulfide 

and a catalytic amount of acetic acid to give 2.14. The ethyl ester was then formed by 

coupling ethanol to 2.14 using DCC with catalytic amounts of DMAP and DPTS.  
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Scheme 2.3 Formation of Hcy ethyl ester. 

2.2.3 Kinetic studies on small molecule model compounds 

The cyclization of the ethyl ester derivatives of DAB and Hcy were first investigated in 

pH 7.4 phosphate buffered D2O. In the case of the DAB derivative 2.3, the Boc 

protecting group was removed immediately prior to the study, providing the salt 2.16 

(Scheme 2.4 a).However, the Boc protected compound 2.13 was also studied as a control 

compound in order to determine the rate of background ester hydrolysis. In the case of 

the Hcy derivative 2.4, DTT was added to cleave the disulfide bond in the Hcy ester, 

providing 2.17 (Scheme 2.4 b). A control without DTT addition was also performed for 

compound 2.4. The rates were determined by quantifying the amount of ethanol in 

comparison to ethyl ester by integration of their respective peaks in the 
1
H NMR 

spectrum. 
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Scheme 2.4 a) Deprotection of Boc group, b) reduction of dithiopyridyl moiety. 

As shown in Figures 2.2 and 2.3 by comparing the rates of ethanol evolution for 

compounds 2.16 and 2.17 with their respective control compounds 2.3 and 2.4 having 

protecting groups on the side chains, the rate of cyclization is faster than that of 

background ester hydrolysis. Fitting of the data to a first order rate law (appendix) gave 

half-lives of 6 hr and 2 hr for the DAB and Hcy monomers, respectively. In contrast, the 

half-lives for the controls 2.3 and 2.4 were 42 and 53 hr, respectively. As shown in Figure 

2.4 for the DAB derivative 2.16, the NMR spectroscopic analysis of the products was 

consistent with a majority of the expected cyclization product along with a small amount 

of background hydrolysis product. As shown in Figure 2.5 for the Hcy derivative, the 

expected cyclization product was also predominant in the case of this molecule. 

Assignment of these spectra was facilitated by comparison with the spectra of pure DAB 

and Hcy in the same buffer (appendix).  
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Figure 2.2 Kinetics of degradation for compound 2.16 and background hydrolysis of 2.3 

in a 0.1 M, pH 7.4 phosphate buffer.  

 

Figure 2.3 Kinetics of degradation for compound 2.17 and background hydrolysis of 2.4 

and background hydrolysis in a 0.1 M, pH 7.4 phosphate buffer.  
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Figure 2.4 
1
H NMR spectra in 0.1 M, pH 7.4 phosphate buffered D2O of a) DAB 

derivative 2.16 immediately following dissolution in the buffer. b) After 5 hr in the same 

buffer. c) After 10 hr in the same buffer. 
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Figure 2.5 
1
H NMR spectra in 0.1 M, pH 7.4 phosphate buffered D2O of a) Hcy 

derivative 2.17 immediately following dissolution in the buffer. b) After 5 hr in the same 

buffer. c) After 10 hr in the same buffer. 
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For comparison purposes, spectra of the time dependent background hydrolysis of the 

control molecules 2.3 and 2.4 are shown in the appendix. The DAB ethyl ester 2.3 

undergoes clean hydrolysis to form DAB and ethanol as expected. On the other hand, in 

the absence of DTT addition, the Hcy derivative 2.4 appears to undergo another reaction 

in addition to simple hydrolysis. As the disulfide bond, and in particular the activated 

dithiopyridyl group, is susceptible to attack by a variety of nucleophiles, it is 

hypothesi ed that the α-amine attacks this bond to generate a five membered sulfenamide 

(Scheme 2.5). 

 

Scheme 2.5 Formation of five membered sulfenamide. 

 This functional group has recently found usage in polymers that are quite stable 

to basic and neutral conditions, but degrade once the pH decreases.
76-77

 This side reaction 

was not observed for model compound 2.17 due to the rapid cleavage of the dithiopyridyl 

group and would not be expected in the target polymer as the α-amines would be tied up 

as amides in the polymer backbone. Thus, despite this unexpected side reaction of the 

control compound, these kinetic studies showed that the cleavage of the side chain 

protecting groups could induce rapid cyclization reactions in DAB and Hcy derivatives, 

showing the promise of these monomers for application in the triggered degradation of 

PEAs.  

As it has been established by our group and others that the choice of solvent 

affects the rates of cyclization of self-immolative spacers,
33,78-79 

the cyclization kinetics 

for the small molecule model compounds were also evaluated in 7:2:1 ratio of DMSO: 

acetone –D6: 0.1 M, pH 7.4 phosphate buffered D2O. This solvent mixture was selected 

as it was found to be one of only a few aqueous solvent mixtures that could dissolve the 
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target polymers 2.1 and 2.2. Initially, studies were performed at 37°C and NMR 

spectroscopy was used to evaluate the degree of ethanol evolution over time for 

compounds 2.3, 2.4, 2.16, and 2.17. However, preliminary experiments indicated that the 

rate of ethanol evolution was extremely slow for all compounds. This is consistent with 

our observations that the cyclization rate is much slower in aqueous solvent mixtures 

with increasing organic content. In order to accelerate the kinetics to occur over a more 

readily measurable time scale, the temperature was increased to 70 °C. The rates of 

ethanol evolution for the DAB derivative 2.16 and the protected control compound 2.3 

are shown in Figures 2.6 and their respective half-lives were found to be 3 and 14 days 

respectively. 

The kinetics for the Hcy derivative 2.17 are shown in Figure 2.7 and the 

corresponding half-life was found to be 52 days. Unfortunately it was not possible to 

evaluate the control compound 2.4 in this experiment as the dithiopyridyl group was 

rapidly cleaved from this molecule, likely by the same sulfenamide mechanism described 

above. In addition, examination of the 
1
H NMR spectra of 2.17 throughout the 

experiment revealed that it was converted to an unexpected intermediate byproduct that 

subsequently reacted to release ethanol. Although the nature of this intermediate was not 

identified conclusively, it is possible that as described above for control compound 2.4, 

conversion to a cyclic sulfenamide occurred, in this case via disulfides of 2.4 with itself 

or with DTT, that might exist transiently throughout the reaction. This sulfenamide could 

then hydrolyze to reveal the thiol, capable of cyclizing or alternatively undergo simple 

hydrolysis to release ethanol. It was difficult to distinguish between these pathways due 

to the complexity of the NMR spectra (appendix) but either mechanism would explain 

the slow kinetics.  It appears that this side reaction does not occur when the thiol 

cyclization is rapid as for 2.17 in pure aqueous buffer, but when the reaction is slowed by 

the organic solvent there is an opportunity for it to occur. This would explain the reversal 

of relative rates with the Hcy monomer faster in pure buffer and the DAB monomer 

faster in 7:2:1 DMSO:acetone:buffer. Again, this side reaction would not be expected to 

occur during the degradation of the polymer. 
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Figure 2.6 Kinetics of degradation for compound 2.16 and background hydrolysis of 2.3 

in a DMSO: acetone –D6: 0.1 M, pH 7.4 phosphate buffer (D2O).  

 

Figure 2.7 Kinetics of degradation for compound 2.17 in a DMSO: acetone –D6: 0.1 M, 

pH 7.4 phosphate buffer (D2O). 
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2.2.4 Synthesis of polymerization monomers 

In order to prepare the target polymer 2.1, it was necessary to prepare a diamine-diester 

derivative of DAB with 1,4-butanediol having free -amines and protected -amines. As 

shown in Scheme 2.6, the synthesis began with the commercially available orthogonally 

protected amino acid, 2.7. The diester was synthesized by coupling 2.7 to 1,4-butanediol 

using a DCC, DMAP and DPTS to afford 2.25. The Fmoc group was then removed using 

a catalytic amount of DBU and an excess of 1-octanethiol.  

 

Scheme 2.6 Synthesis of DAB monomer. 

The synthesis of the diamine-diester derivative of Hcy was performed by first 

coupling the protected Hcy 2.14 with 1,4-butanediol using DCC, DMAP and DPTS to 

provide 2.27. The target monomer was then obtained by removing the Boc groups with 

TFA to give 2.28 (Scheme 2.7). 

 



54 

 

 

Scheme 2.7 Synthesis of Hcy monomer. 

2.2.5 Synthesis of polymers 

As described above, the target polymers were prepared by an interfacial polymerization 

in CH2Cl2/water. For the preparation of target polymer 2.1 and 2.2, sebacoyl chloride (1.0 

equiv.) was dissolved in CH2Cl2 and the solution was added drop wise to a solution of the 

diesters 2.26 or 2.28 (0.2 equiv.) and 2.29
80

 (0.8 equiv.) in aqueous Na2CO3 (Scheme 2.8 

and Scheme 2.9). The reaction mixtures were then stirred for 24 hr, after which the 

polymers were then purified by dialysis in N,N-Dimethylformamide (DMF). A control 

polymer 2.31
20

 without any DAB or Hcy monomer was also prepared (Scheme 2.10). 

SEC (table 2.1) in DMF indicated that the polymers had Mn’s ranging from 91 800 – 

155,500 g/mol relative to polystyrene standards and polydispersity indices (PDIs) from 

1.22-1.24.  The low PDIs and relatively high Mn’s can be attributed to the dialysis step 

which removes lower MW polymers in addition to low MW byproducts. The Boc 

protecting groups could be removed from polymer 2.1 by treatment with TFA, providing 

polymer 2.30. A reduction in Mn was observed as a result of the deprotection process 

which has been reported by our group,
20,81 

as well as others.
16,19

 This is in part a result of 

the interaction of the amino groups of the polymer with the column during SEC. 

 

 



55 

 

 

 

Scheme 2.8 Synthesis of and deprotection of PEA incorporating 20% DAB.  

 

Scheme 2.9 Synthesis of PEA incorporating 20% of Hcy. 
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Scheme 2.10 Synthesis of control polymer. 

 

Polymer 

Yield 

(%) 

Mn 

(g/mol) 

Mw/ Mn 

(PDI) 

2.1 65 155, 500 1.23 

2.2 60 98, 300 1.24 

2.30 87 91, 839 1.22 

2.31 78 63, 600 2.65 

Table 2.1 Yields and molecular weight data for functional PEAs and non-functional 

PEAs. 

 Incorporation of the DAB and Hcy monomers into the PBSe backbone was verified by 

1
H NMR spectroscopy. As shown in Figure 2.8a, in comparison to the control polymer 

2.31, in polymer 2.1 a new peak arises at 1.36 ppm which corresponds to the methyls of 

the Boc group. Another peak appears at 4.21 ppm  which belongs to the α-proton of the 

DAB monomer. In addition, there is a peak at 6.78 ppm corresponding to the carbamate 

N-H of the Boc group that, upon addition of TFA to form 2.30, disappears (Figure 2.8 b) 

along with the peak attributed to the methyls of the Boc group. In the case of polymer 

2.2, the new peaks arise in the aromatic region that corresponds to the pyridyl moiety of 

the Hcy monomer  as well as another at 4.39 ppm that corresponds to the α-proton of this 

monomer (Figure 2.9).  
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Figure 2.8 
1
H NMR (DMSO-D6, 600 MHz) spectra of a) PBSe incorporated with 20% 

DAB monomer, protected version b) PBSe incorporated with 20% DAB monomer, 

deprotected version. 
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Figure 2.9 
1
H NMR (DMSO-D6, 600 MHz) spectra of PBSe incorporated with 20% Hcy 

monomer. 

2.2.6 Solution degradation of polymers 

Due to the hydrophobic nature of the polymers 2.1, 2.2, and 2.30, they were soluble 

primarily in organic solvents such as chloroform, CH2Cl2, DMSO and DMF.  In order to 

degrade the polymers, varying ratios of different organic solvents with 0.1 M, pH 7.4 

phosphate buffers were experimented with.  For the study of the polymer degradation in 

solution, it was found that the mixture that gave the best solubility was a 7:2:1 ratio of 

DMSO: acetone–D6: 0.1 M, pH 7.4 phosphate buffered D2O. Deuterated solvents were 

chosen with the goal of monitoring the degradation process by NMR spectroscopy. 

Having already determined from the monomer cyclization kinetics that the cyclization 

reactions would be significantly slowed due to the high organic solvent content, the 

degradation study was performed at 70°C for a period of twelve days. In the case of 
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polymer 2.2, DTT was added to cleave the pendant disulfides and initiate degradation of 

this polymer. Polymer 2.30 was used as is, because the Boc protecting group had already 

been removed, making the pendant amine capable of cyclization. The Boc protected 

polymer 2.1 was used as a control for these studies, whereas the control polymer 2.31 

was insoluble under these conditions and could not be included in the solution 

degradation study.  

The degradation of the 3 polymers was monitored by 
1
H NMR spectroscopy. The 

emergence of new peaks was observed (appendix). However, the complexity of the 

spectra and overlapping peaks made it impossible to quantify the degree of degradation. 

Therefore, the degradation was monitored by SEC. This was done by removing aliquots 

of the solution periodically, removing the solvent and then dissolving the material in 

DMF for SEC analysis. As shown in Figure 2.10, the deprotected polymers showed a 

much more rapid decrease in MW than the protected polymer. For example, whereas 

polymer 2.1 exhibited a 50% reduction in Mn over two weeks, polymer 2.30 showed a 

90% decrease in Mn over the same period. The same trends were observed when 

examining changes in Mw (Figure 2.11). In the case of polymer 2.2, molecular weight 

decreased by as much as 94% in 12 days, which demonstrates the faster rate of 

cyclization of the thiol group over the amine; this enhanced rate was also seen in the 

model ethyl ester studies in pure phosphate buffer, suggesting that the side reaction, and 

resulting increased cyclization half-life observed in the organic solvent mixture was 

indeed likely the result of the free -amine that was present in the model compound but 

not in the polymer. Figure 2.12 and 2.13 show the evolution of the SEC traces over time 

for polymer 2.1 and 2.30 respectively. Overall, these results show that the rates of 

polymer degradation are much faster for the polymers upon cleavage of the moiety 

protecting the pendant groups, confirming that the strategy should be a viable approach to 

creating stimuli responsive PEAs. 
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Figure 2.10 Molecular weight data for protected and deprotected PEAs. 

 

 

Figure 2.11 Molecular weight data for protected and deprotected PEAs. 
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Figure 2.12 Size exclusion chromatograms of polymer 2.1 plotted with respect to Log 

(molecular weight) prior to degradation, as well as after different time points in the 

degradation process (eluent = DMF with 10 mM LiBr and 1% (v/v) NEt3; detection by 

differential refractive index). 

 

Figure 2.13 Size exclusion chromatograms of polymer 2.30 plotted with respect to Log 

(molecular weight), prior to degradation, as well as after different time points in the 

degradation process (eluent = DMF with 10 mM LiBr and 1% (v/v) NEt3; detection by 

differential refractive index). 
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2.2.7 Mass loss studies of polymers 

The solution degradation properties described above for the PEAs were of interest for 

applications in which the PEAs would be present in solution such as in a micellar 

carrier.
19-20,31

 However, there is also substantial interest in the use of PEAs in applications 

such as tissue engineering where they would be used as a coating or scaffold material.
34-36

 

Here they offer potential advantages over polyesters, which typically erode via bulk 

degradation,
1,13

 rapidly releasing harmful acidic byproducts.
11,12

 PEAs have been 

proposed to undergo surface erosion mechanisms,
13,82-84

 which limit the release of acidic 

byproducts.
14,17-18

Although there have been many reports of PEAs degrading in the 

presence of enzymes, 
71,82-84 

their degradation in buffer solution in the absence of specific 

enzymes is quite slow.
17,22 

Therefore, it was of interest to determine how the cleavage of 

the pendant side chain protecting groups could trigger the degradation of PEA films via 

trigger-initiated cyclization. Polymers 2.1, 2.2, and 2.30 and  were melt pressed to form 1 

mm thick films, and circular disks, each weighing approximately 5-8 mg, were punched 

from these films. In this case, the control polymer 2.31 was also included to investigate 

the effect of pendant group incorporation. The films were placed into vials containing pH 

7.4 phosphate buffer, along with DTT in the case of polymer 2.2. As preliminary studies 

showed that degradation was very slow at 37 C (eg. only 10% mass loss over 2 weeks in 

the case of polymer 2.2), the films were incubated at 70°C in order to accelerate 

degradation to a more easily measured rate. At various time points, the films were 

removed from the buffer solution, washed thoroughly with pure water, and then dried to a 

constant mass.  

 As shown in Figure 2.14, the control polymer 2.31 exhibited only ~10% mass loss 

over 8 weeks. In comparison, the Boc protected polymer 2.1 exhibited almost 30% mass 

loss over 8 weeks, an enhancement likely attributable to its increased polarity relative to 

control 2.31, and/or disruption of solid phase packing of the polymer, allowing enhanced 

penetration of water into the film. This has been previously observed by our group for 

polymers containing polar pendant groups, even in the absence of cyclization reactions.
64

 

Polymer 2.2 exhibited more than 30% mass loss over 8 weeks, likely due to the 

cyclization of the pendant thiols upon cleavage by DTT. The polymer containing pendant 
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amines degraded fastest, likely due to the propensity of the amines to cyclize as well as 

their high polarity as they would be largely protonated at pH 7.4. As can be seen in 

Figure 2.14, the almost linear plot for each polymer suggests a surface erosion 

mechanism. This was also supported by SEC analyses as it was found that there were no 

measurable changes in the MW characteristics of the polymers comprising the residual 

films (see appendix).  

 

Figure 2.14 Mass loss studies of deprotected and protected polymers. 

Scanning electron microscopy (SEM) was performed on the films throughout the 

degradation process in order to further investigate the surface erosion process. SEM 

images of the films before degradation are shown in Figure 2.15 a-d. The surfaces of the 

polymers appear relatively smooth prior to degradation. Following 2 weeks in pH 7.4 

phosphate buffer, small pore formation is evident in polymer 2.31 (Figure 2.15e). More 

surface erosion is evident for polymer 2.1 (the Boc protected), consistent with the results 

of the mass loss studies. Extensive surface erosion was observed for polymers 2.30 

(Figure 2.12 h) and 2.2 (Figure 2.12 g), again consistent with the results of the mass loss 

studies. Overall, the mass loss, SEC, and SEM studies of these films indicate that as 
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designed, these polymers undergo surface erosion processes at rates that are dependent on 

the unmasking of the pendant amines or thiols. 

 

Figure 2.15 Scanning electron microscopy images (x500 magnification) of thin films of 

polymer (a) 2.31 prior to incubation, (b) 2.1 prior to incubation, (c) 2.30 prior to 

incubation, (d) 2.2 prior to incubation, (e) 2.31 following 2 week incubation in PBS (70 

°C), (f) 2.1 following 2 week incubation in PBS (70 °C), (g) 2.30 following 2 week 

incubation in PBS (70 °C), (h) 2.2 following 2 week incubation in PBS (70 °C). 
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2.2.8 Development of photochemically responsive PEA 

2.2.8.1 Design 

While the specific cleavage of the disulfide bond is possible in vivo in reducing 

environments such as within cells or in hypoxic tissues such as tumours,
72-74

 it should be 

noted that there is no method to remove a Boc group under biological conditions. As the 

degradation properties of the DAB polymer 2.30 appeared highly promising, an approach 

allowing for a more relevant amine unmasking strategy that could eventually be applied 

in vivo was sought. Light as a stimulus is attractive because it is non-invasive and can be 

applied for a short period of time with high spatial and temporal precision.
32 

One of the 

most widely used groups for these applications is the o-nitrobenzyl moiety, widely 

chosen for its clean removal.
32,34,37-41 

Due to its favorable properties, 4,5-dimethoxy-2- 

nitrobenzyl alcohol was chosen as the photo-labile group for the DAB polymer. Although 

the short wavelength of light (~350 nm) required for cleavage of this o-nitrobenzyl group 

is not directly applicable in vivo, it would be relatively simple to later extend the 

chemistry to moieties that are responsive in the near-infrared range where tissue is much 

more transparent.
32-36,39 

2.2.8.2 Synthesis of a photochemically responsive PEA 

The commercially available o-nitrobenzyl alcohol (2.32) was coupled to nitrophenyl 

chloroformate under basic conditions and with a catalytic amount of DMAP to afford 

2.34 (Scheme 2.11). The target polymer was then formed by coupling the amines of the 

deprotected polymer 2.30 to this nitrophenyl carbonate to give the final product, 2.35, 

which was purified by dialysis. SEC analysis revealed a unimodal distribution 

corresponding to an Mn of 72,200 g/mol and a PDI of 1.41. 
1
H NMR spectroscopy 

verified the incorporation of the o-nitrobenzyl groups onto the polymer backbone and as 

can be seen in Figure 2.16 a, a peak at 5.30 ppm corresponding to the benzylic protons 

verifies incorporation of the photochemically responsive monomer. Other peaks 

corresponding to the dimethoxy nitrobenzyl group also further verify the incorporation. 

NMR was also used to determine the time scale needed to remove the dimethoxy 

nitrobenzyl moiety. In brief, the polymer was dissolved in the same mixed organic 
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solvent mixture (7:2:1 ratio of DMSO: acetone –D6: 0.1 M, pH 7.4 phosphate buffer 

D2O) and irradiated with a medium–pressure Hg lamp (λ=350 nm) for different time 

periods. It was found that an irradiation time of two hours was sufficient enough to cleave 

the photo labile group (Figure 2.16 b).  

 

Scheme 2.11 Synthesis of 4-nitrophenyl carbonate derivative 2.34.  

 

Scheme 2.12 Synthesis of photochemically responsive PEA 2.35. 
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Figure 2.16 
1
H NMR spectra of a) polymer 2.35 in DMSO:acetone–D6: 0.1 M pH 7.4 

phosphate buffered D2O b) polymer 2.35 in DMSO:acetone–D6: 0.1 M pH 7.4 phosphate 

buffered D2O following 2 hr of irradiation.  
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2.2.8.3 Degradation of photochemically responsive PEA 

In a similar fashion to the other stimuli responsive PEAs, two samples of polymer 2.35 

were dissolved in DMSO:acetone–D6: 0.1 M, pH 7.4 phosphate buffered D2O solvent 

system. One sample was irradiated, while the other sample was not subjected to 

irradiation. The solutions were incubated at 70°C and aliquots were submitted for SEC 

analysis. The changes in Mn and Mw over time are shown in Figure 2.17 and 2.18. Similar 

to polymer 2.30, described above, the irradiated sample exhibited a 97% reduction in Mn 

during the first ten days. In contrast, the non-irradiated sample exhibited only a 68% 

reduction in Mn over the sample time period.  

 

 

Figure 2.17 Molecular weight data for non irradiated and irradiated samples.  
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Figure 2.18 Molecular weight data for non irradiated and irradiated samples. 

As for the polymers described above, it was also of interest to investigate the degradation 

of films of polymer 2.35 in the response to photochemical irradiation. In this case, spin 

coating rather than melt pressing was used to prepare the films as thinner films were 

required to achieve light penetration throughout the film. In order to determine the time 

scale required for the irradiation process, UV-visible spectroscopy was undertaken to 

determine the decrease in absorbance over time of the characteristic peak corresponding 

to the o-nitrobenzyl group.
32,34,37

 Based on the results shown in Figure 2.19, it was found 

that an irradiation time of 1 hour was enough to cleave the photo labile groups in the thin 

films. To investigate the thin film degradation in response to the photochemical stimulus, 

samples of films were either irradiated, or not, then placed in a pH 7.4 phosphate buffer 

solution and incubated at 70 °C. Due to the requirement for thin films, the quantities of 

materials were not sufficient for mass loss or SEC measurements, but the film erosion 

was investigated by SEM imaging. As shown in Figures 2.20a, the film is smooth prior to 

degradation. The non irradiated is intact after 2 days in the buffer solution (Figure 2.17b). 

In contrast degradation of the irradiated sample is very rapid, with only small fragments 

of the film remaining after 2 days (Figure 2.17c). Based on these SEM results, it is clear 

that photochemical cleavage does trigger accelerated degradation relative to the non-

irradiated sample, suggesting that these DAB-based polymers are versatile backbones for 
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the incorporation of various trigger moieties that can potentially be cleaved under 

biologically accessible conditions, leading to stimuli-responsive PEAs.   

 

 

Figure 2.19 Irradiation of thin films. 
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Figure 2.20 Scanning electron microscopy images (x100 magnification) of thin films of 

polymer (a) 2.35 prior to irradiation and incubation in PBS (70 °C), (b) 2.35 (non 

irradiated),  following 24 hr incubation in PBS (70 °C), (c) 2.35 (irradiated),  following 

24 hr incubation in PBS (70 °C). 
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2.3 Conclusions 

In conclusion, the first stimuli responsive PEAs were synthesized. This was 

accomplished by incorporating monomers with pendant groups capable of cyclization. 

Upon cleavage of trigger moieties protecting these pendant groups, in response to stimuli 

such as changes in redox potential, acid or light into the backbone, the monomers 

underwent 1,5-cyclizations, leading to backbone cleavage and thus degradation of the 

PEAs. To support the design, kinetic studies were performed on small molecule models 

and they supported the proposed route of degradation via 1,5-cyclization. The polymers 

were then synthesized by interfacial polymerization reactions. Polymer degradation 

studies were also carried out in solution using SEC analysis and on thin films using mass 

loss, SEC, and SEM and these studies suggested that as designed, the polymers could be 

cleaved by these 1,5-cyclization reactions more rapidly than the background rate of ester 

hydrolysis. In addition, a photoresponsive PEA was synthesized showing that various 

triggers could be incorporated, thereby demonstrating the potential for this degradation 

mechanism to be applied for biomedical applications. Overall, the results show that the 

concepts of self-immolative spacers could be applied to PEAs in order to trigger their 

degradation under specified conditions. 

2.4 Experimental 

General procedures and Materials: 

All reagents were purchased from commercial suppliers and used without further 

purification unless otherwise noted. Anhydrous DMF and CH2Cl2 were obtained from a 

solvent purification system based on aluminum oxide columns. Pyridine and NEt3 were 

distilled from CaH2. Unless otherwise stated, all reactions were performed under a N2 

atmosphere using flame or oven dried glassware. Column chromatography was 

performed using silica gel (0.063-0.200 mm particle size, 70-230 mesh). Thin layer 

chromatography was performed using Macherney-Nagel Polygram® SIL G/UV254 plates. 

1
H NMR spectra were obtained at 400 or 600 MHz and 

13
C NMR spectra were obtained 

at 100 MHz or 150 MHz using a Varian Mercury or Varian Inova spectrometer. NMR 

chemical shifts are reported in ppm and are calibrated against residual solvent signals of 
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CDCl3 (δ 7.27, 77), DMSO-d6 (δ 2.50, 40), CD3OD (δ 3.31  49)  and D2O (δ 4.79).  

Coupling constants (J) are expressed in Hertz (Hz). Infrared spectra were obtained as 

films from CH2Cl2 on NaCl plates using a Bruker Tensor 27 instrument. High-resolution 

mass spectrometry (HRMS) was performed using a Finnigan MAT 8400 mass 

spectrometer using either electron impact (CI) or a Micromass LCT electrospray 

ionization time-of-flight (ESI) mass spectrometer  Size exclusion chromatography (SEC) 

was carried out at a flow rate of 1 mL/min in N,N-dimethylformamide (DMF) with 10 

mM LiBr and 1% (v/v) NEt3 at 85 °C using a Waters 2695 separations module equipped 

with a Waters 2414 differential refractometer and two PLgel 5 μm mixed-D (300 mm × 

7.5 mm) columns from Polymer Laboratories connected in series. The calibration was 

performed using polystyrene standards. Dialysis of the polymers was performed using 

Spectra/Por regenerated cellulose membranes with an 8000 - 12,000 g/mol molecular 

weight cutoff (MWCO).  

Synthesis of compound 2.9: An excess of dry ethanol was added to a flame-dried flask 

containing N-α-Fmoc-N-ε-t-Boc-L-2, 4-diaminobutyric acid (1.00 g, 2.27 mmol), N,N’-

dicyclohexylcarbodiimide (DCC) (0.934 g, 4.53 mmol), 4-(dimethylamino)pyridine 

(DMAP) (0.0462 g, 0.378 mmol), and 4-(dimethylamino)pyridinium-4-toluenesulfonate 

(DPTS)  (0.222, 0.755 mmol), dissolved in distilled CH2Cl2 (30 mL).  The solution was 

stirred until completion, as measured by TLC (0.5 hr). The reaction mixture was then 

diluted with CH2Cl2 and filtered over cotton to remove dicyclohexylurea (DCU). The 

solvent was removed and the crude product was then purified via column 

chromotography (70:30 cyclohexane:ethyl acetate) to give 0.543 g (1.16 mmol) of 

compound 2.9 as a white powder. Yield: 85%. 
1
H NMR (400 MHz, CDCl3): 7.78 (d, J = 

7.4, 2H, Ar-H), 7.62 (d, J= 7.4, 2H, Ar-H), 7.42  (t, J = 7.4, 2H, Ar-H), 7.31-7.35 (m, 2H, 

Ar-H), 5.62 (d, J= 7.82, 1H, Fmoc-NH-CαH-), 5.05 (s, 1H, Boc-NH-CH2-), 4.42-4.44 (m, 

3H, Ar2-CH-CH2-CO2-NH-CαH-, Ar2-CH-CH2- Boc-NH-), 4.20-4.25 (m, 3H, -CO2-CH2-

CH3, Boc-NH-(CH2)2-CαH-), 3.33-3.36 (m, 1H, (diastereotopic), -CαH-CH2-CH2-NH-

Boc), 2.97-3.01 (m, 1H, (diastereotopic), -CαH-CH2-CH2-NH-Boc), 2.08-2.09 (m, 1H, 

(diastereotopic), -CαH-CH2-CH2-NH-Boc), 1.76-1.78 (m, 1H, (diastereotopic), -CαH-

CH2-CH2-NH-Boc), 1.46 (s, 9H, Boc), 1.30 (t, J= 7.03, 3H, -CO2-CH2-CH3-). 
13

C NMR 

(CDCl3): δ 172.23, 156.37, 143.82, 141.30 127.73, 127.08, 125.06, 120.00, 79.35, 67.03, 
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61.73, 51.53, 47.17, 36.49, 33.27, 28.42, 14.14. IR (cm
-1

): 3345, 2977, 2933, 1711, 1521, 

1510, 1045, 1168. HRMS: calc [M]
+
 (C26H32N2O6): 468.2260 Found: (CI) 468.2237.  

Synthesis of compound 2.3: Compound 2.5 (0.314 g, 0.670 mmol) was dissolved in 

tetrahydrofuran (THF) (4.0 mL). To this was added 1-octanethiol (1.16 mL, 6.70 mmol) 

and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) (0.010 mL, 67.0 µmol). The solution 

was stirred for 3 hr, and then the solvent was removed.  The crude mixture was purified 

via column chromatography (70:25:5 ethyl acetate:cyclohexane:triethylamine), affording 

0.132 g (0.536 mmol) of compound 2.6 as a slightly yellow oil. Yield: 80%. 
1
H NMR 

(400 MHz, D2O): 4.13 (q, J= 7.03, 2H, -CO2-CH2-CH3), 3.46-3.51 (m, 1H, -CαH-(CH2)2-

NH-Boc), 3.09-3.14 (m, 2H, -CαH-CH2-CH2-NH-Boc), 1.77-1.84 (m, 2H, -CαH-CH2-

CH2-NH-Boc), 1.35 (s, 9H, Boc), 1.21 (t, J= 7.03, 3H, -CO2-CH2-CH3). 
13

C NMR 

(CDCl3): 175.32, 155.60, 78.73, 60.67, 52.57, 37.49, 34.03, 28.02, 13.81. IR (cm
-1

): 

3374, 2978, 1711, 1251, 1027, 1174, 781. HRMS: calc [M]
+
 (C11H22N2O4): 246.1580 

Found: (CI) 247.1650 

Synthesis of compound 2.11: NaHCO3 (8.19 g, 97.5 mmol) was placed in a 1:1 mixture 

of H2O:dioxane (100 mL). To this stirring solution, DL-homocysteine thiolactone·HCl 

(5.00 g, 32.5 mmol) was added over a period of 30 min. Finally, di-tert-butyl dicarbonate 

(10.64 g, 48.75 mmol) was added and the reaction mixture was stirred overnight. The 

reaction mixture was then diluted with ethyl acetate, washed twice with saturated 

NaHCO3, and then twice with brine. The organic phase was dried over MgSO4, filtered, 

and the solvent was removed to yield 8.69 g (36.9 mmol) compound 2.11 as a white solid
.
 

Characterization data agreed with that previously reported in the literature.
85

 

Synthesis of compound 2.12: To a stirring solution of LiOH (3.0 g, 71.3 mmol) in a 1:1 

mixture of H2O:THF (90 mL) was added compound 2.11 (5.50 g, 23.8 mmol). The 

solution was stirred until the reaction was complete (3 hr) as detected by TLC. The 

solution was then diluted with ethyl acetate and washed three times with 1 M HCl. The 

organic phase was then dried over MgSO4, filtered, and the solvent was removed  to give 

5.03 grams (21.4 mmol) of 2.12 as an amber colored oil. Yield: 90%. 
1
H NMR (400 

MHz, CD3OD): 4.89 (s, 1 H, -NH-Boc-CαH -CO2H), 4.23-4.26 (m, 1H, -CαH -CO2H), 
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2.48- 2.58 (m, 2H, -CαH-CH2-CH2-), 1.89-2.02 (m, 2H, -CαH-CH2-CH2-), 1.41 (s, 9H, 

Boc). 
13

C NMR (CD3OD): δ 175.90, 158.24, 80.68, 53.53, 37.27, 28.85, 21.71. IR (cm
-1

): 

IR (cm
-1

): 3361, 2925, 2867, 1656, 1510. HRMS: calc [M]
+
 (C9H17NO4 S1): 235.0878 

Found: (CI) 236. 0950. 

Synthesis of compound 2.14: 2 2’-Dipyridyl disulfide, 2.13 (9.56 g, 43.4 mmol) was 

dissolved in methanol (53 mL) and acetic acid (0.71 mL). To this, compound 2.12 (5.11 

g, 21.7 mmol) dissolved in methanol (10.0 mL) was added dropwise via an addition 

funnel. The solution was stirred until reaction completion as determined by NMR (3 hr). 

The reaction mixture was then diluted with ethyl acetate and washed 3 times with 0.5 M 

pH 5 citrate buffer. The organic phase was dried over MgSO4, filtered, and the solvent 

was removed in vacuo. The crude product was purified with column chromotography 

(70:30 cyclohexane:ethyl acetate, then 60:40 cyclohexane:ethyl acetate), yielding 4.27 g 

(12.4 mmol) of compound 2.14 as a white powder. Yield: 57%. 
1
H NMR (400 MHz, 

CDCl3): 8.51-8.52 (m, 2H, Ar-H), 7.78-7.80 (m, 1H, Ar-H), 7.70-7.72 (m, 1H, Ar-H), 

7.15-7.18 (m, 1H, Ar-H), 5.45-5.47 (s, 1H, Boc-NH-), 4.45-4.46 ( m, 2H, -NH-CαH- 

CO2H-), 2.85-2.90 (m, 2H, -CαH-CH2-CH2-S-S-), 2.39 ( s, 1H, (diastereotopic), -CαH-

CH2-CH2-S-S-), 2.05-2.10 (m, 1H, (diastereotopic), -CαH-CH2-CH2-S-S-), 1.44 (s, 9H, 

Boc). 
13

C NMR (CDCl3): δ 175.13, 160.11, 155.94, 149.11, 138.18, 121.36, 120.88, 

80.38, 52.75, 35.12, 32.50, 28.57. IR (cm
-1

): 3356, 2978, 2932, 1712, 1574, 1518, 1250, 

1120, 510.  HRMS: calc [M]
+
 (C14H20N2O4 S2): 244.0864 Found: (CI) 244.0334. 

Synthesis of compound 2.15:  An excess of dry ethanol was added to a flame-dried flask 

containing 2.14 (0.700 g, 2.03 mmol), DCC (1.05 g, 5.07 mmol), DMAP (0.0517 g, 0.423 

mmol), and DPTS (0.249 g, 0.845 mmol) dissolved in distilled CH2Cl2 (20 mL).  The 

solution was stirred until completion by TLC (1.5 hr). The reaction mixture was then 

diluted with CH2Cl2 and filtered over cotton to remove DCU. The solvent was removed, 

and the crude product was then purified via column chromotography (60:40 cyclohexane: 

ethyl acetate) to give 0.502 g (1.35 mmol)of compound 2.15 as a clear, pale green oil. 

Yield: 80%. 
1
H NMR (400 MHz CDCl3): 8.46-8.49 (m, 1H, Ar-H), 7.64-7.67 (m, 2H, Ar-

H), 7.08-7.12 (m, 1H, Ar-H), 5.28 (s, 1H, Boc-NH-CαH-CO2-), 4.38-4.39 (m, 1H, -NH-

CαH-CO2-CH2-), 4.11-4.20 (m, 2H, -CO2-CH2-CH2-), 2.82-2.88 (m, 2H, -CαH-CH2-
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CH2-S-S-), 2.25-2.28 (m, 1H, (diastereotopic), -CαH-CH2-CH2-S-S-), 2.00-2.06 (m, 1H, 

(diastereotopic), -CαH-CH2-CH2-S-S-), 1.43 (s, 9H, Boc),1.24 ( t, 3H, J =7.23, -CO2-

CH2-CH3). 
13

C NMR (CDCl3): δ 172.33, 160.14, 155.68, 149.97, 137.29, 121.01, 120.11, 

80.29, 61.86, 52.92, 35.07, 32.49, 28.57, 14.41. IR (cm
-1

): 3356, 2978, 2932, 1712, 1574, 

1518, 1250, 1118, 500. HRMS: calc [M+H]
+
 (C16H24N2O4 S2): 373. 1257 Found: (CI) 

373. 0734. 

Synthesis of compound 2.4: Compound 2.15 (0.115 g, 0.309 mmol) was dissolved in a 

1:1 mixture of TFA:CH2Cl2 and stirred for 2 hr. The solvent was then removed to give 

compound  2.4 as a slightly yellow oil in quantitative yield.  
1
H NMR (400 MHz D2O): 

8.31-8.33 (m, 1H, Ar-H), 7.67-7.74 (m, 2H, Ar-H), 7.21-7.23 (m, 1H, Ar-H), 4.14-4.18 

(m, 3H, -CO2-CH2-CH3-, -NH-CαH- CO2-CH2),  2.85-2.87 (m, 2H, -CαH-CH2-CH2-S-S-

), 2.23-2.25 (m, 2H, -CαH-CH2-CH2-S-S-), 1.09-1.13 (t, J=7.23, 3H, -CO2-CH2-CH3-). 

13
C NMR (CD3OD): δ 170.11, 160.36, 150.33, 139.81, 122.29, 122.09, 63.97, 52.90, 

34.87, 30.85, 14.42. IR (cm
-1

): 3443, 1636, 1204, 1258, 723. HRMS: calc [M+H]
+
 

(C11H16N2O2 S2): 273. 0733 Found: (CI) 273. 0734.  

Synthesis of 2.25:1,4-butanediol (0.160 mL, 1.82 mmol), was added to a flame-dried 

flask containing DAB (2.00 g, 4.54 mmol), DCC (1.13 g, 5.46 mmol), DMAP (0.0556 g, 

0.455 mmol), and DPTS (0.134, 0.455 mmol), dissolved in distilled CH2Cl2 (40 mL).  

The solution was stirred until completion by TLC (0.5 hr). The reaction mixture was then 

diluted with CH2Cl2 and filtered over cotton to remove DCU. The solvent was removed, 

and the crude product was then purified via column chromotography (70:30cyclohexane: 

ethyl acetate, then 60:40cyclohexane: ethyl acetate) to give 1.37 g (1.46 mmol) of 

compound 2.25 as a white powder. Yield: 80%.
1
H NMR (400 MHz CDCl3): 7.78 (d, J= 

7.42, 4H, Ar-H), 7.61 (d, J= 7.42,  4H, Ar-H), 7.41 (t, J= 7.42, 4H, Ar-H), 7.33 (m, 4H, 

Ar-H), 5.68 (d, J= 7.82, 2H Fmoc-NH-CαH-), 5.10 (s, 2H, Boc-NH-CH2-), 4.40-4.46 (m, 

6H, Ar2-CH-CH2-CO2-NH-CαH and Ar2-CH-CH2-Boc-NH-), 4.12-4.18 (m, 6H, -CO2-

CH2-CH3 and Boc-NH-(CH2)2-CαH-), 3.36-3.39 (m, 2H, (diastereotopic), -CαH-CH2-

CH2-NH-Boc), 2.97-3.01 (m, 2H, (diastereotopic), -CαH-CH2-CH2-NH-Boc), 2.03-2.09 

(m, 2H, (diastereotopic), -CαH-CH2-CH2-NH-Boc), 1.73 (m, 2H, (diastereotopic), -CαH-

CH2-CH2-NH-Boc, 4H, CO2-CH2-CH2-), 1.46 (s, 18H, Boc). 
13

C NMR (CDCl3): δ 
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172.28, 156.39, 143.81, 141.29, 127.73, 125.06, 120.00, 79.40, 67.06, 64.93, 51.53, 

47.15, 36.53, 33.94, 28.42, 25.07. IR (cm
-1

): 3245, 2987, 2953, 1741, 1532, 1510, 1218, 

1066, 1200. HRMS: calc [M]
+
 (C51H60N4O12):934.4364 Found: (ESI) 934. 4364. 

Synthesis of compound 2.26: Compound 2.26 (0.285 g, 0.305 mmol) was dissolved in 4 

mL of THF. To this was added 1-octanethiol  (0.529 mL, 3.05 mmol) and  DBU (0.0456 

µL, 0.0148 µmol). The reaction was stirred for 3hr, and then the solvent was removed. 

The crude mixture was then redissolved in chloroform, then precipitated from a cold 

solution of hexanes (20 mL), affording 0.0633 g of compound 2.26 as a yellow gel 0.105 

g (0.214 mmol). Yield: 70%. The product was carried on towards the next step without 

further purification. 
1
H NMR (400 MHz CDCl3): 5.19 (br s, 2H, Boc-NH-(CH2)2-CαH), 

4.15 (s, 4H, -CO2-CH2-CH3), 3.48 (br s, 2H, -CαH-CH2-CH2-NH-Boc) 3.35-3.37 (m, 2H, 

(diastereotopic),-CαH-CH2-CH2-NH-Boc), 3.22-3.25 (m, 2H, (diastereotopic), -CαH-

CH2-CH2-NH-Boc), 1.94-1.97 (m, 2H, (diastereotopic), -CαH-CH2-CH2-NH-Boc), 1.44 

(s, 18H, Boc).  

Synthesis of compound 2.27:  1,4-butanediol (0.103 mL, 1.16 mmol), was added to a 

flame-dried flask containing 2.14 (1.00 g, 2.90 mmol), DCC (0.718 g, 3.48 mmol), 

DMAP (0.0354 g, 0.290 mmol), and DPTS (0.170 g, 0.580 mmol), dissolved in distilled 

CH2Cl2 (15 mL). The solution was stirred until completion by TLC (2.0 hr). The reaction 

mixture was then diluted with CH2Cl2 and filtered over cotton to remove DCU. The 

solvent was removed, and the crude product was then purified via column 

chromotography (60:40cyclohexane: ethyl acetate, then 50:50cyclohexane: ethyl acetate) 

to give 0.689 g (0.928 mmol) of compound 2.27 as a cloudy, pale green gel. Yield: 80%. 

1
H NMR (400 MHz CDCl3): 8.47-8.49 (m, 2H, Ar-H), 7.62-7.68 (m, 4H, Ar-H), 7.08-

7.10 (m, 2H, Ar-H), 5.40 (s, 2H, Boc-NH-CαH-CO2-), 4.39-4.40 (m, 2H, -NH-CαH-CO2-

CH2-), 4.12 (s, 4H, -CO2-CH2-CH2-), 2.83-2.88 (m, 4H, -CαH-CH2-CH2-S-S-), 2.27-2.29 

(m, 2H, (diastereotopic), -CαH-CH2-CH2-S-S-), 2.02-2.06 (m, 2H, (diastereotopic), -

CαH-CH2-CH2-S-S-), 1.43 (s, 18H,  Boc). 
13

C NMR (CDCl3): δ 172.29, 159.98, 155.66, 

149.91, 137.28, 121.00, 120.05, 80.25, 65.04, 52.87, 5.01, 32.21, 28.54, 25.29. IR (cm
-1

): 

3374, 2977, 2965, 1712, 1520, 1576, 1049, 1166, 510. HRMS: calc [M]
+
 (C32H46N4O8 

S4): 742.2198 Found: (ESI) 742. 2198. 
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Synthesis of compound 2.28: Compound 2.28 (0.200 g, 0.268 mmol) was dissolved in a 

1:1 mixture of TFA:CH2Cl2 and stirred for two hours. The solvent was then removed to 

give compound 2.28 as a yellow viscous oil in quantitative yield. 
1
H NMR (400 MHz 

CD3OD): 8.44-8.45 (m, 2H, Ar-H), 7.81-7.83 (m, 4H, Ar-H), 7.26-7.29 (m, 2H, Ar-H), 

4.23- 4.30 (m, 1H, -NH-CαH-CO2-CH2-, 4H, -CO2-CH2-CH2-),  2.96-3.01 (m, 4H, -CαH-

CH2-CH2-S-S-), 2.31-2.40 (m, 4H, -CαH-CH2-CH2-S-S-), 1.71-1.73 (br s, 4H, -CO2-CH2-

CH2-). 
13

C NMR (CD3OD): δ 169.96, 159.88, 149.56, 140.34, 123.05, 122.30, 67.03, 

52.66, 34.72, 30.63, 25.88. IR (cm
-1

): 3443, 1636, 1204, 1142, 723. HRMS: calc [M]
+
 

(C22H30N4O4 S4): 542. 1150 Found: (ESI) 542. 1150. 

 Synthesis of compound 2.34: Freshly distilled N,N-diisopropylethylamine (DIPEA) 

(0.0113 mL, 11.3 mmol) was added  slowly to a reaction flask containing the nitrobenzyl 

alcohol 2.32 (2.00 g, 9.38 mmol) and 4-nitrophenyl chloroformate (2.28 g, 11.3 mmol) in 

distilled CH2Cl2 (94 mL) .  The solution was stirred until the reaction was complete as 

determined by thin layer chromatography (3 hr). The solution was then diluted with 

CH2Cl2 and washed with 1 M HCl, then with 1M NaHCO3. The organic phase was dried 

over MgSO4, filtered, and the solvent was removed in vacuo. The crude product was 

purified with column chromatography (80:20cyclohexane: ethyl acetate, then 

60:40cyclohexane: ethyl acetate), yielding 2.34 (1.70 g, 4.50 mmol) as an off white 

powder. Yield: 48 %. 
1
H NMR (400 MHz CDCl3): 8.30-8.32 (m, 2H, Ar-H), 7.78 (s, 1H, 

Ar-H), 7.41-7.44 (m, 2H, Ar-H), 7.12 (s, 1H, Ar-H), 5.72 (s, 2H, Ph-CH2-CO2-Ph), 4.0-

4.04 (s, 9H, CH3-Ph). 
13

C NMR (CDCl3): δ 154.97, 153.32, 151.68, 148.42, 145.14, 

139.62, 124.98, 121.35, 110.26, 108.01, 67.30, 56. 20. HRMS: calc [M]
+
 (C16H14N2O9): 

378.0699 Found: (CI) 378.0699. 

Synthesis of polymer 2.1: The di-p-toluenesulfonic acid salt monomer 2.29, whose 

synthesis has been previously reported elsewhere,
80

 (1.71g, 2.35 mmol) and sodium 

carbonate (0.654 g, 6.17 mmol) were dissolved in distilled water (20 mL).  Diester 2.26 

(0.288 g, 0.587 mmol) was dissolved in dichloromethane (20 mL) and added to the 

aqueous phase and allowed to mix for 30 min.  Sebacoyl chloride (0.628 mL, 2.94 mmol) 

diluted in anhydrous dichloromethane (5 mL), was added drop wise over 30 min to the 

biphasic solution and was allowed to react for 24 hr.  Upon completion of the reaction, 
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solvent was removed in vacuo. The resulting polymer was redissolved in DMF, 

permitting filtration of the insoluble salts. The filtrate was then dialysed against DMF for 

24 hrs, with at least one dialysate change over this time period. The purified PEA was 

precipitated in water (5 mL) and lyophilized for 24 hrs to give an off white solid (1.31 g, 

1.91 mmol). Yield: 65%. 
1
H NMR (600 MHz DMSO): 8.22 (d, J= 7.63, 1.6H, -CO-NH-

CαH-CH2-Ph), 8.13 (d, J=7.63, 0.4H, -CO-NH-CαH-CO2-), 7.17-7.26 (m, 8H, Ph) 6.78 (s, 

0.4H, Boc-NH-(CH2)2-CαH-), 4.43-4.47 (m, 1.6H, -CO-NH-CαH-CH2-Ph), 4.18-4.21 (m, 

0.4H, Boc-NH-(CH2)2-CαH-), 4.03(s, 0.8H, Boc-NH-(CH2)2-CαH-CO2-CH2-), 3.96 (s, 

1.6H, Ph-CH2-CαH-CO2-CH2-), 2.87-3.01 (m, 4H, -CαH-CH2-Ph, -CαH-CH2-CH2-NH-

Boc), 2.09 (b s, 0.8H, -NH-CO-CH2-), 2.02-2.04 (m, 3.2H, -NH-CO2-CH2-), 1.83-1.84 

(m, 0.4H, (diastereotopic), -CαH-CH2-CH2-NH-Boc), 1.63-1.69 (m, 0.4H, 

(diastereotopic), -CαH-CH2-CH2-NH-Boc), 1.60 (s, 0.8H, -CO2-CH2-CH2-), 1.43 (b s, 

3.2H, -CO2-CH2-CH2-), 1.36 (b s, 3.2H, -NH-CO-CH2-CH2-), 1.32 (s, 3.6H, Boc), 1.20 (b 

s, 0.8H, -NH-CO-CH2-CH2-), 1.11 (b s, 8H, -NH-CO-CH2-CH2-CH2-, -NH-CO-CH2-

CH2-CH2-CH2-). IR (cm
-1

): 3442, 2930, 2875, 1647, 1523, 1180, 1201, 700. SEC: Mn 

=155,500; Mw = 126,400; PDI = 1.23.  

Synthesis of polymer 2.2: The di-p-toluenesulfonic acid salt monomer 2.29,
80

 (3.85 g, 

5.28 mmol) and sodium carbonate (1.47 g, 13.9 mmol) were dissolved in distilled water 

(33 mL). Diester 2.28 (1.02 g, 1.32 mmol) was dissolved in mixture containing 

dichloromethane (23 mL)  and THF (2 mL), then added to the aqueous phase and allowed 

to mix for 30 min.  Sebacoyl chloride (1.41 mL, 6.6 mmol) diluted in anhydrous 

dichloromethane (8 mL), was added drop wise over 30 min to the biphasic solution and 

was allowed to react for 24 hr.  Upon completion of the reaction, solvent was removed in 

vacuo.  The resulting polymer was purified as described above for polymer 2.2 to give an 

off-white solid (2.34 g, 3.3 mmol). Yield: 50 %. 
1
H NMR (600 MHz DMSO): 8.47-8.49 

(s, 0.4H,  Ar-H) 8.23 (d, J= 7.63, 1.6H, -CO-NH-CαH-CH2-Ph), 7.72-7.79 (m, 0.4H, Ar-

H), 7.17-7.26 (m, 8.4H, Ph, Ar-H), 4.43-4.47 (m, 1.6H, -CO-NH-CαH-CH2-Ph), 4.38-

4.39 (m, 0.4H, Pyr-S-S-(CH2)2-CαH-), 3.96 (s, 4H, Pyr-S-S-(CH2)2-CαH-CO2-CH2-, Ph-

CH2-CαH-CO2-CH2-), 2.87-3.01 (m, 4H, -CαH-CH2-Ph, Pyr-S-S-CH2-CH2-), 2.16-

2.17(m, 0.4H, (diastereotopic), Pyr-S-S-CH2-CH2-), 2.07 (m, 0.8H, -NH-CO2-CH2-), 

2.02-2.04 (m, 3.2H, -NH-CO-CH2-), 1.94-1.98 (m, 0.4H, diastereotopic (Pyr-S-S-CH2-
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CH2-), 1.52 (s, 0.8H, -CO2-CH2-CH2-), 1.44 (b s, 3.2H, -CO2-CH2-CH2-), 1.36 (b s, 4H, -

NH-CO-CH2-CH2-, -NH-CO-CH2-CH2), 1.11 (s, 8H, -NH-CO-CH2-CH2-CH2-, -NH-CO-

CH2-CH2-CH2-CH2-). IR (cm
-1

): 3443, 2926, 2850, 1644, 1455, 1510, 1180, 1200, 700. 

SEC: Mn = 98,300; Mw = 79,300; PDI = 1.24.  

Synthesis of compound 2.30: Compound 2.1  (0.300g, 0.457 mmol) was dissolved in a 

1:1 mixture of TFA:CH2Cl2 and stirred for 2 hr. The solvent was then removed to give 

compound  2.30 as slightly brown oil in quantitative yield. The polymer was precipitated 

into cold water yielding polymer 2.30 as a white solid (2.35 g, 3.43 mmol). Yield: 75%. 

1
H NMR (400 MHz DMSO): 8.19 (s, 1.6H, -CO-NH-CαH-CH2-Ph), 7.15-7.19 (m, 8H, 

Ph), 4.43-4.47 (m, 1.6H, CO-NH-CαH-CH2-Ph), 4.30-4.33 (m, 0.4H, Boc-NH-(CH2)2-

CαH-), 4.04 (s, 0.8H, Boc-NH-(CH2)2-CαH-CO2-CH2-), 3.92 (s, 1.6H, Ph-CH2-CαH-CO2-

CH2-), 2.87-3.01 (m, 4H, -CαH-CH2-Ph, -CαH-CH2-CH2-NH3
+
TFA

-
), 2.10 (b s, 0.8H, -

NH-CO-CH2-), 2.02-2.04 (m, 3.2H, -NH-CO-CH2-), 1.87-1.90 (m, 0.8H, -CαH-CH2-

CH2-NH3
+
TFA

-
), 1.60 (s, 0.8H, -CO2-CH2-CH2-), 1.42 (b s, 3.2H, -CO2-CH2-CH2-), 1.34 

(b s, 3.2H, -NH-CO-CH2-CH2), 1.20 (b s, 0.8H, -NH-CO-CH2-CH2-), 1.11 (b s, 8H, -NH-

CO-CH2-CH2-CH2-, -NH-CO-CH2-CH2-CH2-CH2-). SEC: Mn =91, 800; Mw = 75, 400 

PDI = 1.22 

Synthesis of compound 2.35: Compound 2.34 (0.503 g, 1.33 mmol) and DMAP (0.121 

g, 0.998 mmol) was dissolved in a mixture containing toluene (4 mL) and CH2Cl2 (7 

mL). To this reaction flask was added 2.30 (0.384 g, 0.562) dissolved in CH2Cl2 (5 mL), 

then freshly distilled DIPEA (2 mL, 9.98 mmol).The reaction mixture was then stirred for 

3 days. The solution was then diluted with CH2Cl2 and washed with 1 M HCl, then with 1 

M NaHCO3.The organic layer was dried over MgSO4, filtered, and the solvent was 

removed in vacuo. The resulting polymer was purified as described above for polymer 

2.1 and 2.2 to give an amber colored solid The purified PEA was precipitated in water (5 

mL) and lyophilized for 24 hrs to an amber colored solid (0.229 g, 0.253 mmol). Yield: 

45%.  
1
H NMR (400 MHz DMSO): 8. 23 (d, J= 7.80, 1.6H, -CO-NH-CαH-CH2-Ph), 8.16 

(d, J=7.63, 0.4H, -CO-NH-CαH-CO2-), 7.67 (s, 0.4H, Ar-H), 7.47 (s, 0.4H, -CO2-NH-

(CH2)2-), 7.16-7.25 (m, 8.4H, Ph, Ar-H), 5.31 (s, 0.8H, Ar-CH2-CO2-NH-) 4.42-4.48 (m, 

1.6H, -CO-NH-CαH-CH2-Ph), 4.21-4.24 (m, 0.4H, -CH2-CO2-NH-(CH2)2-CαH-), 4.03 (s, 
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0.8H, -NH-(CH2)2-CαH-CO2-CH2-), 3.96 (s, 1.6H, Ph-CH2-CαH-CO2-CH2-), 3.88 (s, 

1.2H, CH3-O-Ar), 3.84 (s, 1.2H, CH3-O-Ar), 3.03-3.06 (m, 0.8H, -CαH-CH2-CH2-NH-

CO2-CH2-Ar),  2.87-3.01 (m, 3.2H, -CαH-CH2-Ph), 2.08 (m, 0.8H, -NH-CO-CH2-),  2.02-

2.04 (m, 3.2H, -NH-CO-CH2-), 1.81-1.87 (m, 0.4H, (diastereotopic), -CαH-CH2-CH2-

NH-CO2-CH2-Ar),  1.71-1.77 (m, 0.4H, (diastereotopic), -CαH-CH2-CH2-NH-CO2-CH2-

Ar), 1.58 (s, 0.8H, -CO2-CH2-CH2-), 1.44-1.45 (m, 3.2H, -CO2-CH2-CH2-), 1.35-1.39 (m, 

3.2H, -NH-CO-CH2-CH2), 1.11 (b s, 8H, -NH-CO-CH2-CH2-CH2-, -NH-CO-CH2-CH2-

CH2-CH2-).  SEC: Mn =72, 200; Mw = 101, 900; PDI = 1.41. 

Small molecule compound cyclization studies. In the case of compound 2.3, the Boc 

group was removed by placing the compound in a 1:1 ratio of TFA:CH2Cl2. Compounds 

2.3, 2.4 were dissolved in either pH 7.4 phosphate buffered D2O or 7:2:1 ratio of DMSO: 

acetone –D6: 0.1 M, pH 7.4phosphate buffer D2O. For compounds 2.16 and 2.4, the pH 

was readjusted to 7.4 to account for the addition of any acid in the form of TFA salts. In 

the case of compound 2.4, DTT (10 mg, 0.0648 mmol) was added. The samples were 

then incubated in a sand bath and 
1
H NMR spectra were obtained at regular intervals. The 

degree of ethanol evolution was calculated based on the relative integrations of the peaks 

corresponding to the methyl group of ethanol and that of the ethyl ester. First order rate 

constants were determined as the slope of ln (percent remaining) vs. time (hr) and the 

corresponding half lives were calculated as t1/2= ln(2)/ k 

Polymer degradation studies in solution. Polymers 2.1, 2.2, and 2.31 were dissolved in 

7:2:1 ratio of DMSO: acetone –D6: 0.1 M pH 7.4 phosphate buffer D2O and incubated in 

a 70° C oven for two weeks. Aliquots were taken and were lyophilized for at least 24 hr, 

then redissolved in DMF eluent and submitted for SEC analysis 

Polymer film degradation studies. Polymers 2.1, 2.2, 2.30 and 2.31 were melt pressed 

using a Carver 3851c two post hydraulic press at 500 psi and 45 °C. The samples were 

then immersed in a 1 mL solution of phosphate buffer (pH=7.4), for a period of 8 weeks. 

For polymer 2.2, 5 mg of DTT was added. Samples were then taken out periodically, 

washed thoroughly in order to remove any salts, then lyophilized for 24 hr. In the case of 

polymer 2.35, the polymer was first dissolved at a concentration of 20 mg/mL, then an 
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aliquot (10 μL) was deposited onto a glass cover slip using a Laurell WS-400Bz-6NPP-

Lite spin coater, operating at 2300 RPM for 10 seconds. The thickness of the spin coated 

polymers was measured using a KLA Tensor P-10 profiler equipped with a tungsten 

stylus with a diamond on the tip. The applied force was 3 mg and scan speed was 200 

μm/s. The average thickness of the films was found to be 221.23 nm. Irradiation was 

performed using a medium-pressure mercury lamp (Hanovia S9 PC451050/805221). UV-

visible spectroscopy experiments were carried out using a Varian Cary 300 Bio UV-

visible spectrophotometer.  In all cases, all polymers were mounted on aluminum stubs 

with carbon tape (or adhesive for polymer 2.35), then sputter coated with gold. The 

surface microstructure was then imaged by scanning electron microscopy (SEM) (S-

2600N, Hitachi, Japan).  
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Chapter 3                                                               
Conclusions 

3.1    Concluding remarks and future directions 

The ability to trigger the degradation of a polymer is attractive for many biological 

applications. For example, in the area of drug delivery, a polymeric system may circulate 

without decomposing and thus retain its therapeutic efficacy. However, once this polymer 

encounters a stimulus that triggers its degradation, it can release its payload to a specific 

part of the body, rather than unloading it in undesirable locations such as the heart, or the 

liver.  

To this end, this thesis described the development of the first stimuli responsive 

PEAs. This was accomplished by combining the principles of self-immolative spacers 

and PEAs containing functional pendant groups, by incorporating monomers that are 

capable of 1,5-cyclization reactions into the PEA backbone. In addition, these spacers 

contain protecting groups sensitive to external stimuli such as light or changes in pH or 

redox potential, such that once cleavage occurs; the functional moiety is revealed and 

induces the degradation of the PEA backbone. Kinetic studies on aliphatic esters indicate 

that the degradation of an ester containing these spacers is accelerated, as opposed to 

those that do not contain it, thereby supporting the mechanism of degradation. 

The polymers were synthesized and subjected to degradation studies. It was found 

that even in an organic solution, the polymers containing the self-immolative spacers 

degraded faster than their control counter-parts. In addition, studies were carried out on 

thin films and the result was the same; the polymers containing the self-immolative 

spacers exhibited more mass loss and exhibited more surface erosion than their control 

counterparts. The mass loss study results are attractive in that there have not been too 

many studies of PEAs in neutral conditions only, as most of them have been undertaken 

in the presence of enzymes, whose presence in physiological environments require 

special conditions.
 1

 Also, since the mass loss was gradual, this could be applied to drug 

delivery applications, as sustained release is attractive in these studies. 
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 As well as synthesizing polymers sensitive to changes in pH and redox potential, 

a polymer that was sensitive to light was also synthesized. Since the Boc group cannot be 

cleaved under physiological conditions, a protecting group sensitive to light was chosen 

due to its ability to be applicable to biological applications. The polymer was subjected to 

the same degradation conditions as the other polymers (in addition to being irradiated) 

and it was found that compared to its control counter part (non irradiated), the polymer 

degraded faster. The polymers were then cast into films in order to determine if the 

results were applicable on the surface, as well. The polymer that was irradiated exhibited 

more surface erosion than its control, which was not irradiated. This study not only shows 

that degradation containing these spacers is accelerated; it also exhibits the robustness of 

the PEA backbone, able to incorporate different functional groups such that degradation 

can be done via different stimuli. 

 Due to their ability to exhibit triggered degradation and subsequently to degrade 

over time (as seen with the mass loss studies), these PEAs are attractive as drug delivery 

vehicles. They can potentially release the drug once the stimulus is applied and can 

release it over time due to their sustained release. However, work needs to be done to 

make these polymers more hydrophilic as they are quite hydrophobic. This could be 

circumvented by replacing the diol with ethylene glycol,
2
 or by attaching a hydrophilic 

chain to the pendant functional group, as has been previously reported by our group to 

make self-assemblies.
3
 Also, since the PEA backbone is able to incorporate different 

monomers, different ratios of different monomers containing different protecting groups 

could be synthesized, such that the polymer is multi responsive to different stimuli.
4,5,6
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Appendix 

 

 

 

Figure A.1 First order plot of 2.16 monomer degradation. 

 

Figure A.2 First order plot of 2.17 monomer degradation. 
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Figure A.3 First order plot of 2.3 monomer control. 

 

Figure A.4 First order plot of 2.17, without DTT. 
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Figure A.5 
1
H NMR (400 MHz) spectra in pH 7.4 phosphate buffered D2O of a) DAB 

derivative 2.3 immediately following dissolution in the buffer. b) After 34.5 hr in the 

same buffer. c) After 70 hr in the same buffer. 
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Figure A.6 
1
H (400 MHz) NMR spectra in pH 7.4 phosphate buffered D2O of a) Hcy 

derivative 2.4 immediately following dissolution in the buffer. b) After 16 hr in the same 

buffer. c) After 75 hr in the same buffer. 
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Figure A.7 
1
H NMR (400 MHz) spectra in pH 7.4 phosphate buffered D2O of DAB 

amino acid. 

 

Figure A.8 
1
H NMR (400 MHz) spectra in pH 7.4 phosphate buffered D2O of Hcy amino 

acid. 
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Figure A.9 
1
H NMR (400 MHz) spectra in D2O of DAB amino acid prior to degradation. 

 

Figure A.10 
1
H NMR (400 MHz) spectra in D2O of Hcy amino acid prior to DTT 

cleavage. 
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Figure A.11 
1
H (400 MHz) NMR spectra in 7:2:1 ratio of DMSO: acetone –D6: 0.1 M, 

pH 7.4 phosphate buffered D2O of compound a) DAB derivative 2.16 immediately 

following dissolution. b) After 2 days in the same solution. c) After 8 days in the same 

solution. 
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Figure A.12 
1
H (400 MHz) NMR spectra in 7:2:1 ratio of DMSO: acetone –D6: 0.1 M, 

pH 7.4 phosphate buffered D2O of compound a) DAB derivative 2.3 immediately 

following dissolution. b) After 21 days in the same solution. c) After 46 days in the same 

solution. 
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Figure A.13 
1
H (400 MHz) NMR spectra in 7:2:1 ratio of DMSO: acetone –D6: 0.1 M, 

pH 7.4 phosphate buffered D2O of compound a) Hcy derivative 2.17 immediately 

following dissolution. b) After 8 days in the same solution. c) After 39 days in the same 

solution. 
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Figure A.14 
1
H (400 MHz) NMR spectra in 7:2:1 ratio of DMSO: acetone –D6: 0.1 M, 

pH 7.4 phosphate buffered D2O of compound a) Polymer 2.1 immediately following 

dissolution. b) After 2 weeks in the same solution.  
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Figure A.15 
1
H (400 MHz) NMR spectra in 7:2:1 ratio of DMSO: acetone –D6: 0.1 M, 

pH 7.4 phosphate buffered D2O of compound a) Polymer 2.30 immediately following 

dissolution. b) After 2 weeks in the same solution. 
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Figure A.16 
1
H (400 MHz) NMR spectra in 7:2:1 ratio of DMSO: acetone –D6: 0.1 M, 

pH 7.4 phosphate buffered D2O of compound a) Polymer 2.2 immediately following 

dissolution. b) After 2 weeks in the same solution. 
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Figure A.17 
1
H NMR (400 MHz) and 

13
C NMR (100 MHz) spectra of compound 2.9 in 

CDCl3. 



105 

 

 

Figure A.18 
1
H NMR (400 MHz) in D2O and 

13
C NMR (100 MHz) spectra of compound 

2.3 in CDCl3. 
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Figure A.19 
1
H NMR (400 MHz) and 

13
C NMR (150 MHz) spectra of compound 2.12 in 

CD3OD. 
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Figure A.20 
1
H NMR (400 MHz) and 

13
C NMR (100 MHz) spectra of compound 2.14 in 

CDCl3. 
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Figure A.21 
1
H NMR (400 MHz) and 

13
C NMR (100 MHz) spectra of compound 2.15 in 

CDCl3. 
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Figure A.22 
1
H NMR (400 MHz) in D2O and 

13
C NMR (150 MHz) spectra of compound 

2.4 in CD3OD. 
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Figure A.23 
1
H NMR (400 MHz) and 

13
C NMR (100 MHz) spectra of compound 2.26 in 

CDCl3.  
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Figure A.24 
1
H NMR (400 MHz) of compound 2.27 in CDCl3.  
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Figure A.25 
1
H NMR (400 MHz) and 

13
C NMR (100 MHz) spectra of compound 2.28 in 

CDCl3. 
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Figure A.26 
1
H NMR (400 MHz) and 

13
C NMR (100 MHz) spectra of compound 2.29 in 

CD3OD.  
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Figure A.27 
1
H NMR (400 MHz) and 

13
C NMR (100 MHz) spectra of compound 2.34. 
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Figure A.28 SEC chromatogram of melt-pressed polymer 2.2 before and after 5 weeks of 

degradation. 
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