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Abstract 

A major question in landscape genetics is how habitat structure influences spatial patterns 

of genetic differentiation. In this study, I evaluate the relative importance and effects of 

aspects of habitat composition (habitat amount) and configuration (patch size and 

isolation) on the spatial genetic structure of the pitcher plant midge, Metriocnemus knabi, 

whose larvae are found exclusively within the water-filled leaves of pitcher plants 

(Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., 

leaf, plant, cluster, bog). I estimated genetic differentiation (FST) among leaves, plants, 

and clusters using 11 microsatellite loci, and measured the amount of habitat, patch size, 

and patch isolation at each spatial scale. Multi-model inference analyses indicate that the 

amount of habitat in the surrounding landscape (i.e., bog) and broad-scale patch isolation 

are the strongest predictors of genetic differentiation at local spatial scales (i.e., plant, 

cluster), and habitat amount and isolation have an interactive effect on FST estimates at 

the broader bog scale. These results reinforce the value of considering how ecological 

and evolutionary processes (i.e., behaviour, dispersal, gene flow, drift) occurring across 

multiple spatial scales may influence patterns of genetic differentiation.     

 

 

 

Keywords: Landscape genetics, habitat composition, habitat configuration, isolation, 

dispersal, genetic structure, spatial scale, microsatellite, Metriocnemus knabi 
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Chapter 1.0 

Introduction  

The relative abundance and distribution of different types of habitat in a landscape is one 

of the most influential factors determining biodiversity and driving regional patterns of 

biodiversity change over both space and time (Turner et al. 2001). Habitat structure refers 

to the abundance and distribution of suitable habitat for any given species within a 

landscape. Two distinct and quantifiable components comprise habitat structure: 

composition and configuration. Habitat composition describes the relative amount of 

suitable habitat in a landscape and is a key determinant of the quality of the landscape 

based on the resource requirements of a particular species. Habitat configuration 

describes the spatial characteristics and arrangement of habitat patches within a landscape 

and can define the connectedness of populations or sub-populations in the landscape. 

Both habitat composition and configuration can influence ecological (e.g., behaviour, 

dispersal, reproduction) and evolutionary processes (e.g., genetic drift, gene flow), which 

in turn contribute to the long-term sustainability of natural populations and biodiversity 

(MacArthur and Wilson 1963, 1967; Diamond 1975).  

Landscapes with more suitable habitat and larger patch sizes (an aspect of habitat 

configuration) can accommodate larger populations and residents are expected to spend 

more time in habitat obtaining and allocating resources for survival and reproduction than 

residents in landscapes with less habitat and smaller patch sizes (MacArthur and Wilson 

1963, 1967). When the distance between habitat patches is small (an aspect of habitat 

configuration), individuals moving among patches experience a reduced risk of dispersal 

mortality (MacArthur and Wilson 1963, 1967). Thus, by affecting landscape- and patch-
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scale carrying capacity, as well as rates of emigration and immigration among patches, 

habitat composition and configuration influence population density, patch re-colonization 

rates, and the dynamics of local population persistence and extinction (MacArthur and 

Wilson 1963, 1967; Shaffer 1981; Wiegand et al. 1999, 2005; Hanski and Ovaskainen 

2000; Revilla and Wiegand 2008). As such, large amounts of habitat and large, well-

connected habitat patches have been considered critical reserve requirements because of 

their positive relationship with species richness and abundance (MacArthur and Wilson 

1967; Shaffer 1981). Furthermore, small populations that experience frequent extinction-

re-colonization events have lower effective population sizes and experience high levels of 

genetic drift (Frankham et al. 2004). Drift can erode genetic diversity if it is not 

countered by gene flow which acts to homogenize allelic patterns among populations and 

introduce new genetic variation into populations. Thus, small amounts of habitat, and/or 

small and isolated habitat patches can lead to decreased levels of population genetic 

diversity, elevated fitness costs as a result of inbreeding, and increased risk of regional 

extinction (Vario et al. 1986; Fahrig and Merriam 1994; Gibbs 1998; Nieminem et al. 

2001; Reed and Frankham 2003; Keyghobadi 2007). Overall, understanding how habitat 

structure influences ecological and genetic patterns and processes is key to the science 

and practice of conservation, as it determines our ability to predict how species 

populations respond to changes in land use over space and time, and to manage reserves 

for long-term persistence of populations (Fahrig 2002; Ovaskainen 2002; Fahrig 2003).   

 The relative importance of habitat configuration versus composition for 

ecological processes is a long-standing issue in landscape ecology (Turner 2005), 

particularly within the context of understanding the effects of habitat loss and 
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fragmentation on species and ecosystems (reviewed in Fahrig 2003). This issue traces its 

roots to the 'single large or several small' (SLOSS) debate, which focused on whether it is 

preferable to maintain fewer, large tracts of habitat or numerous, small patches of habitat 

for conservation (Diamond 1975; Simberloff and Abele 1976, 1982; Wilcox and Murphy 

1985). Typically, habitat fragmentation, which results from the transformation of a 

contiguous expanse of habitat into a number of smaller patches, occurs in such a way that 

habitat loss and the physical breaking up of habitat patches (fragmentation per se, sensu 

Fahrig 2003) occur simultaneously, and thus the effects of changes in habitat composition 

and configuration are confounded. As a result, it is very difficult to assess to what extent 

the changes in species abundances and species diversity that occur in response to habitat 

fragmentation are driven simply by the loss of habitat, versus changes in the spatial 

configuration of habitat patches (Fahrig 1997, 1998, 2001, 2003). Some ecological field 

studies have been able to measure habitat composition and configuration independently 

(e.g., Fahrig 1997; Trzcinski et al. 1999; Villard et al. 1999; Schmiegelow and 

Monkkonen 2002; Cushman and McGarigal 2004) and more recent studies have 

manipulated composition and configuration experimentally (Bonin et al. 2011; With and 

Pavuk 2011). Overall, the results of these studies indicate that the spatial arrangement of 

a species' habitat often contributes little to species occupancy, abundance, and 

distribution patterns, particularly when the amount of habitat in the landscape is high. 

However, when a species' habitat becomes less abundant (e.g., 10–30%; Radford et al. 

2005), the spatial arrangement of the habitat becomes increasingly important (McGarigal 

and McComb 1995; Fahrig 1997, 1998; Trzcinski et al. 1999, Villard et al. 1999). Thus, 

there can be a strong, but highly context-dependent influence of habitat configuration on 
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the distribution and abundance of species above and beyond the effect of habitat 

composition. Theoretical and simulation studies support these general conclusions 

regarding the relative importance of habitat amount and configuration on species 

occupancy and abundance (With and Crist 1995; Fahrig 1997, 1998; Hill and Caswell 

1999; With and King 1999; Fahrig 2001, 2002; Flather and Bevers 2002). 

 The field of landscape genetics is concerned with how characteristics of a 

landscape can influence the genetic diversity or genetic structure of populations, 

primarily through effects on dispersal and gene flow among populations (Manel et al. 

2003). Genetic diversity refers to the proportion of loci that are polymorphic, or the mean 

number of individuals that are polymorphic at targeted loci. Example measures of 

population genetic diversity include allelic richness (i.e., the number of alleles per locus) 

or heterozygosity (the proportion of individuals that have two different alleles at a 

particular locus). Changes in the level of genetic diversity, such as the loss of alleles, may 

impede adaptation of populations to changes in environmental conditions (Reed and 

Frankham 2003). Genetic structure, or genetic differentiation, describes patterns in allele 

frequencies at a single locus or multiple loci, between individuals, groups of individuals, 

or populations. Common measures of genetic structure assess the partitioning of genetic 

diversity between groups of individuals, or subpopulations, within the greater population 

(e.g., FST). Measures of genetic diversity and genetic structure can be used to indirectly 

quantify the level of gene flow among individuals of different populations. For example, 

one may infer limited gene flow among individuals of different subpopulations if they 

have few alleles in common, or if a large amount of population genetic diversity is 

contained within subpopulations rather than among subpopulations. Understanding the 
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degree of genetic connectivity of populations across landscapes is critical for species 

conservation as gene flow maintains local genetic variation by counteracting genetic drift 

and introduces potentially adaptive alleles. Many landscape genetics studies focus 

particularly on the role of potential barriers in the landscape (e.g., roads, water bodies, 

unsuitable habitats) as impediments to gene flow, and characterize the 'connectedness' of 

populations based on their degree of genetic similarity (Storfer et al. 2010). Physical 

barriers to movement between populations can reduce gene flow, in turn reducing genetic 

diversity within local populations and increasing genetic differentiation among them 

(e.g., Segelbacher and Storch 2002; Keller and Largiader 2003).  

 Understanding how genetic diversity and spatial genetic structure change in 

response to habitat fragmentation is also a key area of research in landscape genetics 

(Manel et al. 2003; Storfer et al. 2010). The increased isolation and reduced size of 

habitat patches in fragmented landscapes are expected to leave populations smaller and 

more isolated than populations in unfragmented landscapes. As a result, populations in 

fragmented landscapes are predicted to experience both reduced gene flow and increased 

genetic drift (Keyghobadi 2007). Reduced gene flow and increased levels of drift work in 

combination to generate greater genetic divergence among populations and a loss of 

genetic diversity within local populations (e.g., Van Dongen et al. 1998; Knutsen et al. 

2000; Arnaud et al. 2003).  

Despite significant interest in the effects of habitat fragmentation on the genetics 

of populations, investigations that have explicitly tested the interaction of habitat 

composition and configuration on spatial patterns of genetic structure, or examined 

configuration effects on genetic structure while controlling for composition, are limited to 
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simulation experiments (Bruggeman et al. 2010; Cushman et al. 2012). In contrast to the 

ecological studies examining habitat composition and configuration effects of species 

abundances and distributions, genetic simulation studies conclude that habitat 

configuration can be more important than habitat area in determining genetic 

differentiation among populations. In simulation modeling of red-cockaded woodpecker 

data, habitat fragmentation per se strongly affected effective population size, FST patterns, 

as well as species abundance (Bruggeman et al. 2010). Cushman et al.’s (2012) results 

similarly indicate that habitat configuration variables, particularly habitat patch cohesion, 

correlation length, and aggregation index, are stronger determinants of population genetic 

differentiation than is habitat area (Cushman et al. 2012).  

 While habitat composition and configuration can both affect genetic structure 

(Cushman et al. 2012), their relative influence may vary with spatial scale. Since the 

driving processes underlying genetic structure (e.g., mating, reproductive behaviour, 

dispersal, genetic drift) each operate at unique spatial scales, it is critically important to 

match the scale of each driving factor with the scale of pattern examined (Wiens 1989; 

Balkenhol et al. 2009; Anderson et al. 2010). Furthermore, contemporary changes in 

landscapes rarely result in instantaneously observable changes in the genetic structure of 

resident populations. A temporal lag of tens to thousands of generations is required for 

changes in population structure to be detected, and the duration of the lag is highly 

dependent on standing population genetic variation, effective population sizes, and 

inherent species dispersal rates (Varvio et al. 1986; Cushman and Landguth 2010; 

Landguth et al. 2010). Moreover, historical legacies of ancient population genetic 

structure can confound conclusions regarding the driving factor behind observed 
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contemporary genetic patterns, and can lead to erroneous inferences regarding the 

importance of contemporary processes (Thompson and McGarigal 2002; Cushman and 

Landguth 2010). At increasing spatial scales the requirement of long time lags and 

likelihood of strong historical genetic signatures is high, further contributing to 

differences among scales in the underlying processes determining patterns of genetic 

structure. 

 My study evaluates the relative influence of aspects of habitat composition and 

configuration on the population genetic structure of the pitcher plant midge, 

Metriocnemus knabi Coquillett (Diptera, Chironomidae) at multiple spatial scales. 

Metriocnemus knabi (Coquillett 1904) larvae are found exclusively within the fluid-filled 

leaves of the purple pitcher plant, Sarracenia purpurea L., throughout nutrient-poor and 

patchy bog habitats across eastern North America. The aquatic environment provided by 

the pitcher plant represents an ecological microcosm that supports an assemblage of 

invertebrates, protists, rotifers, and bacteria (Giberson and Hardwick 1999). This 

microcosm has been used extensively in ecological research to address questions related 

to population regulation, community interactions and patterns, and ecosystem processes 

(Addicott 1974; Heard 1994b; Cochran-Stafira and von Ende 1998; Srivastava et al. 

2004; Kadowaki et al. 2012). In addition to M. knabi, larvae of a flesh fly (Fletcherimyia 

fletcheri) and of a mosquito species (Wyeomyia smithii) also develop exclusively within 

S. purpurea. The dipteran larvae have a commensal relationship with the plant, whereby 

the plant provides a suitable aquatic environment and food from trapped decomposing 

prey. While the plant may not be completely dependent on the larvae, their presence can 

contribute to enhanced decomposition of dead prey material and to enhanced production 
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and availability of nitrogenous nutrients for the plant (Gallie and Chang 1977; Bradshaw 

and Creelman 1984).  

At temperate latitudes, M. knabi is univoltine and adults emerge in late spring 

(June-July). Little is known about the adult life stage, although adults are small in size 

(approximately 3 mm in length) and likely have weak flight abilities (Knab 1905; Wiens 

1972; Krawchuk and Taylor 2003; pers. obs.). Females deposit eggs within pitcher leaves 

and multiple larvae (~ 15 individuals) can be found developing within a single pitcher 

leaf in late summer (July-August; Heard 1994b; Giberson and Hardwick 1999). Multiple 

leaves are found in each pitcher plant, and the plants tend to grow in clusters, likely as a 

result of short seed dispersal (~ 5 cm, Ellison and Parker 2002). Thus the habitat of M. 

knabi is clearly defined by S. purpurea and provides a series of discrete habitat patches 

that are hierarchically nested at several spatial scales (leaf, plant, cluster, and bog). The 

abundance and distribution of leaves within pitcher plants, plants within clusters, and 

clusters within bogs vary widely, so that various combinations of habitat composition and 

configuration occur naturally at each scale. As a result, M. knabi, as well as the other 

obligate inhabitants of the purple pitcher plant, provides a naturally occurring system 

within which we can observe and independently measure varying amounts of habitat and 

spatial configurations of habitat within the landscape. 

An ecological investigation of all three pitcher plant dipterans (F. fletcheri, M. 

knabi, W. smithii) has shown a significant relationship between larval abundance and 

habitat structure (Krawchuk and Taylor 2003). In general, habitat configuration had a 

consistently significant effect on larval species abundance regardless of the amount of 

habitat in the surrounding landscape, although habitat patch size was found to be more 
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important than configuration metrics at distances within the dispersal range of individuals 

(i.e., leaf, plant), while habitat isolation became important at larger scales (i.e., cluster 

and bog; Krawchuk and Taylor 2003). Previous genetic analyses on M. knabi using 

individual-based measures of genetic differentiation indicate significant genetic 

structuring among all habitat spatial scales (i.e., leaf, plant, cluster, and bog) and greater 

partitioning of genetic variability at the higher spatial scales (i.e., cluster, bog) (Rasic and 

Keyghobadi 2012). In addition, landscape variables in the broader landscape, such as bog 

size and plant density, accounted for approximately 50% of the genetic differentiation 

among individuals (Rasic and Keyghobadi 2012). Therefore there is evidence that M. 

knabi responds to metrics of habitat structure, and that the relationship may be scale-

dependant.   

 In this study, I use independent measures of habitat composition and 

configuration, and measures of genetic differentiation, to evaluate the relative effect of 

the amount of habitat, patch size, and patch isolation on patterns of genetic structure in 

Metriocnemus knabi across three spatial scales (i.e., plant, cluster, bog). By measuring  

the genetic differentiation among leaves within plants (plant scale), among plants within 

clusters (cluster scale), and among clusters within bogs (bog scale), I aim to quantify the 

relative importance of habitat composition and configuration at each spatial scale and 

determine whether the effects of habitat composition and configuration on genetic 

structure changes at different spatial scales. In my study, each plant, cluster, and bog can 

be thought of as a replicate 'landscape' from which I have sampled multiple habitat 

patches. At each scale, I estimate the genetic differentiation among the sampled patches 

within each 'landscape', and relate measures of differentiation to composition and 
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configuration metrics. The size and distance among sampled habitat patches are key 

configuration metrics commonly measured in landscape genetic and habitat 

fragmentation studies, and are highly likely to influence the degree of differentiation 

among populations. Since patch size influences local population size and potentially 

genetic drift, while patch isolation influences the rate of gene flow between sites 

(Bruggeman et al. 2010; Cushman et al. 2012), I predict that habitat configuration (i.e., 

patch size and isolation) will significantly affect patterns of spatial genetic structure. 

Furthermore, because genetic differentiation is shaped by evolutionary and ecological 

processes that operate at multiple spatial scales, I predict that the influence of habitat 

configuration will depend on the spatial scale of interest. Specifically, genetic 

differentiation among leaves and among plants are most likely driven by the female 

oviposition behaviour and stochastic colonization/mortality rates, whereas genetic 

differentiation among clusters are most likely the result of patterns of dispersal and gene 

flow, which are limited by increasing spatial distances. Thus, with increasing spatial 

scale, I predict an elevated importance of habitat isolation above patch size. In addition, I 

consider whether the amount of habitat at broader spatial scales or the isolation of the 

'landscape' itself are also important in determining genetic differentiation. The amount of 

habitat and isolation of patches within the landscape are expected to influence effective 

population sizes and contribute to stochastic differences in patterns of genetic 

differentiation. In addition, habitat patches in the surrounding landscape may provide a 

source of colonizing individuals and serve as potential stepping stone patches that 

mitigate the isolation of sampled populations. Thus, my third prediction is that the effect 

of habitat configuration will depend on the amount of habitat in the broader landscape.    
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Chapter 2.0 

Materials and Methods  

2.1   Study area and bogs 

The study was conducted in Algonquin Provincial Park, Ontario, Canada (Fig. 1), which 

is characterized as a transition zone between southern deciduous forest and northern 

coniferous forest. The predominant land cover type is forest habitat (e.g., species of 

balsam fir (Abies balsamea), tamarack (Larix laricina), black spruce (Picea mariana), 

red spruce (P. rubens), white spruce (P. glauca), red pine (Pinus resinosa), white pine (P. 

strobus), white cedar (Thuja occidentalis), hemlock (Tsuga canadensis), ash (Fraxinus 

spp.), red maple (Acer rubrum), silver maple (A. saccharinum), sugar maple (A. 

saccharum), oak (Quercus spp.), and American beech (Fagus grandifolia)) among which 

bog habitat is patchily distributed. Bog habitat represents a successional land cover type 

between forest and small water bodies and is described as a type of wetland where the 

only water input is through precipitation (Gore 1983). As a result of poor drainage and 

the decay of accumulated plant material, bog habitats are characteristically low in pH and 

oxygen levels and harbour a distinctive assembly of plant species (e.g., bog cranberry 

(Vaccinium spp.), Labrador tea (Rhododendron spp.), leatherleaf (Chamaedaphne 

calyculata), sphagnum mosses (Sphagnum spp.), and sundew (Drosera spp.)). The 

carnivorous purple pitcher plant, Sarracenia purpurea, is well adapted to grow in these 

nutrient poor environments and can be found throughout bog habitats in the study area 

(Ellison and Gotelli 2002; Ellison et al. 2012). 
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Figure 1.  
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Figure 1. Sampling map of Metriocnemus knabi. (a, b) Larvae were sampled from two 

systems of bogs (SYS1, SYS2) in Algonquin Provincial Park (Ontario, Canada). (c) 

System 2 consists of 'Buggy' (BB), Dizzy Lake (DZ), Mizzy Lake (MZ), and Wolf Howl 

(WH) bogs. (d) System 1 consists of Minor Lake (Min), 'Roadside' (RSB), and Spruce 

(SB) bogs. (e) Within each bog, 3-5 clusters of plants (i.e., 5 m-radius area containing ≥ 

10 plants) were arbitrarily selected. (f) Within each cluster, three plants were haphazardly 

chosen and larvae (~ 5 individuals) were pipetted from three leaves per plant. 
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2.2   Sampling  

Metriocnemus knabi larvae were sampled at four nested spatial scales: leaf, plant, cluster, 

and bog, and replicated in two areas or 'systems' approximately 25 km apart (Fig. 1). 

Within each system, 3-4 bogs were selected and 3-5 clusters were sampled per bog. A 

cluster was defined as a 5 m-radius area containing ≥10 pitcher plants and its centre was 

considered to be the point of highest pitcher plant density within the 5 m-radius circle. 

Three plants were haphazardly selected within a cluster and larvae were removed from 

three leaves per plant (Fig. 1). The locations of the centre of each cluster and each 

sampled plant were recorded using a high-accuracy (< 30 cm) GPS receiver (Trimble 

GeoXH, Sunnyvale, CA, USA; Table 1).  
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Table 1. Names and codes of bogs with UTM coordinates (zone 17) of sampled clusters 

and the number of larvae sampled per cluster. 

System Bog name Code Cluster Easting Northing Number of 

larvae 

1 Minor Lake Min 1 701470.35 5057404.66 38 

   2 701431.21 5057416.08 32 

   3 701492.58 5057439.70 45 

   4 701455.00 5057477.32 38 

   5 701406.24 5057471.99 37 

1 'Roadside' RSB 1 705952.47 5051985.57 42 

   2 705946.24 5051996.82 45 

   3 705930.78 5052027.05 45 

1 Spruce SB 1 705175.87 5052062.63 42 

   2 705198.36 5052047.58 45 

   3 705187.01 5052024.75 40 

2 'Buggy' BB 1 679543.08 5049240.78 35 

   2 679534.18 5049207.55 35 

   3 679435.99 5049239.82 45 

   4 679475.67 5049063.61 37 

   5 679535.96 5049087.45 38 

2 Dizzy Lake DZ 1 680239.54 5046841.01 36 

   2 680367.22 5047086.61 45 

   3 680426.09 5047190.66 42 

   4 680382.56 5047150.68 45 

   5 680320.50 5046946.62 43 

2 Mizzy Lake MZ 1 681125.51 5047380.16 34 

   2 681104.87 5047388.79 20 

   3 681075.61 5047398.62 52 

   4 680978.63 5047381.92 38 

   5 680940.23 5047357.64 30 

2 Wolf Howl WH 1 680310.84 5049817.92 36 

   2 680347.46 5049867.28 45 

   3 680285.56 5049907.96 40 

   4 680247.52 5049928.95 41 

   5 680233.54 5049869.09 45 
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2.3   DNA extraction, amplification, and fragment analysis  

Individual larvae were removed from Sarracenia purpurea leaves, sorted, and preserved 

in 95% ethanol and stored at 4°C. Genomic DNA was extracted from single larvae using 

the DNeasy tissue extraction kit (Qiagen, Germantown, MC, USA). Individuals were 

analyzed at 11 neutral microsatellite loci (Rasic et al. 2009), such that an association 

between allele frequencies and habitat structure variables is expected to reflect the effect 

of limited gene flow and genetic isolation rather than selection. The 10 µL multiplexed 

polymerase chain reactions (PCR), thermal cycling, and fragment analysis protocols 

followed that of Rasic and Keyghobadi (2012). 

 

2.4   Genetic data analyses 

I tested for the presence of null alleles within systems using MICRO-CHECKER version 

2.2.3 (van Oosterhout et al. 2004). Loci were assessed for neutrality using LOSITAN 

software (Antao et al. 2008), which tests for potentially adaptive loci, or loci under 

selection, using an FST-outlier detection method (Antao et al. 2008). The number of 

alleles (NA) and the mean observed (HO) and expected (HE) heterozygosities were 

calculated across loci and samples for each plant, cluster, bog, and system using 

GenAlEx version 6.4.1 (Peakall and Smouse 2006). Allelic richness (AR) was calculated 

in FSTAT version 2.9.3.2 (Goudet 1995, 2002) using a rarefaction method (Mousadik 

and Petit 1996) to compensate for unequal sample sizes among sampling groups. 

 Full siblings represent individuals that have developed from eggs of a single 

clutch and the distribution of full-sibling relationships among larvae therefore reflects the 

oviposition behaviour of adult females. The familial relationships between pairs of larvae 
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were assessed by calculating maximum-likelihood coefficients from multi-locus 

genotypes in ML-Relate (Kalinowski et al. 2006). Full-sibling (FS), half-sibling (HS), 

parent-offspring (PO), and unrelated (U) relationships were tested between individuals 

sampled within the same leaf, in different leaves of the same plant, in different plants of 

the same cluster, and in different clusters of the same bog using a 99% confidence set and 

1000 randomizations. Since parent-offspring relationships are not possible for larvae 

collected within a single season, putative PO relationships were treated as FS 

relationships. If an alternative relationship with a high likelihood was identified by the 

confidence set for each FS and/or PO relationship, the FS and/or PO relationship was 

tested against its alternative relationship using a likelihood ratio test and 1000 simulated 

random genotype pairs (Kalinowski et al. 2006). Pairwise comparisons between 

individuals from the same lower level (e.g., leaf, plant) were removed in the calculation 

of full-sibling relationships at higher levels (e.g., cluster). The percentage of full-sibling 

pairs identified among individuals from the same leaf, between different leaves, between 

plants, and between clusters was then plotted and compared for each bog in both systems.  

 A hierarchical analysis of molecular variance (AMOVA) was conducted to assess 

the distribution of genetic variation across all the spatial scales in both systems. Variance 

components and hierarchical F-statistic coefficients were computed in R (v. 2.14.1, R 

Development Core Team 2009) using the hierfstat package (Goudet 2005) which allows 

the permutation of units among any number of levels. For example, it was possible to 

evaluate the significance of variance components and F-statistic values at the plant scale 

by permutating entire units of leaves among plants, while maintaining plants within their 

respective bog and system levels. The significance of variance components and F-statistic 
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coefficients was tested among leaves, plants, clusters, and bogs in each system using 

1000 permutations and α = 0.05. In System 1, genetic variation was assessed across the 

three bogs, 11 clusters, 33 plants, and 98 leaves (449 individuals). The large sample size 

of System 2 exceeded the computational limit for AMOVA analysis in the hierfstat 

package. Thus, a cluster was randomly removed from each bog in System 2 and analysis 

was conducted across the four bogs, 16 clusters, 49 plants, 143 leaves (641 individuals). 

 Genetic differentiation was analyzed at the plant, cluster, and bog scales using 

Weir-Cockerham (1984) estimates of FST in GenAlEx (v. 6.4.1, Peakeall and Smouse 

2006). These estimates of FST assess the partitioning of genetic diversity among 

subpopulations and range from 0 to 1, where a value of zero indicates no difference in 

allele frequencies among subpopulations, whereas a value of 1 indicates subpopulations 

are completely differentiated and share no alleles in common. At the plant scale, FST was 

estimated for each plant by partitioning the variance of genetic diversity among the three 

sampled leaves. Similarly, at the cluster and bog scales, FST was estimated among the 

three sampled plants within each cluster and among the 3-5 sampled clusters within each 

bog. The statistical significance of FST values was tested in GenAlEx (v. 6.4.1, Peakeall 

and Smouse 2006) by permutating individual genotypes among samples, re-calculating 

FST, and determining if the observed FST value fell within the upper tail of the permutated 

data set. In the plant, cluster, and bog scale tests, significance was assessed using 999 

permutations and α = 0.05. In downstream statistical analyses, the FST values at each 

scale represented the response variable for that scale. For example, at the plant scale the 

response variable was the differentiation among the three sampled leaves within each 

plant, and the total sample size was equal to the number of sampled plants. This node-
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based approach of estimating genetic differentiation is different from most landscape 

genetic studies where the response variable is typically a pairwise measure of genetic 

differentiation. In comparison to a pairwise approach, my approach provides data points 

that are not inherently dependent on each other and where the sample size is not inflated 

by multiple pairwise comparisons (Legendre and Fortin 2010). 

 

2.5   Habitat composition: Amount of habitat 

The amount of habitat (A) represents the quantity of habitat resource available to M. 

knabi. Larger amounts of habitat are expected to support larger populations, exhibit 

higher levels of genetic diversity, and lower levels of genetic differentiation. At the plant 

scale, the amount of habitat was quantified as the number of leaves per plant (Apl; Fig. 2). 

At the cluster scale, the amount of habitat was quantified as the number of plants per 

cluster (Acl), and at the bog scale, the amount of habitat was quantified as the area of the 

bog (m
2
; Abog). Bog area was measured in ArcGIS version 9.3 (ESRI, Redlands, CA) 

using a combination of high resolution enhanced Forestry Resource Information (eFRI) 

imagery and GPS transect points. Considering the nested nature of the sampling structure, 

I was also interested in understanding whether the amount of habitat beyond the scale of 

interest had an effect on genetic differentiation. Therefore at the plant scale, not only was 

Apl considered, but the amount of habitat in the surrounding cluster (Acl) and bog (Abog) 

were included in statistical models (Fig. 2). Similarly, at the cluster scale, Abog was 

included to account for the influence of the amount of habitat in the surrounding bog.   
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Figure 2.  
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Figure 2. Summary of habitat composition and configuration measurements recorded at 

the (a) plant, (b) cluster, and (c) bog scales. At the plant scale (a), the amount of habitat 

was measured as the number of leaves per plant, and patch size and isolation were 

measured as the average size of the three sampled leaves and average distance among the 

three sampled leaves. The effect of the amount of habitat in the surrounding cluster and 

bog was measured as the number of plants per cluster and bog area, while the effect of 

the isolation of the plant within the cluster, bog, and system was measured as the distance 

to the centre of the cluster, the number of plants in a 10 m wide buffer area around the 

cluster, and the distance of the bog to the centre of the nearest neighbouring bog in the 

system, respectively. At the cluster scale (b), the amount of habitat was measured as the 

number of plants per cluster, and patch size and isolation were measured as the average 

number of leaves among the three sampled plants and the average distance among the 

three sampled plants, respectively. The effect of the amount of habitat in the surrounding 

bog was measured as bog area, while the effect of the isolation of the cluster within the 

bog and system was measured as the number of plants in a 10 m wide buffer area around 

the cluster and the distance of the bog to the centre of the nearest neighbouring bog in the 

system, respectively. At the bog scale (c), the amount of habitat was quantified using bog 

area, and patch size and isolation were measured as the average number of plants in the 

sampled clusters and the average distance among the sampled clusters as measured from 

the centre of each cluster. The effect of the isolation of the bog in the system was 

measured as the distance of the bog to the centre of the nearest neighbouring bog in the 

system.  
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2.6   Habitat configuration: Patch size and patch isolation 

Patch size (S) is a metric that represents the size of a contiguous habitat area. The patch 

size of the leaf was quantified by measuring the widest part of the pitcher vessel as this 

metric was found to be a strong predictor of the leaf's potential volume (Fig. A1; Table 

A6; Fig. A2). The patch size of the plant and cluster were measured as the number of 

leaves per plant and the number of pitcher plants per cluster, respectively. For plant scale 

analysis, the patch size of the leaf was averaged among the three sampled leaves to give a 

single patch size metric (Slf). Similarly, for cluster scale analysis, plant patch size was 

averaged among the three sampled plants (Scl) and for bog scale analysis the patch size of 

the cluster was averaged among the sampled clusters (Sbog; Fig. 2).  

 Patch isolation (I) describes the relative spatial arrangement of habitat patches and 

may be positively correlated with the degree of genetic differentiation as gene flow 

among patches declines with distance. At the plant scale, patch isolation was measured as 

the average distance among the three sampled leaves (Ilf; Fig. 2). At the cluster and bog 

scales, patch isolation was measured as the average distance among the sampled plants 

(Ipl3), and the average distance among the sampled clusters (Icl3) using the distance from 

the centre of each cluster, respectively. I was interested in understanding how the 

isolation of the patch of interest in a broader context may influence patterns of genetic 

differentiation. Thus, in addition to Ilf at the plant scale, I evaluated how isolated each 

plant was within the cluster by measuring the distance from the plant to the centre of the 

cluster (Ipl). Since the centre of each cluster was positioned to represent the area of 

highest pitcher plant density, plants along the cluster periphery were more isolated. Also 

for the plant scale, I evaluated how isolated the cluster was within the bog by quantifying 
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the number of plants within a 10 m wide buffer area around the cluster (Icl). The buffer 

was created in ArcGIS version 9.3 (ESRI, Redlands, CA) and the number of plants was 

determined using maps of interpolated plant-count data that was collected in 2009-2010 

(Rasic and Keyghobadi 2012). To generate the plant-count data, the density and 

distribution of pitcher plants within each bog has been recorded along linear transects, 

where plants were counted within a 2 m-radius area at 10 m intervals and transects were 

repeated every 5 m (Rasic and Keyghobadi 2012). Plant-count maps were created in 

ArcGIS using the spherical semivariogram kriging method to interpolate the number of 

plants between data collection points. The isolation of each bog (Ibog) within the 

landscape was evaluated by measuring the distance of the centre of the bog to the centre 

of the nearest neighbouring bog in the system using GoogleEarth 6.2 (Fig. 2). At the 

cluster scale, Icl and Ibog were included in statistical models to account for the isolation of 

the cluster in the bog and the isolation of the bog within the system, while Ibog was 

included at the bog scale to evaluate the isolation of the bog within the system (Fig. 2). 

 

2.7   Statistical analyses  

Separate datasets containing predictor and response variables were constructed for each 

of the three spatial scales (plant, cluster, bog). At the plant scale, eight predictor variables 

were included in the models: patch size of the leaf (Slf), patch isolation of the leaf (Ilf), 

patch isolation of the plant (Ipl), patch isolation of the cluster (Icl), patch isolation of the 

bog (Ibog), and the amount of habitat in the plant, cluster, and bog (i.e., Apl, Acl, Abog; 

Tables 2, A3). The predictor variables Slf, Ilf, and Apl represent the most local habitat  
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Table 2. Predictor variable codes and descriptions used in models at the plant, cluster, and bog scales. 

Code Description Measurement 

Plant scale   

 Slf Patch size of leaf Average size of the three sampled leaves 

 Ilf Isolation of leaf Average distance among the three sampled leaves 

 Ipl Isolation of plant Distance of plant to centre of cluster 

 Icl Isolation of cluster Number of plants in 10 m-wide buffer around sampled cluster 

 Ibog Isolation of bog Distance to nearest bog  

 Apl Amount of habitat in plant Number of leaves per plant 

 Acl Amount of habitat in cluster Number of plants per cluster 

 Abog Amount of habitat in bog Bog area  

Cluster scale  

 Spl Patch size of plant Average number of leaves per plant for the three sampled plants 

 Ipl3 Isolation of plant Average distance among the three sampled plants 

 Icl Isolation of cluster Number of plants in 10 m-wide buffer around sampled cluster 

 Ibog Isolation of bog Distance to nearest bog  

 Acl Amount of habitat in cluster Number of plants per cluster 

 Abog Amount of habitat in bog Bog area  

Bog scale  

 Scl Patch size of cluster Average number of plants in the sampled clusters 

 Icl3 Isolation of cluster Average distance among the sampled clusters  

 Ibog Isolation of bog Distance to nearest bog  

 Abog Amount of habitat in bog Bog area  
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metrics acting on the leaf scale, whereas Ipl and Acl, and Icl and Abog represent potential 

habitat variables in the broader cluster and bog scales that may also affect patterns of 

genetic differentiation of M. knabi measured at the plant scale. The genetic response 

variable was measured as the FST value among the three sampled leaves within each 

individual plant (sample size = 94 plants). F-statistic values have the potential to be 

highly stochastic when calculated among leaf units considering the small sample size (~ 5 

individuals per leaf) and likelihood of full-sibling relationships within single leaves. As a 

result, FST values were also treated as a binomial response, where FST values that were 

significantly greater than zero (p < 0.05) were coded as 1 and non-significant values were 

coded as 0. Concordance among plant scale analyses using FST values and binomial 

integers (FSTbin) is expected to provide strong support for estimates of relative variable 

importance and parameter effects.   

 At the cluster scale, six predictors were included in the models: patch size of the 

plant (Spl), patch isolation of the plant (Ipl), patch isolation of the cluster (Icl), patch 

isolation of the bog (Ibog), and the amount of habitat in the cluster (Acl) and bog (Abog) 

(Tables 2, A4). Here, Spl, Ipl, and Acl are the local habitat metrics at the cluster scale, 

while Icl and Abog represent the potential effect of variables of the broader bog scale. The 

response variable was calculated as FST among the three sampled plants within each 

individual cluster (sample size = 31 clusters).  

 At the bog scale, four predictors were included in the models: patch size of the 

cluster (Scl), patch isolation of the cluster (Icl), patch isolation of the bog (Ibog), and the 

amount of habitat in the bog (Abog; Tables 2, A5). Broader habitat metrics were not 

included beyond the bog scale considering the increasing influence of environmental 
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processes (e.g. wind) and genetic drift at these scales. The response variable was 

calculated as FST among the 3-5 sampled clusters within each individual bog (sample size 

= 7 bogs). All predictor variables within each dataset were screened for inter-correlations 

(r > 0.6) to prevent model selection on redundant predictor variables. Standardization 

(i.e., scaled with mean = 0 and standard deviation = 1) was carried out on each habitat 

metric variable within each dataset (i.e., at each spatial scale) to aid in comparisons of 

predictor variable estimates (Tables A3-A5).  

 

2.8   Generalized linear mixed models (GLMMs) 

The influence of habitat structure on genetic differentiation at each spatial scale was 

analyzed using generalized linear mixed models (GLMMs). Generalized linear mixed 

models offer a flexible approach for evaluating data with nested random effects (Bolker 

et al. 2008). Random effects serve to quantify variation among units, where observations 

may be replicated in space, time, or individuals. Because individuals are grouped in space 

(e.g., individuals from leaves, within a plant, within a cluster), the assumption of 

independence is not valid. Therefore, I accounted for the nested structure of the data and 

the potential of covariance among nested units by coding the nested random effects with 

a random intercept varying among systems, among bogs within systems, and among 

clusters within bogs. I justified the use of nested effects parameters using likelihood ratio 

tests, by fitting a model with and without the variance component and comparing the 

quality of the fits (Baayen et al. 2008).  

 Models for the plant, cluster, and bog scale were fitted using the respective 

datasets and consisted of additive effects of habitat metrics as fixed effects, as well as 
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interactions among composition and configuration metrics. In particular, the effect of 

metrics of isolation may be dependent on the amount of habitat in the broader spatial 

scale. Thus, interactions between leaf isolation and the amount of habitat in the plant 

(Ilf:Apl), plant isolation and the amount of habitat in the cluster (Ipl:Acl), and cluster 

isolation and the amount of habitat in the bog (Icl:Abog) were included in the plant scale 

models, Ipl:Acl and Icl:Abog were included in the cluster scale models, and Icl:Abog was 

included in the bog scale models. Generalized linear mixed models were fitted using the 

lme4 package (Bates and Maechler 2010) in R (v. 2.14.1, R Development Core Team 

2009).  

 

2.9   Model selection and multi-model inference  

A multi-model inference approach was used to examine the relative effects of predictor 

variables on genetic differentiation at each spatial scale (Burnham and Anderson 2002). 

This approach consists of generating a candidate set of models based on all possible 

combinations of parameters present in a global model (Table 3). The global model 

represents the most parameterized prediction of the effect of habitat metrics on genetic 

differentiation. For the plant scale, the global model contained all predictors (Table 2) 

and three interaction variables, resulting in a model set with 2
11

 models. Similarly, the 

candidate sets for the cluster and bog scales contained 2
8
 and 2

5
 models, respectively 

(Table 3).  
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Table 3. Global models used to generate candidate model sets in the plant, cluster, and 

bog scale datasets. Variables with colons denote interaction terms between patch isolation 

(I) and amount of habitat (A) metrics. Nested random effects were included in each 

global model, where at the plant scale, data are nested in clusters, within bogs, within 

systems. At the cluster scale, data are nested in bogs within systems. At the bog scale, 

data are nested within systems.     

 

Scale Global model 

Plant FST = Slf + Ilf + Ipl + Icl + Ibog + Apl + Acl + Abog + Ilf:Apl + Ipl:Acl + Icl:Abog  

           + (nested random effects) 

  

Cluster FST = Spl + Ipl3 + Icl + Ibog + Acl + Abog + Ipl:Acl + Icl:Abog  

           + (nested random effects) 

  

Bog FST = Scl + Icl3 + Ibog + Abog + Icl3:Abog + (nested random effects) 

  

            

 Models were ranked separately for each scale according to corrected Akaike 

information criterion values (AICc; Akaike 1973, Sugiura 1978), a criterion 

recommended when the number of observations (n) relative to the number of parameters 

(K) is small (n/K < 40; Burnham and Anderson 2002). The model with the lowest AICc 

value (i.e., AICcmin) is considered the top model in the set, while those within 2 AICc 

values of the top model (ΔAICc < 2) are essentially as good as the top model (Burnham 

and Anderson 2002). Akaike model weights (wi) were calculated and interpreted as the 

probability that model Mi is the true model explaining genetic structure, given that the 

true model is in the model set, 

   
  

 
 
      

         
 

   
 
 
               

  
   

 



29 
 

 
 

where wi is the model weight, AICci is the AIC value for the ith model, and AICcmin is the 

value of the top model in the set at the target spatial scale (Burnham and Anderson 2002; 

Link and Barker 2006). A top-ranked model with wi > 0.9 and AICc four units less than 

the second-ranked model is strong evidence in support of the best model (Burnham and 

Anderson 2002). When the best model in the set was not clear, model averaging was 

conducted using all models in the set. Relative variable importance (w+(i)) was assessed 

for each predictor to identify the most important habitat metric at each scale by summing 

the Akaike weights of the target predictor across the models in which the variable was 

present. Model averaged parameter estimates and their unconditional standard errors 

were calculated for each parameter in the plant, cluster, and bog scale models using the 

weighted average of the parameter estimates from the models in which the target 

parameter is explicitly present, 

     
              

 
   

         
 
   

 

where      is the weighted average parameter estimate,    is the Akaike weight of model i, 

  (  ) = 1 if the parameter is included in model i and   (  ) = 0 if the parameter is not 

included in the model, and       is the maximum likelihood estimate of parameter j in 

model i (Burnham and Anderson 2002). The significance of parameter estimates was 

evaluated by the exclusion of zero from the 90% and 95% confidence intervals. Model 

averaging and the calculation of parameter estimates were conducted using the MuMIn 

(Bartoń 2009) and AICcmodavg packages (Mazerolle 2012) in R (v. 2.14. 1, R Core 

Development Team 2009). 
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Chapter 3.0  

Results 

3.1    Genetic diversity and structure 

A total of 1,231 individuals were genotyped from 7 bogs, 31 clusters, 94 plants, and 276 

leaves (approximately 5 individuals per leaf; Tables A1, A2). All 11 loci were included in 

the analysis, as null alleles and loci under selection were not detected. At the plant scale, 

mean number of alleles (NA) and allelic richness (AR) ranged from 2.091 – 3.364 and 

3.100 – 4.296, respectively, while the range of mean observed (HO) and expected 

heterozygosities (HE) were 0.371 – 0.636 and 0.361 – 0.548, respectively. At the cluster 

scale, NA = 3.030 – 4.515 and AR = 2.774 – 4.515, whereas HE = 0.449 – 0.509 and HO = 

0.437 – 0.580. At the bog scale, NA = 5.309 – 6.109, AR = 4.564 – 6.024, HO = 0.501 – 

0.552, and HE  = 0.485 – 0.519. Overall, the average number of alleles and allelic 

richness across loci and bogs was, respectively, 7.33 (SE = 0.043) and 7.171 in System 1 

and 8.84 (SE = 0.952) and 8.731 in System 2. Observed and expected values of 

heterozygosity were not significantly different between the systems (System 1: HO = 

0.540 (SE = 0.048), HE =0.528 (SE = 0.043); System 2: HO = 0.518 (SE = 0.040), HE = 

0.538 (SE = 0.033)).   

 The incidence of full-sibling pairs was highest for individuals from the same leaf 

and decreased steadily in between-leaf, -plant, and -cluster comparisons in System 1 (Fig. 

3). A similar pattern was observed in System 2, except in Dizzy Lake bog (DZ), where 

the percentage of full-sibling pairs increased slightly in between-cluster comparisons 

(0.131%) as compared to between-plant comparisons (0.046%, Fig. 4).  
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Figure 3. Percentage of full-sibling relationships among individuals within leaves, 

between leaves within plants, between plants within clusters, and between clusters within 

Minor Lake (Min), Roadside (RSB), and Spruce (SB) bogs for System 1. 
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Figure 4. Percentage of full-sibling relationships among individuals within leaves, 

between leaves within plants, between plants within clusters, and between clusters within 

Buggy (BB), Dizzy Lake (DZ), Mizzy Lake (MZ), and Wolf Howl (WH) bogs for 

System 2. 

 Hierarchical F-statistics (i.e., AMOVA) in both systems were significant (p < 

0.01) at all spatial scales. The highest values of variance components were measured 

among individuals, which is commonly observed in microsatellite data (Hedrick 1999; 

Tables 4, 5). FST values at the individual level are similar to inbreeding coefficients, and 

negative values imply individual genotypes are highly heterozygous (Table 5). At the 

plant scale, 29.23% of FST values computed among leaves were significantly greater than 

zero (p < 0.05) and ranged from –0.060 to 0.231. At the cluster scale, 72.22% of FST
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Table 4. Summary of hierarchical analysis of variance components among the spatial scales in System 1 and System 2. 

 

 

 

 

Table 5. Matrix of hierarchical F-statistics among bogs, clusters, plants, and leaves within System 1 (SYS1) and System 2 

(SYS2). Values represent FST values among the 'column' scale within the 'row' scale. Statistical significance of values along the 

diagonal were obtained by permutating whole units of the scale below within the scale of interest, while maintaining the nested 

structure of the scales above. For example, in the plant column, whole units of the leaf were permutated among plants, but 

retained within respective clusters (all values p < 0.01).

System Bog Cluster Plant Leaf Individual Error 

1 0.1372 0.2386 0.0213 0.1332 –0.4075 5.9603 

2 0.0317 0.2178 0.0741 0.1452 –0.3904 5.7487 

 Bog  Cluster  Plant  Leaf  Individual 

 SYS1 SYS2  SYS1 SYS2  SYS1 SYS2  SYS1 SYS2  SYS1 SYS2 

Total 0.0211 0.0054             

Bog    0.0391 0.0375          

Cluster       0.0035 0.0132       

Plant          0.0219 0.0264    

Leaf             –0.0794 –0.0728 
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values among plants were significantly greater than zero and ranged from –0.009 to 

0.086, and 85.71% of FST values among clusters at the bog scale were significantly 

greater than zero and ranged from 0.082 to 0.103.  

 

 

3.2   Habitat structure  
 

Habitat structure was assessed at each spatial scale using variables that represented 

independent measures of habitat composition and configuration (Table 6).  

 

Table 6. Summary of habitat metrics measured at the plant, cluster, and bog scales with  

 

mean, minimum, and maximum recorded values. 

 

Scale Metric       Mean        Min.           Max. 

Plant Slf      32.01 mm    24.33 mm 44.67 mm 

  Ilf        11.28 cm      4.17 cm 31.33 cm 

 Ipl          3.42 m       1.00 m 8.28 m 

 Icl        17.07       1.00 53.00 

 Ibog      250.54 m   131.52 m 532.11 m 

 Apl          8.05       4.00 17.00 

 Acl      120.60      15.00 346.00 

 Abog 32,014.46 m
2 

2,046.44 m
2
 77,983.01 m

2
 

     

Cluster Spl           8.03 4.67 11.33 

 Ipl3 4.34 m 1.82 m 7.32 m 

 Icl 17.16 1.00 53.00 

 Ibog 251.81 m 131.52 m 532.11 m 

 Acl 121.74 15.00 346.00 

 Abog 31,520.17 m
2
 2,046.44 m

2
 77,983.01 m

2
 

     

Bog Scl 122.95 46.99 217.77 

 Icl3 45.99 m 19.53 m 91.14 m 

 Ibog 262.64 m 131.52 m 532.11 m 

 Abog 28,649.93 m
2
 2,046.44 m

2
 77,983.01 m

2
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3.3   Model selection 

Inter-correlation analysis among predictor variables in the plant, cluster, and bog datasets 

did not recover strong (r > 0.6) correlations (Tables A7-A9). Within the plant scale model 

set of estimated FST values among leaves, no single model had a high probability of being 

the 'best', as five models were within ΔAICc < 2 and Akaike weight (wi) ranged from 

0.062 to 0.023 (Table 7). The cumulative sum of the Akaike model weights (0.172) 

among the top five models suggests considerable model uncertainty. All models within 

the top-ranking set (ΔAICc < 2) contained predictors for the amount of habitat in the 

surrounding bog (Abog) and bog isolation (Ibog), while leaf isolation (Ilf) appeared in three 

models, cluster isolation (Icl) appeared in two models, and the amount of habitat in the 

plant (Apl) and the patch size of the leaf (Slf) were each in one of the top five models 

(Table 7). Model-averaging of all models in the plant scale set indicates that Abog and Ibog 

had the highest relative variable importance with model-averaged parameter weights 

(w+(i)) of 0.840 and 0.613, respectively (Table 8; Fig. 5). Although Abog and Ibog may be 

considered the most important predictors of genetic differentiation of M. knabi calculated 

at the leaf scale, their estimated effect as well as the effect of all other plant scale 

predictor variables was not significant at α = 0.05 (Tables 9, 10; Fig. 6). However, the 

effect of Abog at the plant scale was significant at α = 0.10 (Tables 9; Fig.6).  

 Analysis at the plant scale using binomial FST (FSTbin) values recovered nine top 

models (ΔAICc < 2) with wi range = 0.042 – 0.016 and cumulative wi sum = 0.236 (Table 

7). The best model in the set was the random intercept, while Slf was present in three of 

the top nine models, Ibog, Ilf, and Icl were each present in two models, and plant isolation 

(Ipl) was present in one of the top models. Model-averaging among all models in the 
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Table 7. Summary of model selection statistics for candidate models at the plant, cluster, 

and bog scales, with log likelihood (logLik) statistics, corrected Akaike information 

criterion (AICc), Δi AICc, and Akaike weights (wi). Models are ranked according to AICc 

and may be compared by Δi AICc. Models with Δi AICc < 4 are presented and all models 

include nested random effects. Variables with colons denote interaction terms between 

patch isolation (I) and amount of habitat (A) metrics. 

Model    logLik AICc Δi AICc wi 

Plant scale     

 Ilf + Abog + Ibog    118.078 –251.957 0.000 0.062 

 Icl + Abog + Ibog    120.712 –250.849 1.108 0.036 

 Ilf + Icl + Abog + Ibog    114.341 –250.179 1.778 0.026 

 Slf + Abog + Ibog    117.346 –250.121 1.836 0.025 

 Ilf + Apl + Abog + Ibog    114.056 –249.967 1.990 0.023 

 Slf + Ilf + Abog + Ibog    114.225 –249.940 2.017 0.023 

 Ilf + Ipl + Abog + Ibog    113.796 –249.479 2.478 0.018 

 Ilf + Acl + Abog + Ibog    113.931 –249.320 2.637 0.017 

 Apl + Abog + Ibog    116.820 –249.225 2.732 0.016 

 Icl + Abog + Ibog    117.074 –249.211 2.746 0.016 

 Ilf + Abog     120.221 –249.018 2.939 0.014 

 Ilf + Icl + Abog     116.981 –248.900 3.057 0.013 

 Icl + Abog     119.811 –248.577 3.380 0.011 

 Ipl + Abog + Ibog    116.420 –248.480 3.477 0.011 

 Acl + Icl + Abog    116.729 –248.466 3.491 0.011 

 Abog     122.968 –248.436 3.521 0.011 

 Acl + Abog + Ibog    116.639 –248.399 3.558 0.011 

 Slf + Apl + Abog + Ibog    113.433 –248.382 3.575 0.010 

 SIlf + Icl + Abog + Ibog      113.623 –248.285 3.672 0.010 

 Ilf + Icl + Abog + Ibog + Icl:Abog    110.688 –248.260 3.697 0.010 

 Ilf + Apl + Icl + Abog + Ibog    110.292 –248.096 3.861 0.009 

 Slf + Ilf + Icl + Abog + Ibog    110.461 –248.036 3.921 0.008 

     

Plant scale (FSTbin.)     

 Intercept –44.557 97.620 0.000 0.042 

 Slf 

 Ibog 
–43.611 

–43.644 

97.991 

98.057 

0.371 

0.437 

0.035 

0.034 

 Slf + Ibog –42.789 98.669 1.048 0.025 

 Ilf –43.978 98.725 1.105 0.024 

 Icl –44.086 98.940 1.320 0.022 

 Ilf + Ibog –43.127 99.345 1.724 0.018 

 Ipl –44.310 99.389 1.769 0.017 
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Model    logLik AICc Δi AICc wi 

 Slf + Icl –43.201 99.492 1.872 0.016 

 Slf + Ipl –43.290 99.671 2.051 0.015 

 Acl –44.463 99.696 2.076 0.014 

 Apl –44.541 99.850 2.230 0.014 

 Abog –44.556 99.881 2.261 0.013 

 Slf + Ilf –43.440 99.971 2.350 0.013 

 Icl + Ibog –43.482 100.055 2.435 0.012 

 Ipl + Ibog –43.490 100.071 2.451 0.012 

 Ilf + Icl –43.522 100.134 2.514 0.012 

 Slf + Acl –43.576 100.244 2.623 0.011 

 Slf + Abog –43.579 100.248 2.628 0.011 

 Abog + Ibog –43.585 100.261 2.640 0.011 

 Apl + Ibog –43.603 100.298 2.677 0.011 

 Slf + Apl –43.605 100.301 2.681 0.011 

 Acl + Ibog –43.643 100.376 2.756 0.010 

 Slf + Ipl + Ibog –42.545 100.564 2.943 0.010 

 Ilf + Ipl –43.777 100.645 3.024 0.009 

 Slf + Abog + Ibog –42.586 100.646 3.025 0.009 

 Acl + Icl –43.778 100.646 3.026 0.009 

 Slf + Icl + Ibog –42.635 100.743 3.122 0.009 

 Slf + Ilf + Ibog –42.635 100.744 3.124 0.009 

 Ipl + Icl –43.892 100.874 3.254 0.008 

 Slf + Apl + Ibog –42.728 100.930 3.309 0.008 

 Ilf + Abog –43.935 100.960 3.340 0.008 

 Ilf + Acl –43.937 100.964 3.344 0.008 

 Ilf + Apl –43.952 100.994 3.374 0.008 

 Slf + Acl + Ibog –42.781 101.035 3.414 0.008 

 Apl + Icl –44.076 101.242 3.622 0.007 

 Icl + Abog –44.077 101.246 3.625 0.007 

 Ilf + Abog + Ibog –42.892 101.258 3.637 0.007 

 Slf + Ipl + Icl –42.940 101.354 3.733 0.006 

 Ilf + Icl + Ibog –42.979 101.432 3.812 0.006 

 Ilf + Ipl + Ibog –42.999 101.472 3.852 0.006 

 Slf + Ilf + Icl –43.011 101.495 3.874 0.006 

 Slf + Acl + Icl –43.019 101.512 3.892 0.006 

 Ipl + Acl    –44.231 101.553 3.932 0.006 

 

Cluster scale 

 Abog + Ibog 

 Icla + Abog + Ibog 

     

     

    69.429 

    64.842 

 

–152.200 

–149.651 

 

0.000 

2.549 

 

0.324 

0.090 

 Acl + Abog + Ibog     64.890 –149.221 2.978 0.073 

 Ipl3 + Abog + Ibog     64.587 –148.950 3.250 0.064 

 Spl + Abog + Ibog     64.857 –148.862 3.337 0.061 
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Model    logLik AICc Δi AICc wi 

Bog scale     

 Icl3 + Abog + Ibog + Icl3:Abog      2.347 –149.508 0.000 0.859 

 Scl + Icl3 + Abog + Icl3:Abog       1.792 –145.892 3.616 0.141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

 
 

Table 8. Relative variable importance (w+(i)) of each predictor variable in the plant, 

cluster, and bog scale model sets. Values at the plant and cluster scales were averaged 

across all models in each data set. Values at the bog scale were determined using re-

calculated model-averaged Akaike weights from the top two models. Variables with 

colons denote interaction terms between patch isolation (I) and amount of habitat (A) 

metrics. 

Predictor variable w+(i)  Predictor variable w+(i) 

Plant scale   Plant scale (FSTbin.)  

 Abog 0.840   Slf 0.400 

 Ibog 0.613   Ibog 0.393 

 Ilf 0.517   Ilf 0.329 

 Icl 0.455   Icl 0.321 

 Acl 0.329   Ipl 0.285 

 Apl 0.310   Abog 0.269 

 Slf 0.300   Acl 0.261 

 Ipl 0.272   Apl 0.252 

 Icl:Abog 0.101   Icl:Abog 0.032 

 Ipl:Acl 0.057   Ilf:Apl 0.023 

 Ilf:Apl 0.035   Ipl:Acl 0.019 

     

Cluster scale     

 Abog 0.815    

 Ibog 0.775    

 Icl 0.234    

 Acl 0.175    

 Ipl3 0.166    

 Spl 0.158    

 Icl:Abog 0.029    

 Ipl3:Acl 0.009    

     

Bog scale     

 Abog 1.000    

 Icl3 1.000    

 Icl3:Abog 1.000    

 Ibog 0.859    

 Scl 0.141    
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Figure 5. Model-averaged relative variable importance (w+(i)) for each parameter in the plant, cluster, and bog scale models. 

Variables with colons denote interaction terms between patch isolation (I) and amount of habitat (A) metrics. The importance 

of plant and cluster scale parameters were averaged across all models in each model set and bog scale parameters were 

averaged across the top two models.
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Table 9. Model-averaged Akaike weights (w+(i)), parameter estimates (    ), and standard 

errors (SE) for metrics of habitat composition at the plant, cluster, and bog scales. At the 

plant and cluster scales, Akaike weights and parameter estimates were averaged across all 

models in the model set, whereas values at the bog scale were calculated using the top 

two models. Parameter estimates noted in bold represent significant values where 

unconditional 90% confidence intervals exclude zero, and parameter estimates noted with 

an asterisk (*) represent significant values where unconditional 95% confidence intervals 

exclude zero.  

  
Scale Parameter w+(i)      SE 

Plant Apl 0.310    0.005 0.006 

 Acl 0.329 –0.005 0.007 

 Abog 0.840    0.014 0.008 

Plant (FSTbin) Apl 0.252    0.004 0.295 

 Acl 0.261 –0.104 0.361 

 Abog 0.269    0.103 0.355 

Cluster Acl 0.175    0.001 0.003 

 Abog 0.815    0.008 0.005 

Bog Abog 1.000 –0.014 0.008 
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Table 10. Model-averaged Akaike weights (w+(i)), parameter estimates (    ), and standard errors (SE) for metrics of habitat 

configuration (i.e., patch size and patch isolation) at the plant, cluster, and bog scales. At the plant and cluster scales, Akaike 

weights and parameter estimates were averaged across all models in the model set, whereas values at the bog scale were 

calculated using the top two models. Parameter estimates noted in bold represent significant values where unconditional 90% 

confidence intervals exclude zero, and parameter estimates noted with an asterisk (*) represent significant values where 

unconditional 95% confidence intervals exclude zero. 

  
 Patch size   Patch isolation 

Scale Parameter w+(i)      SE  Parameter w+(i)      SE 

Plant Slf 0.300 –0.006 0.006  Ilf 0.517 –0.009 0.006 

      Ipl 0.272 –0.002 0.005 

      Icl 0.455   0.009 0.007 

      Ibog 0.613   0.008 0.009 

Plant (FSTbin) Slf 0.400 –0.419 0.341  Ilf 0.329 –0.318 0.376 

      Ipl 0.285 –0.192 0.301 

      Icl 0.321   0.248 0.304 

      Ibog 0.393   0.365 0.286 

Cluster Spl 0.158    0.000 0.004  Ipl3 0.166   0.000 0.003 

      Icl 0.234   0.003 0.003 

      Ibog 0.775   0.007 0.005 

Bog Scl 0.014   0.001 0.006  Icl3 1.000   0.036
*
 0.007 

      Ibog 0.859 –0.006 0.005 
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Figure 6. Model-averaged parameter estimates (      for predictor variables at the plant, cluster, and bog scales. Points are the 

averaged coefficients from all models in the plant and cluster scale models sets and top two models in the bog scale model set.  

Broken-line and solid error bars represent the associated unconditional 90% and 95% confidence limits, respectively. Variables 

with colons denote interaction terms between patch isolation (I) and amount of habitat (A) metrics.
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binomial FST plant scale data set indicates that Slf, Ibog, Ilf, Icl have relatively equal 

importance (w+(i) = 0.400-0.321; Table 8; Fig. 5). The estimated effect of each parameter 

on binomial FST values was non-significant (Tables 9-11). 

 

Table 11. Model-averaged Akaike weights (w+(i)), parameter estimates (    ), and standard 

errors (SE) for interaction metrics of patch isolation (I) and the amount of habitat (A) at 

the plant, cluster, and bog scales. At the plant and cluster scales, Akaike weights and 

parameter estimates were averaged across all models in the model set, whereas values at 

the bog scale were calculated using the top two models. Parameter estimates noted in 

bold represent significant values where unconditional 90% confidence intervals exclude 

zero, and parameter estimates noted with an asterisk (*) represent significant values 

where unconditional 95% confidence intervals exclude zero. 

 

 

 

 

 

 

 

 At the cluster scale, a single model containing Abog and Ibog predictors was ranked 

the top model according to ΔAICc < 2 values and wi = 0.324 (Table 7). Interestingly, all 

models within ΔAICc < 4 contained Abog and Ibog and had a cumulative Akaike weight 

sum of 0.661. Model-averaged Akaike weights of the predictor variables indicate that 

Scale Parameter w+(i)      SE 

Plant Ilf:Apl 0.035   0.000 0.005 

 Ipl:Acl 0.058 –0.008 0.005 

 Icl:Abog 0.101   0.002 0.007 

Plant (FSTbin) Ilf:Apl 0.023   0.139 0.298 

 Ipl:Acl 0.019 –0.094 0.324 

 Icl:Abog  0.032   0.343 0.363 

Cluster Ipl3:Acl 0.009 –0.007 0.004 

 Icl:Abog 0.029 –0.004 0.003 

Bog Icl3:Abog 1.000 –0.056
*
 0.010 
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Abog (w+(i) = 0.815) and Ibog (w+(i) = 0.775) had the highest relative importance (Table 8; 

Fig. 5) although the effects of parameters on M. knabi FST values at the cluster scale were 

not significant (Tables 9, 10; Fig. 6).  

 At the bog scale, a model including cluster isolation (Icl3), Abog, Ibog, and an 

interaction among the isolation of the cluster and the amount of habitat in the bog 

(Icl3:Abog) predictor variables was identified as the best model, with Akaike weight of 

0.859 (Table 7). The second-ranked model had an ΔAICc of 3.616 and Akaike weight of 

0.141, and included patch size of the cluster (Scl), Icl3, Abog, and Icl3:Abog predictor 

variables. Considering the strong support for the top model, the cumulative Akaike 

weight sum of the top two models (1.000), and the similarity of their predictor variables, 

model-averaging was conducted on the top two models. Relative variable importance 

indicates that Abog, Icl3, and Icl3:Abog have equally high parameter importance (w+(i) = 

1.000), followed by Ibog (w+(i) = 0.859; Table 8; Fig. 5). The estimated effect of Abog 

(     = –0.014) on FST values was significant at α = 0.10, while the estimated effects of Icl3 

(     = 0.036) and Icl3:Abog  (     = –0.056) on FST values were significant at α = 0.05 (Tables 

9-11; Fig. 6). 
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Chapter 4.0 

Discussion 

In this study, I examined the relative importance and effect of aspects of habitat 

composition and habitat configuration on patterns of genetic differentiation in M. knabi 

larvae at three spatial scales (plant, cluster, bog). Multi-model inference indicates that 

both habitat composition and configuration affect the genetic structure of M. knabi, and 

the relative importance of the amount of habitat in the landscape (A), patch size (S), and 

patch isolation (I) varies with the scale of analysis.  

 

4.1   Plant scale patterns and processes 

The plant scale represents the finest spatial scale of habitat for M. knabi considering that 

the leaf is the smallest measureable habitat unit. Hierarchical AMOVA among leaves 

within plants revealed that plants contain moderate levels of genetic variance and that 

there is significant differentiation even among leaves within a single plant (Tables 4, 5). 

Significant genetic structure detected among leaves within plants, despite the extremely 

small average distance between leaves (11.28 cm) (Table 6), is very likely to be driven by 

the occurrence of highly related individuals, or family groups, within the leaf samples 

(Anderson and Dunham 2008; Goldberg and Waits 2010). Indeed, I found that 

individuals sampled from the same leaf were on average approximately three times more 

likely to be full-siblings than individuals sampled from different leaves, and 16 and 21 

times more likely to be full-siblings than individuals sampled from different plants and 

clusters, after removing comparisons of individuals at the lower spatial scales (Figs. 3, 4). 

These findings corroborate previous work indicating that leaves harbour the highest 
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proportion of full sibling relationships relative to the plant, cluster, and bog scales (Rasic 

and Keyghobadi 2012).  

Despite the difficulty of directly observing adult M. knabi behaviour in the field, 

the distribution of full-sibling pairs can serve as a proxy for female oviposition 

behaviour. Based on the highly clumped distribution of full siblings, I infer oviposition 

behaviour to be the dominant process influencing genetic structure among leaves. As 

such, one might expect that leaf patch size (Slf) would have the strongest relative 

parameter importance at this scale. The average distance among the leaves (Ilf) would not 

be expected to influence genetic structure as the distance among leaves is most likely 

well within the dispersal ability of adult M. knabi (Wiens 1972; Krawchuk and Taylor 

2003). All else being equal, however, larger leaves and more leaves per plant would 

accommodate more larvae. It has been suggested that leaf size determines habitat 

accessibility, and that large leaves are also selected by adults because large leaves tend to 

capture more insects and provide more resources for the developing larvae (Wolf 1981; 

Naeem 1988; Cresswell 1993; Heard 1998; Krawchuk and Taylor 2003; Trzcinski et al. 

2003). Therefore, one might expect that female midges would cluster their eggs within 

the preferred leaves, leading to larger family groups within the largest leaves, and 

consequently high levels of genetic differentiation among those leaves. On the other 

hand, previous studies suggest that the tendency for female pitcher plant midges to be 

'choosy' and to cluster their eggs within single leaves is highest where pitcher plants are 

sparse (Trzcinski et al. 2003; Rasic and Keyghobadi 2012). My analyses corroborate 

these latter findings, as multi-model inference identified the amount of habitat in the 

surrounding bog (Abog) and bog isolation (Ibog) as the most important predictor variables 
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of FST at the plant scale, rather than Slf or any other plant-scale variables. These results 

indicate that broad scale habitat structure influences female oviposition and therefore 

genetic differentiation patterns at fine scales.  

The positive relationship with Abog and FST, and Abog and FSTbin suggests that 

genetic differentiation among leaves in plants varies with the amount of habitat in the 

surrounding bog, manifested as increased genetic structure among leaves in large bogs 

(Tables 9, 10; Fig. 6). The marginally significant and positive coefficient of Ibog suggests 

that FST among leaves increases with bog isolation (Table 10). In another genetic study, 

plant density within bogs and isolation of clusters explained a large proportion of the 

variation in pairwise genetic distances among M. knabi samples from leaves (Rasic and 

Keyghobadi 2012). Given the strict habitat requirements for developing larvae, it seems 

advantageous for females to evaluate habitat structure at more than one spatial scale and 

be selective of larval habitat during egg-laying, and it was suggested that low plant 

density and elevated isolation at the bog scale may lead females to aggregate their eggs at 

fine scales, within leaves (Rasic and Keyghobadi 2012). While the positive effect of Ibog 

recovered in my study supports this interpretation, the positive effect of Abog appears 

contradictory. However, it is very likely that the discordance is an artefact of Abog being 

inversely related to pitcher plant density. While the total number of available pitcher 

plants increases with bog size (Abog), the density of plants (number per unit area) actually 

declines, and density rather than total number of plants appears to be the key factor 

influencing M. knabi oviposition (Rasic and Keyghobadi 2012). Therefore, the density of 

pitcher plants within the bog may be an alternative or additional bog-scale predictor that 

could be included in the statistical models. 
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  By converting estimated FST data to FSTbin, I aimed to remove falsely inflated FST 

values resulting from the stochasticity of small sample sizes, and to assess a less variable 

genetic response against habitat metrics. However, model averaging results of FSTbin 

analysis indicated that habitat metrics were uninformative predictors of genetic 

differentiation (Table 8; Figs. 5, 6). The discordance among estimated FST and FSTbin 

results may be driven by the binomial response values being too coarse. Although the 

estimated FST values among leaves may be somewhat noisy and stochastic, there is 

meaningful information in the observed variation of estimated FST values that is lost 

when collapsed into a binomial response. The fact that conclusions similar to those I 

obtained using the estimated FST values, regarding the influence of broad-scale habitat 

variables on differentiation of midge samples taken from leaves, were reached by Rasic 

and Keyghobadi (2012), using different data sets and analyses, offers support for the 

importance of the amount of habitat in the surrounding bog, and bog isolation, on 

estimates of population genetic structure at the plant scale.  

 Additional metrics of habitat composition and configuration at the plant scale may 

potentially be important predictors of genetic structure among leaves. The actual amount 

of fluid within pitcher leaves rather than the leaf's potential volume may be a better 

metric of patch size. In comparisons of pitcher plant characteristics (e.g., pitcher age, 

pitcher size, maximum and actual fluid volume, hood size, degree of red venation), the 

actual amount of fluid was most positively correlated with midge abundance (Nastase et 

al. 1995). However, pitcher plant characteristics do not seem to be the only relevant leaf 

factor influencing midge abundance as pitcher plant characteristics explained less than 

half of the abundance variation (Nastase et al. 1995). Additional evidence suggests that 
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the pitcher leaf community, including interactions between M. knabi, F. fletcheri, and W. 

smithii larvae, bacteria, protists, as well as the level of detritus, chemical cues, and wind 

exposure may affect the likelihood of female oviposition and/or the survivability of M. 

knabi larvae (Paterson and Cameron 1982; Bradshaw 1983; Istock et al. 1983; Heard 

1994a; Heard 1994b; Nastase et al. 1995; Harvey and Miller 1996; Trzcinski et al. 2003). 

The relevance of these additional factors to genetic structure among leaves deserves 

further testing.  

 In summary, I infer that female oviposition behaviour appears to be the primary 

process determining patterns of genetic differentiation at the plant scale, and this in turn 

may be influenced by broad-scale habitat composition (Abog) and configuration metrics 

(Ibog). 

 

4.2   Cluster scale patterns and processes 

In this study, the cluster scale represents an intermediate spatial scale where genetic drift, 

oviposition behaviour, and dispersal may all interact and affect patterns of genetic 

structure. Adults colonize S. purpurea plants through oviposition, and abundance patterns 

are determined by this process and any subsequent mortality of developing larvae 

(Trzcinski et al. 2003). The number of individuals within plants may also be affected by 

fine-scale factors, including leaf size, and the presence/absence of other taxa or captured 

prey (Paterson and Cameron 1982; Bradshaw 1983). Owing to fluctuations and variation 

in plant occupancy and population sizes, the genetic structure of larvae among plants in 

clusters may be strongly influenced by genetic drift. Indeed this is supported by the low 

level of allelic richness (3.100 – 4.296) and wide range of observed and expected 
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heterozygosities (HO = 0.371 – 0.636; HE = 0.361 – 0.548) of larvae among plants. A low 

proportion of full-sibling pairs were measured between plants within clusters, but this 

was still higher than the proportion of full siblings observed among clusters within bogs 

(Figs. 3, 4). This suggests that females will sometimes move among plants within clusters 

when laying their eggs, and that female oviposition may have some influence on genetic 

differentiation at the cluster scale. Movement distances have not been directly observed 

in M. knabi, although low variance component values in larval abundance data at the 

cluster scale suggest that individual midges have limited dispersal potential, and 

aggregate around plants and clusters (Krawchuk and Taylor 2003). Thus, it is possible 

that dispersal and gene flow among plants within clusters might be limited. However, I 

found that in System 1, the cluster scale contained the lowest genetic variance component 

(0.0213) and hierarchical F-statistic values (0.0035), while in System 2, the cluster scale 

variance component (0.0741) and F-statistic values (0.0132) were the second lowest 

among the spatial scales (Tables 4, 5). These results indicate lower genetic structuring 

and differentiation of M. knabi among plants within clusters than among leaves in plants 

and clusters in bogs, and suggest that gene flow is not generally restricted among plants 

within clusters.  

 With an increase in spatial scale, habitat isolation (Ipl3) was expected to become a 

more important predictor of genetic structure relative to the plant scale, as gene flow 

becomes increasingly restricted among individuals from distant habitat patches. I also 

expected important effects of the amount of habitat in the cluster (Acl) and an interaction 

between Ipl3 and Acl, as plant colonization relationships indicate that females respond to 

plant density and that the relationship weakens when there are many plants close together 
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(Trzcinski et al. 2003). However, multi-model inference identified the amount of habitat 

in the surrounding bog (Abog) and bog isolation (Ibog) as the most important predictor 

variables of FST structure among plants at the cluster scale, and ascribed low importance 

to Ipl3, Acl, Ipl3:Acl, and Spl parameters (Table 8; Fig. 5). Model-averaged parameter 

estimates of Abog and Ibog were both positive for the response variables of FST among 

plants within clusters (Tables 9, 10; Fig. 6). Therefore, similar to the plant scale, habitat 

structure in the broader bog scale is a better predictor of genetic differentiation at the 

cluster scale, and genetic differentiation among plants may be greater in large and 

isolated bogs. Although I did not measure spatial genetic autocorrelation in this study, 

evidence from Rasic and Keyghobadi (2012) indicates that individuals sampled from 

within the same cluster are not genetically independent, and that distances among plants 

within clusters do not exceed the range of spatial genetic autocorrelation. In other words, 

gene flow between plants is not limited within the spatial extent of clusters. This is 

consistent with the low parameter importance of Ipl3 and my observation that variance 

among plants within clusters was generally low relative to other scales. Genetic 

differentiation at the cluster scale is likely driven primarily by patterns of plant 

colonization by females and founder events. Much of female oviposition among leaves 

within plants is influenced by broad-scale habitat variables (Rasic & Keyghobadi 2012), 

and the high relative importance of Abog and Ibog suggests colonization patterns among 

plants within clusters is similarly influenced by broad-scale variables.  

 In summary, I infer that dispersal and gene flow do not appear to be strongly 

limited at the cluster scale. Genetic structure at the cluster scale may be determined 

primarily by genetic drift, which reflects underlying population sizes, and demographic 
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processes, as well as oviposition behaviour. Broad-scale habitat composition (Abog) and 

configuration (Ibog) metrics are the most important variables explaining genetic 

differentiation at the cluster scale, most likely because of their influence on oviposition. 

 

4.3   Bog scale patterns and processes 

In this study, the bog scale represents the largest spatial scale at which genetic 

differentiation among samples was estimated. Since clusters contained the lowest 

proportion of full-sibling pairs (Figs. 3, 4), female oviposition behaviour was not 

expected to be a significant process influencing gene differentiation among clusters 

within bogs. Genetic drift may affect FST values among clusters as allelic variation within 

clusters is driven by changes in the number of M. knabi larvae and the introduction of 

new or private alleles by colonizing females (i.e., founder effects). At this scale, dispersal 

and gene flow are also most likely to be limited because of the greater absolute distances 

among sampled patches. Overall, bog scale samples had the greatest proportion of 

significant FST values (85.71%), and the highest variance component and hierarchical F-

statistics values, indicating greater genetic structure and differentiation among clusters 

than among leaves and among plants (Tables 4, 5). This supports the hypothesis that there 

is limited dispersal of M. knabi occurring at this scale, and that plant and cluster distances 

represent the extent of individual movement distances. It also suggests that patterns of 

genetic structure at this scale are driven by a balance between genetic drift and spatially 

constrained gene flow. 

 Since the distance among clusters (average distance = 46.0 m) (Table 6) is an 

order of magnitude greater than that among plants within a cluster, a stronger negative 
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effect of patch isolation was expected at the bog scale (i.e., among clusters). I also 

predicted a significant interaction effect of patch isolation with the amount of habitat in 

the bog (Icl3:Abog). Cluster patch size (Scl) could also affect genetic drift by influencing 

the recruitment of individuals to an area, accommodating more individuals, and 

contributing to the long-term stability of residents. The relative importance of parameters 

indicates that Abog, Icl3, and Icl3:Abog were the strongest predictors of genetic 

differentiation among clusters (Table 8; Fig. 5). Interestingly, this is the only instance 

where a parameter of habitat structure measured at the same spatial scale at which genetic 

structure was analyzed was identified as a parameter of high importance. Cluster isolation 

(Icl3) had a significantly positive effect on FST estimates, such that as the average distance 

among clusters increased, genetic differentiation increased (Table 10; Fig. 6). Greater 

genetic differentiation associated with greater patch isolation is analogous to isolation by 

distance, where genetic differentiation among groups increases with distance (Wright 

1943, 1946, 1951). In analyses of midge abundance data, patch isolation was also found 

to be an important habitat metric at the bog scale (Krawchuk and Taylor 2003). The 

negative relationship between Abog and FST values in this study suggests that the amount 

of habitat in the bog may buffer the posi effect of cluster isolation on FST estimates 

(Table 9; Fig. 6). Thresholds have been demonstrated where the influence of habitat 

configuration on the distribution or abundance of a species appears to increase strongly as 

the amount of habitat in the surrounding environment decreases (e.g., Fahrig 1997; 

Trzcinski et al. 1999; Villard et al. 1999; Smith et al. 2011). The significant effect of the 

interaction between Icl3 and Abog (Icl3:Abog) makes it difficult to differentiate whether a 

similar phenomenon is occurring in estimates of FST structure, yet supports the idea that 
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habitat composition and configuration can interact simultaneously to influence patterns of 

genetic differentiation (Smith et al. 2011; Rasic and Keyghobadi 2012; Table 11; Fig. 6).  

 In summary, I infer that patterns of genetic differentiation at the bog scale are 

driven primarily by the processes of drift and spatially restricted gene flow. In accordance 

with factors that are likely to influence these processes, cluster isolation, bog size and 

their interaction are the most important habitat composition and configuration variables 

affecting patterns of genetic differentiation at the bog scale. 

 

4.4   Composition versus configuration in genetic studies 

There are a considerable number of studies and an equal amount of debate focused on the 

relative importance of habitat composition and habitat configuration for ecological 

processes. Many empirical studies, mostly on bird species, generally suggest that habitat 

loss has a stronger effect on species occupancy, distribution, and abundance than 

configuration, except when considerable amounts of habitat are lost (reviewed in Fahrig 

2003; Cushman and McGarigal 2004). In contrast, simulation modeling approaches to 

quantify the influence of habitat area and configuration on genetic structure conclude that 

habitat configuration is more important than habitat area in predicting genetic 

differentiation (Bruggeman et al. 2010; Cushman et al. 2012) and that patch 

characteristics such as patch cohesion, correlation length, and aggregation index are 

among the strongest individual predictor variables of genetic structure (Cushman et al. 

2012).  

Simulation studies can allow unique insights into the effects of habitat 

composition and configuration on genetic structure, through precise manipulation of 
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landscape variables and tests of their relative effects on genetic differentiation. However, 

despite the use of simulated landscapes, Cushman et al. (2012) indicate that the 

configuration metrics used in their analyses were still correlated with habitat amount, 

making it impossible to separate formally and unequivocally the relative influences of 

habitat area and configuration on genetic differentiation. The authors maintain that 

configuration has more influence on genetic differentiation because the magnitudes of 

marginal and independent explained variance were highest for configuration metrics 

(Cushman et al. 2012). In addition, simulation studies may suffer from lack of realism.  

For example, population size remained fixed throughout the simulation experiment of 

Cushman et al. (2012) such that the effect of differential rates of genetic drift on the 

genetic differentiation was not included. Furthermore, a sufficiently large number of 

generations were simulated to ensure that migration-drift equilibrium was reached 

(Cushman et al. 2012). However, stable environmental conditions required to reach 

equilibrium may rarely be achieved within (i.e., inbreeding, genetic drift) and between 

(i.e., gene flow) sample units (Nei 1986; Whitlock 1992) in nature. Habitats that have 

been recently colonized or undergone a recent population bottleneck may not have had 

sufficient time for migration-drift equilibrium to be reached, making FST estimates biased 

toward previous population conditions (Whitlock and McCauley 1999).  

My study is novel in attempting empirically to measure the influence and 

interaction of independent aspects of habitat composition and configuration on genetic 

differentiation. My work is quite different in approach from previous simulation work 

(Cushman et al. 2012) in that I did not experimentally manipulate habitat composition 

and configuration metrics. Indeed, such empirical experiments would be extremely 
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difficult to conduct, even in a laboratory setting, because of the long time frames required 

for spatial genetic patterns to establish. Furthermore, it is also very difficult to manipulate 

habitat composition and configuration truly independently, even with simulated 

landscapes, as suggested by Cushman et al. (2012). Nonetheless, I was able to assess the 

relative influence of some independent aspects of habitat composition and configuration 

in a natural system, subject to variable population size and potentially non-equilibrium 

conditions.  

 

4.5   Conclusion 

By investigating the effect of habitat structure at more than one spatial scale, I aimed to 

evaluate whether the relative importance of habitat composition and configuration was 

scale-dependent. A key finding of my study is that the amount of habitat and patch 

isolation of habitat structure in the surrounding landscape are consistently strong 

predictors of genetic structure measured at fine scales. I observed high relative parameter 

importance for the amount of habitat in the bog (Abog) and bog isolation (Ibog) when 

measuring genetic differentiation among leaves and among plants. I was able to infer a 

strong influence of female oviposition behaviour at the plant scale through the elevated 

proportion of full-sibling pairs within leaves and a likely influence of oviposition, drift, 

and founder events at the cluster scale. My study provides evidence that when significant 

genetic structure is measured among samples beyond the expected dispersal distance of 

the study organism, in this case at the bog scale, habitat amount, patch isolation, and their  

interaction have important effects on genetic differentiation (Ibog:Abog). Although I did not 

directly detect a threshold at which patch isolation becomes more important than habitat 
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amount, the interactive effect of habitat amount and isolation on genetic structure is 

consistent with the ecological work on the relative effects of habitat composition and 

configuration on species’ abundance and distribution patterns. My findings suggest that 

in landscape genetic and habitat fragmentation studies of natural systems, habitat 

structure beyond the scale of genetic sampling could be important and should be included 

in models explaining patterns of genetic differentiation. 
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 Table A1. Sampling summary of the number of systems, bogs, clusters per bog, plants 

per cluster, and leaves per plant from which individual Metriocnemus knabi were 

collected. 

System 

(n = 2) 

Bog name 

(n = 7) 

Code Cluster 

(n = 31) 

Plant 

(n = 94) 

Leaf 

(n = 276) 

Number of individuals 

(n = 1,231) 

1 Minor Lake Min 1 1 1 5 

2 3 

3 3 

2 1 4 

2 5 

3 5 

3 1 3 

2 5 

3 5 

2 1 1 4 

2 5 

3 3 

2 1 1 

2 5 

3 5 

3 1 2 

2 2 

3 5 

3 1 1 5 

2 5 

3 5 

2 1 5 

2 5 

3 5 

3 1 5 

2 5 

3 5 

4 1 1 3 

2 5 
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Table A2. Standardized plant scale landscape data measured among leaves per plant (Pl) from the corresponding cluster (Cl), 

bog, and system (Sys), where Slf = patch size of the leaf (mm), Apl = amount of habitat in the plant, Acl = amount of habitat in 

the cluster, Abog = amount of habitat in the bog (m
2
), Ilf = isolation of the leaf (cm), Ipl = isolation of the plant (m), Icl = 

isolation of the cluster, and Ibog = isolation of the bog (m).   

ID Sys Bog Cl Pl Slf Apl Acl Abog Ilf Ipl Icl Ibog 

Min 1 1 1 1 -1.4920 -0.6757 -0.1893 -0.9648 -0.9583 0.5950 -0.2525 -0.2213 

Min 1 1 1 2 -0.5250 0.3116 -0.1893 -0.9648 -1.3531 -0.9698 -0.2525 -0.2213 

Min 1 1 1 3 -1.7160 1.6279 -0.1893 -0.9648 -1.3531 0.1039 -0.2525 -0.2213 

Min 1 1 2 4 -1.4180 -0.3466 -0.7138 -0.9648 0.0108 1.4353 -0.4168 -0.2213 

Min 1 1 2 5 -0.9710 -0.3466 -0.7138 -0.9648 -1.4967 -0.4080 -0.4168 -0.2213 

Min 1 1 2 6 -0.3010 -0.6757 -0.7138 -0.9648 -0.4917 0.6962 -0.4168 -0.2213 

Min 1 1 3 7 -0.3760 -0.6757 -1.0558 -0.9648 -0.2763 -1.6750 -0.2525 -0.2213 

Min 1 1 3 8 -1.4180 -1.0048 -1.0558 -0.9648 0.0826 1.0495 -0.2525 -0.2213 

Min 1 1 3 9 2.2300 -0.3466 -1.0558 -0.9648 1.3030 1.6459 -0.2525 -0.2213 

Min 1 1 4 10 0.5170 -1.0048 -0.0411 -0.9648 0.0827 0.4655 -0.0061 -0.2213 

Min 1 1 4 11 -0.4500 -0.6757 -0.0411 -0.9648 -0.6353 -0.5369 -0.0061 -0.2213 

Min 1 1 4 12 -1.4180 -0.6757 -0.0411 -0.9648 -0.6353 -0.5237 -0.0061 -0.2213 

Min 1 1 5 13 -0.5990 -0.0175 -0.3261 -0.9648 -0.6711 -0.1060 0.1581 -0.2213 

Min 1 1 5 14 -1.1950 -0.0175 -0.3261 -0.9648 -1.2814 0.5895 0.1581 -0.2213 

Min 1 1 5 15 -0.7480 -0.3466 -0.3261 -0.9648 -1.0660 -1.4180 0.1581 -0.2213 

RSB 1 2 6 16 -0.7480 -0.6757 -0.9988 -0.8467 0.4416 -1.3896 -0.0061 1.2886 

RSB 1 2 6 17 -1.7160 -1.0048 -0.9988 -0.8467 -0.9942 1.6223 -0.0061 1.2886 

RSB 1 2 6 18 -1.1950 -1.3339 -0.9988 -0.8467 -0.3481 0.5098 -0.0061 1.2886 

RSB 1 2 7 19 -0.4500 -1.0048 -0.6111 -0.8467 0.2621 -0.2466 2.2113 1.2886 

RSB 1 2 7 20 0.3690 -0.6757 -0.6111 -0.8467 -0.3481 -0.4433 2.2113 1.2886 

RSB 1 2 7 21 0.5920 -1.0048 -0.6111 -0.8467 -0.5635 0.8867 2.2113 1.2886 

RSB 1 2 8 22 -0.2270 1.6279 -0.9076 -0.8467 -0.8506 -1.6750 -0.5810 1.2886 

RSB 1 2 8 23 -0.5990 0.3116 -0.9076 -0.8467 -0.4917 0.1947 -0.5810 1.2886 

RSB 1 2 8 24 1.1870 -0.6757 -0.9076 -0.8467 -0.3840 0.2390 -0.5810 1.2886 
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SB 1 3 9 25 0.4430 -0.3466 1.0419 -1.1945 -0.2548 -1.0218 -0.4989 -0.0389 

SB 1 3 9 26 -0.1520 -0.6757 1.0419 -1.1945 0.3698 -0.1108 -0.4989 -0.0389 

SB 1 3 9 27 1.7090 -1.3339 1.0419 -1.1945 1.7696 0.4704 -0.4989 -0.0389 

SB 1 3 10 28 0.1450 -1.3339 2.5696 -1.1945 2.0926 -1.2718 -0.4989 -0.0389 

SB 1 3 10 29 -0.2270 1.2988 2.5696 -1.1945 0.0826 1.6230 -0.4989 -0.0389 

SB 1 3 10 30 1.1130 0.9698 2.5696 -1.1945 0.5133 1.2242 -0.4989 -0.0389 

SB 1 3 11 31 -1.3430 -1.3339 -0.2919 -1.1945 -0.4199 -0.4468 -1.0738 -0.0389 

SB 1 3 11 32 -0.8220 -1.0048 -0.2919 -1.1945 -0.2763 1.3917 -1.0738 -0.0389 

SB 1 3 11 33 0.9640 0.6407 -0.2919 -1.1945 2.7387 2.6392 -1.0738 -0.0389 

BB 2 4 12 34 -0.5990 -0.6757 -0.6453 0.0049 -0.4199 -0.9726 -0.1704 1.8283 

BB 2 4 12 35 0.0710 0.9698 -0.6453 0.0049 -0.4199 -0.8700 -0.1704 1.8283 

BB 2 4 12 36 -0.5990 -1.0048 -0.6453 0.0049 -0.1327 -0.0928 -0.1704 1.8283 

BB 2 4 13 37 0.0710 0.3116 -0.7822 0.0049 0.6569 -1.4131 -0.8274 1.8283 

BB 2 4 13 38 0.8900 -0.0175 -0.7822 0.0049 0.2980 -1.3723 -0.8274 1.8283 

BB 2 4 13 39 -0.6740 -0.6757 -0.7822 0.0049 -0.4917 1.2427 -0.8274 1.8283 

BB 2 4 14 40 0.0710 -0.6757 0.2781 0.0049 -0.9583 -0.6387 1.1437 1.8283 

BB 2 4 14 41 -0.5250 -0.6757 0.2781 0.0049 -0.6352 -0.7959 1.1437 1.8283 

BB 2 4 14 42 -0.3760 0.3116 0.2781 0.0049 0.0826 0.5071 1.1437 1.8283 

BB 2 4 15 43 0.6660 -1.3339 0.0045 0.0049 -0.1327 -1.0425 2.9504 1.8283 

BB 2 4 15 44 1.4110 -0.6757 0.0045 0.0049 -0.2763 -1.4859 2.9504 1.8283 

BB 2 4 15 45 -1.1200 -1.3339 0.0045 0.0049 -0.5276 -0.8001 2.9504 1.8283 

BB 2 4 16 46 -0.0040 -0.0175 -0.8050 0.0049 -0.0609 -0.4281 -0.3346 1.8283 

BB 2 4 16 47 -0.4500 0.6407 -0.8050 0.0049 -0.2046 1.4284 -0.3346 1.8283 

BB 2 4 16 48 -0.5990 -1.0048 -0.8050 0.0049 2.0926 1.0308 -0.3346 1.8283 

DZ 2 5 17 49 -0.8220 0.3116 0.1755 0.5504 -0.2045 0.6269 -0.7453 -0.7658 

DZ 2 5 17 50 2.8250 -0.6757 0.1755 0.5504 0.8005 -0.3186 -0.7453 -0.7658 

DZ 2 5 17 51 1.4110 -0.0175 0.1755 0.5504 0.7287 -1.0813 -0.7453 -0.7658 

DZ 2 5 18 52 0.2940 0.3116 -0.2691 0.5504 -0.7788 0.1746 -0.8274 -0.7658 

DZ 2 5 18 53 0.1450 -0.0175 -0.2691 0.5504 0.2262 -0.6179 -0.8274 -0.7658 

DZ 2 5 18 54 1.3360 -1.0048 -0.2691 0.5504 1.1594 -1.5330 -0.8274 -0.7658 

DZ 2 5 19 55 0.5170 1.9570 -0.6909 0.5504 -0.2045 0.7357 -1.3201 -0.7658 

DZ 2 5 19 56 -0.2270 -0.3466 -0.6909 0.5504 -0.3481 -0.8950 -1.3201 -0.7658 

DZ 2 5 19 57 -0.1520 -0.6757 -0.6909 0.5504 -0.5635 -0.3651 -1.3201 -0.7658 
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DZ 2 5 20 58 0.4430 -1.0048 -0.6681 0.5504 1.2312 -0.1288 -1.3201 -0.7658 

DZ 2 5 20 59 0.8150 0.6407 -0.6681 0.5504 0.5492 0.1101 -1.3201 -0.7658 

DZ 2 5 20 60 1.1130 -1.3339 -0.6681 0.5504 1.4466 -0.0326 -1.3201 -0.7658 

DZ 2 5 21 61 -1.0460 -0.0175 -0.6111 0.5504 1.4466 0.6976 0.0760 -0.7658 

DZ 2 5 21 62 0.3690 0.9698 -0.6111 0.5504 0.2621 -0.1850 0.0760 -0.7658 

DZ 2 5 21 63 -0.0780 -0.0175 -0.6111 0.5504 0.0827 0.1621 0.0760 -0.7658 

MZ 2 6 22 64 0.7410 -0.0175 -1.2040 1.8315 1.0159 -0.5999 -0.6631 -0.7658 

MZ 2 6 22 65 1.2620 2.6152 -1.2040 1.8315 0.3698 0.9359 -0.6631 -0.7658 

MZ 2 6 22 66 -1.0080 -0.3466 -1.2040 1.8315 -0.7070 -0.6782 -0.6631 -0.7658 

MZ 2 6 22 67 0.5920 0.3116 -1.2040 1.8315 -0.5634 0.0042 -0.6631 -0.7658 

MZ 2 6 23 68 0.7410 1.6279 -0.8506 1.8315 0.2987 -1.3459 -0.5810 -0.7658 

MZ 2 6 23 69 2.2300 -0.3466 -0.8506 1.8315 1.8062 0.3824 -0.5810 -0.7658 

MZ 2 6 23 70 -0.3760 1.2988 -0.8506 1.8315 0.8716 -0.4191 -0.5810 -0.7658 

MZ 2 6 24 71 -0.0040 2.2861 2.2048 1.8315 1.4466 0.1663 1.8828 -0.7658 

MZ 2 6 24 72 -0.1520 1.6279 2.2048 1.8315 4.3173 0.2300 1.8828 -0.7658 

MZ 2 6 24 73 1.5600 -0.6757 2.2048 1.8315 1.2312 0.1538 1.8828 -0.7658 

MZ 2 6 25 74 -0.0040 0.9698 0.3921 1.8315 0.3698 0.9192 -0.1704 -0.7658 

MZ 2 6 25 75 -0.0780 -0.6757 0.3921 1.8315 -0.9224 1.2039 -0.1704 -0.7658 

MZ 2 6 25 76 0.8150 -0.0175 0.3921 1.8315 -0.5634 -0.7980 -0.1704 -0.7658 

MZ 2 6 26 77 -1.5670 1.9570 1.3498 1.8315 -0.0609 0.0249 1.6364 -0.7658 

MZ 2 6 26 78 0.7410 -0.6757 1.3498 1.8315 1.1595 0.0727 1.6364 -0.7658 

MZ 2 6 26 79 2.1550 0.3116 1.3498 1.8315 -0.6353 0.7855 1.6364 -0.7658 

WH 2 7 27 80 -0.0780 0.9698 0.5631 -0.3194 -0.4199 -1.6750 -0.3346 -0.7741 

WH 2 7 27 81 0.2200 1.6279 0.5631 -0.3194 -1.5326 -0.6678 -0.3346 -0.7741 

WH 2 7 27 82 0.6660 -0.3466 0.5631 -0.3194 1.5901 1.2393 -0.3346 -0.7741 

WH 2 7 28 83 -0.0040 2.9443 0.1755 -0.3194 -0.8506 -1.6750 -0.3346 -0.7741 

WH 2 7 28 84 0.9640 -0.0175 0.1755 -0.3194 -0.9224 3.3721 -0.3346 -0.7741 

WH 2 7 28 85 -0.8970 -1.0048 0.1755 -0.3194 -1.1019 0.8818 -0.3346 -0.7741 

WH 2 7 29 86 0.2940 0.3116 2.0566 -0.3194 -0.1327 0.1690 0.2403 -0.7741 

WH 2 7 29 87 1.6340 0.9698 2.0566 -0.3194 -0.1327 1.7796 0.2403 -0.7741 

WH 2 7 29 88 1.4110 0.9698 2.0566 -0.3194 -0.0609 -0.8347 0.2403 -0.7741 

WH 2 7 30 89 -1.6410 2.2861 1.4182 -0.3194 -0.5634 -0.3976 0.8151 -0.7741 

WH 2 7 30 90 -0.8220 -0.3466 1.4182 -0.3194 -0.7787 0.2154 0.8151 -0.7741 
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WH 2 7 30 91 -1.2690 -0.0175 1.4182 -0.3194 -0.9941 -0.4697 0.8151 -0.7741 

WH 2 7 31 92 -1.2690 0.3116 -0.1665 -0.3194 -1.2814 0.3380 0.3224 -0.7741 

WH 2 7 31 93 -0.3010 0.6407 -0.1665 -0.3194 -0.3480 0.4607 0.3224 -0.7741 

WH 2 7 31 94 -0.8970 -0.3466 -0.1665 -0.3194 -1.2095 -0.5625 0.3224 -0.7741 
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Table A3. Standardized cluster scale landscape data measured among plants per cluster 

(Cl) from the corresponding bog and system (Sys), where Spl = patch size of the plant, Acl 

= amount of habitat in the cluster, Abog = amount of habitat in the bog (m
2
), Ipl3 = 

isolation of the plant (m), Icl = isolation of the cluster, and Ibog = isolation of the bog (m).   

ID Sys Bog Cl Spl Acl Abog Ipl3 Icl Ibog 

Min 1 1 1 0.7030 -0.2006 -0.9471 0.9150 -0.2560 -0.2265 

Min 1 1 2 -0.7379 -0.7206 -0.9471 -0.0510 -0.4180 -0.2265 

Min 1 1 3 -1.0982 -1.0597 -0.9471 0.1872 -0.2560 -0.2265 

Min 1 1 4 -1.2781 -0.0536 -0.9471 0.3139 -0.0131 -0.2265 

Min 1 1 5 -0.1974 -0.3362 -0.9471 -0.0434 0.1489 -0.2265 

RSB 1 2 6 -1.6385 -1.0032 -0.8288 0.8806 -0.0131 1.2635 

RSB 1 2 7 -1.4584 -0.6188 -0.8288 -0.3739 2.1735 1.2635 

RSB 1 2 8 0.7030 -0.9128 -0.8288 -1.4802 -0.5800 1.2635 

SB 1 3 9 -1.2783 1.0203 -1.1773 -0.0034 -0.4990 -0.0465 

SB 1 3 10 0.5229 2.5352 -1.1773 1.2431 -0.4990 -0.0465 

SB 1 3 11 -0.9180 -0.3023 -1.1773 -0.3898 -1.0659 -0.0465 

BB 2 4 12 -0.3777 -0.6528 0.0247 -0.6491 -0.1750 1.7962 

BB 2 4 13 -0.1976 -0.7884 0.0247 -0.7709 -0.8229 1.7962 

BB 2 4 14 -0.5578 0.2629 0.0247 -0.0722 1.1207 1.7962 

BB 2 4 15 -1.8186 -0.0084 0.0247 -1.4987 2.9024 1.7962 

BB 2 4 16 -0.1974 -0.8110 0.0247 2.3703 -0.3370 1.7962 

DZ 2 5 17 -0.1976 0.1612 0.5714 -0.4374 -0.7419 -0.7639 

DZ 2 5 18 -0.3777 -0.2797 0.5714 -1.3875 -0.8229 -0.7639 

DZ 2 5 19 0.5229 -0.6980 0.5714 -1.9989 -1.3088 -0.7639 

DZ 2 5 20 -0.9180 -0.6754 0.5714 0.2004 -1.3088 -0.7639 

DZ 2 5 21 0.5229 -0.6188 0.5714 0.8911 0.0679 -0.7639 

MZ 2 6 22 1.0633 -1.2067 1.8552 0.5717 -0.6609 -0.7639 

MZ 2 6 23 1.4235 -0.8562 1.8552 0.5418 -0.5800 -0.7639 

MZ 2 6 24 1.7837 2.1734 1.8552 1.5893 1.8496 -0.7639 

MZ 2 6 25 0.1625 0.3760 1.8552 -0.8373 -0.1750 -0.7639 

MZ 2 6 26 0.8833 1.3256 1.8552 0.9118 1.6066 -0.7639 

WH 2 7 27 1.2434 0.5455 -0.3004 -0.1913 -0.3370 -0.7721 

WH 2 7 28 1.0633 0.1612 -0.3004 0.1607 -0.3370 -0.7721 

WH 2 7 29 1.2434 2.0264 -0.3004 0.4545 0.2299 -0.7721 

WH 2 7 30 1.0633 1.3934 -0.3004 0.6792 0.7968 -0.7721 

WH 2 7 31 0.3430 -0.1780 -0.3004 -1.7266 0.3109 -0.7721 
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Table A4. Standardized bog scale landscape data measured among clusters per bog from 

the corresponding system (Sys), where Scl = patch size of the cluster, Abog = amount of 

habitat in the bog (m
2
), Icl3 = isolation of the cluster (m), and Ibog = isolation of the bog 

(m).  

ID Sys Bog Scl Abog Icl3 Ibog 

Min 1 1 -0.6673 -0.7852 -0.0492 -0.2833 

RSB 1 2 -1.1747 -0.6741 -1.0502 1.1373 

SB 1 3 1.4665 -1.0027 -0.7721 -0.1118 

BB 2 4 -0.5637 0.1314 0.5427 1.6467 

DZ 2 5 -0.5972 0.6469 1.7917 -0.7938 

MZ 2 6 0.4774 1.8593 -0.8175 -0.7938 

WH 2 7 1.0591 -0.1757 0.3545 -0.8012 
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Figure A1. Measurements of pitcher plant leaves: 1 = pitcher mouth, 2 = pitcher width, 3 

= hood height, 4 = pitcher height.  
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Table A5. Summary statistics of the correlation between leaf measurements (1 = pitcher 

mouth, 2 = pitcher width, 3 = hood height, 4 = pitcher height) and potential leaf volume 

(mL). Potential leaf volume was measured for 249 leaves by emptying the leaf contents 

and filling the leaf with water to volumetric capacity. Water was then poured into a 

graduated cylinder and measured. Potential leaf volume was cube-root transformed for 

correlation analysis. 

Leaf measurement R
2
 r p-value df 

1 0.7555 0.8612 < 0.0001 246 

2 0.9169 0.9575 < 0.0001 246 

3 0.6838 0.8269 < 0.0001 246 

4 0.0015 0.8727 < 0.0001 239 
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Figure A2. Plot of Pearson's correlation coefficients (r) for pitcher plant measurements 

(1 = pitcher mouth, 2 = pitcher width, 3 = hood height, 4 = pitcher height) and potential 

leaf volumes, where points represent correlation coefficients and error bars represent 95% 

confidence intervals.   
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Table A6. Pearson correlation coefficients indicating the correlation between predictor 

variables used in plant scale models (significance levels 
*
p < 0.05, 

**
 < 0.01, 

*** 
< 0.001). 

 

Table A7. Pearson correlation coefficients indicating the correlation between predictor 

variables used in cluster scale models (significance levels 
*
p < 0.05, 

** 
< 0.01, 

***
 < 

0.001). 

Variable Ipl3 Icl Ibog Acl Abog 

  Spl 0.240 -0.092 -0.518
**

  0.390
*
  0.482

**
 

  Ipl3   0.098 -0.074  0.301  0.077 

  Icl    0.272  0.338  0.105 

  Ibog    -0.307 -0.326 

  Acl      0.048 

 

Table A8. Pearson correlation coefficients indicating the correlation between predictor 

variables used in bog scale models (significance levels 
*
p < 0.05, 

**
 < 0.01, 

***
 < 0.001). 

 

 

 

 

 

 

Variable Ilf Ipl Icl Ibog Apl Acl Abog 

  Slf 0.425
***

 0.030 -0.044 -0.154  0.030  0.157  0.302
**

 

  Ilf  0.138 -0.030 -0.102 -0.009  0.191  0.285
**

 

  Ipl   -0.091 -0.125 -0.004  0.078 -0.067 

  Icl     0.276
**

 -0.060  0.343
***

  0.090 

  Ibog     -0.315
**

 -0.294
**

 -0.334
***

 

  Apl       0.224
*
  0.296

**
 

Variable Icl3 Ibog Abog 

  Scl -0.209 -0.499  0.014 

  Icl3  -0.209  0.194 

  Ibog   -0.344 
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