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Abstract
The thesis provides simple and intuitive lattice based algorithms for solving dynamic port-

folio allocation problems under transaction costs. The early part of the thesis concentrates
upon developing a toolbox based on discrete probability approximations. The discrete ap-
proximations are shown to provide a reasonable approximation for most popular transaction
cost models in the academic literature. The tool, once forged, is implemented in the powerful
Mathematica based parallel computing environment. In the second part of the thesis we pro-
vide applications of our framework to real world problems. We show re-balancing portfolios
is more valuable in an investment environment where the growth and volatility of risky assets
is non-constant over the time horizon. We also provide a framework for modeling random
transaction costs and compute the loss of expected utility of an investor faced with random
transaction costs. Approximate methods are provided to solve portfolio constraints such as
portfolio insurance and draw-down. Finally, we also highlight a lattice based framework for
pairs trading.

Keywords: Portfolio Allocation, Transaction costs
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Chapter 1

A quantitative analysis of continuous time
portfolio strategies

In quantitative portfolio analysis investment portfolios are assembled from underlying assets
so that the resulting portfolio taken as a whole performs in a way that is deemed optimal. So
the idea is not simply to pick the best stocks, but to pick the best team of stocks. The idea
goes back to Markowitz [61], who looked at the portfolio with the lowest standard deviation
of returns for a given expected level of returns: the so-called efficient frontier. This work has
been very influential in the 50 years that followed, both in practice and in theory. However, it
is highly limited by being a single period model in which all investment decisions are made at
some initial time and the value of the portfolio is considered at a single, later, time.

Of course portfolios may be rebalanced. So in 1969 Merton developed a continuous time
framework in [64] which allowed for portfolios to be rebalanced and consumed from over
time. The investor chose consumption and allocation decision rules so as to maximize the ex-
pected utility of future consumption plus the expected utility of future bequest, all suitably time
discounted. This framework is modeled by some very nice nonlinear Partial Differential equa-
tions (PDEs) which can, for a wide class of utility functions, be solved analytically. However,
this model is limited by its assumption of transaction cost free trading: an assumption which
dramatically simplifies the resulting equations and their solutions.

Since 1970 a variety of models which incorporate transaction costs have been proposed.
These models are computationally challenging and each has their advantages and disadvan-
tages. All have the goal of either understanding how actual investors make decisions (descrip-
tive studies) or in helping actual investors make better decisions (normative models).

The current thesis aims to contribute to the literature on normative portfolio theory models.
Mathematical and computational techniques are developed to handle the challenging quantita-
tive problems emerging from this subject. The tool used is that of discrete multinomial trees
optimized using topological ideas and implemented using a powerful parallel computing Math-
ematica environment. The tool, once forged, is used to better understand a number of problems
in portfolio optimization distinguished from existing work by their improved realism.

This thesis is about optimizing the re-balancing of investment portfolios when trading be-
tween assets attracts transaction costs. This financial problem may be cast as the mathematical
problem of determining a value function that depends on the price of each of the n assets com-
prising the portfolio and time. At each time there is a best portfolio, defined by an n-vector
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which gives the wealth allocation to each of the n assets. However, stochastic asset price fluctu-
ations result in the actual asset allocations moving away from this optimal point. The presence
of transaction costs makes continuous re-balancing of the portfolio to their optimal level. So,
as the introduction to this thesis will show, this problem’s solution involves a small ”no trade”
region surrounding the optimal asset point.

The problem of determining the boundaries of this region is very complicated. It may be
cast as a partial differential equation, in which case a linear partial differential operator applies
inside the region, with moving boundaries determined using the transaction cost structure in a
way reminiscent of the determination of the American options early exercise boundary. Since
the number of assets comprising realistic portfolios is very large – 20, 30, or even 100 assets
are not unheard of, numerical partial differential techniques are simply impractical for this
problem.

Monte Carlo approaches might be better suited to this, but their inherent noisiness suffer
from difficulties in accurate determining boundaries. To be sure, these problems may be over-
come using the stochastic tree and mesh proposed by Broadie Glasserman in [17] or using
Longstaffe and Schwartz’s Least Squares Monte Carlo method in [57]. But those techniques
are difficult to code and require substantial computational power.

In this thesis we take a different approach. We follow the Monte Carlo route insofar as
we model the problem of re-balancing at one of a finite number of re-balance times, using the
dynamic programming principle to solve the problem from the final time horizon backwards in
time to the beginning. But we replace the simulation approach to computing the expectations
required in this stochastic dynamic program by a deterministic approach using trees designed to
well approximate the high dimensional probability transition functions from re-balance time to
re-balance time. Although our method is also destined to fail for large numbers of dimensions,
we show that it works remarkably well for problems involving two, three, or four assets. The
method proposed here is easy to code and easy to understand.

Careful study of realistic portfolio problems with a small number of risky assets is very
useful in building financial intuition, as existing literature provides little guidance for the trans-
action cost problem with more than two risky assets. This thesis models and solves a number
of portfolio and trading strategy problems using the tree formalism and draws financial conclu-
sions.

The outline of the thesis is as follows. The first section of the thesis is devoted to foun-
dational materials. In Chapter 2 a brief review of the key papers in the field is provided; this
chapter also serves the purpose of setting the notation used in the remainder of the thesis. In
Chapter three our basic numerical approach, that of discrete multinomial trees, is introduced.
Results providing evidence that these trees converge, in the appropriate limit, to the continuous
problem are also provided in Chapter 3. The Mathematica implementation of these models on
our small custom built computer cluster is described in Chapter 4. Chapter 5 situates some of
the tree building results in the context of homotopy theory. In Chapter 5 we discuss discretiza-
tion schemes for the continuous time probability model so that our problems could be solved
over a larger time interval ∆T . This methodology could significantly reduce the interpolation
errors which arise as a consequence of the fact that we represent out value function numerically
at each stage of dynamic programming.

With the above results in hand we have forged a tool which allows us to present some
analysis in context of continuous time portfolio theory. In first section of Chapter 6 the tool
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is used in a fairly simple setting in which risky assets follow Geometric Brownian motion
(GBM) and trading has linear transaction costs, but with multiple underlying risky assets. Links
are drawn with existing approximations in the literature. The second section of Chapter 6
extends the first section results to a practical situation in which the risk free asset no longer
acts as a banker for the trades. This means the trades in section 2 of Chapter are financed
by transfer of wealth between risky assets. In the third section we consider a model in which
transaction cost is proportional to the amount traded. Chapter 7 is devoted to looking at the
cost of inattention: how much utility is lost by re-balancing portfolios less frequently. We
also consider this problem in a more realistic situation in which the parameters of the random
process change with time and find that, for an investor able to accurately assess the changes,
the value of re-balancing is greatly enhanced. At the same time Chapter 7 may be considered
to be a validation of the discrete time/state approach to its continuous limit. Chapter 7 initially
examines the value of re-balancing a portfolio for a dynamic investor when the parameters of
risky asset are constant over the investment horizon. It subsequently provides a framework for
the value of re-balancing when the parameters shift over the investment horizon but the investor
knows in advance all the possible future changes. It shows the value of accurate financial
analyst recommendations regarding stock growth and volatility for an investor dynamically
allocating portfolios under transaction costs.

In the final part of the thesis we move farther afield from the theoretical roots of the field and
add realism by making better models for transaction costs, portfolio optimization constraints
and the class of trading strategies. In Chapter 8 we consider a model in which the bid-ask
component of transaction costs depend, in a deterministic way, on the market volatility, itself
modeled as changing via a Heston style formulation. We compare the portfolio utility lost
as a result of uncertainty in transaction costs. Chapter 9 examines the way in which realistic
constraints on solvency and draw-downs may be added to the formalism developed here and
some conclusions drawn. We show the optimal investment allocation rules in the form of no-
transaction geometries at a snapshot. An application of the thesis techniques to the hedge fund
strategy of pairs trading is displayed in Chapter 10. This chapter examines a simple pair trading
strategy in which an optimal trading rule is constructed both in the absence and presence of
transaction costs. The thesis concludes in the Chapter 11, with some suggestions for future
research.

If the reader is mostly interested in the financial implications of the ideas we suggest they
read Chapters 2 and 3 to get a flavor of the methods then Chapters 7, 8, 9 and 10. Modeling
and numerical aspects of the thesis are covered in Chapters 3, 4, 5 and 6.

It is clearly impossible to make much headway on the problems described in Chapters 7,
8, 9 and 10 analytically. The thesis provides simple, intuitive and robust numerical algorithms.
The numerical solution of the problems is very challenging and motivated us to develop (see
especially Chapters 3, 4, 5 and 6 ) sophisticated discrete probability approximation algorithms
in the thesis and implement them in a powerful Mathematica based parallel computing envi-
ronment.



Chapter 2

Literature review and notations

Chapter 2 provides the main underlying ideas behind dynamic portfolio theory. We provide a
brief overview of the transaction cost literature and set the notation for the rest of the thesis.

2.1 An overview of dynamic portfolio theory

The models of the thesis are dynamic in contrast to being static. The word dynamic corresponds
to active portfolio management and the word static to passive portfolio management. The
classical one-period portfolio theory of Markowitz is the canonical example of a static model
as it considers the decision of a myopic investor who over a time horizon selects his portfolio
composition only at the initial time to optimize his terminal objective. In contrast, this thesis
addresses dynamic portfolio models. This means that we have a multi-period portfolio theory
in which a dynamic investor could re-balance at a fixed number of observation points before
the terminal time. See Figure 2.1 which compares dynamic with a static investor.

Let the number of possible re-balancing points be N for an investment horizon of length T
years. By letting N → ∞ we go from a discrete-time to a continuous-time world. However,
the continuous world is slightly unrealistic because trading is could be done discretely. The
continuous world also offers an interesting set of numerical challenges.

Merton’s 1969 paper [64] is the seminal paper on continuous time portfolio theory. Using
a PDE formalism for a particular type of investment objective the optimal control policy is
to buy/sell the risky asset so as to maintain a constant fraction of wealth in the risky asset
at the Merton point for logarithmic or ‘CRRA’ utility and a constant amount of wealth for
‘CARA’ utility. The Merton point will be a term used for the optimal re-balancing point and
is utility structure dependent. The optimal re-balancing point is a point which would help the
dynamic investor achieve his investment objective over the horizon. The optimal control law
is a classic example of a time consistent strategy in sense that the law, once determined at the
initial time, does not change through time. The optimal control law holds true even for the
multi-dimensional case. A brief review of the work is provided below ; the interested reader
may wish to consult [64] for a detailed description of calculations. A brief review of utility
theory of what CRRA and CARA utilities mean will be given in Section 3.4 of the thesis.

Let W(t) be the wealth and ν(t) be the volatility at time t for the risky asset price xt which
follows

4
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Figure 2.1: Static versus Dynamic investor. A static investor re-balances only once while a
dynamic investor re-balances at nodes inside.

dxt = xt(mdt +
√
νdZ1

t ) (2.1)

for a Brownian motion Z1
t and drift rate m.

The volatility process is also general and assumed to be

dv = a(v, t)dt + b(v, t)dZ2
t (2.2)

for a Brownian motion Z2
t . Also a(v, t) and b(v, t) are functions of volatility and time.

For simplicity of exposition we also assume independence of Brownian motions via

E[dZ1
t dZ2

t ] = 0. (2.3)

Let the value function be denoted by J :

J(W, ν, t) = max E[φ(W(T ))|Ft] (2.4)

where Ft is the filtration generated by Brownian motions and φ is a utility function of ter-
minal wealth. Utility function is mathematical means for describing satisfaction from wealth.
They will described in detail in chapter 3. There is no need to introduce discount factor in our
framework as we merely interested in a functional of terminal wealth.

Further, let αt be the fraction of wealth invested in the risky asset and ω be the risk-free
rate. Then the wealth evolves according to :

dW
W

= αt(mdt +
√

(ν)dZ1
t ) + (1 − αt)ωdt. (2.5)

Using the dynamic programming principle [64] we have :
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max
(αt)

E
[
(Jtdt + JWdW +

1
2

JWWdW2 + Jνdν +
1
2

Jννdν2)|Ft

]
= 0 (2.6)

Substituting and using Ito’s lemma gives :

max
(αt)

E
[
(Jtdt + JW(W(αt(m − ω)dt + ω)dt) +

1
2

JWWW2α2νdt + Jν(a(v, t)dt) +
1
2

Jνν(b(v, t)2dt))|Ft

]
= 0

(2.7)
It follows from above by optimizing with respect to the risky fraction that the optimal risky

fraction is :

α∗t =
−(m − ω)JW

νtWtJWW
(2.8)

Now assume log-utility. Using the ansatz1 J = Log(W) + f (ν, t) in Equation 2.7 yields :

α∗t =
(m − ω)
νt

(2.9)

Especially of note is the fact that, for a log utility decision maker, the most optimal risky
fraction in the absence of transaction costs is independent of the level of wealth and depends
upon the level of volatility. Figure 2.2 shows the variation of the Merton line with volatility.
Figure 2.3 depicts a Merton line that is unchanged with time for constant volatility.

However, Geometric Brownian Motion (GBM) is not a process of bounded variation so
unless trading is frictionless, bringing portfolios to the most optimal Merton point would incur
substantial transaction costs [28]. Thus, when subject to transaction costs the investor would
re-balance only if his position is sufficiently away from the optimal point. These ideas are
illustrated in Figure 2.4. Simply speaking, introducing transaction costs would introduce buy
and sell side boundaries. Figure 2.5 shows the controlled risky fraction process evolving inside
the no-transaction region. One might argue about the optimality of no-transaction boundaries.
It turns out that the risky fraction process is mean-reverting about the Merton point for log-
arithmic utility and so from a cost-benefit analysis perspective the investor would re-balance
to a point that is sufficiently close to the optimal point e.g. points B,D in Figure 2.4. Inside
the no-transaction region the cost of re-balancing outweighs the benefit of re-balancing due to
mean-reverting nature of risky fraction process.

The optimal control law depends on the structure of transaction costs. Assume for now
that transaction costs are proportional to amount traded. In this case it may be shown that the
optimal control law is simple. If the risky fraction goes above the sell side boundary the investor
sells enough of risky asset so that the risky fraction is brought to the boundary once again. If
the risky fraction goes below the buy side boundary the investor buys enough to bring the risky
fraction back to the boundary. It may be shown that if the transaction cost depends upon the
amount of wealth then the optimal control law is to an optimal point inside the no-transaction
region [69].

1We will later show in chapter 8 that discrete time modeling provides some level of support for the brute force
ansatz we resorted to here.
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Figure 2.2: Merton line under no-transaction cost with parameters m = 0.14, ω = 0.05. Where
m is the drift for the risky asset and ω is the risk-free rate.

We must mention, however, the exact nature of the no-transaction region is dependent upon
the investment objective. For CARA and log-utility the no-transaction region was expressed in
terms of the risky fraction co-ordinate. This tends to change with utility function structure. Liu
in [55] works with the CARA utility function and shows we need “the amount of wealth in the
risky asset” instead of “the fraction of wealth in the risky asset” to express the no-transaction
region. This point will be discussed again at the end of Section 3.10.

The most representative transaction cost models in the continuous time literature are Davis
and Norman in [28] and Pliska et al. in [69]. In [28] transaction cost are proportional to amount
traded while in [69] transaction cost is proportional to the amount of wealth.

In a nutshell the basic structure of dynamic portfolio selection models could be broken
down to the ingredients I, II and III below.

I- Trading cost model
These models answer the questions :
a) Are the transaction costs proportional to the amount traded or to the amount of wealth

under management ?
b) Are there fixed costs per trade ?
c) Is there non-linear dependence on transaction costs in the model ?
II- Model for risky asset growth
It is usually assumed that the risky assets follow a diffusion process of which the simplest is

multi-dimensional GBM. One may, therefore, think of portfolio optimization as finding optimal
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Fraction of wealth

in risky asset

Time to maturity

Merton line

terminal 

 time

Figure 2.3: Re-balancing to Merton line for CRRA or log-utility. The line is constant with
respect to time.

wealth control involving stochastic processes.
III- Investment objective
The investment objective over a horizon could be finite horizon or infinite horizon. If it

is infinite horizon then the problem becomes time independent and the optimal control law is
independent of time. If it is finite horizon then the problem is time dependent and the optimal
control law is in general dependent on time. Many popular investment objectives include in-
termediate consumption as part of the objective. This thesis focuses only on objectives which
are a pure function of terminal wealth expressed via utility functions.

2.2 Brief review of transaction cost literature

Most academic literature for portfolio theory under transaction costs is in the continuous-time
domain. Such dynamic portfolio optimization problems with transaction costs can usually be
formulated as Stochastic Control problems with so called singular controls. These singular
controls (e.g. transactions) can bring about an instantaneous change in the state variable ( e.g.
fraction invested in the asset) rather than just a change in the rate of change of state. Solu-
tions to such singular control problems are sought by first arguing that the problem is equiv-
alent to solving a related partial differential equation known as the Hamilton-Jacobi-Bellman
(HJB) equation. The arising magical HJB equation2 (which varies under different model for-
mulations) is of the free boundary type, that is, the boundary of the region in which the HJB

2No boundaries in the no-transaction cost case.
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Figure 2.4: No-transaction boundaries over a finite horizon for CRRA or log-utility. When the
investor moves closer to terminal time the no-transaction region widens.

PDE is to be solved is not specified and is obtained as a part of the solution itself. Solving
a portfolio optimization problem with a large number of stocks essentially reduces to solving
a free-boundary problem in high dimensions. Run-times of existing solution methods grow
super-exponentially with dimension - making them unsuitable for problems with more than
even three stocks [71].

Much of modern financial theory neglects market imperfections such as transaction costs.
Perhaps its most successful implementations - continuous time portfolio choice and Black-
Scholes option pricing - are theoretically inconsistent with the existence of any transaction
costs at all. For instance, the hedging strategy proposed by [13] to value derivative assets is
not rationally feasible when the portfolio adjustment is not costless. Similarly, other arguments
adopted to justify alternative pricing methods do not seem to be immediately applicable when
the transaction costs impinge upon the investment returns. When they are applied, straightfor-
ward continuous adjustment of the portfolio consumption would lead to an infinite transaction
in a finite time.

One popular investment objective in literature has been of maximizing the long-term growth
rate of the portfolio in a market that contains one risk-free asset (bank) and multiple risky assets
(stocks). The maximization of expected growth rate under proportional transaction costs was
first studied by Taksar et al. in [81]. Taksar et al. were the first to apply the theory of stochastic
singular control to a consumption-investment problem with transaction costs. Denoting the
portfolio’s total wealth over time as a stochastic process W(t), the objective is to maximize the
long-term growth rate limt→∞ inf E[ Log(W(t))

t ]. Other objective functions draw their inspiration
from modern microeconomic theory and their aim is to maximize expected lifetime utility
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Figure 2.5: Controlled risky fraction over a finite horizon for CRRA or log-utility under trans-
action costs. Risky fraction is controlled via transaction so that it never falls outside the buy-
side and sell-side boundaries.

of consumption or the expected utility of terminal consumption if there is no intermediate
consumption.

For the optimization problem stated above, it can be argued that the optimal policy is speci-
fied by a no-transaction region. When the proportions of the investor’s wealth invested in stocks
lie within this region, the investor makes no transactions. When fluctuations in the price pro-
cesses drive the proportion of wealth invested in stock out of the boundary of the no-transaction
region, the investor transacts minimal amount required to keep the proportions in the region.
The key difficulty is that the domain over which HJB PDE is to be solved is not pre-specified
and must be computed as part of the solution.

Continuous time portfolio optimization problems can be broadly classified into two classes
based on the objectives that are considered. The first set of models consider another decision
variable, consumption, and maximize a function (usually discounted utility) of consumption.
The second set of models do not consider consumption and maximize a function of wealth in
the portfolio directly. This thesis is concerned with the second set of problems.

Magill and Constantinides in [60] first considered one-stock and one risk free asset portfolio
optimization problem with proportional transaction cost and conjectured that the optimal policy
would be characterized by a no-transaction region, such that optimal policy would not transact
when the fraction of wealth in the stock lies in this interval. When the fraction lies outside
the interval, the optimal policy would be to buy and sell just enough to bring the fraction into
the interval. Davis and Norman in [28] considered proportional costs in Merton’s setting again
restricting their analysis to the one-stock case. They provided a detailed characterization of
the optimal policy and conditions under which the HJB equation has a smooth solution. A
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representative list of other papers which consider the one stock case include [20], [78], [84],
[49], and [71]. The paper [20] consider the problems from an economic perspective while [78]
provides a rigorous stochastic analysis. Iterative schemes are provided in [84] and [49] while
[71] provides a boundary update procedure for solving such problems.

The number of papers that treat the multiple stock case with transaction costs is much lower.
Kumar and Mutharaman in [71] consider the multi-dimensional problem in Merton’s setting
with transaction costs and maximize the discounted utility of consumption. They transform the
resulting free-boundary problem into a sequence of fixed boundary problems that can be solved
with the finite element numerical method. Other papers that consider the multi-stock portfolio
optimization under various other model settings include [1], [6], [10], [54], [55] and [59]. A
numerical procedure for multiple asset problem under growth rate maximization is provided in
[1] and analysis for fixed transaction cost problems in [6]. Reference [59] considers a fairly
simple setting with proportional transaction costs under a dynamic programming formulation.
Capital gains taxes are considered in [54] while [55] considers the CARA (or exponential) util-
ity function. In its most general formulation, portfolio optimization is a continuous-time dy-
namic optimization problem and like many other such mathematical problems it suffers from
the curse of dimensionality in which the computational complexity of the standard techniques
grows exponentially with the number of independent variables. Hence no amount of computer
power could ever hope to solve such crucial problems when the number of independent vari-
ables is sufficiently large. Interestingly, paper [83] proposes a radial basis function based PDE
technique that hopes to tame dimensionality in dynamic portfolio choice with transaction cost.

In [10], Pliska and Bielecki develop a continuous time risk-sensitive portfolio optimiza-
tion model with a general transaction cost structure in which the individual securities and asset
categories are explicitly affected by underlying economic factors. The security prices and fac-
tors follow diffusion processes with the drift and diffusion coefficients for the securities being
functions of factor levels. The authors develop methods of risk sensitive impulsive control the-
ory in order to maximize an infinite horizon objective that is natural and features the long-run
expected growth rate, the asymptotic variance, and a single risk aversion parameter. The opti-
mal trading strategy has a simple characterization in terms of the security prices and the factor
levels. Moreover, it can be computed by solving a risk sensitive quasi-variational inequality.

In [49], Korn applied the theories of optimal stopping and quasi-variational inequalities to
two portfolio management problems both involving two assets ( a bank account with interest
rate of zero and a geometric brownian motion stock) and transaction costs of the form K +

κ∆S , where ∆S is the amount of funds added to the stock position when a transaction occurs.
One problem is to maximize the expected utility of wealth at a fixed finite time horizon: the
other is to maximize the expected discounted utility of consumption over an infinite planning
horizon, where consumption occurs in discrete lumps at discrete amounts of times. Korn in
[49] also characterized the optimal solutions and showed how these may be computed with
iterative schemes. His asset and transaction cost problems are similar to [10] but his portfolio
management problems do not overlap with the infinite horizon risk objective.

The Davis and Norman [28] model for portfolio selection under transaction costs serves as
a representative model for maximizing expected utility. For such problems Tourin in [84] has
characterized a unique viscosity solution to the variational inequality. This reference provided
monotone, stable and consistent numerical schemes to compute the unique viscosity solution
to the variational inequality. Mokkhavesa et al. in [66] have applied perturbation methods sim-
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ilar to those of Wilmott et al. in [6] to problems involving life-time utility maximization for a
general class of utility functions. They show that, in the presence of small transaction costs,
the optimal boundaries separating the transaction and no-transaction regions of an investor
with any utility preference can be found rapidly once the corresponding optimal allocation for
that utility has been determined numerically or analytically. A no-transaction region is de-
termined in which the investor holds the portfolio and transacts when the asset moves up the
boundary. Kumar and Mutharaman in [73] successfully applied the boundary update proce-
dure to give a computational scheme for optimal investment-consumption with proportional
transaction costs. The computational scheme transforms the arising free-boundary problem to
a sequence of fixed boundary problems.

2.3 Towards discrete time modeling
The first section of this chapter contained a short review of current abundant literature in con-
tinuous time transaction cost models. In contrast to continuous time models relatively little
work has been done in discrete time. For more details see [18]. The very first paper to model
transaction costs was [60] which was quickly followed by rigorous analytics in [31]. The spark
in interest for discrete time models in this area has been fairly recent. Most discrete-time work
(See [16], [35], [27]) has been in a no-transaction cost setting. A simulation based approach
to such problems is provided in [16] while the fairly recent work [35] emphasizes numerical
techniques to reduce dimensionality in portfolio problems. Discrete time portfolio selection
under transaction cost for CRRA and exponential utility using asymptotic approximations is
studied in [5] and [4]. Veins and Kim in [48] analyzes portfolio re-balancing in discrete time
under a fairly restrictive setting for stochastic volatility. Luenberger and Kuhn in [50] study
the value of re-balancing under growth rate maximization criterion for an investor who always
re-balances at a critical point. The contribution of the thesis is to improve upon the current
discrete time literature by providing robust algorithms for solving both existing portfolio prob-
lems and newly modeled problems. The methods proposed here are simple both to implement
and to understand

2.4 Notation used in the thesis
To keep a balance with the relevant literature cited, the notations unavoidably change somewhat
from one chapter to another. We will try our best to minimize notational disruption. The models
are somewhat similar so we highlight the important notations used by considering a dynamic
investor.

The risky assets follow a geometric Brownian motion (GBM) described by

dS i

S i
= midt + σidZi

t (2.10)

where the vector (dZt) represents Brownian motion vector, S i represents the asset price, mi

represents the drift and σi the volatility.
The processes Zi

t ; t > 0 are standard Brownian motions on a filtered probability space
(S,F ,Ft,P) with Zi

0 = 0 almost surely and constant co-efficients of correlation ρi j namely
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EP[dZi
tdZ j

t ] = ρi jdt. We also assume that the filtration Ft is right-continuous and each Ft

contains all P-null sets of F∞. The correlation co-efficients imply a correlation structure for
multi-dimensional GBM.

We could also represent the above via a Cholesky decomposition as

dS i

S i
= midt +

M∑
l=1

qildBl
t (2.11)

where (dBt) represent an independent Brownian motion vector and qil are extracted as en-
tries of the variance-covariance matrix of the vector (dZt) .

We will follow the notation given below. By ‘time node’ we mean the node value as shown
in Figure 2.1. ‘Time node’ is different from the actual value of time.

EP : represents the expectation under the natural probability measure3

W−
k : total wealth of the investor at time node k immediately before re-balancing 4

A−i,k : fraction of wealth in the risky asset i at time node k immediately before re-balancing
If there is only one risky asset in our model we would suppress one subscript and use A−k

as the fraction of wealth in the risky asset.
X−i,k : amount of wealth in the risky asset i at time node k immediately before re-balancing
If there is only one risky asset in our model we would suppress one subscript and use X−k

for the amount of wealth in the risky asset.
Y−k : amount of wealth in the risk-free asset at time node k immediately before re-balancing
Analogous variables for the above exist for immediately after re-balancing.
T : length of the time horizon
N : number of observation points available for re-balancing
∆k : transfer of wealth under a control strategy at time node k
ri,k : risky growth for asset i over a period ∆Tk defined as the ratio S i,k+1

S i,k

sk : risk-free interest rate over period ∆Tk

γ` : the deformation parameter where γ` −→ 0 for convergence (discussed in chapter 5)
V : is the co-efficient of risk aversion in CRRA utility.
z : is the co-efficient in CARA utility.
The structure of transaction cost in chapter six5 is different but in most of the chapters we

will have :
λk : transaction cost factor in buy-side direction
µk : transaction cost factor in sell-side direction
If the state space vector at time k is denoted by ~φk and control vector by ~ζk then value

function under utility function U(WN) is :

J(~φk) = max EP
~ζ
(U(WN)|Fk) (2.12)

$ : probability density of risky growth over an interval.
η

i, j,+
k : fraction of wealth transferred from asset i to asset j.

3We will not invoke the numeraire concept anywhere in the thesis so as to use martingale methods with respect
to a risk-neutral probability measure, as portfolio optimization is intrinsically a real world measure topic.

4Wealth is measured in monetary terms invested in total in individual assets. It is not measured as a result of
liquidation in risk-free asset or by using one asset as a numeraire.

5In Chapter six we assess transaction costs proportional to the amount of wealth traded.
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Mk : maximum wealth attained at a time node k.
Zk : denotes spread value at time node k.
πk : cumulative profits at time node k.
δk : profit in period k.
We must emphasize some notational confusion that might occur. By W(t) we would mean

the wealth at time t and this is usually the case for continuous time exposition of problems. In
discretized form by Wk we would mean the wealth at node k where there are say N nodes over
the time horizon. Such notational differences are applicable to all relevant dynamic portfolio
variables.

Note: The labeling of axes might have fonts not perfectly aligned because this was done
manually in the Mathematica generated graphics.

In the next chapter we will present the basic modeling framework of the thesis.

2.5 Lattice framework of the thesis using notations above
To give the reader a broad feel of the thesis we will highlight some simple models using the
notations above. We will also in simple terms highlight the discrete probability approximation
solution methodology.

2.5.1 Bermudan put option pricing in the framework
Consider a Bermudan put option with a strike K written over a time horizon T . The recursive
formulation for the valuation of a Bermudan put would read as:

V(S k, k) = max(K − S k, e−s∆T EQ[V(S k(1 + gk), k + 1)]) (2.13)

where k = 0, 1, 2, ...,N − 1 and V(S N ,N) = (K − S N)+ represents the terminal condition.
Here V denotes the option price as a function of stock price S k. Here Q is the risk-neutral

probability measure. Also (1 +gk) is the factor by which the stock price grows over the interval
∆T . Also K is the strike price and s is the risk free rate.

The essential feature of the thesis is to create a discrete probability approximation of the
random variable gk over which the expectation is taken. We create an ` point approximation for
the continuous risky growth implied by the GBM. The limit ` → ∞will be used to approximate
the solution for GBM based model. The state space is a grid of stock price values bounded by
a minimum and maximum. Starting from the terminal node k = N we move backwards using
Equation 2.13 to determine the value function at earlier stages. Using the recursive formulation
we will determine the value function at each point in state space for a time node. Numerical
interpolation will be used to numerically represent the value function values for a particular
time node.

We highlight our lattice solution methodology in Figure 2.6. The Figure shows a point at
time node N − 1 with a stock price value of S N−1. Under a three point discrete probability
approximation the risky growth can take three possible values at the start of the next node. The
dynamic programming problem involves constructing a lattice of stock price space which in
this case is [S min, S max]. Going recursively backwards at each point in state space we determine
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Figure 2.6: Lattice solution methodology for Bermudan option.

the value function by optimizing over an expectation operator for the next value function as in
Equation 2.13.

2.5.2 Growth rate maximization portfolio problem in the framework
Consider an investor who invests in one risky and one risk-free asset. The investment horizon
is T years. The investor takes only long position in the risky and risk-free asset. The amount of
wealth in risky asset immediately before re-balancing is X−k . The amount of wealth in risk-free
immediately before re-balancing is Y−k . Also the fraction of wealth held in the risky asset is
adjusted so that he is able to achieve his terminal investment objective. However, he incurs
transaction costs in the process. The transaction costs are assumed to be proportional to the
amount of wealth and a certain fraction λk of wealth gets lost in the transaction process. There
are N re-balancing periods and k = 0, 1, ...,N − 1 denotes a time node i.e. the start of a re-
balancing period. Let W−

k be the total amount of wealth immediately before re-balancing. Also
let A−k be the fraction of wealth in the risky asset immediately before re-balancing and A+

k
denote the fraction immediately after re-balancing.

The stochastic system re-presenting the transaction process can be described by a system
of equations.

At the beginning of each period, if re-balancing is selected then the following system of
equation hold:

X−k+1 = (1 − λk)W−
kA

+
k rk (2.14)

Y−k+1 = (1 − λk)W−
k
(
1 −A+

k )sk (2.15)
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A−k+1 =
A+

k rk

A+
k rk +

(
1 −A+

k

)
sk

(2.16)

If re-balancing is not selected then the following system holds :

X−k+1 = W−
kA

−
k rk (2.17)

Y−k+1 = W−
k
(
1 −A−k )sk (2.18)

A−k+1 =
A−k rk

A−k rk +
(
1 −A−k

)
sk

(2.19)
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Figure 2.7: Lattice solution methodology for dynamic portfolio problem.

The dynamic investor will have an investment objective that will be a function of his termi-
nal wealth W−

N . Dynamic programming provides the necessary toolkit to solve such problems
recursively.

Let Jk(Wk,Ak) =EP[log[WN]|Fk] be the value function under the CRRA utility. Then un-
der the control set {ς} we have:

Jk(Wk,Ak) = max
{ς}

EP[Jk+1(Wk+1,Ak+1)|Fk]. (2.20)
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Where k = 0, 1, 2, ...,N − 1.
Also, for the terminal condition we have :

JN(W−
N ,A

−
N) = Log[W−

N] (2.21)

The solution of the above portfolio model involves solving the equations recursively. We
start from the terminal node k = N and move backwards using equation (2.20) to determine
the value function at earlier stages. The control set at a point in time determines whether the
investor buys, sells or does nothing. It is determined as a function of the state variables which
in our case is wealth W−

k and fraction of wealth in the risky asset A−k . But to solve recursively
we need to figure out a clever way to determine the expectation operator approximately. The
idea of the thesis is to approximate the risky growth of the risky asset over the interval ∆T as a
discrete probability mass function. In simple terms we would create an ` point approximation
for the continuous risky growth implied by the GBM. The limit ` → ∞ will be used to approx-
imate the solution for GBM based model. Note the discrete probability approximation is only
over the interval ∆T . This is quite different from the tree methods you see in context of option
pricing in which you have a re-combining tree that branches out.

Our lattice methodology solves our problem over a lattice of state variables. We will later
show in Chapter 6 that this problem is separable in wealth for certain utility functions and the
only relevant state variable is the risky fractionA−k .

We highlight our lattice solution methodology in Figure 2.7. The Figure shows a point at
time node N − 1 with a risky fraction value of A−N−1. Under a three point approximation for
risky growth and investor decision to buy, sell or do-nothing the risky fraction can take three
possible values at the start of the next node. The dynamic programming problem involves
constructing a lattice of risky fraction space which in this case is [0, 1]. Going recursively
backwards at each point in state space we use determine the value function by optimizing over
an expectation operator for the next value function as in Equation 2.20.

In summary, the framework of the thesis is lattice based. The state variables are represented
on a lattice. The state variables are bounded and for, instance in the portfolio model above are
bounds were [amin, amax]. Relevant probability models are approximated as discrete proba-
bility mass functions. Dynamic programming provides the essential toolkit for determining the
optimal control law recursively. In the next chapter we provide more detail for our modeling
framework for solution methods.
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Symbol Notations
EP Expectation under natural probability measure.
W−

k Wealth at node k immediately before re-balancing.
A−i,k Fraction of wealth in risky asset i at node k immediately before re-balancing.
X−i,k Wealth in risky asset i at node k immediately before re-balancing.
Y−k Wealth in risk free asset at node k immediately before re-balancing.
T Investment horizon length.
N Number of point available for re-balancing.
ri,k Risky growth vector of risky asset i.
sk Risk free growth rate.
ω Continuous risk-free rate.
γ` Deformation parameter introduced in Chapter 3 and discussed more in Chapter 5.
λk Transaction cost factor in buy side but in Section 6.1 no direction.
µk Transaction cost factor in sell side direction.
~φk State space vector.
~ζk Control vector.
U(WN) Utility of terminal wealth.
J(~φk) Value function.
$ Probability density of risky growth.
η

i, j,+
k Fraction of wealth transferred from asset i to asset j.
Mk Maximum wealth attained at time node k.
Zk Spread value at time node k in Chapter 10.
πk Cumulative profits to date in Chapter 10.
δk Profits in period k in Chapter 10.
V Co-efficient of risk aversion in CRRA utility.
z Co-efficient in CARA utility.

Table 2.1: Summary of Notations Used.



Chapter 3

Introduction to discrete probability
approximation and sketch of modeling
approach

3.1 Overview

This thesis presents robust, simple and easily implementable approximate numerical algo-
rithms to solve problems in dynamic portfolio theory under transaction costs. Such algorithms
are important because in most cases the solution of portfolio problems under transaction costs
involve complex numerical procedures which can become numerically intractable. Such prob-
lems are also computationally very demanding. Instead of working in continuous domain we
chose to work in a discrete domain1. The reason for this modeling choice is two-fold:

1- Discrete phenomena are realistic. Trading in real life is discrete time. Moreover, contin-
uous time trading is rationally not feasible because of market frictions like transaction costs,
liquidity etc. Infinite transaction costs would be incurred if trading were done continuously.

2- Discrete models may be deformed to a continuous domain. This means that the solution
obtained using discrete domain can be used to obtain solution to continuous domain. We will
later show a discrete domain is highly amenable to simple easily implementable numerical
algorithms via stochastic dynamic programming.

The thesis has two main contributions:
1- Mathematical and computational techniques. These involve constructing simple, intu-

itive and easily implementable lattice based approaches to solve problems.
2- Financial applications.
We cover a broad spectrum of realistic dynamic portfolio and trading problems under sev-

eral constraints. These include:
• Bankruptcy prohibition / solvency constraints.
• Leverage / liquidity constraints.
• Draw-down constraints.
• Portfolio insurance constraints.

1Discreteness in time as well as space.

19
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The problems considered above can still be solved in continuous time but with greater nu-
merical challenges depending upon the nature of the problem. For instance by introducing
transaction costs we have free boundary PDE formulation [28] the solution of which is com-
plex.

One of the central themes of the thesis is to study inter-connectivity between financial
variables for a dynamic investor like the relationship between transaction costs and market
volatility. This will be explored in detail in the chapter on stochastic transaction costs.

In line with the above theme, this thesis studies the behavior of the portfolio for a dynamic
investor i.e. the value of re-balancing portfolios under different investment objectives, ranking
risk / return of dynamic trading strategies etc. We provide a simple and intuitive framework for
a rigorous analysis of dynamic portfolio problems.

A major goal is to incorporate parameter estimation error in the dynamic programming
methodology (so making the problem time inconsistent 2) and obtain heuristics for problems
like these in our Chapter 7 and Chapter 11.

Lattices will be the basic mathematical structure for encapsulating our financial models.
Our approach is to determine the laws of a system using mathematical experiments. The
framework of the thesis will be the beginning of a journey that will help us mimic the com-
plex behavior in financial systems via lattices. We believe the complexity can be discovered
and embedded into lattices. Like Stephen Wolfram [37] we feel that present day mathematical
structures are not sufficiently rich to depict the complexity displayed in real life.

Finally, we conclude by presenting some interesting real life problems solvable under our
lattice framework. These include algorithmic trading, hedge fund maximum draw-down and
portfolio insurance.

3.2 Analogy between discrete time and continuous time port-
folio theory

Our discrete time framework is related to continuous time portfolio theory in a similar way
that a Bermudan option is related to a American option. The solution of a perpetual American
option can easily be obtained by solving a differential equation whereas for a perpetual Bermu-
dan option, different mathematical formulations could be obtained by relying on the principle
of stochastic dynamic programming.

The recursive formulation for the valuation of a perpetual Bermudan would read as:

V(S k) = max(K − S k, e−s∆T EQ[V(S k(1 + gk))]) (3.1)

where V denotes the option price as a function of stock price S k. Here Q is the risk-neutral
probability measure. Also (1+gk)) is the factor by which the stock price grows over the interval
∆T . Also K is the strike price and s is the risk free rate.

Something similar is happening here. In continuous portfolio theory we have free boundary
PDEs that could most often be solved only numerically. In discrete time a nice analytical
structure is not currently known and we have to resort to stochastic dynamic programming.

2As described in more detail in section 3.5.
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3.3 Bellman principle for discrete time finite horizon prob-
lems

This thesis is primarily devoted to discrete time finite horizon portfolio problems. The perpet-
ual limits could be used to obtain infinite horizon solutions. Let ~Φk be the state space vector3

defining the portfolio problem at time k.
Define the value function for the problem as:

Jk( ~Φk) = max
ς

E(U( ~ΦN)|Fk) (3.2)

where ς is the control law to be determined as part of optimization at each stage of dynamic
programming.

Using the principle of optimality, Markov property of the underlying asset price process
and law of iterated expectations the Bellman principle (or dynamic programming principle )
can be stated as4:

Jk( ~Φk) = max
ς

E(Jk+1( ~Φk+1)|Fk) (3.3)

3.4 Utility of terminal wealth

In economics, the utility U(x) is a measure of relative satisfaction from wealth. The utility
function approach as a means of making economic decisions was developed by John von Neu-
mann and Oskar Morgenstern in [67]. The von Neumann-Morgenstern utility U(x) is a concave
function U

′

(x) > 0,U
′′

(x) < 0 that is defined up to an affine transformation.
The dynamic investor in this thesis has no intermediate consumption. Utility functions are

a mathematical way of describing the level of satisfaction the dynamic investor receives from
his terminal wealth. Commonly used utility functions are:

1- Quadratic utility function: U(WN) = WN − aW2
N .

2- CRRA utility: U(WN) =
WV

N
V for risk-aversion co-efficient V ∈ (−∞, 1) \ 0.

3- Log-utility of Kelly Criterion: U(WN) = Log(WN).
4- CARA or exponential utility: U(WN) = −e−zWN for z ∈ <+.
While not being a utility function in the strict sense, it is also possible to have utility metrics

like the level reaching indicator: U(WN) = 1(WN≥W∗).
The above utility functions can be shown to be equivalent to other possible utility functions

and investment criteria. For instance, as in [10], the exponential utility could be used to model
risk-sensitized asset allocation.

Consider a dynamic investor trying to maximize the probability that log-returns are above
a certain target level. It can be shown that the investor has a level reaching utility metric as
follows:

3Depending upon the problem could include fraction of wealth in risky assets, amount of wealth in risk assets
and many other variables as we will see later.

4Provided we have no intermediate costs.
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max P(RN > R∗) = max P(WN > W∗) (3.4)
= max EP(1(WN≥W∗)) (3.5)

3.5 An illustrative example: deformation solution for a dy-
namic investor

Let us try to highlight the solution mechanism in terms of the dynamic programming method-
ology briefly highlighted in Section 3.3. The two main ingredients of dynamic programming
are defining the value function and the recursion equation. The purpose of this example is to
present our problem solution methodology in broad brush. Consider a dynamic investor trying
to maximize his return subject to a given level of volatility. The investor invests in a risky asset
and a risk-free asset.

The investment has a finite time horizon of T divided into N periods so that each period is
of length ∆T= T

N and k = 0, 1, 2, ...,N.
Without going in more mathematical detail for now, mean-variance problems in pre-committed

form are really benchmark problems in which the investor tries to minimize the variability of
wealth around a target level b which depends upon the initial wealth and risky fraction. Stan-
dard dynamic programming could not be applied to our objective in this form as it manifests
itself as a time inconsistent control problem. This is because if the investor wants to minimize
the variance of terminal wealth subject to an expected terminal value constraint, then this im-
plies a particular b(t) at time node k = 0 ( for the mean-variance problem cast in deviation
from the target form). However, when an investor moves to the next time node k = 1 the risky
fraction and wealth both change which requires changing b(t) to meet the mean-variance ob-
jectives over the investment horizon. See the papers [7] and [58] for a review of mean-variance
problems in pre-committed form. The changing value of b(t) over the investment horizon im-
plies that the control strategy is clearly time inconsistent. Similarly, a time consistent problem
is one in which controls initially determined do not change through time. Merton’s portfolio
allocation problem for CRRA or log-utility in Section 2.2 of Chapter 2 is time consistent be-
cause the optimal policy of holding a constant fraction of wealth at each point in time does not
change with time. The slight difference between time consistency and time inconsistency is
discussed in [7] and [58].

One of the best examples to illustrate time inconsistency in control problems is when pa-
rameter uncertainty comes in. Suppose an investor is trying to maximize a certain objective at
terminal time that is a function of terminal wealth. Assume the utility function is general. Un-
der parameter uncertainty the controls estimated at t = 0 may not be optimal if the parameters
change. In other words, in this case a straightforward application of the dynamic programming
principle is not possible5.

In [7], the strategy of maximizing the mean-variance objective at time node k = 0 is termed
the pre-commitment control, i.e. once the initial control is found at the initial time, the trader

5Note, however, it is still possible under parameter uncertainty to have time consistent controls i.e. with loga-
rithmic or CARA utility and no-transaction costs primarily due to the fact that these problems allow separability
in wealth.
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commits to this optimal control, even if the optimal mean variance control computed at a later
date differs from the pre-commitment control. This contrasts with time-consistent controls,
whereby the dynamic investor optimizes the mean-variance trade-off at each instant in time,
assuming optimal mean-variance strategies at each later instant. The advantages and disad-
vantages of these two different approaches are discussed in [7]. See also [26] for a similar
discussion on pre-committed controls.

The dynamic problem is:

min
(ζ)

EP[(WN − b)2] (3.6)

where P is a risk-neutral probability measure.
Clearly the investor is minimizing the variability of his wealth around a target level. By

choosing a b we are choosing a point on the efficient frontier (as discussed in section 6.2 ). Let
W−

k be the total wealth andA−i,k be the fraction of wealth in the risky asset immediately before
re-balancing.

Using the dynamic programming principle for the pre-committed control problem (now the
problem has been made time consistent because the controls are pre-committed ):

J(W−
k−1,A

−
i,k−1) = min

(ζ)
EP[J(W−

k ,A
−
i,k)|Fk−1] (3.7)

Then for k = N with W−
N = W−

N−1φN−1(A−i,N−1) we have:

J(W−
N−1,A

−
i,N−1) = min

(ζ)
EP[(W−

N − b)2|FN−1] (3.8)

= min
(ζ)

EP[(W−
N−1φN−1(A−i,N−1) − b)2|FN−1] (3.9)

In a similar vein we could recursively go backwards and determine values for k = N −
2,N − 3, ..., 2, 1. Figure 3.1 shows the efficient frontier generated by varying b in the above
equations 3.8-3.9 for a particular choice of parameters.

Over the interval ∆T the risky growth of risky asset is log-normally distributed since the
continuous domain model is Geometric Brownian motion (GBM). Working with exact distri-
butions is computationally intensive. In most cases an exact analytical solution is not possible
and the curse of dimensionality could be a greater problem in the continuous domain. This
motivates us to deform our probability model in to a discrete model with M risky evolution
branches6. Techniques that focus on how to create such deformations are the subject of Chap-
ter 5 for a theoretical discussion and Chapter 4 for Mathematica based implementation.

We will later show the dynamic portfolio problems show nice decomposability with respect
to the probability model of risky asset growth. That problem is a more complex version of
numerical quadrature: evaluating the integral∫

f (x) ∗ g(x)dx (3.10)

6A discrete approximation of a continuous distribution of risky growth over the interval ∆T
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E[WN]

Var@WND

Re-balancing twice a year

0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.215

0.220

0.225

Figure 3.1: Risk-adjusted value of re-balancing portfolios with parameters T = 1, ω =

0.07, λ = µ = 0.005, s = eω∆T ,m = 0.14, σ = 0.3. Where T is the time horizon for in-
vestment, ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T .

Instead of applying numerical methods on the integral itself we will apply methods on the
approximation with respect to a function so that:∫

f (x) ∗ g(x)dx =
∑

ai f ?(xi)g(xi) (3.11)

where f ? is an approximation to the function f , where ai denote the weights assigned to
the nodes xi.

In Figure 3.1 the exact solution for efficient frontier matches closely with a probability
deformation scheme. Yet the computational cost of the deformation based solution is only a
fraction of the exact solution. This is because the exact solution requires numerical evaluation
of integrals which can be computationally challenging to attain a desired level of accuracy7.

3.6 Transfer of wealth, transaction cost structure and no-
transaction region

Throughout we will consider an investor who distributes his wealth between risky and non-
risky assets. It is of some value to the dynamic investor to re-balance his wealth to the most
optimal risky fractions given the state variable values8. Under transaction costs most often
he would trade to the boundary of the no-transaction region. The optimal re-balancing point
in the absence of transaction costs is situated inside the no-transaction region. These ideas

7There is a trade-off between speed and accuracy but we are going for speed with reasonable accuracy.
8For a general utility function the most optimal risky fractions could become wealth dependent.
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have already been discussed in context of continuous time portfolio theory in Chapter 2. Re-
balancing is equivalent to transfer of wealth between assets. A system of equations holds for
an investor shifting his wealth between assets9.

0 1 k k+1 N-1 N

DT

Time

Trading or no-trading

  at   k- 

Risky growth 

over the interval

Liquidate wealth

or consume it

      U(W
Τ
)

Figure 3.2: Discrete time trading model. The dynamic investor has the option to re-balance or
not to re-balance at a time node. The risky asset grows over the re-balancing period and so the
fraction of wealth in the risky asset changes.

3.6.1 Transaction cost models
Transaction costs are often modeled as proportional to the amount traded. Transaction costs
have a non-linear structure which varies with the amount traded. For modeling purposes if ∆

is the amount traded then one possible model is to express the transaction cost in terms of a
polynomial basis as

∑I
i=0 ai∆

i. Another possible model would be to express transaction cost as
being a piecewise linear function of ∆ as shown in Figure 3.3. The level of transaction costs
change over time making a random model attractive and the actual dependence of such models
on market volatility is explored in Chapter 8.

Transfer of wealth between risky assets and trading cost proportional to the amount
transferred

Let W−
k be the total amount of wealth and A−i,k be the fraction of wealth in the risky asset i at

the beginning of period k immediately before re-balancing. SoA+
i,k is the fraction immediately

after re-balancing. Also η
j,i,+
k W−

k is a fraction, η j,i,+
k , of the current wealth level immediately

before re-balancing. Here η j,i,+
k W−

k denotes the net wealth added at the beginning of the period

9This section illustrates the system of equations that should hold under different transaction cost models.
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Transaction costs

Amount traded

Figure 3.3: A possible piecewise linear function for transaction costs. Transaction costs are a
function of the amount traded.

that comes from transferring wealth from risky asset j to risky asset i. Re-balancing is only
done at the beginning of the period. The transaction costs are proportional to the amount
transferred so a trading cost of λkη

j,i,+
k W−

k is incurred. Immediately after re-balancing there is
no growth in risky asset as growth only occurs over an interval. Denote by si,k the risky growth
of asset i over the period k. We define risky growth as new price levels divided by the previous
price levels. If S i,k is the asset price at the beginning of period k and S i,k+1 at the beginning of
period k + 1 then the risky growth is si,k =

S i,k+1

S i,k
. No simultaneous transfer of wealth between

risky assets is allowed. This means if the investor transfers wealth from asset j to asset i then
he is not allowed to transfer wealth from asset i to asset j.

At the beginning of each period if the investor decides to transfer wealth from asset j to
asset i, the following system of equation holds:

X+
i,k = A−i,kW

−
k + η

j,i,+
k W−

k (3.12)

X+
j,k = A−j,kW

−
k − (1 + λk)η

j,i,+
k W−

k (3.13)

A−i,k+1 =
A+

i,ksi,k

A+
i,ksi,k + (1 −A+

i,k)s j,k
(3.14)

In an analogous fashion we could write the system of equations that should hold for wealth
transferred from asset i to asset j.

X+
j,k = A−j,kW

−
k + η

i, j,+
k W−

k (3.15)
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X+
i,k = A−i,kW

−
k − (1 + λk)η

i, j,+
k W−

k (3.16)

A−i,k+1 =
A+

i,ksi,k

A+
i,ksi,k + (1 −A+

i,k)s j,k
(3.17)

If the investor decides to do nothing:

X+
j,k = A−j,kW

−
k (3.18)

X+
i,k = A−i,kW

−
k (3.19)

A−i,k+1 =
A−i,ksi,k

A−i,ksi,k + (1 −A−i,k)s j,k
(3.20)

Merton

point

Asset i

Asset j

Sell asset i

Buy asset j

Figure 3.4: A possible no-transaction region in state variable space. For Log and CRRA utility
if the fraction of wealth in risky asset goes out of the boundaries the risky fraction is brought
inside the boundary [28].

For most well-behaved utility functions like CARA and CRRA the no-transaction region
seems to be a closed curve (see Figure 3.4) with respect to the relevant state variables [51].
If the transaction is proportional to the amount traded the investor would try to bring it to
the boundary of the region. If transaction cost is independent of the amount traded then he
would try to bring it to some point inside (see [69]). Also the state variable in which the
region is expressed is of some importance. It turns out that for CRRA and log-utility we have
separability in wealth and the no-transaction region can be expressed through the fraction of
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(1,2) (1,3) (2,3)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 3.1: Transfer of wealth configurations between 3 risky assets where (i, j) is equal to 0 if
he transfers from i to j and 1 if he transfers from j to i. This table includes all the possibilities
for transferring wealth under the control constraints.

wealth in the individual risky assets(see [28]). For exponential or CARA utility it can be
expressed through the amount of wealth in the individual risky assets ( see [55]).

Keeping in view the above modeling framework, consider a three risky asset model with no
risk-free asset. At a given time the investor has nine possible alternative choices. The simplest
of these options is to do nothing at all. There are 23 = 8 possible configurations for transferring
wealth between the 3 risky assets (See Table 3.1). In general, for a transfer of wealth model
and l risky assets we have 2l + 1 available strategies at any point in time.

Now consider an investment that has a finite time horizon of T . There are N periods so that
each period is of length ∆T = T

N and k = 1, 2, ...,N. The investor objective is to maximize the
logarithm of terminal wealth over a finite horizon. At a particular time snapshot (say the initial
time, k = 0) a no-transaction geometry could look like as in Figure 3.5. Parameters are not
supplied for are computed solution in 3.5 because we have not discussed the model yet. We
just wish to give a visual depiction of no-transaction geometries.

A no-transaction geometry is essentially the optimal control law at a point in time visually
depicted in the risky fraction state space. Whenever the relevant state space vector is inside
the no-transaction region the investor does not transact. We later demonstrate in Chapter 6
that logarithmic and CRRA utility posses decomposability with respect to wealth so that the
optimal control law only depends upon the fraction of wealth held in the risky assets.

Risk-free asset banker for buying/selling risky assets and trading cost proportional to the
amount traded

Consider a simple model where our portfolio consists of a risky and non-risky asset. The
investor shifts his wealth between assets subject to a control strategy given his terminal invest-
ment objective. There are N periods and an investment horizon of length T years.

Let us illustrate a transaction process involving two assets. Let X+
k be the wealth in the

risky asset immediately after re-balancing and Y+
k for the wealth in the risk-free asset. Also

A−k is the fraction of wealth in the risky asset immediately before re-balancing. Let ∆k be the
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Figure 3.5: A no-transaction region for transfer of wealth model between three assets where ♣
denotes no-transaction. Parameters intentionally not supplied. Horizontal axis is the fraction
of wealth in first risky asset and vertical axis is the fraction of wealth in second risky asset.

amount of wealth transferred and transaction cost is incurred which is illustrated by the system
of equations below. Denote by rk by the growth rate of the risky asset and sk by the growth rate
of risk-free asset.

If asset 1 is bought:

X+
k = A−k W−

k + ∆k = ε+
k W−

k (3.21)
Y+

k = (1 −A−k )W−
k − (1 + λk)∆k (3.22)

A−k+1 =
ε+

k rk

ε+
k rk + ((1 −A−k ) − (1 + λk)(−A−k + ε+

k ))sk
(3.23)

If asset 1 is sold:

X+
k = A−k W−

k − ∆k = ε+
k W−

k (3.24)
Y+

k = (1 −A−k )W−
k + (1 − µk)∆k (3.25)

A−k+1 =
ε+

k rk

ε+
k rk + ((1 −A−k ) + (1 − µk)(A−k − ε

+
k ))sk

(3.26)

If re-balancing is not selected:
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X+
k = A−k W−

k (3.27)
Y+

k = (1 −A−k W−
k ) (3.28)

A−k+1 =
A−k rk

A−k rk + (1 −A−k )sk
(3.29)

It is easy to incorporate constraints on the state variable under control. For example, if we
desireA+

k ≤ 1. This could be easily be put in to action by letting:

ε+
k

ε+
k + ((1 −A−k ) − (1 + λk)(−A−k + ε+

k ))
≤ 1 (3.30)

⇒ ε+
k ≤

1 + λkA
−
k

1 + λk
(3.31)

Buying/selling risky assets and trading cost proportional to the amount of wealth

Lets consider a different transaction cost structure in which cost depends upon the total amount
of wealth10. At the beginning of period k we have W−

k =
∑

Y−i,k+X−k . Denote Y−k as the amount
of wealth in risk free asset and Xi,k as the amount in the risky asset i immediately before re-
balancing. Denote ri,k as the growth rate of the risky asset i and sk as the growth rate of risk-free
asset. A transaction proportional to the amount of wealth is incurred. At the beginning of each
period if he decides to re-balance then the following system of equation holds:

X−i,k+1 = (1 − λk)W−
kA

+
i,kri,k (3.32)

Y−k+1 = (1 − λk)W−
k

(
1 −

∑
A+

i,k )sk (3.33)

A+
i,k+1 =

A+
i,kri,k∑

A+
i,kri,k +

(
1 −

∑
A+

i,k

)
sk

(3.34)

If he decides not to re-balance then the following system holds :

X−i,k+1 = W−
kA

−
i,kri,k (3.35)

Y−k+1 = W−
k

(
1 −

∑
A−i,k )sk (3.36)

A−i,k+1 =
A−i,kri,k∑

A−i,kri,k +
(
1 −

∑
A−i,k

)
sk

(3.37)

10Also dubbed management fee.
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3.7 A synopsis of approximate lattice methods

One of the main goals of this thesis is to formulate efficient methods for solving dynamic
investment problems under transaction costs. In this section we provide a brief overview of our
solution methodology. The problems considered in the thesis with a proper terminal objective
are cast in a dynamic programming framework. We will consider the time consistent version
of the mean-variance example considered in Section 3.5 for the purpose of illustration.

Our aim is to work with as much generality as possible. In particular we do not assume ∆T
to be small to make our framework as general as possible.

To begin with the dynamic programming formulation as in Section 3.5 reads as:

J(W−
k−1,A

−
i,k−1) = min

(ζ)
EP[J(W−

k ,A
−
i,k)|Fk−1] (3.38)

Here (W−
k−1,A

−
i,k−1) is the state variable space for our problem. Starting with the terminal

utility we will recursively go backwards to determine the optimal control law as a function of
state variables.

To do such a recursion we will work with a discrete domain and divide our state space in
to equidistant intervals. There are two important issues we must address:

1- Interpolation errors.
2- Extrapolation errors.
If we use a fine enough discretization we could manage interpolation errors. In particular,

the fineness of state space discretization is dependent on the fineness in time space discretiza-
tion. If we have n divisions in time space then the state space division would obey the power
law form nγ for convergence to occur where γ represents the order of the law. This conjecture
is inspired from the classic work done by [34] in context of Asian option pricing using lattice
based methods. The exact nature of the law is problem structure dependent. The nature of this
law has been discussed in detail in [34].

To take care of extrapolation errors we must truncate the domain at the previous time-
step so that in the discrete approximation for risky growths, our state space variables do not
overflow outside the domain. In the above example the risky fraction space is always confined
to [0, 1]. However, the wealth variable might go outside our working domain (because of
recursive nature of dynamic programming) introducing extrapolation errors11. Given a discrete
approximation for risky growth this could easily be handled. If (1 + g) is the maximum factor
by which a risky asset can grow we could simply truncate our domain by a factor of 1

(1+g) in the
wealth space.

Instead of solving equation (3.38) using an exact probability model we will approximate
it with a discrete distribution. Tree approximations as used in option pricing theory rely on a
moment based approximation for the probability model. In portfolio problems we could have
log-normal distribution for risky growth in 1-dimension and multi-variate log-normal in higher
dimensions. Consider the following:

11Almost always the state space variable would obey some sort of constraints. In the above example, bankruptcy
becomes an interesting constraint if the investor is allowed to short risky assets. This could easily be dealt with
by penalizing the constraint violation in the value function - thus the investor always chooses controls which do
not violate the constraints.
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E[ f (x, r)] = E
[

f (x, r0) + (r − r0) f
′

(x, r0) +
(r − r0)2

2
f
′′

(x, r0)...
]

(3.39)

where x denotes the set of state variables and r is a random variable.
It appears that discrete probability approximation methods can work well only if the time

interval for risky growth ∆T is very small. This is because moments of order n for a relevant
random variable which in our case is mostly risky growth scales as (∆T )n so when the ∆T gets
smaller the higher order moments are relatively less likely to hurt the distributional approxi-
mation. Of course this also depend upon the form of the utility function and values of state
variables.

The thesis proposes deformation methods for approximating the probability for solving
portfolio problems in greater generality. With these methods we do not require ∆T to be small.
Our solutions are found to be reasonably accurate by benchmarking them against the solutions
obtained using exact distributions. This is discussed in detail in Chapter 5.

The basic idea in deformation schemes is to sample a discrete approximation of the distri-
bution based upon its essential statistical characteristics. These characteristics need not nec-
essarily be moments. Figure 3.6 shows an approximation using five points. We successively
deform the probability12 and see the continuation behavior to project the solution under the ex-
act probability model. A brief description of schemes is provided in Section 3.9 and the thesis
will discuss in the detail the solution schemes in Chapter 5.

1 2 3 4

1

2

3

4

Figure 3.6: Approximation with five points. Choosing statistical features of the target proba-
bility model for approximation.

The dimensionality13 in our models is controlled by primarily:

12So that the next probability structure is closer to the target probability model.
13In terms of the computational effort needed to solve them.
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1- State space dimensionality.
2- Probability space dimensionality.
3- Control space dimensionality.
In the absence of transaction costs the optimal control law is independent of the risky

fraction vector and model dimensionality is controlled primarily by the probability and control
spaces. The state space dimensionality includes only wealth and time.

The curse of dimensionality will continue to live. We can merely tame it in our discrete
domain by using:

1- Deformation schemes as discussed earlier. We are significantly reducing the dimension-
ality of the probability model.

2- Using continuation schemes on the pattern of Richardson extrapolation in the state space
and time-space domain.

3.8 On discrete probability approximations

3.8.1 The example of a simple model

Consider a portfolio consisting of one risky and one risk-free asset. The time line is divided
into discrete nodes so that k = 1, ...,N denotes the point in time when the re-balancing decision
can be taken. The fraction in the risky asset changes with time. Let X+

k−1 be the amount of risky
asset at the beginning of the period immediately after the re-balancing has been done. Let W−

k−1
be the amount of wealth before re-balancing at a time node k − 1. Also sk and rk denote the
risky and risk-free growth over a particular period respectively. No simultaneous buying or
selling of risky asset is allowed.

We will assume the optimal trading rule specified via the existence of buy side and sell
boundaries. What we mean is that if the fraction of wealth in the risky asset falls below the buy
side boundary then the investor buys enough of the risky asset so that the risky fraction moves
to the buy-side boundary. Similarly, if the fraction of wealth in the risky asset falls above the
sell-side boundary then the investor sells enough of the risky asset so that the risky fraction
moves to the sell-side boundary. Using dynamic programming we are thereupon finding the
optimal buy and sell side boundaries. However, there is no reason for us to believe that such a
trading rule exists if ∆T is large because we don’t have analytic in discrete time to support such
a conjecture. When ∆T is small, standard portfolio theory under transaction cost postulates the
existence of risky fraction boundaries encapsulating the optimal trading rule. If there were no
transaction costs the following equation holds:

W−
k = (W−

k−1 − ηk−1)sk + X+
k−1rk (3.40)

To build a transaction cost model let Ak−1 be the fraction of wealth invested in risky asset at
the beginning of the period. Lk−1 and Rk−1 be the fraction of risky asset bought or sold. Then
if λk−1 and µk−1 denote the buying and selling proportional transaction costs then the following
equations hold:

W−
k = W−

k−1Fk−1 (3.41)
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Fk−1 = (1 −Ak−1) − (1 + λk−1)Lk−1 + (1 − µk−1)Rk−1)sk + (Ak−1

+Lk−1 − Rk−1)rk (3.42)

We assume that under the optimal trading rule Fk−1 takes the following functional form:

Fk−1(Ak−1) = 1(Ak−1<φ
−
k−1)(sk + φ−k−1(rk − sk) − λk−1(φ−k−1 −Ak−1)sk)

+1(φ−k−1<Ak−1<φ
+
k−1)(sk +Ak−1(rk − sk) + 1(Ak−1>φ

+
k−1)

+(sk + φ+
k−1(rk − sk) + µk−1(φ+

k−1 −Ak−1)sk) (3.43)

where k = 1, 2, ...,N − 1,N Here (φ−k−1, φ
+
k−1) denotes the risky fraction boundaries which

need to be determined as part of dynamic programming. The assumption is reasonable from
an intuitive standpoint because if we have too much or too less of risky asset we would need to
re-adjust our portfolio. The exact nature of the formulation is inspired by the continuous time
results in [28].

The stage is now set to highlight the dynamic programming technique for the optimal port-
folio problem. Define the value function by:

J(Wk,Ak, k) = EP[WV
N |Fk] (3.44)

where V ∈ [0, 1]
Consequently, for a given boundary specification we can write:

J(Wk,Ak, k) = max(EP[J(Wk+1,Ak+1, k + 1)|Fk]) (3.45)

Furthermore,

J(WN−1,AN−1,N − 1) = max(EP[WV
N−1FV

N−1|FN−1]) (3.46)
= WV

N−1 max(EP[FV
N−1|FN−1]) (3.47)

= WV
N−1J

(1)(AN−1) (3.48)

represents the value function for the last stage .Using recursion we could successively deter-
mine value function for earlier stages.

In the second last stage of the recursion we have:

AN−1 = 1(AN−2<φ
−
N−2)

(
φ−N−2rN−1

(sN−1 + φ−N−2(rN−1 − sN−1) − λN−2(φ−N−2 −AN−2)sN−1)

)
+1(AN−2>φ

+
N−2)

(
φ+

N−2rN−1

(sN−1 + φ+
N−2(rN−1 − sN−1) + µN−2(φ+

N−2 −AN−2)sN−1)

)
+1(φ−N−2<AN−2<φ

+
N−2)

(
AN−2rN−1

(1 −AN−2)sN−1 +AN−2rN−1)

)
(3.49)

It is therefore easy to see that:

J(WN−2,AN−2,N − 2) := max(EP[J(WN−1,AN−1,N − 1]) = WV
N−2J

(2)(AN−2) (3.50)
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In fact, to determine J (2) is basically to determine the risky fraction boundaries in the
second last stage of recursion. In this way we can go back to the initial time t = 0 and
determine the value function at that point.

For a suitable choice of parameters we show the variation of risky fraction boundaries with
the transaction cost parameter in Figure 3.7. It can be seen that no-transaction boundaries
widen with the transaction cost parameter. Also we plot in Figure 3.7 the boundaries for the
last three stages. It is observed that as the investor moves closer to terminal time the boundaries
widen. Our goal will be to find J (N)(A0) so that we could examine the optimal re-balancing of
our portfolio at initial time i.e. t = 0.

Here J (N) denotes the separable portion of the value function after wealth is taken out.
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Figure 3.7: No transaction region boundaries shifting monotonically outwards as investors
moves closer to terminal time for last, second and third last stage parameters are: V = 0.5,T =

0.1,N = 3, ω = 0.05, s = eω∆T ,m = 0.14, σ = 0.8. N is number of re-balancing nodes
and s is the risky free growth over the interval.V is the co-efficient of risk aversion in the
CRAA utility. Also m and σ are the parameters of the continuous time GBM and risky growth
discrete probability approximation is constructed as we will discuss later in section 3.8.3 and
3.9.Where T is the time horizon for investment,ω is the continuous time risk-free rate, (λ, µ) are
transaction cost factors, s is the risk free growth over the interval, m is the drift for continuous
time GBM and σ is the volatility for the continuous time GBM. The continuous time GBM
implies a risky growth for the risky asset over the interval ∆T .
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3.8.2 Binomial discrete probability approximation

In this section we consider a simple binomial model for risky growth evolution. To obtain
some analytic insights for the model in section 3.8.1, let us define the risky growth G∗ as the
ratio of future time step stock price and to the previous time step stock price i.e. G∗ = S k+1

S k
. In

this section we consider a simple binomial model for risky growth evolution. To obtain some
analytic insights for the model in section 3.8.1, let us define the risky growth G∗ as the ratio
of future time step stock price and to the previous time step stock price i.e. G∗ = S k+1

S k
. To

obtain some analytic intuition assume that the risky growth G∗ evolves binomially. It is (1 + g)
with a probability of p and (1 − g) with a probability of (1 − p). The dynamic programming
problem discussed in the previous section still holds and so each stage involves a non-linear
optimization problem. To find the risky boundaries at the previous stage stage we set Ak = 0
or Ak = 1 in the beginning of the period to force the buy or selling of the risky asset and
hence determine the buy and sell-side boundaries. To get exact analytic formulas, however, we
linearize with respect to λ, µ and V . This approximately holds valid for some range of values
for the transaction cost and risk aversion parameters. This helps us determine (φ−, φ+) so that
we could get some analytic insights into the risky boundaries.

Let us see how the approximation works for the last stage of the portfolio problem. In the
analysis we will assume V ∈ [0, 1]

Start with the buy-side boundary approximation. If A > 0 denotes the buy-side boundary
then it satisfies the following non-linear equation as a result of optimization on control in the
dynamic programming equation given in Section (3.8.1) :

p(s + λsA − sA + A(1 + g))V + (1 − p)(s − λsA − sA + A(1 − g))V = 0 (3.51)

where s is the growth rate over the interval for risk-free asset.
However, in the above observe the co-efficients of A. If we assume ‖ 1+g

s − (1 + λ) ‖ and
‖

1−g
s − (1 + λ) ‖ are small14 for some small transaction costs then we can linearize to get the

buy-side boundary:

φ− = inf(sup(a + bλ, 0), 1) (3.52)

where

a =
s(−2gp + g + s − 1)

(V − 1)(g2 − 2g(2p − 1)(s − 1) + (s − 1)2)
(3.53)

b =
s2(g2(8p2 − 8p + 1) − 2g(2p − 1)(s − 1) + (s − 1)2)

(V − 1)(g2 − 2g(2p − 1)(s − 1) + (s − 1)2)
(3.54)

Similarly consider with the sell-side approximation.If A < 1 denotes the sell-side boundary
then it satisfies the following non-linear equation as a result of optimization on control in the
dynamic programming equation given in Section (3.8.1) :

14 1+g
1+s − (1 + λ) =

g−s
1+s − λ which is small if g is close to s and transaction costs are small!
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p(s + A(1 + g − s) + µ(A − 1)s)V + (1 − p)(s + A(1 − g − s) + µ(A − 1)s)V = 0 (3.55)

where s is the growth rate over the interval for risk-free asset.
However, in the above observe the co-efficients of A. If we assume ‖ 1+g

s − (1 − µ) ‖ and
‖

1−g
s − (1 − µ) ‖ are small for some small transaction costs then we can linearize to get the

sell-side boundary:

φ+ = sup(inf(a + dλ, 1), 0) (3.56)

where a is defined earlier and

d =
s(g3(2p − 1) + g2(8p2 − 8p − 2s + 3) + g(2p − 1)(s2 − 4s + 3) + (s − 1)2)

(V − 1)(g2 − 2g(2p − 1)(s − 1) + (s − 1)2)
(3.57)

Provided E[G∗] > s − 1 we will show a > 0 and b < 0 for some range of parameters which
agrees with our intuition.

Holding all else constant increasing V increases a, b and d while decreasing V decreases
the same parameters.

Assuming E[G∗] > s−1 results in g(2p−1) > s−1. Further we assume 0 < p < 1,1 < s < 2
and 0 < g < 1.

Proposition 3.8.1 In the portfolio model (3.43)-(3.49) a = c > 0:

Proof Examine a. To prove a > 0 we need to find the signs of terms in the numerator and
denominator. Now −(2p − 1) > −1 implies −2g(2p − 1)(s − 1) > −2g(s − 1) implies g2 −

2g(2p − 1)(s − 1) + (s − 1)2 > (g − (s − 1))2 > 0.
Since g(−2p + 1) + (s − 1) < 0 as described earlier we can state:
a = c > 0

�

Proposition 3.8.2 In the portfolio model (3.43)-(3.49) b < 0 if p ∈ [p∗, 1 − p∗]:

Proof Let us examine b. To prove b < 0 we need to find the signs of terms in the numerator
and denominator. Now g(2p−1) > s−1 implies −2g(2p−1)(s−1) < −2(s−1)2 which implies
−2g(2p − 1)(s − 1) + (s − 1)2 < −(s − 1)2 < 0. So if 8p2 − 8p + 1 < 0 then b < 0.

In short: b < 0 if p∗ < p < 1 − p∗, E[G∗] > s − 1 where p∗ is obtained by solving the
quadratic equation 8p2 − 8p + 1 < 0.

�
The signs of a, c match the financial intuition behind the structure of no-transaction bound-

aries and thus provides support to our analytics. Note that it isn’t always true that d < 0 as
this statement holds only for a particular set of parameters. We will illustrate numerically the
dependence of no-transaction boundaries on transaction cost at different stages of dynamic
problem for some choice of parameters in Figure 3.7.
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This was a short introduction to discrete probability approximations which are really mo-
ment and cross-moment based approximations for risky growth. But what are the best mo-
ments to match? Are these the moments of risky growths or moments for some function of
risky growth? The nature of the value function provides the key to answer these. Most often if
the risky growth appears linearly in the value function the best way is to choose moment based
approximation for the risky growth itself. The thesis will discuss in detail the methodology and
provide some applications.

3.8.3 Overview of basic discrete probability approximation construction
procedure

Creating discrete probability-based approximations for probability models is well known in
the context of option pricing. Cox, Ross and Rubinstein (CRR) [21] pioneered the lattice
approach. They developed a discrete time binomial approach to price options. Boyle [15] took
the CRR methodology a step further and proposed a trinomial option pricing model. In [44]
the discrete probability-approximated values are shown to converge to the true option values
as number of time step divisions goes to infinity. Creating multinomial discrete probability
approximation with positive probabilities for an arbitrary correlation structure is a hot topic
of research. Reference [45] provides a fairly generalized methodology to model k sources of
uncertainty in the form of a numerical discrete probability approximation.

The most basic discrete probability approximation construction procedure revolves around
the idea of moment matching. The thesis however, aims to construct fairly general discrete
probability approximation which could use any possible statistical feature as in Chapter 5. It is
very similar to how we construct lattices to price options.

Let Υ represent a discrete probability approximation15 for a probability space in ℵ dimen-
sions. Then for any ⊕ ∈ Υ we have ⊕ = (⊕1,⊕2) where | ⊕1 | = ℵ and ⊕2 ∈ [0, 1]. Especially, a
pair in a discrete probability approximation is a joint evolution of risky growth vector coupled
together with a probability where the individual probabilities sum to one.

Tree in 1-D

If ℵ = 1 the possible example of Υ are ((u, p), (d, 1− p)),((u, p), (m, q), (l, 1− p− q)) etc: many
distinct discrete probability approximation are possible in one dimension.

The discrete probability approximation is constructed so that moments are matched. Con-
sider ((u, p), (m, q), (l, 1 − p − q)) for example. This group has five unknowns and so we will
need typically five equations to specify these unknowns16. In general, for a Υ with g unknowns
(probability of branches and stochastic evolution of random variable ) requires g equations and
hence the first g moments must be matched.

15The thesis is interested in discrete probability approximation for risky growth vector over an interval ∆T .
16Generally for z unknowns we require z non-linear equations to have a finite dimensional solution set which is

not necessarily unique but the solutions are often permuted versions of each other.
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d u

Approximation

f

rT

1-p p

Figure 3.9: A discrete probability approximation approximation in 1-D. Here rT say risky
growth over an interval is variable being approximated.

Figure 3.9 shows a continuous probability model of risky growth approximated by a dis-
crete probability approximation. The discrete probability approximation is ((u, p), (d, 1 − p)).
As such three parameters must be found. These could be found by matching the first three
moments as below:

up + d(1 − p) = E(rT ) (3.58)
u2 p + d2(1 − p) = E(r2

T ) (3.59)
u3 p + d3(1 − p) = E(r3

T ) (3.60)

Tree in 2-D

Ifℵ = 2 a possible example of Υ is (((u1, u2), p), ((u1, d2), q), ((d1, u2), r), ((d1, d2), 1 − p − q − r)).
Note that the Υ is a discrete probability approximation for joint evolution of risky growths and
it implies discrete probability approximation of one dimension lower for the respective risky
growths. The idea is illustrated in Figure 3.10 where a parent discrete probability approxima-
tion branches off into two sub-trees. The discrete probability approximation for risky growth
of asset one would be ((u1, p + q), (d1, 1 − p − q)). The discrete probability approximation for
risky growth of asset two would be ((u2, p + r), (d2, 1 − p − r)).

The discrete probability approximation Υ has seven unknowns in the above example. To
fill in the values we will need seven equations. It is simple to get seven equations by matching
first 3 moments of discrete probability approximation of lower dimension and then using Υ to
match the cross-moment. Figure 3.10 illustrates the ideas discussed.
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Figure 3.10: Illustrating discrete probability approximation construction in 2-D for correlated
variables.

Tree in 3-D

If ℵ = 3 it is obvious that discrete probability approximation at the highest level has eight
branches for up/down branching for a lowest level discrete probability approximation, imply-
ing three trees with four branches at a lower level. This further implies three trees with two
branches at the lowest level. If our original tree had say thirteen unknowns then we need thir-
teen equations. Since 13=9+3+1 we could get all the equation by matching first three moments
for the three trees at the lowest level, cross moments for three trees at a higher level and cross
moment for one discrete probability approximation at the highest level. Figure 3.11 illustrates
the ideas discussed with a parent tree implying sub-trees. There are many possible ways to
construct trees in 3-D if lower level trees are allowed to have more arbitrary number of states.
For instance, instead of just up/down we might have up/middle/down. If the dynamics of the
asset prices are dependent on state variables we could easily accommodate this by having trees
dependent on state variables.

General framework for a discrete probability approximation in ℵ-D

Binomial lowest level discrete probability approximation
The most general form for Υ at the highest level would have 2ℵ branches if only up/down

movements are allowed for lowest level discrete probability approximation. With
(
ℵ

2

)
discrete

probability approximation at a lower level with four branches to match cross moments. At the
lowest level we have ℵ discrete probability approximations with just 2 branches.

To fill out Υ we need 2ℵ − 1 + 2ℵ equations which could be obtained by matching moments
from trees at different levels. This is because 2ℵ − 1 parameters for probabilities and 2ℵ for
states.

Also for ℵ dimensions we have ℵ first moments, ℵ +
ℵ(ℵ−1)

2 =
ℵ(1−ℵ)

2 second moments and
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Figure 3.11: Illustrating discrete probability approximation construction in 3-D for correlated
variables.

ℵ+ℵ(ℵ−1) = ℵ2 third moments. As ℵ increases at first three moments are exactly enough, then
more than enough, but eventually not nearly enough to capture all the probability outcomes. If
we are aiming for five or fewer dimensions then three moments are enough.

If more than up/down movements are allowed for lowest level trees we will have many
more equations!

Trinomial lowest level trees
This analysis follows a discussion similar to that given for the binomial case. To fill out Υ

we need 3ℵ − 1 + 3ℵ equations which could be obtained by matching moments from trees at
different levels.This is because 3ℵ − 1 parameters for probabilities and 3ℵ for states.

The above discussion provided a general framework. Note it is possible to create trees
with nice structure at a cost of low moment matching. We could do this by pre-filling the
probabilities. Lets give an example using a correlated set of standard normal random variables
Zi in 3-D. Suppose the standard normals could either take a value of -1 or +1. Also lets denote
ρi j as the correlation between a pair of standardd normals i and j. A very simple discrete
probability approximation structure is given in Table 3.2.

As we see there is a lot of innovation in which we could match cross moments. Are we just
interested in matching the entries of a covariance matrix? or are interesting in matching some
creative cross-moments? All just depends upon the degree of accuracy we seek to achieve.
For some problems, for instance, second order moment matching might suffice. Consider a
single period Markovitz objective. It explicitly contains just the mean and variance, so any
discrepancies in the higher moments is not relevant. In a more formal notation consider two
risky assets who have the same expected return over a period that is:
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Outcome Probability
uuu 1+ρ12+ρ23+ρ31

8
uud 1+ρ12−ρ23−ρ31

8
udu 1−ρ12−ρ23+ρ31

8
udd 1−ρ12+ρ23−ρ31

8
duu 1−ρ12+ρ23−ρ31

8
dud 1−ρ12−ρ23+ρ31

8
ddu 1+ρ12−ρ23−ρ31

8
ddd 1+ρ12+ρ23+ρ31

8

Table 3.2: A nice discrete probability approximation structure with correlated standard normals
in 3-D

E[r1,T ] = R, E[r2,T ] = R (3.61)

The investor allocates a fraction α so as to minimize the variability in total returns that is:

min
α

Var[rT ] = min
α

Var[αr1,T + (1 − α)r2,T ] (3.62)

= min
α

(α2(E[r2
1,T ] − E[r1,T ]2) + (1 − α)2(E[r2

2,T ] − E[r2,T ]2)

+2α(1 − α)(E[r1,T r2,T ] − E[r1,T ]E[r2,T ])) (3.63)

The above example could be generalized to an N dimensional single Markowitz portfolio
problem and it can easily be seen that it is distribution independent and all what we require is
that moments/cross moments up to order two must be matched. As we see for most practical
purposes trees do provide a reasonable approximation.

If we let the time step division ∆T → 0 we approach a continuous time behavior under a
suitable moment matching scheme. For well-behaved utility functions we could approach the
continuous time solution implied by using exact distributions. We will use a binomial discrete
probability approximation with moment matching of order two to illustrate such a behavior in
Figure 3.12 and 3.13. The transaction cost structure is the standard Davis and Norman model
(see [28]). We use CRRA and log-utilities. Convergence behavior is illustrated in Figures 3.12
and 3.13 for a suitable choice of parameters and utility functions.

3.9 On the philosophy of probability deformation continua-
tion

In this thesis, moment based discrete probability approximation approximations are only used
for getting numerical results. Our goal is to construct efficient lattice methods that don’t rely
on ∆T to be small for appropriate convergence to occur. Our aim is to be able to solve exact
models for an arbitrary ∆T . This is the goal of probability deformation schemes.

The central philosophy revolves around creating an ` point formula that expresses the sta-
tistical feature of risky growth over an interval ∆T . This expression is not unique: there might
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Value function

Risky Fraction

Convergence to the true value 

function

in continous time
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1.057

1.058

1.059

1.060

Figure 3.12: Convergence in value for CRRA utility for a discrete probability approxima-
tion approximation varying N = 5, 10, ..., 30 and parameters:T = 1, ω = 0.1, s = eω∆T ,m =

0.24, σ = 1, λ = µ = 0.01,V = 0.5. Where T is the time horizon for investment, N is the
number of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction
cost factors, s is the risk free growth over the interval, m is the drift for continuous time GBM
and σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T .

be any number of such approximations. Let Q represent a multi-period portfolio problem with
Jk being the value function and ζk being the control law under the exact probability density
function p over an interval ∆T . Suppose we have p` as an `-point approximation for p such
that p` 7→ p in some probabilistic sense17. In Chapter 5 we present evidence that weak con-
vergence (convergence in distribution ) might be enough. Then without proving we speculate
J `

k 7→ Jk and ζ`k 7→ ζk as ` 7→ ∞. Our speculation is supported by some numerical experiments
we provide in Chapter 5. It is numerically very convenient to express the continuation behavior
of the value function (or control law) in terms of the deformation parameter γ` = 1/` to get
the desired solution with respect to the original problem. A deformation parameter of γ` = 1/`
would mean ` point discrete probability approximation for a corresponding continuous time
probability model. We will later show that the power law and polynomials provide a good
basis set to express the continuation behavior.

In the thesis three schemes are highlighted namely:
1- Simple interval division (SID): This will involve dividing the domain of the random

variable in to ` equidistant chunks to form ` intervals and finding the mid-point of the variable
in the interval.

2- Simple quantile interval division (SQID): This will involve dividing the domain of
random variable by using ` quantiles using the quantile function and finding the mean of vari-
able in the interval. A probability of 1

`
is assigned to each mean to get a discrete probability

approximation.
3- Moment division (MD):

17i.e. Convergence in probability, almost sure or in distribution.
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Convergence to the true value 

function

in continous time
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Risky fraction
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0.534
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Figure 3.13: Convergence in value for log-utility for a discrete probability approximation ap-
proximation varying N = 5, 10, ..., 30 and parameters:T = 1, ω = 0.1, s = eω∆T ,m = 0.14, σ =

0.3, λ = µ = 0.01. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T .

I-Using an approximate moment matching algorithm using Gaussian quadrature as in [65]
so that if ` the number of points for Gaussian quadrature the accuracy of the distribution
matching increases.

II- Or instead of Gaussian quadrature we could match moments using standard discrete
probability approximation construction as in Section 3.7.3.

The above approach could have many possible variations. For example, in SID or SQID
we could chose to take the median instead of the mean.

The fact that the approximation probability distribution converges to the exact probabil-
ity distribution of the model along the continuation path means the problem constraints also
converge in some probabilistic sense.

Let us illustrate the methodology by considering the same problem set-up as in Section 2.
We have a dynamic investor trying to minimize the variability of his wealth about a target level
b∗. We replace the standard GBM for risky assets by a jump diffusion process.

dS (i)
t

S (i)
t

= m(i)dt + σ(i)dZt + dqt (3.64)

in which the Poisson process dqt, is characterized by jump intensity C as well as jump size
Y which is assumed independently log-normally distributed i.e. Log(Y) ∼ N(θ, δ2).

The logarithm of the risky growth over an interval ∆T follows:
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log(
S (i)

t+∆T

S (i)
t

) = (α(i) −
(σ(i))2

2
)∆T + σ(i)

√
∆TZt +

nt∑
t=1

log(Yt) (3.65)

where nt is the number of jumps in the interval ∆T .

Further, let f (x) denote the density of log(S (i)
t+∆T

S (i)
t

)

f (x) =

∞∑
n=0

e−C∆T (∆T )n

n!
N

(
x; (α(i) −

(σ(i))2

2
)∆T + nθ, (σ(i))2∆T + n(δ)2

)
(3.66)

We now have an analytic representation for the distribution of log(1+g) which does not rely
on ∆T being small18. The desired (1 + g) is obviously a monotonic transformation (apart from
the fact the quantiles get monotonically transformed ) and we could easily work numerically
with our deformation schemes as mentioned.

See Figure 3.14. Letting γ` → 0 we see convergence behavior in the efficient frontier at
terminal time using SQID scheme. This quite essentially is the essence of the deformation
philosophy in action19.

Without going into modeling details we will illustrate some graphs of the SQID scheme in
action in Figure 3.14-3.18. In all these graphs convergence was seen to the solution implied by
exact probability. Different utility functions were used.

From a dynamic programming perspective we will want to construct an approximation
such that as Xn 7→ X then E[ f (Xn)] 7→ E[ f (X)]. Fortunately when weak convergence occurs
we have the following result:
Theorem 3.9.1 Let (Xn : 1 ≤ n ≤ ∞) be a sequence of finite real-valued random variables.
Then the following are equivalent:

i)Xn
D
−→ X

ii) For each bounded and continuous f : < 7−→ < we have E[ f (Xn)] 7→ E[ f (X)]
The Continuous mapping theorem also provides some important convergence results:

Theorem 3.9.2 Let (Xn : 1 ≤ n ≤ ∞) be a sequence of finite real-valued random variables
with f : < 7−→ < a continuous function. Then the following are equivalent:

i) If Xn
a.s
−−→ X then we have f (Xn)

a.s
−−→ f (X)

ii) If Xn
p
−→ X then we have f (Xn)

p
−→ f (X)

iii)If Xn
D
−→ X then we have f (Xn)

D
−→ f (X)

It will be obvious that for algorithms to work from a dynamic programming perspective all
we require is weak convergence. Under a moment matching scheme for instance increasing the
order of matching is making the moment generating functions converge and hence the distribu-
tion functions are also converge. Regarding SQID it is intuitively quite reasonable because as
quantiles being the basis for bring distributions closer also means that the distribution functions
are also getting closer20.

18We have an analytic solution for the SDE
19Especially going to the true model by successively probability approximation for the true probability model.
20We follow an experimental methodology in the thesis where we assume that underlying laws could be exper-

imentally discovered.
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Figure 3.14: Deformation solution by varying γ` = 1
5 ,

1
10 ,

1
15 ,

1
20 for efficient frontier for a jump

diffusion problem with parameters T = 1,N = 4, ω = 0.07, s = eω∆T ,m = 0.14, σ = 0.3, θ =

0.1, δ = 0.05. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T . γ` is the deformation parameter.

We provide some graphs to illustrate the resulting convergent behavior. Figure 3.13 shows
convergence using SQID scheme to true value function for the problem considered in Section
3.5. Similarly, Figure 3.14-3.18 illustrate the convergence behavior for different SDE for risky
growth and utility functions for the problem. We used geometric Brownian motion and jump
diffusion model for risky growth. For utility functions we chose log utility and CRRA utility.

In Chapter 9 we will use deformation schemes to approximately meet portfolio constraints.

3.10 Towards robust and efficient lattice algorithms

Deformation schemes help us solve portfolio problems over a larger interval ∆T .
Suppose we wish to obtain a continuous time solution from an approximate solution ob-

tained with ∆T . Now we can choose ∆T to be arbitrary and large enough then solve the problem
with M1 time steps. This will help us avoid interpolation errors and reduce computational time.
Then we compute the solution again with M2 time steps where M2 > M1. We will continue to
do so obtaining a list of pairs involving the solution and time steps. Following a suitable basis
set we can express the continuation behavior and find the limiting behavior when we approach
a continuous time behavior. By continuation behavior we mean projecting our discrete solution
sets to the required solution. This is discussed in detail in Chapter 5.

In general for an efficient algorithm it is important to be able to utilize the continuation of
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Figure 3.15: Deformation solution of value function with log-utility at t = 0 by varying γ` =
1
5 , ...,

1
30 and parameters T = 1,N = 4, ω = 0.1, λ = µ = 0.01, s = eω∆T ,m = 0.14, σ = 0.3.

Where T is the time horizon for investment, N is the number of re-balancing nodes. ω is the
continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over
the interval, m is the drift for continuous time GBM and σ is the volatility for the continuous
time GBM. The continuous time GBM implies a risky growth for the risky asset over the
interval ∆T . γ` is the deformation parameter.

the value function ( or optimal control law ) with respect to the problem parameters:
A-Discretization of time space
B-Discretization of state space
C-Discretization of probability model
The deformation schemes discussed earlier deal with discretization of probability model for

risky growth. However, time space and state space introduce interesting continuation behavior
the value of which should be exploited in an efficient algorithm to determine a continuous time
solution. Probability deformation schemes help us solve over an arbitrary ∆T , easing the pain
of interpolation errors. This was the outermost loop in gaining numerical efficiency. In the
inner loop we would seek continuation in time space. And in the innermost loop we would
seek continuation in state space to determine the value function (or optimal control law ). As a
result we now have three nested loops !

The above ideas are summarized in algorithmic form below:

For i = 1, 2, ...,N
For j = 1, 2, ...,M

For k = 1, 2, ..., L
P = {( 1

i ,
1
j ,

1
k ), ψ(γi, t j, S k)}

Insert P in a list L.
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Figure 3.16: Deformation solution of value function with CRRA utility at t = 0 by varying
γ` = 1

5 , ...,
1
30 and parameters T = 1,N = 4, ω = 0.1, λ = µ = 0.01, s = eω∆T ,m = 0.14, σ =

0.3,V = 0.5. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T . γ` is the deformation parameter.

Next k
Next j

Next i
Interpolate the list L and find L(0, 0, 0)

In the above algorithm ψ denotes the value function. Also we have i-th point discrete
probability approximation, j-th point discrete time space approximation and k-th point state
space approximation. So as when (1

i ,
1
j ,

1
k ) −→ (0, 0, 0) we have the required solution under

an exact probability model and continuous-time domain. In simple words, we would make the
discrete probability approximation, the time space division and state space division finer to see
the corresponding continuous time solution.

In the thesis the state variables will typically be discretized using grids and the value func-
tion numerically represented using polynomial basis via the grids. This definitely is the curse
of dimensionality as far as state space is concerned because numerical representation of value
function is O(N s) where s is the number of state variables21. Note the curse of dimensionality
can never be removed. It can only be tamed by introducing an interesting set of new numerical
issues to attain the desired accuracy which we must then deal with.

21Radial basis functions could make this process O(N) !
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Figure 3.17: Deformation solution of value function with log-utility and jump diffusion model
at t = 0 by varying γ` = 1

5 , ...,
1
20 and parameters: T = 1,N = 4, ω = 0.1, λ = µ = 0.01, s =

eω∆T ,m = 0.14, σ = 0.6, θ = 0.1, δ = 0.05. Where T is the time horizon for investment, N is
the number of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction
cost factors, s is the risk free growth over the interval, m is the drift for continuous time GBM
and σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T . γ` is the deformation parameter.

It is also very important to frame a problem in the right state variables to allow decom-
posability for the value function of the dynamic problems. For example, consider the same
problem set-up as in section 3.7 but with CARA or exponential utility.

Let X−k+1 denote the wealth in the risky asset immediately before re-balancing and Y−k+1
the wealth in the risk-free asset. We assume the investor is allowed to both borrow and lend
risk-free asset. Under singular controls the state evolution equations could be described by:

X−k+1 = (X−k + ∆1
k − ∆2

k)αk (3.67)
Y−k+1 = (W−

k − X−k − (1 + λk)∆1
k + (1 − µk)∆2

k)sk (3.68)
W−

k+1 = s ◦W−
k + F(X−k ) (3.69)

where the stochastic functional F(X−k ) represents the investor behavior of buying, selling or
choosing no to re-balance.

Define the value function as:

Jk(W−
k , X

−
k ) = max

ς
EP(−e−zWN |Fk) (3.70)

Consider the last stage of the problem:
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Figure 3.18: Deformation solution of value function with CRRA utility and jump diffusion
model at t = 0 by varying γ` = 1

5 , ...,
1

20 and parameters: T = 1,N = 4, ω = 0.1, λ = µ =

0.01, s = eω∆T ,m = 0.14, σ = 0.3, θ = 0.1, δ = 0.05,V = 0.5. Where T is the time horizon
for investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
(λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is the drift for
continuous time GBM and σ is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the deformation
parameter.

JN−1(W−
N−1, X

−
N−1) = max

ς
EP(−e−z(sW−N−+F(X−N ))|Fk) (3.71)

= e−zsW−N−1J (1)(X−N−1) (3.72)

We will show for CRRA utility in Chapter 6 that a similar decomposability with respect to
the wealth occurs. In any case recursion k times would lead to the following:

JN−k(W−
N−k, X

−
N−k) = e−zskW−N−kJ (k)(X−N−k) (3.73)

Let us use the above example to summarize the numerical solution method in a few steps:

I- Find the relevant state variables. In the above they are (W−
k , X

−
k ).

II- Sometimes we can simplify the problem in state space. In the above problem for in-
stance the optimal control law depends only on X−k as amply illustrated by the structure of the
problems.

III- Create a lattice / grid structure to carry out dynamic programming recursion using the
state space selected in II. In the above problem, for instance, the relevant lattice contains only
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X−k . We set the lower and upper limits so that the no-transaction boundaries always lie inside
them. It turns out that the Merton line for the time varying CARA problem (see [23]) is m−ω

zσ2eω(T−t)

so if m ≥ ω for continuous time risk free rate ω then we could chose the lower bound as being
zero or less than zero. The upper bound would need to be set to a sufficiently high level with
some experimentation to see for last stage whether no-transaction region lies inside the grid or
not.

IV- Create an approximate discrete model for risky growth.
V- To avoid extrapolation errors the grid in the previous stage of dynamic program needs

to be a factor lower than the next grid. Let (1 + g) is the maximum factor by which the discrete
probability approximation could grow for all the branches on the approximation. If L(k) is the
length of our grid at time k then L(0) = L(N)

(1+g)N . This is because the relevant state variable X−k
is directly tied to risky growths and at the upper boundary of the grid we are going to sell the
risky asset rather than buy it.

VI- Starting from the last stage carry out recursion using the dynamic programming for-
malism. We find optimal controls and value functions for each stage going all the way to the
initial time.

We provide an approximate solution in Figure 3.19 for CARA utility using a fairly coarse
grid. We set the lower boundary to 5, the upper boundary to 2000 and state space division
length to 10. The purpose of this coarse grid is to illustrate the numerical solution. It is seen
that the center of risky fraction boundaries is decreasing as we move closer to the initial time.
Indeed this should be the case, since, under the no-transaction cost the optimal amount of
wealth to hold in risky asset in continuous time is m−ω

zσ2eω(T−t) where s is the continuous time risk
free rate. In fact, for the parameters we chose in Figure 3.18 the no-transaction Merton amount
of ' 632 lies in the center of no-transaction region at t = 0. This serves to show in many
cases we can provide some intuitive validation for the numerical solution we have obtained via
results in the academic literature.

The thesis will avoid the use of Monte-Carlo and PDE-based solution to dynamic portfolio
problems. Monte-Carlo methods have been touted as being great in high dimensions. Stable
numerical schemes to solve the non-linear PDEs associated with these set of problems are
usually challenging to implement.

3.11 Analysis of continuous time dynamic trading strategies

3.11.1 Risk analysis of strategies
The thesis seeks to provide a framework under which we could do risk analysis of terminal
wealth distribution for trading strategies under transaction costs. VaR, CVaR, skewness, kur-
tosis etc are some risk measures for the terminal wealth distribution. Suppose the investor has
already determined the singular control for an investment objective and needed to analyze
some characteristics of the terminal wealth distribution f (WN). Our lattice based framework
provides simple and easily implementable framework for a robust analysis.

To summarize, the important solution steps are:
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Figure 3.19: Finite time solution to the CARA utility problem: T = 5,N = 50, ω = 0.05, s =

eω,m = 0.18, σ = 0.4, λ = µ = 0.01, z = 0.01 using a risky growth discrete probability ap-
proximation with 15 branches using a deformation parameter= 1

15 . Where T is the time horizon
for investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
(λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is the drift for
continuous time GBM and σ is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the deformation
parameter.

A-Step 1: Determine the optimal feed-back control law ~ς by using the dynamic pro-
gramming principle.

B-Step 2: Analyze the distribution of terminal wealth implied by ~ς via the law of
iterated expectations. This will be discussed in section 4.3.

The accuracy of the output can be easily verified using exact probability distributions. The
criteria to judge upon could be closeness in value function or optimal control law. In Figures
3.20-3.23 the dynamic investor maximized a certain investment objective and got controls ~ς.
Via the law of iterated expectations the controls imply a probability distribution of terminal
wealth WN . We computed P(WN < K) = φ(K) via the law of iterated expectations since
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P(WN < K) = E[1WN<K] to get the distribution function from which the probability distribution
could be extracted via a simple numerical differentiation22.

f
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Figure 3.20: Terminal wealth distribution for an investor maximizing E[Pr(WN > K)] with
parameters: T = 0.5,N = 5, ω = 0.05, s = eω∆T ,m = 0.12, σ = 0.5, λ = µ = 0.001,K = 0.208.
Where T is the time horizon for investment, N is the number of re-balancing nodes. ω is the
continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over
the interval, m is the drift for continuous time GBM and σ is the volatility for the continuous
time GBM. The continuous time GBM implies a risky growth for the risky asset over the
interval ∆T . γ` is the deformation parameter.

3.11.2 On the value of re-balancing
Re-balancing a portfolio has value because:

1- The portfolio is brought to the most optimal state vector for a particular investment
objective.

2- In practice, although often not in theory, model parameter values get updated so that the
optimal re-balancing state vector also changes.

However, re-balancing also introduces transaction costs and so there is a trade-off. This
trade-off is solved by a heuristic such as by only re-balancing if we go far away from the most
optimal no-transaction cost re-balancing state vector.

In this thesis, the dynamic investor will have N re-balancing points at which he could decide
to re-balance or not. We assume the value of re-balancing could be encapsulated in the form of
a value function so that tools of standard dynamic programming could be used for analysis.

22Smoothness algorithms might need to be applied to the output from numerical differentiation.
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Figure 3.21: Terminal wealth distribution for an investor minimizing variability of wealth
around a target level so that we minimize E[(WN − b)2] with parameters: T = 0.5,N = 5, ω =

0.05, s = eω∆T ,m = 0.12, σ = 0.5, λ = µ = 0.001, b = 0.4. Where T is the time horizon for in-
vestment, N is the number of re-balancing nodes. Here b is the target level, ω is the continuous
time risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval,
m is the drift for continuous time GBM and σ is the volatility for the continuous time GBM.
The continuous time GBM implies a risky growth for the risky asset over the interval ∆T . γ`
is the deformation parameter.

The value function takes a different form depending upon the investment objective.
For the growth rate maximization problem it is:

J(W−
k , A

−
k ) = max EP[Log(WN)|Fk] (3.74)

The transaction cost in Figure 3.24 is proportional to the amount traded. The value function in
this case becomes asymptotic because the investor has the option not to re-balance.

If the dynamic investor is stripped of his right not to re-balance the value function could
become downward sloping. This could be seen in Figure 3.26.

In this chapter we provided a brief layout of our modeling framework and also discussed
discrete probability approximation construction. In the next chapter we discuss the numerical
implementation in Mathematica.
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Figure 3.22: Terminal wealth distribution for an investor maximizing E[WV
N

V ] with parameters:
T = 0.5,N = 5, ω = 0.05, s = eω∆T ,m = 0.12, σ = 0.5, λ = µ = 0.001,V = 0.5. Where T is the
time horizon for investment, N is the number of re-balancing nodes. ω is the continuous time
risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is
the drift for continuous time GBM and σ is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the
deformation parameter.
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Figure 3.23: Terminal wealth distribution for an investor maximizing E[WV1
N

V1
+

WV2
N

V2
] with param-

eters: T = 0.5,N = 5, ω = 0.05, s = eω∆T ,m = 0.12, σ = 0.5, λ = µ = 0.001,V1 = 1
3 ,V1 = 2

3 .
Where T is the time horizon for investment, N is the number of re-balancing nodes. ω is the
continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over
the interval, m is the drift for continuous time GBM and σ is the volatility for the continu-
ous time GBM. The continuous time GBM implies a risky growth for the risky asset over the
interval ∆T . γ` is the deformation parameter.
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Figure 3.24: Variation of value function at time 0 with re-balancing frequency N for some
choice of parameters:T = 1, ω = 0.05, λ = µ = 0.01, s = eω∆T ,m = 0.14, σ = 0.7. Where T
is the time horizon for investment, N is the number of re-balancing nodes. ω is the continuous
time risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval,
m is the drift for continuous time GBM and σ is the volatility for the continuous time GBM.
The continuous time GBM implies a risky growth for the risky asset over the interval ∆T . γ`
is the deformation parameter.
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Figure 3.25: Variation of value function at time 0 with re-balancing frequency N with portfolio
management fee for some choice of parameters:T = 1, ω = 0.07, λ = µ = 0.001, s = eω∆T ,m =

0.182, σ = 0.4. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T . γ` is the deformation parameter.



58Chapter 3. Introduction to discrete probability approximation and sketch of modeling approach

J0 = E@LogHWN LD

Re-balancing frequency N

5 10 15 20

0.073

0.074

0.075

0.076

0.077

0.078

0.079

Figure 3.26: Variation of value function at time 0 with re-balancing frequency N with portfolio
management fee when investor always has to re-balance for some choice of parameters: T =

1, ω = 0.07, λ = µ = 0.005, s = eω∆T ,m = 0.182, σ = 0.4. Where T is the time horizon for
investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
(λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is the drift for
continuous time GBM and σ is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the deformation
parameter.



Chapter 4

Overview of Mathematica
Implementations

This chapter provides a brief overview of the basic structure of numerical algorithms imple-
mented in the Mathematica language. Mathematica provides a uniquely integrated and au-
tomated environment for parallel computing. With little configuration cost, a high degree of
interactivity, and easy local and network operation, the symbolic character of the Mathemat-
ica language allows immediate support of a variety of existing and new parallel programming
paradigms and data-sharing models. Mathematica also provides a rich set of mathematical and
statistical functions which greatly helped in the numerical implementation of our algorithms.
Appendices presenting Mathematica code for different sections of the chapter are supplied at
the end of the document.

Most of our code was implemented on a 24-core machine with 16 kernels1 utilized at a time
for parallel implementations using the built-in Parallelize[] command. The results in Chapter
6 were obtained using a 2-core machine with 2 kernels utilized at a time. There are several
variations in the way Parallelize[] could be used. We could apply it directly to the outer layer
of the program or instead use individual parallelization of structures for instance by using the
ParallelTable[] command.

The basic structure of almost all our problems can be broken down in to three main steps :
1- Probability Approximation via discrete multinomial discrete probability approximation.
2- Subsequent recursion using dynamic programming.
3- Saving the optimal controls obtained in step 2 and using them for further analysis.
We discuss each of the above three steps systematically.

4.1 Tree construction

As discussed earlier in Chapter 3 discrete probability approximation could be constructed either
through moment matching or via a more general probability deformation.

1We only used 16 kernels because of the limitation of our Mathematica license.

59
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4.1.1 Moment/Cross-moment matching
Moment matching typically results in a set of equations that must be solved numerically.

This can result in non-uniqueness in the sense that the solution set is essentially the same,
but permuted with respect to the variables. As an example we provide in Appendix A the
code for constructing a discrete probability approximation in 2-D. It could be seen that the
discrete probability approximation has hierarchies. The discrete probability approximation at
the highest level is used to be obtain an equation that matched the cross-moment. The discrete
probability approximation at a lower level is used match the individual moments (up to order
2 ). We had five unknowns in our original discrete probability approximation and now we
have five equations which could be solved using Mathematicas powerful root finding routine
NSolve[]. This has already been discussed in detail in the Section 3.7.3 on discrete probability
approximation construction in Chapter 3.

4.1.2 Trees via more general probability deformation
As discussed earlier we have several schemes that could help us create a more general class of
discrete probability approximation. Mathematica has a rich set of statistical functions to help
us achieve our goals.

Lets discuss the code for constructing discrete probability approximation via SQID scheme.
It relies on using quantiles to create a probability approximation. InverseCDF[] was used to
obtain quantiles and then NIntegrate[] used to obtain mean on a particular interval. In our
2-D code for SQID we chose to use Mathematica’s NIntegrate[] on the transformed random
variables.

If the risky growth is dependent upon a state variable we could easily accommodate for that
by having discrete probability approximation dependent upon the state variable2. There are
many variations in the way discrete probability approximations are created in our thesis. The
lines of code in the appendix A are only for the purpose of illustration.

This section illustrated discrete probability approximations. However, we could easily work
with NIntegrate[] to work with exact distributions. The latter turns out to much more compu-
tationally demanding to achieve a desired level of accuracy.

4.2 Dynamic programming computations

4.2.1 Parallel computing in Mathematica
The recursive framework in dynamic programming is highly amenable to parallel computation.
This is because the determination of value function at a point in state space S at time k only
need only know the value function in state space one time step ahead3. The value function
Jk at time k for different points in state space could, therefore, be computed in parallel across
the entire grid. The idea is illustrated in Figure 4.1. We need not manually create clusters
/grids in our 24 core machine. Mathematica will automatically create the grid structure and

2As in Chapter 8 where transaction costs are dependent on the volatility of the market.
3Seems similar to explicit finite difference methods for solving PDEs!
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Node k Node (k+1)
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Figure 4.1: Parallel computation on grids. Value function computation at a point in node k only
needs to know the value function surface at node (k + 1).

distribute tasks in parallel. To do this we could either apply Parallelize[] to the outer layer of
our program or use ParallelTable[] instead of Table[].

4.2.2 Recursion via dynamic programming

Once a discrete probability approximation is constructed the stage is now set for recursively
carrying out the dynamic programming methodology. NestList[] helps us carry out the recur-
sion while Interpolation[] helps us numerically represent a value at each stage of the dynamic
program over the state space domain. Depending upon the problem one could try adjusting
the order of interpolation so as to achieve a desired level of accuracy. At each stage we could
use Mathematica’s Parallelize[] command to increase speed because the value function at a
point in state space only needs to know the value function at the previous stage which is al-
ready computed and subsequently represented numerically. To determine optimal controls we
used Mathematica’s built-in routines or created custom optimization routines such as bisection
which could utilize the special nature of the value function such as its concavity or convexity.

For example, to solve the type of transaction cost problems we present in Chapter 6, the
Mathematica code in appendix A illustrates the initial recursion by proceeding from the last
stage. We highlight the salient features of this initial recursion. Here the list tlist1 stores for
each point in state space the value function and the associated optimal control law (optimal
re-balancing point, whether we should re-balance etc). Subsequently JN1 is the numerical
representation of the value function obtained after recursion in initial stage.
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In this way we then proceed sequentially all our way up to the initial time to determine the
value function and optimal control law at all the stages.

At each stage we store the optimal control law for each point in state space. This would
be helpful in any analysis we would like to carry out. For instance, we might be interested in
determining the no-transaction boundaries at a particular stage. The ConvexHull[] function in
Mathematica could be useful in 1-D or 2-D provided the no-transaction region is convex. In
higher dimensions or for non-convex regions there are third party programs. We have also built
our own program for determining the boundaries that relies on constructing small ‘balls’ at
points in the no-transaction region and seeing if they are inside the region or not. A large num-
ber of ‘balls’ each with a very small radius are constructed at evenly spaced points throughout
the no-transaction region domain. If the entire ball lies inside the transaction region then its
center is counted as part of the domain of the no-transaction region.

4.2.3 Analysis of the optimal control law

The optimal feedback control law at time step k denoted by ~ζk is now stored and ready for
analysis. As discussed in Section 4.1 it is stored as a function of the state variable in list form
as illustrated by the codes in the appendix A. This could easily be achieved by associating
each point in state space with a label. So for a point in state space where we buy the point is
labeled as 1, a point where we sell is labeled as 2 and a point where we do nothing is labeled
as 0. By labeling here we mean the internal computer code architecture so that our code knows
the optimal control law at each point in state space. Later in the thesis, for example in Figure
9.3 and Figure 9.4, we provide a visual depiction for such an internal labeling for our code.
Knowing the optimal control law is very useful, and this allows us to visualize the law by
plotting it in asset space. In this way we depict whether the optimal control for the investor is
to buy, sell or do no transaction and analyze the resulting geometry.

Storing the control law opens up many potentially useful analyses via the law of iterated ex-
pectations. Say we are interested in determining the efficient frontier for the problem described
in Section 3.3 of Chapter 3. We have a lattice with state space (A−k ,W

−
k ) and the relevant vari-

ables already defined. To determine efficient frontier we require E[Wτ|F0] and Var[Wτ|F0] for
the control law determined by solving the benchmark problem as described. Notice the efficient
frontier depends upon F0 and thus the wealth and risky fraction at initial time. As discussed
in Section 3.3 by varying γ we generate the efficient frontier for a particular wealth and risky
fraction at the initial time. For a particular value of gamma, risky fraction and wealth at initial
time we have a set controls for the solved benchmark problem which we can denote by ζ∗.

To obtain a point on the efficient frontier all we must now do is to define φk(A−k ,W
−
k ) =

E[Wτ|Fk] and use the fact φk = E[φk+1|Fk] where the expectation is carried under the controls
ζ∗ already determined. We will do recursion on the lattice already described in Section 3.3 but
know in this recursion we already know the controls.

Similarly, we can find Var[Wτ|F0] once E[Wτ|F0] has been determined by letting Θ =

E[Wτ|F0] and recursion with the new objective Var[Wτ|F0] but the same controls ζ∗.
In brief, three possible ways of computing efficient frontier are :
I- Once the control law ~ζk has been determined compute E[W2

τ |F0] and E[Wτ|F0] using the
law of iterated expectations separately. Use these to get the pair (Var[Wτ|F0], E[Wτ|F0] ).
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II- Using the control law determine Θ = E[Wτ|F0] and then use it to figure out Var[Wτ|F0] =

E[(Wτ − Θ)2|F0] via the law of iterated expectations.
III. Since E[(Wτ−γ)2|F0] = E[W2

τ |F0]−2γE[Wτ|F0] +γ2. Compute E[W2
τ |F0] or E[Wτ|F0]

and then use E[(Wτ − γ)2|F0] to find the pair (Var[Wτ|F0], E[Wτ|F0] ).
There are many possible variations in the Mathematica implementation of our models and

this chapter only highlighted the basics of the implementation 4.
In the next chapter we will provide schemes under which solution from a discrete probabil-

ity approximation is used to get the solution from the exact distribution.

4As in Chapter 9 we have constraints and in Chapter 11 we deal with a real-life trading strategy.



Chapter 5

Probability deformation continuation
schemes

In the academic literature most of the portfolio theory under transaction cost literature is re-
stricted to a continuous-time framework which results in quasi-variational Partial Differential
Equations (PDEs). The objective of this chapter is to create a generic robust and efficient
framework that could handle both discrete and continuous models simultaneously. The dis-
crete time formulation is a special case of continuous-time formulation. The chapter proposes
probability deformation schemes and examines their efficiency. Analysis is restricted to the
popular transaction cost frameworks introduced in [28] and [81]. The investment objectives
in these papers are different but the transaction cost structure is the same. Transaction cost is
proportional to the amount traded.

5.1 Introduction
The fundamental philosophy of deformation solutions is to continuously march our solution
from problems that can be easily solved to problems that can’t be easily solved. In particu-
lar solving portfolio problems involving exact probability distributions can be a very daunting
numerical task. Using exact distributions results in an increase in the computational complex-
ity required to attain the desired accuracy in output. There is a work around for this how-
ever. Instead of solving problems using exact distributions we will solve problems via discrete
approximations of the exact continuous time distributions. The discrete approximations are
successively deformed1 so that they provide convergence to the real problem with exact dis-
tribution in some probabilistic sense. This is in essence, the central theme of the chapter as
illustrated in Figure 5.1. We are interested in the questions : By making probability models get
closer are we making the output from these two models getting close ? Could we determine
the output from the target probability model by making the approximate probability model get
closer to the target probability model ? This chapter deals with these questions.

Discrete approximations to continuous probability distributions has been active area in de-
cision science ( see [47], [46], [79]). An n-point discrete-distribution approximation consists of

1The word “deformed” would be used a lot by us. Basically we term the approximation of a continous distri-
bution as a deformation process.
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Approx
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Discrete
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ÿ1

Figure 5.1: Two distributions going as an input to the numerical method. They both give an
output to the model using same the numerical method. How close are the two outputs ?

n values x1, x2, ..., xn and corresponding probabilities of occurrence p1, p2, ..., pn chosen to ap-
proximate the PDF for an underlying continuous random variable X. The approximation could
rely on specific features of the original distribution. It could rely on properties like moments
or quantiles. Most of the common methods have names like bracket mean, bracket median
and moment matching ( see [47], [46], [79]). The one dimensional definition in the academic
literature could easily be extended to higher dimensions.

The chapter only focuses on the analysis of probability deformation schemes.

5.2 Probability deformation schemes

Suppose we have a multi-period portfolio problem with Jk being the value function and ζk

being the control law under the exact probability structure p. Suppose we have p` as an `-
point approximation for p such that p` 7→ p in some probabilistic sense (i.e. convergence in
probability, almost sure or in distribution ). Then we speculate J `

k 7→ Jk and ζ`k 7→ ζk as
` 7→ ∞. We tighten the above speculation in the form of the conjecture :

Conjecture : Provided J `
k (•) is bounded and continuous then p`

D
−→ p implies J `

k
D
−→ Jk

for a suitable state space grid setting.
Note the condition suitable state space grid setting in the above conjecture. This is because

the conjecture would hold only if we are free from interpolation and extrapolation errors in our
dynamic programming recursion. This will happen only for a suitable grid setting as discussed
in section 7 of chapter 3.

It is numerically very convenient to express the continuation behavior of the value function
(or control law) in terms of the deformation parameter γ` = ϑ(1

`
) to get the desired solution with
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respect to the original problem. So with a deformation parameter of γ` we have a corresponding
discrete probability approximation represented as an ` point discrete approximation of our
target probability model. Here ϑ is a monotonically increasing function such that lima→0 ϑ(a) =

0. In the rest of the chapter we will chose ϑ(a) = a. We will later show that the power law and
polynomials provide a good basis set to express the continuation behavior. By the continuation
behavior we mean that, by changing the value of γ`, how does the output change so that we can
figure out the output from the target probability model.

The fact that the approximating probability distribution converges to the exact probabil-
ity distribution of the model along the continuation path means the problem constraints also
converge in some probabilistic sense.

5.3 Deformation schemes for a portfolio model in 1-D

5.3.1 Model description

The transaction cost model we will analyze is the simple growth rate model we had earlier
considered in chapter 3. In particular this 1-D model is chosen because of its simplicity and
popularity in the academic literature (See [28] and [72] ). The investor shifts his wealth between
risky and non-risky assets subject to a control strategy given his terminal investment objective.
There are N periods and an investment horizon of length T years.

The model we will consider is the same model considered in Section 3.5 . In that model
the dynamic investor allocates wealth between risky and risk free asset and faces transaction
cost proportional to the amount traded. Let us illustrate a transaction process involving two
assets. It is popular in academic literature to have the first asset as risky and the second asset
as risk-free (that finances the trades). Let X+

k be the wealth in the risky asset immediately after
re-balancing and Y+

k in the risk-free asset.
If asset 1 is bought :

X+
k = A−k W−

k + ∆k = ε+
k W−

k (5.1)
Y+

k = (1 −A−k )W−
k − (1 + λk)∆k (5.2)

A−k+1 =
ε+

k rk

ε+
k rk + ((1 −A−k ) − (1 + λk)(−A−k + ε+

k ))sk
(5.3)

If asset 1 is sold :

X+
k = A−k W−

k − ∆k = ε+
k W−

k (5.4)
Y+

k = (1 −A−k )W−
k + (1 − µk)∆k (5.5)

A−k+1 =
ε+

k rk

ε+
k rk + ((1 −A−k ) + (1 − µk)(A−k − ε

+
k ))sk

(5.6)

If no transaction is made :
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X+
k = A−k W−

k (5.7)
Y+

k = (1 −A−k W−
k ) (5.8)

A−k+1 =
A−k rk

A−k rk + (1 −A−k )sk
(5.9)

Consider a portfolio consisting of risky assets with the risky asset growing at a rate
rk over the kth period. The investor has an initial endowment of W̄. Let W−

k be the wealth
immediately before and W+

k be the wealth immediately after re-balancing for the kth period.
Let Xk be the amount and A−i,k be the fraction of wealth for the ith risky asset relative to base
wealth before re-balancing.

The value function takes a different form depending upon the investment objective.
For the growth rate (or log-utility) problem it is :

J(W−
k , A

−
k ) = EP[Log(W−

N)|Fk] (5.10)

Also,

JN−k(W−
N−k,A

−
N−k) = Log(W−

N−k) + Max
ς

EP[J (k−1)
N−k+1(A−N−k+1)

+Log(FN−k(A−N−k))|FN−k]
= Log(W−

N−k) +J
(k)
N−k(A

−
N−k) (5.11)

Where the stochastic functional FN−k(A−N−k) encapsulating the control is represented as :

FN−k(A−N−k) =


(ε+

N−ksN−k + ((1 − A−N−k) − (1 + λN−k)(−A−N−k + ε+
N−k))αN−k)) if risky asset bought

(ε+
N−ksN−k + ((1 − A−N−k) + (1 − µN−k)(A−N−k − ε

+
N−k))αN−k)) if risky asset sold

A−N−ksN−k + (1 − A−N−k)αN−k no trading

Let the continuous time risky growth vector (1 + g) follow a multivariate GBM. Now
log(1 + g) is multi-variate normal. Also rk is the corresponding discrete time risky growth
for a risky asset. The domain of risky growth is infinite dimensional, however, we chose to
truncate using appropriate algorithms to [0, r∗]. Where r∗ now represents the truncated upper
bound for the risky growth.

5.3.2 Numerical analysis of probability deformation schemes
We will restrict our numerical analysis to a certain state space domain for the value function.
In the numerical experimentation we chose to have the initial wealth = 1 but the initial risky
fraction changes and the appropriate value is given in the caption. See Tables 5.1-5.3. The
value function under exact probability could be calculated using exact integration in dynamic
programming. This is compared the value function we get using deformation schemes.

There are many possible discretization schemes. We will analyze three possible deforma-
tion schemes with respect to the deformation parameter γ = 1

`
:
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1- Simple interval division (SID) : This will involve dividing the domain of the random
variable into ` equidistant chunks to form ` intervals and finding the mid-point of the variable
in the interval.

2- Simple quantile interval division (SQID): This will involve dividing the domain of
random variable by using ` quantiles using the quantile function and finding the mean of vari-
able in the interval. A probability of 1

`
is assigned to each mean to get a discrete probability

approximation.
3- Moment division (MD):
i)-Using an approximate moment matching algorithm using Gaussian quadrature as in [65]

so that if the ` the number of points for Gaussian quadrature the accuracy of distribution
matching increases.

ii)- Instead of Gaussian quadrature we could match moments using standard discrete prob-
ability approximation construction as in Section 3.7.3.

Lets illustrate in a simple algorithmic way, the solution procedure in 1-D in a few steps:

Step 1. Chose whether to use SID, SQID or MD. Set i = 0. We construct a discrete
approximation for risky growth over an interval ∆T . The schemes SID, SQID and MD will
give different discrete probability approximations. We then chose a deformation scheme with
a particular value of `. This further implies the deformation parameter γ` = 1

`
.

Step 2. We solve our 1-D model via dynamic programming to get the value function J`0 at
time t = 0. We have a pair Pi = (γ`, J`0).

Step 3. Increment the value of ` and repeat step 2. Increment i. Insert Pi in the list L. If
i > i∗ go to step 4. Where i∗ is a predefined termination level.

Step 4. Use the final list L as the data for continuation i.e. determining the limit γ` → 0
using power law or polynomial basis. Under the power law the basis for an arbitrary real a
are {1, γa

` }. Under polynomial basis we fit polynomial curves between successive data points.
Mathematica’s built-in function Interpolation[] was used. The default setting of cubic poly-
nomial was used in all our numerical experimentation.

In each case of deformation we approach our required model by letting 1
`
7→ 0. This

could be seen in Figures 5.2-5.4. The schemes are seen to march on to the true solution either
monotonically increasing or decreasing for the choice of parameters in the figures. For different
schemes we vary the deformation parameter and then use a continuation law. It is seen that all
the three schemes land very close to the exact continuous time solution in the figure. The exact
solution is marked by the solid circle at γ` = 0 in Figure 5.2-5.4. The other circles represent
the solutions obtained for different deformation parameters.

For a particular choice of parameter it is always possible to compute the exact solution (as
measured by the value function or the optimal control law). Results show that MD and SQID
fare much better than SID. A power law is also seen to be a better continuation law compared
to polynomial law in general shown in from the numerical experimentations shown in the next
sections.
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Method/Law polynomial power law
SID -0.0341% 0.000920%
SQID 0.00271% 0.00458%
MD -0.00757% 0.00177%

Table 5.1: Relative percentage error in value function with initial wealth=1, initial risky frac-
tion=0.2, varying deformation from ` = 15 to 25 and parameter choice: λ = µ = 0.01, s =

e0.1∗∆T ,m = 0.14, σ = 0.3, γ` = 1
`
. Where T is the time horizon for investment, N is the number

of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . γ` is the deformation parameter.

Method/Law polynomial power law
SID 0.0165% 0.000920%
SQID -0.00552% 0.00552%
MD 0.00276% 0.00184%

Table 5.2: Relative percentage error in value function with initial wealth=1, initial risky frac-
tion=0.5, varying deformation from `= 15 to 25 and parameter choice: λ = µ = 0.01, s =

e0.1∗∆T ,m = 0.14, σ = 0.3, γ` = 1
`
. Where T is the time horizon for investment, N is the number

of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . γ` is the deformation parameter.

Method/Law polynomial power law
SID -0.109% 0.0265%
SQID -0.00587% 0.0113%
MD -0.00206% 0.00175%

Table 5.3: Relative percentage error in value function with initial wealth=1, initial risky frac-
tion=0.9, varying deformation from `= 15 to 25 and parameter choice: λ = µ = 0.01, s =

e0.1∗∆T ,m = 0.14, σ = 0.3, γ` = 1
`
. Where T is the time horizon for investment, N is the number

of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . γ` is the deformation parameter.
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Value 

Function
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Figure 5.2: Value function in SID scheme with initial wealth=1, initial risky fraction=0.5,
varying deformation from `= 15 to 25 and parameter choice: λ = µ = 0.01, s = e0.1∗∆T ,m =

0.14, σ = 0.3,T = 1,N = 4, γ` = 1
`
. Where T is the time horizon for investment, N is the

number of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction
cost factors, s is the risk free growth over the interval, m is the drift for continuous time GBM
and σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T . γ` is the deformation parameter.

5.4 Deformation schemes for a portfolio model in 2-D

5.4.1 Model description
The transaction cost model considered is the same as in 1-D but instead of the second asset
being risk-free asset it is a risky asset. This slight change increases the dimensionality of the
risky growth process by one. The investor now chooses to transfer wealth between two risky
assets so as to maximize his growth rate over the time horizon 2. The risky growth rates in this
case present an interesting multivariate distribution to deform with respect to the parameter
γ` = 1

`
.

Let the risky growth vector (1 + g1, 1 + g2) follow a multivariate GBM. Now (log(1 +

g1), log(1+g2)) is multivariate normal. Let$ denote the pdf of (1+g1, 1+g2) then deformation
is done on the domain of the original distribution. Instead of an interval in 1-D we will have
square grids in the domain. The domain is infinite dimensional, however, we chose to truncate
using appropriate algorithms to [0, r∗1] × [0, r∗2].

The word dimensionality in the chapter denotes the dimension of the probability model.
For as in an H-dim model we would encounter an H-dim risky growth vector g∗ = (1 + g1, 1 +

g2, ..., 1 + gH) over the interval ∆T as a result of risky assets following a multi-variate GBM.

2This problem shares a great deal of similarity with the Mapleridge capital style asset management in which
the hedge fund manager transfers wealth between trading strategies.



5.4. Deformation schemes for a portfolio model in 2-D 71

Value 
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Figure 5.3: Value function in SQID scheme with initial wealth=1, initial risky fraction=0.5,
varying deformation from `= 15 to 25 and parameter choice: λ = µ = 0.01, s = e0.1∗∆T ,m =

0.14, σ = 0.3,T = 1,N = 4, γ` = 1
`
. Where T is the time horizon for investment, N is the

number of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction
cost factors, s is the risk free growth over the interval, m is the drift for continuous time GBM
and σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T . γ` is the deformation parameter.
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Figure 5.4: Value function in MD scheme with initial wealth=1, initial risky fraction=0.5,
varying deformation from `= 15 to 25 and parameter choice: λ = µ = 0.01, s = e0.1∗∆T ,m =

0.14, σ = 0.3,T = 1,N = 4, γ` = 1
`
. Where T is the time horizon for investment, N is the

number of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction
cost factors, s is the risk free growth over the interval, m is the drift for continuous time GBM
and σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T . γ` is the deformation parameter.
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Method/Law polynomial power law
SID * 1.058%
SQID 0.202% 0.0257%

Table 5.4: relative percentage error in value function with initial wealth=1, initial risky frac-
tion=0.5, varying deformation from `= 8 to 15 and parameter choice: λ = µ = 0.05,T = 1,N =

4, µ1 = 0.08, σ1 = 0.2, µ2 = 0.14, σ2 = 0.8, ρ = 0.1, γ` = 1
`
. Where T is the time horizon for

investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
(λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is the drift for
continuous time GBM and σ is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the deformation
parameter.

Accordingly, g∗ = (log(1 + g1), log(1 + g2), ..., log(1 + gH)) is multi-variate normal over ∆T .
Then $H is the pdf of g∗ upon which deformation is performed. The truncated domain will be
[0, r∗1] × [0, r∗2] × ... × [0, r∗H].

5.4.2 Numerical analysis

A moment based scheme in higher dimensions is not explored here because of lack of proper
algorithms at present to handle the computational complexity. In particular, we don’t make
general statements about N > 1 but we still present some higher dimension results. It is not
very straightforward to apply in higher dimensions the Gaussian quadrature based procedure
which was possible in case of 1-D. It is still possible to create moment matching discrete
probability approximation in higher dimensions where we match individual moments as well
as cross-moments. We will discuss more about this in the final concluding chapter.

As expected SQID fares much better than a naive SID based upon the percentage errors.
Extrapolation does not always work will when using polynomial in the continuation scheme
because of the possible wiggles: irregular behavior observed while extrapolating the data inter-
polated using a polynomial basis.

We provide some numerical results for our earlier 2-D example in Table 2.4 for SQID and
SID schemes. Further Figure 5.5 and Figure 5.6 provide a visual depiction of the continuation
behavior under the SQID and SID schemes.

The basic numerical algorithm is the same as we highlighted for the 1-D case in Section
5.3.2. However, the risky growth is now two dimensional. We now work in a 2-D grid instead
of an interval. Figure 5.7 shows how grids are created in 2-D space. For SQID scheme, for
instance, we will use quantiles of the individual risky growths separately in the direction of the
axis to create grids. The mean of the risky growth vectors inside the squared sized grids could
easily be computed using numerical integration.

Based upon the tables and figures in this chapter it appears the power law works better than
polynomial law in both the 1-D and 2-D cases.
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Figure 5.5: Value function in SID scheme with initial wealth=1, initial risky fraction=0.5,
varying deformation from `= 8 to 15 and parameter choice: λ = µ = 0.05,T = 1,N =

4,m1 = 0.08, σ1 = 0.2,m2 = 0.14, σ2 = 0.8, ρ = 0.1, γ` = 1
`
. Where T is the time horizon

for investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
(λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is the drift for
continuous time GBM and σ is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the deformation
parameter.

5.5 Some remarks on moment division deformation
In 1-D it is a straightforward exercise to use Gaussian quadrature to create moment matching
approximations as in [65]. It is possible to extend ideas to other quadratures. In higher dimen-
sions we need to match cross-moments along with the individual moments. Let (Xi) denote a
set of random variables so that suppose we wish to create a MD approximation up to an order
A. Then we need to to match (E(Xa

i )a≤A, E(Xk
i Xa−k

j )a≤A,k≤a). In one dimension it was easy to use
quadrature based method as in [65], however, extending quadrature based method in higher
dimension would be interesting.

As discussed earlier using enumerative discrete probability approximation we could still
have a discrete probability approximation that matches individual as well as cross-moments.
This has already been discussed in Chapter 3 but let’s put the ideas in the more formal notation
of this chapter. Let U be the order of MD approximation involved in matching the moments
of monomial basis set with certain preferential ordering. Take the case of 2-D. How could we
create a deformation scheme based on moment matching? This is by successively making the
structure richer. A structure is considered richer if it has more model parameters to describe
it. Examine the 2-D discrete probability approximation in Figure 5.8. The parent discrete
probability approximation describes the joint evolution of risky growths and the sub-trees the
individualized evolution. It has seven parameters and we would match the moments in lexico-
graphic order as in table. Moments for set (x, y) would be matched first, then second moments
(x2, y2, xy) and so on. We call this discrete probability approximation of cardinality M = 7 rich-
ness. If we are to match third order moments we would consider the set (x3, y3, x2y, y2x). To
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Value Function
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Figure 5.6: Value function in SQID scheme with initial wealth=1, initial risky fraction=0.5,
varying deformation from `= 8 to 15 and parameter choice: λ = µ = 0.05,T = 1,N =

4,m1 = 0.08, σ1 = 0.2,m2 = 0.14, σ2 = 0.8, ρ = 0.1, γ` = 1
`
. Where T is the time horizon

for investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
(λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is the drift for
continuous time GBM and σ is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the deformation
parameter.

Asset1

Asset2

Figure 5.7: A possible deformation stencil in 2-D.
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Figure 5.8: Tree in 2-D.

Level I (x, y)
Level II (x2, y2, xy)
Level III (x3, y3, x2y, y2x)

Table 5.5: Lexicographic ordering of a monomial set in 2-D

seek continuation we must create a slightly richer discrete probability approximation by having
more branches and then noting down the cardinality of the discrete probability approximation.
We would then seek continuation of the problem through the parameter γI = 1

I .

A richer discrete probability approximation has more parameters which are found by mov-
ing from one level to a higher level:

Level I ≺ Level II ≺ Level III ≺ ...

The structure could be made richer and hence closer to our target distribution by progres-
sively moving from one level to a higher one.

Level I (x, y, z)
Level II (x2, y2, z2, xy, yz, xz)
Level III (x3, y3, z3, xy2, xz2, x2y, x2z, y2z, yz2, xyz)

Table 5.6: Lexicographic ordering of a monomial set in 3-D
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5.6 Applicability to a wide class of stochastic processes for
risky growth

Our deformation methodology is easily applicable to wide range of stochastic processes.
Consider the popular jump diffusion model for risky asset i

dS (i)
t

S (i)
t

= α(i)dt + σ(i)dZt + dqt (5.13)

in which the Poisson process dqt, is characterized by jump intensity λ as well as jump size
Y which is assumed independently log-normally distributed i.e. log(Y) ∼ N(θ, δ2).

The logarithm of the risky growth over an interval ∆T , thereupon, follows

log(
S (i)

t+∆T

S (i)
t

) = (α(i) −
(σ(i))2

2
)∆T + σ(i)

√
∆TZt +

nt∑
t=1

log(Yt) (5.14)

where nt is the number of jumps in the interval ∆T .

Further, let f (x) denote the density of log(S (i)
t+∆T

S (i)
t

)

f (x) =

∞∑
n=0

e−λ∆T (∆T )n

n!
N

(
x; (α(i) −

(σ(i))2

2
)∆T + nθ, (σ(i))2∆T + n(δ)2

)
(5.15)

We now have an analytic representation for the distribution of log(1 + g) which does not
rely on ∆T being small because we have an analytics solution. The desired (1 + g) is obviously
a monotonic transformation (apart from the fact the quantiles get monotonically transformed )
and we could easily work numerically with our deformation schemes as mentioned.

5.7 Towards a distribution-free approach
Our approach can be easily applied when the actual probability distribution model is unknown.
In this case we could fit a smooth kernel distribution to our historical data and then apply
deformation scheme on it. This would be particularly useful when analytical forms for multi-
dimensional distribution could not be expressed in terms of a simple mathematical formula.
We note that Mathematica’s SmoothKernelDistribution[] returns a data distribution object that
can be used like any other probability distribution, and hence could be useful in providing a
distribution free approach.

5.8 Concluding remarks
Numerical results of this chapter show deformation schemes to be remarkably accurate for a
fraction (about 1/10 to 1/20) of the computational cost required to obtain the exact solution.
The exact solution using the exact distribution in dynamic programming is computationally
intensive. This chapter explored a few possible schemes. In 2-D, for instance, a host of other
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schemes are possible utilizing quantiles along the diagonal of the random variable domain.
Many other statistical features could be similarly exploited.

The technique of successively deforming probability models towards the exact model was
experimentally shown to converge to the exact probability model in this chapter. In the case of
jump diffusion models deformation schemes have been found to be numerically very robust.
In the next chapter we will show that moment based methods for discrete probability approxi-
mation construction are reasonably accurate by considering some popular academic models in
transaction cost literature.



Chapter 6

Moment based discrete probability
approximation of transaction cost models

The problem of optimizing portfolios in the presence of transaction costs has attracted signifi-
cant interest. In this chapter we consider a discrete-time formulation of the models introduced
by Morton and Pliska in [69] and Davis and Norman in [28]. We examine the applicability of
the numerical discrete probability approximation as an alternative approach to solve transac-
tion cost problems. The approach is able to solve a model in dimensions of less than or equal
to three and non-standard geometries. Using the exact probability model in context of dynamic
programming is computationally intensive as it involves root finding and optimization of com-
plicated integrals. We provide a computational study of discrete probability approximation
method on transaction cost models and highlight its many advantages.

The outline of the chapter is as follows: Section 1 considers discrete probability approxi-
mations for fixed transaction cost model in [69]. Section 2 considers analysis of discrete prob-
ability approximations for mean-variance problems. Section 3 considers discrete probability
approximation for the proportional transaction cost models described in [28].

6.1 Tree approximations for fixed transaction cost model

As described in chapter 2, the question of optimal portfolio allocation was introduced in con-
tinuous time by Merton in his seminal 1969 study under a no-transaction cost assumption. The
optimal policy proposed by Merton continuously transacts to hold a fixed fraction of wealth in
each stock if the utility is logarithmic or CRRA. This results in infinite transactions on a finite
interval. With transaction costs, the investor can only afford to make finitely many transactions.
Intuitively, the investor would trade only if the fraction of stock holding is sufficiently far away
from the Merton point. In 1990, Davis and Norman solved the Merton portfolio problem with
proportional transaction costs for one stock case. In models of these type an investor makes
minimal transactions to return the risky fraction on the boundary of the region of inaction if
it wanders outside. In [84] a numerical scheme to iteratively find the viscosity solutions of
such problems has been given. Some progress has been made in high dimensions for problems
involving transaction costs. Reference [3] uses asymptotic analysis around the Merton point
to obtain optimal policies for multiple stocks by maximizing asymptotic growth rate under an
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infinite horizon. Reference [1] considers the same model as in [28] but their numerical scheme
is shown to only work numerically for two stocks.

This section considers the optimal investment strategy of an investor who invests in one
risk-free and multiple risky assets. The price evolution of risky assets is modeled by a multi-
dimensional geometric Brownian motion. The discrete-time formulation allows the investor to
bring his portfolio to the most optimal fraction of wealth in each asset while incurring fixed
transaction costs of the management fee type as considered in [69], [6] and [3]. Thus at each
stage he decides to re-balance or do nothing by comparing the value of each decision. The
terminal utility at the end of the investment horizon is denoted by u(WN) where WN is the
wealth at the terminal node. The focus in the quantitative finance literature has been on the
infinite horizon framework which makes the problem time independent. Liu and Loweinstein
[56] first studied the finite horizon problem considering some analytic approximations and
some probabilistic arguments. Dai and Yi [25] considered the same problem albeit in a more
formal PDE based framework. A more recent paper by Dai and Zhong [24] applies penalty
based numerical methods on PDEs characterizing problems of these types.

In this section we provide a computational study on this simple model to provide solutions
to its continuous time counterpart as in [69]. The solution is generally an optimal policy char-
acterized by a region of inaction where admissible policies are regions in the set of all possible
controls described by R. A point dubbed the Merton point lies inside this region. When the
proportion of investor’s wealth lies inside the region, the investor does not transact. When the
fluctuations in the risky price processes drive the proportions of wealth (risky fraction process
) to the boundary of the region of inaction the investor transacts to bring it back to the Merton
point if transaction costs are proportional to the amount of wealth. In the finite horizon problem
both the region of inaction is time dependent in contrast to the infinite horizon case as solved
and discussed in [69].

We use a discrete probability approximation approach to solve the model in one, two and
three dimensions1. While only a simple transaction and utility structure is considered we see
these simple discrete probability approximation methods as a promising tool for more higher
dimensional complex transaction cost problems in a world where parallel programming and
vast computer resources exist. Tree-based methods have been reasonably successful in the
context of option pricing. Notable work in this regard are [15] and [21]. Our results show that
they are reasonably accurate. Tree methods allow the solution of both finite and infinite hori-
zon problems the analysis of which would be difficult otherwise. In most problems involving
dynamic portfolio choice, the characterizing PDE can be discretized so as the resulting scheme
gives a stable, consistent and convergent solution with convergence in sense of viscosity so-
lution - an idea pioneered by Crandall, Ishii and Lions (1992 )[43] and Fleming and Soner
(1993) for non-linear partial differential equations [33]. Under suitable moment matching for
probability model and a sufficiently fine discretization for the state variables our discrete prob-
ability based numerical algorithms show a stable and convergent behavior. An issue to be
explored further is with respect to which the moments are matched and up to what degree so
that the discrete probability approximation solution converges to the viscosity solution of the
PDE characterizing the problem. A discrete probability based approximation can be equivalent
to an approximate explicit finite difference scheme for the corresponding PDE.

1In general we could solve for arbitrary dimensions given sufficient computational power.
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The problem in multi-dimensions has been well studied as in [73] and [71] for a different
transaction cost structure. For instance, [51] uses a boundary update procedure to converge
to the region of inaction and it has been proved to theoretically work in one dimension. Its
ability to handle more complex geometries for region of inaction is questionable because of
the requirement that the actual region of inaction lie inside the initial boundary approximation.
Asymptotic methods considered in [6], [3] and [66] construct an approximate solution around
the Merton point. Asymptotic techniques require transaction costs to be small and these meth-
ods are found to be relatively inaccurate. For instance, as noted in [3], for some parameters sets
the estimated Merton point for asymptotic expansion could lie outside the simplex of the state
variable domain. The ability of asymptotic techniques to handle more complex geometries for
the inaction region is also questionable. Tree-based method can be seen as alternative approach
given these pitfalls of the existing methods. They are simple to implement, reasonably accurate
given certain conditions and computationally less intensive for reasonable dimensions.

This section considers the simple model of portfolio management type as in [69]. The so-
lution of the problem is characterized by free-boundary ordinary differential equations (ODEs)
and Partial Differential Equations (PDEs) which determine the risky fraction boundaries of the
region of inaction. Real-world transaction costs are unpredictable with both fixed and ran-
dom components in the form of bid-ask spread. In more complex geometries where PDE free
boundary characterization results in numerically stiff problems we believe asymptotic methods
become fairly inaccurate and existing solution schemes might fail to converge. Monte Carlo
based methods in low dimensions for such kind of problems could be relatively inaccurate and
time consuming. Tree-based methods are simple to implement and may be applied to different
transaction cost paradigms. We have successfully applied it to models of the type as proposed
as in [28] and with much more complex time inconsistent objectives.

6.1.1 The model
We will consider a simple transaction cost structure to illustrate the general idea behind the
approximation methodology.

Consider a portfolio consisting of one risk-free asset growing at a rate of sk over the
kth period i.e. (k, k + 1] . It also contains N risky assets with the ith risky asset growing at a rate
of ri,k over the kth period2.

The wealth in each risky asset i follows a geometric Brownian motion. In a continuous
time framework S i,k the stock price corresponding to the ith risky asset is:

dS i

S i
= midt + σidZi

t (6.1)

The investor has an initial endowment of W̄ and at the beginning of each period he has the
option to re-balance or not. Let W−

k be the wealth immediately before and W+
k be the wealth

immediately after re-balancing for the kth period. If the investor decides to re-balance then a
certain fraction λk of the portfolio, termed the portfolio management fee, is extracted from the
portfolio and the portfolio is subsequently brought to the most optimal fraction of wealth in

2Note (1 + g) is the continous-time analogue of discrete time risky growth ri,k
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each asset. Let X−i,k be the amount and A−i,k be the fraction of wealth for the ith risky asset
relative to base wealth before re-balancing. We let Yk denote the total amount of wealth in the
risk-free asset in the period k. The fact that the transaction cost is independent of the initial
risky fraction means the optimal re-balancing point (also called the Merton point or the Merton
line for time varying optimal re-balancing point as in the case of CARA utility ) is independent
of the initial risky fraction

The investment has a finite time horizon of T . There are N periods each of length
∆T= T

N and k = 1, 2, ...,N. The investment objective is to maximize the utility of final bequest
EP[U(WN)]. Our model has the ability to accommodate both random and deterministic time
horizons. For simplicity we will assume a deterministic time horizon T . We model an infinite
horizon by letting T → ∞ yielding the infinite horizon policy p∗ as a by-product.

Here U(WN) =
WV

N
V corresponds to CRRA utility with a risk aversion co-efficient of V

with 0≤ V ≤1 and U(WN)=Log(WN )
T corresponds to growth rate maximization with the limit

N → ∞ for the asymptotic growth rate. The growth rate objective allows for separability in
wealth. The limit ∆T → 0 helps us obtain a continuous time solution of a model known in the
transaction cost literature as the Pliska model (see [69], [6] and [3]). This simple transaction
cost model has the virtue of being well studied and so allows for numerical validation against
limiting and existing asymptotic results.

With the above stochastic framework we can represent the portfolio evolution in the form
of a stochastic system. At the beginning of period k we have W−

k =
∑

X−i,k+Y−k .
At the beginning of each period, if re-balancing is selected then the following system of equa-
tion hold:

X−i,k+1 = (1 − λk)W−
kA

+
i,kri,k (6.2)

Y−k+1 = (1 − λk)W−
k

(
1 −

∑
A+

i,k )sk (6.3)

A−i,k+1 =
A+

i,kri,k∑
A+

i,kri,k +
(
1 −

∑
A+

i,k

)
sk

(6.4)

If re-balancing is not selected then the following system holds :

X−i,k+1 = W−
kA

−
i,kri,k (6.5)

Y−k+1 = W−
k

(
1 −

∑
A−i,k )sk (6.6)

A−i,k+1 =
A−i,kri,k∑

A−i,kri,k +
(
1 −

∑
A−i,k

)
sk

(6.7)

At the beginning of each period the investor decides to re-balance or not to re-balance
keeping in view his dynamic objective for the terminal wealth WN as previously considered.
We require the constraint X−i,k+1 ≥ 0 (no-shorting of risky asset allowed), Y−k+1 ≥ 0. We note
that such constraints alter the geometry of the state variable domain Ωk. In two dimensions,
for instance, the risky fraction domain takes the shape of a triangle shaped simplex. The fact
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that a fraction of the wealth of the investor gets paid as the transaction cost and the investor
takes only long position in the risky asset implies that the investor always remains solvent.
The investor could, however, in theory become bankrupt if he takes a short position in the
risky asset. Note that log-utility has a built in mechanism to control for bankruptcy because
it approaches negative infinity for small amounts of wealth. We assume the utility structure
allows separability in wealth thereupon working with the state space (W−

k ,A−i,k) and truncating
the state space vector A−i,k to some reasonable lower and upper bounds. We assume that the
risky fraction always lies in the interval [0, 1] 3. In short a finite state approximation for all the
possible states to be attained at beginning of period k is constructed so that our state variable
always remains within the domain Ω. Figure 6.1 illustrates the idea with the region of inaction
embedded in risky fraction co-ordinate space

∏
A−i,k. The risky fraction space chosen to be

large enough so that the region of inaction is always embedded inside it. The existence of a
no-transaction region in risky fraction space is intuitively reasonable because:

A- The risky fraction process is a mean reverting process about Merton point for log-utility
will be shown in Chapter 8.

B- The value of re-balancing is greater the further we are from the optimal re-balance point.
We must state that the optimal re-balance point might not necessarily be the same as Merton
point for the no-transaction cost case. Merton point for a problem for instance is transaction
cost and utility structure dependent.

We will create a discrete-time, discrete probability approximation for the risky
growth vector ri,k so that the respective mean vector and variance-covariance matrix

∑
over

a period ∆T match with the approximate moments of the continuous-time evolution of vector
S k. In the limit ∆T → 0 the discrete-time approximation converges in distribution to the
continuous-time distribution.

The exact distribution of ri,k over a time step ∆T is log-normal with mean of e
(
m−σ

2
2

)
∆T+ 1

2σ
2∆T

and variance of
((

eσ
2∆T − 1

)
e2

(
m−σ

2
2

)
+σ2∆T

)
. As can be seen from the discretized version of equa-

tion 6.1, for sufficiently small ∆T , the risky growth vector is also approximately multivariate
normally distributed with a mean 1+ mmm∆T and a variance-covariance matrix

∑∑∑
. The choice

of ∆T will impact the accuracy of the solution given a certain utility and transaction cost struc-
ture. With this moment matching up to a certain order we can create a binomial, trinomial or
an appropriate multi-nomial discrete probability approximation for risky growth vector ri,k.

There is no unique way to create a discrete probability approximation. Chapter 3 high-
lighted the basics of discrete probability and now we will give some specific examples. In
one dimension, for example, the binomial discrete probability approximation has two branches
with the risky growth increasing to u with a probability p and decreasing to d with a probabil-
ity 1 − p. The trinomial approximation for the risky growth has three branches with the risky
growth increasing to u with a probability p, going to l with a probability q and decreases to d
with a probability 1 − p − q. Risky growth evolution is time independent in our model. The

3However, by using suitable penalty adjustments in our dynamic programming formalism, we could accom-
modate generalized liquidity/portfolio constraints of the form −a ≤ A−i,k ≤ a for some a ∈ R. Our model could
easily accommodate constraints of the type Y−k+1+

∑
X−i,k+1 ≥0 or perhaps even Y−k+1+(1-λk)

∑
X−i,k+1 ≥0 for more

generalized transaction cost structures. This could be handled by suitable adjustments to the dynamic program-
ming methodology by invoking some constraints or applying a penalty to the value function. We will discuss in
detail in chapter 9.
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Figure 6.1: No-transaction region embedded in state variable space at node k.
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Figure 6.2: Binomial and Trinomial dicrete probability approximations for risky growth in one
dimension.

stochastic drift and volatility case we could easily accommodate for non-stationary discrete
probability approximations which we do in chapter 11. We can denote ((p, u), (1 − p, d)) or
((p, u), (q, l), (1 − p − q, d)) as being an approximate discrete probability model for the contin-
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uous stock price risky growth distribution.

p

q

r

1-p-q-r

(u1, d2L

(d1, u2L

(d1, d2L

(u1, u2L

Figure 6.3: Binomial discrete probability approximation for a pair of risky growth in 2-
dimensions.

In two dimensions the binomial approximation for the risky growth has four branches.
Here we need to incorporate the two risky growths as a pair, as depicted in Figure 6.3. In one
dimension for instance choosing u = 1

d = 1 + g or u = 1
d = 1 + g, l = 1 gives reasonable results

for some choice of parameters. We could have no restrictions on the branching factors u, l, d, ...
and build an approximate probability model by matching moments up to an order k. In Figure
6.2 the binomial discrete probability approximation has three parameters and so allows us to
match first three moments of risky growth. The trinomial discrete probability approximation
has four parameters and allows us to match the first four moments.

The binomial approximation for risky growth in N-dimensions can have 2N branches.
We could chose either log returns, simple returns or the actual stock price itself for moment

matching purposes. Selection of the appropriate stochastic variable in the model with respect
moment matching is to be done is an interesting question. For instance, by using moment
matching with respect to log-returns [45] creates multinomial approximating models for k state
variables by writing S i( k + ∆T)= S i( k)eζi(k) where eζi(k) is the risky growth factor. Under
a GBM model for stock prices we know that ζi(k)=(mi-

σ2
i

2 ) ∆T +σi

√
∆T Zk where Zk is the

Wiener process. Also, E[ζi(k)]=(mi-
σ2

i
2 ) ∆T and Var[ζi(k )]=σ2

i ∆T and we can use moment
matching to create a discrete time risky growth pair evolution.
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Figure 6.5: A multinomial approximation in three dimensions.
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In two dimensions the risky growth pair is depicted in Figures 6.3 and 6.4. In three di-
mension the evolution of risky growth triplet is depicted in Figure 6.5. We can see with k
dimensions we have 2k + 1 branches in such constructions.

In our model the joint distribution of returns is either multi-variate normal or multi-variate
log-normal. It turns out that if stock price is GBM then the risky growth over a small ∆T has
actually a log-normal distribution which could be approximated as being normal. In higher
dimensions a simple procedure would seek to match the moments given by the mean vector
and variance covariance matrix via E[Xi] = µi, E[XiX j] = ρi j. Opportunity exists for creating
better approximations by adding higher order moments E[Xr

i ], E[Xr
i Xs

j] to our arsenal.

6.1.2 Approximation algorithm
The stage is now set to cast the above model in a dynamic programming framework so

that discrete probability approximation method can be illustrated. We will consider CRRA and
logarithmic utility functions separately.

Here the state space is the pair (W−
k ,A−i,k) while the control is the vector (A+

i,k) .
A-A-A- First consider the CRRA utility. LetJ (i)

N (•) represent the portion separable from wealth
in the value function JN(•).

LetJk(Wk,Ak) =EP[WV
N

V | Fk] be the value function under the CRRA utility. Then under the
control set {ς} we have:

Jk(Wk,Ak) = max
{ς}

EP[Jk+1(Wk+1,Ak+1)|Fk]. (6.8)

Now since JN(WN ,AN) =
WV

N
V we can write:

JN(WN ,AN) =
WV

N−1

V
FN−1

(
Ai,N−1

)
V (6.9)

where F is a stochastic functional depicting the investor decision to re-balance or not at
k = N − 1 under the stochastic evolution as described earlier in section 6.1.2. Using equation
(6.9) we can write:

JN−1(WN−1,AN−1) =
WV

N−1

V
max
{ς}

EP[FN−1

(
Ai,N−1

)
V |FN−1]. (6.10)

The expression FN−1

(
Ai,N−1

)
is:

(1-λN−1) (
∑
A+

i,N−1 ri,N−1+(1-
∑
A+

i,N−1) ◦sN−1) if the investor wants to re-balance and∑
A−i,N−1 ri,N−1+(1-

∑
A−i,N−1) ◦sN−1 if he decides to do nothing.

Letting JN−1(WN−1,AN−1) =
WV

N−1
V J

(1)
N−1

(
Ai,N−1

)
we again use equation (6.10) to find

that:

JN−2(W−
N−2,A

−
N−2) =

WV
N−2

V
max
ς

EP[J (1)
N−1(A−i,N−1)FN−2(A−i,N−2)V |FN−2] (6.11)

=
WV

N−2

V
J

(2)
N−2(A−i,N−2). (6.12)
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In general for k = 2, 3, ...,N we can write:

JN−k(WN−k,AN−k) =
WV

N−k

V
max
{ς}

EP[J (k−1)
N−k+1

(
Ai,N−k+1

)
◦FN−k

(
Ai,N−k

)
V |FN−k] =

WV
N−k

V
J

(k)
N−k

(
Ai,N−k

)
.

(6.13)
B-B-B- Next consider the logarithmic utility scaled with respect to the time horizon4.
Let Jk(Wk,Ak) =EP[ Log(WN )

T | Fk] be the value function under the logarithmic utility. Then,
under control set {ς} we have:

Jk(Wk,Ak) = max
{ς}

EP[Jk+1(Wk+1,Ak+1)|Fk]. (6.14)

Now since JN(WN ,AN) = 1
T Log( W−

N

)
we can write:

JN(WN ,AN) =
1
T

(Log(W−
N−1) + Log(FN−1

(
Ai,N−1

)
)) (6.15)

where F is a stochastic functional depicting the investor behavior of re-balancing or not
re-balancing at k = N − 1 under the stochastic evolution as described earlier in section 6.1.2.
Using equation (6.15) we can write:

JN−1(WN−1,AN−1) =
1
T

(
Log

(
W−

N−1
)
+ max

{ς}
EP[Log(FN−1

(
Ai,N−1

)
)|FN−1]). (6.16)

The stochastic functional FN−1

(
Ai,N−1

)
is: (1-λN−1) (

∑
A+

i,N−1 ri,N−1+(1-
∑
A+

i,N−1)
sN−1) if the investor wants to re-balance and

∑
A−i,N−1 ri,N−1+(1-

∑
A−i,N−1) sN−1 if he decides

to do nothing.
Letting JN−1(WN−1,AN−1) = 1

T (Log (WN−1) +J
(1)
N−1

(
Ai,N−1

)
) we again use equation

(6.16) to find:

JN−2(W−
N−2,A

−
N−2) =

1
T

(Log(W−
N−2) + max

ς
(EP[J (1)

N−1(A−i,N−1)

+Log(FN−2(A−i,N−2)|FN−2])

=
1
T

(Log(W−
N−2) +J

(2)
N−2(A−i,N−2)) (6.17)

In general for k = 2, 3, ...,N we can write:

JN−k(W−
N−k,A

−
N−k) =

1
T

(Log(W−
N−k) + max

ς
(EP[J (k−1)

N−k+1(A−i,N−k+1)

+Log(FN−k(A−i,N−k)|FN−k])

=
1
T

(Log(W−
N−k) +J

(k)
N−k(A

−
i,N−k)) (6.18)

�

4Scaling by time horizon does not impact the optimal controls obtained as we shall see.
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Lemma 6.1.1 Jk

(
Wk,Ak

)
has the property for ρ > 0

(1)Jk

(
ρWk,Ak

)
= ρVJk

(
Wk,Ak

)
for CARA utility.

(2)Jk

(
ρWk,Ak

)
= log(ρ) +Jk

(
Wk,Ak

)
for log-utility by setting T = 1.

Proof Easily follows from separability of wealth in equations (6.12)-(6.17).
Using a change in variable notation we have for CARA utility:

Jk(Wk,Ak) =
WV

k
V J

∗
k

(
Ai,k

)
. So letting Wk → ρWk the the result follows from above.

�
In a discrete-time formalism our methodology tries to curb the dimensionality of the proba-

bility space. The expectation in equations (6.8)-(6.18) is carried under a discrete time probabil-
ity space for risky growths. Under the limit ∆T → 0 it converges to its continuous counterpart
the solution of which is characterized by a PDE as in [69]. For instance, in the option pricing
context Kushner and DiMasi (1978) have shown that, provided the diffusion co-efficient and
option payoff are bounded, if a sequence of processes converges weakly to geometric brownian
motion then the value functions for the optimal stopping problems also converge. In the next
sections we validate the accuracy of discrete probability approximation based methodology by
comparing our solutions to continuous time solutions that already exist in the literature. If T
is finite then the model is a finite horizon time dependent problem. However, if we recurse
infinitely in the recursion problems for equations (6.8)-(6.18) we solve the infinite horizon
problem obtained by letting T → ∞. In most cases the boundary changes very little if we
are very far away from the terminal time and a finite boundary solution could be used to ap-
proximate an infinite boundary solution. For us, the point of the infinite horizon solution is
to validate our discrete probability approximation based finite horizon solution. The solution
to infinite horizon problem already exists in the quantitative finance literature and this will be
the benchmark against which we will provide validation for the numerical discrete probability
approximation solution.

6.1.3 Model output and validation

In this section logarithmic utility will be used for the purpose of calculations unless otherwise
stated.

N = 1 risky assets

In this section we will provide some results for one risky asset and validate them against ex-
isting solution in the infinite horizon case by letting T → ∞ 5. In all our subsequent results
the parameters and the shape of the state variable simplex is chosen to be the same as in
[69].Figures 6.6 and 6.7 show output for parameters chosen to be λ = 0.001,T = 5,N =

500,∆T = T/N, s = e0.07∆T ,m = 0.182, σ = 0.4. The paramter values are the same as used in
[69].

5Assuming a logarithmic utility and choosing u = em∆T+σ
√

∆T , d = em∆T−σ
√

∆T and p = 1/2 we create an ap-
proximation for Merton point using dynamic programming and find it to be a = −

s(−∆Tm+s−1)
∆T 2m2+2∆Tm+∆Tσ2+s2−2∆Tms−2s+1

.
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Figure 6.6: The sell-side and buy-side boundaries for the choice of parameters: λ = 0.001,T =

5,N = 500,∆T = T
N , s = e0.07∆T ,m = 0.182, σ = 0.4. Where T is the time horizon for

investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
λ is the transaction cost factor, s is the risk free growth over the interval, m is the drift for
continuous time GBM and σ is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T .

As seen by the graphs at infinite horizon discrete probability approximation solution im-
plies risky fraction boundaries of (0.5425, 0.834) which is reasonably close to a solution of
(0.54, 0.837) implied by solving a free-boundary problem as in [69] wherein the exact solution
could be computed by solving a large system of nonlinear equations. The convergence to the
infinite horizon solution took just few minutes with a simple discrete probability approximation
approximation in contrast to more elaborate and mathematically complex free-boundary solu-
tion procedure for high dimensions. Solution to corresponding continuous time PDEs could be
fast too and the real advantage of discrete probability approximation lies in their simplicity and
ease of implementation.

The exact distribution of risky growth as earlier stated is log-normal (and normal as ∆T →
0) and this implies that we could exactly compute the risky fraction boundaries being estimated.
However using the exact distribution is computationally very expensive. With just one period
problem (which means ∆T = 0.01 and we iterate the dynamic programming equations just once
) and the above choice of parameters as in Figure 6.6 and 6.7 the exact analytic distribution
of risky growth implied risky fraction boundaries of (0.141,1) which is reasonably close to
that implied by discrete probability approximation (0.137,1). As ∆T → 0 the approximation
solution converges to the exact solution.

Figure 6.8 shows the variation of risky fraction boundaries with the transaction cost pa-
rameter. Plotting the width of no-transaction boundaries against λ in Figure 6.9 we observe
the boundary width to be of O(λ1/4) by performing a least squares fit of the width of bound-
ary against Log(λ).The actual data is shown by dots and the smooth curve by the solid line.
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Figure 6.7: Width of no-transaction region plotted against iteration depth: λ = 0.001,T =

5,N = 500,∆T = T
N , s = e0.07∆T ,m = 0.182, σ = 0.4. The iterations are the same as in the

dynamic programming equation. We start from the last stage to go to the initial time. Where T
is the time horizon for investment, N is the number of re-balancing nodes. ω is the continuous
time risk-free rate, λ is the transaction cost factor, s is the risk free growth over the interval, m
is the drift for continuous time GBM and σ is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T .

This provides a basis for asymptotic expansion in multi-dimensional PDEs characterizing the
transaction cost problem.

The error in the value function (or optimal control law) determination at each stage of
dynamic recursion comes from three sources:

(1) Discretization of state space ( number of steps required for a given accuracy is obviously
transaction cost and utility structure dependent )

(2) Approximation of value function at each stage of optimization. Especially adjusting the
termination accuracy goal of optimization will impact the accuracy of controls at each stage
and hence the accuracy in the value function.

(3) Approximation of real probability model of risky growth evolution by a by a discrete
probability approximation.

In Figure 6.10 it is seen that for some choice of parameters binomial and trinomial approx-
imations give a pretty close solution. If l(m) is the boundary based upon suitable discretization
and m time step divisions then we hypothesize ||l(m) − l(0)|| ≤ k

mα for some suitable constants k
and α.

Results for N ≥ 2 risky assets

Results are provided for both the cases of independent and correlated stock returns. As re-
marked in [69], [6] and [3] the continuation region is similar to an ellipse in two dimensions
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Figure 6.8: Risky fraction boundaries at initial time with respect to transaction cost parameter
λ: λ = 0.001,T = 3,N = 500,∆T = T

N , s = e0.07∆T ,m = 0.182, σ = 0.4. Where T is the
time horizon for investment, N is the number of re-balancing nodes. ω is the continuous time
risk-free rate, λ is the transaction cost factor, s is the risk free growth over the interval, m is
the drift for continuous time GBM and σ is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T .

and ellipsoid in three dimensions. The correlation factor serves to stretch the ellipsoid. It
seems that above a certain correlation factor the region hits risky fraction axis on either side.
This might pose problems for existing methods to solve it as in [71], [6] and [83] for a con-
strained state variable simplex where the region of inaction is assumed to lie inside and not
on the boundary of the simplex. Comparison of our result in the infinite horizon case is done
using the method in [69] and gives a reasonably close answer. It is slightly off from the region
implied by the asymptotic analysis of [6] and [3]. As depicted in Figure 6.16, our result for
infinite horizon is sufficiently close to the exact result in the literature and reasonably close to
approximate asymptotic results. This provides an argument in favor of discrete probability ap-
proximation methods as far as accuracy is concerned. Figure 6.14 and 6.15 show no-transaction
boundaries at terminal time for independent and correlated stocks respectively. Figure 6.17 and
6.18 shows the geometry of inaction at infinite horizon for high positive correlation between
two stocks. It is seen that the region drifts towards and eventually hits it the risky fraction axis
as time progresses. This might pose problems for free boundary PDE solving procedures as the
region has sharp boundaries and also for boundary update procedures since the the region lies
on the boundary of risky fraction axis [51]. It must be mentioned in context of PDE solving
procedures that the boundary of the solution is not known and must be computed as part of the
solution itself.

This section provided results exclusively for the fixed cost transaction structure. However,
discrete probability approximation based methods seem very promising for arbitrary transac-
tion cost structures. For structures of the Davis Norman type as in [28] and the parameters as in
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Figure 6.9: Variation of the width of risky fraction boundaries in the last stage with respect
to transaction cost parameter and parameters: T = 3,N = 100,∆T = T

N , s = e0.07∆T ,m =

0.182, σ = 0.4. Mathematica’s FindFit[] command used to directly do non-linear least squares
optimization. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, λ is the transaction cost factor, s is the risk free
growth over the interval, m is the drift for continuous time GBM and σ is the volatility for the
continuous time GBM. The continuous time GBM implies a risky growth for the risky asset
over the interval ∆T .

[72] the discrete probability approximation solution implies a solution with a fairly coarse time
stepping which agrees with the infinite horizon solution through boundary update procedure as
in [51]. An infinite horizon risky fraction boundary of (0.276,0.606 ) implied by the probability
approximation methodology was based upon a ∆T = 3/40 it just took couple of seconds for 80
iterations ! This is reasonably close to the value quoted as in [73]. We note that getting exact
solution using analytic techniques could be very fast tough but discrete probability approxima-
tion based method possesses the advantage of being intuitive and easy to implement. We have
also had promising results in higher dimensions using numerical probability approximation for
problems of the Davis Norman type. We believe from the structure of problem that the ODEs
and PDEs might become stiff for some parameters. This is supported by the fact that in Figure
6.18 shows a very small no transaction region for some choice of parameters which means the
boundaries conditions are very rapidly changing! We note that if implicit PDE techniques are
used stiffness is not an issue. However, implicit techniques for free-boundary problems might
be very elaborate and complex. In contrast a discrete probability approximation method is
simple, intuitive and easily implementable.
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Figure 6.10: Risky boundary approximation: Comparing trinomial approximation for approx-
imate normal with binomial approximation for exact log-normal with λ = 0.001,T = 5,N =

500,∆T = T
N , s = e0.07∆T ,m = 0.182, σ = 0.4. Where T is the time horizon for investment, N is

the number of re-balancing nodes. ω is the continuous time risk-free rate, λ is the transaction
cost factor, s is the risk free growth over the interval, m is the drift for continuous time GBM
and σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T .

6.1.4 Model risk: optimal policies when risky portfolio growth follows an
arbitrary distribution

In practice the theoretical distribution of risky growth is rarely known. We examine the cases
where the actual distribution differs from a normal or log-normal distribution for an arbitrary
small time interval. We examine the one-dimensional case and assume the distributions have
the same first and second moments as if the risky growth were to follow a log-normal distribu-
tion. Results are provided in Tables 6.1 and 6.2.

It is interesting to note that the optimal policy in inverse gamma distribution case does not
appear to be that distribution sensitive since a log-normal distribution with the same first and

order risky fraction boundaries using inverse Gamma distribution
2 (0.137,1)
3 (0.144,1)
5 (0.142,1)
Exact inverse Gamma distribution (0.142,1)

Table 6.1: same first and second moments as an equivalent log-normal with: λ = 0.001,T =

0.04,N = 1,∆T = T
N , s = e0.07∆T ,m = 0.182, σ = 0.4.
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Figure 6.11: Risky boundary approximation: Varying time step divisions in Binomial approx-
imation for exact log-normal with λ = 0.001,T = 5,N = 500,∆T = T

N , s = e0.07∆T ,m =

0.182, σ = 0.4. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, λ is the transaction cost factor, s is the risk free
growth over the interval, m is the drift for continuous time GBM and σ is the volatility for the
continuous time GBM. The continuous time GBM implies a risky growth for the risky asset
over the interval ∆T .

second moments give risky fraction boundaries of (0.141, 1) at initial time.
Also the optimal policy in gamma distribution case does not appear to be that distribution

sensitive since a log-normal distribution with the same first and second moments give risky
fraction boundaries of (0.141, 1) at initial time.

By increasing the order of moment matching both distributions give boundaries exactly the
same as given by exact distributions.

6.1.5 Analyzing finite horizon boundaries
It is always possible to compare the finite horizon solution we obtain under different probability
deformations of the exact model and see their closeness. Probability deformation schemes

order risky fraction boundaries using Gamma distribution
2 (0.137,1)
3 (0.141,1)
5 (0.14,1)
Exact Gamma distribution (0.14,1)

Table 6.2: same first and second moments as an equivalent log-normal with: λ = 0.001,T =

0.04,N = 1,∆T = T
N , s = e0.07∆T ,m = 0.182, σ = 0.4.
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Figure 6.12: Risky boundary approximation: Varying time step divisions in Trinomial approx-
imation for approximate normal with λ = 0.001,T = 5,N = 500,∆T = T

N , s = e0.07∆T ,m =

0.182, σ = 0.4. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, λ is the transaction cost factor, s is the risk free
growth over the interval, m is the drift for continuous time GBM and σ is the volatility for the
continuous time GBM. The continuous time GBM implies a risky growth for the risky asset
over the interval ∆T .

(scheme,boundary) lower boundary upper boundary
SQID with γ` = 1/20 0.5585 0.849
Moment deformation with γ` = 1/25 0.547 0.8395
Moments of order 2 matched 0.543 0.8375

Table 6.3: Comparison of finite horizon no-transaction boundary obtained at T = 1 with pa-
rameters: λ = 0.01,T = 1,N = 100,∆T = T

N , s = e0.07∆T ,m = 0.182, σ = 0.4.

were discussed in chapter 5. Figure 6.19 shows no-transaction boundary at T = 1 using SQID
scheme for some choice of parameters. The results are also summarized in Table 6.3.

6.1.6 Computational complexity and error analysis
If the number of time step divisions are l and state variable space divisions are n in d dimensions
then we could hypothesize that the maximum time taken for program is O(lnd). However, as it
is observed the solution changes much more the closer we are to terminal time ; in the context
of optimization more computational effort might be expended here. Accordingly, the actual
theoretical time taken would deviate from the maximum theoretical time. In reality the order
is numerically found to scale as O(lαnηd) with α and η in the interval [0, 1] for some range of
parameters. This is based upon the numerical experimentation reported in Table 6.4 for some
range of parameters. For a sufficiently fine discretization we believe interpolation order would
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Figure 6.13: Independent stocks in 2-D. Horizontal axis is fraction of wealth in risky asset 1 and
vertical axis is fraction of wealth in risky asset 2. Variation of the region of inaction with time:
λ = 0.01,T = 5,N = 100,∆T = T

N , s = e0.10∆T ,m1 = 0.13, σ1 = 0.40,m2 = 0.15, σ2 = 0.44.
Where T is the time horizon for investment, N is the number of re-balancing nodes. ω is the
continuous time risk-free rate, λ is the transaction cost factor, s is the risk free growth over the
interval, m is the drift for continuous time GBM and σ is the volatility for the continuous time
GBM. The continuous time GBM implies a risky growth for the risky asset over the interval
∆T .

not contribute to significant error in our analysis. Such a belief is also an outcome of the study
done by [34] in context of lattice based methods to price Asian options.

Several interesting features characterize the solution. However, we will assume from now
on that the errors we will be measuring is the error in the no-transaction boundaries at some
point in time. More specifically we concentrate on the risky fraction boundaries at the terminal
time T . We will focus on one dimension and the parameter chosen are λ = 0.001,T = 1, s =

e0.07∆T ,m = 0.182, σ = 0.4 and we fit a probability model ((p, u), (q, l), (1 − p − q, d)) by
matching the first k = 5 moments of the stock price return distribution. There are 5 degrees
of freedom and so 5 equations would be needed for moment matching. The actual exact risky
fraction boundaries can be computed using dynamic programming principle with sufficiently
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Figure 6.14: Horizontal axis is fraction of wealth in risky asset 1 and vertical axis is fraction of
wealth in risky asset 2. Wealth fractions for two assets in a triangular simplex and correlated
stocks in 2-D with: λ = 0.001,T = 2,N = 100,∆T = T

N , s = e0.07∆T ,m1 = 0.13, σ1 =
√

0.1,m2 = 0.15, σ2 =
√

0.17, ρ = 0.07
σ1σ2

. Here T is the time horizon for investment, N is the
number of re-balancing nodes. ω is the continuous time risk-free rate, λ is the transaction cost
factor, s is the risk free growth over the interval, m is the drift for continuous time GBM and
σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T .

small time stepping using the exact distribution. The error can then be suitably measured from
the approximated and the exact values.

The logarithm of the absolute error in no transaction boundaries verses reciprocal of time
stepping is observed to be roughly a straight line. A least squares fit can be used to obtain
the order of the error. It is numerically observed that absolute error scales with ∆T γ for some
0 ≤ γ ≤ 1 for this range of parameters.

Similar numerical experiments were performed with the risky fraction space discretization
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Figure 6.15: Horizontal axis is fraction of wealth in risky asset 1 and vertical axis is fraction
of wealth in risky asset 2. Square simplex and correlated stocks in 2-D with: λ = 0.001,T =

2,N = 100,∆T = T
N , s = e0.07∆T ,m1 = 0.13, σ1 =

√
0.1,m2 = 0.15, σ2 =

√
0.17, ρ = 0.07

σ1σ2
.

Where T is the time horizon for investment, N is the number of re-balancing nodes. ω is the
continuous time risk-free rate, λ is the transaction cost factor, s is the risk free growth over the
interval, m is the drift for continuous time GBM and σ is the volatility for the continuous time
GBM. The continuous time GBM implies a risky growth for the risky asset over the interval
∆T .

da and errors are shown in the Table 6.9 below for some choice of parameters as previously
mentioned.

Some error analysis for the value function has been done in 2-D in Table 6.10 and 6.11.
Tree approximation have been found to be reasonably accurate.

It is also observed increasing the order of moment matching decreases the errors, as intu-
itively expected. With just a one stage problem and T = 0.04 with the same parameters as
chosen above the exact theoretical risky fraction boundary was found to be (0.141,1). The re-
sults of altering the order of the moment is shown in the Table 6.12. Figure 6.20 also provides
a graphical depiction of how increasing the order of moment matching increases the accuracy
in value function.

We note the parameter values chosen here were motivated the values in [69] and are not
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Figure 6.16: Triangle simplex and comparing discrete probability approximation solution to
CASE I in [69]: λ = 0.001,T = 2,N = 100,∆T = T

N , s = e0.07∆T ,m1 = 0.13, σ1 =
√

0.1,m2 =

0.15, σ2 =
√

0.17, ρ = 0.07
σ1σ2

. Where T is the time horizon for investment, N is the number of
re-balancing nodes. ω is the continuous time risk-free rate, λ is the transaction cost factor, s
is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T .

necessarily the most accurate representation of reality.

6.2 Approximate dynamic mean-variance portfolio optimiza-
tion under transaction costs

6.2.1 Introduction
The section considers optimal investment strategy of a self-financing investor who invests in
risky hedge fund strategies. Risky strategies are modeled via a multi-dimensional geometric
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parameters α η

m = 0.182, σ = 0.4 0.567762 0.352002
m = 0.3, σ = 0.8 0.444675 0.260022
m = 0.6, σ = 1 0.365901 0.209622

Table 6.4: Scaling of time taken for some range of parameters with 10 ≤ l ≤ 50 ans 200 ≤ n ≤
1000. Parameters: λ = 0.001,T = 1,∆T = T

N , s = e0.07∆T .

parameters γ1 γ1

m = 0.182, σ = 0.4 (0.708047,0.627285) (1.30029,2.39293)
m = 0.3, σ = 0.8 (0.689466,0.680646) (0.789441,0.941182)
m = 0.6, σ = 1 (0.843559,0.547407) (15.3268,-0.256201)

Table 6.5: Scaling of absolute error for some range of parameters. For γ1 we vary l and n kept
to some large value. Similarly, for γ2 we vary n and l kept to some large value. Parameters
chosen: λ = 0.001,T = 1,∆T = T

N , s = e0.07∆T .

l time taken (s)
10 1.578
20 2.719
30 4.203
40 5.578
50 7.047

Table 6.6: Time taken vs time division. λ = 0.001,T = 5, da = 0.001,∆T = T
N , s = e0.07∆T ,m =

0.182, σ = 0.4.

n time taken (s)
200 2.75
250 2.578
333 3.266
500 4.328
1000 6.781

Table 6.7: Time taken vs state space division. λ = 0.001,T = 5,m = 500,∆T = T
N , s =

e0.07∆T ,m = 0.182, σ = 0.4.

l relative percentage error in lower boundary relative percentage error in upper boundary
10 2.38% 0.834%
20 1.47% 0.596%
30 1.10% 0.477%
40 0.916% 0.358%

Table 6.8: relative percentage error vs time step division. λ = 0.001,T = 1, da = 0.001,∆T =
T
N , s = e0.07∆T ,m = 0.182, σ = 0.4.
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da relative percentage error in lower boundary relative percentage error in upper boundary
0.005 0.548% 0.358%
0.006 0.914% 0.48%
0.007 1.01% 0.597%

Table 6.9: Error vs state space division. λ = 0.001,T = 1,N = 100,∆T = T
N , s = e0.07∆T ,m =

0.182, σ = 0.4.

(a1, a2) 0.2 0.3 0.4 0.5 0.6
0.2 0.0467% 0.0462% 0.0509% 0.0694% 0.112%
0.3 0.0470% 0.0487% 0.0591% 0.0877% *
0.4 0.0492% 0.0544% 0.0717% * *
0.5 0.0558% 0.0662% * * *
0.6 0.0698% * * * *

Table 6.10: relative absolute percentage error at different nodal points in 2-D with 2nd order
moment matching with: λ = 0.001,T = 0.05,N = 1,∆T = T

N , s = e0.07∆T ,m1 = 0.13, σ1 =
√

0.1,m2 = 0.15, σ2 =
√

0.17, ρ = 0.07
σ1σ2

.

(a1, a2) 0.2 0.3 0.4 0.5 0.6
0.2 0.00639% 0.0183% 0.0438% 0.0923% 0.178%
0.3 0.0135% 0.0309% 0.0652% 0.128% *
0.4 0.0267% 0.0519% 0.0981% * *
0.5 0.0494% 0.0855% * * *
0.6 0.0863% * * * *

Table 6.11: relative absolute percentage error at different nodal points in 2-D with 3rd order
moment matching with: λ = 0.001,T = 0.05,N = 1,∆T = T

N , s = e0.07∆T ,m1 = 0.13, σ1 =
√

0.1,m2 = 0.15, σ2 =
√

0.17, ρ = 0.07
σ1σ2

.

order risky fraction boundaries
2 (0.137,1)
3 (0.142,1)
5 (0.141,1)
Exact (0.141,1)

Table 6.12: Accuracy dependent on order of moment matching with λ = 0.001,T = 0.04,N =

1,∆T = T
N , s = e0.07∆T ,m = 0.182, σ = 0.4.



102Chapter 6. Moment based discrete probability approximation of transaction cost models

Risky fraction 1 

Risky fraction 2 

0.1 0.2 0.3 0.4 0.5

0.2

0.3

0.4

0.5

Figure 6.17: Triangle simplex and high correlation: λ = 0.001,T = 2,N = 100,∆T = T
N , s =

e0.07∆T ,m1 = 0.13σ1 =
√

0.1,m2 = 0.15, σ2 =
√

0.17, ρ = 0.9. Where T is the time horizon
for investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
λ is the transaction cost factor, s is the risk free growth over the interval, m is the drift for
continuous time GBM and σ is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T .

Brownian motion. The discrete-time formulation under a finite horizon allows the investor
to return his portfolio to the most optimal fraction of wealth in each asset but he also incurs
transaction costs proportional to the amount traded as in [28]. At each stage he decides how
much wealth to transfer from strategy i to strategy j depending upon the current configuration
of wealth and the total amount of wealth. This is in contrast to the existing models where the
risk free asset is used for financing. The investor, therefore, does not have significant exposure
to the risk-free asset6.

The solution is generally an optimal policy characterized by a region of inaction R which is
expressed in terms of the state variables. When the fluctuations in the price processes drive the
proportions of wealth (risky fraction process ) outside the boundary of the region of inaction
the investor transacts sufficiently to bring it back to the boundary of the region of inaction ∂R.
The structure of transaction cost structure and investment objective determines the shape of R.

We use a discrete probability approximation approximation to solve the model in one, two
and three dimensions. We will show that the discrete time model provides solutions that are
reasonably close to its continuous time analogue. In discrete time we will subsequently provide
salient features of the model from a financial standpoint.

To the best of our knowledge dynamic mean-ratio portfolio selection under transaction
costs has not been suitably addressed in the academic literature using this numerical technique.
Mean-variance characterization of problems also allow us to conduct a study from a Sharpe

6Applies to hedge funds who invest in risky strategies and want to maximize their Sharpe ratio.
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Figure 6.18: For some parameter choice boundaries could be rapidly changing. Triangle sim-
plex and high correlation: λ = 0.001,T = 2,N = 100,∆T = T

N , s = e0.07∆T ,m1 = 0.13, σ1 =
√

0.1,m2 = 0.15, σ2 =
√

0.17, ρ = 0.96. Where T is the time horizon for investment, N is the
number of re-balancing nodes. ω is the continuous time risk-free rate, λ is the transaction cost
factor, s is the risk free growth over the interval, m is the drift for continuous time GBM and
σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T .

ratio optimization stand point. The paper [22] has studied mean-variance problems under no-
transaction cost setting which allows for analytic derivation of the efficiency frontier. Fairly re-
cently, [26] have considered mean-variance problems under transaction in only one dimension
albeit in a much different setting involving a risk-free asset. Reference [26] also characterizes
the optimal strategy, via a Skorohod problem in which a trader tries to keep a certain adjusted
bond-stock position, within a no-trade region. It is not clear whether the adjusted position
phenomenology used there could be applied when the risk-free asset is absent from the model.
The authors of [26] also show that an expected terminal return may not be achievable if the
planning horizon is shorter than a critical length T ∗. Our section in this chapter is exclusively
devoted to a transfer of wealth model for hedge fund strategies which we will subsequently
discuss in more detail.

6.2.2 The model
We first illustrate the model in two dimensional case.

Consider a portfolio consisting of risky strategies with the risky strategy i growing at
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Figure 6.19: Finite horizon no-transaction boundary obtained at T = 1 with parameters: λ =

0.01,T = 1,N = 100,∆T = T
N , s = e0.07∆T ,m = 0.182, σ = 0.4. Where T is the time horizon

for investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
λ is the transaction cost factor, s is the risk free growth over the interval, m is the drift for
continuous time GBM and σ is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T .

a rate si,k over the kth period. The investor has an initial endowment of W̄. At the beginning
of each period he has the option to transfer wealth from one strategy to another. Let W−

k be
the wealth immediately before and W+

k be the wealth immediately after re-balancing for the
kth period. If he decides to transfer a wealth ∆k from strategy i to strategy j then (1 + λk)∆k is
deducted from strategy i and only ∆k added to strategy j - in other words a certain fraction of
his wealth gets lost in the transfer process. Let X−i,k be the amount and A−i,k be the fraction of
wealth for the ith risky strategy relative to base wealth before re-balancing. All the strategies
are risky and there are no risk free strategies in this transfer of wealth model.

LetM(t) and L(t) denote respectively the cumulative transfer of wealth from strategy i to
j and from j to i respectively up to time t. Let ϑ = (M,L) denote an admissible strategy. Let
Wx,y(T ) denote a set of net attainable wealths under transfer of wealth model starting with the
initial strategy pair (x, y) under an admissible strategy.

The investment has a finite time horizon of T . There are N periods so that each period
is of length ∆T= T

N and k = 1, 2, ...,N.
For instance for the Sharpe ratio problem (with pre-committed mean-variance controls )

the investment objective is:

maxS =
EP[WN] −W0erT√

VarP[WN]
(6.19)
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Figure 6.20: Value function approximation for one stage problem with different moment
matching. Parameters: λ = 0.001,T = 0.04,N = 1,∆T = T

N , s = e0.07∆T ,m = 0.182, σ = 0.4.
Where T is the time horizon for investment, N is the number of re-balancing nodes. ω is the
continuous time risk-free rate, λ is the transaction cost factor, s is the risk free growth over the
interval, m is the drift for continuous time GBM and σ is the volatility for the continuous time
GBM. The continuous time GBM implies a risky growth for the risky asset over the interval
∆T .

Under pre-committed controls the optimal controls chosen at an initial time are not changed
at a later date. Standard dynamic programming could not be applied to our objective in this
form as it manifests itself as a time inconsistent control problem7.

With the above stochastic framework we can represent the portfolio evolution in the form
of a stochastic system. At a period k we have W−

k =
∑

X−
Θ,k with Θ = i, j. At the beginning

of each period if he decides to transfer wealth from strategy j to strategy i then the following
system of equation holds:

X+
i,k = A−i,kW

−
k + η

j,i,+
k W−

k (6.20)

X+
j,k = A−j,kW

−
k − (1 + λk)η

j,i,+
k W−

k (6.21)

A−i,k+1 =
A+

i,ksi,k

A+
i,ksi,k + (1 −A+

i,k)s j,k
(6.22)

In an analogous fashion we could write the system of equations that should hold if we
transfer wealth from strategy i to strategy j:

X+
j,k = A−j,kW

−
k + η

i, j,+
k W−

k (6.23)

X+
i,k = A−i,kW

−
k − (1 + λk)η

i, j,+
k W−

k (6.24)

7Time consistency of control problems were discussed in chapter 3.
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A−i,k+1 =
A+

i,ksi,k

A+
i,ksi,k + (1 −A+

i,k)s j,k
(6.25)

If he decides to do nothing:

X+
j,k = A−j,kW

−
k (6.26)

X+
i,k = A−i,kW

−
k (6.27)

A−i,k+1 =
A−i,ksi,k

A−i,ksi,k + (1 −A−i,k)s j,k
(6.28)

At the beginning of each period he decides to transfer wealth from one strategy to another keep-
ing in view his dynamic objective for the terminal wealth WN as previously considered. The
traditional risk-return trade off in finance means that the objective of Sharpe-ratio optimization
over a horizon is actually a mean-variance optimization which pits out the highest sharper-ratio
i.e. a point on the efficient frontier with the highest sharp-ratio over the given horizon.

His only constraint is η+
j,i,k ≥ 0 and η+

i, j,k ≥ 0 apart from the more obvious constraint W−
k ,W+

k
≥0.
Proposition 6.2.1 Wx,y(T ) is a convex set. Where x is the initial wealth in first risky asset and
y in the second. AlsoWx,y(T ) denotes the set of all attainable wealths at terminal time.

Proof The proof follows closely the arguments presented in [26].
Let the pair (Xi,Yi) denote the evolution of wealth under the controls (Mi, Li).
Also W1,W2 ∈ W

x,y(T ) and we wish to show for any φ ∈ [0, 1] that φW1 + (1 − φ)W2 ≤

W x,y(T ).
Set Xx,M,L = φX1 + (1 − φ)X2 and Y x,M,L = φY1 + (1 − φ)Y2 if M = φM1 + (1 − φ)M2 and

L = φL1 + (1 − φ)L2.
Here (Mi, Li) is associated with (Xi,Yi)
Hence, WX,Y(T ) ≥ φW1 + (1 − φ)W2.
If a higher wealth is attainable so a lower wealth must also be attainable.
Thus, φW1 + (1 − φ)W2 ∈ W

x,y(T ) andWx,y(T ) is convex.

Convexity of attainable wealth is a requirement under which we could convert a constrained
problem to an unconstrained problem ([87] and [26]). Dynamic Sharpe-ratio portfolio opti-
mization is actually a sub-problem of mean-variance optimization.

Under mean-variance objective our problem is:

min VarP[WN]
subject to EP[WN] = κ

The above problem is feasible if there exists at least one admissible strategy satisfying
EP[WN] = κ. Given κ the optimal strategy ζ∗ is called an efficient strategy and the correspond-
ing pair (EP[WN],VarP[WN]) is called an efficient pair on a smooth curve C(H, x, y).

Convexity of attainable wealth implies that it is a convex optimization problem. By virtue
of being a convex optimization problem and using Lagrange duality theorem [87] it could be
re-written as:
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max
β

min(EP[(WN − d)2] + 2βEP[(WN − d)]) (6.29)

= max
β

min EP[(WN − b)2] with b = d − β (6.30)

As will be further illustrated below it is numerically more efficient to work with the related
unconstrained problem:

min EP[(WN −H)2] (6.31)

Letting H = d − β it is intuitively reasonable that problem (6.30) and (6.31) are equivalent in
the sense of optimal control.

Time inconsistency of control problems was discussed in chapter 3. In all our subsequent
discussion we will assume a pre-committed strategy with the controls estimated at t = 0 and
then subsequently held constant. Time-inconsistency implies that a straightforward application
of the dynamic programming principle is not possible.

By choosing H we are choosing a point on efficient frontier8. The problem is reduced to
choosing a H which maximize the time-horizon Sharpe ratio for a given initial wealth and
risky fraction ratio.

Using the dynamic programming principle we can write:

J(W−
k−1, A

−
k−1) = min

(ζ)
EP[J(W−

k , A
−
k )|Fk−1] (6.32)

Then for k = N:

J(W−
N−1, A

−
N−1) = min

(ζ)
EP[(W−

N −H)2|FN−1] (6.33)

= min
(ζ)

EP[(W−
N−1 ⊗ FN−1(A−N−1) −H)2|FN−1] (6.34)

In a similar vein we could recursively go backwards and determine values for k = N − 2,N −
3, ..., 2, 1.

The above problem is solved for a particular value ofH to yield an optimal control ζ∗ which
is then used to obtain the pair (EP[WN],VarP[WN]) by solving a system of equations involving
EP[(W−

N −H)2] and EP[(W−
N −H)] to give (EP[WN], EP[(WN)2]). This was discussed in chapter

4. The desired valueH∗ is one that maximizes the Sharpe-ratio over the finite horizon.
We postulate the existence of a Sharpe-ratio maximizingH∗. The analytic curve C(λ, x, y;H)

is hypothesized to be a smooth curve monotonic with respect to H . Figure 6.21 shows a pos-
sible curve traced out byH .

8Though efficient frontier is a discrete time idea it is easy to generalize it to terminal wealth for a multi-period
portfolio theory.
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Figure 6.21: Analytic curve C(λ, x, y;H) and Sharpe-ratio maximization

We postulate H ∈ < traces out the entire efficient frontier. With H = d − β∗ where β∗ is
optimal by problem 6.30 then H = H in 6.31 yields the same efficient point on C(λ, x, y;H).
Also d ⇑ results in β∗ ⇓ so that H ⇑ and vice versa. We postulate H = f (d) = g(β∗) where f
and g are continuous monotonic functions.

In our discrete framework the risky growth distribution is discretized and bounded so all
possible expected returns will not be realized.

The utility structure does not allow separability in wealth so we work with the state space
(W−

k ,A−k ) and truncate the state space vectors to reasonable lower and upper bounds. In short
a finite state approximation for all the possible states to be attained at beginning of period k is
constructed so that our state variable always remains within the domain Ω.

The value of wealth in each risky strategy i follows Geometric Brownian motion. In a
continuous time framework, if S i is the value corresponding to the risky strategy i we have:

dS i

S i
= midt + σidZi

t (6.35)

In discrete-time we will create a discrete probability approximation approximation
for the risky growth vector si,k so that the respective mean vector m and covariance matrix

∑
over a period ∆T match with the continuous-time evolution of vector SSS . In the limit ∆T →0
the discrete-time approximation converges in distribution to the continuous-time distribution.
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Figure 6.22: No-transaction region R at a time slice

6.2.3 Numerical method

The risky fraction is always confined inside [0, 1] because we only take positions in the risky
assets in the interval [0, 1]. However, the wealth immediately before re-balancing is stochastic
because of risky growths and careful attention needs to be paid to its domain.

Two important issues to be addressed are:

1- Interpolation errors.

2- Extrapolation errors.

The details of how to deal with interpolation and extrapolation error are discussed in section
3.10.

Also say if we are interested in the value function at an initial wealth of W0 then assuming
the risky growth over an interval T is log-normal with probability density say r(T ) we could
choose wmax = w0

maxL
√

Var(r(T )) for L ≥ 5 where w0
max is the maximum amount of wealth in

the two dimensional grid at initial time. It is important to note the wealth is always bounded
below by zero. The investor can never go bankrupt if he is not allowed to take short positions
under admissible controls.

Figure 6.23 shows a grid in (W−
k ,A−k ) space. The grid is very similar to the kind of finite

difference grid used for solving PDEs. By construction, our grid only has restrictions on grid
setting as far as interpolation and extrapolation errors are concerned (See [34]). Stability of the
dynamic recursion in terms of the relative size of the state variable and time stepping should
not be too much of a concern.
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Figure 6.23: Grid of lattice approximation at a time snapshot.

6.2.4 No-transaction regions with time and efficiency frontiers
It is observed, as expected, that the no-transaction regions shrinks going backwards in time.
Furthermore, increasing the wealth decreases the risky fraction boundaries in state space.
Above a certain wealth level the upper and lower side boundaries collapse to a line. See Figure
6.24 for a visual depiction of the no-transaction region.

Figure 6.25 depicts the intuitively reasonable result that transaction costs shrink the upper
part of the efficient frontier inwards. In single period portfolio problems efficient frontiers are
a branch of a parabola in risk-return space. Our multi-period model gives efficient frontiers of
similar shape. Note, however, the optimal controls were pre-committed. In chapter 7 we will
show that pre-commited multi-period efficient frontiers are slightly superior to single period
efficient frontiers and hence the value of re-balancing is depicted.

6.2.5 Sharpe ratio time series
As discussed earlier solving mean-variance problems helps us solve Sharpe ratio problems.
After having found controls that yield maximum Sharpe ratio it possible to see the time series
behavior of Sharpe ratio in this framework. Let S N be the Sharpe ratio measured at initial time
with respect to the node N and N ≤ T . Then we show in Figures 6.26-6.27 the Sharpe ratio
behavior of the optimal portfolio compared to myopic portfolios. It is experimentally observed
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Figure 6.24: Time variation of risky fraction boundaries with parameters λ = µ = 0.05,T =

0.5,N = 10, s = e0.05∆T ,m1 = 0.08, σ1 = 0.42,m2 = 0.14, σ2 = 0.8, ρ = 0.05. Where T is the
time horizon for investment, N is the number of re-balancing nodes. ω is the continuous time
risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval, mi is
the drift for continuous time GBM and σi is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T .

that the Sharpe ratio series shows some improvement compared to a myopic investment in
individual risky assets.

6.2.6 Comparison of solution with model using the exact distribution

The discrete time solution is observed to be close to that obtained from a model built using an
exact distribution. However, along a certain strip where Wk = H the deviation is found to be
relatively higher. Elsewhere the deviation is low. This highlights the possibility of constructing
discrete probability approximation algorithms which give a solution that is close to that im-
plied by exact distributions by ignoring some regions (i.e. strips ) along state space and then
interpolating.

Table 6.13 shows our discrete probability approximation based solution to be remarkably
close to a solution using an exact distribution. This should not be too surprising because for
a one period mean-variance problem, discrete probability approximation using second order
moment matching give exactly the same solution as one using exact distribution.

Consider just a one period problem in which we invest in a risky assets for which the
objective is:
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Figure 6.25: Impact of transaction cost on dynamic efficiency frontier with parameters T =

0.3,N = 6, s = e0.05∆T ,m1 = 0.08, σ1 = 0.42,m2 = 0.14, σ2 = 0.8, ρ = 0.05. Where T is the
time horizon for investment, N is the number of re-balancing nodes. ω is the continuous time
risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval, mi is
the drift for continuous time GBM and σi is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T .

(Ak,Wk) 0.1 0.3 0.5 0.7 0.9
0.1 0.0000165% 4.30 ×10−6% 6.90 ×10−6% 7.24 ×10−7% 8.87×10−7%
0.3 0.0000157% 4.26 ×10−6% 6.81 ×10−6% 7.24 ×10−7% 8.81 ×10−7%
0.5 0.0000516% 4.23 ×10−6% 6.76 ×10−6% 2.96 ×10−8% 8.75 ×10−7%
0.7 0.0000153% 9.35 ×10−6% 6.66 ×10−6% 2.19 ×10−8% 8.69 ×10−7%
0.9 0.0000148% 1.74 ×10−6% 6.78 ×10−6% 3.72 ×10−7% 2.86 ×10−6%

Table 6.13: Relative absolute percentage error in the value function at time t = 0 different nodal
points in 2-D with parameters λ = µ = 0.005,T = 0.25,N = 5, s = e0.05∆T ,m1 = 0.08, σ1 =

0.42,m2 = 0.14, σ2 = 0.8, ρ = 0.05.

min
(ζ)

EP[(W−
N−1 ◦ FN−1(A−N−1) −H)2] (6.36)

But FN−1(A−N−1) is linear in the risky growths in the framework we had discussed earlier.
This means provided the probability model matches the first two moments for risky growths
we will get the correct optimal control ζ∗.

6.2.7 Concluding remarks
The section used lattice based discrete probability approximation approximations to highlight
some salient features of pre-committed dynamic mean-variance portfolio theory under transac-
tion costs. The modeling framework can be extended to realistic portfolio issues as we shall
see in chapter 10.
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Figure 6.26: Sharpe ratio time series evaluated at t = 0, initial fraction in asset one =0.5,
initial wealth =0.2, for different times with parameters λ = µ = 0.005,T = 1,N = 10, s =

e0.05∆T ,m1 = 0.08, σ1 = 0.42,m2 = 0.14, σ2 = 0.8, ρ = 0.05. Where T is the time horizon
for investment, N is the number of re-balancing nodes. ω is the continuous time risk-free rate,
(λ, µ) are transaction cost factors, s is the risk free growth over the interval, mi is the drift for
continuous time GBM and σi is the volatility for the continuous time GBM. The continuous
time GBM implies a risky growth for the risky asset over the interval ∆T .

6.3 Tree approximation of proportional transaction cost model

In this section we consider the discrete time version of the proportional transaction cost model.
This model is the most widely used and popular model in the academic literature ( e.g. see
[28]). We will try to experiment with the closeness of the discrete time optimal control prob-
lems in the finite horizon implied by discrete probability approximation and the exact infinite
horizon optimal control. We will try to compute the infinite horizon solution in discrete time by
letting T → ∞. Fortunately the infinite horizon solution in continuous time could be computed
by the boundary update procedures of the corresponding PDEs [72]. See Figure 2.8 for con-
vergence in boundaries using the boundary update procedure. See Table 6.14 for a comparison
of infinite horizon solutions.

The dynamic portfolio choice problem is similar to the model considered in chapter 5. The
investor shifts his wealth between assets subject a control strategy given his terminal investment
objective.

Consider a simple model where our portfolio consist of a risky and non-risky asset. The
investor shifts his wealth between assets subject a control strategy given his terminal investment
objective. There are N periods and an investment horizon of length T years.

Let us illustrate a transaction process involving two assets. Let X+
k be the wealth in the risky

asset immediately after re-balancing and Y+
k for the risk-free. AlsoA−k is the fraction of wealth

in the risky asset immediately before re-balancing. Let ∆k be the amount of wealth transferred
and transaction cost is incurred which is illustrated by the system of equations below. Denote
rk as the growth rate of the risky asset and sk as the growth rate of risk-free asset.

If asset 1 is bought:
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Figure 6.27: Sharpe ratio series with myopic investment in individual assets evaluated at t=0
for different times with parameters λ = µ = 0.005,T = 1,N = 10, s = e0.05∆T ,m1 = 0.08, σ1 =

0.42,m2 = 0.14, σ2 = 0.8, ρ = 0.05. Where T is the time horizon for investment, N is the
number of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction
cost factors, s is the risk free growth over the interval, mi is the drift for continuous time GBM
and σi is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T .

X+
k = A−k W−

k + ∆k = ε+
k W−

k (6.37)
Y+

k = (1 −A−k )W−
k − (1 + λk)∆k (6.38)

A−k+1 =
ε+

k rk

ε+
k rk + ((1 −A−k ) − (1 + λk)(−A−k + ε+

k ))sk
(6.39)

If asset 1 is sold:

X+
k = A−k W−

k − ∆k = ε+
k W−

k (6.40)
Y+

k = (1 −A−k )W−
k + (1 − µk)∆k (6.41)

A−k+1 =
ε+

k rk

ε+
k rk + ((1 −A−k ) + (1 − µk)(A−k − ε

+
k ))sk

(6.42)

If re-balancing is not selected:

X+
k = A−k W−

k (6.43)
Y+

k = (1 −A−k W−
k ) (6.44)

A−k+1 =
A−k rk

A−k rk + (1 −A−k )sk
(6.45)

The value function takes different form depending upon the investment objective.
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time stepping and moment order lower boundary upper boundary
10,3 0.304 0.618
20,3 0.292 0.615
50,3 0.283 0.616
60,2 0.275 0.609
Exact 0.2754 0.61596

Table 6.14: Infinite horizon upper and lower boundaries computed using discrete probability
approximation with parameters m = 0.14, σ = 0.3, λ = µ = 0.05, ω = 0.1, s = eω∆T .

For growth rate problem it is:

J(W−
k , A

−
k ) = max EP[

1
T

Log(WN)|Fk] (6.46)
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Figure 6.28: Obtaining infinite horizon solution using boundary update numerical methods
with parameters m = 0.14, σ = 0.3, λ = µ = 0.05, ω = 0.1, s = eω∆T . Where T is the time
horizon for investment, N is the number of re-balancing nodes. ω is the continuous time risk-
free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is
the drift for continuous time GBM and σ is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T .

Let’s analyze at a particular time instead of infinite horizon. It is always possible to compute
the solution with ∆T time stepping using exact distribution and see how close it is to a discrete
probability approximation based solution. Interestingly for a realistic parameter choice the
solution is very close as implied by the extreme closeness in no-transaction boundaries. Results
are shown in Figure 6.29 where the buy and sell side boundaries almost coincide with the exact
solutions.
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Figure 6.29: Obtaining finite horizon no-transaction boundaries with parameters T = 1,N =

10,m = 0.08, σ = 0.42, λ = µ = 0.01, ω = 0.05, s = eω∆T . Here iteration corresponds to
the iteration in dynamic programming. Where T is the time horizon for investment, N is the
number of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction
cost factors, s is the risk free growth over the interval, m is the drift for continuous time GBM
and σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T .

6.4 Concluding remarks
Using an exact probability model is computationally intensive. Using discrete probability ap-
proximations as an alternative to get approximate solutions is computationally cheap and gives
reasonable accuracy for suitable state space discretization. We find discrete probability ap-
proximation methods to be a promising tool to solve more advanced problems in the rapidly
growing literature on transaction costs. See chapters 8, 9 and 10 for further promising re-
sults. In the next chapter we will use solution for an exact distribution to examine the value of
re-balancing.



Chapter 7

Value of re-balancing portfolios under
transaction costs

Computational examples will be provided for an investor investing in a market with GBM as-
sets, the parameters of which switch following a hidden Markov model process. The investor
is assumed have perfect foresight about the parameters which will apply over the subsequent
rebalance period. The investment horizon is finite and we consider different objectives includ-
ing growth rate maximization, CRRA utility maximization, CARA utility maximization and
mean-variance optimization. A high re-balancing frequency could degrade portfolio perfor-
mance in the presence of transaction costs if we do not have the option of not re-balancing.
The chapter examines the value of re-balancing under different market parameter and invest-
ment objectives. It is found that growth rate, CRRA and CARA utility objectives are fairly
insensitive to increasing re-balancing frequency. Also the value of re-balancing is highly de-
pendent upon the parameters of the model like investment horizon, volatility etc. We also
find that mean-variance problems are slightly more sensitive to re-balancing in the presence of
transaction costs. In such situations, we assert the primary reason for an investor to re-balance
is not to bring the portfolio to the most optimal Merton portfolio state vector which is the opti-
mal fraction of wealth in risky asset or the amount of wealth in risky asset. Instead the primary
reason is to update his beliefs about the market parameters.

Indeed computational examples will be provided for an investor with perfect foresight1 but
the market parameters switch over the horizon. In the mean-variance case the investor would
be concerned about both - the relative value of parameter change compared to re-balancing to
optimal portfolio state vector dependent upon the market parameters. The chapter concludes
with an analysis of the stochastic differential equation (SDE) for the relevant state variable
processes and provides some intuitive explanations for the aforementioned numerical results.

The main results of this chapter can be summarized by few important points. We provide
experimental evidence for most common utility functions like Logarithmic, CRRA, CARA and
mean-variance that re-balancing portfolios has a value which quickly saturates with increased
re-balancing frequency. Log-utility investors are observed to be the least sensitive to increased
re-balancing frequency, while CRRA, CARA, and mean variance investors are slightly more
responsive. Our numerical experiments demonstrate that the true the true value of re-balancing

1By perfect foresight we mean a market analyst with perfect ability to estimate/forecast future parameters.

117
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is one that allows changes in the investment environment to be exploited. Most common aca-
demic models assume the drift and volatility for a risky asset to be constant over a time horizon.
In reality the drift and volatility are themselves stochastic. If a financial analyst could predict
the growth and volatility of a stock over a horizon this would have a great deal of value in the
way investment portfolios should be dynamically allocated over time. In fact, for a reasonably
short horizon the relevant portfolio state vector for realistic parameter choice would not de-
viate sufficiently from the most optimal re-balancing point to warrant a transaction. Accurate
forecasts of the way model parameters change could add significant value to re-balancing.

The main results of this chapter can be summarized in a few main points:
1-For common utility functions and realistic constant model parameters re-balancing has a

value which soon saturates with increased re-balancing frequency.
2-Predicting the expected growth and volatility of risky assets has significant value in im-

proving investment performance via increased re-balancing value.
3-The chapter provides a framework under which a dynamic investor could forecast his

changing environment and accordingly dynamically allocate portfolio for best performance
given his investment goals.

7.1 Introduction

In continuous time portfolio theory re-balancing is done all the time. In stark contrast the
Markowitz framework assumes that one portfolio is chosen and the investor goes to sleep un-
til the time horizon is reached. How often should portfolios be re-balanced? Unfortunately
only a small number of quantitative studies have been done to address this important issue.
To measure value of re-balancing, [50] considers a model with growth rate maximization al-
beit without transaction costs. Reference [48] considers a model with transaction costs under
stochastic volatility using Monte-Carlo techniques stepping forward in time. The set-up of
both [50] and [48] is rather restrictive because the actual trading frequency equals the number
of available observation points. This means the set-up does not allow the investor the option of
not re-balancing. Also [48] considers only HARA utility and [50] the Kelly criterion.

The chapter seeks to provide an analysis under transaction costs for different investment
objectives. The trading frequency is less than or equal to the number of observation points
thus making our model flexible enough to enable the investor to trade less frequently than the
number of observation points. Our model is more computationally extensive because includ-
ing transaction costs adds to the dimensionality of the state space. We consider the optimal
investment strategy of a self-financing investor who invests both in a risky and risk free asset.

7.2 Investment model

In all our subsequent analysis we consider the simple investment model already discussed in
chapter 5. We briefly present the model again. The investor shifts his wealth between assets
subject a control strategy given his terminal investment objective. There are N periods and an
investment horizon of length T years.
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Let us illustrate a transaction process involving two assets. Let X+
k be the wealth in the risky

asset immediately after re-balancing and Y+
k for the risk-free asset. If asset 1 is bought:

X+
k = A−k W−

k + ∆k = ε+
k W−

k (7.1)
Y+

k = (1 −A−k )W−
k − (1 + λk)∆k (7.2)

A−k+1 =
ε+

k rk

ε+
k rk + ((1 −A−k ) − (1 + λk)(−A−k + ε+

k ))sk
(7.3)

If asset 1 is sold:

X+
k = A−k W−

k − ∆k = ε+
k W−

k (7.4)
Y+

k = (1 −A−k )W−
k + (1 − µk)∆k (7.5)

A−k+1 =
ε+

k rk

ε+
k rk + ((1 −A−k ) + (1 − µk)(A−k − ε

+
k ))sk

(7.6)

If no transaction occurs:

X+
k = A−k W−

k (7.7)
Y+

k = (1 −A−k W−
k ) (7.8)

A−k+1 =
A−k rk

A−k rk + (1 −A−k )sk
(7.9)

Consider a portfolio consisting of risky and risk free assets. The risky assets grows at
a rate rk over the kth period. The investor has an initial endowment of W̄. Let W−

k be the wealth
immediately before and W+

k be the wealth immediately after re-balancing for the kth period.
The value function takes different form depending upon the investment objective.
A-For the growth rate problem it is:
J(W−

k , A
−
k ) = max EP[Log(WN)|Fk]

B-For CRRA utility problem it is:
J(W−

k , A
−
k ) = max EP[WV

N
V |Fk]

C-For the pre-committed mean variance problem it is:
J(W−

k , A
−
k ) = max EP[(W(N) − b)2|Fk] where we vary b to get a point on a mean-variance

efficient frontier.
D-For CARA utility problem it is:
J(W−

k , A
−
k ) = max EP[−e−zWN |Fk] . This means for the CARA objective the value function

at all time nodes will always be negative.
The dynamic programming recursion and modeling framework has already been high-

lighted in detail in chapters 3, 5 and 6. Tree based approximation on lattices has also been
extensively discussed in chapters 5 and 6. In the Logarithmic and CRRA utilities the state
space is always confined to the risky fraction space [0, 1] while in the case of CARA the state
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t=Tt=0

Regime 1Regime 2Regime 3

(m1,Σ1)(m2,Σ2)(m3,Σ3)

Figure 7.1: Parameters switching over the investment horizon. The three regimes have different
drift and volatility for GBM of the risky asset.

space is “the amount of wealth” and is not bounded. For numerical solution purposes we could
confine it to an interval [0, L] where L is a sufficiently large positive real number. In the earlier
chapter 6 we had shown CRRA and log-utility show separability with respect to wealth albeit
in a slightly different way. In section 3.10 it was shown CARA utility also posses separability
with respect to wealth. However, mean-variance problems do not allow separability in wealth
so the state space contain both wealth and the risky fraction as discussed in chapter 6. While
the risky fraction always remains within [0, 1] the stochastic wealth process need not always be
confined to the truncated state space domain. In this chapter we will use the exact probability
model over the interval ∆T for computations.

For the most part in the chapter we have models in which the parameters are constant over
the investment horizon. However, for analysis in some sections we will also consider a very
simple regime switching model. In such a switching model the parameters like the drift mi

and volatility σi over the investment horizon are regime dependent. Moreover, we assume
that the investor has perfect foresight in terms of estimation ability and knows in advance
what the parameters will be in different regimes. In figure 7.1 for instance, regime 1 has
parameters (m1, σ1), regime 2 has parameters (m2, σ2) and regime 3 has parameters (m3, σ3).
The switching mean and volatility means that the discrete approximation for risky growth is
different if different regimes. This model will be used in later sections for some analysis in the
value of re-balancing.

7.3 Numerical analysis of the value of re-balancing
It will be assumed subsequently that the value of re-balancing is embedded in the value func-
tion. In CRRA, CARA, log-utility and mean-variance case it depends upon the initial wealth



7.3. Numerical analysis of the value of re-balancing 121

and risky fraction.
Throughout this chapter re-balancing frequency denotes the number of observation points

available for re-balancing. The investor has the right to re-balance or not to re-balance at an
observation point given the cost benefit analysis encapsulated via dynamic programming. In
the numerical example we will use a mix of realistic and unrealistic parameter choices. It is
seen that for unrealistic volatility values of above 100 percent the value of re-balancing is much
higher compared to realistic values. We apply our framework to realistic values estimated from
real-time data for a stock.

7.3.1 Log-utility case

We report a few interesting results in this case. First, it is observed that the value of re-balancing
in growth rate maximization is not that high given realistic parameter choices. This is shown
by figures 7.2-7.5. All the four figures show little value of re-balancing, saturating as soon as
re-balancing frequency is increased. However, the value significantly increases if the volatility
or time horizon of investment increases. We change the parameters in figures to illustrate these
ideas. Clearly volatility of 100 percent is unrealistic and the objective was to show that value
of re-balancing is much lower for realistic parameter values.

Interestingly, we also observe formulating the problem as single dynamic optimization as
in figure 7.6 yields controls which yield essentially the same value function as one that uses
dynamic programming for growth maximization over small intervals in the investment horizon.

We also show a numerical example in figure 7.7 in which investor has limited rights of
re-balancing in a problem in which asset mean and variances switch over the horizon. The
value of re-balancing is accordingly shown by graphs. This example serves to illustrate that
apart from the value of re-balancing to the most optimal state risky fraction - encapsulating
re-balancing also has a lot of value for a market in which parameters are non-constant over
the investment horizon. The example shows the primary reason for investor to re-balance is
encode the most recent parameters in his investment behavior.

7.3.2 CRRA case

The results of the CARA are similar to the log-utility case, although it appears that CARA util-
ity shows more increase in value for re-balancing for a similar parameter choice, as measured
in absolute value terms. This phenomenon is depicted by figures 7.8-7.13. All these figures
show a small value of re-balancing. Increasing the volatility and length of the horizon is found
to significantly impact the value of re-balancing.

Similar to the log-utility case we also show a numerical example in figure 7.14 in which
the investor has limited rights of re-balancing in a problem in which asset mean and variances
switch over the horizon. Exploiting the information of market belief of parameters like switch
in drift/volatility carries a value in re-balancing which could be measured in our theoretical
framework.
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Value function

Re-balancing frequency
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Figure 7.2: Value of re-balancing for log-utility with initial risky fraction=0.5 and wealth =1
the parameters λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da = 0.01,T = 1,m =

0.14, σ = 0.6. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.

Value function

Re-balancing frequency
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0.274

0.276
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Figure 7.3: Value of re-balancing for log-utility with initial risky fraction=0.5 and wealth =1
the parameters λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da = 0.01,T = 5,m =

0.14, σ = 0.6. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.
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Value function

Re-balancing frequency
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Figure 7.4: Value of re-balancing for log-utility with initial risky fraction=0.5 and wealth =1
the parameters λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da = 0.01,T = 1,m =

0.14, σ = 1.0. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.
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Figure 7.5: Value of re-balancing for log-utility with initial risky fraction=0.5 and wealth =1
the parameters λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da = 0.01,T = 5,m =

0.14, σ = 0.6. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.
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Value function

Risky fraction 

Optimal control maximizing short-term

objective of 1/6 yrs

Objective of 1/2 yrs

Objective of 1/3 yrs
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Figure 7.6: Value of re-balancing when objective function is decomposed over small time
horizons to yield controls which are then applied to long-term value function with parameters
λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da = 0.1,T = 1,m = 0.14, σ = 0.6.
Where T is the time horizon for investment, N is the number of re-balancing nodes. ω is the
continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over
the interval, m is the drift for continuous time GBM and σ is the volatility for the continuous
time GBM. The continuous time GBM implies a risky growth for the risky asset over the
interval ∆T . (amin, amax) are the bounds for risky fraction state space.

7.3.3 CARA case

Over small horizons CARA utility shows almost no value of re-balancing as was with the
case with logarithmic and CRRA utility. Over larger horizons there seems to be a greater
than log/CRRA or greater than short-horizon re-balancing value in relative terms. See figures
7.15-7.16.

7.3.4 Mean-variance case

For the mean-variance case we chose to have two risky assets. It is observed to show a relatively
greater value of re-balancing as depicted by the shift in efficient frontier. These ideas are shown
in figure 7.17. However, the value of re-balancing is still not that much! The main reason for
this being that we have pre-committed controls in which investor does not change his controls
with the arrival of new information.

For added realism we performed analysis on the AMAZON stock. It was assumed to follow
GBM so the dynamics could be discretized as:
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Allowed to re-balance only initially

Allowed to re-balance at three 

equidistant points 

0.3 0.4 0.5 0.6 0.7 0.8

0.45
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Figure 7.7: Value of re-balancing with parameters that switch over the horizon -investor has
perfect foresight. Each regime is of length 5/3 years. Parameters for first m = 0.4, σ = 0.8;
for second m = 0.3, σ = 0.7; and for third m = 0.14, σ = 0.6. Also T = 5, λ = µ = 0.05, s =

e0.05∆T , amin = 0.001, amax = 0.999. Where T is the time horizon for investment, N is the
number of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction
cost factors, s is the risk free growth over the interval, m is the drift for continuous time GBM
and σ is the volatility for the continuous time GBM. The continuous time GBM implies a risky
growth for the risky asset over the interval ∆T . (amin, amax) are the bounds for risky fraction
state space.

∆S
S

= m∆T + σ
√

∆TZt (7.10)

for a Brownian motion Zt.
Then estimated values are:

m̂ =
E[∆S

S ]
∆T

(7.11)

σ̂2 =
Var[∆S

S ]
∆T

(7.12)

Using a 180 days look back starting from 1st of May 2012 estimated values were m̂ =

0.18, σ̂ = 0.4. The value of re-balancing under different scenarios are shown for different
utilities are shown. In this example we always form a portfolio with risky and risk free asset.
Log-utility, CRRA and mean-variance case (we have AMAZON stock and one risk free asset
now ) show a minute value of re-balancing. CARA shows a relatively greater value. We see
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Value function
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Figure 7.8: Value of re-balancing for CRRA utility with initial risky fraction=0.5 and wealth
=1 the parameters V = 0.5, λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da =

0.01,T = 1,m = 0.14, σ = 1.0. Where T is the time horizon for investment, N is the number
of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.

once again there is almost little or no value of re-balancing for realistic parameter choices given
they remain constant over the horizon. The results are shown in figure 7.18-7.21.

7.4 Intuitive explanation of results using the state variable
SDE

Let Xt be the amount of wealth in the risky asset (following GBM ) and Yt be the amount of
wealth in risk-free asset.

Define the risky fraction as Ψt = Xt
Xt+Yt

where

dYt = ωYtdt (7.13)
dXt = Xt(mdt + σdZt) (7.14)

Using Ito’s lemma it can be easily shown that:

dΨt = σ2Ψ(1 − Ψ)
(m − ω
σ2 − Ψ

)
dt + σΨ(1 − Ψ)dZt (7.15)

Similarly, using separability of wealth in the associated HJB equation for no-transaction
cost case (λ = µ = 0) it is a simple exercise to show the most optimal risky fraction for CRRA
case is (m−ω)

σ2(1−V) implies (m−ω)
σ2 as optimal point for growth rate case in the limit.

Similarly, let Xt be the amount of wealth in the risky asset 1 (following GBM ) and Yt be
the amount of wealth in risky asset 2 (following GBM ) then if Ψt = Xt

Xt+Yt
we can easily show

using Ito’s lemma:
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Value function
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Figure 7.9: Value of re-balancing for CRRA utility with initial risky fraction=0.5 and wealth
=1 the parameters V = 0.5, λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da =

0.01,T = 5,m = 0.14, σ = 1.0. Where T is the time horizon for investment, N is the number
of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.

dΨt = (σ2
2−σ

2
1−ρσ1σ2)Ψ(1−Ψ)(Ψ−

m2 − m1 − ρσ1σ2

σ2
2 − σ

2
1 − ρσ1σ2

)dt+Ψ(1−Ψ)(σ1dZ1
t −σ2dZ2

t ) (7.16)

It is clear from the SDE in equation (7.16) that increasing the volatility increases the
strength of mean-reversion to the risky fraction point. For log-utility case this is also the
most optimal Merton point. However, as discussed for CRRA, this is at some distance from the
optimal Merton point. Interestingly, increasing volatility also increases randomness in the SDE
hence increasing the frequency at which the risky fraction hovers around the mean-reversion
point. The overall effect it has on the value of re-balancing could be more rigorously explored
analytically for the SDEs given.

As the time horizon becomes longer we are more likely to deviate from the optimal Merton
point and hence the value of re-balancing increases.

The simple results above can be depicted in no-transaction geometries for Growth rate,
CRRA utility, CARA utility and mean-variance case respectively. Clearly, if the mean reverting
point for risky fraction line is closer to the no-transaction region the smaller is the value of re-
balancing.

We had observed in the log-utility case that the value of re-balancing under transaction cost
was very small. This can easily be explained by the fact the mean-reverting point for the risky
fraction is always inside the no-transaction region (this mean-reverting point coincides with
the Merton point and so is hence situated symmetrically inside the region). These ideas are
depicted in figure 7.22.

The CRRA case is an interesting case in point. As highlighted earlier and shown in figure
7.23 the mean-reverting risky fraction point lies inside the no-transaction the closer we are
to terminal time but when we go far away it lies at some distance from the centre of gravity
of the no-transaction region. Clearly, if the time horizon is small enough then the value of
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Value function

Re-balancing frequency
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Figure 7.10: Value of re-balancing for CRRA utility with initial risky fraction=0.5 and wealth
=1 the parameters V = 0.5, λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da =

0.01,T = 1,m = 0.4, σ = 1.5. Where T is the time horizon for investment, N is the number of
re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.

re-balancing for CRRA case is small and would become larger the longer is the time horizon.
Similarly, we could explain the case for volatility of the market. These ideas are illustrated in
the diagram of figure 7.20.

CARA is the most interesting case of all. In the case of AMAZON stock it showed rela-
tively greater value of re-balancing compared to other utility functions. Perhaps the reason for
this is that under no-transaction cost the most optimal re-balancing point for CARA utility is
to keep a certain amount of wealth in the risky asset and this amount varies with time. We will
call this optimal time varying re-balancing under no-transaction cost case as the Merton line
for CARA utility. In [23] the time varying line is shown to be m−ω

ησ2eω(T−t) . Under transaction costs
we will have buy and sell side boundaries around this line. In any case it seems now that we no
longer have a mean-reverting relevant state variable process. On average a GBM asset wealth
process would drift away from this line as depicted in Figure 7.24

The mean-variance case for two risky assets discussed in section 7.3.4 is the most interest-
ing because the no-transaction geometry. The problem was solved for a particular point on the
efficiency frontier to yield the transaction boundaries as highlighted. The boundaries depend
upon the level of wealth and above a certain level of wealth collapse to a Merton point. The
mean-reverting risky fraction is shown by a line in Figure 7.2.6. It is easily seen that it can be
quite far away from the no-transaction region for certain levels of wealth. This agrees closely
with our numerical result in which for a particular choice of initial wealth and risky fraction
the efficiency frontier showed a slight shift.

This section attempted to explain the numerical results in the above sections intuitively
using no-transaction geometries.
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Figure 7.11: Value of re-balancing for CRRA utility with initial risky fraction=0.5 and wealth
=1 the parameters V = 0.5, λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, a =

0.01,T = 5,m = 0.4, σ = 1.5. Where T is the time horizon for investment, N is the number of
re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.

7.5 Concluding remarks
The chapter highlighted a theoretical framework for the value of re-balancing portfolios. We
provided some numerical results and tried to explain them intuitively.

The SDEs analysis in last section opens up a Pandora’s box for some interesting theoretical
analysis. For instance, if φ− and φ+ are the no-transaction boundaries then it will be interesting
to explore the fraction of time the risky fraction SDE stays inside the no-transaction region.
It will also be interesting to explore the frequency of barrier hitting of the risky fraction when
subjected to the optimal control trading rule. These analytic results could shed interesting ideas
on to the subject of value of re-balancing. We could introduce a stopping time random variable
as the time the risky fraction process takes to hit the no-transaction boundary given we started
from the Merton point. An analysis on the probability distribution of this random variable
could shed some theoretical results on the value of re-balancing under different investment
objectives.

It is possible to make our modeling framework more elaborate by including fixed costs Fk

incurred immediately after re-balancing. That is:

W++
k = W+

k − ψk (7.17)

A more economic direction could be sought by comparing the expected marginal utility
of re-balancing to the expected marginal dis-utility of not re-balancing. In the next chapter
we provide a framework for an investor faced with uncertain transaction costs and the loss of
utility suffered as a result of uncertainty.
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Figure 7.12: Value of re-balancing for CRRA utility with initial risky fraction=0.5 and wealth
=1 the parameters V = 0.5, λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da =

0.01,T = 1,m = 0.4, σ = 2.0. Where T is the time horizon for investment, N is the number of
re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.
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Figure 7.13: Value of re-balancing for CRRA utility with initial risky fraction=0.5 and wealth
=1 the parameters V = 0.5, λ = µ = 0.05, s = e0.05∆T , amin = 0.001, namax = 0.999, da =

0.01,T = 5,m = 0.4, σ = 2. Where T is the time horizon for investment, N is the number of
re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.
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Allowed to re-balance once

Allowed to re-balance at three equidistant points 
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Figure 7.14: Value of re-balancing with parameters that switch over the horizon -investor has
perfect foresight. Each regime is of length 5/3 years. Parameters for first m = 0.4, σ = 1.2;
for second m = 0.3, σ = 1.1; and for third m = 0.14, σ = 1.0. Also V = 0.5,T = 5, λ = µ =

0.05, s = e0.05∆T , amin = 0.001, amax = 0.999. Where T is the time horizon for investment,
N is the number of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are
transaction cost factors, s is the risk free growth over the interval, m is the drift for continuous
time GBM and σ is the volatility for the continuous time GBM. The continuous time GBM
implies a risky growth for the risky asset over the interval ∆T . (amin, amax) are the bounds for
risky fraction state space.
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Figure 7.15: Scaled value of re-balancing for CARA utility with initial wealth in risky asset
=100 the parameters λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da = 0.01,T =

1,m = 0.14, σ = 0.6. Where T is the time horizon for investment, N is the number of re-
balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s
is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.
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Figure 7.16: Scaled value of re-balancing for CARA utility with initial wealth in risky asset
=100 the parameters λ = µ = 0.05, s = e0.05∆T , amin = 0.001, amax = 0.999, da = 0.01,T =

5,m = 0.14, σ = 0.6. Where T is the time horizon for investment, N is the number of re-
balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s
is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T . (amin, amax) are the bounds for risky fraction state space.
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Figure 7.17: Value of re-balancing depicted by a shift in the efficiency frontier calculated for the
initial wealth =0.2 and initial risky fraction =0.5. Parameters are chosen as: T = 0.3, λ = µ =

0.005, s = e0.05∆T ,m1 = 0.08, σ1 = 0.42,m2 = 0.14, σ2 = 0.8, ρ = 0.05, amin = 0.001, amax =

0.999.
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Figure 7.18: Mean variance CASE for AMAZON stock by forming a portfolio with risk free
asset and AMAZON stock with parameters λ = µ = 0.01, s = e0.05∆T ,T = 0.5,m = 0.18, σ =

0.4, λ = µ = 0.01. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T .
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Figure 7.19: Log utility CASE for AMAZON stock by forming a portfolio with risk free asset
and AMAZON stock with parameters λ = µ = 0.01, s = e0.05∆T ,T = 1,m = 0.18, σ = 0.4, λ =

µ = 0.01. Where T is the time horizon for investment, N is the number of re-balancing nodes.
ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk free
growth over the interval, m is the drift for continuous time GBM and σ is the volatility for the
continuous time GBM. The continuous time GBM implies a risky growth for the risky asset
over the interval ∆T .
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Figure 7.20: CRRA utility CASE for AMAZON stock by forming a portfolio with risk free
asset and AMAZON stock with parameters λ = µ = 0.01, s = e0.05∆T ,T = 1,m = 0.18, σ =

0.4, λ = µ = 0.01. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T .
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Scaled

value function

Re-balancing freq
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-0.9530

-0.9525

-0.9520

Figure 7.21: CARA utility CASE for AMAZON stock by forming a portfolio with risk free
asset and AMAZON stock with parameters λ = µ = 0.01, s = e0.05∆T ,T = 1,m = 0.18, σ =

0.4, λ = µ = 0.01, z = 0.01. Value function is scaled and evaluated with initial wealth in
risky asset =100. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T .
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Figure 7.22: Log-utility CASE: Phase geometry of no-transaction region with respect to Mer-
ton point and mean-reversion of risky fraction with parameters λ = µ = 0.05, s = e0.1∆T ,T =

6,N = 80, amin = 0.001, amax = 0.999, da = 0.001,m = 0.14, σ = 0.3.
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Figure 7.23: CRRA utility CASE: Phase geometry of no-transaction region with respect to
Merton point and mean-reversion of risky fraction with parameters V = 0.5, λ = µ = 0.005, s =

e0.05∆T ,T = 1,N = 10, amin = 0.001, amax = 0.999, da = 0.001,m = 0.08, σ = 0.42.

NodesTerminal time
Initial time

SELL RISKY ASSET

BUY RISKY ASSET

REGION OF INACTION

Merton line

AMOUNT OF RISKY ASSET AXIS

2 4 6 8 10

20

40

60

80

100

120

140

Figure 7.24: CARA-utility CASE: Phase geometry of no-transaction region with respect to
Merton line with parameters λ = µ = 0.01, s = e0.05∆T ,T = 1,N = 10, xmin = 5, xmax =

600, dx = 1, η = 0.01,m = 0.18, σ = 0.4, z = 0.01. Here [xmin, xmax] denotes the bounds
for amount of wealth in risky asset state space. Using the same parameters as estimated for
AMAZON stock in this chapter.
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Figure 7.25: CARA utility CASE: Phase geometry of no-transaction region with respect to
time varying Merton line η = 0.01, λ = µ = 0.01, s = e0.05∆T ,T = 1,N = 10, xmin = 5, xmax =

600, dx = 1,m = 0.18, σ = 0.4, z = 0.01. Here [xmin, xmax] denotes the bounds for amount of
wealth in risky asset state space
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Figure 7.26: Mean-variance (pre-committed controls -also called ’benchmark’ objective )
CASE: Phase stencil of no-transaction topology with respect to mean-reversion of risky frac-
tion. Parameters are chosen as: T = 0.3,N = 6, λ = µ = 0.05, s = e0.05∆T ,m1 = 0.08, σ1 =

0.42,m2 = 0.14, σ2 = 0.8, ρ = 0.05, amin = 0.001, amax = 0.999.
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Figure 7.27: Reflection of the ’risky fraction’ process about the no-transaction boundaries and
the value of re-balancing.



Chapter 8

Lattice approximation for a dynamic
stochastic transaction cost model

8.1 Introduction
This chapter provides a model for dynamic portfolio re-balancing under stochastic transaction
cost in which transaction costs are perfectly correlated with market volatility. The volatility
is assumed to follow a mean-reverting Heston model. We provide an approximate lattice ap-
proximation to derive the no-transaction region geometry. We will consider optimal investment
strategy of a self-financing investor who invests in risky hedge fund strategies. It is shown that
the expected loss in utility as a result of uncertain transaction cost could be significant.

Transaction costs include both a random and fixed component. Papers such as [82], [80]
and [74] hint that the market maker responds to a more volatile market by widening the bid-
ask spread. Econometric tests carried out by [14], [40] and [41] further support the positive
relation. The relationship is further neatly quantified in paper by Gilles [88] who reports an
exponential law (although almost linear) scaling between the bid-ask spread and volatility for
LSE stocks. Later, [77] reports a logarithmic scaling relationship between bid-ask spread and
volatility.

In broad brush the main ideas of the chapter are:
1- We provide a discrete framework of analysis for dynamic portfolio optimization under

uncertain transaction costs.
2- Uncertain transaction costs could erode our investment performance in expected utility

terms.
3- While it makes sense to re-balance in times of high volatility we are also faced with high

transaction costs which could erode our investment performance.

8.2 Transaction cost model with stochastic volatility
We have Xt as the amount of wealth in the risky asset and Yt be the amount of wealth in risk
free asset.

Denote Lt and Mt as being non-decreasing processes such that Lt is the total amount of
risky asset bought and Mt as being the total amount sold. Let J(X,Y, ν, t) = E[φ(W(T ))|Ft]

140
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denote the value function.
Here the relevant controlled SDEs are:

dX = X(mdt +
√
νdZ1

t ) + dLt − dMt (8.1)
dY = rYdt − (1 + λ)dLt + (1 − µ)dMt (8.2)

dνt = (θ − νt)dt + σ
√
νtdZ2

t (8.3)

where dLt = ltdt, dMt = utdt and E[dZ1
t dZ2

t ] = ρdt. Also the following is assumed:
0 ≤ ls, us ≤ κ.

Using the Bellman principle and simplifying we get:

max
l,u

(Jt + mXJX +
1
2
νX2JXX + rYJY + θJν − νJν +

1
2
Jννσ

2ν

+σρνXJXν + lt(JX − (1 + λ)JY) + ut((1 − µ)JY − JX)) = 0 (8.4)

Using an argument similar to [28] we get the PDE defining the no-transaction region:

Jt + mXJX +
1
2
νX2JXX + rYJY + θJν − νJν +

1
2
Jννσ

2ν + σρνXJXν = 0 (8.5)

with the boundary conditions ( BCs ):

JX − (1 + λ)JY = 0 (8.6)

(1 − µ)JY − JX = 0 (8.7)

It is easy to see the derivation of BCs from the principle of smooth pasting. At the buy
boundary, for instance, the following holds: J(X + ∆,Y − (1 + λ)∆) ≈ J(X,Y) where ∆ is
very small. Using the first order expansion we get the boundary condition JX = (1 + λ)JY .
There are also economic reasons based upon utilitarian principles of why this should hold.
Inside the buy region lt is positive so JX ≥ (1 + λ)JY and in the sell region ut is positive so
(1 − µ)JY ≥ JX.

The terminal condition for log-utility is:

J(X,Y, ν,T ) = Log(X(T ) + Y(T )) (8.8)

8.3 Investment model under transaction costs
In the remainder of this chapter we consider a simple investment model. The investor shifts
his wealth between risky and non-risky asset subject to a control strategy given his terminal
investment objective of maximizing the growth rate. There are N periods and an investment
horizon of length T years. It is the same transfer of wealth model as discussed in several earlier
chapters and we will not provide details of it again.

For the growth rate problem considered in chapter 5 the value function takes the form:
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J(W−
k , A

−
k ) = EP[Log(WN)|Fk] (8.9)

LetM1(t) andM2(t) denote respectively the cumulative transfer of wealth from strategy i
to j and from j to i respectively up to time t. Let ν = (M1,M2) denote an admissible strategy.
Let W x,y(T ) denote the net attainable wealth under transfer of wealth model starting with the
initial strategy pair (x, y) under an admissible strategy.

The risky asset price S k describing the the fundamental value, taken as the midpoint of the
bid and ask prices, is assumed to follow a GBM with a drift m and volatility σ.

In particular, we have:

dS t = mdt +
√
σtdZt (8.10)

and a mean-reversion model for volatility:

dσt = θ(Λ − σt)dt + ξ
√
σtdBt (8.11)

with Zt, Bt being Brownian motions and E[dZtdBt] = ρdt.
For log-utility we have:

JN−k(W−
N−k,A

−
N−k, σN−k) =

1
T

Log(W−
N−k) + max

ς
EP[(J (k−1)

N−k+1(A−i,N−k+1, σN−k+1)

+Log(FN−k(A−i,N−k))|FN−k]

=
1
T

Log(W−
N−k) +J

(k)
N−k(A

−
i,N−k, σN−k) (8.12)

where the stochastic functional FN−k(A−N−k) could be represented as:

FN−k(A−N−k) =


(ε+

N−ksN−k + ((1 − A−N−k) − (1 + λN−k)(−A−N−k + ε+
N−k))αN−k)) if risky asset bought

(ε+
N−ksN−k + ((1 − A−N−k) + (1 − µN−k)(A−N−k − ε

+
N−k))αN−k)) if risky asset sold

A−N−ksN−k + (1 − A−N−k)αN−k no trading

8.4 Formulation as a stochastic transaction cost model
Seeking inspiration from prior empirical work the chapter from now assumes that transaction
costs are related to volatility under a simple affine function. We will assume:

λk =

I∑
i=0

aiσ
i
k (8.14)

where ai is the weight and σk is the volatility at node k.
It is not the purpose of the chapter to estimate the relationship. The chapter only seeks

to provide a theoretical framework under which stochastic transaction cost models could be
analyzed. Mean reversion in volatility, therefore, implies mean reversion in transaction costs.
In fact, a time snapshot of bid-ask spread might lead one to suspect it is mean-reverting but
with a very high mean-reversion rate! For further details on dependence of bid-ask spread on
market parameters see [63].
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8.5 Lattice formulation of the model
Seeking inspiration from the continuous-time model we propose the discrete time model as:

gk+1,k = 1 +
∆S k

S k
= 1 + mk∆T +

√
σk

√
∆TZ1

k (8.15)

∆σk = θ(Λ − σk)∆T + ξ
√
σk

√
∆TZ2

k (8.16)

(1+g1 ,g2)

( 1

1+g1
 ,g2)

(1+g1 ,-g2)

( 1

1+g1
 ,-g2)

p

q

r

1-p-q-r

Figure 8.1: Joint evolution discrete probability approximation for (risky growth, change in
volatility. )

Figure 8.1 shows the joint evolution of risky growth and volatility. Figures 8.2 and 8.3 then
show the implied individual discrete probability approximation for risky growth and volatility.
Figure 8.4 shows dynamic programming in action in the lattice framework. The transaction
cost process is mean-reverting and is depicted diagrammatically in figure 8.5. We use the
following moment matching to create a decision-tree for a framework of analysis:

E[gk+1,k] = 1 + mk∆T,Var[gk+1,k] = σk∆T (8.17)
E[∆σk] = θ(Λ − σk)∆T,Var[∆σk] = ξ2σk∆T (8.18)

Cov[gk+1,k,∆σk] = ξσkρ∆T (8.19)
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* risky frac=0.5, vol =0.5 risky frac=0.5, vol =0.6 risky frac=0.5, vol =0.7
λt = 0.05 0.0135 0.1023 0.00787
λt = 0.025 + 1

16σt 0.0132 0.0089 0.00498

Table 8.1: Expected utility measured at t = 0 as a result of uncertain transaction costs with
parameters: m = 0.14, θ = 0.1,Λ = 0.4, ξ = 0.5,T = 0.4, ρ = 0.1. We have θ, Λ, ξ and ρ as the
parameters for the joint evolution tee.

We will assume a no short sale constraint in the risky asset and so our risky fraction space
is always restricted to [0, 1]. To avoid extrapolation errors in volatility we will truncate the
volatility domain at each earlier time step by the maximum amount volatility could jump on a
discrete probability approximation. This is to ensure that all our state variables remain within
the domain of interpolation. Interpolation errors are taken care of by using a fine enough
discretization that scales with discretization in time steps by a power law as discussed already
in chapter 3. The continuous limit of value function could be found by assuming errors scale as
O(nγ)- where n denotes the fineness of discretization along state space and γ a scaling factor.
The limit n→ ∞ could be used to estimate continuous time solution.

The model provided in this chapter provides a framework for analyzing the expected utility
a dynamic investor could suffer under uncertain transaction costs. To be precise assume there
are two possible types of transaction cost processes:

1- Transaction cost is constant: λt = λ̄

2- Transaction cost is random, mean-reverting and related to volatility: λt = a + bσt

The constants a and b are chosen so that the processes in (1) and (2) have the same mean-
reverting level λ̄.

How much is the expected utility of a dynamic investor faced with uncertain transaction
costs compared to one with constant transaction costs ? The answer is the loss due to uncer-
tainty could be significant depending upon his initial wealth allocation and volatility levels.
We summarize numerical results in table 8.1. Using the two types of transaction cost pro-
cess we measure expected logarithmic utility at initial time for different configuration of state
variables. It is found that investor with uncertain transaction costs faces a loss in expected log-
arithmic utility. It make sense to re-balance portfolios in times with high volatility as discussed
in chapter 7 we are also faced with high transaction fees while would make re-balancing less
attractive.

The chapter does not seek to assert that the discrete time solution converges to the continu-
ous time solution. The objective of the chapter is to provide a framework of analysis in discrete
time keeping in view its continuous time analogue. We will illustrate only numerically that the
discrete time framework has solution that is remarkably close to the solution implied by exact
distribution over the interval ∆T . Closeness in value function is shown in table 8.2.

We will provide a numerical solution to the problem for some choice of parameters as
shown by next couple of figures. Our numerical results are in close conformity with the no-
transaction cost formulation because the Merton line always lies inside the no-transaction re-
gions. See figures 8.6 and 8.7.
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(Ak, vk) 0.75 0.8 0.85
0.15 0.0316% 0.0327% 0.042%
0.3 0.292% 0.370% 0.454%
0.45 1.24% 1.50% 2.07%
0.6 2.44% 1.59% 1.27%
0.75 0.614% 0.526% 0.485%

Table 8.2: Relative absolute percentage error in the value function at time for different nodal
points in 2-D with parameters m = 0.14, θ = 0.1,= 0.8, ξ = 0.02,T = 0.04, ρ = 0.1, σmin =

0.7, σmax = 0.9, λ = µ = 0.01 + 0.01σ, γ = 2, L = 100Nγ, s = e0.05∆T ,N = 6, da =
amax−amin

L ,∆T = T
N , amin = 0.001, amax = 0.999. We have θ, Λ, ξ and ρ as the parame-

ters for the joint evolution tee. Also da represents the risky fraction space discretization with
[amin, amax] being the bounds. Where T is the time horizon for investment, N is the number
of re-balancing nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors,
s is the risk free growth over the interval, m is the drift for continuous time GBM and σ is the
volatility for the continuous time GBM. The continuous time GBM implies a risky growth for
the risky asset over the interval ∆T .

8.6 Concluding remarks
The chapter proposed a simple transaction cost model and we used lattice approximation to
solve it in discrete time. It will be interesting to explore different variants of volatility models
like CEV, regime switching etc. In regime switching models, for instance, it is possible to
model transaction cost as being dependent upon different volatility regimes. At the same time,
it is possible to include more complex mean-reverting dynamics for transaction costs. The next
chapter adds more realism to our framework by providing tools to solve dynamic portfolio
choice problems under constraints.
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Figure 8.2: Evolution of risky growth.
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Figure 8.3: Evolution of change in volatility.



8.6. Concluding remarks 147

Time

Volatility

Risky Fraction

Truncation of

domain  along

volatility axis to avoid 

extrapolation errors

Dynamic programming

principle in action 

Σk

Ak
-

Figure 8.4: Dynamic programming on a grid and truncation on volatility axis to avoid extrap-
olation errors.
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Figure 8.5: Transaction cost processes.
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Figure 8.6: No-transaction topology at time t=0.45 and parameters m = 0.14, θ = 0.1,Λ =

0.8, ξ = 0.02,T = 0.5, ρ = 0.1, σmin = 0.5, σmax = 1.1, λ = µ = 0.01 + 0.01σ, γ = 2, L =

10Nγ, s = e0.05∆T ,N = 10, da = amax−amin
L ,∆T = T

N , amin = 0.001, amax = 0.999. Volatility
axis horizontal and risky fraction axis vertical. We have θ, Λ, ξ and ρ as the parameters for the
joint evolution tee. Also da represents the risky fraction space discretization with [amin, amax]
being the bounds. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T .
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Figure 8.7: No transaction geometry at time t=0.1 and parameters m = 0.14, θ = 0.1,Λ =

0.8, ξ = 0.02,T = 0.5, ρ = 0.1, σmin = 0.5, σmax = 1.1, λ = µ = 0.01 + 0.01σ, γ = 2, L =

10Nγ, s = e0.05∆T ,N = 10, da = amax−amin
L ,∆T = T

N , amin = 0.001, amax = 0.999. Volatility
axis horizontal and risky fraction axis vertical. We have θ, Λ, ξ and ρ as the parameters for the
joint evolution tee. Also da represents the risky fraction space discretization with [amin, amax]
being the bounds. Where T is the time horizon for investment, N is the number of re-balancing
nodes. ω is the continuous time risk-free rate, (λ, µ) are transaction cost factors, s is the risk
free growth over the interval, m is the drift for continuous time GBM and σ is the volatility
for the continuous time GBM. The continuous time GBM implies a risky growth for the risky
asset over the interval ∆T .



Chapter 9

Portfolio optimization under transaction
costs incorporating realistic constraints

9.1 Introduction
This chapter seeks to illustrate robust numerical methods to dynamically allocate portfolio
assets under realistic problem constraints. Two important constraints that are discussed are the
draw-down constraint and portfolio insurance constraint. Our methodology is combined with
probability deformation methods so that the problem constraints are met in some probabilistic
sense. More precisely, probability deformation schemes help us construct a tree of evolution
for risky growth of an asset and optimal controls are obtained such that the portfolio constraints
are satisfied approximately.

Most realistic portfolio problems are beset with constraints involving portfolio state vari-
ables. Let W(t) denote the wealth at any time t. Wealth is a very important portfolio state
variable as far as constraints are concerned.

Current investment allocation most often requires some sort of downside protection (see
[11], [52], [19]). More precisely this might require that the wealth at some point in time never
falls below a certain value. This is also called portfolio insurance. Option-based portfolio
insurance (OBPI) and Constant Proportion portfolio insurance (CPPI) are notable insurance
strategies for pensions plans. The OBPI, introduced by Leland and Rubinstein (1976) (see
[54]), consists of a portfolio invested in a risky asset covered by a listed put written on it.
Whatever the value of risky asset at the terminal date, the portfolio value will be always greater
than the strike of the put1. CPPI (see [12]) uses a simple strategy to allocate assets dynam-
ically over time. The investor starts by setting a floor equal to the lowest acceptable value
of the portfolio. Then, he computes the cushion as the excess of the portfolio value over the
floor and determines the amount allocated to the risky asset by multiplying the cushion by a
predetermined multiple. The optimality of these strategies might be questionable. To speak in
mathematical terms it is an inequality to be met:

W(T ) > K a.s. (9.1)

Another realistic constraint is the draw-down constraint which hedge funds often face (see
1If the put is not available in the market it could be synthetically manufactured.
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[2],[9],[39]). It requires that the wealth at any point W(t) is always greater or equal to a certain
fraction of the maximum wealth attained M(t):

W(t) ≥ αM(t),∀t ≥ 0 a.s. (9.2)

We also assume that the investor is never allowed to go bankrupt i.e. W(t) ≥ 0. Bankruptcy
prohibition is another important constraint on its own. For example the nature of our portfolio
could be such that bankruptcy never happens. A good example is when investor only takes
long positions in stocks and bonds while making transactions that let him remain solvent. Log-
utility is an interesting function because it has a built-in mechanism for inhibiting insolvency.

It is possible that a portfolio insurance constraint could never be met and we could write it
instead as being P(W(T ) > K) ≥ η ≡E[1W(T )>K] ≥ η .

The dynamic investor of this chapter invests only in a risky asset and risk free asset.
The main ideas of this chapter could be summarized as:
1- We observe through numerical examples when the constraints (in this case portfolio

insurance and draw-down) involving portfolio state variables become tighter the fraction of
wealth allocated to risky asset for CRRA utility decreases.

2- The chapter provides an approximate dynamic programming framework so that the in-
vestor is able to meet his portfolio constraints approximately.

9.2 The model
The transaction cost model we will analyze is the simple growth rate model we described in
Chapter 5. We will not provide details of the model which had been discussed in Chapter 5.
The investment objective in this chapter will, however, now be the CRRA (or power) utility.
It is chosen because [38] in a no-transaction cost setting uses constant relative risk aversion
utility function in his analysis and we could compare our results. Also the logarithmic utility
could be seen a limiting case of power utility.

9.3 Solution methodology for constraints
We will consider two problem formulations for the purpose of illustration:

1- Portfolio insurance requiring W(T ) > K a.s.
2- Maximum draw-down problem requiring W(t) ≥ αM(t) for every t ≥ 0 a.s.
In context of dynamic programming meeting a constraint almost surely is an interesting

probabilistic situation. This means that the constraint must always be satisfied without a doubt.
However, it would be more realistic to argue that the constraint could never be met given the
probability model for the risky asset. This idea summarizes the central theme of this thesis
which is solving dynamic portfolio allocation problems approximately. We will combine the
idea of probabilistic deformation from earlier chapters with the idea of penalty to solve dy-
namic programming problem under constraints {η}.

The idea is to formulate the problem with the deformation parameter γ`. Now with this
discrete probability model we have a tree of evolution for risky growths having ` branches.
Any evolution which violates the constraint is assigned a high penalty (positive or negative
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depending upon the value function) and multiplied by the probability of evolution in the dy-
namic programming equation2. In terms of dynamic programming language sitting at node k
we will penalize any evolution of state variables that violates the state space constraints in the
expectation of the value function at time node k (i.e. at time t + ∆T ). Also any current state
variable is highly penalized so that evolution at time node k − 1 ( i.e. at time t − ∆T ) is aware
of such a violation. Moreover, the deformation parameter in essence really gives a discrete
approximation of a truncated version of continuous time probability model for risky growths.
In the limit we are able to meet the constraints at least approximately.

Consider the bankruptcy prohibition constraint. Suppose we are at time t. Then seeing
from tree of evolution of risky growths we can see all possible wealths. Any wealth at time
t + ∆T that violates non-negativity is assigned a penalty. Sitting at the current time , the value
functions at next time step is really an expectation of a function of future evolution of wealth
and risky fraction. So any negative future wealth is assigned penalty.

Take the portfolio insurance constraint as an example. If we require W(T ) > K almost
surely, as long as you have at least Ke−r∆T in the risk free asset we would be fine. However,
putting too much risk-free asset could be detrimental to portfolio performance. Even though
the probability is low it remains a possibility that a risky asset can fall enough, over a finite time
to violate the terminal portfolio insurance constraint if we do not have enough of risk free asset.
Substantial transaction cost would be incurred if we eliminate the risky asset component from
our portfolio. In such situations we would be interested in solving the constraint approximately.
Our tree provides an approximate solution methodology. This is where deformation schemes
are so useful.

Instead of:

P(W(T ) > K) = 1 (9.3)

In this thesis we consider:

P(W(T ) > K) ≥ α � EP[1W(T )>K] (9.4)

where α is some number close to 1 .
It is easy to see that incorporating portfolio insurance constraints increases the dimension-

ality of our problems. For the portfolio insurance problem, for example, for any utility function
we have (A−k ,W

−
k ) (i.e. risky fraction and wealth at node k) as the relevant state variables. In

particular, decomposability with respect to wealth no longer occurs. The constraint will usu-
ally be explicitly considered in the last stage of our dynamic programming problem because
it is a constraint on the terminal wealth. The last stage is the initial recursion in dynamic
programming!3 .

For the maximum draw-down problem we now have the state variables as being the tuple
(W−

k ,M
−
k ,A

−
k ) where:

M−
k+1 = max{M−

k ,W
−
k+1} (9.5)

Log-utility and CRRA can take both negative and positive values so any constraint violation
is assigned a high negative value in our dynamic program. CRRA is positive if the risk aversion

2Logarithmic utility is a case in point because it contains a built-in mechanism for penalizing the wealth going
close to zero by approaching negative infinity.

3As someone once said: “Life can only be understood backwards but it must be lived going forwards!”
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co-efficient is in [0, 1] in which case we could assign any value less than or equal to zero as a
penalty.

9.4 Numerical results for realistic problems

Analytic results for the portfolio insurance constraint problem do not exist in the financial
mathematics literature. Analytic results do exist for the no transaction cost draw-down problem
4 (see [38]). The result states that the optimal investment in the risky asset is an explicit constant
proportion of the difference between the current wealth W−

k and the imposed fraction on the
running maximum M−

k . More precisely,

A−k = ψk(W−
k − αM−

k ), ψk ∈ <. (9.6)

We provide a numerical illustration of our methodology via some figures to follow. The
relevant control laws are encoded are provided in the caption of the figures.

Figures 9.1 and 9.2 show no-transaction regions for the portfolio insurance problem solved
approximately. We constructed a risky growth tree with ten branches ( γN = 10) to solve
the constrained problem approximately. The risky fraction is represented on horizontal axis
and wealth on the vertical axis. Figure 9.1 shows the no-transaction region in the last stage
of the problem. Figure 9.2 shows no-transaction region at initial time. As expected the no-
transaction regions shrink as we move closer to the initial time using dynamic recursion. The
geometries are seen to be slightly different for the last stage because that is when the portfolio
insurance constraints come in to action. One fact is obvious from all the geometries: as the
amount of wealth decreases ( the portfolio insurance constraint becomes tighter ) the center of
no-transaction region has a lower fraction in the risky asset5.

Figures 9.3 and 9.4 show the no-transaction geometries for the draw-down constraint prob-
lem. The state space is three dimensional so we visualize it in a 2-D at a wealth slice. The
risky fraction is on the horizontal axis and running maximum wealth on the vertical axis. The
draw-down analytic result [38] is in close conformity with the no-transaction geometries we
have obtained. In Figure 9.3 and Figure 9.4 the barrier between the buy and sell side boundary
shifts monotonically to the left as the running maximum increases. Figure 9.3 is the geometry
for the last stage of the program at a wealth slice and Figure 9.4 for the last stage. As the run-
ning maximum increases the center of no-transaction region has a lower fraction in the risky
asset 6.

Figure 9.5 shows the terminal wealth distribution for portfolio insurance constraint problem
with the same parameters as in Figures 9.1 and 9.2 using the techniques of Chapter 3. It is seen
to satisfy the portfolio insurance constraint level of K = 0.2 very well.

4The analytic result of Grossman and Zhou [38] is in an infinite horizon framework with no intermediate
consumption and the investment objective being CRRA utility.

5In Figures 9.1 and 9.2 the portfolio insurance constraint has K = 0.2.
6Because the draw-down constraint is becoming tighter!
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9.5 Conclusion
The chapter was an excursion into the realm of solving portfolio allocation problems for hedge
funds and pension plans. It is our hope to be able to extend our methodology to more interesting
and challenging problems in dynamic asset allocation. We will turn our attention to exactly
such a problem, of analyzing so-called pairs trading, in Chapter 10.
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Figure 9.1: CRRA utility and no-transaction region for portfolio insurance constraint problem
at time =0.75 yrs with parameters: γN = 1

10 ,T = 1,N = 4, λ = µ = 0.01, s = e0.1∆T ,m =

0.14, σ = 0.3,K = 0.2,V = 0.5. We denote K as the portfolio insurance level. Where T is the
time horizon for investment, N is the number of re-balancing nodes. ω is the continuous time
risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is
the drift for continuous time GBM and σ is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the
deformation parameter. Also V is the risk aversion co-efficient for CRRA utility.
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Figure 9.2: CRRA utility and no-transaction region for portfolio insurance constraint problem
at time =0 yrs with parameters: γN = 1

10 ,T = 1,N = 4, λ = µ = 0.01, s = e0.1∆T ,m = 0.14, σ =

0.3,K = 0.2,V = 0.5. We denote K as the portfolio insurance level. Where T is the time
horizon for investment, N is the number of re-balancing nodes. ω is the continuous time risk-
free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is
the drift for continuous time GBM and σ is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the
deformation parameter. Also V is the risk aversion co-efficient for CRRA utility.
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Figure 9.3: Here ? =BUY ,� =DO-NOTHING and •= SELL for no-transaction region geom-
etry with CRRA utility for draw-down constraint problem at time =0.75 yrs and wealth =0.07
with parameters: γN = 1

10 ,T = 1,N = 4, λ = µ = 0.01, s = e0.1∆T ,m = 0.14, σ = 0.3, α =

0.25,V = 0.5. We denote α as important number in the draw-down constraint. Where T is the
time horizon for investment, N is the number of re-balancing nodes. ω is the continuous time
risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is
the drift for continuous time GBM and σ is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the
deformation parameter. Also V is the risk aversion co-efficient for CRRA utility.
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Figure 9.4: Here ? =BUY ,� =DO-NOTHING and • = SELL for no-transaction region ge-
ometry with CRRA utility for draw-down constraint problem at time =0 yrs and wealth =0.07
with parameters: γN = 1

10 ,T = 1,N = 4, λ = µ = 0.01, s = e0.1∆T ,m = 0.14, σ = 0.3, α =

0.25,V = 0.5. We denote α as important number in the draw-down constraint. Where T is the
time horizon for investment, N is the number of re-balancing nodes. ω is the continuous time
risk-free rate, (λ, µ) are transaction cost factors, s is the risk free growth over the interval, m is
the drift for continuous time GBM and σ is the volatility for the continuous time GBM. The
continuous time GBM implies a risky growth for the risky asset over the interval ∆T . γ` is the
deformation parameter. Also V is the risk aversion co-efficient for CRRA utility.
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Figure 9.5: Initial wealth=0.5 and initial risky fraction=0.5. CRRA utility and terminal wealth
distribution for portfolio insurance constraint problem with parameters: γN = 1

15 ,T = 1,N =

4, λ = µ = 0.01, s = e0.1∆T ,m = 0.14, σ = 0.3,K = 0.2,V = 0.5. Also V is the risk aversion
co-efficient for CRRA utility.



Chapter 10

Lattice methods for pairs trading

Pairs trading is an investment strategy used by hedge funds in which equal, or roughly equal,
amounts of capital in stocks, futures, options etc are simultaneously invested on both the long
and short sides of the market. One reason for this strategy, in theory at least, is to make sure the
result of the strategy is independent of broader market performance. Pairs are often selected
for fundamental reasons for assets located in the same sector. Most of the literature on pairs
trading, with notable papers being [32], [36] and [42], is devoted to discrete time signals in
which the investor goes long the spread when it falls below a lower barrier and goes short
the spread if it goes above an upper barrier. Analytical solutions were explored in [8]. Pairs
trading is applicable to all asset classes and is an important class of algorithmic trading strategy
practiced by hedge funds.

The chapter serves to give approximate lattice methods to analyze pairs trading models. In
section 1 we provide lattice techniques to analyze pairs trading model based upon discrete time
signals. In section 2 we provide techniques to model more dynamic versions of pairs trading
models and also include transaction costs.

10.1 Dynamic pairs trading based upon discrete time signals

This section lays down the basic mathematical framework for the pairs trading methodology.
Let Ak be the fundamental price of first stock and Bk be the fundamental price of the second
stock. The fundamental price is the fair price of the stock. In this section of the thesis we will
assume it as being the mid-point of bid-ask spread i.e. f undamentalt = 1

2 (bidt + askt).

A possible definition of the spread could beZk = Ak −$1 −$2Bk. The investor shorts the
spread if crosses an upper barrier and longs the spread if it falls below a lower barrier. In the
Appendix B we highlight other possible pair trading schemes and the associated signals. The
classical spread trading is based upon entry and exit signals. The process from going long to
short or from short to long will be termed as a cycle in which the investor makes a profit equal
to the difference in barrier levels. It is obvious that each completed cycle results in a profit and
that the risk taken by an investor is that the cycle does not close.

161
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10.1.1 Model

Let Ak and Bk be the price processes of the pairs and let Zk be the process for the spread as
defined earlier. There are N trading points over the time horizon and k = 1, 2, ...,N. There are
financial reasons for us to believe that the spread is mean-reverting. In the short-run the stocks
may diverge from their fair prices but revert to their fundamental prices some time later which
provides the basis for the spread to be mean-reverting. The trading period forward horizon T
is of a sufficiently short so that arbitrage opportunities exist.

Due to its mean-reverting nature we will assume that the spread follows an Ornstein-
Uhlenbeck (O-U) process1:

dZt = κ(θ −Zt)dt + σdZt (10.1)

where Zt is a Brownian motion.

Θ

Θ+DH

Θ-DL

k=0 k=N-1 k=N

Short signal

Long signal

Zk

Figure 10.1: Trading Rule with entry and exit signals.

It can be observed from Figure 10.1 that we assume that the trading rule is fully encoded
by the entry and exit signals. The optimal signals for that rule are one that yield maximum
expected profits at the terminal time. We will denote S k as the investor position on spread. S k

takes values in the set {0, 1, 2}where 0 means no position (N), 1 for short (S) and 2 for long (L).
Also we will henceforth assume from now on that the upper and lower barrier for signals are
both equidistant from the mean-reverting level (i.e. ∆H = ∆L) and are also time independent.

We may describe the attainable values of S k with the set {N,S,L}. The state transitions
under the trading rule is depicted in Figure 10.2.

1O-U process is stationary, Gaussian and Markovian. In particular, the stationarity assumption might not be
satisfied very well in real life data. The primary motivation for choosing this process was its mean-reverting
nature. As someone once said: “All models are wrong but some are useful.”
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S L

N

Figure 10.2: Transition diagram for the state S k ∈ {N,S,L} .

Let {πk} denote a non-decreasing process for the cumulative profits to date. So if δk is the
profit in the kth period we could write:

πk = πk−1 + δk (10.2)

We now frame the simple problem in value function formalism and define the value function
to be:

Vk(πk,Zk, S k) = E
4∗

[πN |Fk] (10.3)

where Fk is the filtration generated by Brownian motion and 4∗ is the optimal parameter to be
determined as part of optimization in dynamic programming.

It is easy to see that each cycle results in a profit of ∆L + ∆H = 2∆. The trading rule implies
that S k shifts state in the set {0, 1, 2}. The evolution of the state variables is described by:

δk = (2∆)1(S k−1==1∩S k==2)∪(S k−1==2∩S k==1) (10.4)
S k = 1(Zk>θ+∆) + 2.1(Zk<θ−∆) + S k−1.1(θ−∆<Zk<θ+∆) (10.5)

Starting from the terminal time:

VN−1(πN−1,ZN−1, S N−1) = E
4∗

[πN |FN−1] (10.6)

= πN−1 + E
4∗

[δN |FN−1] (10.7)

= πN−1 +J (1)(ZN−1, S N−1) (10.8)

Going recursively backwards we see:



164 Chapter 10. Lattice methods for pairs trading

VN−k(πN−k,ZN−k, S N−k) = πN−k +J (k)(ZN−k, S N−k) (10.9)

The role of dynamic programming was to provide a scientific way to determine optimal
strategy parameters without resorting to any simulation based technique. The ∆∗ is the same
for all the periods and assumed to be time independent. We will chose a value for ∆∗ at initial
state space configuration so as to maximize profits at the terminal time.

Proposition 10.1.1 Equation (10.9) can be generalized to an extra parameter a:
VN−k(aπN−k,ZN−k, S N−k) = (a − 1)πN−k + VN−k(πN−k,ZN−k, S N−k) for a ∈ <.

Proof From equation (10.9) we have VN−k(aπN−k,ZN−k, S N−k) = aπN−k +J (k)(ZN−k, S N−k)
Hence,
VN−k(aπN−k,ZN−k, S N−k) = aπN−k − πN−k + πN−k +J (k)(ZN−k, S N−k)
Thus,
VN−k(aπN−k,ZN−k, S N−k) = (a − 1)πN−k + V(πN−k,ZN−k, S N−k)
�

10.1.2 Lattice based solution methodology

To apply our framework to a real life pair we have to estimate the spread process Zk using a
historical look back from the start of the trading date and then apply to our dynamic program-
ming framework to determine the optimal strategy parameter ∆∗. The stock pair (LOW,HD) is
a popular pair2 in the industry and our analysis will subsequently be only restricted to it just
for the sake of experimentation. A historical data setH is chosen for estimation purposes with
a certain look back from the start of the trading date.

The problem has separability in πk so a grid is constructed in (Zk, S k) space with S k =

0, 1, 2 andZk ∈ [zmin, zmax]. The lower and upper limits ofZk are set to the 99 percent confi-
dence interval in the historical data with the look back that isH . Using the recursion equations
(10.6-10.9) we could numerically determine the optimal control ∆∗ for the state variables at
initial time. But to carry out the recursion we must first estimate the spread process Zk first
using the data set H !. If Zk = Ak −$1 −$2Bk then by regressing Ak against Bk we estimate
($1, $2) yielding the residuals as the spread Zk which needs to be calibrate to O-U process.
Calibration was done via the method of maximum likelihood3.

Setting the problem in our lattice framework we now cast the process Zk into a discrete
probability approximation with E(Zk) and Var(Zk) dependent on Zk. This could be done
using the probability deformation schemes we had already discussed in Chapter 5. Also for the
application of probability deformation algorithms we have:

2Lowes (LOW) and Home Depot (HD) are both home improvement stores. They are located in the same
industry and thus share similar sources of risks.

3We chose Maximum Likelihood from our various techniques to illustrate the method. Though there are so
many other methods like brute force OLS on discretized SDE, brute force method of moments, generalized of
method moments !



10.1. Dynamic pairs trading based upon discrete time signals 165

ηk = E(Zk+1|Fk) = Zke−κ∆T + θ(1 − e−κ∆T ) (10.10)

φk = Var(Zk+1|Fk) =
σ2

2κ
(1 − e−2κ∆T ) (10.11)

Zk+1|Fk ∼ N(ηk, φk) (10.12)

D
D

*

V0

0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.0

1.5

2.0

Figure 10.3: Value function at time t = 0 for spread process calibrated to “LOW” and “HD”
stock pair. At t = 0 investor is short the spread with Z0 = 1.0. The time horizon for trading
is 0.5 years with 10 observation points and data calibrated to history from May 2011 to May
2012.

Πk

Number of days 

from start

20 40 60 80 100 120

1

2

3

4

5

6

Figure 10.4: Simulation of gross realized profit (not including transaction costs) with trading
starting at (2007,3,1) and look back of 500 days. The time horizon for trading is 0.5 years with
10 observation points and data calibrated with historical look back.

With a discrete probability approximation for Zk at hand we are ready to carry out the
recursions in equations 10.6-10.9. Figure 10.3 shows our methodology applied to the pair
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Πk

Number of days

from the start

20 40 60 80 100 120

0.05

0.10

0.15

Figure 10.5: Simulation of gross realized profit (not including transaction costs) with trading
starting at (2007,3,1) and look back of 100 days. The time horizon for trading is 0.5 years with
10 observation points and data calibrated with the historical look back.

(LOW,HD) to get the optimal ∆∗ for the forward trading horizon. The optimal strategy param-
eter ∆∗ is one that maximizes the value function at initial configuration of state variables. See
Figure 10.3 for an illustration.

We also provide some simulations for our calibrated trading strategy ∆∗ for some randomly
selected years. See Figure 10.4 and Figure 10.5.

Five years is a reasonable amount of time for back-test and was applied to our pair (LOW,HD).
We applied our methodology to 24 equally spaced trading dates in the interval 2005-2011 so
that we had 24 possible profits πN . It is observed that in 6 out of 24 trades we had no profit at
all which means that the cycle did not close! The results are summarized in the histogram in
Figure 10.6.

To summarize main steps in optimal trading strategy design:

1- Chose a look back from the start date. Get the historical dataH for estimation purposes.
2- Estimate ($∗2, $

∗
1) inZk = Ak −$1 −$2Bk usingH .

3- Fit an O-U process to the historical {Zk} obtained withH using the estimates in 2.
4- Use the O-U process in recursion equations to find the optimal ∆∗ for the forward trading

horizon.
5- Perform a 5 years back test on the so designed strategy.

We note that in step 5 it is useful to analyze stability in the co-integration of the two pairs
so that we are not subject to model risk problem. Also it is best to have as stationary as possible
the historical spread data to have a good pair for profitable trading in the forward horizon. The
broader vision of this section was to provide a lattice framework of analysis. We will discuss
later in the conclusion that such a lattice framework allows us to embed complexity in our
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Frequency
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Figure 10.6: Histogram of realized profits for trading starting points chosen equally spaced in
2005-2011. Stock pair is (LOW,HD). Look back of 180 days and trading horizon of 180 days.

problem structure not possible by ordinary SDEs expressed in mathematical form (see [37] for
a discussion on this issue).

We performed the analysis without transaction costs to simplify things. It is easy to factor
in a transaction cost approximation. For the moment suppose the investor is long the spread
at one point in time and then short the spread at a later time so that he makes profits. Also
let (A1

k , B
1
k) be the fundamental pair price initially and (A2

k , B
2
k) be the fundamental pair price

afterwards. We can express it as:

−A1
k + A2

k +$2B1
k −$2B2

k = 24 (10.13)

Let α represent the bid-ask fraction symmetrically situated about the fundamental price.
Then the total transaction costs C during the cycle equals:

C = α(A1
k + A2

k +$2B1
k +$2B2

k) (10.14)

So far it appears the transaction cost for a cycle depends upon the fundamental prices which
we have not factored into our model. But our objective is only to get an approximation and,
assuming, the fundamental prices do not move too much during the interval we could put in
average expected prices into our model approximating the transaction costs as :

C = 2α(Ā +$2B̄) (10.15)

The realized profit is then 2∆ −C.
Most of the notable papers in academic literature for pairs trading are devoted to models

involving discrete time signals. Moreover, the entry and exit signals for the trading strategy is
based upon a mean-reverting spread process following an Ornstein-Uhlenbeck process. Unlike
the previous literature this chapter seeks to provide an lattice based dynamic finite horizon
framework under which trading strategies similar to trading pairs under transaction costs could
be analyzed. We assume that there is a common state factor which drives the law of motion of
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the pairs. Our framework also enables us to compare, analyze and subsequently rank the risk -
return characteristics of trading strategies under transaction costs.

10.2 Lattice method for dynamic pairs trading under trans-
action costs

Most of the literature on pairs trading, with notable papers being [32], [36] and [42], is devoted
to discrete time signals in which the investor goes long the spread when it falls below a lower
barrier and goes short the spread if it goes above an upper barrier. Analytical solutions were
explored in [8]. Pairs trading is applicable to all asset classes and is an important class of
algorithmic trading strategy practiced by hedge funds.

Dynamic pairs trading has been first studied by [70]. This section seeks to give a more
dynamic flavor to the trading strategy by adding a common factor in the expected return of the
pairs and also including transaction costs. Experience suggests that successful pairs are most
often located in the same industry. For example, Ford (F) and General Motors (GM) could be
one example.

Let Ak be the stock price of F and Bk be the stock price of GM. One particular way of
capturing the spread Zk would be to define it as Zk = Log(Ak) − $2Log(Bk). In general, the
co-integration factor $2 may be estimated from the historical data but for simplicity we will
assume it to be close to one. Co-integration is a time series concept in which two time series
are co-integrated if they share a common drift. Experience suggests that Zk is most often
mean-reverting for the pairs. Whether or not it is stationary could be questionable from a time
series standpoint. We might suspect when Zk becomes high or low its likelihood to revert to
the equilibrium value increases.

Let (1+g1
k) be the growth rate of the first stock and (1+g2

k) be the growth rate of the second

stock. This implies: Zk+1 = Log( (1+g1
k )

(1+g2
k ) ) +Zk. Now if g1

k ≺ g2
k the spreadZk decreases and vice

versa.
This motivates us to create an endogenous system in which the expected returns on the

stocks are linked to their own spreads. Figures 10.7 and 10.8 depict the idea. The expected
returns are dependent on the stochastic spread with a differential sensitivity. The results is a
differential in growth rates and hence the observed mean-reverting behavior in the stochastic
spreads.

The standard CAPM model argues for expected returns of companies to be dependent on
market risk premium. Other factor models include plausible factors as a source of risk pre-
mium. Our model argues there is a common factor in the two risky assets which contributes to
the risk premium [36].

10.2.1 Intuition behind dynamic pairs trading
The idea behind the trading model is very simple. We would long /short the asset so as to bring
our portfolio near the line of perfect hedge (shown by a straight line passing through the origin
in Figure 10.10 ) as much as possible given the transaction costs. The intuition behind this is
very simple.
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Figure 10.7: Approximate dependence expected return of the MS stock on the (MS,GS) stock
pair spread using the daily closing stock prices from July 2005 to July 2006.
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Figure 10.8: Approximate dependence expected return of the GS stock on the (MS,GS) spread
using the daily closing stock prices from July 2005 to July 2006.
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Figure 10.9: Pair trading signals - shorting when the spread falls below a barrier and longing
when the spread goes above.
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Suppose we have L1 amount in one risky asset and −L2 in the other. In other words we
always take opposite positions in the risky assets. At the next time step our wealth grows to:
(g1−g2)%+ (L1−L2) assuming L1 ' L2. But the expected growth rates are highly dependent on
the spreads and so if we know the current value of spread we could predict the likely growth
rates. We are very likely to make money thereupon. This is because of the mean-reverting
behavior of the spreads and the dependence of the expected return on the spread.

We intuitively suspect that such a trading strategy would result in lower expected profits
compared to an optimal unconstrained portfolio trading but with a lower variability.

Suppose the asset price of pairs follows a multi-variate GBM so that:

dA = (a + bZk)Adt + σ1AdW1
t (10.16)

dB = (c + dZk)Bdt + σ2BdW2
t (10.17)

Here W i
t are standard Brownian motions with E[dW1

t dW2
t ] = ρdt.

WithZk = Log( Ak
Bk

), using Ito’s lemma the stochastic spread follows:

dZt = (d − b)

 (a − c) − σ2
1

2 +
σ2

2
2

d − b
−Zt

 dt + σ1dW1
t − σ2dW2

t (10.18)

dZt = κ(θ −Zt)dt + σdW3
t (10.19)

Where σ =

√
σ2

1 + σ2
2 and W3

t is a standard Brownian motion.
As expected the spread process turns out to be mean-reverting.
Pairs trading is a highly successful class of algorithmic trading strategy even though its

optimality from the point of view of Kelly criterion of maximizing the logarithm of growth
rate could be questionable. We will compare the mean-variance optimality of the dynamic
pairs trading strategy under transaction costs to an optimal trading rule implied by standard
dynamic programming.

Standard dynamic portfolio theory implies that a growth rate maximizing investor keeps
the fraction of wealth in risky assets equal to a constant fraction assuming a constant drift
and volatility. Under transaction costs he has no-transaction boundaries around those risky
fractions. In contrast, the dynamic pair trading model under transaction costs would bring our
risky fraction to the line of no net exposure provided we go far away from that line and also
dependent on the value of stochastic spread.

10.2.2 Dynamic programming formulation of the trading model
The investor puts his wealth in two risky assets and a risk-free asset so as to maximize the
long-term growth rate. Consider a portfolio consisting of one risk-free asset growing at a rate
of sk over the kth period. It also has two risky assets (pairs) with the ith risky asset growing at a
rate of ri,k over the kth period. The investor has an initial endowment of W̄. At the beginning
of each period he has the option to re-balance or not.

Let W−
k be the wealth immediately before and W+

k the wealth immediately after re-balancing
for the kth period. If he decides to re-balance then he faces transaction costs proportional to the
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Fraction of wealth in asset 1

Fraction in asset 2

Line of zero net

exposure
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Position2
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Long asset 1

Short asset 2
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Figure 10.10: Dynamic pairs trading - pair trading quadrants with different controls illustrated.

amount traded. There are N periods so that each period is of equal length ∆T=TN . Such models
were discussed in detail in Chapters 3, 5 and 6.

In this section we denote the vectorA−k as the fraction of wealth in risky assets respectively.

LetJk(Wk,Ak,Zk) =EP[ Log(WN )
T | Fk] be the value function under the logarithmic utility then

under control set {ς} we have:

Jk(Wk,Ak,Zk) = Max
{ς}

EP[Jk+1(Wk+1,Ak+1,Zk+1)|Fk]. (10.20)

Now since JN(WN ,AN ,ZN) = 1
T Log( WN) we can write:

JN(WN ,AN ,ZN) =
1
T

(Log(WN−1) + Log(FN−1(Ai,N−1,Zi,N−1))) (10.21)

where F is a stochastic functional depicting the investor behavior of re-balancing or not
re-balancing at k = N − 1 under the stochastic evolution. Further:

JN−1(WN−1,AN−1,ZN−1) =
1
T

(
Log

(
WN−1

)
+ Max

{ς}
EP[Log(FN−1(Ai,N−1,Zi,N−1))|FN−1].

(10.22)

In general for k = 2, 3, ...,N we can write:

JN−k(W−
N−k,A

−
N−k,Z

−
N−k) =

1
T

(Log(WN−k) + Max
ς

EP[J (k−1)
N−k+1(A−i,N−k+1,Z

−
i,N−k+1)

+Log(FN−k(A−i,N−k,Z
−
i,N−k)|FN−k]) (10.23)

=
1
T

(Log(WN−k) +J
(k)
N−k(A

−
i,N−k,Z

−
i,N−k) ). (10.24)
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�
Our model is subject to leverage constraints of α∗. A leverage constraint of 50 percent

would mean the investor can not short or long more than 50 percent of his wealth at a point in
time in a particular risky asset.

The optimality of pairs trading formulation using dynamic programming from the point of
view of Kelly Criterion could be questionable. For instance, the optimal trading rule without
restrictions under transaction costs would be to bring risky fraction as close as possible to the
boundary of the no-transaction region. Under no-transaction costs the investor brings it to the
Merton point. Under leverage constraints things will change somewhat but would be similar.
In fact, under leverage constraints the Merton point is most likely to be on the boundary of
the state simplex. We have no reason to believe that the Merton point always lies inside a
constrained state space simplex. Under no-transaction cost case with risky assets following a
multi-variate GBM we can easily prove the most optimal re-balancing point is ~α = 1

1−γΣ−1(~m−
r) for CRRA and ~α = Σ−1(~m−r) for log-utility. With transaction costs being small we will have
a no-transaction region surrounding this optimal point. The optimal policy under transaction
cost would be to bring to the boundary of no-transaction region.

10.2.3 Evolution of portfolio state processes under a pairs trading model
The trading rule is summarized in Figure 10.10. There are several ways in which an investor
can bring his portfolio to the line of zero net exposure depending upon his positioning in the
quadrant. The arrows show the movement. For example if he is in position 1 then there are
three possible ways to bring his portfolio to the line of zero net exposure. We provide the
evolution equations for position 1 as depicted in Figure 10.10 and put the equations for rest of
the positions in the Appendix B.

Also we denote:
a+

i,k = wealth in risky asset 1 immediately after re-balancing
b+

i,k = wealth in risky asset 2 immediately after re-balancing
c+

i,k = wealth in risky free asset immediately after re-balancing

Position 1 -A−1,k > 0,A−2,k < 0 withA−1,k � |A
−
2,k|:

A- L - S move (buy asset 1 and sell asset 2):

a+
i,k = A−1,kW

−
k + ∆1

k = hW−
k (10.25)

b+
i,k = A−2,kW

−
k − ∆2

k = −hW−
k (10.26)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k − (1 + λk)∆1

k + (1 − µk)∆2
k (10.27)

This implies that 0 ≤ ξ1
k ≤ α

∗ − A−1,k. The second control can be expressed in terms of the
first control via ξ2

k = A−2,k +A−1,k + ξ1
k .

The state processes now evolve as:

A−1,k+1 =
(A−1,k + ξ1

k )r1

β1,k
(10.28)
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β1,k = (A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (10.29)

A−2,k+1 =
−(A−1,k + ξ1

k )r2

β2,k
(10.30)

β2,k = ((A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (10.31)

B- S - S move (sell asset 1 and sell asset 2 ):

a+
i,k = A−1,kW

−
k − ∆1

k = hW−
k (10.32)

b+
i,k = A−2,kW

−
k − ∆2

k = −hW−
k (10.33)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k + (1 − µk)∆1

k + (1 − µk)∆2
k (10.34)

This implies that 0 ≤ ξ1
k ≤ A

∗ +A1
k The second control can be expressed in terms of the

first control via ξ2
k = A2

k +A1
k − ξ

1
k .

The state processes now evolve as:

A−1,k+1 =
(A−1,k − ξ

1
k )r1

β1,k
(10.35)

β1,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k + (1 − µk)(A−2,k +A−1,k − ξ
1
k ))s (10.36)

A−2,k+1 =
−(A−1,k − ξ

1
k )r2

β2,k
(10.37)

β2,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k + (1 − µk)(A−2,k +A−1,k − ξ
1
k ))s (10.38)

C- S - L move (sell asset 1 and buy asset 2):

a+
i,k = A−1,kW

−
k − ∆1

k = hW−
k (10.39)

b+
i,k = A−2,kW

−
k + ∆2

k = −hW−
k (10.40)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k + (1 − µk)∆1

k − (1 + λk)∆2
k (10.41)
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This implies that 0 ≤ ξ1
k ≤ A

∗ +A−1,k The second control can be expressed in terms of the
first control via ξ2

k = −A−2,k −A
−
1,k + ξ1

k .
The state processes now evolve as:

A−1,k+1 =
(A−1,k − ξ

1
k )r1

β1,k
(10.42)

β1,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (10.43)

A−2,k+1 =
−(A−1,k − ξ

1
k )r2

β2,k
(10.44)

β2,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (10.45)

D- N - N (Do-nothing):

a+
i,k = A−1,kW

−
k (10.46)

b+
i,k = A−2,kW

−
k (10.47)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k (10.48)

State control constraints are absent here as state particles evolve with complete freedom.
The state processes now evolve as:

A−1,k+1 =
A−1,kr1

A−1,kr1 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(10.49)

A−2,k+1 =
A−2,kr2

A−1,kr1 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(10.50)

10.2.4 A generalized trading model
Evolution of state particles without any pre-determined trading rule

In a generalized trading we don’t have a predetermined heuristic to tell us what should be the
evolution of state process. We let the dynamic programming principle help us decide.

In all the possible control moves for the state particle we always have a constraint −α∗ ≤
hi,+

k ≤ α
∗. We only provide evolution equations for buying asset 1 and selling asset 2 and put

rest of the equations in the appendix B.
A-Buy Asset 1, Sell Asset 2:
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a+
i,k = A−1,kW

−
k + ∆1

k = h1,+
k W

−
k (10.51)

b+
i,k = A−2,kW

−
k − ∆2

k = h2,+
k W

−
k (10.52)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k − (1 + λk)∆1

k + (1 − µk)∆2
k (10.53)

The state particles now evolve as:

A−1,k+1 =
h1,+

k r1

β1,k
(10.54)

β1,k = h1,+
k r1 + h2,+

k r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)(h1,+

k −A
−
1,k) + (1 − µk)(A−2,k − h2,+

k )s (10.55)

A−2,k+1 =
h2,+

k r2

β2,k
(10.56)

β2,k = h1,+
k r1 + h2,+

k r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)(h1,+

k −A
−
1,k) + (1 − µk)(A−2,k − h2,+

k ))s (10.57)

10.2.5 Solution methodology
We highlight the solution methodology in broad brush. Its main ingredients are grid construc-
tion and dynamic recursion as discussed in the previous section. The problem has separability
in wealth W−

k as shown by equations 10.21-10.24. We will accordingly construct a 3D grid
in (A−1,k,A

−
2,k,Zk) space. Lower and upper limits for Ai,−

k are set to the leverage constraints.
Lower and upper limits forZk can be found from the underlying discrete probability approxi-
mation forZk.

Since Zk = Log(Ak) − Log(Bk) we have ∆Zk =
1+gA
1+gB

. Once a joint evolution 2-D discrete
probability approximation for risky growth (1 + gA, 1 + gB) dependent upon the value of Zk

is constructed the corresponding 1-D discrete probability approximation for ∆Zk dependent
uponZk could easily be obtained. The upper limit forZk are chosen by observing a value for
Zk when ∆Zk discrete probability approximation has a “very small” probability of going up
and lower limit chosen when it has a “very small” probability of going down.

10.2.6 Numerical results for control law
We illustrate the results of pair trading rule in the state variable space. In Figures 10.11 10.12
we have the fraction of wealth in the risky assets in the horizontal and vertical axis respectively.
The control law was encoded with symbols as shown in the captions. Such a picture lets a pair
trader know what to do at a point in time.
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For a certain choice of parameters it is seen that pair trading rule is quite off from the growth
rate under a generalized trading rule. We display the terminal wealth distribution results in
Tables 10.1-10.3.

Numerical results match our intuition very well. For dynamic pairs trading the investor is
more likely to bring to the line of perfect hedge the more the spread is away from the equilib-
rium. Also he is less likely to do any transaction if the value of spread is close to its equilibrium.
Also he trades much more in the pairs trading rule compared to the optimal trading rule implied
by dynamic programming. In the optimal trading rule he trades much less and trading only if
the spread is significantly away from the equilibrium.
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Figure 10.11: Optimal control law at time t = 0 and spread =0.25 under dynamic trading for
the following choice of parameter which are already defined earlier : λ = µ = 0.005,T =

0.2,N = 2, s = e0.05∆T , a = 0.16, b = 0.1, σ1 = 0.1, c = 0.1, d = 0.9, σ2 = 0.2, ρ = 0.05. Also
^ 7−→ SS, • 7−→ SL, ? 7−→ LS, + 7−→ LL and ] 7−→ NN.

10.2.7 Mean-variance optimality of dynamic pairs trading:
Assuming WN = W0erNT then:

E[rN] =
E(Log(WN)) − Log(W0)

T
,Var[rN] =

Var(Log(WN))
T 2 (10.58)

The results tabulated in the following tables are in line with our intuition. Pairs trading has
a lower variability in returns but at a cost of lower expected returns.
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Figure 10.12: Optimal control law at time t = 0 and spread =0.5 under dynamic trading for the
following choice of parameter which are already defined earlier: λ = µ = 0.005,T = 0.2,N =

2, s = e0.05∆T , a = 0.16, b = 0.1, σ1 = 0.1, c = 0.1, d = 0.9, σ2 = 0.2, ρ = 0.05. Also ^ 7−→ SS,
• 7−→ SL, ? 7−→ LS, + 7−→ LL and ] 7−→ NN.

trading rule terminal wealth statistics E[Log(WN)] Var[Log(WN)]
pairs trading rule 0.132 0.0288
optimal trading rule 0.207 0.0366

Table 10.1: Terminal wealth distribution statistics initial risky fraction 1=0.2, initial risky frac-
tion 2 =-0.2, stochastic spread=0.7, with parameter: λ = µ = 0.005,T = 0.5,N = 5, s =

e0.05∆T , a = 0.16, b = 0.1, σ1 = 0.1, c = 0.1, d = 0.9, σ2 = 0.1, ρ = 0.2

10.2.8 Concluding remarks
The section analyzed a particular class of algorithmic trading strategy by comparing it to an
optimal trading rule implied by standard dynamic programming. Our objective was to be
provide a framework under which a rigorous risk-return analysis of dynamic trading strategies
is possible.

trading rule terminal wealth statistics E[Log(WN)] Var[Log(WN)]
pairs trading rule 0.1079 0.0262
optimal trading rule 0.176 0.0341

Table 10.2: Terminal wealth distribution statistics initial risky fraction 1=0.2, initial risky frac-
tion 2 =-0.2, stochastic spread=0.55, with parameter: λ = µ = 0.005,T = 0.5,N = 5, s =

e0.05∆T , a = 0.16, b = 0.1, σ1 = 0.1, c = 0.1, d = 0.9, σ2 = 0.2, ρ = 0.2



178 Chapter 10. Lattice methods for pairs trading

trading rule terminal wealth statistics E[Log(WN)] Var[Log(WN)]
pairs trading rule 0.0998 0.0254
optimal trading rule 0.165 0.033

Table 10.3: Terminal wealth distribution statistics initial risky fraction 1=0.2, initial risky frac-
tion 2 =-0.2, stochastic spread=0.5, with parameter: λ = µ = 0.005,T = 0.5,N = 5, s =

e0.05∆T , a = 0.16, b = 0.1, σ1 = 0.1, c = 0.1, d = 0.9, σ2 = 0.1, ρ = 0.2

WN

Probability density

Pairs trading 

Optimal trading

Figure 10.13: Probability distribution of terminal wealth.



Chapter 11

CONCLUSION

Our goal had been to present simple, intuitively appealing and easily implementable numerical
algorithms to solve problems in portfolio theory. We apply this tool to build insight about a set
of dynamic portfolio problems. Transaction costs were an essential feature of our models. We
provided a discrete time lattice framework for analyzing dynamic portfolio problems. Discrete
probability approximations were used as a fundamental tool for solving different variants of
realistic portfolio problems in chapter 6 to chapter 10. Approximate methods were provided
for handling portfolio constraints in chapter 9 and a real life pairs trading application of our
framework was provided in chapter 10.

SDEs (mostly GBM ) in continuous time were approximated and embedded into our lattice
framework. Amongst the ambitious goals for future work we would like to make our lattice
apply to a discrete time dynamical system called cellular automaton (CA). Most mathematical
models in science are based upon the assumption that time and space are continuous, whereas
according to Stephen Wolfram “time and space are discrete” [37]. In future we would like to
create CA like models which are capable of depicting the complex behavior displayed in real
life. Consider the modeling in Chapter 10 for example. We assumed that the spread followed
a well behaved continuous O-U process. However, in reality the spread follows a much more
complex process no SDE could ever aim to model in a continuous framework. We believe
our discrete time lattices could. We could in principle use data in real-life to embed complex
probability structure in our lattices. The structure needs to interact with time and with other
lattice structures denoted by {~k,i} in the macro-economic environment.

The fact is that “real-world” processes have parameters which change with time. As we
highlighted in Chapter 7 most of the value of re-balancing springs from the “non-stationarity”
in risky growths. If we have a GBM with constant drift and volatility then re-balancing does
not have alot of value because the relevant portfolio state vectors for a utility function do
not sufficiently deviate from our optimal positioning to warrant re-balancing under transaction
costs. In this context, a financial analyst’s forecast about the drift and volatility of the stock
has alot of value. Forecasting economic conditions has alot of value because this is tied to the
performance of stocks. We provide a visualization in Figure 11.1 of no-transaction geometries
over an investment horizon in which an investor could perfectly forecast1 the drift and volatility
of the stock in the three equidistant regimes2 in a one year investment horizon. One can see

1Perfect foresight makes the dynamic programming problem time consistent.
2Each regime is of length 1

3 year. See Chapter 7 for a discussion on our regime model.
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that no-transaction geometries under a parameter change model are quite different from the
constant parameter models we saw in Chapter 6.

SELL-SIDE

BUY SIDE

LOCUS

Time in years

RISKY

FRACTION

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 11.1: No-transaction geometries for growth rate maximization when parameters change
over the horizon and investor has perfect foresight. Parameters: m1 = 0.14, σ1 = 0.6,m2 =

0.2, σ2 = 0.5,m3 = 0.15, σ3 = 0.45. Here (mi, σi) is the drift and volatility for regime i.

Our approach in the thesis was based upon experimentation as a basis for discovery. Con-
sider for instance, a famous problem you will most often encounter in stochastic calculus. Let
us suppose W(t) is a standard Brownian motion and we are required to find the stopping time
distribution where the stopping time τ is defined for some positive real a as:

τ = min{t : W(t) ≥ a} (11.1)

Using principles of stochastic calculus we could derive the analytical form for the stopping
time distribution.

However, the thesis provides techniques which could solve the problem numerically with-
out resort to any detailed stochastic calculus principle. All we require is the law of iterated ex-
pectations and the principle of deformation. Our experimental lattice would be L = (Wk,Mk).

Here for W0 = M0 = 0:

4Wk ∼ N(0,4T ) (11.2)
Mk+1 = max{Mk,Wk+1} (11.3)

Now define:

φ(T |F0) = P(τ ≤ T |F0) (11.4)
= P(M(T ) ≥ a|F0) (11.5)
= E(1{M(T )≥a}|F0) (11.6)
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We can now easily determine φ via law of iterated expectations on a deformed probability
structure and determine φ′ which is the approximated stopping time distribution. The results
of our experimental lattices are reasonably accurate by comparing with exact analytic result
for first passage time in continuous time. See Figures 11.2 and 11.3. In Figure 11.2 we use
SQID scheme with 25 branches and in Figure 11.3 we matched first 19 moments of Standard
Brownian Motion.

Τ

0.1 0.2 0.3 0.4 0.5

1

2

3

4

5

6

7

Figure 11.2: First passage time distribution using lattice compared to exact result. SQID
scheme used to create 25 branches for Standard Brownian motion. Parameters: a = 0.25,N =

90,T = 0.2,wmin = −1,wmax = +1,mmin = −1,mmax = +1, dw = 0.05, dm = 0.05. Here a
is the barrier, N is the number of time steps, T is the time period, (wmin,wmax) are the bounds
for actual value of Standard Brownian motion, (mmin,mmax) are the bounds for attained max-
imum value of Standard Brownian motion, dw is the size of state step in Wk-space and dm is
the size of state step in Mk space.

The fact is that real-world processes are much more complex and stochastic calculus prin-
ciples might not exist to analyze them. However, our experimental lattices could provide a
framework of analysis.

The thesis avoided any PDE based approach to the solutions which are popular for contin-
uous time formulations in academic literature.

For instance, a PDE encountered in the transaction cost literature is:

Vt + rxVx + µyVy +
1
2
σ2y2Vyy = 0 (11.7)

with V(x, y, t) := yγ−1φ( x
y , t) and Vx = Vy at ∂B, (1 − α)Vx = Vy at ∂S .

The above PDE can be transformed in to a nice linear PDE via z = x
y (reducing the order

of PDE ) and then w = log(z). This makes the PDE constant co-efficient perfectly linear and
provides stability to a finite difference scheme that involves moving back in time. Solving
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Figure 11.3: First passage time distribution using lattice compared to exact result. Moment
matching of first 19 moments for Standard Brownian motion. Parameters: a = 0.25,N =

90,T = 0.2,wmin = −1,wmax = +1,mmin = −1,mmax = +1, dw = 0.05, dm = 0.05.
Here a is the barrier, N is the number of time steps, T is the time period, (wmin,wmax) are
the bounds for actual value of Standard Brownian motion, (mmin,mmax) are the bounds for
attained maximum value of Standard Brownian motion, dw is the size of state step in Wk-space
and dm is the size of state step in Mk space.

PDEs like these is quite of a challenge because HJB PDE is only valid inside the boundaries
and we don’t know the location of these boundaries. We do, however, know the behavior of
the boundaries which can be exploited with small enough time stepping backwards in time.
The choice of discretization in variables is observed to significantly impact the accuracy and
stability of the PDE.

In the short subsections that follow we state and discuss our future goals:

11.1 Developing methods for improved computational speed

Furthermore, there are few useful tips that slightly improve computational speed. One is ho-
motopic pertubation scheme that we are currently developing. This involves using the optimal
control law in the time step ahead as a feed in to the optimal control search for previous time
step.
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Zk-1 Zk

Figure 11.4: Lattice framework for spread evolution.

11.2 Extending our modeling framework to a wider range of
asset classes

We want to extend our modeling framework outside the GBM model for stock prices. The algo-
rithms in this thesis were specifically developed so that we could handle portfolios consisting
of a wide variety of asset classes e.g. foreign exchange, options, futures etc. As discussed
earlier we have schemes that could essentially handle a wide variety of stochastic processes for
risky assets.

Take jump diffusion as an example. It can be used to model commodity prices, portfolios
with exchange rate, energy portfolios, market crashes, systematic risk etc. For the purpose
of illustrating jump diffusion models in action, consider a portfolio having money in different
currencies for instance dollars and pounds. The basic modeling framework is the same as we
had in our earlier series of manuscripts whereby the investor has some investment objective
over a time horizon.

Let Wk : be the total amount of wealth in pounds for the dynamic investor

Xk : be the amount of wealth in dollars

Yk : be the amount of wealth in pounds

Ek : be the exchange rate for pounds(£) per dollar $.
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If the investor decides to transfer wealth from dollars to pounds then:

X−k+1 =
(A−k − ξk)W−

k ◦ r1

Ek
(11.8)

Y−k+1 = ((1 − A−k ) + (1 − µ)ξk)W−
k ◦ r2 (11.9)

W−
k+1 = (A−k − ξk)W−

k (1 + gk) ◦ r1 + ((1 − A−k ) + (1 − µ)ξk)W−
k ◦ r2 (11.10)

If he decides to transfer wealth from pounds to dollars then:

X−k+1 =
(A−k + ξk)W−

k ◦ r1

Ek
(11.11)

Y−k+1 = ((1 − A−k ) − (1 + λ)ξk)W−
k ◦ r2 (11.12)

W−
k+1 = (A−k + ξk)W−

k (1 + gk) ◦ r1 + (A−k − (1 + λ)ξk)W−
k ◦ r2 (11.13)

If he decides to do nothing then ξk = 0.
In general the control ξk must obey realistic leverage constraints. The risky growth gk over

the interval is comes from a jump diffusion model and solution methodology has already been
discussed by us in Chapter 5 on portfolio deformation schemes. Given the transaction costs,
current value of exchange rate and amount of wealth in a particular asset our dynamic investor
can now decide how much wealth to dynamically transfer from one asset to another over the
time horizon. It is possible to model exchange rate as stochastic volatility jump diffusion in
which case gk = gk(Ek). For the special case of CARA, CRRA and log-utility for example the
optimal policy is independent of the level of wealth and depends upon the fraction/amount of
wealth held in a particular currency with one currency being the numeraire. Clearly it can be
seen that many transfer of wealth models have a similar structure to our original formulation
in terms of risky and non-risky assets.

The purpose had been to show the effectiveness of our modeling framework to a wide
variety of situations.

Consider the case of options for example. Their primary role is to hedge risks in a portfolio.
But it will be interesting to examine the stochastic option value evolution from a portfolio
stand point. The risky growth vector construction is the key. The thesis modeled risky assets.
Accordingly, the risky growth vector of option is given by g? =

V(S k(1+gk),k)
V(S k ,k) as in a standard

Black-Scholes framework. Introduction of the options would only increase the dimensionality
of state space by introducing S k.

Consider for instance a renewable energy company trying to position solar plants over a
wide geographical region. Each solar plant is essentially a risky asset with a value. Depending
upon risk factors which vary geographically but which do have some correlation structure we
could again model our situation in context of dynamic portfolio theory and examine mean-
variance optimality of our geographical positioning.

VA
k = φk( f 1

k , f 2
k , ..., f N

k ) (11.14)
VA

k+1 = φk((1 + g1
k) f 1

k , (1 + g2
k) f 2

k , ..., (1 + gN
k ) f N

k ) (11.15)
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RISKY FRACTION

TIME

No-transaction
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0.2 0.3 0.4 0.5 0.6 0.7

0.55
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Figure 11.5: No-transaction region variation with time for exchange rate model under a simple
jump diffusion model with growth rate maximization for exchange rate portfolio. In the discrete
time re-balancing we have no-transaction strips at t = 0, 0.25, 0.5, 0.75. Parameter choice is :
T = 1,N = 4, λ = µ = 0.01, r1 = e0.05∆T , r2 = e0.07∆T ,m = 0.14, σ = 0.6, θ = 0.1, δ = 0.05.

11.3 Analyze theoretical economic problems
It will be interesting to apply the methods of the thesis to more theoretical economic problems
in portfolio choice. A notable example is the habit formation literature [68].

It would be interesting to explore formulations like these in markets with frictions i.e. trans-
action costs, liquidity constraints etc.

11.4 Incorporating parameter uncertainty into our decision
making methodology

The thesis also wishes the reader to think about prescriptions to deal with estimation error and
parameter uncertainty over the investment horizon. Estimation errors are mainly statistical in
nature. Assume we do not have a model of how the parameters evolve dynamically. The true
parameter values only become visible with time. Can we incorporate this feature in to our
dynamic programming modeling framework ? Should the tools of dynamic programming not
be applied at all because this make the problem time inconsistent. But the central question
should be: are their approximate heuristics that could deal with such problems ?

We believe such heuristics could be constructed:
I- How about we apply standard dynamic programming in a non-commitment situation ?

The dynamic investor estimates the parameter vector µk and as soon as

‖µk′ − µk‖ ≥ δ
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the investor resets the controls for the remaining horizon.
II- We had earlier seen that some investment objectives allow nice decomposability struc-

tures. Now consider there are two investors each with a growth rate maximization objective
over the horizon T . One investor maximizes E[Log(WT )] over the horizon T . Parameter un-
certainty does not allow this investor to allow time consistent controls under transaction costs3.
However, the other investor decomposes his objective so that he maximizes:

E[Log(WT/N)], E[Log(W2T/N)], ..., E[Log(WT )]
for successive intervals. This allows the investor to apply standard dynamic programming

in a time consistent manner.
Consider the dynamic investor trying to minimize the variability of his terminal wealth

about a target level γ. We had earlier seen in Chapter 6 that varying γ quite essentially traces
out an efficient frontier and could help maximize his Sharpe ratio over the given horizon. There
are N re-balancing periods to choose controls for and as new parameters become visible with
time we could re-write the optimal controls.

A possible algorithm could be:
Step 1: Estimate the model parameters for risky growth using an optimal look back deter-

mined historically
Step 2: Need to find γi at the period that maximizes Sharpe ratio over the remaining horizon
Step 3: Find the optimal controls for the remaining horizon
Step 4: Once you move forward in time your forward horizon length shortens and we start

from step 1 again.

Wealth

N

1 2 3 4 5

0.170

0.175

0.180

0.185

0.190

0.195

0.200

Figure 11.6: Realization of wealth for an investor trying to maximize Sharpe ratio by investing
in SP500 and GS starting (2010,1,1) for one year with initial wealth =0.5 and initial fraction in
SP500=0.5. Also Lookback =40 days. Paramater choice T = 1,N = 5, λ = 0.005, r = 0.05

3Under no-transaction costs provided his utility function allows separability in wealth then it is easy to see
that even under parameter uncertainty we could have time consistent controls. This is because value function only
depends on time and is separable in wealth.
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11.5 Incorporating macro-economic factors in to our deci-
sion making methodology

It will be interesting to make our models more comprehensive by bringing macro-economic and
financial variables as factors in the dynamics of risky assets. The forecast of these variables
could go as an input in to our dynamic decision making methodology. That is:

dS t

S t
= (µ + αt)dt + σdWt (11.16)

with αt = B ft where ft is a factor.
Analyzing more complex capital gain tax models would be very interesting.

11.6 A rigorous analysis of different dynamic trading strate-
gies

The thesis analyzed one particular of algorithmic trading strategy using the available tools. It
will be interesting to analyze different kinds of trading strategies based on this pattern. For
example, what are the risk-return characteristics of buying relative to various moving averages
compared other dynamic trading strategies? There are several novel ways we could introduce
transaction costs in to our model.

The valuation of target date funds could be made more rigorous by including transaction
costs and making trading frequency to be less than observation points in a discrete time frame-
work.
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Appendix A

Mathematica code for chapter 4

A.1 Tree construction code:

A.1.1 Tree construction in 2-D

pvals = 8p, q, r, 1 - p - q - r<;

rvals = 9H1 + g1L * H1 + g2L,
1 + g1

1 + g2
,

1 + g2

1 + g1
,

1

H1 + g1L * H1 + g2L
=;

rvals1 = 91 + g1,
1

1 + g1
=;

rvals2 = 91 + g2,
1

1 + g2
=;

pvals1 = 8p + q, 1 - p - q<;

pvals2 = 8p + r, 1 - p - r<;

exp = 9
rvals1.pvals1 � 1 + m1 * DT,

Hrvals1^2L.pvals1 - Hrvals1.pvals1L^2 � Σ12
* DT,

rvals2.pvals2 � 1 + m2 * DT,

Hrvals2^2L.pvals2 - Hrvals2.pvals2L^2 � Σ22
* DT,

rvals.pvals - H1 + m1 * DTL * H1 + m2 * DTL � Ρ * Σ1 * Σ2 * DT=;

sol = 8pvals, rvals< �. Hss = NSolve@exp, 8g1, g2, p, q, r<DL;

dist = 988H1 + g1L, H1 + g2L<, p<, 99H1 + g1L,
1

H1 + g2L
=, q=,

99
1

H1 + g1L
, H1 + g2L=, r=, 99

1

1 + g1
,

1

1 + g2
=, 1 - p - q - r== �. ss@@2DD
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A.1.2 Tree construction in 3-D

pvals = 8p, q, r, ss, t, u, v, 1 - p - q - r - ss - t - u - v<;

rvals = 8u1 * u2 * d3, u1 * u2 * u3, u1 * d2 * d3,

u1 * d2 * u3, d1 * u2 * d3, d1 * u2 * u3, d1 * d2 * u3, d1 * d2 * d3<;

rvals1 = 8u1, d1<;

rvals2 = 8u2, d2<;

rvals3 = 8u3, d3<;

pvals1 = 8p + q + r + ss, 1 - p - q - r - ss<;

pvals2 = 8p + q + t + u, 1 - p - q - t - u<;

pvals3 = 8q + ss + u + v, 1 - q - ss - u - v<;

rvals12 = 8u1 * u2, u1 * d2, d1 * u2, d1 * d2<;

pvals12 = 8p + q, r + ss, t + u, 1 - p - q - r - ss - t - u<;

rvals13 = 8u1 * u3, u1 * d3, d1 * u3, d1 * d3<;

pvals13 = 8q + ss, p + r, u + v, 1 - q - ss - p - r - u - v<;

rvals23 = 8u2 * u3, u2 * d3, d2 * u3, d2 * d3<;

pvals23 = 8q + u, p + t, ss + v, 1 - q - u - p - t - ss - v<;

exp = 9
rvals1.pvals1 � 1 + m1 * DT,

Hrvals1^2L.pvals1 - Hrvals1.pvals1L^2 � Σ12
* DT,

HHrvals1 - H1 + m1 * DTLL^3L.pvals1 � 0,

rvals2.pvals2 � 1 + m2 * DT,

Hrvals2^2L.pvals2 - Hrvals2.pvals2L^2 � Σ22
* DT,

HHrvals2 - H1 + m2 * DTLL^3L.pvals2 � 0,

rvals3.pvals3 � 1 + m3 * DT,

Hrvals3^2L.pvals3 - Hrvals3.pvals3L^2 � Σ32
* DT,

HHrvals3 - H1 + m3 * DTLL^3L.pvals3 � 0,

rvals12.pvals12 - H1 + m1 * DTL * H1 + m2 * DTL � Ρ12 * Σ1 * Σ2 * DT,

rvals13.pvals13 - H1 + m1 * DTL * H1 + m3 * DTL � Ρ13 * Σ1 * Σ3 * DT,

rvals23.pvals23 - H1 + m2 * DTL * H1 + m3 * DTL � Ρ23 * Σ2 * Σ3 * DT,

p � 0.1

=;

H*dist=888u1,u2<,p<,88u1,d2<,q<,88d1,u2<,r<,88d1,d2<,1-p-q-r<<�.

NSolve@exp,8u1,d1,u2,d2,p,q,r<D@@2DD*L

dist = 888u1, u2, d3<, p<, 88u1, u2, u3<, q<,

88u1, d2, d3<, r<, 88u1, d2, u3<, ss<, 88d1, u2, d3<, t<, 88d1, u2, u3<, u<,

88d1, d2, u3<, v<, 88d1, d2, d3<, 1 - p - q - r - ss - t - u - v<<;

dist = dist �. NSolve@exp, 8u1, d1, u2, d2, u3, d3, p, q, r, ss, t, u, v<D@@2DD
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A.2 Trees via more general probability deformation code:

A.2.1 SQID scheme in 1-D

rkl = 0.001;

rku = rmean + 5 * Sqrt@rvarD;

pu = f2@rkuD;

pl = f2@rklD;

dp = Hpu - plL � Num;

g1@p_D := InverseCDF@LogNormalDistribution@mean, Sqrt@varDD, pD;

dist = TableA9NIntegrateAx *

f1@xD
dp

, 8x, g1@iD, g1@i + dpD<E, dp=, 8i, pl, pu - dp, dp<E;

rvals = Transpose@distD@@1DD;

pvals = Transpose@distD@@2DD;

A.2.2 SQID scheme in 2-D

fx1@r_D := PDF@LogNormalDistribution@mean1, Sqrt@var1DD, rD;

fx2@r_D := CDF@LogNormalDistribution@mean1, Sqrt@var1DD, rD;

pu = 1;

pl = 0;

dp = Hpu - plL � Num;

gx1@p_D := InverseCDF@LogNormalDistribution@mean1, Sqrt@var1DD, pD;

xvals = Flatten@8rk1l, Table@gx1@i + dpD, 8i, pl, pu - 2 * dp, dp<D, rk1u<D;

fy1@r_D := PDF@LogNormalDistribution@mean2, Sqrt@var2DD, rD;

fy2@r_D := CDF@LogNormalDistribution@mean2, Sqrt@var2DD, rD;

pu = 1;

pl = 0;

dp = Hpu - plL � Num;

gy1@p_D := InverseCDF@LogNormalDistribution@mean2, Sqrt@var2DD, pD;

yvals = Flatten@8rk2l, Table@gy1@i + dpD, 8i, pl, pu - 2 * dp, dp<D, rk2u<D;

f@l_, k_D := Evaluate@PDF@D, 8l, k<DD;

dist =

Flatten@Table@8prob = HNIntegrate@f@A, BD, 8A, Log@xvals@@iDDD, Log@xvals@@i + 1DDD<,

8B, Log@yvals@@jDDD, Log@yvals@@j + 1DDD<DL; 8NIntegrate@HExp@AD * f@A, BDL � prob

, 8A, Log@xvals@@iDDD, Log@xvals@@i + 1DDD<,

8B, Log@yvals@@jDDD, Log@yvals@@j + 1DDD<D,

NIntegrate@HExp@BD * f@A, BDL � HprobL, 8A, Log@xvals@@iDDD, Log@xvals@@i + 1DDD<,

8B, Log@yvals@@jDDD, Log@yvals@@j + 1DDD<D<,

prob<, 8i, 1, Num<, 8j, 1, Num<D, 1D;
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A.3 Recursion via dynamic programming code

A.3.1 Initial recursion
Hsol1 = FindMaximum@8Total@Hdist �. 88r1_Real, r2_Real<, p_Real< ->

HLog@HΞ1 * r1 + Ξ2 * r2 + H1 - Ξ1 - Ξ2L * sL * H1 - ΛLD * pLLD,

Ξ1 ³ 0 && Ξ2 ³ 0 && HΞ1 + Ξ2L <= 1<, 88Ξ1, 0.25<, 8Ξ2, 0.25<<, AccuracyGoal ® 5DL
tlist1 = Parallelize@ParallelEvaluate@

Off@FindMinimum::regedDD; ParallelEvaluate@Off@FindMaximum::lstolDD; Table@88a, b<,

8l = Max@templist = 8sol1@@1DD, If@a + b > 1, 0, Total@dist �.

88r1_Real, r2_Real<, p_Real< -> Log@a * r1 + b * r2 + H1 - a - bL * sD * pDD<D,

If@templist@@2DD == l, 2, Flatten@Position@templist, lDD@@1DDD, Piecewise@
888a, b<, templist@@2DD == l<, 88Ξ1, Ξ2< �. sol1@@2DD, templist@@1DD � l<<D<<,

8a, amin, amax, da<, 8b, bmin, bmax, db<DD; �� Timing

points = Select@Flatten@tlist1, 1D, ð@@2, 2DD � 2 &D �. 88a_, b_<, 8J_, I_, D_<< -> 8a, b<;

Graphics@Point@pointsD, Axes ® TrueD
JN = Interpolation@Flatten@tlist1, 1D �. 88a_, b_<, 8J_, I_, D_<< -> 88a, b<, J<D;

A.3.2 Subsequent recursion

sol1 = FindMaximumB:TotalBdist �.

88r1_Real, r2_Real<, p_Real< -> Log@HΞ1 * r1 + Ξ2 * r2 + H1 - Ξ1 - Ξ2L * sL * H1 - ΛLD +

JNB
Ξ1 * r1

Ξ1 * r1 + Ξ2 * r2 + H1 - Ξ1 - Ξ2L * s
,

Ξ2 * r2

Ξ1 * r1 + Ξ2 * r2 + H1 - Ξ1 - Ξ2L * s
F * p F,

Ξ1 ³ 0 && Ξ2 ³ 0 && HΞ1 + Ξ2L <= 1>, 88Ξ1, 0.25<, 8Ξ2, 0.25<<, AccuracyGoal ® 6F

some1 = NestListB:tlist = ParallelizeBParallelEvaluate@
Off@FindMinimum::regedDD; ParallelEvaluate@Off@FindMaximum::lstolDD;

ParallelEvaluate@Off@InterpolatingFunction::dmvalDD;

ParallelEvaluate@Off@Interpolation::udegDD;

TableBH*nlist=Hð@@1DD�.8x_,8z_,w_,y_<<®yL;*L:8a, b<,

:l = MaxBtemplist = :Hð@@3DDL@@1DD, IfBa + b > 1, 0,

TotalBdist �. 88r1_Real, r2_Real<, p_Real< ®

Log@a * r1 + b * r2 + H1 - a - bL * sD + ð@@2DDB
a * r1

a * r1 + b * r2 + H1 - a - bL * s
,

b * r2

a * r1 + b * r2 + H1 - a - bL * s
F * p FF>F,

If@templist@@2DD == l, 2, Flatten@Position@templist, lDD@@1DDD,

Piecewise@8880, 0<, templist@@2DD == l<,

88Ξ1, Ξ2< �. ð@@3DD@@2DD, templist@@1DD � l<<D>>,

8a, amin, amax, da<, 8b, bmin, bmax, db<FF, intepo = Interpolation@
Flatten@tlist, 1D �. 88a_, b_<, 8J_, I_, D_<< -> 88a, b<, J<D,

tempsol = FindMaximumB:TotalBdist �. 88r1_Real, r2_Real<, p_Real< ->

Log@HΞ1 * r1 + Ξ2 * r2 + H1 - Ξ1 - Ξ2L * sL * H1 - ΛLD + intepoB

Ξ1 * r1

Ξ1 * r1 + Ξ2 * r2 + H1 - Ξ1 - Ξ2L * s
,

Ξ2 * r2

Ξ1 * r1 + Ξ2 * r2 + H1 - Ξ1 - Ξ2L * s
F * p F,

Ξ1 ³ 0 && Ξ2 ³ 0 && HΞ1 + Ξ2L <= 1>, 88Ξ1, 0.25<, 8Ξ2, 0.25<<,

AccuracyGoal ® 6F> &, 8tlist1, JN, sol1<, nn - 1F; �� Timing
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A.3.3 Analysis of optimal controls obtained - say constructing the bound-
aries of no-transaction regions using ConvexHull[]

data2D = Select@Flatten@some1@@nn, 1DD, 1D, ð@@2, 2DD � 2 && HTotal@ð@@1DDD < 1L &D �.

88a_, w_<, 8J_, I_, D_<< -> 8a, w<;

g1 = Graphics@BSplineCurve@data2D@@ConvexHull@data2DDDD, SplineClosed ® TrueD,

Axes ® TrueD

A.3.4 Code that uses creation of small ‘Balls’ to create the no-transaction
region in chapter 6

points =

Select@Flatten@some@@nn, 1DD, 1D, ð@@2, 2DD � 3 &D �. 88a_, w_<, 8J_, I_, D_<< -> 8a, w<;

nf = Nearest@pointsD;

inRegion@pt : 8_Real, _Real<, eps_RealD := TrueQ@Norm@nf@pt, 1D@@1DD - ptD < epsD;

reg1 = RegionPlot@inRegion@N@8a, w<D, N@.01DD, 8a, 0, 1<, 8w, 0, 0.6<,

Mesh ® False, BoundaryStyle ® Directive@Black, DashedD, PlotStyle ® WhiteD
points = Select@Flatten@some@@2, 1DD, 1D, ð@@2, 2DD � 3 &D �.

88a_, w_<, 8J_, I_, D_<< -> 8a, w<;

nf = Nearest@pointsD;

inRegion@pt : 8_Real, _Real<, eps_RealD := TrueQ@Norm@nf@pt, 1D@@1DD - ptD < epsD;

reg2 = RegionPlot@inRegion@N@8a, w<D, N@.01DD, 8a, 0, 1<, 8w, 0, 0.6<,

Mesh ® False, BoundaryStyle ® Directive@Blue, DashedD, PlotStyle ® WhiteD
Show@

reg2,

reg1D

A.4 Analysis of the optimal control law

A.4.1 Code snippet showing control storage

K1 = Map@Interpolation@Flatten@ð@@1DD, 1D �. 88a_, w_<, 8J_, II_, D_<< ® 88a, w<, II<D &,

some@@2 ;; nnDDD;

K2 = Map@Interpolation@Flatten@ð@@1DD, 1D �. 88a_, w_<, 8J_, II_, D_<< ® 88a, w<, D<D &,

some@@2 ;; nnDDD;
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A.4.2 Code snippet showing use of stored controls for further analysis to
generate efficient frontier for benchmark problem in section 3.4.

some = NestList@8templist = Parallelize@
ParallelEvaluate@

Off@FindMinimum::fmgzDD; ParallelEvaluate@Off@FindMinimum::regedDD;

ParallelEvaluate@Off@FindMinimum::lstolDD;

ParallelEvaluate@Off@InterpolatingFunction::dmvalDD;

ParallelEvaluate@Off@FindMinimum::sdprecDD;

count = count + 1;

Table@88a, w<,

Piecewise@88
sol1 =

Total@
dist �. 8r_Real, p_Real< -> HHHð@@2DD@HΞ * rL � Hs + Ξ Hr - sL + Μ HΞ - aL sL,

w * Hs + Ξ Hr - sL + Μ HΞ - aL sLDL �. Ξ ® K2@@countDD@a, wDLL * pD

, K1@@countDD@a, wD � 1<, 8sol2 =

Total@dist �. 8r_Real, p_Real< -> HHHð@@2DD@HΞ * rL � Hs + Ξ Hr - sL - Λ HΞ - aL sL,

w * HHs + Ξ Hr - sL - Λ HΞ - aL sLLDL �. Ξ ® K2@@countDD@a, wDLL * pD

, K1@@countDD@a, wD � 2<, 8
Total@dist �. 8r_Real, p_Real< -> Hð@@2DD@Ha * rL � Ha * r + H1 - aL sL,

w * HHs + a Hr - sLLLD �. Ξ ® K2@@countDD@a, wDL * pD

, K1@@countDD@a, wD � 3<<D<, 8a, amin, amax, da<, 8w, wmin, wmax, dw<DD,

Interpolation@Flatten@templist, 1DD< &, 80, JN<, nn - 1D;
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Pair Trading Models

B.1 Alternate Pair trading models in section 1 of chapter 11

B.1.1 Model using Log(Zk) = Ak − φ1 − φ2Bk signal

Here long one unit of spread is long one unit of wealth in stock A and short −φ2 units of wealth
in stock B. Here Zk denotes the spread process and (φ1, φ2) are estimated from the historical
data. Here A1

k denotes the price of stock A at the beginning of the cycle and A2
k denotes the

price of the stock at the end of the cycle. Also (λ, µ) are the transaction cost factors in the buy
and sell side direction respectively.

A cycle from going long to short in spread results in:

δk =

(
A2

k

A1
k

− 1
)

+

(
−φ2

B2
k

B1
k

+ φ2

)
(B.1)

≈ Log
(

A2
k

A1
k

)
− φ2Log

(
B2

k

B1
k

)
(B.2)

= (Log(A2
k) − φ2Log(B2

k)) − (Log(A1
k) − φ2Log(B1

k)) (B.3)

AssumingZk is constructed using the mid-point of bid-ask spread we could factor in trans-
action costs and have a new formula for profit δk in a cycle:

δk = (Log((1 − µ)A2
k) − φ2Log((1 + λ)B2

k)) − (Log((1 − µ)A1
k) − φ2Log((1 + λ)B1

k))(B.4)

So we have:

δrealized
k = Log

(
1 − µ
1 + λ

)
+ φ2Log

(
1 − µ
1 + λ

)
+ δ

gross
k (B.5)

where δgross
k = Z2

k −Z
1
k
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B.2 Dynamic Pair Trading Model in section 2 of chapter 11

B.2.1 Position 2: A−1,k > 0 ,A−2,k < 0 withA−1,k ≺ |A
−
2,k|:

A- L - S:

a+
i,k = A−1,kW

−
k + ∆1

k = hW−
k (B.6)

b+
i,k = A−2,kW

−
k − ∆2

k = −hW−
k (B.7)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k − (1 + λk)∆1

k + (1 − µk)∆2
k (B.8)

This implies that 0 ≤ ξ1
k ≤ α

∗ − A−1,k. The second control can be expressed in terms of the
first control via ξ2

k = A−2,k +A−1,k + ξ1
k .

The state processes now evolve as:

A
1,−
k+1 =

(A−1,k + ξ1
k )r1

β1,k
(B.9)

β1,k = (A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (B.10)

A
2,−
k+1 =

−(A−1,k + ξ1
k )r2

β2,k
(B.11)

β2,k = ((A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (B.12)

B- L - L:

a+
i,k = A−1,kW

−
k + ∆1

k = hW−
k (B.13)

b+
i,k = A−2,kW

−
k + ∆2

k = −hW−
k (B.14)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k − (1 + λk)∆1

k − (1 + λk)∆2
k (B.15)

This implies that 0 ≤ ξ1
k ≤ α

∗ − A1
k Also the second control can be expressed in terms of

the first control via ξ2
k = −A2

k − (A1
k + ξ1

k ) .
The state particles now evolve as:

A
1,−
k+1 =

(A−1,k + ξ1
k )r1

β1,k
(B.16)

β1,k = (A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 − λk)ξ1

k − (1 + λk)(−A−2,k − (A−1,k + ξ1
k )))s (B.17)
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A
1,−
k+1 =

−(A−1,k + ξ1
k )r2

β2,k
(B.18)

β2,k = (A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

((1 −A−1,k −A
−
2,k) − (1 − λk)ξ1

k − (1 + λk)(−A−2,k − (A−1,k + ξ1
k )))s (B.19)

C- S - L:

a+
i,k = A−1,kW

−
k − ∆1

k = hW−
k (B.20)

b+
i,k = A−2,kW

−
k + ∆2

k = −hW−
k (B.21)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k + (1 − µk)∆1

k − (1 + λk)∆2
k (B.22)

This implies that 0 ≤ ξ1
k ≤ A

∗ +A−1,k Also the second control can be expressed in terms of
the first control via ξ2

k = −A−2,k −A
−
1,k + ξ1

k .
The state processes now evolve as:

A
1,−
k+1 =

(A−1,k − ξ
1
k )r1

β1,k
(B.23)

β1,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (B.24)

A
2,−
k+1 =

−(A−1,k − ξ
1
k )r2

β2,k
(B.25)

β2,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (B.26)

D- N - N:

a+
i,k = A−1,kW

−
k (B.27)

b+
i,k = A−2,kW

−
k (B.28)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k (B.29)

State control constraints are absent here as state particles evolve with complete freedom.
The state processes now evolve as:

A
1,−
k+1 =

A−1,kr1

A−1,kr1 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(B.30)

A
2,−
k+1 =

A−2,kr2

A−1,kr1 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(B.31)
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B.2.2 Position 3: A−1,k < 0 ,A−2,k > 0 with |A−1,k| ≺ A
−
2,k :

A- L - S:

a+
i,k = A−1,kW

−
k + ∆1

k = hW−
k (B.32)

b+
i,k = A−2,kW

−
k − ∆2

k = −hW−
k (B.33)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k − (1 + λk)∆1

k + (1 − µk)∆2
k (B.34)

This implies that 0 ≤ ξ1
k ≤ α

∗ − A−1,k. The second control can be expressed in terms of the
first control via ξ2

k = A−2,k +A−1,k + ξ1
k .

The state processes now evolve as:

A
1,−
k+1 =

(A−1,k + ξ1
k )r1

β1,k
(B.35)

β1,k = (A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (B.36)

A
2,−
k+1 =

−(A−1,k + ξ1
k )r2

β2,k
(B.37)

β2,k = ((A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (B.38)

B- S - S:

a+
i,k = A−1,kW

−
k − ∆1

k = hW−
k (B.39)

b+
i,k = A−2,kW

−
k − ∆2

k = −hW−
k (B.40)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k + (1 − µk)∆1

k + (1 − µk)∆2
k (B.41)

This implies that 0 ≤ ξ1
k ≤ A

∗ +A1
k Also the second control can be expressed in terms of

the first control via ξ2
k = A2

k +A1
k − ξ

1
k .

The state processes now evolve as:

A
1,−
k+1 =

(A−1,k − ξ
1
k )r1

β1,k
(B.42)

β1,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k + (1 − µk)(A−2,k +A−1,k − ξ
1
k ))s (B.43)
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A
2,−
k+1 =

−(A−1,k − ξ
1
k )r2

β2,k
(B.44)

β2,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k + (1 − µk)(A−2,k +A−1,k − ξ
1
k ))s (B.45)

C- S - L:

a+
i,k = A−1,kW

−
k − ∆1

k = hW−
k (B.46)

b+
i,k = A−2,kW

−
k + ∆2

k = −hW−
k (B.47)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k + (1 − µk)∆1

k − (1 + λk)∆2
k (B.48)

This implies that 0 ≤ ξ1
k ≤ A

∗ +A−1,k Also the second control can be expressed in terms of
the first control via ξ2

k = −A−2,k −A
−
1,k + ξ1

k .
The state processes now evolve as:

A
1,−
k+1 =

(A−1,k − ξ
1
k )r1

β1,k
(B.49)

β1,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (B.50)

A
2,−
k+1 =

−(A−1,k − ξ
1
k )r2

β2,k
(B.51)

β2,k = (A−1,k + ξ1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (B.52)

D- N - N:

a+
i,k = A−1,kW

−
k (B.53)

b+
i,k = A−2,kW

−
k (B.54)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k (B.55)

State control constraints are absent here as state particles evolve with complete freedom.
The state processes now evolve as:

A
1,−
k+1 =

A−1,kr1

A−1,kr1 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(B.56)

A
2,−
k+1 =

A−2,kr2

A−1,kr1 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(B.57)
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B.2.3 Position 4: A−1,k < 0 ,A−2,k > 0 with |A−1,k| � A
−
2,k:

A- L - S:

a+
i,k = A−1,kW

−
k + ∆1

k = hW−
k (B.58)

b+
i,k = A−2,kW

−
k − ∆2

k = −hW−
k (B.59)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k − (1 + λk)∆1

k + (1 − µk)∆2
k (B.60)

This implies that 0 ≤ ξ1
k ≤ α

∗ − A−1,k. The second control can be expressed in terms of the
first control via ξ2

k = A−2,k +A−1,k + ξ1
k .

The state processes now evolve as:

A
1,−
k+1 =

(A−1,k + ξ1
k )r1

β1,k
(B.61)

β1,k = (A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (B.62)

A
2,−
k+1 =

−(A−1,k + ξ1
k )r2

β2,k
(B.63)

β2,k = ((A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (B.64)

B- L - L:

a+
i,k = A−1,kW

−
k + ∆1

k = hW−
k (B.65)

b+
i,k = A−2,kW

−
k + ∆2

k = −hW−
k (B.66)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k − (1 + λk)∆1

k − (1 + λk)∆2
k (B.67)

This implies that 0 ≤ ξ1
k ≤ α

∗ − A1
k Also the second control can be expressed in terms of

the first control via ξ2
k = −A2

k − (A1
k + ξ1

k ) .
The state particles now evolve as:

A
1,−
k+1 =

(A−1,k + ξ1
k )r1

β1,k
(B.68)

β1,k = (A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 − λk)ξ1

k − (1 + λk)(−A−2,k − (A−1,k + ξ1
k )))s (B.69)
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A
1,−
k+1 =

−(A−1,k + ξ1
k )r2

β2,k
(B.70)

β2,k = (A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

((1 −A−1,k −A
−
2,k) − (1 − λk)ξ1

k − (1 + λk)(−A−2,k − (A−1,k + ξ1
k )))s (B.71)

C- S - L:

a+
i,k = A−1,kW

−
k − ∆1

k = hW−
k (B.72)

b+
i,k = A−2,kW

−
k + ∆2

k = −hW−
k (B.73)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k + (1 − µk)∆1

k − (1 + λk)∆2
k (B.74)

This implies that 0 ≤ ξ1
k ≤ A

∗ +A−1,k Also the second control can be expressed in terms of
the first control via ξ2

k = −A−2,k −A
−
1,k + ξ1

k .
The state processes now evolve as:

A
1,−
k+1 =

(A−1,k − ξ
1
k )r1

β1,k
(B.75)

β1,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (B.76)

A
2,−
k+1 =

−(A−1,k − ξ
1
k )r2

β2,k
(B.77)

β2,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (B.78)

D- N - N:

a+
i,k = A−1,kW

−
k (B.79)

b+
i,k = A−2,kW

−
k (B.80)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k (B.81)

State control constraints are absent here as state particles evolve with complete freedom.
The state processes now evolve as:

A
1,−
k+1 =

A−1,kr1

A−1,kr1 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(B.82)
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A
2,−
k+1 =

A−2,kr2

A−1,kr2 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(B.83)

For the sake of completeness we also give the equations of particle evolution along the line
of perfect hedge `:

A- L - S:

a+
i,k = A−1,kW

−
k + ∆1

k = hW−
k (B.84)

b+
i,k = A−2,kW

−
k − ∆2

k = −hW−
k (B.85)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k − (1 + λk)∆1

k + (1 − µk)∆2
k (B.86)

This implies that 0 ≤ ξ1
k ≤ α

∗ − A−1,k. The second control can be expressed in terms of the
first control via ξ2

k = A−2,k +A−1,k + ξ1
k .

The state processes now evolve as:

A
1,−
k+1 =

(A−1,k + ξ1
k )r1

β1,k
(B.87)

β1,k = (A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (B.88)

A
2,−
k+1 =

−(A−1,k + ξ1
k )r2

β2,k
(B.89)

β2,k = ((A−1,k + ξ1
k )r1 − (A−1,k + ξ1

k )r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)ξ1

k + (1 − µk)(A−2,k +A−1,k + ξ1
k ))s (B.90)

B- S - L:

a+
i,k = A−1,kW

−
k − ∆1

k = hW−
k (B.91)

b+
i,k = A−2,kW

−
k + ∆2

k = −hW−
k (B.92)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k + (1 − µk)∆1

k − (1 + λk)∆2
k (B.93)

This implies that 0 ≤ ξ1
k ≤ A

∗ +A−1,k Also the second control can be expressed in terms of
the first control via ξ2

k = −A−2,k −A
−
1,k + ξ1

k .
The state processes now evolve as:

A
1,−
k+1 =

(A−1,k − ξ
1
k )r1

β1,k
(B.94)
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β1,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (B.95)

A
2,−
k+1 =

−(A−1,k − ξ
1
k )r2

β2,k
(B.96)

β2,k = (A−1,k − ξ
1
k )r1 − (A−1,k − ξ

1
k )r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)ξ1

k − (1 + λk)(−A−2,k −A
−
1,k + ξ1

k ))s (B.97)

D- N - N:

a+
i,k = A−1,kW

−
k (B.98)

b+
i,k = A−2,kW

−
k (B.99)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k (B.100)

State control constraints are absent here as state particles evolve with complete freedom.
The state processes now evolve as:

A
1,−
k+1 =

A−1,kr1

A−1,kr1 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(B.101)

A
2,−
k+1 =

A−2,kr2

A−1,kr2 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(B.102)

B.3 General trading model
B- LL:

a+
i,k = A−1,kW

−
k + ∆1

k = h1,+
k W

−
k (B.103)

b+
i,k = A−2,kW

−
k + ∆2

k = h2,+
k W

−
k (B.104)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k − (1 + λk)∆1

k − (1 + λk)∆2
k (B.105)

(B.106)

The state particles now evolve as:

A
1,−
k+1 =

h1,+
k r1

β1,k
(B.107)
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β1,k = h1,+
k r1 + h2,+

k r2

((1 −A−1,k −A
−
2,k) − (1 + λk)(h1,+

k −A
−
1,k) − (1 + λk)(h2,+

k −A
−
2,k))s (B.108)

A
2,−
k+1 =

h2,+
k r2

β2,k
(B.109)

β2,k = h1,+
k r1 + h2,+

k r2

+((1 −A−1,k −A
−
2,k) − (1 + λk)(h1,+

k −A
−
1,k) − (1 + λk)(h2,+

k −A
−
2,k))s (B.110)

C-SL:

a+
i,k = A−1,kW

−
k − ∆1

k = h1,+
k W

−
k (2.111)

b+
i,k = A−2,kW

−
k + ∆2

k = h2,+
k W

−
k (2.112)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k + (1 − µk)∆1

k − (1 + λk)∆2
k (2.113)

(2.114)

The state particles now evolve as:

A
1,−
k+1 =

h1,+
k r1

β1,k
(2.115)

β1,k = h1,+
k r1 + h2,+

k r2

+((1 −A−1,k −A
−
2,k) + (1 − µk)(A−1,k − h1,+

k ) − (1 − λk)(h2,+
k −A

−
2,k))s (2.116)

A
2,−
k+1 =

h2,+
k r2

β2,k
(2.117)

β2,k = h1,+
k r1 + h2,+

k r2

((1 −A−1,k −A
−
2,k) + (1 − µk)(A−1,k − h1,+

k ) − (1 + λk)(h2,+
k −A

−
2,k))s (2.118)

D-SS:

a+
i,k = A−1,kW

−
k − ∆1

k = h1,+
k W

−
k (2.119)

b+
i,k = A−2,kW

−
k − ∆2

k = h2,+
k W

−
k (2.120)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k + (1 − µk)∆1

k + (1 − µk)∆2
k (2.121)

The state particles now evolve as:
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A
1,−
k+1 =

h1,+
k r1

β1,k
(2.122)

β1,k = h1,+
k r1h1,+

k r2

h2,+
k r2 + ((1 −A−1,k −A

−
2,k) + (1 − µk)(A−1,k − h1,+

k ) + (1 − µk)(A−2,k − h2,+
k ))s(2.123)

A
2,−
k+1 =

h2,+
k r2

β2,k
(2.124)

β2,k = h1,+
k r1 + h2,+

k r2

(1 −A−1,k −A
−
2,k) + (1 − µk)(A−1,k − h1,+

k ) + (1 − µk)(A−2,k − h2,+
k ))s (2.125)

E- N - N:

a+
i,k = A−1,kW

−
k (2.126)

b+
i,k = A−2,kW

−
k (2.127)

c+
i,k = (1 −A−1,k −A

−
2,k)W

−
k (2.128)

State control constraints are absent in this stencil as state particles evolve with complete
freedom.

The state particles now evolve as:

A
1,−
k+1 =

A−1,kr1

A−1,kr2 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(2.129)

A
2,−
k+1 =

A−2,kr2

A−1,kr2 +A−2,kr2 + (1 −A−1,k −A
−
2,k)s

(2.130)
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