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a  b  s  t  r  a  c  t

Vestibular  stimulation  induced  acetylcholine  release  in the  hippocampus,  and  acetylcholine  is known
to facilitate  long-term  potentiation  (LTP)  in  the hippocampus.  Thus,  we hypothesize  that  vestibular
stimulation  enhances  LTP  in CA1  in  freely  behaving  rats,  and  this enhancement  depends  on the  acti-
vation  of  septohippocampal  cholinergic  neurons.  Field  excitatory  postsynaptic  potentials  were  recorded
in CA1  area  of behaving  rats  following  stimulation  of the  basal  dendritic  afferents.  LTP  was  induced  by
a  single  stimulation  train (100  pulses  at 200  Hz)  during  passive  whole-body  rotation  or  during  awake-
immobility.  LTP  induced  during  rotation  was significantly  larger than  that  induced  during  immobility.
Pretreatment  with  cholinergic  antagonist  atropine  sulfate  (50  mg/kg  i.p.)  abolished  the  facilitation  of  LTP
during rotation  as  compared  to immobility.  Selective  lesion  of  cholinergic  cells  in the  medial  septum
(MS)  with  192  IgG-saporin  (0.49  �g in 1.4  �l)  also  abolished  the difference  in  LTP  induced  during  rota-
tion  and  immobility,  which  was  found  in  sham-lesion  rats.  192  IgG-saporin  lesioned  rats,  as  compared
to  sham-lesion  rats,  revealed  a depletion  of  MS  cells  immunopositive  to choline  acetyltransferase  and
paling  of  acetylcholinesterase  staining  in the  hippocampus,  without  significant  change  in the number  of
parvalbumin-immunopositive  cells.  We  conclude  that enhancement  of LTP  during  vestibular  stimulation
is  mediated  by  the  activation  of  cholinergic  septohippocampal  cells.  This  is  the  first  direct  evidence  that
vestibular  stimulation  facilitates  hippocampal  synaptic  plasticity  via  a cholinergic  input.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Acetylcholine modulates a wide array of cognitive functions,
including arousal, attention, learning and memory [1–3]. Cholin-
ergic input to the hippocampus originating predominantly from
the medial septum (MS) is particularly important for learning and
memory [4–7]. Selective ablation of septal cholinergic neurons by
intraseptal microinjection of the immunotoxin 192 immunoglob-
ulin G-saporin (192 IgG-saporin) caused spatial learning and
memory impairments in some [8–10] but not all experiments
[11–13]. The cholinergic hypothesis of Alzheimer’s disease postu-
lates that degeneration of cholinergic neurons in the basal forebrain
including the MS  contributes to the cognitive deficits of Alzheimer’s
disease [14,15].

Long-term potentiation (LTP), a long-lasting increase in synaptic
transmission, is widely regarded as the cellular correlate of learning
and memory [16–18].  LTP was first described in the hippocam-
pus of anesthetized and behaving animals [19,20], and there has

∗ Corresponding author at: Department of Physiology and Pharmacology, Univer-
sity  of Western Ontario, Medical Sciences Building, Rm 236, London, Ontario, N6A
5C1,  Canada. Tel.: +1 519 850 2400; fax: +1 519 661 3827.

E-mail address: sleung@uwo.ca (L.S. Leung).

been much evidence that acetylcholine modulates hippocampal
LTP. Application of the cholinergic agonists enhanced hippocam-
pal LTP in vitro [21–23].  In anesthetized rats, hippocampal LTP was
facilitated by tetanic stimulation of the MS,  and this facilitation
was blocked by systemic administration of cholinergic antago-
nists [24,25]. In behaving rats, our laboratory reported that LTP of
the basal dendritic synapses on hippocampal CA1 pyramidal cells
was enhanced when induced during walking as compared to that
induced during immobility [26]. It was  inferred that the endoge-
nous release of acetylcholine, which was  higher during walking
than immobility [27], facilitated basal dendritic LTP during walk-
ing as compared to immobility. Systemic blockade of cholinergic
receptors by scopolamine or lesion of septohippocampal choliner-
gic neurons by 192 IgG-saporin abolished the facilitation of basal
dendritic LTP during walking as compared to immobility [26].

The relation of LTP facilitation and hippocampal theta rhythm
in behaving rats is indirect. After systemic cholinergic blockade,
LTP facilitation was  abolished [26] but theta rhythm remained cor-
related with voluntary movements [28,29]. Theta power during
walking was reduced [30–32] or not significantly changed [33] after
192 IgG-saporin lesion of cholinergic septal neurons. These results
suggest the existence of a non-cholinergic, atropine-resistant theta
during voluntary movements. Recently, we showed that vestibu-
lar stimulation by passive rotation generated a continuous theta

0166-4328/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.bbr.2012.04.013



Author's personal copy

S.K. Tai, L.S. Leung / Behavioural Brain Research 232 (2012) 174– 182 175

Fig. 1. Recording of hippocampal basal-dendritic evoked potential and EEG using implanted electrodes in CA1. (A, B) Representative coronal sections showing locations of
(A)  the anterior stratum oriens stimulating electrode L1 at P3.2, L1.7, (B) the posterior surface alvear L4 and deep L3 stratum radiatum recording electrode pair at P4.6, L2.8.
(C)  Representative basal-dendritic average fEPSP at L3 and L4 following cathodal stimulation of L1; stimulus artifacts are indicated by filled circles. (D, E) EEG from L3 and L4
were  recorded around the time of tetanus (Tet; dotted line) during awake-immobility (IMM;  D) and rotation (SPIN; E). Note the presence of a theta rhythm during rotation
and  large-amplitude irregular activity during immobility.

rhythm of about 6 Hz in immobile rats, and this theta rhythm was
atropine-sensitive and required the integrity of septohippocampal
cholinergic innervation [33]. The increase in acetylcholine level in
the hippocampus following caloric vestibular stimulation [34,35]
was inferred to induce an atropine-sensitive theta rhythm dur-
ing passive rotation [33]. Under urethane anesthesia, the dominant
hippocampal theta rhythm is atropine-sensitive and its frequency
or presence correlated with acetylcholine release [36,37].

Based on the presence of an atropine-sensitive theta rhythm
during passive rotation in behaving rats, we hypothesize that basal
dendritic LTP in CA1 induced during passive rotation (SPIN) is
larger than that induced during awake-immobility without rota-
tion (IMM). We  also hypothesize that the facilitation of LTP induced
during SPIN as compared to IMM  is mediated by the activity of
cholinergic septohippocampal cells.

2. Materials and methods

2.1. Lesion and control rats

Experiments were conducted on 21 adult male Long Evans hooded rats
(244–320 g; Charles River Canada, Quebec, Canada). All animals were given food and
water ad libitum and housed in pairs in Plexiglas cages under climate-controlled
conditions on a 12 h light/dark cycle (lights on at 7:00 a.m.). Five different exper-
iments were done: intact rats with no lesions were used in (1) the first (IMM
vs.  SPIN) and (2) second (atropine-SPIN vs. saline-SPIN), and (3) third experiment
(atropine-IMM vs. saline-IMM). Rats with cholinergic neurons in the MS  lesioned
by  192 IgG-saporin (192 IgG-SAP) were used in (4) the fourth experiment (IMM
vs.  SPIN), and sham-lesion rats with saline infused in the MS  were used in (5) the
fifth experiment (IMM vs. SPIN). All experimental procedures were approved by the
local Animal Use Committee and conducted according to the guidelines of Canadian
Council for Animal Care. All efforts were taken to minimize the pain and suffering
of  animals.

2.2. Electrode implantation

Under sodium pentobarbital (60 mg/kg i.p.) anesthesia, bipolar electrodes were
placed bilaterally in the dorsal hippocampus (P +4.6 mm,  L ±2.8 mm;  P +3.2 mm,  L
±1.7 mm)  as described previously [26,38]. Coordinates were adapted from the atlas

of Paxinos and Watson [39]. Each electrode comprised of a 125 �m stainless steel
wire insulated with Teflon, except at the cut tip and were used for either recording or
stimulation. Recording electrodes were implanted to straddle the cell layer of CA1,
with  the deep electrode in the stratum radiatum and the surface electrode in the
alveus or stratum oriens (referred to as the stratum oriens electrode). Stimulating
electrodes were placed in the stratum oriens on the same side anterior to the record-
ing electrodes, or homotopically on the opposite side. Screws in the skull (one over
the  frontal cortex and one over the cerebellum) served as the stimulus anode and the
recording ground respectively. The depths of stimulating and recording electrodes
were optimized by monitoring evoked potentials during surgery. All electrodes and
screws were fixed on to the skull with dental cement. Hippocampal EEGs and evoked
potentials were recorded at least one week after electrode implantation.

2.3. Lesion of cholinergic cells in the medial septum

Cholinergic neurons in the MS  were lesioned using 192 IgG-saporin (Advanced
Targeting Systems, San Diego, CA) under sodium pentobarbital (60 mg/kg i.p.) anes-
thesia. It consists of a p75 receptor antibody 192 IgG which is conjugated to saporin,
a  ribosome-inactivating toxin. Given that cholinergic neurons are the only cells in
the MS  region that express p75 receptor, 192 IgG-saporin destroys cholinergic neu-
rons without affecting non-cholinergic cells [40,41]. 192 IgG-saporin was diluted
with sterile saline, loaded into a Hamilton syringe, and infused bilaterally into the
MS  (A +0.5, L ±0.5). At each lateral track, the 30-gauge cannula was first lowered to
V  5.7, and then to V 7.8. 192 IgG-saporin (0.35 �g/�l; 0.3 �l at V 5.7, 0.4 �l at V 7.8)
was infused at a constant rate of 0.5 �l/10 minutes using an infusion pump (Harvard
Apparatus, South Natick, MA). After each infusion, the needle remained in place for
10  min. Sham lesion rats were infused with equal volumes of saline. 192 IgG-saporin
and  saline-infused rats were implanted with depth electrodes immediately or 1–2
days after MS  infusion. Hippocampal EEGs and evoked potentials were recorded 2–4
weeks following lesion.

2.4. Recording and analysis of evoked potentials and EEG

Animals were habituated to the recording environment for at least 2 days, prior
to  the start of experiments. Recording was carried out between 10:00 a.m. and
7:00  p.m. Photoisolated current stimulus pulses (0.2 ms) were delivered cathodally
to  one stimulating electrode and monopolar recordings were made. A stimulat-
ing  electrode, ipsi- or contra-lateral to a recording pair of CA1 electrodes, evoked
a  basal-dendritic field excitatory postsynaptic potential (fEPSP) when a negative
field potential was evoked at the surface (stratum oriens) electrode and a posi-
tive potential was evoked at the deep (stratum radiatum) electrode. Two channels
of  evoked responses were filtered at 0.1 Hz to 3 kHz and sampled at 10 kHz, and
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averaged evoked potentials (AEPs) of eight sweeps were acquired online by a custom
microcomputer program.

AEPs were recorded during awake-immobility before and after LTP induction.
Baseline AEPs were recorded for 1–2 h. LTP was  induced by a high-frequency stim-
ulus train (tetanus) delivered either during awake-immobility or passive rotation
described below. The train consisted of 100 pulses at 200 Hz (5 ms  interpulse inter-
val) at a stimulus intensity of 1–1.5× fEPSP threshold. fEPSP threshold is the lowest
stimulus intensity at which an evoked response can be visually detected. Generally,
tetanus did not evoke an afterdischarge. However, a few experiments in which a
short (<15 s) afterdischarge was  evoked were included, since the magnitude of LTP
(expressed at a ratio of the baseline) was  similar to experiments without afterdis-
charge [42]. Following tetanus, AEPs were recorded at “fixed” times at 5, 10, 15, 20,
30, 60, 90, 120, 150 and 180 min. Previous data showed that LTP magnitude was
not  significantly different among test pulses of 1.5–2× fEPSP threshold intensity
[43];  therefore, all AEPs were recorded with test pulse of 1.5× the fEPSP threshold.
Input–output curves were obtained from fEPSP responses of five different stimulus
intensities (1, 1.2, 1.5, 2 and 4 times fEPSP threshold) recorded during baseline, at
1  h and 2 h after tetanus. The maximal slope of the fEPSP during the falling or ris-
ing  phase (within 2 ms  interval) was measured from the AEPs. The baseline value
was  obtained by averaging the last six AEPs (over 30–60 min  period) before tetanus.
For  each experiment, the response after tetanus was normalized by the baseline
average.

EEG was  sampled at 200 Hz after averaging five consecutive samples digi-
tized at 1 kHz, which contributed 3 dB and 10 dB attenuation points at 84 Hz and
180 Hz, respectively. Artifact-free segments of the EEG were manually selected, with
each segment consisting of 1024 points or 5.12 s duration. A power spectrum was
constructed from at least one segment, after smoothing and averaging, spectral esti-
mates had 0.195 Hz resolution, 2.15 Hz bandwidth (interval of smoothing) and >60◦

of freedom [29].

2.5. Experimental design

In the first experiment, intact rats were given tetanus during awake-immobility
or  rotation. During awake-immobility (IMM), the motionless rat was  in an alert
state  with eyes opened and head held against gravity. For rotation (SPIN), the rat
was  placed in a small container (26 × 23 × 21 cm)  and electrodes connected through
a  slide-wire commutator. A steel rod connected to the base of the container was
inserted into the shaft of a drill that was  adjusted to rotate at 36–49 rpm in a verti-
cal  axis. In our previous study, when the rat was rotated at various speeds – low
(20–35 rpm), medium (36–49 rpm) and high (50–70 rpm), a stable hippocampal
theta rhythm was observed during periods of immobility (up to 5 min) in which
the  rat “braced” itself by extending its forelimbs, flexing its hind limbs and tilting its
head, and then remained in the same posture without head and limb movements
[33].  In this study, only medium speed (36–49 rpm) was used because it produced
more consistent and longer periods of immobility as compared to low speed. LTP was
induced during immobility or rotation (within a period of immobility). In addition,
tetanus was  generally given 2–3 min  after the start of rotation.

In  the second experiment, intact rats were injected with cholinergic receptor
antagonist atropine sulfate (50 mg/kg, i.p.) or an equal volume of saline 15 min
before tetanus was  given during rotation (within a period of immobility). In the
third experiment, intact rats were injected with atropine sulfate (50 mg/kg, i.p.) or
saline 15 min  before tetanus was  given during immobility. Although atropine sul-
fate  is often described as a muscarinic receptor antagonist [44,45], it has been shown
to  interact with neuronal nicotinic receptors [46,47]. Therefore, atropine sulfate is
regarded as a non-selective cholinergic receptor antagonist in this study.

In  the fourth experiment, rats infused with 192 IgG-saporin (192 IgG-SAP) were
given tetanus during immobility or rotation (within a period of immobility). In the
fifth  experiment, rats infused with saline into the MS (Sham) were given tetanus
during immobility or rotation (within a period of immobility).

In  all experiments, LTP tests were conducted in a random order using the same
tetanic stimulus parameters. Tetanus was given up to 5 times in each rat, separated
by  at least 5 days. No LTP could be demonstrated 5 days after a tetanus.

2.6. Histology

At the end of experiments, rats were deeply anesthetized with 30% urethane and
perfused through the heart with 400 ml  of cold saline followed by 500 ml of cold 4%
paraformaldehyde solution in 0.1 M phosphate buffer (PB; pH 7.4). The brain was
removed and post-fixed in the latter solution at 4 ◦C. Acetylcholinesterase (AChE)
staining was  performed on hippocampal sections. Choline acetyltransferase (ChAT)
and  parvalbumin (Parv) immunohistochemistry were carried out on MS  sections.
Using a freezing microtome, the hippocampus was sectioned at 40 �m within 12 h
of  fixing while the rest of the brain was kept in 18% sucrose in phosphate-buffered
saline for at least 72 h at 4 ◦C. For the AChE staining, hippocampal sections were
mounted on chrome-alum gelatin coated slides. AChE staining protocol was modi-
fied from the Koelle copper thiocholine method [48], using acetylthiocholine iodide
as  a false substrate to tag the AChE enzyme and ethopropazine as an inhibitor of
non-specific cholinesterases.

For the ChAT and Parv staining, the MS  was  sectioned at 40 �m and they were
first  incubated in 1% sodium borohydride in 0.1 M PB for 15 min  and subsequently
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Fig. 2. Basal-dendritic LTP was larger when induced during rotation (SPIN) than
when induced during immobility (IMM) in intact rats. (A) Traces of fEPSP at the
stratum oriens electrode of a representative rat at baseline (before tetanus), 30, 60
and 180 min  after tetanus. To facilitate comparison, the fEPSPs were scaled to make
the  peak amplitudes of the baseline response appear identical. (B) Normalized fEPSP
slope (mean ± SEM) was  plotted as a function of time. The maximal falling slope of
the fEPSP (within 2 ms interval) after tetanus was normalized by the grand average
of  the last six average fEPSPs taken prior to tetanus. LTP was larger when tetanus was
delivered during SPIN than during IMM,  as confirmed by a significant repeated mea-
sures block two-way (group × behavior) ANOVA. (C) Normalized fEPSP slope was
plotted as a function of stimulus intensity (× threshold) 1 h after LTP induction dur-
ing IMM  or SPIN. * P < 0.01: difference between IMM  and SPIN using Newman–Keuls
test following a significant repeated measures block two-way ANOVA.

rinsed in PB. To block non-specific labeling, they were incubated in 10% normal
goat serum (Sigma–Aldrich, St. Louis, MO)  in 0.1 M PB containing 0.1% Triton X-100
(Sigma–Aldrich) for 1 h at room temperature. The sections were rinsed briefly in
PB  and incubated at 4 ◦C for 48 h in primary antibody solution containing mouse
monoclonal ChAT (1:200; Cedarlane, Burlington, Ontario, Canada) or Parv (1:100;
Sigma–Aldrich) in 1% normal goat serum. Sections were rinsed in three changes
of  PB and followed by incubation in biotin-conjugated goat anti-mouse secondary
antiserum (1:200; Jackson ImmunoResearch, West Grove, PA) for 1 h in room tem-
perature. The sections were then rinsed several times in PB. ABC complex solution
(Vector Laboratories, Burlington, Ontario, Canada) was  prepared 20 min  before use
by  adding equal volumes of solutions A and B in PB (1:1:100). The sections were
incubated in the ABC complex solution for 1 h at room temperature. Following
three washes in PB, the sections were incubated in a solution containing 0.05%
diaminobenzidine tetrahydrochloride (DAB, Sigma–Aldrich) and 0.03% hydrogen
peroxide in PB at room temperature in a fume hood until they reached the desired
color intensity (1–3 min). The sections were then rinsed several times in PB, mounted
on  glass slides. Finally, they were dehydrated in a series of 70%, 95% and 100% ethyl
alcohol, cleared in xylene (5 min  × 2) and cover-slipped with DePex (BDH, VWR
International Mississauga, Ontario, Canada) mounting medium.

The number of ChAT- and Parv-positive cells was quantified in three representa-
tive coronal sections (40 �m) at anterior (∼A 0.7), middle (∼A 0.4) and posterior (∼A
0.2) levels of the medial septum-diagonal band of Broca region. Images of selected
sections were captured with a digital camera using ×100 magnification in a micro-
scope, and cells were counted from the digital images by another person who was
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Fig. 3. Rotation-associated enhancement of LTP was  suppressed by cholinergic antagonist atropine sulfate (50 mg/kg, i.p.). Traces of fEPSP at the stratum oriens electrode
of  representative rats at baseline (before tetanus), 30, 60 and 180 min  after tetanus, with tetanus given during rotation (SPIN; A) and immobility (IMM;  B) 15 min after
administration of atropine sulfate or saline. The fEPSPs were scaled to make peak amplitudes of the baseline responses appear identical. Normalized fEPSP slopes (mean ± SEM)
with  LTP induced during SPIN (C) and IMM  (D) after injection of either atropine sulfate or saline. Repeated measures block two-way ANOVA revealed a significant treatment
effect  in the SPIN group, but not in the IMM  group. * P < 0.05: difference between saline and atropine sulfate using Newman–Keuls test following a significant repeated
measures block two-way ANOVA.

unaware of the treatment history. Electrode placements were histologically verified
in  40 �m thionin-stained brain sections.

2.7. Statistical analysis

One- or two-way ANOVAs were carried out, followed by Newman–Keuls post
hoc if the main or interaction effect was statistically significant (P < 0.05). All statis-
tical  analyses were performed using Prism 4.0 (GraphPad Software Inc., La Jolla, CA)
and GB Stat (Dynamic Microsystems Inc., Silver Spring, MD).

3. Results

Ipsilateral or contralateral stimulation of stratum oriens in CA1
(Fig. 1A) evoked a typical basal dendritic fEPSP which was negative
at the alveus or stratum oriens electrode and positive at the deep
electrode in the stratum radiatum (Fig. 1B and C). The hippocampal
EEG displayed large-amplitude irregular activity during immobility
(IMM; Fig. 1D) and a theta rhythm during rotation (SPIN; Fig. 1E).
FFT analysis of hippocampal EEG during rotation but prior to
tetanus showed an average theta peak frequency of 6.14 ± 0.33 Hz
at the stratum oriens electrode and 6.19 ± 0.33 Hz at the stratum
radiatum electrode (n = 5 rats). The average stimulus intensity for a
single-pulse (0.2 ms  duration) threshold fEPSP response (22 ± 1 �A,
n = 21 rats) or for tetanic stimulation (26 ± 2 �A, n = 52 sessions)
was not significantly different across experimental groups (one-
way ANOVA, P > 0.1). In each rat, AEPs elicited prior to tetanus by the
same stimulus intensity were analyzed. The average slope (n = 16
sessions) had decayed to 82.0 ± 3.3% at the stratum oriens electrode
and 85.0 ± 3.5% at the stratum radiatum electrode, compared to the
previous session.

After a 0.5-s 200-Hz train stimulation of stratum oriens,
enhancement of basal dendritic fEPSPs was found at both stratum
oriens and stratum radiatum recording electrodes. The figures will

present only the negative fEPSPs recorded at the alveus/stratum
oriens electrode, which was directly generated by a basal dendritic
excitatory sink in CA1 [49].

3.1. Induction of basal-dendritic LTP in normal intact rats

LTP was shown as an increase in the slope and peak of the fEPSPs,
above that during baseline. The LTP induced during IMM peaked at
about 2 times the average baseline slope immediately after tetanus,
and then gradually declined to about 1.5 times baseline slope at
180 min  after tetanus (Fig. 2A and B). LTP induced during passive
rotation (SPIN) showed a magnitude larger than that induced dur-
ing IMM,  but with a similar time course (Fig. 2A and B). Repeated
measures block two-way ANOVA revealed significant group (SPIN
vs IMM)  and interaction effects for the potentiation recorded at
the stratum oriens electrode (group effect, F(1,4) = 22.93, P < 0.009;
group × time, F(9,36) = 35.40, P < 0.0001). Newman–Keuls post hoc
tests showed a significant difference between SPIN and IMM  at
all time points except 120 min  post-tetanus (P < 0.01). In addition,
there was  a significant difference in the LTP at the stratum radiatum
electrode (group: F(1,4) = 17.18, P < 0.02; group × time: F(9,36) = 9.57,
P < 0.0001; repeated measures block two-way ANOVA). For stra-
tum radiatum electrode, Newman–Keuls post hoc tests revealed
significance at 5–15 min  post-tetanus (P < 0.01).

Input–output curves of the fEPSP slopes at the stratum oriens
electrodes, recorded at 1 h after tetanus, also confirmed that
LTP was larger when induced during SPIN as compared that
induced during IMM,  at different stimulus intensities (Fig. 2C).
Repeated measures block two-way ANOVA showed significant
group and interaction effects between SPIN and IMM  for the poten-
tiation recorded 1 h post-tetanus (group: F(1,4) = 15.51, P < 0.02;
group × stimulus intensity: F(4,16) = 7.11, P < 0.002). Newman–Keuls
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Fig. 4. Cholinergic lesion of the medial septum (MS) abolished the difference in hippocampal basal-dendritic LTP induced during immobility (IMM)  and rotation (SPIN). (A, B)
Traces  of fEPSP at the stratum oriens electrode of representative rats at baseline (before tetanus), 30, 60 and 180 min after tetanus in sham-lesion (A) and 192 IgG-saporin (192
IgG-SAP) lesion rats (B). The fEPSPs were scaled to make peak amplitudes of the baseline responses appear identical in A and B. (C, D) Normalized fEPSPs slopes (mean ± SEM)
were  larger when tetanus was induced during SPIN compared to during IMM  in sham-lesion rats (C). However, this behavioral modulation of LTP was  absent in 192 IgG-SAP
lesion  rats (D). Repeated measures block two-way ANOVA revealed a significant IMM  versus SPIN effect in sham-lesion rats but not in the 192 IgG-SAP lesion rats. * P < 0.05:
difference between IMM  and SPIN using Newman–Keuls test following a significant repeated measures block two-way ANOVA.

post hoc tests revealed that a significant difference between SPIN
and IMM  at stimulus intensities 1.5–4× fEPSP threshold (P < 0.01).

3.2. Effect of cholinergic blockade on LTP during rotation

Since caloric stimulation of the vestibular receptors increased
hippocampal acetylcholine levels [34,35] and recent evidence
suggests that theta rhythm during passive rotation is atropine-
sensitive [33,50,51],  the increased cholinergic activity during
rotation may  be responsible for the facilitation of LTP. Therefore,
to elucidate the involvement of cholinergic receptors in LTP dur-
ing rotation, rats were injected with atropine sulfate (50 mg/kg,
i.p.) or an equal volume of saline 15 min  before the delivery of
tetanus during SPIN (Fig. 3A and C). At the stratum oriens electrode,
the average LTP induced during SPIN following atropine sulfate
injection was smaller than that induced following saline injection
(Fig. 3A and C). Repeated measures block two-way ANOVA revealed
a non-significant main effect (F(1,4) = 6.68, P = 0.061), but a signifi-
cant interaction effect (F(9,36) = 31.85, P < 0.0001). Newman–Keuls
post hoc tests showed that LTP, when tetanized during SPIN, was
significantly smaller after atropine sulfate than after saline at times
5–60 min  and 150 min  after tetanus (P < 0.05). Similarly, when mea-
sured at the stratum radiatum electrode, LTP induced during SPIN
following atropine sulfate was smaller than that following saline as
shown by a non-significant main effect (F(1,4) = 5.53, P = 0.078) and
a significant interaction effect (F(9,36) = 30.76, P < 0.0001; repeated
measures block two-way ANOVA). Newman–Keuls post hoc tests
revealed significance at 5–15 min  post-tetanus (at least P < 0.05).

To test if atropine sulfate facilitates LTP during IMM,  atropine
sulfate or saline was injected 15 min  before the delivery of tetanus

during IMM  (Fig. 3B and D). LTP induced during IMM  following
atropine sulfate injection was  not significantly different from that
following saline injection. At the stratum oriens electrode, repeated
measures block two-way ANOVA did not show any significant
main (F(1,5) = 0.74, P = 0.43) or interaction (F(9,45) = 1.51, P = 0.17)
effect. Similarly, at the stratum radiatum electrode, there was no
significant main (F(1,5) = 3.77, P = 0.11) or interaction (F(9,45) = 0.92,
P = 0.52) effect.

To determine whether handling/injection affects LTP induced
during SPIN, the same rats that received no injection in the first
experiment (SPIN; Fig. 2A and B) were compared with when they
were injected with saline in the second experiment (saline-SPIN;
Fig. 3A and C). LTP induced during SPIN was  not significantly
different with or without saline injection. At the stratum oriens
electrode, repeated measures block two-way ANOVA did not
show any significant main (F(1,4) = 0.01, P = 0.96) or interaction
(F(9,36) = 0.80, P = 0.62) effect. Likewise, at the stratum radiatum
electrode, there was no significant main (F(1,4) = 0.79, P = 0.43) or
interaction (F(9,36) = 0.29, P = 0.97) effect.

3.3. Effect of lesion of septohippocampal cholinergic cells on LTP

To investigate whether cholinergic septohippocampal neurons
contribute to hippocampal LTP, cholinergic neurons were lesioned
by bilateral infusion of cholinotoxin 192 IgG-SAP into the MS.
Both groups of rats, control sham-lesion (n = 4) and 192-IgG-SAP
lesion (n = 6) groups, showed that LTP was  induced during either
IMM or SPIN, at both stratum oriens and stratum radiatum elec-
trodes. In sham-lesion rats, LTP was  larger when the tetanus was
delivered during SPIN than during IMM  (Fig. 4A and C). At the
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Fig. 5. Photomicrographs of representative coronal sections of the medial septum (MS) and the hippocampus in a sham-lesion and a 192 IgG-saporin (192 IgG-SAP) lesion
rat.  (A) Choline acetyltransferase (ChAT)- and parvalbumin (Parv) immunohistochemistry were performed on MS sections. (B) Hippocampal sections were stained for
acetylcholinesterase (AChE). Note that there is a reduction of ChAT-immunopositive cholinergic neurons in the MS  and a depletion of hippocampal AChE, as shown by a lighter
stain,  in the 192 IgG-SAP lesion rat. Parv-immunopositive GABAergic neurons in the MS were not affected. Solid and open arrows point to a ChAT- and Parv-immunopositive
cell  respectively.

stratum oriens electrode, repeated measures block two-way
ANOVA showed significant main (F(1,3) = 142.45, P < 0.002) and
interaction (F(9,27) = 2.51, P < 0.04) effects, with significant differ-
ences between SPIN and IMM  revealed by Newman–Keuls post
hoc tests at all times except 90 min  post-tetanus. At the stratum
radiatum electrode, LTP induced during SPIN as compared that
induced during IMM  was enhanced for the entire 180 min  post-
tetanus, as demonstrated by Newman–Keuls post hoc tests after a
significant interaction effect (F(9,27) = 4.36, P < 0.002) without a sig-
nificant main effect (F(1,3) = 8.14, P = 0.065; repeated measures block
two-way ANOVA).

In contrast, distinct from sham-lesion rats, LTP induced dur-
ing SPIN was not significantly different from that during IMM  in
192 IgG-SAP lesion rats (Fig. 4B and D). At the stratum oriens elec-
trode, repeated measures block two-way ANOVA did not show any
significant main (F(1,5) = 4.13, P = 0.10) or interaction (F(9,45) = 0.74,
P = 0.67) effect in 192 IgG-SAP lesion rats. Likewise, at the stra-
tum radiatum electrode, there was no significant main (F(1,5) = 0.35,
P = 0.58) or interaction (F(9,45) = 0.41, P = 0.92) effect in 192 IgG-SAP
lesion rats.

When compared to control sham-lesion rats (n = 4), a decrease
in the number of ChAT-immunopositive cells in the MS  was found
in 192 IgG-SAP lesion rats (n = 6; Figs. 5A and 6A). Two-way (group
x section location) ANOVA showed a significant reduction in the
number of ChAT-immunopositive neurons in 192 IgG-SAP lesion
rats, as compared to sham-lesion rats (F(1,2) = 154.64, P < 0.0001;
Fig. 6A). Newman–Keuls post hoc test displayed a significant
decrease in the number of ChAT-immunopositive cells in 192 IgG-
SAP lesion as compared to sham-lesion rats in all three frontal
levels (P < 0.01, respectively). By contrast, the number of Parv-
immunopositive cells in 192 IgG-SAP lesion rats was  not different
from that in sham-lesion rats, as confirmed by a two-way ANOVA

(F(1,2) = 1.06, P = 0.31; Figs. 5A and 6B). Moreover, there was a
marked loss of AChE staining in the hippocampus in 192 IgG-SAP
lesion rats, as compared with sham-lesion rats (Fig. 5B).

4. Discussion

This present study provides original results that vestibular stim-
ulation by passive whole-body rotation enhanced hippocampal
basal-dendritic LTP in freely behaving rats. LTP was  facilitated
when tetanus was delivered during rotation as compared to dur-
ing awake-immobility. Systemic cholinergic blockade by atropine
sulfate or selective cholinotoxic (192 IgG-saporin) lesion of the MS
abolished the enhancement of LTP. Therefore, LTP enhancement is
mediated by activation of septohippocampal cholinergic neurons
during rotation.

4.1. Vestibular stimulation enhances LTP

Basal dendritic LTP was enhanced when the tetanus was  deliv-
ered during walking as compared to during awake-immobility [26].
This is consistent with our results in which facilitation of LTP was
observed when the rat was  tetanized during whole-body passive
rotation compared to during awake-immobility. A recent study
showed that bilateral ablation of the vestibular apparatus had no
effect on hippocampal LTP in behaving rats [52]. However, the lat-
ter study did not investigate LTP induced during different behaviors
such as walking and rotation. To the best of our knowledge, there
have been no studies demonstrating enhancement of hippocampal
LTP by vestibular stimulation. A number of studies showed that sen-
sory stimulation alters hippocampal LTP. LTP recorded in CA1 under
anesthesia was larger in rats raised in 12:12 h light/dark cycle than
those raised in complete darkness since birth [53]. A recent study
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Fig. 6. Counts of choline acetyltransferase (ChAT)- and parvalbumin (Parv)-
immunopositive cells from coronal sections of the medial septum (MS) of 192
IgG-saporin (192 IgG-SAP) lesion rats (n = 6) and sham-lesion rats (n = 4). (A) A signif-
icant decrease in the number of ChAT-immunopositive cholinergic neurons in 192
IgG-SAP as compared to sham lesion rats was observed in MS  sections at three dif-
ferent anterior-posterior levels. (B) The number of Parv-immunopositive GABAergic
neurons was not significantly different between sham and 192 IgG-SAP lesion rats.
Values are expressed as mean ± SEM. * P < 0.01: difference between 192 IgG-SAP
lesion and sham-lesion rats at a particular level, using Newman–Keuls test after a
significant two-way ANOVA.

demonstrated that LTP when recorded in the dentate gyrus dur-
ing the dark phase was larger than that during the light phase in
behaving rats [54].

Previous studies suggested that vestibular and other sensory
information are transmitted to and processed in the hippocam-
pus to facilitate spatial navigation [55–57].  Vestibular inputs are
necessary for path integration [58–61].  Passive rotation has been
shown to modulate the activity of place cells [62,63] while bilat-
eral vestibular inactivation or damage abolished location-specific
firing of place cells [64,65]. We  suggest here that vestibular stim-
ulation enhanced hippocampal LTP, which may  be necessary for
the formation of place fields [66–68].  Degradation of hippocampal
place fields during walking by cholinergic blockade [69] suggests
that acetylcholine in the hippocampus is involved in place field
formation, perhaps by enhancing LTP.

Besides depolarization by blocking potassium conductances
[70,71] and disinhibition by suppressing GABA release [72], acetyl-
choline in the hippocampus may  potentiate basal-dendritic LTP by
facilitating NMDA receptors and their signaling pathways [73,74].
LTP in hippocampal CA1 is sensitive to NMDA receptor antago-
nists including open-channel blocker MK-801 [75,76]. Moreover,

NMDA receptor antagonists, including MK-801, dose-dependently
suppressed LTP induction in the dentate gyrus and impaired air
righting, a set of complex movements requiring an intact vestibular
labyrinth [77].

We showed that LTP was  larger when induced in the pres-
ence of a rotation-induced hippocampal theta rhythm than when
induced during immobility when theta was absent. A theta rhythm
was observed during passive rotation [33] and walking while large
irregular activity was  observed during immobility [28,78]. Walk-
ing [27] and caloric vestibular stimulation [34,35] were shown
to increase acetylcholine level in the hippocampus, and a high
acetylcholine level was associated with the presence of a theta
rhythm [28,36,37,78,79]. We  showed here that cholinergic acti-
vation during a rotation-induced theta rhythm is required for the
enhancement of LTP. GABAergic and glutamatergic neurons in the
MS may  participate in generating a theta rhythm [32,80–82],  but
the participation of these non-cholinergic inputs in hippocampal
LTP during rotation and walking has not been shown.

4.2. Septohippocampal cholinergic modulation of LTP

Several in vitro studies have demonstrated a cholinergic
enhancement of hippocampal LTP using cholinergic agonists or
AChE inhibitors [21,23,83].  In anesthetized rats, hippocampal LTP
facilitated by tetanic stimulation of the MS  was  blocked by sys-
temic administration of cholinergic antagonists [24,25] and MS
tetanus delivered longer than 5 min  before hippocampal LTP induc-
tion will not potentiate hippocampal responses [25]. On the other
hand, tetanic stimulation of the MS  has been shown to suppress
hippocampal LTP in anesthetized rats [84], but MS  tetanus was
delivered 10 min  before hippocampal LTP induction and the tetanus
by itself induced no change in CA1 population spike. The duration of
LTP in the dentate gyrus was prolonged after treatment with AChE
inhibitors in aged behaving rats [85]. An AChE inhibitor physostig-
mine also facilitated basal dendritic LTP in CA1 of behaving rats
during awake-immobility [86].

We demonstrated that atropine sulfate and selective lesion of
septohippocampal cholinergic neurons blocked the enhancement
of LTP induced during rotation. Septal infusion of cholino-
toxin 192 IgG-saporin effectively eliminated ∼80% of cholinergic
ChAT-immunopositive cells, without affecting GABAergic Parv-
immunopositive cells. Since the MS  is the main source of
acetylcholine for the hippocampus [4,5,87], cholinergic influence
on hippocampal LTP is expected to decrease drastically after 192
IgG-saporin lesion of the MS.  The present results are consistent
with previous studies in finding that pretreatment with cholinergic
receptor antagonist scopolamine or specific M1  receptor antagonist
pirenzepine or with septal 192-IgG-saporin lesion abolished the
facilitation of LTP by walking as compared to immobility [26,86].
These results led us to propose that vestibular stimulation activates
septohippocampal cholinergic neurons that release acetylcholine
in the hippocampus, modulating hippocampal synaptic transmis-
sion and plasticity.

5. Conclusion

This present study provides original results that vestibular
stimulation by passive whole-body rotation activates a septo-
hippocampal cholinergic input, leading to enhancement of basal
dendritic LTP in hippocampal CA1 of behaving rats. Besides partici-
pating in formation of spatial memory [3,88,89], septohippocampal
cholinergic neurons may  also be important for sensorimotor pro-
cessing in which activation of the vestibular system provides a
sensory signal to assist in motor planning [90]. A number of studies
have demonstrated that vestibular stimulation can improve cogni-
tion in humans (reviewed in [91–93]). Given that synaptic plasticity
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is altered in patients with Alzheimer’s disease [94] and degen-
eration of basal forebrain cholinergic neurons is a pathological
hallmark of this disease [14,15,95,96],  vestibular stimulation may
provide a novel treatment to improve hippocampus-dependent
cognitive deficits in affected patients.
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