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ABSTRACT 
 

This study tested whether long-term endurance training in older adults (ET; n = 15, 

55 ± 4 years, relative VO2max = 50 ± 8 ml/kg/min) would alter cardiovagal control and 

preserve the cortical autonomic network compared to age-matched controls (CON; n = 

15, 56 ± 4 years, relative VO2max = 37 ± 9 ml/kg/min). The hypothesis predicts 1) altered 

deactivation patterns of the ventral medial prefrontal cortex (vMPFC) in response to 

isometric hand grip (IHG) and 2) greater indices of cardiovagal control; a) increased 

baroreflex sensitivity at rest, b) greater heart rate change (ΔHR) and c) reductions in high 

frequency heart rate variability (ΔHF HRV) in the ET group. Functional magnetic 

resonance imaging was utilized to observe BOLD signal changes. There was no 

difference in measured indices of cardiovagal control between groups and both exhibited 

vMPFC deactivation with IHG. Overall, ET does not preserve cortical functional patterns 

in the older brain or enhance cardiovagal control compared to age-matched controls.     

 

Keywords: cortical autonomic network, ventral medial prefrontal cortex, cardiovagal 

control, baroreflex sensitivity, long-term endurance training, aging 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

Physical inactivity contributes to increased prevalence of cardiovascular disease 

(CVD) which makes it important to understand the mechanisms of how decreased 

physical fitness affects cardiovascular function from an economic, clinical and public 

health perspective (232). The autonomic nervous system (ANS) is a crucial component 

for cardiovascular (CV) system homeostasis. Normal function of the ANS means both 

parasympathetic and sympathetic branches have certain tonic levels of activity and are 

constantly interacting with each other (180). This dynamic equilibrium between 

parasympathetic and sympathetic tone is responsible for the control of numerous CV 

indices, including blood pressure (BP) and heart rate (HR). Chronic increases in 

sympathetic tone with decreased vagal tone are hallmark signs of a disturbed ANS and 

are associated with escalated incidences of morbidity and mortality related to CVD (66).  

A recent meta-analysis suggested that in both normal and diseased individuals 

physical activity benefits neural control of the CV system by increasing parasympathetic 

tone and attenuating sympathetic activity (58). Those individuals with high levels of 

exercise training, such as endurance trained athletes, will have a greater parasympathetic-

mediated control of their CV system compared to normal or diseased populations. 

Unfortunately, the physiological process of normal aging contributes to a decline in CV 

health with a greater frequency of CVD in advancing years (158).  This may be due to an 

altered ANS profile leading to diminished control of the CV with age, as evidenced by a 

reduction in autonomic control of HR (43; 228).  
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Recent years have produced large quantities of research investigating the 

pathogenic role of the ANS in CVD progression, and how ANS dysfunction due to 

normal aging may amplify the development of CVD (158). Findings suggest that 

increased physical activity can slow or reverse the detrimental effects of aging on the CV 

system. For example, older individuals who participate in regular endurance exercise 

exhibit increased vagal tone as observed by greater baroreflex sensitivity (BRS) (226) and 

heart rate variability (HRV) at rest and while exercising (44). It is difficult, however to 

determine if this altered ANS function is due to the physiological processes of aging or if 

it is a result of the decreased fitness levels that occur naturally with age.   

Attention is now focused on a network of forebrain regions responsible for 

autonomic outflow and CV control, collectively termed the cortical autonomic network 

(CAN). Researchers are able to study differences in CV responses to a variety of stressors 

at a central neural level. This is of interest as rodent (232) and human studies (53; 83; 84; 

219) have demonstrated that the central nervous system exhibits a physical activity-

dependent neural plasticity. To date, this phenomenon has not been studied in the context 

of human CAN preservation with age due to endurance training.  

Because enhanced parasympathetic tone is associated with healthier autonomic 

function, this study examined areas previously identified in cardiovagal control, such as 

the ventral medial prefrontal cortex (vMPFC) (362). Using a short term isometric 

handgrip (IHG) exercise of moderate intensity in healthy subjects, cardiovagal control can 

be examined by the large tachycardic response that occurs before sympathetic activation 

(101; 206; 362). By combining a short duration, moderate intensity IHG model with the 

capabilities of functional magnetic resonance imaging (fMRI), we were able to isolate the 

structures within the CAN responsible for cardiovagal control. 
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1.2 PURPOSE 

The purpose of this study was to evaluate whether long-term endurance training 

performed by older adults would have a significant neuroprotective effect on the 

morphology and function of the CAN. Specifically, this study focused on the vMPFC and 

how long-term endurance training performed by older adults affected the cortical patterns 

associated with heart rate responses to an IHG exercise task.  

1.3 HYPOTHESIS AND PREDICTED OUTCOMES 

Long-term endurance training will preserve parasympathetic control of HR through 

sustained functional activation patterns of the vMPFC. This hypothesis predicts that 

endurance trained older adults should have an enhanced HR response, reflecting PNS 

withdrawal, at the onset of IHG exercise, and decreases in the high frequency component 

of heart rate variability compared to age-matched controls. The enhanced PNS 

withdrawal should also be indicated by greater patterns of deactivation in the vMPFC. 

Baroreflex sensitivity recorded at rest is also expected to be greater in endurance trained 

individuals compared to controls. The combined outcome measures will point to a pattern 

of preserved cardiovagal tone and, to extrapolate, a healthier autonomic nervous system, 

thereby offsetting the effect of physiological aging that occurs in less physically active 

individuals.
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 AUTONOMIC NERVOUS SYSTEM  

The autonomic nervous system is responsible for numerous everyday functions and 

is critical for maintaining homeostasis (see Figure 2.1.1). The CV system is highly 

regulated by the ANS, which controls variables such as heart rate, blood pressure, and 

blood flow. The sensitive control of the cardiovascular system by the ANS is divided both 

anatomically and functionally into the sympathetic nervous system (SNS) and 

parasympathetic nervous system (PNS). 

 

Figure 2.1.1 The two anatomical and functional divisions of the autonomic nervous 

system: the parasympathetic and sympathetic branches (taken from (105)). 

  

The traditional view that these two centrally controlled neural systems work in 

opposition to each other is an oversimplification; rather, they work in a dynamic 
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equilibrium, co-operating to fine tune various processes and maintain homeostasis (312). 

For example, in humans at rest parasympathetic outflow (or tone) is greater than 

sympathetic tone but both are present. With age and disease the equilibrium between the 

overall activities of these neural systems can shift and have detrimental effects on an 

individual’s health. The changes in this equilibrium can bring about changes in control 

and function of the cardiovascular system at rest and under various stressors such as 

exercise. Endurance training may help to maintain the sensitive balance between 

sympathetic and parasympathetic outflow and counteract the physiological effects of 

aging.    

2.1.1 SYMPATHETIC NERVOUS SYSTEM 

The sympathetic nervous system has been classically referred to as the body’s 

“fight or flight” system. It acts on the CV system through the effector arm of the ANS via 

two groups of neurons: pre-ganglionic and post-ganglionic. The axons of these neurons 

are responsible for transmitting SNS signals to effector organs and tissues. The cell 

bodies that make up the sympathetic pre-ganglions are located in the intermediolateral 

(IML) cell column that runs from the level of T1 to L1 in the spinal cord (312), the reason 

SNS outflow has also been referred to as the thoracolumbar system or thoracolumbar 

‘outflow’ (312). The shorter pre-ganglionic fibres exit the spinal cord through the ventral 

root (see Figure 2.1.1.1) and are known as the white rami communicantes (195), where 

they project to a collection of ganglia that lie adjacent to the vertebrae (paravertebral), 

known as the sympathetic trunk.  
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At the ganglionic synapse acetylcholine (Ach) is released and binds to stimulate the 

nicotinic cholinergic receptors on the dendrites of the post-ganglionic neuron (312). This 

causes action potentials to travel down the axons of the much longer post-ganglionic 

sympathetic neurons. Once the action potential (AP) reaches the distal end of the neuron 

it signals the release of neurotransmitters (NTs) from an enlarged part of the neuron 

known as a varicosity. The AP signals an influx of Ca
2+

, which causes exocytosis of 

synaptic vesicles containing NTs that stimulate receptors located on the target organ(s) or 

tissue(s). 

The myocardial and pacemaker cells of the heart and the smooth muscle 

surrounding blood vessels are just a few of the effector targets of the SNS. The SNS acts 

on these effectors through the release of NTs such as ATP, neuropeptide Y (NPY), and 

norepinephrine (NE) which then interact with specific receptors. The most studied of 

these NTs is probably NE and when released from sympathetic varicosities NE can bind 

 

Figure 2.1.1.1 The course of sympathetic nerve fibres as they enter and exit the spinal 

cord (adapted from (312)).   
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to either alpha or beta-adrenergic receptors. There are two main subtypes of both the 

alpha (α1 and α2) and beta (β1 and β2) adrenergic receptors, with α1, α2 and β2 located 

on the endothelial and smooth muscle cells surrounding blood vessels. The β1 receptor is 

located in the human heart and is the main adrenergic receptor found there. This receptor 

couples to a stimulating G-protein which activates adenylate cyclase to increase cyclic 

adenylate monophosphate (cAMP). Through a signalling cascade this ultimately causes 

an increase in intracellular Ca
2+

 leading to increased chronotropy and inotropy.   

2.1.2 PARASYMPATHETIC NERVOUS SYSTEM 

The parasympathetic nervous system has been classically referred to as the “rest 

and digest” system. Just like the SNS, the efferent system of the PNS is organized into 

two groups of neurons: pre-ganglionic and post-ganglionic. The pre-ganglionic neurons 

of the PNS utilize acetylcholine as their neurotransmitter but are much longer than the 

pre-ganglionic neurons of the SNS and thus terminate in close proximity to the target 

organ. The cell bodies of the pre-ganglionic neurons are found in the IML cell column of 

the sacral portion of the spinal cord and in these cranial nerve nuclei; cranial nerves III 

(occulomotor), VII (facial), IX (glossopharyngeal) and X (vagus) (312). For this reason 

the PNS outflow has been referred to as the craniosacral system. It is also known as 

“vagal” outflow due to the fact that the vagus nerve carries almost 90% of 

parasympathetic activity. Neurotransmitter Ach released at the synapse between pre- and 

post-ganglionic neurons acts on nicotinic receptors to stimulate the post-ganglionic 

dendrites. Action potentials travel down the much shorter axons of the post-ganglionic 

neurons and release Ach to stimulate cholinergic muscarinic receptors on the target 

organ(s) and tissue(s). 
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Perhaps one of the most important visceral organs acted on by the PNS is the heart. 

Parasympathetic fibres traversing the left and right vagus nerves are distributed to many 

different sites, with fibres terminating at both the atria and ventricles. PNS modulates 

cardiac function through the release of Ach from post-ganglionic nerve terminals, as 

mentioned above. Acetylcholine diffuses across the synaptic cleft and then binds to a 

cholinergic muscarinic receptor. There are five subtypes of muscarinic receptors that have 

been identified; M1, M2, M3, M4 and M5 (33), with the predominant receptor found in the 

heart of most mammalian species, including humans, being the M2 subtype (45; 138; 

263).  

In both the atria and ventricles, the activation of the M2 receptor, which is coupled 

to an inhibitory G-protein, leads to the inhibition of adenylate cyclase thus inhibiting the 

increase in intracellular cAMP. The inhibition of cAMP leads to a decrease in the activity 

of L-type Ca
2+

 current channels (33) therefore decreasing the amount of intracellular Ca
2+

 

which is needed for contraction. In atrial myocytes specifically, the activation of the M2 

receptor may also open an inwardly rectifying K
+
 channel, allowing K

+
 to leave the 

myocyte and hyperpolarize the cell (33). There are more postulated cellular mechanisms 

that result from M2 receptor stimulation but they are beyond the scope of this thesis. The 

net result of these cellular mechanisms initiated by vagal stimulation ultimately leads to a 

decrease in heart contractility and heart rate.            

2.1.3 HEART RATE REGULATION 

The average intrinsic heart rate (IHR) of an individual is based on spontaneous 

depolarization of the pacemaker cells of the sinoatrial (SA) node without SNS or PNS 

influence. In a healthy human the IHR is approximately 100 beats per minute (bpm) but 
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can vary based on traits like age and gender (152). The physiological HR of a healthy 

human at any given time is characterized predominantly by the combined effects of PNS 

and SNS on IHR. For a given stable physiological state, the PNS and SNS inputs 

contribute to a tonic level of activity which determines the HR for that state (180). By 

varying the relative proportion of SNS and PNS activity, heart rate can be tightly 

regulated. The reciprocal interaction of the PNS and SNS is what determines heart rate 

responses to a variety of physiological stressors such as emotion, stress or physical 

activity and is often described in the literature as “sympathovagal” balance. The SA node, 

being richly innervated by PNS and SNS fibres, is the primary site where these two 

systems converge to modulate IHR.  

The average resting HR for a healthy adult is approximately 70 bpm. At rest, the SA 

node is predominantly mediated by parasympathetic tone, which is why average resting 

HR is lower than IHR. In a human study of nonathletes, pharmacological blockade with 

atropine (a PNS inhibitor) saw an increase in mean resting HR from 63 bpm to 117 bpm 

(see Figure 2.1.3.1). Meanwhile blockade with propanolol (an SNS inhibitor, β-

adrenergic blocker) only saw a decrease in mean resting HR from 61 bpm to 51 bpm 

(157). Although this antagonism between both limbs of the ANS is a well known 

phenomenon, the interaction between the PNS and SNS is far more complex than a 

simple antagonism and therefore HR control cannot be a simple additive algebraic 

equation (130). 
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Figure 2.1.3.1 Parasympathetic and sympathetic cardiac control determined with dual 

drug blockade: atropine (0.04 mg/kg total) a parasympathetic blocker and propanolol (0.2 

mg/kg total) a sympathetic blocker in 10 younger nonathletes at rest (taken from (157)).   

   

There are interactions between the parasympathetic and sympathetic limbs that will 

determine their respective effects on HR (180). A high frequency of vagal stimulation 

eliminates cardiac responses to sympathetic stimulation (354). In anesthetized dogs the 

influence of a given level of sympathetic activity on HR became less pronounced with 

increasing levels of vagal stimulation. Increasing stimulation of sympathetic nerves from 

0 to 4 Hz increased HR 80 bpm but had almost no effect on cardiac pacemaker activity 

when vagal stimulation was high (8 Hz) (190). In contrast, a similar experiment that 

looked at myocardial ventricular contractility, showed evidence that vagal effects were 

greater during concurrent sympathetic activity (191).  

The majority of research supports vagal domination of HR, however, it is not 

known whether vagal activity acts to inhibit SNS influence or if sympathetic activity 
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potentiates the effects of vagal stimulation (190). There are many explanations for how 

these potential mechanisms would work and only some will be discussed now. It has been 

suggested that sympathetic potentiation of vagal tone may be due to K
+ 

fluctuations. 

Sympathetic stimulation of the SA node causes a brief uptake of K
+ 

by the pacemaker 

cells and the responsiveness of the cardiac pacemaker to vagal stimulus is sensitive to 

extracellular K
+
 concentrations (191). Catecholamines released due to SNS activity may 

act to further stimulate parasympathetic ganglia, although this was only examined in rat 

skeletal muscle at the end plate motor terminals (176). Also, Ach released from 

parasympathetic post-ganglionic nerve terminals may cause a partial adrenergic blockade, 

inhibiting NE release (214). This has been correlated with certain metabolic changes in 

myocardial cells that act to decrease sympathetic effects on HR (191). 

The different kinetics of both the PNS and SNS is another important aspect of the 

regulation of heart rate control. The parasympathetic limb exerts its effects more quickly 

than the sympathetic does and is able to control HR on a beat-to-beat basis. This has been 

previously examined by stimulating both the vagus and sympathetic inputs flowing to the 

heart of an anesthetized dog. Stimulation of the vagus nerve at both 7 and 10 Hz led to an 

immediate decrease in HR (and immediate increase in HR when stimulation was 

removed), while the HR increase to sympathetic stimulation at 20 Hz was more gradual 

(as was the HR decrease when stimulation was removed) (354). This suggests vagal 

effects on the heart develop very rapidly, usually within one heartbeat, and they decay 

nearly as quickly (243). It is hypothesized that vagal effects are this quick due to several 

factors. First, there is an abundance of Ach that can be released from the vagus nerve and 

bind to M2 muscarinic receptors. The M2 receptors are linked directly to an inward 

rectifying K
+
 channel via a G-protein and thus do not rely on secondary cellular 
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messenger systems like the adrenergic receptors (173). Finally, any Ach that remains in 

the synaptic cleft is degraded very quickly by acetylcholinesterase one of the fastest 

enzymes in the body. It has been suggested that the rate of Ach degradation by 

acetylcholinesterase is a key factor in the dynamic properties of vagal control of heart rate 

(233).   

2.1.4 BAROREFLEX 

The SNS and PNS perform their regulatory functions predominantly through 

autonomic reflexes. Probably the most carefully studied of these autonomic reflexes is the 

arterial baroreceptor reflex or baroreflex (312). In humans, it is the primary mechanism 

through which mean arterial BP is rapidly and tightly controlled despite constant changes 

to differing physiological conditions.  

The baroreflex operates through a negative feedback loop (see Figure 2.1.4.1) 

which originates anatomically from the baroreceptors (226). The arterial baroreceptors 

are highly specialized stretch-sensitive receptors located in the walls of the aortic arch 

and carotid sinus. They relay afferent neural impulses to the central nervous system 

through their activation/deactivation and are needed for the acute control of BP by 

initiating appropriate physiological responses that include changes in HR, vascular 

resistance and myocardial contractility (158). 
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Figure 2.1.4.1 Arterial baroreflex negative feedback loop. Mechanical baroreceptors 

located in the arch of the aorta and carotid sinus respond to stretch of the vessel walls. 

Sensory afferent fibres carry information to neurons in the medulla oblongata (adapted 

from (99)).  

  

With a rise in arterial BP the baroreceptors in the carotid sinus and aortic arch 

respond to the increased stretch of the arterial walls and transmit action potentials through 

sensory afferent fibres in the glossopharyngeal and vagus nerves, respectively. These 

fibres project to the nucleus tractus solitarius (NTS) which is located in the medulla 

oblongata of the brainstem and is the main integration centre for afferent information as it 

receives a variety of sensory inputs (151). The increased neural activity of the NTS 

causes an excitatory response in the caudal ventrolateral medulla (CVLM) and nucleus 

ambiguous (NA), which increases vagal outflow to the heart. Interneurons from the 

CVLM inhibit the rostral ventrolateral medulla (RVLM), which has been described as the 



14 
 

 
 

tonic vasomotor centre (282). With inhibition of the RVLM there is a decrease in 

sympathetic outflow which ultimately causes a decrease in arterial BP. With a fall in BP 

the firing rate of the baroreceptors decreases, reducing the afferent neural information 

received by the NTS and leading to an increased sympathetic outflow from the RVLM 

causing an increase in arterial BP.  

The inverse relationship between arterial BP and HR provides us with a unique 

opportunity to study the sensitivity of the baroreflex.  After many years and experiments 

the sigmoidal stimulus-response curve of the baroreflex was finally described (see Figure 

2.1.4.2) (277). In normotensive humans the operating or set point of the baroreflex curve 

is located in the middle, making it more effective in preventing both hyper- and 

hypotension (202). Because the middle part of the stimulus-response curve is linear, the 

calculated slope is used to quantify the baroreflex sensitivity (BRS). It is often called 

cardiovagal BRS to indicate that the measured response is directed toward the heart and is 

vagally mediated (226). 
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Figure 2.1.4.2 A schematic model of the arterial baroreflex sigmoidal curve and its 

operational parameters developed by Raven et al (2006). It describes the heart rate (HR) 

and mean arterial pressure (MAP) responses to a given carotid sinus pressure (CSP) 

which was manipulated using neck suction (stimulates higher CSP due to greater 

baroreceptor stretch) and inflation (simulates lower CSP due to less baroreceptor stretch). 

Threshold is the CSP at which no further increases in HR or MAP occur. Saturation is the 

CSP at which no further decreases in HR or MAP occur. The operating point is the 

current HR and MAP for a given CSP (taken from (277)).  

     

2.1.5 CHANGES IN ANS FUNCTION WITH ISOMETRIC HAND GRIP 

EXERCISE 
 

Isometric muscular contractions elicit changes in the cardiovascular system of both 

animals and humans (95; 114; 222). These responses include alterations in blood pressure 

and heart rate and are mediated via both limbs of the autonomic nervous system. 

Generally speaking isometric contractions cause an increase in blood pressure and a 

modest yet significant increase in heart rate otherwise known as tachycardia. Because the 

current study tested the hypothesis that cortical cardiovagal control is altered in endurance 



16 
 

 
 

trained older adults, isolation of the PNS component of the HR response to exercise was 

required. 

Vagal influence on heart rate responses is most dominant at heart rates less than 100 

bpm (310) and previous work suggests that the initial tachycardic response to exercise is 

due to vagal withdrawal, owing to the relatively short lag time between HR increase after 

the start of muscular contraction (25; 101; 134; 268). In fact, during sustained isometric 

handgrips completed to exhaustion at 30% maximal voluntary contraction (MVC), the 

first minute showed no increases in muscle sympathetic nerve activity (MSNA) 

(bursts/min) despite large increases in heart rate (204). However, the maximum HR 

increase due to immediate vagal withdrawal alone is at most 30 bpm and any further 

increases in HR are due to increased sympathetic activation with or without concurrent 

PNS withdrawal (266).  

It has been a challenge to tease out the independent contributions of both limbs to 

the rise in HR, but studies using autonomic blockade in both animals and humans have 

been useful (78; 101; 206; 224; 225). In young adults who performed varying intensities 

of isometric handgrips (50-100% MVC) during short periods of time (5-10 seconds), 

administration of atropine (a muscarinic receptor antagonist that blocks parasympathetic 

outflow) significantly reduced the mean tachycardic response by 17 bpm, compared to 

pre-drug trials (101) and has been shown to attenuate the heart rate response on other 

occasions (134; 225). Furthermore, this initial tachycardic response to exercise is not 

affected by adrenergic receptor blockade (225).        

 This biphasic autonomic control of HR response can be mediated by the muscle 

mass, intensity and duration of static exercise performed. Increased pressor reflexes to 

exercise were observed when large hindlimb muscles were electrically stimulated to 
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produce isometric contractions via spinal ventral roots in decerebrated cats (146). Human 

studies have also shown a relationship between greater heart rate responses to static 

exercise with increased muscle mass (see Figure 2.1.5) (104; 223; 286; 308). For 

example, CV responses were progressively greater during isometric contractions at 40% 

MVC by the fingers (digits 2 and 3), forearm (handgrip), knee extension and handgrip 

with simultaneous knee extension (223). 

 

Figure 2.1.5 Heart rate responses to 3 types of sustained isometric contractions 

performed at 30% of maximal voluntary contraction for 3 minutes in young healthy male 

subjects. Dashed line demarcates start of contraction (taken from (308)). 

 

Various investigators have also suggested that HR response to isometric exercise is 

contraction-intensity dependent (78; 104; 189; 192; 305; 308), but it has been difficult to 

determine an exact relationship as there are a multitude of factors to consider. Generally 

speaking, a short but intense contraction or a sustained contraction will cause an increase 
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in sympathetic nerve activity. For example, sympathetic activation will start to contribute 

to the chronotropic response approximately 30 seconds after the start of a 30% MVC 

isometric hand grip (206; 222). During a contraction of shorter duration and  higher 

intensity (75% MVC) compared to those of mild (25% MVC) or moderate (50%) 

intensity there is a significant increase in MSNA that corresponds with increased blood 

pressure and heart rate (350). Contractions of longer duration (i.e. 2 minutes) and milder 

intensities (30% MVC) still emphasize PNS withdrawal initially but will have a greater 

SNS component the longer the contraction is maintained (350). And, if a greater intensity 

is utilized during a sustained contraction the SNS contribution to the heart rate response 

would occur earlier in the time course (200) and would progressively increase instead of 

stabilizing while the contraction was maintained (78; 192).  

A mechanism that has been postulated to explain these relationships revolves 

around the exercise pressor reflex. With this reflex, afferent nerve fibres originating in the 

contracting muscle(s) respond to chemical and mechanical stimuli produced during 

contractions such as glycolytic metabolites and increased fibre tension. Thus with a 

greater muscle mass or increased contraction intensity (i.e. greater number of motor units 

activated) greater activation of the afferent nerve fibres occurs leading ultimately to a 

greater CV response (104). In summary, a short term moderate intensity isometric hand 

grip offers a unique opportunity to study the cortical modulation of PNS outflow during a 

mild intensity exercise.     

2.2 CORTICAL AUTONOMIC NETWORK AND ANS CONTROL 

The primary site of autonomic cardiovascular control is the medulla oblongata (or 

medulla) located in the brainstem, which is the oldest and most primitive region of the 
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brain. However, a certain network of forebrain sites known as the CAN also modulates 

control of the autonomic nervous system. Anaesthetized cats that underwent 

decerebration experienced a 14% fall in resting BP before transection of the vagal and 

carotid sinus nerves which did not change resting BP further (281). In contrast, animals 

that underwent transection of the nerves first had a rapid and large increase in resting BP, 

which then decreased significantly after decerebration (281). It was concluded that this 

fall in BP could be explained as an interruption of tonic descending excitatory outflow to 

neurons participating in the reflex response (281). These findings suggest higher cortical 

structures have a role in cardiovascular control by exerting a tonic influence on some part 

of the blood pressure regulatory mechanism.  

Cortical influence over central cardiovascular control mechanisms has been studied 

for many years by monitoring HR and arterial BP changes in animals during electrical 

stimulation of exposed cortical surfaces (133; 155). Certain areas such as the insular 

cortex and anterior cingulate cortex have been identified to cause depressor and 

bradycardic responses when electrically stimulated in the rabbit (38; 274), but have also 

been involved in pressor and tachycardic responses (366) which could be due to a 

lateralized effect of certain autonomic structures in the forebrain (61). Direct projections 

from certain cortical areas to the brainstem nuclei and specific spinal regions have also 

been described. Ricardo and colleagues were the first to discover direct pathways in both 

the anterograde and retrograde directions between the nucleus tractus solitarius in the 

brainstem and amygdala in the forebrain of the rat using a horseradish perioxidase 

labelling technique (285). The ability to conduct a wide array of experiments in different 

animal species has greatly enhanced our knowledge of cortical influence over the 

cardiovascular system.  
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 Certain auditory, somatosensory, visual and even emotional stimuli can trigger 

cardiorespiratory responses. Even in 1949, theories regarding emotion and its autonomic 

manifestation had been documented (201). Critchley et al were able to show that the 

association between HR acceleration and emotional facial stimuli was predicted by the 

level of activity within a matrix of interconnected brain regions including the insular 

cortex, amygdala, anterior cingulate and brainstem (65). Clinical studies conducted on 

patients with strokes and epileptic seizures in their prefrontal cortex have shown that 

autonomic responses are compromised, indicating a relationship between cortical activity 

and cardiovascular function (51; 56; 252; 254).   

Electrical stimulation of cortical surfaces and implantation of depth electrodes were 

utilized in early human studies to complement the extensive research conducted on 

animals, supporting a higher cortical role in CV control (49; 50; 127; 193). However, it is 

often difficult to determine if comparable connections or functional sites exist within 

humans due to the relatively invasive experimental approaches that have been utilized in 

animals (339).  With the advent of neuroimaging techniques it has been possible to get a 

better understanding of the functional neuroanatomy of autonomic cardiovascular control 

sites, allowing researchers to study whole brain response to certain stimuli rather than 

having to complete multiple investigations in order to determine how many sites are 

involved. It also permits the study of whether certain sites become more or less active 

compared to baseline or resting levels.  

The vast array of experimental and clinical studies has exposed a variety of 

potential sites involved in the CAN. Specifically, for the purpose of this thesis, only some 

sites will be examined in greater detail including the ventral medial prefrontal cortex, 

insular cortex and anterior cingulate cortex. The medial prefrontal cortex and the insular 
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cortex have the greatest amount of evidence in terms of central cardiovascular control and 

are well-established parts of the cortical autonomic network (298; 348). Older studies 

indicated that areas affecting cardiovascular control were spread over a relatively large 

cortical area (68) but the study of them all is beyond the scope of this paper. Areas of the 

brain will also be described using Brodmann’s areas based on the cytoarchitectural maps 

of the cortex published by Korbinian Brodmann (see Figures 2.2.1 and 2.2.2). 

 

Figure 2.2.1 Brodmann’s areas numbered on the lateral side of the brain (adapted from 

(115)). 

 



22 
 

 
 

 

Figure 2.2.2 Brodmann’s areas numbered on the medial side of the brain (adapted from 

(115)). 

 

2.2.1 THE VENTRAL MEDIAL PREFRONTAL CORTEX 
 

The medial prefrontal cortex (MPFC) has been termed a “visceromotor” cortical 

structure as activity in this area is related to changes in blood pressure, heart rate and 

breathing (68; 236; 347). It is located anterior to the corpus callosum (Brodmann’s areas 

10 and 11) and is often anatomically divided into dorsal and ventral divisions (often 

termed prelimbic and infralimbic cortices, respectively). The dorsal region incorporates 

the most inferior portion of the anterior cingulate cortex (ACC) whereas the ventral 

MPFC (vMPFC) is situated below the ventral ACC and includes the orbital frontal gyrus. 

These anatomical divisions seem to be dependent on the afferent projections to, and the 

efferent projections from, the MPFC (348). Specifically, the vMPFC has been shown to 

have connections with the medial dorsal nucleus of the thalamus (207), the amygdala 

(211), multiple lateral hypothalamic nuclei (139), the periaqueductal grey matter (PAG) 

of the midbrain (126), the NTS (348), the RVLM (345) and even the intermediolateral 
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column of the spinal cord (199). Because of the substantial anatomical evidence that the 

vMPFC projects to a number of key foci involved in autonomic function it is highly likely 

to be a modulator of cardiovascular function (257).  

As mentioned previously there are numerous animal studies that have been 

conducted to examine cardiovascular responses and the relationship with cortical activity. 

In 1960, Kaada reviewed experiments conducted in dogs, cats and monkeys to conclude 

that stimulation of the prefrontal cortex area produced vagally-mediated hypotension and 

bradycardia (154). In anaesthetized rats electrical stimulation (125; 236; 257; 345) as well 

as chemical microstimulation with L-glutamate (12) of the vMPFC caused depressor 

responses. Chemical stimulation mimics the effects of electrical stimulation, indicating 

the responses are likely due to vMPFC neurons and not stimulation of neurons located in 

nearby cortical areas (12; 348). Electrical stimulation of the vMPFC in awake rabbits also 

elicits hypotension as well as bradycardia (38). These depressor responses are 

accompanied by decreased activity of both the lumbar and splanchnic nerves, in addition 

to decreased firing of sympatho-excitatory barosensitive neurons located in the rostral 

ventrolateral medulla (345). This suggests a possible sympathoinhibitory role of the 

vMPFC in terms of cardiovascular control. In contrast, electrical stimulation of the 

vMPFC in urethane-anesthetized rats caused a depressor BP response and in 

unanesthetized animals a pressor response. The authors concluded under normal 

conditions a pressor response is elicited by vMPFC stimulation due to SNS activation as 

evidenced by the attenuated pressor response when animals were pretreated with 

mecamylamine (a long-lasting ganglion blocker) (330).      

 Enhanced activity in the vMPFC during vegetative states (i.e. sleep) in monkeys 

(289) and during the resting state in humans (276) suggests that the vMPFC may be more 
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involved in PNS rather than SNS control (60). The vMPFC may also be involved in 

parasympathetic control of the cardiovagal baroreflex. Chemical blockade of synaptic 

transmission within the vMPFC attenuated baroreflex-mediated vagal outflow to the heart 

without affecting baroreflex gain (284). In conscious humans, baroreceptor unloading 

through a lower body negative pressure manoeuvre elicited deactivation of the vMPFC in 

conjunction with an increase in HR (163). Furthermore, a mild IHG exercise produced 

robust tachycardic and pressor responses without peripheral sympathetic nerve activation, 

which were strongly correlated with deactivation of the vMPFC (362). It seems more 

likely that the vMPFC has a modulatory action over cardiovascular control, specifically 

the baroreflex, rather than a tonic influence because ablation of the vMPFC does not 

cause changes in mean arterial BP or heart rate (236; 284; 346; 347).      

2.2.2 THE INSULAR CORTEX 
 

In humans, the insular cortex (IC) is a portion of the cerebral cortex folded deep 

within the lateral sulcus (see Figure 2.2.2.1) obscured by the frontal, temporal and parietal 

lobes (Brodmann area’s 13 and 14). There are two distinct cytoarchitectonic divisions of 

the IC; granular cells in the posterior region and agranular cells in the anterior region. It is 

an important integration centre of visceral inputs with behavioural and autonomic 

responses (5) and in regards to cortical structures involved in blood pressure control it has 

received the most attention. 
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Figure 2.2.2.1 Insular cortex of the left hemisphere, exposed by removal of the opercula. 

Insular anatomical components: (1) Gyri breves insulae (2) Sulcus centralis insulae (3) 

Gyrus longus insulae and (4) transverse temporal gyri (adapted from (14)). 

 

 In animal studies both electrical and chemical stimulation of the insular cortex 

produced changes in blood pressure, heart rate and respiration (37; 124; 153; 274; 292; 

363). Generally it was observed that stimulation of the rostral posterior IC increased BP 

and caused tachycardic responses and stimulation of the caudal posterior IC decreased BP 

and caused bradycardic responses. In a study by Oppenheimer and Cechetto, these 

chronotropic responses were observed independent of BP changes. They can be abolished 

by atenolol but not atropine suggesting their mediation through increases or decreases in 

sympathetic activity (253).  

There is also evidence that the insular cortex is responsible for the modulation of 

baroreflex sensitivity in rats and monkeys (47; 297; 365; 366). Zhang and colleagues 

were able to identify 131 baroreceptor-related neurons in the insular cortex of 

anesthetized monkeys (365) and stimulation of baroreceptor afferents was shown to 
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change the firing pattern of neurons within the IC (47). In animal studies lateralization of 

cardiac control has been observed between the left and right hemispheres. In the study 

mentioned above by Zhang and colleagues more baroreceptive units were found in the 

right IC compared to the left (365). Another study conducted by Zhang et al showed that 

cortex lesions in the left posterior IC significantly increased baroreflex gain while lesions 

in the right posterior IC did not affect gain but significantly increased HR and BP (366). 

In a mouse model that utilized middle cerebral artery occlusion, elevated levels of 

epinephrine causing cardiac dysfunction were found following ischemia of the left IC but 

not those with right IC ischemia (220).              

When examining human patients with ischemic stroke localized to the insula, there 

is a significant reduction in both low and high frequency heart rate variability and 

standard deviation of all normal-to-normal R wave intervals, commonly used measures of 

autonomic function (337). Recent neuroimaging studies conducted in healthy humans 

have observed activation of the IC in a variety of manoeuvres that elicit autonomic 

arousal such as mental arithmetic (61), Stroop task (106), and many more. The 

involvement of the IC in autonomic control is also reported in situations of physical stress 

such as inspiratory capacity apnea (199) and mild handgrip exercise (362).   

Electrical stimulation of the IC has occurred in humans, specifically epileptic 

patients before undergoing temporal lobectomy for seizure control. A study by 

Oppenheimer et al also observed lateralization of cardiovascular control with stimulation 

of the left IC causing bradycardia and depressor responses and stimulation of the right IC 

causing tachycardia and pressor responses (255). Research conducted previously in our 

lab has shown with baroreceptor unloading there is a significant increase in the BOLD 

signal of the right posterior insula and not the left, suggesting the involvement of this 
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structure in sympathoexcitation (163). In summary, it seems that the right IC plays a 

predominant role in regulating vasomotor sympathetic tone and the left IC is predominant 

in establishing vagal tone and sympatho-inhibition (255).    

As with the vMPFC, electrophysiological and neuroanatomical tracing studies show 

that the insular cortex projects to a wide range of brain structures involved in autonomic 

control.  The pressor regions of the posterior IC project to the vMPFC and amygdala 

while the depressor regions project strongly to the primary somatosensory cortex and 

ventral basal thalamus (348). There is also reciprocal connectivity of the baroreceptor-

related neurons between the left and right insular cortex (364). Of note, is the lack of 

corticospinal connection and efferent connection between the IC and ventrolateral 

medulla which was described above for the vMPFC (348). Another contrast is the large 

amount of afferent projections that converge on the IC compared to the vMPFC. The IC 

receives significant visceral afferent information by relays through the NTS, parabrachial 

nucleus and visceral sensory thalamic nuclei (46).  

2.2.3 THE ANTERIOR CINGULATE CORTEX 
 

The anterior cingulate cortex (ACC) comprises part of the medial prefrontal cortex 

located directly in front of the corpus callosum (Brodmann area’s 24, 32, and 33) and 

participates in a diverse range of functions. The dorsal and subgenual (also referred to as 

ventral) ACC are two distinct structural and functional subdivisions of this area. The 

dorsal ACC (dACC) has been implicated in the cognitive functions of mediating response 

inhibition (41) and error processing (42). The ventral ACC (vACC) on the other hand has 

been implicated in the processing and integration of emotional stimuli (210; 315).  
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These processes are closely related to autonomic function and both subdivisions of 

the ACC have numerous connections to structures heavily involved in autonomic control, 

including the brain sites mentioned above (208). The pyramidal neurons in the ACC also 

project directly and indirectly to a variety of subcortical structures associated with 

homeostasis including the hypothalamus (251) and PAG (6). Contributions of afferent 

somatic and visceral information to ACC activity during contextual modulation of 

autonomic arousal (62; 64) also indicates a crucial role of the ACC in autonomic control.    

Early animal studies using electrical stimulation in both subdivisions of the ACC 

observed autonomic responses, including changes in heart rate and blood pressure (153; 

155). Similar to the insular cortex, dACC activation was correlated with increased 

sympathetic outflow following a variety of manoeuvres that induced cardiovascular 

responses such as the Stroop task (208), IHG (63) and baroreceptor unloading (163). In 

particular, patients with dACC lesions showed less sympathetic outflow and autonomic 

control of cardiovascular responses during cognitive and motor efforts compared to 

healthy subjects (63). There is some evidence that the vACC may contribute to the 

modulation of PNS activity as activation of the area correlated to increased high 

frequency heart rate variability (208). Critchley and colleagues argue for a central role of 

the ACC, amongst the CAN framework, in the production and control of behaviourally 

integrated patterns of autonomic activity (63). 

2.3 AGE AND ANS FUNCTION 
 

The normal aging process invokes a variety of changes within the human body 

including complex structural and functional changes to the heart and blood vessels of the 

cardiovascular system. Reduced cardiac output, a lower maximal heart rate and reduced 
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aerobic work capacity occur generally with age. One of the many changes in the CV 

system is arterial stiffening which leads to increased systolic blood pressure and pulse 

pressure (158). This arterial stiffening is generally thought to be brought on by increased 

sympathetic activity with advancing age which reflects significant changes to the 

autonomic control of the CV system, specifically the shift in equilibrium between 

sympathetic and parasympathetic tone.  

The effect of aging on human sympathetic activity has been a much studied topic 

due to its high correlation with CVD, specifically increased incidences of essential 

hypertension, cardiac failure, and ventricular arrhythmias that occur with elevated 

sympathetic tone (159; 217; 301). Neurohumoral methods of examining sympathetic 

activity, such as plasma norepinephrine spillover, have indicated age-related increases in 

sympathetic activity due to elevated levels of whole-body norepinephrine concentration 

and spillover rate (132; 231).  

To complement neurochemical methods, electrophysiological recordings of 

sympathetic nerve firing rates using microneurography have also been utilized. Increased 

MSNA recorded from the peroneal and tibial nerves in older adults under resting 

conditions was observed several decades ago (230; 325) and has been verified in more 

recent studies (150; 234). Peroneal nerve MSNA outflow was doubled in older compared 

to younger adults similarly matched for physical fitness levels (242). The attenuation of 

α-adrenergic responsiveness known to occur in older men (76) may explain the elevated 

MSNA activity at rest which is compensating for and providing sympathetic constrictor 

support for blood pressure (349). On the other hand, down-regulated receptor 

responsiveness may compensate due to an already elevated sympathetic drive.   
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Although advancing age does not significantly affect resting heart rate per se (182; 

183; 321), it does affect the heart rate response to exercise (158; 306; 322; 331).  

Evidence from neurochemical observations suggests that sympathetic drive to the heart 

increases with age (86; 307), but older individuals generally produce a smaller 

tachycardic response to isometric (85; 258; 294; 331) and dynamic exercise (169; 294; 

332). Decreased β-adrenergic responsiveness causes this diminished response (see Figure 

2.3.1) which contributes to an attenuated left ventricular contractile response to exercise 

(307) despite older individuals having larger cardiac norepinephrine spillover (85). 

 

Figure 2.3.1 Heart rate response to isometric hand grip exercise at 40% MVC to 

exhaustion, are greater in younger male controls compared to healthy older men (adapted 

from (307)). Data are mean ± SE. Peak exercise = final 10% of exercise period. * P < 

0.05 vs. older men.   

  

As mentioned in a previous section the heart rate response to exercise relies on the 

interaction between both the sympathetic and parasympathetic systems. Over several 

decades there have been many human studies that have looked at the decline in 
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parasympathetic control of the heart with age (80; 119; 181) with less withdrawal of 

cardiac vagal tone causing decreases in heart rate response to exercise (307). Decreased 

vagal control of the aging heart also compromises baroreflex gain (see Figure 2.3.2) (158; 

226). Unfortunately, in humans, we are limited in our ability to dissect out points 

throughout the baroreflex loop which are most affected by physiologic aging but some are 

presented here. 

 

Figure 2.3.2 Declining cardiovagal BRS values from young (18–37 years old), middle-

aged (38–56 years old), and older (57–79 years old) adults (taken from (226)). * P < 0.05 

vs. young subjects. † P < 0.05 vs. middle-aged. 
   

It is unknown whether a given baroreceptor stimulus induces the same afferent 

signals in young adults as it does with older adults (226). In a study conducted on rats, 

older animals required more of a vessel wall distortion to reach the same neural discharge 

patterns observed in younger animals (7). The increased arterial stiffening, mentioned 

earlier, that occurs with age may impair baroreflex function due to structural (i.e. 

atherosclerosis) or functional (i.e. reduced nitric oxide activity) changes in the vessels 
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(287). Because arterial stretch is a key component of baroreflex activation (9), stiffening 

within the barosensory segments of the reflex loop such as the aortic arch and carotid 

arteries may reduce the stimulus applied to the baroreceptors during a given change in 

blood pressure (226). This in turn would lead to a blunted baroreflex-mediated change of 

heart rate in older adults.  

In regards to another point in the baroreflex arc, the actual end organ response (i.e. 

changes in R-R interval) could be interrupted via a host of factors. For example, in a 

canine heart failure model, a defect was observed in the pre-junctional parasympathetic 

ganglion which could result in diminished vagal control if neural impulses cannot be 

transmitted efficiently (16). Additionally, it has also been suggested that the aging heart 

has decreased M2 muscarinic receptor density (32), altered post-junctional cholinergic 

signalling mechanisms, decreased cardiac responsiveness to muscarinic receptor 

activation (188; 272), and potential changes in pre-junctional regulation of Ach activity 

(158). Any of these changes would be enough to cause an impaired ability of vagal nerve 

activity to elicit an end organ heart rate response.  

These changes could also explain the reduced heart rate variability that occurs with 

aging. Even though aging does not necessarily alter resting heart rate, it does decrease 

resting heart rate variability and is discernible even after 10 years of age (171; 245; 316). 

Spectral analysis studies have shown specifically that the high frequency power in the 

heart rate variability spectra and the high-to-low frequency power ratio (both used more 

often as a measure of PNS control than total power) is diminished with age (117; 293). In 

summary, older individuals seem to have a reduced range of parasympathetic and 

sympathetic responses to physiological stressors as well as a less adaptive and responsive 

cardiovascular system due to declines in autonomic control with age. Interestingly, these 
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declines may be explained by alterations in central processing pathways from higher 

cortical centres. Robinson and colleagues determined that baroreflex gain can be altered 

acutely by stroke (287), pointing to another site in the baroreflex arc that may be affected 

by age, the brain.  

2.4 EFFECTS OF AGE ON THE BRAIN 
 

Unfortunately, the cardiovascular system is not the only system in the body affected 

by physiologic aging. The brain is also negatively affected by age (34), which in turn may 

contribute to the dysfunction of the ANS previously discussed, as the cortical autonomic 

network is a modulator of CV control (48). Much of the research that has been conducted 

in this area examines age-related structural alterations with less of a focus on functional 

changes. As early as 1928 scientists had noticed age-related neural deterioration (336) 

and it can be summarized succinctly in this quote by neurobiologist Frederick Tilney, 

“The senile brain is always small and atrophied. Its weight and volume are much 

diminished. The atrophy is predominant in the frontal lobe...The white matter of each 

individual convolution is decreased.” To complement this, more recent widespread 

findings have also found ventricular enlargement (30; 90; 93; 270) total brain atrophy 

(91), loss of cortical thickness (90) and decreased grey and white matter volumes (280) 

(see Figure 2.4.1). 
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Figure 2.4.1 Sagittal MRI images, presented in neurological convention, of A) young 

adult brain and B) 94 year old brain free of dementia. Notice the enlarged ventricles and 

total tissue atrophy (adapted from (136)).  

  

The general scientific consensus is that age influences total brain volume negatively 

but there are large differences between specific structures with some structures declining 

substantially in old age and others being better preserved. In addition, different structures 

appear to have different age trajectories with some declining linearly with advancing age 

and others following a quadratic path (90). To date there are more than 50 cross sectional 

magnetic resonance imaging studies that have tested the effects of age on the volume and 

thickness of various brain structures (90). Grey matter (GM) specifically is reduced with 

age and its decline can begin relatively early in life (59; 113; 148; 279; 283; 295; 324; 

352). In an extensive review, the caudate and putamen (components of the basal ganglia) 

were the subcortical structures most severely affected by age with generally larger effects 

for the putamen than the caudate (90). Grey matter loss in the cortex is somewhat greater 
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than in subcortical structures (352; 353) with the effects of age most prominent in the 

frontal and prefrontal areas (1; 31; 92; 113; 295; 327). These results support the “last in, 

first out” hypothesis meaning the last areas of the brain to develop phylogenetically and 

ontogenetically are the first to be affected by normal aging (90). The fact that numerous 

studies have found decreased volumes in these areas also corresponds well with 

neuropsychological studies that show executive processing skills (which depend heavily 

on frontal circuitry) are the cognitive functions most affected by age (303). 

The effects of age on white matter (WM) volume are different compared to those 

seen for GM. White matter consists largely of myelinated long distance axonal 

projections that connect many areas of the brain (90). Typically WM volume continues to 

increase until 40 to 50 years of age before rapid accelerating volume reductions occur 

(141; 149; 280; 296). Jernigan and colleagues discovered that despite the later onset of 

decline, WM loss actually exceeded that of GM (149). However, similar to GM the 

strongest effects of WM volume-age dependent relationships were found in the frontal 

and temporal areas (296). Post-mortem studies in both humans and primates have 

confirmed WM decreases observed with magnetic resonance studies and shown loss and 

shrinkage of myelinated fibres (205; 267; 271). 

Recently, there has been great interest in determining the cellular and molecular 

mechanisms behind the neurobiological processes that are responsible for these 

morphometric changes. There are many hypotheses with one of the more popular centred 

around neurotrophins. Neurotrophins are a class of proteins that include nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3) and 

neurotrophin 4/5 (NT-4/5). Neurotrophins are especially important for brain plasticity and 

development, and may explain regional differences in structural decline as well as 



36 
 

 
 

individual variations (90). Neurotrophins are involved in regulation of neuronal survival 

(3; 221), axonal growth (52), synaptogenesis (256) and neurotransmission (198).  

BDNF has received particular attention because it is expressed highly in the 

prefrontal cortex and hippocampus (209) and reduced levels of BDNF in various regions 

of the brain have been correlated with neurodegenerative and psychiatric pathologies 

(269). Serum and plasma BDNF levels have also shown declines with advancing age 

(110; 194). Driscoll and colleagues were the first to show in a recent longitudinal study 

that decreases in plasma BDNF were associated with steeper rates of age-related 

volumetric decline (79) and may also be associated with neuronal loss (97). BDNF has 

also received much attention for its single nucleotide polymorphism known as Val66Met. 

Compared to the Val-BDNF carriers, individuals with the Met-BDNF gene show larger 

age-related reductions of prefrontal cortical (241) and amygdala volume (323).            

There is ample evidence that normal aging causes morphometric changes in the 

brain and that a regionally heterogeneous pattern occurs. The difficult part is determining 

to what degree these structural changes lead to altered neural function and cognitive 

abilities; the cause and effect relationship is difficult to pinpoint. Scientists generally 

agree that aging is associated with reduced cognitive functions in the areas of mental 

speed, episodic memory, executive and flexible cognition, and non-verbal problem 

solving (90). There is major motivation to study areas in the brain responsible for the 

control of these functions (such as the hippocampus), specifically in the context of 

neurodegenerative pathologies like Alzheimer’s disease. Comparatively, less attention is 

paid to areas in the brain that form the CAN and are responsible for autonomic 

cardiovascular control. 
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2.5 ENDURANCE TRAINING AND ANS FUNCTION 
 

Endurance training (ET) contributes to a healthier cardiovascular system with some 

of the many adaptations including increased maximal cardiac output, stroke volume, 

hemoglobin concentration, greater capillary density, and decreased resting heart rate, 

blood pressure and systemic vascular resistance. It has been suggested that the beneficial 

effects on the CV system through increased physical activity occurs via alterations in 

neural control of circulation (17; 58; 367). In 1977, Scheuer and Tipton suggested in a 

review of literature that resting bradycardia due to ET may be due in part to both a 

decrease in sympathetic and an increase in parasympathetic influence (299). This shift in 

autonomic tone that occurs with ET has been the focus of much research over the past 

few decades. 

Evidence from rodent studies has consistently supported reductions in resting and 

reflex-mediated sympathetic outflow due to increased physical activity (232). Exercise 

training in rats (174; 239) and rabbits (74; 75) has shown suppression of resting 

sympathetic activity and baroreflex-mediated outflow of renal sympathetic nerve activity. 

There is also indirect evidence that treadmill training in both rats (175; 240) and mice 

(72) can decrease cardiac sympathetic nerve activity.  

In humans, the effects of exercise training have been less consistent in regards to 

sympathetic activity. Some suggest endurance training decreases resting sympathetic tone 

(58) due to a 40% reduction in whole-body plasma norepinephrine levels after a training 

program. Others suggest it may just influence the sympatho-excitatory response to 

exercise and other stressors, such as baroreceptor unloading (232; 278). Earlier studies, 

some with the use of autonomic blockade, have shown that endurance training does 

decrease efferent sympathetic outflow directly to the sinoatrial node (19; 317). 
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Alternatively, peripheral adaptations to endurance training that act to decrease systemic 

vascular resistance, such as decreased arterial stiffness, may contribute to lower resting 

HR and BP in more fit individuals (216; 328; 340). The effects of exercise training may 

be more pronounced in populations that have elevated sympathetic activity, such as heart 

failure patients, compared to normal individuals. Roveda and colleagues demonstrated 

that patients who completed a 4 month exercise training program had dramatic reductions 

in resting MSNA compared to a sedentary group of patients (291). 

While the results of training on sympathetic activity are less in agreement, most 

researchers conclude that endurance training does act to increase parasympathetic tone. 

Human studies that have utilized autonomic blockade to examine PNS control of the heart 

have shown after an endurance training regimen there is increased vagal tone (310; 317). 

Importantly, these studies saw large increases in the VO2max of the trained individuals, 

whereas studies that have reported smaller increases in maximal oxygen uptake after 

training also saw no change in parasympathetic control of the heart (82). Many studies 

that have used spectral analysis approaches to study changes in autonomic function with 

exercise report increases in PNS tone at rest (see Figure 2.5.1). The linear relationship 

between heart rate variability and aerobic power has been studied since the 1970s in 

anaesthetized dogs (156) and humans (98; 160) with strong correlations observed. 
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Figure 2.5.1 The power spectrum for heart rate variability of a 20-year old female 

comparing pre-training (dashed line) to post-training (solid line) in supine position 

breathing at fixed rate of 15 breaths/min (taken from (44)).   

  

In cross-sectional studies that compared autonomic profiles of endurance athletes to 

non-athletes, the endurance athletes had a significantly greater high frequency power 

spectrum of R-R interval variability compared to non-athletes, suggesting increased 

cardiovagal control (77; 313). In longitudinal studies of professional endurance athletes 

completing aerobic exercise programs leading up to professional events, heart rate 

variability measurements were elevated (128; 275). Even in normal young adults who 

underwent a 12-week endurance training program showed significant improvement in 

heart rate variability at rest in both the frequency (total power) and time (SD) domains 

(44). Other longitudinal studies conducted in older adults have also come to the same 

conclusions (304; 320). 

Another aspect of autonomic control of the heart that has been mentioned 

previously is baroreflex function. In numerous studies examining a variety of populations, 
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endurance training has led to increased baroreflex sensitivity which is usually indicative 

of increased vagal control of the heart (57; 140; 170; 178; 184; 212; 227-229; 290). In 

rabbits an 8-week treadmill training program was able to increase the range and 

sensitivity of baroreflex control after chemical and mechanical manipulations of blood 

pressure (74). In younger humans both cross sectional (170) and longitudinal studies 

ranging from 4 to 10 weeks (57; 212) have shown that endurance training is able to 

increase cardiovagal baroreflex function. In one longitudinal study, baroreflex slope at 

rest increased by as much as 50 ± 6.3% after endurance training (212). In middle-aged 

humans with coronary artery disease (140; 178) or hypertension (184) endurance training 

programs of varying lengths have been just as effective at enhancing baroreflex 

cardiovagal control.  

In older adults, endurance exercise training also seems capable of maintaining BRS 

despite the age-associated declines that occur (as mentioned in section 2.3). In cross 

sectional studies of both older men (228; 229) and postmenopausal women (69; 70), there 

was evidence of greater BRS in endurance trained individuals compared to sedentary age-

matched controls. In a longitudinal study utilizing a 13-week aerobic intervention 

program, 13 older previously sedentary men showed increased cardiovagal BRS 

compared to pre-intervention conditions (227). Regular exercise also increased carotid 

arterial compliance in these older men and this was strongly correlated with the increases 

observed in cardiovagal BRS (r = 0.72; p < 0.01). Increased vessel wall compliance of the 

carotid artery may be one mechanism responsible for exercise-induced increases in BRS 

(170) and has been observed before in older populations (227; 229). Another possible 

mechanism may be neural alterations in the baroreflex loop. Evidence for this has been 

difficult to discern in studies of older adults but has been demonstrated in younger men 
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using carotid lumen diameter with corresponding R-R interval and reporting no 

differences in carotid artery compliance between trained and untrained groups (170). 

It should be mentioned however, that an emerging body of literature suggests that 

very high levels of endurance training can have detrimental effects on the human body. In 

some individuals long-term excessive ET may lead to adverse CV structural and 

functional changes that diminish the benefits conferred by a more moderate training 

program. A fifteen year observational study following 52,000 adults found a 19% 

reduction in all-cause mortality compared to non-runners but the mortality curve was U-

shaped based on speed, distance and frequency. Higher mileage, more frequent runs and a 

faster pace was not associated with better survival (187). Also, a randomized crossover 

trial of coronary heart disease patients, which assigned subjects to either a 30 or 60 

minute ET exercise session, showed that the 30 minute session was more beneficial. The 

60 minute session worsened oxidant stress and increased vascular stiffness as measured 

by pulse wave velocity in the older patients (218). Chronic restructuring of the heart, such 

as dilated right ventricle/atria and myocardial fibrosis, due to sustained and cumulative 

ET sessions may result in serious electrical remodelling causing ventricular arrhythmias 

and atrial fibrillation (246). These alterations may have a serious and negative impact on 

the autonomic neural control of the CV system.     

2.6 EFFECTS OF ENDURANCE TRAINING ON THE BRAIN 
 

It was long thought that brain plasticity, defined as functional or structural changes 

that occur in response to perturbations in the external environment or internal milieu 

(219), occurred strictly during critical periods of development. Over the past few decades 

it has become widely recognized that brain remodelling also occurs in the mature brain, 
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suggesting that plasticity is an inherent property of the adult brain (262). There is an 

increasing body of evidence that physical activity and exercise training, including 

endurance training, are powerful catalysts that stimulate neuroplastic changes in the brain 

and central nervous system.  

In both humans and rodents physical activity enhances cognition (288; 326; 342; 

360), attenuates age-related memory decline (172; 186; 343), delays onset of 

neurodegenerative diseases (102; 185; 335) and can enhance recovery of brain injury (22; 

107; 116). The areas involved in cardiovascular and autonomic control have received 

considerably less attention and so the involvement of a neuroplastic mechanism in 

exercise-induced improvements of cardiovascular function has not yet been fully 

elucidated. 

There are numerous beneficial structural changes that occur in the brain due to 

increased aerobic fitness. One of the first studies to examine the structural preservation of 

the brain in older adults (mean age 66.5 years) due to increased cardiovascular fitness 

noticed a substantial sparing effect on the GM in the prefrontal, superior parietal and 

temporal cortices and the greatest conservation of WM was the anterior tracts and the 

transverse tracts between the frontal and posterior parietal lobes (53). Cross sectional 

studies in healthy older adults showed increased cardiorespiratory fitness resulted in 

increased gray and white matter volumes in the prefrontal cortex (54), and prevented 

atrophy in the prefrontal and medial temporal lobes of patients with Alzheimer’s disease 

(40; 135).  

A 9-year longitudinal study that was part of the Cardiovascular Health and 

Cognition Study determined that older adults who walked greater distances were able to 

preserve more GM volume in the frontal, temporal and occipital lobes as well as the 
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entorhinal and hippocampus, compared to adults who reported walking less distance over 

the nine year period (83). Even a moderate intensity aerobic fitness program carried out 

over one year was effective at increasing anterior hippocampal volume by 2% on top of 

mediating the average 1-2% loss that would have occurred due to age within the same 

time period (84). There was however no volume increase in the posterior hippocampus, 

thalamus or caudate nucleus (84) indicating a regional selectivity of the beneficial effects 

of exercise.  

Animal studies have been able to complement human research and explain possible 

reasons for the increased brain volumes that occur with increased aerobic fitness. 

Researchers were able to determine a significant positive correlation between neuron cell 

proliferation and survival in the dentate gyrus of the hippocampus and the distance run on 

a wheel (4). Voluntary exercise on a running wheel enhanced the survival of new neurons 

and increased cell division in mice (342). According to a review by van Praag in 2008, 

enhancement of neurogenesis in the hippocampus is a robust phenomenon but literature 

regarding other areas in the brain remains controversial (341). Physical activity has been 

found to enhance proliferation of microglia in superficial cortical layers and astrocytes in 

the motor cortex of rodents (81) and increased voluntary running was associated with 

elevated numbers of both astrocytes and oligodendrocytes in the rat prefrontal cortex 

(203). Michelini and Stern, in a recent review summarized that an increasing body of 

evidence shows exercise training does induce neuroanatomical changes through 

neurogenesis, synaptic plasticity and dendritic remodelling (see Figure 2.6.1). 
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Figure 2.6.1 Example of the structural neuroplasticity observed with exercise training 

taken from the paraventricular nucleus and nucleus tractus solitarius in rats. (A) An 

example of a retrogradely labelled PVN-NTS neuron, with the arrow pointing to the axon. 

(B) Neuronal surface area, (C) number of dendritic trees, and (D) number of dendritic 

branches between trained (T) and sedentary (S) rats. * denotes significant difference (P < 

0.05) between trained and sedentary animals (taken from (219)). 

                

Despite the amount of literature that has described the beneficial effects of aerobic 

fitness on the structure and morphology of the brain it is more difficult to ascertain its 

effects on function. Even small changes in aerobic fitness can lead to improved executive 

function, a task predominantly carried out by the frontal and prefrontal cortices (172). 

Improved executive function was seen in a group of younger adults even after an acute 

bout of cardiovascular exercise, without an aerobic training program (131). In a 
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longitudinal randomized trial over six months Colcombe and colleagues found that during 

a focused attention task, aerobically trained older adults showed increased neural activity 

in frontal and parietal regions and reduced activity in the dACC compared to control 

subjects (55).  

Until we better understand the molecular mechanisms and signalling pathways that 

control cortical function, it will be difficult to determine how exercise training 

ameliorates CNS deterioration. Previous studies in adult animals concluded that 

metabolic alterations such as angiogenesis in the cerebellar (18) and motor cortices (167) 

and neurochemical changes such as elevations in neurotrophic factors (237; 238) occur 

with increased aerobic fitness. In humans they have also observed increased 

vascularization (39; 264) but the majority of studies have been interested in changes of 

neurotrophic factors with aerobic exercise. Although there are many neurotrophic factors 

involved in promoting neural plasticity, in terms of the brain and exercise, BDNF has 

been the centre of most of the research in this particular area. 

The release and expression of BDNF, unlike other neurotrophins, seems to be 

especially susceptible to regulation by physical activity (196; 300). In healthy humans, 

even short-term exercise increases circulating BDNF levels (89). This activity 

dependence of BDNF is especially prominent in hippocampal neurons where there is a 

high expression of BDNF mRNA (344; 358) but has been noted in other central nervous 

system structures such as the spinal cord, cerebellum and cerebral cortex (111; 112; 168; 

238; 358).  

In a recent longitudinal study of young sedentary males, three months of endurance 

training was able to significantly increase resting levels of venous BDNF compared to the 

untrained group (309). Because BDNF can cross the blood brain barrier in both 
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directions, peripheral concentrations of BDNF may represent an important reserve of the 

brain (259). This longitudinal study was complimented by a training study conducted in 

mice to localize where in the brain might account for the increased levels of BDNF. The 

5-week treadmill training program increased BDNF mRNA expression in the 

hippocampus by 317 ± 38% with no significant change of expression in the cerebral 

cortex (see Figure 2.6.2) (309). 

 

Figure 2.6.2 BDNF mRNA expression in the cortex and hippocampus of trained and 

control mice. Control mice had greater mRNA expression in the cortex compared to the 

hippocampus. mRNA levels between the cortex and the hippocampus were not 

significantly different in trained animals, but BDNF expression in the trained 

hippocampus was 317% greater than in controls. There was only a slight increase in 

mRNA in the cortex with training. * denotes significant (P < 0.05) vs. untrained and † 

denotes significant (P < 0.05) vs. hippocampus.  All values are means ± SE (taken from 

(309)). 

 

Although there are not many studies in older adults, a study by Erickson and 

colleagues demonstrated that an aerobic training program in men (mean age 66 years) 

showed an increase in serum levels of BDNF compared to a control group, which was 



47 
 

 
 

associated with greater hippocampal volume (84). Because BDNF is key in the regulation 

of synaptic proteins that are needed for things such as axonal elongation, formation and 

maintenance of presynaptic structure, and neurotransmitter release, exercise-induced 

increases in BDNF may lead to new synaptic formation and efficacy of synaptic 

transmission (344). Thus the role of cardiovascular fitness as a protector and enhancer of 

neural function and CNS integrity in older adults appears to have a strong biological 

basis. 

2.7 SUMMARY 
 

In summary, the physiological impacts of aging are widespread and detrimental to 

many systems in the body. It impacts autonomic function by generally decreasing 

parasympathetic activity and thereby shifting the dynamic equilibrium between SNS and 

PNS tone. This increased sympathetic function that occurs with age has been correlated 

with increased morbidities of the cardiovascular system. Aging is harmful to the brain 

causing morphological changes consisting of total tissue atrophy, decreased white and 

grey matter volume and reductions in cortical thickness. Functional declines most often 

studied revolve around cognitive abilities that are associated with the prefrontal cortex, 

including the loss of executive processing skills and episodic memory. In terms of the 

function of other structures found in the prefrontal cortex, including those of the cortical 

autonomic network, much less attention has been given to how they may be affected by 

age. 

There may be a way to ameliorate the effects of aging through endurance training. 

Endurance training has many benefits including increasing cardiac output, capillary 

density, decreasing resting heart rate and reducing blood pressure amongst many others. 
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Many of these benefits may be the direct result of alterations in autonomic neural control 

of the cardiovascular system. Many cross sectional and longitudinal studies examining the 

impacts of endurance training specifically on autonomic function have observed increased 

indices of parasympathetic control including improved cardiovagal BRS and greater HF 

HRV. The heart rate response to an exercise task of short duration and moderate intensity 

is predominantly due to vagal withdrawal so the heart rate change itself can also be used 

as an index of parasympathetic function.  

So the question becomes, does increased parasympathetic function caused by 

endurance training stem from the beneficial effects endurance training has on the cortical 

autonomic network? Endurance training has been shown to have positive effects on 

forebrain morphology and cognitive function. To date however, no one has examined the 

impacts of long-term endurance training on the structures of the cortical autonomic 

network which are also found in the forebrain. Perhaps if endurance training can preserve 

the function of these structures involved in autonomic cardiovascular control this would 

extend and translate into improvements in baroreflex function and may contribute to an 

improved heart rate response to exercise.
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CHAPTER 3: TOOLS & TECHNIQUES 
 

3.1 BRACHIAL ARTERY BLOOD PRESSURE 

Continuous non-invasive beat-to-beat blood pressure measurements were recorded 

using the Finometer® (Finapres Medical Systems, Amsterdam, Netherlands). The 

Finometer® measures finger arterial blood pressure (FinAP) and, using several 

predefined methods, permits the reconstruction of brachial arterial blood pressure 

(reBAP) (120). Making use of the volume clamp method first described by Czech 

physiologist Penaz (20), continuous and accurate FinAP can be measured. The 

Finometer® uses a finger cuff with an inflatable bladder and an infrared plethysmograph 

with a light detector. The air bladder is inflated so that the diameter of the artery is kept 

constant (clamped) at a specific diameter known as the “set-point” despite changes in 

arterial pressure with each heart beat (21). Any changes in diameter are detected by the 

infrared plethysmograph and through a servo-controller system the air bladder is either 

rapidly inflated (during systole) or deflated (during diastole) to maintain a constant 

diameter and keep the transmural pressure across the arterial wall at zero (21). Keeping 

the transmural pressure at zero is important as this represents the unloaded diameter of the 

artery (357). As a result, the finger cuff pressure provides an indirect measurement of the 

intra-arterial pressure and an arterial brachial waveform can be calculated each cardiac 

cycle. 

 It is not a simple calculation converting the arterial BP waveform obtained from 

the finger into a recalculated brachial BP waveform. There are physiological differences 

that need to be accounted for such as differences in pulse shape and pressure levels (120). 

There are several methods that the Finometer® uses to correct for these physiological 
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differences. First, an inverse transfer function or waveform filter is applied to the finger 

pressure waveform. The systolic and diastolic pressures of the filtered waveform are 

averaged over 30 seconds (prior to the return-to-flow calibration explained below) and 

these averages are then used in the calculation of the correction formulas (121). A level 

correction is then applied automatically, owing to the fact that finger BP is usually lower 

than brachial BP so the waveforms must be shifted upwards (121). The final step is a 

return-to-flow (RTF) calibration (26) based on the systolic pressure measured using an 

arm cuff. This way a subject’s individual RTF shift can be permanently applied to beat-

to-beat measurements (121). One RTF calibration in the supine position is sufficient to 

meet the requirements of the Association for the Advancement of Medical 

Instrumentation (AAMI) for automated BP monitoring (121). The resulting waveforms 

after all of the above corrections have been applied are then labelled RTF intrabrachial 

arterial pressure (reBAP).  

There have been numerous articles that have examined the accuracy of non-invasive 

blood pressure measurements compared to results obtained using intra-arterial methods 

(26; 121; 143). Non-invasive BP measurements have been validated in healthy older 

adults (142), whose mean age was older than the subjects in this study. Some potential 

limitations have been mentioned, for example brachial SBP may be overestimated due to 

PP amplification (143) but as long as the corrections are applied when reconstructing 

brachial BP waveforms the differences in pressure can be reduced substantially (121). It 

is also possible to obtain manual BP measurements from the opposite arm to be used for 

calibration. Regardless, the majority of findings in a variety of groups suggest that the 

Finometer® is an appropriate method for obtaining beat-to-beat BP measurements that 

comply with AAMI requirements. This continuous monitoring of arterial BP was an 
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important tool for calculating variables associated with PNS activity, such as baroreflex 

sensitivity.         

3.2 BAROREFLEX SENSITIVITY 

 Baroreflex sensitivity (BRS) has long been used as a tool for assessing the 

autonomic control of the CV system, particularly PNS control. Recently, non-invasive 

methods for examining BRS have been developed and offer clear advantages over more 

traditional methods such as simplifying test procedures, minimizing subject risk, lowering 

costs and allowing testing under a broader range of conditions (179; 356).  

A non-invasive method for measuring cardiovagal baroreflex gain known as the 

sequence method involves examining spontaneous beat-to-beat covariations in SBP and 

R-R interval and extracting the magnitude of the changes across sequential beats (260). 

This technique is based on the identification of three or more sequential beats in which 

progressive increases/decreases in SBP are followed by progressive 

lengthening/shortening of the R-R interval. To be included in the sequence, changes in 

SBP and R-R interval must meet specified threshold values, 1 mmHg and 6 ms 

respectively (179). The mean slope of the regression line between all sequential changes 

in SBP and R-R interval is taken as the measure of baroreflex sensitivity.  

The sequence method for determining BRS has been validated using more 

traditional pharmacological methods, often described as the modified Oxford technique,  

with positive correlations between BRS estimates (261; 355) in various populations 

including the elderly (147) and hypertensive individuals (356). The sequence method is 

also capable of detecting significant differences between groups that have differing 

degrees of autonomic function. For example, in one study comparing diabetics with no 
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autonomic neuropathies and age-matched controls the sequence method determined a 

significant decrease in BRS in the diabetics compared to the controls where a classic 

laboratory test had failed to determine any autonomic dysfunction (100). This suggests 

that the sequence method for determining baroreflex function may be a more sensitive 

measure for determination of autonomic dysfunction and can detect differences in groups 

that may not have been noticed with traditional methods. There are still more advantages 

to the sequence method, including the fact that computations using an algorithm 

developed for specific software programs are automatic and standardized which helps to 

eliminate intra- and inter-subject variability.   

3.3 HEART RATE VARIABILITY FREQUENCY DOMAIN ANALYSIS 

Heart rate variability (HRV) is the term commonly used to describe the beat-to-beat 

oscillations in R-R interval. There are several methods that have been developed to 

analyze HR variations which generally fall under two broad categories of “time domain” 

or “frequency domain”. Frequency domain measures of HRV use spectral analysis of a 

sequence of R-R intervals, and utilize Fast Fourier Transform, to provide information on 

how the variance (or power) is distributed as a function of frequency (180).  

Numerous studies have utilized power spectrum methods to analyze HR 

fluctuations and have shown that in short term recordings the power is concentrated in 

three spectral peaks with one of these peaks centered around the respiratory frequency 

(2). The three peaks are characterized as very low frequency (VLF; 0.003 to 0.04 Hz), 

low frequency (LF; 0.04 to 0.15 Hz), and high frequency (HF; 0.15 to 0.4 Hz) (180). It is 

this HF component that coincides with the respiratory frequency and it is thought that this 

reflects the modulation of vagus nerve charge with respiration (180).  
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A study using glycopyrrolate to block muscarinic parasympathetic receptors in the 

cardiovascular systems of conscious dogs showed complete abolition of the mid- to high-

frequency spectral peak (2) suggesting that PNS control operates at higher frequencies. 

Similar results were observed in a study that examined both supine and standing positions 

in young healthy humans using atropine to block parasympathetic muscarinic receptors 

(273). In short even though it is an indirect method, analysis of HF HRV power seems to 

be a good indicator of PNS control of the heart. 

3.4 FUNCTIONAL MAGNETIC RESONANCE IMAGING 

Magnetic resonance imaging (MRI) is a medical imaging technique that has become 

very popular in the field of radiology. It has evolved from its humble beginnings in the 

1970s to become the “imaging method of choice” for a large number of radiological 

examinations. Considering the breadth and depth of scientific disciplines that have 

contributed to the evolution of MRI, the physical properties of the technique are beyond 

the scope of this thesis. However, I will highlight some of the basic principles to provide 

brief background knowledge.  

In MRI we are only interested in the nucleus of an atom, particularly the hydrogen 

atom. Approximately 70-90% of the human body is composed of water where the 

majority of the hydrogen atoms are found. Each hydrogen nucleus contains one positively 

charged proton that continuously spins on its own axis and basic electromagnetism states 

that a moving charge has its own associated magnetic field. Therefore each hydrogen 

nucleus creates its own tiny field known as a magnetic moment. When a human body is 

placed in the middle of a strong external magnetic field, the magnetic moments (“spin”) 

of the hydrogen nuclei experience torque. This causes a shift towards equilibrium where 
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the once randomly spinning nuclei become aligned with the external magnetic field 

producing a net magnetization within the body (213). 

Unfortunately, this net magnetization is virtually undetectable when in equilibrium 

compared to the strength of the external magnet used to induce it. Magnets used in MRI 

scanners typically produce magnetic fields measureable in Teslas (T) whereas the net 

magnetization of the human body is on a microtesla (µT) scale. This alone will not 

produce an image of biological tissue and so MRI uses radiofrequency (RF) pulses to 

excite the protons and essentially “tip” the net magnetization into a perpendicular frame 

of reference. The voltage that is produced by the vector sum of all the magnetic moments 

is measured by a receiver coil which is sensitive only to magnetization perpendicular to 

the external magnetic field (see Figure 3.4.1). Once the RF pulse ends there is an 

exponential decay of the signal caused by the random interaction of the hydrogen nuclei. 

This is known as spin-spin relaxation time (T2) and describes the time it takes the tissue 

to return to equilibrium (213). 

 

Figure 3.4.1 (A) Precession of the tipped net magnetization (M0) in the transverse plane 

(perpendicular frame of reference to the main magnetic field (B0). (B) Voltage signal 

induced in the receiver coil by M0 undergoes exponential decay due to random 

interactions of hydrogen molecules (adapted from (213)). 
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Not only is it a valuable diagnostic tool, allowing us to examine anatomical 

structure and pathologies in vivo, but at its most advanced MRI allows us to investigate 

organ function and even visualize the brain “thinking”. Functional magnetic resonance 

imaging (fMRI) is a relatively recent development in MRI and has become quite popular 

in both research and clinical settings. Functional magnetic resonance imaging is based on 

the Blood Oxygenation-Level Dependent (BOLD) effect. This effect was observed at the 

start of the 1990s in animal-based experiments by Ogawa and co-workers (247-249) and 

is dependent on the different magnetic properties of oxygenated and deoxygenated blood, 

as well as the concept of neurovascular coupling (311).  

Neurovascular coupling is the process by which neural activity influences the 

hemodynamic properties of the surrounding vasculature (67). With neuronal activity there 

is a local hemodynamic response (HDR) (see Figure 3.4.2) consisting of changes in 

cerebral blood flow and blood volume with changes in metabolism (177). When 

nonmagnetic (i.e. diamagnetic) oxyhemoglobin (Hb) releases oxygen molecules to 

neurons, the resulting deoxyhemoglobin (dHb) becomes magnetic (i.e. paramagnetic) due 

to an unpaired electron. A magnetically inhomogeneous environment for tissues 

surrounded by deoxygenated blood is thus created, translating into a lower BOLD signal 

(ratio of Hb:dHb) due to a shorter T2. Activation of neurons in the brain causes a 

disproportionate increase in fresh oxygenated blood at the downstream site (i.e. the 

draining veins) due to the fact that cerebral blood flow changes exceed blood volume 

changes by approximately 2-4 times, with blood oxygen extraction increasing only 

slightly (177). This decrease in the relative concentration of dHb increases the Hb:dHb 

ratio and increases the BOLD signal compared to resting values. 
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Figure 3.4.2 Graphical representation of the deoxygenated hemoglobin (red line) and 

accompanying hemodynamic response (blue line) which causes the BOLD signal, 

following neuronal stimulation (0s) (taken from (243)). The BOLD signal reaches its 

peak amplitude approximately 5-6s after increased neuronal activity. 

 

Alterations in cerebrovascular function that affect neurovascular coupling could 

influence characteristics of the BOLD signal and make it difficult to compare across 

various populations. Modifications in cerebrovascular dynamics can result from changes 

to the vessel ultrastructure, cerebral metabolic rate of oxygen consumption, cerebral 

blood flow, and vascular reactivity (67). Both direct alterations in cerebral vasculature 

and alterations in complex neurochemical control over blood flow might affect the BOLD 

response (67). Hence any disorder that affects vascular structure or interferes with 

neurochemical functions could result in changes to vascular physiology, and 

unfortunately many of these disorders are common in the aging brain. Several studies 
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have examined the effect of normal aging on the BOLD signal (129; 137; 329). Despite 

having average HDR amplitudes to younger individuals, older subjects had higher noise 

levels in activated voxels resulting in lower signal-to-noise ratios and a decreased spatial 

extent of the BOLD signal (see Figure 3.4.3) (137). Taoka and colleagues also noticed an 

age-associated lag in the time for the BOLD signal to reach its half maximum level in the 

motor cortex after the start of a 10 second hand grasping task, which they speculated 

could be attributable to vascular stiffening (329). 

 

Figure 3.4.3 The effects of signal averaging, commonly done to decrease noise levels, on 

the detection of active voxels. Because of the lower signal to noise ratio (SNR) at any 

given number of trials averaged, older adults would tend to have less activated voxels 

compared to young (taken from (137)).  

 

 Even though neuroimaging has the capability to revolutionize our understanding of 

the brain and neural function, caution must be taken when comparing between various 

populations that may have differing BOLD signals as a result of altered neurovascular 

coupling.      
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CHAPTER 4: METHODOLOGY 

4.1 SUBJECTS 
 

Recruitment of participants was accomplished through emails sent to local (London, 

Ontario) running clubs and The University of Western Ontario community, poster 

distribution across campus and numerous local stores, malls, and apartment buildings, and 

advertisements placed in local newspapers. Subjects who had participated in previous 

experiments with our laboratory who had expressed interest in becoming involved in 

future studies were contacted directly. Participants were screened medically and had no 

previous personal history of cardiovascular, neurological and metabolic diseases. Subjects 

were not taking any medications contraindicative to participation. Participants were given 

MRI questionnaires to ensure safe compatibility within the MRI environment.    

Fifteen long-term endurance trained (ET) older adults (5 female; 55 ± 4 years; SBP: 

110 ± 10 mmHg, DBP: 66 ± 7 mmHg) and fifteen untrained (CON) older adults (6 

female; 56 ± 4 years; SBP: 115 ± 11 mmHg, DBP: 70 ± 8 mmHg) provided informed 

written consent before participation in the study, which was approved by The University 

of Western Ontario Health Sciences Research Ethics Board. For this study, long-term 

endurance training was defined as five or more years of running distances equal to or 

longer than 25 km/week. Subjects that did not meet these criteria were excluded from the 

ET group.  Note, it is difficult to determine what constitutes “long-term endurance 

training” with no standard definition available and a relatively limited number of studies 

conducted in this particular area. Many cross sectional studies do not utilize running (265) 

and longitudinal studies that examined ET effects were most times limited to 12 months 

or less (275; 310). Currently there is no formal training theory to suggest the pattern, 

duration and intensity of exercise that will cause a specific physiological adaptation (43).  
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Runners of the ET group ended up reporting an average of 14.6 years of running (range 5 

to 38 years) 46 kilometres per week (range 25 to 90). This duration corresponds with 

studies that have examined the impacts of long-term ET on variables other than 

autonomic function such as mechanical cardiac properties (244) and the immune and 

endocrine systems (10). In each of these studies the “long-term endurance training” was 

defined as 22 ± 5 years and 23 ± 2 years, respectively.  

Participants in the CON group were recreationally active but not participating in 

any known endurance training program. All female participants involved in the study 

were postmenopausal with no hormone replacement therapy (HRT) except three women 

in the CON group. One was postmenopausal taking HRT (combination of 0.3 mg 

conjugated estrogen and 2.5 mg medroxyprogesterone acetate), one was perimenopausal 

and one was eumenorrheic in her early follicular phase (i.e. third day of menstrual cycle) 

during testing.  

4.2 STUDY DESIGN 
 

All participants recruited for this study completed four different testing sessions on 

separate days. Session one consisted of a visit to the Laboratory for Brain and Heart 

Health located in the Health Sciences Building at The University of Western Ontario. 

Participants were instructed to fast for 12 hours and abstain from nicotine, alcohol, 

caffeine and strenuous exercise 12 hours prior to testing. When participants first arrived 

they were instructed to lie quietly for 30 minutes before undergoing a blood draw. The 

blood draw was performed by a registered nurse and 47 ml was taken from the antecubital 

vein and analyzed for fasting glucose, cholesterol (total, LDL and HDL), triglycerides, 

glycosylated hemoglobin, high-sensitivity C-reactive protein (HS CRP), renin, 
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epinephrine and norepinephrine. After the blood draw participants were given a 

standardized meal while they completed the Edinburgh Handedness Inventory (250), 

Montreal Cognitive Assessment (MoCA©) (235) and health history questionnaire. The 

Edinburgh Handedness Inventory is used to determine left or right hand dominance and 

the MoCA© was used to determine normal cognitive function. The MoCA© has been 

validated against the Mini-Mental State Examination (MMSE) (94) in both healthy older 

populations and older patients with mild cognitive impairments (in this case mild 

Alzheimer’s Disease) and had a high degree of sensitivity and specificity (235). Basic 

anthropometric measurements including height, weight, waist and hip circumference were 

collected and participants were acquainted with lab set-up and testing protocol.  

Heart rate was collected using a standard three-lead electrocardiogram (ECG). 

Respiration was monitored continuously with a respiratory belt using the respiratory 

inductance plethysmography method (measuring movement of the chest and abdominal 

wall).  Arterial BP was monitored continuously using the middle finger of the right hand 

by photoplethysmographic methods from which pulsatile brachial BP was determined 

(Finometer; Finapres Medical Systems, Amsterdam, The Netherlands). A cuff was also 

placed around the brachial artery of the right arm and after a two minute recording period, 

a RTF calibration was performed to calibrate brachial pressure with the finger pressure. 

Testing did not commence until the difference in pressure was 5mmHg or less between 

the finger and upper-arm. Automated BP measurements were verified and adjusted 

accordingly using the average of three manual sphymogameter BP measurements taken 

from the left arm before testing. The participant rested quietly in a supine position for 10 

minutes after set up was complete to record resting ECG, finger and brachial BPs, Q and 

SV. Analog signals for these hemodynamic variables were acquired using an on-line data 
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acquisition system and software (PowerLab and Lab Chart v. 7.0, ADInstruments; 

Colorado Springs, CO, USA) and sampled at a rate of 1000 Hz with a 5 V sampling 

range.  After the 10 minutes of supine rest participants completed the HG exercise 

protocol described in section 4.3 below. 

The second session consisted of a visit to Robarts Research Institute at the 

University of Western Ontario where the HG protocol (see section 4.3) performed in the 

lab session was completed during the MRI scan. The order of these two visits was not 

randomized, with participants always completing the lab session first, in order to become 

familiarized with the HG device and protocol before undergoing the MRI scan. Again, 

participants were instructed to refrain from nicotine, alcohol, caffeine and strenuous 

exercise 12 hours prior and to consume a light meal 3 hours before the MRI session. All 

imaging data was collected using a whole-body 3-Tesla imaging system (Magnetom 

TRIO TIM, Siemens Medical Solutions, Enlargen, Germany) with a maximum gradient 

strength of 45 mT/m and slew rate up to 200 T/m/s. Scanning sequences for neuroimage 

acquisition will be discussed in further detail in section 4.4 below. During the MRI 

session, HR was calculated from pulse intervals recorded with an MRI-compatible 

oximeter (Nonin Medical Inc, 8600FO MRI, Plymouth, MN, USA) placed over the 

middle finger of the non-exercising right hand. The analog signal was acquired using an 

on-line data acquisition system and software (PowerLab and Lab Chart v. 7.0, 

ADInstruments; Colorado Springs, CO, USA) and sampled at a rate of 1000 Hz with a 5 

V sampling range. 

The third and fourth visits consisted of either an echocardiogram or stress test. 

The echocardiogram was performed by a licensed echocardiography trained ultrasound 

technician. The stress test was performed on a treadmill in the attendance of a physician 
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to determine maximal oxygen consumption (VO2max). For the CON group the standard 

Bruce protocol was utilized (35; 36). For the ET group, each stress test was tailored to the 

individual’s average marathon running speed. After a light intensity 5 minute warm-up 

the test was started at this speed, with speed increases of 0.5 km/hr every minute (grade 

0%) until the subject indicated it was a comfortable pace. The incline was then increased 

by 1% every 2 minutes until the subject indicated they had reached maximal exertion 

described as a score of 19-20 on the Borg Scale (24). Oxygen and carbon dioxide gas 

exchange was measured and heart rate was measured with 12-lead a wireless heart rate 

monitor.  

4.3 HAND GRIP PROTOCOL   
 

The hand grip protocol developed for this study used an isometric hand 

dynamometer device (BSL – SS25LA model; Biopac Systems Inc., CA, USA) to measure 

the force produced during the hand grip exercise (see Figure 4.3.1). It is lightweight and 

ergonomically designed with an isometric range of 0 – 90 kg, excellent for experiment 

accuracy and repeatability. It was also non-magnetic and therefore compatible with the 

MRI. The device was attached in series to a bridge amplifier which was connected to the 

on-line data acquisition system (Powerlab, ADInstruments; CO, USA) via a BNC cable 

which sampled the analog signal at 1000 Hz with a sampling range of 200 mV. For the 

MRI session these devices were located outside of the MRI suite with the HG device 

cable passing through an insulated copper pipe to the inside of the suite to prevent RF 

interference with scanning. 
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Figure 4.3.1 The hand grip device utilized for testing in the lab and MRI sessions. 

  

The IHG protocol involved two different intensities, 30% and 40% of the 

individual’s maximal voluntary contraction (MVC). For the MVC, participants were 

instructed to squeeze the HG device (using their left hand) to their maximal ability. The 

MVC was performed before starting any of the IHG trials and repeated to ensure accurate 

measurement with at least thirty seconds of rest in between the first and second MVC. 

During the lab session the participants were given practice trials before completing each 

IHG trial to ensure they understood the instructions of achieving the desired intensities as 

quickly and accurately as possible. This was not done at the MRI session due to time 

constraints and because subjects had already been familiarized at the lab session. 

Participants were able to determine the intensity of their IHG using visual feedback that 

displayed their force production in real-time, in both the lab and MRI sessions. The actual 

IHG protocol was a boxcar design consisting of three 30 second isometric contractions 

per trial (see Figure 4.3.2). 
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Figure 4.3.2 Hand grip protocol schematic of one trial. Three 30s isometric hand grips 

were performed at either 30 or 40% of the individual’s MVC following a one minute rest 

period. Hemodynamic data was averaged using the last 30s of rest before each IHG and 

the last 10s of each HG. 

  

There were two IHG trials completed at the lab session (one at 30% and one at 

40%) and four IHG trials completed at the MRI session so that each intensity could be 

repeated. The order of the HG trials was randomized for each participant during both the 

lab and MRI sessions. For the lab session participants were given verbal cues instructing 

them when to start and stop the IHG. For the MRI session visual cues were used. Subjects 

were instructed to continue to breathe throughout the entire IHG protocol in order to 

discourage the Valsalva maneuver which would have influenced physiologic recordings 

of BP and HR. At the end of each IHG trial participants were asked to rate their perceived 

exertion using the 6 – 20 Borg Scale (24).  

4.4 NEUROIMAGING DATA ACQUISITION 
 

 Participants were supine on the scanning bed with foam pads placed on either side 

of the head to minimize movement during scanning. Participant hearing was protected 

using ear plugs. A standard 32-channel transmit-receive cylindrical hybrid birdcage head 

coil was used to detect BOLD contrast signal (13). Prior to imaging a global shimming 
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procedure (RASTAMAP) was performed using first- and second-order shims to optimize 

the magnetic field over the volume of interest (166). The first scan was a high resolution 

gray/white matter contrast T1-weighted anatomical image acquired using 3D MPRAGE 

sequence with the following parameters: 192 slices, sagittal field of view (FOV) = 256 

mm, flip angle = 90°, TE = 2.98 ms, TI = 900 ms, TR = 2300 ms with an isotropic voxel 

resolution of 1.0 x 1.0 x 1.0 mm. The following functional images were collected using a 

multi-shot T2*-weighted gradient echo planar imaging (EPI) pulse sequence (FOV = 240 

mm, flip angle = 90°). A total of 147 volumes were collected per functional scan. Each 

volume consisted of 45 interleaved axial slices with the following parameters: TE = 30 

ms, TR = 2.5 s with an in-plane voxel resolution of 3.0 x 3.0 mm. Five steady-state 

volumes were acquired before actual data collection to allow for magnetization 

equilibrium and discarded before data analysis. 

4.5 PHYSIOLOGICAL DATA 

4.5.1 DATA ANALYSIS 

RHR, SBP, DBP, MAP, Q and SV were averaged during the last five minutes of 

supine rest. Pulse pressure (PP) was calculated using the equation SBP – DBP and total 

peripheral resistance (TPR) was calculated using the equation MAP/Q. BRS was analyzed 

across approximately 300 cardiac cycles at rest using the sequence method (described in 

section 3.2). A program to perform sequence analysis was developed for MatLab 

(R2007b©, The MathWorks Inc; Natick, MA, USA) previously in our lab.  

The HR response to HG was determined for each IHG trial by averaging the last 30 

s of rest before each IHG contraction and averaging the last 10 s of each IHG per trial 

(see Figure 4.3.2). The change in HR from rest to exercise was then calculated using these 
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averages. Overall change in HR for both IHG intensities was determined for each group 

by averaging all individual HR changes.  

Frequency-specific levels of variability in beat-by-beat R-R interval during each 

HG trial was assessed using a wavelet-based spectral analysis approach (338). This HRV 

analysis focused on respiratory frequency modulations (averaged from 1 min of rest) in 

the R-R intervals which varied across individuals but were typically in the HF range of 

0.15 to 0.3 Hz. The HF HRV change with IHG was determined by averaging the 

frequencies of all three 1 min rest periods and subtracting this from the averaged 

frequencies of all three IHGs per trial. This was done for each individual at each 

contraction intensity. Overall change in HF HRV for both intensities was determined for 

each group by averaging all individual HF HRV changes.  

4.5.2 STATISTICAL ANALYSIS 

The effect of group on age, RHR, SBP, DBP, MAP, Q, SV, PP, TPR, BRS, relative 

VO2max and all blood work factors was determined using a two-tailed independent 

Student’s t-test. The main effect of group and IHG intensity on change in HR (ΔHR) and 

change in HF HRV (ΔHF HRV) were determined using a mixed one-way analysis of 

variance (ANOVA). High frequency HRV data was normalized to the natural logarithm 

(ln) prior to statistical analysis. Shapiro-Wilk tests were performed to determine if data 

were normally distributed. For variables that were significantly non-normal the 

parametric independent Student’s t-test was still used as it is quite robust against 

violations of normality (23). Levene’s test for equality of variances was performed for all 

independent Student’s t-test calculations and if significant the degrees of freedom were 

adjusted. Cohen’s d was used as a measure effect size (standardized difference between 
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two independent groups) for BRS, ΔHR, and ΔHF HRV. All statistical analysis was 

calculated using SPSS (IBM v. 19; Armonk, NY, USA). All data are reported as mean ± 

standard deviation (SD) unless otherwise stated.       

4.6 NEUROIMAGING DATA 

4.6.1 DATA ANALYSIS 
 

All raw fMRI data were analyzed using BrainVoyager QX software (v. 2.4.1, Brain 

Innovation B.V., Maastricht, The Netherlands; (108)). Preprocessing included interscan 

slice acquisition time correction, linear trend removal, temporal high-pass filtering to 

remove low-frequency drifts, and rigid-body transformation of data to the first acquired 

image to correct for motion. The functional data were not smoothed spatially; reported 

data were unsmoothed throughout all analyses. Functional scans were co-registered with 

the T1-weighted anatomical scans, and subsequently transformed to Talairach space. 

A two-level statistical paradigm was used for all functional imaging data. First, 

individual design matrices were created to analyze participant-session interactions. The 

epochs of each IHG trial were modelled by a boxcar design and convolved with a 

canonical hemodynamic response function. This resulted in subject specific contrast 

images containing whole brain information of BOLD signal changes during the IHG task. 

The General Linear Model (GLM) was used to create a statistical parametric map on a 

voxel-by-voxel basis (103). Corrections for multiple comparisons were made using 

cluster level threshold estimation (96; 123) with 1000 iterations of Monte Carlo 

simulation setting a statistical threshold of p < 0.001 for the main task effects. To ensure 

generalizability of the results, all analyses were performed at a random effects (RFX) 

level.  
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Second level group analysis was performed using each individual’s functional runs 

and associated single-run design matrix to create a multi-subject design matrix. Each of 

the CON and ET group were analyzed at 30% and 40% IHG with a general linear model 

performed at a random effects level. Corrections for multiple comparisons were made 

using a false discovery rate (FDR) and p < 0.05. The BOLD signal changes in each group 

were also regressed against the observed average HR time course response during HG 

exercise, determined by a separate design matrix of HR time course for each individual. 

Clusters of significant activation/deactivation and colour coded for T-score were overlaid 

on representative anatomical images of one ET and one CON individual (each male and 

58 years of age). All fMRI data are presented in radiological convention (i.e. subject’s left 

appears on the right). Differences between groups were determined by examination of 

whether a priori areas were (de)activated compared to rest or whether they were absent.
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CHAPTER 5: RESULTS 

5.1 SUBJECT CHARACTERISTICS 

 Group anthropometrics, resting hemodynamic variables and cognitive scores are 

presented in Table 5.1.1, with no significant differences between groups. Blood work 

profiles are presented for each group in Table 5.1.2. The CON group had significantly 

greater levels of cholesterol, total triglycerides, LDL cholesterol and HS CRP compared 

to the ET group and lower levels of epinephrine (p < 0.05). The ET group had 

significantly greater absolute and relative VO2max values, 3.7 ± 0.8 L/min and 50 ± 8 

ml/kg/min compared to the CON group, 2.7 ± 0.8 L/min and 37 ± 9 ml/kg/min 

respectively (p < 0.05). It should be noted that stress tests were performed on only 14 of 

15 ET subjects, as one individual elected to forgo the assessment due to health issues.
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Table 5.1.1 Endurance trained and control group subject characteristics collected 

during lab session.  

 ET CON 

N (female) 15 (5) 15 (6) 

Age (years) 55 ± 4 56 ± 4 

Weight (kg) 72.2 ± 11.2 74.6 ± 13.6 

BMI (kg/m
2
) 23.7 ± 2.5 24.6 ± 2.4 

SBP (mmHg) 110 ± 10 115 ± 11 

DBP (mmHg) 66 ± 7 70 ± 8 

MAP (mmHg) 81 ± 8 85 ± 9 

PP (mmHg) 44 ± 5 46 ± 9 

RHR (bpm) 53 ± 4 59 ± 12 

Q (L/min) 5.5 ± 1.4 6.5 ± 1.8 

SV (ml) 103 ± 23 111 ± 22 

TPR (mmHg/L/min) 15.3 ± 2.9 13.6 ± 3 

MVC (V) 0.18 ± 0.32 0.07 ± 0.04 

MoCA© 28 ± 2 27 ± 2 

Values are mean ± standard deviation (SD). BMI, body mass index; SBP, systolic blood 

pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; PP, pulse pressure; 

RHR, resting heart rate; Q, cardiac output; SV, stroke volume; TPR, total peripheral 

resistance; MVC, maximal voluntary contraction (from lab session). * indicates p < 0.05 

between ET and CON groups.
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Table 5.1.2 Blood profiles of endurance trained and control groups. 

 ET CON 

Fasted blood glucose (mmol/L) 4.5 ± 0.8 5.7 ± 2.7 

Cholesterol (mmol/L) 3.7 ± 1.1 4.8 ± 0.6* 

Triglycerides (mmol/L) 0.67 ± 0.2 1.1 ± 0.7* 

HDL (mmol/L) 1.4 ± 0.3 1.5 ± 0.4 

LDL (mmol/L) 2.03 ± 0.8 2.8 ± 0.5* 

HbA1C (%)  6 ± 0.2 6 ± 2 

HS CRP (mg/L) 0.65 ± 0.5 1.7 ± 1.6* 

Renin (ng/L/S) 0.15 ± 0.1 0.16 ± 0.09 

Norepinephrine (nmol/L) 1.4 ± 0.5 1.5 ± 0.5 

Epinephrine (nmol/L) 0.23 ± 0.08 0.14 ± 0.05* 

Values are mean ± standard deviation (SD). HDL, high-density lipoprotein; LDL, low-

density lipoprotein; HbA1C, glycosylated hemoglobin; HS CRP, high-sensitivity C-

reactive protein. * indicates p < 0.05 between ET and CON groups.
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5.2 PHYSIOLOGICAL DATA 
 

 Resting cardiovagal baroreflex sensitivity was not different between ET and CON 

groups (25 ± 17ms/mmHg and 20 ± 12 ms/mmHg, respectively) (p > 0.05, d = 0.36). All 

individual BRS values were regressed against age and a very weak correlation was 

observed (see Figure 5.2.1). Heart rate increases due to IHG at both intensities were not 

different between groups (p > 0.05), but within groups the heart rate change at 40% IHG 

was greater than at 30% IHG intensity (main effect of IHG intensity; p < 0.05) (see 

Figure 5.2.2). No effect of group or IHG intensity on ΔHF HRV (ln) (p > 0.05) was 

observed (see Figure 5.2.3).  
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Figure 5.2.1 Individual BRS values (ms/mmHg) regressed against age (years). 

Regression equation is y = 0.081x + 22.67 with r
2
= 0.001 (p > 0.05).    
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Figure 5.2.2 Change in HR with IHG exercise during lab session at 30% and 40% 

intensity in both ET and CON groups. ET 30% IHG ΔHR: 3.1 ± 2.7 bpm and CON 30% 

IHG ΔHR: 3.5 ± 3.5 bpm (d = -0.11); ET 40% IHG ΔHR: 5.3 ± 3 bpm and CON 40% 

IHG ΔHR: 5.5 ± 3.8 bpm (d = -0.04). All values are mean ± SD. * indicates p < 0.05 

between ΔHR of 30% and 40% IHG intensity. 
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Figure 5.2.3 Change in HF HRV (ln ms
2
) with IHG exercise at 30% and 40% intensity in 

both ET and CON groups. ET 30% IHG: -0.14 ± 0.36 and CON 30% IHG (d = -0.3): -

0.04 ± 0.32; ET 40% IHG: -0.001 ± 0.75 and CON 40% IHG: -0.1 ± 0.39 (d = 0.16). All 

values are mean ± SD. 

 

To investigate the lack of between-group ΔHR difference for both IHG intensities 

individual heart rate responses were regressed against age and cardiovagal BRS (see 

Figures 5.2.4 and 5.2.5, respectively). Age was a significant predictor (p < 0.05) of ΔHR 

at 40% IHG intensity and accounted for 15% of the variance between groups. 

Cardiovagal BRS was not a significant predictor of ΔHR at either IHG intensity.  
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Figure 5.2.4 Individual heart rate changes (bpm) for 30% IHG and 40% IHG regressed 

against age (years). Solid regression line represents 30% IHG (y = -0.22x +15, r
2
 = 0.075, 

p > 0.05) and dashed regression line represents 40% IHG (y = -0.33x + 24, r
2
 = 0.15, p < 

0.05). 
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Figure 5.2.5 Individual heart rate changes (bpm) for 30% IHG and 40% IHG regressed 

against cardiovagal BRS (ms/mmHg). Solid regression line represents 30% IHG (y = 

0.07x +1.4, r
2
 = 0.1, p > 0.05) and dashed regression line represents 40% IHG (y = 0.02x 

+ 5, r
2
 = 0.004, p > 0.05). 

 

Because one of the main purposes of this project was to determine if increased 

aerobic fitness due to ET would result in enhanced markers of PNS activity (i.e. enhanced 

cardiovagal BRS at rest, greater HR responses with IHG and decreased HF HRV due to 

the exercise task) regression analyses were performed using individual relative VO2max 

values for both groups (See Figures 5.2.6, 5.2.7, 5.2.8). Relative VO2 max was a 

significant predictor (p < 0.05) of ΔHR at 40% IHG intensity and accounted for 18% of 

the variance between groups. At 30% IHG intensity relative VO2max did not significantly 

predict ΔHR but did approach significance (p = 0.065) and would account for 13% of the 

variance. Relative VO2 max did not predict cardiovagal BRS or ΔHF HRV (p > 0.05). 
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Figure 5.2.6 Individual cardiovagal BRS (ms/mmHg) calculated from supine rest 

regressed against relative VO2 max (ml/kg/min) values. Regression equation is y = 0.21x 

+ 12.4 with r
2
 = 0.017 (p > 0.05).    
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Figure 5.2.7 Individual ΔHR (bpm) for 30% IHG and 40% IHG values regressed against 

relative VO2 max (ml/kg/min). Solid regression line represents 30% IHG (y = 0.14x - 4, r
2
 

= 0.13, p = 0.065) and dashed line represents 40% IHG (y = 0.18x – 3.4, r
2
 = 0.18, p < 

0.05). 
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Figure 5.2.8 Individual ΔHF HRV (ln ms
2
) for 30% IHG and 40% IHG values regressed 

against relative VO2 max (ml/kg/min). Solid regression line represents 30% IHG (y = -

0.01x + 0.08, r
2
 = 0.012, p > 0.05) and dashed line represents 40% IHG (y = 0.02x – 0.85, 

r
2
 = 0.05, p > 0.05). 

 

5.3 NEUROIMAGING DATA 
 

At the group level, 30% IHG task was associated with activation in the bilateral 

insula and middle superior cingulate cortex (MCC), and deactivation in vMPFC and 

subgenual ACC (sub ACC) regions for both groups. Additionally, both groups had bi-

lateral activation in the pre-central gyrus, otherwise known as the primary motor cortex, 

and the right post-central gyrus known as the primary somatosensory cortex. The ET 
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group also had bilateral activation in the thalamus and deactivation in the posterior 

cingulate cortex (PCC). Certain basal ganglia nuclei also had activation such as the 

caudate (bilateral) and putamen (right). Both the ET and CON groups had hippocampus 

deactivation but in opposite hemispheres, right and left respectively. These global BOLD 

responses to 30% IHG task are summarized in Tables 5.3.1 and 5.3.2 for ET and CON 

groups, respectively.          

At the group level, 40% IHG task was associated with activation in the right 

thalamus, right post-central gyrus, bilateral insula and bilateral pre-central gyrus. 

Deactivation was again observed in the vMPFC for both groups. Additionally, the ET 

group specifically had left thalamus activation and the CON group had deactivation of the 

sub ACC, the PCC and the left hippocampus. These global BOLD responses to 40% IHG 

are summarized in Tables 5.3.3 and 5.3.4 for ET and CON groups, respectively.
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Table 5.3.1 Brain region BOLD responses for ET group during 30% IHG task versus 

rest. 

Region Side Activation  Talairach Co-

ordinates 

T-score # of 

voxels 

   x y z   

vMPFC L ↓ -8 26 -10 -4.32 45 

dACC - - - - - - - 

sub ACC L ↓ -7 35 -9 -4.11 13 

MCC  L ↑ 2 3 46 4.92 637 

 R ↑ -6 -6 48 4.39 159 

PCC R ↓ 3 -53 20 -4.24 284 

Anterior Insula L ↑ -31 24 9 4.42 148 

 L ↑ -33 12 13 4.4 236 

 R ↑ 37 18 9 4.48 554 

Mid Insula R ↑ 37 0 14 4.52 376 

 R ↑ 45 8 1 4.24 99 

Posterior Insula - - - - - - - 

Pre-central gyrus L ↑ -48 -3 36 4.41 266 

 R ↑ 34 -15 49 4.83 523 

 R ↑ 28 -11 54 4.36 147 

Post-central gyrus R ↑ 39 -21 49 5.46 773 

 R ↑ 44 -19 56 5.07 615 

 R ↑ 47 -28 54 4.3 412 

Hippocampus R ↓ 27 -16 -17 -4.49 130 

Thalamus L ↑ -12 -16 8 4.51 346 

 R ↑ 8 -16 8 4.59 350 

Caudate L ↑ -16 6 21 4.54 23 

 R ↑ 17 11 18 4.32 116 

Putamen R ↑ 28 -1 -2 4.65 207 

P < 0.05, FDR corrected. vMPFC, ventral medial prefrontal cortex; dACC, dorsal anterior 

cingulate cortex; sub ACC, subgenual anterior cingulate cortex; MCC, middle superior 

cingulate cortex; PCC, posterior cingulate cortex; L, left; R, right. ↑=activation; 

↓=deactivation.
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Table 5.3.2 Brain region BOLD responses for CON group during 30% IHG task versus 

rest. 

Region Side Activation  Talairach Co-

ordinates 

T-score # of 

voxels 

   x y z   

vMPFC L ↓ -4 32 -12 -3.95 109 

 L ↓ -6 40 -7 -4.42 332 

dACC - - - - - - - 

sub ACC L ↓ -4 43 -5 -4.41 274 

MCC L ↑ -4 1 43 4.07 239 

 R ↑ 5 22 29 4.28 35 

 R ↑ 6 3 43 4.28 496 

PCC - - - - - - - 

Anterior Insula L ↑ -31 19 13 4.09 234 

 R ↑ 41 15 2 4.74 623 

Mid Insula L ↑ -44 -4 7 3.92 103 

 R ↑ 39 6 6 4.23 358 

 R ↑ 39 -3 11 4.03 200 

Posterior Insula - - - - - - - 

Pre-central gyrus L ↑ -40 -7 46 3.81 275 

 R ↑ 36 -8 52 4.17 597 

 R ↑ 40 -14 52 4.19 692 

 R ↑ 34 -24 49 5.21 886 

Post-central gyrus R ↑ 41 -22 52 4.6 661 

Hippocampus L ↓ -26 -14 -15 -3.99 120 

Thalamus R ↑ 5 -17 8 4.46 544 

Caudate - - - - - - - 

Putamen - - - - - - - 

P < 0.05, FDR corrected. vMPFC, ventral medial prefrontal cortex; dACC, dorsal anterior 

cingulate cortex; sub ACC, subgenual anterior cingulate cortex; MCC, middle superior 

cingulate cortex; PCC, posterior cingulate cortex; L, left; R, right. ↑=activation; 

↓=deactivation.
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Table 5.3.3 Brain region BOLD responses for ET group during 40% IHG task versus 

rest. 

Region Side Activation  Talairach Co-

ordinates 

T-score # of 

voxels 

   x y z   

vMPFC L ↓ -3 40 -5 -4.67 165 

dACC - - - - - - - 

sub ACC - - - - - - - 

MCC - - - - - - - 

PCC - - - - - - - 

Anterior Insula L ↑ -31 23 10 4.77 269 

 R ↑ 32 21 14 4.7 635 

 R ↑ 33 13 14 4.74 564 

Mid Insula L ↑ -39 -8 15 4.95 37 

 R ↑ 35 -2 17 4.53 153 

 R ↑ 42 5 10 4.74 281 

Posterior Insula - - - - - - - 

Pre-central gyrus L ↑ -48 -3 36 4.62 179 

 R ↑ 33 -17 47 5.35 536 

Post-central gyrus R ↑ 46 -22 52 4.81 413 

 R ↑ 36 -33 59 4.52 367 

Hippocampus - - - - - - - 

Thalamus L ↑ -12 -18 9 4.2 13 

 R ↑ 6 -17 6 4.56 24 

Caudate - - - - - - - 

Putamen - - - - - - - 

P < 0.05, FDR corrected. vMPFC, ventral medial prefrontal cortex; dACC, dorsal anterior 

cingulate cortex; sub ACC, subgenual anterior cingulate cortex; MCC, middle superior 

cingulate cortex; PCC, posterior cingulate cortex; L, left; R, right. ↑=activation; 

↓=deactivation.
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Table 5.3.4 Brain region BOLD responses for CON group during 40% IHG task versus 

rest. 

Region Side Activation  Talairach Co-

ordinates 

T-score # of 

voxels 

   x y z   

vMPFC L ↓ -5 27 -12 -4.43 405 

dACC - - - - - - - 

sub ACC L ↓ -4 34 -10 -4.69 650 

 L ↓ -5 34 -5 -4.61 671 

 L ↓ -5 17 -9 -4.16 209 

MCC - - - - - - - 

PCC L ↓ 2 -51 20 -4.28 492 

 R ↓ -4 -57 20 -4.43 371 

Anterior Insula R ↑ 37 15 10 4.32 292 

Mid Insula L ↑ -43 -3 10 4.19 31 

 R ↑ 36 7 12 4.07 65 

 R ↑ 39 4 8 4.31 128 

Posterior Insula - - - - - - - 

Pre-central gyrus L ↑ -56 2 36 4.13 78 

 R ↑ 37 -23 53 4.85 482 

 R ↑ 35 -8 53 4.26 73 

Post-central gyrus R ↑ 34 -24 46 5.42 723 

Hippocampus L ↓ -28 -16 -16 -4.18 61 

Thalamus R ↑ 4 -18 9 4.26 35 

Caudate - - - - - - - 

Putamen - - - - - - - 

P < 0.05, FDR corrected. vMPFC, ventral medial prefrontal cortex; dACC, dorsal anterior 

cingulate cortex; sub ACC, subgenual anterior cingulate cortex; MCC, middle superior 

cingulate cortex; PCC, posterior cingulate cortex; L, left; R, right. ↑=activation; 

↓=deactivation.
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When the BOLD signal was regressed against the average HR response of both 

groups at each hand grip intensity there was activation of the right pre-central gyrus (the 

primary motor cortex) and deactivation of the vMFPC (Figures 5.3.1 to 5.3.2 and Figures 

5.3.3 to 5.3.4, respectively). Activation of the bilateral anterior insula also occurred with 

the HR response in all cases except the CON group at 40% IHG (Figure 5.3.5 and 5.3.6). 

The observed deactivation in the PCC was apparent at 30% IHG but not 40% in both 

groups (Figure 5.3.7). In Figures 5.3.8 to 5.3.9, the time course of the BOLD signal 

change in the vMPFC for both groups is displayed with their respective average HR 

responses. The vMPFC activity mirrored the magnitude of the HR response but had no 

progressive decreases in activity throughout the contraction period. The HR response for 

the most part, increased progressively during the exercise period and reached its zenith at 

the end of each IHG.  
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Figure 5.3.1 Right precentral gyrus or primary motor cortex activation (surrounded by 

white circle) in CON (top panel; T-score 5.49, # of voxels = 741) and ET group (bottom 

panel; T-score 4.62, # of voxels = 263) for 30% HR response. Sagittal slice presented on 

the left and transverse slice on the right. P < 0.05, FDR corrected. 
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Figure 5.3.2 Right precentral gyrus or primary motor cortex activation (surrounded by 

white circle) in CON (top panel; T-score 5.87, # of voxels = 744) and ET group (bottom 

panel; T-score 5.82, # of voxels = 723) 40% HR response. Sagittal slice presented on the 

left and transverse slice on the right. P < 0.05, FDR corrected. 
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Figure 5.3.3 Left vMPFC deactivation (surrounded by white circle) in CON (top panel; 

T-score -4.62, # of voxels = 434) and ET group (bottom panel; T-score -4.62, # of voxels 

= 285) for 30% HR response. Sagittal slice presented on the left and transverse slice on 

the right. P < 0.05, FDR corrected. 
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Figure 5.3.4 Left vMPFC deactivation (surrounded by white circle) in CON (top panel; 

T-score -4.68, # of voxels = 453) and ET group (bottom panel; T-score -4.9, # of voxels = 

364) for 40% HR response. Sagittal slice presented on the left and transverse slice on the 

right. P < 0.05, FDR corrected. 
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Figure 5.3.5 Bilateral anterior insular cortex activation (surrounded by white circles) in 

CON (top; L: T-score 4.07 and # of voxels = 303, R: T-score 5.15 and # of voxels = 868) 

and ET group (bottom; L: T-score 4.54 and # of voxels = 143, R: T-score 4.92 and # of 

voxels = 670) for 30% HR response. Presented using transverse slice. P < 0.05, FDR 

corrected. 
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Figure 5.3.6 Right anterior insular cortex activation (surrounded by white circles) in 

CON (top; R: T-score 4.77 and # of voxels = 334) and bilateral anterior insular cortex 

activation in ET group (bottom; L: T-score 4.61 and # of voxels = 97, R: T-score 5.13 

and # of voxels = 586) for 40% HR response. Presented using transverse slice. P < 0.05, 

FDR corrected. 
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Figure 5.3.7 Right PCC deactivation (surrounded by white circle) for 30% HR response 

in CON (top panel; T-score -3.86, # of voxels = 253) and ET group (bottom panel; T-

score -4.33, # of voxels = 257). Sagittal slice presented on the left and transverse slice on 

the right. P < 0.05, FDR corrected. 
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Figure 5.3.8 Average time course of the HR and vMPFC BOLD response during 30% 

and 40% IHG in CON group. Top: average group HR response during MRI session. 

Bottom: % signal change of vMPFC. Gray bars represent contraction periods.    
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Figure 5.3.9 Average time course of the HR and vMPFC BOLD response during 30% 

and 40% IHG in ET group. Top: average group HR response during MRI session. 

Bottom: % signal change of vMPFC. Gray bars represent contraction periods.    

 

    

  



95 
 

 
 

CHAPTER 6: DISCUSSION 
 

The present study examined the differences in cardiovascular responses and 

associated forebrain (de)activation patterns during two intensities of short term moderate 

IHG between endurance trained individuals and age-matched untrained controls. The 

results suggest that long-term endurance training does not significantly alter the 

cardiovascular responses to exercise and indices of PNS control or the functional 

responses of the CAN to the IHG tasks and HR responses compared to untrained controls. 

This was unexpected as previous literature supports the idea that endurance training 

preserves cardiovagal control in older adults. An improvement in vagal control would be 

induced by ET if the following had been observed 1) increased HR response to exercise 

tasks, 2) increased cardiovagal BRS, 3) a greater decrease in HF HRV with IHG and 4) 

greater vMPFC deactivation.    

6.1 PHYSIOLOGICAL RESULTS 

6.1.1 BAROREFLEX SENSITIVITY 
 

Baseline BRS values were not significantly different between the two groups, but 

the mean BRS value was approximately 5 ms/mmHg greater in the ET group than the 

CON group. The fact that they were not statistically different may account for the 

observation that both groups produced similar HR responses for both the 30% and 40% 

IHG intensities (approximately 3 bpm and 5 bpm, respectively). If HR response to IHG is 

due to PNS withdrawal and BRS, a marker of baseline cardiovagal control, was similar 

between groups, they should have similar HR responses to exercise and this was the case. 

An examination of individual relationships, revealed a weak correlation between 

individual HR responses (30% r
2
 = 0.1 and 40% r

2
 = 0.004) and BRS slope in this group 
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of participants, suggesting that even though we use BRS as a marker of resting 

cardiovagal control in older populations it may not predict CV responses to exercise 

tasks.   

Because BRS has been shown to decline with age (158; 181; 227; 228), BRS values 

were regressed against individual ages regardless of endurance training status. A strong 

correlation was expected as previous studies have observed correlations of r = -0.65 

(healthy subjects aged 23 – 77 years) and -0.69 (healthy sedentary men aged 19 – 76 

years) (181; 227). Rather, a high degree of variability was observed in BRS (ET SD = 

16.6 ms/mmHg and CON SD = 11.9 ms/mmHg) and a weak relationship between age and 

BRS was established (Figure 5.2.1). The relationship between age and BRS is 

exemplified by two of the youngest individuals (51 years of age each, one from each 

group) who had two of the lowest BRS values (6.61. and 4.68 ms/mmHg). The age range 

of individuals involved in this study may be too narrow (50 to 65 years) to generate a 

broad enough independent variable for regression analysis. This becomes more apparent 

when compared to previous work that examined a sample of seventy normotensive 

subjects aged 22 – 82 years using several methods (71). Up until the fourth decade, age 

was the dominant factor of decreasing BRS with little further decline afterwards (71). 

These results could indicate that a basement level of BRS may have been reached in both 

groups (both past their fourth decade) and long-term ET was not effective in preventing 

its decline. This seems unlikely, however, as previous literature reports lower BRS values 

than those reported in this study, approximately 10 – 12 ms/mmHg, for a similar age 

range (181; 227; 228).   

Regression of BRS values against relative VO2max data also resulted in a very 

weak correlation (r
2
 = 0.017). These data suggest endurance training has not enhanced 



97 
 

 
 

baroreflex function at least in the group of individuals tested for this study. A possible 

explanation is that, in some cases, chronic endurance exercise can be detrimental to 

autonomic function and depress baroreflex control by decreasing baroreceptor sensitivity. 

In a study of young adults, the very fit group had a decreased arterial BRS compared to a 

moderately fit group indicating that long-term ET may not markedly increase BRS in 

comparison to an age-matched untrained group (318). In these cases, baroreceptor 

function may be decreased due to increased arterial stiffening meaning a greater change 

in blood pressure is required for the same level of stretch in the arterial wall. There is 

speculation that high levels of shear stress caused by repeated endurance efforts induce 

fibrotic changes and decrease arterial wall elasticity (246). Compared to controls, veteran 

ultra-endurance athletes have been observed with greater aortic stiffness and arterial pulse 

wave velocity (351). Therefore, high levels of aerobic training may actually be harmful to 

the stimulus portion of the baroreflex loop resulting in blunted BRS.   

At the other end of the baroreflex loop, cardiac responsiveness may also be 

diminished with chronic training (164) regardless of the function of the efferent neural 

portion of the baroreflex loop. Whether this diminished responsiveness was due to 

structural or functional changes of the heart remains to be fully understood. An elegant rat 

model demonstrated that chronically exercised animals (60 minutes of strenuous running 

for 16 weeks) developed adverse cardiac remodelling including left and right ventricle 

hypertrophy and dilation of left and right atria. They also had increased collagen 

deposition and fibrosis in both atria and ventricles (15). Therefore, even if afferent neural 

information was being transmitted effectively, the heart may not respond to neural inputs 

if constrained by accumulated structural and functional remodelling caused by long-term 

ET. 
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6.1.2 HIGH FREQUENCY HEART RATE VARIABILITY 

The change in HF HRV due to the exercise task was also similar between groups 

but did decrease with IHG regardless of intensity. It is difficult to draw any conclusions 

from the HF HRV data due to the high inter-subject variability even after normalization 

using the natural log. In a study that examined autonomic control under a wide range of 

conditions it was found that none of the HRV measurements, in both the time and 

frequency domains, responded to the stimuli as consistently as HR (109). The authors 

concluded that HRV may not be an appropriate index of cardiovagal control which may 

also apply to this study.  

Evidence also indicates that HRV may not benefit from endurance training. In 

elderly subjects, an eight week aerobic training program increased the VO2peak values 

but did not change any HRV parameters (265). Although this population is different from 

the long-term ET group included in this study, these earlier results are consistent with and 

support the current observations. Other studies have also supported the idea that HRV 

measures do not increase in a dose-dependent manner with increasing levels of fitness 

(215). This effect may be limited to older adults as a short-term endurance training 

program in young adults (26 ± 2 years) was able to significantly increase HF HRV power 

over a 24-hour period (165). In other words an increase in aerobic fitness per se in older 

individuals does not imply modifications in HRV parameters.  

6.1.3 HEART RATE CHANGE 

There were no significant differences between groups when examining ΔHR at 30% 

and 40% IHG tasks. As explained in the literature review, the initial tachycardic response 

to the HG task should be solely mediated by withdrawal of PNS independent of 
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sympathetic activation (134; 204; 225). Thus, because both groups have similar indices of 

PNS tone they should have similar HR responses to HG exercise. One issue with regards 

to this assumption is that our understanding of the relationship between HR responses to 

HG and PNS levels comes from data observed in young individuals. For example, the HR 

responses in the current older groups were less than what has previously been reported in 

young adults. Specifically, compared to healthy young subjects who exhibited a HR 

increase of 10 ± 2 bpm in response to a 35% IHG task (362) a HR response of 

approximately 5 ± 3 bpm for both groups at 40% IHG was observed in this study.   

This is probably due to greater PNS tone in younger individuals but may also result 

from decreased cardiac responsiveness that occurs with age. In a study that examined the 

parasympathomimetic effects of low dose atropine, a smaller decrease in heart rate was 

observed in older adults compared to young individuals independent of fitness level 

(188). This suggests that inevitable age-related declines in cardiac muscarinic receptor 

function cannot be prevented by regular physical activity even in highly trained 

endurance athletes. This is also supported by the regression analysis of ΔHR versus age 

for both IHG intensities (Figure 5.2.4). At 40% IHG there was a significant correlation (r
2
 

= 0.15) between the inverse relationship of advancing age and ΔHR. Therefore, regardless 

of fitness level, advancing age appears to have detrimental effects on heart rate control.  

6.2 NEUROIMAGING RESULTS 
 

Neuroimaging analysis showed BOLD signal changes in CAN structures and motor 

regions as well as various basal ganglia structures in both groups. These relationships 

were maintained when BOLD responses were regressed against the actual exercise task or 

the average group heart rate time course. Group level analysis showed significant 
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deactivation in the vMPFC at both IHG intensities for both groups. These data did not 

support the hypothesis, as it was expected that, the ET group would have different 

patterns of (de)activation in the CAN structures, specifically the vMPFC, compared to the 

CON group. However, because both groups exhibited a similar HR response to the 

exercise tasks they should have similar BOLD responses. This pattern of deactivation 

does follow previously established work in young healthy controls (362) and in older 

adults (regardless of blood pressure or pharmacologic status) who were classified as HR 

responders (243). Both these studies showed that IHG produced a HR response as well as 

deactivation in the vMPFC in an intensity-dependent manner and that the deactivation 

time course of the vMPFC mirrored the HR response, each reaching their peak at the end 

of each IHG. Similar intensity-dependent patterns were observed in the current study as 

observed in the time course Figures 5.3.8 and 5.3.9.   

As mentioned previously, pharmacological studies have demonstrated that the 

tachycardic response at the onset of exercise cannot be altered with beta-adrenoreceptor 

blockade but could with vagal blockade (87; 225) suggesting it is PNS-mediated. Even 

though this study did not utilize inter-dwelling nerve recordings other studies have shown 

no increases in peripheral muscle sympathetic nerve activity during hand grip exercises of 

similar duration and intensity (362), again suggesting that the observed HR responses are 

dominated by vagal control. This study thus provides further evidence for vMPFC 

involvement in cardiovagal control of HR responses to exercise tasks. Regardless of age, 

fitness level, or even blood pressure status, it seems that if a HR response occurs, 

deactivation of the vMPFC will be observed.  

Previously, it has been suggested that the vMPFC may be associated with baseline 

brain function or a “default brain network” (122). Researchers have found that the 
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vMPFC was deactivated during an active task regardless of what that task was (314) and 

also that high levels of activity were exhibited in this area just during supine rest (276). 

The relatively high levels of activity at rest may exert a tonic inhibitory drive suggesting 

that the vMPFC has a dominant role in autonomic activity at rest (362). This idea may be 

supported by the numerous direct connections observed in the rat brain between the 

vMPFC and nucleus tractus solitarius in the brainstem (333; 334), a structure that is 

involved in PNS outflow to the heart. More studies are needed, however, to elucidate if 

this relationship can be seen in other populations and determine if it is indeed part of a 

default network. 

Interestingly activation of the dACC, a fairly consistent BOLD response to elevated 

HR which has occurred across numerous studies (61; 63; 161; 199), was absent in this 

study. These earlier studies, however, focused on increasing HR using a variety of 

manoeuvres such as mental stress, baroreceptor unloading, and effortful exercise that 

amplified sympathetic outflow. Similar to another study conducted by Wong et al (2007) 

the exercise task used in this study was designed to avoid increases in sympathetic 

outflow. Critchley and colleagues have proposed that the dACC modulates sympathetic 

outflow (63) and therefore a lack of sympathetic outflow in the IHG protocol would lead 

to no BOLD signal changes in this structure. Both this study and Wong et al (2007) found 

no increased activity in the dACC perhaps indicating there was no peripheral sympathetic 

activation.  

The observed deactivation of the PCC in response to increased HR has also been 

observed in young healthy adults performing an IHG task but was not intensity-dependent 

like the vMPFC (61; 362). The PCC is thought to be part of the default brain network 

(276) and play a role in monitoring and representing the external environment at rest, and 
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its decreased activity is likely attributed to suspending these activities during a goal-

directed IHG task (362). However, this deactivation was only present in both groups at 

30% IHG relative to rest and not at 40% IHG. This contrasts previous work that 

concluded if a task was not sufficiently challenging, activity in the default mode network 

(which the PCC is part of) may persist through both the experimental and rest epochs 

(118). At this point, it is not understood why no deactivation would occur with the HR 

response to 40% IHG but perhaps the greater effort was able to flush out underlying age-

related dysfunctions in the PCC.   

As mentioned the PCC, along with the vMPFC, is part of the default brain network 

and is a prominent hub in intrinsic functional connectivity (276). There are some studies 

that have reported normal age-related alterations in the default brain network and resting 

functional connectivity (8; 197; 302; 319) which may impact the BOLD responses of 

certain CAN structures, such as the PCC, to different stimuli. In cognitively intact older 

adults it was shown that the PCC is highly susceptible to early amyloid deposition which 

can lead to disrupted default activity (319). Another recent study observed an age-related 

decrease in inflow (i.e. a measure of how strong the activity in a region is influenced by 

the activity in other regions) to the PCC using magnetoencephalography (MEG) which 

has a higher temporal resolution than fMRI (302). Thus the PCC seems to be highly 

susceptible to the effects of age, more so than other structures in the default brain network 

which could affect the PCC’s BOLD responses to certain tasks. 

The IC is an important integration centre for visceral inputs and resulting autonomic 

responses and has received considerable attention as being one of the dominant structures 

in the CAN. Its involvement in autonomic states has been well established from 

electrophysiological and stimulation studies in animals (37; 124; 153; 274; 292; 363). In 
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the current study, the bilateral anterior insula showed significant activation above baseline 

in both groups for the HR response at both IHG intensities. This relationship, however, 

was not observed at 40% IHG for the CON group where activation occurred in the right 

anterior insula but not in the left. Activation of the anterior insular cortices could be 

explained by the significant role these structures play in somatosensory processing (11; 

88) as they are involved in somatosensory mapping of the body (5). Work of Cechetto 

and Saper (47) suggested that the IC represents viscerotopic sensory aspects of 

cardiovascular arousal and that it merely reflects the body’s constant internal state. 

However as the above animal studies – and more recent human work – have 

demonstrated, increased insular activity is noted whenever cardiovascular responses occur 

(61; 63; 161; 359; 362). Also, damage to this structure causes various cardiovascular 

dysfunctions, such as more frequent and complex arrhythmias (56; 337). This evidence, 

along with its neural connections to the vMPFC (348), suggests that the insula has an 

active role in feedback modulation of CV responses (361).  

Generally speaking, the left insula has been associated with parasympathetic effects 

and the right insula with sympathetic effects; however, this is likely an oversimplification. 

Both insulae have been implicated in the complex process of modulating cardiovagal 

BRS (161; 297; 365) and evoked potential recordings have demonstrated that the IC 

receives input indirectly from the vagal C- and A-fibre afferents (144; 145). Furthermore, 

there also seems to be baroreflex-related inter-neuronal connections between both insulae 

suggesting that they may interact to integrate circulatory control via the cardiovagal 

baroreflex loop (364) with both IC receiving markedly greater afferent inputs even than 

the vMPFC by way of the NTS, parabrachial nucleus and visceral sensory thalamic nuclei 

(46). 
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In summary, the neuroimaging results of this study indicate that cortical responses 

in older individuals who provide a HR response to IHG are consistent with previous work 

in younger individuals. Deactivation of the vMPFC and activation of the expected 

primary motor cortex with a significant HR response to IHG response was observed. 

Bilateral anterior insula activation for the most part was consistent throughout the study 

except during the 40% IHG trial in the CON group where only right anterior insula 

activation was observed. It is uncertain why the PCC would be deactivated during 30% 

IHG in both groups but not in the 40% task but could occur due to altered default brain 

function with age. It is unknown whether CAN structures exhibit lateralization such as the 

motor cortices but the vMPFC deactivation consistently appeared in the left hemisphere 

and the PCC always appeared in the right. 

6.3 LIMITATIONS AND FUTURE DIRECTIONS 

Due to lack of familiarization with the MRI environment some subjects may have 

suffered from mild anxiety and/or claustrophobia which could have influenced the BOLD 

responses to the IHG task. However, HR responses to IHG were similar between the lab 

session and MRI sessions for each group, so it seems unlikely that cardiovascular 

responses manifested from anxiety occurred during the neuroimaging session. 

Because we did not include a method for directly measuring sympathetic activity 

we can only speculate as to what actually occurred. Comparisons to previous studies that 

utilized similar methodology and made inter-dwelling nerve recordings of peripheral 

sympathetic activation were made instead. In the future, it would be useful to make direct 

measures of sympathetic activity when parasympathetic activity is analyzed to better 

ensure physiological results are PNS-mediated. 
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Even though each group contained 15 individuals they were heterogeneous in the 

male to female ratio. This may be an important factor when analyzing group differences 

as there are small differences between males and females in autonomic profiles and 

cortical (de)activation patterns. However, the attempt was made to recruit post-

menopausal women to eliminate cycling levels of estrogen as a variable. Of the 11 

women involved in the study eight were post-menopausal. Previous fMRI studies 

examining sex differences in CAN function observed altered, but still measureable, 

BOLD responses in females compared to males (162; 361). It was also imperative to 

recruit enough individuals for each group in order to compare fMRI results. Generally, 14 

to 16 subjects per group is the minimum requirement to obtain significant results after 

correcting for multiple comparisons (i.e. false discovery rate, FDR). In fact to address the 

problem of multiple comparisons in a voxel-wise analysis previous research has 

suggested a minimum of 20 participants for between-group analysis (73). Therefore, 

future studies may benefit from specifically recruiting and testing either strictly males or 

females and utilizing a larger sample size. 

For future studies, it may prove useful to include another contraction intensity, such 

as 50% MVC, to determine if there would have been a significant difference between 

group HR responses to exercise. It must be cautioned though that at this intensity 

sympathetic activation may start to occur before handgrip is finished and therefore an 

adjustment to the hand grip duration might be required.  

Additionally, future cross-sectional studies examining endurance trained individuals 

should collect physical activity records. Even though VO2max tests were utilized to 

distinguish fitness levels between groups and ensure one group could be classified as ET, 

a significant part of an individual’s VO2max trainability is genetic (27) and there are 
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noted genomic predictors that determine an individual’s maximal O2 uptake response to 

training programs (28). This genetic component of maximal oxygen uptake makes it 

difficult to use as the only index for endurance training status. Collecting physical activity 

records would also help to expose any large training differences amongst the ET group. 

Even though ET subjects were recruited based on the criteria of running 25 km/week for 

five years or greater there was no set maximum amount. This produced a mixed array of 

ET individuals with number of years running ranging from 5 to 38 and number of 

kilometres per week ranging from 25 to 90.  

Another subject characteristic that may have limited the results of this study is age. 

Even though older adults were the intended population, the subject group could 

potentially be classified as middle-aged (approximate mean age of 55 years in each 

group). For example, when Monahan and colleagues examined the effects of aging on 

cardiovagal BRS they examined three age groups: young, middle-aged and older adults 

(226). The middle-aged group ranged from 38 – 56 years of age and the older group 

ranged from 57 – 79 years of age with a significant reduction in BRS in the older group 

compared to middle-aged adults. Also, other studies that have examined the effects of 

endurance training on autonomic control in older adults utilized populations greater than 

sixty years of age (29; 265). As a follow-up to this study and to address this limitation, if 

the same group of people could be assessed after five years when the mean age would be 

approximately 60 perhaps significant differences would then be observed between 

groups. 

Finally, utilizing other imaging techniques such as arterial-spin labelling and 

diffusion tensor imaging might allow for detection of ET related differences between 

groups. Even though there were no functional differences based on the observed BOLD 
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responses the addition of further imaging techniques would enable assessment of 

potential differences in cerebral blood flow or white matter connectivity. Analysis of 

anatomical data might also be more informative than functional data for between-group 

differences as there is strong evidence to support the positive effects ET has on the age-

related declines in GM volume, cortical thickness and total tissue atrophy.   

6.4 SIGNIFICANCE OF FINDINGS 
 

The major finding of this study is that long-term endurance training in 55 year old 

adults does not seem to offer any discernible neuroprotective effects nor does it offer any 

benefits for autonomic cardiovascular control. It did not increase parasympathetic activity 

or alter BOLD responses to IHG or HR in the structures associated with the CAN 

compared to age-matched untrained controls. It is important to point out that all of the 

results were internally consistent. Because there were no significant differences between 

physiological variables it was expected that there would be no differences between 

cortical activation patterns. Thus, aging appears to have an important and perhaps 

irreversible effect on CAN function. Further analysis however, may reveal significant 

differences between long-term endurance athletes and age-matched controls with respect 

to total brain anatomy, the morphology of certain structures and white matter connections 

between different areas of the brain.
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