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ABSTRACT 

This thesis investigated light-frame wood/concrete hybrid construction as part of the 

NSERC Strategic Network on Innovative Wood products and Building Systems 

(NEWBuildS). A review of eight wood/concrete niche areas identified three with 

potential to be used in mid- to high-rise structures. Light-frame wood structures  of seven 

or more storeys with wood/concrete hybrid flooring seem to have little feasibility unless a  

concrete lateral-load-resisting system is provided and material incompatibilities are 

solved. Non-load-bearing light-frame wood infill walls in reinforced concrete frame 

structures were recognized to have potential feasibility in mid- to high-rise structures. A 

full-scale, single frame test apparatus was successfully designed and constructed at the 

Insurance Research Lab for Better Homes. The frame is statically loaded to accurately 

replicates realistic horizontal sway and vertical racking deformations of a typical eight 

storey reinforced concrete frame structure at SLS and ULS. A linear-elastic analysis of 

the test apparatus was generally able to predict the results during testing. The 2.4m x 

4.8m (8 ft. x 16 ft.) infill wall specimen did not satisfy serviceability deflection 

limitations of L/360 when subjected to representative out-of-plane wind pressures of 

+1.44/-0.9 kPa. The out-of-plane response was not significantly affected by horizontal 

sway deflections of +/-7.2mm or vertical racking deflections of +9.6mm. Although a 

nominal 20mm gap was provided to isolate the wall from the surrounding frame, 

insulation foam sprayed in the gap facilitated load transfer between them.  

  

 

Keywords:  Wood/Concrete Hybrid, Light-frame Wood, Infill Wall, Reinforced Concrete 
Frame Structure.
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1 

1.1 OVERVIEW 

INTRODUCTION 

1.1.1 INTRODUCTION 

Wood and concrete have been used separately as effective structural materials in two-

storey residential housing and low-rise multi-storey structures. With the recent seismic 

test of a six-storey light-frame wood structure in the NEESwood project (van de Lindt, 

2010) and changes to the BC Building Code that increase the maximum number of 

storeys permissible using combustible building materials to six (BCBC, 2009), there is 

incentive to explore the boundaries of light-frame wood construction. The feasibility of a 

hybrid mid-rise design seems realistic given the potential synergy of pairing the strength 

and durability of concrete with the light weight and sustainability of wood. Currently 

there is no literature, however, that reviews light-frame wood and concrete hybrid 

systems for mid- to high-rise structures. 

There has been some research on wood/concrete connection detailing, but past tests have 

focused on heavy timber construction, such as a post-and-beam wood frame with a 

concrete shear wall (e.g. Sakamoto, 2004). When subjected to simulated earthquake 

loading, failure occurred in both the concrete and the wood at their interconnection point. 

There are no references in the literature that specifically refer to hybrid light-frame 

wood/concrete methods of construction. The benefit of using light framing, instead of 

heavy timber, is that the load can be distributed throughout the wall system. This requires 

more connection points between the two materials but reduces the load on each 
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individual connection and so has the potential to add redundancy to the system. Light-

frame members are more readily available than heavy timber members, which are now 

typically used as built-up sections (van de Lindt, 2010). 

Additional research must be done to assess the interaction of light-frame wood and 

concrete in buildings. The connection of these materials is not discussed within CSA 

design standards and has been recognized as essential to the development of future design 

methods (CSA, 2010a; CSA, 2010c). This is further emphasized in Commentary B of the 

NBCC (2010) – Part 4, Division B, which states that “situations where structural integrity 

may require special attention include medium-rise and high-rise building systems made 

of components of different building materials, whose interconnection is not covered by 

existing CSA design standards

1.1.2 COMPLEMENTARY MATERIALS 

” (emphasis added) (NBCC, 2010). 

Table 1-1 summarizes typical material properties of light-frame SPF wood (CSA, 2010c) 

and normal-weight concrete (MacGregor and Bartlett, 2000). Some of these properties 

are complimentary, suggesting hybrid wood/concrete construction may be feasible. For 

example, concrete is denser, stiffer and markedly stronger in compression, where as 

wood is lighter and stronger in tension. 
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Table 1-1 - Material Properties for Wood and Concrete 

Material Properties Wood Concrete Wood-to-
Concrete Ratio Parallel to/Across Grain 

 Density (kg/m3) 550 2400 1:4.4 

 Specified Compressive Strength (MPa) 11.5/5.3 

 

30 1: 2.6 / 1: 5.7 
Specified Tensile Strength (MPa) 5.5 3 1:0.5 

 Elastic Modulus (MPa) 9500 25000 1:2.6 

 Elastic Modulus (5% fractile) (MPa) 6500 25000 1:3.8 

  

For wood/concrete hybrid systems to be feasible, potential material incompatibilities 

need to be resolved. Wood and concrete have different coefficients of thermal expansion 

that can potentially create high stresses at their interconnection points (Cook, 1977; 

Fragiacomo, 2010). Swelling and shrinkage of the wood is also a concern, especially in 

horizontal members such as floor joists, wall plates and beams (Wallace, 1998). It is 

unclear whether a moisture barrier is necessary between wood and concrete surfaces in 

contact in residential construction (CMHC, 1970). Without the barrier, the system may 

need to sustain the repeated swelling and contraction of the wood and the wood may wick 

moisture from the concrete causing deterioration (Holmes, 2006). Recent hybrid 

wood/concrete bridge construction practices have, however, involved successfully casting 

concrete against wood without a moisture barrier (Krisciunas, 2010). The National 

Building Code of Canada (NBCC) 2010 states that "wood framing members that are not 

pressure treated with a wood preservative and that are supported on concrete in contact 

with the ground or fill shall be separated from the concrete by not less than 0.05mm 

polyethylene film or Type S roll roofing". The same section also states that this is "not 

required where the wood member is at least 150mm above the ground", implying that 
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there will be no moisture in the concrete above such elevations. Load transfer 

mechanisms in future wood/concrete hybrid systems in mid-rise structures must 

accommodate these material incompatibilities.  

1.1.3 POTENTIAL BENEFIT 

A major benefit of including concrete in a mid-rise wood structure is the potential of 

increasing its fire resistance. A load-bearing wall within a structure of any size that is 

sprinklered can be classified as a firewall if it has a Fire Resistance Rating (FRR) of 2 

hours (NBCC, 2010). If the building has six storeys, satisfies the area limitations 

specified in Part 3 of the NBCC (2010) and is made of a non-combustible material, then 

it requires have a FRR of only 1 hour. Provisions for six-storey structures were recently 

added to the BC Building Code to allow the use of combustible construction materials 

with a FRR of 1 hour (BCBC, 2009). 

A potentially feasible design is a light-frame wood structure with a concrete elevator 

shaft, or stairwell, and a hybrid wood/concrete floor system in the corridors, as shown in 

Figure 1-1. This design takes advantage of the fire resistance of concrete by increasing its 

use in areas that require a higher FRR, such as stairwells. This design also addresses the 

need for the hybrid flooring to expand and contract, as accommodated by the connection 

detail shown. Implementation of this structure requires close consideration of the various 

wood/concrete connection details, particularly those around the concrete core. 
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1.2 NEWBUILDS  

The NSERC Strategic Network on Innovative Wood Products and Building Systems 

(NEWBuildS), who funded the research reported in this thesis, focuses on increasing "the 

use of wood products in mid-rise buildings for residential and non-residential purposes in 

Canada and elsewhere" (Chui, 2009). This network includes "industrial associations 

(Canadian Wood Council, Canadian Home Builders Association), industrial research 

organization (FPInnovations), building product approval agency (NRC Canadian 

Construction Materials Centre), consulting engineers (structural and fire), engineered 

wood product manufacturers, and university researchers". The research activities of the 

network are classified within the four following themes: 

- Theme 1: Cross Laminated Timber, focusing on material characterization and 

structural performance; 

- Theme 2: Hybrid Building Systems, focusing on structural performance; 

- Theme 3: Building Systems, focusing on fire performance, acoustic and vibration 

serviceability; and 

- Theme 4: Building Systems, focusing on durability, sustainability and enhanced 

products. 

The present study is part of Theme 2, listed as Project T2-2-C4: "Niche for and 

Feasibility of Reinforced Concrete Frame Multi-material Mid-rise Hybrid Systems".  
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1.3 RESEARCH OBJECTIVES 

The broad objectives of this study are to: 

1. identify and investigate niche areas for wood/concrete hybrid systems in mid- to 

high-rise buildings that can be practically implemented, accounting for the 

potential contributions of current or upcoming research, to highlight existing 

knowledge gaps that have prevented development to date (presented in Chapter 

2), and; 

2. explore some of the existing structural engineering challenges for a specific niche 

area to meet conventional limit states design requirements, including 

serviceability, safety and durability, and further its practical development 

(presented in Chapters 3 and 4). 

Wind-bearing light-frame wood infill walls in reinforced concrete frame structures has 

been chosen as the niche area worth pursuing. This led to the following specific 

objectives: 

A. Quantify the deformed shape of a typical reinforced concrete frame structure 

under wind loading to identify critical frame sway deflection magnitudes. 

B. Develop a methodology for testing full-scale non-load-bearing infill wall 

specimens under realistic in-plane racking deformations and out-of-plane wind 

loads at both serviceability and ultimate limit states 

C. Design and construct a full-scale test apparatus that can replicate these critical 

racking deformations and apply the required wind loads to investigate, 
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experimentally, the interaction between the reinforced concrete frame and the 

wood infill wall.  

D. Design, prototype and test a connection that accommodates the predicted in-plane 

sway deflections of the reinforced concrete frame and yet withstands the localized 

out-of-plane wind loads at both serviceability and ultimate limit states. 

1.4 OUTLINE OF THESIS 

Chapter 2 investigates a spectrum of potential niche areas for wood/concrete hybrid 

systems in mid- to high-rise structures using traditional light-frame wood construction. 

Certain niches areas are deemed to be more feasible than others and are further 

investigated to quantify their feasibility using a limiting criterion such as the maximum 

number of storeys. A single niche, light-frame wood infill walls in reinforced concrete 

frame structures, is then chosen to be the focus of the rest of the study. 

Chapter 3 focuses on the design and construction of the full-scale reinforced concrete 

frame test apparatus and the light-frame wood infill wall specimen. The test apparatus is 

used to replicate the realistic vertical and lateral frame deformations, identified by an 

investigation of a 9-storey reinforced concrete frame prototype structure, and to apply 

out-of-plane wind loading. A description of the connection design concept for the light-

frame wood infill wall is also presented. 

Chapter 4 presents the procedure for and results from the in-plane lateral sway and 

vertical racking tests, as well as three out-of-plane pressuring tests, performed using the 

test apparatus and wall specimen. A comparison of observed and predicted response of 

test apparatus and wall test specimen during the first out-of-plane test and the in-plane 
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tests are presented. The sequential out-of-plane tests were performed in-between each in-

plane test to investigate their effect on the out-of-plane stiffness of the wall using a 

repeatability assessment.    

Chapter 5 summarizes the research program and presents the conclusions of this research. 

Recommendations for future work are also presented. 
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2 

2.1  INTRODUCTION 

NICHE AREAS FOR MID-RISE LIGHT-FRAME 

WOOD/CONCRETE HYBRID CONSTRUCTION 

2.1.1 OBJECTIVE 

The objective of this chapter is to identify niche areas for wood/concrete hybrid systems 

in mid- to high-rise structures using traditional light-frame wood construction and to 

determine their feasibility for future use in practice.   

2.1.2 DEFINING TERMS 

A variety of terms have been used in the literature on hybrid systems (i.e., Elliot, 2003; 

Sakamoto, 2004). The present study will adopt the definition by Gagnon et al. (2006, 

2007) which uses the term "hybrid" to describe two different materials that are combined 

to take advantage of each other’s properties. These two materials may be interconnected 

as a system, or participate in parallel to achieve a common purpose. The term 

"composite" will refer to the action created between these two materials when connected 

integrally, such as the composite action in wood/concrete hybrid floor systems that is 

created by shear connectors. The terms "mixed construction", which generally refers to 

two materials combined without optimizing the benefits of each, and "dual system" will 

not be used. This study will also focus on the global perspective of a structure, as other 

research tends to incorporate the elements of a structure as well (Isoda, 2000; Gagnon, 

2007). Thus, the present study will be focused on assessing the overall structure with 
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respect to the systems and assemblies within the structure. The study of individual 

elements, such as a single wood/concrete hybrid beam, will not be addressed.  

2.2 EVALUATION OF NICHE AREAS 

2.2.1 SCOPE 

Figure 2-1 shows the spectrum of light-frame wood and concrete hybrid niche areas that 

have been considered within the scope of this project. Light-frame wood structures are 

listed at the top, representing one end of the spectrum. Concrete components are 

progressively added to create other niche areas, leading to all-concrete structures shown 

at the bottom. Each niche has been investigated to establish its potential as an area of 

growth for the Canadian wood industry. Past research has considered a variety of heavy 

timber wood/concrete hybrid systems (i.e. Sakamoto, 2002; Gagnon, 2007) but these will 

not be considered in the present study.  There are a number of light-frame wood/concrete 

hybrid designs that have already been constructed successfully, however, generally these 

existing designs address the use of wood and concrete as materials in distinct separate 

structures, or uses one of the materials as a non-structural element. Other systems shown 

require the wood and concrete to be designed as a hybrid system. Research on some of 

these niche areas is ongoing elsewhere, such as in NEWBuildS Network Projects T2-1-

C3: "Techniques for forming multi-functional construction interfaces in hybrid-

buildings" and T2-9-C6: "Movements and deformation incompatibilities of materials in 

light wood frame residential buildings" (Chui, 2009). As implied by Figure 2-1, this 

chapter will address each of the niche areas listed and then further explore the feasibility 

of the following niches: Wood Structure with Wood/concrete Floor Systems, Wood 
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Structure with Concrete Lateral-load-resisting System and Reinforced Concrete Frame 

Structure with Exterior Light-frame Wood Infill Walls. 

 

Spectrum Potential Wood/Concrete Hybrid Systems Reviewed 
Only 

Further 
Investigated 

Light-Frame Wood Structure  

  

Wood Structure with Wood/Concrete Floor Systems   √ 
Wood Structure with Concrete Foundation and Lower Storeys √   
Wood Structure with Concrete Lateral-load-resisting System   √ 
Hybrid Structure with Compartmentalization  √   
Reinforced Concrete Structure with Wood/Concrete Floor Systems √   
Reinforced Concrete Structure with a Wood Roof or Wood Upper Storeys √   
Reinforced Concrete Structure with Interior Partition Walls √   
Reinforced Concrete Structure with Exterior Light-frame Wood Infill Wall   √ 

Reinforced Concrete Structure 

 Figure 2-1 – Spectrum of Potential Wood/concrete Hybrid Systems 

 

2.2.2 LIGHT-FRAME WOOD STRUCTURE 

Figure 2-1 shows this niche is outside of the spectrum of wood/concrete hybrid systems. 

Light-frame wood structures are, however, used in this study as a guide to compare the 

storey restrictions placed on existing structures by current design codes. In countries such 

as the United Kingdom, United States, Germany, Norway, Italy and Switzerland, the 

height limit for a multi-storey wood-frame building is set between 5 and 7 storeys (Smith, 

2008a; Surprenant, 2010). Currently the NBCC (2010) allows the construction of multi-

storey wood-frame structures with up to 3 storeys with floor area restrictions. Four storey 

wood-frame structures are also allowed provided they have automatic extinguishers, 

satisfy floor area restrictions, are located on a street and have a limited number of 

Concrete 

Wood 
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occupants. These limitations are mainly due to fire prevention considerations 

(Surprenant, 2010). Projects such as the Timber Frame 2000 Project (Enjily, 2006; Johal, 

2009) and the NEESWood Project (van de Lindt, 2010) led to recent provisions to the BC 

Building Code which now allow the use of combustible materials in structures up to 6 

storeys as of April 6th, 2009 (BCBC, 2009).   

2.2.3 WOOD STRUCTURE WITH WOOD/CONCRETE FLOOR SYSTEMS 

Figure 2-1 shows the feasibility of wood structures with wood/concrete floor systems will 

be further investigated in this study. Currently these systems are used in low-rise 

structures, but do not exist in mid-rise light-frame wood structures. This is because the 

accumulation of vertical shrinkage in the wood is considered negligible for structures 

with fewer than four storeys (Cheung, 2000). The present study includes a general survey 

of this niche, however, in-depth work is being done by NEWBuildS Network – Project 

T2-4-C3: "Innovative post-tension composite systems for long-span floor construction" 

(Chui, 2009). 

Wood/concrete floor systems can be composite or non-composite. Non-composite floor 

systems include the use of concrete topping to add fire-resistance and sound-absorbent 

properties to the wood floor. This type of design is occasionally used (Cheung, 2008) and 

is considered in some sources to be standard practice (e.g. CWC, 2010). Composite floor 

systems use shear connectors to ensure full or partial composite behaviour between the 

concrete and the wood. They were first researched as floor systems in the 1940s 

(Lukeszeska, 2010), however they were used as decking for wood bridges in the 1930s 

(Cooke, 1977; Dolan, 2005; Clouston, 2008; Rautenstrauch, 2010; Gutkowski, 2010). 
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More recently they have been used for restoring historic buildings (Piazza, 2000) and 

specific connection designs are being used in practice to create hybrid flooring systems 

(Lukaszewska, 2008). The use of wood increases the efficiency of the system (load 

carrying capacity per unit self-weight), reduces load for better seismic performance, and 

markedly reduces environmental impact compared to a concrete slab (Yeoh, 2010). The 

concrete improves acoustics, decreases deflection and so increases span length, and 

enhances the fire resistance and floor diaphragm stiffness when compared to a timber-

only floor (Gagnon, 2007; Clouston, 2008). 

The benefits of wood/concrete composite floor systems have generated considerable 

research on innovative shear connectors between the two materials to facilitate an 

optimized and predictable composite system (Gagnon, 2007). Current challenges include: 

effectively achieving composite action between the materials, long-term behavior of the 

wood, creep effects due to the weight of concrete, plasticity developed before collapse, 

and the risk of fatigue failure from repetitive loading. There also remains uncertainty 

concerning the effect of water in the concrete on the durability of the wood members; 

however it is suggested that using precast concrete would resolve this, while also limiting 

concrete shrinkage and reducing construction costs (Lukaszewska, 2010). A film could 

also be applied as a moisture barrier between the wood and the concrete to protect the 

wood from excessive moisture (Clouston, 2005). 

In general, the reported range of recently used concrete thicknesses in composite 

wood/concrete floor systems is 63.5-120mm for normal-weight concrete and 50-60mm 

for high-strength concrete, whether precast or cast in-situ (Clouston, 2005, 2008; Yoeh, 

2010; Gutkowski, 2010; Crocetti, 2010; Lukaszewska, 2008, 2010; Kuhlmann, 2008; 
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Chuan, 2009). Spans reported in these studies range from 3.6m to 10.0m with various 

type of timber used (traditional lumber, laminated veneer lumber, glued laminated timber, 

etc.). The extensive available research on wood/concrete flooring systems has been 

summarized by Gagnon et al. (2007), Clouston et al. (2005, 2008), Gutkowski et al. 

(2010) and Lukaszewska et al. (2010). Despite this research, such systems are rarely used 

because of the difficulty in providing efficient connections, uncertainty in predicting 

long-term changes of the system and the lack of guidelines for design (Lukaszewska, 

2010). The potential composite action is unclear: some claim that over 95% composite 

action can be achieved using a well-designed system (Clouston, 2005; Yeoh, 2010; 

Lukaszewska, 2010), while others state that the interaction between the two materials 

should be classified as only partially composite (Crocetti, 2010).  

2.2.4 WOOD STRUCTURE WITH CONCRETE FOUNDATION AND LOWER 

STOREYS 

Figure 2-1 indicates that this niche will not be further investigated because existing 

wood-to-concrete connections and current code restrictions limit the height of current 

mid-rise light-frame wood structures. These connections are required to resist large uplift 

and torsional forces to ensure adequate performance of the light-frame wood structure, 

while maintaining proper load transfer to the concrete substructure. Elaborate connection 

systems used for this type of construction (i.e., holdowns, strappings and continuous tie 

down, etc.) have helped to increase the maximum number of storeys with respect to all-

wood structures (Shackelford, 2007).  This niche is sensitive, however, to the similar 

code restrictions and design limitations placed on light-frame wood structures. Therefore, 
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further development of these connections seems to be limited and this niche will not be 

further addressed within this study. 

2.2.5 WOOD STRUCTURE WITH CONCRETE LATERAL-LOAD-RESISTING 

SYSTEM  

Figure 2-1 indicates that a wood structure with a concrete lateral-load-resisting system 

will be further developed within this study. Obvious design challenges are material 

incompatibilities, such as creep and differential shrinkage, in addition to the questionable 

behavior of the structure under lateral loading due to the connection detailing (Wallace, 

1998; Sakamoto, 2002).  Designs for these connections have been discussed suggesting 

that the wood and concrete structural systems be designed to act independently (Cheung, 

2000). Further research is being conducted by the NEWBuildS Network – Project T2-9-

C6: "Movements and Deformation incompatibilities of materials in light wood frame 

residential buildings" (Chui, 2009; Zhou, 2009).  

2.2.6 HYBRID STRUCTURES WITH COMPARTMENTALIZATION 

Figure 2-1 indicates that hybrid structures with compartmentalization will not be further 

considered within this study. This concept is potentially feasible in the long term. Its 

current potential is limited, however, and since the focus of this study is short-term 

feasibility, it will not be further developed. Smith et al. (2008b) developed a conceptual 

design of a "high-performance composite-construction system for a tall building", shown 

in Figure 2-2, based this approach. It is only theoretical at this point, yet has the potential 

to amalgamate a number of wood/concrete hybrid systems. The benefits allow the 

separation of components of the structural system to prevent, for example, the spread of 
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fire. This approach could also be applied to control shrinkage and creep within each 

compartment. To exploit this niche, the challenges of wood/concrete material 

incompatibility still require resolution. Further work is being done by NEWBuildS 

Network – T2-1-C3: "Techniques for forming multi-functional construction interfaces in 

hybrid-buildings" (Chui, 2009). 

 

 
Figure 2-2 - Conceptual 16 storey Wood/concrete Hybrid Building (Smith, 2008b)  

 

2.2.7 REINFORCED CONCRETE STRUCTURES WITH WOOD/CONCRETE 

FLOOR SYSTEMS 

Figure 2-1 shows that reinforced concrete structures with wood/concrete floor systems 

will not be further considered in the present study due to the consideration of realistic 

design criteria when considering light-frame wood versus heavy timber. The wood floor 
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system is likely to be constructed within the structure, confined from expansion and 

contraction by concrete beams and/or walls, suggesting that material incompatibilities 

may be a concern. These connections will likely need to resist differential changes and  

potential moisture transfer while accommodating the deformed shape of the structure 

under lateral loading. Most heavy timber systems are typically engineered wood products 

and so are potentially more suitable because they exhibit much less expansion and 

contraction than light-frame systems. Since the floor system transfers gravity loads to the 

concrete walls, instead of the light-frame wood walls discussed in Section 2.2.2, they will 

be able to resist the large point loads created by heavy timber beams. Given these 

features, as well as the benefit of longer spans, it seems likely that a heavy timber would 

be preferable in this type of floor system, limiting the potential of a light-frame 

wood/concrete floor system in a reinforced concrete structure.  

2.2.8 REINFORCED CONCRETE STRUCTURE WITH A WOOD ROOF OR WOOD 

UPPER STOREYS  

Figure 2-1 indicates that a reinforced concrete structure with a wood roof or upper storey 

will not be further investigated. Although structurally similar to the ‘Wood Structure with 

Reinforced Concrete Foundation or Lower Storeys’ described in Section 2.2.3, the 

feasibility of this niche is mainly dependant on the potential fire risks in a high-rise light-

frame wood structure. Current design restrictions are largely influenced by the ability to 

extinguish the fire on the top storey (Surprenant, 2010) and it is unrealistic to assume that 

these restrictions would apply to mid- to high-rise construction in this niche. This design 

potentially leads to larger structures, however fire constraints limit its overall feasibility.   



19 
 

 
 

2.2.9 REINFORCED CONCRETE STRUCTURE WITH INTERIOR WOOD 

PARTITION WALLS   

Figure 2-1 shows that reinforced concrete structures with interior partition walls will not 

be further considered because, in North America, light-frame wood walls are already 

commonly used as interior non-load-bearing partition walls where the primary structure 

is constructed of a non-combustible material such as concrete or steel (Gagnon, 2006). 

These walls are frequently used in mid- to high-rise residential and non-residential 

construction and are comparable to similar wall systems that use light-gauge steel studs 

or masonry (Gagnon, 2007). With the potential for excellent acoustic performance and 

the use of prefabricated construction, light-frame wood walls can be optimal, especially 

compared to heavy masonry wall systems. The NBCC (2010) states that light-frame 

wood partition walls can be used in non-combustible structures if they are: sprinkled 

throughout; not used as a care, treatment or detention occupancy; and not located in exit 

enclosures. 

2.2.10 REINFORCED CONCRETE STRUCTURE WITH EXTERIOR LIGHT-FRAME 

WOOD INFILL WALLS 

Figure 2-1 shows that reinforced concrete structures with exterior light-frame wood infill 

walls is considered in the present study and, although touched on briefly in this chapter, 

will be further developed in the following chapters. A large majority of high-rise 

structures use concrete, either precast or cast-in-place, as the primary structural system 

and use other materials, such as masonry or light-gage steel framing, for infill walls. 

These infill components are typically non-loadbearing; exterior infill walls are only 



20 
 

 
 

required to transfer localized out-of-plane wind loads to the surrounding concrete frame. 

There are currently exterior light-frame wood infill walls in Scandinavia (where they 

were introduced in the 1950s), Netherlands, Germany, France, United Kingdom, Austria 

and China (Eriksson, 2005). Many existing examples of this system are low-rise 

structures or high-rise structures in geographic locations where there is no seismicity, 

such as Sweden. These wall systems are cost-competitive up to 20 storeys, especially 

current requirements for energy efficiency (EWC, 2010). There is little indication, 

however, that this hybrid system is used in North America (Wang, 2011). One of the 

current knowledge gaps concerning exterior wood infill walls involves quantification of 

the space required between the concrete frame and the infill wall panel. This space and 

the connection details must accommodate material volume change incompatibilities, 

deformations of the structure due to lateral loading and realistic construction tolerances of 

both the wood infill panel and the concrete frame. Light-gauge steel and masonry exterior 

wall systems are currently preferred in North America, mainly due to their non-

combustibility. 

2.3 ASSESSMENT OF POTENTIAL NICHES 

2.3.1 APPROACH 

The next goal is to assess the feasibility of the three highlighted niche areas shown in 

Figure 2-1 to be 'further investigated'. This is done by computing the potential maximum 

number of storeys of each niche alternative and comparing it to a feasibility limit 

criterion, which for this study is set at 7 or more storeys. This limit has been chosen to 

facilitate surpassing the current code restrictions for light-frame wood structures, 
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discussed in Section 1.1.1, which states that the maximum height of a wood structure in 

Canada is currently 6 storeys (in British Columbia). It also exceeds the limit of the full-

scale light-frame wood structures that have been tested in the Timber Frame 2000 Project 

(Enjily, 2006; Johal, 2009) and the NEESWood Project (van de Lindt, 2010). 

2.3.2 WOOD STRUCTURE WITH WOOD/CONCRETE FLOOR SYSTEM 

The load path for a wood structure carrying gravity loads can easily be followed through 

the light-frame sheathed wood stud walls, leading directly to the foundation of the 

structure. The compressive capacity of these sheathed stud walls will be used in this 

study to estimate the maximum number of storeys for various loadings, material types 

and floor alternatives.  

Figure 2-3 shows the cross-section of the simplified interior span investigated. Pin 

connections are assumed at the top and bottom of each wall. The floor is assumed to be 

continuous over, and so transfers a significant reaction to, the interior supporting wall, 

which is therefore the focus of this study. An exterior wall with the same axial capacity 

as the interior wall can support a span that is 3.3 times longer. For this simple idealized 

structure, the interior wall capacity becomes directly dependent on the properties of its 

constituent materials, readily facilitating comparisons for various loading criteria given 

different stud sizes and spacings.  
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Figure 2-3 - Load Arrangement for Maximum Internal Reaction  

 

The compressive demand, Cf, on the centre interior wall is: 

[2.1]   Cf = 1.25 L n wf  

where L is the span between two walls and n is the number of storeys supported by the 

wall. The total factored load, wf, is due to dead load, D, and live loads, L, specified in the 

NBCC (2010). Snow loads were neglected since they add limited gravity loading to the 

ground floor walls of structures with more than 4 storeys. The capacity of a 1m section of 

wall with a maximum stud spacing of 610 mm (24”) on-center (o/c) was determined in 

accordance with CAN/CSA-O86-01 (CSA, 2010c). Given the wall capacity, Cr, the 

maximum number of storeys that can be supported for a given span can be computed for 

Eq. [2.1] for Cf = Cr. A clear storey height of 2.4m was assumed and the lumber was 

assumed to be dry, untreated SPF No. 1/2. No live load reduction was included as it is 
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unclear how to compute tributary areas for walls in accordance with NBCC (2010), 

Commentary F. For example, Figure 2-4 is a plan view of tributary area axb that could be 

assigned to a floor supported on discrete walls, where a is the distance between two lines 

of zero shear in shorter direction and b is the distance between two lines of zero shear in 

the longer direction. If the wall is continuous, however, the length of the tributary area 

along the length of the wall, a, is unclear.  

 

 

Figure 2-4 - Tributary Area for a Wall  

 

Maximum span lengths for traditional wood products were based on bending moment 

capacities for various combinations of lumber joist depths and spacings calculated in 

accordance with CAN/CSA-O86-01 (CSA, 2010c). Deflection and floor vibration criteria 

were also considered. A 90mm concrete topping was assumed, to achieve the minimum 1 

hr FRR specified in the NBCC (2010). As shown in Table 2-1, the maximum span length 
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is 5m and requires the use of 38mm x 286mm (2x12) joists at a spacing of 300mm. 

Realistically it is likely that the maximum span length will be 4m for dimensional lumber 

joists. Engineered wood products or wood/concrete hybrid floor systems have the 

potential to increase the maximum span, so longer spans have also been considered in 

this study.  

Table 2-1 – Maximum Spans for Wood Joists 

Span 
(m) 

Joist Spacing (mm) 
300 400 500 600 

3 2x8 2x8 2x10 2x10 
4 2x10 2x12 -- -- 
5 2x12 -- -- -- 

 

 

Table 2-2 shows the parameters and parameter ranges considered in the sensitivity 

analysis. Three different floor concrete thicknesses were investigated: non-structural 

concrete topping recommended in the Wood Design Manual (CWC, 2010) and permitted 

by NBCC (2010) to enhance FRR to at least 1 hr., wood/concrete composite floor 

systems described in current literature, and concrete slabs with span-to-thickness ratios 

that meet the empirical limits for deflection in CSA Standard A23.3-09 (CSA, 2010a). 
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Table 2-2 - Parameter Ranges Investigated 

Variable Range Reference 
Occupancy Classification A - F NBCC (2010) - Table 3.1.2.1 
Live Load (kPa) 1.9 - 4.8 NBCC (2010) - Table 4.1.5.3 
Super-imposed Dead Load (kPa) 1.6 CISC, 2006 
Density of Concrete, γc, (kg/m3) 1430-2400 MacGregor, 2000 
Live Load Reduction Factor 1.0 NBCC (2010) Div. B - 4.1.5.9 
Wood Design Manual Suggested Values 
Concrete Topping Height (mm) 36-50 CWC, 2010 
Wood/concrete Composite Floor System 
Concrete Height (mm) 50-120 Crocetti, 2010; Clouston, 2005 
Concrete Design Manual Deflection Criteria 
Maximum Length, Lmax (m) 2.6-6.3 CSA, 2010a 
Concrete Slab Thickness, t (mm) 150-350 - 

 

 

Table 2-3 lists the seven cases investigated. Each case investigates the effect on the 

maximum number of storeys of changing the parameters shown in ‘bold’ font. The 

various cases are further described as follows: 

- Case 1 represents a wood structure with a wood floor system. 

- Case 2 uses a 50mm thick concrete topping that allows a wood floor system to 

meet deflection criteria, and achieves the required 1-hour FRR using a 

combination of concrete and plywood (CWC, 2010). This case results in the least 

severe loading for any of the wood/concrete flooring alternatives investigated. 

- Case 3 is the principal case. The 90mm concrete topping acts as the necessary 

flexural compressive zone within the assumed wood/concrete hybrid floor system 

and achieves the necessary 1- hr FRR specified in the NBCC (2010). This 

concrete thickness was chosen by assessing various wood/concrete test specimens 
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reported in current literature and has the potential to increase the span length 

beyond the limits shown in Table 2-1 (Chuan, 2009; Clouston, 2005, 2008; 

Crocetti, 2010; Gutkowski, 2010; Kuhlmann, 2008; Lukaszewska, 2008, 2010; 

Yoeh, 2010). 

- Case 4 uses a non-prestressed one-way solid slab that satisfies the CAN/CSA-

A23.3-09 deflection requirements (CSA, 2010a). The slab is assumed to be the 

only load-carrying element spanning between the load-bearing walls. To eliminate 

damage to non-structural elements from large deflections, the maximum length 

allowed, Lmax, for light-weight concrete is, from Table 9.2(a) of CSA A23.3-09 

(2010a): 

[2.2]    Lmax = 20 t (1.65-0.0003γc) 

where t is the slab thickness and γc is the concrete density in kg/m3. A slab 

thickness of 200mm was found to be optimal, achieving the maximum number of 

storeys due to material capacity of the wood wall system while satisfying code 

deflection requirements. 

- Cases 5-7 investigate the effects of changing the occupancy classification from 

residential to business, the concrete type from normal weight to lightweight and 

both the occupancy classification and concrete type, respectively, with respect to 

Case 3. 
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Table 2-3 - Multi-Storey Wood Structures with Wood/concrete Flooring 

Variable Assumed Values 
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

Occupancy Classification C –Res. C –Res. C –Res. C –Res. C –Res. D - Bus. D - Bus. 
Live Load (kPa) 1.9 1.9 1.9 1.9 1.9 2.4 / 4.8  2.4 / 4.8  
Density of Concrete, γc (kg/m3) - 1800 1800 1800 2400 1800 2400 
Wood Design Manual Suggested Values 
Concrete Topping Height (mm) - 50 - - - - - 
Wood/Concrete Composite Floor System 
Concrete Topping Height (mm) - - 90 - 90 90 90 
Concrete Design Manual Deflection Criteria 
Lmax (m) - - - 3.6 - - - 
Concrete Slab Thickness, t (mm) - - - 200 - - - 

 

 

Figure 2-5 shows the output for Case 1. The light-frame wall studs considered are 38mm 

x 89mm (2x4), 38mm x 140mm (2x6) and 38mm x 184mm (2x8) at varying spacings of 

either 152mm (6”), 203mm (8”), 305mm (12”), 406mm (16”), 508mm (20”) or 610mm 

(24”) o/c. The area under each curve represents the feasible domain. The maximum 

number of storeys reduces as the span length increases. As an example, Figure 2-5 shows 

that the maximum span that can be supported by the interior wall of a 7-storey structure 

consisting of 38mm x 184mm (2x8) studs at 152mm (6”) o/c is 5m. As a comparison, 

Figure 2-6 shows that Case 3 is unable to withstand the loads required for a 7 storey 

structure. The results for all cases are presented in Appendix A. A combination of 

different dimensional lumber sizes and spacing can be used throughout the storeys of the 

structure. For example, Figure 2-5 shows the 7-storey structure with 5m spans requires 

38mm x 184mm (2x8) studs at 152mm (6”) o/c for the bottom two storeys, 38mm x 

184mm (2x8) at 203mm (8”) o/c for the next two storeys and 38mm x 184mm (2x8) at 
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305mm (12”) o/c for the remaining upper storeys. Regardless, the maximum wall 

compressive capacity in all cases is for 38mm x 184mm (2x8) studs at 152mm (6”) o/c 

and this capacity was used to determine the maximum number of storeys for each case.  

Table 2-4 summarizes the results for all seven cases. In assessing the maximum number 

of storeys it is assumed that the minimum acceptable span is 4.0m. This limit is realistic 

for residential construction: for example, the spans used in the NEESWood Project were 

approximately 4.0m (van de Lindt, 2010). The maximum span lengths are variables in the 

results for Cases 1-7. In all cases, the maximum number of storeys decreases as the span 

is increased. Therefore the use of span lengths greater than those shown in Table 2-1 will 

markedly reduce the maximum number of storeys.  
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Figure 2-5 - Results for Case 1: Wood Structure under Residential Occupancy 

 

 

Figure 2-6 - Results for Case 3: Wood Structure with Light-weight Concrete and Wood 
Composite Flooring under Residential Occupancy 
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Table 2-4 shows that, for this simplified structure, Cases 1 and 2 give the greatest number 

of storeys, 8, with 4.3m and 4.0m spans, respectively. For Case 2, this can be attributed to 

the thin light-weight concrete topping on the floor system. Case 3 uses 90mm of concrete 

and this extra weight reduces the maximum number of storeys by one, irrespective of the 

wall stud size. Case 4 shows it is not feasible to design the concrete slab to be a structural 

element in a mid-rise structure with wood stud walls as it requires a slab thickness that 

markedly increases the dead load and reduces the maximum number of storeys to 5. 

When the occupancy classification is changed from C (Residential), Case 3, to D 

(Business), Case 6, the increased live load reduces the maximum number of storeys by 

two to 5. Normal-weight concrete reduces the maximum number of storeys by one to 6, 

as seen in the comparison between Case 5 with Case 3, and hence has potential to be 

feasible. When combining the effects considered in Cases 5 and 6, as shown in Case 7, 

there is little merit in pursuing a hybrid design for business occupancies using normal-

weight concrete. 

 

Table 2-4 – Maximum Number of Storeys: Gravity Loading Only 

Stud Size Result Criteria Case 
1 2 3 4 5 6 7 

38x184mm 
(2x8) 

Max. Number of 
Storeys: 

8 8 7 5 6 5 4 

Span (m): 4.3 4.0 4.0 4.1 4.2 4.2 4.6 

38x140mm 
(2x6) 

Max. Number of 
Storeys: 

6 6 5 4 5 4 
< 4 

Span (m): 4.6 4.2 4.4 4.1 4.0 4.0 

38x89mm 
(2x4) 

Max. Number of 
Storeys: 

4 4 
< 4 < 4 < 4 < 4 < 4 

Span (m): 4.4 4.0 
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The results in Table 2-4 define the maximum number of storeys that can be supported by 

a structure with light-frame wood walls with various floor systems considering gravity 

loads only. These results suggest that residential occupancies with light-weight concrete 

or, if a slight reduction in the number of storey is accepted, normal-weight concrete are 

promising. Practically, however, the consideration of lateral loading may limit the 

maximum number of storeys in these mid-rise structures.  

The current limit on light-frame wood construction, as reflected in recent changes to the 

BC Building Code (BCBC, 2009) and in the scale of the largest light-frame wood 

structure tested (van de Lindt, 2010), is 6 storeys. These structures have been designed to 

resist all lateral loads and use advanced design techniques, such as tie rods and built-up 

stud packs, to resist the large overturning moments (van de Lindt, 2010). In the current 

study, Case 1 represents a similar, although idealized, wood structure and has a 

theoretical limit of 8 storeys with 2x8 (38x184mm) studs at 6” (150mm) o/c. Comparing 

this height with currently accepted practice, it is realistic to assume that the consideration 

of lateral loading will reduce the storey limits shown in Table 2-4 by 1 or 2 storeys.  This 

deduction has been applied to all the cases, yielding the reduced maximum numbers of 

storeys shown in Table 2-5. For example, Case 3 has a theoretical limit of 7 storeys with 

2x8 (38x184mm) studs at 6” (150mm) o/c, Table 2-4, and should therefore be deemed to 

be restricted to a maximum of 5 storeys if lateral loading is considered, Table 2-5. 

Therefore, these results show, within reason, that wood structures with wood/concrete 

floor systems have limited feasibility for mid-rise structures with 7 or more storeys.  
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Table 2-5 - Maximum Number of Storeys: Lateral Load Included 

Stud Size Result Criteria Case 
1 2 3 4 5 6 7 

38x184mm 
(2x8) 

Max. Number of 
Storeys: 

6 6 5 3 4 3 2 

Span (m): - - - - - - - 

38x140mm 
(2x6) 

Max. Number of 
Storeys: 

4 4 3 2 3 2 
<< 4 

Span (m): - - - - - - 

38x89mm 
(2x4) 

Max. Number of 
Storeys: 

2 2 
<< 4 << 4 << 4 << 4 << 4 

Span (m): - - 
 

 

2.3.3 WOOD STRUCTURE WITH CONCRETE LATERAL-LOAD-RESISTING 

SYSTEM 

Consideration of lateral loading has shown to be critical when assessing the capacity of 

the simplified structures investigated. The addition of a separate concrete lateral-load-

resisting system may therefore seem beneficial to minimize the transfer of lateral loading 

to the wood structure. The feasibility of this niche has been further explored by 

examining hybrid systems consisting of light-frame wood structures with a concrete 

elevator core or stairwell. It is assumed, perhaps optimistically, that the monolithic nature 

of the core and floor topping would create full rotation fixity at one exterior support and 

so reducing the reaction at the interior wall, yielding: 

[2.3]   Cf = 1.14 L wf n 

This 8.5% reduction of the reaction, compared to Eq. [2.1], increases the maximum 

number of storeys by one. Table 2-6 shows the modified results for each case and 
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demonstrates that attaching a concrete core to the wood structure with wood/concrete 

floors creates further potential for this niche area.  

 

Table 2-6 - Maximum Number of Storeys: Gravity Loading with Lateral-load-resisting 
System 

Stud Size Result Criteria Case 
1 2 3 4 5 6 7 

38x184mm 
(2x8) 

Max. Number of 
Storeys: 

9 9 8 6 7 6 5 

Span (m): 4.3 4.0 4.0 4.1 4.2 4.2 4.6 

38x140mm 
(2x6) 

Max. Number of 
Storeys: 

7 7 6 5 6 5 
<5 

Span (m): 4.6 4.2 4.4 4.1 4.0 4.0 

38x89mm 
(2x4) 

Max. Number of 
Storeys: 

5 5 
<5 <5 <5 <5 <5 

Span (m): 4.4 4.0 
 

 

Within this study, the maximum number of storeys for a wood structure with a 

wood/concrete floor system, whether attached or not attached to a concrete lateral-load-

resisting system, has been shown to be limited to 8 or 9 storeys. This limit is based on 

optimistic assumptions and is dependent on large 38mm x 184mm (2x8) studs at small 

152mm (6”) spacings and short 4m spans. When considering the effect of lateral loading 

and incompatibilities between the two materials, the use of light-frame wood as load-

bearing elements in mid-rise wood structures with composite wood/concrete floors is 

generally not feasible. Even with future research, there is limited potential to reach more 

than eight storeys with load-bearing light-frame timber. The use of non-traditional timber 

sizes (i.e., 3”x6”, 910mm x 1830mm) may be necessary to realize the feasibility of hybrid 
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systems with load-bearing wood walls. In Europe, "light-frame" wood construction 

includes wood members with a minimum cross-sectional area dimension of 160mm 

(Frangi, 2011). 

There is little literature on hybrid light-frame wood/concrete systems and currently this 

type of design is restricted to structures with up to 4 storeys (Gagnon, 2006) due to the 

accumulation of material incompatibilities in taller structures. Further work is currently 

being done within the NEWBuildS Network (Chui, 2009) to assess the interaction of the 

two materials. 

2.3.4 REINFORCED CONCRETE STRUCTURE WITH LIGHT-FRAME WOOD 

INFILL WALLS 

This niche alternative considers light-frame wood walls in conventional reinforced 

concrete frame structures. It has been shown in Sections 2.3.3 that a light-frame wood 

wall has limited load-bearing capacity, especially for taller structures. To further 

investigate whether these walls are capable participating with the concrete load-carrying 

system, the maximum compressive capacity of a 1m wide wall for dry, untreated SPF 

timber was computed and compared to the compressive demand due to overturning from 

lateral loading, combined with gravitational loads, for a 10 storey reinforced concrete 

structure with an aspect ratio of 0.7. The compressive demand at the base of the structure 

is approximately twice the capacity of a 1m wide section of a sheathed wood wall 

comprising of 2x8 (38mm x 184mm) SPF studs at 6” (152mm) o/c. It was therefore 

deemed unrealistic to use light-frame exterior wood infill walls as load-bearing elements 

within a mid- to high-rise structure. 
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Non-load-bearing infill walls have been successfully implemented in Europe, including 

use in high-rise buildings in non-seismic zones (Eriksson, 2005). This type of infill wall 

system is popular due to high energy conservation properties of wood and the simple 

construction techniques that can be adaptable to various building systems (Wang, 2011; 

Gagnon, 2006). Despite this, the associated design criteria and available literature is 

limited. There is little information on design limitations, such as structure height, and 

current knowledge seems to be experience-based with little basis in the fundamentals of 

structural mechanics. 

Standard practice for existing wood infill wall designs feature a gap of 15 to 20mm 

(Eriksson, 2005) around the perimeter of the wall to accommodate in-plane deformations 

of the reinforced concrete frame and ensuring the infill wall remains non-loadbearing. 

This gap also helps to avoid potential material incompatibility issues, as the concrete and 

wood are free to expand and contract without being restrained by the other material. In 

fact, these material changes are mainly limited to the concrete as the expansion and 

contraction of the wood infill wall will only occur in the top and bottom plates in the 

radial and tangential directions (i.e., parallel to the grain) (Keenan, 1986). This avoids 

accumulated stresses over the height of the structure from attached wood systems, a 

concern relevant to other wood/concrete hybrid systems, as well as any significant 

contribution from the infill wall to the change in gap. The gap also has the potential to 

accommodate concrete construction tolerances. On-site geometric tolerances, however, 

may be substantially less or substantially greater than these values since other types of 

exterior cladding and wall systems, such as light-gauge steel framing and precast 

concrete panels, recommend a tolerance of +/- 1.5 in. (38.1mm) (e.g. CSSBI, 1992). 
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Further research within the present study will focus on connections that effectively 

transfer load and isolate material incompatibilities, are readily constructed using 

conventional methods and accommodate realistic concrete construction tolerances.  

The structural performance of these wall systems is important, however, fire resistance of 

the walls may be a more serious constraint. The NBCC (2010) permits an exterior non-

load-bearing wall assembly that includes combustible components to be used in a 

building of non-combustible construction, such as an wood infill wall in a concrete 

frame, only if the building is sprinklered and the interior surface of the wall assembly is 

protected by a thermal barrier. These requirements are readily addressed. Currently, the 

most stringent Canadian requirement is that the exterior walls must conform to the ‘Fire 

Test of Exterior Wall Assemblies’ (NBCC, 2010), especially if untreated exterior 

cladding is used (Mehaffey, 2010). This needs to be addressed before of light-frame 

wood wall can be successfully implemented in mid- or high-rise structures.  

2.4 SUMMARY AND CONCLUSION 

This investigation has define a spectrum of potential niche areas for light-frame 

wood/concrete hybrid systems in mid-rise structures. Each alternative considered 

represents a hybrid system that allows the two materials to complement each other. A 

number of niche areas were reviewed that were limited by challenges such as material 

incompatibilities and fire resistance. The following three, out of the eight, potential niche 

areas were chosen to be assessed in further detail: 

1. Load-bearing light-frame wood walls combined with floor systems featuring non-

composite concrete topping, wood/concrete composite construction or concrete 
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one-way slabs. The feasibility study investigated various combinations of gravity 

loading where the axial capacity of the stud wall at the base of the structure was 

used to determine the maximum number of storeys. These results were then 

compared to existing structures to determine the potential contribution of lateral 

loading. With these assumptions, an apporximate maximum number of storeys 

was determined.  

2. Gravity-load-resisting light-frame wood structure with a reinforced concrete 

lateral-load-resisting system, such as concrete elevator shafts and stairwells.  

Introducing these systems into a largely light-frame wood structure could mitigate 

fire resistance and enhance the overall stability of the structure. The same 

procedure used to assess the wood structure without the lateral-load-resisting 

system was adopted. The results indicate that the concrete lateral-load-resisting 

system allows an increase of an extra storey since the connection of the wood 

system to the concrete system is assumed to be fixed. Also, any reduction in 

storeys due to the additional demands caused by lateral loading is avoided.  

3. Light-frame wood infill walls in reinforced concrete frame structures. A brief 

investigation was carried out on a load-bearing infill wall system. There are 

existing applications of this type of system throughout Europe, include high-rise 

buildings, yet they seem unfeasible according to the requirements of Canadian 

codes. Further structural research includes connection detailing, concrete 

geometric tolerances that must be accommodated and storey restriction necessary 

to ensure minimal damage from the sway deflections of the concrete structure. 
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Upon further review of the three potentially feasible niche areas, the following 

conclusions can be made: 

1. Light-frame wood structures with wood/concrete floor systems are most 

preferable for a residential occupancies, where a maximum of 6 storeys is 

possible if light-weight concrete topping is used. The use of normal-weight 

concrete reduces the maximum number of storeys by one. Such systems are 

clearly not feasible for buildings with business occupancies, particularly as such 

structures require span lengths longer than 4m to create open-concept floor 

layouts. They are also not feasible for the case of a full-depth concrete slab as the 

floor system. 

2. Overall, there is limited feasibility in pursuing light-frame wood structures 

combined with wood/concrete floor systems for 7 or more storeys, if the 

maximum span is 4m and current techniques for light-frame wood structures is 

used for resisting lateral loads. The compressive capacity of the load-bearing 

dimensional lumber is a limiting factor, however alternatives with larger cross-

sections and/or use engineered wood products, as well as the use of combining 

studs to create built-up stud packs, may need consideration. 

3. Similar conclusions can be made for gravity-load-resisting light-frame wood 

structures with a concrete lateral-load-resisting system, although such systems 

have the potential to reach 9 storeys. Material incompatibilities are still a 

challenge, however, since their effects accumulate as the height of the structure 

increases. These issues are currently being investigated by projects within the 

NEWBuildS Network and may therefore be deemed feasible in the future. 



39 
 

 
 

4. Preliminary calculations have demonstrated that light-frame wood infill walls are 

not feasibly for use as a load-bearing element. 

5. The most promising niche is the use of light-frame wood infill walls in reinforced 

concrete frame structures. These wall systems must remain non-load-bearing 

during in-plane deformations of the reinforced concrete frame structure and so 

require a gap around the perimeter of the wood wall. Design limitations for this 

type of wood/concrete hybrid system, such as the size of the gap, need to be 

quantified in the context of Canadian standards before this construction can be 

used in mid- to high-rise structures. 
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3 

3.1  OBJECTIVE 

TEST DESIGN AND CONSTRUCTION 

Chapter 2 identified non-load-bearing light-frame wood infill walls in mid- to high-rise 

reinforced concrete frame structures as a feasible niche area for hybrid wood/concrete 

construction. The research presented in this chapter investigates realistic in-plane 

boundary conditions at serviceability and ultimate limit states for a light-frame wood 

infill wall created by the deformations of a reinforced concrete frame, and a means to 

subject a full-scale wall specimen to these deformations in the laboratory. The application 

of out-of-plane wind loading will also be presented.  

The specific objectives are: 

- To quantify the critical storey deformations in a typical multi-storey reinforced 

concrete frame due to in-plane wind loading and differential column creep. 

- To design a test apparatus that can replicate these critical concrete frame 

deformations, and also facilitate out-of-plane wind loading on a full-scale infill 

wall specimen.  

- To design the full-scale light-frame wood infill wall, including its connection to 

the concrete frame.  

The experimental investigation of its response to realistic in-plane and out-of-plane 

loading will be presented in Chapter 4. 
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3.2 PROTOTYPE STRUCTURE 

Figure 3-1 shows the simple sway frame structure from the Cement Association of 

Canada Concrete Design Handbook, 2nd Edition (CAC, 1984), that was used as the 

prototype structure for the present study. The frame is 8 storeys tall, excluding the 

basement floor, with a typical storey height of 3.3m and a first storey height of 5.5m. The 

column lines are at 6.5m o/c in both directions. Analysis of this frame is well 

documented, allowing a new second-order analysis to be carried out using SAP2000 

(SAP, 2009) which was checked by comparing the predicted first-order analysis response 

to that originally reported (CAC, 1984), and to other previous work (Stead, 2010). 

Separate linear elastic analyses were conducted to quantify the response for specified and 

factored load levels. 
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Figure 3-1 - Summary of Prototype Structure 

 

3.2.1 IDEALIZATION 

The following idealizations were made: 

- Joints were assumed to have infinite stiffness within each beam-column core to 

predict joint rotations and frame deflections more accurately. 

- Connections at the base of the structure were assumed fixed to represent the effect 

of the basement floor and foundation. 

- An effective slab width of 1650mm (CSA, 2010a) was assumed. Any width of the 

floor slabs beyond the beam stems was originally neglected (CAC, 1984). The 
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current idealization increases the moment of inertia of the beams and, therefore, 

reduces the overall deflections. 

- The column stiffnesses assumed to assess the response at specified load levels to 

check Serviceability Limit States (SLS) are the gross (i.e., uncracked) values 

whereas the beam stiffnesses are 50% of the gross values to account for cracking. 

To investigate Ultimate Limit States at factored load levels, both the beam and 

column stiffnesses were reduced by 30% to account for cracking of the concrete 

and yielding of steel reinforcement (CSA, 2010a). 

3.2.2 LOADING ASSUMPTIONS  

A sustained dead load of 7.5 kPa (CAC, 1984) was applied. This accounts for the slab 

weight of 4.8 kPa and the T-beam stems, equivalent to an additional dead load of 1.9 kPa. 

The additional dead load is due to ceiling and floor finishes, etc. A live load of 5 kPa 

(CAC, 1984), comparable to the specified office occupancy load of 4.8 kPa (NBCC, 

2010), was also used. The live load was reduced by a Live Load Reduction Factor 

(LLRF) of 0.47, which is appropriate for a ground floor interior column (NBCC, 2010).  

The wind loads, specified by the NBCC (2010), were derived using the following 

parameters: 

- A 50-year reference velocity pressure, q, of 0.53 kN/m2, chosen to represent the 

higher pressures specified for a building located in Ontario.  

- A gust effect factor, Cg, of 2.0 as is appropriate for a slender high-rise structure 

with H>20m and H/Ds>1, where H is the height of the building and Ds is the 

smaller plan dimension. 
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- An exposure factor, Ce, corresponding to rough terrain that increases with the 

height on the windward side and is uniform on the leeward side. 

- External pressure coefficients, Cp, of 0.8 (windward side) and -0.5 (leeward side). 

A summary of the wind loading details are presented in Appendix B-1. The load 

combination at SLS, when wind is the principal action, is D+0.5L+0.75W as specified in 

the NBCC (2010). The factored load combinations at ULS are 1.25D+1.5L+0.4W and 

1.25D+0.5L+1.4W. The combination with the wind as the principal transient load 

governs the sway deflections because the second-order effects are small. 

3.2.3 PRINCIPAL IN-PLANE DEFLECTIONS 

Figure 3-2 shows the three principal deflections that have been identified for this study, 

where: 

- ∆L is the lateral (or sway) deformation of the column over one storey; 

- ∆vc is the accumulated differential vertical deflection of the columns due to creep, 

and; 

- ∆vb is the vertical deformation of the beam between the columns including any 

long-term deflection due to sustained loading. 
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Figure 3-2 - Principal In-plane Deflections 

 

Figure 3-3 shows the sway deformation of the structure at SLS and ULS, computed 

accounting for second order effects. The largest interstorey sway deflection occurs at 

Storey 1-2 where the shear force is large and the storey height is greatest. It is assumed 

unlikely that a wood infill wall would be used on this ground floor, however, so this 

study focuses on the upper storeys. The critical frame is therefore the exterior frame 

Storey 2-3, shown highlighted in grey, which has an interstorey sway deflection at SLS, 

using the D+0.5L+0.75W load combination, of 0.7mm. The corresponding sway 

deflection limit (NBCC 2010) is h/500, where h is the height of the storey. Thus, for a 

storey height of 3300mm, the limit is 6.6mm, shown in Figure 3-4 as an approximate 

range of 6-7mm. The critical interstorey sway deflection of Storey 2-3 at ULS, using the 

1.25D+0.5L+1.4W load combination, is 1.8mm, or 2.6 times the SLS deflection. This 

increase can be attributed to the combined effects of the cracking of the concrete (i.e., a 
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factor of 1/0.7=1.43), and the increased factored wind load (i.e., a factor of 1.4/0.75 = 

1.87) which together correspond to a factor of 2.67. If the structure is designed to just 

satisfy the SLS deflection limit of 6.6mm, the corresponding approximate ULS sway 

deflection is 17-18mm, as shown in Figure 3-4. 

 

 

Figure 3-3 - Sway Deformation of the Prototype Structure at SLS and ULS 
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Figure 3-4 - Sway Deflection Limits for Critical Frame 

 

The vertical creep deformations are due to differential shortening in the reinforced 

concrete columns. The creep deflection is calculated using CEB-FIB Model Code 1990 

method (i.e., MacGregor and Bartlett, 2000) assuming a 25 year time period, a relative 

humidity of 50%, and that loading occurs 2 weeks after the concrete is cast. The axial 

force in the columns was determined using the SAP2000 model under 1.0D for SLS and 

1.4D for ULS. Loading details and a summary of the results are presented in Appendix C. 

The tributary area of the interior column is twice as large as the exterior column, despite 

their having the same cross section, leading to twice the sustained dead load stress and 

thus causes a differential deflection over time. Figure 3-5 shows the accumulation of 

vertical shortening over the height of the prototype structure for exterior and interior 

columns at SLS and ULS. The greatest differential shortening occurs in the top storey of 

an exterior frame, shown highlighted in grey. The maximum differential shortening of the 

critical frame is 6.8mm at SLS and 9.5mm at ULS. There is no code limit on differential 
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vertical deflections at SLS so the critical range, rounded up slightly to account for creep 

analysis uncertainty, is 7-8mm, as shown in Figure 3-6. The corresponding range at ULS, 

accounting for the dead load factor, is 10-12mm, as also shown in Figure 3-6. Other 

factors including foundation settlement, construction tolerances, non-standard loading, 

etc., can increase the differential vertical deflection but are not reflected in these limits.  

 

 

Figure 3-5 - Vertical Creep Deformation of Exterior and Interior Columns at SLS and 
ULS 
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Figure 3-6 - Vertical Creep Deformation Limits for Critical Frame 

 

The deflection of the beam is primarily due to the gravity loads and is increased for 

sustained loading. A LLRF of 0.78 was used considering the tributary area of an 

individual beam. All dead and live loads, neglecting snow loads, were assumed present to 

calculate deflections at SLS due to sustained loads. The long-term deflection after 5 years 

was computed assuming sustained loads were applied when the concrete was 3 months 

old. The critical beam is located in an exterior bay where there are no counteracting 

moments from a beam framing into the other side of the column joint to minimize the 

rotation, as there would be for an interior column. This causes a larger deflection at mid-

span of the beam, which, as shown in Figure 3-7, is 1.1mm due to the immediate loading, 

plus the additional 1.1mm due to the sustained loading effect. Further of the deflection 

calculations are presented in Appendix D. Using CSA A23.3-04 (2010a) deflection limits 

for "roof or floor construction supporting or attached to non-structural elements likely to 



50 
 

 
 

be damaged by large deflections", the deflection limit is ℓn/480, or 12.5mm. This value is 

much greater than the 2.2mm deflection computed from the "sum of the long-term 

deflection due to all sustained loads and the immediate deflections due to any additional 

live load" (CSA, 2010a).  

 

 

Figure 3-7 - Mid-span Deflection of Critical Beam 

 

Table 3-1 summarizes the SLS and ULS deflection limits for Case A (interstorey sway) 

and Case B (differential creep) that the test apparatus must accommodate. The beam 

deflection was deemed not critical as beam deformations with similar magnitudes will 

occur during the lateral sway and vertical racking deformation. 

 

Table 3-1 - Final Deflection Limits of the Prototype Structure at SLS and ULS 

Deflection Case Limit 
State 

Principal 
Loading 

Prototype 
Results 

Critical 
Range 

(A) Sway Column Deflection, ∆L, 
at Second Floor, Exterior Bay 

SLS D+0.5L+0.75W 0.7 mm 6-7mm 
ULS 1.25D+0.5L+1.4W 1.8 mm 16-18mm 

(B) Differential Column Shortening, 
∆Vc, at Top Floor, Exterior Bay 

SLS 1.0D w/ creep 6.8 mm 7-8mm 
ULS 1.4D w/ creep 9.5 mm 10-12mm 
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3.3 TEST APPARATUS 

3.3.1 OBJECTIVE AND CONSTRAINTS 

The test apparatus must accommodate the following in-plane tests:  

- Lateral Sway Push Test, creating Case (A) deflections shown in Table 3-1; 

- Lateral Sway Pull Test, creating Case (A) deflections; and 

- Vertical Racking Test creating Case (B) deflections. 

The loads acting on the concrete frame for the Lateral Sway Push Test are shown in 

Figure 3-8a), where load, Ph, is applied horizontally to the top corner for the frame. 

Conversely, Ph is applied in the reverse direction during the Lateral Sway Pull Test. The 

Vertical Racking Test applies similar loads to the concrete frame as the Lateral Sway 

Push Test, except the load, Pv, is applied vertically at the bottom left column. 

 

 

Figure 3-8 - Load Cases Investigated: a) In-plane; b) Out-of-plane  
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The Out-of-plane Pressure Test applies a uniform pressure, shown in Figure 3-8b), to the 

wood infill wall while restraining out-of-plane movement of the reinforced concrete 

frame. The test pressures, shown in Table 3-2, are in accordance with wind loading 

criteria in the NBCC (2010). The positive pressure case represents the combined effect of 

positive external and negative internal pressures, and vice-versa. The positive pressure is 

greater in magnitude because the external pressure coefficients for this case are greater. 

Details of the pressure calculations are presented in Appendix B-2. 

 

Table 3-2 - Positive and Negative Test Pressures 

Limit State Positive Pressures (kPa) 
External 

Negative Pressures (kPa) 
Internal Total External Internal Total 

Serviceability 1.04 -0.4 1.44 -0.64 0.26 -0.9 
Ultimate 1.94 -0.74 2.68 -1.19 0.49 -1.68 

 

 

The test apparatus must also meet the following objectives: 

- The aspect ratio of the test frame, length to height, must be approximately the 

same as in the prototype structure, i.e., 2.0 

- The vertical clearance between the concrete beams must accommodate an infill 

wall of height 95 5/8” (2429mm), which accounts for pre-cut studs and single top 

and bottom plates. 

- The horizontal clearance between the concrete columns must accommodate an 

infill wall of length 16ft (4877mm). 
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- The ratio of the column to beam moments of inertia of the test apparatus must be 

approximately the same as that in the prototype structure (i.e., 0.33 based on the 

cross section properties). 

- The floor connections must provide boundary conditions that replicate the 

deformed shape of a single storey within the prototype structure. 

The test apparatus must also meet the following constraints:  

- The anchor plates in the existing strong floor are spaced at 2439mm (8’) o/c in the 

direction of the axis of the frame and 1219mm (4’) o/c normal to the frame axis. 

- The maximum applied load should not exceed the capacity of the load cell, 46kN, 

and must not exceed the capacity of the actuator, 90 kN. 

- The weight of any unit must not exceed the capacity of the existing overhead 

crane, 17.8kN (2 tons). 

3.3.2 FINAL DESIGN 

The final design of the test apparatus, shown in Figure 3-9, has been constructed at the 

Insurance Research Lab for Better Homes (IRLBH). The steel frame acts as a reaction 

frame for all in-plane tests with two connection points at the joints of the reinforced 

concrete frame. A removable base at the bottom left corner facilitates the Vertical 

Racking Tests and an Out-of-Plane Pressure Loading System is attached on the ‘exterior’ 

side of the apparatus for out-of-plane pressure testing. 
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Figure 3-9 - Final Test Apparatus: a) As Designed; b) As Constructed at IRLBH 

 

Figure 3-10 shows that the interior dimensions of the concrete frame must accommodate 

a 8’ x 16’ (2438mm x 4877mm) light-frame wood wall, leading to an aspect ratio of 1.9 

for the concrete frame. The desired deformed shapes can be achieved using relatively 

slender concrete beams and columns that reduce the necessary applied loads. The depth 

of the columns and beams, 175mm and 250mm respectively, was selected to achieve the 

desired stiffness ratio. The width of the concrete frame, 184mm (7 ¼”), was selected to 

satisfy the weight constraints and allow the use of nominal 2x8 (38mm x 184mm) lumber 

as the formwork. The concrete columns extend past the bottom concrete beam to permit 

rotation at the joints, similar to the prototype structure. The width of the Out-of-plane 

Loading System accommodates the existing strong floor anchor plate locations. Also,  the 

instrumentation grid system is shown that will be referred to throughout this study. 
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Figure 3-11 is an elevation of the reinforced concrete and steel frames as idealized using 

SAP2000 (SAP, 2009), where the steel has an elastic modulus of 200000 MPa and a yield 

strength of 350 MPa and the concrete has an elastic modulus of 26600 MPa and a 

compressive strength of 35 MPa. The analytical results for the model were independently 

validated by a first-order sway analysis using the displacement method (e.g. Hibbler, 

2006). The stiffness modifiers, Ie/Ig, shown account for the stiffness loss due to cracking 

of the concrete (MacGregor and Bartlett, 2000). The calculations are described in further 

detail in Appendix E. 

 

 

Figure 3-11 - Test Apparatus Details for SAP Model 
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The reinforced concrete frame was designed using CSA A23.3-04 (CSA, 2010a) and the 

steel frame using CSA-S16-09 (CSA, 2010b). The force effects due to the applied loads 

were based on results from a SAP2000 model using a load factor of 1.5. Detailed 

engineering drawings for both frames are shown in Appendix F and limits used for design 

are presented in Appendix G. To minimize costs, only the following three steel shapes 

were used for the steel frame: W200x46, HSS 89x89x4.8 and L51x51x4.8. All 

components were connected using pretensioned ASTM A325 3/4” (19mm) diameter 

bolts. Table 3-3A and Table 3-3B shows the prototype and test apparatus deflections 

under a lateral loading sway case at SLS and ULS, respectively, where the deflected 

shape and points of interest are identified in Figure 3-12 and the horizontal displacement 

at ∆T1' is used as the control displacement. The difference between the prototype structure 

and test apparatus is also shown, where the values without brackets show that the 

predicted deflection overestimates the observed response and the values with brackets 

show that the predicted deflection underestimates the observed response. A difference of 

over 0.5mm, highlighted in bold, has been used to identify points that have not been 

accurately predicted. These results shows that the overall deflected shapes are similar, 

however the test apparatus does not include the vertical component due to the self-weight 

of the structure and live loads seen in the prototype structure. This is shown as an 

increased difference between the vertical displacements on the left side of the frame (i.e., 

∆T1y and ∆ B1x) to the right side of the frame (i.e., ∆T1'y and ∆ B1'y). Despite this, the test 

apparatus predicts the prototype structure to be within 2.4mm at SLS and 3.3mm at ULS, 

which has been deemed to be sufficient.  
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Figure 3-12 - Prototype Deflections vs. Test Apparatus Deflections for Lateral Racking 

 

Table 3-3A - Deflection of Concrete Frame under Lateral Sway Loading at SLS 

 Top Beam Middle of 
Columns 

Bottom Beam 
 

Deflection (mm) ∆T1x ∆T1y ∆T3y ∆T5y ∆T3'y ∆T1'y ∆T1'x ∆M1x ∆M1'x ∆B1x ∆B1y ∆B3y ∆B5y ∆B3'y ∆B1'y ∆B1'x 
Prototype Structure 6.5 -0.4 -1.8 -1.9 -1.8 -2.6 6.5 3.7 

 

3.4 0.0 0.0 

 

-2.0 -1.6 -0.8 -1.6 0.0 
Test Apparatus 6.5 0.0 -1.5 -1.2 -0.3 -0.2 6.5 2.8 3.4 0.0 0.0 -0.4 -0.1 0.4 -0.2 0.0 

Difference - (0.4) (0.3) (0.7) (1.5) (2.4) - (0.9) - - - (1.6) (1.5) (1.2) (1.4) - 
  

Table 3-3B - Deflection of Concrete Frame under Lateral Sway Loading at ULS  

 Top Beam Middle of 
Columns 

Bottom Beam 
 

Deflection (mm) ∆T1x ∆T1y ∆T3y ∆T5y ∆T3'y ∆T1'y ∆T1'x ∆M1x ∆M1'x ∆B1x ∆B1y ∆B3y ∆B5y ∆B3'y ∆B1'y ∆B1'x 
Prototype Structure 17.0 -0.3 -3.2 -1.9 -0.5 -2.9 17.0 

 

9.4 9.0 0.0 0.0 -4.2 -1.9 0.8 -1.9 0.0 
Test Apparatus 17.0 0.0 -2.7 -1.5 0.4 -0.5 17.0 7.7 8.7 -0.2 -0.5 -0.9 0.0 0.9 -0.5 -0.2 

Difference - (0.3) (0.5) (0.4) 0.9 (2.4) - (1.7) (0.3) (0.2) (0.5) (3.3) (1.9) - (1.4) (0.2) 
 

Note: bold values represent noteworthy results and values in brackets represent test apparatus 
deflections   that are lower than those predicted in the prototype structure 
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Similarly, Table 3-4A and Table 3-4B show  prototype and test apparatus deflections 

under a vertical racking loading case at SLS and ULS, where the deflected shape, and 

points of interest, are identified in Figure 3-13 and the vertical displacement at ∆B1 is used 

as the control displacement. The overall deflected shapes are similar, however there is 

less rotation occurring at the top left corner, T1, of the test apparatus which is the main 

cause for the differences identified. The deflections in the prototype structure, however, 

are likely due to moments occurring at B1 and T1' which are not included in the 

deformations of the test apparatus. Overall, the test apparatus predicts the prototype 

structure to be within 1.9mm at SLS and 1.5mm at ULS, which is deemed to be adequate. 
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Figure 3-13 - Prototype Deflections vs. Test Apparatus Deflections for Vertical Racking 

 

Table 3-4A - Deflection of Concrete Frame under Vertical Racking at SLS 

 Top Beam Middle of 
Columns 

Bottom Beam 
 

Deflection (mm) ∆T1x ∆T1y ∆T3y ∆T5y ∆T3'y ∆T1'y ∆T1'x ∆M1x ∆M1'x ∆B1x ∆B1y ∆B3y ∆B5y ∆B3'y ∆B1'y ∆B1'x 
Prototype Structure 0.5 7.2 4.1 1.9 0.4 -0.5 0.3 -0.7 -0.2 0.0 7.5 6.3 3.8 1.4 0.0 0.0 

Test Apparatus 0.7 7.5 5.8 3.8 1.7 0.1 0.7 -0.4 -0.4 0.0 7.5 5.8 3.8 1.7 0.1 0.0 
Difference 0.2 0.3 1.7 1.9 1.3 0.6 0.4 (0.3) 0.2 - - (0.5) - 0.3) - - 

  

 

Table 3-4B - Deflection of Concrete Frame under Vertical Racking at ULS 

 Top Beam Middle of 
Columns 

Bottom Beam 
 

Deflection (mm) ∆T1x ∆T1y ∆T3y ∆T5y ∆T3'y ∆T1'y ∆T1'x ∆M1x ∆M1'x ∆B1x ∆B1y ∆B3y ∆B5y ∆B3'y ∆B1'y ∆B1'x 
Prototype Structure 0.7 10.8 6.7 3.4 0.9 -0.5 0.5 0.4 0.3 0.0 11.0 8.6 5.3 2.1 0.0 0.0 

Test Apparatus 0.7 11.0 8.2 4.9 1.9 0.0 0.7 0.2 0.5 0.0 11.0 7.7 4.2 1.5 0.0 0.0 
Difference - 0.2 1.5 1.5 1.0 (0.5) (0.2) (0.2) 0.2 - - (0.9) (0.9) (0.6) - - 

 

Note: bold values represent noteworthy results and values in brackets represent test apparatus 
deflections that are lower than those predicted in the prototype structure 
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Uniform positive (or negative) out-of-plane pressures are applied to the ‘exterior’ side of 

the wall by a sealed pressurized air bag shown in Figure 3-14.  Six out-of-plane reaction 

points, three along the top concrete beam and three along the bottom beam, restrain out-

of-plane movement of the reinforced concrete frame during testing. Pressure Load 

Actuators (PLAs), attached to the back panel, generate positive and negative pressure 

inside the airbag using control protocols and calibrations previously developed (e.g. 

Nagy, 2008; Kopp, 2006). 

 

 

Figure 3-14 - Out-of-Plane Pressure Loading System 

 

3.3.3 DESIGN AND CONSTRUCTION CHALLENGES 

Figure 3-15 shows that the as-built dimensions are within typical construction tolerances 

of 12 to 19mm (1/2 to 3/4in) (CSA, 2010a). The out-of-plumbness of the columns 

required minor revisions to the connections to the steel frame, however the as-built 

tolerances were readily accommodated. 
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Figure 3-15 - As-built Variation from Designed Concrete Frame Dimensions 

 

The development length required for the longitudinal reinforcement, as specified by CSA 

A23.3-04 (CSA, 2010a), and the geometric constraints at the corners of the frame posed a 

detailing challenge. Hooks are necessary to develop these bars, where the applied 

moments are greatest. However, hooking all the bars would have been impossible due to 

congestion within the corner joint. Thus, steel anchorage plates, shown in Figure 3-16, 

were welded to the ends bars in the outer faces of the columns. The plates bear against 

the concrete surface to prevent slippage of the reinforcement. The top of the column was 

also extended above the top of the beam to further ease congestion. Despite these 

modifications, the hook of the middle column bar, identified by the asterisk in Figure 

3-16, needed to be cut to eliminate a geometric conflict. 
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Figure 3-16 – Corner Reinforcement Detailing: a) Top View; b) Front View; c) As 
Constructed 

 

Figure 3-17 shows the connection details at the bases of the concrete frame columns. The 

top W-shape enables full access to its bolted connection to the bottom W-shape. 

Longitudinal reinforcing bars, developed to yield at the base plate (CSA, 2010a), are 

welded to the top steel W-shape for effective load transfer from the concrete frame to the 

W-shape. For the vertical racking test, the bottom W-shape is replaced by a hydraulic 

jack and load cell, as shown in Figure 3-17c. The concrete frame requires bracing to 

ensure its out-of-plane stability. The steel W-shapes at the foot of each column, shown in 

Figure 3-17, are susceptible to bending at the web-top flange joint, which is unstiffened. 
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The load is applied at the top connection using a hydraulic jack, shown in Figure 3-18, 

located on one side of the W200 column for the Lateral Sway Push Test and on the other 

side for the Lateral Sway Pull Test. The bottom connection uses either a tension 

connection or wood blocking to ensure minimal movement when subjected to tension or 

compression, respectively, at this location. 

 

 

Figure 3-17 - Connection Detailing at Base of Concrete Frame: a) Front View; b) Side 
View During Lateral Sway Test; c) Side View During Vertical Racking Test 
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Figure 3-18 - Concrete Frame to Steel Frame Connection and Jack Locations 

 

Figure 3-19 shows the air bag attached to the concrete frame before installation of the 

infill wall. The back panel, with round sleeves for the PLA hoses, is similar to that from 

past tests at IRLBH. White expansion foam sprayed on areas of potential air leakage is 

clearly visible. Threaded rods through metal sleeves in the reinforced concrete frame 

attach the air bag to the frame. The edges of the bag are connected to a continuous wood 

frame and the gap between the bag and the concrete surface is filled with expansion 

foam, ensuring a seal around the threaded rod but facilitating bag removal as necessary. 

An aluminum tubular frame was inserted in the middle of the air bag to reduce the 

deformations and stresses. The large volume of the bag (approximately 9.25 m3) required 

the frame to be stiffened by additional internal wood bracing. 
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Figure 3-19 - As-built Concrete Frame with Airbag and Back Panel 

 

3.4 WOOD INFILL WALL SPECIMEN 

3.4.1 CRITERIA 

The criteria used to determine the type of infill wall and connection that would be tested 

are: degree of inset, gap details and level of prefabrication.  

Typical exterior wall systems, shown in Figure 3-20, involve various degrees of inset of 

the infill wall into the reinforced concrete frame. A fully inset infill wall is used in the 

present study for the following reasons: 

- the concrete floor extension to the exterior wall face provides the most effective 

fire break between floors; 
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- the concrete floor extension is also the most effective in preventing water from 

contacting the wall top plate, enhancing the durability of the wood infill wall 

(Eriksson, 2005), and; 

- the concrete floor extension also minimizes gaps at the connection points, 

reducing the moisture exposure (Eriksson, 2005). 

 

 

Figure 3-20 - Degrees of Inset of an Infill Wall: a) Not Inset; b) Partially Inset; c) Fully 
Inset 
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In general, exterior infill walls can be: 

- fully assembled in-place; 

- partially pre-fabricated with no exterior or interior sheathing, as ‘open panels’; 

- partially pre-fabricated with only exterior sheathing, as ‘closed panels’, or; 

- fully pre-fabricated, with both exterior and interior sheathing. 

A fully pre-fabricated wall was selected for the present study because it is likely to 

exhibit the highest quality of construction. The fully enclosed wall panel is constructed in 

a controlled factory setting either on- or off-site (Eriksson, 2005). Typically all 

components of the wall panel are installed beforehand, including electrical conduits, 

windows and balcony doors. This option promises reliable quality control during wall 

pre-fabrication while minimizing on-site installation time, especially if the installation 

can be done from the interior of the building. However, maintaining low moisture levels 

in the wall during transportation and accommodating on-site concrete construction 

tolerances need to be considered.   

A gap around the perimeter of the wall is required to account for movement of the 

reinforced concrete frame, as previously described in Table 3-1, to ensure that the infill 

wall remains non-loadbearing. The standard practice for existing wood infill walls is to 

allow a gap of 16 to 19mm (5/8" to 3/4") (Eriksson, 2005), although on-site geometric 

tolerances may be substantially less or substantially greater than these values. Other types 

of exterior cladding and wall systems, such as light-gauge steel framing and precast 

concrete panels, require a tolerance of +/- 1.5 in. (+/- 38.1mm) (e.g. CSSBI, 1991). 

Fortunately, significant expansion and contraction of wood only occurs normal to the 
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grain, with only minor dimensional changes parallel to the grain (Keenan, 1986). 

Therefore only the top and bottom plates of the infill walls contribute to gap change due 

to moisture changes, which are therefore small. 

3.4.2 CONNECTION DESIGN CONCEPT 

Different types of connections at various locations can accommodate the in-plane 

deflections of the frame surrounding the infill wall. The three cases shown in Figure 3-21 

were investigated to find an appropriate type and location of connections for ULS 

horizontal deflection summarized in Table 3-1. All connections have adequate out-of-

plane capacities (i.e., in the Y-direction) but allow rotation of the wall edges due to out-

of-plane loading. Layout A requires the top connections to accommodate the positive and 

negative lateral (X-direction) displacements of the concrete frame but evenly distributes 

the out-of-plane loading between the four connections. Layout B requires the connections 

to accommodate less overall movement in the X-direction but increases the out-of-plane 

reaction at the top and bottom connections. Layout C, adopted in the present study, 

allows unrestricted movement of the top of the infill wall in the X-direction and evenly 

distributes the out-of-plane load to the top and bottom connections. This layout only 

requires the connections to restrict movement in the X-direction at the bottom of the wall 

while ensuring full out-of-plane support from the top and the bottom.  
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Figure 3-21 - Type and Location of Connections for Infill Wall System 

 

A top connection capable of accommodating in-plane movement has been successfully 

used for partially pre-fabricated wood infill walls (BAPL, 2002) and light-gauge steel 

wall in the United States and Canada (CSSBI, 1991) as shown in Figure 3-22(a) and (b), 

respectively. Both connections use a light-gauge steel 'C'-channel, with its web oriented 

horizontally, attached to the concrete frame. This detail limits longitudinal and axial load 

transfer, while the flanges have sufficient flexural rigidity to transfer the out-of-plane 

wind loads. The top connection used for the present study is a wider 'C'-channel 1mm 

thick steel that accommodates the full width of the sheathed wall between the vertical 

flanges as shown in Figure 3-22(c). The two 2438mm (8 ft.) long channels are 5mm 

wider than the infill wall, to facilitate installation, and each flange is 35mm deep. The gap 
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between the top of the infill wall and the bottom of the concrete frame must exceed 5mm, 

to allow the frame to deflect, and be no more that 20mm, to ensure at least 15mm of 

bearing for the out-of-plane load transfer.  

 

 

Figure 3-22 - Cross Sections of Top Connections: (a) Partially Prefabricated Wood Wall; 
(b) Light-gauge Steel Wall; (c) Fully Prefabricated Wood Wall.  

 

The bottom connection required further detailing as it must also restrain the in-plane (X-

direction) movement. Existing techniques used to connect partially pre-fabricated infill 

wall panels to concrete frames include expansion bolts, steel angles, concrete anchors and 

dowel pins (Eriksson, 2005; Wang, 2008; NSPRC, 2004). These connections 

accommodate any vertical deflection of the structure while maintaining out-of-plane load 
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transfer but typically require full access to the wall interior for installation.  A fully pre-

fabricated wall has sheathing installed on both sides making these connections unfeasible.  

The connection shown in Figure 3-23(a) was therefore created with a strip of 1mm thick 

sheet metal beneath the sheathing, that is attached to the bottom plate using structural 

wood screws and to the concrete frame using standard concrete screws. Wood shims are 

placed below the wall to accommodate the required gap, at least 5mm, and to transfer the 

self-weight of the wall to the concrete through simple bearing. This option was selected 

because it uses readily available materials, can be installed simply from the interior side 

of the wall and can accommodate any number of connections. There is, however, 

potential for the sheet metal strip to deform as shown due to positive and negative wind 

pressures if the wood screw is installed horizontally. The eccentricity, e, between the 

bottom connection and the point of maximum horizontal deflection, ∆H, is shown in 

Figure 3-23(b) and (c) assuming the concrete screw acts as a pin connection. Under 

positive wind pressure, the wall bottom plate bears against the sheet metal strip, 

minimizing e1, and so ∆H. Negative pressure increases the eccentricity to the head of the 

structural wood screw, however, increasing e2 and so ∆H.  
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Figure 3-23 - Initial Bottom Connection Design: (a) Cross Section; (b) Deformed Shape 
for Positive Wind Pressure; (c) Deformed for Negative Wind Pressure. 

 

Hence, an additional piece of light-gauge steel, shown in Figure 3-24, was added to the 

wood shim to reduce ∆H. The light-gauge steel 'lip' fits under the light-gauge steel strip 

and the concrete screw attaches both to the concrete. The structural wood screw is rotated 

45 degrees to attach the wood shim to the bottom plate. Under positive wind pressure, the 

structural wood screw is placed in tension, causing the wood shim to compress against 

the concrete screw and limit lateral deflection. Under negative pressure, the horizontal 

component of the compressive forces through the structural wood screw and bottom plate 

causes horizontal tension in the shim that is then transferred to the concrete by the 

concrete screw. 
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Figure 3-24 - Modified Bottom Connection with Shim: (a) Cross Section; (b) Shim. 

 

The critical component of this connection is the tensile resistance of the concrete screw. 

The average ultimate capacity, according to the manufacturer, is 9.7 kN per fastener if the 

embedment length exceeds 38mm (1/2") (CFS, 2012). Assuming a resistance factor of 

0.5, the factored resistance is 4.85 kN per fastener, so at least three connections are 

required to resist the ULS loads shown in Table 3-2.  

The final connection design, shown in Figure 3-25, uses four wood shims with concrete 

screws to accommodate the symmetry of the wall and to cover any uncertainty in the 

assumed resistance factor. Five additional connections, without shims, are provided as 

secondary connections. It is anticipated, however, that these will only begin to resist load 

if large lateral deflections occur at the wood shim connections.  
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Figure 3-25 - Final Wall Design 

 

The infill wall was designed to satisfy the CSA-O86-09 (CSA, 2010c) provisions for 

bending members with the following assumptions:  

- the self-weight of the wall is the only axial load present and is assumed 

negligible, 

- only the four main connections are in full bearing (i.e., span length of the bottom 

plate to resist lateral loads is 4ft.), 

- sheathing thickness is greater than 3/8” (9.5mm), and 

- the connections act as pins (i.e., do not restrain rotation about any axis). 

The design uses 38mm x 89mm (2x4) No. 1/2 grade SPF studs spaced at 610mm (24") 

centers, with 1219mm x 2438mm (4'x8') sheets of 12.7mm (1/2") Oriented Strand Board 

(OSB) and 16mm (5/8") drywall sheathing placed vertically. The exterior sheathing is 
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connected to the studs by 6d nails spaced at 152mm (6") around the edge of the panel and 

305mm (12") in the centre. The interior sheathing uses standard drywall screws spaced at 

305mm (12"). 

3.4.3 CONSTRUCTION 

The infill wall was constructed horizontally on the floor of the IRLBH. The studs were 

nailed to the top and bottom plates before attaching the drywall sheathing and then the 

OSB sheathing. A lifting harness was constructed and attached 1219mm (4') from each 

end of the wall using 15.9mm (5/8") lag screws. Full rotation of the wall was allowed 

during lifting, leaving it in an almost vertical position once off the ground. This slightly 

off-center position reduced the total height of the wall enabling it to fit between the 

bottom concrete beam and the flanges of the previously attached 'C'-channel. Further 

details of the lifting method are included in Appendix H. Once lifted into position 

beneath the 'C'-channel, the bottom of the infill wall was then pulled in towards the 

concrete frame to sit flat on the bottom beam. This allowed the top of the wall to pivot 

around the exterior flange of the 'C'-channel, rotating the top plate and sheathing between 

the two flanges. The entire wall was then lifted vertically to allow installation of the 

wood shims and placed in its final position, as shown in Figure 3-26. The top horizontal 

gap between the concrete beam and the infill wall is within the previously listed range of 

5mm to 20mm, while the bottom horizontal gap meets the requirements of being greater 

than 5mm. The vertical gaps also meets the suggested range of 16mm to 38mm (5/8" to 1 

1/2").  
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Figure 3-26 - Final Gap Dimensions 

 

The thin strip of sheet metal, shown in Figure 3-23 and Figure 3-24, was slid downwards 

to bear against the concrete surface. Concrete screws and structural wood screws, as well 

as additional drywall screws, were then installed. Great Stuff™ insulation expansion 

foam was sprayed between the edge of the wall and the concrete frame. Blueskin, a non-

permeable air barrier, was installed in sheets on the exterior side of the infill wall and 

concrete frame.  

3.4.4 MODELLING  

The infill wall was incorporated into the SAP2000 (2009) model for in-plane analysis 

only. Shell elements were used, with E = 8900 MPa and thicknesses of 12.7mm, to create 

a rigid body which was connected to the bottom concrete frame at the shim location, 

shown in Figure 3-25, with link elements that had infinite stiffness in compression and a 

stiffness of 150 N/mm in tension (Grenier, 2012).  
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3.5 SUMMARY AND CONCLUSIONS 

This chapter described the design and construction of a full scale test apparatus and wall 

specimen used to investigate the chosen wood/concrete hybrid niche: "non-load-bearing 

light-frame wood infill walls in reinforced concrete frame structures".  

A prototype structure taken from the 1984 Concrete Design Handbook was used to 

determine the critical in-plane boundary conditions placed on the infill wall by the 

deformed shape of the reinforced concrete frame structure. Two principal in-plane 

deformations were determined to have the potential to cause damage: lateral sway due to 

wind loads  and vertical racking due to differential column shortening caused by the 

creep of the concrete. Critical ranges were established for each case at SLS and ULS and 

used to design the reinforced concrete frame test apparatus. A pressurized air bag system 

was also incorporated into the test apparatus apply realistic out-of-plane wind loading to 

the infill wall specimen. 

The 8'x16' light-frame wood specimen was designed as a fully prefabricated wall  and 

was  inset into the concrete frame structure. A gap between the infill wall and the 

reinforced concrete frame structure of approximately 5-20mm was chosen to 

accommodate the in-plane deformations determined by the prototype structure and 

general concrete construction tolerances. The top connection of the infill wall uses a 

light-gauge steel 'C'-channel, similar to a light-gauge steel infill wall, which allows for 

unrestrained in-plane movement, while restraining out-of-plane movement. A novel 

bottom connection, using a light-gauge steel sheet and wood shims, was designed for use 

in a full sheathed pre-fabricated walls system.   
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The main conclusions that are determined from this chapter are: 

1. The lateral sway deformation in a reinforced concrete frame structure due to wind 

loading is greatest at the second storey of an exterior frame, assuming the first 

storey is designed for a different purpose that would likely avoid the use of a 

wood infill wall (i.e., commercial use). The critical differential deflection range of 

the frame loaded at SLS is 6-7mm and at ULS, where wind is the principal load, 

is 16-18mm. 

2. The vertical racking deformation in a reinforced concrete frame structure due to 

the differential shortening of columns is greatest at the top storey of an exterior 

frame. The critical differential range of the frame at SLS is 7-8mm and at ULS, 

where a factor of 1.4 is applied to the DL, is 10-12mm. 

3. The predicted deflections of the test apparatus were within 3.3mm of the 

prototype deflections for the lateral sway test and 1.9mm for the vertical racking 

test. The test apparatus was therefore deemed to simulate accurately the critical 

deformations seen in the prototype structure.  

4. The design of the test apparatus and wall specimen meet all of the listed 

objectives and constraints, including the gap limits.  
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4 

4.1 OVERVIEW 

EXPERIMENTAL PROGRAM AND RESULTS 

The objectives of the research reported in this chapter are to:  

- assess the performance of the test apparatus by comparing the observed in-plane 

and out-of-plane deflections, and associated applied loads, to those predicted 

using SAP2000; 

- assess the performance of the wood infill wall by comparing the observed in-

plane and out-of-plane deflections to those predicted using conventional 

calculations including code provisions; 

- assess the performance of the top and bottom connections subjected to out-of-

plane pressure at SLS, and the effect of in-plane racking on their performance; 

- investigate the change in gap, accounting for any resistance of the non-structural 

insulation foam; and 

- Formulate recommendations about testing methods and procedures. 

Five sets of tests at SLS and two at ULS, shown in Table 4-1, were conducted as part of 

the present study. The test conducted by Jared Harnish will be reported in detail in a 

forthcoming CEE Undergraduate thesis, but data concerning the performance of the test 

apparatus are presented and discussed in the present study.  The out-of-plane tests were 

used as control tests to investigate any behavioral changes of the wall or connections due 

to damage sustained during in-plane vertical and horizontal racking tests. The target 

values for each test were previously listed in Table 3-1 and a list of all the tests attempted 

is included in Appendix J. 
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Table 4-1 - Summary of Tests Performed 

Test Loading Limit No. of 
Tests 

Target 
Value Test Date Performed 

By: 

Out-of-Plane 1 Negative Pressure SLS 3 -0.9 kPa April 4th 2012 Jeff 
Blaylock Positive Pressure 1.44 kPa 

In-plane Vertical 
Racking Vertical Displacement SLS 1 7-8mm May 25th 2012 Jeff 

Blaylock 

Out-of-Plane 2 Negative Pressure SLS 3 -0.9 kPa May 29th 2012 Jeff 
Blaylock Positive Pressure 1.44 kPa 

In-plane Horizontal 
Racking 

Push Displacement 

 
SLS 2 6-7mm June 21st 2012 Jeff 

Blaylock Pull Displacement 

Out-of-Plane 3 Negative Pressure SLS 3 -0.9 kPa June 22nd 2012 Jeff 
Blaylock Positive Pressure 1.44 kPa 

In-plane Vertical 
Racking Vertical Displacement ULS 1 10-12mm July 19th 2012 Jared 

Harnish 

In-plane Horizontal 
Racking Pull Displacement ULS 1 16-18mm July 23rd 2012 Jared 

Harnish 

 

 

4.2 OUT-OF-PLANE TEST 1 

Details for the out-of-plane test apparatus has been previously described in Chapter 3. 

The test pressures, both positive and negative, are presented in Table 3-2. 

4.2.1 PROCEDURE 

The volume of the bag is approximately 9.25 m3, much larger than used in previous tests 

(e.g Nagy, 2008), and was able to accommodate a practical amount of leakage. The 

pressure test trace used to control the pressure within the bag was, in general, in 

accordance with ASTM E330-02 "Standard Test Window Structural Performance by 

Static Pressure" (ASTM, 2010). A pre-test load, equaling half the test pressure, was 
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applied before each test, as shown in Figure 4-1. Each full test uses at least four 

increments of loading, not including the pre-pressure phase. The pre-pressure phase was 

necessary to improve the response of the PLAs to the initial change in bag volume before 

it became fully pressurized. A pressure of 0.2 kPa was found sufficient to stabilize the 

volume of the bag and ensure control of the PLAs. 

 

 

Figure 4-1 - Pressure Loading Trace 

 

Figure 4-2 shows the original and modified pressure traces used for the ‘pre-pressure 

phase’ and the actual pressures generated by the PLAs. The original trace, which ramps 

uniformly to 0.2 kPa over 35 seconds, was grossly exceeded if only 2 PLAs were present. 

Increasing to 12 PLAs improved the control, but the target pressure was still greatly 
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exceeded at elapsed time of 25-40 and 60-100 seconds. Using a modified trace, ramping 

to 0.2 kPa in two steps starting 30 seconds after the PLAs were turned on, the 12 PLAs 

were able to generate accurately the target pressure after the initial 60 seconds. 

 

 

Figure 4-2 - Details of Pre-pressure Phase 

 

4.2.2 INSTRUMENTATION 

Linear Variable Displacement Transducer (LVDT's) were used to determine the 

deflections of the concrete frame, the steel reaction frame, and the infill wall. The 

deflection of half of the wall was measured, at the locations shown in Figure 4-3, as the 

wall was assumed to be symmetric about the center (Line 5). Both ends of the wall were 
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measured to check this assumption. The out-of-plane wall deflections near the top 

connection were recorded at the edges, T1 and T1', and at stud locations T3 and T5. Out-

of-plane wall deflections near the bottom connections were measured at the edges, B1 

and B1'; at two stud locations with shims, B2 and B4; and at two stud locations without 

shims, B3 and B5. Out-of-plane wall deflections at mid-height were measured at five 

consecutive stud locations over half of the wall, M1 to M5, as well as  at the quarter 

points, QT5 and QB5, along the center. The out-of-plane displacements at each support, 

CT1, CT5, CT1', CB1, CB5 and CB1', and between supports, CT3, CB3, CM1 and CM1', 

were also measured to quantify the displacements of the concrete frame. 

 

 

Figure 4-3 - Out-of-Plane LVDT Locations 
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4.2.3 PERFORMANCE OF SPECIMEN 

Table 4-2 shows the out-of-plane displacements at the top and bottom of the infill wall, 

near the connections, with respect to the concrete frame at the locations shown in Figure 

4-3. The exact displacement of the bottom and top connection cannot be properly 

determined because the LVDT's were placed approximately 70mm (2 ¾") from the 

surface of the concrete beam, as shown in Figure 4-4, and so captured deflections due to 

the end rotations of the wall. Further details can be determined for the data from the 

center line of the test apparatus, Line 5, since additional information is collected at points 

QT5 and QB5. These quarter point results, as well as a methodology for determining the 

displacements at the connections more accurately, are presented in Appendix K. 
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Table 4-2 - Out-of-plane Horizontal Deflections near the Top and Bottom Connections 

Location on Wall Test 1.1 Pressures Deflection at Location (mm) 
1 2 3 4 5 1' 

Near Top Connection (T) Negative (-0.9 kPa) -0.2 - -0.6 - -0.9 -0.2 
Positive (1.44 kPa) 0.3 - 1.2 - 1.6 0.3 

Near Bottom Connection (B) Negative (-0.9 kPa) -0.3 -0.8* -0.9 -0.9* -0.7 -0.2 
Positive (1.44 kPa) 0.4 2.4* 1.8 2.5* 1.8 0.3 

   * - Near Shim Location 
 

 

 

Figure 4-4 - LVDT Location and Points of Rotation at Bottom Connection  

(For further details see Figure 3-23) 
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Table 4-2 shows that the displacements near the top of the wall at the center of the wall, 

Location 5, are consistently larger than those at Location 3, even though the wall at both 

locations has the same tributary area. This may be because the two 2438mm (96 in.) long 

halves of the 'C'-channel meet at Location 5 causing a minor reduction in stiffness at this 

location. The average stiffness of the top connection in the negative and positive 

directions are similar (i.e, -0.9/-0.75 = 1.2 kPa/mm and 1.44/1.4 = 1.03 kPa/mm). This 

similarity is expected due to the symmetry of the connection about a vertical axis through 

the middle of the 'C'-channel web. Overall, the top connection had an out-of-plane 

deflection of less than 1.6m and 0.9mm under positive and negative pressures, 

respectively. 

The positive and negative displacements of the infill wall at the corners (i.e, T1, T1', B1 

and B1') are approximately equal to each other, but are much smaller than expected. 

Similarly, the displacement of the wall near the bottom shim connections (i.e, Locations 2 

and 4) are approximately the same, as expected. The average stiffness in the negative and 

positive directions, however, are not similar (i.e, -0.9/-0.85 = 1.06 kPa/mm and 1.44/2.45 

= 0.59 kPa/mm respectively). This extra flexibility in the positive direction may be due to 

the rotation of the wall which, as shown in Figure 4-4, will likely occur around Point A 

under positive pressure and Point B under negative pressure. The rotation around Point 

A, or more specifically the concrete screw, will not be restricted. The rotation around 

Point B will, however, be resisted by tension in the light-gauge steel strip, potentially 

reducing the displacement under negative pressure. Overall, the bottom connection had 

an out-of-plane deflection of less than 2.5mm and 0.9mm under positive and negative 

pressures, respectively. 
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The displacement of the wall near the shim connections, Locations 2 and 4, could not be 

predicted. The displacement at the bottom of the wall with respect to the shims (i.e., B1', 

B3, and B5), however, has been predicted and is compared to the observed results in 

Table 4-3. Almost all of the observed deflections are in the opposite direction to the 

predicted results, as clearly shown in Figure 4-5. This is especially evident at the corner 

of the wall (i.e., B1-B2) under positive pressure where a deflection of 3.5mm greater than 

the shim displacement at Line 2 was predicted. The observed displacement, however, is 

2mm less than the displacement at the shim. It is likely that the observed lack of 

movement of the bottom of the wall is due to the shear stiffness of the insulation foam 

filling the horizontal and vertical gaps. 
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Table 4-3- Displacement of the Bottom of the Wall with Respect to the Shims 

Test 1.1 Pressures Results Deflection (mm) 
B1 - B2 B3 - (B2+B4/2) B5 - B4 

Negative (-0.9 kPa) Observed  0.5 

 

-0.1  0.2 
Predicted -2.1 -0.1 -0.5 

Positive (1.44 kPa) Observed -2.0 -0.6 -0.7 
Predicted  3.5  0.1  0.75 

 

 

 

Figure 4-5 - Deformation of Bottom Plate With Respect to Shim Deflections 
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The wall deflection at midheight may be computed from the measured midspan 

displacements of the wall, ∆M, and if the displacements at the top and bottom are 

accounted for as shown in Figure 4-6. Table 4-4 shows the approximate deflection at 

midheight of the wall, ∆W, which was computed using the following equation: 

[4.1]  
2

T B
W M

∆ + ∆ ∆ = ∆ −  
 

 

where ∆T is the deflection of the wall near the top connection and ∆B is the deflection of 

the wall near the bottom connection.  
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Figure 4-6 - Midheight Deflection of Infill Wall 

 

 

Table 4-4 - Deflection of the Wall at Midheight  

Test 1.1 Pressures Observed Deflection (mm) Predicted Deflection (mm) 
W1 W2 W3 W4 W5 W1' Bare stud for HDT/360 

Negative (-0.9 kPa) -1.0 -6.8 -7.5 -9.0 -6.8 -0.4 -11.9 -6.5 
Positive (1.44 kPa) 1.7 12.5 13.6 16.6 13.8 1.0 19.1 6.5 

 

 

 

 



92 
 

 
 

The wall locations W2, W3, W4 and W5 have the same tributary area and should 

therefore have the same deflection. This is observed at W2 and W3. However at W4 and, 

to a lesser extent, W5, larger deflections were observed, possibly because the studs at 

these locations have a lower Young's Modulus. The observed deflections are less than 

those predicted for the bare stud, using the 5% (50%) fractile Young's Modulus values 

specified in CSA-086-09 (CSA, 2010c) indicating that these values may be conservative 

for the studs tested, as well as some additional stiffness contributed by the exterior and 

interior sheathing. All values exceed the SLS limit of HDT/360, where HDT is the distance 

between the top and bottom LVDT. Also, the observed deflections along the edge of the 

wall, at W1 and W1', are not equal. These deflections should be approximately half the 

deflection of the other deflections since the end studs have half the tributary areas of the 

interior studs. These deflections are likely dependant on the restraint provided by the 

foam insulation in the vertical gaps at the end of the wall, which is not necessarily the 

same.  

The results from Test 1.2 under positive and negative pressure and Test 1.3 under 

negative pressure were all consistent with the Test 1.1 results. Test 1.3 under positive 

pressure, however, was slightly more variable. Table 4-5 shows the mean displacements, 

and their standard deviations, for Test 1.1 and 1.2 under positive pressure, as compared to 

Test 1.1, 1.2 and 1.3. The standard deviations increases consistently with the addition of 

the Test 1.3 data. This variability mainly occurs at the mid-height deflection and at the 

center top and bottom connections. Figure 4-7 shows the response at Points B5, T5 and 

M5. In Test 1.3, there is an increase of 0.2-0.4mm displacement at the bottom and top 

connection points, Figure 4-7(a) and (b) respectively, and 0.2-0.7mm displacement mid-
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height of the wall, Figure 4-7(c). Subsequent use of the out-of-plane test to investigate 

any effect on in-plane racking will therefore be based on the Test 1.3 results.  

 

Table 4-5 - Out-of-Plane Test 1.1/1.2 compared to Test 1.1/1.2/1.3 under Positive 
Pressure 

Tests Quantity T5 W1 W2 W3 W4 W5 B5 

1.1/1.2 Mean (mm) 1.6 1.3 12.6 13.8 16.7 13.9 1.8 
St. Dev. (mm) 0.0 0.0 0.1 0.1 0.1 0.1 0.0 

1.1/1.2/1.3 Mean (mm) 1.8 1.8 12.9 14.0 17.2 14.4 1.9 
St. Dev. (mm) 0.2 0.2 0.4 0.4 0.6 0.5 0.2 

   Note: T1-T4, T1', W1', B1-B4 and B1' are not included because their standard deviations were <0.1  

 

 

Figure 4-7 - Comparison of Tests 1.1, 1.2 and 1.3 at points a) T5; b) B5 and c)M5 
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4.2.4 PERFORMANCE OF TEST APPARATUS 

The out-of-plane supports were designed to control out-of-plane movement of the 

concrete frame. The corner connections (i.e., CT1, CT1’, CB1 and CB1’), shown in Table 

4-6, had almost no displacement. The deflections of the beams at Location 5 are clearly 

larger, especially for the bottom connection, CB5. This is due to the flexibility of 

temporary connections that were constructed midspan of the beams. 

 

Table 4-6 - Out-of-plane Support Deflections for Test 1.1 

Pressure Deflection (mm) 
CT1 CT5 CT1' CB1 CB5 CB1' 

Negative (-0.9kPa) 0.0 -0.4 0.0 -0.1 -1.8 0.0. 
Positive (1.44kPa) 0.0  0.8 0.0  0.1  1.7 0.1 

 

 

The observed deflections of the concrete beams and columns between the out-of-plane 

support points is shown in Table 4-7. The predicted values shown are based on the 

following assumptions: 

- the gross moment of inertia and the transformed moment of inertia, accounting for 

the reinforcement, were both considered; 

- the elastic modulus of concrete, Ec, is 29900 MPa; 

- the top connection applies a uniform distributed load along the top beam and the 

bottom connection applies two point loads, transferred by the shim connections, 

to the bottom beam; 
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- The beams are conservatively assumed to be simply supported, despite being 

continuous at Line 5; 

- the contribution of the insulation foam in resisting the column midheight 

deflections is idealized as negligible or fully effective, leading to the ranges of 

predicted deflections shown. 

The deflection at the column midheight between connections, as shown in Figure 4-8, 

was computed using the following equation:  

[4.2]   * 2
CT CB

CM CM
∆ + ∆ ∆ = ∆ −  

   

where ΔCT, ΔCM and ΔCB are the recorded displacements at the top, mid-height and 

bottom, respectively, of the column and ΔCM* is the deflection of the column with respect 

to the top and bottom displacements. Similarly, for the beams,  

[4.3]     1 5
3* 3 2

B B
B B

∆ + ∆ ∆ = ∆ −  
   

where ΔB1, ΔB3 and ΔB5 are the recorded displacements at the corner, quarter-span and 

mid-span, respectively, of the beam and ΔB3* is the deflection of the beam with respect to 

the displacements at the out-of-plane supports. 
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Table 4-7 – Concrete Frame Deflections Between Supports 

Pressure Results Deflection (mm) 
Top Beam Bottom Beam Left Column Right Column 

Negative 
(-0.9kPa) 

Observed (mm) 0.2 0.5 0.1 0.1 
Predicted (mm) 0.1 - 0.2 0.1 - 0.2 0.0 - 0.1 0.0 - 0.1 

Positive 
(1.44kPa) 

Observed (mm) 0.3 0.5 0.1 0.2 
Predicted (mm) 0.1 - 0.2 0.2 - 0.3 0.0 - 0.1 0.0 - 0.1 

 

 

 

Figure 4-8 - Net Deflections at: a) Mid-height of Column; b) Midspan of Beam  
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The observed top and bottom beam deflections are larger than the predicted deflections 

for both positive and negative pressures, but since the largest deflection is HDT/4800, this 

difference may not be significant. The observed range in columns is 0.1 - 0.2mm, close to 

the predicted values of 0.1mm which assumes full load transfer along the length of the 

column. This implies that there is out-of-plane load transfer occurring through the 

insulation foam. 

4.3 LATERAL SWAY TESTS 

The lateral sway tests use the test apparatus and the loading criteria described in Chapter 

3 with goal of creating lateral displacements within the critical ranges stated in Table 3-1.  

4.3.1 INSTRUMENTATION 

The in-plane instrumentation, shown Figure 4-9, captures the deflection of the concrete 

frame (shown in black), the change in gap between the wood infill wall and the concrete 

frame (in grey) and the movement/deformation of the wood infill wall (in grey with 

diagonal hatching). The lateral loads were applied at the top right corner of the concrete 

frame. Both the horizontal displacement at height H, and the horizontal differential 

displacement over the storey height H', were measured. For this study, a load moving the 

top of the concrete frame to the left will be referred to as a "Push Test" and a load moving 

the top of the concrete frame to the right will be referred to as a "Pull Test".  
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Figure 4-9 - In-plane Instrumentation Location and Test Apparatus Details  

 

4.3.2 PERFORMANCE OF TEST APPARATUS 

The lateral sway response of the concrete frame are shown in Figure 4-10 for Pull Tests 1 

and 2, represented by positive load and displacement, and Push Tests 1 and 2, represented 

by negative load and displacement. The displacements shown are the differential 

displacements over the storeys height, H. Maximum displacements and the associated 

applied loads are also presented in Table 4-8. The predicted linear response is also 

shown, which assumes a measured elastic modulus of the concrete of 29900 MPa. The 

uncracked moments of inertia of the beams and columns in the SAP model are increased 

by factors of 1.3 and 1.56, respectively, to account for the relatively heavy reinforcement 

in the members.  
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Figure 4-10 - Lateral Sway Response at SLS 

 

Table 4-8 - Concrete Frame Response During Lateral Sway Test at SLS 

(Associated with Figures 4-10 and 4-11) 

Test Stiffness (kN/mm) Max. Observed 
Displacement 

Load (kN) Percent 
Error (%) Observed Predicted Observed Predicted 

Pull SLS 1 H 3.1 3.2 6.6mm 22.1 23.4 6 
Pull SLS 2 3.0 7.2mm 23.7 25.3 7 
Push SLS 1 H 3.7 3.1 6.4mm 26.3 23.3 -13 
Push SLS 2 3.3 6.2mm 23.4 22.7 -3 
Pull ULS 1 H 3.1/2.1 3.2/2.6 17.6mm 46.8 51.5 9 
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Figure 4-10 shows the load-deflection response of the frame subjected to specified wind 

loads. The load was initially applied at a rate of 0.36 kN/sec, and the evident 'saw tooth' 

response is due to the manual pumping of the hydraulic jack. The unloading response is 

relatively smooth because the load was released continuously when the jack pressure was 

relieved. Residual displacements, of approximately +1mm and -0.5mm occurred after 

each Pull and Push Test, respectively. Accounting for these residual displacements, the 

stiffnesses predicted using the linear elastic SAP model are close to the observed values. 

Table 4-8 shows that there is a slight decrease in stiffness between Pull Test 1 and Pull 

Test 2, yet the results are fairly repeatable. There is a larger decrease in stiffness, 

however, between Push Test 1 and Push Test 2. The overall observed stiffnesses of the 

frame are larger during the Push Tests, especially Push Test 1, than the Pull Tests. The 

predicted stiffness is slightly greater than the observed value for the Pull Test and less 

than the observed value for the Push Test. The maximum observed lateral differential 

displacements between the top and bottom beams for the right side of the concrete frame 

are generally within the target range of 6-7mm. The predicted loads to reach the 

maximum SLS displacements are within 6% of the observed load, except for Push Test 1 

which showed a stiffer response.  

An ultimate pull test was also performed, shown in Figure 4-11, to a maximum observed 

lateral differential displacement of 17.6mm, within the target range of 16-18mm. There is 

clearly a reduction in stiffness, from 3.2 kN/mm to approximately 2.1 kN/mm, at an 

approximate lateral differential displacement of 10mm. It is likely that this response is 

due to cracking in the concrete, although no visible cracks were observed in the test 

frame. Despite this, a bi-linear response is assumed with a reduction of stiffness from the 
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original stiffness at SLS of 3.2 kN/mm to a predicted stiffness at ULS of 2.6 kN/mm. The 

predicted load to cause a 17.6mm deflection is therefore 51.5kN, which is within 9% of 

the observed value.  

 

 

Figure 4-11 - Lateral Sway Pull Test Response at SLS and ULS 

(Associated with Table 4-8) 

 

The response of the steel frame is shown in Figure 4-12 and Figure 4-13, and summarized 

in Table 4-9. The stiffness of the steel frame during the push test at SLS for the full 

height of the test apparatus, H, was estimated by Line A to be 6.4 kN/mm and shows the 

predicted load to be 37% more than observed. The stiffness, of 8.4 kN/mm, for the 

difference between the bottom and top connection, H', of the steel frame was, however, 

accurately predicted, where the predicted load was within 3% of the observed. The 
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variation between H and H' is due to the (e.g., 3.8-2.7mm =) 0.9mm displacement which 

was observed at the bottom connection, as compared to the almost zero amount of 

difference that was predicted. Similarly, the  observed stiffness for the pull test at SLS, 

estimated by Line B to be 6.9 kN/mm for a height H, was not accurately predicted, 

whereas the predicted results were again within 3% of the observed. The results for the 

pull test at ULS show that a displacement of 3mm occurs before the connections become 

consistently stiff which is estimated by Line C to be 9.6 kN/mm. The observed load for 

height H and H' are more comparable for this test, likely because there is smaller effect of 

the bottom connection under higher loads, and predicted within 6%. The predicted 

stiffness of 8.9 kN/mm, however, is more comparable to the observed stiffness for the 

full height, H, 9.6 kN/mm, than the differential hieght, H', of 13.4 kN/mm. 

 

 

Figure 4-12 - Steel Frame Displacement for Average Push Test 1 and 2 Results at SLS 
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Figure 4-13 - Steel Frame Displacement for Avg. Pull Test 1/2 at SLS and Test at ULS 

 

Table 4-9 - Steel Frame Response during Lateral Sway Tests 

Test 
Stiffness (kN/mm) Max. Observed 

Displacement 
Load (kN) Percent 

Error % Observed Predicted Observed Predicted 
SLS Push 

1/2 
H (A) 6.3 8.3 3.8mm 23.0 31.5 37 

H' 8.4 2.7mm 23.0 22.4 -3 
SLS Pull 

1/2 
H (B) 6.9 8.9 2.9mm 19.0 25.8 36 

H' 8.8 2.2mm 19.0 19.6 3 

ULS Pull H (C) 9.6 8.9 5.5mm 46.3 49.0 6 

H' 13.4 4.9mm 46.3 
 

43.6 -6 
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Table 4-10A, B, and C shows the average observed and predicted displacements of the 

concrete frame for the push and pull test at SLS and ULS, where the displacement points 

are identified in Figure 4-14 and the horizontal displacement at ∆T1' is used as the control 

displacement. The differences between the predicted and observed values are also shown, 

where the values shown in brackets represent instances where the predicted deflection 

underestimates the observed response. Differences greater than 0.5mm are likely 

significant. 

 

 

Figure 4-14 - Deflected Shape of Concrete Frame under Lateral Sway Loading 

(Associated with Table 4-10A, B and C) 
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Table 4-10A - Concrete Frame Deformation for Lateral Sway (Push) Loading at SLS 

 Top Beam Middle of 
Columns Bottom Beam 

 
Deflection (mm) ∆T1x ∆T1y ∆T3y ∆T5y ∆T3'y ∆T1'y ∆T1'x ∆M1x ∆M1'x ∆B1x ∆B3y ∆B5y ∆B3'y ∆B1'x 
Avg. Observed -7.9 0.1 0.6 -0.2 -0.1 0.1 -7.1 -4.5 -3.2 -1.4 0.5 0.4 0.1 -0.3 

Predicted -7.1 0.0 0.5 -0.2 -0.6 0.2 -7.1 -3.8 -3.3 -0.2 -0.3 -1.1 -1.2 0.0 
Difference (0.8) - - - 0.5 - - (0.7) - (1.2) 0.8 1.5 1.3 (0.3) 

  

 

Table 4-10B - Concrete Frame Deformation for Lateral Sway (Pull) Loading at SLS  

 Top Beam Middle of 
Columns Bottom Beam 

 
Deflection (mm) ∆T1x ∆T1y ∆T3y ∆T5y ∆T3'y ∆T1'y ∆T1'x ∆M1x ∆M1'x ∆B1x ∆B3y ∆B5y ∆B3'y ∆B1'x 
Avg. Observed 8.5 -0.2 -0.3 * 0.4 0.2 7.9 4.4 3.5 1.1 -0.3 -0.1 0.0 0.1 

Predicted 7.8 0.0 -1.2 -0.8 -0.1 -0.4 7.9 3.6 4 0.2 -0.6 -0.3 0.2 0.1 
Difference (0.7) (0.2) 0.9 - (0.5) (0.6) - (0.8) 0.5 (0.9) 0.3 0.2 0.2 - 

  

  

Table 4-10C - Concrete Frame Deformation for Lateral Sway (Pull) Loading at ULS  

 Top Beam Middle of 
Columns Bottom Beam 

 
Deflection (mm) ∆T1x ∆T1y ∆T3y ∆T5y ∆T3'y ∆T1'y ∆T1'x ∆M1x ∆M1'x ∆B1x ∆B3y ∆B5y ∆B3'y ∆B1'x 
Avg. Observed 18.4 -0.1 -0.6 0.4 1.8 0.7 17.5 9.3 7.6 2.1 -0.6 -0.2 0.0 0.3 

Predicted 17.5 0.0 -2.4 -1.3 0.3 -0.9 17.5 8.2 9.1 0.5 -0.8 0.2 1.1 0.8 
Difference (0.9) - 1.8 (1.7) (1.5) (1.6) - (1.1) 1.5 (1.6) 0.2 (0.4) 1.1 0.5 

 

 
 
Notes:  
- Tables 10A, B and C are associated with Figure 4-4 
- Differences ≤0.1 are not included, * is an error in recorded data, bold values represent 
noteworthy results and values in brackets represents a predicted deflection that is lower than the 
observed deflection. 
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Overall the deformed shape for the push test at SLS, presented in Table 4-10A, is 

accurately predicted. The horizontal displacements of the right column, Line 1', are 

accurately predicted, however the left column displacements, Line 1, are slightly 

underestimated. The predict response suggests that the left and right column should be 

similar, although the observed results show the left side displacing 0.7-1.2mm more than 

the right side where the load is applied. The observed vertical displacements of the top 

beam, Line T, are fairly close to the predicted values. The predicted displacements of 

bottom beam, Line B, are all larger than the observed displacements, indicating that the 

bottom beam maybe stiffer than expected.  

Similarly, the observed deformed shape for the pull test at SLS, presented in Table 

4-10B, is accurately predicted. The predicted horizontal displacements of the right 

column, Line 1', are again accurate, yet the left column, Line 1, displaced 0.7-0.9mm 

more than predicted, similar to the push test results. The predicted displacements of 

bottom beam, Line B, are much closer to the observed values, however the displacements 

of the top beam, Line T, show some inconsistencies. A similar, although larger, response 

was observed during the Pull Test at ULS, shown in Table 4-10C. All predicted 

displacements of the concrete frame are within 1.7mm of the observed values.  

 

 

 

 



107 
 

 
 

4.3.3 PERFORMANCE OF SPECIMEN 

Table 4-11A and B compares the predicted and observed wall movement during the 

lateral test at SLS for both the push and pull test, respectively. The variables listed in the 

column heading are shown in Figure 4-15. There is very little predicted movement of the 

wall, i.e, no expected deformation, as shown by ∆D, for both the push and pull tests. The 

observed results indicated that the top of the wall moving laterally with the deformation 

of the concrete frame with some smaller vertical displacements, and that this movement 

includes a change of the wall diagonal length of 3.2-4.5mm. The differences highlighted 

between the predicted and observed results are likely due to the insulation foam which 

again seems to be transferring load from the concrete frame to the wood infill wall, which 

is not accounted for in the predicted results.  
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Figure 4-15 -  Notation for Gap Change and Wall Movement 

(Associated with Table 4-11A/B, Table 4-12A/B, Table 4-16 and Table 4-17) 

 

Table 4-11A - Wall Rotation under Lateral Sway (Push) Loading at SLS 

Deflection (mm) T1x T1y T1'x T1'y B1x B1y B1'x B1'y ∆D 
Observed -4.4 -0.9 -4.3 2.1 0.0* -0.9 0.0* 2.1 3.2 
Predicted 0.5 -0.3 0.5 -1.4 0.0 -0.3 0.0 -1.4 0.0 
Difference (4.9) (0.6) (4.8) (3.5) - (0.6) - (3.5) (3.2) 

 

 

Table 4-11B- Wall Rotation under Lateral Sway (Pull) Loading at SLS  

Deflection (mm) T1x T1y T1'x T1'y B1x B1y B1'x B1'y ∆D 
Observed 4.5 1.5 5.2 -1.3 0.0* 1.5 0.0* -1.3 -4.5 
Predicted -0.2 -0.9 -0.2 0 0.2 -0.9 0.3 0 0 
Difference (4.7) (2.4) (5.4) (1.3) (0.2) (2.4) (0.3) (1.3) (4.5) 

  

 

Notes:  
- Tables 11A and B are associated with Figure 4-15 
- * is an estimated value, bold values represent noteworthy results and values in brackets 
represents a predicted displacement that is lower than the observed displacement. 
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Table 4-12A and B compare the predicted and observed change in gap during the lateral 

sway test at SLS for both the push and pull test, respectively, with positive values 

representing an increase in gap. The maximum predicted changes in gap 6.4 - 7.8mm 

occur at the top corners of the wall, λT1x and λT1'x  in Figure 4-15. As shown in Figure 

4-16 for the top right corner, these correspond approximately to the predicted lateral 

displacements of the concrete frame. The observed gap changes at these locations, 

however, was only 1.6 - 1.8mm with a similar response in both an increase and decrease 

in gap. This further indicates that the infill wall is clearly moving with the lateral sway 

displacement of the concrete frame, again emphasizing the likelihood that the insulation 

foam is transferring load to the infill wall. Table 4-12A and B also show minor 

discrepancies between the observed and predicted gap changes along the bottom and top 

beams, especially at the corners of the infill wall as the wall starts to rotate. 
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Table 4-12A - Change in Gap under Lateral Sway (Push) Loading at SLS 

 Top Beam Middle of 

Columns 

Bottom Beam 

 
Deflection λT1x λT1y λT3y λT5y λT3'y λT1'x λT1'y λM1x λM1'x λB1x λB1y λB3y λB5y λB3'y λB1'x λB1'y 
Observed 1.7 1.2 0.4 0.3 -1.0 -1.8 -2.1 -0.1 0.0 -1.7 -1.0 -0.8 1.0 0.7 1.4 2.1 
Predicted 7.1 0.4 1.1 0.7 0.6 -6.4 1.4 3.5 -4.0 0.2 -0.3 -0.3 0.3 0.0 -0.4 -1.4 
Difference 5.4 (0.8) 0.7 0.4 (1.6) 4.6 (3.5) 3.6 4.0 (1.9) (0.7) (0.5) 0.7 0.7 1.8 3.5 
 

 

Table 4-12B - Change in Gap under Lateral Sway (Pull) Loading at SLS  

 Top Beam Middle of 
Columns Bottom Beam 

 
Deflection λT1x λT1y λT3y λT5y λT3'y λT1'x λT1'y λM1x λM1'x λB1x λB1y λB3y λB5y λB3'y λB1'x λB1'y 
Observed -1.6 -1.7 -1.1 -1.0 -0.4 1.7 1.3 0.3 -0.5 1.9 1.5 1.4 0.6 -0.1 -2.3 1.3 
Predicted -7.7 0.9 -0.5 -0.4 0.1 7.8 -0.3 4.0 -3.7 -0.2 -0.8 -0.1 -0.1 -0.4 -0.1 0.3 

Difference 6.1 (2.6) (0.6) (0.6) (0.5) 6.1 (1.6) 3.7 3.2 (2.1) (2.3) (1.5) (0.7) 0.3 (2.2) (1.0) 
  

 
 
 
 
Notes:  
- Tables 12A and B are associated with Figure 4-15 
- Differences ≤0.1 are not included, bold values represent noteworthy results, positive deflection 
represents an increase in gap and a negative displacement represents a decrease in gap, and 
differences in brackets represents a predicted change in gap that is lower than the observed 
change in gap. 
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Figure 4-16 - Change in Gap at Top Right Corner for Lateral Sway Loading at SLS 

 

4.4 VERTICAL RACKING TESTS 

The vertical racking test uses the test apparatus and the loading criteria described in 

Chapter 3, with goal of creating vertical displacements within the critical ranges stated in 

Table 3-1. The in-plane instrumentation is the same as for the lateral racking tests shown 

in Figure 4-9. The vertical load is applied at the bottom left corner of the concrete frame 

to achieve the target vertical differential displacement between the two columns spaced a 

distance, L, apart. During the jack installation for the vertical load, a temporary jack was 

required, at the locations shown, to support the frame near the bottom left corner. 
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4.4.1 PERFORMANCE OF TEST APPARATUS 

The combined response of the concrete frame under vertical loading at SLS and ULS is 

shown in Figure 4-17, and is also summarized in Table 4-13. The initial predicted 

response, as seen in Figure 4-17, shows no vertical deflection until the jacking load 

exceeded the vertical reaction due to the self-weight of the concrete frame and 

attachments, which was determined in a separate test to be 12.7kN. This was simulated in 

the SAP model as the self-weight of the concrete frame and reinforcement, including 

details such as the steel W-shape attached to the leg, the wood infill wall, and the wood 

bag attachment. The initial observed response at SLS at the frame lift-off (i.e., the point 

where the stiffness of the frame is engaged), say at a deflection of 0.6mm, was 16.2kN. 

The observed response at ULS at the frame lift-off, for this case say 4.2mm, was 18.3kN. 

The variation in initial response, or reduced initial stiffness, between the test at SLS and 

ULS is due to the added effect of the temporary loading device, shown in Figure 4-9, 

during the test at ULS which was accidently left to support the weight of the frame during 

jacking. The extra (16.2kN-12.7kN=) 3.5kN at SLS and (18.3-12.7=) 5.6kN at ULS, 

when compared to the predicted 12.7kN, may have been caused by wood blocking 

between the top right corner of the concrete frame and the steel frame, which preloaded 

the concrete frame before testing. The difference between these two values (i.e., 3.5kN 

vs. 5.5kN) could be attributed to the varied amount of preloading that occurred between 

tests.  
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Figure 4-17- Observed and Predicted Response due to Vertical Racking at SLS and ULS 

 

 

Table 4-13 - Test Apparatus Response During  Vertical Racking Test  

Test Stiffness (kN/mm) Max. Observed 
Displacement  

Load (kN) Percent 
Error (%) Observed Predicted Observed Predicted 

Vertical at SLS (D) 0.75 0.62 9.6mm 22.7 

 

18.6 -18 
Vertical at ULS (E) 0.67 0.55 14.9mm 25.5 21.8 -14 
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The predicted stiffnesses of the test apparatus, shown Table 4-13 to be 0.62 kN/mm and 

0.55 kN/mm, slightly underestimate the observed stiffnesses of 0.75 kN/mm and 0.67 

kN/mm, shown in Figure 4-17 by lines A and B, which occurred during the test at SLS 

and ULS, respectively. The observed reduction in stiffness between tests, of 0.8 kN/mm, 

is likely due to minor cracking in the concrete frame and is similar to the predicted 

change in stiffnesses of 0.7 kN/mm. Despite this, the observed results at ULS show a 

consistently linear response after approximately 4.2mm with minimal residual 

displacement, which suggests that the overall response of the frame was essentially 

linear-elastic.  

A vertical load of 22.7 kN was applied to reach a vertical racking deflection of 9.6mm for 

testing at SLS, which was 18% larger than the predicted load of 18.6kN. Including the 

extra load of 3.5kN increases the predicted load to 22.1kN, which is only 3% less than 

the observed response. A vertical load of 25.5 kN was applied to reach a vertical racking 

deflection of 14.9mm for testing at ULS, which was 14% larger than the predicted load of 

21.8kN. Again including the extra load of 5.5kN increases the predicted load to 27.3kN, 

which is 7% more than the observed response. The stiffness during unloading is 

approximately 1.0-1.3 kN/mm and 0.6-1.2 kN/mm for the test at SLS and ULS, 

respectively. In, general, the response of the concrete frame during unloading was stiffer 

than during loading.  

The response of the steel frame only is shown in Figure 4-18 for vertical racking tests at 

SLS and ULS, which is also summarized in Table 4-14. The lateral load that occurred at 

the top of the steel frame had to estimated as this load was not measured during testing. 

To do this, the self-weight of 12.7kN was subtracted from the recorded vertical load 
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results, as load cause any lateral displacement, and was then multiplied by a factor of 1.9, 

a value that relates to the aspect ratio of the frame, which was then verified using the SAP 

model.  

 

 

Figure 4-18 - Response of Steel Frame During Vertical Racking Test at ULS 

 

 

Table 4-14 - Steel Frame Response During  Vertical Racking Test 

Test  Stiffness (kN/mm) Max. Observed 
Displacement 

Load (kN) Percent 
Error (%) Observed Predicted Observed Predicted 

Vertical at SLS H 

 

9.4 8.4 1.2mm 17.2 

 

 

11.0 

 

-36 
Vertical at ULS H (F) 10.3 

 

8.4 1.6mm 24.1 14.4 -40 
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The observed stiffness was 9.4 kN/mm and the applied load was 17.2kN at SLS, both 

larger than the predicted values of 8.4 kN/mm and 11.0 kN, respectively. A similar 

response occurred during loading at ULS with a larger variation between the observed 

and predicted stiffness and percent error for predicting the applied load. Figure 4-18 

shows there was a nonlinear response that occurred for approximately the first 10kN 

which is not included within the predicted response. If included, the applied load is 

predicted within 12% and 3% of the observed load at SLS and ULS, respectively.  

Table 4-15A and B show the predicted and observed responses for the vertical racking 

tests at SLS and ULS, respectively. The associated deflected shape and locations of the 

various measurements are shown in Figure 4-19. The differences between predicted and 

observed values are also shown in Table 4-15A and B, with positive values indicating a 

larger observed deflection than predicted.  

The predicted lateral displacement at the top of the concrete frame and steel frame at SLS 

is 1.2mm. The frame is rotating about Point P, shown in Figure 4-19, where the 

displacement is zero, which leads to an associated vertical displacement at the top left 

side of the frame is 2.4mm. The differential vertical displacement between the columns is 

therefore 7.6mm (=10.0-2.4mm), which is within the target deflection range of 7-8mm. 

The observed deflections of the concrete frame are within 0.6mm of the predicted results. 

Slightly larger deflections occurred in the beams, ∆T5y, ∆ T3'y, ∆B5y and ∆B5y, and slightly 

smaller horizontal deflections occurred at mid-height of the columns, ∆M1x and ∆M1'x. The 

lateral displacement at the top left corner of the concrete frame, ∆T1x, and the steel frame, 

∆T0'x, were both accurately predicted. The displacement of the right column (i.e., ∆T1'x, 

∆M1'x and ∆B1'x), however was overestimated. This change in displacement suggests that 
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the observed point of rotation is closer to mid-height of the column, i.e., Point Q. The 

predicted lateral displacement at the top of the concrete frame and steel frame at ULS is 

1.9mm. Using the same reasoning as at SLS, the differential vertical displacement 

between the columns is therefore 11.1mm (=14.9-3.8mm), which is within the target 

deflection range of 10-12mm. The observed deflections of the concrete frame at ULS are 

within 1.0mm of the predicted results. Again, the observed and predicted beam 

deflections, ∆T5y, ∆T3'y, ∆B5y and ∆B5y, varied slightly but the horizontal deflection mid-height 

of the right column, ∆M1'x, was accurately predicted.  

 

 

Figure 4-19- Deflected Shape of Concrete Frame under Vertical Racking 
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Table 4-15A - Displacement of Test Apparatus During Vertical Racking Tests at SLS 

 Top Beam Middle of 
Columns Bottom Beam 

 
Deflection (mm) ∆T1x ∆T1y ∆T3y ∆T5y ∆T3'y ∆T1'x ∆T1'y ∆M1x ∆M1'x ∆B1x ∆B3y ∆B5y ∆B3'y ∆B1'x 

Observed 1.2 10.0 7.4 5.2 2.4 0.5 0.4 0.4 -0.1 0.1 7.3 4.6 2.1 -0.5 
Predicted 1.2 10.0 7.6 4.7 2.1 1.2 0.0 0.7 0.5 0.0 7.2 4.2 1.7 0.0 

Difference - - 0.2 (0.5) (0.3) 0.7 (0.4) 0.3 (0.6) - - (0.4) (0.4) (0.5) 
  

 

Table 4-15B - Displacement of Test Apparatus During Vertical Racking Tests at ULS  

 Top Beam Middle of 
Columns Bottom Beam 

 
Deflection (mm) ∆T1x ∆T1y ∆T3y ∆T5y ∆T3'y ∆T1'x ∆T1'y ∆M1x ∆M1'x ∆B1x ∆B3y ∆B5y ∆B3'y ∆B1'x 

Observed 2.0 14.9 11.2 8.0 3.6 1.8 0.5 1.4 0.8 0.8 10.2 6.4 3.0 0.2 
Predicted 1.9 14.9 11.5 7.3 3.3 1.9 0.2 1.0 0.8 0.0 11.2 6.8 2.9 -0.2 
Difference - - 0.3 (0.7) (0.3) - (0.3) (0.4) - (0.8) 1.0 0.4 - (0.4) 

 

 

 

Notes:  
- Tables 4-15A and B are associated with Figure 4-19 
- Differences ≤0.1 are not included, * is an error in recorded data, bold values represent 
noteworthy results and values in brackets represents a predicted deflection that is lower than the 
observed deflection. 
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4.4.2 PERFORMANCE OF SPECIMEN 

Table 4-16 compares the predicted and observed wall movement during the vertical 

racking test at SLS, where the variables are shown in Figure 4-15. Table 4-17 compares 

the predicted and observed change in gaps during the vertical racking test at SLS, where 

positive values represent an increase in gap. The predicted movement of the upper left 

corner of the infill wall is 9.5mm upwards. At the bottom right corner, the wall displaces 

downwards 0.9mm, rotating around the closest shim, so that the gap at the bottom of the 

wall decreases 1.1mm while the gap at the top of the wall increases 1.1mm. The shims 

preserved the gap between the bottom of the wall and the lower beam so that as the beam 

rotates, the wall rotates with it, causing a lateral displacement of 5.5mm at the top of the 

wall. The largest change in gap, 4.5mm, therefore occurs at the top corners. Throughout 

the test the infill wall is predicted to stay square. Overall, the observed rotation of the 

infill wall is very slight and the observed gaps do not significantly change. This implies 

that the wall is moving with the concrete frame, not independently at the top of the wall 

as predicted. It is likely that any gap changes have been restrained by the insulation foam. 

The observed corner displacements show that the wall is deforming slightly (i.e., the wall 

is no longer square) and that the increase in the diagonal length which was not measured 

experimentally should be approximately 3.4mm.  
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Table 4-16 - Wall Rotation During Vertical Racking Tests at SLS 

Deflection (mm) T1x T1y T1'x T1'y B1x B1y B1'x B1'y ∆D 
Predicted  5.5 9.5 5.5 0.9 0.0 9.5 0.0 -0.9 0.0 
Observed  0.8 9.5 0.5 0.8 0.0 9.5 0.0 0.8 1.1 
Difference -4.7 0.0 -5.0 -0.1 0.0 0.0 0.0 1.7 1.1 

 

 

Table 4-17 - Change in Gap During Vertical Racking Tests at SLS 

 Top Beam Middle of 
Columns Bottom Beam 

 
Deflection λT1x λT1y λT3y λT5y λT3'y λT1'y λT1'x λM1x λM1'x λB1x λB1y λB3y λB5y λB3'y λB1'y λB1'x 
Observed 0.6 0.4 0.2 -0.3 -0.3 -0.5 -0.5 -0.2 -0.1 -0.8 -0.6 -0.4 0.3 0.6 0.5 0.1 
Predicted 4.5 0.3 0.7 0.4 0.4 -4.5 1.1 2.3 -2.4 0.2 -0.3 -0.2 0.0 0.0 -1.1 0.3 

Difference 3.9 - 0.5 (0.7) (0.7) 4.0 (1.6) (2.5) 2.3 (1.0) (0.3) (0.2) (0.3) (0.6) (1.6) 0.2 
 

 

 

Notes: 
- Tables 4-16 and 4-17 are associated with Figure 4-15 
- For Table 4-17: differences ≤0.1 are not included, bold values represent noteworthy 
results, positive deflection represents an increase in gap and a negative displacement 
represents a decrease in gap, and differences in brackets represents a predicted change in 
gap that is lower than the observed change in gap. 
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4.5 OUT-OF-PLANE TEST 2 AND 3 

4.5.1 EFFECT OF VERTICAL RACKING TEST 

The effect of the vertical racking test is assessed by comparing Out-of-plane Test 1.3 and 

Test 2, as shown in Table 4-18, where a positive difference indicates an increase in 

deflection after the vertical racking test. The vertical racking has caused a reduction in 

stiffness near the top middle of the connection at T5, midspan of the wall at W4 and W5, 

and near the bottom connections B3, B4 and B5, especially under negative pressure. 

Overall these are very minor changes in displacement which shows that the vertical 

racking test at SLS had very little effect on wall specimen.  

4.5.2 EFFECT OF LATERAL SWAY TEST 

The effect of the lateral sway test is assessed by comparing Out-of-plane Test 2 and Test 

3, as shown in Table 4-19, where a positive difference indicates an increase in deflection 

after the lateral sway test. There was a consistent reduction in stiffness under both 

positive and negative pressures at the top connection. This change is to be expected, 

however, as there was movement of the infill wall during the lateral test at the top of the 

wall which may have potentially weaken the restraint created by the insulation in the top 

gap. Similarly, the reduction in stiffness at midspan of the infill is likely due to the 

deformations experienced by the infill which caused the connections throughout the wall 

loosen slightly. Overall, the effects of the lateral racking test at SLS were fairly small, but 

may be cumulative if the lateral sway is due to repeated loading.  
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Table 4-18 - Comparison of Out-of-Plane Test 1.3 and 2 

  
T1 T3 T5 T1' W1 W2 W3 W4 W5 W1' B1 B2 B3 B4 B5 B1' 

Negative Pressure: 
                

Test 1.3 Observed 0.3 0.8 1.0 0.3 0.7 6.1 6.1 8.1 6.4 0.4 0.3 1.0 1.1 1.1 0.9 0.3 

                   Test 2 Mean 0.3 0.8 1.3 0.3 0.7 6.0 6.2 7.9 6.1 0.4 0.4 1.0 1.4 1.4 1.3 0.3 

 
St. Dev. - - - - - - - - - - - - - - - - 

 Test 2 - Test 1.3 - - 0.3 - - - - -0.2 -0.3 - - - 0.3 0.3 0.4 - 

 
% Difference - - 27 

 
- - - -3 -5 - - - 23 25 39 - 

Positive Pressure: 
                

Test 1.3 Observed 0.3 1.4 2.1 0.4 1.2 11.0 11.3 15.0 13.0 1.0 0.6 2.6 2.0 2.9 2.1 0.4 

                   Test 2 Mean 0.4 1.5 2.4 0.5 1.4 11.0 11.3 14.8 12.9 0.9 0.8 2.7 2.1 3.1 2.2 0.4 

 
St. Dev. - - 0.2 - - - - 0.2 - - - - - - - - 

 Test 2 - Test 1.3 - - 0.3 - 0.2 - - -0.3 - - - - - 0.2 - - 

 
% Difference - - 14 - 16 - - -2 - - - - - 7 - - 

 

Table 4-19 - Comparison of Out-of-Plane Test 2 and 3 

  
T1 T3 T5 T1' W1 W2 W3 W4 W5 W1' B1 B2 B3 B4 B5 B1' 

Negative Pressure: 
                

 Test 2 Mean 0.3 0.8 1.3 0.3 0.7 6.0 6.2 7.9 6.1 0.4 0.4 1.0 1.4 1.4 1.3 0.3 

                   Test 3 Mean 0.5 1.3 1.7 0.4 0.7 N/A 6.7 8.0 7.2 0.4 0.4 1.1 1.5 1.5 1.4 0.5 

 
St. Dev. - - - - - - - - - - - - - - - - 

 Test 3 - Test 2 0.2 0.5 0.4 - - - 0.5 0.2 1.1 - - - - 0.2 0.2 0.2 

 
% Difference - 57 32 - - - 8 2 19 - - - - 11 14 - 

Positive Pressure: 
                

 Test 2 Mean 0.4 1.5 2.4 0.5 1.4 11.0 11.3 14.8 12.9 0.9 0.8 2.7 2.1 3.1 2.2 0.4 

                   Test 3 Mean 0.7 2.0 3.2 0.7 1.5 N/A 12.0 15.0 13.7 1.0 0.8 2.6 2.0 3.3 2.4 0.6 

 
St. Dev. - - - - - - - - - - - - - - - - 

 Test 3 - Test 2 0.3 0.6 0.8 - - - 0.6 0.2 0.8 - - - - 0.2 - - 

 
% Difference - 40 34 - - - 6 2 6 - - - - 5 - - 

 

Note: differences ≤0.1 are not included, bold values represent noteworthy results, and % 
Difference does not include Mean values under 1.0mm  
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4.6 SUMMARY AND CONCLUSIONS 

The 2.4m x 4.8m (8 ft. x 16 ft.) infill wall specimen was subjected to an initial out-of-

plane pressure test at SLS, followed by lateral sway and vertical racking tests at both SLS 

and ULS. Between these racking tests, the out-of-plane pressure test at SLS was repeated 

to investigate the effect of the in-plane tests on the infill wall specimen. Conclusions 

associated with each test will be presented separately. 

4.6.1 OUT-OF-PLANE PRESSURE TEST 1 

A pressurized airbag, using a method similar to ASTM E330-02 Standard Test Window 

Structural Performance by Static Pressure (ASTM, 2010), was used to apply realistic out-

of-plane pressures at SLS. The following conclusions can be made concerning the 

procedure and results: 

1. A pre-pressure phase must be included in the pressure trace for large airbags to 

create an initial state of constant pressure, i.e., 0.2 kPa for this specific airbag, 

before loading to the test pressures begins. This enables a more accurate response 

from the PLAs before the pressure is increased. Increasing the number of PLAs 

from 2 to 12 also helped increase the accuracy of the overall response. 

2. The overall midspan deflections of the infill wall exceeded the SLS limit of 

HDT/360. These deflections were slightly less than the predicted results for a bare 

stud, likely due to the variability in the Young's Modulus values and the 

contribution of the sheathing.  

3. The observed out-of-plane deflections around edges of the wall were much 

smaller than predicted, likely due to restraint from the expansion foam. This is 
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especially apparent along the edges at midspan of the wall where the deflections 

were predicted to be in the order of 10-15mm. The maximum out-of-plane 

deflection that occurred along the edge of the wall was no more than 1mm at the 

top and bottom and 2mm at midspan. 

4. The overall repeatability for the results within Tests 1.1, 1.2 and 1.3 was good, 

except for Test 1.3 under positive pressure which showed a slight reduction in the 

stiffness of the wall. 

5. The concrete frame performed well with little out-of-plane movement at the 

corner connection points of the concrete frame. Slightly larger deflections did 

occur at midspan of the beams due to the ‘modified’ support. 

4.6.2 LATERAL SWAY TEST 

A lateral load was applied to the concrete frame to create a sway displacement between 

the top and bottom beams that was within the pre-established critical range for SLS and 

ULS. The following conclusions can be concerning from the procedure and results: 

1. The predicted response of the test apparatus at SLS was fairly closely the 

observed response, with the predicted loads being within 3 to 13% of the observed 

loads. The predicted response of the test apparatus at ULS was also fairly close to 

the observed response, with the predicted load being within 9% of the observed. 

2. The predicted response of the steel frame for the push and pull test at SLS was 

very close, within 3%, to the observed results when considering the differential 

height, H'. There was larger variability when considering the full height, H, due to 

the minor displacements, between 0.7-0.9mm, that occurred at the bottom 
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connection. The predict applied load for the pull test at ULS was predicted within 

6% for both height H and H', however, the observed stiffness was larger than 

predicted. 

3. The predicted deformed shape of the concrete frame is within 1.7mm of the 

observed shape for all observed tests, including deflections at ULS, which is 

deemed to be adequate. 

4. It was predicted that there would be no in-plane movement of the infill wall as an 

adequate gap had been provided between the wall and the concrete frame. The 

observed results, however, show that the infill wall moved up to 4.5mm laterally, 

causing the wall to deform diagonally by +3.2mm and -4.5mm for the push and 

pull test, respectively, at SLS. This is consistent with the changes observed during 

the push tests, where the maximum predicted gap change was 7.8mm and the 

maximum observed gap change is 2.3mm. This indicates that there is in-plane 

load transfer through the insulation foam, even for gaps as large as 32mm, which 

is not accounted for in the current predictions.  

4.6.3 VERTICAL RACKING TEST 

A vertical load was applied to the concrete frame to create a racking displacement 

between the left and right columns within the pre-established critical range for SLS and 

ULS. The following conclusions can be concerning from the procedure and results: 

1. The predicted stiffnesses of the test apparatus at SLS and ULS are reasonably 

close to the observed stiffnesses. The predicted loads, however, are 18% and 14% 

less than the observed loads at SLS and ULS, respectively. This may be due to 
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pretensioning of the concrete frame before testing which created a larger observed 

load.  

2. The observed response of the steel frame was not accurately predicted, within 

40%, as there was an initial non-linear response that was not accounted for in the 

model.  

3. The racking displacement of the concrete frame at ULS was predicted to be 

7.6mm to stay within the target deflection range of 7-8mm. The observed results 

are within 0.6mm of the predicted results. 

4. The observed displacement of the infill wall was not as predicted. The observed 

maximum gap change was 0.8mm, whereas the maximum predicted change in 

gap was up to 4.5mm. This is again attributed to restraint provided by the 

insulation foam. 

4.6.4 OUT-OF-PLANE PRESSURE TESTS 2 AND 3 

Out-of-plane pressure tests were performed after the lateral sway test at SLS and vertical 

racking test at SLS. These responses were compared to Out-of-plane Pressure Test 1 to 

determine if the sway or racking deflections had any effects on the infill wall specimen. 

The following conclusions can be made: 

1. Out-of-plane Pressure Test 2 and 3 were almost completely repeatable. 

2. There was generally no effect on the infill wall specimen from the vertical racking 

test at SLS. 

3. There was minor reduction in stiffness at the top connection and a midspan of the 

wall due to the lateral sway test at SLS.  
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5 

5.1 SUMMARY 

SUMMARY AND CONCLUSIONS 

The focus of this study was to improve the use of wood/concrete hybrid systems in mid- 

to high-rise structures. There are a number of methods to do this, although some of these 

niche areas have more potential than other. Current research has focused on using heavy 

timber methods for these larger structures, however there is little literature that addresses 

the use of light-frame timber. This study has therefore been carried out, by the support of 

the NEWBuildS Network, to identify and pursue avenues that may enhance the use of 

light-frame lumber in a mid- to high-rise market. 

Chapter 2 reviewed spectrum of potential wood/concrete hybrid systems and identified 

three niche areas that are potentially feasible for mid- to high-rise structures. The 

potential maximum number of storeys of light-frame wood structures with wood/concrete 

hybrid flooring was investigated, and the investigation was repeated for structures with 

concrete lateral-load-resisting systems. The third niche area, wood infill walls in 

reinforced concrete structures, was explored by considering whether such wall should be 

load-bearing and identifying other factors that currently restrict their use in Canada. 

Chapter 3 describes the basis of an experimental investigation of the structural aspects of 

light-frame wood infill walls in reinforced concrete frame structures. Analysis of a 

prototype reinforced concrete frame established the critical deflection ranges for lateral 

sway and vertical racking displacements in a single storey at Serviceability and Ultimate 

limit states. These in-plane racking limits were then adopted as design criteria for a full-

scale, reinforced concrete frame test apparatus. An out-of-plane pressure system, applied 
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pressures to the exposed wall surface that were consistent with the wind loads specified 

in the NBCC (2010). Details of the 2.4m x 4.8m (8 ft. x 16 ft.) infill wall specimen are 

presented, and the basis of the design of the top and bottom connections to the concrete 

frame. These connections were intended to isolate the infill wall from the in-plane sway 

and racking deflections but transfer horizontal reactions due to out-of-plane wind loading 

from the wall to the frame. 

Chapter 4 compares the experimental response of the test apparatus and wall specimen 

with predicted responses from linear-elastic analytical modeling. This assessment of the 

test specimen and test apparatus was performed for each of the following tests: Out-of-

plane Pressure at SLS, In-plane Lateral Sway at SLS and ULS and In-plane Vertical 

Racking at SLS and ULS. Out-of-plane tests were also performed before and after each 

in-plane test to investigate its effect on the response of the infill wall specimen.  

5.2 CONCLUSIONS 

The conclusions that concerning feasible niches of light-frame wood/concrete hybrid 

construction (Chapter 2) are: 

1. The use of light-frame wood structures with wood/concrete floor systems is 

infeasible for structures with 7 or more storeys due to the limited axial capacity of 

wood stud walls. 

2. The use of light-frame wood structures with wood/concrete floor systems and a 

concrete lateral-load-resisting system is potentially feasible for structures up to 9 

storeys.   
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3. Light-frame wood infill walls in reinforced concrete structures are feasible in 

mid- to high-rise structures if sufficient gap is provided around the perimeter of 

the wall to ensure that the wall remains non-load-bearing and prevents material 

incompatibility issues.  

The conclusions concerning the design of a test apparatus to subject a wood infill wall to 

realistic concrete frame racking deformations (Chapter 3) are: 

1. The critical in-plane racking deformations of a typical 8-storey reinforced 

concrete frame structure that must be accommodated by infill wall are: 

- a lateral sway deflection due to wind loading, which is largest at the base of 

the structure in an exterior frame with a maximum storey sway deflection 

range of 7-8mm at SLS and 16-18mm at ULS and; 

- a vertical racking deflection due to differential creep shortening, which is 

largest at the top of the structure at an exterior frame with a maximum 

storey racking deflection range of 7-8mm at SLS and 10-12mm at ULS. 

2. The full-scale reinforced concrete frame test apparatus, which was designed to 

achieve the specified lateral sway and vertical racking displacements, accurately 

replicates the overall deformed shape of the critical frames.  

3. Connections at the top and bottom of the wall were designed and implemented 

that allow a fully sheathed pre-fabricated infill wall to be used.  

The conclusions concerning the performance of the test apparatus and wall test 

specimen (Chapter 4) are: 
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1. Due to the large (9.25m3) volume of the airbag, the out-of-plane pressure loading 

system required 12 PLAs and a modified trace to generate positive and negative 

pressures of +1.44 and -0.9kPa, corresponding to the SLS wind loads specified in 

the NBCC (2010).   

2. The wall specimen with 2x4 (38mm x 89mm) studs did not satisfy the SLS 

deflection limit of L/360, but the top and bottom connections performed 

adequately with out-of-plane deflections less than 2.5mm and 0.9mm, 

respectively. 

3. The predicted displacements for the edges of the infill wall were approximately 

10 times larger than the observed values, likely due to the expansion foam acting 

as a structural link between the wood infill wall and the concrete frame.   

4. The concrete frame successfully withstood the out-of-plane pressures with almost 

no displacements at the corners and minor displacements, less than 2mm, at the 

middle supports.  

5. The observed results for the deformed shape of the concrete frame during the 

lateral sway and vertical racking tests were within 1.7mm and 0.6mm, 

respectively, of the predicted results. The racking deformations in a typical sway 

frame structure at SLS and ULS were therefore adequately simulated by the test 

apparatus.  

6. The predicted loads applied to the concrete frame during the lateral sway and 

vertical racking tests were within 8% and 18%, respectively, of the observed 

loads. This indicates that the linear-elastic analysis using SAP2000 (2009) was 

reasonably accurate.  
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7. The observed response of the infill wall during the in-plane tests at SLS was not 

well predicted. The observed change in gap was no more than 2.3mm, instead of 

the maximum predicted change of 7.8mm, again likely due to load being 

transferred from the concrete frame to the infill wall by the expansion foam.  

8.  The lateral in-plane test caused a minor reduction in out-of-plane stiffness of the 

infill wall and the top connection, where as the vertical in-plane tests had almost 

no effect.  

Conclusions 3 and 7 pertain to the type of foam used (i.e. Great Stuff™) and may change 

if a different product is applied. 

5.3 SUGGESTIONS FOR FUTURE WORK 

The following future work is recommended: 

1. Further out-of-plane pressure tests should be performed under loading at ULS to 

determine adequate performance, and mode of failure, of the infill wall and 

connections. 

2. The infill wall should be redesigned to satisfy SLS limits. This should include 

using 2x6 (38mm x 140mm) lumber, instead of reducing the stud spacings the 

deeper stud allows more insulation in the wall cavity and so provides additional 

thermal benefits.  

3. Repeat horizontal sway and vertical racking tests without an infill wall specimen 

to quantify the in-plane stiffness contributions of the infill wall. 
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4. The LVDTs should be placed closer to the connection points to minimize lateral 

measurements from the rotation of the wall.  

5. During preparation for a vertical racking test, care should be taken when installing 

the top wood blocking to avoid pretensioning of the test apparatus.  

6. Initial tests at ULS showed that minor cracking may be occurring, which may 

need to be accounted for in further predictions using an elastic-cracked analysis. 

7. Repeated in-plane tests at SLS may cumulatively impact the out-of-plane stiffness 

of the infill wall, although only minor stiffness reductions were observed in the 

present study. Further tests should therefore include repetition of SLS in-plane 

sway deformations.  
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APPENDIX A  
FEASIBILITY STUDY RESULTS FOR CASES 2, 4-7 
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Figure A-1- Results for Case 2: Wood Structure with Light-weight Concrete Topping 

under Residential Loading 

 

Figure A-2 - Results for Case 4: Wood Structure with Light-weight Concrete Slab under 
Residential Loading 
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Figure A-3 - Results for Case 5: Wood Structure with Normal-weight Concrete and 
Wood Composite Flooring under Residential Loading 

 

Figure A-4  - Results for Case 6: Wood Structure with Light-weight Concrete and Wood 
Composite Flooring under Business Loading 
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Figure A-5 - Results for Case 7: Wood Structure with Normal-weight Concrete and 
Wood Composite Flooring under Business Loading 
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APPENDIX B  
WIND LOADING 
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The wind load calculations are in accordance with the NBCC (2010) using: 

[B.1]           P = Iw q Ce Cg Cp  

where Iw is the importance factor, q is the 1-in-50 year return velocity pressure, Ce is the 

exposure coefficient, Cg is the gust coefficient, and Cp is the pressure coefficient.  

B.1   PROTOTYPE STRUCTURE 

The variables listed in Table B-1 were used to determine the pressures on the prototype 

structures. The resulting pressures are shown in Table B-2, where PW represents the 

windward pressure and PL represents the leeward pressure.  

Table B-1 - Wind Loading Factors for the Prototype Structure 

Variables 

 

Value Notes 
Iw SLS 0.75 - 

 
ULS 1.0 Normal Importance 

q (kN/m2) 
 

0.53 50-yr. Return Period 
Cg  

2.0 For High-rise Structure (H > 20m or H/Ds 
1) Cp Positive 0.8 External: H/D = 0.88 and H>20m 

 
Negative -0.5 Internal: Category 2 

 

Table B-2 - Pressures Applied to Prototype Structure 

Storey Ce PW (kPa) Ce PL (kPa) 
SLS ULS SLS ULS 

8 0.91 0.58 0.77 0.74 -0.29 -0.39 
7 0.88 0.56 0.74 0.74 -0.29 -0.39 
6 0.84 0.53 0.71 0.74 -0.29 -0.39 
5 0.80 0.51 0.68 0.74 -0.29 -0.39 
4 0.75 0.48 0.64 0.74 -0.29 -0.39 
3 0.70 0.45 0.60 0.74 -0.29 -0.39 
2 0.70 0.45 0.59 0.74 -0.29 -0.39 
1 0.70 0.45 0.59 0.74 -0.29 -0.39 
0 0.00 0.00 0.00 0.00 0.00 0.00 
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B.2   TEST APPARATUS 

For the out-of-plane testing, the test apparatus must be able to accommodate the realistic 

localized wind load on the infill wall. Details of the parameters are listed in Table B-3, 

with the pressures summarized in Table 3-2. The pressures for an infill wall account for 

both external and internal pressures, which results in the two cases shown in Figure B-1. 

Table B-3 - Wind Loading Factors for the Exterior Cladding Elements 

Variable Value Notes 
External Internal 

Iw SLS 0.75 0.75 - - - 

 ULS 1.0 1.0 Normal Importance 
q (kN/m2)  0.53 0.53 50-yr. Return Period 

Ce  1.34 1.11 Exposure A - Open level terrain 
Cg/Cgi  2.5 2.0 Small Elements, including cladding 
Cp/Cpi: Positive 0.78 0.3 External: H/D = 0.88 and H>20m 

 Negative -0.48 -0.45 Internal: Category 2 
 

 

 
Figure B-1 - Pressure Cases for the Loading on Exterior Cladding
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APPENDIX C  
VERTICAL CREEP CALCULATIONS 
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C.1   LOADING DETAILS 

The axial forces, Pc, in the columns of the prototype structure, determined using the SAP 

model with 1.0D at SLS and 1.4D at ULS, are shown in Table C-1.  

Table C-1 - Axial Load in Columns at SLS and ULS 

 
Pc (kN) at SLS Pc (kN) at ULS 

Storey Exterior Interior Exterior Interior 
8 159 318 222 445 
7 330 636 462 890 
6 499 953 699 1334 
5 667 1270 934 1778 
4 833 1587 1166 2222 
3 997 1904 1396 2666 
2 1159 2222 1623 3111 
1 1318 2539 1845 3555 
0 1473 2855 2062 3997 

 

C.2   SUMMARY OF RESULTS 

Table C-2 shows the column shortening results at SLS and ULS after 25 years. The 

interior columns at the top of the structure will shorten by 20.1mm and the exterior 

columns will shorten 11.9mm after 25 years. The difference between these two columns 

leads to a differential shortening of 8.2mm. This is the critical vertical deflection SLS 

case for a wood infill wall located at the top exterior frame. This table also shows that as 

the interior columns at the top of the structure will shorten by 28.1mm at ULS and the 

exterior columns will shorten 16.6mm after 25 years. The difference between these two 

columns leads to a differential shortening of 11.4mm. This is the critical vertical 

deflection ULS case for a wood infill wall located at the top exterior frame. Therefore the 

final ranges are 7-8mm for SLS and 10-12mm for ULS. 
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Table C-2 - Vertical Shortening Results 

 
Shortening, ∆, at SLS (mm) Shortening, ∆, at ULS (mm) 

Storey Exterior, e Interior, i  Differential 
(Σ∆i - Σ∆e) 

Exterior, e Interior, i 
 

Differential 
(Σ∆i - Σ∆e)  ∆e Σ∆e ∆i Σ∆i  ∆ Σ∆  ∆  Σ∆  

8 0.2 11.9 0.4 20.1 8.2 0.3 16.6 0.6 28.1 11.4 
7 0.5 11.6 0.8 19.6 8 0.7 16.3 1.2 27.5 11.2 
6 0.8 11.2 1.3 18.8 7.6 1.1 15.6 1.8 26.3 10.7 
5 1 10.4 1.7 17.5 7.1 1.4 14.6 2.4 24.5 10 
4 1.3 9.4 2.1 15.8 6.4 1.8 13.1 3 22.2 9 
3 1.5 8.1 2.5 13.7 5.6 2.1 11.4 3.6 19.2 7.8 
2 1.8 6.6 3 11.2 4.6 2.5 9.3 4.1 15.7 6.4 
1 2.6 4.9 4.3 8.2 3.3 3.6 6.8 6 11.5 4.7 
0 2.3 2.3 3.9 3.9 1.6 3.2 3.2 5.5 5.5 2.2 
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APPENDIX D  
OVERVIEW OF BEAM DEFLECTION CALCULATIONS 
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The total midspan beam deformation calculated from the instantaneous dead load 

deflection over a 5-year or longer period (CSA, 2010a) is computed as: 

[D.1]         ∆SD + ∆iL + ∆SL + ∆W       

or similarly, 

[D.2]    λ5 year ∆SD + ∆iL + λ ∆SL + ∆W       

where ∆ SD is the deflection due to sustained dead load, ∆SL is the deflection due to 

sustained live load, an assumed 1/3 of the total live load, ∆iL is the deflection due to 

immediate live load and ∆ W is the deflection due to specified wind load. For the long-

term deflection multiplier, λ5 year, of 2.0 applied to the dead load and long-term deflection 

multiplier, λ = λ5 year- λto, of 3.0 (CSA, 2010a), this yields 

[D.3]      2∆D + 2∆L + ∆W           

where ∆L is the deflection due to the specified live load and ∆D is the deflection due to the 

specified dead load. 
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APPENDIX E  
EFFECTIVE MOMENT OF INTERIA CALCULATIONS  
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E.1  LOADING DETAILS 

The effective moment of inertia, Ie, was calculated using the following equation 

(MacGregor and Bartlett, 2000):  

[E-1]     Ie= Icr+ �Ig- Icr� �
Mcr
Ma
�

3
 

where Icr is the cracked moment of inertia, Ig is the gross moment of inertia, Mcr is the 

cracked moment and Ma is the applied moment. Further details for calculating Icr, Ig and 

Mcr are shown by MacGregor and Bartlett (2000). The applied moments, shown in Figure 

E-1 for each frame element for a pull test at ULS, were simplified. This was done by 

assuming the maximum moment was consistent throughout each frame element as 

shown. 

 
Figure E-1 - Predicted Applied Moments under Loading at ULS
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APPENDIX F  
ENGINEERING DRAWINGS FOR TEST APPARATUS 

Dimensions in mm [inches]
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APPENDIX G  

DESIGN LIMITS OF TEST APPARATUS 
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The values shown in Figure G-1 are the limits that were used during the design of the test 

apparatus. The steel frame was designed to withstand a factored +/-57kN and the concrete 

frame, both beams and columns, were designed to resist a moment of 33.0kN.m and a 

shear of 25.4kN. The ultimate capacity of the frame is likely much larger than this, 

however independent calculations will need to be done to properly determine these limits.  

 

Figure G-1 - In-plane Design Forces for Test Apparatus 
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APPENDIX H  

WALL LIFT DETAILS 
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H.1   CONCEPTUAL DESIGN 

The design for lifting the infill wall involved two built-up 8ft long 2x8 lumber which was 

designed in accordance with CAN/CSA-O86-01 (CSA, 2010c) and used as the spreader 

beam, as shown in Figure H-1. Straps were then attached around each end of the beam 

and attached to an overhead crane. The connection to the infill wall uses a steel 'C'-

channel and angle. The angle was screwed to the infill wall with 2 5/8" dia. lag screws at 

stud locations. The angle was placed in between the flanges of the 'C'-channel and a bolt 

was inserted to connect them together. This allows the infill wall to be constructed 

horizontally and then lifted vertically, as shown in Figure H-2, pivoting about the 

connection point to a nearly vertical position. This allows for simple installation when 

fitting the infill wall into the concrete frame.  

 

Figure H-1 - Lifting Connection Attached to Infill Wall 
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Figure H-2 - Lifting of the Infill Wall  
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APPENDIX I  

WALL DEFORMATION CALCULATIONS 
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I.1   OVERVIEW 

Figure I-1a) shows the original position of the infill wall and the approximate location of 

LVDTs T5, QT5, W5, QB5 and B5. As previously mentioned, the displacement of the 

top and bottom connections cannot be accurately determined by the displacements at T5 

and B5 as an unknown amount of wall rotation is also being measured. Figure I-1b) 

shows the displacement of the wall, and the connections, under negative pressure. For 

Case 1, the original position at midheight of the infill wall is used as the center axis, 

where the results are shown in Table I-1. The goal is to determine an equation which 

represents the deformed shape of the infill wall, using a fifth-degree polynomial, and use 

it to solve for the predicted displacements at the top and bottom connection. To simplify 

the equation, Case 2 is introduced which changes the location of the axis to midheight of 

the deformed shape and switches the x and y axis, leading to the results shown in Table I-

1. Using this data, the polynomial for the deformed shape is:  

[I.1]    y = 2.4x10-9x4 + 5.0x10-6x3 - 4.6x10x2 - 5.8x 

where y is the displacement of the infill wall and x is the vertical position along the wall.  

With this, the displacements at the top and bottom connections can be determined, as 

shown in Table I-1.  

Similarly, the equations for the deformed shape under positive pressure is : 

[I.2]     y = 8.2x10-9x4 + 6.8x10-6x3 - 9.6x10x2 - 8.7x 

where the results are shown in Table I-2. 
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Figure I-1 - Out-of-plane Infill Wall Deflection: a) Original Position; b) Case 1; c) Case 2 

Table I-1 - Displacement of Infill wall under Negative Pressure 

 
Case 1 (mm) Case 2 (mm) Case 1 (mm) - Updated 

Location Y X Y X Y X 
Top Connection 1219 - -6.1 1219 1219 0.3 

T5 1130 1.0 -5.4 1130 1130 1.0 
QT5 610 4.5 -1.9 610 610 4.5 
W5 0 6.4 0 0 0 6.4 
QB5 -610 5.0 -1.4 -610 -610 5.0 
B5 -1130 0.9 -5.5 -1130 -1130 0.9 

Bottom Connection -1219 - -6.5 -1219 -1219 0.0 
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Table I-2 - Displacement of Infill wall under Positive Pressure 

 
Case 1 (mm) Case 2 (mm) Case 1 (mm) - Updated 

Location Y X Y X Y X 
Top Connection 1219 - 12 1219 1219 -0.8 

T5 1130 -2.1 11 1130 1130 -2.1 
QT5 610 -9.2 3.8 610 610 -9.2 
W5 0 -13.0 0 0 0 -13.0 
QB5 -610 -9.9 3.1 -610 -610 -9.9 
B5 -1130 -2.1 11 -1130 -1130 -2.1 

Bottom Connection -1219 - 13 -1219 -1219 -0.4 
 

 

I.2   CONCLUSIONS 

The final results for the top and bottom connection predicts that there is no more than 

1mm displacement occurring during loading at SLS. These results are almost half the 

displacements initially measured at point T5 and B5 which suggests that this issue 

requires  further consideration in future studies.  
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APPENDIX J  

TESTING DETAILS 
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J.1   LOGBOOK SUMMARY 

Date(s) No. of 
Tests Notes 

Out-of-Plane Test 1 
March 15th-23rd 2012 46 2 -12 PLAs were used 

April 4th 2012 5 Test 1.1 Negative Pressure (-0.9kPa) 
April 5th 2012 7 Test 1.1 Positive Pressure (1.44kPa) 

April 11th 2012 10 Test 1.2 (-0.9kPa and 1.44kPa) 
April 16th 2012 5 Test 1.3 (-0.9kPa and 1.44kPa) 

 Vertical Racking Test at SLS 
May 11th 2012 3 Displacement Range: 12 - 28mm, DT06. Larger tolerance 

in top corner connection 
  

May 24th 2012 2 Displacement Range: 12 - 20mm, DT06. Bushing used to 
reduce tolerance. 

  
May 25th 2012 1 Displacement of 10mm, DT06. Blocking was used in top 

connection 
  

Out-of-Plane Test 2 
May 29th 2012 12 Tests 2.1 - 2.3 (-0.9kPa and 1.44kPa) 

Lateral Sway Test at SLS 
June 1st 2012 3 Lateral Push Test - Displacement: up to 9.0mm, DT05 
June 5th 2012 1 Lateral Push Test - Displacement: up to 9.6mm, DT05 
June 6th 2012 1 Lateral Push Test - Displacement: up to 9.0mm, DT05. 

Modified bottom connection. 
  

June 7th 2012 3 Lateral Push Test - Displacement: up to 7.0mm, DT05. 
Pretensioned bottom connection. 

  
June 14th 2012 1 Lateral Push Test - Displacement: up to 7.0mm, DT05. 

Extended bottom connection blocking into steel frame. 
  

June 20th 2012 1 Lateral Push Test - Displacement: up to 7.0mm, DT05. 
Movement of DT frame was fixed. 

  
June 21st 2012 4 Lateral Push and Pull Tests - Displacements: 7.5-8.8mm 

Out-of-Plane Test 3 
June 22nd 2012 16 Tests 3.1 - 3.3 (-0.9kPa and 1.44kPa). Frame inside bag 

came loose. Temporary repair preformed. 
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J.2   LVDT LOCATIONS 

 

Figure J-1 - Out-of-Plane Test LVDT 

 

 

Figure J-2 - In-Plane Test LVDT 



171 
 

 
 

Identification 

CURRICULUM VITAE 

Jeffrey R. L. Blaylock, b. Brampton, Ontario, Canada, 1986 

Post-Secondary Education and Degrees 
2009 - 2012 

 
 

2005 - 2009 

Master of Engineering Science, Structural 
Western University, London Canada 
 
Bachelor of Engineering Science, Structural  
Western University, London Canada 

Honors and Awards 
2011 

 
2010 

 
2009 

 
2009 
2008 

Graduate Teaching Assistant Union Scholarship Award for 
Community Involvement. 
Graduate Teaching Assistant Union Scholarship Award for 
Community Involvement. 
Canadian Society for Civil Engineering (CSCE) Best Student Award 
for Class of 2009. 
Dean's List, Faculty of Engineering, Western University. 
Dean's List, Faculty of Engineering, Western University. 

Related Employment 
2009 - 2011 

 
 
 

May - July 2009 
 
 
 

May - Aug. 2008 
 

Teaching Assistant 
Western University 
London, Canada 
 
Employee, Assisted Facility Manager 
Insurance Research Lab for Better Homes  
London, Canada 
 
Junior Project Coordinator 
NAC (North America Construction) Constructors Ltd. 
Morriston, Ontario, Canada 

Related Presentations 
May 2012 

February 2012 
 

January 2011 

2nd NEWBuildS Workshop, Vancouver, British Columbia 
NEWBuildS Mid-rise Building Project: Highly Qualified Personnel 
Workshop, Ottawa, Ontario 
1st NEWBuildS Workshop, Vancouver, British Columbia 

Publications 
 Blaylock, J. and Bartlett, M. 2011. " Niche Areas for Mid-rise Light-frame Wood-

Concrete Hybrid Construction", Proceedings of the CSCE 2011 General Conference, 
Ottawa, ON, GC-136, 10-page paper in CD-ROM Proceedings 

 


	Wood Infill Walls in Reinforced Concrete Frame Structures: A Wood/concrete Construction Niche
	Recommended Citation

	1 INTRODUCTION
	1.1 OVERVIEW
	1.1.1 INTRODUCTION
	1.1.2 COMPLEMENTARY MATERIALS
	1.1.3 POTENTIAL BENEFIT

	1.2 NEWBUILDS 
	1.3 RESEARCH OBJECTIVES
	1.4 OUTLINE OF THESIS

	2 NICHE AREAS FOR MID-RISE LIGHT-FRAME WOOD/CONCRETE HYBRID CONSTRUCTION
	2.1  INTRODUCTION
	2.1.1 OBJECTIVE
	2.1.2 DEFINING TERMS

	2.2 EVALUATION OF NICHE AREAS
	2.2.1 SCOPE
	2.2.2 LIGHT-FRAME WOOD STRUCTURE
	2.2.3 WOOD STRUCTURE WITH WOOD/CONCRETE FLOOR SYSTEMS
	2.2.4 WOOD STRUCTURE WITH CONCRETE FOUNDATION AND LOWER STOREYS
	2.2.5 WOOD STRUCTURE WITH CONCRETE LATERAL-LOAD-RESISTING SYSTEM 
	2.2.6 HYBRID STRUCTURES WITH COMPARTMENTALIZATION
	2.2.7 REINFORCED CONCRETE STRUCTURES WITH WOOD/CONCRETE FLOOR SYSTEMS
	2.2.8 REINFORCED CONCRETE STRUCTURE WITH A WOOD ROOF OR WOOD UPPER STOREYS 
	2.2.9 REINFORCED CONCRETE STRUCTURE WITH INTERIOR WOOD PARTITION WALLS  
	2.2.10 REINFORCED CONCRETE STRUCTURE WITH EXTERIOR LIGHT-FRAME WOOD INFILL WALLS

	2.3 ASSESSMENT OF POTENTIAL NICHES
	2.3.1 APPROACH
	2.3.2 WOOD STRUCTURE WITH WOOD/CONCRETE FLOOR SYSTEM
	2.3.3 WOOD STRUCTURE WITH CONCRETE LATERAL-LOAD-RESISTING SYSTEM
	2.3.4 REINFORCED CONCRETE STRUCTURE WITH LIGHT-FRAME WOOD INFILL WALLS

	2.4 SUMMARY AND CONCLUSION

	3 TEST DESIGN AND CONSTRUCTION
	3.1  OBJECTIVE
	3.2 PROTOTYPE STRUCTURE
	3.2.1 IDEALIZATION
	3.2.2 LOADING ASSUMPTIONS 
	3.2.3 PRINCIPAL IN-PLANE DEFLECTIONS

	3.3 TEST APPARATUS
	3.3.1 OBJECTIVE AND CONSTRAINTS
	3.3.2 FINAL DESIGN
	3.3.3 DESIGN AND CONSTRUCTION CHALLENGES

	3.4 WOOD INFILL WALL SPECIMEN
	3.4.1 CRITERIA
	3.4.2 CONNECTION DESIGN CONCEPT
	3.4.3 CONSTRUCTION
	3.4.4 MODELLING 

	3.5 SUMMARY AND CONCLUSIONS

	4 EXPERIMENTAL PROGRAM AND RESULTS
	4.1 OVERVIEW
	4.2 OUT-OF-PLANE TEST 1
	4.2.1 PROCEDURE
	4.2.2 INSTRUMENTATION
	4.2.3 PERFORMANCE OF SPECIMEN
	4.2.4 PERFORMANCE OF TEST APPARATUS

	4.3 LATERAL SWAY TESTS
	4.3.1 INSTRUMENTATION
	4.3.2 PERFORMANCE OF TEST APPARATUS
	4.3.3 PERFORMANCE OF SPECIMEN

	4.4 VERTICAL RACKING TESTS
	4.4.1 PERFORMANCE OF TEST APPARATUS
	4.4.2 PERFORMANCE OF SPECIMEN

	4.5 OUT-OF-PLANE TEST 2 AND 3
	4.5.1 EFFECT OF VERTICAL RACKING TEST
	4.5.2 EFFECT OF LATERAL SWAY TEST

	4.6 SUMMARY AND CONCLUSIONS
	4.6.1 OUT-OF-PLANE PRESSURE TEST 1
	4.6.2 LATERAL SWAY TEST
	4.6.3 VERTICAL RACKING TEST
	4.6.4 OUT-OF-PLANE PRESSURE TESTS 2 AND 3


	5 SUMMARY AND CONCLUSIONS
	5.1 SUMMARY
	5.2 CONCLUSIONS
	5.3 SUGGESTIONS FOR FUTURE WORK

	REFERENCES
	CURRICULUM VITAE

