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ABSTRACT
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 This study explores locomotion and locomotor variability in Plio-Pleistocene 

hominins by examining cross-sectional properties and mechanical loading patterns in the 

proximal and midshaft femur of Paranthropus, fossil Homo sp. and H. erectus. Modern 

human and Pan models are used for comparative purposes. Given the wide degree of 

locomotor variability in Pan, the first part of this study explores ranges of variation in 

forelimb and hindlimb cross-sectional properties and mechanical loading patterns among 

taxa of Pan to determine if groups can be combined in further analysis. Results suggest 

that combining the groups should not introduce significant noise into the Pan model. 

 Cross-sectional properties in the proximal and midshaft femur of fossil hominins 

are examined to test the hypothesis that members of the same genus should exhibit 

similar locomotor behavior. In the proximal femur, fossil Homo sp. cluster with modern 

humans (Homo sapiens) to the exclusion of Paranthropus, and East and South African 

Paranthropus cluster together. Group differences are primarily due to differences in 

average bending and torsional strength. KNM-ER 738, which has been allocated to both 

Paranthropus and Homo, is more similar to paranthropine samples than to modern and 

fossil Homo. In the midshaft femur, fossil Homo sp. and H. erectus cluster with modern 

humans. OH 62 (H. habilis), however, forms a cluster by itself. It is unclear if this 

indicates a non-Homo status or if locomotor behavior was highly variable in early Homo. 

KNM-ER 1592, which is generally attributed to Paranthropus, clusters with modern and 

fossil Homo. This either suggests that mechanical loading is comparable between 

Paranthropus and Homo or that KNM-ER 1592 is misclassified as Paranthropus. KNM-

ER 736 and KNM-ER 1807, which have been allocated to both Paranthropus and Homo, 

cluster with modern and fossil Homo, and therefore cannot be excluded from this genus. 

Group differences in the midshaft femur are largely due to differences in average bending 

and torsional strength.

 Relationships between cross-sectional properties in the proximal and midshaft 

femur are examined to investigate if mechanical loading patterns in fossil hominin 
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femora suggest human-like locomotion, Pan-like locomotion or intermediate locomotor 

behavior. The relative amount of cortical bone is elevated in modern humans compared to 

Pan, and in fossil hominins compared to modern humans. Axial strength is greater 

relative to average bending and torsional strength in modern humans compared to Pan. 

Fossil Homo sp. and H. erectus are most similar to modern humans in this regard. OH 62, 

however, displays the Pan-like pattern. Mechanical loading patterns in Paranthropus are 

more similar to patterns in modern humans than to patterns in Pan. The relationship 

between bending strength in the medio-lateral plane relative to bending strength in the 

antero-posterior plane of the proximal and midshaft femur is not significantly different 

between modern humans and Pan. Thus, different mechanical demands could potentially 

yield similarities in diaphyseal shape. 

Key Words: 

cross-sectional morphology, biomechanics, femur, locomotion, Paranthropus, fossil 
Homo sp., Homo erectus, modern humans, Pan, taxonomy
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CHAPTER I

INTRODUCTION
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

RESEARCH OBJECTIVES

 Locomotion is the foundation from which models regarding early hominin1 food 

procurement strategies, physical and physiological adaptations and interspecific 

relationships within an ecological community can be reconstructed. Interpreting 

locomotor behavior among fossil hominins has been difficult given the amalgamation of 

ancestral and derived traits, and the mosaic nature of human evolution. A biomechanical 

approach may help clarify questions regarding the locomotor behavior of various fossil 

hominin groups. The major goal of this dissertation is to investigate locomotion and 

locomotor variability among Plio-Pleistocene hominins by examining proximal and 

midshaft femoral cross-sectional morphology and mechanical loading patterns. The 

following research questions will be addressed: (1) how well do cross-sectional 

properties, which give an indication of mechanical loading and locomotion, reflect 

current taxonomic assignments of fossil samples; (2) what do proximal and midshaft 

cross-sectional morphologies in paranthropine femora suggest about locomotor behavior 

in Paranthropus2; and (3) what do proximal and midshaft cross-sectional morphologies in 

fossil Homo femora suggest about locomotor behavior in early Homo, Homo sp. and H. 

erectus. Before these questions can be addressed, it is necessary to examine ranges of 

variation in proximal and midshaft femoral cross-sectional properties and mechanical 

loading patterns in modern humans and Pan—the two logical reference groups for which 

to compare fossil hominins.

 The significance of this dissertation is threefold. First, if a genus should consist of 

species that occupy the same or similar adaptive zone (Mayr, 1950; Cela-Conde and 

1

1 Hominin is defined as species that postdate the separation of African apes and the lineage that led to 
modern humans (Delson, 1981).

2 The genus name Paranthropus is used throughout this dissertation in support for the hypothesis that the 
“megadont” taxa from East and South Africa form a monophyletic group that is adaptively distinct from 
Australopithecus following Robinson (1972), Wood and Constantino (2007) and Wood and Lonergan 
(2008).



Ayala, 2003; Wood and Lonergan, 2008), then locomotor behavior should be comparable 

among species within a genus, and distinct from species of another genus. Cross-sectional 

morphology is used for the first time to examine if current taxonomic assignments of 

many isolated fossil femora are in agreement with generally accepted locomotor 

characterizations of genera within the hominin lineage. By including a behavioral aspect 

to classification, this approach may be valuable for helping to recognize the generic status 

of isolated femora in the human fossil record. Second, this dissertation indirectly tests if 

reconstructions of cross-sectional morphology and mechanical loading patterns based on 

direct measurements of cortical thicknesses at natural breaks in fossil femora are 

compatible with reconstructions based on advanced technology (e.g. x-ray, computed 

tomography). Third, original data from fossil hominin femora, the modern human sample 

and a subset of the Pan sample that have not previously been examined from a 

biomechanical approach are included in this study. This information will add to the 

growing database documenting femoral cross-sectional morphological variability in Plio-

Pleistocene hominins, modern humans and Pan.

BIOMECHANICS

 Mechanical loading stimulates bone modeling and remodeling (Frost, 1964, 1988; 

Huiskes, 1982; Lanyon, 1987; Martin and Burr, 1989; Rubin et al., 1990; Frost et al.,

1998). As a result, the cross-sectional properties of a long bone at a given section 

describe structural modifications that reflect a lifetime of mechanical loading history 

(Enlow, 1963; Frost, 1964; Martin and Burr, 1989; Rubin et al., 1990; Ruff et al., 2006). 

Cross-sectional morphology can be used to provide clues into the habitual functional 

usage of skeletal elements. The significance of a biomechanical approach to skeletal 

morphology is that it indirectly enables us to reconstruct possible behavioral repertoires 

based on mechanical loading histories, and thus gives a better indication of function from 

form. 
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 The primary roles of the skeletal system are to provide mechanical support for the 

body, to protect soft-tissued organs and to store minerals. Although the bauplan of the 

skeleton is genetically canalized, a certain degree of morphological plasticity exists that 

continues to guide skeletal form throughout life (Martin and Burr, 1989; Cubo and 

Casinos, 1998; Ruff, 2000; Cullinane and Einhorn, 2002; Ruff et al., 2006). This 

adaptability of bone is largely influenced by mechanical loading, although non-

mechanical factors such as age, sex, disease and diet also influence skeletal variability 

(Rubin et al, 1990; Burr and Martin, 1992; Lanyon, 1996; Frost, 1998, 1999; Ruff, 2000, 

2005; Cullinane and Einhorn, 2002; Tanck et al., 2006).

 Effects of loading on bone

 Bone is a dynamic, elastic tissue that is not as rigid as it appears. Its physical 

strength is determined by its material properties, mass and architecture, and its biological 

strength is determined by genetically programmed baseline conditions and tissue-level 

modifications, which are driven by the basic multicellular unit (BMU) (Martin and Burr, 

1989; Keller et al., 1990; Frassica et al., 1997; Frost, 1999; Currey, 2003; Pearson and 

Lieberman, 2004). The BMU includes the biological mechanisms responsible for cortical 

and trabecular bone remodeling (i.e. the turn over of bone) throughout life (Martin and 

Burr, 1989; Frost, 1999). 

 Bone bends, stretches, shortens and/or twists when a load is applied to it (Rubin et 

al., 1990; Turner, 1998; Carter and Beaupré, 2001; Currey, 2002; Winwood et al., 2006). 

A load results from a force, or moment, that is exerted on the bone either internally (e.g. 

by muscles) or externally (e.g. by gravity) (Martin and Burr, 1989; Duda et al., 1997; 

Frost et al., 1998; Turner, 1998; Pearson and Lieberman, 2004). Over time, bone 

accommodates to such loads in an effort to maintain its supportive role for the body. 

Loading, then, is “a potent means of stimulating bone formation,” (Skerry, 2000:31). 

Indeed, the functional adaptations of bone due to loading are a compromise because the 

skeleton has to maintain many functions that are not necessarily related to its role as a 

support system for the body, and it has to maintain such functions in an energetically 
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efficient manner (e.g. attain peak bone strength with as little material as possible) (Frost, 

1988; Rubin et al., 1990; Schoenau et al., 2001).

 During loading, a force simultaneously produces a stress, which then produces a 

strain (Martin and Burr, 1989; Rubin et al., 1990; Turner, 1998). Dynamic strains are the 

basic stimulus guiding adaptive responses of bone (Frost, 1988; Rubin et al., 1990; 

Lanyon, 1996; Turner, 1998; Ruff et al., 2006). The duration of the strain does not have 

to be long in order to elicit a bony response (Rubin and Lanyon, 1985; Turner, 1998). In 

fact, there is a diminishing effect on bone adaptation since bone cells can accommodate 

to strains (Rubin and Lanyon, 1984). A strain can be tensile, compressive or shear 

(Cullinane and Einhorn, 2002; Pearson and Lieberman, 2004). Tension occurs when two 

opposing forces are applied along the same line, compression results when two forces are 

applied towards each other along the same line and shearing occurs when two parallel 

forces act in opposite directions and produce rotation (Cullinane and Einhorn, 2002). 

Torsion, or twisting, occurs when shear strains are produced along the entire longitudinal 

length of a structure (Frassica et al., 1997; Frost, 1998; Cullinane and Einhorn, 2002). 

Tension and compression result from axial loads, which are placed longitudinally along 

the length of a structure and whose applied force passes through the center of area of the 

section (Ruff and Hayes, 1983). Most loading patterns involve a combination of strain 

types (Ruff and Hayes, 1983; Frost, 1988; Burr et al., 1989; Skerry, 2000; Lieberman et 

al., 2004). Bending results when a force (i.e. a bending moment) simultaneously produces 

tension and compression on opposite surfaces of the bone (Rubin et al., 1990; Frost et al., 

1998; Turner, 1998). Tension occurs along the convex surface, and compression occurs 

along the concave surface (Cullinane and Einhorn, 2002). Bending is the primary loading 

regime on long bones during terrestrial locomotion, although axial loads (torsion and 

compression) are experienced on a much smaller scale (Biewener, 1982; Bertram and 

Biewener, 1988; Lanyon, 1996; Ruff, 2000; Demes, 2007). 

 Bone will continue to deform to accommodate strains so that it becomes 

reinforced in the plane(s) of loading. However, if loads (and strains) are reduced, bone is 

lost (resorption), it becomes weaker and it reverts to its initial ‘optimal strain’ state 
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(Rubin et al., 1990; Skerry, 2000). The effects of strains on bone, however, appear to be 

site-, age- and sex-specific (Skedros et al., 1994; Lieberman, 1996; Skerry, 2000; Currey, 

2003; Pearson and Lieberman, 2004; Ruff et al., 2006). For example, bone modeling and 

remodeling primarily occur in the periosteum (i.e. the outer surface of the bone) during 

skeletal growth and development, but then shift to the endosteum (i.e. the inner surface of 

the bone) in adulthood (Goodship et al., 1979; Lanyon, 1982; Rubin and Lanyon, 1984; 

van der Meulen et al., 1996). Moreover, during puberty human males add bone primarily 

on the periosteal surface, whereas females add bone in the endocortical region of the 

endosteum (Schoenau et al., 2001). 

 Once a strain is produced, bone cells react in one of four ways. First, there may be 

no cellular response if the strain magnitude is not large enough to elicit a bony reaction 

(i.e. the BMU is not activated) or if there are physiological disruptions (e.g. inhibition of 

parathyroid hormone, growth hormone, insulin-like growth factors-I and II) (Frost, 1987, 

1988; Turner, 1998; Bikle et al., 1995; Skerry, 2000; Schoenau, 2005). Second, bone 

forming cells (osteoblasts) may produce more bone tissue (i.e. modeling) in response to 

the strain (Rubin et al., 1990; Turner and Pavalko, 1998; Currey, 2003). Third, bone 

absorbing cells (osteoclasts) may resorb bone tissue if it recognizes disuse or unloading 

beyond a certain threshold (Turner and Pavalko, 1998; Bikle and Halloran, 1999; Frost, 

1999). Finally, bone tissue may be remodeled via the BMU (Martin and Burr, 1989; 

Rubin et al., 1990; Frost, 1999; Currey, 2002, 2003).

 The exact mechanisms guiding the responses of bone cells to loading (i.e. 

mechanotransduction) are unclear, although many studies have shown that osteocyte-

osteoblast communication is key (Rubin et al., 1990; Cowin et al., 1991; Marotti et al., 

1992; Mikuni-Takagaki, 1999; Cullinane and Einhorn, 2002). The multistep process of 

mechanotransduction involves: (1) mechanocoupling, the conversion of mechanical 

forces into local mechanical signals that initiate a response from bone cells; (2) 

biochemical coupling, the transduction of a mechanical signal to a biochemical response; 

(3) cell-to-cell signaling, which involves communication from sensor cells (e.g. probably 

osteocytes) to effector cells (osteoblasts or osteoclasts); and finally (4) effector response, 
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which is the formation or resorption of bone depending on the mechanical signal (Turner 

and Pavalko, 1998). This communication likely acts within a larger complex system 

called the “mechanostat”, a term coined by Frost which describes the mechanisms that 

coordinate cellular responses to mechanical loading in osseous tissue (Frost, 1987, 1998, 

2003; Turner, 1998; Schoenau, 2005). 

Beam Theory

 A long bone can be modeled as a beam "and standard beam theory [can be] used 

to predict stress, strength and rigidity under particular types of loading," (Ruff and Hayes, 

1983:359). Beam theory applied to bone adaptation is rooted in a functional paradigm 

where long bone diaphyses are modeled as hollow tubes (beams), “optimized through the 

process of functional adaptation to offer a maximum of mechanical resistance with a 

minimum of bone substance,” (Demes, 2007:717). 

 Beam theory predicts that the stiffness (rigidity) and strength (torsional resistance) 

of a beam (bone) is optimized when the polar second moment of area or polar section 

modulus, a measure of average bending and torsional rigidity and strength, respectively, 

is maximized (Huiskes, 1982; Levenston et al., 1998; de Margerie et al., 2005). 

Conversely, when resistance is favored along a particular plane of bending (e.g. sagittal 

or transverse), the second moment of area or section modulus along that plane increases 

(de Margerie et al., 2005). The cortical area of a section is a measure of axial strength 

(i.e. resistance to tensile and compressive loadings) (Ruff, 2000). It has been shown that 

axial loading influences the size of the cross-section, but not the overall cross-sectional 

geometry (Levenston et al., 1998). Although, bones predominately subjected to axial 

loading will bend (buckle) about its weakest axis (i.e. the minimum second moment of 

area), this is highly unlikely in most long bones since they are not slender enough and/or 

because axial loading is an insignificant part of the typical loading regime (Demes, 

2007). When pure axial loading on the lower limbs does occur, it is almost exclusively 

compressional (Ruff and Hayes, 1983). 
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 The stiffness and strength of a beam (bone) is also determined from wall (cortical 

bone) thickness. Beam theory predicts that torsional resistance is favored in long bones 

with thin walls and a large diameter (i.e. more hollow) rather than in long bones with 

thick walls and a small diameter, because material is placed farther from the neutral axis3, 

often assumed to run through the center of the section, which increases the polar second 

moment of area and polar section modulus (Alexander, 1968; Huiskes, 1982; Frassica et 

al., 1997). The magnitude of a force increases from the center of the bone (i.e. from the 

neutral axis) to the outer diameter, and resistance to bending increases as osseous 

material is placed away from the neutral axis (Ruff and Hayes, 1983; Bertram and 

Swartz, 1991; Frassica et al., 1997; Frost, 1998; Levenston et al., 1998; Martin et al., 

1998; O’Neill and Ruff, 2004). Resistance to pure axial loading is not influenced by wall 

thickness (de Margerie et al., 2005). Thus, “when compared to bones habitually subjected 

to mixed bending/axial loading, torsion-resisting bones should theoretically have 

relatively thinner walls,” (de Margerie et al., 2005:51).

 Since the relationships among behavior, loading and resultant cross-sectional 

geometries are not completely understood, many have argued that functional 

interpretations, particularly when deducing activity patterns, should be approached with 

caution (Bertram and Swartz, 1991; Lieberman, 1997; Polk et al., 2000; Lovejoy et al., 

2003; Lieberman et al., 2004; Pearson and Lieberman, 2004; Demes, 2007). For instance, 

Lieberman et al. (2004) found that sheep tibiae are not structurally reinforced in the 

direction of peak bending strains, and suggested that variations in bone design, speed and 

gait likely complicate efforts to interpret the relationship between the direction of peak 

bending and diaphyseal cross-sectional geometry. Moreover, absolute values of cross-

7

3 In straight, symmetrical beams under uniform bending, the neutral axis passes through the geometric 
centroid of the section and is therefore also known as the centroidal axis (Lieberman et al., 2004). However, 
since long bones are subjected to a combination of bending and axial loads, and since long bones are 
neither entirely straight nor symmetrical, the neutral axis may not always pass through the centroid of the 
section (Lieberman et al., 2004). Experimental studies have confirmed that under varied loading regimes, 
the neutral axis shifts away from the centroid and towards the cortex under tension (Carter et al., 1981; 
Demes et al., 1998; Lieberman et al., 2004). Lieberman et al. (2004) showed that patterns in cross-sectional 
properties are not affected when assumed centroidal axes are chosen over experimentally derived ones, 
although absolute values of cross-sectional properties differed depending on whether they were calculated about 
the centroidal axis or an experimentally derived neutral axis. In this dissertation, cross-sectional properties are 
calculated with reference to a neutral axis assumed to run through the cross-sectional area centroid.



sectional properties differed depending on whether they were calculated about the 

centroidal axis or an experimentally derived neutral axis (Lieberman et al., 2004). 

Despite our incomplete knowledge of cortical bone modeling/remodeling and the 

complexities associated with it, experimental research continues to reinforce the 

existence of a relationship between cortical bone functional adaptation and mechanical 

loading (Jones et al., 1977; Woo et al., 1981; van der Meulen et al., 1995; Levenston et 

al., 1998; Haapasalo et al., 2000; Robling et al., 2000; Lieberman et al., 2004; de 

Margerie et al., 2005; Modlesky et al., 2008). At the very least, patterns in cross-sectional 

geometries are a useful means of inferring bone adaptations to habitual mechanical loads. 

LOCOMOTION AND TAXONOMY

 As will become evident in the following discussion and throughout this 

dissertation, taxonomic uncertainty has hampered analyses of locomotion among early 

hominins because it is unclear if reconstructed locomotor behaviors, which are primarily 

based on isolated postcranial remains, are valid for species largely diagnosed 

craniodentally (e.g. Leakey, 1959; Wood, 1993; Rightmire, 1993, 1998; Grine et al., 

1996; Wood and Lonergan, 2008). Since ranges of variation in postcranial morphology 

within several early hominin groups are unknown and/or poorly understood, it is difficult 

to allocate isolated postcranial specimens to a specific taxon. This is particularly the case 

where more than one species is presumably present based on craniodental evidence (e.g. 

Olduvai Gorge Bed II, Koobi Fora, Swartkrans) (Leakey et al., 1964; Leakey, 1972, 

1973a, b; 1976, 1979; Grine, 1989). As succinctly stated by Constantino and Wood 

(2007:51), “the problem researchers have faced at Olduvai Gorge, Koobi Fora, and 

elsewhere is how to tell which of the unassociated hominin postcranial fossils should be 

assigned to P. boisei and which should be assigned to the contemporaneous species Homo 

habilis.” 

 Another difficulty is when the postcranial morphologies of presumably different 

species are similar (Day, 1976a, b; Leakey and Walker, 1976; Susman, 1993). For 
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instance, OH 8 and OH 35, both isolated postcranial elements attributed to H. habilis, 

have been argued to share morphological resemblances to corresponding elements in 

KNM-ER 1500, an associated skeleton assigned to Paranthropus (Grausz et al., 1988). 

Morphological resemblance has been used to argue that the Olduvai samples should be 

attributed to P. boisei, or another non-Homo genus, rather than H. habilis (Day, 1976a; 

Grausz et al., 1988; Wood, 2000). Assuming that morphology follows function, 

morphological similarity may reflect functional similarity in the two genera, but it is also 

quite possible that similar morphology does not reflect similar function. Thus, it is 

unclear if OH 8, OH 35 and KNM-ER 1500 represent the same species misclassified as 

two different species or if certain aspects in the postcranial skeleton of Paranthropus and 

H. habilis are indeed similar.

 OH 36, a partial ulna recovered from upper Bed II at Olduvai Gorge, was initially 

attributed to H. erectus based on its overall morphology and its stratigraphic location 

(Leakey, 1978; Day, 1986). However, functional morphological comparisons with ulnae 

recovered after the discovery of OH 36 suggest that it is likely a representative of P. cf. 

boisei rather than H. erectus (Walker and Leakey, 1993; Aiello et al., 1999; McHenry et 

al., 2007; Drapeau, 2008). According to McHenry et al. (2007:217), “since its [OH 36] 

morphology is entirely unlike other known member of early Homo (e.g. KNM-WT 

15000), it is reasonable to assign it to P. boisei,” [emphasis added]. L40-19, an ulna from 

Member E of the Shungura Formation in Ethiopia, was initially attributed to 

Paranthropus sp. (Howell and Wood, 1974), but according to Drapeau (2008), its 

morphology and functional anatomy align it with Homo (but see Feldesman, 1979; 

McHenry et al., 2007). The morphological distinctions and inferred functional differences 

between OH 36 and L40-19 strongly suggest separate taxonomic assignments where the 

more ancestral condition is retained in Paranthropus (e.g. OH 36) while the lack of 

arboreal adaptations likely signifies an allocation to the genus Homo (e.g. L40-19) 

(Drapeau, 2008) or Hominini gen. et sp. indet. (Aiello et al., 1999). However, since 

postcranial morphology does not appear to follow a linear trend toward hominization, 

postcranial elements with more primitive traits may not necessarily represent a more 
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ancestral hominin (Richmond et al. 2002; Green et al., 2007; Lordkipanidze et al., 2007; 

McHenry and Brown, 2008).

 Morphological and behavioral delineations among species and the characteristics 

a species must posses to be included in a genus are poorly defined in paleoanthropology. 

Moreover, the degree of differences between and among groups may depend on which 

traits (ancestral or human-like) are emphasized. Thus, a certain amount of subjectivity is 

inherent in any classification scheme. Examining locomotor behavior and locomotor 

variability from a biomechanical perspective is a means of functionally categorizing 

hominin groups, which may help define a species’ adaptive zone, which should be 

“consistent and coherent across the species taxa in the putative genus,” (Wood and 

Lonergan, 2008:374). Thus, all members of the same genus are expected to engage in 

similar locomotor behavior, which should be distinct, to some degree, from members of 

another genus.

 Many of the Plio-Pleistocene samples examined in this study are allocated to 

more than one genus (e.g. KNM-ER 738), or their inclusion in a specific genus is dubious 

(e.g. OH 62). Given the taxonomic uncertainties of many isolated fossil hominin femora, 

the first goal of this dissertation is to ascertain if cross-sectional morphology, which can 

be cautiously used to reconstruct locomotor behavior, is consistent with generally 

recognized taxonomic identities of isolated fossil hominin femora. That is, all femora 

attributed to Paranthropus are expected to show similar mechanical loading patterns 

among each other, which should be distinct from patterns in femora attributed to Homo, 

and vice versa. It is of utmost importance to stress that while cross-sectional morphology 

per se is not suitable for taxonomic identifications, given its plasticity, the mechanical 

information that can be gleaned from long bone cross-sectional analyses, specifically 

with regard to locomotion, can be useful for taxonomic inferences, at least to the genus 

level, with the understanding that members of a genus occupy the same, or very similar, 

adaptive zone (Mayr, 1950). 
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PLIO-PLEISTOCENE LOCOMOTION

 The first hominin to display anatomical traits fully consistent with the modern 

human form of obligate terrestrial bipedalism was H. erectus nearly 1.8 mya (Walker and 

Leakey, 1993; McHenry and Coffing, 2000; Antón, 2003; Bramble and Lieberman, 2004; 

Polk, 2004; Lordkipanidze et al., 2007; Ruff, 2008), and most certainly by ~1.5 mya 

(Bennett et al., 2009). Pre-H. erectus hominins (e.g. Sahelanthropus tchadensis, Orrorin 

tugenensis, Ardipithecus sp., Australopithecus sp., Paranthropus sp., early Homo) retain 

some anatomical evidence of ancestral adaptations to arborealism with apparently 

increasing adaptations to terrestrial bipedalism over time (Robinson, 1972; Susman and 

Creel, 1979; Susman and Stern, 1982; Stern and Susman, 1983; Susman et al., 1984; 

Susman and Brain, 1988; Clarke and Tobias, 1995; Leakey et al., 1995; Berger and 

Tobias, 1996; Duncan et al., 1997; Asfaw et al. 1999; Aiello and Andrews, 2000; Senut et 

al., 2001; Brunet et al., 2002; Harcourt-Smith, 2007; Green et al., 2007; Richmond and 

Jungers, 2008; Lovejoy et al., 2009). 

 Locomotion and locomotor variability among Plio-Pleistocene hominins are 

difficult to reconstruct given the fragmentary nature of the hominin fossil record and the 

mosaic nature of evolution. It has been argued that postcranial morphological differences 

between Paranthropus and early Homo4 suggest that at least two patterns of locomotion, 

which were evolving in parallel, were in existence around the same time, and that such 

divergent locomotor behaviors likely helped to promote niche differentiation between 

coexisting paranthropine and early Homo groups (Davis, 1964; Leakey, 1973a; Day, 

1976a, b; McHenry and Corruccini, 1978). Recent evidence and reevaluation of previous 

data, however, indicate that locomotor behavior in early Homo, specifically H. habilis, 

likely included an arboreal component, and in this way they were more similar to 

Paranthropus than to later Homo (Oxnard and Lisowski, 1980; Richmond et al., 2002; 

Gebo and Schwartz, 2006; Haeusler and McHenry, 2007; Ruff, 2009). Since the fossil 

11

4 In this study, early Homo refers to members of the genus Homo that predate H. erectus, but whose species 
identification is uncertain or unknown (e.g. KNM-ER 1472), and H. habilis (i.e. OH 62). Although it has 
been suggested that the allocation of OH 62 to the genus Homo may not be valid (e.g. Wood, 1992; Wood 
and Collard, 1999a, b), it is included in the early Homo group since it is generally referred to as H. habilis 
in the literature.



evidence suggests that Paranthropus and early Homo likely co-existed in many parts of 

East and South Africa (Tobias, 1965; Leakey, 1972, 1973a, b; Grine et al., 1996; Susman 

et al., 2001; Wood and Constantino, 2007), similar locomotor behavior may have led to 

an increase in competition between the two genera (Wood and Strait, 2004).

Paranthropus locomotion

 Although far from conclusive, several lines of evidence suggest that the locomotor 

behavior in Paranthropus included both a rudimentary form of terrestrial bipedalism as 

well as a strong arboreal component (Day, 1969; Jolly, 1970; Leakey, 1971, 1972; 

Robinson, 1972; Grine, 1988; Susman and Brain, 1988; Susman, 1989; Harcourt-Smith 

and Aiello, 2004; Susman and deRuiter 2004; Gebo and Schwartz, 2006).

 Indications of arborealism in Paranthropus derive from analyses of limb 

proportions (McHenry, 1978), semi-circular canal morphology (Spoor et al., 1994) and 

functional morphology of various postcranial elements (Lague and Jungers, 1996; Aiello 

et al., 1999; Patel, 2005; Gebo and Schwartz, 2006; McHenry et al., 2007). For instance, 

Grine and Susman (1991) found that proximal and distal radial morphology in 

Paranthropus was similar to that in A. africanus and A. afarensis, and that the radial 

morphologies in both australopithecines and paranthropines were distinct from Homo. 

The overall morphology of the Paranthropus radius indicated enhanced stability for the 

elbow joint, enhanced forearm flexion and wrist extension capabilities, which suggest 

that Paranthropus was an adept climber (Grine and Susman, 1991). Patel (2005) found 

that the proximal radius in Paranthropus was morphologically most similar to extant 

hylobatids (e.g. gibbons and siamangs), where the elbow joint is adapted for both stability 

and suspensory behaviors. Although Paranthropus was likely not participating in 

richochetal brachiation, the mode of locomotion specific to hylobatids, the morphology 

of the paranthropine proximal radius alludes to an arboreal function (Patel, 2005). 

 Evidence that Paranthropus was likely capable of a rudimentary form of 

terrestrial bipedalism, which was different from that in later Homo, stems from functional 

morphological analyses of manual and pedal remains (Susman, 1988, 1989; Susman and 
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Brain, 1988; Gebo, 1992)5, limb proportions (McHenry, 1978; Grausz et al., 1988) and 

morphological analyses of various postcranial elements (e.g. Day, 1969; McHenry, 

1975a, b, c, 1976). For instance, Lovejoy et al. (1973:78) argued that paranthropine (and 

australopithecine) pelves and proximal femora conformed to morphological and 

biomechanical patterns “fully commensurate with erect striding as is that of modern 

man.” More recently, DeSilva (2009:6570) found that KNM-ER 1500, a possible 

associated skeleton of P. boisei6, possessed the decidedly human-like trait of a 

“perpendicularly oriented ankle joint relative to the long axis of the tibia.” In addition, the 

angle between the plane of the ankle joint and the long axis of the tibia in KNM-ER 1500 

is within the modern human range of variation (DeSilva, 2009). The functional 

morphology of the ankle joint complex suggests that KNM-ER 1500 did not have an 

inverted ankle nor an ankle joint capable of extreme dorsiflexion, which would have 

compromised its ability to traverse arboreal substrates and climb in an ape-like manner 

(DeSilva, 2009).

Previous studies have addressed the issue of locomotor behavior in Paranthropus 

from a biomechanical perspective (e.g. Ruff et al., 1993; Ruff et al., 1999). Macchiarelli 

et al. (1999) examined the architecture of cancellous bone in the ilia of South African 

gracile and robust australopithecines, and found that the structure of the trabecular 

network indicated a loading regime commensurate with a bipedal gait somewhat different 

from that in modern humans. Ruff et al. (1999) found that femoral cross-sectional 

geometries in P. robustus were comparable to their robust East African counterparts (i.e. 

P. boisei), and both groups, as well as early Homo, were markedly different from H. 

erectus and modern humans. The distinction in cross-sectional geometries between the 

pre-H. erectus group and the H. erectus and modern human group indicated an “increased 
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5 Since there are no hand and foot bones that can be assigned with confidence to P. boisei (Wood and 
Constantino, 2007), interpretations of locomotion from manual and pedal morphologies are based on South 
African Paranthropus specimens (i.e. P. robustus). If hypotheses regarding Paranthropus monophyly are 
not rejected, then it is reasonable to assume that species within the same genus will generally have similar 
locomotor adaptations (Strait et al., 1997; Strait and Grine, 2004; Wood and Constantino, 2007). However, 
there may be some variability in locomotor behavior associated with the environment (Harmon, 2009).

6 The taxonomic allocation of KNM-ER 1500 to P. boisei is not unanimously accepted (e.g. Constantino 
and Wood, 2007).



level of mechanical loading of the skeleton in non-H. erectus, [which] is consistent with a 

slightly altered pattern of bipedal gait relative to that of modern humans and H. 

erectus,” (Ruff et al., 1999:519). 

Multiple lines of evidence have not yielded consistent interpretations of the 

locomotor behavior in Paranthropus. Thus, for the time being, it is assumed that 

Paranthropus was capable of both arborealism and terrestrial bipedal locomotion, albeit 

the latter was different from that in later Homo. The second goal of this dissertation is to 

help shed light on paranthropine locomotion by examining cross-sectional diaphyseal 

geometric variation in femora attributed to Paranthropus.

Early Homo locomotion

 Leakey et al. (1964) revised the definition of the genus Homo after recovering 

specimens at Olduvai Gorge from Bed I and the lower part of Bed II at the FLK NN I 

site. The new species, Homo habilis Leakey et al. (1964), was found in strata earlier than, 

contemporary with and later than specimens attributed to the robust australopithecines (or 

paranthropines) (Leakey et al., 1964). Concerning locomotion, Leakey and colleagues 

(1964:7-8) stated:

…the structure of the pelvic girdle and of the hind-limb skeleton is adapted to 
habitual erect posture and bipedal gait; the fore-limb is shorter than the hind-
limb; the pollex is well developed and fully opposable and the hand is capable 
not only of a power grip but  of, at  the least, a simple and usually well-developed 
precision grip;…the hallux is stout, adducted and plantigrade; there are well-
marked longitudinal and transverse arches.

 Since then, locomotor behavior in early Homo has been a controversial subject 

(Day and Wood, 1968; Day, 1976a; Oxnard and Lisowski, 1980; Clark and Tobias, 1995; 

Kidd et al., 1996; Ruff, 2009). While most researchers agree that early Homo was a 

biped, differences of opinion center on the degree of bipedalism (i.e. facultative or 

obligate), gait kinematics and whether traits indicative of arborealism are primitive, 

nonfunctional retentions or functionally significant (Davis, 1964; Day and Napier, 1964; 

Lewis, 1972; Susman and Stern, 1979; McHenry and Berger, 1998; Haeusler and 

McHenry, 2004; Gebo and Schwartz, 2006).
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 One of the key anatomical traits necessary for human-like terrestrial bipedalism is 

an adducted hallux, which has a propulsive function and a supportive role for the medial 

and anterior foot during bipedal locomotion (Weidenreich, 1923). According to Leakey et  

al. (1964) and Day and Napier (1964), the OH 8 foot, which is generally attributed to H. 

habilis, had a stout, adducted hallux. More recently, McHenry and Jones (2006) found 

that the morphology of the articular areas between the first metatarsal and the medial 

cuneiform indicated complete hallucial convergence in OH 8. Others have argued, 

however, that the hallux of OH 8 is primitive, which indicates that the species represented 

by the foot was not a fully, committed terrestrial biped, but rather was adapted for both 

arborealism and terrestrial bipedalism (Lewis, 1972; Oxnard and Lisowski, 1980; Kidd et 

al., 1996). Gebo and Schwartz (2006:510) argued that the well-curved medial trochlear 

rims of OH 8 indicated an adaptation to “movements or postures, such as those used 

during arboreal activities,” and further suggested that its closest functional morphological 

affinities were with tali attributed to Paranthropus. The total morphological pattern of the 

foot suggests that early Homo was not a committed biped (Gebo and Schwartz, 2006).

 The functional capabilities of the OH 7 hand, attributed by Leakey et al. (1964) to 

the H. habilis hypodigm, have also confounded reconstructions of early Homo locomotor 

behavior. Napier (1962) described the ancestral and human-like characteristics of the 

hand, and suggested that the presence of a fully opposable thumb and broad terminal 

phalanges indicated that OH 7 was likely capable of a precision grip, although not as 

effective as in modern humans. Susman and Stern (1979) also observed derived Homo 

characteristics in the pollex and distal phalanges of OH 7. At the same time, however, the 

prominent muscle markings for flexor digitorum profundus and flexor digitorum 

superficialis suggested that OH 7 was capable of suspensory climbing behaviors (Susman 

and Stern, 1979). 

The OH 35 tibia and fibula, discovered in Bed I at Olduvai Gorge where the type 

specimen of P. boisei was recovered, have also weighed heavily on reconstructions of 

early Homo locomotion. According to Davis (1964), the forward tilt of the talar surface 

on the tibia allowed dorsiflexion of the ankle joint, which is necessary for bipedal 
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plantigrade locomotion. Some aspects of the musculature in OH 35 are more similar to 

modern humans than to great apes, while other aspects, such as the extent of soleus, is 

intermediate between the human and great ape conditions (Davis, 1964). Davis 

(1964:968) suggested that the total morphological pattern of OH 35 indicates that “at the 

time of Zinjanthropus [Paranthropus] boisei, there lived a hominid in whom bony 

adaptation to bipedalism was well advanced at the ankle...while the fossil form was 

clearly a habitually bipedal plantigrade primate, its gait may well have differed 

considerably from that of modern man.” Susman and Stern (1982) argued that the joint 

surfaces in OH 35 indicated a human-like form of bipedalism, and the suite of 

morphological traits in OH 7, OH 8 and OH 35, which may represent a single individual, 

indicated that H. habilis possessed a derived bipedal morphology while maintaining 

arboreal capabilities. 

 Limb proportions in H. habilis indicate adaptations to both arborealism and 

terrestrial bipedalism (McHenry and Berger, 1998; Richmond et al., 2002). Haeusler and 

McHenry (2004:460) suggested “the earliest species of the genus Homo [OH 62 and 

KNM-ER 3735] possessed an elongated hindlimb relative to that of Australopithecus 

africanus and A. afarensis, whereas the forelimb probably retained brachial proportions 

with long forearms.” Relatively long hindlimbs may have been an adaptation to more 

energy efficient long distance terrestrial travel, whereas long forelimb proportions and the 

shoulder joint morphology, particularly in KNM-ER 3735, may indicate adaptations to 

arborealism (Haeusler and McHenry, 2004, 2007).

 Biomechanical analyses of upper and lower limb loading in early Homo suggest 

different behavioral patterns compared to later Homo. Ruff (2009) found that femoral-to-

humeral strength proportions in OH 62 were more similar to patterns observed among 

chimpanzees than to patterns noted in H. erectus and modern humans. Patterns in upper-

to-lower limb strength were “consistent with locomotor differentiation between the two 

early Homo lineages, with H. habilis more reliant on arboreal climbing while H. erectus 

was a fully committed terrestrial biped,” (Ruff, 2009:98). 

16



 The evidence to date suggest that locomotor behavior in early Homo may have 

been different from that in later Homo and more akin to that in pre-H. erectus hominins, 

particularly Australopithecus and Paranthropus. This possibility has several 

ramifications. First, it would indicate that all members of the genus Homo are not 

committed bipeds, which conflicts with one of the defining characteristics of Homo per 

Leakey et al. (1964). Second, if locomotor behavior was not distinct between 

Paranthropus and early Homo, which were speculated to be contemporaneous at many 

sites throughout East and South Africa, then competition between the two lineages may 

have been elevated and niche separation, to minimize competition, would have had to 

occur via other means (e.g. diet and culture) (Wood and Strait, 2004). Third, if the earliest 

members of the genus Homo were not committed to obligate bipedalism, then the 

locomotor precursor to human-like bipedalism must have been a successful strategy. 

Moreover, the commitment to obligate terrestrial bipedalism may have been adapted very 

late in human evolution with the advent of H. erectus nearly ~1.8 mya. Finally, if all 

members of the genus Homo were not obligate bipeds, then locomotor variability in the 

lineage may have been more pronounced than is generally recognized. 

 This study directly addresses the issue of locomotion and locomotor variability in 

the hominin fossil record by investigating femoral cross-sectional morphological and 

mechanical loading patterns. The final goal of this dissertation is to help elucidate 

locomotor behavior and locomotor behavioral variability in fossil Homo from a 

biomechanical perspective, which may help clarify interpretations of locomotion based 

on preserved morphology. 

 

STRUCTURE OF DISSERTATION

 This dissertation includes a collection of papers that examines locomotion and 

locomotor variability in Plio-Pleistocene hominins from a biomechanical perspective. 

Each chapter focuses on a specific problem related to the main goal of this work. The 
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chapters provide a logical progression of interrelated topics that together culminate in an 

integrated final body of work.

 Pan referential models are often used to infer locomotor behavior in fossil 

hominins since there is a close phylogenetic relationship between Pan and the lineage 

that led to modern humans (Rogers, 1993; D’Août et al., 2004; Sockol et al., 2007; 

Crompton et al., 2008; Tocheri et al., 2008; Pontzer et al., 2009). Although the primary 

mode of locomotion in Pan is defined as quadrupedal knuckle-walking, field 

observations have shown that qualitative and quantitative differences in particular 

locomotor behaviors do exist among different chimpanzee (P. troglodytes ssp.) and 

bonobo (P. paniscus) communities (e.g. Kortlandt, 1962; Van Lawick-Goodall, 1968; 

Susman et al., 1980; Hunt, 1989, 1992; Kano, 1992; White, 1992; Doran and Hunt, 1994; 

Boesch et al., 2002). Locomotor variation observed in Pan may reflect subtle differences 

in habitat, morphology, the composition of the groups under investigation (e.g. age and 

sex) and/or field methods (e.g. provisioning versus non-provisioning, the level of 

habituation). While links between cross-sectional geometric patterns and broad locomotor 

categories among non-human primates have been established, the relationship between 

cross-sectional geometries and specific locomotor behaviors have not been determined 

(e.g. Burr et al., 1989; Ruff, 1989; Ruff and Runestad, 1992; Polk et al., 2000; Carlson, 

2002, 2005). Given field observations of locomotor variability among Pan communities, 

it cannot be assumed that all members of Pan will present with similar cross-sectional 

morphology, and the combining of Pan samples a priori may artificially inflate variation 

in the Pan model. Chapter II examines ranges of variation in femoral and humeral cross-

sectional properties in chimpanzee subspecies and bonobos to determine baseline loading 

conditions in quadrupeds and to determine if cross-sectional properties are similar among 

Pan taxa so that the samples can be combined in further analyses. This analysis will also 

give insight into cross-sectional variability among different species within a genus, which 

will aid in determining if cross-sectional variation in species of Paranthropus and Homo 

are consistent with expected variability within genera.
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 Taxonomic uncertainty, propelled by the lack of associated skeletons and the 

fragmentary nature of many postcranial elements, has hampered inferences of locomotion 

among early hominins because it is unclear if reconstructed locomotor behaviors, which 

are primarily based on isolated postcranial remains, are actually valid for a species 

largely identified craniodentally. Although this problem is universally acknowledged 

among researchers, especially those working with postcranial material (e.g. Leakey, 

1972, 1973a, b; Day, 1976a, b, 1978; Wood, 1978; Leakey and Walker, 1985; McHenry, 

1991, 1992; Jungers, 1988; Ruff et al., 1999; Ruff, 1995; Harcourt-Smith, 2007; Harmon, 

2009), an explicit examination of the relationship between inferred locomotor behavior, 

deduced from cross-sectional morphology and mechanical loading patterns, and 

presumed taxonomy has not been conducted. Since members of the same genus are 

expected to share a similar adaptive zone, there should be commonality in locomotor 

behavior among species within a genus (Mayr, 1950; Cela-Conde and Ayala, 2003; Wood 

and Lonergan, 2008). The goal of Chapter III is to investigate if members of the same 

genus are broadly homogeneous in their locomotor repertoires based on femoral cross-

sectional properties and mechanical loading patterns.

 The goal of Chapter IV is to examine cross-sectional morphology in femora 

attributed to Paranthropus, early Homo and H. erectus, within the working taxonomic 

hypotheses from Chapter III, to investigate locomotion and locomotor variability among 

Plio-Pleistocene hominins. Cortical area is plotted against total area to examine the 

relative amount of cortical bone in the cross-section, cortical area is plotted against the 

polar section modulus to examine if bones are preferentially adapted for axial strength or 

bending and torsional strength, and the polar section modulus about the medio-lateral 

plane is plotted against the polar section modulus about the antero-posterior plane to 

examine bending preferences in the anatomical axes, which give an overall indication of 

diaphyseal shape. Modern human and Pan comparative samples are used to examine if 

cross-sectional morphology in Paranthropus, early Homo, Homo sp. and H. erectus 

femora suggest mechanical loading patterns more akin to modern human locomotion, 

Pan locomotion or intermediate locomotor behavior. 
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 Finally, Chapter V includes a summary of the research objectives and results, a 

discussion of the significance of this study to paleoanthropology and brief thoughts about 

future research directions. Supporting information is provided in the Appendices. 
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CHAPTER II

VARIATION IN HUMERAL AND FEMORAL CROSS-SECTIONAL 
PROPERTIES IN MEMBERS OF THE GENUS PAN

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 Pan referential models are often used to infer locomotor behavior in fossil 

hominins since there is a close phylogenetic relationship between Pan and the lineage 

that led to modern humans (Corruccini and McHenry, 1979; Rogers, 1993; D’Août et al., 

2004; Crompton et al., 2008; Tocheri et al., 2008; Pontzer et al., 2009). In addition, 

experimental research has shown that the mechanics of arboreal climbing and bipedalism 

are very similar to each other, which likely suggests that hindlimb morphology in vertical 

climbers may have been pre-adaptations to human bipedalism (Fleagle et al., 1981; Stern 

and Susman, 1981; Hirasaki et al., 2000). Indeed, pre-Homo hominins display many 

morphological traits consistent with locomotor adaptations to arborealism likely retained 

from the Pan/hominin last common ancestor (Robinson, 1972; Susman and Creel, 1979; 

Oxnard and Lisowski, 1980; Susman and Stern, 1982; Stern and Susman, 1983; Susman 

et al., 1984; Susman and Brain, 1988; Grine and Susman, 1991; Asfaw et al., 1999).

 The primary mode of locomotion in Pan is defined as quadrupedal knuckle-

walking, but field observations have shown that qualitative and quantitative differences in 

particular locomotor behaviors do exist among different chimpanzee (P. troglodytes ssp.) 

and bonobo (P. paniscus) communities (Kortlandt, 1962; Van Lawick-Goodall, 1968; 

Albrecht and Dunnett, 1971; Susman et al., 1980; Hunt, 1989, 1992; Kano, 1992; White, 

1992; Doran, 1993a; Doran and Hunt, 1994; Boesch et al., 2002; Stanford, 2002, 2006; 

Carlson et al., 2008). Locomotor variation in Pan may reflect subtle differences in 

habitat, morphology, the composition of the groups under investigation (e.g. age and sex) 

and/or field methods (e.g. provisioning vs. non-provisioning, the level of habituation). 

For instance, Doran (1993a) argued that the hand and wrist anatomy of bonobos is 

adapted to palmigrady while that of chimpanzees is adapted to knuckle-walking. These 

morphological distinctions may explain, in part, “the overall reduced usage of arboreal 

quadrupedalism by chimpanzees since knuckle-walking would, on average, require a 
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larger substrate than palmigrade quadrupedalism,” (Doran, 1993a:69). McHenry and 

Corruccini (1981), however, found that when size differences were removed, 

chimpanzees and bonobos exhibit essentially identical wrist, elbow, hip and knee joint 

morphologies.

 Given the locomotor behavioral variability observed among chimpanzees and 

bonobos in the wild, the range of variation in locomotor behavior and its effect on the 

skeleton should be established within a Pan model before that model is used to deduce 

locomotor behavior in the hominin fossil record. The purpose of the present study is to 

determine if species and/or subspecies locomotor differences in Pan are mechanically 

discernible by examining ranges of variation in the biomechanical properties of the 

primary load bearing bones of the fore- and hindlimbs (i.e. the humerus and femur, 

respectively). Within the broad observational understanding of locomotor behavioral 

flexibility in Pan, the following research questions will be addressed: (1) are femoral 

cross-sectional geometries distinct in Pan at the subspecies-level, species-level or both?

And, (2) are humeral cross-sectional geometries distinct in Pan at the subspecies-level, 

species-level or both? If forelimb and hindlimb cross-sectional properties are similar 

among this specific sample of Pan, then taxa can be combined in further analysis. 

However, if there are significant differences among taxa, then combining taxa is 

unwarranted since it will introduce noise into the Pan model, which may render the 

model overly robust and less useful for comparative purposes. 

 Since osseous tissue responds to habitual, mechanical loading throughout life, 

structural modifications of a long bone at a given section can be examined to reconstruct 

mechanical loading history (Enlow, 1963; Frost, 1964; Martin and Burr, 1989; Rubin et 

al., 1990; Ruff et al., 2006). Several studies have applied a biomechanical approach to 

investigate functional differences in forelimb and hindlimb use within and among many 

non-human primate taxa (e.g. Schaffler et al., 1985; Burr et al., 1989; Ruff, 1989; Demes 

et al., 1991; Ruff and Runestad, 1992; Demes and Jungers, 1993; Polk et al., 2000; 

Demes et al., 2001; Carlson, 2002, 2005; Kimura, 2003; Marchi and Borgognini-Tarli, 

2004; Yamanaka et al., 2005; Carlson et al., 2006; Matsumura et al., 2010). Although 
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links between cross-sectional geometric patterns and broad locomotor categories have 

been established, the relationship between cross-sectional geometries and specific 

locomotor behaviors has not been determined. One of the reasons for this is the 

disconnect between field-based and laboratory-based research since behavioral 

information gathered from individuals observed in the field are generally not the same 

individuals analyzed in the laboratory. In addition, the relationship between cross-

sectional geometry and loading is not completely understood, nor is it straightforward 

since non-mechanical factors (e.g. genetics, age-related changes, hormonal effects and 

pathology) can also influence skeletal morphology (Slemenda et al., 1996; Demes et al., 

2001; Lovejoy et al., 2003; Volkman et al., 2003, 2004; Lieberman et al., 2004; Pearson 

and Lieberman, 2004; Demes, 2007). Given these limitations,  reconstructing locomotor 

behavior from a biomechanical perspective should be approached with caution.

 There are several mechanical similarities between chimpanzee and bonobo 

locomotion that have been elucidated from laboratory studies. P. troglodytes ssp. and P. 

paniscus display a “bent-hip, bent-knee” posture when walking bipedally and during 

quadrupedal locomotion (Berge, 1994; Li et al., 1996; Crompton et al., 1998; Schmitt, 

2003). Although the “bent-hip, bent-knee” posture is largely a consequence of 

morphology (Crompton et al., 1998; Preuschoft, 2004), it has also been hypothesized that 

this posture acts to reduce overall vertical peak forces in the fore- and hindlimbs because 

weight is shifted posteriorly through the retracted hindlimbs (Taylor, 1985; Alexander, 

1992; Schmitt, 1999). Quadrupedal walking in Pan involves a diagonal footfall sequence-

diagonal couplets gait where a forelimb footfall follows the contralateral hindlimb 

footfall such that contralateral forelimb-hindlimb pairs are related in time (D’Août et al., 

2004; Raichlen et al., 2008). Chimpanzees and bonobos tend to gallop at high velocities 

rather than trot (Schmitt, 1999; D’Août et al., 2004; Preuschoft 2004; Hanna et al., 2006). 

Trotting may be an energetically inefficient gait since it leads to high peak stresses on the 

limbs and high moments of inertia about the hip (D’Août et al., 2004). Vertical peak 

substrate reaction forces are generally higher in the hindlimbs than in the forelimbs 

(Preuschoft, 2004; Hanna et al., 2006). Moreover, since the hindlimbs carry and 
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accelerate the body, they are more structurally reinforced relative to the forelimbs, which 

mainly act to balance and steer the body when quadrupedally moving on the ground 

(Demes et al., 1994; Kimura, 1995; Preuschoft, 2004).

 Although gait kinematics may be similar between chimpanzees and bonobos for a 

given mode of locomotion, it is also important to stress that kinematics may be similar 

across modes of locomotion such that mode-specific mechanics may be undetectable in 

long bone cross-sectional geometries. For instance, D’Août et al. (2004) found 

overlapping kinesiological characteristics during bipedal and quadrupedal walking in P. 

paniscus, which suggests very subtle kinematic differences in these two locomotor 

categories. Thus, mechanical similarities within taxa of Pan may not necessarily indicate 

similar locomotor behaviors.

 Pan morphology is a compromise between adaptations for arboreal and terrestrial 

locomotion (Pontzer and Wrangham, 2004). There are slight skeletal differences between 

chimpanzees and bonobos that may influence locomotion. P. paniscus generally has a 

more gracile upper torso, shorter clavicles, a narrower pectoral girdle, a larger hallux, 

more curved phalanges, a narrower pelvic girdle, more robust muscular attachments on 

the femora, relatively shorter arms and longer legs, and smaller articular surfaces 

compared to chimpanzees (Coolidge, 1933; Roberts, 1974; Zihlman and Cramer, 1978; 

Corruccini and McHenry, 1979; Susman et al., 1980; Johnson, 1981; McHenry and 

Corruccini, 1981; Coolidge and Shea, 1982; Doran, 1993a; Doran and Hunt, 1994). One 

of the most significant morphological differences between chimpanzees and bonobos lies 

in the shoulder joint. P. paniscus is characterized by a long, narrow scapula and an overall 

scapular shape that resembles the morphology found in Hylobates (Coolidge, 1933; 

Roberts, 1974; Horn, 1976; McHenry and Corruccini, 1981; Susman, 1984; Shea, 1986). 

Based on these morphological distinctions, some researchers have hypothesized that 

bonobos should use arboreal locomotor behaviors, especially suspensory behaviors, more 

frequently than chimpanzees (Roberts, 1974; Johnson, 1981). This has been confirmed by 

many field observations (e.g. Susman et al., 1980; Hunt, 1991; Doran, 1993a; Doran and 

Hunt, 1994), but not all (e.g. Horn, 1976, 1979; White, 1992). The morphological 
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distinctions between chimpanzees and bonobos suggest that the latter may resemble the 

morphology of the Pan/hominin last common ancestor more closely since it is more 

generalized than chimpanzees (Zihlman, 1984; D’Août et al., 2004).

 Morphological differences in the postcranial skeleton of P. troglodytes ssp. have 

not been extensively examined, although there are limited data suggesting some 

morphometric differences among subspecies. Zihlman et al. (2008) found significant 

differences between Taï (P. t. verus) and Gombe (P. t. schweinfurthii) communities in 

iliac breadth, innominate length and acetabular diameter. Differences in humeral, radial 

and femoral limb lengths were also noted, where Taï chimpanzees were found to have 

significantly longer bones than Gombe chimpanzees. Limb proportions (e.g. 

intermembral, humero-femoral, brachial and crural indices), however, were not 

significantly different (Zihlman et al., 2008). 

 Given the observational differences in frequencies of specific locomotor 

behaviors among Pan communities in their natural habitat, and the morphological 

differences between chimpanzees and bonobos that have an affect on locomotion, the 

following study seeks to examine if such differences significantly influence locomotor 

behavior to the point where different functional adaptations in bone structure are 

observed between species of Pan and/or among sub-species of P. troglodytes.

MATERIALS AND METHODS

 Wild-shot P. troglodytes ssp. and P. paniscus adult skeletal remains housed at the 

Natural History Museum of Los Angeles County and the Museum of Comparative 

Zoology (MCZ) at Harvard University were used in this study (Table 1). The right femur 

was available for all individuals, and was therefore chosen over the left. Since the 

hindlimbs generally have a single functional role, and since mechanical loading is 

approximately bilaterally homogeneous in the hindlimbs, only one side was deemed 

necessary to examine (Ruff and Runestad, 1992; Sarringhaus et al., 2005). The right and 

left humerus, when available, were examined since the forelimbs have a multifunctional 
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role, some of which may be unrelated to locomotion (Boesch and Boesch, 1990; Ruff and 

Runestad, 1992; Carlson, 2002, 2005). Age and sex estimates were recorded in the 

museum catalogs and verified from dental development, and pelvic and cranio-facial 

morphology, respectively (Anemone et al., 1991; Conroy and Mahoney, 1991; Morbeck 

et al., 1992; Reid et al., 1998).

Table 1. Pan samples.

Specimen Species Sex Locality Skeletal Element

LACM 30545 P. t. troglodytes F Cameroon R femur; R/L humerus

LACM 30546 P. t. troglodytes M Cameroon R femur; R/L humerus

LACM 30547 P. t. troglodytes F Cameroon R humerus

LACM 30548 P. t. troglodytes F Cameroon R femur; R/L humerus

MCZ 15312 P. t. troglodytes M Cameroon, Lolodorf R femur; R/L humerus

MCZ 19187 P. t. troglodytes M Cameroon, Sakbayeme R femur; R/L humerus

MCZ 20041 P. t. troglodytes M Cameroon, Sakbayeme R femur; R/L humerus

MCZ 23163 P. t. troglodytes M Cameroon, Sakbayeme R femur; R/L humerus

MCZ 23164 P. t. troglodytes F Cameroon, Sakbayeme R femur; R/L humerus

MCZ 23167 P. t. troglodytes F Cameroon, Sakbayeme R femur; R/L humerus

MCZ 25950 P. t. troglodytes M Cameroon, Sakbayeme R femur; R/L humerus

MCZ 26847 P. t. troglodytes F Cameroon R femur; R humerus

MCZ 26849 P. t. troglodytes F Cameroon, Sakbayeme R femur; R/L humerus

MCZ 48686 P. t. troglodytes M Equatorial Guinea R femur; R/L humerus

LACM 51240 P. t. schweinfurthii F Uganda, Kibale Forest R femur; R/L humerus

LACM 51239 P. t. schweinfurthii M Uganda, Kibale Forest R femur; R/L humerus

BOM 6244 P. t. verus M West Africa R femur; R/L humerus

MCZ 38018 P. paniscus M Dem. Rep. of the Congo R femur; R/L humerus

MCZ 38019 P. paniscus F Dem. Rep. of the Congo R femur; R humerus

MCZ 38020 P. paniscus M Dem. Rep. of the Congo R femur; R/L humerus
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 Samples of chimpanzees were cataloged in museum records as P. troglodytes 

without reference to subspecies. It is well recognized in the primatological literature, 

however, that there are multiple subspecies of chimpanzees1, which are largely delimited 

by geography and confirmed by genetic analyses, superficial morphology (e.g. fur 

coloring) and cranio-facial morphology (Shea and Coolidge, 1988; Morin et al., 1992; 

Shea et al., 1993; Morin et al., 1994; Kaessmann et al., 1999; Gonder et al., 2006; Gonder 

and Disotell, 2006; Zihlman et al., 2008; Oates et al., 2009). Assuming the reported 

localities of the museum samples are accurate, chimpanzees are allocated to the following 

subspecies following Gonder and colleagues (1997, 2006): Uganda, Kibale Forest (P. t. 

schweinfurthii), West Africa (P. t. verus)2 and Equatorial Guinea (P. t. troglodytes). The 

samples from Cameroon present with a taxonomic problem since there are potentially 

two subspecies of P. troglodytes in that region—P. t. vellerosus3 in western Cameroon 

adjacent to Nigeria and P. t. troglodytes throughout the rest of the country (Gonder et al., 

1997; Gonder et al., 2006). The samples from Lolodorf and Sakbayeme are from 

southwestern Cameroon. Both localities are south of the Sanaga River, the supposed 

biogeographic border between P. t. vellerosus and P. t. troglodytes (Gonder et al., 1997). 

Thus, they are classified here as P. t. troglodytes. The specific localities of five other 

individuals from Cameroon were not listed in the museum catalogs. They are assumed to 

be P. t. troglodytes since the majority of Cameroon chimpanzees are classified in this 

taxon (Gonder et al. 2006).
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1 Although chimpanzee taxonomy is debated, anywhere from three to five subspecies of P. troglodytes are 
recognized (Hill, 1967, 1969; Butynski, 2003; Ely et al., 2005; Groves, 2005, 2006; Inskipp, 2005; Young, 
2005; Gonder et al., 2006; Oates et al., 2009).

2 Morin et al. (1994) have argued that mitochondrial genetic data indicate that P. t. verus should be elevated 
to full species status. Although there is no consensus regarding the taxonomic status of the West African 
chimpanzee, most researchers consider the West African chimpanzee a subspecies of P. troglodytes (e.g. 
Butynski, 2003; Gonder et al., 2006).

3 Oates et al. (2009) have argued that P. t. vellerosus is a junior synonym of P. t. troglodytes since the type 
specimen was found in Gabon. Therefore, they allocate chimpanzee populations inhabiting the forested 
areas of Cameroon north and west of the Sanaga River to P. t. ellioti.



Locality descriptions

 Wild chimpanzees occupy a narrow geographic range that spans discontinuously 

from western to equatorial central Africa (Kortlandt, 1983; Boesch and Boesch-

Achermann, 2000). Wild bonobos occupy an even more restricted territory. They are 

confined to a ~200,000 km2 area of primary and secondary forests in the central basin of 

the Democratic Republic of the Congo (DRC) (Coolidge, 1933; Kano, 1992; White, 

1992, 1998; Lacambra et al., 2005) (Fig. 1). Despite their limited geographic distribution, 

members of the genus Pan inhabit a wide variety of environments that range from 

tropical rain forests to dry savanna-woodlands (Kortlandt, 1962; Reynolds and Reynolds, 

1965; Suzuki, 1969; Izawa, 1970; McGrew et al., 1981; Goodall, 1986; Duvall, 2000; 

Inskipp, 2005; Copeland, 2009).

Figure 1. Map of central Africa showing current geographic distributions of P. troglodytes ssp. 
and P. paniscus. Adapted from Pope (2006). http://en.wikipedia.org/wiki/File:Pan_spp_range_ 
map.png.

 Uganda, Kibale Forest (P. t. schweinfurthii). The Kibale Forest occupies an area 

of approximately 766 km2 in southwestern Uganda at an elevation that ranges from 1200 

to 1500 m (Chapman et al., 2006). It is a moist, mid-altitude evergreen forest intermixed 

with lowland rainforest, montane forest, mixed deciduous forest, secondary forest, tall 
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savanna and swamps (Isabirye-Basuta, 1989; Wrangham et al., 1991; Chapman and 

Wrangham, 1993; Chapman and Lambert, 2000; Carter et al., 2008). The mean annual 

rainfall is roughly 1475 mm, with rainfall peaks in March-April and September-

November (Rode et al., 2003). The average maximum temperature is 24oC and the 

average minimum temperature is 15.5oC (Rode et al., 2003). There are multiple P. t. 

schweinfurthii communities within the forest (e.g. Kanyawara and Ngogo) (Wrangham et 

al., 1991; Chapman and Wrangham, 1993; Teelen, 2008). The specific community of the 

samples in this study is unknown.

 Cameroon (P. t. troglodytes). Chimpanzees inhabit several areas in Cameroon 

including sites near Mount Cameroon, Takamanda Forest Reserve, Korup National Park, 

Bwombi-Mwo Forest Reserve, Mount Kupe, Douala-Edea Reserve, Campo Reserve and 

Dja (Sunderland-Groves et al., 2003; Matthews and Matthews, 2004; Deblauwe and 

Janssens, 2008). One individual in this study is from Lolodorf (3° 14′ N, 10° 44′ E), a 

small community in the Océan Department of the South Province. Seven individuals are 

from Sakbayeme (4° 1′ N, 10° 34′ E), a small town just south of the Sanaga River in the 

Sanaga-Martime Department of the Littoral Province. The climate in southwestern 

Cameroon (i.e. Lolodorf and Sakbayeme) is tropical with average temperatures between 

23 to 27oC and an annual rainfall between 1500 to 2000 mm (van Gemerden et al., 2003). 

The wet seasons are from March to May, and from August to November (van Gemerden 

et al., 2003). The exact localities of five other individuals from Cameroon were not listed 

in the museum catalogs.

 The vegetation that covers much of Cameroon is classified as Guineo-Congolian 

evergreen rainforest (White, 1979; Plana, 2004). This ecosystem covers an area roughly 

2.8 million km2 across equatorial Africa, and is physically divided into two blocks on 

either side of the Dahomey Gap (White, 2001). The Dahomey Gap is part of the Guinean 

forest-savanna mosaic that extends to the coasts in Benin, Togo and Ghana (White, 1979) 

Vegetation within the Guineo-Congolian zone consists mostly of woody plants with 

forest canopies near 30 m high and emergent trees greater than 60 m high (White, 2001). 

Altitudinal gradients are typically less than 1000 m nearly everywhere within the Guineo-
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Congolian zone (White, 2001). In rare areas with higher altitude, the vegetation becomes 

Afromontane (White, 2001). 

 Equatorial Guinea (P. t. troglodytes). The single individual from Equatorial 

Guinea comes from the Great Forest of Ayamiken, which is north of the port city of Bata 

and south of the Cameroon border. Equatorial Guinea is within the Guineo-Congolian 

evergreen rainforest zone (Plana, 2004). Temperatures are generally high and constant 

with an average of 25oC and an annual relative humidity of ~90% (Jones, 1971). Heavy 

rainfall occurs during the wet seasons, which are from February to June, and from 

September to December (Jones, 1971). The average annual rainfall around Bata is 2000 

mm (Jones, 1971).

  West Africa (P. t. verus). P. t. verus is discontinuously distributed in nine or ten 

countries from southeastern Senegal east to the Dahomey Gap or the Niger River 

(Butynski, 2003; Inskipp, 2005). P. t. verus occupies a wide range of habitats within West 

Africa. For instance, the chimpanzees of Mount Assirik in eastern Senegal inhabit a very 

hot and dry environment dominated by drought-resistant deciduous lowland woodland 

(37%), plateau (28%) and open grassland (27%) (McGrew et al., 1981; Copeland, 2009). 

Only 3% of the vegetation is gallery forest and about 5% is bamboo thicket (Copeland, 

2009). Chimpanzees at Fongoli, which is 45 km from Mount Assirik, occupy woodland, 

grassland or plateau habitats (Pruetz, 2006; Copeland, 2009). P. t. verus at Bossou, 

Guinea, occupy secondary and scrub forests, but occasionally traverse through gallery 

forest corridors to reach areas outside their core home range (Humle and Matsuzawa, 

2001). Chimpanzees at Taï National Park, Côte d’Ivoire, inhabit an undisturbed, closed 

canopy primary rainforest (Boesch and Boesch-Achermann, 2000). The provenience of 

the single West African chimpanzee individual included in this study is unknown. 

 Democratic Republic of the Congo (DRC) (P. paniscus). Bonobos are largely 

restricted to a lowland, primary forest habitat, but may occasionally forage in swampy, 

seasonally flooded forest environments (e.g. Lake Tumba) (White, 1992; Kortlandt, 1995; 

Hashimoto et al., 1998; Myers-Thompson, 2003; Reinartz et al., 2006; Inogwabini et al., 

2007). Their distribution in the Congo Basin of the DRC is bounded by two river 
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systems: the Congo-Zaire-Walaba River and the Kwa-Kasai-Sankuru River (Kortlandt, 

1995). The P. paniscus samples in this study are from 25 km south of the town of 

Stanleyville (now Kisangani) in the Tshopo Province. Kisangani lies just north of the 

Equator within the Congo Basin along the Congo River in the northwest part of the 

country. It is surrounded by closed canopy, lush tropical rainforest (Leonard, 2006). The 

climate for much of the DRC is tropical with an average temperature of 27oC and average 

annual rainfall between 1500 to 2000 mm (Leonard, 2006).

Osteometrics

 Maximum femur and humerus lengths were measured with an osteometric board 

and recorded to the nearest millimeter. Femur length′ and humerus length′ were measured 

following Ruff (2002). Femur length′ is defined as the longitudinal length of the 

diaphysis from just medial to the greater trochanter to the average position of the distal 

edges of the condyles (Ruff, 2002), and humerus length′ is defined as the longitudinal 

line from the most proximal point on the humeral head to the lateral lip of the trochlea 

(Ruff, 2002) (Fig. 2). Cross-sectional locations were taken at 50% (midshaft) and 80% 

(proximal) of femur length′. To avoid the deltoid tuberosity, humeral cross-sections were 

taken at 40% of length′ from the distal end. 

(a)
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(b)

Figure 2. Length′ measurement for the femur (a) and humerus (b). Adapted from Ruff (2002).

Cross-sectional reconstructions

 Engineering beam theory predicts that the most mechanically relevant material is 

located furthest from the section centroid (Ruff and Hayes, 1983; Bertram and Swartz, 

1991; Frassica et al., 1997; O’Neill and Ruff, 2004). Therefore, accurate reconstructions 

of the periosteal surface “should be the most important factor in calculating cross-

sectional properties,” (Stock, 2002:336). Periosteal and endosteal contours were 

reconstructed at specified section locations following the latex cast method as described 

by Stock (2002). Latex casts of the periosteal surface were made using hydrophilic 

polysiloxane dental impression material (Exaflex®, GC America Inc.). Each cast was 

marked on its anterior surface, which was oriented perpendicular to the diaphyseal long 

axis of the bone. The casts were allowed to harden, and then cut from the medial surface. 

The consistent marking and cutting of the casts ensured that they would be oriented in 

correct anatomical position during the digitization process. 

 Endosteal contours were reconstructed from measurements of cortical wall 

thicknesses, which were derived from bi-planar digital radiographs. Section locations 

were marked with metal wire prior to x-raying, and a scaling device was included in each 

shot to correct for magnification4. Bones were placed in the x-ray machine in standard 
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rayed image was divided by z to correct for magnification (Jaundrell-Thompson and Ashworth, 1970).



anatomical position and oriented following Ruff and Hayes (1983) and Ruff (2002). 

Diaphyses were leveled by placing pieces of clay under the shaft so that the antero-

posterior (A-P) midpoints of the proximal and distal ends of the bone were equidistant 

from the image receptor. 

 A Faxitron model 43855 C digital x-ray machine was used at the Natural History 

Museum of Los Angeles County. The source to image distance was 76 cm with a focal 

spot size of 0.5 mm. The tube current was held constant at 3 mA and the voltage ranged 

from 60 to 70 kVp. Exposures times ranged from 4 to 8 min depending on the sample. A 

Thermo Kevex model PXS10-16W digital x-ray machine was used at the MCZ. Source to 

image distance was 74 cm with a focal spot size of 0.008 mm. The tube current ranged 

from 34 to 41 mA and the voltage ranged from 70 to 85 kVp depending on the sample. 

Exposure times varied from 20 to 30 sec. 

 Digitized radiographic images were enhanced in Adobe Photoshop® and 

magnified by 300-400% to measure anterior, posterior, medial and lateral cortical 

thicknesses. Size-adjusted measurements were plotted in correct anatomical position on 

the periosteal tracings, and the points were connected in an ellipse following the 

periosteal contours. The reconstructed cross-sectional images were digitized using a 

Lexmark X 6170 flatbed scanner. Although images were scanned at the same size as the 

original, a scaling device was included to ensure that the size of the images was not 

compromised during digitization. Cross-sectional properties were calculated using a 

Macintosh version of MomentMacro written for ImageJ, which is available courtesy of 

Dr. Christopher Ruff at http://www.hopkinsmedicine.org/FAE/mmacro.htm. 

Cross-sectional properties

 The cross-sectional properties calculated in this study are presented in Table 2. 
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Table 2. Cross-sectional properties.

Symbol Definition Mechanical Significance

TA total subperiosteal area area within subperiosteal surface

CA cortical area axial compressive and tensile strength

%CA percent cortical area percentage of cortical bone in the section

J0.73 estimates the polar section modulus torsional and twice average bending strength

Zx section modulus about the M-L axis bending strength in the A-P plane

Zy section modulus about the A-P axis bending strength in the M-L plane

Zx/Zy diaphyseal shape index ratio of A-P bending strength to M-L bending 
strength

Zmax maximum section modulus maximum bending strength

Zmin minimum section modulus minimum bending strength

Zmax/Zmin diaphyseal shape index ratio of maximum to minimum bending strength

 Cortical area (CA) represents the axial compressive and tensile strengths of the 

section (Ruff et al., 1993; Marchi and Borgognini-Tarli, 2004). Percent cortical area 

(%CA) is an expression of the relative amount of cortical bone in the cross-section and 

can be used as a proxy for bone mass (Ruff and Hayes, 1983; Ruff et al., 1993). %CA is 

calculated as CA/total area (TA) · 100, and does not vary with body size (Ruff et al., 

1993). Cross-sectional areas and %CA quantify the absolute and relative amounts, 

respectively, of bone in a cross-section. CA and TA are reported in mm2. 

 The section modulus represents the bending strength5 of a bone at a measured 

section (Ruff, 2000, 2008). Section moduli are considered the best estimates of average 

bending and torsional strength when mechanical loading conditions are unknown (Ruff, 

2008). Given locomotor behavioral flexibility in Pan and the lack of behavioral data for 

this sample, specific mechanical loading conditions are deemed uncertain. Zx (A-P 
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externally applied force (or mechanical load), while strength is the maximum stress sustained by a structure 
before failure (Reilly and Burstein, 1974). Second moments of area measure rigidity, while section moduli 
measure strength (Ruff, 2008).



bending strength) and Zy (M-L bending strength) measure the maximum stress in the 

outermost fiber of the cross-section in the anatomical plane of bending (Ruff and Hayes, 

1983; Ruff, 1995, 2008b; Marchi, 2008). Zmax (maximum bending strength) is the 

maximum section modulus about the major principal axis, and Zmin (minimum bending 

strength) is the minimum section modulus about the minor principal axis (Ruff, 2000; 

Marchi, 2008). Zmax and Zmin are perpendicular to each other (Ruff and Hayes, 1983; 

Brock and Ruff, 1988). The polar section modulus, Zp, is a measure of twice average 

bending and torsional strength, and can be approximated by taking the polar second 

moment of area to the power of 0.73 (i.e. J0.73) (Ruff, 1995, 2008b; Trinkaus and Ruff, 

1999)6. Section moduli are reported in mm3. 

 Ratios of section moduli (i.e. Zx/Zy and Zmax/Zmin) give an overall indication of 

diaphyseal shape by comparing the relative distribution of CA along anatomical (Zx/Zy) 

and principal (Zmax/Zmin) axes (Jungers and Minns, 1979; Ruff, 1987; Carlson, 2002). 

Bones subjected to bending in a single plane are less circular (i.e. a ratio departing from 

1.0) since bending strength is determined by the relative distribution of bone 

perpendicular to the plane of bending (Ruff and Hayes, 1983; Carlson, 2005). Bones 

predominately subjected to torsion tend to have a more circular cross-sectional shape (i.e. 

a ratio approaching 1.0) since torsional strength is determined by the radial distribution of 

bone about the centroid (Ruff and Hayes, 1983). In addition, diaphyseal circularity is a 

stable solution when multidirectional loads are experienced because it lessens the 

susceptibility to failure in a single plane (Biewener, 2003; Carlson, 2005).

Body size standardization

 To control for the influence of body size on bone structure, cross-sectional areas 

are generally standardized to body mass, and section moduli are generally standardized to 

the product of body mass and maximum bone length (Schaffler et al., 1985; Ruff, 2000). 

The results presented in this chapter include unstandardized cross-sectional data since 
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(Imin) bending rigidities were raised to the power of 0.73 to approximate Zmax and Zmin, respectively.



body mass estimates and maximum bone lengths were not significantly different among 

the groups. 

Statistics

 Differences among group medians are examined with non-parametric Median 

tests with a Monte Carlo resampling method because of the limited sample size. Box-

plots are used here to visually examine the data. The box represents the interquartile 

range, the line across the box represents the sample median and the “whiskers” represent 

the interquartile range. The location of the box between the “whiskers” and the location 

of the median within the box describe how the data are distributed. A box in the middle of 

the “whiskers” suggests an even distribution, a box closer to the upper “whisker” 

indicates that the data are skewed upwards and a box closer to the lower “whisker” 

indicates the opposite. Outliers are marked by open circles and extreme outliers are 

marked by asterisks. Coefficients of variation for each cross-sectional property are 

calculated (coefficient of variation= standard deviation/mean) to examine the variation 

within each group. Coefficients of variation express the standard deviation as a 

percentage of the sample mean. These values are compared to the coefficients of 

variation for the combined group to determine if combining the groups increases the 

amount of variation. 

 Bivariate scatterplots are used to examine axial loading (i.e. CA) relative to 

average bending and torsional strength (i.e. J0.73) in the proximal and midshaft femur, and 

in the mid-distal right and left humerus. CA is expected to be relatively greater than J0.73 

in species that emphasize axial loading rather than bending and torsional loading (Ruff 

and Runestad, 1992). African apes that experience active propulsion in the hindlimbs are 

generally characterized by a decrease in axial loading relative to average bending and 

torsional strength (Ruff and Runestad, 1992). Midshaft femoral strength (J0.73) relative to 

humeral strength (J0.73) is also examined in order to investigate the relative loading in the 

hindlimbs compared to the forelimbs. Cross-sectional properties were log-transformed 
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because of differences in scale. Statistical analyses were carried out with SPSS 17.0. 

Statistical significance is p= 0.05.

RESULTS

 Although sex differences in frequencies of specific locomotor behaviors in Pan 

have been observed in the field (Doran, 1993b, 1996; Doran and Hunt, 1994), combined-

sex analyses were conducted here to increase sample size within each group. A limitation 

to this approach, however, is that sex-differences are ignored and may contribute to group 

differences if an unequal number of males and females is represented in each group. Sex 

differences due to size, however, are probably not significant since there is relatively low 

body size sexual dimorphism in Pan compared to other non-human primates 

(Leutenegger and Kelly, 1977; Mobb and Wood, 1977; Reno et al., 2003). Observable 

pathology was not noted on any of the femora. However, the right humerus of a male P. t. 

troglodytes individual (MCZ 15312) presented with an unusually robust deltoid 

tuberosity and evidence of periosteal reaction in the antero-lateral surface of the upper 

third of the diaphysis. In addition, the diaphysis was slightly twisted longitudinally near 

the midshaft. Since these irregularities may influence the functional use of the right 

forelimb, special attention is paid to this individual in the humeral analysis.

 Proximal femur

 Median cross-sectional properties in the proximal femur are not significantly 

different among the groups (Table 3).
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Table 3. Median test for the proximal femur.

TA CA %CA J0.73 Zx Zy Zx/Zy Zmax Zmin
Zmax/
Zmin

N 19 19 19 19 19 19 19 19 19 19

Median 438.04 273.14 65.28 1630.68 903.94 1098.65 0.81 1111.28 795.10 1.43

Chi-Square 3.98a 3.37a 5.89a 3.98a 3.98a 3.98a 1.36a 3.98a 3.98a 3.98a

df 3 3 3 3 3 3 3 3 3 3

Asymp. Sig. 0.26 0.34 0.12 0.26 0.26 0.26 0.72 0.26 0.26 0.26
Monte Carlo 
Sig. 0.36b 0.59b 0.12b 0.36b 0.36b 0.36b 1.00b 0.36b 0.36b 0.36b

99% 
Conf. 
Interval

Lo.
Bnd. 0.35 0.57 0.11 0.35 0.35 0.35 1.00 0.35 0.35 0.35

Up.
Bnd. 0.37 0.60 0.12 0.37 0.37 0.37 1.00 0.37 0.37 0.37

a. 6 cells (75.0%) have expected frequencies less than 5. The minimum expected cell frequency is .5.
b. Based on 10000 sampled tables with starting seed 2000000.

 Ranges of variation in proximal femoral TA and CA overlap extensively among 

the groups (Fig. 3). Even when the P. t. troglodytes outlier is removed from the analysis, 

median TA values are not significantly different among the groups (p= 0.20). 
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Figure 3. Box-plot of total area (TA) and cortical area (CA) in the proximal femur among the 
groups.

 Ranges of variation in %CA overlap between P. t. troglodytes and P. t. 

schweinfurthii, and between P. t. troglodytes and P. paniscus. %CA in P. t. verus is 

encompassed within the ranges of variation in P. t. troglodytes and P. paniscus (Fig. 4). 

When the two P. t. troglodytes outliers are removed from the analysis, median %CA 

approaches significance (p= 0.06).
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Figure 4. Box-plot of percent cortical area (%CA) in the proximal femur among the groups.

 Ranges of variation in J0.73 overlap among P. t. troglodytes, P. t. schweinfurthii 

and P. paniscus. J0.73 in P. t. verus is encompassed within the ranges of variation in the 

other three groups (Fig. 5). Thus, average bending and torsional strength in the proximal 

femur is similar among the taxa.
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Figure 5. Box-plot of average bending and torsional strength (J0.73) in the proximal femur among 
the groups.

 Ranges of variation in Zx overlap between P. t. troglodytes and P. t. 

schweinfurthii, and between P. t. troglodytes and P. paniscus. The Zx value in P. t. verus 

falls within the lower range of variation in P. t. troglodytes. Ranges of variation in Zy 

overlap among P. t. troglodytes, P. t. schweinfurthii and P. paniscus. The Zy value in P. t. 

verus falls within the ranges of variation in P. t. troglodytes and P. paniscus (Fig. 6). 
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Figure 6. Box-plot of bending strength in the A-P plane (Zx) and bending strength in the M-L 
plane (Zy) in the proximal femur among the groups.

 Ranges of variation in Zx/Zy overlap among P. t. troglodytes, P. t. schweinfurthii 

and P. paniscus. Zx/Zy in P. t. verus is encompassed within the ranges of variation in the 

other two chimpanzee subspecies, but not within the range of variation in P. paniscus 

(Fig. 7). All taxa of Pan generally show a common pattern in greater bending strength in 

the M-L plane relative to the A-P plane in the proximal femur (i.e. Zx/Zy < 1.0), although 

the range of variation in P. t. troglodytes indicates that some individuals show greater 

bending strength in the A-P plane relative to the M-L plane (i.e. Zx/Zy > 1.0).
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Figure 7. Box-plot of diaphyseal shape (Zx/Zy) in the proximal femur among the groups.

 Ranges of variation in Zmax overlap among P. t. troglodytes, P. t. schweinfurthii 

and P. paniscus. The Zmax value in P. t. verus is encompassed within the ranges of 

variation in the other three groups. Ranges of variation in Zmin overlap between P. t. 

troglodytes and P. t. schweinfurthii, and between P. t. troglodytes and P. paniscus. The 

Zmin value in P. t. verus is encompassed within the ranges of variation in P. t. troglodytes 

and P. t. schweinfurthii (Fig. 8). When the P. t. troglodytes outlier is removed from the 

analysis, median Zmin is still not significantly different among the groups (p= 0.46).
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Figure 8. Box-plot of maximum bending strength (Zmax) and minimum bending strength (Zmin) in 
the proximal femur among the groups. 

 Ranges of variation in Zmax/Zmin overlap between P. t. troglodytes and P. t. 

schweinfurthii, and between P. t. troglodytes and P. paniscus. Zmax/Zmin  in P. t. verus is 

encompassed within the range of variation in P. t. troglodytes, just below the range of 

variation in P. t. schweinfurthii and just above the range of variation in P. paniscus (Fig. 

9). 
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Figure 9. Box-plot of diaphyseal shape (Zmax/Zmin) in the proximal femur among the groups.

 Coefficients of variation for P. t. troglodytes, P. t. schweinfurthii, P. paniscus and 

the combined sample are presented in Table 4. Coefficients of variation for P. t. verus are 

not calculated since n= 1. There is more variation in P. t. troglodytes than in P. t. 

schweinfurthii and P. paniscus in TA, %CA, Zx and Zmin. There is more variation in P. t. 

schweinfurthii than in P. t. troglodytes and P. paniscus in Zx/Zy. There is more variation in 

P. paniscus than in the chimpanzee subspecies in CA, J0.73, Zy, Zmax and Zmax/Zmin. When 

the samples are combined, coefficients of variation either match or are lower than the 

coefficients of variation in the largest group, P. t. troglodytes. Coefficients of variation in 

Zy and Zmax are slightly greater (1%) in the combined sample than in P. t. troglodytes. 

These results indicate that combining the samples does not significantly increase the 

variability expressed within P. t. troglodytes. These results also suggest that sex 
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differences in proximal femoral cross-sectional properties in P. t. schweinfurthii, which is 

represented by one male and one female, are low. The exception is with regard to 

diaphyseal shape (Zx/Zy), which has a much larger coefficient of variation than any other 

property in P. t. schweinfurthii. Coefficients of variation in P. paniscus are high, which 

may reflect sex differences since two males and one female are sampled.

Table 4. Coefficients of variation in the proximal femur.

Coefficients of Variation

P. t. troglodytes P. t. schweinfurthii P. paniscus Combineda

TA 0.15 0.04 0.11 0.15

CA 0.11 0.02 0.14 0.11

%CA 0.15 0.02 0.04 0.14

J0.73 0.16 0.06 0.18 0.16

Zx 0.18 0.07 0.12 0.18

Zy 0.14 0.09 0.22 0.15

Zx/Zy 0.13 0.16 0.09 0.13

Zmax 0.16 0.05 0.24 0.17

Zmin 0.21 0.07 0.10 0.19

Zmax/Zmin 0.13 0.02 0.14 0.13
a. Includes P. t. verus.

 Summary. Median proximal femoral cross-sectional properties are not 

significantly different among the groups. Ranges of variation in proximal femoral cross-

sectional properties generally overlap among P. t. troglodytes, P. t. schweinfurthii and P. 

paniscus. Although P. t. verus is only represented by a single individual, cross-sectional 

properties are consistently encompassed within the ranges of variation in P. t. troglodytes, 

and often within the ranges of variation in the other two groups as well. Coefficients of 
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variation generally decrease when the groups are combined compared to the coefficients 

of variation in the largest group (i.e. P. t. troglodytes). This suggests that combining the 

samples does not increase the variability. The results generally indicate that cross-

sectional properties in the proximal femur among these specific samples of Pan are not 

markedly distinct. 

Midshaft femur

 Median cross-sectional properties are not significantly different among the groups 

except with regard to %CA (Table 5).

Table 5. Median test for the midshaft femur.

TA CA %CA J0.73 Zx Zy Zx/Zy Zmax Zmin
Zmax/
Zmin

N 19 19 19 19 19 19 19 19 19 19

Median 428.93 272.87 64.22 1612.85 959.47 1040.20 0.86 1062.82 881.16 1.25

Chi-Square 3.98a 1.36a 7.89a 3.98a 3.98a 3.98a 1.36a 3.98a 3.98a 1.98a

df 3 3 3 3 3 3 3 3 3 3

Asymp. Sig. 0.26 0.72 0.05 0.26 0.26 0.26 0.72 0.26 0.26 0.58
Monte Carlo 
Sig. 0.36b 1.00b 0.02b 0.36b 0.36b 0.36b 1.00b 0.36b 0.36b 0.66b

99% 
Conf. 
Interval

Lo.
Bnd. 0.35 1.00 0.02 0.35 0.35 0.35 1.00 0.35 0.35 0.65

Up.
Bnd. 0.37 1.00 0.02 0.37 0.37 0.37 1.00 0.37 0.37 0.68

a. 6 cells (75.0%) have expected frequencies less than 5. The minimum expected cell frequency is .5.
b. Based on 10000 sampled tables with starting seed 2000000.
Significance is indicated in bold.
 

 Ranges of variation in TA and CA overlap among P. t. troglodytes, P. t. 

schweinfurthii and P. paniscus. TA in P. t. verus falls within the ranges of variation in the 

other groups, and CA in P. t. verus falls just within the lower range of variation in P. t. 

troglodytes (Fig. 10).
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Figure 10. Box-plot of total area (TA) and cortical area (CA) in the midshaft femur among the 
groups. 

 Ranges of variation in %CA overlap among P. t. troglodytes, P. t. schweinfurthii 

and P. paniscus. %CA in P. t. verus is encompassed within the lower range of variation in 

P. t. troglodytes (Fig. 11). The Median test indicates that %CA is significantly different 

among the groups. Significance remains even when the P. t. troglodytes outliers are 

removed from the analysis (p= 0.02).
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Figure 11. Box-plot of percent cortical area (%CA) in the midshaft femur among the groups. 

 Ranges of variation in J0.73 overlap among P. t. troglodytes, P. t. schweinfurthii 

and P. paniscus. J0.73 in P. t. verus is encompassed within the lower ranges of variation in 

P. t. troglodytes and P. paniscus (Fig. 12). 
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Figure 12. Box-plot of average bending and torsional strength (J0.73) in the midshaft femur among 
the groups.

 Ranges of variation in Zx and Zy overlap among P. t. troglodytes, P. t. 

schweinfurthii and P. paniscus. Zx in P. t. verus is encompassed within the lower range of 

variation in P. t. troglodytes, and Zy is encompassed within the ranges of variation in P. t. 

troglodytes and P. paniscus (Fig. 13). 
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Figure 13. Box-plot of bending strength in the A-P plane (Zx) and bending strength in the M-L 
plane (Zy) in the midshaft femur among the groups.

 Diaphyseal shape based on anatomical axes (i.e. Zx/Zy) is similar among the 

groups. Ranges of variation overlap among P. t. troglodytes, P. t. schweinfurthii and P. 

paniscus, and the Zx/Zy value in P. t. verus is encompassed within the ranges of variation 

in the other groups (Fig. 14). All taxa of Pan generally show an increase in bending 

strength in the M-L plane relative to bending strength in the A-P plane (i.e. Zx/Zy < 1.0).
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Figure 14. Box-plot of diaphyseal shape (Zx/Zy) in the midshaft femur among the groups.

 Ranges of variation in Zmax and Zmin overlap among P. t. troglodytes, P. t. 

schweinfurthii and P. paniscus. Zmax and Zmin in P. t. verus are encompassed within the 

lower ranges of variation in P. t. troglodytes and P. paniscus (Fig. 15).
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Figure 15. Box-plot of maximum bending strength (Zmax) and minimum bending strength (Zmin) 
in the midshaft femur among the groups. 

 Ranges of variation in Zmax/Zmin overlap among P. t. troglodytes, P. t. 

schweinfurthii and P. paniscus. Zmax/Zmin in P. t. verus is encompassed within the ranges 

of variation in the other three taxa (Fig. 16). The Median test indicates that median Zmax/

Zmin is not significantly different among the groups. Median Zmax/Zmin is still not 

significantly different among the groups when the P. t. troglodytes outlier is removed 

from the analysis (p= 0.77).
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Figure 16. Box-plot of diaphyseal shape (Zmax/Zmin) in the midshaft femur among the groups.

 Coefficients of variation for P. t. troglodytes, P. t. schweinfurthii, P. paniscus and 

the combined sample are presented in Table 6. Coefficients of variation for P. t. verus are 

not calculated since n= 1. There is more variation in P. t. troglodytes than in P. t. 

schweinfurthii and P. paniscus in TA, %CA, Zx, Zmin and Zmax/Zmin, and there is more 

variation in P. paniscus than in P. t. troglodytes and P. t. schweinfurthii in CA, J0.73, Zy, 

Zx/Zy and Zmax. When the samples are combined, most coefficients of variation either 

match or are lower than the coefficients of variation in the largest group, P. t. troglodytes. 

Coefficients of variation in Zy and Zx/Zy in the combined sample are slightly greater (1%) 

than coefficients of variation in P. t. troglodytes. These results indicate that combining the 

samples does not significantly increase the variability in P. t. troglodytes. Coefficients of 

variation in all cross-sectional properties in P. t. schweinfurthii are lower than in P. t. 
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troglodytes and P. paniscus. Since P. t. schweinfurthii is represented by one male and one 

female, the results suggest that sex differences are low. Sex differences appear to be high 

in P. paniscus, which is represented by two males and one female, except with regard to 

%CA and Zmax/Zmin.

Table 6. Coefficients of variation in the midshaft femur.

Coefficients of Variation

P. t. troglodytes P. t. schweinfurthii P. paniscus Combineda

TA 0.15 0.05 0.13 0.15

CA 0.12 0.02 0.14 0.12

%CA 0.14 0.04 0.04 0.13

J0.73 0.18 0.06 0.19 0.18

Zx 0.19 0.10 0.13 0.18

Zy 0.19 0.02 0.25 0.20

Zx/Zy 0.07 0.08 0.11 0.08

Zmax 0.19 0.03 0.20 0.19

Zmin 0.19 0.10 0.18 0.18

Zmax/Zmin 0.10 0.06 0.03 0.08
a. Includes P. t. verus.

 Summary. Median midshaft femoral cross-sectional properties are not 

significantly different among the groups except with regard to %CA. Significant 

differences in %CA among the groups remain even when the P. t. troglodytes outliers are 

removed from the analysis. Ranges of variation in midshaft femoral cross-sectional 

properties overlap among P. t. troglodytes, P. t. schweinfurthii and P. paniscus. Cross-

sectional properties in P. t. verus are consistently encompassed within the ranges of 

variation in P. t. troglodytes, and often encompassed within the ranges of variation in P. t. 
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schweinfurthii and P. paniscus as well. Coefficients of variation do not increase when the 

groups are combined, which suggests that variation is not introduced. The general 

overlapping ranges of variation in midshaft femoral cross-sectional properties among the 

taxa, and the low coefficients of variation when the groups are combined suggest that 

mechanical loading in the femoral midshaft of the Pan samples in this study are similar.

Humerus 

 Median cross-sectional properties in the right humerus are not significantly 

different among the groups except with regard to %CA (Table 7). 

Table 7. Median test for the right humerus.

TA CA %CA J0.73 Zx Zy Zx/Zy Zmax Zmin
Zmax/
Zmin

N 20 20 20 20 20 20 20 20 20 20

Median 358.81 218.69 63.85 1248.39 740.57 800.11 0.96 806.91 691.15 1.14

Chi-Square 5.14a 1.62a 7.14a 5.14a 1.62a 1.62a 3.62a 5.14a 1.62a 6.00a

df 3 3 3 3 3 3 3 3 3 3

Asymp. Sig. 0.16 0.66 0.07 0.16 0.66 0.66 0.31 0.16 0.66 0.11
Monte Carlo 
Sig. 0.14b 0.78b 0.04b 0.14b 0.78b 0.78b 0.47b 0.14b 0.78b 0.10b

99% 
Conf. 
Interval

Lo.
Bnd. 0.13 0.77 0.03 0.13 0.77 0.77 0.46 0.13 0.77 0.09

Up.
Bnd. 0.15 0.79 0.04 0.15 0.79 0.79 0.48 0.15 0.79 0.11

a. 6 cells (75.0%) have expected frequencies less than 5. The minimum expected cell frequency is .5.
b. Based on 10000 sampled tables with starting seed 2000000.
Significance is indicated in bold.

 Median cross-sectional properties in the left humerus are not significantly 

different among the groups except with regard to %CA (Table 8).
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Table 8. Median test for the left humerus.

TA CA %CA J0.73 Zx Zy Zx/Zy Zmax Zmin
Zmax/
Zmin

N 17 17 17 17 17 17 17 17 17 17

Median 347.02 228.16 62.02 1218.45 763.47 760.48 0.96 814.58 666.42 1.21

Chi-Square 2.95a 0.94a 6.30a 3.29a 0.94a 3.29a 4.99a 2.95a 3.29a 5.29a

df 3 3 3 3 3 3 3 3 3 3

Asymp. Sig. 0.40 0.82 0.10 0.35 0.82 0.35 0.18 0.40 0.35 0.15
Monte Carlo 
Sig. 0.72b 1.00b 0.05b 0.57b 1.00b 0.57b 0.23b 0.72b 0.57b 0.15b

99% 
Conf. 
Interval

Lo.
Bnd. 0.71 1.00 0.05 0.56 1.00 0.56 0.22 0.71 0.56 0.14

Up.
Bnd. 0.73 1.00 0.06 0.59 1.00 0.59 0.24 0.73 0.59 0.16

a. 6 cells (75.0%) have expected frequencies less than 5. The minimum expected cell frequency is .5.
b. Based on 10000 sampled tables with starting seed 2000000.
Significance is indicated in bold.

 Ranges of variation in TA in the right and left humerus overlap among P. t. 

troglodytes, P. t. schweinfurthii and P. paniscus. TA in the right and left humerus of P. t. 

verus is encompassed within the ranges of variation in the other chimpanzee taxa. Ranges 

of variation in CA in the right and left humerus overlap among P. t. troglodytes, P. t. 

schweinfurthii and P. paniscus. CA in the right humerus of P. t. verus is encompassed 

within the range of variation in P. t. troglodytes and in the lower range of variation in P. t. 

schweinfurthii. CA in the left humerus is encompassed within the ranges of variation in 

the other three taxa (Fig. 17). The Median test indicates that TA in the left humerus is not 

significantly different among the groups. Median TA is still not significantly different 

among the groups when the P. t. troglodytes outlier is removed from the analysis (p= 

0.71).
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Figure 17. Box-plot of total area (TA) and cortical area (CA) in the right (rt) and left (lt) humerus 
among the groups. 

 Ranges of variation in %CA in the right and left humerus overlap between P. t. 

troglodytes and P. t. schweinfurthii, and between P. t. troglodytes and P. paniscus. %CA 

in the right and left humerus of P. t. verus is encompassed with the range of variation in P. 

t. troglodytes (Fig. 18). 
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Figure 18. Box-plot of percent cortical area (%CA) in the right (rt) and left (lt) humerus among 
the groups.

 Ranges of variation in J0.73 in the right and left humerus overlap among P. t. 

troglodytes,  P. t. schweinfurthii and P. paniscus. J0.73 in the right humerus of P. t. verus is 

encompassed within the ranges of variation in the other three taxa, and in the left 

humerus it is encompassed within the ranges of variation in P. t. troglodytes and P. t. 

schweinfurthii (Fig. 19). The Median tests indicated that J0.73 in the left humerus is not 

significantly different among the groups. J0.73 is still not significantly different among the 

groups when the P. t. troglodytes outliers are removed from the analysis (p= 0.55). 
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Figure 19. Box-plot of average bending and torsional strength (J0.73) in the right (rt) and left (lt) 
humerus among the groups. 

 Ranges of variation in Zx and Zy in the right and left humerus overlap among P. t. 

troglodytes, P. t. schweinfurthii and P. paniscus. Zx in the right humerus of P. t. verus falls 

within the lower ranges of variation in the other three groups, and Zy falls within the 

ranges of variation in the other three groups. Zx in the left humerus of P. t. verus falls 

within the ranges of variation in the other three groups, and Zy falls within the ranges of 

variation in the other chimpanzee taxa (Fig. 20). The Median tests indicated that Zx and 

Zy in the left humerus are not significantly different among the groups. Median Zx (p= 

1.00), and median Zy (p= 0.56) are still not significantly different among the groups when 

the P. t. troglodytes outliers are removed from the analysis.
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Figure 20. Box-plot of bending strength in the A-P plane (Zx) and bending strength in the M-L 
plane (Zy) in the right (rt) and left (lt) humerus among the groups. 

 Ranges of variation in Zx/Zy in the right humerus overlap between P. t. troglodytes 

and P. t. schweinfurthii, and between P. t. troglodytes and P. paniscus. The Zx/Zy value in 

the right humerus of P. t. verus is not encompassed within the ranges of variation in any 

of the other groups. Ranges of variation in Zx/Zy in the left humerus only overlap between 

P. t. troglodytes and P. paniscus. The range of variation in Zx/Zy in P. t. schweinfurthii 

falls below the ranges of variation in P. t. troglodytes and P. paniscus. The Zx/Zy value in 

P. t. verus falls near the range of variation in P. t. schweinfurthii (Fig. 21). Group 

differences in median Zx/Zy remain insignificant when the P. t. troglodytes outlier is 

removed from the analysis (p= 0.22). P. t. schweinfurthii and P. t. verus tend to show 
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significantly greater M-L bending strength relative to A-P bending strength in the right 

and left humerus (i.e. Zx/Zy < 1.0) compared to P. t. troglodytes and P. paniscus.

Figure 21. Box-plot of diaphyseal shape (Zx/Zy) in the right (rt) and left (lt) humerus among the 
groups.

 Ranges of variation in Zmax in the right and left humerus overlap between P. t. 

troglodytes and P. t. schweinfurthii. The range of variation in Zmax in the right and left 

humerus of P. paniscus falls within the lower ranges of variation in P. t. troglodytes and P. 

t. schweinfurthii. Zmax in the right and left humerus of P. t. verus is encompassed within 

the ranges of variation in the other chimpanzee taxa. Ranges of variation in Zmin in the 

right and left humerus overlap among P. t. troglodytes, P. t. schweinfurthii and P. 
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paniscus. Zmin in the right and left humerus of P. t. verus is encompassed within the 

ranges of variation in the other three groups (Fig. 22). The Median test indicates that Zmax 

is not significantly different among the groups. Median Zmax is still not significantly 

different among the groups when the P. t. troglodytes outliers are removed from the 

analysis (p= 0.72).

Figure 22. Box-plot of maximum bending strength (Zmax) and minimum bending strength (Zmin) 
in the right (rt) and left (lt) humerus among the groups. 
 

 Ranges of variation in Zmax/Zmin in the right and left humerus overlap between P. t. 

troglodytes and P. t. schweinfurthii, and between P. t. troglodytes and P. paniscus. Zmax/

Zmin in the right humerus of P. t. verus is encompassed within the ranges of variation in 
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the other two chimpanzee taxa. Zmax/Zmin in the left humerus is only encompassed within 

the range of variation in P. t. troglodytes, and falls just below the range of variation in P. 

t. schweinfurthii (Fig. 23). 

Figure 23. Box-plot of diaphyseal shape (Zmax/Zmin) in the right (rt) and left (lt) humerus among 
the groups.

 Right humeral coefficients of variation for P. t. troglodytes, P. t. schweinfurthii, P. 

paniscus and the combined sample are presented in Table 9. Coefficients of variation for 

P. t. verus are not calculated since n= 1. There is more variation in P. t. schweinfurthii 

than in P. t. troglodytes and P. paniscus for most cross-sectional properties. There is more 

variation in P. t. troglodytes than in P. t. schweinfurthii and P. paniscus in %CA, Zx/Zy 
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and Zmax/Zmin. When the samples are combined, coefficients of variation increase in TA, 

J0.73, Zx, Zy, Zx/Zy, Zmax and Zmin compared to the coefficients of variation in the largest 

group, P. t. troglodytes. However, the increases are very moderate (1-2%). The 

coefficients of variation in CA and %CA in the combined sample decrease by 1-2% 

compared to the coefficients of variation in P. t. troglodytes. The coefficient of variation 

in Zmax/Zmin in the combined sample is the same as in P. t. troglodytes. These results 

indicate that combining the samples introduces some variability, particularly in TA, J0.73, 

Zx, Zy, Zx/Zy, Zmax and Zmin, but the small increase (1-2%) is likely negligible. In general, 

the results indicate that combining the samples does not increase the variability. 

Table 9. Coefficients of variation in the right humerus.

Coefficients of Variation

P. t. troglodytes P. t. schweinfurthii P. paniscus Combineda

TA 0.12 0.17 0.14 0.14

CA 0.17 0.18 0.09 0.16

%CA 0.19 0.01 0.05 0.17

J0.73 0.16 0.24 0.19 0.17

Zx 0.21 0.28 0.22 0.22

Zy 0.17 0.26 0.20 0.18

Zx/Zy 0.08 0.02 0.03 0.09

Zmax 0.15 0.21 0.18 0.17

Zmin 0.19 0.28 0.19 0.20

Zmax/Zmin 0.11 0.08 0.03 0.11
a. Includes P. t. verus.

 Left humeral coefficients of variation for P. t. troglodytes, P. t. schweinfurthii, P. 

paniscus and the combined sample are presented in Table 10. Coefficients of variation for 
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P. t. verus are not calculated since n= 1. There is more variation in P. t. schweinfurthii 

than in P. t. troglodytes and P. paniscus for most cross-sectional properties. There is more 

variation in P. t. troglodytes than in P. t. schweinfurthii and P. paniscus in %CA, Zx/Zy 

and Zmax/Zmin. When the samples are combined, coefficients of variation either match or 

are lower than the coefficients of variation in the largest group, P. t. troglodytes. These 

results indicate that combining the samples does not increase the variability. 

Table 10. Coefficients of variation in the left humerus.

Coefficients of Variation

P. t. troglodytes P. t. schweinfurthii P. paniscus Combineda

TA 0.15 0.18 0.12 0.15

CA 0.14 0.17 0.16 0.13

%CA 0.15 0.01 0.04 0.14

J0.73 0.18 0.24 0.18 0.18

Zx 0.20 0.28 0.21 0.19

Zy 0.20 0.28 0.19 0.20

Zx/Zy 0.10 0.00 0.02 0.10

Zmax 0.19 0.22 0.18 0.19

Zmin 0.18 0.28 0.18 0.18

Zmax/Zmin 0.07 0.06 0.00 0.07
a. Includes P. t. verus.
 

 Summary. As previous mentioned, the right humerus of MCZ 15312 has an 

unusually robust deltoid tuberosity, periosteal reaction in the antero-lateral surface of the 

upper third of the diaphysis and a longitudinally twisted diaphysis near the midshaft7. 

This individual, however, never presented as an outlier in the analyses. 
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 Median %CA in the right and left humerus represents the only humeral cross-

sectional property to be significantly different among the groups. Ranges of variation in 

most right and left humeral cross-sectional properties generally overlap among the 

groups. Diaphyseal shape along the anatomical axes (i.e. Zx/Zy) is the most distinguishing 

cross-sectional property among the taxa. Zx/Zy in the right humerus of P. t. verus is not 

encompassed within the ranges of variation in the other three groups. The very low Zx/Zy 

value in the right humerus of P. t. verus indicates extreme M-L buttressing compared to 

the other groups. The Zx/Zy  values in the left humerus of P. t. schweinfurthii and P. t. 

verus are significantly lower than in P. t. troglodytes and P. paniscus. Moderate increases 

or decreases in the coefficients of variation when the samples are combined suggest that 

combining the samples does not increase the variability compared to the variation in the 

largest group, P. t. troglodytes.

 Sex differences in humeral cross-sectional properties in P. t. schweinfurthii, as 

represented by one male and one female in the comparative sample set, are greater than 

sex differences in femoral cross-sectional properties. Coefficients of variation in right and 

left humeral %CA and diaphyseal shape (Zx/Zy and Zmax/Zmin), however, are low in P. t. 

schweinfurthii. Sex differences in the right humerus of P. paniscus, which is represented 

by two males and one female, are lower than in P. t. schweinfurthii. Coefficients of 

variation in the left humerus of P. paniscus, which is represented by two males, are 

generally lower or match the coefficients of variation in the right humerus. This suggests 

that sex differences in humeral cross-sectional properties in P. paniscus are low.

Mechanical loading patterns

 A bivariate scatterplot of CA versus J0.73 in the proximal femur suggests little 

difference in loading preference among this sample of Pan largely because of the 

variation in P. t. troglodytes (Fig. 24). 
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Figure 24. Bivariate scatterplot of log-transformed cortical area (CA) on log-transformed average 
bending and torsional strength (J0.73) in the proximal femur. P. t. troglodytes is represented by 
closed circles, P. t. schweinfurthii is represented by open circles, P. t. verus is represented by a 
closed square and P. paniscus is represented by open squares. The fit line with 95% confidence 
intervals around the mean is plotted for the total sample. R2= 0.31.

 A bivariate scatterplot of CA versus J0.73 in the midshaft femur suggests little 

difference in loading preference among this sample of Pan largely because of the amount 

of variation in P. t. troglodytes (Fig. 25). A comparison of CA relative to J0.73 in the 

proximal and midshaft femur of P. paniscus indicates that the two male bonobos show 

preferential axial loading relative to average bending and torsional loading compared to 

the single bonobo female. The P. t. schweinfurthii sexes do not show preferential loading 

differences between each other. Given the small sample size, it is unclear if these 

differences reflect real sex differences or the lack of sex differences in hindlimb loading 

in P. paniscus and P. t. schweinfurthii, respectively. Axial loading is greater relative to 
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average bending and torsional loading in the proximal femur of the P. t. verus individual, 

but this pattern is reversed in the femoral midshaft. 

Figure 25. Bivariate scatterplot of log-transformed cortical area (CA) on log-transformed average 
bending and torsional strength (J0.73) in the midshaft femur. P. t. troglodytes is represented by 
closed circles, P. t. schweinfurthii is represented by open circles, P. t. verus is represented by a 
closed square and P. paniscus is represented by open squares. The fit line with 95% confidence 
intervals around the mean is plotted for the total sample. R2= 0.45.

 Axial loading is elevated relative to average bending and torsional loading in the 

right humerus of P. paniscus compared to chimpanzee subspecies, but this pattern is not 

exclusive to bonobos since some P. t. troglodytes individuals also present with this 
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loading pattern (Fig. 26). Variation in P. t. troglodytes subsumes group differences. Sex 

differences in P. paniscus and in P. t. schweinfurthii are not apparent.

Figure 26. Bivariate scatterplot of log-transformed cortical area (CA) on log-transformed average 
bending and torsional strength (J0.73) in the right humerus. P. t. troglodytes is represented by 
closed circles, P. t. schweinfurthii is represented by open circles, P. t. verus is represented by a 
closed square and P. paniscus is represented by open squares. The fit line with 95% confidence 
intervals around the mean is plotted for the total sample. R2= 0.43.

 Differences among the groups in axial loading relative to average bending and 

torsional loading in the left humerus are not evident (Fig. 27). The P. t. schweinfurthii 

sexes do not show markedly different loading patterns.
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Figure 27. Bivariate scatterplot of log-transformed cortical area (CA) on log-transformed average 
bending and torsional strength (J0.73) in the left humerus. P. t. troglodytes is represented by closed 
circles, P. t. schweinfurthii is represented by open circles, P. t. verus is represented by a closed 
square and P. paniscus is represented by open squares. The fit line with 95% confidence intervals 
around the mean is plotted for the total sample. R2= 0.49.

 The highest bending stresses in the femur occur at the midshaft (Demes et al., 

1991). Therefore, J0.73 in the femoral midshaft was examined relative to J0.73 in the 

humerus to investigate inter-limb differences in strength. Group differences in femoral 

strength versus right humeral strength (Fig. 28) and femoral strength versus left humeral 

strength (Fig. 29) are not evident largely because of the amount of variation in P. t. 

troglodytes. Although femoral strength is relatively greater than humeral strength in P. 

paniscus compared to P. troglodytes ssp., this pattern is not exclusive to bonobos since 

some P. t. troglodytes individuals also show this pattern.
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Figure 28. Bivariate scatterplot of log-transformed average bending and torsional strength (J0.73) 
in the midshaft femur on log-transformed average bending and torsional strength (J0.73) in the 
right humerus. P. t. troglodytes is represented by closed circles, P. t. schweinfurthii is represented 
by open circles, P. t. verus is represented by a closed square and P. paniscus is represented by 
open squares. The fit line with 95% confidence intervals around the mean is plotted for the total 
sample. R2= 0.65.
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Figure 29. Bivariate scatterplot of log-transformed average bending and torsional strength (J0.73) 
in the midshaft femur on log-transformed average bending and torsional strength (J0.73) in the left 
humerus. P. t. troglodytes is represented by closed circles, P. t. schweinfurthii is represented by 
open circles, P. t. verus is represented by a closed square and P. paniscus is represented by open 
squares. The fit line with 95% confidence intervals around the mean is plotted for the total 
sample. R2= 0.56.

 Bivariate scatterplots of axial loading relative to average bending and torsional 

loading in the proximal and midshaft femur, and in the right and left humerus, and 

bivariate scatterplots of inter-limb strength suggest little mechanical loading differences 

among these taxa of Pan. 
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DISCUSSION

 Since mechanical loading in the proximal femur is influenced by hip morphology 

(e.g. Lovejoy, 1988; Ruff, 1995), chimpanzees and bonobos may differ in cross-sectional 

properties at the 80% section because of phylogenetic differences related to the pelvis 

rather than strictly behavioral differences reflective of locomotion. It has been argued that 

the pelvis of P. paniscus is smaller and more primitive than that of chimpanzees, with a 

shorter ilium, a shorter pubis and a narrower pelvic girdle than any of the chimpanzee 

subspecies (Coolidge, 1933; Zihlman and Cramer, 1978; Jungers and Susman, 1984). 

Despite the reported morphological differences in the pelvis between chimpanzees and 

bonobos, overall similarities in proximal femoral cross-sectional properties among these 

taxa of Pan suggest that morphological differences around the hip joint may be 

insufficient to affect loading in the proximal femur.

 There is a wide range of variation in all cross-sectional properties in P. t. 

troglodytes in the proximal and midshaft sections. This variation may reflect sex 

differences since the sample consists of seven males and six females. Ranges of variation 

in proximal femoral TA, CA, J0.73, Zy, Zx/Zy, Zmax and Zmin all overlap among P. t. 

troglodytes, P. t. schweinfurthii and P. paniscus. Ranges of variation in %CA, Zx and Zmax/

Zmin do not overlap between P. t. schweinfurthii and P. paniscus, but their ranges of 

variation are encompassed within the respective ranges of variation in P. t. troglodytes. 

Although P. t. verus is only represented by one individual, all cross-sectional properties 

fall within the range of variation in at least one of the other taxa. Coefficients of variation 

in proximal femoral cross-sectional properties are generally lowest in P. t. schweinfurthii, 

which is represented by one male and one female. When the samples are combined, 

coefficients of variation either match or are lower than the coefficients of variation in the 

largest group, P. t. troglodytes. Coefficients of variation in Zy and Zmax are slightly greater 

in the combined sample than in P. t. troglodytes. These results indicate that combining the 

taxa does not increase the degree of variability, and therefore, the species-specific 

samples can be treated as a single sample set.
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 In the midshaft femur, median %CA is significantly different among the groups. 

Significance remains even when the P. t. troglodytes outliers are removed from the 

analysis. Ranges of variation in all cross-sectional properties overlap among P. t. 

troglodytes, P. t. schweinfurthii and P. paniscus. Values in P. t. verus are encompassed 

with the ranges of variation in P. t. troglodytes and often within the ranges of variation in 

all three other taxa. Coefficients of variation in midshaft femoral cross-sectional 

properties are generally lowest in P. t. schweinfurthii. When the samples are combined, 

coefficients of variation either match or are lower than the coefficients of variation in the 

largest group, P. t. troglodytes. Coefficients of variation in Zy and Zx/Zy in the combined 

sample are slightly greater than coefficients of variation in P. t. troglodytes. These results 

indicate that combining the taxa does not increase the variability. 

 M-L bending strength (Zy) in the femur is relatively greater than A-P bending 

strength (Zx) in the proximal and midshaft sections across Pan taxa. This trend was 

previously noted in Pan femora, but its significance is unclear (Carlson, 2002; Carlson et 

al., 2008). Non-human primates that habitually engage in turning behaviors are often 

exposed to increased M-L forces on their limb bones (Demes et al., 2006; Carlson and 

Judex, 2007). Carlson et al. (2008) found an increase in M-L bending strength in P. t. 

verus from Taï relative to P. t. schweinfurthii from Gombe and Mahale. The dense, closed 

forest environment at Taï potentially offers more obstacles than in the more open 

environments at Gombe and Mahale, which may result in a higher frequency of turning 

behavior among Taï chimpanzees compared to Gombe and Mahale chimpanzees (Carlson 

et al., 2008). 

 The humerus was included in this study to examine if there were species-specific 

and/or subspecies-specific differences in humeral loading within this Pan sample. Median 

cross-sectional properties in the right humerus are not significantly different among the 

groups except with regard to %CA. Median cross-sectional properties in the left humerus 

are not significantly different among the groups. Ranges of variation in right and left 

humeral TA, CA, J0.73, Zx, Zy, Zmax and Zmin all overlap among P. t. troglodytes, P. t. 

schweinfurthii and P. paniscus. Ranges of variation in right and left %CA and Zmax/Zmin 
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and right Zx/Zy overlap between P. t. troglodytes and P. t. schweinfurthii, and between P. 

t. troglodytes and P. paniscus. Ranges of variation in left Zx/Zy only overlap between P. t. 

troglodytes and P. paniscus. Cross-sectional properties in P. t. verus are often 

encompassed within the ranges of variation in P. t. troglodytes, and often within the 

ranges of variation in all three other taxa. The exception is with regard to diaphyseal 

shape assessed along the anatomical axes. Zx/Zy in the right humerus of P. t. verus is not 

encompassed within the range of variation in any other group. Zx/Zy in the left humerus 

falls just above the range of variation in P. t. schweinfurthii and well below the ranges of 

variation in P. t. troglodytes and P. paniscus. 

 Coefficients of variation in right and left humeral cross-sectional properties are 

generally highest in P. t. schweinfurthii compared to P. t. troglodytes and P. paniscus. The 

opposite pattern was found in the proximal and midshaft femur (i.e. coefficients of 

variation were lowest in P. t. schweinfurthii compared to P. t. troglodytes and P. 

paniscus). Since P. t. schweinfurthii is represented by one male and one female, these 

results may indicate that sex differences in mechanical loading are more pronounced in 

the forelimbs rather than the hindlimbs in this subspecies. 

 In the right humerus, when the samples are combined coefficients of variation 

increase in TA, J0.73, Zx, Zy, Zx/Zy, Zmax and Zmin compared to the coefficients of variation 

in the largest group, P. t. troglodytes. However, the increases are very moderate (1-2%). 

The coefficients of variation in CA and %CA in the combined sample decrease by 1-2% 

compared to the coefficients of variation in P. t. troglodytes. The coefficient of variation 

in Zmax/Zmin in the combined sample is the same as in P. t. troglodytes. These results 

indicate that combining the samples introduces some variability, particularly in TA, J0.73, 

Zx, Zy, Zx/Zy, Zmax and Zmin, but the small increase (1-2%) is negligible. In the left 

humerus, when the samples are combined coefficients of variation either match or are 

lower than the coefficients of variation in the largest group, P. t. troglodytes.

 Carlson et al. (2008) found that chimpanzees generally show greater M-L bending 

strength relative to A-P bending strength in the humeral diaphysis, albeit this pattern is 

not consistent among chimpanzees. In the current study, chimpanzee subspecies show 
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greater M-L bending strength relative to A-P bending strength in the right and left 

humerus, but P. paniscus shows slightly greater A-P bending strength relative to M-L 

bending strength in the humerus. The results from this study support the findings by 

Carlson et al. (2008) that chimpanzee humeri are buttressed in the M-L plane relative to 

the A-P plane, but this pattern may not characterize Pan humeri in general since bonobos 

showed the opposite pattern. 

 Sarringhaus et al. (2005) examined bilateral asymmetry in the humeral midshaft 

of wild-shot adult P. troglodytes. TA was used as a proxy for bone strength. Directional 

asymmetry in humeral TA was found where values on left-sided humeri were 

significantly greater than values on right-sided humeri. The greater mechanical loading 

on the left forelimb among chimpanzees is contrary to behavioral studies which suggest 

right-sided bias or unlateralized hand preference in captivity and in nature, respectively 

(e.g. McGrew and Marchant, 2001; Humle and Matsuzawa, 2009). Sarringhaus et al. 

(2005) hypothesized that left forelimb dominance may result from supporting a larger 

portion of body weight with the left forelimb while leaving the right forelimb to 

manipulate objects. Based on a visual examination of the data presented in the box-plot, 

Pan taxa in the current study do not show remarkable directional asymmetry in humeral 

TA, which alludes to unlateralized forelimb use in accordance with behavioral 

observations of many wild and semi-free-ranging Pan communities (Marchant and 

McGrew, 1996, 2005: McGrew and Marchant, 2001). The discordance between 

Sarringhaus et al. (2005) and the current study may reflect sample bias or variation in 

directional asymmetry in forelimb strength among different Pan communities.

 Differences in shoulder joint morphology are commonly cited between 

chimpanzees and bonobos. P. paniscus has a long, narrow scapula and an overall scapular 

shape that resembles the morphology found in Hylobates (Coolidge, 1933; Roberts, 1974; 

Horn, 1976; McHenry and Corruccini, 1981; Susman, 1984; Shea, 1986). Based on this 

morphology, as well as other aspects of the postcranial skeleton (e.g. small body size, 

curved phalanges), many researchers have hypothesized that bonobos should use arboreal 

locomotor behaviors, especially suspensory behaviors, more frequently than chimpanzees 
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(Roberts, 1974; Johnson, 1981). This has been confirmed by some field observations (e.g. 

Susman et al., 1980; Hunt, 1991; Doran, 1993a; Doran and Hunt, 1994), but not all (e.g. 

Horn, 1979; White, 1992). Ranges of variation in right and left humeral cross-sectional 

properties in P. paniscus are encompassed within the ranges of variation in P. t. 

troglodytes, and often within the ranges of variation in P. t. troglodytes and P. t. 

schweinfurthii. Mechanical analyses presented in this study therefore suggest similar 

forelimb loading regimes among these specific taxa of Pan. However, since similar 

loading may result from different locomotor behaviors (e.g. D’Août et al., 2004), it is not 

possible to conclude, especially in the absence of behavioral data, that chimpanzees and 

bonobos use their forelimbs in a similar manner.

 The humerus has a multifunctional role in locomotion and non-locomotor 

behaviors (e.g. tool-use). Thus, it is not possible to interpret mechanical similarities and 

differences in the forelimbs from a purely locomotor perspective. Carlson (2005) 

suggested, however, that because mechanical loadings from non-locomotor behaviors are 

generally static, they are less likely to influence cross-sectional geometries. Overall 

similarities in humeral cross-sectional geometries in this sample of Pan suggest general 

similarities in mechanical loading in the forelimbs, which may reflect similar forelimb 

use, or different forelimb use with overlapping mechanical signals. 

 Axial strength relative to average bending and torsional strength in the proximal 

and midshaft femur is not remarkably different among the groups largely because of the 

amount of variation in P. t. troglodytes. Although P. paniscus males show an increase in 

CA relative to J0.73 compared to most P. troglodytes ssp., this pattern is not exclusive to 

bonobos since some P. t. troglodytes individuals also show an increase in CA relative to 

J0.73. Axial strength relative to average bending and torsional strength in the right and left 

humerus is not exceedingly different among the groups. Bonobos show an increase in 

CA relative to J0.73 compared to many chimpanzees, but this pattern does not strictly 

characterize P. paniscus since some P. t. troglodytes individuals show the same pattern. 

Group differences are not apparent in average bending and torsional strength in the femur 

relative to the right and left humerus.
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 A considerable amount of primatological research has focused on the relationship 

between habitat and locomotion (e.g. Doran and Hunt, 1994; Garber and Pruetz, 1995; 

Gebo and Chapman, 1995; McGraw, 2000; Garber and Leigh, 2001; Kimura, 2003; Bitty 

and McGraw, 2007; Wright, 2007). For instance, P. t. verus at Mt. Assirik, Senegal and 

conspecifics at Taï Forest, Côte d'Ivoire have been observed to engage in different 

frequencies of specific locomotor behaviors (Hunt and McGrew, 2002). Intra-species 

behavioral variation in P. t. verus may reflect contrasting habitats, where the open 

grassland setting at Mt. Assirik offers more opportunities for terrestrial bipedalism while 

the primary rainforest habitat at Taï does not (Hunt and McGrew, 2002). Since the 

habitats that these samples were drawn from are very similar, with the possible exception 

of P. t. verus, it is possible that similarities in forelimb and hindlimb loading reflect 

similar locomotor behavior due to comparable habitats. A larger sample size and the 

inclusion of Pan taxa from diverse habitats are needed to verify if observational 

differences in locomotor behavior due to environment transcend into mechanical 

differences in the long bones.

CONCLUSION

 Ranges of variation in cross-sectional properties in the forelimbs and hindlimbs, 

and inter-limb and intra-limb mechanical loading patterns are very similar among all four 

of the Pan taxa examined in this study. It is possible that slight morphological differences 

observed between chimpanzees and bonobos are not functionally significant enough to 

affect locomotor behavior, at least as registered in cross-sectional geometries, that 

variation in locomotor behaviors overlap among groups such that a dominant loading 

regime is not detectable, or that locomotor behavior is simply not distinct within this 

sample of Pan. Indeed, it is also quite possible that sample sizes are too small for 

pronounced differences among the taxa to be apparent. Undoubtedly, a larger sample size 

is needed to substantiate the patterns found in this study. Since cross-sectional geometric 

properties in the forelimbs and hindlimbs of the specific P. troglodytes ssp. and P. 
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paniscus samples in this study are similar, it should not be detrimental to combine these 

taxa in future biomechanical analyses. 
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CHAPTER III

CROSS-SECTIONAL MORPHOLOGY IN PLIO-PLEISTOCENE HOMININS 
AND ITS RELEVANCE TO TAXONOMIC ASSIGNMENTS

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 More than a century ago, Darwin suggested that bipedalism arose when our 

arboreal ancestors expanded their ecological niche to include life on the ground possibly 

because of “a change in [their] manner of procuring subsistence, or to a change in the 

conditions of [their] native country,” (1872:135). Since then, the origin and evolution of 

human locomotion has been an important topic of inquiry (e.g. Morton, 1926; Gregory, 

1928; Napier, 1964; Robinson, 1972; McHenry, 1975a; McHenry and Temerin, 1979; 

Rodman and McHenry, 1980; Stern and Susman, 1983; Latimer et al., 1987; Tuttle et al., 

1991; Richmond and Strait, 2000; Harcourt-Smith and Aiello, 2004; Crompton et al., 

2008; Richmond and Jungers, 2008). Despite the plethora of research on the subject, 

debate continues regarding the mode of locomotion before hominin1 bipedalism, when 

and how bipedalism first emerged and how much locomotor variability may have been 

expressed in early hominins (e.g. Lovejoy et al., 1973; Fleagle, 1976; Fleagle et al., 1981; 

Tuttle, 1981; Gebo, 1992, 1996; Berge, 1994; Hunt, 1996; Crompton et al., 1998; 

Corruccini and McHenry, 2001; Richmond et al., 2001; Ward, 2002; McHenry and Jones, 

2006; Wallace et al., 2008). 

 A major hurdle that has hindered analyses of locomotion among several hominin 

groups is the disconnect between the evidence used to identify species in the fossil record 

and the evidence used to reconstruct locomotor behavior. Species recognition of fossil 

hominins is traditionally based on craniodental morphology since several traits in the 

maxillofacial region, cranium and dentition are believed to be genetically and 

developmentally conserved (e.g. Leakey, 1959; Wood, 1993; Lieberman, 1995; Grine et 

al., 1996; Lieberman et al., 1996; Rightmire, 1998; Wood and Lieberman, 2001; Strait 

and Grine, 2004; Wood and Lonergan, 2008; but see Scott and Lockwood, 2004). 
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Although cranial evidence can give some insight into posture (e.g. Dean and Wood, 1981; 

Dean and Wood, 1982; Spoor et al., 1997), interpretations of locomotor behavior are 

largely based on postcranial remains, which are often not associated with diagnostic 

craniodental material (e.g. Day and Napier, 1964; Tobias, 1965; Day and Wood, 1968; 

Leakey, 1972; McHenry, 1975a, b;  Latimer and Lovejoy, 1989; Gebo and Schwartz, 

2006; McHenry et al., 2007; Drapeau, 2008; Ruff, 2009). 

 Taxonomic uncertainty, propelled by the lack of associated skeletons and the 

fragmentary nature of many postcranial elements, has hampered analyses of locomotion 

among early hominins because it is unclear if reconstructed locomotor behaviors, which 

are primarily based on isolated postcranial remains, are actually valid for a species 

largely identified craniodentally. This is particularly the case for Paranthropus and early 

Homo2. Similarities between corresponding postcranial elements attributed to early Homo 

and those attributed to Paranthropus have challenged the taxonomic assignments of 

many fossils. For instance, based on comparisons of corresponding skeletal elements in 

KNM-ER 1500 (P. boisei) and OH 8 and OH 35 (H. habilis), Grausz et al. (1988) 

suggested that the Olduvai samples should be attributed to P. boisei rather than H. habilis, 

or that the lower limb skeletons of P. boisei and H. habilis are almost indistinguishable. 

The former suggestion echoes previous concerns doubting the taxonomic allocations of 

OH 8 and OH 35 to the genus Homo (Day, 1976a; Wood, 2000; but see Susman, 2008). If 

OH 8 and OH 35 are not representatives of early Homo, then inferences of locomotor 

behavior gleaned from them may not be valid for the earlist members of the genus Homo. 

  The purpose of this study is to examine the relationship between cross-sectional 

morphology and taxonomy (or presumed taxonomy) in Plio-Pleistocene hominin groups. 

If members of a genus are expected to occupy the same or similar adaptive zone, then, at 

the very least, locomotor behavior should be relatively homogeneous among its species, 

and somewhat different from species of another genus (Mayr, 1950; Wood and Collard, 
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1999b; Cela-Conde and Ayala, 2003). The cross-sectional properties of a long bone at a 

given section describe the structural modifications that the bone has endured as a result of 

mechanical loading history, and therefore provide clues into the habitual functional usage 

of skeletal elements (Enlow, 1963; Frost, 1964, 1988; Huiskes, 1982; Martin and Burr, 

1989; Rubin et al., 1990; Ruff et al., 2006). While long bone cross-sectional morphology 

by itself is inappropriate for taxonomic identification, given its plasticity and our 

incomplete knowledge of the relationship between mechanical loading and resultant 

cross-sectional morphology, inferences of locomotion that can be gleaned from them 

have significance for taxonomy. The most widespread application of long bone cross-

sectional geometric investigations among fossil hominins is in reconstructing broad 

locomotor behavior (e.g. Ruff et al., 1993; Ohman et al., 1997; Trinkaus et al., 1998; Ruff 

et al., 1999; Trinkaus et al., 1999; Ruff, 2009; Kuperavage and Eckhardt, 2009). 

Locomotor behavior can be used to reconstruct general models regarding hominin 

behavioral ecology, which bear directly on food procurement strategies, physical and 

physiological adaptations and interspecific relationships within an ecological community. 

Thus, there is certainly value in exploring the relationship between cross-sectional 

morphology (and hence locomotion) and taxonomy.

 The first hominin to display anatomical traits fully consistent with the modern 

human form of obligate terrestrial bipedalism was H. erectus nearly 1.8 mya (Walker and 

Leakey, 1993; McHenry and Coffing, 2000; Antón, 2003; Bramble and Lieberman, 2004; 

Polk, 2004; Lordkipanidze et al., 2007; Ruff, 2008), and most certainly by ~1.5 mya 

(Bennett et al., 2009). Modes of locomotion in Paranthropus and early Homo, however, 

are less conclusive. Although most researchers agree that pre-H. erectus hominins were 

capable of bipedalism, there are differences of opinion on the degree of terrestrial 

bipedalism (i.e. facultative or obligate), gait kinematics (i.e. modern human-like or Pan-

like bipedalism) and whether traits indicative of arborealism are primitive, nonfunctional 

retentions or functionally significant (Leakey et al., 1964; Davis, 1964; Day and Napier, 

1964; Lewis, 1972; McHenry, 1975a, b; Susman and Stern, 1979, 1982; Oxnard and 

Lisowski, 1980; Susman et al., 1984; Kidd et al., 1996; McHenry and Berger, 1998; 
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Aiello and Andrews, 2000; Richmond et al., 2002; Haeusler and McHenry, 2004; Gebo 

and Schwartz, 2006; Ruff, 2009). Moreover, while it was initially argued that postcranial 

morphological differences between Paranthropus and early Homo suggested that at least 

two patterns of locomotion, which were evolving in parallel, were in existence around the 

same time (Davis, 1964; Day, 1976a, b; Wood, 1976; Wood, 1978), recent evidence and 

reevaluation of previous data indicate that the locomotor repertoire in early Homo likely 

included an arboreal component, and in this way was more similar to Paranthropus than 

to later Homo (Oxnard and Lisowski, 1980; Richmond et al., 2002; Gebo and Schwartz, 

2006; Haeusler and McHenry, 2007).

 Cross-sectional geometries in the proximal femur have been shown to follow 

taxonomy more closely than in the femoral midshaft likely because of the mechanical 

roles of a suite of phylogenetically constrained morphological traits around the hip joint 

(e.g. pelvis, femoral neck length), which affect loading in the proximal femur (Ruff, 

1987, 1995, 2000; Ruff et al., 1993; Ruff et al., 1999; Trinkaus et al., 1999; Lovejoy et 

al., 2002). Thus, it is expected that groups should be readily distinguished based on 

proximal femoral cross-sectional geometries if there are distinct locomotor differences 

between Paranthropus and Homo. Paranthropus femora are expected to be more similar 

among each other than to Homo, both modern and fossil, and fossil Homo proximal 

femora are expected to be more similar to modern human femora than to Paranthropus.

 Mechanical loading on the lower limbs due to habitual activity is best examined at 

the femoral midshaft because of the combined effects of the hamstring (posterior thigh 

muscles) and quadriceps (anterior thigh muscles) muscle groups, which are highest in the 

region around the knee (i.e. between the femoral midshaft and tibial midshaft) (Morrison, 

1969, 1970; Carter, 1984; Ruff, 1987, 1995). If all members of the genus Homo are 

committed to terrestrial bipedalism, as suggest by Leakey et al. (1964), then fossil Homo 

femora should be mechanically similar both among each other and to modern human 

femora. Fossil Homo femora that are distinct may either represent a non-Homo species, 

or suggest variability in the locomotor behavior of fossil Homo. Since the kinematics of 

paranthropine bipedalism suggest a bipedal gait somewhat different from modern 
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humans, and since there is evidence suggesting that Paranthropus was not fully detached 

from arborealism (Robinson, 1972; McHenry, 1978; Macchiarelli et al., 1999; Ruff et al., 

1999; Susman and deRuiter 2004; Patel, 2005; Gebo and Schwartz, 2006; McHenry et 

al., 2007; Richmond and Jungers, 2008), Paranthropus femora should be mechanically 

distinct from modern and fossil Homo. 

 Cross-sectional geometries are phenotypically plastic and are also influenced by 

non-mechanical factors such as genetics, pathology and age (Ruff, 2000a; Lovejoy et al., 

2002; Lovejoy et al., 2003; Volkman et al., 2003). Moreover, although several studies 

have shown that long bones do indeed remodel to accommodate to mechanical loading 

during life (e.g. Jones et al., 1977; Martin and Burr, 1989; Biewener et al., 1996; Sumner 

and Andriacchi, 1996; Frost et al., 1998; Shaw and Stock, 2009), the relationships among 

behavior, external loading and resultant cross-sectional geometries are not completely 

understood (Bertram and Swartz, 1991; Pearson and Lieberman, 2004; Lieberman et al., 

2004). Therefore, it is important to emphasize that this study is not suggesting that cross-

sectional geometries in and of themselves be used for taxonomic identification. Rather, 

the goal is to examine how well cross-sectional geometries, which can yield insights into 

locomotor behavior, reflect current and generally accepted taxonomies. If cross-sectional 

geometries are commensurate with locomotor expectations given taxonomic identities, a 

biomechanical approach may be useful in helping to taxonomically identify isolated 

fossil hominin femora, at least to the genus level.

MATERIALS AND METHODS 

 A selection of fossil hominin femora3 housed at the National Museums of Kenya 

in Nairobi was included in this study (Table 1). Samples were chosen if length estimates 

were available so that properties could be size standardized, if enough of the diaphysis 
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was preserved so that proximal or midshaft section locations could be estimated and if at 

least one natural break in the subtrochanteric and/or estimated midshaft regions of the 

diaphysis perpendicular to the long axis was present so that cortical wall thicknesses 

could be measured.

Table 1. Fossil samples. 

Samplea Section Side Est. age 
(mya) Taxonomic attribution Referenceb

KNM-ER 736 midshaft L 1.5-1.7 P. (cf. boisei)/Homo/H. erectus? 1

KNM-ER 738 proximal L ~1.8 Paranthropus/Homo? 1

KNM-ER 999a proximal L ~0.75 ± 0.02
~0.1-0.5

Homo sp. indet./H. erectus?/
late archaic H. sapiens? 2, 3, 4

KNM-ER 1472 midshaft R 1.89 ± 0.05 Homo sp. 5

KNM-ER 1481a proximal L 1.89 Homo sp./H. (cf. erectus?)/
H. habilis?/H. rudolfensis? 5, 6, 7, 8, 9

KNM ER 1500d proximal R 1.88-2.2 P. boisei 9, 10

KNM-ER 1592 midshaft R 1.85 Paranthropus? 11

KNM ER 1807 midshaft R 1.5-1.6 H. (cf. erectus)?/P. boisei? 10

KNM-ER 1808 midshaft L 1.69 H. erectus 11

KNM-WT 15000 midshaft R/L c 1.53-1.65 H. erectus 12

OH 34 midshaft L 0.8-1.15 Homo sp. indet./H. erectus? 13, 14

OH 62 midshaft L 1.75-1.85 H. habilis 15

SK 82 proximal R 1.6-1.8 P. robustus 16

SK 97 proximal R 1.6-1.8 P. robustus 16
a Data for all samples are from this study except KNM-WT 15000 and KNM-ER 1808 (Ruff, 2008), OH 62 
(Ruff, 2009) and SK 82 and SK 97 (Ruff et al., 1999).
b 1. Leakey et al. (1972); 2. Day and Leakey (1974); 3. Bräuer et al. (1997); 4. Trinkaus (1993); 5. Day et 
al. (1975); 6. Wood (1992b); 7. Trinkaus (1984); 8. Kennedy (1983); 9. Leakey (1973b); 10. Day et al., 
(1976); 11. Leakey and Walker (1985); 12. Brown et al. (1985); 13. Day and Molleson (1976); 14. Leakey 
(1978); 15. Johanson et al. (1987); 16. Napier (1964).
c Cross-sectional data are averaged from the right and left femora as reported by Ruff (2008).
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Hominin proximal femora

 Proximal fossil femora examined in this study include KNM-ER 738, KNM-ER 

1500d, KNM-ER 999a and KNM-ER 1481a, all of which were analyzed directly. Cross-

sectional properties for SK 82 and SK 97 were taken from the published literature.

 Paranthropus. The head, neck, lesser trochanter and approximately 88 mm of the 

diaphysis below the distal margin of the lesser trochanter is preserved in KNM-ER 738. It 

was recovered from the KBS Channel Complex within the KBS Member at Koobi Fora, 

Area 105, and was initially described as a robust australopithecine (Leakey et al., 1972; 

Feibel et al., 1989). Its taxonomic status has been referred to in the published literature as 

Homo/A. (P.) boisei? (e.g. Day, 1986; Geissmann, 1986; McHenry, 1988, 1991; Jungers, 

1988; Ruff et al., 1999). KNM-ER 1500d is part of an associated skeleton recovered from 

the Upper Burgi Member below the KBS Tuff at Koobi Fora, Area 130 (Leakey, 1973a; 

Feibel et al., 1989). It was initially allocated to the Australopithecus (robust) genus and is 

generally regarded as the only associated skeleton of P. boisei (Leakey, 1973a; Grausz et 

al., 1988; McHenry, 1994; but see Wood, 2005 and Wood and Constantino, 2007). SK 82 

and SK 97 are proximal right femora recovered from the Hanging Remnant of Member 1 

at Swartkrans, South Africa, and are attributed to P. robustus (Napier, 1964; Robinson, 

1972). According to Grine (1989), more than 95% of the craniodental material in 

Member 1 can be attributed to P. robustus, albeit Homo material has also been recovered 

from the site (Susman, 1993; Grine et al., 1996; Susman et al., 2001). Thus, although SK 

82 and SK 97 could potentially represent members of the genus Homo, it is unlikely 

given their lack of morphological resemblance to Homo femora (Day, 1969; McHenry 

and Corruccini, 1976; Wood and Constantino, 2007; Harmon, 2009). Cross-sectional 

properties for SK 82 and SK 97 were taken from Ruff et al. (1999).

 Homo sp. KNM-ER 999a is an almost complete left femur recovered at Ileret, 

Koobi Fora, Area 6a (Day and Leakey, 1974). The femur is believed to have derived from 

9-11 m from the base of the Guomde Formation (now part of the Chari Formation) 

(Leakey et al., 1978; Brown and Feibel, 1986). The Silbo Tuff, which lies within the 

Guomde Formation, has been dated at 0.74 ± 0.01 mya (McDougall, 1985) and 0.75 ± 
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0.02 mya (McDougall and Brown, 2006). Since these later deposits are undifferentiated, 

it is possible that KNM-ER 999a is of Middle or initial Late Pleistocene age, or even 

early Holocene age (Feibel et al., 1989). Feibel et al. (1989:614) suggested that KNM-ER 

999a was derived from “undifferentiated later deposits, probably in the time span 0.5 to 

0.1 my.” Bräuer et al. (1997) suggested that KNM-ER 999a was from the Galana Boi 

Formation, and, based on gamma ray spectroscopy, may be as young as 301,000 ±  

96,000 BP. The uncertain stratigraphic provenience of the femur has confounded its 

taxonomic affiliation. Day and Leakey (1974) attributed KNM-ER 999a to Homo sp. 

indet., and Wolpoff (1980) allocated it to H. erectus. According to Trinkaus (1993), 

KNM-ER 999a is morphologically aligned with early modern humans, particularly from 

the Levant. Uranium-series dating suggests that the femur may be as young as 300 kya, 

thus making it either an early representative of a near-modern transitional or late archaic 

H. sapiens (Bräuer et al., 1997). KNM-ER 1481a is part of a well-preserved left femur 

recovered from the Upper Burgi Member at Koobi Fora, Area 131 (Leakey, 1973a, b; 

Day et al., 1975; Feibel et al., 1989). Leakey (1973) initially attributed it to Homo sp. It 

has since been suggested to represent H. erectus (Kennedy, 1983), H. habilis (Trinkaus, 

1984) and H. rudolfensis (Wood, 1992b). In this study, KNM-ER 999a and KNM-ER 

1481a are considered to be representatives of Homo sp.

Hominin midshaft femora

 Midshaft fossil femora examined in this study include KNM-ER 1592, KNM-ER 

736, KNM-ER 1472, KNM-ER 1807 and OH 34. Data for OH 62, KNM-ER 1808 and 

KNM-WT 15000 were derived from the published literature.

 Paranthropus. KNM-ER 1592 is the distal half of a robust right femur, which 

preserves a strong pilaster and the distal articulation (Leakey and Walker, 1985). The 

femoral fragment is approximately 200 mm in length. It was recovered from the lower 

KBS Member of the Koobi Fora Formation below the Ileret Tuff in Area 12, and initially 

assigned to the robust australopithecine genus (Leakey, 1973a; Howell, 1978; Leakey and 

Walker, 1985). McHenry (1992), however, suggested that KNM-ER 1592 should be left 
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unclassified since there are no diagnostic morphological characteristics present on the 

femur.

 Homo sp. KNM-ER 736 is a shaft fragment of a large left femur recovered from 

the Upper Member of the Koobi Fora Formation roughly 2-4 m below the projected level 

of the base of the Koobi Fora Tuff in Area 103 (Leakey et al., 1978). Leakey et al. (1972) 

described the specimen and tentatively assigned it to the Australopithecus (robust) genus. 

Day (1978) and Ruff and Walker (1993) advocated for its reassignment to the genus 

Homo, while others referred to it as a possible representative of H. erectus (McHenry, 

1991; Franciscus and Holliday, 1992; Grine et al., 1995; Antόn, 2003). KNM-ER 1472 is 

a well-preserved complete right femur recovered below the KBS Tuff at Koobi Fora, 

Area 131 (Leakey, 1973a, b; Day et al., 1975). Its taxonomic status as Homo sp. has not 

been challenged. KNM-ER 1807 is a right femoral diaphysis, which is broken into two 

fragments approximately near the midshaft. It was recovered from the Okote Member 

above the Black Pumice Tuff at Koobi Fora, Area 103 (Feibel et al., 1989). It has been 

allocated to both Homo and Paranthropus (Day et al., 1976; McHenry, 1991). OH 62 is a 

partial skeleton attributed by its discoverers to H. habilis (Johanson et al., 1987), albeit its 

allocation to the genus Homo has not been unanimously supported (Wood, 1992a, b, 

1996; Wood and Collard, 1999a, b). Several lines of indirect evidence suggest that it 

derives from lower Bed I below Tuff ID and likely from the sand lens below Tuff IC, 

which would make it contemporary with material from the FLK (Zinjanthropus) level 

(~1.8 mya) (Johanson et al., 1987). OH 62 was not available for study at the time of data 

collection. Cross-sectional properties for the left femoral midshaft are taken from Ruff 

(2009). Scaled, digital photographs of the OH 62 femoral cast were used to measure 

section contours at a transverse natural break along the femoral diaphysis, which roughly 

corresponds to the 50-65% section location of bone lengthʹ from the distal end (Ruff, 

2009). In this study, KNM-ER 736, KNM-ER 1472, KNM-ER 1807 and OH 62 are 

referred to as early Homo without species designations.

 H. erectus. H. erectus femora were included to represent Plio-Pleistocene 

obligate terrestrial bipeds. OH 34 is a left femoral diaphysis recovered from Bed III at the 
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JK 2 West site (Day and Molleson, 1976; Hay, 1976; Leakey, 1978). The head is abraded, 

and the greater and lesser trochanters and distal condyles are missing. The diaphysis is 

broken near the approximated midshaft (Day and Molleson, 1976). Although Day and 

Molleson (1976) and Leakey (1978) attributed the specimen to Homo sp. indet., it is often 

regarded as a representative, or tentative representative, of H. erectus (Howell, 1978; 

Tobias, 1991; Wood, 1992a, b; Antόn, 2003; Steudel-Numbers, 2006; but see Haeusler 

and McHenry, 2004). It has been argued that the femoral diaphysis is so abraded that its 

taxonomic affiliation and the reconstruction of its original diaphyseal breadth and shape 

must remain uncertain (Leakey, 1978; Ruff, 1995; but see Day and Molleson, 1976 and 

Haeusler and McHenry, 2004). KNM-WT 15000 is a well-preserved associated skeleton 

of a male juvenile recovered in West Lake Turkana from the Natoo Member of the 

Nachukui Formation, and is dated between ~1.53-1.65 mya  (Brown et al., 1985; Feibel 

et al., 1989; Walker and Leakey, 1993). KNM-ER 1808, recovered from the KBS 

Member at Koobi Fora, Area 103, is an adult, possibly female, associated skeleton dated 

to ~1.69 mya (Walker et al., 1982; Leakey and Walker, 1985; Feibel et al., 1989). It has 

been suggested that KNM-ER 1808 suffered from a systemic pathology since most long 

bone surfaces are covered with coarse-woven bone (Walker et al., 1982). The 

pathological bone deposits and the original periosteal surface are readily discernible on 

broken sections, such that the amount of bone added by the pathological lesions can be 

separated from the true bone surface (Ruff, 2008). Cross-sectional properties for KNM-

WT 15000 and KNM-ER 1808 are taken from Ruff (2008) since the samples were not 

available at the time of data collection. Multi-planar radiography was used to reconstruct 

endosteal contours (Ruff, 2008). Cross-sectional properties of the right and left femora of 

KNM-WT 15000 were averaged, and the right femur was analyzed for KNM-ER 1808 

(Ruff, 2008). 

Modern human comparative sample

 A well-preserved sample of modern human adults (n= 31), housed in the 

Department of Anthropology at the University of Western Ontario, is included in this 

110



study to serve as a referential obligate bipedal sample (Table 2). There are two caveats 

with this sample. First, there is a sex bias towards males (n= 26 males, n= 5 females). 

Second, the sample is not from a single population and many of the individuals are of 

unknown provenience. However, since the purpose for including the modern human data 

is to have a comparative obligate bipedal sample, mechanical loading in the femur should 

reflect patterns consistent with a commitment to bipedalism despite the heterogeneous 

nature of the collection. The right femur was preferentially chosen over the left, but the 

latter was included if the right was absent. Sexes were combined in the analyses.

Table 2. Modern human samples.

Sample Sex Provenience Side

Stirrup Court 3 F 19th century peri-urban settlement R

Stirrup Court 10 M 19th century peri-urban settlement R

Stirrup Court 14 M 19th century peri-urban settlement R

Stirrup Court 17 M 19th century peri-urban settlement R

Stirrup Court 20 M 19th century peri-urban settlement R

Odd Fellows 1 M unknown R

Odd Fellows 2 M unknown R

Odd Fellows 3 M unknown R

Odd Fellows 4 M unknown R

Odd Fellows 6 M unknown R

Odd Fellows 7 M unknown R

Odd Fellows 8 M unknown R

Odd Fellows 9 M unknown L

Odd Fellows 10 M unknown R

Odd Fellows 11 M unknown R

Odd Fellows 12 M unknown R

Odd Fellows 13 F unknown R
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Sample Sex Provenience Side

Odd Fellows 14 M unknown R

Odd Fellows 17 F unknown R

Odd Fellows 19b M? unknown R

Odd Fellows 20 M unknown R

Birkette F Grand River Valley, Ontario R

Breslau 1 M 19th century Kitchener, Ontario R

Breslau 2 F 19th century Kitchener, Ontario R

Downham Nursery M? Ontario Iroquoian village, Dutton R

Orangeman’s Lodge M? unknown L

H. Helmuth donation M? unknown L

N. Halbert donation M? unknown R

Van Oordt 10 M 15th century Waterloo, Ontario R

Peterborough Jail 2 M Russian immigrant to Canada R

Peterborough Jail 3 M Austrian immigrant to Canada R

 The Stirrup Court cemetery series, excavated in 1982 in London, Ontario, Canada, 

consists of residents of a historic peri-urban settlement area (Parish, 2000). The cemetery 

was in use between 1828 to 1890 (Parish, 2000). The individuals interred in Stirrup Court 

belong to one of two faiths—Primitive Methodist or Anglican (Church of England) 

(Parish, 2000). The former was layperson-centered, and therefore likely appealed to 

farmers and those of lower socio-economic status (Parish, 2000). Multiple lines of 

evidence on the skeletal remains of many of the Stirrup Court individuals in the current 

study suggest cyclical systemic stress (e.g. linear enamel hypoplasia and Harris lines) and 

poor general health (e.g. lytic lesions throughout the skeleton, porotic hyperostosis, cribra 

orbitalia) (Parish, 2000). 

 The Independent Order of Odd Fellows, a men’s fraternal organization, used 

human skeletal remains in various ceremonies for symbolic and ritual purposes (Ginter, 
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2001). The series consists of human remains from several lodges across Ontario, Canada, 

which were donated to the Department of Anthropology at the University of Western 

Ontario. The exact provenience of the samples is unknown, but it is believed that the 

majority of lodges received their human remains between 1860 to 1880 from medical 

schools (Ginter, 2001). 

 The Birkette burial was excavated in the Grand River Valley near Brantford, 

Ontario, Canada (Bull and Spence, 1988). The burial context is unknown since it was not 

excavated properly by trained archaeologists (Bull and Spence, 1988). Cultural material 

was not recovered in subsequent excavations by professional archaeologists (Bull and 

Spence, 1988). Multiple lines of skeletal and dental evidence suggest that the Birkette 

individual was an Iroquoian female in her late 20s to early 30s (Bull and Spence, 1988). 

 The Breslau burials are from a small burial plot near Kitchener, Ontario, Canada 

(Spence, 1985). The burials likely date to the 19th century (Spence, 1985). Pelvic traits 

using the Phenice method suggest that Breslau 1 is a probable male and Breslau 2 is a 

probable female (Spence, 1985). Numerous dental cavities suggest a heavily-based 

agricultural diet (Spence, 1985). A coin beneath the head of Breslau 1 implies that the 

burial probably took place between 1831-1833 (Spence, 1985). 

 The Downham Nursery burial derives from an Early Ontario Iroquoian village 

near Dutton (Spence, 1994). Early Ontario Iroquoian life emerged circa 1000 AD, and 

people relied on corn agriculture, hunting and fishing (Ferris, 1999). 

 The Van Oordt 10 individual is from a small 15th century burial site near 

Waterloo, Ontario, Canada, and may have been an Iroquoian warrior (Molto et al., 1986). 

Pelvic traits using the Phenice method suggest a probable male, and public symphysis 

morphology based on the McKern and Stewart method suggests an estimated age 

between 20 to 24 years-old (Molto et al., 1986). Projectile points made from Onondaga 

chert were found embedded in several locations throughout the body, and there is skeletal 

evidence for dismemberment and beheading (Molto et al., 1986). 

 The Peterborough Jail sample consists of two male inmates executed in 

Peterborough, Ontario, Canada in 1920 (Spence et al., 1999).
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Cross-sectional reconstructions

 The reconstruction of diaphyseal cross-sectional geometries and the calculation of 

cross-sectional parameters are based on accurate determinations of periosteal and 

endosteal contours at specified section locations. Traditionally, these sections are taken at 

50% and 80% of femoral lengthʹ measured from the distal end of the bone (Ruff and 

Hayes, 1983; Ruff, 1995, 2000a, 2002). Femur lengthʹ is defined as the longitudinal 

length of the diaphysis from the average distal projection of the condyles to the superior 

surface of the femoral neck at its most distal point (Ruff, 2002) (see Fig. 2 in Chapter II). 

In the current study, section locations could not be taken at traditional percentages of 

bone lengthʹ for the fossil samples due to technological limitations (see below). Instead, 

section locations were taken at natural breaks estimated to be in the proximal (~70-80%) 

or midshaft (~40-50%) region of the femoral diaphysis. Reconstructing cross-sections 

under these circumstances will still allow one to compare results from this study with 

those from other studies, particularly those involving fragmentary fossil material, since 

traditional section locations are approximated from estimated maximum bone length (e.g. 

Ruff et al., 1999; Kuperavage and Eckhardt, 2009). Sládek et al. (2010) found that 

femoral bending strength, and to some degree cortical area, in the midshaft femur of 

modern humans were accurately estimated even when the section location was 

inaccurately located (midshaft was considered being anywhere from 40-60% of bone 

length). Proximal and midshaft section locations were taken at 80% and 50% of bone 

lengthʹ, respectively, for the modern human sample.

 Since engineering beam theory predicts that the most mechanically relevant 

material is located furthest from the section centroid (Ruff and Hayes, 1983; Bertram and 

Swartz, 1991; Ruff et al., 1993; Frassica et al., 1997; O’Neill and Ruff, 2004), accurate 

reconstructions of the periosteal surface “should be the most important factor in 

calculating cross-sectional properties,” (Stock, 2002:336). Periosteal and endosteal 

contours were reconstructed following the latex cast method as described by Stock (2002) 

(see Chapter II). Although latex casting is a non-destructive technique, there is potential 

for the casting material to leave traces of residue on the bone. In an effort to preserve the 
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integrity of the fossil material, casting was done on casts provided by the National 

Museums of Kenya in Nairobi. Periosteal casts for the modern human sample were made 

directly on the bone.

 Due to technological limitations, endosteal contours could not be reconstructed 

using bi-planar radiography for the hominin femora. Instead, anterior, posterior, medial 

and lateral cortical thicknesses, and antero-posterior (A-P) and medio-lateral (M-L) bone 

diameters were measured directly on the fossil material at natural breaks with digital 

calipers to the nearest 0.01 mm. Previous studies have reconstructed cross-sectional 

geometries at natural breaks in a similar manner (e.g. Ruff et al., 1993; Carretero et al., 

2009). Thus, this method is considered acceptable when technological equipment (e.g. x-

ray, computer tomography) is unavailable.

 Endosteal contours for the modern human sample were reconstructed from 

measurements of cortical wall thicknesses, which were derived from traditional bi-planar 

radiographs using a Faxitron model 43855A x-ray machine in the Department of 

Anthropology at the University of Western Ontario. Section locations were marked with 

metal wire prior to x-raying, and a scaling device was included in each shot to correct for 

magnification4. Bones were placed in the x-ray machine in standard anatomical position 

and oriented following methods described by Ruff and Hayes (1983). Diaphyses were 

leveled by placing pieces of clay under the shaft so that the A-P midpoints of the 

proximal and distal ends of the bone were equidistant from the image receptor. 

Kodak T-Mat film was used in Kodak Lanex regular and fast screens. The source to film 

distance was 61 cm with a focal spot size of 0.5 mm. The tube current ranged from 2 to 3 

mA and the voltage ranged from 60 to 70 kVp depending on the sample. Exposure times 

varied from 3 to 5 sec. Films were manually processed using Pro Plus® developing and 

fixing solutions. 

 Periosteal casts were traced on graph paper with a 2 mm square grid. For hominin 

samples, measurements of cortical wall thicknesses were plotted onto the A-P and M-L 
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axes of the periosteal tracings. Cortical wall thicknesses for the modern human samples 

were measured directly on the radiographic film using digital calipers and a light box. A 

magnifying lens was used to aid in finding endosteal contours. Size-adjusted 

measurements were plotted in correct anatomical position on the periosteal tracings. 

Plotted points were connected in an ellipse for all samples.

 The reconstructed cross-sections were digitized using a Lexmark X 6170 flatbed 

scanner. Although images were scanned at the same size as the original, a scaling device 

was included to ensure that the size of the images was not compromised during 

digitization. Cross-sectional properties were calculated using a Macintosh version of 

MomentMacro written for ImageJ, which is available courtesy of Dr. Christopher Ruff at 

http://www.hopkinsmedicine.org/FAE/mmacro.htm. Cross-sectional properties were 

calculated three times and the average was recorded. 

 A methodological concern in cross-sectional geometric reconstruction involves 

the axis where cross-sectional properties are calculated. In straight, symmetrical beams 

under uniform bending, the neutral axis passes through the geometric centroid of a 

section and is therefore also known as the centroidal axis (Lieberman et al., 2004). 

However, since long bones are subjected to a combination of bending and axial loads, 

and since long bones are neither entirely straight nor symmetrical, the neutral axis may 

not always pass through the centroid of a section (Demes et al., 2001; Lieberman et al., 

2004). Experimental studies have confirmed that under varied loading regimes, the 

neutral axis shifts away from the centroid and towards the cortex under tension (Carter et 

al., 1981; Demes et al., 1998; Lieberman et al., 2004). Although the neutral axis can be 

experimentally determined in vivo, this is not possible with skeletal material. In this 

study, cross-sectional properties are calculated with reference to a neutral axis assumed to 

run through the cross-sectional area centroid “with the understanding that these [cross-

sectional properties] are only approximations of true bending rigidity and strength in 

vivo,” (Ruff et al., 2006:490).
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Cross-sectional properties

 The cross-sectional properties calculated in this study are presented in Table 3. 

Table 3. Cross-sectional properties.

Symbol Definition Mechanical Significance

TA total subperiosteal area area within the subperiosteal surface

CA cortical area axial compressive and tensile strength

%CA percent cortical area percentage of cortical bone in the section

Zx section modulus about the M-L axis bending strength in the A-P plane

Zy section modulus about the A-P axis bending strength in the M-L plane

J0.73 estimates the polar section modulus torsional and twice average bending strength

Zx/Zy diaphyseal shape index ratio of A-P to M-L bending strength

 Cortical area (CA) reflects the axial compressive and tensile strengths of the 

section (Ruff and Hayes, 1983; Ruff, 1994; Stock and Pfeiffer, 2004). Percent cortical 

area (%CA) is an expression of the relative cortical thickness of the cross-section and can 

be used as a proxy for bone mass (Ruff and Hayes, 1983; Ruff et al., 1993). %CA is 

calculated as CA/total area (TA) · 100, and does not vary with body size (Ruff et al., 

1993). CA and %CA quantify the absolute and relative amounts, respectively, of bone in 

a cross-section. CA and TA are reported in mm2. 

 Section moduli estimate the average bending and torsional strength5 of a section 

(Ruff, 2008). They are less dependent than second moments of area on the precise 

orientation of the section along the A-P and M-L axes, and are preferred when anatomical 

axes are imprecisely determined as is the case when using x-rays (Ruff, 2009). 
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Furthermore, section moduli are a more direct measure of bending strength than second 

moments of area since “they compensate for the distance from the neutral axis to the 

bone’s outer perimeter (where the highest bending stresses occur),” (Demes et al., 

1991:540). Zx and Zy are used to calculate the maximum stress in the outermost fiber of 

the cross-section in the anatomical plane of bending, which is proportional to cross-

sectional bending strength (Ruff and Hayes, 1983; Ruff, 1995). Zx corresponds to bending 

strength in the A-P plane measured about the M-L axis (x-axis), and Zy corresponds to 

bending strength in the M-L plane measured about the A-P axis (y-axis) (Ruff, 2002, 

2009). Zx and Zy in the proximal femur are interpreted with caution because the 

antetorsion angle of the femoral neck makes it challenging to correctly orient the bone 

along anatomical axes (Ruff and Hayes, 1983; Ruff, 1987). The polar section modulus is 

a measure of twice average bending and torsional strength, and can be approximated by 

taking the polar second moment of area6 to the power of 0.73 (i.e. J0.73)7 (Ruff, 1995; 

Trinkaus and Ruff, 1999; Ruff, 2002). Section moduli are reported in mm3. 

 Ratios of section moduli (i.e. Zx/Zy ) give an overall indication of diaphyseal 

shape (Jungers and Minns, 1979; Ruff, 1987). Bones subjected to bending in a single 

plane are less circular (i.e. a ratio departing from 1.0) since bending strength is 

determined by the relative distribution of bone perpendicular to the plane of bending 

(Ruff and Hayes, 1983; Carlson, 2005). Bones predominately subjected to torsion tend to 

have a more circular cross-sectional shape (i.e. a ratio approaching 1.0) because torsional 

strength is determined by the radial distribution of bone about the centroid (Ruff and 

Hayes, 1983).
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estimated as Ix0.73 and Iy0.73, respectively, for the Swartkrans femora.



Body size standardization

 It is necessary to control for the effects of body size on cross-sectional properties 

before comparing groups. To avoid circular reasoning, it is better to use a non-mechanical 

method to estimate body size (Ruff, 2000b). However, this may not always be possible 

given the limitations associated with fossil material (Kuperavage and Eckhardt, 2009). 

Cross-sectional properties have been shown to scale with appropriate powers of bone 

length (Ruff et al., 1993). Powers of bone length rather than body mass and maximum 

bone length were used to standardize cross-sectional properties since this method only 

relies on one variable (i.e. maximum bone length) rather than two (i.e. maximum bone 

length and body mass). Since maximum bone length and body mass are often estimated 

for fossil samples, standardizing by powers of bone length was deemed more appropriate 

than standardizing by body mass and maximum bone length since only one variable is 

used in the former technique. Area was standardized by dividing by bone length3 then 

multiplying by 108, and section moduli were standardized by dividing by bone length5.33 

then multiplying by 1012 following Ruff et al. (1993) and Trinkaus and Ruff (1996). 

Femoral length estimates for all fossil samples were taken from McHenry (1991), except 

KNM-ER 999a (Geissmann, 1986), KNM-WT 15000 (Ruff and Walker, 1993) and OH 

62 (Richmond et al., 2002). Pan was excluded from this study since standardizing by 

powers of bone length is not applicable to chimpanzees and bonobos.

 Statistics

 Agglomerative hierarchical cluster analysis using the unweighted pair-group 

average method (UPGMA) is used to identify homogeneous groups based on all cross-

sectional properties (i.e. TA, CA, %CA, J0.73, Zx, Zy and Zx/Zy) (Aldenderfer and 

Blashfield, 1984). The distance between two clusters is calculated as the average distance 

between all pairs of cases in the two different clusters (Aldenderfer and Blashfield, 1984). 

Euclidean distance is used to measure distances between samples. 
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 Stepwise discriminant function analysis (DFA) is conducted to investigate which 

cross-sectional properties best discriminate among the groups8 (Field, 2009). At each step 

in this analysis, the variable that maximizes the Mahalanobis distance between the two 

closest groups is entered. The process continues until a variable is selected that does not 

significantly increase the R-squared value (Manly, 2005). Since the stepwise method 

capitalizes on chance associations, significance levels may be higher than the real alpha 

(Kachigan, 1991; Manly, 2005). It is therefore necessary to run the statistics multiple 

times and include a cross-validation test (Manly, 2005). Cross-sectional properties were 

transformed into z-scores prior to analysis because of differences in scale (Aldenderfer 

and Blashfield, 1984). 

 Two assumptions about the data that should be investigated prior to cluster 

analysis and DFA are normality and homogeneity of the variance (homoscedasticity). 

Normality and homogeneity of the variances are examined with Kolmogorov-Smirnov 

tests with Lilliefors correction and Levene’s tests, respectively (Lilliefors, 1967; Thode, 

2002; Field, 2009). Statistical analyses were carried out with SPSS version 17.0 with p= 

0.05.

RESULTS

  In the proximal femur, all cross-sectional properties except %CA and Zx/Zy 

violate the assumption of normality based on the combined sample mean and sample 

variance (Table 4). J0.73, Zx and Zy violate the assumption of homogeneity of the 

variances (Table 5).
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Table 4. Normality test for the proximal femur.

Kolmogorov-Smirnova

Statistic df Sig.
TA 0.18 37 0.00
CA 0.21 37 0.00
%CA 0.10 37 0.20*

J0.73 0.30 37 0.00
Zx 0.28 37 0.00
Zy 0.25 37 0.00
Zx/Zy 0.10 37 0.20*

a. Lilliefors Significance Correction.
*. This is a lower bound of the true significance.
Significance is indicated in bold.

Table 5. Levene’s test for the proximal femur.

Levene Statistic df1 df2 Sig.

TA 1.03 2 34 0.37
CA 0.33 2 34 0.72
%CA 1.03 2 37 0.37
J0.73 28.12 2 34 0.00
Zx 4.47 2 34 0.02
Zy 12.01 2 34 0.00
Zx/Zy 1.00 2 34 0.38
Significance is indicated in bold.

 In the midshaft femur, TA, J0.73, Zx and Zy violate the assumption of normality 

(Table 6). J0.73, Zx and Zy violate the assumption of homogeneity of the variances (Table 

7).
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Table 6. Normality test for the midshaft femur.

Kolmogorov-Smirnova

Statistic df Sig.
TA 0.15 39 0.02
CA 0.13 39 0.13
%CA 0.07 39 .200*
J0.73 0.32 39 0.00
Zx 0.21 39 0.00
Zy 0.19 39 0.00
Zx/Zy 0.13 39 0.08
a. Lilliefors Significance Correction.
*. This is a lower bound of the true significance.
Significance is indicated in bold.

Table 7. Levene’s test for the midshaft femur.

Levene Statistic df1 df2 Sig.

TA 1.65 2 35 0.21
CA 2.93 2 35 0.07
%CA 0.23 2 35 0.80
J0.73 33.14 2 35 0.00
Zx 17.90 2 35 0.00
Zy 16.34 2 35 0.00
Zx/Zy 0.54 2 35 0.59
Significance is indicated in bold.

 Although the data violate assumptions of normality and homogeneity of the 

variances, cluster analysis and DFA are robust to such violations (Aldenderfer and 

Blashfield, 1984; Manly, 2005). Nevertheless, results are interpreted cautiously.

Proximal femur

 Cluster analysis. The proximity matrix for the fossil samples is presented in Table 

8. Among all pairs, KNM-ER 1500d and SK 82 share the closest proximity (1.21). KNM-

ER 999a and KNM-ER 1481a are also close (1.61). Paranthropine femora are more 

similar among each other than to fossil Homo sp. femora. The closeness between East 

122



and South African paranthropines suggests spatio-temporal continuity in paranthropine 

proximal femoral cross-sectional morphology. KNM-ER 999a and KNM-ER 1481a are 

more similar to KNM-ER 738 (4.93 and 3.46, respectively) than to any other 

paranthropine femur. It should be noted, however, that the taxonomic identity of KNM-

ER 738 as a Paranthropus is uncertain.

Table 8. Proximity matrix for the proximal femur.

KNM-ER 
738

KNM-ER 
1500d SK 82 SK 97 KNM-ER 

999a
KNM-ER 

1481a

KNM-ER 738 (P) 0.00 3.03 2.48 2.73 4.93 3.46

KNM-ER 1500d (P) 0.00 1.21 3.44 7.58 6.27

SK 82 (P) 0.00 3.57 7.23 5.86

SK 97 (P) 0.00 4.96 4.09

KNM-ER 999a (H) 0.00 1.61

KNM-ER 1481a (H) 0.00
(P) after sample indicates Paranthropus and (H) after sample indicates Homo sp. 

 Two main clusters are formed based on proximal femoral cross-sectional 

properties. The first cluster includes modern humans and fossil Homo, and the second 

cluster consists of Paranthropus (Fig. 1). The taxonomically uncertain KNM-ER 738 

femur is grouped with Paranthropus to the exclusion of modern and fossil Homo.
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   0         5        10        15        20        25
    +---------+---------+---------+---------+---------+
H. sapiens    -+
H. sapiens   -+---+
H. sapiens  -+    +-+
H. sapiens    -----+ |
H. sapiens   -+-+   +---+
H. sapiens    -+ +-+ |   |
H. sapiens    ---+ +-+   |
H. sapiens    -----+     +-+
H. sapiens   -+---+     | |
H. sapiens   -+   +---+ | |
H. sapiens    -----+   | | |
H. sapiens    -----+-+ +-+ |
H. sapiens   -----+ | |   |
H. sapiens   ---+-+ | |   |
H. sapiens   ---+ +-+-+   |
H. sapiens   -+-+ | |     +---+
H. sapiens   -+ +-+ |     |   |
H. sapiens   -+-+   |     |   |
H. sapiens   -+ |   |     |   |
H. sapiens   -------+     |   |
H. sapiens   -+---+       |   +---+
H. sapiens    -+   +---+   |   |   |
H. sapiens   -+---+   +---+   |   |
H. sapiens    -+       |       |   |
H. sapiens   ---------+       |   +-----+
H. sapiens   ---+---+         |   |     |
H. sapiens     ---+   +---------+   |     |
H. sapiens    -------+             |     +---------------------+
H. sapiens   ---------------------+     |                     |
KNM-ER 999a (H)   -----------+-----+         |                     |
KNM-ER 1481a (H)  -----------+     +---------+                     |
H. sapiens   -----------------+                               |
KNM-ER 1500d (P)  -------+---------------+                         |
SK 82 (P)    -------+               +-------------------------+
KNM-ER 738 (P)  -------------------+---+
SK 97 (P)    -------------------+

Figure 1. Dendrogram from the UPGMA cluster analysis of the proximal femur. (P) after fossil 
samples indicates Paranthropus, and (H) indicates Homo sp.

 DFA. All cross-sectional properties (i.e. TA, CA, %CA, J0.73, Zx, Zy and Zx/Zy) 

were initially entered into a stepwise DFA to determine which variables contribute most 

to group differences. CA is entered in the first step, Zx/Zy is entered in the second step, Zx 

is entered in the third step and J0.73 is entered in the fourth step. Pairwise group 

comparisons suggest that distances between group means are significantly different at 

each step in the analysis (Table 9). 
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Table 9. Pairwise group comparisons for the proximal femur.

Step Species H. sapiens Paranthropus Homo sp.

1 H. sapiens F 148.55 15.86
Sig. 0.00 0.00

Paranthropus F 148.55 17.00
Sig. 0.00 0.00

Homo sp. F 15.86 17.00
Sig. 0.00 0.00

2 H. sapiens F 72.37 19.30
Sig. 0.00 0.00

Paranthropus F 72.37 14.72
Sig. 0.00 0.00

Homo sp. F 19.30 14.72
Sig. 0.00 0.00

3 H. sapiens F 54.85 14.24
Sig. 0.00 0.00

Paranthropus F 54.85 17.71
Sig. 0.00 0.00

Homo sp. F 14.24 17.71
Sig. 0.00 0.00

4 H. sapiens F 133.96 27.78
Sig. 0.00 0.00

Paranthropus F 133.96 18.79
Sig. 0.00 0.00

Homo sp. F 27.78 18.79
Sig. 0.00 0.00

1, 34 degrees of freedom for step 1.
2, 33 degrees of freedom for step 2.
3, 32 degrees of freedom for step 3.
4, 31 degrees of freedom for step 4.
Significance is indicated in bold.

 J0.73 is associated with the first function, which explains 94% of the variance, and 

Zx/Zy is associated with the second function (Table 10). Wilks’ λ is significant for both 

functions (Table 11). For the first function, the Paranthropus and fossil Homo sp. group 
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centroids are negative and the modern human group centroid is positive. These results 

indicate that modern humans and fossil hominins are discriminated by J0.73. The first 

function discriminates most between modern humans and Paranthropus. Fossil Homo 

falls intermediate. For the second function, the modern human and Paranthropus group 

centroids are negative and the fossil Homo sp. group centroid is positive. These results 

indicate that fossil Homo is discriminated from modern humans and Paranthropus by Zx/

Zy (Table 12). 

Table 10. Structure matrix for the proximal femur.

Function
1 2

J0.73 0.69* -0.50
Zya 0.57* -0.52
Zx 0.52* -0.30
CA 0.50* -0.12
TAa 0.42* -0.32
Zx/Zy 0.04 0.72*

%CAa 0.19 0.28*

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions.
 Variables ordered by absolute size of correlation within function.
*. Largest absolute correlation between each variable and any discriminant function.
a. This variable not used in the analysis.

Table 11. Wilks’ lambda for the proximal femur.

Test of 
Function(s) Wilks' Lambda Chi-square df Sig.

1 through 2 0.02 121.45 8.00 0.00
2 0.47 24.37 3.00 0.00
Significance is indicated in bold.
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Table 12. Functions at groups centroids for the proximal femur.

Species Function
1 2

H. sapiens -1.76 -0.12
Paranthropus 11.08 -1.09
Homo sp. 5.13 4.05
Unstandardized canonical discriminant functions evaluated at group means.

 The canonical plot for the DFA is displayed in Figure 2. Of particular note is the 

low scatter among modern humans despite the heterogeneity of the sample. These results 

are a good indication of homogeneity in cross-sectional properties in the proximal femur 

of the modern human sample. It is evident from the canonical plot that modern human, 

fossil Homo and Paranthropus proximal femora are distinct from one another based on 

cross-sectional properties. 
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Figure 2. Canonical plot for the proximal femur. J0.73 is associated with the first function and Zx/
Zy is associated with the second function. Homo= KNM-ER 999a and KNM-ER 1481a. 
Paranthropus= KNM-ER 738, KNM-ER 1500d, SK 82 and SK 97.

 All original grouped cases are correctly classified, and 97% of cross-validated 

grouped cases are correctly classified (Table 13). Only one Paranthropus femur (KNM-

ER 738) was misclassified as fossil Homo. The classification results suggest that J0.73, 

and to some extent Zx/Zy, are valid discriminators among modern human, fossil Homo 

and Paranthropus proximal femora.
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Table 13. Classification results for the proximal femur.

Species
Predicted Group Membership

Total
H. sapiens Paranthropus Homo sp.

Original Count H. sapiens 31 0 0 31
Paranthropus 0 4 0 4
Homo sp. 0 0 2 2

% H. sapiens 100.0 0.0 0.0 100.0
Paranthropus 0.0 100.0 0.0 100.0
Homo sp. 0.0 0.0 100.0 100.0

Cross-validateda Count H. sapiens 31 0 0 31
Paranthropus 0 3 1 4
Homo sp. 0 0 2 2

% H. sapiens 100.0 0.0 0.0 100.0
Paranthropus 0.0 75.0 25.0 100.0
Homo sp. 0.0 0.0 100.0 100.0

aCross validation is done only for those cases in the analysis. In cross validation, each case is classified by 
the functions derived from all cases other than that case.
100.0% of original grouped cases correctly classified.
97.3% of cross-validated grouped cases correctly classified.

 Summary. The cluster analysis suggests that fossil Homo and modern human 

proximal femora are more similar among each other than they are to Paranthropus 

femora. East and South African Paranthropus femora are more similar among each other 

than they are to Homo, which supports the long held view of morphological spatial and 

temporal continuity among paranthropine proximal femora (Ruff et al., 1999; Harmon, 

2009). The results from the DFA suggest that group differences are mainly due to J0.73, 

and to some extent Zx/Zy. Modern humans and fossil hominins are discriminated along 

the first function, which is associated with J0.73. Fossil Homo is discriminated from 

modern humans and Paranthropus along the second function, which is associated with      

Zx/Zy. Results support the taxonomic allocations of KNM-ER 999a and KNM-ER 1481a 

to the genus Homo, albeit their species designations cannot be resolved. In addition, 

results support the taxonomic assignments of KNM-ER 1500d, SK 82 and SK 97 to a 

non-Homo genus. The taxonomic assignment of KNM-ER 738 is ambivalent. The results 

cannot definitively confirm or refute the taxonomic status of KNM-ER 738 as a 
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paranthropine, although in terms of its cross-sectional morphology it is closer to 

paranthropine femora than to modern and fossil Homo femora based on the cluster 

analysis. It was, however, (mis)classified as fossil Homo in the cross-validation 

classification in the DFA.

Midshaft femur

 Cluster analysis. The proximity matrix for the fossil samples is presented in Table 

14. Of particular interest is the closeness among all fossil femora (i.e. low distance 

measures), excluding OH 62, which is the most distant individual. OH 62 is particularly 

distant from H. erectus femora (i.e. OH 34, KNM-WT 15000 and KNM-ER 1808). The 

H. erectus femora share a close proximity among each other. KNM-ER 1808 also shares 

a close proximity to KNM-ER 1592 (2.97), a purported paranthropine. The taxonomically  

debatable KNM-ER 1807 femur is closest to KNM-ER 1592 (2.02), while the other 

taxonomically debatable femur, KNM-ER 736, is closest to KNM-ER 1472 (2.10), a 

likely representative of the genus Homo. The proximity of KNM-ER 1592 to all Homo 

and/or possible Homo sp. femora, excluding OH 62, challenges its taxonomic status as a 

paranthropine, or suggests that midshaft cross-sectional morphology in Paranthropus and 

fossil Homo is similar.
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Table 14. Proximity matrix for the midshaft femur.

KNM-
ER 

1592

KNM-
ER 
736

KNM-
ER 

1472

KNM-
ER 

1807
OH 62

KNM-
ER 

1808

KNM-
WT 

15000
OH 34

KNM-ER 1592 (P) 0.00 3.66 2.08 2.02 9.18 2.97 4.50 4.73

KNM-ER 736 (H) 0.00 2.10 2.98 8.77 4.89 4.11 5.61

KNM-ER 1472 (H) 0.00 2.72 9.51 3.11 3.16 4.00

KNM-ER 1807 (H) 0.00 7.70 4.53 5.36 6.24

OH 62 (H) 0.00 11.80 12.10 13.20

KNM-ER 1808 (He) 0.00 2.80 2.29

KNM-WT 15000 (He) 0.00 2.18

OH 34 (He) 0.00
(P) after sample indicates Paranthropus, (H) after sample indicates Homo sp. and (He) after sample 
indicates H. erectus.

 Cluster formations are not very distinct, which suggests overall homogeneity in 

midshaft cross-sectional properties among the groups. KNM-ER 1592 and all fossil 

Homo femora, except OH 62, cluster with modern humans (Fig. 3). The distinctiveness of 

OH 62 compared to other fossil Homo femora is evidenced by its lone clustering.
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   0         5        10        15        20        25
    +---------+---------+---------+---------+---------+
H. sapiens   -+
H. sapiens   -+-+
H. sapiens   -+ +-+
KNM-WT 15000 (He) ---+ +-+
H. sapiens   -+-+ | |
H. sapiens   -+ +-+ |
H. sapiens   ---+   +-+
H. sapiens    -+-+   | |
H. sapiens    -+ +-+ | |
H. sapiens    ---+ +-+ |
H. sapiens    -----+   +-+
H. sapiens    -+---+   | |
H. sapiens   -+   +-+ | |
H. sapiens    ---+-+ | | |
KNM-ER 1472 (H)   ---+   +-+ |
H. sapiens   ---+   |   |
H. sapiens   ---+-+ |   |
H. sapiens   ---+ +-+   |
H. sapiens    ---+-+     +-+
H. sapiens   ---+ |     | |
H. sapiens   -+-+ |     | |
H. sapiens    -+ +-+     | |
H. sapiens   -+-+       | |
H. sapiens    -+ |       | |
H. sapiens   ---+       | +-+
H. sapiens   -----+     | | |
H. sapiens   -----+-----+ | |
OH 34 (He)   -----+     | | |
KNM-ER 1808 (He)  -----------+ | |
H. sapiens    ---+---+     | +---------------------------------+
H. sapiens   ---+   +---+ | |                                 |
H. sapiens   -------+   +-+ |                                 |
H. sapiens   -----------+   |                                 |
H. sapiens   ---+-----+     |                                 |
KNM-ER 1592 (P)   ---+     +---+ |                                 |
H. sapiens   -------+-+   +-+                                 |
KNM-ER 1807 (H)   -------+     |                                   |
KNM-ER 736 (H)    -------------+                                   |
OH 62 (H)    -------------------------------------------------+

Figure 3. Dendrogram from the UPGMA cluster analysis of the midshaft femur. (P) after fossil 
samples indicates Paranthropus, (H) after fossil samples indicates Homo sp. and (He) indicates 
H. erectus.

 DFA. All cross-sectional properties (i.e. TA, CA, %CA, J0.73, Zx, Zy and Zx/Zy) 

were entered into a stepwise DFA to determine which variables contribute most to group 

differences. CA is entered in the first step, %CA is entered in the second step, J0.73 is 

entered in the third step, Zx is entered in the fourth step and Zy is entered in the fifth step. 
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Pairwise group comparisons are presented in Table 15. In the final step, which includes 

all five variables entered into the analysis, distances between group means are 

significantly different between modern humans and fossil Homo sp., modern humans and 

H. erectus, Paranthropus and fossil Homo sp. and fossil Homo sp. and H. erectus. 

Distances between group means are not significantly different between modern humans 

and Paranthropus, and Paranthropus and H. erectus.

Table 15. Pairwise group comparisons for the midshaft femur.

Step Species H. sapiens Paranthropus Homo sp. H. erectus

1 H. sapiens F 3.17 26.11 3.15
Sig. 0.08 0.00 0.09

Paranthropus F 3.17 0.66 6.23
Sig. 0.08 0.42 0.02

Homo sp. F 26.11 0.66 24.60
Sig. 0.00 0.42 0.00

H. erectus F 3.15 6.23 24.60
Sig. 0.09 0.02 0.00

2 H. sapiens F 3.24 14.18 5.01
Sig. 0.05 0.00 0.01

Paranthropus F 3.24 3.44 3.05
Sig. 0.05 0.04 0.06

Homo sp. F 14.18 3.44 17.37
Sig. 0.00 0.04 0.00

H. erectus F 5.01 3.05 17.37
Sig. 0.01 0.06 0.00
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3 H. sapiens F 2.28 12.29 7.80
Sig. 0.10 0.00 0.00

Paranthropus F 2.28 2.43 2.53
Sig. 0.10 0.08 0.07

Homo sp. F 12.29 2.43 11.45
Sig. 0.00 0.08 0.00

H. erectus F 7.80 2.53 11.45
Sig. 0.00 0.07 0.00

4 H. sapiens F 2.19 14.81 7.36
Sig. 0.09 0.00 0.00

Paranthropus F 2.19 2.01 1.84
Sig. 0.09 0.12 0.15

Homo sp. F 14.81 2.01 8.76
Sig. 0.00 0.12 0.00

H. erectus F 7.36 1.84 8.76
Sig. 0.00 0.15 0.00

5 H. sapiens F 2.16 30.41 8.80
Sig. 0.08 0.00 0.00

Paranthropus F 2.16 3.64 1.53
Sig. 0.08 0.01 0.21

Homo sp. F 30.41 3.64 9.46
Sig. 0.00 0.01 0.00

H. erectus F 8.80 1.53 9.46
Sig. 0.00 0.21 0.00

1, 35 degrees of freedom for step 1.
2, 34 degrees of freedom for step 2.
3, 33 degrees of freedom for step 3. 
4, 32 degrees of freedom for step 4.
5, 31 degrees of freedom for step 5.
Significance is indicated in bold.

 J0.73 is associated with the first function, which explains 84% of the variance, CA 

is associated with the second function, which explains 14% of the variance and %CA is 

associated with the third function (Table 16). Wilks’ λ is significant for the first two 

functions (Table 17). The modern human group centroid is negative for the first function, 
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and all fossil hominin group centroids are positive for the first function. These results 

indicate that fossil hominins, as a group, are discriminated from modern humans by J0.73. 

These results mirror those found in the proximal femoral analysis. The first function 

discriminates most between modern humans and fossil Homo sp. Given the results of the 

cluster analysis, it is unclear if the separation of modern humans from fossil Homo is due 

to fossil Homo as a group or to the distinctiveness OH 62. Paranthropus and H. erectus 

group centroids are negative, and modern human and fossil Homo group centroids are 

positive for the second function. These results indicate that CA discriminates between 

Paranthropus and H. erectus, and modern humans and fossil Homo sp. (Table 18). 

Table 16. Structure matrix for the midshaft femur.

Function
1 2 3

J0.73 0.44* 0.33 0.15
TAa 0.30 0.87* 0.20
CA 0.33 0.62* 0.62
Zx 0.33 0.56* 0.24
Zy 0.33 0.53* 0.33
%CA 0.15 -0.14 0.95*

Zx/Zya -0.01 0.03 -0.26*

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions.
 Variables ordered by absolute size of correlation within function.
*. Largest absolute correlation between each variable and any discriminant function.
a. This variable not used in the analysis.

Table 17. Wilks’ lambda for the midshaft femur.

Test of 
Function(s) Wilks' Lambda Chi-square df Sig.

1 through 3 0.07 87.14 15 0.00
2 through 3 0.47 25.60 8 0.00
3 0.87 4.51 3 0.21
Significance is indicated in bold.
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Table 18. Functions at groups centroids for the midshaft femur.

Species Function
1 2

H. sapiens -1.00 0.17
Paranthropus 1.67 -0.55
Homo sp. 5.91 0.98
H. erectus 1.92 -2.92
Unstandardized canonical discriminant functions evaluated at group means.

 The canonical plot for the DFA is displayed in Figure 4. Despite the 

heterogeneous nature of the modern human sample, the data are not dispersed. They are, 

however, more scattered compared to the results for the proximal section. Although 

groups are separated from each other, it is clear from the canonical plot that they are not 

as separated as in the proximal femoral analysis.
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Figure 4. Canonical plot for the midshaft femur. J0.73 is associated with the first function and CA 
is associated with the second function. Paranthropus= KNM-ER 1592. Homo= KNM-ER 736, 
KNM-ER 1472, KNM-ER 1807 and OH 62. H. erectus= KNM-ER 1808, KNM-WT 15000 and 
OH 34.

 All of the original grouped cases are correctly classified, and 92% of the cross-

validated grouped cases are correctly classified. KNM-ER 1592 was misclassified as 

modern human, one fossil Homo sp. Femur (OH 62) was misclassified as H. erectus and 

one H. erectus femur (KNM-WT 15000) was misclassified as modern human (Table 19). 
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Table 19. Classification results for the midshaft femur.

Species
Predicted Group Membership

Total
H. sapiens Paranthropus Homo sp. H. erectus

Original Count H. sapiens 31 0 0 0 31
Paranthropus 0 1 0 0 1
Homo sp. 0 0 4 0 4
H. erectus 0 0 0 3 3

% H. sapiens 100.0 0.0 0.0 0.0 100.0
Paranthropus 0.0 100.0 0.0 0.0 100.0
Homo sp. 0.0 0.0 100.0 0.0 100.0
H. erectus 0.0 0.0 0.0 100.0 100.0

Cross-validateda Count H. sapiens 31 0 0 0 31
Paranthropus 1 0 0 0 1
Homo sp. 0 0 3 1 4
H. erectus 1 0 0 2 3

% H. sapiens 100.0 0.0 0.0 0.0 100.0
Paranthropus 100.0 0.0 0.0 0.0 100.0
Homo sp. 0.0 0.0 75.0 25.0 100.0
H. erectus 33.3 0.0 0.0 66.7 100.0

aCross validation is done only for those cases in the analysis. In cross validation, each case is classified by 
the functions derived from all cases other than that case.
100.0% of original grouped cases correctly classified.
92.3% of cross-validated grouped cases correctly classified.

 Summary. Two main clusters are formed based on midshaft femoral cross-

sectional properties. One cluster includes modern humans and all fossil femora, except 

OH 62, and the other cluster includes OH 62. Results from the DFA suggest that J.073 

primarily contributes to group differences. However, it only accounts for 84% of the 

variance among groups. This may reflect general similarities in average bending and 

torsional strength among the groups. Results suggest that KNM-ER 1592, based on 

midshaft femoral cross-sectional morphology, may not be a representative of 

Paranthropus, or that the single sample cannot be differentiated from the Homo groups. 

The cluster analysis indicates that OH 62 is the most distinct individual, which suggests 

that midshaft femoral cross-sectional properties in OH 62 are not consistent with its 

taxonomic allocation to the genus Homo if all members of the genus Homo are expected 

to be committed bipeds (Leakey et al., 1964; Wood and Collard, 1999b). However, results 
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from the DFA, based on J0.73 and CA, suggest that OH 62 is not atypical from other 

Homo sp. femora. Since the number of variables entered into the analysis can affect the 

results, it is possible that when all variables are considered (i.e. in the cluster analysis) 

real differences among the groups cannot be elucidated because of the effects of less 

discriminating variables. This may explain the distinctiveness of OH 62 in the cluster 

analysis, but its similarity to other Homo sp. femora in the DFA. A summary of the 

relationship between cross-sectional morphology and taxonomy is presented in Table 20.

Table 20. Summary of the results.

Sample Genus Taxonomic support based on 
cross-sectional morphology

Proximal

KNM-ER 738 Paranthropus/Homo uncertain, but cannot be excluded from 
Paranthropus

KNM-ER 1500d Paranthropus yes
SK 82 Paranthropus yes
SK 97 Paranthropus yes
KNM-ER 999a Homo yes
KNM-ER 1481a Homo yes

Midshaft

KNM-ER 1592 Paranthropus* uncertain, but similar to Homo
KNM-ER 736 Paranthropus/Homo uncertain, but similar to Homo
KNM-ER 1472 Homo yes
KNM-ER 1807 Paranthropus/Homo uncertain, but similar to Homo
OH 62 Homo* uncertain
KNM-ER 1808 H. erectus yes
KNM-WT 15000 H. erectus yes
OH 34 H. erectus yes

* Indicates uncertain genus.

DISCUSSION

 Loading in the proximal femur cannot be understood in isolation since a suite of 

morphological traits around the hip joint (e.g. pelvic orientation, morphology and 

proportions, hip musculature and femoral neck length) influence biomechanical loading 
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in the subtrochanteric region of the femur (Lovejoy, 1988; Ruff, 1995; Trinkaus and Ruff, 

1999; Lovejoy et al., 2002; Richmond and Jungers, 2008). Previous research has yielded 

conflicting interpretations of morphological and functional similarities and differences 

between and among paranthropine pelves, and their morphological similarities and 

differences from Homo pelves (McHenry, 1975a, b, c; McHenry and Corruccini, 1975; 

Steudel, 1978; Berge, 1984; Berge and Kazmierczak, 1986). While a detailed analysis of 

Plio-Pleistocene hominin hip morphology is beyond the scope of this study, there are a 

few defining characteristics of the paranthropine pelvis that differentiate it from Homo. 

 Although rare and fragmentary, paranthropine pelves are generally characterized 

by a low, broad ilium, laterally splayed iliac blades and small acetabulae (Lovejoy et al., 

1973; McHenry, 1975c). These traits, in addition to a relatively long femoral neck, act to 

increase M-L bending strength in the proximal femur (Lovejoy, 1988; Ruff et al., 1999). 

A decrease in the lateral flare of the greater trochanter in Paranthropus relative to Homo 

and the A-P compressed femoral neck characteristic of paranthropines are additional traits 

which likely have a functional role with implications for locomotion (Lovejoy, 1988; 

Harmon, 2009; Holliday et al., 2010). Fossil Homo pelves are distinguished from modern 

human pelves in having extremely robust iliac pillars, laterally flared iliac blades, 

relatively wide biacetabular breadths, large and laterally facing ischial tuberosities and 

relatively small auricular surfaces (i.e. fossil hominin pelves are generally more 

platypelloid than modern human pelves) (Ruff, 1995, 2005). Indeed, the primary selective 

pressures on pelvic morphology ultimately derive from obstetrical constraints rather than 

locomotion, and therefore reflect evolutionary changes in encephalization rather than 

locomotor behavior (McHenry, 1976; Berge et al., 1984; Tague and Lovejoy, 1986; Ruff, 

1995; McHenry and Coffing, 2000; Simpson et al., 2008). However, the consequences of 

such morphological differences among Paranthropus, fossil Homo and modern humans 

have an effect on posture and locomotion. Since the suite of morphological traits 

influencing the hip joint are thought to be phylogenetically stable (Ruff, 1995; Ruff et al., 

1999; Trinkaus et al., 1999; Lovejoy et al., 2002; Harmon, 2009), it is expected that 
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proximal femoral cross-sectional geometry should reflect phylogeny to a greater degree 

than midshaft femoral cross-section geometry. 

 Differences among modern human, fossil Homo and Paranthropus proximal 

femora are largely due to differences in J0.73, and to a lesser degree Zx/Zy. Average 

bending and torsional strength discriminates most between modern humans and 

Paranthropus, while diaphyseal shape discriminates fossil Homo from modern humans 

and Paranthropus. KNM-ER 999a and KNM-ER 1481a are more similar to each other 

than either one is to paranthropine femora, and both fossil Homo femora cluster with 

modern humans to the exclusion of Paranthropus. Based on proximal femoral cross-

sectional properties, the taxonomic assignment of KNM-ER 999a and KNM-ER 1481a to 

the genus Homo is supported, although their species designations cannot be elucidated. 

 KNM-ER 738, KNM-ER 1500d, SK 82 and SK 97 are closer among each other 

than they are to fossil Homo femora, and cluster together to the exclusion of modern 

humans and fossil Homo. KNM-ER 1500d, SK 82 and SK 97 are generally regarded as 

members of the Paranthropus genus (but see Wood, 2005 and Wood and Constantino, 

2007 regarding KNM-ER 1500d), albeit their taxonomic identifications are not based on 

craniodental features. However, morphological and morphometric analyses suggest 

affiliations for all three femora to a non-Homo genus (Day, 1969; McHenry and 

Corruccini, 1976; Grausz et al., 1988; Wood and Constantino, 2007; Harmon, 2009). 

Proximal femoral cross-sectional properties in KNM-ER 1500d, SK 82 and SK 97 

support their non-Homo status. KNM-ER 738 was initially allocated to the robust 

australopithecine group, but subsequent analyses and comparisons with other femora 

suggest an ambiguous classification (Leakey et al., 1972; Walker, 1973; Day, 1986; 

McHenry, 1988; Susman et al., 2001). While KNM-ER 738 shares an almost similar 

proximity to KNM-ER 1500d (3.03) and KNM-ER 1481a (3.46), it is closer still to SK 82 

(2.48) and SK 97 (2.73), and is therefore more similar to Paranthropus femora as a group 

than to modern and fossil Homo femora. Results from this study cannot definitively 

exclude KNM-ER 738 from the Paranthropus genus. However, until a larger sample size 

of definite paranthropine proximal femora is available, KNM-ER 738 may tentatively and 

141



conservatively be regarded as Hominidae gen. et. sp. indet. following McHenry (1994). 

 Differences among groups in the femoral midshaft are best attributed to 

differences in J0.73, which discriminates most between modern humans and fossil Homo 

sp., and CA, which discriminates H. erectus from the other groups. H. erectus femora are 

more similar among each other than they are to other fossil Homo femora. Although it has 

been argued that OH 34 is so abraded that its taxonomic affiliation and the reconstruction 

of its original diaphyseal breadth and shape will remain uncertain (Leakey, 1978; Ruff, 

1995; but see Day and Molleson, 1976), it is still closer to other H. erectus femora than to 

Homo sp. and KNM-ER 1592. KNM-ER 736, which was initially described as an 

australopithecine (Leakey et al., 1972), but subsequently considered a member of the 

genus Homo (e.g. Day, 1976a, b; Ruff and Walker, 1993), shares a close proximity to 

KNM-ER 1472, a likely member of the genus Homo. Although it has also been suggested 

that KNM-ER 736 may represent H. erectus (McHenry, 1991; Franciscus and Holliday, 

1992; Grine et al., 1995; Antόn, 2003), results from this study cannot confirm or refute 

the species status of KNM-ER 736. It is, however, closer to KNM-ER 1592, a purported 

paranthropine, than to H. erectus femora. Ruff (1995) found that the proximal femoral 

cross-sectional morphology of KNM-ER 736 was similar to early Homo, which suggests 

an affinity with Homo rather than with Paranthropus. McHenry (1994) suggested a 

taxonomic allocation of KNM-ER 736 to Hominidae gen. et. sp. indet. Results from this 

study support a likely allocation of KNM-ER 736 to the genus Homo based on midshaft 

femoral cross-sectional properties, which supports the proximal femoral analyses by Ruff 

(1995).

 KNM-ER 1807 has been allocated to both Homo and Paranthropus (Day et al., 

1976;  McHenry, 1991). Its closest affinity is with KNM-ER 1592, a possible 

paranthropine. Since no definitive paranthropine midshaft femora were examined, it is 

not possible to conclude with confidence that KNM-ER 1807 is closer to Paranthropus 

than to Homo. KNM-ER 1807 is also close to KNM-ER 736 and KNM-ER 1472, both, 

especially the latter, considered likely members of the genus Homo. The taxonomic 

identity of KNM-ER 1807 cannot be resolved with confidence based on midshaft femoral 

142



cross-sectional morphology, but given its clustering with modern and fossil Homo, and 

the results from the DFA, it may tentatively be considered as Homo sp., or, more 

conservatively, as Hominidae gen. et. sp. indet. 

 KNM-ER 1472 is generally regarded as a member of the genus Homo. Like 

KNM-ER 1807, however, its closest proximity is with KNM-ER 1592, but it is also close 

to KNM-ER 736. Howell (1978) suggested that KNM-ER 1472 may represent H. habilis 

sensu lato, and Wood (1992a) suggested an affinity with H. rudolfensis. Since femora 

confidently attributed to these taxa are not well-represented in the fossil record, it is not 

possible to determine if the femoral cross-sectional morphology of KNM-ER 1472 is H. 

habilis-like or H. rudolfensis-like. However, if OH 62 is indeed representative of H. 

habilis, it is unlikely that KNM-ER 1472 is also representative of that species based on 

cross-sectional morphology, although it is possible that there is locomotor behavioral 

variability within H. habilis as potentially represented by KNM-ER 1472 and OH 62. The 

results from this study suggest an attribution of KNM-ER 1472 to the genus Homo, but 

its species designation is unclear.

 It is possible that KNM-ER 1592 is not a representative of Paranthropus, at least 

as reflected by its midshaft femoral cross-sectional properties. Its stratigraphic location is 

not useful for taxonomic purposes since Homo and non-Homo species are found in the 

KBS Member of the Koobi Fora Formation in East Lake Turkana (Leakey, 1973a; 

Leakey and Walker, 1985; Feibel et al., 1989). Its closest proximity is to KNM-ER 1807, 

a possible Homo, and KNM-ER 1472, a likely Homo. Moreover, like the other Homo/

Homo(?) femora, KNM-ER 1592 is most distant from OH 62. Pairwise group 

comparisons for the last step are not significantly different between KNM-ER 1592 and 

modern humans, and KNM-ER 1592 and H. erectus. Finally, KNM-ER 1592 was 

misclassified as modern human in the DFA cross-validation classification. The cluster 

analysis and DFA strongly suggest that KNM-ER 1592 may not be a representative of 

Paranthropus, or that midshaft femoral cross-sectional properties in Paranthropus, at 

least as represented by KNM-ER 1592, and Homo are similar. It is important to note that 

the section location for KNM-ER 1592 was taken at ~43% of the diaphysis based on an 
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estimated femur length of 470 mm by McHenry (1991). It is therefore possible that 

incompatible section locations may be contributing to the seemingly Homo-like cross-

sectional morphology in KNM-ER 1592. However, Sládek et al. (2010) found that 

femoral bending strength, and to some degree cortical area, in the midshaft femur of 

modern humans were accurately estimated even when the section location was 

inaccurately located (midshaft was considered being anywhere from 40-60% of bone 

length). Since definite paranthropine midshaft femora were not examined in the current 

study, it is not possible to exclude KNM-ER 1592 from Paranthropus with confidence.  

KNM-ER 1592 may be best left unclassified until it can be compared with taxonomically 

secure specimens.

 The cluster analysis indicates that OH 62 is the most distinct femur compared to 

the other fossil femora. Its closest proximity is to KNM-ER 1807, but it is still more 

distant from KNM-ER 1807 than any other fossil femur is from each other. While all 

fossil femora clustered with modern humans, OH 62 was the only femur to form a cluster 

on its own. Results from the DFA, however, do not suggest that OH 62 is particularly 

aberrant from Homo. Since the full range of variation in Plio-Pleistocene hominin 

midshaft femoral cross-sectional geometry is currently unknown, it is possible that OH 

62 may be a Homo outlier, may not be a representative of Homo, or may indeed be a 

representative Homo, but of a species that was not an obligate terrestrial biped. Unlike 

many of the fossil samples in this study, OH 62 is an associated skeleton and its 

allocation to the genus Homo was partly based on craniodental evidence (Johnson et al., 

1987), albeit this assignment has been questioned (Wood, 1992a, b, 1996; Wood and 

Collard, 1999a, b). If OH 62 is to remain in the genus Homo, then the behavioral 

attributes of its members, at least in terms of locomotion, may need to be redefined to 

possibly include non-committed bipeds. 
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CONCLUSION

 The findings from this study are summarized as follows: (1) proximal femoral 

cross-sectional properties in KNM-ER 999a and KNM-ER 1481a are consistent with 

their taxonomic allocations to the genus Homo; (2) proximal femoral cross-sectional 

properties in KNM-ER 1500d, SK 82 and SK 97 are consistent with their taxonomic 

allocations to a non-Homo genus; (3) proximal femoral cross-sectional properties in 

KNM-ER 738, which is taxonomically ambiguous, are more similar to Paranthropus 

femora (i.e. KNM-ER 1500d, SK 82 and SK 97) than to modern and fossil Homo femora, 

although its taxonomic status cannot be definitively resolved based on its proximal 

femoral cross-sectional properties because it also shares a close similarity to KNM-ER 

1481a (Homo sp.); (4) the spatio-temporal continuity among paranthropine proximal 

femora with regard to external morphology is also found with regard to proximal femoral 

cross-sectional morphology; (5) midshaft femoral cross-sectional properties in H. erectus 

femora are more similar among each other than to other fossil Homo sp. femora; (6) 

midshaft femoral cross-sectional properties in KNM-ER 1472 are consistent with its 

taxonomic allocation to the genus Homo; (7) midshaft femoral cross-sectional properties 

in OH 62 are not consistent with its taxonomic assignment to the genus Homo based on 

the cluster analysis, but are not atypical of Homo based on the DFA, which either 

indicates that the species represented by OH 62 (i.e. H. habilis) is not a representative of 

Homo or that there is a lot of variability in early Homo midshaft femoral cross-sectional 

morphology, and in turn, locomotor behavior; (8) midshaft femoral cross-sectional 

properties in KNM-ER 736 and KNM-ER 1807, which are taxonomically debatable, are 

consistent with modern and fossil Homo (excluding OH 62); and (9) midshaft femoral 

cross-sectional properties in KNM-ER 1592, a purported paranthropine, are similar to 

those in modern and fossil Homo (excluding OH 62), which either suggests that it is not a 

representative of Paranthropus, that midshaft femoral cross-sectional properties in 

Paranthropus and fossil Homo are similar or that the single paranthropine individual is 

not distinguished from Homo based on midshaft femoral cross-sectional morphology. As 

more fossil femora become available for analyses, cross-sectional morphological 
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comparisons between taxonomically secure samples and taxonomically ambiguous 

samples may help lend insight into the taxonomic identities of the latter, as well as 

support or challenge the results presented in the current study. 

 Revelations from the hominin fossil record are made piecemeal. In turn, the 

taxonomic shuffling and reshuffling of fossil material has almost become a common 

practice. The disconnect between taxonomically classifying a hominin species largely by 

craniodental morphology, but interpreting mode of locomotion from postcranial elements, 

which are often fragmentary and isolated, has hindered reconstructions of locomotor 

behavior in several hominin groups. As many researchers have noted, some 

corresponding postcranial elements attributed to Paranthropus and early Homo, including 

H. habilis, are morphologically similar, and morphological resemblance has been used to 

cast doubt on the taxonomic status or justify the taxonomic reshuffling of certain 

postcranial fossils (e.g. Day, 1976a; Grausz et al., 1988; Lague and Jungers, 1996; Wood, 

2000; Gebo and Schwartz, 2006). Wood and Constantino (2007) have suggested a more 

conservative approach with regard to the taxonomic affinities of several isolated 

postcranial remains. They argued that the Australopithecus-like postcranial material from 

Olduvai Gorge and Koobi Fora (e.g. OH 62 and KNM-ER 1500) should, for the time 

being, be classified simply as Hominini gen. et sp. indet. instead of arbitrarily attempting 

to classify them, which only propels taxonomic confusion. 

 Locomotion is the primary means by which a species interacts with its 

environment, and thus, it is an invaluable attribute for reconstructing and defining the 

adaptive zone of a genus (Mayr, 1950). If members of a genus are expected to occupy the 

same or similar adaptive zone, then, at the very least, locomotor behavior should be 

relatively homogeneous among its species, and somewhat different from species of 

another genus (Wood and Collard, 1999b; Cela-Conde and Ayala, 2003). The degree of 

locomotor behavioral difference between and among genera, however, is vulnerable to 

subjective interpretation (Cela-Conde and Ayala, 2003). Wood and Collard (1999b:71) 

argued that members of the genus Homo should have “a postcranial skeleton whose 
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functional morphology is consistent with modern human-like obligate bipedalism and 

limited facility for climbing.” The definition of “limited”, however, is unclear.

 While cross-sectional morphology by itself is inappropriate for taxonomic 

identification, the information that can be cautiously gleaned from it with regard to broad 

locomotor behavior has taxonomic relevance. The use of cross-sectional morphology 

with other lines of morphological and behavioral evidence may help elucidate the 

taxonomic status, at least to the genus level, of many isolated fossil hominin femora.
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CHAPTER IV

FEMORAL CROSS-SECTIONAL MORPHOLOGY AND MECHANICAL 
LOADING IN PLIO-PLEISTOCENE HOMININS: IMPLICATIONS FOR 

LOCOMOTION
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 The first hominin to display anatomical traits fully consistent with the modern 

human form of obligate terrestrial bipedalism was Homo erectus nearly 1.8 mya (Walker 

and Leakey, 1993; McHenry and Coffing, 2000; Antón, 2003; Bramble and Lieberman, 

2004; Polk, 2004; Lordkipanidze et al., 2007), and most certainly by ~1.5 mya (Bennett 

et al., 2009). Pre-H. erectus hominins retain some anatomical evidence of ancestral 

adaptations to arborealism with increasing adaptations to terrestrial bipedalism over time 

(Robinson, 1972; Susman and Creel, 1979; Oxnard and Lisowski, 1980; Susman and 

Stern, 1982; Stern and Susman, 1983; Susman et al., 1984; Susman and Brain, 1988; 

Duncan et al., 1994; Clarke and Tobias, 1995; Leakey et al., 1995; Berger and Tobias, 

1996; Asfaw et al. 1999; Kidd, 1999; Aiello and Andrews, 2000; Pontzer et al., 2010). 

The amalgamation of ancestral and derived traits, and the mosaic nature of human 

evolution, have made reconstructing locomotor behavior difficult among early hominin 

groups since it is challenging to tease apart morphological traits of functional significance 

from those that are vestigial and non-functional.

 A biomechanical approach may help clarify questions regarding the locomotor 

behavior of early hominin groups (e.g. Ruff et al., 1993; Grine et al., 1995; Ohman et al., 

1997; Ruff et al., 1999; Ruff, 2009; Kuperavage and Eckhardt, 2009; Pontzer et al., 

2010). Since osseous tissue responds to habitual, dynamic mechanical loading throughout 

life, the functional usage of skeletal elements is essentially recorded in bone structure 

(Enlow, 1963; Frost, 1964, 1988, 1998; Huiskes, 1982; Currey, 1984; Martin and Burr, 

1989; Rubin et al., 1990; Turner, 1998; Skerry, 2000; Ruff et al., 2006). Dynamic 

mechanical loading, particularly in weight-bearing bones, stimulates bone modeling and 

remodeling, which subsequently influences the cross-sectional geometry of a bone (Frost, 

1964; Woo et al., 1981; Lanyon and Rubin, 1984; Lanyon, 1987; Martin and Burr, 1989; 

Biewener et al., 1996; Sumner and Andriacchi, 1996). Long bone cross-sectional 
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properties can be examined to reconstruct mechanical loading patterns, which can then be 

used to yield insight into broad locomotor behaviors. There certainly is value in exploring 

locomotion and locomotor variability in the hominin fossil record since locomotor 

behavior can be used to construct general models regarding hominin behavioral ecology, 

which bear directly on food procurement strategies, physical and physiological 

adaptations and interspecific relationships within an ecological community.

 This study investigates cross-sectional properties in the femoral diaphysis of Plio-

Pleistocene hominins to determine if mechanical loading patterns are consistent with 

modern human-like locomotion, Pan-like locomotion or intermediate locomotor 

behavior. A wide range of variation in cross-sectional morphology and loading patterns 

may be associated with a single broad locomotor category, or the biomechanics of 

different modes of locomotion may vary little from each other such that mechanical 

signals overlap (e.g. D’Août et al., 2004; Preuschoft, 2004). However, given what is 

known about loading patterns in modern humans and Pan, expectations can be proposed 

for fossil hominins. 

 Quadrupedal knuckle-walking is the primary mode of locomotion in Pan, but 

acrobatic arm-swinging, arm-hanging, suspension, vertical climbing and quadrumanous 

climbing are also part of the Pan locomotor repertoire (Hunt, 1991, 1992; Schmitt, 2003).  

Quadrupedal walking in Pan involves a diagonal footfall sequence, diagonal couplets gait 

where a forelimb footfall follows the contralateral hindlimb footfall such that 

contralateral forelimb-hindlimb pairs are related in time (Schmitt, 2003; D’Août et al., 

2004). Chimpanzees and bonobos tend to gallop quadrupedally at high velocities rather 

than trot (Schmitt, 1999; D’Août et al., 2004; Preuschoft 2004). Trotting may be an 

energetically inefficient gait since it leads to high peak stresses on the limbs and high 

moments of inertia about the hip (D’Août et al., 2004). 

 Although chimpanzees and bonobos frequently engage in short bouts of bipedal 

locomotion (e.g. Van Lawick-Goodall, 1968; Susman et al., 1980; McGrew et al., 1981; 

Stanford, 2002), there are significant biomechanical contrasts that differentiate modern 

human and Pan bipedalism, which mainly arise from morphological differences between 
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the two groups1 (e.g. Thorpe et al., 2004). Members of the genus Pan are unable to fully 

extend the lower limb (i.e. simultaneously extend the hip and knee) and stabilize the knee 

joint when standing erect (Berge, 1994; Li et al., 1996; Crompton et al., 1998; D’Août et 

al., 2002; Schmitt, 2003; Sockol et al., 2007). The flexed knee position in Pan precludes 

toe-off and heel-strike during the swing phase of the gait cycle, which results in a 

“shuffling” movement (Schmitt, 2003; Lewin, 2005; Harcourt-Smith, 2007). Since the 

lower limbs are flexed and the trunk is bent forward, the center of mass in Pan is placed 

anterior to the hip joint, which increases the moment arm of the ground reaction force and 

subsequently generates large external flexion moments (Preuschoft, 2004; Sockol et al., 

2007). Body posture generally remains stable in Pan during bipedal gait because the 

center of mass is in a relatively constant position (Schmitt, 2003; Skoyles, 2006). The 

inclined position of the pelvis and the convex-curved vertebral column, as opposed to the 

S-shaped spine in modern humans, also constrains fully erect body posture, and thus fully 

erect bipedalism, in Pan (D’Août et al., 2002). 

 Modern human bipedal gait is characterized by two distinct phases: the stance 

phase and the swing phase (Lewin, 2005; Harcourt-Smith, 2007) (Fig. 1). Humans are 

able to fully extend the lower limb and stabilize the knee joint when standing erect, which 

minimizes the amount of muscle force acting on the lower limbs to support the body and 

allows toe-off and heel-strike during the swing phase of the gait cycle (Alexander and 

Jayes, 1978; Lovejoy, 1988; Bramble and Lieberman, 2004; Skoyles, 2006; Sockol et al., 

2007; Richmond and Jungers, 2008). The total weight of the upper body (i.e. the head, 

trunk and arms) is transmitted throughout the vertebral column and pelvis onto the lower 

limbs when standing erect (Volpato et al., 2008). The center of mass alternately shifts 

towards the supporting leg in human bipedalism, which creates cyclical periods of 

instability (Cavagna et al., 1977; Lewin, 2005). However, the center of mass does not 

need to laterally shift a great distance during alternating swing- and stance-phases since 

the feet are placed almost directly beneath the body at midline because of the femoral 
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attempt to quantify the significance (if any) of these differences (Aerts et al., 2000; D’Août et al., 2004).



valgus angle (Tardieu and Trinkaus, 1994; Lewin, 2005; Harcourt-Smith, 2007; 

Richmond and Jungers, 2008). Contraction of the gluteal abductors on the hip entering 

the stance phase counteracts collapse during the single-support phase (Duda et al., 1997; 

Bramble and Lieberman, 2004). Experimental evidence suggests that during the single-

support phase of human walking, contraction of the abductor complex generates strong 

axial compression in the femoral neck, which is subsequently transferred to the proximal 

femur and down the femoral diaphysis (Carter et al., 1989; Duda et al., 1997; Kalmey and 

Lovejoy, 2002). 

Figure 1. Human gait cycle at normal walking speed (~4.8 km/hr). Adapted from Uustal and 
Baerga, 2009. Illustration by Carson Schneck, M.D. http://www.ncbi.nlm.nih.gov/bookshelf/
br.fcgi book=physmedrehab&part=A8414.
 

 These kinesiological contrasts result in the characterization of modern human 

bipedalism as an energy-efficient inverted pendulum motion and Pan bipedalism as a 

compliant, “bent-hip, bent-knee” gait (Cavagna et al., 1977; Alexander, 1991; Li et al., 

1996; Crompton et al., 1998; D’Août et al., 2002; Schmitt, 2003; Bramble and 

Lieberman, 2004; Skoyles, 2006). The inverted pendulum motion in modern humans 

refers to the up and down movement of the center of mass, which is highest at midstance 

and lowest at double support (D’Août et al., 2002; Schmitt, 2003; Bramble and 

Lieberman, 2004; Skoyles, 2006). As the center of mass vaults over the extended leg 
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during the stance phase, potential and kinetic energy are exchanged. Forward kinetic 

energy is exchanged for gravitational potential energy between heel-strike and mid-

stance, and gravitational potential energy is exchanged for forward kinetic energy 

between mid-stance and toe-off (Bramble and Lieberman, 2004; Kuo et al., 2005; 

Skoyles, 2006). In compliant gait, the center of mass is maintained in a fixed position 

because of the bent-hip and bent-knee posture, and kinetic and potential energies are not 

exchanged (D’Août et al., 2002; Schmitt, 2003; Skoyles, 2006). In addition, compliant 

walking in Pan requires hindlimb muscles to exert larger moments at the joints for the 

same ground reaction force as in modern human bipedalism (Thorpe et al., 2004). Despite 

the mechanical differences between modern human and Pan bipedalism, spatio-temporal 

bipedal gait characteristics (e.g. step length, stride length, stride frequency), are very 

similar between the groups at comparable speeds (Aerts et al., 2000).

 Given the biomechanical differences in bipedal gait between modern humans and 

Pan, expectations about loading patterns can be predicted. Axial strength is expected to 

be greater relative to bending and torsional strength in modern human femora compared 

to Pan femora because of the reaction forces experienced during fully-extended erect 

posture and gait, and because of the muscle actions, particularly of the abductor complex, 

around the hip joint. Pan femora are expected to be characterized by a decrease in axial 

strength relative to average bending and torsional strength since multi-oriented bending 

loads, and dynamic and propulsive movements tend to be associated with quadrupedal 

locomotion and arborealism (Ruff and Runestad, 1992; Kimura, 1995; Demes et al., 

2001; Kalmey and Lovejoy, 2002; Carlson, 2005; Marchi, 2007). In addition, the flexed 

hindlimb in Pan should act to increase bending moments, particularly at the femoral 

midshaft (Polk et al., 2000). 

 Femoral neck length determines the moment arm of the anterior gluteal muscles 

during the pelvic support phase of bipedal gait (Lovejoy et al., 2002). A long femoral 

neck acts to decrease hip joint and abductor loading because to maintain equilibrium 

during the single-support phase of modern human gait, the two moments about the hip 

(i.e. body weight times body weight moment arm, and abductor force times abductor 
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moment arm) must cancel each other out (Ruff, 1995). At the same time, however, an 

increase in bending moments along the femoral diaphysis occurs because as neck length 

increases, the femoral diaphysis is moved more laterally relative to the center of the 

femoral head (Lovejoy, 1988; Ruff, 1995). As a result, the iliotibial band (i.e. the lateral 

tension band of the knee that extends along the lateral femoral diaphysis) must exert a 

force to maintain equilibrium about the knee joint (Lovejoy, 1988; Ruff, 1995). In 

addition, more laterally flared ilia and greater biacetabular breadth in modern humans 

compared to Pan leads to an increase in bending strength in the medio-lateral (M-L) 

plane of the femoral diaphysis since it is laterally displaced (Lovejoy et al., 1973; Ruff, 

1995). Thus, modern humans should show greater bending strength in the M-L plane 

relative to the antero-posterior (A-P) plane along the femoral diaphysis compared to Pan 

since modern humans have relatively longer femoral necks and more platypelloid pelves 

than Pan. 

 Many researchers have interpreted the primitive retention of ape-like traits in 

Paranthropus as functionally significant (Jungers and Stern, 1983; Stern and Susman, 

1983; Susman et al., 1984; Grine and Susman, 1991; Ward, 2002). Conversely, Lovejoy 

et al. (1973:778) argued that paranthropine proximal femoral morphology indicated 

biomechanical patterns “fully commensurate with erect striding as is that of modern 

man.” While debate continues regarding the nature and degree of paranthropine 

bipedalism and the significance of arborealism in their locomotor repertoire, several lines 

of evidence suggest that the mode of locomotion in Paranthropus included both a 

rudimentary form of terrestrial bipedalism as well as a strong arboreal component (Day, 

1969; Jolly, 1970; Leakey, 1971, 1972; Robinson, 1972; McHenry, 1975a, b; Grine, 1988; 

Susman and Brain, 1988; Susman, 1989; Harcourt-Smith and Aiello, 2004; Susman and 

deRuiter 2004; Gebo and Schwartz, 2006). If femoral cross-sectional morphology in 

Paranthropus is more human-like than Pan-like, then it is likely that their mode of 

locomotion was kinematically more akin to our own, as some researchers have suggested 

for the earliest hominins (e.g. McHenry, 1975a, b; Lovejoy, 1988; Latimer and Lovejoy, 

1989; Latimer, 1991; Lovejoy et al., 2001; Ward, 2002; Nagano et al., 2005). If femoral 
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cross-sectional morphology in Paranthropus is more Pan-like than human-like, then their 

mode of locomotion was probably kinematically distinct from ours (e.g. Oxnard, 1975; 

Stern and Susman, 1983; Susman et al., 1984; Ruff et al., 1999; Stern, 2000). In 

laboratory studies, modern humans who engaged in compliant bipedalism (i.e. Pan-like 

bipedalism) showed longer stride lengths, faster maximum walking speeds, lower peak 

vertical forces and improved impact shock attenuation relative to controls who engaged 

in normal walking (Yaguramaki et al., 1995; Schmitt et al., 1996). Thus, it has been 

argued that compliant bipedalism may have been advantageous for small-bodied Plio-

Pleistocene hominins (Schmitt, 2003).

 The mode of locomotion in members of the genus Homo is defined as obligate 

terrestrial bipedalism (Leakey et al., 1964; Wood and Collard, 1999a, b). It has been 

suggested, however, that early Homo (i.e. pre-H. erectus) shares several postcranial 

morphological traits with pre-Homo hominins which do not indicate a commitment to 

terrestrial bipedalism (Day and Wood, 1968; Day, 1976a, b; Oxnard and Lisowski, 1980; 

Susman and Brain, 1988; Clark and Tobias, 1995; Kidd et al., 1996; McHenry and 

Coffing, 2000; Gebo and Schwartz, 2006; Harcourt-Smith, 2007; Pontzer et al., 2010). 

For instance, Gebo and Schwartz (2006:510) proposed that the well-curved medial 

trochlear rims of the OH 8 foot, which is attributed to H. habilis, indicated an adaptation 

to “movements or postures, such as those used during arboreal activities”, and further 

suggested that its closest functional morphological affinities were with tali attributed to 

Paranthropus. 

 Limb proportions in more complete early Homo skeletons may not indicate a 

commitment to terrestrial bipedalism (e.g. McHenry and Berger, 1998a, b; Richmond et 

al., 2002). Haeusler and McHenry (2004:460) suggested “the earliest species of the genus 

Homo [OH 62 and KNM-ER 3735] possessed an elongated hindlimb relative to that of 

Australopithecus africanus and A. afarensis, whereas the forelimb probably retained 

brachial proportions with long forearms.” Relatively long hindlimbs may have been an 

adaptation to more energy efficient long distance terrestrial travel, whereas long forelimb 

proportions and the shoulder joint morphology, particularly in KNM-ER 3735, may 
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indicate adaptations to arborealism (Haeusler and McHenry, 2004; Haeusler and 

McHenry, 2007). According to Harcourt-Smith (2007:1504), the most “conservative 

estimate of the locomotor behavior of H. habilis would place it between the habitual 

bipedalism of the australopiths and the obligate bipedalism of H. ergaster [H. erectus] 

and later species of Homo.”

 If femoral cross-sectional morphology in early Homo and Homo sp. femora is 

more similar to patterns in modern human femora than to patterns in Pan femora, then it 

is likely that their mode of locomotion was kinematically commensurate with human-like 

bipedalism. However, if femoral cross-sectional morphology in early Homo femora is 

more similar to patterns in Pan femora than to patterns in modern human femora, then it 

is possible that their mode of locomotion was kinematically distinct from ours. This may 

indicate that the sample is misclassified as Homo or that all members of the genus Homo 

cannot be characterized as committed bipeds per Leakey et al. (1964) because there is 

variation in locomotor behavior in the Homo lineage.

 A final consideration is that human-like gait characteristics may be accomplished 

without phylogenetic morphological modifications. An important study by Hirasaki et al. 

(2004) demonstrated that the kinematics of human bipedalism could be attained, to a 

certain degree, in Japanese macaques trained to stand and walk bipedally. Wild macaques 

occasionally walk bipedally, but, as with Pan, their bipedal gait is mechanically different 

from that in modern humans (Hirasaki et al., 2004). Compared to the control group, the 

trained macaques were able to walk with longer, less-frequent strides primarily because 

of the adoption of a relatively more extended hindlimb (i.e. extended hip and knee) 

(Hirasaki et al., 2004). Most importantly, the bipedally trained macaques were able to 

efficiently transfer potential and kinetic energy (i.e. inverted pendulum mechanics), 

which is one of the key characteristics of human bipedalism (Hirasaki et al., 2004; Kuo et 

al., 2005). In a related study, Volpato et al. (2008) found that the characteristics of the 

trabecular bony network in the ilia and proximal femora of a bipedally trained Japanese 

macaque were consistent with functional adaptations to an increase in compressive loads 

compared to non-bipedal, wild macaques. These loads were transmitted back and forth 

166



along the axis from the sacro-iliac joint towards the coxo-femoral joint (Volpato et al., 

2008). Thus, while anatomical adaptations for bipedalism would likely be selected only if 

that behavior was consistently employed (Lovejoy, 1988), it is possible that the earliest 

hominins without the suite of morphological traits indicative of a full commitment to 

terrestrial bipedalism (i.e. modern human-like bipedalism) were able to walk, at least on 

occasion, in a similar mechanical fashion as modern humans. Evidence for this should be 

recognizable in the femoral cross-sectional geometry since bone tissue responds to 

habitual, mechanical loading throughout life.

MATERIALS AND METHODS 

 A selection of fossil hominin femora housed at the National Museums of Kenya in 

Nairobi were included in this study (Table 1)2. Samples were chosen if enough of the 

diaphysis was preserved so that proximal or midshaft section locations could be 

approximated based on estimated maximum femur length and/or morphological 

landmarks, and if at least one natural break in the subtrochanteric and/or estimated 

midshaft region of the diaphysis perpendicular to the longitudinal axis was present so that  

cortical wall thicknesses could be directly measured on the fossil.
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ER 1500d, OH 62). Taxonomic attributions are based on the original descriptions of the material, but other 
taxonomic assignments are listed followed by a question mark. Original taxonomic assignments to 
Australopithecus (robust) are replaced with the genus name “Paranthropus” following Robinson (1972), 
Wood and Constantino (2007) and Wood and Lonergan (2008).



Table 1. Fossil samples. 

Samplea Section Side Est. age 
(mya)

Taxonomic 
attribution Referenceb

KNM-ER 736 midshaft L 1.5-1.7 P. (cf. boisei)/Homo/ 
H. erectus? 1

KNM-ER 738 proximal L ~1.8 Paranthropus/Homo? 1

KNM-ER 815 proximal L 1.77 > 0.10 Paranthropus? 18

KNM-ER 999a proximal L ~0.75 ± 0.02
~0.5-0.1

Homo sp. indet./H. erectus?/
late archaic H. sapiens? 2, 3, 4

KNM-ER 1472 midshaft R 1.89 ± 0.05 Homo sp. 5

KNM-ER 1481a proximal L 1.89 Homo sp./H. (cf. erectus?)/
H. habilis/H. rudolfensis 5, 6, 7, 8, 9

KNM ER 1500d proximal R 1.88-2.2 P. boisei 9, 10

KNM-ER 1592 midshaft R 1.85 Paranthropus? 11

KNM ER 1807 midshaft R 1.5-1.6 H. (cf. erectus)?/P. boisei? 10

KNM-ER 1808 midshaft L 1.69 H. erectus 11

KNM-WT 15000 midshaft R/L c 1.53-1.65 H. erectus 12

OH 20 proximal L 1.66-1.79 P. boisei 14, 17

OH 34 midshaft L 0.8-1.15 Homo sp. indet./H. erectus? 13, 14

OH 62 midshaft L 1.75-1.85 H. habilis 15

SK 82 proximal R 1.6-1.8 P. robustus 16

SK 97 proximal R 1.6-1.8 P. robustus 16
a Data for all samples are from this study except KNM-WT 15000, KNM-ER 1808, OH 62, SK 82 and SK 
97 (Ruff et al., 1999; Ruff, 2008, Ruff, 2009).
b 1. Leakey et al. (1972); 2. Day and Leakey (1974); 3. Bräuer et al. (1997); 4. Trinkaus (1993); 5. Day et 
al. (1975); 6. Wood (1992b); 7. Trinkaus (1984); 8. Kennedy (1983a); 9. Leakey (1973); 10. Day et al., 
(1976); 11. Leakey and Walker (1985); 12. Brown et al. (1985); 13. Day and Molleson (1976); 14. Leakey 
(1978); 15. Johanson et al. (1987); 16. Napier (1964); 17. Day (1969); 18. Leakey (1972).
c Cross-sectional data are averaged from the right and left femora as reported by Ruff (2008).

Hominin proximal femora

 Proximal hominin femora examined in this study include KNM-ER 738, KNM-

ER 1500d, KNM-ER 815, OH 20, SK 82, SK 97, KNM-ER 999a and KNM-ER 1481a. 

The former six are representatives of Paranthropus, and the latter two are considered 

Homo sp. 
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 Paranthropus. The head, neck, lesser trochanter and approximately 88 mm of the 

diaphysis below the distal margin of the lesser trochanter is preserved in KNM-ER 738. It 

was recovered from the KBS Channel Complex within the KBS Member of the Koobi 

Fora Formation in Area 105, and was initially attributed to the robust australopithecines 

(Leakey et al., 1972; Feibel et al., 1989). However, its taxonomic status has been referred 

to in the published literature as Homo/A. (P.) boisei?, Australopithecus?, P. boisei, 

Australopithecus (robust) sp. (e.g. Geissmann, 1986; McHenry, 1988, 1991; Jungers, 

1988; Ruff et al., 1999). KNM-ER 1500d is part of an associated skeleton recovered from 

the Upper Burgi Member of the Koobi Fora Formation below the KBS Tuff in Area 130 

(Leakey, 1973a; Feibel et al., 1989). It was initially allocated to the robust 

Australopithecus genus and is generally regarded as the only associated skeleton 

representative of P. boisei (Leakey, 1973a; Day, 1976b; Grausz et al., 1988; McHenry, 

1994; but see Wood and Constantino, 2007). KNM-ER 815 is a left femur lacking the 

femoral head (Leakey, 1972). It was recovered from the KBS Member of the Koobi Fora 

Formation in Area 10, but its exact stratigraphic position within the member cannot be 

made more precisely (Leakey, 1972; Feibel et al., 1989). It was initially attributed to the 

robust australopithecine genus (Leakey, 1972; Leakey and Walker, 1973; Howell, 1978). 

 OH 20 is a proximal left femur lacking the femoral head and the tips of the greater 

and lesser trochanters (Day, 1969). It was recovered at the HWK site at Olduvai Gorge, 

and its inferred stratigraphic position is from lower Bed II (Leakey, 1978). OH 20 was 

assigned to the robust australopithecines (Paranthropus cf. boisei) largely because of its 

morphological affinities to SK 82 and SK 97 (Day 1969, 1976a; Leakey, 1978; Wood and 

Constantino, 2007).

 SK 82 and SK 97 are proximal right femora recovered from the Hanging Remnant 

of Member 1 at Swartkrans, and are attributed to P. robustus (Napier, 1964; Robinson, 

1972; McHenry, 1988). The date of the Hanging Remnant deposit, based on bovid and 

suid correlations from East African sites, is estimated to be ~1.5 to 1.8 mya (Brain, 1988; 

Grine, 1988) or ~1.0-1.8 mya (Brain, 1993). However, because local carnivores could 

have used the cave site as a lair or den for hundreds or thousands of years, and because 

169



the chronology of the site is not well understood, it may be misleading to assume that the 

faunal and hominin assemblages were deposited simultaneously and thus associated 

(Broom and Schepers, 1978; Brain, 1988). According to Grine (1989), more than 95% of 

the craniodental material in Member 1 can be attributed to P. robustus, albeit Homo 

material has also been recovered from the site (Susman, 1993; Grine et al., 1996; Susman 

et al., 2001). Thus, although SK 82 and SK 97 could potentially represent members of the 

genus Homo, it is unlikely given their lack of morphological resemblance to Homo 

femora (Day, 1969; McHenry and Corruccini, 1976; Wood and Constantino, 2007; 

Harmon, 2009). Cross-sectional properties for SK 82 and SK 97 are taken from Ruff et 

al. (1999).

 Homo sp. KNM-ER 999a is an almost complete left femur recovered in Area 6a 

at Ileret, East Lake Turkana (Day and Leakey, 1974) The femur is believed to have 

derived from 9-11 m from the base of the Guomde Formation (now part of the Chari 

Formation) (Leakey et al., 1978; Brown and Feibel, 1986). The Silbo Tuff, which lies 

within the Guomde Formation, has been dated to 0.74 ± 0.01 mya (McDougall, 1985) and 

0.75 ± 0.02 mya (McDougall and Brown, 2006). Since these later deposits are 

undifferentiated, it is possible that KNM-ER 999a is of Middle or initial Late Pleistocene 

age, or even early Holocene age (Feibel et al., 1989). Bräuer et al. (1997) suggested that 

KNM-ER 999a was from the Galana Boi Formation, and, based on gamma ray 

spectroscopy, may be as young as 301,000 ±  96,000 BP. The uncertain stratigraphic 

provenience of the femur has confounded its taxonomic affiliation. Day and Leakey 

(1974) attributed KNM-ER 999a to Homo sp. indet., and Wolpoff (1980) allocated it to 

H. erectus. According to Trinkaus (1993), KNM-ER 999a is morphologically aligned 

with early modern humans, particularly from the Levant. Based on uranium-series dating, 

which suggests that the femur may be as young as 300 kya, Bräuer et al. (1997) argued 

that KNM-ER 999a may be an early representative of a near-modern transitional or late 

archaic H. sapiens. KNM-ER 1481a is part of a well-preserved left femur recovered from 

the Upper Burgi Member of the Koobi Fora Formation in Area 131 (Day et al., 1975; 

Feibel et al., 1989). Leakey (1973) initially attributed it to Homo sp., but it has also been 
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suggested to represent H. erectus (Kennedy, 1983a), H. habilis (Trinkaus, 1984; Pontzer 

et al., 2010) and H. rudolfensis (Wood, 1992a, b). In this study, KNM-ER 999a and 

KNM-ER 1481a are simply considered as fossil Homo sp.

Hominin midshaft femora

 Midshaft hominin femora examined in this study include KNM-ER 736, KNM-

ER 1472, KNM-ER 1592, KNM-ER 1807, OH 62, OH 34, KNM-ER 1808 and KNM-

WT 15000. KNM-ER 1592 is considered a representative of Paranthropus, KNM-ER 

736, KNM-ER 1472, KNM-ER 1807 and OH 62 are considered representatives of Homo 

sp. and OH 34, KNM-WT 15000 and KNM-ER 1808 are considered representatives of H. 

erectus. 

 Paranthropus. KNM-ER 1592 is the distal half of a robust right femur, which 

preserves a strong pilaster and the distal articulation (Leakey and Walker, 1985). The 

femoral fragment is approximately 200 mm in length. It was recovered from the lower 

KBS Member of the Koobi Fora Formation below the Ileret Tuff in Area 12, and initially 

assigned to the robust australopithecus genus (Leakey, 1973a; Howell, 1978; Leakey and 

Walker, 1985; but see McHenry, 1992).

 Homo sp. KNM-ER 736 is a shaft fragment of a large left femur recovered from 

the Upper Member of the Koobi Fora Formation roughly 2-4 m below the projected level 

of the base of the Koobi Fora Tuff in Area 103 (Leakey et al., 1978). Leakey et al. (1972) 

described the specimen and tentatively assigned it to the Australopithecus (robust) genus. 

Day (1978) and Ruff and Walker (1993) advocated for its reassignment to the genus 

Homo, while others referred to it as a possible representative of H. erectus (McHenry, 

1991; Franciscus and Holliday, 1992; Grine et al., 1995; Antόn, 2003). KNM-ER 1472 is 

a well-preserved complete right femur recovered at Koobi Fora, Area 131 below the KBS 

Tuff (Leakey, 1973a, b; Day et al., 1975). Its preserved femoral morphology 

taxonomically aligns it with Homo (Leakey, 1973a, b; Day et al., 1975). KNM-ER 1807 

is a right femoral diaphysis, which is broken into two fragments approximately near the 

midshaft (Day et al., 1976). It was recovered from the Okote Member of the Koobi Fora 
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Formation above the Black Pumice Tuff in Area 103 (Feibel et al., 1989). It has been 

allocated to both Homo and Paranthropus (Day et al., 1976; McHenry, 1991). 

 OH 62 is a partial skeleton attributed by its discoverers to H. habilis (Johanson et 

al., 1987), albeit its allocation to the genus Homo has not been unanimously supported 

(e.g. Wood, 1992a, b, 1996; Wood and Collard, 1999a, b). Several lines of indirect 

evidence suggest that it derives from lower Bed I below Tuff ID and likely from the sand 

lens below Tuff IC, which would make it contemporary with material from the FLK 

(Zinjanthropus) level (~1.8 mya) (Johanson et al., 1987). Cross-sectional properties for 

the left femoral midshaft are taken from Ruff (2009). Scaled, digital photographs of the 

OH 62 femoral cast were used to measure section contours at a transverse natural break 

in the diaphysis, which roughly corresponds to the 50-65% section location of bone 

lengthʹ from the distal end (Ruff, 2009).

 H. erectus. H. erectus femora were included to represent Plio-Pleistocene 

obligate terrestrial bipeds. KNM-WT 15000 is a well-preserved associated skeleton of a 

male juvenile recovered in West Lake Turkana from the Natoo Member of the Nachukui 

Formation, and is dated between ~1.53-1.65 mya  (Brown et al., 1985; Feibel et al., 1989; 

Walker and Leakey, 1993). KNM-ER 1808, recovered from the KBS Member of the 

Koobi Fora Formation in Area 103, is an adult, possibly female, associated skeleton dated 

to ~1.69 mya (Walker et al., 1982; Leakey and Walker, 1985; Feibel et al., 1989). It has 

been suggested that KNM-ER 1808 suffered from a systemic pathology since most long 

bone surfaces are covered with coarse-woven bone (Walker et al., 1982). Although the 

exact diagnosis of the pathology is unknown, Walker et al. (1982) suggested that the bony 

reactions could have resulted from hypervitaminosis A. It is unclear if movement (e.g. 

locomotion) in KNM-ER 1808 was restricted and/or irregular because of the pathology. 

The pathological bone deposits and the original periosteal surface are readily discernible 

on broken sections, such that the amount of bone added by the pathological lesions can be 

separated from the true bone surface (Ruff, 2008). Cross-sectional properties for KNM-

WT 15000 and KNM-ER 1808 are taken from Ruff (2008). Multi-planar radiography was 

used to reconstruct endosteal contours (Ruff, 2008). Cross-sectional properties of the 
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right and left femora of KNM-WT 15000 were averaged, and the right femur was 

analyzed for KNM-ER 1808 (Ruff, 2008). It should be noted that KNM-WT 15000 is the 

only juvenile individual examined in this study. Since cross-sectional properties follow 

non-linear trajectories during growth and development, mechanical interpretations for 

this individual are interpreted in light of his age  (Ruff et al., 1994). 

 OH 34 is a left femoral diaphysis recovered from Bed III at the JK 2 West site 

(Kleindienst, 1973; Day and Molleson, 1976; Leakey, 1978). The head is abraded, and 

the greater and lesser trochanters and distal condyles are missing (Day and Molleson, 

1976). The diaphysis is broken near the approximated midshaft (Day and Molleson, 

1976). Day and Molleson (1976) and Leakey (1978) attributed the specimen to Homo sp. 

indet., but it is now generally regarded as a likely representative of H. erectus (Tobias, 

1991; Wood, 1992a, b; Antόn, 2003). 

Comparative samples

 To provide a comparative framework for the fossil samples, cross-sectional data 

were collected on samples of Pan and modern humans. The Pan sample consists of wild-

shot, adult males (n= 11) and females (n= 8) housed at the Natural History Museum of 

Los Angeles County and the Museum of Comparative Zoology (MCZ) at Harvard 

University (Table 2). Taxa were combined since it was previously shown that femoral 

cross-sectional properties were generally homogeneous among the groups (see Chapter 

II). Data from right femora were included in the analysis and the sexes were combined.

173



Table 2. Pan samples.

Samplea Sex Locality Species

LACM 30545 F Cameroon P. t. troglodytes

LACM 30546 M Cameroon P. t. troglodytes

LACM 30548 F Cameroon P. t. troglodytes

MCZ 15312 M Cameroon P. t. troglodytes

MCZ 19187 M Cameroon P. t. troglodytes

MCZ 20041 M Cameroon P. t. troglodytes

MCZ 23163 M Cameroon P. t. troglodytes

MCZ 23164 F Cameroon P. t. troglodytes

MCZ 23167 F Cameroon P. t. troglodytes

MCZ 25950 M Cameroon P. t. troglodytes

MCZ 26847 F Cameroon P. t. troglodytes

MCZ 26849 F Cameroon P. t. troglodytes

MCZ 48686 M Equatorial Guinea P. t. troglodytes

LACM 51240 F Uganda P. t. schweinfurthii

LACM 51239 M Uganda P. t. schweinfurthii

BOM 6244 M West Africa P. t. verus

MCZ 38018 M DRC b P. paniscus

MCZ 38019 F DRC P. paniscus

MCZ 38020 M DRC P. paniscus
a LACM= Natural History Museum of Los Angeles County, BOM and MCZ= Museum of Comparative 
Zoology, Harvard University.
b Democratic Republic of the Congo.

 A sample of modern human adults (n= 31), housed in the Department of 

Anthropology at the University of Western Ontario, serves as a comparative obligate 

bipedal sample (Table 3). The right femur was preferentially chosen over the left, but the 

latter was included if the right was absent. The sexes were combined in the analyses. 

There are two caveats with this sample. First, there is a sex bias towards males (n= 26 
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males, n= 5 females). Second, the sample is not from a single population, but rather is 

composed of individuals from either archaeological excavations or unknown provenience 

(see Chapter III for sample descriptions). Despite the heterogeneous nature of the 

collection, mechanical loading in the lower limbs should reflect patterns consistent with 

committed bipedalism. 

Table 3. Modern human samples.

Samplea Sex Provenience Side

Stirrup Court 3 F 19th century peri-urban settlement R

Stirrup Court 10 M 19th century peri-urban settlement R

Stirrup Court 14 M 19th century peri-urban settlement R

Stirrup Court 17 M 19th century peri-urban settlement R

Stirrup Court 20 M 19th century peri-urban settlement R

Odd Fellows 1 M unknown R

Odd Fellows 2 M unknown R

Odd Fellows 3 M unknown R

Odd Fellows 4 M unknown R

Odd Fellows 6 M unknown R

Odd Fellows 7 M unknown R

Odd Fellows 8 M unknown R

Odd Fellows 9 M unknown L

Odd Fellows 10 M unknown R

Odd Fellows 11 M unknown R

Odd Fellows 12 M unknown R

Odd Fellows 13 F unknown R

Odd Fellows 14 M unknown R

Odd Fellows 17 F unknown R

Odd Fellows 19b M? unknown R
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Samplea Sex Provenience Side

Odd Fellows 20 M unknown R

Birkette F Grand River Valley, Ontario R

Breslau 1 M 19th century Kitchener, Ontario R

Breslau 2 F 19th century Kitchener, Ontario R

Downham Nursery M? Ontario Iroquoian village, Dutton R

Orangeman’s Lodge M? unknown L

H. Helmuth donation M? unknown L

N. Halbert donation M? unknown R

Van Oordt 10 M 15th century Waterloo, Ontario R

Peterborough Jail 2 M Russian immigrant to Canada R

Peterborough Jail 3 M Austrian immigrant to Canada R

Cross-sectional reconstructions

 The reconstruction of diaphyseal cross-sectional geometries and the calculation of 

cross-sectional properties are based on accurate determinations of periosteal and 

endosteal contours at specified section locations. Traditionally, these sections are taken at 

20%, 50% and 80% of femoral lengthʹ measured from the distal end of the bone (Ruff 

and Hayes, 1983; Ruff, 1995, 2000, 2002a). Femur lengthʹ is defined as the longitudinal 

length of the diaphysis from the average distal projection of the condyles to the superior 

surface of the femoral neck at its most distal point (Ruff, 2002) (see Fig. 2 in Chapter II). 

In the current study, section locations could not be taken at traditional percentages of 

bone lengthʹ for the fossil samples due to technological limitations (see below). Instead, 

section locations were taken at natural breaks estimated to be at the proximal (~70-80%) 

or midshaft (~40-50%) section. Reconstructing cross-sections under these categories will 

still allow one to compare results from this study with other studies involving 

fragmentary fossil material since traditional section locations are routinely approximated 

from estimated maximum bone length (e.g. Ruff et al., 1999; Kuperavage and Eckhardt, 
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2009). In addition, Sládek et al. (2010) found that femoral bending strength, and to some 

degree cortical area, in the midshaft femur of modern humans were accurately estimated 

even when the section location was inaccurately located (midshaft was considered being 

anywhere from 40-60% of bone length). Proximal and midshaft section locations were 

taken at 80% and 50% of bone lengthʹ, respectively, for the Pan and modern human 

samples.

 Periosteal and endosteal contours were reconstructed following the latex cast 

method as described by Stock (2002) (see Chapter II). Although latex casting is a non-

destructive technique, there is potential for the casting material to leave traces of residue 

on the bone. In an effort to preserve the integrity of the fossil material, casting was done 

on casts provided by the National Museums of Kenya. Periosteal casts for the Pan and 

modern human samples were made directly on the bone.

 Due to technological limitations, endosteal contours for the fossil hominin femora 

could not be reconstructed using bi-planar radiography. Instead, anterior, posterior, 

medial and lateral cortical thicknesses, and A-P and M-L diameters were measured 

directly on the fossil material at natural breaks with digital calipers to the nearest 0.01 

mm. Previous studies have reconstructed cross-sectional geometries at natural breaks in a 

similar manner (e.g. Ruff et al., 1993; Carretero et al., 2009). Thus, this method is 

considered acceptable when technological equipment (e.g. x-ray, computer tomography) 

is unavailable.

 Endosteal contours for the Pan and modern human samples were reconstructed 

from measurements of cortical wall thicknesses, which were derived from bi-planar 

radiographs. Section locations were marked with metal wire and a scaling device was 

included in each shot to correct for magnification3. Bones were placed in the x-ray 

machine in standard anatomical position and oriented following methods described by 

Ruff and Hayes (1983). Diaphyses were leveled by placing pieces of clay under the shaft 

so that the A-P midpoints of the proximal and distal ends of the bone were equidistant 
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from the image receptor. The specific techniques for reconstructing the endosteal 

contours for the Pan sample via digital bi-planar radiography are found in Chapter II, and 

the specific techniques for reconstructing endosteal contours for the modern human 

sample via traditional bi-planar radiography are found in Chapter III.

 Periosteal casts were traced on graph paper with a 2 mm square grid. For fossil 

samples, measurements of cortical thicknesses were plotted onto the A-P and M-L axes of 

the periosteal tracings. For Pan samples, digitized radiographic images were enhanced in 

Adobe Photoshop® and magnified by 300-400% to measure anterior, posterior, medial 

and lateral cortical wall thicknesses. Size-adjusted measurements were plotted in correct 

anatomical position on the periosteal tracings. Cortical wall thicknesses for the modern 

human samples were measured directly on the radiographic film using digital calipers and 

a light box. A magnifying lens was used to aid in finding endosteal contours. Size-

adjusted measurements were plotted in correct anatomical position on the periosteal 

tracings. Plotted points were connected in an ellipse for all samples.

 The reconstructed cross-sections were digitized using a Lexmark X 6170 flatbed 

scanner. Although images were scanned at the same size as the original, a scaling device 

was included to ensure that the size of the images was not compromised during 

digitization. Cross-sectional properties were calculated using a Macintosh version of 

MomentMacro written for ImageJ, which is available courtesy of Dr. Christopher Ruff at 

http://www.hopkinsmedicine.org/FAE/mmacro.htm. Cross-sectional properties were 

calculated three times and the average was recorded. 

 A methodological concern in cross-sectional geometric reconstruction involves 

the axis where cross-sectional properties are calculated. In straight, symmetrical beams 

under uniform bending, the neutral axis passes through the geometric centroid of a 

section and is therefore also known as the centroidal axis (Lieberman et al., 2004). 

However, since long bones are subjected to a combination of bending and axial loads, 

and since long bones are neither entirely straight nor symmetrical, the neutral axis may 

not always pass through the centroid of a section (Lieberman et al., 2004; Ruff et al., 

2006). Experimental studies have confirmed that under varied loading regimes, the 

178



neutral axis shifts away from the centroid and towards the cortex under tension (Carter et 

al., 1981; Demes et al., 1998; Lieberman et al., 2004). Although the neutral axis can be 

experimentally determined, this is not possible with skeletal material. Lieberman et al. 

(2004) have shown that patterns in cross-sectional properties are not affected when 

assumed centroidal axes are chosen over experimentally derived ones. In this study, 

cross-sectional properties are calculated with reference to a neutral axis assumed to run 

through the cross-sectional area centroid “with the understanding that these [cross-

sectional properties] are only approximations of true bending rigidity and strength in 

vivo,” (Ruff et al., 2006:490).

Cross-sectional properties

 The cross-sectional properties calculated in this study are presented in Table 4. 

Table 4. Cross-sectional properties.

Symbol Definition Mechanical Significance

TA total subperiosteal area area within the subperiosteal surface

CA cortical area axial compressive and tensile strength

%CA percent cortical area percentage of cortical bone in the section

Zx section modulus about the M-L axis bending strength in the A-P plane

Zy section modulus about the A-P axis bending strength in the M-L plane

J0.73 estimates the polar section modulus torsional and twice average bending strength

 Cortical area (CA) reflects the axial compressive and tensile strength of the 

section (Ruff and Hayes, 1983; Stock and Pfeiffer, 2004). An increase in the relative 

amount of CA (i.e. %CA) in a cross-section could result from a relatively narrow 

medullary canal, a relatively expanded periosteal surface or both. The relative amount of 

CA in proximal and midshaft sections of the femur varies significantly among different 
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modern human groups, and has generally declined over time within the genus Homo as 

part of an overall evolutionary trend in decreased robusticity (Ruff et al., 1993; Ruff, 

1994; Trinkaus, 1997; Trinkaus and Ruff, 1999). The relative amount of cortical bone in a 

section does not have an intrinsic biomechanical significance, but it can be informative 

when examined in conjunction with other cross-sectional properties, and it can be useful 

as a simple morphological trait (Ruff et al., 1993; Ruff et al., 1984; Sládek et al., 2006). 

Total area and CA are reported in mm2.

 Section moduli are considered the best estimates of average bending and torsional 

strength4 when mechanical loading conditions are unknown (Ruff, 2008). In addition, 

they are less dependent on the precise orientation of the section along the A-P and M-L 

axes, and are therefore preferred for use with fragmentary fossil remains which are often 

difficult to orient in correct anatomical position (Ruff, 2009). Thus, section moduli were 

examined in this study rather than second moments of area. 

 Patterns of variation in section moduli should correspond to patterns of variation 

in second moments of area since they are derived from them (Ruff and Hayes, 1983; 

Marchi, 2008). Zx and Zy are used to calculate the maximum stress in the outermost fiber 

of the cross-section in the anatomical plane of bending, which is proportional to cross-

sectional bending strength (Ruff and Hayes, 1983; Ruff, 1995). Zx  corresponds to 

bending strength in the A-P plane measured about the M-L axis (x-axis), and Zy 

corresponds to bending strength in the M-L plane measured about the A-P axis (y-axis) 

(Ruff, 2002, 2009). Zx and Zy in the proximal femur are interpreted with caution because 

the antetorsion angle of the femoral neck makes it challenging to correctly orient the bone 

along anatomical axes (Ruff and Hayes, 1983; Ruff, 1987). The polar section modulus, 

Zp, is a measure of twice average bending and torsional strength, and can be 
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approximated by taking the polar second moment of area to the power of 0.73 (i.e. J0.73) 

(Ruff, 1995; Trinkaus and Ruff, 1999)5. Section moduli are reported in mm3.

Body size standardization

 It is generally thought to be necessary to control for the influence of body size on 

cross-sectional properties before comparing groups (Ruff et al., 1993; Ruff, 2000). 

However, cross-sectional properties were not standardized in the current study since 

relationships between cross-sectional properties are examined among groups rather than a 

comparison of absolute values among samples. In the regression analysis (see below), 

smaller-bodied individuals tend to fall towards the bottom left corner of the plot while 

larger-bodied individuals tend to fall towards the upper right corner of the plot.  

Statistics

 Regression analysis is used to investigate relationships between cross-sectional 

properties. CA is plotted against TA to examine the relative amount of cortical bone in the 

cross-section, CA is plotted against J0.73 to examine if bones are preferentially adapted for 

axial strength or bending and torsional strength and Zy is plotted against Zx to examine 

bending preferences in the anatomical axes, which give an overall indication of 

diaphyseal shape. The two major assumptions of regression analysis are equal variances 

(i.e. homoscedasticity), and normal distribution of the data (Kachigan, 1991). 

Homoscedasticity in the modern human and Pan sample is examined with the Levene 

test, and normality is examined with the Kolmogorov-Smirnoff test with a Lilliefors 

correction.

 Correlation (R) between the observed and predicted values of the dependent 

variable and the coefficient of determination (R2), which is a measure of the variance in 

the dependent variable that is explained by the independent variable, are presented. An 
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expression of the regression analysis as an analysis of variance in the dependent variable 

is presented in an ANOVA. The F ratio is used to determine if the independent variable 

explains a significant amount of variation in the dependent variable, and is therefore a 

test of the significance of the regression model as a whole (Kachigan, 1991; Madrigal, 

2000). The coefficients table presents the regression coefficient (b), which is equal to the 

slope of the regression line, the y-intercept of the regression line and their associated 

significance levels (Kachigan, 1991). If the slope of the line is not significantly different 

from zero, then the independent variable does not explain or predict the dependent 

variable (i.e. there is no significant association between the variables) (Kachigan, 1991; 

Madrigal, 2000). 

 The slopes and y-intercepts for the modern human and Pan regression lines are 

compared to determine if the lines differ in slope, y-intercept or both. Differences 

between the sample slopes are tested following equations from Kleinbaum et al., 2008. 

The test statistic is: 

[1] t=    β1H - β1P__

           S(β1H - β1P)

where β1H and β1P are the slopes of the modern human and Pan samples, respectively and 

S(β1H - β1P) is an estimate of the standard error of the estimated differences between the 

sample slopes, which is equal to the square root of:

[2] S2(β1H - β2P)= S2P, Y∣X           1            +         1          
              (nH - 1)(S2XH)   (nP - 1)(S2XP)

Differences between the sample y-intercepts are tested following equations from 

Kleinbaum et al., 2008. The test statistic is:

[3] t=    β0H - β0P__

           S(β0H - β0P)
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where β0H and β0P are the intercepts for the modern human and Pan samples, respectively, 

and S(β0H - β0P) is an estimate of the variance of the estimated difference between the 

sample intercepts by means of the square root of :

[4] S2 (β0H - β0P)= S2 P, Y∣X     1  +   1   + __   _X2H           + __   _X2P           
                                       (nH)   (nP)    (nH - 1) S2XH      (nP - 1) S2XP    

The degrees of freedom (df) for both test statistics is nH + nP − 4. 

 Analysis of residual errors were plotted to examine if the assumptions of the 

regression model are valid. Statistical analyses were carried out with SPSS 17.0 with a 

significance level of p= 0.05. 

RESULTS

 The Levene test indicates that homogeneity is not met in any of the proximal 

femoral cross-sectional properties, and in CA, Zx and Zy in the midshaft femur in modern 

humans and Pan (Table 5). TA in the proximal femur is not normally distributed in the 

Pan sample (Table 6). Weighted least squares (WLS) regression is used since the 

assumption of homoscedasticity has been violated. Cross-sectional properties are log-

transformed to correct for heteroscedasticity (unequal variance) and violations of 

normality in the data. 
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Table 5. Test of homogeneity of the variances for modern human and Pan data.

Levene Statistic df1 df2 Sig.

Proximal
TA 5.90 1 48 0.02
CA 18.91 1 48 0.00
J0.73 8.03 1 48 0.01
Zx 13.06 1 48 0.00
Zy 19.18 1 48 0.00

Midshaft
TA 3.36 1 48 0.07
CA 10.03 1 48 0.00
J0.73 3.25 1 48 0.08
Zx 15.51 1 48 0.00
Zy 10.17 1 48 0.00

Significance is indicated in bold.

Table 6. Test of normality for modern human and Pan data.

Species
Kolmogorov-Smirnova

Statistic df Sig.
Proximal

TA
H. sapiens 0.15 31 0.07
Pan 0.24 19 0.01

CA
H. sapiens 0.12 31 0.20*

Pan 0.16 19 0.20*

J0.73 H. sapiens 0.13 31 0.20*

Pan 0.15 19 0.20*

Zx
H. sapiens 0.09 31 0.20*

Pan 0.15 19 0.20*

Zy
H. sapiens 0.10 31 0.20*

Pan 0.10 19 0.20*

Midshaft

TA
H. sapiens 0.11 31 0.20*

Pan 0.18 19 0.11

CA
H. sapiens 0.07 31 0.20*

Pan 0.11 19 0.20*

J0.73 H. sapiens 0.13 31 0.20*

Pan 0.14 19 0.20*
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Zx
H. sapiens 0.12 31 0.20*

Pan 0.13 19 0.20*

Zy
H. sapiens 0.09 31 0.20*

Pan 0.15 19 0.20*

a. Lilliefors Significance Correction.
*. This is a lower bound of the true significance.
Significance is indicated in bold.

Proximal section

 Relative cortical bone. CA is increased relative to TA in modern human and fossil 

hominin proximal femora compared to Pan (Fig. 2 and Table 7). The correlation between 

the observed and predicted values of CA is higher in modern humans (R= 0.82) than in 

Pan (R= 0.29), and there is a much tighter relationship between CA and TA in modern 

humans (R2= 0.68) than in Pan (R2= 0.08) (Table 8). TA explains a significant part of the 

variation in CA in modern humans, but not in Pan (Table 9). The y-intercept is 

significantly different from zero in both groups, but the slope is significantly different 

from zero only in modern humans (Table 10). There is no statistical inference for a 

significant linear relationship between CA and TA in the proximal femur of Pan. The 

modern human and Pan y-intercepts are not significantly different from each other (t= 

-0.59, df=46), but the slopes are significantly different from each other (t= 2.70, df= 46). 

Paranthropus and fossil Homo have relatively greater CA versus TA compared to modern 

humans, which is in accordance with previous studies that have found a general increase 

in relative CA in Plio-Pleistocene hominins compared to modern humans (Ruff et al., 

1993; Ruff, 1994; Trinkaus, 1997; Ruff et al., 1999; Trinkaus and Ruff, 1999).

185



Figure 2. Bivariate scatterplot of log-transformed cortical area (CA) on log-transformed total area 
(TA) in the proximal femur. Modern humans are represented by open circles, Pan is represented 
by closed circles, Paranthropus is represented by open squares and fossil Homo is represented by 
closed squares. The fossil samples are labeled. The modern human fit line is solid, and the Pan fit  
line is dashed. R2 linear for modern humans= 0.68. R2 linear for Pan= 0.08. 
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Table 7. Relative amount of cortical bone in the proximal femur.

Sample %CA

Modern human average 70.53

Pan average 64.46

KNM-ER 999a 85.90

KNM-ER 1481a 91.50

KNM-ER 738 90.85

KNM-ER 1500d 81.61

KNM-ER 815 96.20

OH 20 80.00

SK 82 84.92

SK 97 77.07

Table 8. Model summary for CA relative to TA in the proximal femur.

Model R R Square Adjusted R 
Square

Std. Error of the 
Estimate

Log-likelihood 
Function Value

Modern human 1 0.82a 0.68 0.66 0.56 31.10
Pan 0.29a 0.08 0.03 0.02 16.61

a. Predictor: TA, dependent: CA.

Table 9. ANOVA for CA relative to TA in the proximal femur.

Model
Sum of 
Squares

df Mean Square F Sig.

Modern 
human 1

Regression 18.65 1 18.65 60.12 0.00a

Residual 9.00 29 0.31
Total 27.64 30

Pan
Regression 0.00 1 0.00 1.57 0.23a

Residual 0.01 17 0.00
Total 0.01 18

a. Predictor: TA, dependent: CA.
Significance is indicated in bold.
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Table 10. Coefficients for CA relative to TA in the proximal femur.

Model
Unstandardized 

Coefficients
Standardized 
Coefficients t Sig.

B Std. Error Beta
Modern 
human 1 (Constant) 1.28 0.62 2.06 0.05

TA 0.75 0.10 0.82 7.75 0.00

Pan (Constant) 4.32 1.04 4.14 0.00
TA 0.22 0.17 0.29 1.25 0.23

Predictor: TA, dependent: CA.
Significance is indicated in bold.

 Residual plots of CA versus TA for modern humans and Pan are presented in 

Figures 3 and 4, respectively. 
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Figure 3. Scatterplot of the residuals for CA relative to TA in the proximal femur of modern 
humans.
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Figure 4. Scatterplot of the residuals for CA relative to TA in the proximal femur of Pan.

 Axial strength relative to average bending and torsional strength. CA is 

increased relative to J0.73 in modern humans compared to Pan (Fig. 5). The correlation 

between the observed and predicted values of CA is higher in modern humans (R= 0.88) 

than in Pan (R= 0.56), and there is a tighter relationship between CA and J0.73 in modern 

humans (R2= 0.78) than in Pan (R2= 0.31) (Table 11). J0.73 explains a significant part of 

the variation in CA in both groups (Table 12). The y-intercept and slope are significantly 

different from zero in both groups (Table 13). The modern human and Pan y-intercepts 

are significantly different from each other (t= -2.17, df= 46), but the slopes are not (t= 

1.54, df=46). Fossil Homo follows the modern human-like pattern more than the Pan-like 

pattern, which suggests an increase in axial strength relative to average bending and 

torsional strength. This loading regime is commensurate with the kinematics of human-
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like bipedalism. Paranthropus also displays the human-like pattern compared to Pan, but 

shows a slight decrease in CA relative to J0.73 when compared to modern and fossil Homo. 

Moderate differences in axial strength relative to average bending and torsional strength 

between Paranthropus and Homo may reflect anatomical contrasts in the pelvis and/or 

joint structures, which subsequently alter mechanical loading, albeit slightly, between the 

two genera.

Figure 5. Bivariate scatterplot of log-transformed cortical area (CA) on log-transformed average 
bending and torsional strength (J0.73) in the proximal femur. Modern humans are represented by 
open circles, Pan is represented by closed circles, Paranthropus is represented by open squares 
and fossil Homo is represented by closed squares. The fossil samples are labeled. The modern 
human fit line is solid, and the Pan fit line is dashed. R2 linear for modern humans= 0.78. R2 
linear for Pan= 0.31.
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Table 11. Model summary for CA relative to J0.73 in the proximal femur.

Model R R Square Adjusted R 
Square

Std. Error of the 
Estimate

Log-likelihood 
Function Value

Modern human 1 0.88a 0.78 0.77 0.46 36.99
Pan 0.56a 0.31 0.27 0.02 19.31

a. Predictor: J0.73, dependent: CA.

Table 12. ANOVA for CA relative to J0.73 in the proximal femur.

Model Sum of 
Squares df Mean Square F Sig.

Modern 
human 1

Regression 21.49 1.00 21.49 101.25 0.00a

Residual 6.16 29.00 0.21
Total 27.64 30.00

Pan
Regression 0.00 1.00 0.00 7.68 0.01a

Residual 0.01 17.00 0.00
Total 0.01 18.00

a. Predictor: J0.73, dependent: CA.
Significance is indicated in bold.

Table 13. Coefficients for CA relative to J0.73 in the proximal femur.

Model
Unstandardized 

Coefficients
Standardized 
Coefficients t Sig.

B Std. Error Beta
Modern 
human 1 (Constant) 1.58 0.45 3.54 0.00

J0.73 0.59 0.06 0.88 10.06 0.00

Pan (Constant) 2.91 0.98 2.97 0.01
J0.73 0.37 0.13 0.56 2.77 0.01

Predictor: J0.73, dependent: CA.
Significance is indicated in bold.

 Residual plots of CA versus J0.73 for modern humans and Pan are presented in 

Figures 6 and 7, respectively. 
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Figure 6. Scatterplot of the residuals for CA relative to J0.73 in the proximal femur of modern 
humans.
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Figure 7. Scatterplot of the residuals for CA relative to J0.73 in the proximal femur of Pan.

 Diaphyseal shape. Bending strength in the M-L plane is greater relative to 

bending strength in the A-P plane in modern human proximal femora compared to Pan 

(Fig. 8). The correlation between the observed and predicted values of Zy is higher in 

modern humans (R= 0.93) than in Pan (R= 0.73), and there is a tighter relationship 

between Zy and Zx in modern humans (R2= 0.87) than in Pan (R2= 0.53) (Table 14). Zx 

explains a significant part of the variation in Zy in both groups (Table 15). The y-intercept 

and slope are significantly different from zero in both groups (Table 16). The modern 

human and Pan y-intercepts and slopes are not significantly different from each other (t= 

-1.86, df= 46 and t= 1.65, df=46, respectively). Most fossil femora show the modern 

human pattern rather than the Pan pattern, but only KNM-ER 1500d and SK 97 fall 

above, albeit slightly, the fit line for the modern human sample. KNM-ER 1481a shows 
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decreased bending strength in the M-L plane relative to the A-P plane compared to 

modern humans and other fossil hominin femora.

Figure 8. Bivariate scatterplot of log-transformed bending strength in the M-L plane (Zy) on log-
transformed bending strength in the A-P plane (Zx) in the proximal femur. Modern humans are 
represented by open circles, Pan is represented by closed circles, Paranthropus is represented by 
open squares and fossil Homo is represented by closed squares. The fossil samples are labeled. 
The modern human fit line is solid, and the Pan fit line is dashed. R2 linear for modern humans= 
0.87. R2 linear for Pan= 0.53. 
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Table 14. Model summary for Zy relative to Zx in the proximal femur.

Model R R Square Adjusted R 
Square

Std. Error of the 
Estimate

Log-likelihood 
Function Value

Modern human 1 0.93a 0.87 0.87 0.40 32.86
Pan 0.73a 0.53 0.50 0.75 16.44

a. Predictor: Zx, dependent: Zy.

Table 15. ANOVA for Zy relative to Zx in the proximal femur.

Model
Sum of 
Squares

df Mean Square F Sig.

Modern 
human 1

Regression 31.68 1.00 31.68 198.81 0.00a

Residual 4.62 29.00 0.16
Total 36.30 30.00

Pan
Regression 10.80 1.00 10.80 19.08 0.00a

Residual 9.62 17.00 0.57
Total 20.42 18.00

a. Predictor: J0.73, dependent: CA.
Significance is indicated in bold.

Table 16. Coefficients for Zy relative to Zx in the proximal femur.

Model
Unstandardized 

Coefficients
Standardized 
Coefficients t Sig.

B Std. Error Beta
Modern 
human 1 (Constant) 1.18 0.46 2.55 0.02

Zx 0.88 0.06 0.93 14.10 0.00

Pan (Constant) 2.77 0.97 2.85 0.01
Zx 0.62 0.14 0.73 4.37 0.00

Predictor: Zx, dependent: Zy.
Significance is indicated in bold.

 Residual plots of Zy versus Zx for modern humans and Pan are presented in 

Figures 9 and 10, respectively. 
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Figure 9. Scatterplot of the residuals for Zy relative to Zx in the proximal femur of modern 
humans.
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Figure 10. Scatterplot of the residuals for Zy relative to Zx in the proximal femur of Pan.

 Summary. There is a tighter relationship between CA and TA in modern humans 

than in Pan (i.e. CA increases more steadily with TA in modern humans). The 

relationship between CA and TA is not significant in Pan. The relative amount of cortical 

bone in the proximal femora of modern humans, Paranthropus and fossil Homo is greater 

than in Pan. The relative amount of cortical bone in the proximal femora of fossil 

hominins is greater than in modern humans. Previous studies have shown an increase in 

relative femoral cortical area among fossil hominins compared to modern humans, which 

may reflect a reduction in overall mechanical loading on the modern human skeleton 

(Kennedy, 1983b; Ruff et al., 1993; Ruff, 1995; Ruff et al., 1999; Trinkaus and Ruff, 

1999; Ruff, 2009). This idea is supported by the results of CA relative to J0.73 since J0.73 

explains a significant amount of variation in CA in modern humans. An increase in 
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average bending and torsional strength in fossil hominins versus modern humans may 

also explain their increase in relative CA compared to modern humans. 

 Axial strength is greater relative to average bending and torsional strength in 

modern humans, Paranthropus and fossil Homo compared to Pan. The increase in CA 

versus J0.73 in the proximal femur of modern humans reflects structural reinforcement 

from an increase in axial loading relative to bending and torsional loading, which is 

commensurate with the kinematics of modern human-like bipedalism (Cristofolini  et al., 

1995; Aamodt et al., 1997; Duda et al., 1997). Fossil Homo is most similar to modern 

humans in this regard, which supports a mode of locomotion comparable with modern 

human-like bipedalism. Paranthropus displays the modern human-like pattern more than 

the Pan-like pattern when compared to Pan, but shows a decrease in CA relative to J0.73 

when compared to Homo, both modern and fossil. These results suggest a moderately 

different mechanical loading pattern in the proximal femur of Paranthropus compared to 

Homo, which may reflect slight differences in pelvic and hip morphology, and 

subsequently different locomotor kinematics, albeit within a generally more human-like 

pattern rather than Pan-like pattern. 

 Modern humans and most fossil femora display greater M-L bending strength 

relative to A-P bending strength in the proximal femur compared to Pan, but the modern 

human and Pan lines are not significantly different from each other in y-intercept and 

slope. M-L buttressing in the proximal femoral diaphysis is a widely recognized trait 

among modern humans and fossil hominins, which likely stems from a laterally displaced 

proximal femoral diaphysis (Lovejoy et al., 1973;  Lovejoy, 1988; Ruff, 1995; Richmond 

and Jungers, 2008). A relatively long femoral neck and greater biacetabular breadth in 

modern humans and fossil hominins compared to Pan contribute to this lateral 

displacement of the femoral diaphysis. Greater bending strength along the M-L plane 

relative to the A-P plane in the proximal femur of Pan taxa was previously noted by 

Carlson (2002) and Carlson et al. (2008), but its significance is unclear. Non-human 

primates that habitually engage in turning behaviors, however, are often exposed to 

increased M-L forces on their limb bones (Demes et al., 2006; Carlson and Judex, 2007). 

199



Since the modern human and Pan regression lines are not significantly different from 

each other, the results suggest that similar diaphyseal shapes may result from contrasting 

loading patterns. 

Midshaft section

 Relative cortical bone. CA is increased relative to TA in modern human midshaft 

femora compared to Pan, although the pattern is reversed at smaller sizes (Fig. 11 and 

Table 17). The correlation between the observed and predicted values of CA is higher in 

modern humans (R= 0.82) than in Pan (R= 0.43), and there is a much tighter relationship 

between CA and TA in modern humans (R2= 0.67) than in Pan (R2= 0.19) (Table 18). TA 

explains a significant part of the variation in CA in modern humans, but not in Pan (Table 

19). In modern humans, the y-intercept is not significantly different from zero, but the 

slope is significantly different from zero. In Pan, the y-intercept is significantly different 

from zero, but the slope is not (Table 20). These results suggest that TA does not 

significantly explain or predict CA in the midshaft femur of Pan. The y-intercepts of the 

two groups are not significantly different from each other (t= -0.49, df= 46), but the 

slopes are significantly different from each other (t= 2.48, df= 46). KNM-ER 1592, 

KNM-ER 736, KNM-ER 1807, KNM-ER 1808 and KNM-ER 1472 follow the modern 

human-like pattern. OH 62 and OH 34 also follow the modern human-like pattern, but 

their low positions on the scatterplot may reflect their slender diaphyses and overall 

smaller size compared to the other samples (Day and Molleson, 1976; Johnson et al., 

1987: Haeusler and McHenry, 2004). KNM-WT 15000 falls with Pan in having reduced 

CA relative to TA, but this may be an artifact of his juvenile status. Modern human 

children tend to have relatively thin cortical walls relative to TA because net endosteal 

resorption outweighs net endosteal deposition (Ruff et al., 1994; Schoenau et al., 2001; 

Ruff, 2005). This process is reversed during mid-adolescence (Ruff, 2005). In addition, 

modern human children (i.e. before mid-adolescence) experience more periosteal 

responses to mechanical loading than endosteal responses, which partially explains the 

larger medullary cavities in children compared to young adults and adults (Ruff, et al., 
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1994; Ruff, 2000). Assuming modern human-like growth patterns in H. erectus (Clegg 

and Aiello, 1999), the low CA relative to TA in KNM-WT 15000 may be a product of his 

age. Ruff et al. (1994:48) compared %CA in modern human children from Pecos Pueblo 

(8- to 13-year olds) with KNM-WT 15000 and found that “when placed into proper 

developmental context his [KNM-WT 15000] %CA is fairly high,” in accordance with 

higher CA relative to TA in Plio-Pleistocene adult hominins.

Figure 11. Bivariate scatterplot of log-transformed cortical area (CA) on log-transformed total 
area (TA) in the midshaft femur. Modern humans are represented by open circles, Pan is 
represented by closed circles, Paranthropus is represented by open squares, Homo sp. is 
represented by closed squares and H. erectus is represented by open triangles. The fossil samples 
are labeled. The modern human fit line is solid, and the Pan fit line is dashed. R2 linear for 
modern humans= 0.67. R2 linear for Pan= 0.19.
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Table 17. Relative amount of cortical bone in the midshaft femur.

Sample %CA

Modern human average 71.48

Pan average 63.43

KNM-ER 1592 92.08

KNM-WT 15000 65.17

KNM-ER 1808 86.75

OH 34 79.16

KNM-ER 736 66.01

KNM-ER 1472 78.33

KNM-ER 1807 84.10

OH 62 83.16

Table 18. Model summary for CA relative to TA in the midshaft femur.

Model R R Square Adjusted R 
Square

Std. Error of the 
Estimate

Log-likelihood 
Function Value

Modern human 1 0.82a 0.67 0.66 0.64 26.42
Pan 0.43a 0.19 0.14 0.02 16.19

a. Predictor: TA, dependent: CA.

Table 19. ANOVA for CA relative to TA in the midshaft femur.

Model
Sum of 
Squares

df Mean Square F Sig.

Modern 
human 1

Regression 23.80 1.00 23.80 58.04 0.00a

Residual 11.89 29.00 0.41
Total 35.70 30.00

Pan
Regression 0.00 1.00 0.00 3.91 0.06a

Residual 0.01 17.00 0.00
Total 0.01 18.00

a. Predictor: TA, dependent: CA.
Significance is indicated in bold.
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Table 20. Coefficients for CA relative to TA in the midshaft femur.

Model
Unstandardized 

Coefficients
Standardized 
Coefficients t Sig.

B Std. Error Beta
Modern 
human 1 (Constant) 0.53 0.72 0.75 0.46

TA 0.86 0.11 0.82 7.62 0.00

Pan (Constant) 3.51 1.07 3.29 0.00
TA 0.35 0.18 0.43 1.98 0.06

Predictor: TA, dependent: CA.
Significance is indicated in bold.

 Residual plots of CA versus TA for modern humans and Pan are presented in 

Figures 12 and 13, respectively.
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Figure 12. Scatterplot of the residuals for CA relative to TA in the midshaft femur of modern 
humans.
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Figure 13. Scatterplot of the residuals for CA relative to TA in the midshaft femur of Pan.

 Axial strength relative to average bending and torsional strength. Modern 

human midshaft femora are adapted to withstand greater axial loading relative to average 

bending and torsional loading compared to Pan midshaft femora (Fig. 14). The 

correlation between the observed and predicted values of CA is higher in modern humans 

(R= 0.84) than in Pan (R= 0.67), and there is a tighter relationship between CA and J0.73 

in modern humans (R2= 0.70) than in Pan (R2= 0.45) (Table 21). J0.73 explains a 

significant part of the variation in CA in both groups (Table 22). The modern human and 

Pan y-intercepts and slopes are significantly different from zero (Table 23). The modern 

human and Pan y-intercepts are significantly different from each other (t= -5.02, df= 46), 

but the slopes are not (t= 1.00, df= 46). KNM-ER 1592, KNM-ER 736, KNM-ER 1807, 

KNM-ER 1808 and KNM-ER 1472 follow the modern human-like pattern compared to 
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Pan, but CA is decreased relative to average bending and torsional strength in these fossil 

femora compared to modern humans. These results suggest that while mechanical loading 

patterns are similar among modern humans, KNM-ER 1592, KNM-ER 736, KNM-ER 

1807, KNM-ER 1808 and KNM-ER 1472, the fossil femora are mechanically stronger 

than modern human femora. KNM-WT 15000, OH 62 and OH 34 follow the Pan-like 

pattern compared to modern humans. As previously discussed, the relatively low CA in 

KNM-WT 15000 is likely a reflection of his juvenile age, which may explain his 

“similarity” to Pan. Loading patterns in OH 62 are more similar to patterns in Pan than to 

patterns in modern humans and fossil Homo. Johanson et al. (1987) observed slight 

abrasion of the femoral diaphysis of OH 62. Thus, it is possible that OH 62 follows the 

Pan-like pattern because of preservation bias. However, since the femoral diaphysis of 

OH 62 is not as severely eroded as in OH 34, and because the two femora are very 

similar in size (Haeusler and McHenry, 2004), low CA relative to J0.73 in OH 62 may 

suggest that preservation bias is not contributing to the Pan-like pattern. A decrease in 

CA relative to J0.73 in OH 62 may indeed reflect a different mechanical loading pattern in 

the species represented by this femur compared to other members of the genus Homo, 

both modern and fossil. 

 Leakey (1978) and Ruff (1995) argued that the femoral diaphysis of OH 34 is so 

abraded that the reconstruction of its original diaphyseal breadth and shape will remain 

uncertain. Although Day and Molleson (1976) did not believe severe erosion markedly 

affected the femoral diaphyseal circumference of OH 34, they did suggest that the 

original midshaft cortical thickness may have been ~6 mm more than at present. It is 

possible that the very moderate increase in CA relative to J0.73 in OH 34 is an artifact of 

the imprecise reconstruction of its true diaphyseal shape and size.
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Figure 14. Bivariate scatterplot of log-transformed cortical area (CA) on log-transformed average 
bending and torsional strength (J0.73) in the midshaft femur. Modern humans are represented by 
open circles, Pan is represented by closed circles, Paranthropus is represented by open squares, 
Homo sp. is represented by closed squares and H. erectus is represented by open triangles. The 
fossil samples are labeled. The modern human fit line is solid, and the Pan fit line is dashed. R2 
linear for modern humans= 0.70. R2 linear for Pan= 0.45.

Table 21. Model summary for CA relative to J0.73 in the midshaft femur.

Model R R Square Adjusted R 
Square

Std. Error of the 
Estimate

Log-likelihood 
Function Value

Modern human 1 .084a 0.70 0.69 0.61 28.06
Pan 0.67a 0.45 0.42 0.02 19.92

a. Predictor: J0.73, dependent: CA.
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Table 22. ANOVA for CA relative to J0.73 in the midshaft femur.

Model
Sum of 
Squares

df Mean Square F Sig.

Modern 
human 1

Regression 0.72 1.00 0.72 69.22 0.00a

Residual 0.30 29.00 0.01
Total 1.02 30.00

Pan
Regression 0.00 1.00 0.00 13.99 0.00a

Residual 0.00 17.00 0.00
Total 0.01 18.00

Predictor: J0.73, dependent: CA.
Significance is indicated in bold.

Table 23. Coefficients for CA relative to J0.73 in the midshaft femur.

Model
Unstandardized 

Coefficients
Standardized 
Coefficients t Sig.

B Std. Error Beta
Modern 
human 1 (Constant) 1.70 0.53 3.24 0.00

J0.73 0.59 0.07 0.84 8.23 0.00

Pan (Constant) 2.32 0.88 2.62 0.02
J0.73 0.45 0.12 0.67 3.74 0.00

Predictor: J0.73, dependent: CA.
Significance is indicated in bold.

 Residual plots of CA versus J0.73 for modern humans and Pan are presented in 

Figures 15 and 16, respectively.
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Figure 15. Scatterplot of the residuals for CA relative to J0.73 in the midshaft femur of modern 
humans.
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Figure 16. Scatterplot of the residuals for CA relative to J0.73 in the midshaft femur of Pan.

 Diaphyseal shape. Bending strength in the M-L plane is slightly decreased 

relative to bending strength in the A-P plane in modern humans compared to Pan, but the 

difference is probably not significant since the modern human and Pan y-intercepts and 

slopes are not significantly different from each other (t= 0.50, df= 46 and t= -0.73, df= 

46, respectively) (Fig. 17). The correlation between the observed and predicted values of 

Zy is slightly lower in modern humans (R= 0.88) than in Pan (R= 0.91), and there is a 

moderately weaker relationship between Zy and Zx in modern humans (R2= 0.77) than in 

Pan (R2= 0.82) (Table 24). Zx explains a significant part of the variation in Zy in both 

groups (Table 25). The y-intercept is not significantly different from zero, but the slope is 

significantly different from zero in modern humans and in Pan (Table 26). KNM-ER 

1808, KNM-ER 1807 and KNM-ER 1592 show the Pan-like pattern in greater bending 
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strength in the M-L plane relative to the A-P plane compared to modern humans. KNM-

ER 736, KNM-WT 15000 and KNM-ER 1472 show the modern human-like pattern in 

lower bending strength in the M-L plane relative to the A-P plane compared to Pan. OH 

62 and OH 34 fall very close to the intersection of the modern human and Pan lines, with 

little preference for bending strength in either plane. Since the modern human and Pan 

lines are not significantly different from each other in y-intercept and slope, the 

distribution of the fossils likely reflects variation rather than statistically significant 

differences in diaphyseal shape related to locomotor behavior. 

Figure 17. Bivariate scatterplot of log-transformed bending strength in the M-L plane (Zy) on log-
transformed bending strength in the A-P plane (Zx) in the midshaft femur. Modern humans are 
represented by open circles, Pan is represented by closed circles, Paranthropus is represented by 
open squares, Homo sp. is represented by closed squares and H. erectus is represented by open 
triangles. The fossil samples are labeled. The modern human fit line is solid, and the Pan fit line 
is dashed. R2 linear for modern humans= 0.77. R2 linear for Pan= 0.82.
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Table 24. Model summary for Zy relative to Zx in the midshaft femur.

Model R R Square Adjusted R 
Square

Std. Error of the 
Estimate

Log-likelihood 
Function Value

Modern human 1 0.88a 0.77 0.76 0.95 20.58
Pan 0.91a 0.82 0.81 0.60 20.76

a. Predictor: Zx, dependent: Zy.

Table 25. ANOVA for Zy relative to Zx in the midshaft femur.

Model
Sum of 
Squares

df Mean Square F Sig.

Modern 
human 1

Regression 86.09 1.00 86.09 94.58 0.00a

Residual 26.40 29.00 0.91
Total 112.49 30.00

Pan
Regression 28.22 1.00 28.22 78.87 0.00a

Residual 6.08 17.00 0.36
Total 34.30 18.00

a. Predictor: Zx, dependent: Zy.  
Significance is indicated in bold.

Table 26. Coefficients for Zy relative to Zx in the midshaft femur.

Model
Unstandardized 

Coefficients
Standardized 
Coefficients t Sig.

B Std. Error Beta
Modern 
human 1 (Constant) 0.74 0.69 1.07 0.29

Zx 0.91 0.09 0.88 9.73 0.00

Pan (Constant) 0.04 0.79 0.05 0.97
Zx 1.01 0.11 0.91 8.88 0.00

Predictor: Zx, dependent: Zy. 
Significance is indicated in bold.

 Residual plots of Zy versus Zx for modern humans and Pan are presented in 

Figures 18 and 19, respectively. 
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Figure 18. Scatterplot of the residuals for Zy relative to Zx in the midshaft femur of modern 
humans.
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Figure 19. Scatterplot of the residuals for Zy relative to Zx in the midshaft femur of Pan.

 Summary. The relative amount of cortical bone in the midshaft femur of modern 

humans is greater than in Pan. All fossil femora, except KNM-WT 15000, follow the 

modern human-like pattern. The low relative amount of CA in KNM-WT 15000 may be a 

product of his age, assuming a modern human-like growth pattern in H. erectus (Clegg 

and Aiello, 1999). TA explains a significant amount of variation in CA in modern 

humans, but not in Pan.  

 Modern human midshaft femora are structurally adapted for greater axial strength 

relative to average bending and torsional strength, which is in accordance with the 

kinematics of modern human bipedalism (Alexander and Jayes, 1978; Cristofolini et al., 

1995; Aamodt et al., 1997; Duda et al., 1997; Sockol et al., 2007). Pan femora are 

characterized by a decrease in axial strength relative to bending and torsional strength, 
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which is likely a mechanical adaptation to multi-oriented bending loads, and dynamic and 

propulsive movements associated with quadrupedal locomotion and arborealism (Ruff 

and Runestad, 1992; Demes et al., 2001; Kalmey and Lovejoy, 2002; Carlson, 2005; 

Marchi, 2007). J0.73 explains a significant amount of the variation in CA in both modern 

humans and Pan. KNM-ER 1592, KNM-ER 738, KNM-ER 1807, KNM-ER 1808 and 

KNM-ER 1472 show the modern human-like pattern compared to Pan, albeit they are 

stronger than modern human femora. The Homo-like loading pattern in KNM-ER 1592 

suggests either a kinematically similar mode of bipedalism between Homo and 

Paranthropus, as represented by KNM-ER 1592, or that KNM-ER 1592 is not 

representative of Paranthropus (see Chapter III). OH 34 displays a moderate increase in 

axial strength relative to average bending and torsional strength. The low CA relative to 

J0.73 in KNM-WT 15000 may be an artifact of his age. OH 62 follows the Pan-like 

pattern in decreased CA relative to J0.73, which may indicate a non-modern human-like 

mode of bipedalism. 

 Bending strength in the M-L plane is relatively lower than bending strength in the 

A-P plane in modern human midshaft femora compared to Pan midshaft femora, but 

there is overlap as size decreases. The modern human and Pan y-intercepts and slopes are 

not significantly different from each other, which suggests that the relationship between 

M-L bending strength relative to A-P bending strength is not significantly different 

between the two groups. Thus, the dispersion of the fossil data along the modern human 

and Pan lines likely reflects variation rather than real, significant differences in 

diaphyseal shape. 

DISCUSSION

 Loading in the proximal femur is influenced by a suite of morphological traits 

around the hip joint (e.g. pelvic orientation, morphology and proportions, hip 

musculature and femoral neck length) (Lovejoy et al., 1973; McHenry, 1976; Ruff and 

Hayes, 1983; Ruff, 1995; Ruff et al., 1999; Trinkaus and Ruff, 1999; Lovejoy et al., 2002; 
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Ruff, 2005; Richmond and Jungers, 2008). Previous research has yielded conflicting 

interpretations of morphological and functional similarities and differences between and 

among paranthropine pelves (e.g. McHenry, 1975c; McHenry and Corruccini, 1975; 

Steudel, 1978; Marchal, 2000). While a detailed analysis of Plio-Pleistocene hominin, 

Pan and modern human hip morphology is beyond the scope of this study, there are a few 

defining characteristics that deserve attention. Although rare and fragmentary, 

paranthropine pelves are generally characterized by a low, broad ilium, laterally splayed 

iliac blades and small acetabulae (Lovejoy et al., 1973; McHenry, 1975c, 1976). Fossil 

Homo pelves are distinguished from modern human pelves in having extremely robust 

iliac pillars, laterally flared iliac blades, relatively wide biacetabular breadths, large and 

laterally facing ischial tuberosities and relatively small auricular surfaces (i.e. fossil 

hominin pelves are generally more platypelloid than modern human pelves) (Ruff, 1995, 

2005). Indeed, the primary selective pressures on pelvic morphology ultimately derive 

from obstetrical constraints rather than locomotion, and therefore reflect evolutionary 

changes in encephalization rather than locomotor behavior (McHenry, 1976; Berge et al., 

1984; Tague and Lovejoy, 1986; Ruff, 1995; McHenry and Coffing, 2000; Simpson et al., 

2008). However, the consequences of such morphological differences among 

Paranthropus, Homo, modern human and Pan pelves have an effect on posture and 

locomotion. 

 Several traits in the modern human proximal femur have been linked to bipedal 

locomotion. The relatively large femoral head and shorter greater trochanter in modern 

humans help to resist ground reaction forces about the hip, and the superior position of 

the femoral head relative to the supero-inferiorly oriented and medio-laterally expanded 

greater trochanter provides additional leverage for the hip stabilizers (i.e. the anterior 

gluteals) (McHenry and Corruccini, 1976; Lovejoy, 1988; Lovejoy et al., 2002; Harmon, 

2007). The relatively long femoral neck in modern humans also helps to provide leverage 

for the anterior gluteal muscles during the pelvic support phase of bipedal gait (Lovejoy, 

1988; Lovejoy et al., 2002). The relationship between proximal femoral morphology and 

locomotion in Pan is not well documented, but Harmon (2007) found that the relatively 
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small femoral head, shorter femoral neck and supero-inferiorly long greater trochanter in 

African apes are, as a complex, commensurate with greater hip joint stability and muscle 

leverage associated with knuckle-walking quadrupedalism. 

 The function of the anterior gluteals in Pan is very different from that in modern 

humans largely because of differences in pelvic orientation and proximal femoral bone 

morphology. In Pan, the anterior gluteals stretch from the superior margin of the ilium to 

the greater trochanter, which extends above the femoral head and is superio-inferiorly 

elongated (Lovejoy, 1988). The position of the gluteus medius and gluteus minimus 

enables them to act as hip extensors during quadrupedalism (Lovejoy, 1988). Since the 

ilium is relatively long in Pan, these muscles have a large range of contraction (Lovejoy, 

1988). Conversely, the forward rotation of the ilia, the relatively long femoral neck and 

the relatively high femoral neck angle in modern humans laterally repositions the anterior 

gluteals away from the hip (Lovejoy, 1988). Thus, the anterior gluteals serve as 

stabilizing abductors in modern humans, which act to support the body during the single-

support phase of the bipedal gait cycle (Lovejoy, 1988; Duda et al., 1997; Harcourt-

Smith, 2007).

 Harmon (2007) found striking similarities in proximal femoral morphology 

between modern humans and orangutans, which result from different functional 

requirements associated with clearly different locomotor behaviors. This shared proximal 

femoral morphology between Homo and Pongo may be an example of homoplasy, and 

therefore highlights the necessary caution needed when attempting to link morphology 

with function. It is also important to to be conscious of the fact that morphological traits 

around the hip act as a complex, that their functional roles are not strictly related to 

posture and locomotion and that a change in one structure may or may not lead to a 

change in another structure. 

 As is the case with Plio-Pleistocene hominins in general, relative CA in the 

proximal and midshaft femur is elevated in Paranthropus, fossil Homo sp. and H. erectus 

compared to modern humans and Pan. The functional significance of the relative amount 

of cortical bone in a cross-section can be difficult to interpret because this property is 
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related to different aspects of bone morphology and does not have an intrinsic 

biomechanical significance (Ruff et al., 1993; Ruff, 1994; Sládek et al., 2006; Carlson et 

al., 2007). However, it has been suggested that the relatively thick femoral cortex in Plio-

Pleistocene hominins may reflect a general increase in mechanical loading from greater 

musculature and activity levels compared to modern humans (Kennedy, 1983b; Ruff et 

al., 1993; Trinkaus and Ruff, 1999; Ruff, 2005). This suggestion is supported by evidence 

that J0.73 significantly contributes to variation in CA in the proximal and midshaft femur 

of modern humans. An increase in J0.73 in fossil hominins compared to modern humans 

may also partially explain their increase in CA relative to modern humans. At the very 

least, the greater CA relative to TA in the proximal and midshaft femur of Plio-

Pleistocene hominins is a morphologically diagnostic trait that distinguishes 

Paranthropus, fossil Homo sp. and H. erectus from modern humans and Pan.

 Cross-sectional morphology in the proximal and midshaft femur are distinct 

between modern humans and Pan. The former generally have greater axial strength 

relative to bending and torsional strength, while Pan shows lower axial strength relative 

to bending and torsional strength. The increase in axial strength relative to average 

bending and torsional strength in modern humans likely results from the actions of the 

abductor complex in the hip, which generates strong axial compression in the femoral 

neck, particularly during the single-support phase of human walking, that is subsequently 

transferred to the proximal femur and down the femoral diaphysis (Cristofolini  et al., 

1995; Aamodt et al., 1997; Duda et al., 1997). Stereotypical compressive and tensile 

loading characteristic of habitual erect posture and bipedalism also leads to greater axial 

strength relative to average bending and torsional strength in the modern human proximal 

femur (Carter et al., 1989; Duda et al., 1997; Kalmey and Lovejoy, 2002). Conversely, an 

increase in bending and torsional strength relative to axial strength in the proximal and 

midshaft femur in Pan likely reflects the dynamic, non-stereotypical, propulsive 

movements characteristic of arboreal locomotion (Ruff and Runestad, 1992; Carlson, 

2005; Marchi, 2007). Moreover, bending moments in Pan are increased because of the 

varus position of the hindlimb (Marchi, 2007). 
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 CA relative to J0.73 in the proximal femur of fossil Homo is commensurate with 

loading patterns consistent with modern human-like locomotion. Paranthropus shows the 

modern human-like pattern in greater CA relative to J0.73 compared to Pan, but the Pan-

like pattern in lower CA relative to J0.73 compared to modern humans and fossil Homo. 

These results indicate a mode of locomotion in Paranthropus that is not Pan-like, but 

instead kinematically more similar to, albeit still distinct from, that in Homo, both 

modern and fossil. Macchiarelli et al. (1999) examined the architecture of cancellous 

bone in the ilia of South African gracile and robust australopithecines, and found that the 

structure of the trabecular network indicated a loading regime commensurate with a 

bipedal gait somewhat different from modern humans. The results from this study support 

trabecular bone structural analyses indicating a rudimentary mode of bipedalism in 

Paranthropus.

 CA relative to J0.73 in the midshaft femur of Paranthropus, fossil Homo sp. and H. 

erectus generally conform to modern human-like patterns rather than Pan-like patterns, 

albeit fossil hominin femora are stronger than modern human femora. Pan-like loading 

patterns in KNM-WT 15000 most likely reflect the overall decrease in CA because of his 

juvenile age. Growth patterns in CA in modern human children and adolescents tend to 

follow body weight (Sumner and Andriacchi, 1996). Therefore, it is presumed that CA in 

KNM-WT 15000 is lower than expected given that he has not yet attained full adult size. 

In addition, modern human children tend to have relatively thin cortical walls because net 

endosteal resorption outweighs net endosteal deposition (Ruff et al., 1994; Schoenau et 

al., 2001; Ruff, 2005). Modern human children (i.e. before mid-adolescence) also 

experience more periosteal responses to mechanical loading than endosteal responses, 

which partially explains the larger medullary cavities in children compared to young 

adults and adults (Ruff, et al., 1994). Assuming modern human-like growth patterns in H. 

erectus (Clegg and Aiello, 1999), the low CA in KNM-WT 15000, which is likely a 

product of his age, may be contributing to the aberrant pattern in CA relative to J0.73. 

There is no morphological or functional morphological evidence to suggest that KNM-
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WT 15000 was not a committed biped (e.g. Brown et al., 1985; Ruff and Walker, 1993; 

Walker and Leakey, 1993; Wood and Collard, 1999b).

 CA is slightly elevated relative to J0.73 in OH 34 compared to Pan, but not nearly 

on the same magnitude as in KNM-ER 1592, KNM-ER 736, KNM-ER 1807, KNM-ER 

1808 and KNM-ER 1472. It is possible that the apparently non-Homo-like loading 

pattern in OH 34 reflects taxonomic bias. OH 34 is generally considered a representative 

of H. erectus, or Homo sp. indet., but its taxonomic status is not secure (Day and 

Molleson, 1976; Howell, 1978). OH 34 could be allocated to either H. erectus or P. boisei 

based on its inferred stratigraphic position from Bed III at Olduvai Gorge (0.8-1.15 mya) 

(Hay, 1976). The gracile shaft and the well-developed femoral pilaster suggest an affinity 

with Homo rather than with Paranthropus (Howell, 1978; Haeusler and McHenry, 2004). 

However, the M-L buttressing of the proximal femoral diaphysis in OH 34 is not as 

pronounced as in other early Homo femora, and proximal femoral cross-sectional shape 

differences between OH 34 and KNM-ER 737 (H. erectus), and between OH 34 and OH 

28 (H. erectus) exceed differences found in extant hominoids (Haeusler and McHenry, 

2004). According to Haeusler and McHenry (2004), OH 34 is unique because its external 

femoral morphology is statistically significantly different from that in P. boisei and H. 

erectus. Based on morphology and size, OH 34 is most closely matched with OH 62, and 

therefore may best be regarded as Homo sp. indet. as suggested by Day and Molleson 

(1976) (Haeusler and McHenry, 2004). Size-standardized midshaft femoral cross-

sectional geometry in OH 34, however, has been shown to be most similar to KNM-WT 

15000 and KNM-ER 1808, and quite distinct from OH 62 (see Chapter III). 

 A second possibility is that the low CA relative to J0.73 in OH 34 reflects 

preservation bias. As previously suggested by Leakey (1978) and Ruff (1995), the 

reconstruction of the original diaphyseal breadth and shape of OH 34 may be uncertain 

because of extensive weathering (but see Day and Molleson, 1976). Thus, the moderate 

amount of CA relative to J0.73 may reflect error in the reconstruction of the true diaphysis.  

 It is unclear if preservation bias in OH 62 is contributing to Pan-like patterns in 

CA relative to J0.73. Although Johanson et al. (1987:208) observed “slight exfoliation of 
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the OH 62 femur”, Haeusler and McHenry (2004:438) described the external appearance 

of it as “rugged” with “the loss of surface detail” undoubtedly resulting from heavy 

abrasion. However, it should be noted that abrasion in OH 34 is more severe than in OH 

62 (Haeusler and McHenry, 2004), yet they show similar relative CA values. This 

suggests that the pattern in OH 62 is not reflective of error in diaphyseal reconstruction 

due to poor preservation. Instead, the results indicate a mode of locomotion in OH 62 that  

is mechanically different from that in Homo in having decreased CA relative to J0.73.

 Femoral neck length determines the moment arm of the anterior gluteal muscles 

during the pelvic support phase in bipedal gait (Lovejoy et al., 2002). The relatively long 

femoral neck in Plio-Pleistocene hominins, both Paranthropus and Homo, acts to 

increase M-L bending strength in the proximal femur because it laterally displaces the 

femoral diaphysis relative to the femoral head center (Ruff et al., 1999; Ruff, 2005; 

Richmond and Jungers, 2009). As a result, the iliotibial band (i.e. the lateral tension band 

of the knee) must exert a force to maintain equilibrium about the knee joint (Lovejoy, 

1988; Ruff, 1995). An increase in biacetabular breadth leads to an increase in abductor 

and joint reaction force, which further increases M-L bending in the proximal femoral 

diaphysis (Ruff, 1995). 

 In the proximal femur, modern humans show greater bending strength in the M-L 

plane relative to the A-P plane compared to Pan, which likely reflects the generally 

longer femoral neck, more laterally flared ilia and greater biacetabular breadth in the 

former compared to the latter. Conversely, in the midshaft femur Pan shows a moderate 

increase in bending strength in the M-L plane relative to the A-P plane compared to 

modern humans, particularly as size increases. The relationship between M-L bending 

strength relative to A-P bending strength in the proximal and midshaft femur, however, is 

not significantly different between modern humans and Pan since y-intercepts and slopes 

are not significantly different between the two groups. This finding supports the 

statement by Lieberman et al. (2004:169) that “the lack of any simple, predictable 

relationship between bone function and midshaft shape complicates interpretations of 

shape, and potentially invalidates comparisons between species.” 
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 Most Plio-Pleistocene hominins examined here show an increase in M-L bending 

strength relative to A-P bending strength in the proximal femur compared to Pan, and are 

similar to modern humans in this regard. These results support previous findings 

characterizing proximal fossil hominin femora as medio-laterally expanded (e.g. Lovejoy 

and Heipel, 1972; Kennedy, 1983b; Ruff, 1995; Grine et al., 1995; Ruff et al., 1999; 

Richmond and Jungers, 2008; Holliday et al., 2010). In the current study, Paranthropus, 

fossil Homo and modern humans are similar in M-L bending strength relative to A-P 

bending strength. Ruff (1995) and Ruff et al. (1999), however, found that bending 

strength in the M-L plane relative to bending strength in the A-P plane was greatest in 

fossil Homo, least in modern humans and intermediate in Paranthropus. Since bending 

strength in the M-L plane relative to the A-P plane is highly variable across modern 

human populations, it is possible that conflicting results between the current study and 

Ruff (1995) and Ruff et al. (1999) may reflect slight differences in the modern human 

comparative sample6. 

 In the femoral midshaft, modern humans show a slight decrease in bending 

strength in the M-L plane relative to the A-P plane compared to Pan, but the difference 

between the two groups is very small, especially as size decreases. Moreover, y-intercepts 

and slopes are not significantly different between modern humans and Pan, which 

suggests that the relationship between M-L and A-P bending strengths is similar between 

the groups. Fossil hominins generally show greater bending strength in the M-L plane 

relative to the A-P plane compared to modern humans. The increase in midshaft femoral 

M-L buttressing relative to A-P buttressing in fossil Homo, especially in H. erectus, and 

Paranthropus has been previously noted (e.g. Ruff, 1995, 2005, 2009; Antón, 2003). 

 KNM-ER 1472 fell within the modern human sample distribution, but slightly 

below the modern human regression line, and below many other fossil samples. Ruff 
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(1995) found similar results with regard to the latter observation. However, when 

compared to Amerindians from Pecos Pueblo and East Africans from Uganda and Kenya, 

KNM-ER 1472 fell within the modern human sample distribution and above the modern 

human least squares regression line (Ruff, 1995). The diaphysis surrounding the natural 

break near the midshaft of KNM-ER 1472 showed evidence of abrasion. In the current 

study, the missing bone, mainly on the lateral side, was conservatively estimated based on 

the contours of the diaphysis above and below the natural break. Ruff (1995) estimated 

the missing bone in a similar manner and used a combination of methods to reconstruct 

the cross-sectional geometry of KNM-ER 1472 at the same section location. The 

somewhat contrasting results between Ruff (1995) and the current study may reflect 

inherent complications in biomechanical analyses of poorly preserved fossil remains, 

differences in modern human reference samples and/or methodological differences. 

 M-L bending strength is slightly decreased relative to A-P bending strength in 

KNM-ER 736 compared to other fossil Homo samples (e.g. KNM-ER 1807 and KNM-

ER 1808). Ruff (1995) found similar results (fossil Homo samples included KNM-ER 

737, KNM-ER 803a, KNM-ER 1481a, KNM-ER 1808 and OH 28). In the current study, 

however, KNM-ER 736 also fell slightly below Paranthropus, as represented by KNM-

ER 1592, but Ruff (1995) found that it fell moderately above paranthropines as 

represented by KNM-ER 1463, KNM-ER 1822 and KNM-ER 993. The section location 

for KNM-ER 1592 in this study was taken at ~43% of the femoral diaphysis based on an 

estimated femur length of 470 mm from McHenry (1991). An artificial increase in M-L 

bending strength may be a consequence of the more distal section location since M-L 

breadth increases as the condyles are approached. In addition, although KNM-ER 1592 is 

often referred to in the published literature as Paranthropus sp. or P. cf. boisei, its 

taxonomic status is contentious (McHenry, 1992; see Chapter III). It is possible that 

differences in results between KNM-ER 736 and Paranthropus in the current study 

versus Ruff (1995) may reflect error due to section location, variation in relative bending 

strength along the anatomical planes in Paranthropus or taxonomic uncertainty with 

KNM-ER 1592 (see Chapter III).
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CONCLUSION

 Paranthropus proximal femora are generally characterized by relatively thick 

cortices, a modern human-like pattern in greater CA relative to J0.73 compared to Pan, but 

the Pan-like pattern in decreased CA relative to J0.73 compared to modern humans and 

fossil Homo, and greater bending strength in the M-L plane relative to the A-P plane. Of 

particular note are the mechanical similarities among OH 20, SK 82 and SK 97, which 

complements previous observations of their external morphological similarities (e.g. Day, 

1969, 1976a; Leakey, 1978; Wood and Constantino, 2007; Harmon, 2009). Fossil Homo 

proximal femora are characterized by relatively thick cortices and a modern human-like 

pattern in greater CA relative to J0.73 compared to Pan. KNM-ER 999a shows greater 

bending strength in the M-L plane relative to the A-P plane compared to Pan, but KNM-

ER 1481a shows slightly lower bending strength in the M-L plane relative to the A-P 

plane.

 The Paranthropus midshaft femur, based on KNM-ER 1592, is characterized by a 

relatively thick cortex compared to modern humans and Pan, a mechanical loading 

pattern more similar to Homo, both modern and fossil, than to Pan and greater bending 

strength in the M-L plane relative to the A-P plane compared to modern humans. Fossil 

Homo midshaft femora are generally characterized by relatively thick cortices, 

mechanical loading patterns more similar to modern humans than to Pan with an increase 

in M-L bending strength relative to A-P bending strength. 

 Mechanical loading patterns in the proximal and midshaft femur in Paranthropus 

suggest a mode of locomotion mechanically more similar to human-like locomotion than 

Pan-like locomotion in accordance with many functional morphological interpretations 

of paranthropine postcranial anatomy (Napier, 1964; Day, 1969; McHenry, 1976; 

Robinson, 1972; Grausz et al., 1988; Susman, 1988, 1989; Susman and Brain, 1988; 

Harcourt-Smith and Aiello, 2004; Richmond and Jungers, 2008). As a group, 

Paranthropus proximal femora display mechanical similarities among each, which 

supports previous assertions of morphological continuity among paranthropine proximal 
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femora from Olduvai Gorge, Koobi Fora and Swartkrans (e.g. Walker, 1973; Day, 1976b; 

McHenry and Corruccini, 1978; Harmon, 2009; Holliday et al., 2010). 

 The Homo-like patterns in the midshaft femur of KNM-ER 1592 suggest 

mechanically similar loading patterns between Homo and Paranthropus, or that KNM-

ER 1592 is misclassified as a paranthropine (see Chapter III). Midshaft femoral cross-

sectional properties in KNM-ER 1592 should be compared with known, or reasonably 

ascribed Paranthropus samples to better understand its mechanical significance. 

 Mechanical loading patterns in the proximal and midshaft femur in Homo sp. and 

H. erectus are generally mechanically very similar to modern humans, which indicates a 

mode of locomotion commensurate with modern human-like bipedalism. The artificial 

peculiarities of KNM-WT 15000 compared to modern humans and fossil Homo may be 

an artifact of his immature age. It is unclear if the reconstructed cross-sections in OH 34 

and OH 62 are accurate given their preservation (Leakey, 1978; Ruff 1995; but see 

Haeusler and McHenry, 2004). Both femora are mechanically very similar to each other 

and distinct from other fossil Homo samples. Since the taxonomic status of OH 34 and 

especially OH 62 are uncertain, it is also possible that they are representatives of a 

species not fully committed to terrestrial bipedalism. If OH 34 and OH 62 are indeed 

members of the genus Homo (see Chapter III), there is the possibility that locomotor 

behavior in Homo is more variable than generally thought.

 The expectation of greater CA relative to TA in the proximal and midshaft femur 

of modern humans compared to Pan, and greater CA relative to TA in the proximal and 

midshaft femur of fossil hominins compared to modern humans is supported. Although 

the mechanical significance of an increase in CA relative to TA in Plio-Pleistocene 

hominin femora compared to modern human femora is unclear, it has been suggested that 

it may reflect an increase in overall mechanical loading among early hominins relative to 

modern humans (Kennedy, 1983b; Ruff et al., 1993; Ruff, 1995; Ruff et al., 1999; 

Trinkaus and Ruff, 1999; Ruff, 2009). Since J0.73 explains a significant amount of the 

variation in CA among modern humans, and since J0.73 is lower in modern human femora 
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compared to fossil hominin femora, it is possible that a decrease in average bending and 

torsional strength in modern humans may also explain a decrease in relative CA.

 The expectation of greater axial strength relative to average bending and torsional 

strength in the proximal and midshaft femur of modern humans compared to Pan is 

supported. Fossil Homo is most similar to modern humans in this regard, albeit their 

femora are stronger than modern human femora. Paranthropus is more similar to modern 

humans than to Pan in proximal femoral axial strength relative to average bending and 

torsional strength, which suggests a loading pattern similar to modern humans, albeit still 

distinct. The single midshaft Paranthropus femur shows an increase in CA relative to 

J0.73, which is more similar to the modern human-like pattern than the Pan-like pattern. 

However, since the taxonomic status of this individual (i.e. KNM-ER 1592) is uncertain, 

it is unclear if Paranthropus indeed follows the human-like pattern in increased CA 

relative to J0.73 in the femoral midshaft, or if KNM-ER 1592 is misclassified as 

Paranthropus.

 The expectation of significantly greater M-L bending strength relative to A-P 

bending strength in the proximal and midshaft femur or modern humans compared to Pan 

is not supported. Although modern humans show an increase in proximal femoral M-L 

bending strength relative to A-P bending strength, the regression line is not significantly 

different from the Pan regression line. Modern human midshaft femora show slightly 

lower M-L bending strength relative to A-P bending strength compared to Pan. Like the 

proximal femur, however, the regression line is not significantly different from the Pan 

regression line. These results indicate that the relationship between M-L bending strength 

and A-P bending strength is similar in modern humans and Pan despite obvious 

locomotor differences between the two groups. Relative bending strength along the 

anatomical axes is highly variable among modern human populations, which has been 

particularly well-demonstrated among archeological samples specifically in relation to 

subsistence economy (e.g. Ruff and Hayes, 1983; Ruff, 1987, 1999; Bridges, 1995; Stock 

and Pfeiffer, 2004; Marchi et al., 2006; Sládek et al., 2006; Sparacello and Marchi, 2008). 

Therefore, the results presented in this study with regard to relative M-L and A-P bending 
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strength should be taken with caution given the nature of the modern human reference 

sample. Finally, several factors (e.g. velocity, directional change, terrain, bi-iliac breadth) 

influence bending strength in the M-L plane relative to the A-P plane in the femoral 

diaphysis, especially in the midshaft section (Ruff, 1994, 1999, 2000; Demes et al., 2006; 

Marchi et al., 2006; Carlson et al., 2007; Carlson et al., 2008; Shaw and Stock, 2010). 

The relationship between many of these factors and their influence on diaphyseal shape, 

however, is unclear (Lieberman et al., 2004). It is therefore possible that different 

mechanical demands could potentially yield similarities in the relationship between M-L 

bending strength and A-P bending strength in modern humans and Pan in much the same 

way that external proximal femoral morphologies are similar between Homo and Pongo 

despite distinctly different postural and locomotor behaviors (Harmon, 2007). Further 

investigation of the relationship between mechanical loading and diaphyseal shape are 

warranted to better understand the link between relative bending strength in the 

anatomical axes of the femur.

 The results from this study are summarized as follows: (1) cross-sectional 

morphologies in the proximal and midshaft femur of fossil Homo sp. and H. erectus are 

generally commensurate with modern human-like patterns; (2) cross-sectional 

morphology in the proximal femora of Paranthropus is more similar to modern human-

like patterns than to Pan-like patterns, which suggests a mode of locomotion 

kinematically more akin to Homo than to Pan; (3) cross-sectional morphology in the 

midshaft femur of Paranthropus, represented by KNM-ER 1592, is very similar to 

modern human-like patterns, which either indicates that locomotor behavior in 

Paranthropus was commensurate with modern human-like locomotion or that KNM-ER 

1592 is not a representative of Paranthropus; and (4) cross-sectional morphologies in OH 

34 and OH 62 are similar to each other, similar to modern humans in CA versus TA, but 

more similar to Pan than to modern humans in CA versus J0.73. It is unclear if 

preservation bias is influencing the results of the latter, particularly in OH 34, or if OH 34 

and OH 62 had a mode of locomotion somewhat distinct from Homo. If OH 34 and OH 

62 are indeed representative of Homo, and if preservation bias is not significantly altering 
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their femoral diaphyses, then the results from this study support the idea of locomotor 

variability in fossil Homo. 
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CHAPTER V

SUMMARY OF CONCLUSIONS, CONTRIBUTIONS AND FUTURE 
DIRECTIONS

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 The major goal of this dissertation was to examine locomotion and locomotor 

variability in the Plio-Pleistocene hominin fossil record from a biomechanical 

perspective. The three primary objectives were to investigate: (1) if femoral cross-

sectional morphology reflects current taxonomic assignments of isolated fossil femora; 

(2) if mechanical loading patterns in Paranthropus suggest human-like locomotion, Pan-

like locomotion or intermediate locomotor behavior; and (3) if mechanical loading 

patterns in early Homo and Homo sp. are consistent with locomotor behavior in later 

Homo (i.e. H. erectus) and modern humans. The following sections describe the major 

findings of this study.

TAXONOMY AND LOCOMOTION

 A major hurdle that has hindered analyses of locomotion among several fossil 

hominin groups is the disconnect between the evidence used to diagnose/identify species 

in the fossil record (i.e. craniodental remains) and the evidence used to reconstruct 

locomotor behavior (i.e. postcranial remains). Thus, it is often unclear if reconstructed 

locomotor behaviors, which are primarily based on isolated postcranial elements, are 

actually valid for a species largely identified craniodentally. Members of the same genus 

are expected to occupy the same adaptive zone (Mayr, 1950; Cela-Conde and Ayala, 

2003), and members of an adaptive zone are expected to share similar posture and 

locomotor behavior (Wood and Lonergan, 2008). This hypothesis was tested by 

examining how fossil hominin groups were differentiated based on cross-sectional 

properties, and which cross-sectional properties best discriminate among the groups. A 

modern human sample was used for comparative purposes.
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 All modern human femora clustered together in the proximal and midshaft 

femoral analyses. In the proximal femur, KNM-ER 999a and KNM-ER 1481a, which are 

attributed to Homo sp., were closer to each other than either one was to Paranthropus, 

and clustered with modern humans to the exclusion of Paranthropus. KNM-ER 1500d, 

SK 82 and SK 97, which are allocated to Paranthropus, shared a close proximity among 

each other and formed a cluster to the exclusion of modern and fossil Homo. KNM-ER 

738, which has been allocated to both Paranthropus and Homo, was closest to SK 82 and 

SK 97 and clustered with Paranthropus. The DFA for the proximal section indicated that 

CA, Zx/Zy, Zx and J0.73, which were entered in the first through fourth steps, respectively, 

were the most important properties contributing to group differences. Pairwise group 

differences between modern humans and Paranthropus, and between modern humans 

and fossil Homo were significantly different in all four steps of the analysis. J0.73, which 

accounts for most of the variation among groups, was associated with the first function 

and Zx/Zy was associated with the second function. Both functions were significant based 

on Wilks’ lambda. Modern humans were discriminated from Paranthropus and fossil 

Homo along the first function, and from fossil Homo along the second function. All 

originally grouped and cross-validated grouped modern human femora were correctly 

classified. All originally grouped fossil femora were correctly classified. Of the cross-

validated grouped cases, only one paranthropine femur was misclassified as fossil Homo. 

The results from the DFA suggest that the clustering of proximal femora was largely due 

to differences in average bending and torsional strength. 

 Cluster analysis for the midshaft femur revealed that OH 62 was clearly the most 

distant sample compared to modern humans and fossil hominins. However, it is unclear if 

its distinctiveness is due to taxonomic and/or preservation bias. H. erectus femora (i.e. 

KNM-WT 15000, KNM-ER 1808 and OH 34) were closer among each other than either 

one was to non-erectus samples. KNM-ER 1807 and KNM-ER 736, which are 

taxonomically debatable, were close to KNM-ER 1472, a likely representative of Homo. 

KNM-ER 1592, a purported paranthropine, was close to KNM-ER 1807, KNM-ER 1472 

and KNM-ER 1808. KNM-ER 1592 was as distant from OH 62 as were the other fossil 
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femora. KNM-ER 1592, fossil Homo and H. erectus femora clustered with modern 

humans. OH 62, however, formed a cluster to the exclusion of all other samples. The 

DFA for the midshaft section indicated that CA, %CA, J0.73, Zx and Zy, which were 

entered in the first through fifth steps, respectively, were the most important properties 

contributing to group differences. Pairwise group comparisons indicated that modern 

humans were not significantly different from Paranthropus, as represented by KNM-ER 

1592, and H. erectus in step 1, and from Paranthropus in steps 2 through 5. J0.73 was 

associated with the first function, CA was associated with the second function and %CA 

was associated with the third function. Only the first two functions were significant based 

on Wilks’ lambda. Modern humans were discriminated from all fossil hominin groups 

along the first function, and from Paranthropus and H. erectus along the second function. 

All originally grouped and cross-validated grouped modern human femora were correctly 

classified. All originally grouped fossil femora were correctly classified. Of the cross-

validated grouped cases, KNM-ER 1592 and one H. erectus femur were misclassified as 

H. sapiens, and one fossil Homo sp. femur was misclassified as H. erectus. These results 

suggest that the clustering of midshaft femora was primarily due to differences in J0.73 and 

CA. 

 Based on proximal femoral cross-sectional morphology, the current taxonomic 

status of KNM-ER 999a and KNM-ER 1481a as representatives of Homo is supported, 

albeit their species designations within that genus cannot be resolved. The taxonomic 

status of KNM-ER 1500d, SK 82 and SK 97 as non-Homo hominins is supported. The 

taxonomic status of KNM-ER 738 based on proximal femoral cross-sectional 

morphology cannot be confidently determined, but results tentatively suggest that it 

cannot be excluded from the Paranthropus genus.

 Cluster analysis based on midshaft femoral cross-sectional properties suggest that 

OH 62 may not be a representative of Homo, or that there is a high degree of cross-

sectional morphological variation in the midshaft femur of early Homo. Results from the 

DFA, however, do not indicate that midshaft femoral cross-sectional properties in OH 62 

are particularly aberrant from other early fossil Homo sp. Since results from a cluster 
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analysis vary depending on the number of variables examined, it is possible that the 

inclusion of several cross-sectional properties falsely contributed to the distinctiveness of 

OH 62. The DFA extracted the most important variables discriminating among the 

groups, and in this analysis, OH 62 was not separated from other fossil Homo sp. 

Although it has been argued that preservation bias may be contributing to the 

distinctiveness of OH 62, it is important to note that the preservation of OH 34 is worse 

than in OH 62 (Haeusler and McHenry, 2004). However, OH 34 still fell with other fossil 

Homo samples. Thus, it is doubtful if preservation bias in OH 62 is contributing to its 

distinctiveness from other Homo femora. If OH 62 is to remain in the genus Homo, then 

the behavioral attributes of its members, at least in terms of locomotion, may need to be 

redefined to possibly include non-committed bipeds. 

 KNM-ER 1592 clustered with modern and fossil Homo, and was most similar to 

KNM-ER 1807, a possible member of the genus Homo, and KNM-ER 1472, a likely 

member of the genus Homo. This finding does not support functional morphological and 

biomechanical interpretations of paranthropine locomotor behavior suggesting a 

significant arboreal component in conjunction with a kinematically non-human-like form 

of terrestrial bipedalism (e.g. Robinson, 1972; McHenry, 1978; Grausz et al., 1988; Spoor 

et al., 1994; Aiello et al., 1999; Macchiarelli et al., 1999; Ruff et al., 1999; Gebo and 

Schwartz, 2006). It is therefore possible that KNM-ER 1592 is not a representative of 

Paranthropus, at least as indicated by its midshaft femoral cross-sectional morphology. 

Certainly, comparisons with definitive paranthropine femora are needed to substantiate 

this claim.

 KNM-ER 736 and KNM-ER 1807 have been allocated to both Homo and 

Paranthropus (Leakey et al., 1972; Day, 1976; Day et al., 1976; McHenry, 1991; Grine et  

al., 1995). Midshaft femoral cross-sectional morphology suggests that both femora 

cannot be excluded from the genus Homo. Since no definitive paranthropine midshaft 

femora were examined, it is not possible to exclude KNM-ER 736 and KNM-ER 1807 

from Paranthropus, but given their similarity to modern and fossil Homo, it is also not 

possible to exclude them from the genus Homo. A summary of the relationship between 
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cross-sectional morphology and taxonomy among the fossil hominin samples examined 

in this study is presented in Table 1.

Table 1. Summary of the relationship between cross-sectional morphology and taxonomy.

Sample Genus Taxonomic support based on 
cross-sectional morphology

Proximal

KNM-ER 738 Paranthropus/Homo uncertain, but cannot be excluded from 
Paranthropus

KNM-ER 1500d Paranthropus yes
SK 82 Paranthropus yes
SK 97 Paranthropus yes
KNM-ER 999a Homo yes
KNM-ER 1481a Homo yes

Midshaft

KNM-ER 1592 Paranthropus* uncertain, but similar to Homo
KNM-ER 736 Paranthropus/Homo uncertain, but similar to Homo
KNM-ER 1472 Homo yes
KNM-ER 1807 Paranthropus/Homo uncertain, but similar to Homo
OH 62 Homo* uncertain
KNM-ER 1808 H. erectus yes
KNM-WT 15000 H. erectus yes
OH 34 H. erectus yes

* Indicates uncertain genus.

 Cross-sectional geometries are phenotypically plastic and are also influenced by 

non-mechanical factors such as genetics, pathology and age (Ruff, 2000; Lovejoy et al., 

2002, 2003; Volkman et al., 2003). Moreover, the relationships among behavior, external 

loading and resultant cross-sectional geometries are not completely understood (Bertram 

and Swartz, 1991; Pearson and Lieberman, 2004; Lieberman et al., 2004). Despite these 

caveats and limitations, several studies have shown that long bones do indeed remodel to 

accommodate to mechanical loading during life (Jones et al., 1977; Ruff and Hayes, 

1983; Ruff, 1987, 1994; Martin and Burr, 1989; Biewener et al., 1996; Sumner and 

Andriacchi, 1996; Frost et al., 1998; Shaw and Stock, 2009). Therefore, while cross-
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sectional morphology by itself should not be used for direct taxonomic identification, it 

can lend insight into taxonomy since locomotor behavior is an important aspect of the 

adaptive zone of a genus. The findings from this study suggest that femoral cross-

sectional morphology in fossil hominins generally support current taxonomic identities at 

least to the genus-level. The broader implication of these results is that biomechanical 

analyses may aid in the taxonomic identification of isolated femora, which abound in the 

hominin fossil record.

MECHANICAL LOADING PATTERNS IN MODERN HUMANS AND PAN

 Modern human and Pan referential models are often used to infer locomotor 

behavior in fossil hominins. The former serves as the preeminent model for obligate 

terrestrial bipedalism, while the latter serves as a model for the possible ancestral 

condition since there is a close phylogenetic relationship between Pan and the lineage 

that led to modern humans (Rogers, 1993; D’Août et al., 2004; Crompton et al., 2008; 

Tocheri et al., 2008; Pontzer et al., 2009). Thus, modern humans and Pan represent the 

two extremes of the locomotor continuum of modern human ancestors.

 Analyses of mechanical loading patterns in the proximal and midshaft femora of 

modern humans and Pan have revealed many important findings. The relative amount of 

cortical bone in modern human femora was greater than in Pan femora, and TA explained 

a significant amount of the variation in CA in modern humans, but not in Pan. These 

results indicate that there is not a linear relationship between TA and CA in Pan femora. 

The functional significance of the relative amount of cortical bone in a cross-section can 

be difficult to interpret because this property is related to different aspects of bone 

morphology and does not have an intrinsic biomechanical significance (Ruff et al., 1993; 

Ruff, 1994; Sládek et al., 2006). At the very least, however, the relative amount of 

cortical bone in the femoral diaphysis serves as a morphological trait to distinguish 

modern humans from Pan.
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 Modern human femora were shown to be structurally adapted for greater axial 

strength relative to average bending and torsional strength compared to Pan femora. The 

increase in CA relative to J0.73 in modern humans reflects the actions of the abductor 

complex in the hip, which generates strong axial compression in the femoral neck, 

particularly during the single-support phase of human walking, that is subsequently 

transferred to the proximal femur and down the femoral diaphysis (Cristofolini et al., 

1995; Aamodt et al., 1997; Duda et al., 1997). Pan femora are characterized by a decrease 

in axial strength relative to average bending and torsional strength. This loading pattern 

likely reflects the multi-oriented bending loads, and dynamic and propulsive movements 

associated with quadrupedal locomotion and arborealism (Ruff and Runestad, 1992; 

Demes et al., 2001; Kalmey and Lovejoy, 2002; Carlson, 2005; Marchi, 2007). This 

mechanical adaptation is also reflected in cortical bone distribution in the femoral neck of 

Pan, which is characterized by a uniformly thick circumferential cortical shell (Lovejoy 

et al., 2002). The advantage of this morphology is that the femoral neck is better able to 

withstand strong bending moments and resist torsional loads in multiple planes (Lovejoy 

et al., 2002). 

 Bending strength in the M-L plane was relatively greater than bending strength in 

the A-P plane in modern human proximal femora compared to Pan, while bending 

strength in the M-L plane was relatively greater than bending strength in the A-P plane in 

Pan midshaft femora compared to modern humans. The y-intercepts and slopes of the 

regression lines, however, were not significantly different between the two groups in the 

proximal and midshaft femur, which suggests that the relationship between M-L and A-P 

bending strengths are not significantly different between modern humans and Pan. 

Although Pan femora are typically characterized as being M-L buttressed (Carlson, 2002, 

2005; Carlson et al., 2008), relative M-L to A-P bending strength in modern human 

femora, especially in the midshaft, is highly variable depending on activity levels and 

terrain (e.g. Ruff, 1987, 2005; Bridges, 1995; Stock and Pfeiffer, 2004; Marchi et al., 

2006; Sládek et al., 2006; Sparacello and Marchi, 2008). Therefore, the results from this 
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study should be interpreted cautiously given the nature of the modern human reference 

sample. 

 It is also possible that different mechanical demands and morphological 

complexes could potentially yield similarities in the relationship between M-L bending 

strength and A-P bending strength. For instance, M-L buttressing in the proximal femoral 

diaphysis is a widely recognized trait among modern humans and fossil hominins, which 

likely stems from a laterally displaced proximal femoral diaphysis (Lovejoy et al., 1973; 

Lovejoy, 1988; Ruff, 1995; Richmond and Jungers, 2008). A relatively long femoral neck 

and greater biacetabular breadth in modern humans and fossil hominins contribute to this 

lateral displacement of the femoral diaphysis. Greater M-L bending strength relative to A-

P bending strength in the femoral diaphysis of Pan may be brought about by an increase 

in turning behaviors and directional changes during locomotion (Demes et al., 2006; 

Carlson et al., 2008). The results indicate that diaphyseal shape may be a poor indicator 

of locomotor behavior, and is probably not useful for identifying broad locomotor 

categories in the hominin fossil record. These findings support the claim by Lieberman et 

al. (2004) that the lack of a predictable relationship between bone function and 

diaphyseal shape complicates interpretations of shape, and possibly negates comparisons 

between species.

 While diaphyseal shape, or the relationship between M-L bending strength 

relative to A-P bending strength, is not clearly distinct between modern humans and Pan, 

the relationship between axial strength relative to average bending and torsional strength, 

and the relative amount of cortical bone in the cross-section relative to total area, easily 

differentiate modern human femora from Pan femora.

LOCOMOTION AND LOCOMOTOR VARIABILITY IN FOSSIL HOMININS

 Analyses of mechanical loading patterns in the proximal and midshaft femora of 

Plio-Pleistocene hominins have revealed several important findings regarding the nature 

of locomotion and the degree of locomotor variability in early hominin groups. As is the 
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case with Plio-Pleistocene hominins in general, the relative amount of CA in the proximal 

and midshaft femoral sections was shown to be elevated in Paranthropus and fossil 

Homo compared to modern humans and Pan. It has been suggested that the relatively 

thicker femoral cortices in Plio-Pleistocene hominins may reflect a general increase in 

mechanical loading from greater musculature and activity levels compared to modern 

humans (Kennedy, 1983; Ruff et al., 1993; Trinkaus and Ruff, 1999; Ruff, 2005). This 

suggestion is supported by evidence that J0.73 significantly contributes to variation in CA 

in the proximal and midshaft femur of modern humans. An increase in J0.73 in fossil 

hominins compared to modern humans may also explain their increase in CA relative to 

modern humans. At the very least, an increase in CA relative to TA in the proximal and 

midshaft femur of Plio-Pleistocene hominins is a morphologically diagnostic trait that 

distinguishes them from modern humans and Pan.

 Axial strength relative to average bending and torsional strength in the proximal 

femora of fossil Homo is commensurate with loading patterns indicative of modern 

human-like locomotion. Paranthropus shows the modern human-like pattern in greater 

CA relative to J0.73 compared to Pan, but the Pan-like pattern in lower CA relative to J0.73 

compared to modern humans and fossil Homo. These results indicate a form of 

locomotion in Paranthropus that is not Pan-like, but instead kinematically more similar 

to, albeit distinct from, that in Homo, both modern and fossil. Axial strength relative to 

average bending and torsional strength in the midshaft femur of Paranthropus, fossil 

Homo sp. and H. erectus generally conform to modern human-like patterns rather than 

Pan-like patterns, albeit fossil hominin femora are stronger than modern human femora. 

The Homo-like loading pattern in KNM-ER 1592 suggests either a kinematically similar 

mode of locomotion between Homo and Paranthropus, or that KNM-ER 1592 is not 

representative of Paranthropus. A decrease in CA relative to J0.73 in KNM-WT 15000 

most likely reflects the overall decrease in CA because of his juvenile age. Growth 

patterns in CA in modern human children and adolescents follow body weight (Sumner 

and Andriacchi, 1996). Therefore, it is presumed that CA in KNM-WT 15000 is lower 

than expected given that he has not yet attained full adult size. Assuming modern human-
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like growth patterns in H. erectus (Tardieu, 1998; Clegg and Aiello, 1999; Smith, 2004; 

but see Smith, 1993; Thompson and Nelson, 2000; Graves et al., 2010), the low CA in 

KNM-WT 15000, which is likely a product of his age, may be contributing to the 

aberrant pattern in CA relative to J0.73.

 CA is slightly elevated relative to J0.73 in OH 34 compared to Pan, but not nearly 

to the same degree as in KNM-ER 1592, KNM-ER 736, KNM-ER 1807, KNM-ER 1808 

and KNM-ER 1472. It is possible that the apparently non-Homo-like loading pattern in 

OH 34 reflects taxonomic and/or preservation bias (Day and Molleson, 1976; Leakey, 

1978; Ruff, 1995;  Haeusler and McHenry, 2004). It is unclear if taxonomic and/or 

preservation bias in OH 62 contributes to Pan-like patterns in CA relative to J0.73. 

Although Johanson et al. (1987:208) observed “slight exfoliation of the OH 62 femur”, 

Haeusler and McHenry (2004:438) described the external appearance of it as “rugged” 

with “the loss of surface detail” undoubtedly resulting from heavy abrasion. However, it 

should be noted that abrasion in OH 34 is more severe than in OH 62 (Haeusler and 

McHenry, 2004), yet they show similar relative CA values. This suggests that the pattern 

in OH 62 is not reflective of error in diaphyseal reconstruction due to poor preservation. 

Instead, the results indicate a mode of locomotion in OH 62 that is mechanically different 

from that in Homo. If the taxonomic allocation of OH 62 is correct, these results suggest 

a moderate degree of locomotor variability in the early Homo lineage. It is also possible 

that the current taxonomic allocation of OH 62 to the genus Homo is incorrect, which 

would explain its non-Homo-like loading patterns.

 Most Plio-Pleistocene hominins examined here show an increase in M-L bending 

strength relative to A-P bending strength in the proximal femur compared to Pan, and are 

similar to modern humans in this regard. These results support previous findings 

characterizing proximal fossil hominin femora as medio-laterally expanded (e.g. Lovejoy 

and Heipel, 1972; Ruff, 1995; Grine et al., 1995; Ruff et al., 1999; Richmond and 

Jungers, 2008; Holliday et al., 2010). Fossil hominins generally show greater bending 

strength in the M-L plane relative to the A-P plane in the midshaft femur compared to 

modern humans. However, given the lack of significant differences in M-L relative to A-
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P bending strength in modern humans compared to Pan, it is difficult to interpret the 

significance of diaphyseal shape among fossil hominins. Further investigation of the 

relationship between M-L and A-P bending strength is warranted to better understand the 

link between mechanical loading and diaphyseal shape.

 The results from this study cautiously support the use of cross-sectional 

morphology as a tool to infer the taxonomic identity of isolated fossil femora, assuming 

that members of the same genus engage in similar locomotor behavior. Mechanical 

loading patterns in the proximal and midshaft femora of fossil Homo, except OH 62, are 

similar to patterns in modern humans and distinct from patterns in Pan. Proximal femoral 

mechanical loading patterns in Paranthropus are more similar to patterns in modern 

humans than to patterns in Pan, which supports the view that locomotor behavior in 

Paranthropus included a mode of bipedalism similar to, albeit distinct from, modern 

human-like bipedalism. Mechanical loading patterns in the midshaft femur of 

Paranthropus, as represented by KNM-ER 1592, suggest similar locomotor behavior 

between Paranthropus and Homo, or that KNM-ER 1592 is not a paranthropine. Finally, 

midshaft femoral cross-sectional properties and loading patterns in OH 62 suggest a 

different mode of locomotion in the species represented by OH 62 compared to modern 

and fossil Homo. This either indicates a wide degree of variation in locomotor behavior in 

the Homo lineage and that all individuals currently assigned to the genus Homo cannot be 

identified as committed bipeds, or, as suggested by Wood and colleagues, that OH 62 is 

not a member of the genus Homo (Wood, 1993, 2000, 2005; Wood and Collard 1999a, b).

FUTURE DIRECTIONS

 Future research will include: (1) an examination of ranges of variation in cross-

sectional properties and loading pattens in Ardipithecus and Australopithecus to further 

survey locomotor behavioral variability among pre-H. erectus hominins; (2) an analysis 

of bone structure in Plio-Pleistocene hominins through the use of other methodologies  

(e.g. finite element analysis) to gain a higher-resolution of bone functional adaptation; (3) 
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further investigation of the relationship between mechanical loading and cross-sectional 

geometry to better understand the link between function and morphology; (4) an 

examination of the relationship between cross-sectional morphology in the femoral neck 

and cross-sectional morphology in the proximal femur; and (5) an examination of the role 

of the environment in influencing locomotor behavior.
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